2008-03-18 Ulrich Weigand <uweigand@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "objfiles.h"
33 #include "elf/dwarf2.h"
34 #include "buildsym.h"
35 #include "demangle.h"
36 #include "expression.h"
37 #include "filenames.h" /* for DOSish file names */
38 #include "macrotab.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "bcache.h"
42 #include "dwarf2expr.h"
43 #include "dwarf2loc.h"
44 #include "cp-support.h"
45 #include "hashtab.h"
46 #include "command.h"
47 #include "gdbcmd.h"
48
49 #include <fcntl.h>
50 #include "gdb_string.h"
51 #include "gdb_assert.h"
52 #include <sys/types.h>
53
54 /* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
68 #if 0
69 /* .debug_info header for a compilation unit
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72 typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81 _COMP_UNIT_HEADER;
82 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
83 #endif
84
85 /* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88 typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98 _PUBNAMES_HEADER;
99 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101 /* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104 typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114 _ARANGES_HEADER;
115 #define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117 /* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120 typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138 _STATEMENT_PROLOGUE;
139
140 static const struct objfile_data *dwarf2_objfile_data_key;
141
142 struct dwarf2_per_objfile
143 {
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
165
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
180 };
181
182 static struct dwarf2_per_objfile *dwarf2_per_objfile;
183
184 static asection *dwarf_info_section;
185 static asection *dwarf_abbrev_section;
186 static asection *dwarf_line_section;
187 static asection *dwarf_pubnames_section;
188 static asection *dwarf_aranges_section;
189 static asection *dwarf_loc_section;
190 static asection *dwarf_macinfo_section;
191 static asection *dwarf_str_section;
192 static asection *dwarf_ranges_section;
193 asection *dwarf_frame_section;
194 asection *dwarf_eh_frame_section;
195
196 /* names of the debugging sections */
197
198 #define INFO_SECTION ".debug_info"
199 #define ABBREV_SECTION ".debug_abbrev"
200 #define LINE_SECTION ".debug_line"
201 #define PUBNAMES_SECTION ".debug_pubnames"
202 #define ARANGES_SECTION ".debug_aranges"
203 #define LOC_SECTION ".debug_loc"
204 #define MACINFO_SECTION ".debug_macinfo"
205 #define STR_SECTION ".debug_str"
206 #define RANGES_SECTION ".debug_ranges"
207 #define FRAME_SECTION ".debug_frame"
208 #define EH_FRAME_SECTION ".eh_frame"
209
210 /* local data types */
211
212 /* We hold several abbreviation tables in memory at the same time. */
213 #ifndef ABBREV_HASH_SIZE
214 #define ABBREV_HASH_SIZE 121
215 #endif
216
217 /* The data in a compilation unit header, after target2host
218 translation, looks like this. */
219 struct comp_unit_head
220 {
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
226
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
229
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
232
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
236
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
239 gdb_byte *cu_head_ptr;
240
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
243 gdb_byte *first_die_ptr;
244
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
247
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
250
251 /* Non-zero if base_address has been set. */
252 int base_known;
253 };
254
255 /* Fixed size for the DIE hash table. */
256 #ifndef REF_HASH_SIZE
257 #define REF_HASH_SIZE 1021
258 #endif
259
260 /* Internal state when decoding a particular compilation unit. */
261 struct dwarf2_cu
262 {
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
269 should logically be moved to the dwarf2_cu structure. */
270 struct comp_unit_head header;
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
278 const char *producer;
279
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
291 /* DWARF abbreviation table associated with this compilation unit. */
292 struct abbrev_info **dwarf2_abbrevs;
293
294 /* Storage for the abbrev table. */
295 struct obstack abbrev_obstack;
296
297 /* Hash table holding all the loaded partial DIEs. */
298 htab_t partial_dies;
299
300 /* Storage for things with the same lifetime as this read-in compilation
301 unit, including partial DIEs. */
302 struct obstack comp_unit_obstack;
303
304 /* When multiple dwarf2_cu structures are living in memory, this field
305 chains them all together, so that they can be released efficiently.
306 We will probably also want a generation counter so that most-recently-used
307 compilation units are cached... */
308 struct dwarf2_per_cu_data *read_in_chain;
309
310 /* Backchain to our per_cu entry if the tree has been built. */
311 struct dwarf2_per_cu_data *per_cu;
312
313 /* How many compilation units ago was this CU last referenced? */
314 int last_used;
315
316 /* A hash table of die offsets for following references. */
317 struct die_info *die_ref_table[REF_HASH_SIZE];
318
319 /* Full DIEs if read in. */
320 struct die_info *dies;
321
322 /* A set of pointers to dwarf2_per_cu_data objects for compilation
323 units referenced by this one. Only set during full symbol processing;
324 partial symbol tables do not have dependencies. */
325 htab_t dependencies;
326
327 /* Header data from the line table, during full symbol processing. */
328 struct line_header *line_header;
329
330 /* Mark used when releasing cached dies. */
331 unsigned int mark : 1;
332
333 /* This flag will be set if this compilation unit might include
334 inter-compilation-unit references. */
335 unsigned int has_form_ref_addr : 1;
336
337 /* This flag will be set if this compilation unit includes any
338 DW_TAG_namespace DIEs. If we know that there are explicit
339 DIEs for namespaces, we don't need to try to infer them
340 from mangled names. */
341 unsigned int has_namespace_info : 1;
342 };
343
344 /* Persistent data held for a compilation unit, even when not
345 processing it. We put a pointer to this structure in the
346 read_symtab_private field of the psymtab. If we encounter
347 inter-compilation-unit references, we also maintain a sorted
348 list of all compilation units. */
349
350 struct dwarf2_per_cu_data
351 {
352 /* The start offset and length of this compilation unit. 2**30-1
353 bytes should suffice to store the length of any compilation unit
354 - if it doesn't, GDB will fall over anyway. */
355 unsigned long offset;
356 unsigned long length : 30;
357
358 /* Flag indicating this compilation unit will be read in before
359 any of the current compilation units are processed. */
360 unsigned long queued : 1;
361
362 /* This flag will be set if we need to load absolutely all DIEs
363 for this compilation unit, instead of just the ones we think
364 are interesting. It gets set if we look for a DIE in the
365 hash table and don't find it. */
366 unsigned int load_all_dies : 1;
367
368 /* Set iff currently read in. */
369 struct dwarf2_cu *cu;
370
371 /* If full symbols for this CU have been read in, then this field
372 holds a map of DIE offsets to types. It isn't always possible
373 to reconstruct this information later, so we have to preserve
374 it. */
375 htab_t type_hash;
376
377 /* The partial symbol table associated with this compilation unit,
378 or NULL for partial units (which do not have an associated
379 symtab). */
380 struct partial_symtab *psymtab;
381 };
382
383 /* The line number information for a compilation unit (found in the
384 .debug_line section) begins with a "statement program header",
385 which contains the following information. */
386 struct line_header
387 {
388 unsigned int total_length;
389 unsigned short version;
390 unsigned int header_length;
391 unsigned char minimum_instruction_length;
392 unsigned char default_is_stmt;
393 int line_base;
394 unsigned char line_range;
395 unsigned char opcode_base;
396
397 /* standard_opcode_lengths[i] is the number of operands for the
398 standard opcode whose value is i. This means that
399 standard_opcode_lengths[0] is unused, and the last meaningful
400 element is standard_opcode_lengths[opcode_base - 1]. */
401 unsigned char *standard_opcode_lengths;
402
403 /* The include_directories table. NOTE! These strings are not
404 allocated with xmalloc; instead, they are pointers into
405 debug_line_buffer. If you try to free them, `free' will get
406 indigestion. */
407 unsigned int num_include_dirs, include_dirs_size;
408 char **include_dirs;
409
410 /* The file_names table. NOTE! These strings are not allocated
411 with xmalloc; instead, they are pointers into debug_line_buffer.
412 Don't try to free them directly. */
413 unsigned int num_file_names, file_names_size;
414 struct file_entry
415 {
416 char *name;
417 unsigned int dir_index;
418 unsigned int mod_time;
419 unsigned int length;
420 int included_p; /* Non-zero if referenced by the Line Number Program. */
421 struct symtab *symtab; /* The associated symbol table, if any. */
422 } *file_names;
423
424 /* The start and end of the statement program following this
425 header. These point into dwarf2_per_objfile->line_buffer. */
426 gdb_byte *statement_program_start, *statement_program_end;
427 };
428
429 /* When we construct a partial symbol table entry we only
430 need this much information. */
431 struct partial_die_info
432 {
433 /* Offset of this DIE. */
434 unsigned int offset;
435
436 /* DWARF-2 tag for this DIE. */
437 ENUM_BITFIELD(dwarf_tag) tag : 16;
438
439 /* Language code associated with this DIE. This is only used
440 for the compilation unit DIE. */
441 unsigned int language : 8;
442
443 /* Assorted flags describing the data found in this DIE. */
444 unsigned int has_children : 1;
445 unsigned int is_external : 1;
446 unsigned int is_declaration : 1;
447 unsigned int has_type : 1;
448 unsigned int has_specification : 1;
449 unsigned int has_stmt_list : 1;
450 unsigned int has_pc_info : 1;
451
452 /* Flag set if the SCOPE field of this structure has been
453 computed. */
454 unsigned int scope_set : 1;
455
456 /* Flag set if the DIE has a byte_size attribute. */
457 unsigned int has_byte_size : 1;
458
459 /* The name of this DIE. Normally the value of DW_AT_name, but
460 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
461 other fashion. */
462 char *name;
463 char *dirname;
464
465 /* The scope to prepend to our children. This is generally
466 allocated on the comp_unit_obstack, so will disappear
467 when this compilation unit leaves the cache. */
468 char *scope;
469
470 /* The location description associated with this DIE, if any. */
471 struct dwarf_block *locdesc;
472
473 /* If HAS_PC_INFO, the PC range associated with this DIE. */
474 CORE_ADDR lowpc;
475 CORE_ADDR highpc;
476
477 /* Pointer into the info_buffer pointing at the target of
478 DW_AT_sibling, if any. */
479 gdb_byte *sibling;
480
481 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
482 DW_AT_specification (or DW_AT_abstract_origin or
483 DW_AT_extension). */
484 unsigned int spec_offset;
485
486 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
487 unsigned int line_offset;
488
489 /* Pointers to this DIE's parent, first child, and next sibling,
490 if any. */
491 struct partial_die_info *die_parent, *die_child, *die_sibling;
492 };
493
494 /* This data structure holds the information of an abbrev. */
495 struct abbrev_info
496 {
497 unsigned int number; /* number identifying abbrev */
498 enum dwarf_tag tag; /* dwarf tag */
499 unsigned short has_children; /* boolean */
500 unsigned short num_attrs; /* number of attributes */
501 struct attr_abbrev *attrs; /* an array of attribute descriptions */
502 struct abbrev_info *next; /* next in chain */
503 };
504
505 struct attr_abbrev
506 {
507 enum dwarf_attribute name;
508 enum dwarf_form form;
509 };
510
511 /* This data structure holds a complete die structure. */
512 struct die_info
513 {
514 enum dwarf_tag tag; /* Tag indicating type of die */
515 unsigned int abbrev; /* Abbrev number */
516 unsigned int offset; /* Offset in .debug_info section */
517 unsigned int num_attrs; /* Number of attributes */
518 struct attribute *attrs; /* An array of attributes */
519 struct die_info *next_ref; /* Next die in ref hash table */
520
521 /* The dies in a compilation unit form an n-ary tree. PARENT
522 points to this die's parent; CHILD points to the first child of
523 this node; and all the children of a given node are chained
524 together via their SIBLING fields, terminated by a die whose
525 tag is zero. */
526 struct die_info *child; /* Its first child, if any. */
527 struct die_info *sibling; /* Its next sibling, if any. */
528 struct die_info *parent; /* Its parent, if any. */
529
530 struct type *type; /* Cached type information */
531 };
532
533 /* Attributes have a name and a value */
534 struct attribute
535 {
536 enum dwarf_attribute name;
537 enum dwarf_form form;
538 union
539 {
540 char *str;
541 struct dwarf_block *blk;
542 unsigned long unsnd;
543 long int snd;
544 CORE_ADDR addr;
545 }
546 u;
547 };
548
549 struct function_range
550 {
551 const char *name;
552 CORE_ADDR lowpc, highpc;
553 int seen_line;
554 struct function_range *next;
555 };
556
557 /* Get at parts of an attribute structure */
558
559 #define DW_STRING(attr) ((attr)->u.str)
560 #define DW_UNSND(attr) ((attr)->u.unsnd)
561 #define DW_BLOCK(attr) ((attr)->u.blk)
562 #define DW_SND(attr) ((attr)->u.snd)
563 #define DW_ADDR(attr) ((attr)->u.addr)
564
565 /* Blocks are a bunch of untyped bytes. */
566 struct dwarf_block
567 {
568 unsigned int size;
569 gdb_byte *data;
570 };
571
572 #ifndef ATTR_ALLOC_CHUNK
573 #define ATTR_ALLOC_CHUNK 4
574 #endif
575
576 /* Allocate fields for structs, unions and enums in this size. */
577 #ifndef DW_FIELD_ALLOC_CHUNK
578 #define DW_FIELD_ALLOC_CHUNK 4
579 #endif
580
581 /* A zeroed version of a partial die for initialization purposes. */
582 static struct partial_die_info zeroed_partial_die;
583
584 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
585 but this would require a corresponding change in unpack_field_as_long
586 and friends. */
587 static int bits_per_byte = 8;
588
589 /* The routines that read and process dies for a C struct or C++ class
590 pass lists of data member fields and lists of member function fields
591 in an instance of a field_info structure, as defined below. */
592 struct field_info
593 {
594 /* List of data member and baseclasses fields. */
595 struct nextfield
596 {
597 struct nextfield *next;
598 int accessibility;
599 int virtuality;
600 struct field field;
601 }
602 *fields;
603
604 /* Number of fields. */
605 int nfields;
606
607 /* Number of baseclasses. */
608 int nbaseclasses;
609
610 /* Set if the accesibility of one of the fields is not public. */
611 int non_public_fields;
612
613 /* Member function fields array, entries are allocated in the order they
614 are encountered in the object file. */
615 struct nextfnfield
616 {
617 struct nextfnfield *next;
618 struct fn_field fnfield;
619 }
620 *fnfields;
621
622 /* Member function fieldlist array, contains name of possibly overloaded
623 member function, number of overloaded member functions and a pointer
624 to the head of the member function field chain. */
625 struct fnfieldlist
626 {
627 char *name;
628 int length;
629 struct nextfnfield *head;
630 }
631 *fnfieldlists;
632
633 /* Number of entries in the fnfieldlists array. */
634 int nfnfields;
635 };
636
637 /* One item on the queue of compilation units to read in full symbols
638 for. */
639 struct dwarf2_queue_item
640 {
641 struct dwarf2_per_cu_data *per_cu;
642 struct dwarf2_queue_item *next;
643 };
644
645 /* The current queue. */
646 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
647
648 /* Loaded secondary compilation units are kept in memory until they
649 have not been referenced for the processing of this many
650 compilation units. Set this to zero to disable caching. Cache
651 sizes of up to at least twenty will improve startup time for
652 typical inter-CU-reference binaries, at an obvious memory cost. */
653 static int dwarf2_max_cache_age = 5;
654 static void
655 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
656 struct cmd_list_element *c, const char *value)
657 {
658 fprintf_filtered (file, _("\
659 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
660 value);
661 }
662
663
664 /* Various complaints about symbol reading that don't abort the process */
665
666 static void
667 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
668 {
669 complaint (&symfile_complaints,
670 _("statement list doesn't fit in .debug_line section"));
671 }
672
673 static void
674 dwarf2_debug_line_missing_file_complaint (void)
675 {
676 complaint (&symfile_complaints,
677 _(".debug_line section has line data without a file"));
678 }
679
680 static void
681 dwarf2_complex_location_expr_complaint (void)
682 {
683 complaint (&symfile_complaints, _("location expression too complex"));
684 }
685
686 static void
687 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
688 int arg3)
689 {
690 complaint (&symfile_complaints,
691 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
692 arg2, arg3);
693 }
694
695 static void
696 dwarf2_macros_too_long_complaint (void)
697 {
698 complaint (&symfile_complaints,
699 _("macro info runs off end of `.debug_macinfo' section"));
700 }
701
702 static void
703 dwarf2_macro_malformed_definition_complaint (const char *arg1)
704 {
705 complaint (&symfile_complaints,
706 _("macro debug info contains a malformed macro definition:\n`%s'"),
707 arg1);
708 }
709
710 static void
711 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
712 {
713 complaint (&symfile_complaints,
714 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
715 }
716
717 /* local function prototypes */
718
719 static void dwarf2_locate_sections (bfd *, asection *, void *);
720
721 #if 0
722 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
723 #endif
724
725 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
726 struct objfile *);
727
728 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
729 struct partial_die_info *,
730 struct partial_symtab *);
731
732 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
733
734 static void scan_partial_symbols (struct partial_die_info *,
735 CORE_ADDR *, CORE_ADDR *,
736 struct dwarf2_cu *);
737
738 static void add_partial_symbol (struct partial_die_info *,
739 struct dwarf2_cu *);
740
741 static int pdi_needs_namespace (enum dwarf_tag tag);
742
743 static void add_partial_namespace (struct partial_die_info *pdi,
744 CORE_ADDR *lowpc, CORE_ADDR *highpc,
745 struct dwarf2_cu *cu);
746
747 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
748 struct dwarf2_cu *cu);
749
750 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
751 gdb_byte *info_ptr,
752 bfd *abfd,
753 struct dwarf2_cu *cu);
754
755 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
756
757 static void psymtab_to_symtab_1 (struct partial_symtab *);
758
759 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
760
761 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
762
763 static void dwarf2_free_abbrev_table (void *);
764
765 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
766 struct dwarf2_cu *);
767
768 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
769 struct dwarf2_cu *);
770
771 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
772 struct dwarf2_cu *);
773
774 static gdb_byte *read_partial_die (struct partial_die_info *,
775 struct abbrev_info *abbrev, unsigned int,
776 bfd *, gdb_byte *, struct dwarf2_cu *);
777
778 static struct partial_die_info *find_partial_die (unsigned long,
779 struct dwarf2_cu *);
780
781 static void fixup_partial_die (struct partial_die_info *,
782 struct dwarf2_cu *);
783
784 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
785 struct dwarf2_cu *, int *);
786
787 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
788 bfd *, gdb_byte *, struct dwarf2_cu *);
789
790 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
791 bfd *, gdb_byte *, struct dwarf2_cu *);
792
793 static unsigned int read_1_byte (bfd *, gdb_byte *);
794
795 static int read_1_signed_byte (bfd *, gdb_byte *);
796
797 static unsigned int read_2_bytes (bfd *, gdb_byte *);
798
799 static unsigned int read_4_bytes (bfd *, gdb_byte *);
800
801 static unsigned long read_8_bytes (bfd *, gdb_byte *);
802
803 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
804 unsigned int *);
805
806 static LONGEST read_initial_length (bfd *, gdb_byte *,
807 struct comp_unit_head *, unsigned int *);
808
809 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
810 unsigned int *);
811
812 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
813
814 static char *read_string (bfd *, gdb_byte *, unsigned int *);
815
816 static char *read_indirect_string (bfd *, gdb_byte *,
817 const struct comp_unit_head *,
818 unsigned int *);
819
820 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
821
822 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
823
824 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
825
826 static void set_cu_language (unsigned int, struct dwarf2_cu *);
827
828 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
829 struct dwarf2_cu *);
830
831 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
832 struct dwarf2_cu *cu);
833
834 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
835
836 static struct die_info *die_specification (struct die_info *die,
837 struct dwarf2_cu *);
838
839 static void free_line_header (struct line_header *lh);
840
841 static void add_file_name (struct line_header *, char *, unsigned int,
842 unsigned int, unsigned int);
843
844 static struct line_header *(dwarf_decode_line_header
845 (unsigned int offset,
846 bfd *abfd, struct dwarf2_cu *cu));
847
848 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
849 struct dwarf2_cu *, struct partial_symtab *);
850
851 static void dwarf2_start_subfile (char *, char *, char *);
852
853 static struct symbol *new_symbol (struct die_info *, struct type *,
854 struct dwarf2_cu *);
855
856 static void dwarf2_const_value (struct attribute *, struct symbol *,
857 struct dwarf2_cu *);
858
859 static void dwarf2_const_value_data (struct attribute *attr,
860 struct symbol *sym,
861 int bits);
862
863 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
864
865 static struct type *die_containing_type (struct die_info *,
866 struct dwarf2_cu *);
867
868 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
869
870 static void read_type_die (struct die_info *, struct dwarf2_cu *);
871
872 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
873
874 static char *typename_concat (struct obstack *,
875 const char *prefix,
876 const char *suffix,
877 struct dwarf2_cu *);
878
879 static void read_typedef (struct die_info *, struct dwarf2_cu *);
880
881 static void read_base_type (struct die_info *, struct dwarf2_cu *);
882
883 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
884
885 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
886
887 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
888
889 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
890
891 static int dwarf2_get_pc_bounds (struct die_info *,
892 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
893
894 static void get_scope_pc_bounds (struct die_info *,
895 CORE_ADDR *, CORE_ADDR *,
896 struct dwarf2_cu *);
897
898 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
899 CORE_ADDR, struct dwarf2_cu *);
900
901 static void dwarf2_add_field (struct field_info *, struct die_info *,
902 struct dwarf2_cu *);
903
904 static void dwarf2_attach_fields_to_type (struct field_info *,
905 struct type *, struct dwarf2_cu *);
906
907 static void dwarf2_add_member_fn (struct field_info *,
908 struct die_info *, struct type *,
909 struct dwarf2_cu *);
910
911 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
912 struct type *, struct dwarf2_cu *);
913
914 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
915
916 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
917
918 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
919
920 static void read_common_block (struct die_info *, struct dwarf2_cu *);
921
922 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
923
924 static const char *namespace_name (struct die_info *die,
925 int *is_anonymous, struct dwarf2_cu *);
926
927 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
928
929 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
930
931 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
932
933 static void read_array_type (struct die_info *, struct dwarf2_cu *);
934
935 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
936 struct dwarf2_cu *);
937
938 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
939
940 static void read_tag_ptr_to_member_type (struct die_info *,
941 struct dwarf2_cu *);
942
943 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
944
945 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
946
947 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
948
949 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
950
951 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
952
953 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
954
955 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
956 struct dwarf2_cu *,
957 gdb_byte **new_info_ptr,
958 struct die_info *parent);
959
960 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
961 struct dwarf2_cu *,
962 gdb_byte **new_info_ptr,
963 struct die_info *parent);
964
965 static void free_die_list (struct die_info *);
966
967 static void process_die (struct die_info *, struct dwarf2_cu *);
968
969 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
970
971 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
972
973 static struct die_info *dwarf2_extension (struct die_info *die,
974 struct dwarf2_cu *);
975
976 static char *dwarf_tag_name (unsigned int);
977
978 static char *dwarf_attr_name (unsigned int);
979
980 static char *dwarf_form_name (unsigned int);
981
982 static char *dwarf_stack_op_name (unsigned int);
983
984 static char *dwarf_bool_name (unsigned int);
985
986 static char *dwarf_type_encoding_name (unsigned int);
987
988 #if 0
989 static char *dwarf_cfi_name (unsigned int);
990
991 struct die_info *copy_die (struct die_info *);
992 #endif
993
994 static struct die_info *sibling_die (struct die_info *);
995
996 static void dump_die (struct die_info *);
997
998 static void dump_die_list (struct die_info *);
999
1000 static void store_in_ref_table (unsigned int, struct die_info *,
1001 struct dwarf2_cu *);
1002
1003 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1004 struct dwarf2_cu *);
1005
1006 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1007
1008 static struct die_info *follow_die_ref (struct die_info *,
1009 struct attribute *,
1010 struct dwarf2_cu *);
1011
1012 /* memory allocation interface */
1013
1014 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1015
1016 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1017
1018 static struct die_info *dwarf_alloc_die (void);
1019
1020 static void initialize_cu_func_list (struct dwarf2_cu *);
1021
1022 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1023 struct dwarf2_cu *);
1024
1025 static void dwarf_decode_macros (struct line_header *, unsigned int,
1026 char *, bfd *, struct dwarf2_cu *);
1027
1028 static int attr_form_is_block (struct attribute *);
1029
1030 static int attr_form_is_section_offset (struct attribute *);
1031
1032 static int attr_form_is_constant (struct attribute *);
1033
1034 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1035 struct symbol *sym,
1036 struct dwarf2_cu *cu);
1037
1038 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1039 struct dwarf2_cu *cu);
1040
1041 static void free_stack_comp_unit (void *);
1042
1043 static hashval_t partial_die_hash (const void *item);
1044
1045 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1046
1047 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1048 (unsigned long offset, struct objfile *objfile);
1049
1050 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1051 (unsigned long offset, struct objfile *objfile);
1052
1053 static void free_one_comp_unit (void *);
1054
1055 static void free_cached_comp_units (void *);
1056
1057 static void age_cached_comp_units (void);
1058
1059 static void free_one_cached_comp_unit (void *);
1060
1061 static void set_die_type (struct die_info *, struct type *,
1062 struct dwarf2_cu *);
1063
1064 static void reset_die_and_siblings_types (struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void create_all_comp_units (struct objfile *);
1068
1069 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1070 struct objfile *);
1071
1072 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1073
1074 static void dwarf2_add_dependence (struct dwarf2_cu *,
1075 struct dwarf2_per_cu_data *);
1076
1077 static void dwarf2_mark (struct dwarf2_cu *);
1078
1079 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1080
1081 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1082
1083
1084 /* Try to locate the sections we need for DWARF 2 debugging
1085 information and return true if we have enough to do something. */
1086
1087 int
1088 dwarf2_has_info (struct objfile *objfile)
1089 {
1090 struct dwarf2_per_objfile *data;
1091
1092 /* Initialize per-objfile state. */
1093 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1094 memset (data, 0, sizeof (*data));
1095 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1096 dwarf2_per_objfile = data;
1097
1098 dwarf_info_section = 0;
1099 dwarf_abbrev_section = 0;
1100 dwarf_line_section = 0;
1101 dwarf_str_section = 0;
1102 dwarf_macinfo_section = 0;
1103 dwarf_frame_section = 0;
1104 dwarf_eh_frame_section = 0;
1105 dwarf_ranges_section = 0;
1106 dwarf_loc_section = 0;
1107
1108 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1109 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1110 }
1111
1112 /* This function is mapped across the sections and remembers the
1113 offset and size of each of the debugging sections we are interested
1114 in. */
1115
1116 static void
1117 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1118 {
1119 if (strcmp (sectp->name, INFO_SECTION) == 0)
1120 {
1121 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1122 dwarf_info_section = sectp;
1123 }
1124 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1125 {
1126 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1127 dwarf_abbrev_section = sectp;
1128 }
1129 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1130 {
1131 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1132 dwarf_line_section = sectp;
1133 }
1134 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1137 dwarf_pubnames_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1142 dwarf_aranges_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1147 dwarf_loc_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1152 dwarf_macinfo_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, STR_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1157 dwarf_str_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1160 {
1161 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1162 dwarf_frame_section = sectp;
1163 }
1164 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1165 {
1166 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1167 if (aflag & SEC_HAS_CONTENTS)
1168 {
1169 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1170 dwarf_eh_frame_section = sectp;
1171 }
1172 }
1173 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1174 {
1175 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1176 dwarf_ranges_section = sectp;
1177 }
1178
1179 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1180 && bfd_section_vma (abfd, sectp) == 0)
1181 dwarf2_per_objfile->has_section_at_zero = 1;
1182 }
1183
1184 /* Build a partial symbol table. */
1185
1186 void
1187 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1188 {
1189 /* We definitely need the .debug_info and .debug_abbrev sections */
1190
1191 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1192 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1193
1194 if (dwarf_line_section)
1195 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1196 else
1197 dwarf2_per_objfile->line_buffer = NULL;
1198
1199 if (dwarf_str_section)
1200 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1201 else
1202 dwarf2_per_objfile->str_buffer = NULL;
1203
1204 if (dwarf_macinfo_section)
1205 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1206 dwarf_macinfo_section);
1207 else
1208 dwarf2_per_objfile->macinfo_buffer = NULL;
1209
1210 if (dwarf_ranges_section)
1211 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1212 else
1213 dwarf2_per_objfile->ranges_buffer = NULL;
1214
1215 if (dwarf_loc_section)
1216 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1217 else
1218 dwarf2_per_objfile->loc_buffer = NULL;
1219
1220 if (mainline
1221 || (objfile->global_psymbols.size == 0
1222 && objfile->static_psymbols.size == 0))
1223 {
1224 init_psymbol_list (objfile, 1024);
1225 }
1226
1227 #if 0
1228 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1229 {
1230 /* Things are significantly easier if we have .debug_aranges and
1231 .debug_pubnames sections */
1232
1233 dwarf2_build_psymtabs_easy (objfile, mainline);
1234 }
1235 else
1236 #endif
1237 /* only test this case for now */
1238 {
1239 /* In this case we have to work a bit harder */
1240 dwarf2_build_psymtabs_hard (objfile, mainline);
1241 }
1242 }
1243
1244 #if 0
1245 /* Build the partial symbol table from the information in the
1246 .debug_pubnames and .debug_aranges sections. */
1247
1248 static void
1249 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1250 {
1251 bfd *abfd = objfile->obfd;
1252 char *aranges_buffer, *pubnames_buffer;
1253 char *aranges_ptr, *pubnames_ptr;
1254 unsigned int entry_length, version, info_offset, info_size;
1255
1256 pubnames_buffer = dwarf2_read_section (objfile,
1257 dwarf_pubnames_section);
1258 pubnames_ptr = pubnames_buffer;
1259 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1260 {
1261 struct comp_unit_head cu_header;
1262 unsigned int bytes_read;
1263
1264 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1265 &bytes_read);
1266 pubnames_ptr += bytes_read;
1267 version = read_1_byte (abfd, pubnames_ptr);
1268 pubnames_ptr += 1;
1269 info_offset = read_4_bytes (abfd, pubnames_ptr);
1270 pubnames_ptr += 4;
1271 info_size = read_4_bytes (abfd, pubnames_ptr);
1272 pubnames_ptr += 4;
1273 }
1274
1275 aranges_buffer = dwarf2_read_section (objfile,
1276 dwarf_aranges_section);
1277
1278 }
1279 #endif
1280
1281 /* Read in the comp unit header information from the debug_info at
1282 info_ptr. */
1283
1284 static gdb_byte *
1285 read_comp_unit_head (struct comp_unit_head *cu_header,
1286 gdb_byte *info_ptr, bfd *abfd)
1287 {
1288 int signed_addr;
1289 unsigned int bytes_read;
1290 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1291 &bytes_read);
1292 info_ptr += bytes_read;
1293 cu_header->version = read_2_bytes (abfd, info_ptr);
1294 info_ptr += 2;
1295 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1296 &bytes_read);
1297 info_ptr += bytes_read;
1298 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1299 info_ptr += 1;
1300 signed_addr = bfd_get_sign_extend_vma (abfd);
1301 if (signed_addr < 0)
1302 internal_error (__FILE__, __LINE__,
1303 _("read_comp_unit_head: dwarf from non elf file"));
1304 cu_header->signed_addr_p = signed_addr;
1305 return info_ptr;
1306 }
1307
1308 static gdb_byte *
1309 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1310 bfd *abfd)
1311 {
1312 gdb_byte *beg_of_comp_unit = info_ptr;
1313
1314 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1315
1316 if (header->version != 2 && header->version != 3)
1317 error (_("Dwarf Error: wrong version in compilation unit header "
1318 "(is %d, should be %d) [in module %s]"), header->version,
1319 2, bfd_get_filename (abfd));
1320
1321 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1322 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1323 "(offset 0x%lx + 6) [in module %s]"),
1324 (long) header->abbrev_offset,
1325 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1326 bfd_get_filename (abfd));
1327
1328 if (beg_of_comp_unit + header->length + header->initial_length_size
1329 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1330 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1331 "(offset 0x%lx + 0) [in module %s]"),
1332 (long) header->length,
1333 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1334 bfd_get_filename (abfd));
1335
1336 return info_ptr;
1337 }
1338
1339 /* Allocate a new partial symtab for file named NAME and mark this new
1340 partial symtab as being an include of PST. */
1341
1342 static void
1343 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1344 struct objfile *objfile)
1345 {
1346 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1347
1348 subpst->section_offsets = pst->section_offsets;
1349 subpst->textlow = 0;
1350 subpst->texthigh = 0;
1351
1352 subpst->dependencies = (struct partial_symtab **)
1353 obstack_alloc (&objfile->objfile_obstack,
1354 sizeof (struct partial_symtab *));
1355 subpst->dependencies[0] = pst;
1356 subpst->number_of_dependencies = 1;
1357
1358 subpst->globals_offset = 0;
1359 subpst->n_global_syms = 0;
1360 subpst->statics_offset = 0;
1361 subpst->n_static_syms = 0;
1362 subpst->symtab = NULL;
1363 subpst->read_symtab = pst->read_symtab;
1364 subpst->readin = 0;
1365
1366 /* No private part is necessary for include psymtabs. This property
1367 can be used to differentiate between such include psymtabs and
1368 the regular ones. */
1369 subpst->read_symtab_private = NULL;
1370 }
1371
1372 /* Read the Line Number Program data and extract the list of files
1373 included by the source file represented by PST. Build an include
1374 partial symtab for each of these included files.
1375
1376 This procedure assumes that there *is* a Line Number Program in
1377 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1378 before calling this procedure. */
1379
1380 static void
1381 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1382 struct partial_die_info *pdi,
1383 struct partial_symtab *pst)
1384 {
1385 struct objfile *objfile = cu->objfile;
1386 bfd *abfd = objfile->obfd;
1387 struct line_header *lh;
1388
1389 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1390 if (lh == NULL)
1391 return; /* No linetable, so no includes. */
1392
1393 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1394
1395 free_line_header (lh);
1396 }
1397
1398
1399 /* Build the partial symbol table by doing a quick pass through the
1400 .debug_info and .debug_abbrev sections. */
1401
1402 static void
1403 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1404 {
1405 /* Instead of reading this into a big buffer, we should probably use
1406 mmap() on architectures that support it. (FIXME) */
1407 bfd *abfd = objfile->obfd;
1408 gdb_byte *info_ptr;
1409 gdb_byte *beg_of_comp_unit;
1410 struct partial_die_info comp_unit_die;
1411 struct partial_symtab *pst;
1412 struct cleanup *back_to;
1413 CORE_ADDR lowpc, highpc, baseaddr;
1414
1415 info_ptr = dwarf2_per_objfile->info_buffer;
1416
1417 /* Any cached compilation units will be linked by the per-objfile
1418 read_in_chain. Make sure to free them when we're done. */
1419 back_to = make_cleanup (free_cached_comp_units, NULL);
1420
1421 create_all_comp_units (objfile);
1422
1423 /* Since the objects we're extracting from .debug_info vary in
1424 length, only the individual functions to extract them (like
1425 read_comp_unit_head and load_partial_die) can really know whether
1426 the buffer is large enough to hold another complete object.
1427
1428 At the moment, they don't actually check that. If .debug_info
1429 holds just one extra byte after the last compilation unit's dies,
1430 then read_comp_unit_head will happily read off the end of the
1431 buffer. read_partial_die is similarly casual. Those functions
1432 should be fixed.
1433
1434 For this loop condition, simply checking whether there's any data
1435 left at all should be sufficient. */
1436 while (info_ptr < (dwarf2_per_objfile->info_buffer
1437 + dwarf2_per_objfile->info_size))
1438 {
1439 struct cleanup *back_to_inner;
1440 struct dwarf2_cu cu;
1441 struct abbrev_info *abbrev;
1442 unsigned int bytes_read;
1443 struct dwarf2_per_cu_data *this_cu;
1444
1445 beg_of_comp_unit = info_ptr;
1446
1447 memset (&cu, 0, sizeof (cu));
1448
1449 obstack_init (&cu.comp_unit_obstack);
1450
1451 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1452
1453 cu.objfile = objfile;
1454 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1455
1456 /* Complete the cu_header */
1457 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1458 cu.header.first_die_ptr = info_ptr;
1459 cu.header.cu_head_ptr = beg_of_comp_unit;
1460
1461 cu.list_in_scope = &file_symbols;
1462
1463 /* Read the abbrevs for this compilation unit into a table */
1464 dwarf2_read_abbrevs (abfd, &cu);
1465 make_cleanup (dwarf2_free_abbrev_table, &cu);
1466
1467 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1468
1469 /* Read the compilation unit die */
1470 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1471 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1472 abfd, info_ptr, &cu);
1473
1474 if (comp_unit_die.tag == DW_TAG_partial_unit)
1475 {
1476 info_ptr = (beg_of_comp_unit + cu.header.length
1477 + cu.header.initial_length_size);
1478 do_cleanups (back_to_inner);
1479 continue;
1480 }
1481
1482 /* Set the language we're debugging */
1483 set_cu_language (comp_unit_die.language, &cu);
1484
1485 /* Allocate a new partial symbol table structure */
1486 pst = start_psymtab_common (objfile, objfile->section_offsets,
1487 comp_unit_die.name ? comp_unit_die.name : "",
1488 comp_unit_die.lowpc,
1489 objfile->global_psymbols.next,
1490 objfile->static_psymbols.next);
1491
1492 if (comp_unit_die.dirname)
1493 pst->dirname = xstrdup (comp_unit_die.dirname);
1494
1495 pst->read_symtab_private = (char *) this_cu;
1496
1497 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1498
1499 /* Store the function that reads in the rest of the symbol table */
1500 pst->read_symtab = dwarf2_psymtab_to_symtab;
1501
1502 /* If this compilation unit was already read in, free the
1503 cached copy in order to read it in again. This is
1504 necessary because we skipped some symbols when we first
1505 read in the compilation unit (see load_partial_dies).
1506 This problem could be avoided, but the benefit is
1507 unclear. */
1508 if (this_cu->cu != NULL)
1509 free_one_cached_comp_unit (this_cu->cu);
1510
1511 cu.per_cu = this_cu;
1512
1513 /* Note that this is a pointer to our stack frame, being
1514 added to a global data structure. It will be cleaned up
1515 in free_stack_comp_unit when we finish with this
1516 compilation unit. */
1517 this_cu->cu = &cu;
1518
1519 this_cu->psymtab = pst;
1520
1521 /* Check if comp unit has_children.
1522 If so, read the rest of the partial symbols from this comp unit.
1523 If not, there's no more debug_info for this comp unit. */
1524 if (comp_unit_die.has_children)
1525 {
1526 struct partial_die_info *first_die;
1527
1528 lowpc = ((CORE_ADDR) -1);
1529 highpc = ((CORE_ADDR) 0);
1530
1531 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1532
1533 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1534
1535 /* If we didn't find a lowpc, set it to highpc to avoid
1536 complaints from `maint check'. */
1537 if (lowpc == ((CORE_ADDR) -1))
1538 lowpc = highpc;
1539
1540 /* If the compilation unit didn't have an explicit address range,
1541 then use the information extracted from its child dies. */
1542 if (! comp_unit_die.has_pc_info)
1543 {
1544 comp_unit_die.lowpc = lowpc;
1545 comp_unit_die.highpc = highpc;
1546 }
1547 }
1548 pst->textlow = comp_unit_die.lowpc + baseaddr;
1549 pst->texthigh = comp_unit_die.highpc + baseaddr;
1550
1551 pst->n_global_syms = objfile->global_psymbols.next -
1552 (objfile->global_psymbols.list + pst->globals_offset);
1553 pst->n_static_syms = objfile->static_psymbols.next -
1554 (objfile->static_psymbols.list + pst->statics_offset);
1555 sort_pst_symbols (pst);
1556
1557 /* If there is already a psymtab or symtab for a file of this
1558 name, remove it. (If there is a symtab, more drastic things
1559 also happen.) This happens in VxWorks. */
1560 free_named_symtabs (pst->filename);
1561
1562 info_ptr = beg_of_comp_unit + cu.header.length
1563 + cu.header.initial_length_size;
1564
1565 if (comp_unit_die.has_stmt_list)
1566 {
1567 /* Get the list of files included in the current compilation unit,
1568 and build a psymtab for each of them. */
1569 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1570 }
1571
1572 do_cleanups (back_to_inner);
1573 }
1574 do_cleanups (back_to);
1575 }
1576
1577 /* Load the DIEs for a secondary CU into memory. */
1578
1579 static void
1580 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1581 {
1582 bfd *abfd = objfile->obfd;
1583 gdb_byte *info_ptr, *beg_of_comp_unit;
1584 struct partial_die_info comp_unit_die;
1585 struct dwarf2_cu *cu;
1586 struct abbrev_info *abbrev;
1587 unsigned int bytes_read;
1588 struct cleanup *back_to;
1589
1590 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1591 beg_of_comp_unit = info_ptr;
1592
1593 cu = xmalloc (sizeof (struct dwarf2_cu));
1594 memset (cu, 0, sizeof (struct dwarf2_cu));
1595
1596 obstack_init (&cu->comp_unit_obstack);
1597
1598 cu->objfile = objfile;
1599 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1600
1601 /* Complete the cu_header. */
1602 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1603 cu->header.first_die_ptr = info_ptr;
1604 cu->header.cu_head_ptr = beg_of_comp_unit;
1605
1606 /* Read the abbrevs for this compilation unit into a table. */
1607 dwarf2_read_abbrevs (abfd, cu);
1608 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1609
1610 /* Read the compilation unit die. */
1611 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1612 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1613 abfd, info_ptr, cu);
1614
1615 /* Set the language we're debugging. */
1616 set_cu_language (comp_unit_die.language, cu);
1617
1618 /* Link this compilation unit into the compilation unit tree. */
1619 this_cu->cu = cu;
1620 cu->per_cu = this_cu;
1621
1622 /* Check if comp unit has_children.
1623 If so, read the rest of the partial symbols from this comp unit.
1624 If not, there's no more debug_info for this comp unit. */
1625 if (comp_unit_die.has_children)
1626 load_partial_dies (abfd, info_ptr, 0, cu);
1627
1628 do_cleanups (back_to);
1629 }
1630
1631 /* Create a list of all compilation units in OBJFILE. We do this only
1632 if an inter-comp-unit reference is found; presumably if there is one,
1633 there will be many, and one will occur early in the .debug_info section.
1634 So there's no point in building this list incrementally. */
1635
1636 static void
1637 create_all_comp_units (struct objfile *objfile)
1638 {
1639 int n_allocated;
1640 int n_comp_units;
1641 struct dwarf2_per_cu_data **all_comp_units;
1642 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1643
1644 n_comp_units = 0;
1645 n_allocated = 10;
1646 all_comp_units = xmalloc (n_allocated
1647 * sizeof (struct dwarf2_per_cu_data *));
1648
1649 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1650 {
1651 struct comp_unit_head cu_header;
1652 gdb_byte *beg_of_comp_unit;
1653 struct dwarf2_per_cu_data *this_cu;
1654 unsigned long offset;
1655 unsigned int bytes_read;
1656
1657 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1658
1659 /* Read just enough information to find out where the next
1660 compilation unit is. */
1661 cu_header.initial_length_size = 0;
1662 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1663 &cu_header, &bytes_read);
1664
1665 /* Save the compilation unit for later lookup. */
1666 this_cu = obstack_alloc (&objfile->objfile_obstack,
1667 sizeof (struct dwarf2_per_cu_data));
1668 memset (this_cu, 0, sizeof (*this_cu));
1669 this_cu->offset = offset;
1670 this_cu->length = cu_header.length + cu_header.initial_length_size;
1671
1672 if (n_comp_units == n_allocated)
1673 {
1674 n_allocated *= 2;
1675 all_comp_units = xrealloc (all_comp_units,
1676 n_allocated
1677 * sizeof (struct dwarf2_per_cu_data *));
1678 }
1679 all_comp_units[n_comp_units++] = this_cu;
1680
1681 info_ptr = info_ptr + this_cu->length;
1682 }
1683
1684 dwarf2_per_objfile->all_comp_units
1685 = obstack_alloc (&objfile->objfile_obstack,
1686 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1687 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1688 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1689 xfree (all_comp_units);
1690 dwarf2_per_objfile->n_comp_units = n_comp_units;
1691 }
1692
1693 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1694 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1695 in CU. */
1696
1697 static void
1698 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1699 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1700 {
1701 struct objfile *objfile = cu->objfile;
1702 bfd *abfd = objfile->obfd;
1703 struct partial_die_info *pdi;
1704
1705 /* Now, march along the PDI's, descending into ones which have
1706 interesting children but skipping the children of the other ones,
1707 until we reach the end of the compilation unit. */
1708
1709 pdi = first_die;
1710
1711 while (pdi != NULL)
1712 {
1713 fixup_partial_die (pdi, cu);
1714
1715 /* Anonymous namespaces have no name but have interesting
1716 children, so we need to look at them. Ditto for anonymous
1717 enums. */
1718
1719 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1720 || pdi->tag == DW_TAG_enumeration_type)
1721 {
1722 switch (pdi->tag)
1723 {
1724 case DW_TAG_subprogram:
1725 if (pdi->has_pc_info)
1726 {
1727 if (pdi->lowpc < *lowpc)
1728 {
1729 *lowpc = pdi->lowpc;
1730 }
1731 if (pdi->highpc > *highpc)
1732 {
1733 *highpc = pdi->highpc;
1734 }
1735 if (!pdi->is_declaration)
1736 {
1737 add_partial_symbol (pdi, cu);
1738 }
1739 }
1740 break;
1741 case DW_TAG_variable:
1742 case DW_TAG_typedef:
1743 case DW_TAG_union_type:
1744 if (!pdi->is_declaration)
1745 {
1746 add_partial_symbol (pdi, cu);
1747 }
1748 break;
1749 case DW_TAG_class_type:
1750 case DW_TAG_interface_type:
1751 case DW_TAG_structure_type:
1752 if (!pdi->is_declaration)
1753 {
1754 add_partial_symbol (pdi, cu);
1755 }
1756 break;
1757 case DW_TAG_enumeration_type:
1758 if (!pdi->is_declaration)
1759 add_partial_enumeration (pdi, cu);
1760 break;
1761 case DW_TAG_base_type:
1762 case DW_TAG_subrange_type:
1763 /* File scope base type definitions are added to the partial
1764 symbol table. */
1765 add_partial_symbol (pdi, cu);
1766 break;
1767 case DW_TAG_namespace:
1768 add_partial_namespace (pdi, lowpc, highpc, cu);
1769 break;
1770 default:
1771 break;
1772 }
1773 }
1774
1775 /* If the die has a sibling, skip to the sibling. */
1776
1777 pdi = pdi->die_sibling;
1778 }
1779 }
1780
1781 /* Functions used to compute the fully scoped name of a partial DIE.
1782
1783 Normally, this is simple. For C++, the parent DIE's fully scoped
1784 name is concatenated with "::" and the partial DIE's name. For
1785 Java, the same thing occurs except that "." is used instead of "::".
1786 Enumerators are an exception; they use the scope of their parent
1787 enumeration type, i.e. the name of the enumeration type is not
1788 prepended to the enumerator.
1789
1790 There are two complexities. One is DW_AT_specification; in this
1791 case "parent" means the parent of the target of the specification,
1792 instead of the direct parent of the DIE. The other is compilers
1793 which do not emit DW_TAG_namespace; in this case we try to guess
1794 the fully qualified name of structure types from their members'
1795 linkage names. This must be done using the DIE's children rather
1796 than the children of any DW_AT_specification target. We only need
1797 to do this for structures at the top level, i.e. if the target of
1798 any DW_AT_specification (if any; otherwise the DIE itself) does not
1799 have a parent. */
1800
1801 /* Compute the scope prefix associated with PDI's parent, in
1802 compilation unit CU. The result will be allocated on CU's
1803 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1804 field. NULL is returned if no prefix is necessary. */
1805 static char *
1806 partial_die_parent_scope (struct partial_die_info *pdi,
1807 struct dwarf2_cu *cu)
1808 {
1809 char *grandparent_scope;
1810 struct partial_die_info *parent, *real_pdi;
1811
1812 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1813 then this means the parent of the specification DIE. */
1814
1815 real_pdi = pdi;
1816 while (real_pdi->has_specification)
1817 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1818
1819 parent = real_pdi->die_parent;
1820 if (parent == NULL)
1821 return NULL;
1822
1823 if (parent->scope_set)
1824 return parent->scope;
1825
1826 fixup_partial_die (parent, cu);
1827
1828 grandparent_scope = partial_die_parent_scope (parent, cu);
1829
1830 if (parent->tag == DW_TAG_namespace
1831 || parent->tag == DW_TAG_structure_type
1832 || parent->tag == DW_TAG_class_type
1833 || parent->tag == DW_TAG_interface_type
1834 || parent->tag == DW_TAG_union_type)
1835 {
1836 if (grandparent_scope == NULL)
1837 parent->scope = parent->name;
1838 else
1839 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1840 parent->name, cu);
1841 }
1842 else if (parent->tag == DW_TAG_enumeration_type)
1843 /* Enumerators should not get the name of the enumeration as a prefix. */
1844 parent->scope = grandparent_scope;
1845 else
1846 {
1847 /* FIXME drow/2004-04-01: What should we be doing with
1848 function-local names? For partial symbols, we should probably be
1849 ignoring them. */
1850 complaint (&symfile_complaints,
1851 _("unhandled containing DIE tag %d for DIE at %d"),
1852 parent->tag, pdi->offset);
1853 parent->scope = grandparent_scope;
1854 }
1855
1856 parent->scope_set = 1;
1857 return parent->scope;
1858 }
1859
1860 /* Return the fully scoped name associated with PDI, from compilation unit
1861 CU. The result will be allocated with malloc. */
1862 static char *
1863 partial_die_full_name (struct partial_die_info *pdi,
1864 struct dwarf2_cu *cu)
1865 {
1866 char *parent_scope;
1867
1868 parent_scope = partial_die_parent_scope (pdi, cu);
1869 if (parent_scope == NULL)
1870 return NULL;
1871 else
1872 return typename_concat (NULL, parent_scope, pdi->name, cu);
1873 }
1874
1875 static void
1876 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1877 {
1878 struct objfile *objfile = cu->objfile;
1879 CORE_ADDR addr = 0;
1880 char *actual_name = NULL;
1881 const char *my_prefix;
1882 const struct partial_symbol *psym = NULL;
1883 CORE_ADDR baseaddr;
1884 int built_actual_name = 0;
1885
1886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1887
1888 if (pdi_needs_namespace (pdi->tag))
1889 {
1890 actual_name = partial_die_full_name (pdi, cu);
1891 if (actual_name)
1892 built_actual_name = 1;
1893 }
1894
1895 if (actual_name == NULL)
1896 actual_name = pdi->name;
1897
1898 switch (pdi->tag)
1899 {
1900 case DW_TAG_subprogram:
1901 if (pdi->is_external || cu->language == language_ada)
1902 {
1903 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
1904 of the global scope. But in Ada, we want to be able to access
1905 nested procedures globally. So all Ada subprograms are stored
1906 in the global scope. */
1907 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1908 mst_text, objfile); */
1909 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1910 VAR_DOMAIN, LOC_BLOCK,
1911 &objfile->global_psymbols,
1912 0, pdi->lowpc + baseaddr,
1913 cu->language, objfile);
1914 }
1915 else
1916 {
1917 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1918 mst_file_text, objfile); */
1919 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1920 VAR_DOMAIN, LOC_BLOCK,
1921 &objfile->static_psymbols,
1922 0, pdi->lowpc + baseaddr,
1923 cu->language, objfile);
1924 }
1925 break;
1926 case DW_TAG_variable:
1927 if (pdi->is_external)
1928 {
1929 /* Global Variable.
1930 Don't enter into the minimal symbol tables as there is
1931 a minimal symbol table entry from the ELF symbols already.
1932 Enter into partial symbol table if it has a location
1933 descriptor or a type.
1934 If the location descriptor is missing, new_symbol will create
1935 a LOC_UNRESOLVED symbol, the address of the variable will then
1936 be determined from the minimal symbol table whenever the variable
1937 is referenced.
1938 The address for the partial symbol table entry is not
1939 used by GDB, but it comes in handy for debugging partial symbol
1940 table building. */
1941
1942 if (pdi->locdesc)
1943 addr = decode_locdesc (pdi->locdesc, cu);
1944 if (pdi->locdesc || pdi->has_type)
1945 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1946 VAR_DOMAIN, LOC_STATIC,
1947 &objfile->global_psymbols,
1948 0, addr + baseaddr,
1949 cu->language, objfile);
1950 }
1951 else
1952 {
1953 /* Static Variable. Skip symbols without location descriptors. */
1954 if (pdi->locdesc == NULL)
1955 {
1956 if (built_actual_name)
1957 xfree (actual_name);
1958 return;
1959 }
1960 addr = decode_locdesc (pdi->locdesc, cu);
1961 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1962 mst_file_data, objfile); */
1963 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1964 VAR_DOMAIN, LOC_STATIC,
1965 &objfile->static_psymbols,
1966 0, addr + baseaddr,
1967 cu->language, objfile);
1968 }
1969 break;
1970 case DW_TAG_typedef:
1971 case DW_TAG_base_type:
1972 case DW_TAG_subrange_type:
1973 add_psymbol_to_list (actual_name, strlen (actual_name),
1974 VAR_DOMAIN, LOC_TYPEDEF,
1975 &objfile->static_psymbols,
1976 0, (CORE_ADDR) 0, cu->language, objfile);
1977 break;
1978 case DW_TAG_namespace:
1979 add_psymbol_to_list (actual_name, strlen (actual_name),
1980 VAR_DOMAIN, LOC_TYPEDEF,
1981 &objfile->global_psymbols,
1982 0, (CORE_ADDR) 0, cu->language, objfile);
1983 break;
1984 case DW_TAG_class_type:
1985 case DW_TAG_interface_type:
1986 case DW_TAG_structure_type:
1987 case DW_TAG_union_type:
1988 case DW_TAG_enumeration_type:
1989 /* Skip external references. The DWARF standard says in the section
1990 about "Structure, Union, and Class Type Entries": "An incomplete
1991 structure, union or class type is represented by a structure,
1992 union or class entry that does not have a byte size attribute
1993 and that has a DW_AT_declaration attribute." */
1994 if (!pdi->has_byte_size && pdi->is_declaration)
1995 {
1996 if (built_actual_name)
1997 xfree (actual_name);
1998 return;
1999 }
2000
2001 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2002 static vs. global. */
2003 add_psymbol_to_list (actual_name, strlen (actual_name),
2004 STRUCT_DOMAIN, LOC_TYPEDEF,
2005 (cu->language == language_cplus
2006 || cu->language == language_java)
2007 ? &objfile->global_psymbols
2008 : &objfile->static_psymbols,
2009 0, (CORE_ADDR) 0, cu->language, objfile);
2010
2011 if (cu->language == language_cplus
2012 || cu->language == language_java
2013 || cu->language == language_ada)
2014 {
2015 /* For C++ and Java, these implicitly act as typedefs as well. */
2016 add_psymbol_to_list (actual_name, strlen (actual_name),
2017 VAR_DOMAIN, LOC_TYPEDEF,
2018 &objfile->global_psymbols,
2019 0, (CORE_ADDR) 0, cu->language, objfile);
2020 }
2021 break;
2022 case DW_TAG_enumerator:
2023 add_psymbol_to_list (actual_name, strlen (actual_name),
2024 VAR_DOMAIN, LOC_CONST,
2025 (cu->language == language_cplus
2026 || cu->language == language_java)
2027 ? &objfile->global_psymbols
2028 : &objfile->static_psymbols,
2029 0, (CORE_ADDR) 0, cu->language, objfile);
2030 break;
2031 default:
2032 break;
2033 }
2034
2035 /* Check to see if we should scan the name for possible namespace
2036 info. Only do this if this is C++, if we don't have namespace
2037 debugging info in the file, if the psym is of an appropriate type
2038 (otherwise we'll have psym == NULL), and if we actually had a
2039 mangled name to begin with. */
2040
2041 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2042 cases which do not set PSYM above? */
2043
2044 if (cu->language == language_cplus
2045 && cu->has_namespace_info == 0
2046 && psym != NULL
2047 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2048 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2049 objfile);
2050
2051 if (built_actual_name)
2052 xfree (actual_name);
2053 }
2054
2055 /* Determine whether a die of type TAG living in a C++ class or
2056 namespace needs to have the name of the scope prepended to the
2057 name listed in the die. */
2058
2059 static int
2060 pdi_needs_namespace (enum dwarf_tag tag)
2061 {
2062 switch (tag)
2063 {
2064 case DW_TAG_namespace:
2065 case DW_TAG_typedef:
2066 case DW_TAG_class_type:
2067 case DW_TAG_interface_type:
2068 case DW_TAG_structure_type:
2069 case DW_TAG_union_type:
2070 case DW_TAG_enumeration_type:
2071 case DW_TAG_enumerator:
2072 return 1;
2073 default:
2074 return 0;
2075 }
2076 }
2077
2078 /* Read a partial die corresponding to a namespace; also, add a symbol
2079 corresponding to that namespace to the symbol table. NAMESPACE is
2080 the name of the enclosing namespace. */
2081
2082 static void
2083 add_partial_namespace (struct partial_die_info *pdi,
2084 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2085 struct dwarf2_cu *cu)
2086 {
2087 struct objfile *objfile = cu->objfile;
2088
2089 /* Add a symbol for the namespace. */
2090
2091 add_partial_symbol (pdi, cu);
2092
2093 /* Now scan partial symbols in that namespace. */
2094
2095 if (pdi->has_children)
2096 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2097 }
2098
2099 /* See if we can figure out if the class lives in a namespace. We do
2100 this by looking for a member function; its demangled name will
2101 contain namespace info, if there is any. */
2102
2103 static void
2104 guess_structure_name (struct partial_die_info *struct_pdi,
2105 struct dwarf2_cu *cu)
2106 {
2107 if ((cu->language == language_cplus
2108 || cu->language == language_java)
2109 && cu->has_namespace_info == 0
2110 && struct_pdi->has_children)
2111 {
2112 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2113 what template types look like, because the demangler
2114 frequently doesn't give the same name as the debug info. We
2115 could fix this by only using the demangled name to get the
2116 prefix (but see comment in read_structure_type). */
2117
2118 struct partial_die_info *child_pdi = struct_pdi->die_child;
2119 struct partial_die_info *real_pdi;
2120
2121 /* If this DIE (this DIE's specification, if any) has a parent, then
2122 we should not do this. We'll prepend the parent's fully qualified
2123 name when we create the partial symbol. */
2124
2125 real_pdi = struct_pdi;
2126 while (real_pdi->has_specification)
2127 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2128
2129 if (real_pdi->die_parent != NULL)
2130 return;
2131
2132 while (child_pdi != NULL)
2133 {
2134 if (child_pdi->tag == DW_TAG_subprogram)
2135 {
2136 char *actual_class_name
2137 = language_class_name_from_physname (cu->language_defn,
2138 child_pdi->name);
2139 if (actual_class_name != NULL)
2140 {
2141 struct_pdi->name
2142 = obsavestring (actual_class_name,
2143 strlen (actual_class_name),
2144 &cu->comp_unit_obstack);
2145 xfree (actual_class_name);
2146 }
2147 break;
2148 }
2149
2150 child_pdi = child_pdi->die_sibling;
2151 }
2152 }
2153 }
2154
2155 /* Read a partial die corresponding to an enumeration type. */
2156
2157 static void
2158 add_partial_enumeration (struct partial_die_info *enum_pdi,
2159 struct dwarf2_cu *cu)
2160 {
2161 struct objfile *objfile = cu->objfile;
2162 bfd *abfd = objfile->obfd;
2163 struct partial_die_info *pdi;
2164
2165 if (enum_pdi->name != NULL)
2166 add_partial_symbol (enum_pdi, cu);
2167
2168 pdi = enum_pdi->die_child;
2169 while (pdi)
2170 {
2171 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2172 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2173 else
2174 add_partial_symbol (pdi, cu);
2175 pdi = pdi->die_sibling;
2176 }
2177 }
2178
2179 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2180 Return the corresponding abbrev, or NULL if the number is zero (indicating
2181 an empty DIE). In either case *BYTES_READ will be set to the length of
2182 the initial number. */
2183
2184 static struct abbrev_info *
2185 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2186 struct dwarf2_cu *cu)
2187 {
2188 bfd *abfd = cu->objfile->obfd;
2189 unsigned int abbrev_number;
2190 struct abbrev_info *abbrev;
2191
2192 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2193
2194 if (abbrev_number == 0)
2195 return NULL;
2196
2197 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2198 if (!abbrev)
2199 {
2200 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2201 bfd_get_filename (abfd));
2202 }
2203
2204 return abbrev;
2205 }
2206
2207 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2208 pointer to the end of a series of DIEs, terminated by an empty
2209 DIE. Any children of the skipped DIEs will also be skipped. */
2210
2211 static gdb_byte *
2212 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2213 {
2214 struct abbrev_info *abbrev;
2215 unsigned int bytes_read;
2216
2217 while (1)
2218 {
2219 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2220 if (abbrev == NULL)
2221 return info_ptr + bytes_read;
2222 else
2223 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2224 }
2225 }
2226
2227 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2228 should point just after the initial uleb128 of a DIE, and the
2229 abbrev corresponding to that skipped uleb128 should be passed in
2230 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2231 children. */
2232
2233 static gdb_byte *
2234 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2235 struct dwarf2_cu *cu)
2236 {
2237 unsigned int bytes_read;
2238 struct attribute attr;
2239 bfd *abfd = cu->objfile->obfd;
2240 unsigned int form, i;
2241
2242 for (i = 0; i < abbrev->num_attrs; i++)
2243 {
2244 /* The only abbrev we care about is DW_AT_sibling. */
2245 if (abbrev->attrs[i].name == DW_AT_sibling)
2246 {
2247 read_attribute (&attr, &abbrev->attrs[i],
2248 abfd, info_ptr, cu);
2249 if (attr.form == DW_FORM_ref_addr)
2250 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2251 else
2252 return dwarf2_per_objfile->info_buffer
2253 + dwarf2_get_ref_die_offset (&attr, cu);
2254 }
2255
2256 /* If it isn't DW_AT_sibling, skip this attribute. */
2257 form = abbrev->attrs[i].form;
2258 skip_attribute:
2259 switch (form)
2260 {
2261 case DW_FORM_addr:
2262 case DW_FORM_ref_addr:
2263 info_ptr += cu->header.addr_size;
2264 break;
2265 case DW_FORM_data1:
2266 case DW_FORM_ref1:
2267 case DW_FORM_flag:
2268 info_ptr += 1;
2269 break;
2270 case DW_FORM_data2:
2271 case DW_FORM_ref2:
2272 info_ptr += 2;
2273 break;
2274 case DW_FORM_data4:
2275 case DW_FORM_ref4:
2276 info_ptr += 4;
2277 break;
2278 case DW_FORM_data8:
2279 case DW_FORM_ref8:
2280 info_ptr += 8;
2281 break;
2282 case DW_FORM_string:
2283 read_string (abfd, info_ptr, &bytes_read);
2284 info_ptr += bytes_read;
2285 break;
2286 case DW_FORM_strp:
2287 info_ptr += cu->header.offset_size;
2288 break;
2289 case DW_FORM_block:
2290 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2291 info_ptr += bytes_read;
2292 break;
2293 case DW_FORM_block1:
2294 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2295 break;
2296 case DW_FORM_block2:
2297 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2298 break;
2299 case DW_FORM_block4:
2300 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2301 break;
2302 case DW_FORM_sdata:
2303 case DW_FORM_udata:
2304 case DW_FORM_ref_udata:
2305 info_ptr = skip_leb128 (abfd, info_ptr);
2306 break;
2307 case DW_FORM_indirect:
2308 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2309 info_ptr += bytes_read;
2310 /* We need to continue parsing from here, so just go back to
2311 the top. */
2312 goto skip_attribute;
2313
2314 default:
2315 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2316 dwarf_form_name (form),
2317 bfd_get_filename (abfd));
2318 }
2319 }
2320
2321 if (abbrev->has_children)
2322 return skip_children (info_ptr, cu);
2323 else
2324 return info_ptr;
2325 }
2326
2327 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2328 the next DIE after ORIG_PDI. */
2329
2330 static gdb_byte *
2331 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2332 bfd *abfd, struct dwarf2_cu *cu)
2333 {
2334 /* Do we know the sibling already? */
2335
2336 if (orig_pdi->sibling)
2337 return orig_pdi->sibling;
2338
2339 /* Are there any children to deal with? */
2340
2341 if (!orig_pdi->has_children)
2342 return info_ptr;
2343
2344 /* Skip the children the long way. */
2345
2346 return skip_children (info_ptr, cu);
2347 }
2348
2349 /* Expand this partial symbol table into a full symbol table. */
2350
2351 static void
2352 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2353 {
2354 /* FIXME: This is barely more than a stub. */
2355 if (pst != NULL)
2356 {
2357 if (pst->readin)
2358 {
2359 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2360 }
2361 else
2362 {
2363 if (info_verbose)
2364 {
2365 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2366 gdb_flush (gdb_stdout);
2367 }
2368
2369 /* Restore our global data. */
2370 dwarf2_per_objfile = objfile_data (pst->objfile,
2371 dwarf2_objfile_data_key);
2372
2373 psymtab_to_symtab_1 (pst);
2374
2375 /* Finish up the debug error message. */
2376 if (info_verbose)
2377 printf_filtered (_("done.\n"));
2378 }
2379 }
2380 }
2381
2382 /* Add PER_CU to the queue. */
2383
2384 static void
2385 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2386 {
2387 struct dwarf2_queue_item *item;
2388
2389 per_cu->queued = 1;
2390 item = xmalloc (sizeof (*item));
2391 item->per_cu = per_cu;
2392 item->next = NULL;
2393
2394 if (dwarf2_queue == NULL)
2395 dwarf2_queue = item;
2396 else
2397 dwarf2_queue_tail->next = item;
2398
2399 dwarf2_queue_tail = item;
2400 }
2401
2402 /* Process the queue. */
2403
2404 static void
2405 process_queue (struct objfile *objfile)
2406 {
2407 struct dwarf2_queue_item *item, *next_item;
2408
2409 /* Initially, there is just one item on the queue. Load its DIEs,
2410 and the DIEs of any other compilation units it requires,
2411 transitively. */
2412
2413 for (item = dwarf2_queue; item != NULL; item = item->next)
2414 {
2415 /* Read in this compilation unit. This may add new items to
2416 the end of the queue. */
2417 load_full_comp_unit (item->per_cu, objfile);
2418
2419 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2420 dwarf2_per_objfile->read_in_chain = item->per_cu;
2421
2422 /* If this compilation unit has already had full symbols created,
2423 reset the TYPE fields in each DIE. */
2424 if (item->per_cu->type_hash)
2425 reset_die_and_siblings_types (item->per_cu->cu->dies,
2426 item->per_cu->cu);
2427 }
2428
2429 /* Now everything left on the queue needs to be read in. Process
2430 them, one at a time, removing from the queue as we finish. */
2431 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2432 {
2433 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2434 process_full_comp_unit (item->per_cu);
2435
2436 item->per_cu->queued = 0;
2437 next_item = item->next;
2438 xfree (item);
2439 }
2440
2441 dwarf2_queue_tail = NULL;
2442 }
2443
2444 /* Free all allocated queue entries. This function only releases anything if
2445 an error was thrown; if the queue was processed then it would have been
2446 freed as we went along. */
2447
2448 static void
2449 dwarf2_release_queue (void *dummy)
2450 {
2451 struct dwarf2_queue_item *item, *last;
2452
2453 item = dwarf2_queue;
2454 while (item)
2455 {
2456 /* Anything still marked queued is likely to be in an
2457 inconsistent state, so discard it. */
2458 if (item->per_cu->queued)
2459 {
2460 if (item->per_cu->cu != NULL)
2461 free_one_cached_comp_unit (item->per_cu->cu);
2462 item->per_cu->queued = 0;
2463 }
2464
2465 last = item;
2466 item = item->next;
2467 xfree (last);
2468 }
2469
2470 dwarf2_queue = dwarf2_queue_tail = NULL;
2471 }
2472
2473 /* Read in full symbols for PST, and anything it depends on. */
2474
2475 static void
2476 psymtab_to_symtab_1 (struct partial_symtab *pst)
2477 {
2478 struct dwarf2_per_cu_data *per_cu;
2479 struct cleanup *back_to;
2480 int i;
2481
2482 for (i = 0; i < pst->number_of_dependencies; i++)
2483 if (!pst->dependencies[i]->readin)
2484 {
2485 /* Inform about additional files that need to be read in. */
2486 if (info_verbose)
2487 {
2488 /* FIXME: i18n: Need to make this a single string. */
2489 fputs_filtered (" ", gdb_stdout);
2490 wrap_here ("");
2491 fputs_filtered ("and ", gdb_stdout);
2492 wrap_here ("");
2493 printf_filtered ("%s...", pst->dependencies[i]->filename);
2494 wrap_here (""); /* Flush output */
2495 gdb_flush (gdb_stdout);
2496 }
2497 psymtab_to_symtab_1 (pst->dependencies[i]);
2498 }
2499
2500 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2501
2502 if (per_cu == NULL)
2503 {
2504 /* It's an include file, no symbols to read for it.
2505 Everything is in the parent symtab. */
2506 pst->readin = 1;
2507 return;
2508 }
2509
2510 back_to = make_cleanup (dwarf2_release_queue, NULL);
2511
2512 queue_comp_unit (per_cu);
2513
2514 process_queue (pst->objfile);
2515
2516 /* Age the cache, releasing compilation units that have not
2517 been used recently. */
2518 age_cached_comp_units ();
2519
2520 do_cleanups (back_to);
2521 }
2522
2523 /* Load the DIEs associated with PST and PER_CU into memory. */
2524
2525 static struct dwarf2_cu *
2526 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2527 {
2528 bfd *abfd = objfile->obfd;
2529 struct dwarf2_cu *cu;
2530 unsigned long offset;
2531 gdb_byte *info_ptr;
2532 struct cleanup *back_to, *free_cu_cleanup;
2533 struct attribute *attr;
2534 CORE_ADDR baseaddr;
2535
2536 /* Set local variables from the partial symbol table info. */
2537 offset = per_cu->offset;
2538
2539 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2540
2541 cu = xmalloc (sizeof (struct dwarf2_cu));
2542 memset (cu, 0, sizeof (struct dwarf2_cu));
2543
2544 /* If an error occurs while loading, release our storage. */
2545 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2546
2547 cu->objfile = objfile;
2548
2549 /* read in the comp_unit header */
2550 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2551
2552 /* Read the abbrevs for this compilation unit */
2553 dwarf2_read_abbrevs (abfd, cu);
2554 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2555
2556 cu->header.offset = offset;
2557
2558 cu->per_cu = per_cu;
2559 per_cu->cu = cu;
2560
2561 /* We use this obstack for block values in dwarf_alloc_block. */
2562 obstack_init (&cu->comp_unit_obstack);
2563
2564 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2565
2566 /* We try not to read any attributes in this function, because not
2567 all objfiles needed for references have been loaded yet, and symbol
2568 table processing isn't initialized. But we have to set the CU language,
2569 or we won't be able to build types correctly. */
2570 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2571 if (attr)
2572 set_cu_language (DW_UNSND (attr), cu);
2573 else
2574 set_cu_language (language_minimal, cu);
2575
2576 do_cleanups (back_to);
2577
2578 /* We've successfully allocated this compilation unit. Let our caller
2579 clean it up when finished with it. */
2580 discard_cleanups (free_cu_cleanup);
2581
2582 return cu;
2583 }
2584
2585 /* Generate full symbol information for PST and CU, whose DIEs have
2586 already been loaded into memory. */
2587
2588 static void
2589 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2590 {
2591 struct partial_symtab *pst = per_cu->psymtab;
2592 struct dwarf2_cu *cu = per_cu->cu;
2593 struct objfile *objfile = pst->objfile;
2594 bfd *abfd = objfile->obfd;
2595 CORE_ADDR lowpc, highpc;
2596 struct symtab *symtab;
2597 struct cleanup *back_to;
2598 struct attribute *attr;
2599 CORE_ADDR baseaddr;
2600
2601 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2602
2603 /* We're in the global namespace. */
2604 processing_current_prefix = "";
2605
2606 buildsym_init ();
2607 back_to = make_cleanup (really_free_pendings, NULL);
2608
2609 cu->list_in_scope = &file_symbols;
2610
2611 /* Find the base address of the compilation unit for range lists and
2612 location lists. It will normally be specified by DW_AT_low_pc.
2613 In DWARF-3 draft 4, the base address could be overridden by
2614 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2615 compilation units with discontinuous ranges. */
2616
2617 cu->header.base_known = 0;
2618 cu->header.base_address = 0;
2619
2620 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2621 if (attr)
2622 {
2623 cu->header.base_address = DW_ADDR (attr);
2624 cu->header.base_known = 1;
2625 }
2626 else
2627 {
2628 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2629 if (attr)
2630 {
2631 cu->header.base_address = DW_ADDR (attr);
2632 cu->header.base_known = 1;
2633 }
2634 }
2635
2636 /* Do line number decoding in read_file_scope () */
2637 process_die (cu->dies, cu);
2638
2639 /* Some compilers don't define a DW_AT_high_pc attribute for the
2640 compilation unit. If the DW_AT_high_pc is missing, synthesize
2641 it, by scanning the DIE's below the compilation unit. */
2642 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2643
2644 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2645
2646 /* Set symtab language to language from DW_AT_language.
2647 If the compilation is from a C file generated by language preprocessors,
2648 do not set the language if it was already deduced by start_subfile. */
2649 if (symtab != NULL
2650 && !(cu->language == language_c && symtab->language != language_c))
2651 {
2652 symtab->language = cu->language;
2653 }
2654 pst->symtab = symtab;
2655 pst->readin = 1;
2656
2657 do_cleanups (back_to);
2658 }
2659
2660 /* Process a die and its children. */
2661
2662 static void
2663 process_die (struct die_info *die, struct dwarf2_cu *cu)
2664 {
2665 switch (die->tag)
2666 {
2667 case DW_TAG_padding:
2668 break;
2669 case DW_TAG_compile_unit:
2670 read_file_scope (die, cu);
2671 break;
2672 case DW_TAG_subprogram:
2673 read_subroutine_type (die, cu);
2674 read_func_scope (die, cu);
2675 break;
2676 case DW_TAG_inlined_subroutine:
2677 /* FIXME: These are ignored for now.
2678 They could be used to set breakpoints on all inlined instances
2679 of a function and make GDB `next' properly over inlined functions. */
2680 break;
2681 case DW_TAG_lexical_block:
2682 case DW_TAG_try_block:
2683 case DW_TAG_catch_block:
2684 read_lexical_block_scope (die, cu);
2685 break;
2686 case DW_TAG_class_type:
2687 case DW_TAG_interface_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
2692 break;
2693 case DW_TAG_enumeration_type:
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
2696 break;
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
2701 case DW_TAG_subroutine_type:
2702 read_subroutine_type (die, cu);
2703 break;
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
2707 case DW_TAG_array_type:
2708 read_array_type (die, cu);
2709 break;
2710 case DW_TAG_pointer_type:
2711 read_tag_pointer_type (die, cu);
2712 break;
2713 case DW_TAG_ptr_to_member_type:
2714 read_tag_ptr_to_member_type (die, cu);
2715 break;
2716 case DW_TAG_reference_type:
2717 read_tag_reference_type (die, cu);
2718 break;
2719 case DW_TAG_string_type:
2720 read_tag_string_type (die, cu);
2721 break;
2722 /* END FIXME */
2723
2724 case DW_TAG_base_type:
2725 read_base_type (die, cu);
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
2729 break;
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
2735 break;
2736 case DW_TAG_common_block:
2737 read_common_block (die, cu);
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
2741 case DW_TAG_namespace:
2742 processing_has_namespace_info = 1;
2743 read_namespace (die, cu);
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
2753 processing_has_namespace_info = 1;
2754 gdb_assert (die->child == NULL);
2755 break;
2756 default:
2757 new_symbol (die, NULL, cu);
2758 break;
2759 }
2760 }
2761
2762 static void
2763 initialize_cu_func_list (struct dwarf2_cu *cu)
2764 {
2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2766 }
2767
2768 static void
2769 free_cu_line_header (void *arg)
2770 {
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775 }
2776
2777 static void
2778 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2779 {
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
2786 char *name = NULL;
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
2790 struct line_header *line_header = 0;
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2794
2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2799 if (lowpc == ((CORE_ADDR) -1))
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
2804 /* Find the filename. Do not use dwarf2_name here, since the filename
2805 is not a source language identifier. */
2806 attr = dwarf2_attr (die, DW_AT_name, cu);
2807 if (attr)
2808 {
2809 name = DW_STRING (attr);
2810 }
2811
2812 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2813 if (attr)
2814 comp_dir = DW_STRING (attr);
2815 else if (name != NULL && IS_ABSOLUTE_PATH (name))
2816 {
2817 comp_dir = ldirname (name);
2818 if (comp_dir != NULL)
2819 make_cleanup (xfree, comp_dir);
2820 }
2821 if (comp_dir != NULL)
2822 {
2823 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2824 directory, get rid of it. */
2825 char *cp = strchr (comp_dir, ':');
2826
2827 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2828 comp_dir = cp + 1;
2829 }
2830
2831 if (name == NULL)
2832 name = "<unknown>";
2833
2834 attr = dwarf2_attr (die, DW_AT_language, cu);
2835 if (attr)
2836 {
2837 set_cu_language (DW_UNSND (attr), cu);
2838 }
2839
2840 attr = dwarf2_attr (die, DW_AT_producer, cu);
2841 if (attr)
2842 cu->producer = DW_STRING (attr);
2843
2844 /* We assume that we're processing GCC output. */
2845 processing_gcc_compilation = 2;
2846
2847 start_symtab (name, comp_dir, lowpc);
2848 record_debugformat ("DWARF 2");
2849 record_producer (cu->producer);
2850
2851 initialize_cu_func_list (cu);
2852
2853 /* Decode line number information if present. We do this before
2854 processing child DIEs, so that the line header table is available
2855 for DW_AT_decl_file. */
2856 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2857 if (attr)
2858 {
2859 unsigned int line_offset = DW_UNSND (attr);
2860 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2861 if (line_header)
2862 {
2863 cu->line_header = line_header;
2864 make_cleanup (free_cu_line_header, cu);
2865 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2866 }
2867 }
2868
2869 /* Process all dies in compilation unit. */
2870 if (die->child != NULL)
2871 {
2872 child_die = die->child;
2873 while (child_die && child_die->tag)
2874 {
2875 process_die (child_die, cu);
2876 child_die = sibling_die (child_die);
2877 }
2878 }
2879
2880 /* Decode macro information, if present. Dwarf 2 macro information
2881 refers to information in the line number info statement program
2882 header, so we can only read it if we've read the header
2883 successfully. */
2884 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2885 if (attr && line_header)
2886 {
2887 unsigned int macro_offset = DW_UNSND (attr);
2888 dwarf_decode_macros (line_header, macro_offset,
2889 comp_dir, abfd, cu);
2890 }
2891 do_cleanups (back_to);
2892 }
2893
2894 static void
2895 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2896 struct dwarf2_cu *cu)
2897 {
2898 struct function_range *thisfn;
2899
2900 thisfn = (struct function_range *)
2901 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2902 thisfn->name = name;
2903 thisfn->lowpc = lowpc;
2904 thisfn->highpc = highpc;
2905 thisfn->seen_line = 0;
2906 thisfn->next = NULL;
2907
2908 if (cu->last_fn == NULL)
2909 cu->first_fn = thisfn;
2910 else
2911 cu->last_fn->next = thisfn;
2912
2913 cu->last_fn = thisfn;
2914 }
2915
2916 static void
2917 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2918 {
2919 struct objfile *objfile = cu->objfile;
2920 struct context_stack *new;
2921 CORE_ADDR lowpc;
2922 CORE_ADDR highpc;
2923 struct die_info *child_die;
2924 struct attribute *attr;
2925 char *name;
2926 const char *previous_prefix = processing_current_prefix;
2927 struct cleanup *back_to = NULL;
2928 CORE_ADDR baseaddr;
2929 struct block *block;
2930
2931 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2932
2933 name = dwarf2_linkage_name (die, cu);
2934
2935 /* Ignore functions with missing or empty names and functions with
2936 missing or invalid low and high pc attributes. */
2937 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2938 return;
2939
2940 if (cu->language == language_cplus
2941 || cu->language == language_java)
2942 {
2943 struct die_info *spec_die = die_specification (die, cu);
2944
2945 /* NOTE: carlton/2004-01-23: We have to be careful in the
2946 presence of DW_AT_specification. For example, with GCC 3.4,
2947 given the code
2948
2949 namespace N {
2950 void foo() {
2951 // Definition of N::foo.
2952 }
2953 }
2954
2955 then we'll have a tree of DIEs like this:
2956
2957 1: DW_TAG_compile_unit
2958 2: DW_TAG_namespace // N
2959 3: DW_TAG_subprogram // declaration of N::foo
2960 4: DW_TAG_subprogram // definition of N::foo
2961 DW_AT_specification // refers to die #3
2962
2963 Thus, when processing die #4, we have to pretend that we're
2964 in the context of its DW_AT_specification, namely the contex
2965 of die #3. */
2966
2967 if (spec_die != NULL)
2968 {
2969 char *specification_prefix = determine_prefix (spec_die, cu);
2970 processing_current_prefix = specification_prefix;
2971 back_to = make_cleanup (xfree, specification_prefix);
2972 }
2973 }
2974
2975 lowpc += baseaddr;
2976 highpc += baseaddr;
2977
2978 /* Record the function range for dwarf_decode_lines. */
2979 add_to_cu_func_list (name, lowpc, highpc, cu);
2980
2981 new = push_context (0, lowpc);
2982 new->name = new_symbol (die, die->type, cu);
2983
2984 /* If there is a location expression for DW_AT_frame_base, record
2985 it. */
2986 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2987 if (attr)
2988 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2989 expression is being recorded directly in the function's symbol
2990 and not in a separate frame-base object. I guess this hack is
2991 to avoid adding some sort of frame-base adjunct/annex to the
2992 function's symbol :-(. The problem with doing this is that it
2993 results in a function symbol with a location expression that
2994 has nothing to do with the location of the function, ouch! The
2995 relationship should be: a function's symbol has-a frame base; a
2996 frame-base has-a location expression. */
2997 dwarf2_symbol_mark_computed (attr, new->name, cu);
2998
2999 cu->list_in_scope = &local_symbols;
3000
3001 if (die->child != NULL)
3002 {
3003 child_die = die->child;
3004 while (child_die && child_die->tag)
3005 {
3006 process_die (child_die, cu);
3007 child_die = sibling_die (child_die);
3008 }
3009 }
3010
3011 new = pop_context ();
3012 /* Make a block for the local symbols within. */
3013 block = finish_block (new->name, &local_symbols, new->old_blocks,
3014 lowpc, highpc, objfile);
3015
3016 /* If we have address ranges, record them. */
3017 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3018
3019 /* In C++, we can have functions nested inside functions (e.g., when
3020 a function declares a class that has methods). This means that
3021 when we finish processing a function scope, we may need to go
3022 back to building a containing block's symbol lists. */
3023 local_symbols = new->locals;
3024 param_symbols = new->params;
3025
3026 /* If we've finished processing a top-level function, subsequent
3027 symbols go in the file symbol list. */
3028 if (outermost_context_p ())
3029 cu->list_in_scope = &file_symbols;
3030
3031 processing_current_prefix = previous_prefix;
3032 if (back_to != NULL)
3033 do_cleanups (back_to);
3034 }
3035
3036 /* Process all the DIES contained within a lexical block scope. Start
3037 a new scope, process the dies, and then close the scope. */
3038
3039 static void
3040 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3041 {
3042 struct objfile *objfile = cu->objfile;
3043 struct context_stack *new;
3044 CORE_ADDR lowpc, highpc;
3045 struct die_info *child_die;
3046 CORE_ADDR baseaddr;
3047
3048 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3049
3050 /* Ignore blocks with missing or invalid low and high pc attributes. */
3051 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3052 as multiple lexical blocks? Handling children in a sane way would
3053 be nasty. Might be easier to properly extend generic blocks to
3054 describe ranges. */
3055 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3056 return;
3057 lowpc += baseaddr;
3058 highpc += baseaddr;
3059
3060 push_context (0, lowpc);
3061 if (die->child != NULL)
3062 {
3063 child_die = die->child;
3064 while (child_die && child_die->tag)
3065 {
3066 process_die (child_die, cu);
3067 child_die = sibling_die (child_die);
3068 }
3069 }
3070 new = pop_context ();
3071
3072 if (local_symbols != NULL)
3073 {
3074 struct block *block
3075 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3076 highpc, objfile);
3077
3078 /* Note that recording ranges after traversing children, as we
3079 do here, means that recording a parent's ranges entails
3080 walking across all its children's ranges as they appear in
3081 the address map, which is quadratic behavior.
3082
3083 It would be nicer to record the parent's ranges before
3084 traversing its children, simply overriding whatever you find
3085 there. But since we don't even decide whether to create a
3086 block until after we've traversed its children, that's hard
3087 to do. */
3088 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3089 }
3090 local_symbols = new->locals;
3091 }
3092
3093 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3094 Return 1 if the attributes are present and valid, otherwise, return 0. */
3095
3096 static int
3097 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3098 CORE_ADDR *high_return, struct dwarf2_cu *cu)
3099 {
3100 struct objfile *objfile = cu->objfile;
3101 struct comp_unit_head *cu_header = &cu->header;
3102 bfd *obfd = objfile->obfd;
3103 unsigned int addr_size = cu_header->addr_size;
3104 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3105 /* Base address selection entry. */
3106 CORE_ADDR base;
3107 int found_base;
3108 unsigned int dummy;
3109 gdb_byte *buffer;
3110 CORE_ADDR marker;
3111 int low_set;
3112 CORE_ADDR low = 0;
3113 CORE_ADDR high = 0;
3114
3115 found_base = cu_header->base_known;
3116 base = cu_header->base_address;
3117
3118 if (offset >= dwarf2_per_objfile->ranges_size)
3119 {
3120 complaint (&symfile_complaints,
3121 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3122 offset);
3123 return 0;
3124 }
3125 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3126
3127 /* Read in the largest possible address. */
3128 marker = read_address (obfd, buffer, cu, &dummy);
3129 if ((marker & mask) == mask)
3130 {
3131 /* If we found the largest possible address, then
3132 read the base address. */
3133 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3134 buffer += 2 * addr_size;
3135 offset += 2 * addr_size;
3136 found_base = 1;
3137 }
3138
3139 low_set = 0;
3140
3141 while (1)
3142 {
3143 CORE_ADDR range_beginning, range_end;
3144
3145 range_beginning = read_address (obfd, buffer, cu, &dummy);
3146 buffer += addr_size;
3147 range_end = read_address (obfd, buffer, cu, &dummy);
3148 buffer += addr_size;
3149 offset += 2 * addr_size;
3150
3151 /* An end of list marker is a pair of zero addresses. */
3152 if (range_beginning == 0 && range_end == 0)
3153 /* Found the end of list entry. */
3154 break;
3155
3156 /* Each base address selection entry is a pair of 2 values.
3157 The first is the largest possible address, the second is
3158 the base address. Check for a base address here. */
3159 if ((range_beginning & mask) == mask)
3160 {
3161 /* If we found the largest possible address, then
3162 read the base address. */
3163 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3164 found_base = 1;
3165 continue;
3166 }
3167
3168 if (!found_base)
3169 {
3170 /* We have no valid base address for the ranges
3171 data. */
3172 complaint (&symfile_complaints,
3173 _("Invalid .debug_ranges data (no base address)"));
3174 return 0;
3175 }
3176
3177 range_beginning += base;
3178 range_end += base;
3179
3180 /* FIXME: This is recording everything as a low-high
3181 segment of consecutive addresses. We should have a
3182 data structure for discontiguous block ranges
3183 instead. */
3184 if (! low_set)
3185 {
3186 low = range_beginning;
3187 high = range_end;
3188 low_set = 1;
3189 }
3190 else
3191 {
3192 if (range_beginning < low)
3193 low = range_beginning;
3194 if (range_end > high)
3195 high = range_end;
3196 }
3197 }
3198
3199 if (! low_set)
3200 /* If the first entry is an end-of-list marker, the range
3201 describes an empty scope, i.e. no instructions. */
3202 return 0;
3203
3204 if (low_return)
3205 *low_return = low;
3206 if (high_return)
3207 *high_return = high;
3208 return 1;
3209 }
3210
3211 /* Get low and high pc attributes from a die. Return 1 if the attributes
3212 are present and valid, otherwise, return 0. Return -1 if the range is
3213 discontinuous, i.e. derived from DW_AT_ranges information. */
3214 static int
3215 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3216 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3217 {
3218 struct attribute *attr;
3219 CORE_ADDR low = 0;
3220 CORE_ADDR high = 0;
3221 int ret = 0;
3222
3223 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3224 if (attr)
3225 {
3226 high = DW_ADDR (attr);
3227 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3228 if (attr)
3229 low = DW_ADDR (attr);
3230 else
3231 /* Found high w/o low attribute. */
3232 return 0;
3233
3234 /* Found consecutive range of addresses. */
3235 ret = 1;
3236 }
3237 else
3238 {
3239 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3240 if (attr != NULL)
3241 {
3242 /* Value of the DW_AT_ranges attribute is the offset in the
3243 .debug_ranges section. */
3244 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu))
3245 return 0;
3246 /* Found discontinuous range of addresses. */
3247 ret = -1;
3248 }
3249 }
3250
3251 if (high < low)
3252 return 0;
3253
3254 /* When using the GNU linker, .gnu.linkonce. sections are used to
3255 eliminate duplicate copies of functions and vtables and such.
3256 The linker will arbitrarily choose one and discard the others.
3257 The AT_*_pc values for such functions refer to local labels in
3258 these sections. If the section from that file was discarded, the
3259 labels are not in the output, so the relocs get a value of 0.
3260 If this is a discarded function, mark the pc bounds as invalid,
3261 so that GDB will ignore it. */
3262 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3263 return 0;
3264
3265 *lowpc = low;
3266 *highpc = high;
3267 return ret;
3268 }
3269
3270 /* Get the low and high pc's represented by the scope DIE, and store
3271 them in *LOWPC and *HIGHPC. If the correct values can't be
3272 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3273
3274 static void
3275 get_scope_pc_bounds (struct die_info *die,
3276 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3277 struct dwarf2_cu *cu)
3278 {
3279 CORE_ADDR best_low = (CORE_ADDR) -1;
3280 CORE_ADDR best_high = (CORE_ADDR) 0;
3281 CORE_ADDR current_low, current_high;
3282
3283 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3284 {
3285 best_low = current_low;
3286 best_high = current_high;
3287 }
3288 else
3289 {
3290 struct die_info *child = die->child;
3291
3292 while (child && child->tag)
3293 {
3294 switch (child->tag) {
3295 case DW_TAG_subprogram:
3296 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3297 {
3298 best_low = min (best_low, current_low);
3299 best_high = max (best_high, current_high);
3300 }
3301 break;
3302 case DW_TAG_namespace:
3303 /* FIXME: carlton/2004-01-16: Should we do this for
3304 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3305 that current GCC's always emit the DIEs corresponding
3306 to definitions of methods of classes as children of a
3307 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3308 the DIEs giving the declarations, which could be
3309 anywhere). But I don't see any reason why the
3310 standards says that they have to be there. */
3311 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3312
3313 if (current_low != ((CORE_ADDR) -1))
3314 {
3315 best_low = min (best_low, current_low);
3316 best_high = max (best_high, current_high);
3317 }
3318 break;
3319 default:
3320 /* Ignore. */
3321 break;
3322 }
3323
3324 child = sibling_die (child);
3325 }
3326 }
3327
3328 *lowpc = best_low;
3329 *highpc = best_high;
3330 }
3331
3332 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
3333 in DIE. */
3334 static void
3335 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
3336 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
3337 {
3338 struct attribute *attr;
3339
3340 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3341 if (attr)
3342 {
3343 CORE_ADDR high = DW_ADDR (attr);
3344 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3345 if (attr)
3346 {
3347 CORE_ADDR low = DW_ADDR (attr);
3348 record_block_range (block, baseaddr + low, baseaddr + high - 1);
3349 }
3350 }
3351
3352 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3353 if (attr)
3354 {
3355 bfd *obfd = cu->objfile->obfd;
3356
3357 /* The value of the DW_AT_ranges attribute is the offset of the
3358 address range list in the .debug_ranges section. */
3359 unsigned long offset = DW_UNSND (attr);
3360 gdb_byte *buffer = dwarf2_per_objfile->ranges_buffer + offset;
3361
3362 /* For some target architectures, but not others, the
3363 read_address function sign-extends the addresses it returns.
3364 To recognize base address selection entries, we need a
3365 mask. */
3366 unsigned int addr_size = cu->header.addr_size;
3367 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3368
3369 /* The base address, to which the next pair is relative. Note
3370 that this 'base' is a DWARF concept: most entries in a range
3371 list are relative, to reduce the number of relocs against the
3372 debugging information. This is separate from this function's
3373 'baseaddr' argument, which GDB uses to relocate debugging
3374 information from a shared library based on the address at
3375 which the library was loaded. */
3376 CORE_ADDR base = cu->header.base_address;
3377 int base_known = cu->header.base_known;
3378
3379 if (offset >= dwarf2_per_objfile->ranges_size)
3380 {
3381 complaint (&symfile_complaints,
3382 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
3383 offset);
3384 return;
3385 }
3386
3387 for (;;)
3388 {
3389 unsigned int bytes_read;
3390 CORE_ADDR start, end;
3391
3392 start = read_address (obfd, buffer, cu, &bytes_read);
3393 buffer += bytes_read;
3394 end = read_address (obfd, buffer, cu, &bytes_read);
3395 buffer += bytes_read;
3396
3397 /* Did we find the end of the range list? */
3398 if (start == 0 && end == 0)
3399 break;
3400
3401 /* Did we find a base address selection entry? */
3402 else if ((start & base_select_mask) == base_select_mask)
3403 {
3404 base = end;
3405 base_known = 1;
3406 }
3407
3408 /* We found an ordinary address range. */
3409 else
3410 {
3411 if (!base_known)
3412 {
3413 complaint (&symfile_complaints,
3414 _("Invalid .debug_ranges data (no base address)"));
3415 return;
3416 }
3417
3418 record_block_range (block,
3419 baseaddr + base + start,
3420 baseaddr + base + end - 1);
3421 }
3422 }
3423 }
3424 }
3425
3426 /* Add an aggregate field to the field list. */
3427
3428 static void
3429 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3430 struct dwarf2_cu *cu)
3431 {
3432 struct objfile *objfile = cu->objfile;
3433 struct nextfield *new_field;
3434 struct attribute *attr;
3435 struct field *fp;
3436 char *fieldname = "";
3437
3438 /* Allocate a new field list entry and link it in. */
3439 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3440 make_cleanup (xfree, new_field);
3441 memset (new_field, 0, sizeof (struct nextfield));
3442 new_field->next = fip->fields;
3443 fip->fields = new_field;
3444 fip->nfields++;
3445
3446 /* Handle accessibility and virtuality of field.
3447 The default accessibility for members is public, the default
3448 accessibility for inheritance is private. */
3449 if (die->tag != DW_TAG_inheritance)
3450 new_field->accessibility = DW_ACCESS_public;
3451 else
3452 new_field->accessibility = DW_ACCESS_private;
3453 new_field->virtuality = DW_VIRTUALITY_none;
3454
3455 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3456 if (attr)
3457 new_field->accessibility = DW_UNSND (attr);
3458 if (new_field->accessibility != DW_ACCESS_public)
3459 fip->non_public_fields = 1;
3460 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3461 if (attr)
3462 new_field->virtuality = DW_UNSND (attr);
3463
3464 fp = &new_field->field;
3465
3466 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3467 {
3468 /* Data member other than a C++ static data member. */
3469
3470 /* Get type of field. */
3471 fp->type = die_type (die, cu);
3472
3473 FIELD_STATIC_KIND (*fp) = 0;
3474
3475 /* Get bit size of field (zero if none). */
3476 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3477 if (attr)
3478 {
3479 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3480 }
3481 else
3482 {
3483 FIELD_BITSIZE (*fp) = 0;
3484 }
3485
3486 /* Get bit offset of field. */
3487 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3488 if (attr)
3489 {
3490 int byte_offset;
3491
3492 if (attr_form_is_section_offset (attr))
3493 {
3494 dwarf2_complex_location_expr_complaint ();
3495 byte_offset = 0;
3496 }
3497 else if (attr_form_is_constant (attr))
3498 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
3499 else
3500 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
3501
3502 FIELD_BITPOS (*fp) = byte_offset * bits_per_byte;
3503 }
3504 else
3505 FIELD_BITPOS (*fp) = 0;
3506 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3507 if (attr)
3508 {
3509 if (gdbarch_bits_big_endian (current_gdbarch))
3510 {
3511 /* For big endian bits, the DW_AT_bit_offset gives the
3512 additional bit offset from the MSB of the containing
3513 anonymous object to the MSB of the field. We don't
3514 have to do anything special since we don't need to
3515 know the size of the anonymous object. */
3516 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3517 }
3518 else
3519 {
3520 /* For little endian bits, compute the bit offset to the
3521 MSB of the anonymous object, subtract off the number of
3522 bits from the MSB of the field to the MSB of the
3523 object, and then subtract off the number of bits of
3524 the field itself. The result is the bit offset of
3525 the LSB of the field. */
3526 int anonymous_size;
3527 int bit_offset = DW_UNSND (attr);
3528
3529 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3530 if (attr)
3531 {
3532 /* The size of the anonymous object containing
3533 the bit field is explicit, so use the
3534 indicated size (in bytes). */
3535 anonymous_size = DW_UNSND (attr);
3536 }
3537 else
3538 {
3539 /* The size of the anonymous object containing
3540 the bit field must be inferred from the type
3541 attribute of the data member containing the
3542 bit field. */
3543 anonymous_size = TYPE_LENGTH (fp->type);
3544 }
3545 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3546 - bit_offset - FIELD_BITSIZE (*fp);
3547 }
3548 }
3549
3550 /* Get name of field. */
3551 fieldname = dwarf2_name (die, cu);
3552 if (fieldname == NULL)
3553 fieldname = "";
3554
3555 /* The name is already allocated along with this objfile, so we don't
3556 need to duplicate it for the type. */
3557 fp->name = fieldname;
3558
3559 /* Change accessibility for artificial fields (e.g. virtual table
3560 pointer or virtual base class pointer) to private. */
3561 if (dwarf2_attr (die, DW_AT_artificial, cu))
3562 {
3563 new_field->accessibility = DW_ACCESS_private;
3564 fip->non_public_fields = 1;
3565 }
3566 }
3567 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3568 {
3569 /* C++ static member. */
3570
3571 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3572 is a declaration, but all versions of G++ as of this writing
3573 (so through at least 3.2.1) incorrectly generate
3574 DW_TAG_variable tags. */
3575
3576 char *physname;
3577
3578 /* Get name of field. */
3579 fieldname = dwarf2_name (die, cu);
3580 if (fieldname == NULL)
3581 return;
3582
3583 /* Get physical name. */
3584 physname = dwarf2_linkage_name (die, cu);
3585
3586 /* The name is already allocated along with this objfile, so we don't
3587 need to duplicate it for the type. */
3588 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3589 FIELD_TYPE (*fp) = die_type (die, cu);
3590 FIELD_NAME (*fp) = fieldname;
3591 }
3592 else if (die->tag == DW_TAG_inheritance)
3593 {
3594 /* C++ base class field. */
3595 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3596 if (attr)
3597 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3598 * bits_per_byte);
3599 FIELD_BITSIZE (*fp) = 0;
3600 FIELD_STATIC_KIND (*fp) = 0;
3601 FIELD_TYPE (*fp) = die_type (die, cu);
3602 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3603 fip->nbaseclasses++;
3604 }
3605 }
3606
3607 /* Create the vector of fields, and attach it to the type. */
3608
3609 static void
3610 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3611 struct dwarf2_cu *cu)
3612 {
3613 int nfields = fip->nfields;
3614
3615 /* Record the field count, allocate space for the array of fields,
3616 and create blank accessibility bitfields if necessary. */
3617 TYPE_NFIELDS (type) = nfields;
3618 TYPE_FIELDS (type) = (struct field *)
3619 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3620 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3621
3622 if (fip->non_public_fields)
3623 {
3624 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3625
3626 TYPE_FIELD_PRIVATE_BITS (type) =
3627 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3628 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3629
3630 TYPE_FIELD_PROTECTED_BITS (type) =
3631 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3632 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3633
3634 TYPE_FIELD_IGNORE_BITS (type) =
3635 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3636 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3637 }
3638
3639 /* If the type has baseclasses, allocate and clear a bit vector for
3640 TYPE_FIELD_VIRTUAL_BITS. */
3641 if (fip->nbaseclasses)
3642 {
3643 int num_bytes = B_BYTES (fip->nbaseclasses);
3644 unsigned char *pointer;
3645
3646 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3647 pointer = TYPE_ALLOC (type, num_bytes);
3648 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3649 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3650 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3651 }
3652
3653 /* Copy the saved-up fields into the field vector. Start from the head
3654 of the list, adding to the tail of the field array, so that they end
3655 up in the same order in the array in which they were added to the list. */
3656 while (nfields-- > 0)
3657 {
3658 TYPE_FIELD (type, nfields) = fip->fields->field;
3659 switch (fip->fields->accessibility)
3660 {
3661 case DW_ACCESS_private:
3662 SET_TYPE_FIELD_PRIVATE (type, nfields);
3663 break;
3664
3665 case DW_ACCESS_protected:
3666 SET_TYPE_FIELD_PROTECTED (type, nfields);
3667 break;
3668
3669 case DW_ACCESS_public:
3670 break;
3671
3672 default:
3673 /* Unknown accessibility. Complain and treat it as public. */
3674 {
3675 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3676 fip->fields->accessibility);
3677 }
3678 break;
3679 }
3680 if (nfields < fip->nbaseclasses)
3681 {
3682 switch (fip->fields->virtuality)
3683 {
3684 case DW_VIRTUALITY_virtual:
3685 case DW_VIRTUALITY_pure_virtual:
3686 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3687 break;
3688 }
3689 }
3690 fip->fields = fip->fields->next;
3691 }
3692 }
3693
3694 /* Add a member function to the proper fieldlist. */
3695
3696 static void
3697 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3698 struct type *type, struct dwarf2_cu *cu)
3699 {
3700 struct objfile *objfile = cu->objfile;
3701 struct attribute *attr;
3702 struct fnfieldlist *flp;
3703 int i;
3704 struct fn_field *fnp;
3705 char *fieldname;
3706 char *physname;
3707 struct nextfnfield *new_fnfield;
3708
3709 /* Get name of member function. */
3710 fieldname = dwarf2_name (die, cu);
3711 if (fieldname == NULL)
3712 return;
3713
3714 /* Get the mangled name. */
3715 physname = dwarf2_linkage_name (die, cu);
3716
3717 /* Look up member function name in fieldlist. */
3718 for (i = 0; i < fip->nfnfields; i++)
3719 {
3720 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3721 break;
3722 }
3723
3724 /* Create new list element if necessary. */
3725 if (i < fip->nfnfields)
3726 flp = &fip->fnfieldlists[i];
3727 else
3728 {
3729 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3730 {
3731 fip->fnfieldlists = (struct fnfieldlist *)
3732 xrealloc (fip->fnfieldlists,
3733 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3734 * sizeof (struct fnfieldlist));
3735 if (fip->nfnfields == 0)
3736 make_cleanup (free_current_contents, &fip->fnfieldlists);
3737 }
3738 flp = &fip->fnfieldlists[fip->nfnfields];
3739 flp->name = fieldname;
3740 flp->length = 0;
3741 flp->head = NULL;
3742 fip->nfnfields++;
3743 }
3744
3745 /* Create a new member function field and chain it to the field list
3746 entry. */
3747 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3748 make_cleanup (xfree, new_fnfield);
3749 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3750 new_fnfield->next = flp->head;
3751 flp->head = new_fnfield;
3752 flp->length++;
3753
3754 /* Fill in the member function field info. */
3755 fnp = &new_fnfield->fnfield;
3756 /* The name is already allocated along with this objfile, so we don't
3757 need to duplicate it for the type. */
3758 fnp->physname = physname ? physname : "";
3759 fnp->type = alloc_type (objfile);
3760 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3761 {
3762 int nparams = TYPE_NFIELDS (die->type);
3763
3764 /* TYPE is the domain of this method, and DIE->TYPE is the type
3765 of the method itself (TYPE_CODE_METHOD). */
3766 smash_to_method_type (fnp->type, type,
3767 TYPE_TARGET_TYPE (die->type),
3768 TYPE_FIELDS (die->type),
3769 TYPE_NFIELDS (die->type),
3770 TYPE_VARARGS (die->type));
3771
3772 /* Handle static member functions.
3773 Dwarf2 has no clean way to discern C++ static and non-static
3774 member functions. G++ helps GDB by marking the first
3775 parameter for non-static member functions (which is the
3776 this pointer) as artificial. We obtain this information
3777 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3778 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3779 fnp->voffset = VOFFSET_STATIC;
3780 }
3781 else
3782 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3783 physname);
3784
3785 /* Get fcontext from DW_AT_containing_type if present. */
3786 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3787 fnp->fcontext = die_containing_type (die, cu);
3788
3789 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3790 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3791
3792 /* Get accessibility. */
3793 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3794 if (attr)
3795 {
3796 switch (DW_UNSND (attr))
3797 {
3798 case DW_ACCESS_private:
3799 fnp->is_private = 1;
3800 break;
3801 case DW_ACCESS_protected:
3802 fnp->is_protected = 1;
3803 break;
3804 }
3805 }
3806
3807 /* Check for artificial methods. */
3808 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3809 if (attr && DW_UNSND (attr) != 0)
3810 fnp->is_artificial = 1;
3811
3812 /* Get index in virtual function table if it is a virtual member function. */
3813 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3814 if (attr)
3815 {
3816 /* Support the .debug_loc offsets */
3817 if (attr_form_is_block (attr))
3818 {
3819 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3820 }
3821 else if (attr_form_is_section_offset (attr))
3822 {
3823 dwarf2_complex_location_expr_complaint ();
3824 }
3825 else
3826 {
3827 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3828 fieldname);
3829 }
3830 }
3831 }
3832
3833 /* Create the vector of member function fields, and attach it to the type. */
3834
3835 static void
3836 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3837 struct dwarf2_cu *cu)
3838 {
3839 struct fnfieldlist *flp;
3840 int total_length = 0;
3841 int i;
3842
3843 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3844 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3845 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3846
3847 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3848 {
3849 struct nextfnfield *nfp = flp->head;
3850 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3851 int k;
3852
3853 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3854 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3855 fn_flp->fn_fields = (struct fn_field *)
3856 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3857 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3858 fn_flp->fn_fields[k] = nfp->fnfield;
3859
3860 total_length += flp->length;
3861 }
3862
3863 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3864 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3865 }
3866
3867 /* Returns non-zero if NAME is the name of a vtable member in CU's
3868 language, zero otherwise. */
3869 static int
3870 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3871 {
3872 static const char vptr[] = "_vptr";
3873 static const char vtable[] = "vtable";
3874
3875 /* Look for the C++ and Java forms of the vtable. */
3876 if ((cu->language == language_java
3877 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3878 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3879 && is_cplus_marker (name[sizeof (vptr) - 1])))
3880 return 1;
3881
3882 return 0;
3883 }
3884
3885 /* GCC outputs unnamed structures that are really pointers to member
3886 functions, with the ABI-specified layout. If DIE (from CU) describes
3887 such a structure, set its type, and return nonzero. Otherwise return
3888 zero.
3889
3890 GCC shouldn't do this; it should just output pointer to member DIEs.
3891 This is GCC PR debug/28767. */
3892
3893 static int
3894 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3895 {
3896 struct objfile *objfile = cu->objfile;
3897 struct type *type;
3898 struct die_info *pfn_die, *delta_die;
3899 struct attribute *pfn_name, *delta_name;
3900 struct type *pfn_type, *domain_type;
3901
3902 /* Check for a structure with no name and two children. */
3903 if (die->tag != DW_TAG_structure_type
3904 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3905 || die->child == NULL
3906 || die->child->sibling == NULL
3907 || (die->child->sibling->sibling != NULL
3908 && die->child->sibling->sibling->tag != DW_TAG_padding))
3909 return 0;
3910
3911 /* Check for __pfn and __delta members. */
3912 pfn_die = die->child;
3913 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3914 if (pfn_die->tag != DW_TAG_member
3915 || pfn_name == NULL
3916 || DW_STRING (pfn_name) == NULL
3917 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3918 return 0;
3919
3920 delta_die = pfn_die->sibling;
3921 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3922 if (delta_die->tag != DW_TAG_member
3923 || delta_name == NULL
3924 || DW_STRING (delta_name) == NULL
3925 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3926 return 0;
3927
3928 /* Find the type of the method. */
3929 pfn_type = die_type (pfn_die, cu);
3930 if (pfn_type == NULL
3931 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3932 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3933 return 0;
3934
3935 /* Look for the "this" argument. */
3936 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3937 if (TYPE_NFIELDS (pfn_type) == 0
3938 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3939 return 0;
3940
3941 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3942 type = alloc_type (objfile);
3943 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3944 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3945 TYPE_VARARGS (pfn_type));
3946 type = lookup_methodptr_type (type);
3947 set_die_type (die, type, cu);
3948
3949 return 1;
3950 }
3951
3952 /* Called when we find the DIE that starts a structure or union scope
3953 (definition) to process all dies that define the members of the
3954 structure or union.
3955
3956 NOTE: we need to call struct_type regardless of whether or not the
3957 DIE has an at_name attribute, since it might be an anonymous
3958 structure or union. This gets the type entered into our set of
3959 user defined types.
3960
3961 However, if the structure is incomplete (an opaque struct/union)
3962 then suppress creating a symbol table entry for it since gdb only
3963 wants to find the one with the complete definition. Note that if
3964 it is complete, we just call new_symbol, which does it's own
3965 checking about whether the struct/union is anonymous or not (and
3966 suppresses creating a symbol table entry itself). */
3967
3968 static void
3969 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3970 {
3971 struct objfile *objfile = cu->objfile;
3972 struct type *type;
3973 struct attribute *attr;
3974 const char *previous_prefix = processing_current_prefix;
3975 struct cleanup *back_to = NULL;
3976 char *name;
3977
3978 if (die->type)
3979 return;
3980
3981 if (quirk_gcc_member_function_pointer (die, cu))
3982 return;
3983
3984 type = alloc_type (objfile);
3985 INIT_CPLUS_SPECIFIC (type);
3986 name = dwarf2_name (die, cu);
3987 if (name != NULL)
3988 {
3989 if (cu->language == language_cplus
3990 || cu->language == language_java)
3991 {
3992 char *new_prefix = determine_class_name (die, cu);
3993 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3994 strlen (new_prefix),
3995 &objfile->objfile_obstack);
3996 back_to = make_cleanup (xfree, new_prefix);
3997 processing_current_prefix = new_prefix;
3998 }
3999 else
4000 {
4001 /* The name is already allocated along with this objfile, so
4002 we don't need to duplicate it for the type. */
4003 TYPE_TAG_NAME (type) = name;
4004 }
4005 }
4006
4007 if (die->tag == DW_TAG_structure_type)
4008 {
4009 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4010 }
4011 else if (die->tag == DW_TAG_union_type)
4012 {
4013 TYPE_CODE (type) = TYPE_CODE_UNION;
4014 }
4015 else
4016 {
4017 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
4018 in gdbtypes.h. */
4019 TYPE_CODE (type) = TYPE_CODE_CLASS;
4020 }
4021
4022 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4023 if (attr)
4024 {
4025 TYPE_LENGTH (type) = DW_UNSND (attr);
4026 }
4027 else
4028 {
4029 TYPE_LENGTH (type) = 0;
4030 }
4031
4032 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
4033 if (die_is_declaration (die, cu))
4034 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4035
4036 /* We need to add the type field to the die immediately so we don't
4037 infinitely recurse when dealing with pointers to the structure
4038 type within the structure itself. */
4039 set_die_type (die, type, cu);
4040
4041 if (die->child != NULL && ! die_is_declaration (die, cu))
4042 {
4043 struct field_info fi;
4044 struct die_info *child_die;
4045 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
4046
4047 memset (&fi, 0, sizeof (struct field_info));
4048
4049 child_die = die->child;
4050
4051 while (child_die && child_die->tag)
4052 {
4053 if (child_die->tag == DW_TAG_member
4054 || child_die->tag == DW_TAG_variable)
4055 {
4056 /* NOTE: carlton/2002-11-05: A C++ static data member
4057 should be a DW_TAG_member that is a declaration, but
4058 all versions of G++ as of this writing (so through at
4059 least 3.2.1) incorrectly generate DW_TAG_variable
4060 tags for them instead. */
4061 dwarf2_add_field (&fi, child_die, cu);
4062 }
4063 else if (child_die->tag == DW_TAG_subprogram)
4064 {
4065 /* C++ member function. */
4066 read_type_die (child_die, cu);
4067 dwarf2_add_member_fn (&fi, child_die, type, cu);
4068 }
4069 else if (child_die->tag == DW_TAG_inheritance)
4070 {
4071 /* C++ base class field. */
4072 dwarf2_add_field (&fi, child_die, cu);
4073 }
4074 child_die = sibling_die (child_die);
4075 }
4076
4077 /* Attach fields and member functions to the type. */
4078 if (fi.nfields)
4079 dwarf2_attach_fields_to_type (&fi, type, cu);
4080 if (fi.nfnfields)
4081 {
4082 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
4083
4084 /* Get the type which refers to the base class (possibly this
4085 class itself) which contains the vtable pointer for the current
4086 class from the DW_AT_containing_type attribute. */
4087
4088 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
4089 {
4090 struct type *t = die_containing_type (die, cu);
4091
4092 TYPE_VPTR_BASETYPE (type) = t;
4093 if (type == t)
4094 {
4095 int i;
4096
4097 /* Our own class provides vtbl ptr. */
4098 for (i = TYPE_NFIELDS (t) - 1;
4099 i >= TYPE_N_BASECLASSES (t);
4100 --i)
4101 {
4102 char *fieldname = TYPE_FIELD_NAME (t, i);
4103
4104 if (is_vtable_name (fieldname, cu))
4105 {
4106 TYPE_VPTR_FIELDNO (type) = i;
4107 break;
4108 }
4109 }
4110
4111 /* Complain if virtual function table field not found. */
4112 if (i < TYPE_N_BASECLASSES (t))
4113 complaint (&symfile_complaints,
4114 _("virtual function table pointer not found when defining class '%s'"),
4115 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
4116 "");
4117 }
4118 else
4119 {
4120 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4121 }
4122 }
4123 else if (cu->producer
4124 && strncmp (cu->producer,
4125 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
4126 {
4127 /* The IBM XLC compiler does not provide direct indication
4128 of the containing type, but the vtable pointer is
4129 always named __vfp. */
4130
4131 int i;
4132
4133 for (i = TYPE_NFIELDS (type) - 1;
4134 i >= TYPE_N_BASECLASSES (type);
4135 --i)
4136 {
4137 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4138 {
4139 TYPE_VPTR_FIELDNO (type) = i;
4140 TYPE_VPTR_BASETYPE (type) = type;
4141 break;
4142 }
4143 }
4144 }
4145 }
4146
4147 do_cleanups (back_to);
4148 }
4149
4150 processing_current_prefix = previous_prefix;
4151 if (back_to != NULL)
4152 do_cleanups (back_to);
4153 }
4154
4155 static void
4156 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4157 {
4158 struct objfile *objfile = cu->objfile;
4159 const char *previous_prefix = processing_current_prefix;
4160 struct die_info *child_die = die->child;
4161
4162 if (TYPE_TAG_NAME (die->type) != NULL)
4163 processing_current_prefix = TYPE_TAG_NAME (die->type);
4164
4165 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4166 snapshots) has been known to create a die giving a declaration
4167 for a class that has, as a child, a die giving a definition for a
4168 nested class. So we have to process our children even if the
4169 current die is a declaration. Normally, of course, a declaration
4170 won't have any children at all. */
4171
4172 while (child_die != NULL && child_die->tag)
4173 {
4174 if (child_die->tag == DW_TAG_member
4175 || child_die->tag == DW_TAG_variable
4176 || child_die->tag == DW_TAG_inheritance)
4177 {
4178 /* Do nothing. */
4179 }
4180 else
4181 process_die (child_die, cu);
4182
4183 child_die = sibling_die (child_die);
4184 }
4185
4186 /* Do not consider external references. According to the DWARF standard,
4187 these DIEs are identified by the fact that they have no byte_size
4188 attribute, and a declaration attribute. */
4189 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4190 || !die_is_declaration (die, cu))
4191 new_symbol (die, die->type, cu);
4192
4193 processing_current_prefix = previous_prefix;
4194 }
4195
4196 /* Given a DW_AT_enumeration_type die, set its type. We do not
4197 complete the type's fields yet, or create any symbols. */
4198
4199 static void
4200 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4201 {
4202 struct objfile *objfile = cu->objfile;
4203 struct type *type;
4204 struct attribute *attr;
4205 char *name;
4206
4207 if (die->type)
4208 return;
4209
4210 type = alloc_type (objfile);
4211
4212 TYPE_CODE (type) = TYPE_CODE_ENUM;
4213 name = dwarf2_name (die, cu);
4214 if (name != NULL)
4215 {
4216 if (processing_has_namespace_info)
4217 {
4218 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4219 processing_current_prefix,
4220 name, cu);
4221 }
4222 else
4223 {
4224 /* The name is already allocated along with this objfile, so
4225 we don't need to duplicate it for the type. */
4226 TYPE_TAG_NAME (type) = name;
4227 }
4228 }
4229
4230 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4231 if (attr)
4232 {
4233 TYPE_LENGTH (type) = DW_UNSND (attr);
4234 }
4235 else
4236 {
4237 TYPE_LENGTH (type) = 0;
4238 }
4239
4240 /* The enumeration DIE can be incomplete. In Ada, any type can be
4241 declared as private in the package spec, and then defined only
4242 inside the package body. Such types are known as Taft Amendment
4243 Types. When another package uses such a type, an incomplete DIE
4244 may be generated by the compiler. */
4245 if (die_is_declaration (die, cu))
4246 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4247
4248 set_die_type (die, type, cu);
4249 }
4250
4251 /* Determine the name of the type represented by DIE, which should be
4252 a named C++ or Java compound type. Return the name in question; the caller
4253 is responsible for xfree()'ing it. */
4254
4255 static char *
4256 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4257 {
4258 struct cleanup *back_to = NULL;
4259 struct die_info *spec_die = die_specification (die, cu);
4260 char *new_prefix = NULL;
4261
4262 /* If this is the definition of a class that is declared by another
4263 die, then processing_current_prefix may not be accurate; see
4264 read_func_scope for a similar example. */
4265 if (spec_die != NULL)
4266 {
4267 char *specification_prefix = determine_prefix (spec_die, cu);
4268 processing_current_prefix = specification_prefix;
4269 back_to = make_cleanup (xfree, specification_prefix);
4270 }
4271
4272 /* If we don't have namespace debug info, guess the name by trying
4273 to demangle the names of members, just like we did in
4274 guess_structure_name. */
4275 if (!processing_has_namespace_info)
4276 {
4277 struct die_info *child;
4278
4279 for (child = die->child;
4280 child != NULL && child->tag != 0;
4281 child = sibling_die (child))
4282 {
4283 if (child->tag == DW_TAG_subprogram)
4284 {
4285 new_prefix
4286 = language_class_name_from_physname (cu->language_defn,
4287 dwarf2_linkage_name
4288 (child, cu));
4289
4290 if (new_prefix != NULL)
4291 break;
4292 }
4293 }
4294 }
4295
4296 if (new_prefix == NULL)
4297 {
4298 const char *name = dwarf2_name (die, cu);
4299 new_prefix = typename_concat (NULL, processing_current_prefix,
4300 name ? name : "<<anonymous>>",
4301 cu);
4302 }
4303
4304 if (back_to != NULL)
4305 do_cleanups (back_to);
4306
4307 return new_prefix;
4308 }
4309
4310 /* Given a pointer to a die which begins an enumeration, process all
4311 the dies that define the members of the enumeration, and create the
4312 symbol for the enumeration type.
4313
4314 NOTE: We reverse the order of the element list. */
4315
4316 static void
4317 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4318 {
4319 struct objfile *objfile = cu->objfile;
4320 struct die_info *child_die;
4321 struct field *fields;
4322 struct symbol *sym;
4323 int num_fields;
4324 int unsigned_enum = 1;
4325 char *name;
4326
4327 num_fields = 0;
4328 fields = NULL;
4329 if (die->child != NULL)
4330 {
4331 child_die = die->child;
4332 while (child_die && child_die->tag)
4333 {
4334 if (child_die->tag != DW_TAG_enumerator)
4335 {
4336 process_die (child_die, cu);
4337 }
4338 else
4339 {
4340 name = dwarf2_name (child_die, cu);
4341 if (name)
4342 {
4343 sym = new_symbol (child_die, die->type, cu);
4344 if (SYMBOL_VALUE (sym) < 0)
4345 unsigned_enum = 0;
4346
4347 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4348 {
4349 fields = (struct field *)
4350 xrealloc (fields,
4351 (num_fields + DW_FIELD_ALLOC_CHUNK)
4352 * sizeof (struct field));
4353 }
4354
4355 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4356 FIELD_TYPE (fields[num_fields]) = NULL;
4357 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4358 FIELD_BITSIZE (fields[num_fields]) = 0;
4359 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4360
4361 num_fields++;
4362 }
4363 }
4364
4365 child_die = sibling_die (child_die);
4366 }
4367
4368 if (num_fields)
4369 {
4370 TYPE_NFIELDS (die->type) = num_fields;
4371 TYPE_FIELDS (die->type) = (struct field *)
4372 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4373 memcpy (TYPE_FIELDS (die->type), fields,
4374 sizeof (struct field) * num_fields);
4375 xfree (fields);
4376 }
4377 if (unsigned_enum)
4378 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4379 }
4380
4381 new_symbol (die, die->type, cu);
4382 }
4383
4384 /* Extract all information from a DW_TAG_array_type DIE and put it in
4385 the DIE's type field. For now, this only handles one dimensional
4386 arrays. */
4387
4388 static void
4389 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4390 {
4391 struct objfile *objfile = cu->objfile;
4392 struct die_info *child_die;
4393 struct type *type = NULL;
4394 struct type *element_type, *range_type, *index_type;
4395 struct type **range_types = NULL;
4396 struct attribute *attr;
4397 int ndim = 0;
4398 struct cleanup *back_to;
4399 char *name;
4400
4401 /* Return if we've already decoded this type. */
4402 if (die->type)
4403 {
4404 return;
4405 }
4406
4407 element_type = die_type (die, cu);
4408
4409 /* Irix 6.2 native cc creates array types without children for
4410 arrays with unspecified length. */
4411 if (die->child == NULL)
4412 {
4413 index_type = builtin_type_int32;
4414 range_type = create_range_type (NULL, index_type, 0, -1);
4415 set_die_type (die, create_array_type (NULL, element_type, range_type),
4416 cu);
4417 return;
4418 }
4419
4420 back_to = make_cleanup (null_cleanup, NULL);
4421 child_die = die->child;
4422 while (child_die && child_die->tag)
4423 {
4424 if (child_die->tag == DW_TAG_subrange_type)
4425 {
4426 read_subrange_type (child_die, cu);
4427
4428 if (child_die->type != NULL)
4429 {
4430 /* The range type was succesfully read. Save it for
4431 the array type creation. */
4432 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4433 {
4434 range_types = (struct type **)
4435 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4436 * sizeof (struct type *));
4437 if (ndim == 0)
4438 make_cleanup (free_current_contents, &range_types);
4439 }
4440 range_types[ndim++] = child_die->type;
4441 }
4442 }
4443 child_die = sibling_die (child_die);
4444 }
4445
4446 /* Dwarf2 dimensions are output from left to right, create the
4447 necessary array types in backwards order. */
4448
4449 type = element_type;
4450
4451 if (read_array_order (die, cu) == DW_ORD_col_major)
4452 {
4453 int i = 0;
4454 while (i < ndim)
4455 type = create_array_type (NULL, type, range_types[i++]);
4456 }
4457 else
4458 {
4459 while (ndim-- > 0)
4460 type = create_array_type (NULL, type, range_types[ndim]);
4461 }
4462
4463 /* Understand Dwarf2 support for vector types (like they occur on
4464 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4465 array type. This is not part of the Dwarf2/3 standard yet, but a
4466 custom vendor extension. The main difference between a regular
4467 array and the vector variant is that vectors are passed by value
4468 to functions. */
4469 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4470 if (attr)
4471 make_vector_type (type);
4472
4473 name = dwarf2_name (die, cu);
4474 if (name)
4475 TYPE_NAME (type) = name;
4476
4477 do_cleanups (back_to);
4478
4479 /* Install the type in the die. */
4480 set_die_type (die, type, cu);
4481 }
4482
4483 static enum dwarf_array_dim_ordering
4484 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4485 {
4486 struct attribute *attr;
4487
4488 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4489
4490 if (attr) return DW_SND (attr);
4491
4492 /*
4493 GNU F77 is a special case, as at 08/2004 array type info is the
4494 opposite order to the dwarf2 specification, but data is still
4495 laid out as per normal fortran.
4496
4497 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4498 version checking.
4499 */
4500
4501 if (cu->language == language_fortran &&
4502 cu->producer && strstr (cu->producer, "GNU F77"))
4503 {
4504 return DW_ORD_row_major;
4505 }
4506
4507 switch (cu->language_defn->la_array_ordering)
4508 {
4509 case array_column_major:
4510 return DW_ORD_col_major;
4511 case array_row_major:
4512 default:
4513 return DW_ORD_row_major;
4514 };
4515 }
4516
4517 /* Extract all information from a DW_TAG_set_type DIE and put it in
4518 the DIE's type field. */
4519
4520 static void
4521 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4522 {
4523 if (die->type == NULL)
4524 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4525 }
4526
4527 /* First cut: install each common block member as a global variable. */
4528
4529 static void
4530 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4531 {
4532 struct die_info *child_die;
4533 struct attribute *attr;
4534 struct symbol *sym;
4535 CORE_ADDR base = (CORE_ADDR) 0;
4536
4537 attr = dwarf2_attr (die, DW_AT_location, cu);
4538 if (attr)
4539 {
4540 /* Support the .debug_loc offsets */
4541 if (attr_form_is_block (attr))
4542 {
4543 base = decode_locdesc (DW_BLOCK (attr), cu);
4544 }
4545 else if (attr_form_is_section_offset (attr))
4546 {
4547 dwarf2_complex_location_expr_complaint ();
4548 }
4549 else
4550 {
4551 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4552 "common block member");
4553 }
4554 }
4555 if (die->child != NULL)
4556 {
4557 child_die = die->child;
4558 while (child_die && child_die->tag)
4559 {
4560 sym = new_symbol (child_die, NULL, cu);
4561 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4562 if (attr)
4563 {
4564 SYMBOL_VALUE_ADDRESS (sym) =
4565 base + decode_locdesc (DW_BLOCK (attr), cu);
4566 add_symbol_to_list (sym, &global_symbols);
4567 }
4568 child_die = sibling_die (child_die);
4569 }
4570 }
4571 }
4572
4573 /* Read a C++ namespace. */
4574
4575 static void
4576 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4577 {
4578 struct objfile *objfile = cu->objfile;
4579 const char *previous_prefix = processing_current_prefix;
4580 const char *name;
4581 int is_anonymous;
4582 struct die_info *current_die;
4583 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4584
4585 name = namespace_name (die, &is_anonymous, cu);
4586
4587 /* Now build the name of the current namespace. */
4588
4589 if (previous_prefix[0] == '\0')
4590 {
4591 processing_current_prefix = name;
4592 }
4593 else
4594 {
4595 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4596 make_cleanup (xfree, temp_name);
4597 processing_current_prefix = temp_name;
4598 }
4599
4600 /* Add a symbol associated to this if we haven't seen the namespace
4601 before. Also, add a using directive if it's an anonymous
4602 namespace. */
4603
4604 if (dwarf2_extension (die, cu) == NULL)
4605 {
4606 struct type *type;
4607
4608 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4609 this cast will hopefully become unnecessary. */
4610 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4611 (char *) processing_current_prefix,
4612 objfile);
4613 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4614
4615 new_symbol (die, type, cu);
4616 set_die_type (die, type, cu);
4617
4618 if (is_anonymous)
4619 cp_add_using_directive (processing_current_prefix,
4620 strlen (previous_prefix),
4621 strlen (processing_current_prefix));
4622 }
4623
4624 if (die->child != NULL)
4625 {
4626 struct die_info *child_die = die->child;
4627
4628 while (child_die && child_die->tag)
4629 {
4630 process_die (child_die, cu);
4631 child_die = sibling_die (child_die);
4632 }
4633 }
4634
4635 processing_current_prefix = previous_prefix;
4636 do_cleanups (back_to);
4637 }
4638
4639 /* Return the name of the namespace represented by DIE. Set
4640 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4641 namespace. */
4642
4643 static const char *
4644 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4645 {
4646 struct die_info *current_die;
4647 const char *name = NULL;
4648
4649 /* Loop through the extensions until we find a name. */
4650
4651 for (current_die = die;
4652 current_die != NULL;
4653 current_die = dwarf2_extension (die, cu))
4654 {
4655 name = dwarf2_name (current_die, cu);
4656 if (name != NULL)
4657 break;
4658 }
4659
4660 /* Is it an anonymous namespace? */
4661
4662 *is_anonymous = (name == NULL);
4663 if (*is_anonymous)
4664 name = "(anonymous namespace)";
4665
4666 return name;
4667 }
4668
4669 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4670 the user defined type vector. */
4671
4672 static void
4673 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4674 {
4675 struct comp_unit_head *cu_header = &cu->header;
4676 struct type *type;
4677 struct attribute *attr_byte_size;
4678 struct attribute *attr_address_class;
4679 int byte_size, addr_class;
4680
4681 if (die->type)
4682 {
4683 return;
4684 }
4685
4686 type = lookup_pointer_type (die_type (die, cu));
4687
4688 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4689 if (attr_byte_size)
4690 byte_size = DW_UNSND (attr_byte_size);
4691 else
4692 byte_size = cu_header->addr_size;
4693
4694 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4695 if (attr_address_class)
4696 addr_class = DW_UNSND (attr_address_class);
4697 else
4698 addr_class = DW_ADDR_none;
4699
4700 /* If the pointer size or address class is different than the
4701 default, create a type variant marked as such and set the
4702 length accordingly. */
4703 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4704 {
4705 if (gdbarch_address_class_type_flags_p (current_gdbarch))
4706 {
4707 int type_flags;
4708
4709 type_flags = gdbarch_address_class_type_flags
4710 (current_gdbarch, byte_size, addr_class);
4711 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4712 type = make_type_with_address_space (type, type_flags);
4713 }
4714 else if (TYPE_LENGTH (type) != byte_size)
4715 {
4716 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4717 }
4718 else {
4719 /* Should we also complain about unhandled address classes? */
4720 }
4721 }
4722
4723 TYPE_LENGTH (type) = byte_size;
4724 set_die_type (die, type, cu);
4725 }
4726
4727 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4728 the user defined type vector. */
4729
4730 static void
4731 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4732 {
4733 struct objfile *objfile = cu->objfile;
4734 struct type *type;
4735 struct type *to_type;
4736 struct type *domain;
4737
4738 if (die->type)
4739 {
4740 return;
4741 }
4742
4743 to_type = die_type (die, cu);
4744 domain = die_containing_type (die, cu);
4745
4746 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4747 type = lookup_methodptr_type (to_type);
4748 else
4749 type = lookup_memberptr_type (to_type, domain);
4750
4751 set_die_type (die, type, cu);
4752 }
4753
4754 /* Extract all information from a DW_TAG_reference_type DIE and add to
4755 the user defined type vector. */
4756
4757 static void
4758 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4759 {
4760 struct comp_unit_head *cu_header = &cu->header;
4761 struct type *type;
4762 struct attribute *attr;
4763
4764 if (die->type)
4765 {
4766 return;
4767 }
4768
4769 type = lookup_reference_type (die_type (die, cu));
4770 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4771 if (attr)
4772 {
4773 TYPE_LENGTH (type) = DW_UNSND (attr);
4774 }
4775 else
4776 {
4777 TYPE_LENGTH (type) = cu_header->addr_size;
4778 }
4779 set_die_type (die, type, cu);
4780 }
4781
4782 static void
4783 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4784 {
4785 struct type *base_type;
4786
4787 if (die->type)
4788 {
4789 return;
4790 }
4791
4792 base_type = die_type (die, cu);
4793 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4794 cu);
4795 }
4796
4797 static void
4798 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4799 {
4800 struct type *base_type;
4801
4802 if (die->type)
4803 {
4804 return;
4805 }
4806
4807 base_type = die_type (die, cu);
4808 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4809 cu);
4810 }
4811
4812 /* Extract all information from a DW_TAG_string_type DIE and add to
4813 the user defined type vector. It isn't really a user defined type,
4814 but it behaves like one, with other DIE's using an AT_user_def_type
4815 attribute to reference it. */
4816
4817 static void
4818 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4819 {
4820 struct objfile *objfile = cu->objfile;
4821 struct type *type, *range_type, *index_type, *char_type;
4822 struct attribute *attr;
4823 unsigned int length;
4824
4825 if (die->type)
4826 {
4827 return;
4828 }
4829
4830 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4831 if (attr)
4832 {
4833 length = DW_UNSND (attr);
4834 }
4835 else
4836 {
4837 /* check for the DW_AT_byte_size attribute */
4838 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4839 if (attr)
4840 {
4841 length = DW_UNSND (attr);
4842 }
4843 else
4844 {
4845 length = 1;
4846 }
4847 }
4848
4849 index_type = builtin_type_int32;
4850 range_type = create_range_type (NULL, index_type, 1, length);
4851 type = create_string_type (NULL, range_type);
4852
4853 set_die_type (die, type, cu);
4854 }
4855
4856 /* Handle DIES due to C code like:
4857
4858 struct foo
4859 {
4860 int (*funcp)(int a, long l);
4861 int b;
4862 };
4863
4864 ('funcp' generates a DW_TAG_subroutine_type DIE)
4865 */
4866
4867 static void
4868 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4869 {
4870 struct type *type; /* Type that this function returns */
4871 struct type *ftype; /* Function that returns above type */
4872 struct attribute *attr;
4873
4874 /* Decode the type that this subroutine returns */
4875 if (die->type)
4876 {
4877 return;
4878 }
4879 type = die_type (die, cu);
4880 ftype = make_function_type (type, (struct type **) 0);
4881
4882 /* All functions in C++, Pascal and Java have prototypes. */
4883 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4884 if ((attr && (DW_UNSND (attr) != 0))
4885 || cu->language == language_cplus
4886 || cu->language == language_java
4887 || cu->language == language_pascal)
4888 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4889
4890 if (die->child != NULL)
4891 {
4892 struct die_info *child_die;
4893 int nparams = 0;
4894 int iparams = 0;
4895
4896 /* Count the number of parameters.
4897 FIXME: GDB currently ignores vararg functions, but knows about
4898 vararg member functions. */
4899 child_die = die->child;
4900 while (child_die && child_die->tag)
4901 {
4902 if (child_die->tag == DW_TAG_formal_parameter)
4903 nparams++;
4904 else if (child_die->tag == DW_TAG_unspecified_parameters)
4905 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4906 child_die = sibling_die (child_die);
4907 }
4908
4909 /* Allocate storage for parameters and fill them in. */
4910 TYPE_NFIELDS (ftype) = nparams;
4911 TYPE_FIELDS (ftype) = (struct field *)
4912 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4913
4914 child_die = die->child;
4915 while (child_die && child_die->tag)
4916 {
4917 if (child_die->tag == DW_TAG_formal_parameter)
4918 {
4919 /* Dwarf2 has no clean way to discern C++ static and non-static
4920 member functions. G++ helps GDB by marking the first
4921 parameter for non-static member functions (which is the
4922 this pointer) as artificial. We pass this information
4923 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4924 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4925 if (attr)
4926 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4927 else
4928 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4929 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4930 iparams++;
4931 }
4932 child_die = sibling_die (child_die);
4933 }
4934 }
4935
4936 set_die_type (die, ftype, cu);
4937 }
4938
4939 static void
4940 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4941 {
4942 struct objfile *objfile = cu->objfile;
4943 struct attribute *attr;
4944 char *name = NULL;
4945
4946 if (!die->type)
4947 {
4948 name = dwarf2_name (die, cu);
4949 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4950 TYPE_FLAG_TARGET_STUB, name, objfile),
4951 cu);
4952 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4953 }
4954 }
4955
4956 /* Find a representation of a given base type and install
4957 it in the TYPE field of the die. */
4958
4959 static void
4960 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4961 {
4962 struct objfile *objfile = cu->objfile;
4963 struct type *type;
4964 struct attribute *attr;
4965 int encoding = 0, size = 0;
4966 char *name;
4967 enum type_code code = TYPE_CODE_INT;
4968 int type_flags = 0;
4969 struct type *target_type = NULL;
4970
4971 /* If we've already decoded this die, this is a no-op. */
4972 if (die->type)
4973 {
4974 return;
4975 }
4976
4977 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4978 if (attr)
4979 {
4980 encoding = DW_UNSND (attr);
4981 }
4982 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4983 if (attr)
4984 {
4985 size = DW_UNSND (attr);
4986 }
4987 name = dwarf2_name (die, cu);
4988 if (!name)
4989 {
4990 complaint (&symfile_complaints,
4991 _("DW_AT_name missing from DW_TAG_base_type"));
4992 }
4993
4994 switch (encoding)
4995 {
4996 case DW_ATE_address:
4997 /* Turn DW_ATE_address into a void * pointer. */
4998 code = TYPE_CODE_PTR;
4999 type_flags |= TYPE_FLAG_UNSIGNED;
5000 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
5001 break;
5002 case DW_ATE_boolean:
5003 code = TYPE_CODE_BOOL;
5004 type_flags |= TYPE_FLAG_UNSIGNED;
5005 break;
5006 case DW_ATE_complex_float:
5007 code = TYPE_CODE_COMPLEX;
5008 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
5009 break;
5010 case DW_ATE_decimal_float:
5011 code = TYPE_CODE_DECFLOAT;
5012 break;
5013 case DW_ATE_float:
5014 code = TYPE_CODE_FLT;
5015 break;
5016 case DW_ATE_signed:
5017 break;
5018 case DW_ATE_unsigned:
5019 type_flags |= TYPE_FLAG_UNSIGNED;
5020 break;
5021 case DW_ATE_signed_char:
5022 if (cu->language == language_ada || cu->language == language_m2)
5023 code = TYPE_CODE_CHAR;
5024 break;
5025 case DW_ATE_unsigned_char:
5026 if (cu->language == language_ada || cu->language == language_m2)
5027 code = TYPE_CODE_CHAR;
5028 type_flags |= TYPE_FLAG_UNSIGNED;
5029 break;
5030 default:
5031 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
5032 dwarf_type_encoding_name (encoding));
5033 break;
5034 }
5035
5036 type = init_type (code, size, type_flags, name, objfile);
5037 TYPE_TARGET_TYPE (type) = target_type;
5038
5039 set_die_type (die, type, cu);
5040 }
5041
5042 /* Read the given DW_AT_subrange DIE. */
5043
5044 static void
5045 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
5046 {
5047 struct type *base_type;
5048 struct type *range_type;
5049 struct attribute *attr;
5050 int low = 0;
5051 int high = -1;
5052 char *name;
5053
5054 /* If we have already decoded this die, then nothing more to do. */
5055 if (die->type)
5056 return;
5057
5058 base_type = die_type (die, cu);
5059 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
5060 {
5061 complaint (&symfile_complaints,
5062 _("DW_AT_type missing from DW_TAG_subrange_type"));
5063 base_type
5064 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (current_gdbarch) / 8,
5065 0, NULL, cu->objfile);
5066 }
5067
5068 if (cu->language == language_fortran)
5069 {
5070 /* FORTRAN implies a lower bound of 1, if not given. */
5071 low = 1;
5072 }
5073
5074 /* FIXME: For variable sized arrays either of these could be
5075 a variable rather than a constant value. We'll allow it,
5076 but we don't know how to handle it. */
5077 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
5078 if (attr)
5079 low = dwarf2_get_attr_constant_value (attr, 0);
5080
5081 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
5082 if (attr)
5083 {
5084 if (attr->form == DW_FORM_block1)
5085 {
5086 /* GCC encodes arrays with unspecified or dynamic length
5087 with a DW_FORM_block1 attribute.
5088 FIXME: GDB does not yet know how to handle dynamic
5089 arrays properly, treat them as arrays with unspecified
5090 length for now.
5091
5092 FIXME: jimb/2003-09-22: GDB does not really know
5093 how to handle arrays of unspecified length
5094 either; we just represent them as zero-length
5095 arrays. Choose an appropriate upper bound given
5096 the lower bound we've computed above. */
5097 high = low - 1;
5098 }
5099 else
5100 high = dwarf2_get_attr_constant_value (attr, 1);
5101 }
5102
5103 range_type = create_range_type (NULL, base_type, low, high);
5104
5105 name = dwarf2_name (die, cu);
5106 if (name)
5107 TYPE_NAME (range_type) = name;
5108
5109 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5110 if (attr)
5111 TYPE_LENGTH (range_type) = DW_UNSND (attr);
5112
5113 set_die_type (die, range_type, cu);
5114 }
5115
5116 static void
5117 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
5118 {
5119 struct type *type;
5120
5121 if (die->type)
5122 return;
5123
5124 /* For now, we only support the C meaning of an unspecified type: void. */
5125
5126 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
5127 cu->objfile);
5128
5129 set_die_type (die, type, cu);
5130 }
5131
5132 /* Read a whole compilation unit into a linked list of dies. */
5133
5134 static struct die_info *
5135 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5136 {
5137 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5138 }
5139
5140 /* Read a single die and all its descendents. Set the die's sibling
5141 field to NULL; set other fields in the die correctly, and set all
5142 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5143 location of the info_ptr after reading all of those dies. PARENT
5144 is the parent of the die in question. */
5145
5146 static struct die_info *
5147 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5148 struct dwarf2_cu *cu,
5149 gdb_byte **new_info_ptr,
5150 struct die_info *parent)
5151 {
5152 struct die_info *die;
5153 gdb_byte *cur_ptr;
5154 int has_children;
5155
5156 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5157 store_in_ref_table (die->offset, die, cu);
5158
5159 if (has_children)
5160 {
5161 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5162 new_info_ptr, die);
5163 }
5164 else
5165 {
5166 die->child = NULL;
5167 *new_info_ptr = cur_ptr;
5168 }
5169
5170 die->sibling = NULL;
5171 die->parent = parent;
5172 return die;
5173 }
5174
5175 /* Read a die, all of its descendents, and all of its siblings; set
5176 all of the fields of all of the dies correctly. Arguments are as
5177 in read_die_and_children. */
5178
5179 static struct die_info *
5180 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5181 struct dwarf2_cu *cu,
5182 gdb_byte **new_info_ptr,
5183 struct die_info *parent)
5184 {
5185 struct die_info *first_die, *last_sibling;
5186 gdb_byte *cur_ptr;
5187
5188 cur_ptr = info_ptr;
5189 first_die = last_sibling = NULL;
5190
5191 while (1)
5192 {
5193 struct die_info *die
5194 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5195
5196 if (!first_die)
5197 {
5198 first_die = die;
5199 }
5200 else
5201 {
5202 last_sibling->sibling = die;
5203 }
5204
5205 if (die->tag == 0)
5206 {
5207 *new_info_ptr = cur_ptr;
5208 return first_die;
5209 }
5210 else
5211 {
5212 last_sibling = die;
5213 }
5214 }
5215 }
5216
5217 /* Free a linked list of dies. */
5218
5219 static void
5220 free_die_list (struct die_info *dies)
5221 {
5222 struct die_info *die, *next;
5223
5224 die = dies;
5225 while (die)
5226 {
5227 if (die->child != NULL)
5228 free_die_list (die->child);
5229 next = die->sibling;
5230 xfree (die->attrs);
5231 xfree (die);
5232 die = next;
5233 }
5234 }
5235
5236 /* Read the contents of the section at OFFSET and of size SIZE from the
5237 object file specified by OBJFILE into the objfile_obstack and return it. */
5238
5239 gdb_byte *
5240 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5241 {
5242 bfd *abfd = objfile->obfd;
5243 gdb_byte *buf, *retbuf;
5244 bfd_size_type size = bfd_get_section_size (sectp);
5245
5246 if (size == 0)
5247 return NULL;
5248
5249 buf = obstack_alloc (&objfile->objfile_obstack, size);
5250 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5251 if (retbuf != NULL)
5252 return retbuf;
5253
5254 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5255 || bfd_bread (buf, size, abfd) != size)
5256 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5257 bfd_get_filename (abfd));
5258
5259 return buf;
5260 }
5261
5262 /* In DWARF version 2, the description of the debugging information is
5263 stored in a separate .debug_abbrev section. Before we read any
5264 dies from a section we read in all abbreviations and install them
5265 in a hash table. This function also sets flags in CU describing
5266 the data found in the abbrev table. */
5267
5268 static void
5269 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5270 {
5271 struct comp_unit_head *cu_header = &cu->header;
5272 gdb_byte *abbrev_ptr;
5273 struct abbrev_info *cur_abbrev;
5274 unsigned int abbrev_number, bytes_read, abbrev_name;
5275 unsigned int abbrev_form, hash_number;
5276 struct attr_abbrev *cur_attrs;
5277 unsigned int allocated_attrs;
5278
5279 /* Initialize dwarf2 abbrevs */
5280 obstack_init (&cu->abbrev_obstack);
5281 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5282 (ABBREV_HASH_SIZE
5283 * sizeof (struct abbrev_info *)));
5284 memset (cu->dwarf2_abbrevs, 0,
5285 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5286
5287 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5288 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5289 abbrev_ptr += bytes_read;
5290
5291 allocated_attrs = ATTR_ALLOC_CHUNK;
5292 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5293
5294 /* loop until we reach an abbrev number of 0 */
5295 while (abbrev_number)
5296 {
5297 cur_abbrev = dwarf_alloc_abbrev (cu);
5298
5299 /* read in abbrev header */
5300 cur_abbrev->number = abbrev_number;
5301 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5302 abbrev_ptr += bytes_read;
5303 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5304 abbrev_ptr += 1;
5305
5306 if (cur_abbrev->tag == DW_TAG_namespace)
5307 cu->has_namespace_info = 1;
5308
5309 /* now read in declarations */
5310 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5311 abbrev_ptr += bytes_read;
5312 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5313 abbrev_ptr += bytes_read;
5314 while (abbrev_name)
5315 {
5316 if (cur_abbrev->num_attrs == allocated_attrs)
5317 {
5318 allocated_attrs += ATTR_ALLOC_CHUNK;
5319 cur_attrs
5320 = xrealloc (cur_attrs, (allocated_attrs
5321 * sizeof (struct attr_abbrev)));
5322 }
5323
5324 /* Record whether this compilation unit might have
5325 inter-compilation-unit references. If we don't know what form
5326 this attribute will have, then it might potentially be a
5327 DW_FORM_ref_addr, so we conservatively expect inter-CU
5328 references. */
5329
5330 if (abbrev_form == DW_FORM_ref_addr
5331 || abbrev_form == DW_FORM_indirect)
5332 cu->has_form_ref_addr = 1;
5333
5334 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5335 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5336 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5337 abbrev_ptr += bytes_read;
5338 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5339 abbrev_ptr += bytes_read;
5340 }
5341
5342 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5343 (cur_abbrev->num_attrs
5344 * sizeof (struct attr_abbrev)));
5345 memcpy (cur_abbrev->attrs, cur_attrs,
5346 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5347
5348 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5349 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5350 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5351
5352 /* Get next abbreviation.
5353 Under Irix6 the abbreviations for a compilation unit are not
5354 always properly terminated with an abbrev number of 0.
5355 Exit loop if we encounter an abbreviation which we have
5356 already read (which means we are about to read the abbreviations
5357 for the next compile unit) or if the end of the abbreviation
5358 table is reached. */
5359 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5360 >= dwarf2_per_objfile->abbrev_size)
5361 break;
5362 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5363 abbrev_ptr += bytes_read;
5364 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5365 break;
5366 }
5367
5368 xfree (cur_attrs);
5369 }
5370
5371 /* Release the memory used by the abbrev table for a compilation unit. */
5372
5373 static void
5374 dwarf2_free_abbrev_table (void *ptr_to_cu)
5375 {
5376 struct dwarf2_cu *cu = ptr_to_cu;
5377
5378 obstack_free (&cu->abbrev_obstack, NULL);
5379 cu->dwarf2_abbrevs = NULL;
5380 }
5381
5382 /* Lookup an abbrev_info structure in the abbrev hash table. */
5383
5384 static struct abbrev_info *
5385 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5386 {
5387 unsigned int hash_number;
5388 struct abbrev_info *abbrev;
5389
5390 hash_number = number % ABBREV_HASH_SIZE;
5391 abbrev = cu->dwarf2_abbrevs[hash_number];
5392
5393 while (abbrev)
5394 {
5395 if (abbrev->number == number)
5396 return abbrev;
5397 else
5398 abbrev = abbrev->next;
5399 }
5400 return NULL;
5401 }
5402
5403 /* Returns nonzero if TAG represents a type that we might generate a partial
5404 symbol for. */
5405
5406 static int
5407 is_type_tag_for_partial (int tag)
5408 {
5409 switch (tag)
5410 {
5411 #if 0
5412 /* Some types that would be reasonable to generate partial symbols for,
5413 that we don't at present. */
5414 case DW_TAG_array_type:
5415 case DW_TAG_file_type:
5416 case DW_TAG_ptr_to_member_type:
5417 case DW_TAG_set_type:
5418 case DW_TAG_string_type:
5419 case DW_TAG_subroutine_type:
5420 #endif
5421 case DW_TAG_base_type:
5422 case DW_TAG_class_type:
5423 case DW_TAG_interface_type:
5424 case DW_TAG_enumeration_type:
5425 case DW_TAG_structure_type:
5426 case DW_TAG_subrange_type:
5427 case DW_TAG_typedef:
5428 case DW_TAG_union_type:
5429 return 1;
5430 default:
5431 return 0;
5432 }
5433 }
5434
5435 /* Load all DIEs that are interesting for partial symbols into memory. */
5436
5437 static struct partial_die_info *
5438 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5439 struct dwarf2_cu *cu)
5440 {
5441 struct partial_die_info *part_die;
5442 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5443 struct abbrev_info *abbrev;
5444 unsigned int bytes_read;
5445 unsigned int load_all = 0;
5446
5447 int nesting_level = 1;
5448
5449 parent_die = NULL;
5450 last_die = NULL;
5451
5452 if (cu->per_cu && cu->per_cu->load_all_dies)
5453 load_all = 1;
5454
5455 cu->partial_dies
5456 = htab_create_alloc_ex (cu->header.length / 12,
5457 partial_die_hash,
5458 partial_die_eq,
5459 NULL,
5460 &cu->comp_unit_obstack,
5461 hashtab_obstack_allocate,
5462 dummy_obstack_deallocate);
5463
5464 part_die = obstack_alloc (&cu->comp_unit_obstack,
5465 sizeof (struct partial_die_info));
5466
5467 while (1)
5468 {
5469 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5470
5471 /* A NULL abbrev means the end of a series of children. */
5472 if (abbrev == NULL)
5473 {
5474 if (--nesting_level == 0)
5475 {
5476 /* PART_DIE was probably the last thing allocated on the
5477 comp_unit_obstack, so we could call obstack_free
5478 here. We don't do that because the waste is small,
5479 and will be cleaned up when we're done with this
5480 compilation unit. This way, we're also more robust
5481 against other users of the comp_unit_obstack. */
5482 return first_die;
5483 }
5484 info_ptr += bytes_read;
5485 last_die = parent_die;
5486 parent_die = parent_die->die_parent;
5487 continue;
5488 }
5489
5490 /* Check whether this DIE is interesting enough to save. Normally
5491 we would not be interested in members here, but there may be
5492 later variables referencing them via DW_AT_specification (for
5493 static members). */
5494 if (!load_all
5495 && !is_type_tag_for_partial (abbrev->tag)
5496 && abbrev->tag != DW_TAG_enumerator
5497 && abbrev->tag != DW_TAG_subprogram
5498 && abbrev->tag != DW_TAG_variable
5499 && abbrev->tag != DW_TAG_namespace
5500 && abbrev->tag != DW_TAG_member)
5501 {
5502 /* Otherwise we skip to the next sibling, if any. */
5503 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5504 continue;
5505 }
5506
5507 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5508 abfd, info_ptr, cu);
5509
5510 /* This two-pass algorithm for processing partial symbols has a
5511 high cost in cache pressure. Thus, handle some simple cases
5512 here which cover the majority of C partial symbols. DIEs
5513 which neither have specification tags in them, nor could have
5514 specification tags elsewhere pointing at them, can simply be
5515 processed and discarded.
5516
5517 This segment is also optional; scan_partial_symbols and
5518 add_partial_symbol will handle these DIEs if we chain
5519 them in normally. When compilers which do not emit large
5520 quantities of duplicate debug information are more common,
5521 this code can probably be removed. */
5522
5523 /* Any complete simple types at the top level (pretty much all
5524 of them, for a language without namespaces), can be processed
5525 directly. */
5526 if (parent_die == NULL
5527 && part_die->has_specification == 0
5528 && part_die->is_declaration == 0
5529 && (part_die->tag == DW_TAG_typedef
5530 || part_die->tag == DW_TAG_base_type
5531 || part_die->tag == DW_TAG_subrange_type))
5532 {
5533 if (building_psymtab && part_die->name != NULL)
5534 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5535 VAR_DOMAIN, LOC_TYPEDEF,
5536 &cu->objfile->static_psymbols,
5537 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5538 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5539 continue;
5540 }
5541
5542 /* If we're at the second level, and we're an enumerator, and
5543 our parent has no specification (meaning possibly lives in a
5544 namespace elsewhere), then we can add the partial symbol now
5545 instead of queueing it. */
5546 if (part_die->tag == DW_TAG_enumerator
5547 && parent_die != NULL
5548 && parent_die->die_parent == NULL
5549 && parent_die->tag == DW_TAG_enumeration_type
5550 && parent_die->has_specification == 0)
5551 {
5552 if (part_die->name == NULL)
5553 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5554 else if (building_psymtab)
5555 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5556 VAR_DOMAIN, LOC_CONST,
5557 (cu->language == language_cplus
5558 || cu->language == language_java)
5559 ? &cu->objfile->global_psymbols
5560 : &cu->objfile->static_psymbols,
5561 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5562
5563 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5564 continue;
5565 }
5566
5567 /* We'll save this DIE so link it in. */
5568 part_die->die_parent = parent_die;
5569 part_die->die_sibling = NULL;
5570 part_die->die_child = NULL;
5571
5572 if (last_die && last_die == parent_die)
5573 last_die->die_child = part_die;
5574 else if (last_die)
5575 last_die->die_sibling = part_die;
5576
5577 last_die = part_die;
5578
5579 if (first_die == NULL)
5580 first_die = part_die;
5581
5582 /* Maybe add the DIE to the hash table. Not all DIEs that we
5583 find interesting need to be in the hash table, because we
5584 also have the parent/sibling/child chains; only those that we
5585 might refer to by offset later during partial symbol reading.
5586
5587 For now this means things that might have be the target of a
5588 DW_AT_specification, DW_AT_abstract_origin, or
5589 DW_AT_extension. DW_AT_extension will refer only to
5590 namespaces; DW_AT_abstract_origin refers to functions (and
5591 many things under the function DIE, but we do not recurse
5592 into function DIEs during partial symbol reading) and
5593 possibly variables as well; DW_AT_specification refers to
5594 declarations. Declarations ought to have the DW_AT_declaration
5595 flag. It happens that GCC forgets to put it in sometimes, but
5596 only for functions, not for types.
5597
5598 Adding more things than necessary to the hash table is harmless
5599 except for the performance cost. Adding too few will result in
5600 wasted time in find_partial_die, when we reread the compilation
5601 unit with load_all_dies set. */
5602
5603 if (load_all
5604 || abbrev->tag == DW_TAG_subprogram
5605 || abbrev->tag == DW_TAG_variable
5606 || abbrev->tag == DW_TAG_namespace
5607 || part_die->is_declaration)
5608 {
5609 void **slot;
5610
5611 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5612 part_die->offset, INSERT);
5613 *slot = part_die;
5614 }
5615
5616 part_die = obstack_alloc (&cu->comp_unit_obstack,
5617 sizeof (struct partial_die_info));
5618
5619 /* For some DIEs we want to follow their children (if any). For C
5620 we have no reason to follow the children of structures; for other
5621 languages we have to, both so that we can get at method physnames
5622 to infer fully qualified class names, and for DW_AT_specification. */
5623 if (last_die->has_children
5624 && (load_all
5625 || last_die->tag == DW_TAG_namespace
5626 || last_die->tag == DW_TAG_enumeration_type
5627 || (cu->language != language_c
5628 && (last_die->tag == DW_TAG_class_type
5629 || last_die->tag == DW_TAG_interface_type
5630 || last_die->tag == DW_TAG_structure_type
5631 || last_die->tag == DW_TAG_union_type))))
5632 {
5633 nesting_level++;
5634 parent_die = last_die;
5635 continue;
5636 }
5637
5638 /* Otherwise we skip to the next sibling, if any. */
5639 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5640
5641 /* Back to the top, do it again. */
5642 }
5643 }
5644
5645 /* Read a minimal amount of information into the minimal die structure. */
5646
5647 static gdb_byte *
5648 read_partial_die (struct partial_die_info *part_die,
5649 struct abbrev_info *abbrev,
5650 unsigned int abbrev_len, bfd *abfd,
5651 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5652 {
5653 unsigned int bytes_read, i;
5654 struct attribute attr;
5655 int has_low_pc_attr = 0;
5656 int has_high_pc_attr = 0;
5657
5658 memset (part_die, 0, sizeof (struct partial_die_info));
5659
5660 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5661
5662 info_ptr += abbrev_len;
5663
5664 if (abbrev == NULL)
5665 return info_ptr;
5666
5667 part_die->tag = abbrev->tag;
5668 part_die->has_children = abbrev->has_children;
5669
5670 for (i = 0; i < abbrev->num_attrs; ++i)
5671 {
5672 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5673
5674 /* Store the data if it is of an attribute we want to keep in a
5675 partial symbol table. */
5676 switch (attr.name)
5677 {
5678 case DW_AT_name:
5679
5680 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5681 if (part_die->name == NULL)
5682 part_die->name = DW_STRING (&attr);
5683 break;
5684 case DW_AT_comp_dir:
5685 if (part_die->dirname == NULL)
5686 part_die->dirname = DW_STRING (&attr);
5687 break;
5688 case DW_AT_MIPS_linkage_name:
5689 part_die->name = DW_STRING (&attr);
5690 break;
5691 case DW_AT_low_pc:
5692 has_low_pc_attr = 1;
5693 part_die->lowpc = DW_ADDR (&attr);
5694 break;
5695 case DW_AT_high_pc:
5696 has_high_pc_attr = 1;
5697 part_die->highpc = DW_ADDR (&attr);
5698 break;
5699 case DW_AT_ranges:
5700 if (dwarf2_ranges_read (DW_UNSND (&attr), &part_die->lowpc,
5701 &part_die->highpc, cu))
5702 has_low_pc_attr = has_high_pc_attr = 1;
5703 break;
5704 case DW_AT_location:
5705 /* Support the .debug_loc offsets */
5706 if (attr_form_is_block (&attr))
5707 {
5708 part_die->locdesc = DW_BLOCK (&attr);
5709 }
5710 else if (attr_form_is_section_offset (&attr))
5711 {
5712 dwarf2_complex_location_expr_complaint ();
5713 }
5714 else
5715 {
5716 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5717 "partial symbol information");
5718 }
5719 break;
5720 case DW_AT_language:
5721 part_die->language = DW_UNSND (&attr);
5722 break;
5723 case DW_AT_external:
5724 part_die->is_external = DW_UNSND (&attr);
5725 break;
5726 case DW_AT_declaration:
5727 part_die->is_declaration = DW_UNSND (&attr);
5728 break;
5729 case DW_AT_type:
5730 part_die->has_type = 1;
5731 break;
5732 case DW_AT_abstract_origin:
5733 case DW_AT_specification:
5734 case DW_AT_extension:
5735 part_die->has_specification = 1;
5736 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5737 break;
5738 case DW_AT_sibling:
5739 /* Ignore absolute siblings, they might point outside of
5740 the current compile unit. */
5741 if (attr.form == DW_FORM_ref_addr)
5742 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5743 else
5744 part_die->sibling = dwarf2_per_objfile->info_buffer
5745 + dwarf2_get_ref_die_offset (&attr, cu);
5746 break;
5747 case DW_AT_stmt_list:
5748 part_die->has_stmt_list = 1;
5749 part_die->line_offset = DW_UNSND (&attr);
5750 break;
5751 case DW_AT_byte_size:
5752 part_die->has_byte_size = 1;
5753 break;
5754 case DW_AT_calling_convention:
5755 /* DWARF doesn't provide a way to identify a program's source-level
5756 entry point. DW_AT_calling_convention attributes are only meant
5757 to describe functions' calling conventions.
5758
5759 However, because it's a necessary piece of information in
5760 Fortran, and because DW_CC_program is the only piece of debugging
5761 information whose definition refers to a 'main program' at all,
5762 several compilers have begun marking Fortran main programs with
5763 DW_CC_program --- even when those functions use the standard
5764 calling conventions.
5765
5766 So until DWARF specifies a way to provide this information and
5767 compilers pick up the new representation, we'll support this
5768 practice. */
5769 if (DW_UNSND (&attr) == DW_CC_program
5770 && cu->language == language_fortran)
5771 set_main_name (part_die->name);
5772 break;
5773 default:
5774 break;
5775 }
5776 }
5777
5778 /* When using the GNU linker, .gnu.linkonce. sections are used to
5779 eliminate duplicate copies of functions and vtables and such.
5780 The linker will arbitrarily choose one and discard the others.
5781 The AT_*_pc values for such functions refer to local labels in
5782 these sections. If the section from that file was discarded, the
5783 labels are not in the output, so the relocs get a value of 0.
5784 If this is a discarded function, mark the pc bounds as invalid,
5785 so that GDB will ignore it. */
5786 if (has_low_pc_attr && has_high_pc_attr
5787 && part_die->lowpc < part_die->highpc
5788 && (part_die->lowpc != 0
5789 || dwarf2_per_objfile->has_section_at_zero))
5790 part_die->has_pc_info = 1;
5791 return info_ptr;
5792 }
5793
5794 /* Find a cached partial DIE at OFFSET in CU. */
5795
5796 static struct partial_die_info *
5797 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5798 {
5799 struct partial_die_info *lookup_die = NULL;
5800 struct partial_die_info part_die;
5801
5802 part_die.offset = offset;
5803 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5804
5805 return lookup_die;
5806 }
5807
5808 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5809
5810 static struct partial_die_info *
5811 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5812 {
5813 struct dwarf2_per_cu_data *per_cu = NULL;
5814 struct partial_die_info *pd = NULL;
5815
5816 if (offset >= cu->header.offset
5817 && offset < cu->header.offset + cu->header.length)
5818 {
5819 pd = find_partial_die_in_comp_unit (offset, cu);
5820 if (pd != NULL)
5821 return pd;
5822 }
5823
5824 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5825
5826 if (per_cu->cu == NULL)
5827 {
5828 load_comp_unit (per_cu, cu->objfile);
5829 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5830 dwarf2_per_objfile->read_in_chain = per_cu;
5831 }
5832
5833 per_cu->cu->last_used = 0;
5834 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5835
5836 if (pd == NULL && per_cu->load_all_dies == 0)
5837 {
5838 struct cleanup *back_to;
5839 struct partial_die_info comp_unit_die;
5840 struct abbrev_info *abbrev;
5841 unsigned int bytes_read;
5842 char *info_ptr;
5843
5844 per_cu->load_all_dies = 1;
5845
5846 /* Re-read the DIEs. */
5847 back_to = make_cleanup (null_cleanup, 0);
5848 if (per_cu->cu->dwarf2_abbrevs == NULL)
5849 {
5850 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5851 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5852 }
5853 info_ptr = per_cu->cu->header.first_die_ptr;
5854 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5855 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5856 per_cu->cu->objfile->obfd, info_ptr,
5857 per_cu->cu);
5858 if (comp_unit_die.has_children)
5859 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5860 do_cleanups (back_to);
5861
5862 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5863 }
5864
5865 if (pd == NULL)
5866 internal_error (__FILE__, __LINE__,
5867 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5868 offset, bfd_get_filename (cu->objfile->obfd));
5869 return pd;
5870 }
5871
5872 /* Adjust PART_DIE before generating a symbol for it. This function
5873 may set the is_external flag or change the DIE's name. */
5874
5875 static void
5876 fixup_partial_die (struct partial_die_info *part_die,
5877 struct dwarf2_cu *cu)
5878 {
5879 /* If we found a reference attribute and the DIE has no name, try
5880 to find a name in the referred to DIE. */
5881
5882 if (part_die->name == NULL && part_die->has_specification)
5883 {
5884 struct partial_die_info *spec_die;
5885
5886 spec_die = find_partial_die (part_die->spec_offset, cu);
5887
5888 fixup_partial_die (spec_die, cu);
5889
5890 if (spec_die->name)
5891 {
5892 part_die->name = spec_die->name;
5893
5894 /* Copy DW_AT_external attribute if it is set. */
5895 if (spec_die->is_external)
5896 part_die->is_external = spec_die->is_external;
5897 }
5898 }
5899
5900 /* Set default names for some unnamed DIEs. */
5901 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5902 || part_die->tag == DW_TAG_class_type))
5903 part_die->name = "(anonymous class)";
5904
5905 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5906 part_die->name = "(anonymous namespace)";
5907
5908 if (part_die->tag == DW_TAG_structure_type
5909 || part_die->tag == DW_TAG_class_type
5910 || part_die->tag == DW_TAG_union_type)
5911 guess_structure_name (part_die, cu);
5912 }
5913
5914 /* Read the die from the .debug_info section buffer. Set DIEP to
5915 point to a newly allocated die with its information, except for its
5916 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5917 whether the die has children or not. */
5918
5919 static gdb_byte *
5920 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5921 struct dwarf2_cu *cu, int *has_children)
5922 {
5923 unsigned int abbrev_number, bytes_read, i, offset;
5924 struct abbrev_info *abbrev;
5925 struct die_info *die;
5926
5927 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5928 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5929 info_ptr += bytes_read;
5930 if (!abbrev_number)
5931 {
5932 die = dwarf_alloc_die ();
5933 die->tag = 0;
5934 die->abbrev = abbrev_number;
5935 die->type = NULL;
5936 *diep = die;
5937 *has_children = 0;
5938 return info_ptr;
5939 }
5940
5941 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5942 if (!abbrev)
5943 {
5944 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5945 abbrev_number,
5946 bfd_get_filename (abfd));
5947 }
5948 die = dwarf_alloc_die ();
5949 die->offset = offset;
5950 die->tag = abbrev->tag;
5951 die->abbrev = abbrev_number;
5952 die->type = NULL;
5953
5954 die->num_attrs = abbrev->num_attrs;
5955 die->attrs = (struct attribute *)
5956 xmalloc (die->num_attrs * sizeof (struct attribute));
5957
5958 for (i = 0; i < abbrev->num_attrs; ++i)
5959 {
5960 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5961 abfd, info_ptr, cu);
5962
5963 /* If this attribute is an absolute reference to a different
5964 compilation unit, make sure that compilation unit is loaded
5965 also. */
5966 if (die->attrs[i].form == DW_FORM_ref_addr
5967 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5968 || (DW_ADDR (&die->attrs[i])
5969 >= cu->header.offset + cu->header.length)))
5970 {
5971 struct dwarf2_per_cu_data *per_cu;
5972 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5973 cu->objfile);
5974
5975 /* Mark the dependence relation so that we don't flush PER_CU
5976 too early. */
5977 dwarf2_add_dependence (cu, per_cu);
5978
5979 /* If it's already on the queue, we have nothing to do. */
5980 if (per_cu->queued)
5981 continue;
5982
5983 /* If the compilation unit is already loaded, just mark it as
5984 used. */
5985 if (per_cu->cu != NULL)
5986 {
5987 per_cu->cu->last_used = 0;
5988 continue;
5989 }
5990
5991 /* Add it to the queue. */
5992 queue_comp_unit (per_cu);
5993 }
5994 }
5995
5996 *diep = die;
5997 *has_children = abbrev->has_children;
5998 return info_ptr;
5999 }
6000
6001 /* Read an attribute value described by an attribute form. */
6002
6003 static gdb_byte *
6004 read_attribute_value (struct attribute *attr, unsigned form,
6005 bfd *abfd, gdb_byte *info_ptr,
6006 struct dwarf2_cu *cu)
6007 {
6008 struct comp_unit_head *cu_header = &cu->header;
6009 unsigned int bytes_read;
6010 struct dwarf_block *blk;
6011
6012 attr->form = form;
6013 switch (form)
6014 {
6015 case DW_FORM_addr:
6016 case DW_FORM_ref_addr:
6017 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
6018 info_ptr += bytes_read;
6019 break;
6020 case DW_FORM_block2:
6021 blk = dwarf_alloc_block (cu);
6022 blk->size = read_2_bytes (abfd, info_ptr);
6023 info_ptr += 2;
6024 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6025 info_ptr += blk->size;
6026 DW_BLOCK (attr) = blk;
6027 break;
6028 case DW_FORM_block4:
6029 blk = dwarf_alloc_block (cu);
6030 blk->size = read_4_bytes (abfd, info_ptr);
6031 info_ptr += 4;
6032 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6033 info_ptr += blk->size;
6034 DW_BLOCK (attr) = blk;
6035 break;
6036 case DW_FORM_data2:
6037 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
6038 info_ptr += 2;
6039 break;
6040 case DW_FORM_data4:
6041 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
6042 info_ptr += 4;
6043 break;
6044 case DW_FORM_data8:
6045 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
6046 info_ptr += 8;
6047 break;
6048 case DW_FORM_string:
6049 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
6050 info_ptr += bytes_read;
6051 break;
6052 case DW_FORM_strp:
6053 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
6054 &bytes_read);
6055 info_ptr += bytes_read;
6056 break;
6057 case DW_FORM_block:
6058 blk = dwarf_alloc_block (cu);
6059 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6060 info_ptr += bytes_read;
6061 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6062 info_ptr += blk->size;
6063 DW_BLOCK (attr) = blk;
6064 break;
6065 case DW_FORM_block1:
6066 blk = dwarf_alloc_block (cu);
6067 blk->size = read_1_byte (abfd, info_ptr);
6068 info_ptr += 1;
6069 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6070 info_ptr += blk->size;
6071 DW_BLOCK (attr) = blk;
6072 break;
6073 case DW_FORM_data1:
6074 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6075 info_ptr += 1;
6076 break;
6077 case DW_FORM_flag:
6078 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6079 info_ptr += 1;
6080 break;
6081 case DW_FORM_sdata:
6082 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
6083 info_ptr += bytes_read;
6084 break;
6085 case DW_FORM_udata:
6086 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6087 info_ptr += bytes_read;
6088 break;
6089 case DW_FORM_ref1:
6090 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
6091 info_ptr += 1;
6092 break;
6093 case DW_FORM_ref2:
6094 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
6095 info_ptr += 2;
6096 break;
6097 case DW_FORM_ref4:
6098 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
6099 info_ptr += 4;
6100 break;
6101 case DW_FORM_ref8:
6102 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
6103 info_ptr += 8;
6104 break;
6105 case DW_FORM_ref_udata:
6106 DW_ADDR (attr) = (cu->header.offset
6107 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
6108 info_ptr += bytes_read;
6109 break;
6110 case DW_FORM_indirect:
6111 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6112 info_ptr += bytes_read;
6113 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
6114 break;
6115 default:
6116 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
6117 dwarf_form_name (form),
6118 bfd_get_filename (abfd));
6119 }
6120 return info_ptr;
6121 }
6122
6123 /* Read an attribute described by an abbreviated attribute. */
6124
6125 static gdb_byte *
6126 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
6127 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
6128 {
6129 attr->name = abbrev->name;
6130 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
6131 }
6132
6133 /* read dwarf information from a buffer */
6134
6135 static unsigned int
6136 read_1_byte (bfd *abfd, gdb_byte *buf)
6137 {
6138 return bfd_get_8 (abfd, buf);
6139 }
6140
6141 static int
6142 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
6143 {
6144 return bfd_get_signed_8 (abfd, buf);
6145 }
6146
6147 static unsigned int
6148 read_2_bytes (bfd *abfd, gdb_byte *buf)
6149 {
6150 return bfd_get_16 (abfd, buf);
6151 }
6152
6153 static int
6154 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
6155 {
6156 return bfd_get_signed_16 (abfd, buf);
6157 }
6158
6159 static unsigned int
6160 read_4_bytes (bfd *abfd, gdb_byte *buf)
6161 {
6162 return bfd_get_32 (abfd, buf);
6163 }
6164
6165 static int
6166 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6167 {
6168 return bfd_get_signed_32 (abfd, buf);
6169 }
6170
6171 static unsigned long
6172 read_8_bytes (bfd *abfd, gdb_byte *buf)
6173 {
6174 return bfd_get_64 (abfd, buf);
6175 }
6176
6177 static CORE_ADDR
6178 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6179 unsigned int *bytes_read)
6180 {
6181 struct comp_unit_head *cu_header = &cu->header;
6182 CORE_ADDR retval = 0;
6183
6184 if (cu_header->signed_addr_p)
6185 {
6186 switch (cu_header->addr_size)
6187 {
6188 case 2:
6189 retval = bfd_get_signed_16 (abfd, buf);
6190 break;
6191 case 4:
6192 retval = bfd_get_signed_32 (abfd, buf);
6193 break;
6194 case 8:
6195 retval = bfd_get_signed_64 (abfd, buf);
6196 break;
6197 default:
6198 internal_error (__FILE__, __LINE__,
6199 _("read_address: bad switch, signed [in module %s]"),
6200 bfd_get_filename (abfd));
6201 }
6202 }
6203 else
6204 {
6205 switch (cu_header->addr_size)
6206 {
6207 case 2:
6208 retval = bfd_get_16 (abfd, buf);
6209 break;
6210 case 4:
6211 retval = bfd_get_32 (abfd, buf);
6212 break;
6213 case 8:
6214 retval = bfd_get_64 (abfd, buf);
6215 break;
6216 default:
6217 internal_error (__FILE__, __LINE__,
6218 _("read_address: bad switch, unsigned [in module %s]"),
6219 bfd_get_filename (abfd));
6220 }
6221 }
6222
6223 *bytes_read = cu_header->addr_size;
6224 return retval;
6225 }
6226
6227 /* Read the initial length from a section. The (draft) DWARF 3
6228 specification allows the initial length to take up either 4 bytes
6229 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6230 bytes describe the length and all offsets will be 8 bytes in length
6231 instead of 4.
6232
6233 An older, non-standard 64-bit format is also handled by this
6234 function. The older format in question stores the initial length
6235 as an 8-byte quantity without an escape value. Lengths greater
6236 than 2^32 aren't very common which means that the initial 4 bytes
6237 is almost always zero. Since a length value of zero doesn't make
6238 sense for the 32-bit format, this initial zero can be considered to
6239 be an escape value which indicates the presence of the older 64-bit
6240 format. As written, the code can't detect (old format) lengths
6241 greater than 4GB. If it becomes necessary to handle lengths
6242 somewhat larger than 4GB, we could allow other small values (such
6243 as the non-sensical values of 1, 2, and 3) to also be used as
6244 escape values indicating the presence of the old format.
6245
6246 The value returned via bytes_read should be used to increment the
6247 relevant pointer after calling read_initial_length().
6248
6249 As a side effect, this function sets the fields initial_length_size
6250 and offset_size in cu_header to the values appropriate for the
6251 length field. (The format of the initial length field determines
6252 the width of file offsets to be fetched later with read_offset().)
6253
6254 [ Note: read_initial_length() and read_offset() are based on the
6255 document entitled "DWARF Debugging Information Format", revision
6256 3, draft 8, dated November 19, 2001. This document was obtained
6257 from:
6258
6259 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6260
6261 This document is only a draft and is subject to change. (So beware.)
6262
6263 Details regarding the older, non-standard 64-bit format were
6264 determined empirically by examining 64-bit ELF files produced by
6265 the SGI toolchain on an IRIX 6.5 machine.
6266
6267 - Kevin, July 16, 2002
6268 ] */
6269
6270 static LONGEST
6271 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6272 unsigned int *bytes_read)
6273 {
6274 LONGEST length = bfd_get_32 (abfd, buf);
6275
6276 if (length == 0xffffffff)
6277 {
6278 length = bfd_get_64 (abfd, buf + 4);
6279 *bytes_read = 12;
6280 }
6281 else if (length == 0)
6282 {
6283 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6284 length = bfd_get_64 (abfd, buf);
6285 *bytes_read = 8;
6286 }
6287 else
6288 {
6289 *bytes_read = 4;
6290 }
6291
6292 if (cu_header)
6293 {
6294 gdb_assert (cu_header->initial_length_size == 0
6295 || cu_header->initial_length_size == 4
6296 || cu_header->initial_length_size == 8
6297 || cu_header->initial_length_size == 12);
6298
6299 if (cu_header->initial_length_size != 0
6300 && cu_header->initial_length_size != *bytes_read)
6301 complaint (&symfile_complaints,
6302 _("intermixed 32-bit and 64-bit DWARF sections"));
6303
6304 cu_header->initial_length_size = *bytes_read;
6305 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6306 }
6307
6308 return length;
6309 }
6310
6311 /* Read an offset from the data stream. The size of the offset is
6312 given by cu_header->offset_size. */
6313
6314 static LONGEST
6315 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6316 unsigned int *bytes_read)
6317 {
6318 LONGEST retval = 0;
6319
6320 switch (cu_header->offset_size)
6321 {
6322 case 4:
6323 retval = bfd_get_32 (abfd, buf);
6324 *bytes_read = 4;
6325 break;
6326 case 8:
6327 retval = bfd_get_64 (abfd, buf);
6328 *bytes_read = 8;
6329 break;
6330 default:
6331 internal_error (__FILE__, __LINE__,
6332 _("read_offset: bad switch [in module %s]"),
6333 bfd_get_filename (abfd));
6334 }
6335
6336 return retval;
6337 }
6338
6339 static gdb_byte *
6340 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6341 {
6342 /* If the size of a host char is 8 bits, we can return a pointer
6343 to the buffer, otherwise we have to copy the data to a buffer
6344 allocated on the temporary obstack. */
6345 gdb_assert (HOST_CHAR_BIT == 8);
6346 return buf;
6347 }
6348
6349 static char *
6350 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6351 {
6352 /* If the size of a host char is 8 bits, we can return a pointer
6353 to the string, otherwise we have to copy the string to a buffer
6354 allocated on the temporary obstack. */
6355 gdb_assert (HOST_CHAR_BIT == 8);
6356 if (*buf == '\0')
6357 {
6358 *bytes_read_ptr = 1;
6359 return NULL;
6360 }
6361 *bytes_read_ptr = strlen ((char *) buf) + 1;
6362 return (char *) buf;
6363 }
6364
6365 static char *
6366 read_indirect_string (bfd *abfd, gdb_byte *buf,
6367 const struct comp_unit_head *cu_header,
6368 unsigned int *bytes_read_ptr)
6369 {
6370 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6371 bytes_read_ptr);
6372
6373 if (dwarf2_per_objfile->str_buffer == NULL)
6374 {
6375 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6376 bfd_get_filename (abfd));
6377 return NULL;
6378 }
6379 if (str_offset >= dwarf2_per_objfile->str_size)
6380 {
6381 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6382 bfd_get_filename (abfd));
6383 return NULL;
6384 }
6385 gdb_assert (HOST_CHAR_BIT == 8);
6386 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6387 return NULL;
6388 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6389 }
6390
6391 static unsigned long
6392 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6393 {
6394 unsigned long result;
6395 unsigned int num_read;
6396 int i, shift;
6397 unsigned char byte;
6398
6399 result = 0;
6400 shift = 0;
6401 num_read = 0;
6402 i = 0;
6403 while (1)
6404 {
6405 byte = bfd_get_8 (abfd, buf);
6406 buf++;
6407 num_read++;
6408 result |= ((unsigned long)(byte & 127) << shift);
6409 if ((byte & 128) == 0)
6410 {
6411 break;
6412 }
6413 shift += 7;
6414 }
6415 *bytes_read_ptr = num_read;
6416 return result;
6417 }
6418
6419 static long
6420 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6421 {
6422 long result;
6423 int i, shift, num_read;
6424 unsigned char byte;
6425
6426 result = 0;
6427 shift = 0;
6428 num_read = 0;
6429 i = 0;
6430 while (1)
6431 {
6432 byte = bfd_get_8 (abfd, buf);
6433 buf++;
6434 num_read++;
6435 result |= ((long)(byte & 127) << shift);
6436 shift += 7;
6437 if ((byte & 128) == 0)
6438 {
6439 break;
6440 }
6441 }
6442 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6443 result |= -(((long)1) << shift);
6444 *bytes_read_ptr = num_read;
6445 return result;
6446 }
6447
6448 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6449
6450 static gdb_byte *
6451 skip_leb128 (bfd *abfd, gdb_byte *buf)
6452 {
6453 int byte;
6454
6455 while (1)
6456 {
6457 byte = bfd_get_8 (abfd, buf);
6458 buf++;
6459 if ((byte & 128) == 0)
6460 return buf;
6461 }
6462 }
6463
6464 static void
6465 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6466 {
6467 switch (lang)
6468 {
6469 case DW_LANG_C89:
6470 case DW_LANG_C:
6471 cu->language = language_c;
6472 break;
6473 case DW_LANG_C_plus_plus:
6474 cu->language = language_cplus;
6475 break;
6476 case DW_LANG_Fortran77:
6477 case DW_LANG_Fortran90:
6478 case DW_LANG_Fortran95:
6479 cu->language = language_fortran;
6480 break;
6481 case DW_LANG_Mips_Assembler:
6482 cu->language = language_asm;
6483 break;
6484 case DW_LANG_Java:
6485 cu->language = language_java;
6486 break;
6487 case DW_LANG_Ada83:
6488 case DW_LANG_Ada95:
6489 cu->language = language_ada;
6490 break;
6491 case DW_LANG_Modula2:
6492 cu->language = language_m2;
6493 break;
6494 case DW_LANG_Pascal83:
6495 cu->language = language_pascal;
6496 break;
6497 case DW_LANG_ObjC:
6498 cu->language = language_objc;
6499 break;
6500 case DW_LANG_Cobol74:
6501 case DW_LANG_Cobol85:
6502 default:
6503 cu->language = language_minimal;
6504 break;
6505 }
6506 cu->language_defn = language_def (cu->language);
6507 }
6508
6509 /* Return the named attribute or NULL if not there. */
6510
6511 static struct attribute *
6512 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6513 {
6514 unsigned int i;
6515 struct attribute *spec = NULL;
6516
6517 for (i = 0; i < die->num_attrs; ++i)
6518 {
6519 if (die->attrs[i].name == name)
6520 return &die->attrs[i];
6521 if (die->attrs[i].name == DW_AT_specification
6522 || die->attrs[i].name == DW_AT_abstract_origin)
6523 spec = &die->attrs[i];
6524 }
6525
6526 if (spec)
6527 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6528
6529 return NULL;
6530 }
6531
6532 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6533 and holds a non-zero value. This function should only be used for
6534 DW_FORM_flag attributes. */
6535
6536 static int
6537 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6538 {
6539 struct attribute *attr = dwarf2_attr (die, name, cu);
6540
6541 return (attr && DW_UNSND (attr));
6542 }
6543
6544 static int
6545 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6546 {
6547 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6548 which value is non-zero. However, we have to be careful with
6549 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6550 (via dwarf2_flag_true_p) follows this attribute. So we may
6551 end up accidently finding a declaration attribute that belongs
6552 to a different DIE referenced by the specification attribute,
6553 even though the given DIE does not have a declaration attribute. */
6554 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6555 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6556 }
6557
6558 /* Return the die giving the specification for DIE, if there is
6559 one. */
6560
6561 static struct die_info *
6562 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6563 {
6564 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6565
6566 if (spec_attr == NULL)
6567 return NULL;
6568 else
6569 return follow_die_ref (die, spec_attr, cu);
6570 }
6571
6572 /* Free the line_header structure *LH, and any arrays and strings it
6573 refers to. */
6574 static void
6575 free_line_header (struct line_header *lh)
6576 {
6577 if (lh->standard_opcode_lengths)
6578 xfree (lh->standard_opcode_lengths);
6579
6580 /* Remember that all the lh->file_names[i].name pointers are
6581 pointers into debug_line_buffer, and don't need to be freed. */
6582 if (lh->file_names)
6583 xfree (lh->file_names);
6584
6585 /* Similarly for the include directory names. */
6586 if (lh->include_dirs)
6587 xfree (lh->include_dirs);
6588
6589 xfree (lh);
6590 }
6591
6592
6593 /* Add an entry to LH's include directory table. */
6594 static void
6595 add_include_dir (struct line_header *lh, char *include_dir)
6596 {
6597 /* Grow the array if necessary. */
6598 if (lh->include_dirs_size == 0)
6599 {
6600 lh->include_dirs_size = 1; /* for testing */
6601 lh->include_dirs = xmalloc (lh->include_dirs_size
6602 * sizeof (*lh->include_dirs));
6603 }
6604 else if (lh->num_include_dirs >= lh->include_dirs_size)
6605 {
6606 lh->include_dirs_size *= 2;
6607 lh->include_dirs = xrealloc (lh->include_dirs,
6608 (lh->include_dirs_size
6609 * sizeof (*lh->include_dirs)));
6610 }
6611
6612 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6613 }
6614
6615
6616 /* Add an entry to LH's file name table. */
6617 static void
6618 add_file_name (struct line_header *lh,
6619 char *name,
6620 unsigned int dir_index,
6621 unsigned int mod_time,
6622 unsigned int length)
6623 {
6624 struct file_entry *fe;
6625
6626 /* Grow the array if necessary. */
6627 if (lh->file_names_size == 0)
6628 {
6629 lh->file_names_size = 1; /* for testing */
6630 lh->file_names = xmalloc (lh->file_names_size
6631 * sizeof (*lh->file_names));
6632 }
6633 else if (lh->num_file_names >= lh->file_names_size)
6634 {
6635 lh->file_names_size *= 2;
6636 lh->file_names = xrealloc (lh->file_names,
6637 (lh->file_names_size
6638 * sizeof (*lh->file_names)));
6639 }
6640
6641 fe = &lh->file_names[lh->num_file_names++];
6642 fe->name = name;
6643 fe->dir_index = dir_index;
6644 fe->mod_time = mod_time;
6645 fe->length = length;
6646 fe->included_p = 0;
6647 fe->symtab = NULL;
6648 }
6649
6650
6651 /* Read the statement program header starting at OFFSET in
6652 .debug_line, according to the endianness of ABFD. Return a pointer
6653 to a struct line_header, allocated using xmalloc.
6654
6655 NOTE: the strings in the include directory and file name tables of
6656 the returned object point into debug_line_buffer, and must not be
6657 freed. */
6658 static struct line_header *
6659 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6660 struct dwarf2_cu *cu)
6661 {
6662 struct cleanup *back_to;
6663 struct line_header *lh;
6664 gdb_byte *line_ptr;
6665 unsigned int bytes_read;
6666 int i;
6667 char *cur_dir, *cur_file;
6668
6669 if (dwarf2_per_objfile->line_buffer == NULL)
6670 {
6671 complaint (&symfile_complaints, _("missing .debug_line section"));
6672 return 0;
6673 }
6674
6675 /* Make sure that at least there's room for the total_length field.
6676 That could be 12 bytes long, but we're just going to fudge that. */
6677 if (offset + 4 >= dwarf2_per_objfile->line_size)
6678 {
6679 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6680 return 0;
6681 }
6682
6683 lh = xmalloc (sizeof (*lh));
6684 memset (lh, 0, sizeof (*lh));
6685 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6686 (void *) lh);
6687
6688 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6689
6690 /* Read in the header. */
6691 lh->total_length =
6692 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6693 line_ptr += bytes_read;
6694 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6695 + dwarf2_per_objfile->line_size))
6696 {
6697 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6698 return 0;
6699 }
6700 lh->statement_program_end = line_ptr + lh->total_length;
6701 lh->version = read_2_bytes (abfd, line_ptr);
6702 line_ptr += 2;
6703 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6704 line_ptr += bytes_read;
6705 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6706 line_ptr += 1;
6707 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6708 line_ptr += 1;
6709 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6710 line_ptr += 1;
6711 lh->line_range = read_1_byte (abfd, line_ptr);
6712 line_ptr += 1;
6713 lh->opcode_base = read_1_byte (abfd, line_ptr);
6714 line_ptr += 1;
6715 lh->standard_opcode_lengths
6716 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6717
6718 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6719 for (i = 1; i < lh->opcode_base; ++i)
6720 {
6721 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6722 line_ptr += 1;
6723 }
6724
6725 /* Read directory table. */
6726 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6727 {
6728 line_ptr += bytes_read;
6729 add_include_dir (lh, cur_dir);
6730 }
6731 line_ptr += bytes_read;
6732
6733 /* Read file name table. */
6734 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6735 {
6736 unsigned int dir_index, mod_time, length;
6737
6738 line_ptr += bytes_read;
6739 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6740 line_ptr += bytes_read;
6741 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6742 line_ptr += bytes_read;
6743 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6744 line_ptr += bytes_read;
6745
6746 add_file_name (lh, cur_file, dir_index, mod_time, length);
6747 }
6748 line_ptr += bytes_read;
6749 lh->statement_program_start = line_ptr;
6750
6751 if (line_ptr > (dwarf2_per_objfile->line_buffer
6752 + dwarf2_per_objfile->line_size))
6753 complaint (&symfile_complaints,
6754 _("line number info header doesn't fit in `.debug_line' section"));
6755
6756 discard_cleanups (back_to);
6757 return lh;
6758 }
6759
6760 /* This function exists to work around a bug in certain compilers
6761 (particularly GCC 2.95), in which the first line number marker of a
6762 function does not show up until after the prologue, right before
6763 the second line number marker. This function shifts ADDRESS down
6764 to the beginning of the function if necessary, and is called on
6765 addresses passed to record_line. */
6766
6767 static CORE_ADDR
6768 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6769 {
6770 struct function_range *fn;
6771
6772 /* Find the function_range containing address. */
6773 if (!cu->first_fn)
6774 return address;
6775
6776 if (!cu->cached_fn)
6777 cu->cached_fn = cu->first_fn;
6778
6779 fn = cu->cached_fn;
6780 while (fn)
6781 if (fn->lowpc <= address && fn->highpc > address)
6782 goto found;
6783 else
6784 fn = fn->next;
6785
6786 fn = cu->first_fn;
6787 while (fn && fn != cu->cached_fn)
6788 if (fn->lowpc <= address && fn->highpc > address)
6789 goto found;
6790 else
6791 fn = fn->next;
6792
6793 return address;
6794
6795 found:
6796 if (fn->seen_line)
6797 return address;
6798 if (address != fn->lowpc)
6799 complaint (&symfile_complaints,
6800 _("misplaced first line number at 0x%lx for '%s'"),
6801 (unsigned long) address, fn->name);
6802 fn->seen_line = 1;
6803 return fn->lowpc;
6804 }
6805
6806 /* Decode the Line Number Program (LNP) for the given line_header
6807 structure and CU. The actual information extracted and the type
6808 of structures created from the LNP depends on the value of PST.
6809
6810 1. If PST is NULL, then this procedure uses the data from the program
6811 to create all necessary symbol tables, and their linetables.
6812 The compilation directory of the file is passed in COMP_DIR,
6813 and must not be NULL.
6814
6815 2. If PST is not NULL, this procedure reads the program to determine
6816 the list of files included by the unit represented by PST, and
6817 builds all the associated partial symbol tables. In this case,
6818 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6819 is not used to compute the full name of the symtab, and therefore
6820 omitting it when building the partial symtab does not introduce
6821 the potential for inconsistency - a partial symtab and its associated
6822 symbtab having a different fullname -). */
6823
6824 static void
6825 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6826 struct dwarf2_cu *cu, struct partial_symtab *pst)
6827 {
6828 gdb_byte *line_ptr, *extended_end;
6829 gdb_byte *line_end;
6830 unsigned int bytes_read, extended_len;
6831 unsigned char op_code, extended_op, adj_opcode;
6832 CORE_ADDR baseaddr;
6833 struct objfile *objfile = cu->objfile;
6834 const int decode_for_pst_p = (pst != NULL);
6835 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6836
6837 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6838
6839 line_ptr = lh->statement_program_start;
6840 line_end = lh->statement_program_end;
6841
6842 /* Read the statement sequences until there's nothing left. */
6843 while (line_ptr < line_end)
6844 {
6845 /* state machine registers */
6846 CORE_ADDR address = 0;
6847 unsigned int file = 1;
6848 unsigned int line = 1;
6849 unsigned int column = 0;
6850 int is_stmt = lh->default_is_stmt;
6851 int basic_block = 0;
6852 int end_sequence = 0;
6853
6854 if (!decode_for_pst_p && lh->num_file_names >= file)
6855 {
6856 /* Start a subfile for the current file of the state machine. */
6857 /* lh->include_dirs and lh->file_names are 0-based, but the
6858 directory and file name numbers in the statement program
6859 are 1-based. */
6860 struct file_entry *fe = &lh->file_names[file - 1];
6861 char *dir = NULL;
6862
6863 if (fe->dir_index)
6864 dir = lh->include_dirs[fe->dir_index - 1];
6865
6866 dwarf2_start_subfile (fe->name, dir, comp_dir);
6867 }
6868
6869 /* Decode the table. */
6870 while (!end_sequence)
6871 {
6872 op_code = read_1_byte (abfd, line_ptr);
6873 line_ptr += 1;
6874
6875 if (op_code >= lh->opcode_base)
6876 {
6877 /* Special operand. */
6878 adj_opcode = op_code - lh->opcode_base;
6879 address += (adj_opcode / lh->line_range)
6880 * lh->minimum_instruction_length;
6881 line += lh->line_base + (adj_opcode % lh->line_range);
6882 if (lh->num_file_names < file)
6883 dwarf2_debug_line_missing_file_complaint ();
6884 else
6885 {
6886 lh->file_names[file - 1].included_p = 1;
6887 if (!decode_for_pst_p)
6888 {
6889 if (last_subfile != current_subfile)
6890 {
6891 if (last_subfile)
6892 record_line (last_subfile, 0, address);
6893 last_subfile = current_subfile;
6894 }
6895 /* Append row to matrix using current values. */
6896 record_line (current_subfile, line,
6897 check_cu_functions (address, cu));
6898 }
6899 }
6900 basic_block = 1;
6901 }
6902 else switch (op_code)
6903 {
6904 case DW_LNS_extended_op:
6905 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6906 line_ptr += bytes_read;
6907 extended_end = line_ptr + extended_len;
6908 extended_op = read_1_byte (abfd, line_ptr);
6909 line_ptr += 1;
6910 switch (extended_op)
6911 {
6912 case DW_LNE_end_sequence:
6913 end_sequence = 1;
6914
6915 if (lh->num_file_names < file)
6916 dwarf2_debug_line_missing_file_complaint ();
6917 else
6918 {
6919 lh->file_names[file - 1].included_p = 1;
6920 if (!decode_for_pst_p)
6921 record_line (current_subfile, 0, address);
6922 }
6923 break;
6924 case DW_LNE_set_address:
6925 address = read_address (abfd, line_ptr, cu, &bytes_read);
6926 line_ptr += bytes_read;
6927 address += baseaddr;
6928 break;
6929 case DW_LNE_define_file:
6930 {
6931 char *cur_file;
6932 unsigned int dir_index, mod_time, length;
6933
6934 cur_file = read_string (abfd, line_ptr, &bytes_read);
6935 line_ptr += bytes_read;
6936 dir_index =
6937 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6938 line_ptr += bytes_read;
6939 mod_time =
6940 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6941 line_ptr += bytes_read;
6942 length =
6943 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6944 line_ptr += bytes_read;
6945 add_file_name (lh, cur_file, dir_index, mod_time, length);
6946 }
6947 break;
6948 default:
6949 complaint (&symfile_complaints,
6950 _("mangled .debug_line section"));
6951 return;
6952 }
6953 /* Make sure that we parsed the extended op correctly. If e.g.
6954 we expected a different address size than the producer used,
6955 we may have read the wrong number of bytes. */
6956 if (line_ptr != extended_end)
6957 {
6958 complaint (&symfile_complaints,
6959 _("mangled .debug_line section"));
6960 return;
6961 }
6962 break;
6963 case DW_LNS_copy:
6964 if (lh->num_file_names < file)
6965 dwarf2_debug_line_missing_file_complaint ();
6966 else
6967 {
6968 lh->file_names[file - 1].included_p = 1;
6969 if (!decode_for_pst_p)
6970 {
6971 if (last_subfile != current_subfile)
6972 {
6973 if (last_subfile)
6974 record_line (last_subfile, 0, address);
6975 last_subfile = current_subfile;
6976 }
6977 record_line (current_subfile, line,
6978 check_cu_functions (address, cu));
6979 }
6980 }
6981 basic_block = 0;
6982 break;
6983 case DW_LNS_advance_pc:
6984 address += lh->minimum_instruction_length
6985 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6986 line_ptr += bytes_read;
6987 break;
6988 case DW_LNS_advance_line:
6989 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6990 line_ptr += bytes_read;
6991 break;
6992 case DW_LNS_set_file:
6993 {
6994 /* The arrays lh->include_dirs and lh->file_names are
6995 0-based, but the directory and file name numbers in
6996 the statement program are 1-based. */
6997 struct file_entry *fe;
6998 char *dir = NULL;
6999
7000 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7001 line_ptr += bytes_read;
7002 if (lh->num_file_names < file)
7003 dwarf2_debug_line_missing_file_complaint ();
7004 else
7005 {
7006 fe = &lh->file_names[file - 1];
7007 if (fe->dir_index)
7008 dir = lh->include_dirs[fe->dir_index - 1];
7009 if (!decode_for_pst_p)
7010 {
7011 last_subfile = current_subfile;
7012 dwarf2_start_subfile (fe->name, dir, comp_dir);
7013 }
7014 }
7015 }
7016 break;
7017 case DW_LNS_set_column:
7018 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7019 line_ptr += bytes_read;
7020 break;
7021 case DW_LNS_negate_stmt:
7022 is_stmt = (!is_stmt);
7023 break;
7024 case DW_LNS_set_basic_block:
7025 basic_block = 1;
7026 break;
7027 /* Add to the address register of the state machine the
7028 address increment value corresponding to special opcode
7029 255. I.e., this value is scaled by the minimum
7030 instruction length since special opcode 255 would have
7031 scaled the the increment. */
7032 case DW_LNS_const_add_pc:
7033 address += (lh->minimum_instruction_length
7034 * ((255 - lh->opcode_base) / lh->line_range));
7035 break;
7036 case DW_LNS_fixed_advance_pc:
7037 address += read_2_bytes (abfd, line_ptr);
7038 line_ptr += 2;
7039 break;
7040 default:
7041 {
7042 /* Unknown standard opcode, ignore it. */
7043 int i;
7044
7045 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
7046 {
7047 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7048 line_ptr += bytes_read;
7049 }
7050 }
7051 }
7052 }
7053 }
7054
7055 if (decode_for_pst_p)
7056 {
7057 int file_index;
7058
7059 /* Now that we're done scanning the Line Header Program, we can
7060 create the psymtab of each included file. */
7061 for (file_index = 0; file_index < lh->num_file_names; file_index++)
7062 if (lh->file_names[file_index].included_p == 1)
7063 {
7064 const struct file_entry fe = lh->file_names [file_index];
7065 char *include_name = fe.name;
7066 char *dir_name = NULL;
7067 char *pst_filename = pst->filename;
7068
7069 if (fe.dir_index)
7070 dir_name = lh->include_dirs[fe.dir_index - 1];
7071
7072 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
7073 {
7074 include_name = concat (dir_name, SLASH_STRING,
7075 include_name, (char *)NULL);
7076 make_cleanup (xfree, include_name);
7077 }
7078
7079 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
7080 {
7081 pst_filename = concat (pst->dirname, SLASH_STRING,
7082 pst_filename, (char *)NULL);
7083 make_cleanup (xfree, pst_filename);
7084 }
7085
7086 if (strcmp (include_name, pst_filename) != 0)
7087 dwarf2_create_include_psymtab (include_name, pst, objfile);
7088 }
7089 }
7090 else
7091 {
7092 /* Make sure a symtab is created for every file, even files
7093 which contain only variables (i.e. no code with associated
7094 line numbers). */
7095
7096 int i;
7097 struct file_entry *fe;
7098
7099 for (i = 0; i < lh->num_file_names; i++)
7100 {
7101 char *dir = NULL;
7102 fe = &lh->file_names[i];
7103 if (fe->dir_index)
7104 dir = lh->include_dirs[fe->dir_index - 1];
7105 dwarf2_start_subfile (fe->name, dir, comp_dir);
7106
7107 /* Skip the main file; we don't need it, and it must be
7108 allocated last, so that it will show up before the
7109 non-primary symtabs in the objfile's symtab list. */
7110 if (current_subfile == first_subfile)
7111 continue;
7112
7113 if (current_subfile->symtab == NULL)
7114 current_subfile->symtab = allocate_symtab (current_subfile->name,
7115 cu->objfile);
7116 fe->symtab = current_subfile->symtab;
7117 }
7118 }
7119 }
7120
7121 /* Start a subfile for DWARF. FILENAME is the name of the file and
7122 DIRNAME the name of the source directory which contains FILENAME
7123 or NULL if not known. COMP_DIR is the compilation directory for the
7124 linetable's compilation unit or NULL if not known.
7125 This routine tries to keep line numbers from identical absolute and
7126 relative file names in a common subfile.
7127
7128 Using the `list' example from the GDB testsuite, which resides in
7129 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
7130 of /srcdir/list0.c yields the following debugging information for list0.c:
7131
7132 DW_AT_name: /srcdir/list0.c
7133 DW_AT_comp_dir: /compdir
7134 files.files[0].name: list0.h
7135 files.files[0].dir: /srcdir
7136 files.files[1].name: list0.c
7137 files.files[1].dir: /srcdir
7138
7139 The line number information for list0.c has to end up in a single
7140 subfile, so that `break /srcdir/list0.c:1' works as expected.
7141 start_subfile will ensure that this happens provided that we pass the
7142 concatenation of files.files[1].dir and files.files[1].name as the
7143 subfile's name. */
7144
7145 static void
7146 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
7147 {
7148 char *fullname;
7149
7150 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
7151 `start_symtab' will always pass the contents of DW_AT_comp_dir as
7152 second argument to start_subfile. To be consistent, we do the
7153 same here. In order not to lose the line information directory,
7154 we concatenate it to the filename when it makes sense.
7155 Note that the Dwarf3 standard says (speaking of filenames in line
7156 information): ``The directory index is ignored for file names
7157 that represent full path names''. Thus ignoring dirname in the
7158 `else' branch below isn't an issue. */
7159
7160 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
7161 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7162 else
7163 fullname = filename;
7164
7165 start_subfile (fullname, comp_dir);
7166
7167 if (fullname != filename)
7168 xfree (fullname);
7169 }
7170
7171 static void
7172 var_decode_location (struct attribute *attr, struct symbol *sym,
7173 struct dwarf2_cu *cu)
7174 {
7175 struct objfile *objfile = cu->objfile;
7176 struct comp_unit_head *cu_header = &cu->header;
7177
7178 /* NOTE drow/2003-01-30: There used to be a comment and some special
7179 code here to turn a symbol with DW_AT_external and a
7180 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7181 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7182 with some versions of binutils) where shared libraries could have
7183 relocations against symbols in their debug information - the
7184 minimal symbol would have the right address, but the debug info
7185 would not. It's no longer necessary, because we will explicitly
7186 apply relocations when we read in the debug information now. */
7187
7188 /* A DW_AT_location attribute with no contents indicates that a
7189 variable has been optimized away. */
7190 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7191 {
7192 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7193 return;
7194 }
7195
7196 /* Handle one degenerate form of location expression specially, to
7197 preserve GDB's previous behavior when section offsets are
7198 specified. If this is just a DW_OP_addr then mark this symbol
7199 as LOC_STATIC. */
7200
7201 if (attr_form_is_block (attr)
7202 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7203 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7204 {
7205 unsigned int dummy;
7206
7207 SYMBOL_VALUE_ADDRESS (sym) =
7208 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7209 fixup_symbol_section (sym, objfile);
7210 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7211 SYMBOL_SECTION (sym));
7212 SYMBOL_CLASS (sym) = LOC_STATIC;
7213 return;
7214 }
7215
7216 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7217 expression evaluator, and use LOC_COMPUTED only when necessary
7218 (i.e. when the value of a register or memory location is
7219 referenced, or a thread-local block, etc.). Then again, it might
7220 not be worthwhile. I'm assuming that it isn't unless performance
7221 or memory numbers show me otherwise. */
7222
7223 dwarf2_symbol_mark_computed (attr, sym, cu);
7224 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7225 }
7226
7227 /* Given a pointer to a DWARF information entry, figure out if we need
7228 to make a symbol table entry for it, and if so, create a new entry
7229 and return a pointer to it.
7230 If TYPE is NULL, determine symbol type from the die, otherwise
7231 used the passed type. */
7232
7233 static struct symbol *
7234 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7235 {
7236 struct objfile *objfile = cu->objfile;
7237 struct symbol *sym = NULL;
7238 char *name;
7239 struct attribute *attr = NULL;
7240 struct attribute *attr2 = NULL;
7241 CORE_ADDR baseaddr;
7242
7243 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7244
7245 if (die->tag != DW_TAG_namespace)
7246 name = dwarf2_linkage_name (die, cu);
7247 else
7248 name = TYPE_NAME (type);
7249
7250 if (name)
7251 {
7252 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7253 sizeof (struct symbol));
7254 OBJSTAT (objfile, n_syms++);
7255 memset (sym, 0, sizeof (struct symbol));
7256
7257 /* Cache this symbol's name and the name's demangled form (if any). */
7258 SYMBOL_LANGUAGE (sym) = cu->language;
7259 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7260
7261 /* Default assumptions.
7262 Use the passed type or decode it from the die. */
7263 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7264 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7265 if (type != NULL)
7266 SYMBOL_TYPE (sym) = type;
7267 else
7268 SYMBOL_TYPE (sym) = die_type (die, cu);
7269 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7270 if (attr)
7271 {
7272 SYMBOL_LINE (sym) = DW_UNSND (attr);
7273 }
7274
7275 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7276 if (attr)
7277 {
7278 int file_index = DW_UNSND (attr);
7279 if (cu->line_header == NULL
7280 || file_index > cu->line_header->num_file_names)
7281 complaint (&symfile_complaints,
7282 _("file index out of range"));
7283 else if (file_index > 0)
7284 {
7285 struct file_entry *fe;
7286 fe = &cu->line_header->file_names[file_index - 1];
7287 SYMBOL_SYMTAB (sym) = fe->symtab;
7288 }
7289 }
7290
7291 switch (die->tag)
7292 {
7293 case DW_TAG_label:
7294 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7295 if (attr)
7296 {
7297 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7298 }
7299 SYMBOL_CLASS (sym) = LOC_LABEL;
7300 break;
7301 case DW_TAG_subprogram:
7302 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7303 finish_block. */
7304 SYMBOL_CLASS (sym) = LOC_BLOCK;
7305 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7306 if ((attr2 && (DW_UNSND (attr2) != 0))
7307 || cu->language == language_ada)
7308 {
7309 /* Subprograms marked external are stored as a global symbol.
7310 Ada subprograms, whether marked external or not, are always
7311 stored as a global symbol, because we want to be able to
7312 access them globally. For instance, we want to be able
7313 to break on a nested subprogram without having to
7314 specify the context. */
7315 add_symbol_to_list (sym, &global_symbols);
7316 }
7317 else
7318 {
7319 add_symbol_to_list (sym, cu->list_in_scope);
7320 }
7321 break;
7322 case DW_TAG_variable:
7323 /* Compilation with minimal debug info may result in variables
7324 with missing type entries. Change the misleading `void' type
7325 to something sensible. */
7326 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7327 SYMBOL_TYPE (sym)
7328 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7329
7330 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7331 if (attr)
7332 {
7333 dwarf2_const_value (attr, sym, cu);
7334 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7335 if (attr2 && (DW_UNSND (attr2) != 0))
7336 add_symbol_to_list (sym, &global_symbols);
7337 else
7338 add_symbol_to_list (sym, cu->list_in_scope);
7339 break;
7340 }
7341 attr = dwarf2_attr (die, DW_AT_location, cu);
7342 if (attr)
7343 {
7344 var_decode_location (attr, sym, cu);
7345 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7346 if (attr2 && (DW_UNSND (attr2) != 0))
7347 add_symbol_to_list (sym, &global_symbols);
7348 else
7349 add_symbol_to_list (sym, cu->list_in_scope);
7350 }
7351 else
7352 {
7353 /* We do not know the address of this symbol.
7354 If it is an external symbol and we have type information
7355 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7356 The address of the variable will then be determined from
7357 the minimal symbol table whenever the variable is
7358 referenced. */
7359 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7360 if (attr2 && (DW_UNSND (attr2) != 0)
7361 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7362 {
7363 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7364 add_symbol_to_list (sym, &global_symbols);
7365 }
7366 }
7367 break;
7368 case DW_TAG_formal_parameter:
7369 attr = dwarf2_attr (die, DW_AT_location, cu);
7370 if (attr)
7371 {
7372 var_decode_location (attr, sym, cu);
7373 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7374 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7375 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7376 }
7377 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7378 if (attr)
7379 {
7380 dwarf2_const_value (attr, sym, cu);
7381 }
7382 add_symbol_to_list (sym, cu->list_in_scope);
7383 break;
7384 case DW_TAG_unspecified_parameters:
7385 /* From varargs functions; gdb doesn't seem to have any
7386 interest in this information, so just ignore it for now.
7387 (FIXME?) */
7388 break;
7389 case DW_TAG_class_type:
7390 case DW_TAG_interface_type:
7391 case DW_TAG_structure_type:
7392 case DW_TAG_union_type:
7393 case DW_TAG_set_type:
7394 case DW_TAG_enumeration_type:
7395 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7396 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7397
7398 /* Make sure that the symbol includes appropriate enclosing
7399 classes/namespaces in its name. These are calculated in
7400 read_structure_type, and the correct name is saved in
7401 the type. */
7402
7403 if (cu->language == language_cplus
7404 || cu->language == language_java)
7405 {
7406 struct type *type = SYMBOL_TYPE (sym);
7407
7408 if (TYPE_TAG_NAME (type) != NULL)
7409 {
7410 /* FIXME: carlton/2003-11-10: Should this use
7411 SYMBOL_SET_NAMES instead? (The same problem also
7412 arises further down in this function.) */
7413 /* The type's name is already allocated along with
7414 this objfile, so we don't need to duplicate it
7415 for the symbol. */
7416 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7417 }
7418 }
7419
7420 {
7421 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7422 really ever be static objects: otherwise, if you try
7423 to, say, break of a class's method and you're in a file
7424 which doesn't mention that class, it won't work unless
7425 the check for all static symbols in lookup_symbol_aux
7426 saves you. See the OtherFileClass tests in
7427 gdb.c++/namespace.exp. */
7428
7429 struct pending **list_to_add;
7430
7431 list_to_add = (cu->list_in_scope == &file_symbols
7432 && (cu->language == language_cplus
7433 || cu->language == language_java)
7434 ? &global_symbols : cu->list_in_scope);
7435
7436 add_symbol_to_list (sym, list_to_add);
7437
7438 /* The semantics of C++ state that "struct foo { ... }" also
7439 defines a typedef for "foo". A Java class declaration also
7440 defines a typedef for the class. Synthesize a typedef symbol
7441 so that "ptype foo" works as expected. */
7442 if (cu->language == language_cplus
7443 || cu->language == language_java
7444 || cu->language == language_ada)
7445 {
7446 struct symbol *typedef_sym = (struct symbol *)
7447 obstack_alloc (&objfile->objfile_obstack,
7448 sizeof (struct symbol));
7449 *typedef_sym = *sym;
7450 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7451 /* The symbol's name is already allocated along with
7452 this objfile, so we don't need to duplicate it for
7453 the type. */
7454 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7455 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7456 add_symbol_to_list (typedef_sym, list_to_add);
7457 }
7458 }
7459 break;
7460 case DW_TAG_typedef:
7461 if (processing_has_namespace_info
7462 && processing_current_prefix[0] != '\0')
7463 {
7464 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7465 processing_current_prefix,
7466 name, cu);
7467 }
7468 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7469 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7470 add_symbol_to_list (sym, cu->list_in_scope);
7471 break;
7472 case DW_TAG_base_type:
7473 case DW_TAG_subrange_type:
7474 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7475 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7476 add_symbol_to_list (sym, cu->list_in_scope);
7477 break;
7478 case DW_TAG_enumerator:
7479 if (processing_has_namespace_info
7480 && processing_current_prefix[0] != '\0')
7481 {
7482 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7483 processing_current_prefix,
7484 name, cu);
7485 }
7486 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7487 if (attr)
7488 {
7489 dwarf2_const_value (attr, sym, cu);
7490 }
7491 {
7492 /* NOTE: carlton/2003-11-10: See comment above in the
7493 DW_TAG_class_type, etc. block. */
7494
7495 struct pending **list_to_add;
7496
7497 list_to_add = (cu->list_in_scope == &file_symbols
7498 && (cu->language == language_cplus
7499 || cu->language == language_java)
7500 ? &global_symbols : cu->list_in_scope);
7501
7502 add_symbol_to_list (sym, list_to_add);
7503 }
7504 break;
7505 case DW_TAG_namespace:
7506 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7507 add_symbol_to_list (sym, &global_symbols);
7508 break;
7509 default:
7510 /* Not a tag we recognize. Hopefully we aren't processing
7511 trash data, but since we must specifically ignore things
7512 we don't recognize, there is nothing else we should do at
7513 this point. */
7514 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7515 dwarf_tag_name (die->tag));
7516 break;
7517 }
7518 }
7519 return (sym);
7520 }
7521
7522 /* Copy constant value from an attribute to a symbol. */
7523
7524 static void
7525 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7526 struct dwarf2_cu *cu)
7527 {
7528 struct objfile *objfile = cu->objfile;
7529 struct comp_unit_head *cu_header = &cu->header;
7530 struct dwarf_block *blk;
7531
7532 switch (attr->form)
7533 {
7534 case DW_FORM_addr:
7535 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7536 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7537 cu_header->addr_size,
7538 TYPE_LENGTH (SYMBOL_TYPE
7539 (sym)));
7540 SYMBOL_VALUE_BYTES (sym) =
7541 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7542 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7543 it's body - store_unsigned_integer. */
7544 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7545 DW_ADDR (attr));
7546 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7547 break;
7548 case DW_FORM_block1:
7549 case DW_FORM_block2:
7550 case DW_FORM_block4:
7551 case DW_FORM_block:
7552 blk = DW_BLOCK (attr);
7553 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7554 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7555 blk->size,
7556 TYPE_LENGTH (SYMBOL_TYPE
7557 (sym)));
7558 SYMBOL_VALUE_BYTES (sym) =
7559 obstack_alloc (&objfile->objfile_obstack, blk->size);
7560 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7561 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7562 break;
7563
7564 /* The DW_AT_const_value attributes are supposed to carry the
7565 symbol's value "represented as it would be on the target
7566 architecture." By the time we get here, it's already been
7567 converted to host endianness, so we just need to sign- or
7568 zero-extend it as appropriate. */
7569 case DW_FORM_data1:
7570 dwarf2_const_value_data (attr, sym, 8);
7571 break;
7572 case DW_FORM_data2:
7573 dwarf2_const_value_data (attr, sym, 16);
7574 break;
7575 case DW_FORM_data4:
7576 dwarf2_const_value_data (attr, sym, 32);
7577 break;
7578 case DW_FORM_data8:
7579 dwarf2_const_value_data (attr, sym, 64);
7580 break;
7581
7582 case DW_FORM_sdata:
7583 SYMBOL_VALUE (sym) = DW_SND (attr);
7584 SYMBOL_CLASS (sym) = LOC_CONST;
7585 break;
7586
7587 case DW_FORM_udata:
7588 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7589 SYMBOL_CLASS (sym) = LOC_CONST;
7590 break;
7591
7592 default:
7593 complaint (&symfile_complaints,
7594 _("unsupported const value attribute form: '%s'"),
7595 dwarf_form_name (attr->form));
7596 SYMBOL_VALUE (sym) = 0;
7597 SYMBOL_CLASS (sym) = LOC_CONST;
7598 break;
7599 }
7600 }
7601
7602
7603 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7604 or zero-extend it as appropriate for the symbol's type. */
7605 static void
7606 dwarf2_const_value_data (struct attribute *attr,
7607 struct symbol *sym,
7608 int bits)
7609 {
7610 LONGEST l = DW_UNSND (attr);
7611
7612 if (bits < sizeof (l) * 8)
7613 {
7614 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7615 l &= ((LONGEST) 1 << bits) - 1;
7616 else
7617 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7618 }
7619
7620 SYMBOL_VALUE (sym) = l;
7621 SYMBOL_CLASS (sym) = LOC_CONST;
7622 }
7623
7624
7625 /* Return the type of the die in question using its DW_AT_type attribute. */
7626
7627 static struct type *
7628 die_type (struct die_info *die, struct dwarf2_cu *cu)
7629 {
7630 struct type *type;
7631 struct attribute *type_attr;
7632 struct die_info *type_die;
7633
7634 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7635 if (!type_attr)
7636 {
7637 /* A missing DW_AT_type represents a void type. */
7638 return builtin_type (current_gdbarch)->builtin_void;
7639 }
7640 else
7641 type_die = follow_die_ref (die, type_attr, cu);
7642
7643 type = tag_type_to_type (type_die, cu);
7644 if (!type)
7645 {
7646 dump_die (type_die);
7647 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7648 cu->objfile->name);
7649 }
7650 return type;
7651 }
7652
7653 /* Return the containing type of the die in question using its
7654 DW_AT_containing_type attribute. */
7655
7656 static struct type *
7657 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7658 {
7659 struct type *type = NULL;
7660 struct attribute *type_attr;
7661 struct die_info *type_die = NULL;
7662
7663 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7664 if (type_attr)
7665 {
7666 type_die = follow_die_ref (die, type_attr, cu);
7667 type = tag_type_to_type (type_die, cu);
7668 }
7669 if (!type)
7670 {
7671 if (type_die)
7672 dump_die (type_die);
7673 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7674 cu->objfile->name);
7675 }
7676 return type;
7677 }
7678
7679 static struct type *
7680 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7681 {
7682 if (die->type)
7683 {
7684 return die->type;
7685 }
7686 else
7687 {
7688 read_type_die (die, cu);
7689 if (!die->type)
7690 {
7691 dump_die (die);
7692 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7693 cu->objfile->name);
7694 }
7695 return die->type;
7696 }
7697 }
7698
7699 static void
7700 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7701 {
7702 char *prefix = determine_prefix (die, cu);
7703 const char *old_prefix = processing_current_prefix;
7704 struct cleanup *back_to = make_cleanup (xfree, prefix);
7705 processing_current_prefix = prefix;
7706
7707 switch (die->tag)
7708 {
7709 case DW_TAG_class_type:
7710 case DW_TAG_interface_type:
7711 case DW_TAG_structure_type:
7712 case DW_TAG_union_type:
7713 read_structure_type (die, cu);
7714 break;
7715 case DW_TAG_enumeration_type:
7716 read_enumeration_type (die, cu);
7717 break;
7718 case DW_TAG_subprogram:
7719 case DW_TAG_subroutine_type:
7720 read_subroutine_type (die, cu);
7721 break;
7722 case DW_TAG_array_type:
7723 read_array_type (die, cu);
7724 break;
7725 case DW_TAG_set_type:
7726 read_set_type (die, cu);
7727 break;
7728 case DW_TAG_pointer_type:
7729 read_tag_pointer_type (die, cu);
7730 break;
7731 case DW_TAG_ptr_to_member_type:
7732 read_tag_ptr_to_member_type (die, cu);
7733 break;
7734 case DW_TAG_reference_type:
7735 read_tag_reference_type (die, cu);
7736 break;
7737 case DW_TAG_const_type:
7738 read_tag_const_type (die, cu);
7739 break;
7740 case DW_TAG_volatile_type:
7741 read_tag_volatile_type (die, cu);
7742 break;
7743 case DW_TAG_string_type:
7744 read_tag_string_type (die, cu);
7745 break;
7746 case DW_TAG_typedef:
7747 read_typedef (die, cu);
7748 break;
7749 case DW_TAG_subrange_type:
7750 read_subrange_type (die, cu);
7751 break;
7752 case DW_TAG_base_type:
7753 read_base_type (die, cu);
7754 break;
7755 case DW_TAG_unspecified_type:
7756 read_unspecified_type (die, cu);
7757 break;
7758 default:
7759 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7760 dwarf_tag_name (die->tag));
7761 break;
7762 }
7763
7764 processing_current_prefix = old_prefix;
7765 do_cleanups (back_to);
7766 }
7767
7768 /* Return the name of the namespace/class that DIE is defined within,
7769 or "" if we can't tell. The caller should xfree the result. */
7770
7771 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7772 therein) for an example of how to use this function to deal with
7773 DW_AT_specification. */
7774
7775 static char *
7776 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7777 {
7778 struct die_info *parent;
7779
7780 if (cu->language != language_cplus
7781 && cu->language != language_java)
7782 return NULL;
7783
7784 parent = die->parent;
7785
7786 if (parent == NULL)
7787 {
7788 return xstrdup ("");
7789 }
7790 else
7791 {
7792 switch (parent->tag) {
7793 case DW_TAG_namespace:
7794 {
7795 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7796 before doing this check? */
7797 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7798 {
7799 return xstrdup (TYPE_TAG_NAME (parent->type));
7800 }
7801 else
7802 {
7803 int dummy;
7804 char *parent_prefix = determine_prefix (parent, cu);
7805 char *retval = typename_concat (NULL, parent_prefix,
7806 namespace_name (parent, &dummy,
7807 cu),
7808 cu);
7809 xfree (parent_prefix);
7810 return retval;
7811 }
7812 }
7813 break;
7814 case DW_TAG_class_type:
7815 case DW_TAG_interface_type:
7816 case DW_TAG_structure_type:
7817 {
7818 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7819 {
7820 return xstrdup (TYPE_TAG_NAME (parent->type));
7821 }
7822 else
7823 {
7824 const char *old_prefix = processing_current_prefix;
7825 char *new_prefix = determine_prefix (parent, cu);
7826 char *retval;
7827
7828 processing_current_prefix = new_prefix;
7829 retval = determine_class_name (parent, cu);
7830 processing_current_prefix = old_prefix;
7831
7832 xfree (new_prefix);
7833 return retval;
7834 }
7835 }
7836 default:
7837 return determine_prefix (parent, cu);
7838 }
7839 }
7840 }
7841
7842 /* Return a newly-allocated string formed by concatenating PREFIX and
7843 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7844 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7845 perform an obconcat, otherwise allocate storage for the result. The CU argument
7846 is used to determine the language and hence, the appropriate separator. */
7847
7848 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7849
7850 static char *
7851 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7852 struct dwarf2_cu *cu)
7853 {
7854 char *sep;
7855
7856 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7857 sep = "";
7858 else if (cu->language == language_java)
7859 sep = ".";
7860 else
7861 sep = "::";
7862
7863 if (obs == NULL)
7864 {
7865 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7866 retval[0] = '\0';
7867
7868 if (prefix)
7869 {
7870 strcpy (retval, prefix);
7871 strcat (retval, sep);
7872 }
7873 if (suffix)
7874 strcat (retval, suffix);
7875
7876 return retval;
7877 }
7878 else
7879 {
7880 /* We have an obstack. */
7881 return obconcat (obs, prefix, sep, suffix);
7882 }
7883 }
7884
7885 #if 0
7886 struct die_info *
7887 copy_die (struct die_info *old_die)
7888 {
7889 struct die_info *new_die;
7890 int i, num_attrs;
7891
7892 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7893 memset (new_die, 0, sizeof (struct die_info));
7894
7895 new_die->tag = old_die->tag;
7896 new_die->has_children = old_die->has_children;
7897 new_die->abbrev = old_die->abbrev;
7898 new_die->offset = old_die->offset;
7899 new_die->type = NULL;
7900
7901 num_attrs = old_die->num_attrs;
7902 new_die->num_attrs = num_attrs;
7903 new_die->attrs = (struct attribute *)
7904 xmalloc (num_attrs * sizeof (struct attribute));
7905
7906 for (i = 0; i < old_die->num_attrs; ++i)
7907 {
7908 new_die->attrs[i].name = old_die->attrs[i].name;
7909 new_die->attrs[i].form = old_die->attrs[i].form;
7910 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7911 }
7912
7913 new_die->next = NULL;
7914 return new_die;
7915 }
7916 #endif
7917
7918 /* Return sibling of die, NULL if no sibling. */
7919
7920 static struct die_info *
7921 sibling_die (struct die_info *die)
7922 {
7923 return die->sibling;
7924 }
7925
7926 /* Get linkage name of a die, return NULL if not found. */
7927
7928 static char *
7929 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7930 {
7931 struct attribute *attr;
7932
7933 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7934 if (attr && DW_STRING (attr))
7935 return DW_STRING (attr);
7936 attr = dwarf2_attr (die, DW_AT_name, cu);
7937 if (attr && DW_STRING (attr))
7938 return DW_STRING (attr);
7939 return NULL;
7940 }
7941
7942 /* Get name of a die, return NULL if not found. */
7943
7944 static char *
7945 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7946 {
7947 struct attribute *attr;
7948
7949 attr = dwarf2_attr (die, DW_AT_name, cu);
7950 if (attr && DW_STRING (attr))
7951 return DW_STRING (attr);
7952 return NULL;
7953 }
7954
7955 /* Return the die that this die in an extension of, or NULL if there
7956 is none. */
7957
7958 static struct die_info *
7959 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7960 {
7961 struct attribute *attr;
7962
7963 attr = dwarf2_attr (die, DW_AT_extension, cu);
7964 if (attr == NULL)
7965 return NULL;
7966
7967 return follow_die_ref (die, attr, cu);
7968 }
7969
7970 /* Convert a DIE tag into its string name. */
7971
7972 static char *
7973 dwarf_tag_name (unsigned tag)
7974 {
7975 switch (tag)
7976 {
7977 case DW_TAG_padding:
7978 return "DW_TAG_padding";
7979 case DW_TAG_array_type:
7980 return "DW_TAG_array_type";
7981 case DW_TAG_class_type:
7982 return "DW_TAG_class_type";
7983 case DW_TAG_entry_point:
7984 return "DW_TAG_entry_point";
7985 case DW_TAG_enumeration_type:
7986 return "DW_TAG_enumeration_type";
7987 case DW_TAG_formal_parameter:
7988 return "DW_TAG_formal_parameter";
7989 case DW_TAG_imported_declaration:
7990 return "DW_TAG_imported_declaration";
7991 case DW_TAG_label:
7992 return "DW_TAG_label";
7993 case DW_TAG_lexical_block:
7994 return "DW_TAG_lexical_block";
7995 case DW_TAG_member:
7996 return "DW_TAG_member";
7997 case DW_TAG_pointer_type:
7998 return "DW_TAG_pointer_type";
7999 case DW_TAG_reference_type:
8000 return "DW_TAG_reference_type";
8001 case DW_TAG_compile_unit:
8002 return "DW_TAG_compile_unit";
8003 case DW_TAG_string_type:
8004 return "DW_TAG_string_type";
8005 case DW_TAG_structure_type:
8006 return "DW_TAG_structure_type";
8007 case DW_TAG_subroutine_type:
8008 return "DW_TAG_subroutine_type";
8009 case DW_TAG_typedef:
8010 return "DW_TAG_typedef";
8011 case DW_TAG_union_type:
8012 return "DW_TAG_union_type";
8013 case DW_TAG_unspecified_parameters:
8014 return "DW_TAG_unspecified_parameters";
8015 case DW_TAG_variant:
8016 return "DW_TAG_variant";
8017 case DW_TAG_common_block:
8018 return "DW_TAG_common_block";
8019 case DW_TAG_common_inclusion:
8020 return "DW_TAG_common_inclusion";
8021 case DW_TAG_inheritance:
8022 return "DW_TAG_inheritance";
8023 case DW_TAG_inlined_subroutine:
8024 return "DW_TAG_inlined_subroutine";
8025 case DW_TAG_module:
8026 return "DW_TAG_module";
8027 case DW_TAG_ptr_to_member_type:
8028 return "DW_TAG_ptr_to_member_type";
8029 case DW_TAG_set_type:
8030 return "DW_TAG_set_type";
8031 case DW_TAG_subrange_type:
8032 return "DW_TAG_subrange_type";
8033 case DW_TAG_with_stmt:
8034 return "DW_TAG_with_stmt";
8035 case DW_TAG_access_declaration:
8036 return "DW_TAG_access_declaration";
8037 case DW_TAG_base_type:
8038 return "DW_TAG_base_type";
8039 case DW_TAG_catch_block:
8040 return "DW_TAG_catch_block";
8041 case DW_TAG_const_type:
8042 return "DW_TAG_const_type";
8043 case DW_TAG_constant:
8044 return "DW_TAG_constant";
8045 case DW_TAG_enumerator:
8046 return "DW_TAG_enumerator";
8047 case DW_TAG_file_type:
8048 return "DW_TAG_file_type";
8049 case DW_TAG_friend:
8050 return "DW_TAG_friend";
8051 case DW_TAG_namelist:
8052 return "DW_TAG_namelist";
8053 case DW_TAG_namelist_item:
8054 return "DW_TAG_namelist_item";
8055 case DW_TAG_packed_type:
8056 return "DW_TAG_packed_type";
8057 case DW_TAG_subprogram:
8058 return "DW_TAG_subprogram";
8059 case DW_TAG_template_type_param:
8060 return "DW_TAG_template_type_param";
8061 case DW_TAG_template_value_param:
8062 return "DW_TAG_template_value_param";
8063 case DW_TAG_thrown_type:
8064 return "DW_TAG_thrown_type";
8065 case DW_TAG_try_block:
8066 return "DW_TAG_try_block";
8067 case DW_TAG_variant_part:
8068 return "DW_TAG_variant_part";
8069 case DW_TAG_variable:
8070 return "DW_TAG_variable";
8071 case DW_TAG_volatile_type:
8072 return "DW_TAG_volatile_type";
8073 case DW_TAG_dwarf_procedure:
8074 return "DW_TAG_dwarf_procedure";
8075 case DW_TAG_restrict_type:
8076 return "DW_TAG_restrict_type";
8077 case DW_TAG_interface_type:
8078 return "DW_TAG_interface_type";
8079 case DW_TAG_namespace:
8080 return "DW_TAG_namespace";
8081 case DW_TAG_imported_module:
8082 return "DW_TAG_imported_module";
8083 case DW_TAG_unspecified_type:
8084 return "DW_TAG_unspecified_type";
8085 case DW_TAG_partial_unit:
8086 return "DW_TAG_partial_unit";
8087 case DW_TAG_imported_unit:
8088 return "DW_TAG_imported_unit";
8089 case DW_TAG_condition:
8090 return "DW_TAG_condition";
8091 case DW_TAG_shared_type:
8092 return "DW_TAG_shared_type";
8093 case DW_TAG_MIPS_loop:
8094 return "DW_TAG_MIPS_loop";
8095 case DW_TAG_HP_array_descriptor:
8096 return "DW_TAG_HP_array_descriptor";
8097 case DW_TAG_format_label:
8098 return "DW_TAG_format_label";
8099 case DW_TAG_function_template:
8100 return "DW_TAG_function_template";
8101 case DW_TAG_class_template:
8102 return "DW_TAG_class_template";
8103 case DW_TAG_GNU_BINCL:
8104 return "DW_TAG_GNU_BINCL";
8105 case DW_TAG_GNU_EINCL:
8106 return "DW_TAG_GNU_EINCL";
8107 case DW_TAG_upc_shared_type:
8108 return "DW_TAG_upc_shared_type";
8109 case DW_TAG_upc_strict_type:
8110 return "DW_TAG_upc_strict_type";
8111 case DW_TAG_upc_relaxed_type:
8112 return "DW_TAG_upc_relaxed_type";
8113 case DW_TAG_PGI_kanji_type:
8114 return "DW_TAG_PGI_kanji_type";
8115 case DW_TAG_PGI_interface_block:
8116 return "DW_TAG_PGI_interface_block";
8117 default:
8118 return "DW_TAG_<unknown>";
8119 }
8120 }
8121
8122 /* Convert a DWARF attribute code into its string name. */
8123
8124 static char *
8125 dwarf_attr_name (unsigned attr)
8126 {
8127 switch (attr)
8128 {
8129 case DW_AT_sibling:
8130 return "DW_AT_sibling";
8131 case DW_AT_location:
8132 return "DW_AT_location";
8133 case DW_AT_name:
8134 return "DW_AT_name";
8135 case DW_AT_ordering:
8136 return "DW_AT_ordering";
8137 case DW_AT_subscr_data:
8138 return "DW_AT_subscr_data";
8139 case DW_AT_byte_size:
8140 return "DW_AT_byte_size";
8141 case DW_AT_bit_offset:
8142 return "DW_AT_bit_offset";
8143 case DW_AT_bit_size:
8144 return "DW_AT_bit_size";
8145 case DW_AT_element_list:
8146 return "DW_AT_element_list";
8147 case DW_AT_stmt_list:
8148 return "DW_AT_stmt_list";
8149 case DW_AT_low_pc:
8150 return "DW_AT_low_pc";
8151 case DW_AT_high_pc:
8152 return "DW_AT_high_pc";
8153 case DW_AT_language:
8154 return "DW_AT_language";
8155 case DW_AT_member:
8156 return "DW_AT_member";
8157 case DW_AT_discr:
8158 return "DW_AT_discr";
8159 case DW_AT_discr_value:
8160 return "DW_AT_discr_value";
8161 case DW_AT_visibility:
8162 return "DW_AT_visibility";
8163 case DW_AT_import:
8164 return "DW_AT_import";
8165 case DW_AT_string_length:
8166 return "DW_AT_string_length";
8167 case DW_AT_common_reference:
8168 return "DW_AT_common_reference";
8169 case DW_AT_comp_dir:
8170 return "DW_AT_comp_dir";
8171 case DW_AT_const_value:
8172 return "DW_AT_const_value";
8173 case DW_AT_containing_type:
8174 return "DW_AT_containing_type";
8175 case DW_AT_default_value:
8176 return "DW_AT_default_value";
8177 case DW_AT_inline:
8178 return "DW_AT_inline";
8179 case DW_AT_is_optional:
8180 return "DW_AT_is_optional";
8181 case DW_AT_lower_bound:
8182 return "DW_AT_lower_bound";
8183 case DW_AT_producer:
8184 return "DW_AT_producer";
8185 case DW_AT_prototyped:
8186 return "DW_AT_prototyped";
8187 case DW_AT_return_addr:
8188 return "DW_AT_return_addr";
8189 case DW_AT_start_scope:
8190 return "DW_AT_start_scope";
8191 case DW_AT_bit_stride:
8192 return "DW_AT_bit_stride";
8193 case DW_AT_upper_bound:
8194 return "DW_AT_upper_bound";
8195 case DW_AT_abstract_origin:
8196 return "DW_AT_abstract_origin";
8197 case DW_AT_accessibility:
8198 return "DW_AT_accessibility";
8199 case DW_AT_address_class:
8200 return "DW_AT_address_class";
8201 case DW_AT_artificial:
8202 return "DW_AT_artificial";
8203 case DW_AT_base_types:
8204 return "DW_AT_base_types";
8205 case DW_AT_calling_convention:
8206 return "DW_AT_calling_convention";
8207 case DW_AT_count:
8208 return "DW_AT_count";
8209 case DW_AT_data_member_location:
8210 return "DW_AT_data_member_location";
8211 case DW_AT_decl_column:
8212 return "DW_AT_decl_column";
8213 case DW_AT_decl_file:
8214 return "DW_AT_decl_file";
8215 case DW_AT_decl_line:
8216 return "DW_AT_decl_line";
8217 case DW_AT_declaration:
8218 return "DW_AT_declaration";
8219 case DW_AT_discr_list:
8220 return "DW_AT_discr_list";
8221 case DW_AT_encoding:
8222 return "DW_AT_encoding";
8223 case DW_AT_external:
8224 return "DW_AT_external";
8225 case DW_AT_frame_base:
8226 return "DW_AT_frame_base";
8227 case DW_AT_friend:
8228 return "DW_AT_friend";
8229 case DW_AT_identifier_case:
8230 return "DW_AT_identifier_case";
8231 case DW_AT_macro_info:
8232 return "DW_AT_macro_info";
8233 case DW_AT_namelist_items:
8234 return "DW_AT_namelist_items";
8235 case DW_AT_priority:
8236 return "DW_AT_priority";
8237 case DW_AT_segment:
8238 return "DW_AT_segment";
8239 case DW_AT_specification:
8240 return "DW_AT_specification";
8241 case DW_AT_static_link:
8242 return "DW_AT_static_link";
8243 case DW_AT_type:
8244 return "DW_AT_type";
8245 case DW_AT_use_location:
8246 return "DW_AT_use_location";
8247 case DW_AT_variable_parameter:
8248 return "DW_AT_variable_parameter";
8249 case DW_AT_virtuality:
8250 return "DW_AT_virtuality";
8251 case DW_AT_vtable_elem_location:
8252 return "DW_AT_vtable_elem_location";
8253 /* DWARF 3 values. */
8254 case DW_AT_allocated:
8255 return "DW_AT_allocated";
8256 case DW_AT_associated:
8257 return "DW_AT_associated";
8258 case DW_AT_data_location:
8259 return "DW_AT_data_location";
8260 case DW_AT_byte_stride:
8261 return "DW_AT_byte_stride";
8262 case DW_AT_entry_pc:
8263 return "DW_AT_entry_pc";
8264 case DW_AT_use_UTF8:
8265 return "DW_AT_use_UTF8";
8266 case DW_AT_extension:
8267 return "DW_AT_extension";
8268 case DW_AT_ranges:
8269 return "DW_AT_ranges";
8270 case DW_AT_trampoline:
8271 return "DW_AT_trampoline";
8272 case DW_AT_call_column:
8273 return "DW_AT_call_column";
8274 case DW_AT_call_file:
8275 return "DW_AT_call_file";
8276 case DW_AT_call_line:
8277 return "DW_AT_call_line";
8278 case DW_AT_description:
8279 return "DW_AT_description";
8280 case DW_AT_binary_scale:
8281 return "DW_AT_binary_scale";
8282 case DW_AT_decimal_scale:
8283 return "DW_AT_decimal_scale";
8284 case DW_AT_small:
8285 return "DW_AT_small";
8286 case DW_AT_decimal_sign:
8287 return "DW_AT_decimal_sign";
8288 case DW_AT_digit_count:
8289 return "DW_AT_digit_count";
8290 case DW_AT_picture_string:
8291 return "DW_AT_picture_string";
8292 case DW_AT_mutable:
8293 return "DW_AT_mutable";
8294 case DW_AT_threads_scaled:
8295 return "DW_AT_threads_scaled";
8296 case DW_AT_explicit:
8297 return "DW_AT_explicit";
8298 case DW_AT_object_pointer:
8299 return "DW_AT_object_pointer";
8300 case DW_AT_endianity:
8301 return "DW_AT_endianity";
8302 case DW_AT_elemental:
8303 return "DW_AT_elemental";
8304 case DW_AT_pure:
8305 return "DW_AT_pure";
8306 case DW_AT_recursive:
8307 return "DW_AT_recursive";
8308 #ifdef MIPS
8309 /* SGI/MIPS extensions. */
8310 case DW_AT_MIPS_fde:
8311 return "DW_AT_MIPS_fde";
8312 case DW_AT_MIPS_loop_begin:
8313 return "DW_AT_MIPS_loop_begin";
8314 case DW_AT_MIPS_tail_loop_begin:
8315 return "DW_AT_MIPS_tail_loop_begin";
8316 case DW_AT_MIPS_epilog_begin:
8317 return "DW_AT_MIPS_epilog_begin";
8318 case DW_AT_MIPS_loop_unroll_factor:
8319 return "DW_AT_MIPS_loop_unroll_factor";
8320 case DW_AT_MIPS_software_pipeline_depth:
8321 return "DW_AT_MIPS_software_pipeline_depth";
8322 case DW_AT_MIPS_linkage_name:
8323 return "DW_AT_MIPS_linkage_name";
8324 case DW_AT_MIPS_stride:
8325 return "DW_AT_MIPS_stride";
8326 case DW_AT_MIPS_abstract_name:
8327 return "DW_AT_MIPS_abstract_name";
8328 case DW_AT_MIPS_clone_origin:
8329 return "DW_AT_MIPS_clone_origin";
8330 case DW_AT_MIPS_has_inlines:
8331 return "DW_AT_MIPS_has_inlines";
8332 #endif
8333 /* HP extensions. */
8334 case DW_AT_HP_block_index:
8335 return "DW_AT_HP_block_index";
8336 case DW_AT_HP_unmodifiable:
8337 return "DW_AT_HP_unmodifiable";
8338 case DW_AT_HP_actuals_stmt_list:
8339 return "DW_AT_HP_actuals_stmt_list";
8340 case DW_AT_HP_proc_per_section:
8341 return "DW_AT_HP_proc_per_section";
8342 case DW_AT_HP_raw_data_ptr:
8343 return "DW_AT_HP_raw_data_ptr";
8344 case DW_AT_HP_pass_by_reference:
8345 return "DW_AT_HP_pass_by_reference";
8346 case DW_AT_HP_opt_level:
8347 return "DW_AT_HP_opt_level";
8348 case DW_AT_HP_prof_version_id:
8349 return "DW_AT_HP_prof_version_id";
8350 case DW_AT_HP_opt_flags:
8351 return "DW_AT_HP_opt_flags";
8352 case DW_AT_HP_cold_region_low_pc:
8353 return "DW_AT_HP_cold_region_low_pc";
8354 case DW_AT_HP_cold_region_high_pc:
8355 return "DW_AT_HP_cold_region_high_pc";
8356 case DW_AT_HP_all_variables_modifiable:
8357 return "DW_AT_HP_all_variables_modifiable";
8358 case DW_AT_HP_linkage_name:
8359 return "DW_AT_HP_linkage_name";
8360 case DW_AT_HP_prof_flags:
8361 return "DW_AT_HP_prof_flags";
8362 /* GNU extensions. */
8363 case DW_AT_sf_names:
8364 return "DW_AT_sf_names";
8365 case DW_AT_src_info:
8366 return "DW_AT_src_info";
8367 case DW_AT_mac_info:
8368 return "DW_AT_mac_info";
8369 case DW_AT_src_coords:
8370 return "DW_AT_src_coords";
8371 case DW_AT_body_begin:
8372 return "DW_AT_body_begin";
8373 case DW_AT_body_end:
8374 return "DW_AT_body_end";
8375 case DW_AT_GNU_vector:
8376 return "DW_AT_GNU_vector";
8377 /* VMS extensions. */
8378 case DW_AT_VMS_rtnbeg_pd_address:
8379 return "DW_AT_VMS_rtnbeg_pd_address";
8380 /* UPC extension. */
8381 case DW_AT_upc_threads_scaled:
8382 return "DW_AT_upc_threads_scaled";
8383 /* PGI (STMicroelectronics) extensions. */
8384 case DW_AT_PGI_lbase:
8385 return "DW_AT_PGI_lbase";
8386 case DW_AT_PGI_soffset:
8387 return "DW_AT_PGI_soffset";
8388 case DW_AT_PGI_lstride:
8389 return "DW_AT_PGI_lstride";
8390 default:
8391 return "DW_AT_<unknown>";
8392 }
8393 }
8394
8395 /* Convert a DWARF value form code into its string name. */
8396
8397 static char *
8398 dwarf_form_name (unsigned form)
8399 {
8400 switch (form)
8401 {
8402 case DW_FORM_addr:
8403 return "DW_FORM_addr";
8404 case DW_FORM_block2:
8405 return "DW_FORM_block2";
8406 case DW_FORM_block4:
8407 return "DW_FORM_block4";
8408 case DW_FORM_data2:
8409 return "DW_FORM_data2";
8410 case DW_FORM_data4:
8411 return "DW_FORM_data4";
8412 case DW_FORM_data8:
8413 return "DW_FORM_data8";
8414 case DW_FORM_string:
8415 return "DW_FORM_string";
8416 case DW_FORM_block:
8417 return "DW_FORM_block";
8418 case DW_FORM_block1:
8419 return "DW_FORM_block1";
8420 case DW_FORM_data1:
8421 return "DW_FORM_data1";
8422 case DW_FORM_flag:
8423 return "DW_FORM_flag";
8424 case DW_FORM_sdata:
8425 return "DW_FORM_sdata";
8426 case DW_FORM_strp:
8427 return "DW_FORM_strp";
8428 case DW_FORM_udata:
8429 return "DW_FORM_udata";
8430 case DW_FORM_ref_addr:
8431 return "DW_FORM_ref_addr";
8432 case DW_FORM_ref1:
8433 return "DW_FORM_ref1";
8434 case DW_FORM_ref2:
8435 return "DW_FORM_ref2";
8436 case DW_FORM_ref4:
8437 return "DW_FORM_ref4";
8438 case DW_FORM_ref8:
8439 return "DW_FORM_ref8";
8440 case DW_FORM_ref_udata:
8441 return "DW_FORM_ref_udata";
8442 case DW_FORM_indirect:
8443 return "DW_FORM_indirect";
8444 default:
8445 return "DW_FORM_<unknown>";
8446 }
8447 }
8448
8449 /* Convert a DWARF stack opcode into its string name. */
8450
8451 static char *
8452 dwarf_stack_op_name (unsigned op)
8453 {
8454 switch (op)
8455 {
8456 case DW_OP_addr:
8457 return "DW_OP_addr";
8458 case DW_OP_deref:
8459 return "DW_OP_deref";
8460 case DW_OP_const1u:
8461 return "DW_OP_const1u";
8462 case DW_OP_const1s:
8463 return "DW_OP_const1s";
8464 case DW_OP_const2u:
8465 return "DW_OP_const2u";
8466 case DW_OP_const2s:
8467 return "DW_OP_const2s";
8468 case DW_OP_const4u:
8469 return "DW_OP_const4u";
8470 case DW_OP_const4s:
8471 return "DW_OP_const4s";
8472 case DW_OP_const8u:
8473 return "DW_OP_const8u";
8474 case DW_OP_const8s:
8475 return "DW_OP_const8s";
8476 case DW_OP_constu:
8477 return "DW_OP_constu";
8478 case DW_OP_consts:
8479 return "DW_OP_consts";
8480 case DW_OP_dup:
8481 return "DW_OP_dup";
8482 case DW_OP_drop:
8483 return "DW_OP_drop";
8484 case DW_OP_over:
8485 return "DW_OP_over";
8486 case DW_OP_pick:
8487 return "DW_OP_pick";
8488 case DW_OP_swap:
8489 return "DW_OP_swap";
8490 case DW_OP_rot:
8491 return "DW_OP_rot";
8492 case DW_OP_xderef:
8493 return "DW_OP_xderef";
8494 case DW_OP_abs:
8495 return "DW_OP_abs";
8496 case DW_OP_and:
8497 return "DW_OP_and";
8498 case DW_OP_div:
8499 return "DW_OP_div";
8500 case DW_OP_minus:
8501 return "DW_OP_minus";
8502 case DW_OP_mod:
8503 return "DW_OP_mod";
8504 case DW_OP_mul:
8505 return "DW_OP_mul";
8506 case DW_OP_neg:
8507 return "DW_OP_neg";
8508 case DW_OP_not:
8509 return "DW_OP_not";
8510 case DW_OP_or:
8511 return "DW_OP_or";
8512 case DW_OP_plus:
8513 return "DW_OP_plus";
8514 case DW_OP_plus_uconst:
8515 return "DW_OP_plus_uconst";
8516 case DW_OP_shl:
8517 return "DW_OP_shl";
8518 case DW_OP_shr:
8519 return "DW_OP_shr";
8520 case DW_OP_shra:
8521 return "DW_OP_shra";
8522 case DW_OP_xor:
8523 return "DW_OP_xor";
8524 case DW_OP_bra:
8525 return "DW_OP_bra";
8526 case DW_OP_eq:
8527 return "DW_OP_eq";
8528 case DW_OP_ge:
8529 return "DW_OP_ge";
8530 case DW_OP_gt:
8531 return "DW_OP_gt";
8532 case DW_OP_le:
8533 return "DW_OP_le";
8534 case DW_OP_lt:
8535 return "DW_OP_lt";
8536 case DW_OP_ne:
8537 return "DW_OP_ne";
8538 case DW_OP_skip:
8539 return "DW_OP_skip";
8540 case DW_OP_lit0:
8541 return "DW_OP_lit0";
8542 case DW_OP_lit1:
8543 return "DW_OP_lit1";
8544 case DW_OP_lit2:
8545 return "DW_OP_lit2";
8546 case DW_OP_lit3:
8547 return "DW_OP_lit3";
8548 case DW_OP_lit4:
8549 return "DW_OP_lit4";
8550 case DW_OP_lit5:
8551 return "DW_OP_lit5";
8552 case DW_OP_lit6:
8553 return "DW_OP_lit6";
8554 case DW_OP_lit7:
8555 return "DW_OP_lit7";
8556 case DW_OP_lit8:
8557 return "DW_OP_lit8";
8558 case DW_OP_lit9:
8559 return "DW_OP_lit9";
8560 case DW_OP_lit10:
8561 return "DW_OP_lit10";
8562 case DW_OP_lit11:
8563 return "DW_OP_lit11";
8564 case DW_OP_lit12:
8565 return "DW_OP_lit12";
8566 case DW_OP_lit13:
8567 return "DW_OP_lit13";
8568 case DW_OP_lit14:
8569 return "DW_OP_lit14";
8570 case DW_OP_lit15:
8571 return "DW_OP_lit15";
8572 case DW_OP_lit16:
8573 return "DW_OP_lit16";
8574 case DW_OP_lit17:
8575 return "DW_OP_lit17";
8576 case DW_OP_lit18:
8577 return "DW_OP_lit18";
8578 case DW_OP_lit19:
8579 return "DW_OP_lit19";
8580 case DW_OP_lit20:
8581 return "DW_OP_lit20";
8582 case DW_OP_lit21:
8583 return "DW_OP_lit21";
8584 case DW_OP_lit22:
8585 return "DW_OP_lit22";
8586 case DW_OP_lit23:
8587 return "DW_OP_lit23";
8588 case DW_OP_lit24:
8589 return "DW_OP_lit24";
8590 case DW_OP_lit25:
8591 return "DW_OP_lit25";
8592 case DW_OP_lit26:
8593 return "DW_OP_lit26";
8594 case DW_OP_lit27:
8595 return "DW_OP_lit27";
8596 case DW_OP_lit28:
8597 return "DW_OP_lit28";
8598 case DW_OP_lit29:
8599 return "DW_OP_lit29";
8600 case DW_OP_lit30:
8601 return "DW_OP_lit30";
8602 case DW_OP_lit31:
8603 return "DW_OP_lit31";
8604 case DW_OP_reg0:
8605 return "DW_OP_reg0";
8606 case DW_OP_reg1:
8607 return "DW_OP_reg1";
8608 case DW_OP_reg2:
8609 return "DW_OP_reg2";
8610 case DW_OP_reg3:
8611 return "DW_OP_reg3";
8612 case DW_OP_reg4:
8613 return "DW_OP_reg4";
8614 case DW_OP_reg5:
8615 return "DW_OP_reg5";
8616 case DW_OP_reg6:
8617 return "DW_OP_reg6";
8618 case DW_OP_reg7:
8619 return "DW_OP_reg7";
8620 case DW_OP_reg8:
8621 return "DW_OP_reg8";
8622 case DW_OP_reg9:
8623 return "DW_OP_reg9";
8624 case DW_OP_reg10:
8625 return "DW_OP_reg10";
8626 case DW_OP_reg11:
8627 return "DW_OP_reg11";
8628 case DW_OP_reg12:
8629 return "DW_OP_reg12";
8630 case DW_OP_reg13:
8631 return "DW_OP_reg13";
8632 case DW_OP_reg14:
8633 return "DW_OP_reg14";
8634 case DW_OP_reg15:
8635 return "DW_OP_reg15";
8636 case DW_OP_reg16:
8637 return "DW_OP_reg16";
8638 case DW_OP_reg17:
8639 return "DW_OP_reg17";
8640 case DW_OP_reg18:
8641 return "DW_OP_reg18";
8642 case DW_OP_reg19:
8643 return "DW_OP_reg19";
8644 case DW_OP_reg20:
8645 return "DW_OP_reg20";
8646 case DW_OP_reg21:
8647 return "DW_OP_reg21";
8648 case DW_OP_reg22:
8649 return "DW_OP_reg22";
8650 case DW_OP_reg23:
8651 return "DW_OP_reg23";
8652 case DW_OP_reg24:
8653 return "DW_OP_reg24";
8654 case DW_OP_reg25:
8655 return "DW_OP_reg25";
8656 case DW_OP_reg26:
8657 return "DW_OP_reg26";
8658 case DW_OP_reg27:
8659 return "DW_OP_reg27";
8660 case DW_OP_reg28:
8661 return "DW_OP_reg28";
8662 case DW_OP_reg29:
8663 return "DW_OP_reg29";
8664 case DW_OP_reg30:
8665 return "DW_OP_reg30";
8666 case DW_OP_reg31:
8667 return "DW_OP_reg31";
8668 case DW_OP_breg0:
8669 return "DW_OP_breg0";
8670 case DW_OP_breg1:
8671 return "DW_OP_breg1";
8672 case DW_OP_breg2:
8673 return "DW_OP_breg2";
8674 case DW_OP_breg3:
8675 return "DW_OP_breg3";
8676 case DW_OP_breg4:
8677 return "DW_OP_breg4";
8678 case DW_OP_breg5:
8679 return "DW_OP_breg5";
8680 case DW_OP_breg6:
8681 return "DW_OP_breg6";
8682 case DW_OP_breg7:
8683 return "DW_OP_breg7";
8684 case DW_OP_breg8:
8685 return "DW_OP_breg8";
8686 case DW_OP_breg9:
8687 return "DW_OP_breg9";
8688 case DW_OP_breg10:
8689 return "DW_OP_breg10";
8690 case DW_OP_breg11:
8691 return "DW_OP_breg11";
8692 case DW_OP_breg12:
8693 return "DW_OP_breg12";
8694 case DW_OP_breg13:
8695 return "DW_OP_breg13";
8696 case DW_OP_breg14:
8697 return "DW_OP_breg14";
8698 case DW_OP_breg15:
8699 return "DW_OP_breg15";
8700 case DW_OP_breg16:
8701 return "DW_OP_breg16";
8702 case DW_OP_breg17:
8703 return "DW_OP_breg17";
8704 case DW_OP_breg18:
8705 return "DW_OP_breg18";
8706 case DW_OP_breg19:
8707 return "DW_OP_breg19";
8708 case DW_OP_breg20:
8709 return "DW_OP_breg20";
8710 case DW_OP_breg21:
8711 return "DW_OP_breg21";
8712 case DW_OP_breg22:
8713 return "DW_OP_breg22";
8714 case DW_OP_breg23:
8715 return "DW_OP_breg23";
8716 case DW_OP_breg24:
8717 return "DW_OP_breg24";
8718 case DW_OP_breg25:
8719 return "DW_OP_breg25";
8720 case DW_OP_breg26:
8721 return "DW_OP_breg26";
8722 case DW_OP_breg27:
8723 return "DW_OP_breg27";
8724 case DW_OP_breg28:
8725 return "DW_OP_breg28";
8726 case DW_OP_breg29:
8727 return "DW_OP_breg29";
8728 case DW_OP_breg30:
8729 return "DW_OP_breg30";
8730 case DW_OP_breg31:
8731 return "DW_OP_breg31";
8732 case DW_OP_regx:
8733 return "DW_OP_regx";
8734 case DW_OP_fbreg:
8735 return "DW_OP_fbreg";
8736 case DW_OP_bregx:
8737 return "DW_OP_bregx";
8738 case DW_OP_piece:
8739 return "DW_OP_piece";
8740 case DW_OP_deref_size:
8741 return "DW_OP_deref_size";
8742 case DW_OP_xderef_size:
8743 return "DW_OP_xderef_size";
8744 case DW_OP_nop:
8745 return "DW_OP_nop";
8746 /* DWARF 3 extensions. */
8747 case DW_OP_push_object_address:
8748 return "DW_OP_push_object_address";
8749 case DW_OP_call2:
8750 return "DW_OP_call2";
8751 case DW_OP_call4:
8752 return "DW_OP_call4";
8753 case DW_OP_call_ref:
8754 return "DW_OP_call_ref";
8755 /* GNU extensions. */
8756 case DW_OP_form_tls_address:
8757 return "DW_OP_form_tls_address";
8758 case DW_OP_call_frame_cfa:
8759 return "DW_OP_call_frame_cfa";
8760 case DW_OP_bit_piece:
8761 return "DW_OP_bit_piece";
8762 case DW_OP_GNU_push_tls_address:
8763 return "DW_OP_GNU_push_tls_address";
8764 case DW_OP_GNU_uninit:
8765 return "DW_OP_GNU_uninit";
8766 /* HP extensions. */
8767 case DW_OP_HP_is_value:
8768 return "DW_OP_HP_is_value";
8769 case DW_OP_HP_fltconst4:
8770 return "DW_OP_HP_fltconst4";
8771 case DW_OP_HP_fltconst8:
8772 return "DW_OP_HP_fltconst8";
8773 case DW_OP_HP_mod_range:
8774 return "DW_OP_HP_mod_range";
8775 case DW_OP_HP_unmod_range:
8776 return "DW_OP_HP_unmod_range";
8777 case DW_OP_HP_tls:
8778 return "DW_OP_HP_tls";
8779 default:
8780 return "OP_<unknown>";
8781 }
8782 }
8783
8784 static char *
8785 dwarf_bool_name (unsigned mybool)
8786 {
8787 if (mybool)
8788 return "TRUE";
8789 else
8790 return "FALSE";
8791 }
8792
8793 /* Convert a DWARF type code into its string name. */
8794
8795 static char *
8796 dwarf_type_encoding_name (unsigned enc)
8797 {
8798 switch (enc)
8799 {
8800 case DW_ATE_void:
8801 return "DW_ATE_void";
8802 case DW_ATE_address:
8803 return "DW_ATE_address";
8804 case DW_ATE_boolean:
8805 return "DW_ATE_boolean";
8806 case DW_ATE_complex_float:
8807 return "DW_ATE_complex_float";
8808 case DW_ATE_float:
8809 return "DW_ATE_float";
8810 case DW_ATE_signed:
8811 return "DW_ATE_signed";
8812 case DW_ATE_signed_char:
8813 return "DW_ATE_signed_char";
8814 case DW_ATE_unsigned:
8815 return "DW_ATE_unsigned";
8816 case DW_ATE_unsigned_char:
8817 return "DW_ATE_unsigned_char";
8818 /* DWARF 3. */
8819 case DW_ATE_imaginary_float:
8820 return "DW_ATE_imaginary_float";
8821 case DW_ATE_packed_decimal:
8822 return "DW_ATE_packed_decimal";
8823 case DW_ATE_numeric_string:
8824 return "DW_ATE_numeric_string";
8825 case DW_ATE_edited:
8826 return "DW_ATE_edited";
8827 case DW_ATE_signed_fixed:
8828 return "DW_ATE_signed_fixed";
8829 case DW_ATE_unsigned_fixed:
8830 return "DW_ATE_unsigned_fixed";
8831 case DW_ATE_decimal_float:
8832 return "DW_ATE_decimal_float";
8833 /* HP extensions. */
8834 case DW_ATE_HP_float80:
8835 return "DW_ATE_HP_float80";
8836 case DW_ATE_HP_complex_float80:
8837 return "DW_ATE_HP_complex_float80";
8838 case DW_ATE_HP_float128:
8839 return "DW_ATE_HP_float128";
8840 case DW_ATE_HP_complex_float128:
8841 return "DW_ATE_HP_complex_float128";
8842 case DW_ATE_HP_floathpintel:
8843 return "DW_ATE_HP_floathpintel";
8844 case DW_ATE_HP_imaginary_float80:
8845 return "DW_ATE_HP_imaginary_float80";
8846 case DW_ATE_HP_imaginary_float128:
8847 return "DW_ATE_HP_imaginary_float128";
8848 default:
8849 return "DW_ATE_<unknown>";
8850 }
8851 }
8852
8853 /* Convert a DWARF call frame info operation to its string name. */
8854
8855 #if 0
8856 static char *
8857 dwarf_cfi_name (unsigned cfi_opc)
8858 {
8859 switch (cfi_opc)
8860 {
8861 case DW_CFA_advance_loc:
8862 return "DW_CFA_advance_loc";
8863 case DW_CFA_offset:
8864 return "DW_CFA_offset";
8865 case DW_CFA_restore:
8866 return "DW_CFA_restore";
8867 case DW_CFA_nop:
8868 return "DW_CFA_nop";
8869 case DW_CFA_set_loc:
8870 return "DW_CFA_set_loc";
8871 case DW_CFA_advance_loc1:
8872 return "DW_CFA_advance_loc1";
8873 case DW_CFA_advance_loc2:
8874 return "DW_CFA_advance_loc2";
8875 case DW_CFA_advance_loc4:
8876 return "DW_CFA_advance_loc4";
8877 case DW_CFA_offset_extended:
8878 return "DW_CFA_offset_extended";
8879 case DW_CFA_restore_extended:
8880 return "DW_CFA_restore_extended";
8881 case DW_CFA_undefined:
8882 return "DW_CFA_undefined";
8883 case DW_CFA_same_value:
8884 return "DW_CFA_same_value";
8885 case DW_CFA_register:
8886 return "DW_CFA_register";
8887 case DW_CFA_remember_state:
8888 return "DW_CFA_remember_state";
8889 case DW_CFA_restore_state:
8890 return "DW_CFA_restore_state";
8891 case DW_CFA_def_cfa:
8892 return "DW_CFA_def_cfa";
8893 case DW_CFA_def_cfa_register:
8894 return "DW_CFA_def_cfa_register";
8895 case DW_CFA_def_cfa_offset:
8896 return "DW_CFA_def_cfa_offset";
8897 /* DWARF 3. */
8898 case DW_CFA_def_cfa_expression:
8899 return "DW_CFA_def_cfa_expression";
8900 case DW_CFA_expression:
8901 return "DW_CFA_expression";
8902 case DW_CFA_offset_extended_sf:
8903 return "DW_CFA_offset_extended_sf";
8904 case DW_CFA_def_cfa_sf:
8905 return "DW_CFA_def_cfa_sf";
8906 case DW_CFA_def_cfa_offset_sf:
8907 return "DW_CFA_def_cfa_offset_sf";
8908 case DW_CFA_val_offset:
8909 return "DW_CFA_val_offset";
8910 case DW_CFA_val_offset_sf:
8911 return "DW_CFA_val_offset_sf";
8912 case DW_CFA_val_expression:
8913 return "DW_CFA_val_expression";
8914 /* SGI/MIPS specific. */
8915 case DW_CFA_MIPS_advance_loc8:
8916 return "DW_CFA_MIPS_advance_loc8";
8917 /* GNU extensions. */
8918 case DW_CFA_GNU_window_save:
8919 return "DW_CFA_GNU_window_save";
8920 case DW_CFA_GNU_args_size:
8921 return "DW_CFA_GNU_args_size";
8922 case DW_CFA_GNU_negative_offset_extended:
8923 return "DW_CFA_GNU_negative_offset_extended";
8924 default:
8925 return "DW_CFA_<unknown>";
8926 }
8927 }
8928 #endif
8929
8930 static void
8931 dump_die (struct die_info *die)
8932 {
8933 unsigned int i;
8934
8935 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8936 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8937 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8938 dwarf_bool_name (die->child != NULL));
8939
8940 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8941 for (i = 0; i < die->num_attrs; ++i)
8942 {
8943 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8944 dwarf_attr_name (die->attrs[i].name),
8945 dwarf_form_name (die->attrs[i].form));
8946 switch (die->attrs[i].form)
8947 {
8948 case DW_FORM_ref_addr:
8949 case DW_FORM_addr:
8950 fprintf_unfiltered (gdb_stderr, "address: ");
8951 fputs_filtered (paddress (DW_ADDR (&die->attrs[i])), gdb_stderr);
8952 break;
8953 case DW_FORM_block2:
8954 case DW_FORM_block4:
8955 case DW_FORM_block:
8956 case DW_FORM_block1:
8957 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8958 break;
8959 case DW_FORM_ref1:
8960 case DW_FORM_ref2:
8961 case DW_FORM_ref4:
8962 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8963 (long) (DW_ADDR (&die->attrs[i])));
8964 break;
8965 case DW_FORM_data1:
8966 case DW_FORM_data2:
8967 case DW_FORM_data4:
8968 case DW_FORM_data8:
8969 case DW_FORM_udata:
8970 case DW_FORM_sdata:
8971 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8972 break;
8973 case DW_FORM_string:
8974 case DW_FORM_strp:
8975 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8976 DW_STRING (&die->attrs[i])
8977 ? DW_STRING (&die->attrs[i]) : "");
8978 break;
8979 case DW_FORM_flag:
8980 if (DW_UNSND (&die->attrs[i]))
8981 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8982 else
8983 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8984 break;
8985 case DW_FORM_indirect:
8986 /* the reader will have reduced the indirect form to
8987 the "base form" so this form should not occur */
8988 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8989 break;
8990 default:
8991 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8992 die->attrs[i].form);
8993 }
8994 fprintf_unfiltered (gdb_stderr, "\n");
8995 }
8996 }
8997
8998 static void
8999 dump_die_list (struct die_info *die)
9000 {
9001 while (die)
9002 {
9003 dump_die (die);
9004 if (die->child != NULL)
9005 dump_die_list (die->child);
9006 if (die->sibling != NULL)
9007 dump_die_list (die->sibling);
9008 }
9009 }
9010
9011 static void
9012 store_in_ref_table (unsigned int offset, struct die_info *die,
9013 struct dwarf2_cu *cu)
9014 {
9015 int h;
9016 struct die_info *old;
9017
9018 h = (offset % REF_HASH_SIZE);
9019 old = cu->die_ref_table[h];
9020 die->next_ref = old;
9021 cu->die_ref_table[h] = die;
9022 }
9023
9024 static unsigned int
9025 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
9026 {
9027 unsigned int result = 0;
9028
9029 switch (attr->form)
9030 {
9031 case DW_FORM_ref_addr:
9032 case DW_FORM_ref1:
9033 case DW_FORM_ref2:
9034 case DW_FORM_ref4:
9035 case DW_FORM_ref8:
9036 case DW_FORM_ref_udata:
9037 result = DW_ADDR (attr);
9038 break;
9039 default:
9040 complaint (&symfile_complaints,
9041 _("unsupported die ref attribute form: '%s'"),
9042 dwarf_form_name (attr->form));
9043 }
9044 return result;
9045 }
9046
9047 /* Return the constant value held by the given attribute. Return -1
9048 if the value held by the attribute is not constant. */
9049
9050 static int
9051 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
9052 {
9053 if (attr->form == DW_FORM_sdata)
9054 return DW_SND (attr);
9055 else if (attr->form == DW_FORM_udata
9056 || attr->form == DW_FORM_data1
9057 || attr->form == DW_FORM_data2
9058 || attr->form == DW_FORM_data4
9059 || attr->form == DW_FORM_data8)
9060 return DW_UNSND (attr);
9061 else
9062 {
9063 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
9064 dwarf_form_name (attr->form));
9065 return default_value;
9066 }
9067 }
9068
9069 static struct die_info *
9070 follow_die_ref (struct die_info *src_die, struct attribute *attr,
9071 struct dwarf2_cu *cu)
9072 {
9073 struct die_info *die;
9074 unsigned int offset;
9075 int h;
9076 struct die_info temp_die;
9077 struct dwarf2_cu *target_cu;
9078
9079 offset = dwarf2_get_ref_die_offset (attr, cu);
9080
9081 if (DW_ADDR (attr) < cu->header.offset
9082 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
9083 {
9084 struct dwarf2_per_cu_data *per_cu;
9085 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9086 cu->objfile);
9087 target_cu = per_cu->cu;
9088 }
9089 else
9090 target_cu = cu;
9091
9092 h = (offset % REF_HASH_SIZE);
9093 die = target_cu->die_ref_table[h];
9094 while (die)
9095 {
9096 if (die->offset == offset)
9097 return die;
9098 die = die->next_ref;
9099 }
9100
9101 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9102 "at 0x%lx [in module %s]"),
9103 (long) src_die->offset, (long) offset, cu->objfile->name);
9104
9105 return NULL;
9106 }
9107
9108 /* Decode simple location descriptions.
9109 Given a pointer to a dwarf block that defines a location, compute
9110 the location and return the value.
9111
9112 NOTE drow/2003-11-18: This function is called in two situations
9113 now: for the address of static or global variables (partial symbols
9114 only) and for offsets into structures which are expected to be
9115 (more or less) constant. The partial symbol case should go away,
9116 and only the constant case should remain. That will let this
9117 function complain more accurately. A few special modes are allowed
9118 without complaint for global variables (for instance, global
9119 register values and thread-local values).
9120
9121 A location description containing no operations indicates that the
9122 object is optimized out. The return value is 0 for that case.
9123 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9124 callers will only want a very basic result and this can become a
9125 complaint.
9126
9127 Note that stack[0] is unused except as a default error return.
9128 Note that stack overflow is not yet handled. */
9129
9130 static CORE_ADDR
9131 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9132 {
9133 struct objfile *objfile = cu->objfile;
9134 struct comp_unit_head *cu_header = &cu->header;
9135 int i;
9136 int size = blk->size;
9137 gdb_byte *data = blk->data;
9138 CORE_ADDR stack[64];
9139 int stacki;
9140 unsigned int bytes_read, unsnd;
9141 gdb_byte op;
9142
9143 i = 0;
9144 stacki = 0;
9145 stack[stacki] = 0;
9146
9147 while (i < size)
9148 {
9149 op = data[i++];
9150 switch (op)
9151 {
9152 case DW_OP_lit0:
9153 case DW_OP_lit1:
9154 case DW_OP_lit2:
9155 case DW_OP_lit3:
9156 case DW_OP_lit4:
9157 case DW_OP_lit5:
9158 case DW_OP_lit6:
9159 case DW_OP_lit7:
9160 case DW_OP_lit8:
9161 case DW_OP_lit9:
9162 case DW_OP_lit10:
9163 case DW_OP_lit11:
9164 case DW_OP_lit12:
9165 case DW_OP_lit13:
9166 case DW_OP_lit14:
9167 case DW_OP_lit15:
9168 case DW_OP_lit16:
9169 case DW_OP_lit17:
9170 case DW_OP_lit18:
9171 case DW_OP_lit19:
9172 case DW_OP_lit20:
9173 case DW_OP_lit21:
9174 case DW_OP_lit22:
9175 case DW_OP_lit23:
9176 case DW_OP_lit24:
9177 case DW_OP_lit25:
9178 case DW_OP_lit26:
9179 case DW_OP_lit27:
9180 case DW_OP_lit28:
9181 case DW_OP_lit29:
9182 case DW_OP_lit30:
9183 case DW_OP_lit31:
9184 stack[++stacki] = op - DW_OP_lit0;
9185 break;
9186
9187 case DW_OP_reg0:
9188 case DW_OP_reg1:
9189 case DW_OP_reg2:
9190 case DW_OP_reg3:
9191 case DW_OP_reg4:
9192 case DW_OP_reg5:
9193 case DW_OP_reg6:
9194 case DW_OP_reg7:
9195 case DW_OP_reg8:
9196 case DW_OP_reg9:
9197 case DW_OP_reg10:
9198 case DW_OP_reg11:
9199 case DW_OP_reg12:
9200 case DW_OP_reg13:
9201 case DW_OP_reg14:
9202 case DW_OP_reg15:
9203 case DW_OP_reg16:
9204 case DW_OP_reg17:
9205 case DW_OP_reg18:
9206 case DW_OP_reg19:
9207 case DW_OP_reg20:
9208 case DW_OP_reg21:
9209 case DW_OP_reg22:
9210 case DW_OP_reg23:
9211 case DW_OP_reg24:
9212 case DW_OP_reg25:
9213 case DW_OP_reg26:
9214 case DW_OP_reg27:
9215 case DW_OP_reg28:
9216 case DW_OP_reg29:
9217 case DW_OP_reg30:
9218 case DW_OP_reg31:
9219 stack[++stacki] = op - DW_OP_reg0;
9220 if (i < size)
9221 dwarf2_complex_location_expr_complaint ();
9222 break;
9223
9224 case DW_OP_regx:
9225 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9226 i += bytes_read;
9227 stack[++stacki] = unsnd;
9228 if (i < size)
9229 dwarf2_complex_location_expr_complaint ();
9230 break;
9231
9232 case DW_OP_addr:
9233 stack[++stacki] = read_address (objfile->obfd, &data[i],
9234 cu, &bytes_read);
9235 i += bytes_read;
9236 break;
9237
9238 case DW_OP_const1u:
9239 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9240 i += 1;
9241 break;
9242
9243 case DW_OP_const1s:
9244 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9245 i += 1;
9246 break;
9247
9248 case DW_OP_const2u:
9249 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9250 i += 2;
9251 break;
9252
9253 case DW_OP_const2s:
9254 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9255 i += 2;
9256 break;
9257
9258 case DW_OP_const4u:
9259 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9260 i += 4;
9261 break;
9262
9263 case DW_OP_const4s:
9264 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9265 i += 4;
9266 break;
9267
9268 case DW_OP_constu:
9269 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9270 &bytes_read);
9271 i += bytes_read;
9272 break;
9273
9274 case DW_OP_consts:
9275 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9276 i += bytes_read;
9277 break;
9278
9279 case DW_OP_dup:
9280 stack[stacki + 1] = stack[stacki];
9281 stacki++;
9282 break;
9283
9284 case DW_OP_plus:
9285 stack[stacki - 1] += stack[stacki];
9286 stacki--;
9287 break;
9288
9289 case DW_OP_plus_uconst:
9290 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9291 i += bytes_read;
9292 break;
9293
9294 case DW_OP_minus:
9295 stack[stacki - 1] -= stack[stacki];
9296 stacki--;
9297 break;
9298
9299 case DW_OP_deref:
9300 /* If we're not the last op, then we definitely can't encode
9301 this using GDB's address_class enum. This is valid for partial
9302 global symbols, although the variable's address will be bogus
9303 in the psymtab. */
9304 if (i < size)
9305 dwarf2_complex_location_expr_complaint ();
9306 break;
9307
9308 case DW_OP_GNU_push_tls_address:
9309 /* The top of the stack has the offset from the beginning
9310 of the thread control block at which the variable is located. */
9311 /* Nothing should follow this operator, so the top of stack would
9312 be returned. */
9313 /* This is valid for partial global symbols, but the variable's
9314 address will be bogus in the psymtab. */
9315 if (i < size)
9316 dwarf2_complex_location_expr_complaint ();
9317 break;
9318
9319 case DW_OP_GNU_uninit:
9320 break;
9321
9322 default:
9323 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9324 dwarf_stack_op_name (op));
9325 return (stack[stacki]);
9326 }
9327 }
9328 return (stack[stacki]);
9329 }
9330
9331 /* memory allocation interface */
9332
9333 static struct dwarf_block *
9334 dwarf_alloc_block (struct dwarf2_cu *cu)
9335 {
9336 struct dwarf_block *blk;
9337
9338 blk = (struct dwarf_block *)
9339 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9340 return (blk);
9341 }
9342
9343 static struct abbrev_info *
9344 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9345 {
9346 struct abbrev_info *abbrev;
9347
9348 abbrev = (struct abbrev_info *)
9349 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9350 memset (abbrev, 0, sizeof (struct abbrev_info));
9351 return (abbrev);
9352 }
9353
9354 static struct die_info *
9355 dwarf_alloc_die (void)
9356 {
9357 struct die_info *die;
9358
9359 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9360 memset (die, 0, sizeof (struct die_info));
9361 return (die);
9362 }
9363
9364 \f
9365 /* Macro support. */
9366
9367
9368 /* Return the full name of file number I in *LH's file name table.
9369 Use COMP_DIR as the name of the current directory of the
9370 compilation. The result is allocated using xmalloc; the caller is
9371 responsible for freeing it. */
9372 static char *
9373 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9374 {
9375 /* Is the file number a valid index into the line header's file name
9376 table? Remember that file numbers start with one, not zero. */
9377 if (1 <= file && file <= lh->num_file_names)
9378 {
9379 struct file_entry *fe = &lh->file_names[file - 1];
9380
9381 if (IS_ABSOLUTE_PATH (fe->name))
9382 return xstrdup (fe->name);
9383 else
9384 {
9385 const char *dir;
9386 int dir_len;
9387 char *full_name;
9388
9389 if (fe->dir_index)
9390 dir = lh->include_dirs[fe->dir_index - 1];
9391 else
9392 dir = comp_dir;
9393
9394 if (dir)
9395 {
9396 dir_len = strlen (dir);
9397 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9398 strcpy (full_name, dir);
9399 full_name[dir_len] = '/';
9400 strcpy (full_name + dir_len + 1, fe->name);
9401 return full_name;
9402 }
9403 else
9404 return xstrdup (fe->name);
9405 }
9406 }
9407 else
9408 {
9409 /* The compiler produced a bogus file number. We can at least
9410 record the macro definitions made in the file, even if we
9411 won't be able to find the file by name. */
9412 char fake_name[80];
9413 sprintf (fake_name, "<bad macro file number %d>", file);
9414
9415 complaint (&symfile_complaints,
9416 _("bad file number in macro information (%d)"),
9417 file);
9418
9419 return xstrdup (fake_name);
9420 }
9421 }
9422
9423
9424 static struct macro_source_file *
9425 macro_start_file (int file, int line,
9426 struct macro_source_file *current_file,
9427 const char *comp_dir,
9428 struct line_header *lh, struct objfile *objfile)
9429 {
9430 /* The full name of this source file. */
9431 char *full_name = file_full_name (file, lh, comp_dir);
9432
9433 /* We don't create a macro table for this compilation unit
9434 at all until we actually get a filename. */
9435 if (! pending_macros)
9436 pending_macros = new_macro_table (&objfile->objfile_obstack,
9437 objfile->macro_cache);
9438
9439 if (! current_file)
9440 /* If we have no current file, then this must be the start_file
9441 directive for the compilation unit's main source file. */
9442 current_file = macro_set_main (pending_macros, full_name);
9443 else
9444 current_file = macro_include (current_file, line, full_name);
9445
9446 xfree (full_name);
9447
9448 return current_file;
9449 }
9450
9451
9452 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9453 followed by a null byte. */
9454 static char *
9455 copy_string (const char *buf, int len)
9456 {
9457 char *s = xmalloc (len + 1);
9458 memcpy (s, buf, len);
9459 s[len] = '\0';
9460
9461 return s;
9462 }
9463
9464
9465 static const char *
9466 consume_improper_spaces (const char *p, const char *body)
9467 {
9468 if (*p == ' ')
9469 {
9470 complaint (&symfile_complaints,
9471 _("macro definition contains spaces in formal argument list:\n`%s'"),
9472 body);
9473
9474 while (*p == ' ')
9475 p++;
9476 }
9477
9478 return p;
9479 }
9480
9481
9482 static void
9483 parse_macro_definition (struct macro_source_file *file, int line,
9484 const char *body)
9485 {
9486 const char *p;
9487
9488 /* The body string takes one of two forms. For object-like macro
9489 definitions, it should be:
9490
9491 <macro name> " " <definition>
9492
9493 For function-like macro definitions, it should be:
9494
9495 <macro name> "() " <definition>
9496 or
9497 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9498
9499 Spaces may appear only where explicitly indicated, and in the
9500 <definition>.
9501
9502 The Dwarf 2 spec says that an object-like macro's name is always
9503 followed by a space, but versions of GCC around March 2002 omit
9504 the space when the macro's definition is the empty string.
9505
9506 The Dwarf 2 spec says that there should be no spaces between the
9507 formal arguments in a function-like macro's formal argument list,
9508 but versions of GCC around March 2002 include spaces after the
9509 commas. */
9510
9511
9512 /* Find the extent of the macro name. The macro name is terminated
9513 by either a space or null character (for an object-like macro) or
9514 an opening paren (for a function-like macro). */
9515 for (p = body; *p; p++)
9516 if (*p == ' ' || *p == '(')
9517 break;
9518
9519 if (*p == ' ' || *p == '\0')
9520 {
9521 /* It's an object-like macro. */
9522 int name_len = p - body;
9523 char *name = copy_string (body, name_len);
9524 const char *replacement;
9525
9526 if (*p == ' ')
9527 replacement = body + name_len + 1;
9528 else
9529 {
9530 dwarf2_macro_malformed_definition_complaint (body);
9531 replacement = body + name_len;
9532 }
9533
9534 macro_define_object (file, line, name, replacement);
9535
9536 xfree (name);
9537 }
9538 else if (*p == '(')
9539 {
9540 /* It's a function-like macro. */
9541 char *name = copy_string (body, p - body);
9542 int argc = 0;
9543 int argv_size = 1;
9544 char **argv = xmalloc (argv_size * sizeof (*argv));
9545
9546 p++;
9547
9548 p = consume_improper_spaces (p, body);
9549
9550 /* Parse the formal argument list. */
9551 while (*p && *p != ')')
9552 {
9553 /* Find the extent of the current argument name. */
9554 const char *arg_start = p;
9555
9556 while (*p && *p != ',' && *p != ')' && *p != ' ')
9557 p++;
9558
9559 if (! *p || p == arg_start)
9560 dwarf2_macro_malformed_definition_complaint (body);
9561 else
9562 {
9563 /* Make sure argv has room for the new argument. */
9564 if (argc >= argv_size)
9565 {
9566 argv_size *= 2;
9567 argv = xrealloc (argv, argv_size * sizeof (*argv));
9568 }
9569
9570 argv[argc++] = copy_string (arg_start, p - arg_start);
9571 }
9572
9573 p = consume_improper_spaces (p, body);
9574
9575 /* Consume the comma, if present. */
9576 if (*p == ',')
9577 {
9578 p++;
9579
9580 p = consume_improper_spaces (p, body);
9581 }
9582 }
9583
9584 if (*p == ')')
9585 {
9586 p++;
9587
9588 if (*p == ' ')
9589 /* Perfectly formed definition, no complaints. */
9590 macro_define_function (file, line, name,
9591 argc, (const char **) argv,
9592 p + 1);
9593 else if (*p == '\0')
9594 {
9595 /* Complain, but do define it. */
9596 dwarf2_macro_malformed_definition_complaint (body);
9597 macro_define_function (file, line, name,
9598 argc, (const char **) argv,
9599 p);
9600 }
9601 else
9602 /* Just complain. */
9603 dwarf2_macro_malformed_definition_complaint (body);
9604 }
9605 else
9606 /* Just complain. */
9607 dwarf2_macro_malformed_definition_complaint (body);
9608
9609 xfree (name);
9610 {
9611 int i;
9612
9613 for (i = 0; i < argc; i++)
9614 xfree (argv[i]);
9615 }
9616 xfree (argv);
9617 }
9618 else
9619 dwarf2_macro_malformed_definition_complaint (body);
9620 }
9621
9622
9623 static void
9624 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9625 char *comp_dir, bfd *abfd,
9626 struct dwarf2_cu *cu)
9627 {
9628 gdb_byte *mac_ptr, *mac_end;
9629 struct macro_source_file *current_file = 0;
9630
9631 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9632 {
9633 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9634 return;
9635 }
9636
9637 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9638 mac_end = dwarf2_per_objfile->macinfo_buffer
9639 + dwarf2_per_objfile->macinfo_size;
9640
9641 for (;;)
9642 {
9643 enum dwarf_macinfo_record_type macinfo_type;
9644
9645 /* Do we at least have room for a macinfo type byte? */
9646 if (mac_ptr >= mac_end)
9647 {
9648 dwarf2_macros_too_long_complaint ();
9649 return;
9650 }
9651
9652 macinfo_type = read_1_byte (abfd, mac_ptr);
9653 mac_ptr++;
9654
9655 switch (macinfo_type)
9656 {
9657 /* A zero macinfo type indicates the end of the macro
9658 information. */
9659 case 0:
9660 return;
9661
9662 case DW_MACINFO_define:
9663 case DW_MACINFO_undef:
9664 {
9665 unsigned int bytes_read;
9666 int line;
9667 char *body;
9668
9669 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9670 mac_ptr += bytes_read;
9671 body = read_string (abfd, mac_ptr, &bytes_read);
9672 mac_ptr += bytes_read;
9673
9674 if (! current_file)
9675 complaint (&symfile_complaints,
9676 _("debug info gives macro %s outside of any file: %s"),
9677 macinfo_type ==
9678 DW_MACINFO_define ? "definition" : macinfo_type ==
9679 DW_MACINFO_undef ? "undefinition" :
9680 "something-or-other", body);
9681 else
9682 {
9683 if (macinfo_type == DW_MACINFO_define)
9684 parse_macro_definition (current_file, line, body);
9685 else if (macinfo_type == DW_MACINFO_undef)
9686 macro_undef (current_file, line, body);
9687 }
9688 }
9689 break;
9690
9691 case DW_MACINFO_start_file:
9692 {
9693 unsigned int bytes_read;
9694 int line, file;
9695
9696 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9697 mac_ptr += bytes_read;
9698 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9699 mac_ptr += bytes_read;
9700
9701 current_file = macro_start_file (file, line,
9702 current_file, comp_dir,
9703 lh, cu->objfile);
9704 }
9705 break;
9706
9707 case DW_MACINFO_end_file:
9708 if (! current_file)
9709 complaint (&symfile_complaints,
9710 _("macro debug info has an unmatched `close_file' directive"));
9711 else
9712 {
9713 current_file = current_file->included_by;
9714 if (! current_file)
9715 {
9716 enum dwarf_macinfo_record_type next_type;
9717
9718 /* GCC circa March 2002 doesn't produce the zero
9719 type byte marking the end of the compilation
9720 unit. Complain if it's not there, but exit no
9721 matter what. */
9722
9723 /* Do we at least have room for a macinfo type byte? */
9724 if (mac_ptr >= mac_end)
9725 {
9726 dwarf2_macros_too_long_complaint ();
9727 return;
9728 }
9729
9730 /* We don't increment mac_ptr here, so this is just
9731 a look-ahead. */
9732 next_type = read_1_byte (abfd, mac_ptr);
9733 if (next_type != 0)
9734 complaint (&symfile_complaints,
9735 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9736
9737 return;
9738 }
9739 }
9740 break;
9741
9742 case DW_MACINFO_vendor_ext:
9743 {
9744 unsigned int bytes_read;
9745 int constant;
9746 char *string;
9747
9748 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9749 mac_ptr += bytes_read;
9750 string = read_string (abfd, mac_ptr, &bytes_read);
9751 mac_ptr += bytes_read;
9752
9753 /* We don't recognize any vendor extensions. */
9754 }
9755 break;
9756 }
9757 }
9758 }
9759
9760 /* Check if the attribute's form is a DW_FORM_block*
9761 if so return true else false. */
9762 static int
9763 attr_form_is_block (struct attribute *attr)
9764 {
9765 return (attr == NULL ? 0 :
9766 attr->form == DW_FORM_block1
9767 || attr->form == DW_FORM_block2
9768 || attr->form == DW_FORM_block4
9769 || attr->form == DW_FORM_block);
9770 }
9771
9772 /* Return non-zero if ATTR's value is a section offset --- classes
9773 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
9774 You may use DW_UNSND (attr) to retrieve such offsets.
9775
9776 Section 7.5.4, "Attribute Encodings", explains that no attribute
9777 may have a value that belongs to more than one of these classes; it
9778 would be ambiguous if we did, because we use the same forms for all
9779 of them. */
9780 static int
9781 attr_form_is_section_offset (struct attribute *attr)
9782 {
9783 return (attr->form == DW_FORM_data4
9784 || attr->form == DW_FORM_data8);
9785 }
9786
9787
9788 /* Return non-zero if ATTR's value falls in the 'constant' class, or
9789 zero otherwise. When this function returns true, you can apply
9790 dwarf2_get_attr_constant_value to it.
9791
9792 However, note that for some attributes you must check
9793 attr_form_is_section_offset before using this test. DW_FORM_data4
9794 and DW_FORM_data8 are members of both the constant class, and of
9795 the classes that contain offsets into other debug sections
9796 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
9797 that, if an attribute's can be either a constant or one of the
9798 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
9799 taken as section offsets, not constants. */
9800 static int
9801 attr_form_is_constant (struct attribute *attr)
9802 {
9803 switch (attr->form)
9804 {
9805 case DW_FORM_sdata:
9806 case DW_FORM_udata:
9807 case DW_FORM_data1:
9808 case DW_FORM_data2:
9809 case DW_FORM_data4:
9810 case DW_FORM_data8:
9811 return 1;
9812 default:
9813 return 0;
9814 }
9815 }
9816
9817 static void
9818 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9819 struct dwarf2_cu *cu)
9820 {
9821 if (attr_form_is_section_offset (attr)
9822 /* ".debug_loc" may not exist at all, or the offset may be outside
9823 the section. If so, fall through to the complaint in the
9824 other branch. */
9825 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9826 {
9827 struct dwarf2_loclist_baton *baton;
9828
9829 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9830 sizeof (struct dwarf2_loclist_baton));
9831 baton->per_cu = cu->per_cu;
9832 gdb_assert (baton->per_cu);
9833
9834 /* We don't know how long the location list is, but make sure we
9835 don't run off the edge of the section. */
9836 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9837 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9838 baton->base_address = cu->header.base_address;
9839 if (cu->header.base_known == 0)
9840 complaint (&symfile_complaints,
9841 _("Location list used without specifying the CU base address."));
9842
9843 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9844 SYMBOL_LOCATION_BATON (sym) = baton;
9845 }
9846 else
9847 {
9848 struct dwarf2_locexpr_baton *baton;
9849
9850 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9851 sizeof (struct dwarf2_locexpr_baton));
9852 baton->per_cu = cu->per_cu;
9853 gdb_assert (baton->per_cu);
9854
9855 if (attr_form_is_block (attr))
9856 {
9857 /* Note that we're just copying the block's data pointer
9858 here, not the actual data. We're still pointing into the
9859 info_buffer for SYM's objfile; right now we never release
9860 that buffer, but when we do clean up properly this may
9861 need to change. */
9862 baton->size = DW_BLOCK (attr)->size;
9863 baton->data = DW_BLOCK (attr)->data;
9864 }
9865 else
9866 {
9867 dwarf2_invalid_attrib_class_complaint ("location description",
9868 SYMBOL_NATURAL_NAME (sym));
9869 baton->size = 0;
9870 baton->data = NULL;
9871 }
9872
9873 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9874 SYMBOL_LOCATION_BATON (sym) = baton;
9875 }
9876 }
9877
9878 /* Return the OBJFILE associated with the compilation unit CU. */
9879
9880 struct objfile *
9881 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
9882 {
9883 struct objfile *objfile = per_cu->psymtab->objfile;
9884
9885 /* Return the master objfile, so that we can report and look up the
9886 correct file containing this variable. */
9887 if (objfile->separate_debug_objfile_backlink)
9888 objfile = objfile->separate_debug_objfile_backlink;
9889
9890 return objfile;
9891 }
9892
9893 /* Return the address size given in the compilation unit header for CU. */
9894
9895 CORE_ADDR
9896 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
9897 {
9898 if (per_cu->cu)
9899 return per_cu->cu->header.addr_size;
9900 else
9901 {
9902 /* If the CU is not currently read in, we re-read its header. */
9903 struct objfile *objfile = per_cu->psymtab->objfile;
9904 struct dwarf2_per_objfile *per_objfile
9905 = objfile_data (objfile, dwarf2_objfile_data_key);
9906 gdb_byte *info_ptr = per_objfile->info_buffer + per_cu->offset;
9907
9908 struct comp_unit_head cu_header;
9909 memset (&cu_header, 0, sizeof cu_header);
9910 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
9911 return cu_header.addr_size;
9912 }
9913 }
9914
9915 /* Locate the compilation unit from CU's objfile which contains the
9916 DIE at OFFSET. Raises an error on failure. */
9917
9918 static struct dwarf2_per_cu_data *
9919 dwarf2_find_containing_comp_unit (unsigned long offset,
9920 struct objfile *objfile)
9921 {
9922 struct dwarf2_per_cu_data *this_cu;
9923 int low, high;
9924
9925 low = 0;
9926 high = dwarf2_per_objfile->n_comp_units - 1;
9927 while (high > low)
9928 {
9929 int mid = low + (high - low) / 2;
9930 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9931 high = mid;
9932 else
9933 low = mid + 1;
9934 }
9935 gdb_assert (low == high);
9936 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9937 {
9938 if (low == 0)
9939 error (_("Dwarf Error: could not find partial DIE containing "
9940 "offset 0x%lx [in module %s]"),
9941 (long) offset, bfd_get_filename (objfile->obfd));
9942
9943 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9944 return dwarf2_per_objfile->all_comp_units[low-1];
9945 }
9946 else
9947 {
9948 this_cu = dwarf2_per_objfile->all_comp_units[low];
9949 if (low == dwarf2_per_objfile->n_comp_units - 1
9950 && offset >= this_cu->offset + this_cu->length)
9951 error (_("invalid dwarf2 offset %ld"), offset);
9952 gdb_assert (offset < this_cu->offset + this_cu->length);
9953 return this_cu;
9954 }
9955 }
9956
9957 /* Locate the compilation unit from OBJFILE which is located at exactly
9958 OFFSET. Raises an error on failure. */
9959
9960 static struct dwarf2_per_cu_data *
9961 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9962 {
9963 struct dwarf2_per_cu_data *this_cu;
9964 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9965 if (this_cu->offset != offset)
9966 error (_("no compilation unit with offset %ld."), offset);
9967 return this_cu;
9968 }
9969
9970 /* Release one cached compilation unit, CU. We unlink it from the tree
9971 of compilation units, but we don't remove it from the read_in_chain;
9972 the caller is responsible for that. */
9973
9974 static void
9975 free_one_comp_unit (void *data)
9976 {
9977 struct dwarf2_cu *cu = data;
9978
9979 if (cu->per_cu != NULL)
9980 cu->per_cu->cu = NULL;
9981 cu->per_cu = NULL;
9982
9983 obstack_free (&cu->comp_unit_obstack, NULL);
9984 if (cu->dies)
9985 free_die_list (cu->dies);
9986
9987 xfree (cu);
9988 }
9989
9990 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9991 when we're finished with it. We can't free the pointer itself, but be
9992 sure to unlink it from the cache. Also release any associated storage
9993 and perform cache maintenance.
9994
9995 Only used during partial symbol parsing. */
9996
9997 static void
9998 free_stack_comp_unit (void *data)
9999 {
10000 struct dwarf2_cu *cu = data;
10001
10002 obstack_free (&cu->comp_unit_obstack, NULL);
10003 cu->partial_dies = NULL;
10004
10005 if (cu->per_cu != NULL)
10006 {
10007 /* This compilation unit is on the stack in our caller, so we
10008 should not xfree it. Just unlink it. */
10009 cu->per_cu->cu = NULL;
10010 cu->per_cu = NULL;
10011
10012 /* If we had a per-cu pointer, then we may have other compilation
10013 units loaded, so age them now. */
10014 age_cached_comp_units ();
10015 }
10016 }
10017
10018 /* Free all cached compilation units. */
10019
10020 static void
10021 free_cached_comp_units (void *data)
10022 {
10023 struct dwarf2_per_cu_data *per_cu, **last_chain;
10024
10025 per_cu = dwarf2_per_objfile->read_in_chain;
10026 last_chain = &dwarf2_per_objfile->read_in_chain;
10027 while (per_cu != NULL)
10028 {
10029 struct dwarf2_per_cu_data *next_cu;
10030
10031 next_cu = per_cu->cu->read_in_chain;
10032
10033 free_one_comp_unit (per_cu->cu);
10034 *last_chain = next_cu;
10035
10036 per_cu = next_cu;
10037 }
10038 }
10039
10040 /* Increase the age counter on each cached compilation unit, and free
10041 any that are too old. */
10042
10043 static void
10044 age_cached_comp_units (void)
10045 {
10046 struct dwarf2_per_cu_data *per_cu, **last_chain;
10047
10048 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
10049 per_cu = dwarf2_per_objfile->read_in_chain;
10050 while (per_cu != NULL)
10051 {
10052 per_cu->cu->last_used ++;
10053 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
10054 dwarf2_mark (per_cu->cu);
10055 per_cu = per_cu->cu->read_in_chain;
10056 }
10057
10058 per_cu = dwarf2_per_objfile->read_in_chain;
10059 last_chain = &dwarf2_per_objfile->read_in_chain;
10060 while (per_cu != NULL)
10061 {
10062 struct dwarf2_per_cu_data *next_cu;
10063
10064 next_cu = per_cu->cu->read_in_chain;
10065
10066 if (!per_cu->cu->mark)
10067 {
10068 free_one_comp_unit (per_cu->cu);
10069 *last_chain = next_cu;
10070 }
10071 else
10072 last_chain = &per_cu->cu->read_in_chain;
10073
10074 per_cu = next_cu;
10075 }
10076 }
10077
10078 /* Remove a single compilation unit from the cache. */
10079
10080 static void
10081 free_one_cached_comp_unit (void *target_cu)
10082 {
10083 struct dwarf2_per_cu_data *per_cu, **last_chain;
10084
10085 per_cu = dwarf2_per_objfile->read_in_chain;
10086 last_chain = &dwarf2_per_objfile->read_in_chain;
10087 while (per_cu != NULL)
10088 {
10089 struct dwarf2_per_cu_data *next_cu;
10090
10091 next_cu = per_cu->cu->read_in_chain;
10092
10093 if (per_cu->cu == target_cu)
10094 {
10095 free_one_comp_unit (per_cu->cu);
10096 *last_chain = next_cu;
10097 break;
10098 }
10099 else
10100 last_chain = &per_cu->cu->read_in_chain;
10101
10102 per_cu = next_cu;
10103 }
10104 }
10105
10106 /* Release all extra memory associated with OBJFILE. */
10107
10108 void
10109 dwarf2_free_objfile (struct objfile *objfile)
10110 {
10111 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10112
10113 if (dwarf2_per_objfile == NULL)
10114 return;
10115
10116 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
10117 free_cached_comp_units (NULL);
10118
10119 /* Everything else should be on the objfile obstack. */
10120 }
10121
10122 /* A pair of DIE offset and GDB type pointer. We store these
10123 in a hash table separate from the DIEs, and preserve them
10124 when the DIEs are flushed out of cache. */
10125
10126 struct dwarf2_offset_and_type
10127 {
10128 unsigned int offset;
10129 struct type *type;
10130 };
10131
10132 /* Hash function for a dwarf2_offset_and_type. */
10133
10134 static hashval_t
10135 offset_and_type_hash (const void *item)
10136 {
10137 const struct dwarf2_offset_and_type *ofs = item;
10138 return ofs->offset;
10139 }
10140
10141 /* Equality function for a dwarf2_offset_and_type. */
10142
10143 static int
10144 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10145 {
10146 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10147 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10148 return ofs_lhs->offset == ofs_rhs->offset;
10149 }
10150
10151 /* Set the type associated with DIE to TYPE. Save it in CU's hash
10152 table if necessary. */
10153
10154 static void
10155 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10156 {
10157 struct dwarf2_offset_and_type **slot, ofs;
10158
10159 die->type = type;
10160
10161 if (cu->per_cu == NULL)
10162 return;
10163
10164 if (cu->per_cu->type_hash == NULL)
10165 cu->per_cu->type_hash
10166 = htab_create_alloc_ex (cu->header.length / 24,
10167 offset_and_type_hash,
10168 offset_and_type_eq,
10169 NULL,
10170 &cu->objfile->objfile_obstack,
10171 hashtab_obstack_allocate,
10172 dummy_obstack_deallocate);
10173
10174 ofs.offset = die->offset;
10175 ofs.type = type;
10176 slot = (struct dwarf2_offset_and_type **)
10177 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10178 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10179 **slot = ofs;
10180 }
10181
10182 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10183 have a saved type. */
10184
10185 static struct type *
10186 get_die_type (struct die_info *die, htab_t type_hash)
10187 {
10188 struct dwarf2_offset_and_type *slot, ofs;
10189
10190 ofs.offset = die->offset;
10191 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10192 if (slot)
10193 return slot->type;
10194 else
10195 return NULL;
10196 }
10197
10198 /* Restore the types of the DIE tree starting at START_DIE from the hash
10199 table saved in CU. */
10200
10201 static void
10202 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10203 {
10204 struct die_info *die;
10205
10206 if (cu->per_cu->type_hash == NULL)
10207 return;
10208
10209 for (die = start_die; die != NULL; die = die->sibling)
10210 {
10211 die->type = get_die_type (die, cu->per_cu->type_hash);
10212 if (die->child != NULL)
10213 reset_die_and_siblings_types (die->child, cu);
10214 }
10215 }
10216
10217 /* Set the mark field in CU and in every other compilation unit in the
10218 cache that we must keep because we are keeping CU. */
10219
10220 /* Add a dependence relationship from CU to REF_PER_CU. */
10221
10222 static void
10223 dwarf2_add_dependence (struct dwarf2_cu *cu,
10224 struct dwarf2_per_cu_data *ref_per_cu)
10225 {
10226 void **slot;
10227
10228 if (cu->dependencies == NULL)
10229 cu->dependencies
10230 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10231 NULL, &cu->comp_unit_obstack,
10232 hashtab_obstack_allocate,
10233 dummy_obstack_deallocate);
10234
10235 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10236 if (*slot == NULL)
10237 *slot = ref_per_cu;
10238 }
10239
10240 /* Set the mark field in CU and in every other compilation unit in the
10241 cache that we must keep because we are keeping CU. */
10242
10243 static int
10244 dwarf2_mark_helper (void **slot, void *data)
10245 {
10246 struct dwarf2_per_cu_data *per_cu;
10247
10248 per_cu = (struct dwarf2_per_cu_data *) *slot;
10249 if (per_cu->cu->mark)
10250 return 1;
10251 per_cu->cu->mark = 1;
10252
10253 if (per_cu->cu->dependencies != NULL)
10254 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10255
10256 return 1;
10257 }
10258
10259 static void
10260 dwarf2_mark (struct dwarf2_cu *cu)
10261 {
10262 if (cu->mark)
10263 return;
10264 cu->mark = 1;
10265 if (cu->dependencies != NULL)
10266 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10267 }
10268
10269 static void
10270 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10271 {
10272 while (per_cu)
10273 {
10274 per_cu->cu->mark = 0;
10275 per_cu = per_cu->cu->read_in_chain;
10276 }
10277 }
10278
10279 /* Trivial hash function for partial_die_info: the hash value of a DIE
10280 is its offset in .debug_info for this objfile. */
10281
10282 static hashval_t
10283 partial_die_hash (const void *item)
10284 {
10285 const struct partial_die_info *part_die = item;
10286 return part_die->offset;
10287 }
10288
10289 /* Trivial comparison function for partial_die_info structures: two DIEs
10290 are equal if they have the same offset. */
10291
10292 static int
10293 partial_die_eq (const void *item_lhs, const void *item_rhs)
10294 {
10295 const struct partial_die_info *part_die_lhs = item_lhs;
10296 const struct partial_die_info *part_die_rhs = item_rhs;
10297 return part_die_lhs->offset == part_die_rhs->offset;
10298 }
10299
10300 static struct cmd_list_element *set_dwarf2_cmdlist;
10301 static struct cmd_list_element *show_dwarf2_cmdlist;
10302
10303 static void
10304 set_dwarf2_cmd (char *args, int from_tty)
10305 {
10306 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10307 }
10308
10309 static void
10310 show_dwarf2_cmd (char *args, int from_tty)
10311 {
10312 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10313 }
10314
10315 void _initialize_dwarf2_read (void);
10316
10317 void
10318 _initialize_dwarf2_read (void)
10319 {
10320 dwarf2_objfile_data_key = register_objfile_data ();
10321
10322 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10323 Set DWARF 2 specific variables.\n\
10324 Configure DWARF 2 variables such as the cache size"),
10325 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10326 0/*allow-unknown*/, &maintenance_set_cmdlist);
10327
10328 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10329 Show DWARF 2 specific variables\n\
10330 Show DWARF 2 variables such as the cache size"),
10331 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10332 0/*allow-unknown*/, &maintenance_show_cmdlist);
10333
10334 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10335 &dwarf2_max_cache_age, _("\
10336 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10337 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10338 A higher limit means that cached compilation units will be stored\n\
10339 in memory longer, and more total memory will be used. Zero disables\n\
10340 caching, which can slow down startup."),
10341 NULL,
10342 show_dwarf2_max_cache_age,
10343 &set_dwarf2_cmdlist,
10344 &show_dwarf2_cmdlist);
10345 }
This page took 0.248453 seconds and 4 git commands to generate.