7891e32d7535f9a3d28cb0c0eef0c891266691b3
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* Non-zero if the TU has been read.
562 This is used to assist the "Stay in DWO Optimization" for Fission:
563 When reading a DWO, it's faster to read TUs from the DWO instead of
564 fetching them from random other DWOs (due to comdat folding).
565 If the TU has already been read, the optimization is unnecessary
566 (and unwise - we don't want to change where gdb thinks the TU lives
567 "midflight").
568 This flag is only valid if is_debug_types is true. */
569 unsigned int tu_read : 1;
570
571 /* The section this CU/TU lives in.
572 If the DIE refers to a DWO file, this is always the original die,
573 not the DWO file. */
574 struct dwarf2_section_info *section;
575
576 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
577 of the CU cache it gets reset to NULL again. */
578 struct dwarf2_cu *cu;
579
580 /* The corresponding objfile.
581 Normally we can get the objfile from dwarf2_per_objfile.
582 However we can enter this file with just a "per_cu" handle. */
583 struct objfile *objfile;
584
585 /* When using partial symbol tables, the 'psymtab' field is active.
586 Otherwise the 'quick' field is active. */
587 union
588 {
589 /* The partial symbol table associated with this compilation unit,
590 or NULL for unread partial units. */
591 struct partial_symtab *psymtab;
592
593 /* Data needed by the "quick" functions. */
594 struct dwarf2_per_cu_quick_data *quick;
595 } v;
596
597 /* The CUs we import using DW_TAG_imported_unit. This is filled in
598 while reading psymtabs, used to compute the psymtab dependencies,
599 and then cleared. Then it is filled in again while reading full
600 symbols, and only deleted when the objfile is destroyed.
601
602 This is also used to work around a difference between the way gold
603 generates .gdb_index version <=7 and the way gdb does. Arguably this
604 is a gold bug. For symbols coming from TUs, gold records in the index
605 the CU that includes the TU instead of the TU itself. This breaks
606 dw2_lookup_symbol: It assumes that if the index says symbol X lives
607 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
608 will find X. Alas TUs live in their own symtab, so after expanding CU Y
609 we need to look in TU Z to find X. Fortunately, this is akin to
610 DW_TAG_imported_unit, so we just use the same mechanism: For
611 .gdb_index version <=7 this also records the TUs that the CU referred
612 to. Concurrently with this change gdb was modified to emit version 8
613 indices so we only pay a price for gold generated indices. */
614 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
615 };
616
617 /* Entry in the signatured_types hash table. */
618
619 struct signatured_type
620 {
621 /* The "per_cu" object of this type.
622 This struct is used iff per_cu.is_debug_types.
623 N.B.: This is the first member so that it's easy to convert pointers
624 between them. */
625 struct dwarf2_per_cu_data per_cu;
626
627 /* The type's signature. */
628 ULONGEST signature;
629
630 /* Offset in the TU of the type's DIE, as read from the TU header.
631 If this TU is a DWO stub and the definition lives in a DWO file
632 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
633 cu_offset type_offset_in_tu;
634
635 /* Offset in the section of the type's DIE.
636 If the definition lives in a DWO file, this is the offset in the
637 .debug_types.dwo section.
638 The value is zero until the actual value is known.
639 Zero is otherwise not a valid section offset. */
640 sect_offset type_offset_in_section;
641
642 /* Type units are grouped by their DW_AT_stmt_list entry so that they
643 can share them. This points to the containing symtab. */
644 struct type_unit_group *type_unit_group;
645
646 /* The type.
647 The first time we encounter this type we fully read it in and install it
648 in the symbol tables. Subsequent times we only need the type. */
649 struct type *type;
650
651 /* Containing DWO unit.
652 This field is valid iff per_cu.reading_dwo_directly. */
653 struct dwo_unit *dwo_unit;
654 };
655
656 typedef struct signatured_type *sig_type_ptr;
657 DEF_VEC_P (sig_type_ptr);
658
659 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
660 This includes type_unit_group and quick_file_names. */
661
662 struct stmt_list_hash
663 {
664 /* The DWO unit this table is from or NULL if there is none. */
665 struct dwo_unit *dwo_unit;
666
667 /* Offset in .debug_line or .debug_line.dwo. */
668 sect_offset line_offset;
669 };
670
671 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
672 an object of this type. */
673
674 struct type_unit_group
675 {
676 /* dwarf2read.c's main "handle" on a TU symtab.
677 To simplify things we create an artificial CU that "includes" all the
678 type units using this stmt_list so that the rest of the code still has
679 a "per_cu" handle on the symtab.
680 This PER_CU is recognized by having no section. */
681 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
682 struct dwarf2_per_cu_data per_cu;
683
684 /* The TUs that share this DW_AT_stmt_list entry.
685 This is added to while parsing type units to build partial symtabs,
686 and is deleted afterwards and not used again. */
687 VEC (sig_type_ptr) *tus;
688
689 /* The primary symtab.
690 Type units in a group needn't all be defined in the same source file,
691 so we create an essentially anonymous symtab as the primary symtab. */
692 struct symtab *primary_symtab;
693
694 /* The data used to construct the hash key. */
695 struct stmt_list_hash hash;
696
697 /* The number of symtabs from the line header.
698 The value here must match line_header.num_file_names. */
699 unsigned int num_symtabs;
700
701 /* The symbol tables for this TU (obtained from the files listed in
702 DW_AT_stmt_list).
703 WARNING: The order of entries here must match the order of entries
704 in the line header. After the first TU using this type_unit_group, the
705 line header for the subsequent TUs is recreated from this. This is done
706 because we need to use the same symtabs for each TU using the same
707 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
708 there's no guarantee the line header doesn't have duplicate entries. */
709 struct symtab **symtabs;
710 };
711
712 /* These sections are what may appear in a DWO file. */
713
714 struct dwo_sections
715 {
716 struct dwarf2_section_info abbrev;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info loc;
719 struct dwarf2_section_info macinfo;
720 struct dwarf2_section_info macro;
721 struct dwarf2_section_info str;
722 struct dwarf2_section_info str_offsets;
723 /* In the case of a virtual DWO file, these two are unused. */
724 struct dwarf2_section_info info;
725 VEC (dwarf2_section_info_def) *types;
726 };
727
728 /* CUs/TUs in DWP/DWO files. */
729
730 struct dwo_unit
731 {
732 /* Backlink to the containing struct dwo_file. */
733 struct dwo_file *dwo_file;
734
735 /* The "id" that distinguishes this CU/TU.
736 .debug_info calls this "dwo_id", .debug_types calls this "signature".
737 Since signatures came first, we stick with it for consistency. */
738 ULONGEST signature;
739
740 /* The section this CU/TU lives in, in the DWO file. */
741 struct dwarf2_section_info *section;
742
743 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
744 sect_offset offset;
745 unsigned int length;
746
747 /* For types, offset in the type's DIE of the type defined by this TU. */
748 cu_offset type_offset_in_tu;
749 };
750
751 /* Data for one DWO file.
752 This includes virtual DWO files that have been packaged into a
753 DWP file. */
754
755 struct dwo_file
756 {
757 /* The DW_AT_GNU_dwo_name attribute.
758 For virtual DWO files the name is constructed from the section offsets
759 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
760 from related CU+TUs. */
761 const char *dwo_name;
762
763 /* The DW_AT_comp_dir attribute. */
764 const char *comp_dir;
765
766 /* The bfd, when the file is open. Otherwise this is NULL.
767 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
768 bfd *dbfd;
769
770 /* Section info for this file. */
771 struct dwo_sections sections;
772
773 /* The CU in the file.
774 We only support one because having more than one requires hacking the
775 dwo_name of each to match, which is highly unlikely to happen.
776 Doing this means all TUs can share comp_dir: We also assume that
777 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
778 struct dwo_unit *cu;
779
780 /* Table of TUs in the file.
781 Each element is a struct dwo_unit. */
782 htab_t tus;
783 };
784
785 /* These sections are what may appear in a DWP file. */
786
787 struct dwp_sections
788 {
789 struct dwarf2_section_info str;
790 struct dwarf2_section_info cu_index;
791 struct dwarf2_section_info tu_index;
792 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
793 by section number. We don't need to record them here. */
794 };
795
796 /* These sections are what may appear in a virtual DWO file. */
797
798 struct virtual_dwo_sections
799 {
800 struct dwarf2_section_info abbrev;
801 struct dwarf2_section_info line;
802 struct dwarf2_section_info loc;
803 struct dwarf2_section_info macinfo;
804 struct dwarf2_section_info macro;
805 struct dwarf2_section_info str_offsets;
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 struct dwarf2_section_info info_or_types;
809 };
810
811 /* Contents of DWP hash tables. */
812
813 struct dwp_hash_table
814 {
815 uint32_t nr_units, nr_slots;
816 const gdb_byte *hash_table, *unit_table, *section_pool;
817 };
818
819 /* Data for one DWP file. */
820
821 struct dwp_file
822 {
823 /* Name of the file. */
824 const char *name;
825
826 /* The bfd. */
827 bfd *dbfd;
828
829 /* Section info for this file. */
830 struct dwp_sections sections;
831
832 /* Table of CUs in the file. */
833 const struct dwp_hash_table *cus;
834
835 /* Table of TUs in the file. */
836 const struct dwp_hash_table *tus;
837
838 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
839 htab_t loaded_cutus;
840
841 /* Table to map ELF section numbers to their sections. */
842 unsigned int num_sections;
843 asection **elf_sections;
844 };
845
846 /* This represents a '.dwz' file. */
847
848 struct dwz_file
849 {
850 /* A dwz file can only contain a few sections. */
851 struct dwarf2_section_info abbrev;
852 struct dwarf2_section_info info;
853 struct dwarf2_section_info str;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info macro;
856 struct dwarf2_section_info gdb_index;
857
858 /* The dwz's BFD. */
859 bfd *dwz_bfd;
860 };
861
862 /* Struct used to pass misc. parameters to read_die_and_children, et
863 al. which are used for both .debug_info and .debug_types dies.
864 All parameters here are unchanging for the life of the call. This
865 struct exists to abstract away the constant parameters of die reading. */
866
867 struct die_reader_specs
868 {
869 /* die_section->asection->owner. */
870 bfd* abfd;
871
872 /* The CU of the DIE we are parsing. */
873 struct dwarf2_cu *cu;
874
875 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
876 struct dwo_file *dwo_file;
877
878 /* The section the die comes from.
879 This is either .debug_info or .debug_types, or the .dwo variants. */
880 struct dwarf2_section_info *die_section;
881
882 /* die_section->buffer. */
883 const gdb_byte *buffer;
884
885 /* The end of the buffer. */
886 const gdb_byte *buffer_end;
887
888 /* The value of the DW_AT_comp_dir attribute. */
889 const char *comp_dir;
890 };
891
892 /* Type of function passed to init_cutu_and_read_dies, et.al. */
893 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
894 const gdb_byte *info_ptr,
895 struct die_info *comp_unit_die,
896 int has_children,
897 void *data);
898
899 /* The line number information for a compilation unit (found in the
900 .debug_line section) begins with a "statement program header",
901 which contains the following information. */
902 struct line_header
903 {
904 unsigned int total_length;
905 unsigned short version;
906 unsigned int header_length;
907 unsigned char minimum_instruction_length;
908 unsigned char maximum_ops_per_instruction;
909 unsigned char default_is_stmt;
910 int line_base;
911 unsigned char line_range;
912 unsigned char opcode_base;
913
914 /* standard_opcode_lengths[i] is the number of operands for the
915 standard opcode whose value is i. This means that
916 standard_opcode_lengths[0] is unused, and the last meaningful
917 element is standard_opcode_lengths[opcode_base - 1]. */
918 unsigned char *standard_opcode_lengths;
919
920 /* The include_directories table. NOTE! These strings are not
921 allocated with xmalloc; instead, they are pointers into
922 debug_line_buffer. If you try to free them, `free' will get
923 indigestion. */
924 unsigned int num_include_dirs, include_dirs_size;
925 const char **include_dirs;
926
927 /* The file_names table. NOTE! These strings are not allocated
928 with xmalloc; instead, they are pointers into debug_line_buffer.
929 Don't try to free them directly. */
930 unsigned int num_file_names, file_names_size;
931 struct file_entry
932 {
933 const char *name;
934 unsigned int dir_index;
935 unsigned int mod_time;
936 unsigned int length;
937 int included_p; /* Non-zero if referenced by the Line Number Program. */
938 struct symtab *symtab; /* The associated symbol table, if any. */
939 } *file_names;
940
941 /* The start and end of the statement program following this
942 header. These point into dwarf2_per_objfile->line_buffer. */
943 const gdb_byte *statement_program_start, *statement_program_end;
944 };
945
946 /* When we construct a partial symbol table entry we only
947 need this much information. */
948 struct partial_die_info
949 {
950 /* Offset of this DIE. */
951 sect_offset offset;
952
953 /* DWARF-2 tag for this DIE. */
954 ENUM_BITFIELD(dwarf_tag) tag : 16;
955
956 /* Assorted flags describing the data found in this DIE. */
957 unsigned int has_children : 1;
958 unsigned int is_external : 1;
959 unsigned int is_declaration : 1;
960 unsigned int has_type : 1;
961 unsigned int has_specification : 1;
962 unsigned int has_pc_info : 1;
963 unsigned int may_be_inlined : 1;
964
965 /* Flag set if the SCOPE field of this structure has been
966 computed. */
967 unsigned int scope_set : 1;
968
969 /* Flag set if the DIE has a byte_size attribute. */
970 unsigned int has_byte_size : 1;
971
972 /* Flag set if any of the DIE's children are template arguments. */
973 unsigned int has_template_arguments : 1;
974
975 /* Flag set if fixup_partial_die has been called on this die. */
976 unsigned int fixup_called : 1;
977
978 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
979 unsigned int is_dwz : 1;
980
981 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
982 unsigned int spec_is_dwz : 1;
983
984 /* The name of this DIE. Normally the value of DW_AT_name, but
985 sometimes a default name for unnamed DIEs. */
986 const char *name;
987
988 /* The linkage name, if present. */
989 const char *linkage_name;
990
991 /* The scope to prepend to our children. This is generally
992 allocated on the comp_unit_obstack, so will disappear
993 when this compilation unit leaves the cache. */
994 const char *scope;
995
996 /* Some data associated with the partial DIE. The tag determines
997 which field is live. */
998 union
999 {
1000 /* The location description associated with this DIE, if any. */
1001 struct dwarf_block *locdesc;
1002 /* The offset of an import, for DW_TAG_imported_unit. */
1003 sect_offset offset;
1004 } d;
1005
1006 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1007 CORE_ADDR lowpc;
1008 CORE_ADDR highpc;
1009
1010 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1011 DW_AT_sibling, if any. */
1012 /* NOTE: This member isn't strictly necessary, read_partial_die could
1013 return DW_AT_sibling values to its caller load_partial_dies. */
1014 const gdb_byte *sibling;
1015
1016 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1017 DW_AT_specification (or DW_AT_abstract_origin or
1018 DW_AT_extension). */
1019 sect_offset spec_offset;
1020
1021 /* Pointers to this DIE's parent, first child, and next sibling,
1022 if any. */
1023 struct partial_die_info *die_parent, *die_child, *die_sibling;
1024 };
1025
1026 /* This data structure holds the information of an abbrev. */
1027 struct abbrev_info
1028 {
1029 unsigned int number; /* number identifying abbrev */
1030 enum dwarf_tag tag; /* dwarf tag */
1031 unsigned short has_children; /* boolean */
1032 unsigned short num_attrs; /* number of attributes */
1033 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1034 struct abbrev_info *next; /* next in chain */
1035 };
1036
1037 struct attr_abbrev
1038 {
1039 ENUM_BITFIELD(dwarf_attribute) name : 16;
1040 ENUM_BITFIELD(dwarf_form) form : 16;
1041 };
1042
1043 /* Size of abbrev_table.abbrev_hash_table. */
1044 #define ABBREV_HASH_SIZE 121
1045
1046 /* Top level data structure to contain an abbreviation table. */
1047
1048 struct abbrev_table
1049 {
1050 /* Where the abbrev table came from.
1051 This is used as a sanity check when the table is used. */
1052 sect_offset offset;
1053
1054 /* Storage for the abbrev table. */
1055 struct obstack abbrev_obstack;
1056
1057 /* Hash table of abbrevs.
1058 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1059 It could be statically allocated, but the previous code didn't so we
1060 don't either. */
1061 struct abbrev_info **abbrevs;
1062 };
1063
1064 /* Attributes have a name and a value. */
1065 struct attribute
1066 {
1067 ENUM_BITFIELD(dwarf_attribute) name : 16;
1068 ENUM_BITFIELD(dwarf_form) form : 15;
1069
1070 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1071 field should be in u.str (existing only for DW_STRING) but it is kept
1072 here for better struct attribute alignment. */
1073 unsigned int string_is_canonical : 1;
1074
1075 union
1076 {
1077 const char *str;
1078 struct dwarf_block *blk;
1079 ULONGEST unsnd;
1080 LONGEST snd;
1081 CORE_ADDR addr;
1082 ULONGEST signature;
1083 }
1084 u;
1085 };
1086
1087 /* This data structure holds a complete die structure. */
1088 struct die_info
1089 {
1090 /* DWARF-2 tag for this DIE. */
1091 ENUM_BITFIELD(dwarf_tag) tag : 16;
1092
1093 /* Number of attributes */
1094 unsigned char num_attrs;
1095
1096 /* True if we're presently building the full type name for the
1097 type derived from this DIE. */
1098 unsigned char building_fullname : 1;
1099
1100 /* Abbrev number */
1101 unsigned int abbrev;
1102
1103 /* Offset in .debug_info or .debug_types section. */
1104 sect_offset offset;
1105
1106 /* The dies in a compilation unit form an n-ary tree. PARENT
1107 points to this die's parent; CHILD points to the first child of
1108 this node; and all the children of a given node are chained
1109 together via their SIBLING fields. */
1110 struct die_info *child; /* Its first child, if any. */
1111 struct die_info *sibling; /* Its next sibling, if any. */
1112 struct die_info *parent; /* Its parent, if any. */
1113
1114 /* An array of attributes, with NUM_ATTRS elements. There may be
1115 zero, but it's not common and zero-sized arrays are not
1116 sufficiently portable C. */
1117 struct attribute attrs[1];
1118 };
1119
1120 /* Get at parts of an attribute structure. */
1121
1122 #define DW_STRING(attr) ((attr)->u.str)
1123 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1124 #define DW_UNSND(attr) ((attr)->u.unsnd)
1125 #define DW_BLOCK(attr) ((attr)->u.blk)
1126 #define DW_SND(attr) ((attr)->u.snd)
1127 #define DW_ADDR(attr) ((attr)->u.addr)
1128 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1129
1130 /* Blocks are a bunch of untyped bytes. */
1131 struct dwarf_block
1132 {
1133 size_t size;
1134
1135 /* Valid only if SIZE is not zero. */
1136 const gdb_byte *data;
1137 };
1138
1139 #ifndef ATTR_ALLOC_CHUNK
1140 #define ATTR_ALLOC_CHUNK 4
1141 #endif
1142
1143 /* Allocate fields for structs, unions and enums in this size. */
1144 #ifndef DW_FIELD_ALLOC_CHUNK
1145 #define DW_FIELD_ALLOC_CHUNK 4
1146 #endif
1147
1148 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1149 but this would require a corresponding change in unpack_field_as_long
1150 and friends. */
1151 static int bits_per_byte = 8;
1152
1153 /* The routines that read and process dies for a C struct or C++ class
1154 pass lists of data member fields and lists of member function fields
1155 in an instance of a field_info structure, as defined below. */
1156 struct field_info
1157 {
1158 /* List of data member and baseclasses fields. */
1159 struct nextfield
1160 {
1161 struct nextfield *next;
1162 int accessibility;
1163 int virtuality;
1164 struct field field;
1165 }
1166 *fields, *baseclasses;
1167
1168 /* Number of fields (including baseclasses). */
1169 int nfields;
1170
1171 /* Number of baseclasses. */
1172 int nbaseclasses;
1173
1174 /* Set if the accesibility of one of the fields is not public. */
1175 int non_public_fields;
1176
1177 /* Member function fields array, entries are allocated in the order they
1178 are encountered in the object file. */
1179 struct nextfnfield
1180 {
1181 struct nextfnfield *next;
1182 struct fn_field fnfield;
1183 }
1184 *fnfields;
1185
1186 /* Member function fieldlist array, contains name of possibly overloaded
1187 member function, number of overloaded member functions and a pointer
1188 to the head of the member function field chain. */
1189 struct fnfieldlist
1190 {
1191 const char *name;
1192 int length;
1193 struct nextfnfield *head;
1194 }
1195 *fnfieldlists;
1196
1197 /* Number of entries in the fnfieldlists array. */
1198 int nfnfields;
1199
1200 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1201 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1202 struct typedef_field_list
1203 {
1204 struct typedef_field field;
1205 struct typedef_field_list *next;
1206 }
1207 *typedef_field_list;
1208 unsigned typedef_field_list_count;
1209 };
1210
1211 /* One item on the queue of compilation units to read in full symbols
1212 for. */
1213 struct dwarf2_queue_item
1214 {
1215 struct dwarf2_per_cu_data *per_cu;
1216 enum language pretend_language;
1217 struct dwarf2_queue_item *next;
1218 };
1219
1220 /* The current queue. */
1221 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1222
1223 /* Loaded secondary compilation units are kept in memory until they
1224 have not been referenced for the processing of this many
1225 compilation units. Set this to zero to disable caching. Cache
1226 sizes of up to at least twenty will improve startup time for
1227 typical inter-CU-reference binaries, at an obvious memory cost. */
1228 static int dwarf2_max_cache_age = 5;
1229 static void
1230 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1231 struct cmd_list_element *c, const char *value)
1232 {
1233 fprintf_filtered (file, _("The upper bound on the age of cached "
1234 "dwarf2 compilation units is %s.\n"),
1235 value);
1236 }
1237
1238
1239 /* Various complaints about symbol reading that don't abort the process. */
1240
1241 static void
1242 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1243 {
1244 complaint (&symfile_complaints,
1245 _("statement list doesn't fit in .debug_line section"));
1246 }
1247
1248 static void
1249 dwarf2_debug_line_missing_file_complaint (void)
1250 {
1251 complaint (&symfile_complaints,
1252 _(".debug_line section has line data without a file"));
1253 }
1254
1255 static void
1256 dwarf2_debug_line_missing_end_sequence_complaint (void)
1257 {
1258 complaint (&symfile_complaints,
1259 _(".debug_line section has line "
1260 "program sequence without an end"));
1261 }
1262
1263 static void
1264 dwarf2_complex_location_expr_complaint (void)
1265 {
1266 complaint (&symfile_complaints, _("location expression too complex"));
1267 }
1268
1269 static void
1270 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1271 int arg3)
1272 {
1273 complaint (&symfile_complaints,
1274 _("const value length mismatch for '%s', got %d, expected %d"),
1275 arg1, arg2, arg3);
1276 }
1277
1278 static void
1279 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1280 {
1281 complaint (&symfile_complaints,
1282 _("debug info runs off end of %s section"
1283 " [in module %s]"),
1284 section->asection->name,
1285 bfd_get_filename (section->asection->owner));
1286 }
1287
1288 static void
1289 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1290 {
1291 complaint (&symfile_complaints,
1292 _("macro debug info contains a "
1293 "malformed macro definition:\n`%s'"),
1294 arg1);
1295 }
1296
1297 static void
1298 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1299 {
1300 complaint (&symfile_complaints,
1301 _("invalid attribute class or form for '%s' in '%s'"),
1302 arg1, arg2);
1303 }
1304
1305 /* local function prototypes */
1306
1307 static void dwarf2_locate_sections (bfd *, asection *, void *);
1308
1309 static void dwarf2_find_base_address (struct die_info *die,
1310 struct dwarf2_cu *cu);
1311
1312 static struct partial_symtab *create_partial_symtab
1313 (struct dwarf2_per_cu_data *per_cu, const char *name);
1314
1315 static void dwarf2_build_psymtabs_hard (struct objfile *);
1316
1317 static void scan_partial_symbols (struct partial_die_info *,
1318 CORE_ADDR *, CORE_ADDR *,
1319 int, struct dwarf2_cu *);
1320
1321 static void add_partial_symbol (struct partial_die_info *,
1322 struct dwarf2_cu *);
1323
1324 static void add_partial_namespace (struct partial_die_info *pdi,
1325 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1326 int need_pc, struct dwarf2_cu *cu);
1327
1328 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1329 CORE_ADDR *highpc, int need_pc,
1330 struct dwarf2_cu *cu);
1331
1332 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1333 struct dwarf2_cu *cu);
1334
1335 static void add_partial_subprogram (struct partial_die_info *pdi,
1336 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1337 int need_pc, struct dwarf2_cu *cu);
1338
1339 static void dwarf2_read_symtab (struct partial_symtab *,
1340 struct objfile *);
1341
1342 static void psymtab_to_symtab_1 (struct partial_symtab *);
1343
1344 static struct abbrev_info *abbrev_table_lookup_abbrev
1345 (const struct abbrev_table *, unsigned int);
1346
1347 static struct abbrev_table *abbrev_table_read_table
1348 (struct dwarf2_section_info *, sect_offset);
1349
1350 static void abbrev_table_free (struct abbrev_table *);
1351
1352 static void abbrev_table_free_cleanup (void *);
1353
1354 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1355 struct dwarf2_section_info *);
1356
1357 static void dwarf2_free_abbrev_table (void *);
1358
1359 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1360
1361 static struct partial_die_info *load_partial_dies
1362 (const struct die_reader_specs *, const gdb_byte *, int);
1363
1364 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1365 struct partial_die_info *,
1366 struct abbrev_info *,
1367 unsigned int,
1368 const gdb_byte *);
1369
1370 static struct partial_die_info *find_partial_die (sect_offset, int,
1371 struct dwarf2_cu *);
1372
1373 static void fixup_partial_die (struct partial_die_info *,
1374 struct dwarf2_cu *);
1375
1376 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1377 struct attribute *, struct attr_abbrev *,
1378 const gdb_byte *);
1379
1380 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1381
1382 static int read_1_signed_byte (bfd *, const gdb_byte *);
1383
1384 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1385
1386 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1387
1388 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1389
1390 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1391 unsigned int *);
1392
1393 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1394
1395 static LONGEST read_checked_initial_length_and_offset
1396 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1397 unsigned int *, unsigned int *);
1398
1399 static LONGEST read_offset (bfd *, const gdb_byte *,
1400 const struct comp_unit_head *,
1401 unsigned int *);
1402
1403 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1404
1405 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1406 sect_offset);
1407
1408 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1409
1410 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1411
1412 static const char *read_indirect_string (bfd *, const gdb_byte *,
1413 const struct comp_unit_head *,
1414 unsigned int *);
1415
1416 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1417
1418 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1419
1420 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1421
1422 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1423 const gdb_byte *,
1424 unsigned int *);
1425
1426 static const char *read_str_index (const struct die_reader_specs *reader,
1427 struct dwarf2_cu *cu, ULONGEST str_index);
1428
1429 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1430
1431 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1432 struct dwarf2_cu *);
1433
1434 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1435 unsigned int);
1436
1437 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1438 struct dwarf2_cu *cu);
1439
1440 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1441
1442 static struct die_info *die_specification (struct die_info *die,
1443 struct dwarf2_cu **);
1444
1445 static void free_line_header (struct line_header *lh);
1446
1447 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1448 struct dwarf2_cu *cu);
1449
1450 static void dwarf_decode_lines (struct line_header *, const char *,
1451 struct dwarf2_cu *, struct partial_symtab *,
1452 int);
1453
1454 static void dwarf2_start_subfile (const char *, const char *, const char *);
1455
1456 static void dwarf2_start_symtab (struct dwarf2_cu *,
1457 const char *, const char *, CORE_ADDR);
1458
1459 static struct symbol *new_symbol (struct die_info *, struct type *,
1460 struct dwarf2_cu *);
1461
1462 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1463 struct dwarf2_cu *, struct symbol *);
1464
1465 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1466 struct dwarf2_cu *);
1467
1468 static void dwarf2_const_value_attr (const struct attribute *attr,
1469 struct type *type,
1470 const char *name,
1471 struct obstack *obstack,
1472 struct dwarf2_cu *cu, LONGEST *value,
1473 const gdb_byte **bytes,
1474 struct dwarf2_locexpr_baton **baton);
1475
1476 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1477
1478 static int need_gnat_info (struct dwarf2_cu *);
1479
1480 static struct type *die_descriptive_type (struct die_info *,
1481 struct dwarf2_cu *);
1482
1483 static void set_descriptive_type (struct type *, struct die_info *,
1484 struct dwarf2_cu *);
1485
1486 static struct type *die_containing_type (struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1490 struct dwarf2_cu *);
1491
1492 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1493
1494 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1495
1496 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1497
1498 static char *typename_concat (struct obstack *obs, const char *prefix,
1499 const char *suffix, int physname,
1500 struct dwarf2_cu *cu);
1501
1502 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1503
1504 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1505
1506 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1507
1508 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1509
1510 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1511
1512 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1513 struct dwarf2_cu *, struct partial_symtab *);
1514
1515 static int dwarf2_get_pc_bounds (struct die_info *,
1516 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1517 struct partial_symtab *);
1518
1519 static void get_scope_pc_bounds (struct die_info *,
1520 CORE_ADDR *, CORE_ADDR *,
1521 struct dwarf2_cu *);
1522
1523 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1524 CORE_ADDR, struct dwarf2_cu *);
1525
1526 static void dwarf2_add_field (struct field_info *, struct die_info *,
1527 struct dwarf2_cu *);
1528
1529 static void dwarf2_attach_fields_to_type (struct field_info *,
1530 struct type *, struct dwarf2_cu *);
1531
1532 static void dwarf2_add_member_fn (struct field_info *,
1533 struct die_info *, struct type *,
1534 struct dwarf2_cu *);
1535
1536 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1537 struct type *,
1538 struct dwarf2_cu *);
1539
1540 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1541
1542 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1543
1544 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1545
1546 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1547
1548 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1549
1550 static struct type *read_module_type (struct die_info *die,
1551 struct dwarf2_cu *cu);
1552
1553 static const char *namespace_name (struct die_info *die,
1554 int *is_anonymous, struct dwarf2_cu *);
1555
1556 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1557
1558 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1559
1560 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1561 struct dwarf2_cu *);
1562
1563 static struct die_info *read_die_and_siblings_1
1564 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1565 struct die_info *);
1566
1567 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1568 const gdb_byte *info_ptr,
1569 const gdb_byte **new_info_ptr,
1570 struct die_info *parent);
1571
1572 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1573 struct die_info **, const gdb_byte *,
1574 int *, int);
1575
1576 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1577 struct die_info **, const gdb_byte *,
1578 int *);
1579
1580 static void process_die (struct die_info *, struct dwarf2_cu *);
1581
1582 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1583 struct obstack *);
1584
1585 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1586
1587 static const char *dwarf2_full_name (const char *name,
1588 struct die_info *die,
1589 struct dwarf2_cu *cu);
1590
1591 static const char *dwarf2_physname (const char *name, struct die_info *die,
1592 struct dwarf2_cu *cu);
1593
1594 static struct die_info *dwarf2_extension (struct die_info *die,
1595 struct dwarf2_cu **);
1596
1597 static const char *dwarf_tag_name (unsigned int);
1598
1599 static const char *dwarf_attr_name (unsigned int);
1600
1601 static const char *dwarf_form_name (unsigned int);
1602
1603 static char *dwarf_bool_name (unsigned int);
1604
1605 static const char *dwarf_type_encoding_name (unsigned int);
1606
1607 static struct die_info *sibling_die (struct die_info *);
1608
1609 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1610
1611 static void dump_die_for_error (struct die_info *);
1612
1613 static void dump_die_1 (struct ui_file *, int level, int max_level,
1614 struct die_info *);
1615
1616 /*static*/ void dump_die (struct die_info *, int max_level);
1617
1618 static void store_in_ref_table (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1622
1623 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1624
1625 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1626 const struct attribute *,
1627 struct dwarf2_cu **);
1628
1629 static struct die_info *follow_die_ref (struct die_info *,
1630 const struct attribute *,
1631 struct dwarf2_cu **);
1632
1633 static struct die_info *follow_die_sig (struct die_info *,
1634 const struct attribute *,
1635 struct dwarf2_cu **);
1636
1637 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1638 struct dwarf2_cu *);
1639
1640 static struct type *get_DW_AT_signature_type (struct die_info *,
1641 const struct attribute *,
1642 struct dwarf2_cu *);
1643
1644 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1645
1646 static void read_signatured_type (struct signatured_type *);
1647
1648 static struct type_unit_group *get_type_unit_group
1649 (struct dwarf2_cu *, const struct attribute *);
1650
1651 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1652
1653 /* memory allocation interface */
1654
1655 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1656
1657 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1658
1659 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1660 const char *, int);
1661
1662 static int attr_form_is_block (const struct attribute *);
1663
1664 static int attr_form_is_section_offset (const struct attribute *);
1665
1666 static int attr_form_is_constant (const struct attribute *);
1667
1668 static int attr_form_is_ref (const struct attribute *);
1669
1670 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1671 struct dwarf2_loclist_baton *baton,
1672 const struct attribute *attr);
1673
1674 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1675 struct symbol *sym,
1676 struct dwarf2_cu *cu,
1677 int is_block);
1678
1679 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1680 const gdb_byte *info_ptr,
1681 struct abbrev_info *abbrev);
1682
1683 static void free_stack_comp_unit (void *);
1684
1685 static hashval_t partial_die_hash (const void *item);
1686
1687 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1688
1689 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1690 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1691
1692 static void init_one_comp_unit (struct dwarf2_cu *cu,
1693 struct dwarf2_per_cu_data *per_cu);
1694
1695 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1696 struct die_info *comp_unit_die,
1697 enum language pretend_language);
1698
1699 static void free_heap_comp_unit (void *);
1700
1701 static void free_cached_comp_units (void *);
1702
1703 static void age_cached_comp_units (void);
1704
1705 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1706
1707 static struct type *set_die_type (struct die_info *, struct type *,
1708 struct dwarf2_cu *);
1709
1710 static void create_all_comp_units (struct objfile *);
1711
1712 static int create_all_type_units (struct objfile *);
1713
1714 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1715 enum language);
1716
1717 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1718 enum language);
1719
1720 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1721 enum language);
1722
1723 static void dwarf2_add_dependence (struct dwarf2_cu *,
1724 struct dwarf2_per_cu_data *);
1725
1726 static void dwarf2_mark (struct dwarf2_cu *);
1727
1728 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1729
1730 static struct type *get_die_type_at_offset (sect_offset,
1731 struct dwarf2_per_cu_data *);
1732
1733 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1734
1735 static void dwarf2_release_queue (void *dummy);
1736
1737 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1738 enum language pretend_language);
1739
1740 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1741 struct dwarf2_per_cu_data *per_cu,
1742 enum language pretend_language);
1743
1744 static void process_queue (void);
1745
1746 static void find_file_and_directory (struct die_info *die,
1747 struct dwarf2_cu *cu,
1748 const char **name, const char **comp_dir);
1749
1750 static char *file_full_name (int file, struct line_header *lh,
1751 const char *comp_dir);
1752
1753 static const gdb_byte *read_and_check_comp_unit_head
1754 (struct comp_unit_head *header,
1755 struct dwarf2_section_info *section,
1756 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1757 int is_debug_types_section);
1758
1759 static void init_cutu_and_read_dies
1760 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1761 int use_existing_cu, int keep,
1762 die_reader_func_ftype *die_reader_func, void *data);
1763
1764 static void init_cutu_and_read_dies_simple
1765 (struct dwarf2_per_cu_data *this_cu,
1766 die_reader_func_ftype *die_reader_func, void *data);
1767
1768 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1769
1770 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1771
1772 static struct dwo_unit *lookup_dwo_in_dwp
1773 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1774 const char *comp_dir, ULONGEST signature, int is_debug_types);
1775
1776 static struct dwp_file *get_dwp_file (void);
1777
1778 static struct dwo_unit *lookup_dwo_comp_unit
1779 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1780
1781 static struct dwo_unit *lookup_dwo_type_unit
1782 (struct signatured_type *, const char *, const char *);
1783
1784 static void free_dwo_file_cleanup (void *);
1785
1786 static void process_cu_includes (void);
1787
1788 static void check_producer (struct dwarf2_cu *cu);
1789
1790 #if WORDS_BIGENDIAN
1791
1792 /* Convert VALUE between big- and little-endian. */
1793 static offset_type
1794 byte_swap (offset_type value)
1795 {
1796 offset_type result;
1797
1798 result = (value & 0xff) << 24;
1799 result |= (value & 0xff00) << 8;
1800 result |= (value & 0xff0000) >> 8;
1801 result |= (value & 0xff000000) >> 24;
1802 return result;
1803 }
1804
1805 #define MAYBE_SWAP(V) byte_swap (V)
1806
1807 #else
1808 #define MAYBE_SWAP(V) (V)
1809 #endif /* WORDS_BIGENDIAN */
1810
1811 /* The suffix for an index file. */
1812 #define INDEX_SUFFIX ".gdb-index"
1813
1814 /* Try to locate the sections we need for DWARF 2 debugging
1815 information and return true if we have enough to do something.
1816 NAMES points to the dwarf2 section names, or is NULL if the standard
1817 ELF names are used. */
1818
1819 int
1820 dwarf2_has_info (struct objfile *objfile,
1821 const struct dwarf2_debug_sections *names)
1822 {
1823 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1824 if (!dwarf2_per_objfile)
1825 {
1826 /* Initialize per-objfile state. */
1827 struct dwarf2_per_objfile *data
1828 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1829
1830 memset (data, 0, sizeof (*data));
1831 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1832 dwarf2_per_objfile = data;
1833
1834 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1835 (void *) names);
1836 dwarf2_per_objfile->objfile = objfile;
1837 }
1838 return (dwarf2_per_objfile->info.asection != NULL
1839 && dwarf2_per_objfile->abbrev.asection != NULL);
1840 }
1841
1842 /* When loading sections, we look either for uncompressed section or for
1843 compressed section names. */
1844
1845 static int
1846 section_is_p (const char *section_name,
1847 const struct dwarf2_section_names *names)
1848 {
1849 if (names->normal != NULL
1850 && strcmp (section_name, names->normal) == 0)
1851 return 1;
1852 if (names->compressed != NULL
1853 && strcmp (section_name, names->compressed) == 0)
1854 return 1;
1855 return 0;
1856 }
1857
1858 /* This function is mapped across the sections and remembers the
1859 offset and size of each of the debugging sections we are interested
1860 in. */
1861
1862 static void
1863 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1864 {
1865 const struct dwarf2_debug_sections *names;
1866 flagword aflag = bfd_get_section_flags (abfd, sectp);
1867
1868 if (vnames == NULL)
1869 names = &dwarf2_elf_names;
1870 else
1871 names = (const struct dwarf2_debug_sections *) vnames;
1872
1873 if ((aflag & SEC_HAS_CONTENTS) == 0)
1874 {
1875 }
1876 else if (section_is_p (sectp->name, &names->info))
1877 {
1878 dwarf2_per_objfile->info.asection = sectp;
1879 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1880 }
1881 else if (section_is_p (sectp->name, &names->abbrev))
1882 {
1883 dwarf2_per_objfile->abbrev.asection = sectp;
1884 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1885 }
1886 else if (section_is_p (sectp->name, &names->line))
1887 {
1888 dwarf2_per_objfile->line.asection = sectp;
1889 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1890 }
1891 else if (section_is_p (sectp->name, &names->loc))
1892 {
1893 dwarf2_per_objfile->loc.asection = sectp;
1894 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1895 }
1896 else if (section_is_p (sectp->name, &names->macinfo))
1897 {
1898 dwarf2_per_objfile->macinfo.asection = sectp;
1899 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1900 }
1901 else if (section_is_p (sectp->name, &names->macro))
1902 {
1903 dwarf2_per_objfile->macro.asection = sectp;
1904 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1905 }
1906 else if (section_is_p (sectp->name, &names->str))
1907 {
1908 dwarf2_per_objfile->str.asection = sectp;
1909 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1910 }
1911 else if (section_is_p (sectp->name, &names->addr))
1912 {
1913 dwarf2_per_objfile->addr.asection = sectp;
1914 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names->frame))
1917 {
1918 dwarf2_per_objfile->frame.asection = sectp;
1919 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names->eh_frame))
1922 {
1923 dwarf2_per_objfile->eh_frame.asection = sectp;
1924 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1925 }
1926 else if (section_is_p (sectp->name, &names->ranges))
1927 {
1928 dwarf2_per_objfile->ranges.asection = sectp;
1929 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1930 }
1931 else if (section_is_p (sectp->name, &names->types))
1932 {
1933 struct dwarf2_section_info type_section;
1934
1935 memset (&type_section, 0, sizeof (type_section));
1936 type_section.asection = sectp;
1937 type_section.size = bfd_get_section_size (sectp);
1938
1939 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1940 &type_section);
1941 }
1942 else if (section_is_p (sectp->name, &names->gdb_index))
1943 {
1944 dwarf2_per_objfile->gdb_index.asection = sectp;
1945 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1946 }
1947
1948 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1949 && bfd_section_vma (abfd, sectp) == 0)
1950 dwarf2_per_objfile->has_section_at_zero = 1;
1951 }
1952
1953 /* A helper function that decides whether a section is empty,
1954 or not present. */
1955
1956 static int
1957 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1958 {
1959 return info->asection == NULL || info->size == 0;
1960 }
1961
1962 /* Read the contents of the section INFO.
1963 OBJFILE is the main object file, but not necessarily the file where
1964 the section comes from. E.g., for DWO files INFO->asection->owner
1965 is the bfd of the DWO file.
1966 If the section is compressed, uncompress it before returning. */
1967
1968 static void
1969 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1970 {
1971 asection *sectp = info->asection;
1972 bfd *abfd;
1973 gdb_byte *buf, *retbuf;
1974 unsigned char header[4];
1975
1976 if (info->readin)
1977 return;
1978 info->buffer = NULL;
1979 info->readin = 1;
1980
1981 if (dwarf2_section_empty_p (info))
1982 return;
1983
1984 abfd = sectp->owner;
1985
1986 /* If the section has relocations, we must read it ourselves.
1987 Otherwise we attach it to the BFD. */
1988 if ((sectp->flags & SEC_RELOC) == 0)
1989 {
1990 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1991 return;
1992 }
1993
1994 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1995 info->buffer = buf;
1996
1997 /* When debugging .o files, we may need to apply relocations; see
1998 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1999 We never compress sections in .o files, so we only need to
2000 try this when the section is not compressed. */
2001 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2002 if (retbuf != NULL)
2003 {
2004 info->buffer = retbuf;
2005 return;
2006 }
2007
2008 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2009 || bfd_bread (buf, info->size, abfd) != info->size)
2010 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2011 bfd_get_filename (abfd));
2012 }
2013
2014 /* A helper function that returns the size of a section in a safe way.
2015 If you are positive that the section has been read before using the
2016 size, then it is safe to refer to the dwarf2_section_info object's
2017 "size" field directly. In other cases, you must call this
2018 function, because for compressed sections the size field is not set
2019 correctly until the section has been read. */
2020
2021 static bfd_size_type
2022 dwarf2_section_size (struct objfile *objfile,
2023 struct dwarf2_section_info *info)
2024 {
2025 if (!info->readin)
2026 dwarf2_read_section (objfile, info);
2027 return info->size;
2028 }
2029
2030 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2031 SECTION_NAME. */
2032
2033 void
2034 dwarf2_get_section_info (struct objfile *objfile,
2035 enum dwarf2_section_enum sect,
2036 asection **sectp, const gdb_byte **bufp,
2037 bfd_size_type *sizep)
2038 {
2039 struct dwarf2_per_objfile *data
2040 = objfile_data (objfile, dwarf2_objfile_data_key);
2041 struct dwarf2_section_info *info;
2042
2043 /* We may see an objfile without any DWARF, in which case we just
2044 return nothing. */
2045 if (data == NULL)
2046 {
2047 *sectp = NULL;
2048 *bufp = NULL;
2049 *sizep = 0;
2050 return;
2051 }
2052 switch (sect)
2053 {
2054 case DWARF2_DEBUG_FRAME:
2055 info = &data->frame;
2056 break;
2057 case DWARF2_EH_FRAME:
2058 info = &data->eh_frame;
2059 break;
2060 default:
2061 gdb_assert_not_reached ("unexpected section");
2062 }
2063
2064 dwarf2_read_section (objfile, info);
2065
2066 *sectp = info->asection;
2067 *bufp = info->buffer;
2068 *sizep = info->size;
2069 }
2070
2071 /* A helper function to find the sections for a .dwz file. */
2072
2073 static void
2074 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2075 {
2076 struct dwz_file *dwz_file = arg;
2077
2078 /* Note that we only support the standard ELF names, because .dwz
2079 is ELF-only (at the time of writing). */
2080 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2081 {
2082 dwz_file->abbrev.asection = sectp;
2083 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2086 {
2087 dwz_file->info.asection = sectp;
2088 dwz_file->info.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2091 {
2092 dwz_file->str.asection = sectp;
2093 dwz_file->str.size = bfd_get_section_size (sectp);
2094 }
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2096 {
2097 dwz_file->line.asection = sectp;
2098 dwz_file->line.size = bfd_get_section_size (sectp);
2099 }
2100 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2101 {
2102 dwz_file->macro.asection = sectp;
2103 dwz_file->macro.size = bfd_get_section_size (sectp);
2104 }
2105 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2106 {
2107 dwz_file->gdb_index.asection = sectp;
2108 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2109 }
2110 }
2111
2112 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2113 there is no .gnu_debugaltlink section in the file. Error if there
2114 is such a section but the file cannot be found. */
2115
2116 static struct dwz_file *
2117 dwarf2_get_dwz_file (void)
2118 {
2119 bfd *dwz_bfd;
2120 char *data;
2121 struct cleanup *cleanup;
2122 const char *filename;
2123 struct dwz_file *result;
2124 unsigned long buildid;
2125
2126 if (dwarf2_per_objfile->dwz_file != NULL)
2127 return dwarf2_per_objfile->dwz_file;
2128
2129 bfd_set_error (bfd_error_no_error);
2130 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2131 &buildid);
2132 if (data == NULL)
2133 {
2134 if (bfd_get_error () == bfd_error_no_error)
2135 return NULL;
2136 error (_("could not read '.gnu_debugaltlink' section: %s"),
2137 bfd_errmsg (bfd_get_error ()));
2138 }
2139 cleanup = make_cleanup (xfree, data);
2140
2141 filename = (const char *) data;
2142 if (!IS_ABSOLUTE_PATH (filename))
2143 {
2144 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2145 char *rel;
2146
2147 make_cleanup (xfree, abs);
2148 abs = ldirname (abs);
2149 make_cleanup (xfree, abs);
2150
2151 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2152 make_cleanup (xfree, rel);
2153 filename = rel;
2154 }
2155
2156 /* The format is just a NUL-terminated file name, followed by the
2157 build-id. For now, though, we ignore the build-id. */
2158 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2159 if (dwz_bfd == NULL)
2160 error (_("could not read '%s': %s"), filename,
2161 bfd_errmsg (bfd_get_error ()));
2162
2163 if (!bfd_check_format (dwz_bfd, bfd_object))
2164 {
2165 gdb_bfd_unref (dwz_bfd);
2166 error (_("file '%s' was not usable: %s"), filename,
2167 bfd_errmsg (bfd_get_error ()));
2168 }
2169
2170 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2171 struct dwz_file);
2172 result->dwz_bfd = dwz_bfd;
2173
2174 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2175
2176 do_cleanups (cleanup);
2177
2178 dwarf2_per_objfile->dwz_file = result;
2179 return result;
2180 }
2181 \f
2182 /* DWARF quick_symbols_functions support. */
2183
2184 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2185 unique line tables, so we maintain a separate table of all .debug_line
2186 derived entries to support the sharing.
2187 All the quick functions need is the list of file names. We discard the
2188 line_header when we're done and don't need to record it here. */
2189 struct quick_file_names
2190 {
2191 /* The data used to construct the hash key. */
2192 struct stmt_list_hash hash;
2193
2194 /* The number of entries in file_names, real_names. */
2195 unsigned int num_file_names;
2196
2197 /* The file names from the line table, after being run through
2198 file_full_name. */
2199 const char **file_names;
2200
2201 /* The file names from the line table after being run through
2202 gdb_realpath. These are computed lazily. */
2203 const char **real_names;
2204 };
2205
2206 /* When using the index (and thus not using psymtabs), each CU has an
2207 object of this type. This is used to hold information needed by
2208 the various "quick" methods. */
2209 struct dwarf2_per_cu_quick_data
2210 {
2211 /* The file table. This can be NULL if there was no file table
2212 or it's currently not read in.
2213 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2214 struct quick_file_names *file_names;
2215
2216 /* The corresponding symbol table. This is NULL if symbols for this
2217 CU have not yet been read. */
2218 struct symtab *symtab;
2219
2220 /* A temporary mark bit used when iterating over all CUs in
2221 expand_symtabs_matching. */
2222 unsigned int mark : 1;
2223
2224 /* True if we've tried to read the file table and found there isn't one.
2225 There will be no point in trying to read it again next time. */
2226 unsigned int no_file_data : 1;
2227 };
2228
2229 /* Utility hash function for a stmt_list_hash. */
2230
2231 static hashval_t
2232 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2233 {
2234 hashval_t v = 0;
2235
2236 if (stmt_list_hash->dwo_unit != NULL)
2237 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2238 v += stmt_list_hash->line_offset.sect_off;
2239 return v;
2240 }
2241
2242 /* Utility equality function for a stmt_list_hash. */
2243
2244 static int
2245 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2246 const struct stmt_list_hash *rhs)
2247 {
2248 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2249 return 0;
2250 if (lhs->dwo_unit != NULL
2251 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2252 return 0;
2253
2254 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2255 }
2256
2257 /* Hash function for a quick_file_names. */
2258
2259 static hashval_t
2260 hash_file_name_entry (const void *e)
2261 {
2262 const struct quick_file_names *file_data = e;
2263
2264 return hash_stmt_list_entry (&file_data->hash);
2265 }
2266
2267 /* Equality function for a quick_file_names. */
2268
2269 static int
2270 eq_file_name_entry (const void *a, const void *b)
2271 {
2272 const struct quick_file_names *ea = a;
2273 const struct quick_file_names *eb = b;
2274
2275 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2276 }
2277
2278 /* Delete function for a quick_file_names. */
2279
2280 static void
2281 delete_file_name_entry (void *e)
2282 {
2283 struct quick_file_names *file_data = e;
2284 int i;
2285
2286 for (i = 0; i < file_data->num_file_names; ++i)
2287 {
2288 xfree ((void*) file_data->file_names[i]);
2289 if (file_data->real_names)
2290 xfree ((void*) file_data->real_names[i]);
2291 }
2292
2293 /* The space for the struct itself lives on objfile_obstack,
2294 so we don't free it here. */
2295 }
2296
2297 /* Create a quick_file_names hash table. */
2298
2299 static htab_t
2300 create_quick_file_names_table (unsigned int nr_initial_entries)
2301 {
2302 return htab_create_alloc (nr_initial_entries,
2303 hash_file_name_entry, eq_file_name_entry,
2304 delete_file_name_entry, xcalloc, xfree);
2305 }
2306
2307 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2308 have to be created afterwards. You should call age_cached_comp_units after
2309 processing PER_CU->CU. dw2_setup must have been already called. */
2310
2311 static void
2312 load_cu (struct dwarf2_per_cu_data *per_cu)
2313 {
2314 if (per_cu->is_debug_types)
2315 load_full_type_unit (per_cu);
2316 else
2317 load_full_comp_unit (per_cu, language_minimal);
2318
2319 gdb_assert (per_cu->cu != NULL);
2320
2321 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2322 }
2323
2324 /* Read in the symbols for PER_CU. */
2325
2326 static void
2327 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2328 {
2329 struct cleanup *back_to;
2330
2331 /* Skip type_unit_groups, reading the type units they contain
2332 is handled elsewhere. */
2333 if (IS_TYPE_UNIT_GROUP (per_cu))
2334 return;
2335
2336 back_to = make_cleanup (dwarf2_release_queue, NULL);
2337
2338 if (dwarf2_per_objfile->using_index
2339 ? per_cu->v.quick->symtab == NULL
2340 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2341 {
2342 queue_comp_unit (per_cu, language_minimal);
2343 load_cu (per_cu);
2344 }
2345
2346 process_queue ();
2347
2348 /* Age the cache, releasing compilation units that have not
2349 been used recently. */
2350 age_cached_comp_units ();
2351
2352 do_cleanups (back_to);
2353 }
2354
2355 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2358
2359 static struct symtab *
2360 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2361 {
2362 gdb_assert (dwarf2_per_objfile->using_index);
2363 if (!per_cu->v.quick->symtab)
2364 {
2365 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2366 increment_reading_symtab ();
2367 dw2_do_instantiate_symtab (per_cu);
2368 process_cu_includes ();
2369 do_cleanups (back_to);
2370 }
2371 return per_cu->v.quick->symtab;
2372 }
2373
2374 /* Return the CU given its index.
2375
2376 This is intended for loops like:
2377
2378 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2379 + dwarf2_per_objfile->n_type_units); ++i)
2380 {
2381 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2382
2383 ...;
2384 }
2385 */
2386
2387 static struct dwarf2_per_cu_data *
2388 dw2_get_cu (int index)
2389 {
2390 if (index >= dwarf2_per_objfile->n_comp_units)
2391 {
2392 index -= dwarf2_per_objfile->n_comp_units;
2393 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2394 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2395 }
2396
2397 return dwarf2_per_objfile->all_comp_units[index];
2398 }
2399
2400 /* Return the primary CU given its index.
2401 The difference between this function and dw2_get_cu is in the handling
2402 of type units (TUs). Here we return the type_unit_group object.
2403
2404 This is intended for loops like:
2405
2406 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2407 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2408 {
2409 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2410
2411 ...;
2412 }
2413 */
2414
2415 static struct dwarf2_per_cu_data *
2416 dw2_get_primary_cu (int index)
2417 {
2418 if (index >= dwarf2_per_objfile->n_comp_units)
2419 {
2420 index -= dwarf2_per_objfile->n_comp_units;
2421 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2422 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2423 }
2424
2425 return dwarf2_per_objfile->all_comp_units[index];
2426 }
2427
2428 /* A helper for create_cus_from_index that handles a given list of
2429 CUs. */
2430
2431 static void
2432 create_cus_from_index_list (struct objfile *objfile,
2433 const gdb_byte *cu_list, offset_type n_elements,
2434 struct dwarf2_section_info *section,
2435 int is_dwz,
2436 int base_offset)
2437 {
2438 offset_type i;
2439
2440 for (i = 0; i < n_elements; i += 2)
2441 {
2442 struct dwarf2_per_cu_data *the_cu;
2443 ULONGEST offset, length;
2444
2445 gdb_static_assert (sizeof (ULONGEST) >= 8);
2446 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2447 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2448 cu_list += 2 * 8;
2449
2450 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2451 struct dwarf2_per_cu_data);
2452 the_cu->offset.sect_off = offset;
2453 the_cu->length = length;
2454 the_cu->objfile = objfile;
2455 the_cu->section = section;
2456 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2457 struct dwarf2_per_cu_quick_data);
2458 the_cu->is_dwz = is_dwz;
2459 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2460 }
2461 }
2462
2463 /* Read the CU list from the mapped index, and use it to create all
2464 the CU objects for this objfile. */
2465
2466 static void
2467 create_cus_from_index (struct objfile *objfile,
2468 const gdb_byte *cu_list, offset_type cu_list_elements,
2469 const gdb_byte *dwz_list, offset_type dwz_elements)
2470 {
2471 struct dwz_file *dwz;
2472
2473 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2474 dwarf2_per_objfile->all_comp_units
2475 = obstack_alloc (&objfile->objfile_obstack,
2476 dwarf2_per_objfile->n_comp_units
2477 * sizeof (struct dwarf2_per_cu_data *));
2478
2479 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2480 &dwarf2_per_objfile->info, 0, 0);
2481
2482 if (dwz_elements == 0)
2483 return;
2484
2485 dwz = dwarf2_get_dwz_file ();
2486 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2487 cu_list_elements / 2);
2488 }
2489
2490 /* Create the signatured type hash table from the index. */
2491
2492 static void
2493 create_signatured_type_table_from_index (struct objfile *objfile,
2494 struct dwarf2_section_info *section,
2495 const gdb_byte *bytes,
2496 offset_type elements)
2497 {
2498 offset_type i;
2499 htab_t sig_types_hash;
2500
2501 dwarf2_per_objfile->n_type_units = elements / 3;
2502 dwarf2_per_objfile->all_type_units
2503 = xmalloc (dwarf2_per_objfile->n_type_units
2504 * sizeof (struct signatured_type *));
2505
2506 sig_types_hash = allocate_signatured_type_table (objfile);
2507
2508 for (i = 0; i < elements; i += 3)
2509 {
2510 struct signatured_type *sig_type;
2511 ULONGEST offset, type_offset_in_tu, signature;
2512 void **slot;
2513
2514 gdb_static_assert (sizeof (ULONGEST) >= 8);
2515 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2516 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2517 BFD_ENDIAN_LITTLE);
2518 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2519 bytes += 3 * 8;
2520
2521 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2522 struct signatured_type);
2523 sig_type->signature = signature;
2524 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2525 sig_type->per_cu.is_debug_types = 1;
2526 sig_type->per_cu.section = section;
2527 sig_type->per_cu.offset.sect_off = offset;
2528 sig_type->per_cu.objfile = objfile;
2529 sig_type->per_cu.v.quick
2530 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2531 struct dwarf2_per_cu_quick_data);
2532
2533 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2534 *slot = sig_type;
2535
2536 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2537 }
2538
2539 dwarf2_per_objfile->signatured_types = sig_types_hash;
2540 }
2541
2542 /* Read the address map data from the mapped index, and use it to
2543 populate the objfile's psymtabs_addrmap. */
2544
2545 static void
2546 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2547 {
2548 const gdb_byte *iter, *end;
2549 struct obstack temp_obstack;
2550 struct addrmap *mutable_map;
2551 struct cleanup *cleanup;
2552 CORE_ADDR baseaddr;
2553
2554 obstack_init (&temp_obstack);
2555 cleanup = make_cleanup_obstack_free (&temp_obstack);
2556 mutable_map = addrmap_create_mutable (&temp_obstack);
2557
2558 iter = index->address_table;
2559 end = iter + index->address_table_size;
2560
2561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2562
2563 while (iter < end)
2564 {
2565 ULONGEST hi, lo, cu_index;
2566 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2567 iter += 8;
2568 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2569 iter += 8;
2570 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2571 iter += 4;
2572
2573 if (lo > hi)
2574 {
2575 complaint (&symfile_complaints,
2576 _(".gdb_index address table has invalid range (%s - %s)"),
2577 hex_string (lo), hex_string (hi));
2578 continue;
2579 }
2580
2581 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2582 {
2583 complaint (&symfile_complaints,
2584 _(".gdb_index address table has invalid CU number %u"),
2585 (unsigned) cu_index);
2586 continue;
2587 }
2588
2589 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2590 dw2_get_cu (cu_index));
2591 }
2592
2593 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2594 &objfile->objfile_obstack);
2595 do_cleanups (cleanup);
2596 }
2597
2598 /* The hash function for strings in the mapped index. This is the same as
2599 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2600 implementation. This is necessary because the hash function is tied to the
2601 format of the mapped index file. The hash values do not have to match with
2602 SYMBOL_HASH_NEXT.
2603
2604 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2605
2606 static hashval_t
2607 mapped_index_string_hash (int index_version, const void *p)
2608 {
2609 const unsigned char *str = (const unsigned char *) p;
2610 hashval_t r = 0;
2611 unsigned char c;
2612
2613 while ((c = *str++) != 0)
2614 {
2615 if (index_version >= 5)
2616 c = tolower (c);
2617 r = r * 67 + c - 113;
2618 }
2619
2620 return r;
2621 }
2622
2623 /* Find a slot in the mapped index INDEX for the object named NAME.
2624 If NAME is found, set *VEC_OUT to point to the CU vector in the
2625 constant pool and return 1. If NAME cannot be found, return 0. */
2626
2627 static int
2628 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2629 offset_type **vec_out)
2630 {
2631 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2632 offset_type hash;
2633 offset_type slot, step;
2634 int (*cmp) (const char *, const char *);
2635
2636 if (current_language->la_language == language_cplus
2637 || current_language->la_language == language_java
2638 || current_language->la_language == language_fortran)
2639 {
2640 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2641 not contain any. */
2642 const char *paren = strchr (name, '(');
2643
2644 if (paren)
2645 {
2646 char *dup;
2647
2648 dup = xmalloc (paren - name + 1);
2649 memcpy (dup, name, paren - name);
2650 dup[paren - name] = 0;
2651
2652 make_cleanup (xfree, dup);
2653 name = dup;
2654 }
2655 }
2656
2657 /* Index version 4 did not support case insensitive searches. But the
2658 indices for case insensitive languages are built in lowercase, therefore
2659 simulate our NAME being searched is also lowercased. */
2660 hash = mapped_index_string_hash ((index->version == 4
2661 && case_sensitivity == case_sensitive_off
2662 ? 5 : index->version),
2663 name);
2664
2665 slot = hash & (index->symbol_table_slots - 1);
2666 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2667 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2668
2669 for (;;)
2670 {
2671 /* Convert a slot number to an offset into the table. */
2672 offset_type i = 2 * slot;
2673 const char *str;
2674 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2675 {
2676 do_cleanups (back_to);
2677 return 0;
2678 }
2679
2680 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2681 if (!cmp (name, str))
2682 {
2683 *vec_out = (offset_type *) (index->constant_pool
2684 + MAYBE_SWAP (index->symbol_table[i + 1]));
2685 do_cleanups (back_to);
2686 return 1;
2687 }
2688
2689 slot = (slot + step) & (index->symbol_table_slots - 1);
2690 }
2691 }
2692
2693 /* A helper function that reads the .gdb_index from SECTION and fills
2694 in MAP. FILENAME is the name of the file containing the section;
2695 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2696 ok to use deprecated sections.
2697
2698 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2699 out parameters that are filled in with information about the CU and
2700 TU lists in the section.
2701
2702 Returns 1 if all went well, 0 otherwise. */
2703
2704 static int
2705 read_index_from_section (struct objfile *objfile,
2706 const char *filename,
2707 int deprecated_ok,
2708 struct dwarf2_section_info *section,
2709 struct mapped_index *map,
2710 const gdb_byte **cu_list,
2711 offset_type *cu_list_elements,
2712 const gdb_byte **types_list,
2713 offset_type *types_list_elements)
2714 {
2715 const gdb_byte *addr;
2716 offset_type version;
2717 offset_type *metadata;
2718 int i;
2719
2720 if (dwarf2_section_empty_p (section))
2721 return 0;
2722
2723 /* Older elfutils strip versions could keep the section in the main
2724 executable while splitting it for the separate debug info file. */
2725 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2726 return 0;
2727
2728 dwarf2_read_section (objfile, section);
2729
2730 addr = section->buffer;
2731 /* Version check. */
2732 version = MAYBE_SWAP (*(offset_type *) addr);
2733 /* Versions earlier than 3 emitted every copy of a psymbol. This
2734 causes the index to behave very poorly for certain requests. Version 3
2735 contained incomplete addrmap. So, it seems better to just ignore such
2736 indices. */
2737 if (version < 4)
2738 {
2739 static int warning_printed = 0;
2740 if (!warning_printed)
2741 {
2742 warning (_("Skipping obsolete .gdb_index section in %s."),
2743 filename);
2744 warning_printed = 1;
2745 }
2746 return 0;
2747 }
2748 /* Index version 4 uses a different hash function than index version
2749 5 and later.
2750
2751 Versions earlier than 6 did not emit psymbols for inlined
2752 functions. Using these files will cause GDB not to be able to
2753 set breakpoints on inlined functions by name, so we ignore these
2754 indices unless the user has done
2755 "set use-deprecated-index-sections on". */
2756 if (version < 6 && !deprecated_ok)
2757 {
2758 static int warning_printed = 0;
2759 if (!warning_printed)
2760 {
2761 warning (_("\
2762 Skipping deprecated .gdb_index section in %s.\n\
2763 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2764 to use the section anyway."),
2765 filename);
2766 warning_printed = 1;
2767 }
2768 return 0;
2769 }
2770 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2771 of the TU (for symbols coming from TUs). It's just a performance bug, and
2772 we can't distinguish gdb-generated indices from gold-generated ones, so
2773 nothing to do here. */
2774
2775 /* Indexes with higher version than the one supported by GDB may be no
2776 longer backward compatible. */
2777 if (version > 8)
2778 return 0;
2779
2780 map->version = version;
2781 map->total_size = section->size;
2782
2783 metadata = (offset_type *) (addr + sizeof (offset_type));
2784
2785 i = 0;
2786 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2787 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2788 / 8);
2789 ++i;
2790
2791 *types_list = addr + MAYBE_SWAP (metadata[i]);
2792 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2793 - MAYBE_SWAP (metadata[i]))
2794 / 8);
2795 ++i;
2796
2797 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2798 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2799 - MAYBE_SWAP (metadata[i]));
2800 ++i;
2801
2802 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2803 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2804 - MAYBE_SWAP (metadata[i]))
2805 / (2 * sizeof (offset_type)));
2806 ++i;
2807
2808 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2809
2810 return 1;
2811 }
2812
2813
2814 /* Read the index file. If everything went ok, initialize the "quick"
2815 elements of all the CUs and return 1. Otherwise, return 0. */
2816
2817 static int
2818 dwarf2_read_index (struct objfile *objfile)
2819 {
2820 struct mapped_index local_map, *map;
2821 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2822 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2823 struct dwz_file *dwz;
2824
2825 if (!read_index_from_section (objfile, objfile->name,
2826 use_deprecated_index_sections,
2827 &dwarf2_per_objfile->gdb_index, &local_map,
2828 &cu_list, &cu_list_elements,
2829 &types_list, &types_list_elements))
2830 return 0;
2831
2832 /* Don't use the index if it's empty. */
2833 if (local_map.symbol_table_slots == 0)
2834 return 0;
2835
2836 /* If there is a .dwz file, read it so we can get its CU list as
2837 well. */
2838 dwz = dwarf2_get_dwz_file ();
2839 if (dwz != NULL)
2840 {
2841 struct mapped_index dwz_map;
2842 const gdb_byte *dwz_types_ignore;
2843 offset_type dwz_types_elements_ignore;
2844
2845 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2846 1,
2847 &dwz->gdb_index, &dwz_map,
2848 &dwz_list, &dwz_list_elements,
2849 &dwz_types_ignore,
2850 &dwz_types_elements_ignore))
2851 {
2852 warning (_("could not read '.gdb_index' section from %s; skipping"),
2853 bfd_get_filename (dwz->dwz_bfd));
2854 return 0;
2855 }
2856 }
2857
2858 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2859 dwz_list_elements);
2860
2861 if (types_list_elements)
2862 {
2863 struct dwarf2_section_info *section;
2864
2865 /* We can only handle a single .debug_types when we have an
2866 index. */
2867 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2868 return 0;
2869
2870 section = VEC_index (dwarf2_section_info_def,
2871 dwarf2_per_objfile->types, 0);
2872
2873 create_signatured_type_table_from_index (objfile, section, types_list,
2874 types_list_elements);
2875 }
2876
2877 create_addrmap_from_index (objfile, &local_map);
2878
2879 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2880 *map = local_map;
2881
2882 dwarf2_per_objfile->index_table = map;
2883 dwarf2_per_objfile->using_index = 1;
2884 dwarf2_per_objfile->quick_file_names_table =
2885 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2886
2887 return 1;
2888 }
2889
2890 /* A helper for the "quick" functions which sets the global
2891 dwarf2_per_objfile according to OBJFILE. */
2892
2893 static void
2894 dw2_setup (struct objfile *objfile)
2895 {
2896 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2897 gdb_assert (dwarf2_per_objfile);
2898 }
2899
2900 /* die_reader_func for dw2_get_file_names. */
2901
2902 static void
2903 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2904 const gdb_byte *info_ptr,
2905 struct die_info *comp_unit_die,
2906 int has_children,
2907 void *data)
2908 {
2909 struct dwarf2_cu *cu = reader->cu;
2910 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2911 struct objfile *objfile = dwarf2_per_objfile->objfile;
2912 struct dwarf2_per_cu_data *lh_cu;
2913 struct line_header *lh;
2914 struct attribute *attr;
2915 int i;
2916 const char *name, *comp_dir;
2917 void **slot;
2918 struct quick_file_names *qfn;
2919 unsigned int line_offset;
2920
2921 gdb_assert (! this_cu->is_debug_types);
2922
2923 /* Our callers never want to match partial units -- instead they
2924 will match the enclosing full CU. */
2925 if (comp_unit_die->tag == DW_TAG_partial_unit)
2926 {
2927 this_cu->v.quick->no_file_data = 1;
2928 return;
2929 }
2930
2931 lh_cu = this_cu;
2932 lh = NULL;
2933 slot = NULL;
2934 line_offset = 0;
2935
2936 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2937 if (attr)
2938 {
2939 struct quick_file_names find_entry;
2940
2941 line_offset = DW_UNSND (attr);
2942
2943 /* We may have already read in this line header (TU line header sharing).
2944 If we have we're done. */
2945 find_entry.hash.dwo_unit = cu->dwo_unit;
2946 find_entry.hash.line_offset.sect_off = line_offset;
2947 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2948 &find_entry, INSERT);
2949 if (*slot != NULL)
2950 {
2951 lh_cu->v.quick->file_names = *slot;
2952 return;
2953 }
2954
2955 lh = dwarf_decode_line_header (line_offset, cu);
2956 }
2957 if (lh == NULL)
2958 {
2959 lh_cu->v.quick->no_file_data = 1;
2960 return;
2961 }
2962
2963 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2964 qfn->hash.dwo_unit = cu->dwo_unit;
2965 qfn->hash.line_offset.sect_off = line_offset;
2966 gdb_assert (slot != NULL);
2967 *slot = qfn;
2968
2969 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2970
2971 qfn->num_file_names = lh->num_file_names;
2972 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2973 lh->num_file_names * sizeof (char *));
2974 for (i = 0; i < lh->num_file_names; ++i)
2975 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2976 qfn->real_names = NULL;
2977
2978 free_line_header (lh);
2979
2980 lh_cu->v.quick->file_names = qfn;
2981 }
2982
2983 /* A helper for the "quick" functions which attempts to read the line
2984 table for THIS_CU. */
2985
2986 static struct quick_file_names *
2987 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2988 {
2989 /* This should never be called for TUs. */
2990 gdb_assert (! this_cu->is_debug_types);
2991 /* Nor type unit groups. */
2992 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2993
2994 if (this_cu->v.quick->file_names != NULL)
2995 return this_cu->v.quick->file_names;
2996 /* If we know there is no line data, no point in looking again. */
2997 if (this_cu->v.quick->no_file_data)
2998 return NULL;
2999
3000 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3001
3002 if (this_cu->v.quick->no_file_data)
3003 return NULL;
3004 return this_cu->v.quick->file_names;
3005 }
3006
3007 /* A helper for the "quick" functions which computes and caches the
3008 real path for a given file name from the line table. */
3009
3010 static const char *
3011 dw2_get_real_path (struct objfile *objfile,
3012 struct quick_file_names *qfn, int index)
3013 {
3014 if (qfn->real_names == NULL)
3015 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3016 qfn->num_file_names, sizeof (char *));
3017
3018 if (qfn->real_names[index] == NULL)
3019 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3020
3021 return qfn->real_names[index];
3022 }
3023
3024 static struct symtab *
3025 dw2_find_last_source_symtab (struct objfile *objfile)
3026 {
3027 int index;
3028
3029 dw2_setup (objfile);
3030 index = dwarf2_per_objfile->n_comp_units - 1;
3031 return dw2_instantiate_symtab (dw2_get_cu (index));
3032 }
3033
3034 /* Traversal function for dw2_forget_cached_source_info. */
3035
3036 static int
3037 dw2_free_cached_file_names (void **slot, void *info)
3038 {
3039 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3040
3041 if (file_data->real_names)
3042 {
3043 int i;
3044
3045 for (i = 0; i < file_data->num_file_names; ++i)
3046 {
3047 xfree ((void*) file_data->real_names[i]);
3048 file_data->real_names[i] = NULL;
3049 }
3050 }
3051
3052 return 1;
3053 }
3054
3055 static void
3056 dw2_forget_cached_source_info (struct objfile *objfile)
3057 {
3058 dw2_setup (objfile);
3059
3060 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3061 dw2_free_cached_file_names, NULL);
3062 }
3063
3064 /* Helper function for dw2_map_symtabs_matching_filename that expands
3065 the symtabs and calls the iterator. */
3066
3067 static int
3068 dw2_map_expand_apply (struct objfile *objfile,
3069 struct dwarf2_per_cu_data *per_cu,
3070 const char *name, const char *real_path,
3071 int (*callback) (struct symtab *, void *),
3072 void *data)
3073 {
3074 struct symtab *last_made = objfile->symtabs;
3075
3076 /* Don't visit already-expanded CUs. */
3077 if (per_cu->v.quick->symtab)
3078 return 0;
3079
3080 /* This may expand more than one symtab, and we want to iterate over
3081 all of them. */
3082 dw2_instantiate_symtab (per_cu);
3083
3084 return iterate_over_some_symtabs (name, real_path, callback, data,
3085 objfile->symtabs, last_made);
3086 }
3087
3088 /* Implementation of the map_symtabs_matching_filename method. */
3089
3090 static int
3091 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3092 const char *real_path,
3093 int (*callback) (struct symtab *, void *),
3094 void *data)
3095 {
3096 int i;
3097 const char *name_basename = lbasename (name);
3098
3099 dw2_setup (objfile);
3100
3101 /* The rule is CUs specify all the files, including those used by
3102 any TU, so there's no need to scan TUs here. */
3103
3104 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3105 {
3106 int j;
3107 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3108 struct quick_file_names *file_data;
3109
3110 /* We only need to look at symtabs not already expanded. */
3111 if (per_cu->v.quick->symtab)
3112 continue;
3113
3114 file_data = dw2_get_file_names (per_cu);
3115 if (file_data == NULL)
3116 continue;
3117
3118 for (j = 0; j < file_data->num_file_names; ++j)
3119 {
3120 const char *this_name = file_data->file_names[j];
3121 const char *this_real_name;
3122
3123 if (compare_filenames_for_search (this_name, name))
3124 {
3125 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3126 callback, data))
3127 return 1;
3128 continue;
3129 }
3130
3131 /* Before we invoke realpath, which can get expensive when many
3132 files are involved, do a quick comparison of the basenames. */
3133 if (! basenames_may_differ
3134 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3135 continue;
3136
3137 this_real_name = dw2_get_real_path (objfile, file_data, j);
3138 if (compare_filenames_for_search (this_real_name, name))
3139 {
3140 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3141 callback, data))
3142 return 1;
3143 continue;
3144 }
3145
3146 if (real_path != NULL)
3147 {
3148 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3149 gdb_assert (IS_ABSOLUTE_PATH (name));
3150 if (this_real_name != NULL
3151 && FILENAME_CMP (real_path, this_real_name) == 0)
3152 {
3153 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3154 callback, data))
3155 return 1;
3156 continue;
3157 }
3158 }
3159 }
3160 }
3161
3162 return 0;
3163 }
3164
3165 /* Struct used to manage iterating over all CUs looking for a symbol. */
3166
3167 struct dw2_symtab_iterator
3168 {
3169 /* The internalized form of .gdb_index. */
3170 struct mapped_index *index;
3171 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3172 int want_specific_block;
3173 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3174 Unused if !WANT_SPECIFIC_BLOCK. */
3175 int block_index;
3176 /* The kind of symbol we're looking for. */
3177 domain_enum domain;
3178 /* The list of CUs from the index entry of the symbol,
3179 or NULL if not found. */
3180 offset_type *vec;
3181 /* The next element in VEC to look at. */
3182 int next;
3183 /* The number of elements in VEC, or zero if there is no match. */
3184 int length;
3185 };
3186
3187 /* Initialize the index symtab iterator ITER.
3188 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3189 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3190
3191 static void
3192 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3193 struct mapped_index *index,
3194 int want_specific_block,
3195 int block_index,
3196 domain_enum domain,
3197 const char *name)
3198 {
3199 iter->index = index;
3200 iter->want_specific_block = want_specific_block;
3201 iter->block_index = block_index;
3202 iter->domain = domain;
3203 iter->next = 0;
3204
3205 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3206 iter->length = MAYBE_SWAP (*iter->vec);
3207 else
3208 {
3209 iter->vec = NULL;
3210 iter->length = 0;
3211 }
3212 }
3213
3214 /* Return the next matching CU or NULL if there are no more. */
3215
3216 static struct dwarf2_per_cu_data *
3217 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3218 {
3219 for ( ; iter->next < iter->length; ++iter->next)
3220 {
3221 offset_type cu_index_and_attrs =
3222 MAYBE_SWAP (iter->vec[iter->next + 1]);
3223 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3224 struct dwarf2_per_cu_data *per_cu;
3225 int want_static = iter->block_index != GLOBAL_BLOCK;
3226 /* This value is only valid for index versions >= 7. */
3227 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3228 gdb_index_symbol_kind symbol_kind =
3229 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3230 /* Only check the symbol attributes if they're present.
3231 Indices prior to version 7 don't record them,
3232 and indices >= 7 may elide them for certain symbols
3233 (gold does this). */
3234 int attrs_valid =
3235 (iter->index->version >= 7
3236 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3237
3238 /* Don't crash on bad data. */
3239 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3240 + dwarf2_per_objfile->n_type_units))
3241 {
3242 complaint (&symfile_complaints,
3243 _(".gdb_index entry has bad CU index"
3244 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3245 continue;
3246 }
3247
3248 per_cu = dw2_get_cu (cu_index);
3249
3250 /* Skip if already read in. */
3251 if (per_cu->v.quick->symtab)
3252 continue;
3253
3254 if (attrs_valid
3255 && iter->want_specific_block
3256 && want_static != is_static)
3257 continue;
3258
3259 /* Only check the symbol's kind if it has one. */
3260 if (attrs_valid)
3261 {
3262 switch (iter->domain)
3263 {
3264 case VAR_DOMAIN:
3265 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3266 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3267 /* Some types are also in VAR_DOMAIN. */
3268 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3269 continue;
3270 break;
3271 case STRUCT_DOMAIN:
3272 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3273 continue;
3274 break;
3275 case LABEL_DOMAIN:
3276 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3277 continue;
3278 break;
3279 default:
3280 break;
3281 }
3282 }
3283
3284 ++iter->next;
3285 return per_cu;
3286 }
3287
3288 return NULL;
3289 }
3290
3291 static struct symtab *
3292 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3293 const char *name, domain_enum domain)
3294 {
3295 struct symtab *stab_best = NULL;
3296 struct mapped_index *index;
3297
3298 dw2_setup (objfile);
3299
3300 index = dwarf2_per_objfile->index_table;
3301
3302 /* index is NULL if OBJF_READNOW. */
3303 if (index)
3304 {
3305 struct dw2_symtab_iterator iter;
3306 struct dwarf2_per_cu_data *per_cu;
3307
3308 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3309
3310 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3311 {
3312 struct symbol *sym = NULL;
3313 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3314
3315 /* Some caution must be observed with overloaded functions
3316 and methods, since the index will not contain any overload
3317 information (but NAME might contain it). */
3318 if (stab->primary)
3319 {
3320 struct blockvector *bv = BLOCKVECTOR (stab);
3321 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3322
3323 sym = lookup_block_symbol (block, name, domain);
3324 }
3325
3326 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3327 {
3328 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3329 return stab;
3330
3331 stab_best = stab;
3332 }
3333
3334 /* Keep looking through other CUs. */
3335 }
3336 }
3337
3338 return stab_best;
3339 }
3340
3341 static void
3342 dw2_print_stats (struct objfile *objfile)
3343 {
3344 int i, total, count;
3345
3346 dw2_setup (objfile);
3347 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3348 count = 0;
3349 for (i = 0; i < total; ++i)
3350 {
3351 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3352
3353 if (!per_cu->v.quick->symtab)
3354 ++count;
3355 }
3356 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3357 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3358 }
3359
3360 static void
3361 dw2_dump (struct objfile *objfile)
3362 {
3363 /* Nothing worth printing. */
3364 }
3365
3366 static void
3367 dw2_relocate (struct objfile *objfile,
3368 const struct section_offsets *new_offsets,
3369 const struct section_offsets *delta)
3370 {
3371 /* There's nothing to relocate here. */
3372 }
3373
3374 static void
3375 dw2_expand_symtabs_for_function (struct objfile *objfile,
3376 const char *func_name)
3377 {
3378 struct mapped_index *index;
3379
3380 dw2_setup (objfile);
3381
3382 index = dwarf2_per_objfile->index_table;
3383
3384 /* index is NULL if OBJF_READNOW. */
3385 if (index)
3386 {
3387 struct dw2_symtab_iterator iter;
3388 struct dwarf2_per_cu_data *per_cu;
3389
3390 /* Note: It doesn't matter what we pass for block_index here. */
3391 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3392 func_name);
3393
3394 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3395 dw2_instantiate_symtab (per_cu);
3396 }
3397 }
3398
3399 static void
3400 dw2_expand_all_symtabs (struct objfile *objfile)
3401 {
3402 int i;
3403
3404 dw2_setup (objfile);
3405
3406 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3407 + dwarf2_per_objfile->n_type_units); ++i)
3408 {
3409 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3410
3411 dw2_instantiate_symtab (per_cu);
3412 }
3413 }
3414
3415 static void
3416 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3417 const char *fullname)
3418 {
3419 int i;
3420
3421 dw2_setup (objfile);
3422
3423 /* We don't need to consider type units here.
3424 This is only called for examining code, e.g. expand_line_sal.
3425 There can be an order of magnitude (or more) more type units
3426 than comp units, and we avoid them if we can. */
3427
3428 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3429 {
3430 int j;
3431 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3432 struct quick_file_names *file_data;
3433
3434 /* We only need to look at symtabs not already expanded. */
3435 if (per_cu->v.quick->symtab)
3436 continue;
3437
3438 file_data = dw2_get_file_names (per_cu);
3439 if (file_data == NULL)
3440 continue;
3441
3442 for (j = 0; j < file_data->num_file_names; ++j)
3443 {
3444 const char *this_fullname = file_data->file_names[j];
3445
3446 if (filename_cmp (this_fullname, fullname) == 0)
3447 {
3448 dw2_instantiate_symtab (per_cu);
3449 break;
3450 }
3451 }
3452 }
3453 }
3454
3455 static void
3456 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3457 struct objfile *objfile, int global,
3458 int (*callback) (struct block *,
3459 struct symbol *, void *),
3460 void *data, symbol_compare_ftype *match,
3461 symbol_compare_ftype *ordered_compare)
3462 {
3463 /* Currently unimplemented; used for Ada. The function can be called if the
3464 current language is Ada for a non-Ada objfile using GNU index. As Ada
3465 does not look for non-Ada symbols this function should just return. */
3466 }
3467
3468 static void
3469 dw2_expand_symtabs_matching
3470 (struct objfile *objfile,
3471 int (*file_matcher) (const char *, void *, int basenames),
3472 int (*name_matcher) (const char *, void *),
3473 enum search_domain kind,
3474 void *data)
3475 {
3476 int i;
3477 offset_type iter;
3478 struct mapped_index *index;
3479
3480 dw2_setup (objfile);
3481
3482 /* index_table is NULL if OBJF_READNOW. */
3483 if (!dwarf2_per_objfile->index_table)
3484 return;
3485 index = dwarf2_per_objfile->index_table;
3486
3487 if (file_matcher != NULL)
3488 {
3489 struct cleanup *cleanup;
3490 htab_t visited_found, visited_not_found;
3491
3492 visited_found = htab_create_alloc (10,
3493 htab_hash_pointer, htab_eq_pointer,
3494 NULL, xcalloc, xfree);
3495 cleanup = make_cleanup_htab_delete (visited_found);
3496 visited_not_found = htab_create_alloc (10,
3497 htab_hash_pointer, htab_eq_pointer,
3498 NULL, xcalloc, xfree);
3499 make_cleanup_htab_delete (visited_not_found);
3500
3501 /* The rule is CUs specify all the files, including those used by
3502 any TU, so there's no need to scan TUs here. */
3503
3504 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3505 {
3506 int j;
3507 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3508 struct quick_file_names *file_data;
3509 void **slot;
3510
3511 per_cu->v.quick->mark = 0;
3512
3513 /* We only need to look at symtabs not already expanded. */
3514 if (per_cu->v.quick->symtab)
3515 continue;
3516
3517 file_data = dw2_get_file_names (per_cu);
3518 if (file_data == NULL)
3519 continue;
3520
3521 if (htab_find (visited_not_found, file_data) != NULL)
3522 continue;
3523 else if (htab_find (visited_found, file_data) != NULL)
3524 {
3525 per_cu->v.quick->mark = 1;
3526 continue;
3527 }
3528
3529 for (j = 0; j < file_data->num_file_names; ++j)
3530 {
3531 const char *this_real_name;
3532
3533 if (file_matcher (file_data->file_names[j], data, 0))
3534 {
3535 per_cu->v.quick->mark = 1;
3536 break;
3537 }
3538
3539 /* Before we invoke realpath, which can get expensive when many
3540 files are involved, do a quick comparison of the basenames. */
3541 if (!basenames_may_differ
3542 && !file_matcher (lbasename (file_data->file_names[j]),
3543 data, 1))
3544 continue;
3545
3546 this_real_name = dw2_get_real_path (objfile, file_data, j);
3547 if (file_matcher (this_real_name, data, 0))
3548 {
3549 per_cu->v.quick->mark = 1;
3550 break;
3551 }
3552 }
3553
3554 slot = htab_find_slot (per_cu->v.quick->mark
3555 ? visited_found
3556 : visited_not_found,
3557 file_data, INSERT);
3558 *slot = file_data;
3559 }
3560
3561 do_cleanups (cleanup);
3562 }
3563
3564 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3565 {
3566 offset_type idx = 2 * iter;
3567 const char *name;
3568 offset_type *vec, vec_len, vec_idx;
3569
3570 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3571 continue;
3572
3573 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3574
3575 if (! (*name_matcher) (name, data))
3576 continue;
3577
3578 /* The name was matched, now expand corresponding CUs that were
3579 marked. */
3580 vec = (offset_type *) (index->constant_pool
3581 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3582 vec_len = MAYBE_SWAP (vec[0]);
3583 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3584 {
3585 struct dwarf2_per_cu_data *per_cu;
3586 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3587 gdb_index_symbol_kind symbol_kind =
3588 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3589 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3590 /* Only check the symbol attributes if they're present.
3591 Indices prior to version 7 don't record them,
3592 and indices >= 7 may elide them for certain symbols
3593 (gold does this). */
3594 int attrs_valid =
3595 (index->version >= 7
3596 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3597
3598 /* Only check the symbol's kind if it has one. */
3599 if (attrs_valid)
3600 {
3601 switch (kind)
3602 {
3603 case VARIABLES_DOMAIN:
3604 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3605 continue;
3606 break;
3607 case FUNCTIONS_DOMAIN:
3608 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3609 continue;
3610 break;
3611 case TYPES_DOMAIN:
3612 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3613 continue;
3614 break;
3615 default:
3616 break;
3617 }
3618 }
3619
3620 /* Don't crash on bad data. */
3621 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3622 + dwarf2_per_objfile->n_type_units))
3623 {
3624 complaint (&symfile_complaints,
3625 _(".gdb_index entry has bad CU index"
3626 " [in module %s]"), objfile->name);
3627 continue;
3628 }
3629
3630 per_cu = dw2_get_cu (cu_index);
3631 if (file_matcher == NULL || per_cu->v.quick->mark)
3632 dw2_instantiate_symtab (per_cu);
3633 }
3634 }
3635 }
3636
3637 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3638 symtab. */
3639
3640 static struct symtab *
3641 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3642 {
3643 int i;
3644
3645 if (BLOCKVECTOR (symtab) != NULL
3646 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3647 return symtab;
3648
3649 if (symtab->includes == NULL)
3650 return NULL;
3651
3652 for (i = 0; symtab->includes[i]; ++i)
3653 {
3654 struct symtab *s = symtab->includes[i];
3655
3656 s = recursively_find_pc_sect_symtab (s, pc);
3657 if (s != NULL)
3658 return s;
3659 }
3660
3661 return NULL;
3662 }
3663
3664 static struct symtab *
3665 dw2_find_pc_sect_symtab (struct objfile *objfile,
3666 struct minimal_symbol *msymbol,
3667 CORE_ADDR pc,
3668 struct obj_section *section,
3669 int warn_if_readin)
3670 {
3671 struct dwarf2_per_cu_data *data;
3672 struct symtab *result;
3673
3674 dw2_setup (objfile);
3675
3676 if (!objfile->psymtabs_addrmap)
3677 return NULL;
3678
3679 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3680 if (!data)
3681 return NULL;
3682
3683 if (warn_if_readin && data->v.quick->symtab)
3684 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3685 paddress (get_objfile_arch (objfile), pc));
3686
3687 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3688 gdb_assert (result != NULL);
3689 return result;
3690 }
3691
3692 static void
3693 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3694 void *data, int need_fullname)
3695 {
3696 int i;
3697 struct cleanup *cleanup;
3698 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3699 NULL, xcalloc, xfree);
3700
3701 cleanup = make_cleanup_htab_delete (visited);
3702 dw2_setup (objfile);
3703
3704 /* The rule is CUs specify all the files, including those used by
3705 any TU, so there's no need to scan TUs here.
3706 We can ignore file names coming from already-expanded CUs. */
3707
3708 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3709 {
3710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3711
3712 if (per_cu->v.quick->symtab)
3713 {
3714 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3715 INSERT);
3716
3717 *slot = per_cu->v.quick->file_names;
3718 }
3719 }
3720
3721 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3722 {
3723 int j;
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3725 struct quick_file_names *file_data;
3726 void **slot;
3727
3728 /* We only need to look at symtabs not already expanded. */
3729 if (per_cu->v.quick->symtab)
3730 continue;
3731
3732 file_data = dw2_get_file_names (per_cu);
3733 if (file_data == NULL)
3734 continue;
3735
3736 slot = htab_find_slot (visited, file_data, INSERT);
3737 if (*slot)
3738 {
3739 /* Already visited. */
3740 continue;
3741 }
3742 *slot = file_data;
3743
3744 for (j = 0; j < file_data->num_file_names; ++j)
3745 {
3746 const char *this_real_name;
3747
3748 if (need_fullname)
3749 this_real_name = dw2_get_real_path (objfile, file_data, j);
3750 else
3751 this_real_name = NULL;
3752 (*fun) (file_data->file_names[j], this_real_name, data);
3753 }
3754 }
3755
3756 do_cleanups (cleanup);
3757 }
3758
3759 static int
3760 dw2_has_symbols (struct objfile *objfile)
3761 {
3762 return 1;
3763 }
3764
3765 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3766 {
3767 dw2_has_symbols,
3768 dw2_find_last_source_symtab,
3769 dw2_forget_cached_source_info,
3770 dw2_map_symtabs_matching_filename,
3771 dw2_lookup_symbol,
3772 dw2_print_stats,
3773 dw2_dump,
3774 dw2_relocate,
3775 dw2_expand_symtabs_for_function,
3776 dw2_expand_all_symtabs,
3777 dw2_expand_symtabs_with_fullname,
3778 dw2_map_matching_symbols,
3779 dw2_expand_symtabs_matching,
3780 dw2_find_pc_sect_symtab,
3781 dw2_map_symbol_filenames
3782 };
3783
3784 /* Initialize for reading DWARF for this objfile. Return 0 if this
3785 file will use psymtabs, or 1 if using the GNU index. */
3786
3787 int
3788 dwarf2_initialize_objfile (struct objfile *objfile)
3789 {
3790 /* If we're about to read full symbols, don't bother with the
3791 indices. In this case we also don't care if some other debug
3792 format is making psymtabs, because they are all about to be
3793 expanded anyway. */
3794 if ((objfile->flags & OBJF_READNOW))
3795 {
3796 int i;
3797
3798 dwarf2_per_objfile->using_index = 1;
3799 create_all_comp_units (objfile);
3800 create_all_type_units (objfile);
3801 dwarf2_per_objfile->quick_file_names_table =
3802 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3803
3804 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3805 + dwarf2_per_objfile->n_type_units); ++i)
3806 {
3807 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3808
3809 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3810 struct dwarf2_per_cu_quick_data);
3811 }
3812
3813 /* Return 1 so that gdb sees the "quick" functions. However,
3814 these functions will be no-ops because we will have expanded
3815 all symtabs. */
3816 return 1;
3817 }
3818
3819 if (dwarf2_read_index (objfile))
3820 return 1;
3821
3822 return 0;
3823 }
3824
3825 \f
3826
3827 /* Build a partial symbol table. */
3828
3829 void
3830 dwarf2_build_psymtabs (struct objfile *objfile)
3831 {
3832 volatile struct gdb_exception except;
3833
3834 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3835 {
3836 init_psymbol_list (objfile, 1024);
3837 }
3838
3839 TRY_CATCH (except, RETURN_MASK_ERROR)
3840 {
3841 /* This isn't really ideal: all the data we allocate on the
3842 objfile's obstack is still uselessly kept around. However,
3843 freeing it seems unsafe. */
3844 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3845
3846 dwarf2_build_psymtabs_hard (objfile);
3847 discard_cleanups (cleanups);
3848 }
3849 if (except.reason < 0)
3850 exception_print (gdb_stderr, except);
3851 }
3852
3853 /* Return the total length of the CU described by HEADER. */
3854
3855 static unsigned int
3856 get_cu_length (const struct comp_unit_head *header)
3857 {
3858 return header->initial_length_size + header->length;
3859 }
3860
3861 /* Return TRUE if OFFSET is within CU_HEADER. */
3862
3863 static inline int
3864 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3865 {
3866 sect_offset bottom = { cu_header->offset.sect_off };
3867 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3868
3869 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3870 }
3871
3872 /* Find the base address of the compilation unit for range lists and
3873 location lists. It will normally be specified by DW_AT_low_pc.
3874 In DWARF-3 draft 4, the base address could be overridden by
3875 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3876 compilation units with discontinuous ranges. */
3877
3878 static void
3879 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3880 {
3881 struct attribute *attr;
3882
3883 cu->base_known = 0;
3884 cu->base_address = 0;
3885
3886 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3887 if (attr)
3888 {
3889 cu->base_address = DW_ADDR (attr);
3890 cu->base_known = 1;
3891 }
3892 else
3893 {
3894 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3895 if (attr)
3896 {
3897 cu->base_address = DW_ADDR (attr);
3898 cu->base_known = 1;
3899 }
3900 }
3901 }
3902
3903 /* Read in the comp unit header information from the debug_info at info_ptr.
3904 NOTE: This leaves members offset, first_die_offset to be filled in
3905 by the caller. */
3906
3907 static const gdb_byte *
3908 read_comp_unit_head (struct comp_unit_head *cu_header,
3909 const gdb_byte *info_ptr, bfd *abfd)
3910 {
3911 int signed_addr;
3912 unsigned int bytes_read;
3913
3914 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3915 cu_header->initial_length_size = bytes_read;
3916 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3917 info_ptr += bytes_read;
3918 cu_header->version = read_2_bytes (abfd, info_ptr);
3919 info_ptr += 2;
3920 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3921 &bytes_read);
3922 info_ptr += bytes_read;
3923 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3924 info_ptr += 1;
3925 signed_addr = bfd_get_sign_extend_vma (abfd);
3926 if (signed_addr < 0)
3927 internal_error (__FILE__, __LINE__,
3928 _("read_comp_unit_head: dwarf from non elf file"));
3929 cu_header->signed_addr_p = signed_addr;
3930
3931 return info_ptr;
3932 }
3933
3934 /* Helper function that returns the proper abbrev section for
3935 THIS_CU. */
3936
3937 static struct dwarf2_section_info *
3938 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3939 {
3940 struct dwarf2_section_info *abbrev;
3941
3942 if (this_cu->is_dwz)
3943 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3944 else
3945 abbrev = &dwarf2_per_objfile->abbrev;
3946
3947 return abbrev;
3948 }
3949
3950 /* Subroutine of read_and_check_comp_unit_head and
3951 read_and_check_type_unit_head to simplify them.
3952 Perform various error checking on the header. */
3953
3954 static void
3955 error_check_comp_unit_head (struct comp_unit_head *header,
3956 struct dwarf2_section_info *section,
3957 struct dwarf2_section_info *abbrev_section)
3958 {
3959 bfd *abfd = section->asection->owner;
3960 const char *filename = bfd_get_filename (abfd);
3961
3962 if (header->version != 2 && header->version != 3 && header->version != 4)
3963 error (_("Dwarf Error: wrong version in compilation unit header "
3964 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3965 filename);
3966
3967 if (header->abbrev_offset.sect_off
3968 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3969 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3970 "(offset 0x%lx + 6) [in module %s]"),
3971 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3972 filename);
3973
3974 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3975 avoid potential 32-bit overflow. */
3976 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3977 > section->size)
3978 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3979 "(offset 0x%lx + 0) [in module %s]"),
3980 (long) header->length, (long) header->offset.sect_off,
3981 filename);
3982 }
3983
3984 /* Read in a CU/TU header and perform some basic error checking.
3985 The contents of the header are stored in HEADER.
3986 The result is a pointer to the start of the first DIE. */
3987
3988 static const gdb_byte *
3989 read_and_check_comp_unit_head (struct comp_unit_head *header,
3990 struct dwarf2_section_info *section,
3991 struct dwarf2_section_info *abbrev_section,
3992 const gdb_byte *info_ptr,
3993 int is_debug_types_section)
3994 {
3995 const gdb_byte *beg_of_comp_unit = info_ptr;
3996 bfd *abfd = section->asection->owner;
3997
3998 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3999
4000 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4001
4002 /* If we're reading a type unit, skip over the signature and
4003 type_offset fields. */
4004 if (is_debug_types_section)
4005 info_ptr += 8 /*signature*/ + header->offset_size;
4006
4007 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4008
4009 error_check_comp_unit_head (header, section, abbrev_section);
4010
4011 return info_ptr;
4012 }
4013
4014 /* Read in the types comp unit header information from .debug_types entry at
4015 types_ptr. The result is a pointer to one past the end of the header. */
4016
4017 static const gdb_byte *
4018 read_and_check_type_unit_head (struct comp_unit_head *header,
4019 struct dwarf2_section_info *section,
4020 struct dwarf2_section_info *abbrev_section,
4021 const gdb_byte *info_ptr,
4022 ULONGEST *signature,
4023 cu_offset *type_offset_in_tu)
4024 {
4025 const gdb_byte *beg_of_comp_unit = info_ptr;
4026 bfd *abfd = section->asection->owner;
4027
4028 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4029
4030 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4031
4032 /* If we're reading a type unit, skip over the signature and
4033 type_offset fields. */
4034 if (signature != NULL)
4035 *signature = read_8_bytes (abfd, info_ptr);
4036 info_ptr += 8;
4037 if (type_offset_in_tu != NULL)
4038 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4039 header->offset_size);
4040 info_ptr += header->offset_size;
4041
4042 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4043
4044 error_check_comp_unit_head (header, section, abbrev_section);
4045
4046 return info_ptr;
4047 }
4048
4049 /* Fetch the abbreviation table offset from a comp or type unit header. */
4050
4051 static sect_offset
4052 read_abbrev_offset (struct dwarf2_section_info *section,
4053 sect_offset offset)
4054 {
4055 bfd *abfd = section->asection->owner;
4056 const gdb_byte *info_ptr;
4057 unsigned int length, initial_length_size, offset_size;
4058 sect_offset abbrev_offset;
4059
4060 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4061 info_ptr = section->buffer + offset.sect_off;
4062 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4063 offset_size = initial_length_size == 4 ? 4 : 8;
4064 info_ptr += initial_length_size + 2 /*version*/;
4065 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4066 return abbrev_offset;
4067 }
4068
4069 /* Allocate a new partial symtab for file named NAME and mark this new
4070 partial symtab as being an include of PST. */
4071
4072 static void
4073 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4074 struct objfile *objfile)
4075 {
4076 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4077
4078 if (!IS_ABSOLUTE_PATH (subpst->filename))
4079 {
4080 /* It shares objfile->objfile_obstack. */
4081 subpst->dirname = pst->dirname;
4082 }
4083
4084 subpst->section_offsets = pst->section_offsets;
4085 subpst->textlow = 0;
4086 subpst->texthigh = 0;
4087
4088 subpst->dependencies = (struct partial_symtab **)
4089 obstack_alloc (&objfile->objfile_obstack,
4090 sizeof (struct partial_symtab *));
4091 subpst->dependencies[0] = pst;
4092 subpst->number_of_dependencies = 1;
4093
4094 subpst->globals_offset = 0;
4095 subpst->n_global_syms = 0;
4096 subpst->statics_offset = 0;
4097 subpst->n_static_syms = 0;
4098 subpst->symtab = NULL;
4099 subpst->read_symtab = pst->read_symtab;
4100 subpst->readin = 0;
4101
4102 /* No private part is necessary for include psymtabs. This property
4103 can be used to differentiate between such include psymtabs and
4104 the regular ones. */
4105 subpst->read_symtab_private = NULL;
4106 }
4107
4108 /* Read the Line Number Program data and extract the list of files
4109 included by the source file represented by PST. Build an include
4110 partial symtab for each of these included files. */
4111
4112 static void
4113 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4114 struct die_info *die,
4115 struct partial_symtab *pst)
4116 {
4117 struct line_header *lh = NULL;
4118 struct attribute *attr;
4119
4120 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4121 if (attr)
4122 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4123 if (lh == NULL)
4124 return; /* No linetable, so no includes. */
4125
4126 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4127 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4128
4129 free_line_header (lh);
4130 }
4131
4132 static hashval_t
4133 hash_signatured_type (const void *item)
4134 {
4135 const struct signatured_type *sig_type = item;
4136
4137 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4138 return sig_type->signature;
4139 }
4140
4141 static int
4142 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4143 {
4144 const struct signatured_type *lhs = item_lhs;
4145 const struct signatured_type *rhs = item_rhs;
4146
4147 return lhs->signature == rhs->signature;
4148 }
4149
4150 /* Allocate a hash table for signatured types. */
4151
4152 static htab_t
4153 allocate_signatured_type_table (struct objfile *objfile)
4154 {
4155 return htab_create_alloc_ex (41,
4156 hash_signatured_type,
4157 eq_signatured_type,
4158 NULL,
4159 &objfile->objfile_obstack,
4160 hashtab_obstack_allocate,
4161 dummy_obstack_deallocate);
4162 }
4163
4164 /* A helper function to add a signatured type CU to a table. */
4165
4166 static int
4167 add_signatured_type_cu_to_table (void **slot, void *datum)
4168 {
4169 struct signatured_type *sigt = *slot;
4170 struct signatured_type ***datap = datum;
4171
4172 **datap = sigt;
4173 ++*datap;
4174
4175 return 1;
4176 }
4177
4178 /* Create the hash table of all entries in the .debug_types
4179 (or .debug_types.dwo) section(s).
4180 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4181 otherwise it is NULL.
4182
4183 The result is a pointer to the hash table or NULL if there are no types.
4184
4185 Note: This function processes DWO files only, not DWP files. */
4186
4187 static htab_t
4188 create_debug_types_hash_table (struct dwo_file *dwo_file,
4189 VEC (dwarf2_section_info_def) *types)
4190 {
4191 struct objfile *objfile = dwarf2_per_objfile->objfile;
4192 htab_t types_htab = NULL;
4193 int ix;
4194 struct dwarf2_section_info *section;
4195 struct dwarf2_section_info *abbrev_section;
4196
4197 if (VEC_empty (dwarf2_section_info_def, types))
4198 return NULL;
4199
4200 abbrev_section = (dwo_file != NULL
4201 ? &dwo_file->sections.abbrev
4202 : &dwarf2_per_objfile->abbrev);
4203
4204 if (dwarf2_read_debug)
4205 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4206 dwo_file ? ".dwo" : "",
4207 bfd_get_filename (abbrev_section->asection->owner));
4208
4209 for (ix = 0;
4210 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4211 ++ix)
4212 {
4213 bfd *abfd;
4214 const gdb_byte *info_ptr, *end_ptr;
4215 struct dwarf2_section_info *abbrev_section;
4216
4217 dwarf2_read_section (objfile, section);
4218 info_ptr = section->buffer;
4219
4220 if (info_ptr == NULL)
4221 continue;
4222
4223 /* We can't set abfd until now because the section may be empty or
4224 not present, in which case section->asection will be NULL. */
4225 abfd = section->asection->owner;
4226
4227 if (dwo_file)
4228 abbrev_section = &dwo_file->sections.abbrev;
4229 else
4230 abbrev_section = &dwarf2_per_objfile->abbrev;
4231
4232 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4233 because we don't need to read any dies: the signature is in the
4234 header. */
4235
4236 end_ptr = info_ptr + section->size;
4237 while (info_ptr < end_ptr)
4238 {
4239 sect_offset offset;
4240 cu_offset type_offset_in_tu;
4241 ULONGEST signature;
4242 struct signatured_type *sig_type;
4243 struct dwo_unit *dwo_tu;
4244 void **slot;
4245 const gdb_byte *ptr = info_ptr;
4246 struct comp_unit_head header;
4247 unsigned int length;
4248
4249 offset.sect_off = ptr - section->buffer;
4250
4251 /* We need to read the type's signature in order to build the hash
4252 table, but we don't need anything else just yet. */
4253
4254 ptr = read_and_check_type_unit_head (&header, section,
4255 abbrev_section, ptr,
4256 &signature, &type_offset_in_tu);
4257
4258 length = get_cu_length (&header);
4259
4260 /* Skip dummy type units. */
4261 if (ptr >= info_ptr + length
4262 || peek_abbrev_code (abfd, ptr) == 0)
4263 {
4264 info_ptr += length;
4265 continue;
4266 }
4267
4268 if (types_htab == NULL)
4269 {
4270 if (dwo_file)
4271 types_htab = allocate_dwo_unit_table (objfile);
4272 else
4273 types_htab = allocate_signatured_type_table (objfile);
4274 }
4275
4276 if (dwo_file)
4277 {
4278 sig_type = NULL;
4279 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4280 struct dwo_unit);
4281 dwo_tu->dwo_file = dwo_file;
4282 dwo_tu->signature = signature;
4283 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4284 dwo_tu->section = section;
4285 dwo_tu->offset = offset;
4286 dwo_tu->length = length;
4287 }
4288 else
4289 {
4290 /* N.B.: type_offset is not usable if this type uses a DWO file.
4291 The real type_offset is in the DWO file. */
4292 dwo_tu = NULL;
4293 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4294 struct signatured_type);
4295 sig_type->signature = signature;
4296 sig_type->type_offset_in_tu = type_offset_in_tu;
4297 sig_type->per_cu.objfile = objfile;
4298 sig_type->per_cu.is_debug_types = 1;
4299 sig_type->per_cu.section = section;
4300 sig_type->per_cu.offset = offset;
4301 sig_type->per_cu.length = length;
4302 }
4303
4304 slot = htab_find_slot (types_htab,
4305 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4306 INSERT);
4307 gdb_assert (slot != NULL);
4308 if (*slot != NULL)
4309 {
4310 sect_offset dup_offset;
4311
4312 if (dwo_file)
4313 {
4314 const struct dwo_unit *dup_tu = *slot;
4315
4316 dup_offset = dup_tu->offset;
4317 }
4318 else
4319 {
4320 const struct signatured_type *dup_tu = *slot;
4321
4322 dup_offset = dup_tu->per_cu.offset;
4323 }
4324
4325 complaint (&symfile_complaints,
4326 _("debug type entry at offset 0x%x is duplicate to"
4327 " the entry at offset 0x%x, signature %s"),
4328 offset.sect_off, dup_offset.sect_off,
4329 hex_string (signature));
4330 }
4331 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4332
4333 if (dwarf2_read_debug)
4334 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4335 offset.sect_off,
4336 hex_string (signature));
4337
4338 info_ptr += length;
4339 }
4340 }
4341
4342 return types_htab;
4343 }
4344
4345 /* Create the hash table of all entries in the .debug_types section,
4346 and initialize all_type_units.
4347 The result is zero if there is an error (e.g. missing .debug_types section),
4348 otherwise non-zero. */
4349
4350 static int
4351 create_all_type_units (struct objfile *objfile)
4352 {
4353 htab_t types_htab;
4354 struct signatured_type **iter;
4355
4356 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4357 if (types_htab == NULL)
4358 {
4359 dwarf2_per_objfile->signatured_types = NULL;
4360 return 0;
4361 }
4362
4363 dwarf2_per_objfile->signatured_types = types_htab;
4364
4365 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4366 dwarf2_per_objfile->all_type_units
4367 = xmalloc (dwarf2_per_objfile->n_type_units
4368 * sizeof (struct signatured_type *));
4369 iter = &dwarf2_per_objfile->all_type_units[0];
4370 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4371 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4372 == dwarf2_per_objfile->n_type_units);
4373
4374 return 1;
4375 }
4376
4377 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4378 Fill in SIG_ENTRY with DWO_ENTRY. */
4379
4380 static void
4381 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4382 struct signatured_type *sig_entry,
4383 struct dwo_unit *dwo_entry)
4384 {
4385 /* Make sure we're not clobbering something we don't expect to. */
4386 gdb_assert (! sig_entry->per_cu.queued);
4387 gdb_assert (sig_entry->per_cu.cu == NULL);
4388 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4389 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4390 gdb_assert (sig_entry->signature == dwo_entry->signature);
4391 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4392 gdb_assert (sig_entry->type_unit_group == NULL);
4393 gdb_assert (sig_entry->dwo_unit == NULL);
4394
4395 sig_entry->per_cu.section = dwo_entry->section;
4396 sig_entry->per_cu.offset = dwo_entry->offset;
4397 sig_entry->per_cu.length = dwo_entry->length;
4398 sig_entry->per_cu.reading_dwo_directly = 1;
4399 sig_entry->per_cu.objfile = objfile;
4400 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4401 sig_entry->dwo_unit = dwo_entry;
4402 }
4403
4404 /* Subroutine of lookup_signatured_type.
4405 If we haven't read the TU yet, create the signatured_type data structure
4406 for a TU to be read in directly from a DWO file, bypassing the stub.
4407 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4408 using .gdb_index, then when reading a CU we want to stay in the DWO file
4409 containing that CU. Otherwise we could end up reading several other DWO
4410 files (due to comdat folding) to process the transitive closure of all the
4411 mentioned TUs, and that can be slow. The current DWO file will have every
4412 type signature that it needs.
4413 We only do this for .gdb_index because in the psymtab case we already have
4414 to read all the DWOs to build the type unit groups. */
4415
4416 static struct signatured_type *
4417 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4418 {
4419 struct objfile *objfile = dwarf2_per_objfile->objfile;
4420 struct dwo_file *dwo_file;
4421 struct dwo_unit find_dwo_entry, *dwo_entry;
4422 struct signatured_type find_sig_entry, *sig_entry;
4423
4424 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4425
4426 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4427 dwo_unit of the TU itself. */
4428 dwo_file = cu->dwo_unit->dwo_file;
4429
4430 /* We only ever need to read in one copy of a signatured type.
4431 Just use the global signatured_types array. If this is the first time
4432 we're reading this type, replace the recorded data from .gdb_index with
4433 this TU. */
4434
4435 if (dwarf2_per_objfile->signatured_types == NULL)
4436 return NULL;
4437 find_sig_entry.signature = sig;
4438 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4439 if (sig_entry == NULL)
4440 return NULL;
4441
4442 /* We can get here with the TU already read, *or* in the process of being
4443 read. Don't reassign it if that's the case. Also note that if the TU is
4444 already being read, it may not have come from a DWO, the program may be
4445 a mix of Fission-compiled code and non-Fission-compiled code. */
4446 /* Have we already tried to read this TU? */
4447 if (sig_entry->per_cu.tu_read)
4448 return sig_entry;
4449
4450 /* Ok, this is the first time we're reading this TU. */
4451 if (dwo_file->tus == NULL)
4452 return NULL;
4453 find_dwo_entry.signature = sig;
4454 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4455 if (dwo_entry == NULL)
4456 return NULL;
4457
4458 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4459 return sig_entry;
4460 }
4461
4462 /* Subroutine of lookup_dwp_signatured_type.
4463 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4464
4465 static struct signatured_type *
4466 add_type_unit (ULONGEST sig)
4467 {
4468 struct objfile *objfile = dwarf2_per_objfile->objfile;
4469 int n_type_units = dwarf2_per_objfile->n_type_units;
4470 struct signatured_type *sig_type;
4471 void **slot;
4472
4473 ++n_type_units;
4474 dwarf2_per_objfile->all_type_units =
4475 xrealloc (dwarf2_per_objfile->all_type_units,
4476 n_type_units * sizeof (struct signatured_type *));
4477 dwarf2_per_objfile->n_type_units = n_type_units;
4478 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4479 struct signatured_type);
4480 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4481 sig_type->signature = sig;
4482 sig_type->per_cu.is_debug_types = 1;
4483 sig_type->per_cu.v.quick =
4484 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4485 struct dwarf2_per_cu_quick_data);
4486 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4487 sig_type, INSERT);
4488 gdb_assert (*slot == NULL);
4489 *slot = sig_type;
4490 /* The rest of sig_type must be filled in by the caller. */
4491 return sig_type;
4492 }
4493
4494 /* Subroutine of lookup_signatured_type.
4495 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4496 then try the DWP file.
4497 Normally this "can't happen", but if there's a bug in signature
4498 generation and/or the DWP file is built incorrectly, it can happen.
4499 Using the type directly from the DWP file means we don't have the stub
4500 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4501 not critical. [Eventually the stub may go away for type units anyway.] */
4502
4503 static struct signatured_type *
4504 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4505 {
4506 struct objfile *objfile = dwarf2_per_objfile->objfile;
4507 struct dwp_file *dwp_file = get_dwp_file ();
4508 struct dwo_unit *dwo_entry;
4509 struct signatured_type find_sig_entry, *sig_entry;
4510
4511 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4512 gdb_assert (dwp_file != NULL);
4513
4514 if (dwarf2_per_objfile->signatured_types != NULL)
4515 {
4516 find_sig_entry.signature = sig;
4517 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4518 &find_sig_entry);
4519 if (sig_entry != NULL)
4520 return sig_entry;
4521 }
4522
4523 /* This is the "shouldn't happen" case.
4524 Try the DWP file and hope for the best. */
4525 if (dwp_file->tus == NULL)
4526 return NULL;
4527 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4528 sig, 1 /* is_debug_types */);
4529 if (dwo_entry == NULL)
4530 return NULL;
4531
4532 sig_entry = add_type_unit (sig);
4533 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4534
4535 /* The caller will signal a complaint if we return NULL.
4536 Here we don't return NULL but we still want to complain. */
4537 complaint (&symfile_complaints,
4538 _("Bad type signature %s referenced by %s at 0x%x,"
4539 " coping by using copy in DWP [in module %s]"),
4540 hex_string (sig),
4541 cu->per_cu->is_debug_types ? "TU" : "CU",
4542 cu->per_cu->offset.sect_off,
4543 objfile->name);
4544
4545 return sig_entry;
4546 }
4547
4548 /* Lookup a signature based type for DW_FORM_ref_sig8.
4549 Returns NULL if signature SIG is not present in the table.
4550 It is up to the caller to complain about this. */
4551
4552 static struct signatured_type *
4553 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4554 {
4555 if (cu->dwo_unit
4556 && dwarf2_per_objfile->using_index)
4557 {
4558 /* We're in a DWO/DWP file, and we're using .gdb_index.
4559 These cases require special processing. */
4560 if (get_dwp_file () == NULL)
4561 return lookup_dwo_signatured_type (cu, sig);
4562 else
4563 return lookup_dwp_signatured_type (cu, sig);
4564 }
4565 else
4566 {
4567 struct signatured_type find_entry, *entry;
4568
4569 if (dwarf2_per_objfile->signatured_types == NULL)
4570 return NULL;
4571 find_entry.signature = sig;
4572 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4573 return entry;
4574 }
4575 }
4576 \f
4577 /* Low level DIE reading support. */
4578
4579 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4580
4581 static void
4582 init_cu_die_reader (struct die_reader_specs *reader,
4583 struct dwarf2_cu *cu,
4584 struct dwarf2_section_info *section,
4585 struct dwo_file *dwo_file)
4586 {
4587 gdb_assert (section->readin && section->buffer != NULL);
4588 reader->abfd = section->asection->owner;
4589 reader->cu = cu;
4590 reader->dwo_file = dwo_file;
4591 reader->die_section = section;
4592 reader->buffer = section->buffer;
4593 reader->buffer_end = section->buffer + section->size;
4594 reader->comp_dir = NULL;
4595 }
4596
4597 /* Subroutine of init_cutu_and_read_dies to simplify it.
4598 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4599 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4600 already.
4601
4602 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4603 from it to the DIE in the DWO. If NULL we are skipping the stub.
4604 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4605 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4606 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4607 COMP_DIR must be non-NULL.
4608 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4609 are filled in with the info of the DIE from the DWO file.
4610 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4611 provided an abbrev table to use.
4612 The result is non-zero if a valid (non-dummy) DIE was found. */
4613
4614 static int
4615 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4616 struct dwo_unit *dwo_unit,
4617 int abbrev_table_provided,
4618 struct die_info *stub_comp_unit_die,
4619 const char *stub_comp_dir,
4620 struct die_reader_specs *result_reader,
4621 const gdb_byte **result_info_ptr,
4622 struct die_info **result_comp_unit_die,
4623 int *result_has_children)
4624 {
4625 struct objfile *objfile = dwarf2_per_objfile->objfile;
4626 struct dwarf2_cu *cu = this_cu->cu;
4627 struct dwarf2_section_info *section;
4628 bfd *abfd;
4629 const gdb_byte *begin_info_ptr, *info_ptr;
4630 const char *comp_dir_string;
4631 ULONGEST signature; /* Or dwo_id. */
4632 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4633 int i,num_extra_attrs;
4634 struct dwarf2_section_info *dwo_abbrev_section;
4635 struct attribute *attr;
4636 struct attribute comp_dir_attr;
4637 struct die_info *comp_unit_die;
4638
4639 /* Both can't be provided. */
4640 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4641
4642 /* These attributes aren't processed until later:
4643 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4644 However, the attribute is found in the stub which we won't have later.
4645 In order to not impose this complication on the rest of the code,
4646 we read them here and copy them to the DWO CU/TU die. */
4647
4648 stmt_list = NULL;
4649 low_pc = NULL;
4650 high_pc = NULL;
4651 ranges = NULL;
4652 comp_dir = NULL;
4653
4654 if (stub_comp_unit_die != NULL)
4655 {
4656 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4657 DWO file. */
4658 if (! this_cu->is_debug_types)
4659 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4660 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4661 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4662 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4663 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4664
4665 /* There should be a DW_AT_addr_base attribute here (if needed).
4666 We need the value before we can process DW_FORM_GNU_addr_index. */
4667 cu->addr_base = 0;
4668 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4669 if (attr)
4670 cu->addr_base = DW_UNSND (attr);
4671
4672 /* There should be a DW_AT_ranges_base attribute here (if needed).
4673 We need the value before we can process DW_AT_ranges. */
4674 cu->ranges_base = 0;
4675 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4676 if (attr)
4677 cu->ranges_base = DW_UNSND (attr);
4678 }
4679 else if (stub_comp_dir != NULL)
4680 {
4681 /* Reconstruct the comp_dir attribute to simplify the code below. */
4682 comp_dir = (struct attribute *)
4683 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4684 comp_dir->name = DW_AT_comp_dir;
4685 comp_dir->form = DW_FORM_string;
4686 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4687 DW_STRING (comp_dir) = stub_comp_dir;
4688 }
4689
4690 /* Set up for reading the DWO CU/TU. */
4691 cu->dwo_unit = dwo_unit;
4692 section = dwo_unit->section;
4693 dwarf2_read_section (objfile, section);
4694 abfd = section->asection->owner;
4695 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4696 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4697 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4698
4699 if (this_cu->is_debug_types)
4700 {
4701 ULONGEST header_signature;
4702 cu_offset type_offset_in_tu;
4703 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4704
4705 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4706 dwo_abbrev_section,
4707 info_ptr,
4708 &header_signature,
4709 &type_offset_in_tu);
4710 /* This is not an assert because it can be caused by bad debug info. */
4711 if (sig_type->signature != header_signature)
4712 {
4713 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4714 " TU at offset 0x%x [in module %s]"),
4715 hex_string (sig_type->signature),
4716 hex_string (header_signature),
4717 dwo_unit->offset.sect_off,
4718 bfd_get_filename (abfd));
4719 }
4720 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4721 /* For DWOs coming from DWP files, we don't know the CU length
4722 nor the type's offset in the TU until now. */
4723 dwo_unit->length = get_cu_length (&cu->header);
4724 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4725
4726 /* Establish the type offset that can be used to lookup the type.
4727 For DWO files, we don't know it until now. */
4728 sig_type->type_offset_in_section.sect_off =
4729 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4730 }
4731 else
4732 {
4733 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4734 dwo_abbrev_section,
4735 info_ptr, 0);
4736 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4737 /* For DWOs coming from DWP files, we don't know the CU length
4738 until now. */
4739 dwo_unit->length = get_cu_length (&cu->header);
4740 }
4741
4742 /* Replace the CU's original abbrev table with the DWO's.
4743 Reminder: We can't read the abbrev table until we've read the header. */
4744 if (abbrev_table_provided)
4745 {
4746 /* Don't free the provided abbrev table, the caller of
4747 init_cutu_and_read_dies owns it. */
4748 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4749 /* Ensure the DWO abbrev table gets freed. */
4750 make_cleanup (dwarf2_free_abbrev_table, cu);
4751 }
4752 else
4753 {
4754 dwarf2_free_abbrev_table (cu);
4755 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4756 /* Leave any existing abbrev table cleanup as is. */
4757 }
4758
4759 /* Read in the die, but leave space to copy over the attributes
4760 from the stub. This has the benefit of simplifying the rest of
4761 the code - all the work to maintain the illusion of a single
4762 DW_TAG_{compile,type}_unit DIE is done here. */
4763 num_extra_attrs = ((stmt_list != NULL)
4764 + (low_pc != NULL)
4765 + (high_pc != NULL)
4766 + (ranges != NULL)
4767 + (comp_dir != NULL));
4768 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4769 result_has_children, num_extra_attrs);
4770
4771 /* Copy over the attributes from the stub to the DIE we just read in. */
4772 comp_unit_die = *result_comp_unit_die;
4773 i = comp_unit_die->num_attrs;
4774 if (stmt_list != NULL)
4775 comp_unit_die->attrs[i++] = *stmt_list;
4776 if (low_pc != NULL)
4777 comp_unit_die->attrs[i++] = *low_pc;
4778 if (high_pc != NULL)
4779 comp_unit_die->attrs[i++] = *high_pc;
4780 if (ranges != NULL)
4781 comp_unit_die->attrs[i++] = *ranges;
4782 if (comp_dir != NULL)
4783 comp_unit_die->attrs[i++] = *comp_dir;
4784 comp_unit_die->num_attrs += num_extra_attrs;
4785
4786 if (dwarf2_die_debug)
4787 {
4788 fprintf_unfiltered (gdb_stdlog,
4789 "Read die from %s@0x%x of %s:\n",
4790 bfd_section_name (abfd, section->asection),
4791 (unsigned) (begin_info_ptr - section->buffer),
4792 bfd_get_filename (abfd));
4793 dump_die (comp_unit_die, dwarf2_die_debug);
4794 }
4795
4796 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4797 TUs by skipping the stub and going directly to the entry in the DWO file.
4798 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4799 to get it via circuitous means. Blech. */
4800 if (comp_dir != NULL)
4801 result_reader->comp_dir = DW_STRING (comp_dir);
4802
4803 /* Skip dummy compilation units. */
4804 if (info_ptr >= begin_info_ptr + dwo_unit->length
4805 || peek_abbrev_code (abfd, info_ptr) == 0)
4806 return 0;
4807
4808 *result_info_ptr = info_ptr;
4809 return 1;
4810 }
4811
4812 /* Subroutine of init_cutu_and_read_dies to simplify it.
4813 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4814 Returns NULL if the specified DWO unit cannot be found. */
4815
4816 static struct dwo_unit *
4817 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4818 struct die_info *comp_unit_die)
4819 {
4820 struct dwarf2_cu *cu = this_cu->cu;
4821 struct attribute *attr;
4822 ULONGEST signature;
4823 struct dwo_unit *dwo_unit;
4824 const char *comp_dir, *dwo_name;
4825
4826 gdb_assert (cu != NULL);
4827
4828 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4829 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4830 gdb_assert (attr != NULL);
4831 dwo_name = DW_STRING (attr);
4832 comp_dir = NULL;
4833 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4834 if (attr)
4835 comp_dir = DW_STRING (attr);
4836
4837 if (this_cu->is_debug_types)
4838 {
4839 struct signatured_type *sig_type;
4840
4841 /* Since this_cu is the first member of struct signatured_type,
4842 we can go from a pointer to one to a pointer to the other. */
4843 sig_type = (struct signatured_type *) this_cu;
4844 signature = sig_type->signature;
4845 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4846 }
4847 else
4848 {
4849 struct attribute *attr;
4850
4851 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4852 if (! attr)
4853 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4854 " [in module %s]"),
4855 dwo_name, this_cu->objfile->name);
4856 signature = DW_UNSND (attr);
4857 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4858 signature);
4859 }
4860
4861 return dwo_unit;
4862 }
4863
4864 /* Subroutine of init_cutu_and_read_dies to simplify it.
4865 Read a TU directly from a DWO file, bypassing the stub. */
4866
4867 static void
4868 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4869 die_reader_func_ftype *die_reader_func,
4870 void *data)
4871 {
4872 struct dwarf2_cu *cu;
4873 struct signatured_type *sig_type;
4874 struct cleanup *cleanups, *free_cu_cleanup;
4875 struct die_reader_specs reader;
4876 const gdb_byte *info_ptr;
4877 struct die_info *comp_unit_die;
4878 int has_children;
4879
4880 /* Verify we can do the following downcast, and that we have the
4881 data we need. */
4882 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4883 sig_type = (struct signatured_type *) this_cu;
4884 gdb_assert (sig_type->dwo_unit != NULL);
4885
4886 cleanups = make_cleanup (null_cleanup, NULL);
4887
4888 gdb_assert (this_cu->cu == NULL);
4889 cu = xmalloc (sizeof (*cu));
4890 init_one_comp_unit (cu, this_cu);
4891 /* If an error occurs while loading, release our storage. */
4892 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4893
4894 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4895 0 /* abbrev_table_provided */,
4896 NULL /* stub_comp_unit_die */,
4897 sig_type->dwo_unit->dwo_file->comp_dir,
4898 &reader, &info_ptr,
4899 &comp_unit_die, &has_children) == 0)
4900 {
4901 /* Dummy die. */
4902 do_cleanups (cleanups);
4903 return;
4904 }
4905
4906 /* All the "real" work is done here. */
4907 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4908
4909 /* This duplicates some code in init_cutu_and_read_dies,
4910 but the alternative is making the latter more complex.
4911 This function is only for the special case of using DWO files directly:
4912 no point in overly complicating the general case just to handle this. */
4913 if (keep)
4914 {
4915 /* We've successfully allocated this compilation unit. Let our
4916 caller clean it up when finished with it. */
4917 discard_cleanups (free_cu_cleanup);
4918
4919 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4920 So we have to manually free the abbrev table. */
4921 dwarf2_free_abbrev_table (cu);
4922
4923 /* Link this CU into read_in_chain. */
4924 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4925 dwarf2_per_objfile->read_in_chain = this_cu;
4926 }
4927 else
4928 do_cleanups (free_cu_cleanup);
4929
4930 do_cleanups (cleanups);
4931 }
4932
4933 /* Initialize a CU (or TU) and read its DIEs.
4934 If the CU defers to a DWO file, read the DWO file as well.
4935
4936 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4937 Otherwise the table specified in the comp unit header is read in and used.
4938 This is an optimization for when we already have the abbrev table.
4939
4940 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4941 Otherwise, a new CU is allocated with xmalloc.
4942
4943 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4944 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4945
4946 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4947 linker) then DIE_READER_FUNC will not get called. */
4948
4949 static void
4950 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4951 struct abbrev_table *abbrev_table,
4952 int use_existing_cu, int keep,
4953 die_reader_func_ftype *die_reader_func,
4954 void *data)
4955 {
4956 struct objfile *objfile = dwarf2_per_objfile->objfile;
4957 struct dwarf2_section_info *section = this_cu->section;
4958 bfd *abfd = section->asection->owner;
4959 struct dwarf2_cu *cu;
4960 const gdb_byte *begin_info_ptr, *info_ptr;
4961 struct die_reader_specs reader;
4962 struct die_info *comp_unit_die;
4963 int has_children;
4964 struct attribute *attr;
4965 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4966 struct signatured_type *sig_type = NULL;
4967 struct dwarf2_section_info *abbrev_section;
4968 /* Non-zero if CU currently points to a DWO file and we need to
4969 reread it. When this happens we need to reread the skeleton die
4970 before we can reread the DWO file (this only applies to CUs, not TUs). */
4971 int rereading_dwo_cu = 0;
4972
4973 if (dwarf2_die_debug)
4974 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4975 this_cu->is_debug_types ? "type" : "comp",
4976 this_cu->offset.sect_off);
4977
4978 if (use_existing_cu)
4979 gdb_assert (keep);
4980
4981 /* If we're reading a TU directly from a DWO file, including a virtual DWO
4982 file (instead of going through the stub), short-circuit all of this. */
4983 if (this_cu->reading_dwo_directly)
4984 {
4985 /* Narrow down the scope of possibilities to have to understand. */
4986 gdb_assert (this_cu->is_debug_types);
4987 gdb_assert (abbrev_table == NULL);
4988 gdb_assert (!use_existing_cu);
4989 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
4990 return;
4991 }
4992
4993 cleanups = make_cleanup (null_cleanup, NULL);
4994
4995 /* This is cheap if the section is already read in. */
4996 dwarf2_read_section (objfile, section);
4997
4998 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4999
5000 abbrev_section = get_abbrev_section_for_cu (this_cu);
5001
5002 if (use_existing_cu && this_cu->cu != NULL)
5003 {
5004 cu = this_cu->cu;
5005
5006 /* If this CU is from a DWO file we need to start over, we need to
5007 refetch the attributes from the skeleton CU.
5008 This could be optimized by retrieving those attributes from when we
5009 were here the first time: the previous comp_unit_die was stored in
5010 comp_unit_obstack. But there's no data yet that we need this
5011 optimization. */
5012 if (cu->dwo_unit != NULL)
5013 rereading_dwo_cu = 1;
5014 }
5015 else
5016 {
5017 /* If !use_existing_cu, this_cu->cu must be NULL. */
5018 gdb_assert (this_cu->cu == NULL);
5019
5020 cu = xmalloc (sizeof (*cu));
5021 init_one_comp_unit (cu, this_cu);
5022
5023 /* If an error occurs while loading, release our storage. */
5024 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5025 }
5026
5027 /* Get the header. */
5028 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5029 {
5030 /* We already have the header, there's no need to read it in again. */
5031 info_ptr += cu->header.first_die_offset.cu_off;
5032 }
5033 else
5034 {
5035 if (this_cu->is_debug_types)
5036 {
5037 ULONGEST signature;
5038 cu_offset type_offset_in_tu;
5039
5040 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5041 abbrev_section, info_ptr,
5042 &signature,
5043 &type_offset_in_tu);
5044
5045 /* Since per_cu is the first member of struct signatured_type,
5046 we can go from a pointer to one to a pointer to the other. */
5047 sig_type = (struct signatured_type *) this_cu;
5048 gdb_assert (sig_type->signature == signature);
5049 gdb_assert (sig_type->type_offset_in_tu.cu_off
5050 == type_offset_in_tu.cu_off);
5051 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5052
5053 /* LENGTH has not been set yet for type units if we're
5054 using .gdb_index. */
5055 this_cu->length = get_cu_length (&cu->header);
5056
5057 /* Establish the type offset that can be used to lookup the type. */
5058 sig_type->type_offset_in_section.sect_off =
5059 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5060 }
5061 else
5062 {
5063 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5064 abbrev_section,
5065 info_ptr, 0);
5066
5067 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5068 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5069 }
5070 }
5071
5072 /* Skip dummy compilation units. */
5073 if (info_ptr >= begin_info_ptr + this_cu->length
5074 || peek_abbrev_code (abfd, info_ptr) == 0)
5075 {
5076 do_cleanups (cleanups);
5077 return;
5078 }
5079
5080 /* If we don't have them yet, read the abbrevs for this compilation unit.
5081 And if we need to read them now, make sure they're freed when we're
5082 done. Note that it's important that if the CU had an abbrev table
5083 on entry we don't free it when we're done: Somewhere up the call stack
5084 it may be in use. */
5085 if (abbrev_table != NULL)
5086 {
5087 gdb_assert (cu->abbrev_table == NULL);
5088 gdb_assert (cu->header.abbrev_offset.sect_off
5089 == abbrev_table->offset.sect_off);
5090 cu->abbrev_table = abbrev_table;
5091 }
5092 else if (cu->abbrev_table == NULL)
5093 {
5094 dwarf2_read_abbrevs (cu, abbrev_section);
5095 make_cleanup (dwarf2_free_abbrev_table, cu);
5096 }
5097 else if (rereading_dwo_cu)
5098 {
5099 dwarf2_free_abbrev_table (cu);
5100 dwarf2_read_abbrevs (cu, abbrev_section);
5101 }
5102
5103 /* Read the top level CU/TU die. */
5104 init_cu_die_reader (&reader, cu, section, NULL);
5105 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5106
5107 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5108 from the DWO file.
5109 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5110 DWO CU, that this test will fail (the attribute will not be present). */
5111 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5112 if (attr)
5113 {
5114 struct dwo_unit *dwo_unit;
5115 struct die_info *dwo_comp_unit_die;
5116
5117 if (has_children)
5118 {
5119 complaint (&symfile_complaints,
5120 _("compilation unit with DW_AT_GNU_dwo_name"
5121 " has children (offset 0x%x) [in module %s]"),
5122 this_cu->offset.sect_off, bfd_get_filename (abfd));
5123 }
5124 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5125 if (dwo_unit != NULL)
5126 {
5127 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5128 abbrev_table != NULL,
5129 comp_unit_die, NULL,
5130 &reader, &info_ptr,
5131 &dwo_comp_unit_die, &has_children) == 0)
5132 {
5133 /* Dummy die. */
5134 do_cleanups (cleanups);
5135 return;
5136 }
5137 comp_unit_die = dwo_comp_unit_die;
5138 }
5139 else
5140 {
5141 /* Yikes, we couldn't find the rest of the DIE, we only have
5142 the stub. A complaint has already been logged. There's
5143 not much more we can do except pass on the stub DIE to
5144 die_reader_func. We don't want to throw an error on bad
5145 debug info. */
5146 }
5147 }
5148
5149 /* All of the above is setup for this call. Yikes. */
5150 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5151
5152 /* Done, clean up. */
5153 if (free_cu_cleanup != NULL)
5154 {
5155 if (keep)
5156 {
5157 /* We've successfully allocated this compilation unit. Let our
5158 caller clean it up when finished with it. */
5159 discard_cleanups (free_cu_cleanup);
5160
5161 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5162 So we have to manually free the abbrev table. */
5163 dwarf2_free_abbrev_table (cu);
5164
5165 /* Link this CU into read_in_chain. */
5166 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5167 dwarf2_per_objfile->read_in_chain = this_cu;
5168 }
5169 else
5170 do_cleanups (free_cu_cleanup);
5171 }
5172
5173 do_cleanups (cleanups);
5174 }
5175
5176 /* Read CU/TU THIS_CU in section SECTION,
5177 but do not follow DW_AT_GNU_dwo_name if present.
5178 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5179 to have already done the lookup to find the DWO/DWP file).
5180
5181 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5182 THIS_CU->is_debug_types, but nothing else.
5183
5184 We fill in THIS_CU->length.
5185
5186 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5187 linker) then DIE_READER_FUNC will not get called.
5188
5189 THIS_CU->cu is always freed when done.
5190 This is done in order to not leave THIS_CU->cu in a state where we have
5191 to care whether it refers to the "main" CU or the DWO CU. */
5192
5193 static void
5194 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5195 struct dwarf2_section_info *abbrev_section,
5196 struct dwo_file *dwo_file,
5197 die_reader_func_ftype *die_reader_func,
5198 void *data)
5199 {
5200 struct objfile *objfile = dwarf2_per_objfile->objfile;
5201 struct dwarf2_section_info *section = this_cu->section;
5202 bfd *abfd = section->asection->owner;
5203 struct dwarf2_cu cu;
5204 const gdb_byte *begin_info_ptr, *info_ptr;
5205 struct die_reader_specs reader;
5206 struct cleanup *cleanups;
5207 struct die_info *comp_unit_die;
5208 int has_children;
5209
5210 if (dwarf2_die_debug)
5211 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5212 this_cu->is_debug_types ? "type" : "comp",
5213 this_cu->offset.sect_off);
5214
5215 gdb_assert (this_cu->cu == NULL);
5216
5217 /* This is cheap if the section is already read in. */
5218 dwarf2_read_section (objfile, section);
5219
5220 init_one_comp_unit (&cu, this_cu);
5221
5222 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5223
5224 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5225 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5226 abbrev_section, info_ptr,
5227 this_cu->is_debug_types);
5228
5229 this_cu->length = get_cu_length (&cu.header);
5230
5231 /* Skip dummy compilation units. */
5232 if (info_ptr >= begin_info_ptr + this_cu->length
5233 || peek_abbrev_code (abfd, info_ptr) == 0)
5234 {
5235 do_cleanups (cleanups);
5236 return;
5237 }
5238
5239 dwarf2_read_abbrevs (&cu, abbrev_section);
5240 make_cleanup (dwarf2_free_abbrev_table, &cu);
5241
5242 init_cu_die_reader (&reader, &cu, section, dwo_file);
5243 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5244
5245 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5246
5247 do_cleanups (cleanups);
5248 }
5249
5250 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5251 does not lookup the specified DWO file.
5252 This cannot be used to read DWO files.
5253
5254 THIS_CU->cu is always freed when done.
5255 This is done in order to not leave THIS_CU->cu in a state where we have
5256 to care whether it refers to the "main" CU or the DWO CU.
5257 We can revisit this if the data shows there's a performance issue. */
5258
5259 static void
5260 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5261 die_reader_func_ftype *die_reader_func,
5262 void *data)
5263 {
5264 init_cutu_and_read_dies_no_follow (this_cu,
5265 get_abbrev_section_for_cu (this_cu),
5266 NULL,
5267 die_reader_func, data);
5268 }
5269 \f
5270 /* Type Unit Groups.
5271
5272 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5273 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5274 so that all types coming from the same compilation (.o file) are grouped
5275 together. A future step could be to put the types in the same symtab as
5276 the CU the types ultimately came from. */
5277
5278 static hashval_t
5279 hash_type_unit_group (const void *item)
5280 {
5281 const struct type_unit_group *tu_group = item;
5282
5283 return hash_stmt_list_entry (&tu_group->hash);
5284 }
5285
5286 static int
5287 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5288 {
5289 const struct type_unit_group *lhs = item_lhs;
5290 const struct type_unit_group *rhs = item_rhs;
5291
5292 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5293 }
5294
5295 /* Allocate a hash table for type unit groups. */
5296
5297 static htab_t
5298 allocate_type_unit_groups_table (void)
5299 {
5300 return htab_create_alloc_ex (3,
5301 hash_type_unit_group,
5302 eq_type_unit_group,
5303 NULL,
5304 &dwarf2_per_objfile->objfile->objfile_obstack,
5305 hashtab_obstack_allocate,
5306 dummy_obstack_deallocate);
5307 }
5308
5309 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5310 partial symtabs. We combine several TUs per psymtab to not let the size
5311 of any one psymtab grow too big. */
5312 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5313 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5314
5315 /* Helper routine for get_type_unit_group.
5316 Create the type_unit_group object used to hold one or more TUs. */
5317
5318 static struct type_unit_group *
5319 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5320 {
5321 struct objfile *objfile = dwarf2_per_objfile->objfile;
5322 struct dwarf2_per_cu_data *per_cu;
5323 struct type_unit_group *tu_group;
5324
5325 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5326 struct type_unit_group);
5327 per_cu = &tu_group->per_cu;
5328 per_cu->objfile = objfile;
5329
5330 if (dwarf2_per_objfile->using_index)
5331 {
5332 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5333 struct dwarf2_per_cu_quick_data);
5334 }
5335 else
5336 {
5337 unsigned int line_offset = line_offset_struct.sect_off;
5338 struct partial_symtab *pst;
5339 char *name;
5340
5341 /* Give the symtab a useful name for debug purposes. */
5342 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5343 name = xstrprintf ("<type_units_%d>",
5344 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5345 else
5346 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5347
5348 pst = create_partial_symtab (per_cu, name);
5349 pst->anonymous = 1;
5350
5351 xfree (name);
5352 }
5353
5354 tu_group->hash.dwo_unit = cu->dwo_unit;
5355 tu_group->hash.line_offset = line_offset_struct;
5356
5357 return tu_group;
5358 }
5359
5360 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5361 STMT_LIST is a DW_AT_stmt_list attribute. */
5362
5363 static struct type_unit_group *
5364 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5365 {
5366 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5367 struct type_unit_group *tu_group;
5368 void **slot;
5369 unsigned int line_offset;
5370 struct type_unit_group type_unit_group_for_lookup;
5371
5372 if (dwarf2_per_objfile->type_unit_groups == NULL)
5373 {
5374 dwarf2_per_objfile->type_unit_groups =
5375 allocate_type_unit_groups_table ();
5376 }
5377
5378 /* Do we need to create a new group, or can we use an existing one? */
5379
5380 if (stmt_list)
5381 {
5382 line_offset = DW_UNSND (stmt_list);
5383 ++tu_stats->nr_symtab_sharers;
5384 }
5385 else
5386 {
5387 /* Ugh, no stmt_list. Rare, but we have to handle it.
5388 We can do various things here like create one group per TU or
5389 spread them over multiple groups to split up the expansion work.
5390 To avoid worst case scenarios (too many groups or too large groups)
5391 we, umm, group them in bunches. */
5392 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5393 | (tu_stats->nr_stmt_less_type_units
5394 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5395 ++tu_stats->nr_stmt_less_type_units;
5396 }
5397
5398 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5399 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5400 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5401 &type_unit_group_for_lookup, INSERT);
5402 if (*slot != NULL)
5403 {
5404 tu_group = *slot;
5405 gdb_assert (tu_group != NULL);
5406 }
5407 else
5408 {
5409 sect_offset line_offset_struct;
5410
5411 line_offset_struct.sect_off = line_offset;
5412 tu_group = create_type_unit_group (cu, line_offset_struct);
5413 *slot = tu_group;
5414 ++tu_stats->nr_symtabs;
5415 }
5416
5417 return tu_group;
5418 }
5419
5420 /* Struct used to sort TUs by their abbreviation table offset. */
5421
5422 struct tu_abbrev_offset
5423 {
5424 struct signatured_type *sig_type;
5425 sect_offset abbrev_offset;
5426 };
5427
5428 /* Helper routine for build_type_unit_groups, passed to qsort. */
5429
5430 static int
5431 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5432 {
5433 const struct tu_abbrev_offset * const *a = ap;
5434 const struct tu_abbrev_offset * const *b = bp;
5435 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5436 unsigned int boff = (*b)->abbrev_offset.sect_off;
5437
5438 return (aoff > boff) - (aoff < boff);
5439 }
5440
5441 /* A helper function to add a type_unit_group to a table. */
5442
5443 static int
5444 add_type_unit_group_to_table (void **slot, void *datum)
5445 {
5446 struct type_unit_group *tu_group = *slot;
5447 struct type_unit_group ***datap = datum;
5448
5449 **datap = tu_group;
5450 ++*datap;
5451
5452 return 1;
5453 }
5454
5455 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5456 each one passing FUNC,DATA.
5457
5458 The efficiency is because we sort TUs by the abbrev table they use and
5459 only read each abbrev table once. In one program there are 200K TUs
5460 sharing 8K abbrev tables.
5461
5462 The main purpose of this function is to support building the
5463 dwarf2_per_objfile->type_unit_groups table.
5464 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5465 can collapse the search space by grouping them by stmt_list.
5466 The savings can be significant, in the same program from above the 200K TUs
5467 share 8K stmt_list tables.
5468
5469 FUNC is expected to call get_type_unit_group, which will create the
5470 struct type_unit_group if necessary and add it to
5471 dwarf2_per_objfile->type_unit_groups. */
5472
5473 static void
5474 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5475 {
5476 struct objfile *objfile = dwarf2_per_objfile->objfile;
5477 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5478 struct cleanup *cleanups;
5479 struct abbrev_table *abbrev_table;
5480 sect_offset abbrev_offset;
5481 struct tu_abbrev_offset *sorted_by_abbrev;
5482 struct type_unit_group **iter;
5483 int i;
5484
5485 /* It's up to the caller to not call us multiple times. */
5486 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5487
5488 if (dwarf2_per_objfile->n_type_units == 0)
5489 return;
5490
5491 /* TUs typically share abbrev tables, and there can be way more TUs than
5492 abbrev tables. Sort by abbrev table to reduce the number of times we
5493 read each abbrev table in.
5494 Alternatives are to punt or to maintain a cache of abbrev tables.
5495 This is simpler and efficient enough for now.
5496
5497 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5498 symtab to use). Typically TUs with the same abbrev offset have the same
5499 stmt_list value too so in practice this should work well.
5500
5501 The basic algorithm here is:
5502
5503 sort TUs by abbrev table
5504 for each TU with same abbrev table:
5505 read abbrev table if first user
5506 read TU top level DIE
5507 [IWBN if DWO skeletons had DW_AT_stmt_list]
5508 call FUNC */
5509
5510 if (dwarf2_read_debug)
5511 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5512
5513 /* Sort in a separate table to maintain the order of all_type_units
5514 for .gdb_index: TU indices directly index all_type_units. */
5515 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5516 dwarf2_per_objfile->n_type_units);
5517 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5518 {
5519 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5520
5521 sorted_by_abbrev[i].sig_type = sig_type;
5522 sorted_by_abbrev[i].abbrev_offset =
5523 read_abbrev_offset (sig_type->per_cu.section,
5524 sig_type->per_cu.offset);
5525 }
5526 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5527 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5528 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5529
5530 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5531 called any number of times, so we don't reset tu_stats here. */
5532
5533 abbrev_offset.sect_off = ~(unsigned) 0;
5534 abbrev_table = NULL;
5535 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5536
5537 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5538 {
5539 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5540
5541 /* Switch to the next abbrev table if necessary. */
5542 if (abbrev_table == NULL
5543 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5544 {
5545 if (abbrev_table != NULL)
5546 {
5547 abbrev_table_free (abbrev_table);
5548 /* Reset to NULL in case abbrev_table_read_table throws
5549 an error: abbrev_table_free_cleanup will get called. */
5550 abbrev_table = NULL;
5551 }
5552 abbrev_offset = tu->abbrev_offset;
5553 abbrev_table =
5554 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5555 abbrev_offset);
5556 ++tu_stats->nr_uniq_abbrev_tables;
5557 }
5558
5559 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5560 func, data);
5561 }
5562
5563 /* type_unit_groups can be NULL if there is an error in the debug info.
5564 Just create an empty table so the rest of gdb doesn't have to watch
5565 for this error case. */
5566 if (dwarf2_per_objfile->type_unit_groups == NULL)
5567 {
5568 dwarf2_per_objfile->type_unit_groups =
5569 allocate_type_unit_groups_table ();
5570 dwarf2_per_objfile->n_type_unit_groups = 0;
5571 }
5572
5573 /* Create a vector of pointers to primary type units to make it easy to
5574 iterate over them and CUs. See dw2_get_primary_cu. */
5575 dwarf2_per_objfile->n_type_unit_groups =
5576 htab_elements (dwarf2_per_objfile->type_unit_groups);
5577 dwarf2_per_objfile->all_type_unit_groups =
5578 obstack_alloc (&objfile->objfile_obstack,
5579 dwarf2_per_objfile->n_type_unit_groups
5580 * sizeof (struct type_unit_group *));
5581 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5582 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5583 add_type_unit_group_to_table, &iter);
5584 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5585 == dwarf2_per_objfile->n_type_unit_groups);
5586
5587 do_cleanups (cleanups);
5588
5589 if (dwarf2_read_debug)
5590 {
5591 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5592 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5593 dwarf2_per_objfile->n_type_units);
5594 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5595 tu_stats->nr_uniq_abbrev_tables);
5596 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5597 tu_stats->nr_symtabs);
5598 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5599 tu_stats->nr_symtab_sharers);
5600 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5601 tu_stats->nr_stmt_less_type_units);
5602 }
5603 }
5604 \f
5605 /* Partial symbol tables. */
5606
5607 /* Create a psymtab named NAME and assign it to PER_CU.
5608
5609 The caller must fill in the following details:
5610 dirname, textlow, texthigh. */
5611
5612 static struct partial_symtab *
5613 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5614 {
5615 struct objfile *objfile = per_cu->objfile;
5616 struct partial_symtab *pst;
5617
5618 pst = start_psymtab_common (objfile, objfile->section_offsets,
5619 name, 0,
5620 objfile->global_psymbols.next,
5621 objfile->static_psymbols.next);
5622
5623 pst->psymtabs_addrmap_supported = 1;
5624
5625 /* This is the glue that links PST into GDB's symbol API. */
5626 pst->read_symtab_private = per_cu;
5627 pst->read_symtab = dwarf2_read_symtab;
5628 per_cu->v.psymtab = pst;
5629
5630 return pst;
5631 }
5632
5633 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5634 type. */
5635
5636 struct process_psymtab_comp_unit_data
5637 {
5638 /* True if we are reading a DW_TAG_partial_unit. */
5639
5640 int want_partial_unit;
5641
5642 /* The "pretend" language that is used if the CU doesn't declare a
5643 language. */
5644
5645 enum language pretend_language;
5646 };
5647
5648 /* die_reader_func for process_psymtab_comp_unit. */
5649
5650 static void
5651 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5652 const gdb_byte *info_ptr,
5653 struct die_info *comp_unit_die,
5654 int has_children,
5655 void *data)
5656 {
5657 struct dwarf2_cu *cu = reader->cu;
5658 struct objfile *objfile = cu->objfile;
5659 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5660 struct attribute *attr;
5661 CORE_ADDR baseaddr;
5662 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5663 struct partial_symtab *pst;
5664 int has_pc_info;
5665 const char *filename;
5666 struct process_psymtab_comp_unit_data *info = data;
5667
5668 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5669 return;
5670
5671 gdb_assert (! per_cu->is_debug_types);
5672
5673 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5674
5675 cu->list_in_scope = &file_symbols;
5676
5677 /* Allocate a new partial symbol table structure. */
5678 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5679 if (attr == NULL || !DW_STRING (attr))
5680 filename = "";
5681 else
5682 filename = DW_STRING (attr);
5683
5684 pst = create_partial_symtab (per_cu, filename);
5685
5686 /* This must be done before calling dwarf2_build_include_psymtabs. */
5687 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5688 if (attr != NULL)
5689 pst->dirname = DW_STRING (attr);
5690
5691 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5692
5693 dwarf2_find_base_address (comp_unit_die, cu);
5694
5695 /* Possibly set the default values of LOWPC and HIGHPC from
5696 `DW_AT_ranges'. */
5697 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5698 &best_highpc, cu, pst);
5699 if (has_pc_info == 1 && best_lowpc < best_highpc)
5700 /* Store the contiguous range if it is not empty; it can be empty for
5701 CUs with no code. */
5702 addrmap_set_empty (objfile->psymtabs_addrmap,
5703 best_lowpc + baseaddr,
5704 best_highpc + baseaddr - 1, pst);
5705
5706 /* Check if comp unit has_children.
5707 If so, read the rest of the partial symbols from this comp unit.
5708 If not, there's no more debug_info for this comp unit. */
5709 if (has_children)
5710 {
5711 struct partial_die_info *first_die;
5712 CORE_ADDR lowpc, highpc;
5713
5714 lowpc = ((CORE_ADDR) -1);
5715 highpc = ((CORE_ADDR) 0);
5716
5717 first_die = load_partial_dies (reader, info_ptr, 1);
5718
5719 scan_partial_symbols (first_die, &lowpc, &highpc,
5720 ! has_pc_info, cu);
5721
5722 /* If we didn't find a lowpc, set it to highpc to avoid
5723 complaints from `maint check'. */
5724 if (lowpc == ((CORE_ADDR) -1))
5725 lowpc = highpc;
5726
5727 /* If the compilation unit didn't have an explicit address range,
5728 then use the information extracted from its child dies. */
5729 if (! has_pc_info)
5730 {
5731 best_lowpc = lowpc;
5732 best_highpc = highpc;
5733 }
5734 }
5735 pst->textlow = best_lowpc + baseaddr;
5736 pst->texthigh = best_highpc + baseaddr;
5737
5738 pst->n_global_syms = objfile->global_psymbols.next -
5739 (objfile->global_psymbols.list + pst->globals_offset);
5740 pst->n_static_syms = objfile->static_psymbols.next -
5741 (objfile->static_psymbols.list + pst->statics_offset);
5742 sort_pst_symbols (objfile, pst);
5743
5744 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5745 {
5746 int i;
5747 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5748 struct dwarf2_per_cu_data *iter;
5749
5750 /* Fill in 'dependencies' here; we fill in 'users' in a
5751 post-pass. */
5752 pst->number_of_dependencies = len;
5753 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5754 len * sizeof (struct symtab *));
5755 for (i = 0;
5756 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5757 i, iter);
5758 ++i)
5759 pst->dependencies[i] = iter->v.psymtab;
5760
5761 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5762 }
5763
5764 /* Get the list of files included in the current compilation unit,
5765 and build a psymtab for each of them. */
5766 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5767
5768 if (dwarf2_read_debug)
5769 {
5770 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5771
5772 fprintf_unfiltered (gdb_stdlog,
5773 "Psymtab for %s unit @0x%x: %s - %s"
5774 ", %d global, %d static syms\n",
5775 per_cu->is_debug_types ? "type" : "comp",
5776 per_cu->offset.sect_off,
5777 paddress (gdbarch, pst->textlow),
5778 paddress (gdbarch, pst->texthigh),
5779 pst->n_global_syms, pst->n_static_syms);
5780 }
5781 }
5782
5783 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5784 Process compilation unit THIS_CU for a psymtab. */
5785
5786 static void
5787 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5788 int want_partial_unit,
5789 enum language pretend_language)
5790 {
5791 struct process_psymtab_comp_unit_data info;
5792
5793 /* If this compilation unit was already read in, free the
5794 cached copy in order to read it in again. This is
5795 necessary because we skipped some symbols when we first
5796 read in the compilation unit (see load_partial_dies).
5797 This problem could be avoided, but the benefit is unclear. */
5798 if (this_cu->cu != NULL)
5799 free_one_cached_comp_unit (this_cu);
5800
5801 gdb_assert (! this_cu->is_debug_types);
5802 info.want_partial_unit = want_partial_unit;
5803 info.pretend_language = pretend_language;
5804 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5805 process_psymtab_comp_unit_reader,
5806 &info);
5807
5808 /* Age out any secondary CUs. */
5809 age_cached_comp_units ();
5810 }
5811
5812 /* Reader function for build_type_psymtabs. */
5813
5814 static void
5815 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5816 const gdb_byte *info_ptr,
5817 struct die_info *type_unit_die,
5818 int has_children,
5819 void *data)
5820 {
5821 struct objfile *objfile = dwarf2_per_objfile->objfile;
5822 struct dwarf2_cu *cu = reader->cu;
5823 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5824 struct signatured_type *sig_type;
5825 struct type_unit_group *tu_group;
5826 struct attribute *attr;
5827 struct partial_die_info *first_die;
5828 CORE_ADDR lowpc, highpc;
5829 struct partial_symtab *pst;
5830
5831 gdb_assert (data == NULL);
5832 gdb_assert (per_cu->is_debug_types);
5833 sig_type = (struct signatured_type *) per_cu;
5834
5835 if (! has_children)
5836 return;
5837
5838 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5839 tu_group = get_type_unit_group (cu, attr);
5840
5841 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5842
5843 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5844 cu->list_in_scope = &file_symbols;
5845 pst = create_partial_symtab (per_cu, "");
5846 pst->anonymous = 1;
5847
5848 first_die = load_partial_dies (reader, info_ptr, 1);
5849
5850 lowpc = (CORE_ADDR) -1;
5851 highpc = (CORE_ADDR) 0;
5852 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5853
5854 pst->n_global_syms = objfile->global_psymbols.next -
5855 (objfile->global_psymbols.list + pst->globals_offset);
5856 pst->n_static_syms = objfile->static_psymbols.next -
5857 (objfile->static_psymbols.list + pst->statics_offset);
5858 sort_pst_symbols (objfile, pst);
5859 }
5860
5861 /* Traversal function for build_type_psymtabs. */
5862
5863 static int
5864 build_type_psymtab_dependencies (void **slot, void *info)
5865 {
5866 struct objfile *objfile = dwarf2_per_objfile->objfile;
5867 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5868 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5869 struct partial_symtab *pst = per_cu->v.psymtab;
5870 int len = VEC_length (sig_type_ptr, tu_group->tus);
5871 struct signatured_type *iter;
5872 int i;
5873
5874 gdb_assert (len > 0);
5875 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5876
5877 pst->number_of_dependencies = len;
5878 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5879 len * sizeof (struct psymtab *));
5880 for (i = 0;
5881 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5882 ++i)
5883 {
5884 gdb_assert (iter->per_cu.is_debug_types);
5885 pst->dependencies[i] = iter->per_cu.v.psymtab;
5886 iter->type_unit_group = tu_group;
5887 }
5888
5889 VEC_free (sig_type_ptr, tu_group->tus);
5890
5891 return 1;
5892 }
5893
5894 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5895 Build partial symbol tables for the .debug_types comp-units. */
5896
5897 static void
5898 build_type_psymtabs (struct objfile *objfile)
5899 {
5900 if (! create_all_type_units (objfile))
5901 return;
5902
5903 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5904
5905 /* Now that all TUs have been processed we can fill in the dependencies. */
5906 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5907 build_type_psymtab_dependencies, NULL);
5908 }
5909
5910 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5911
5912 static void
5913 psymtabs_addrmap_cleanup (void *o)
5914 {
5915 struct objfile *objfile = o;
5916
5917 objfile->psymtabs_addrmap = NULL;
5918 }
5919
5920 /* Compute the 'user' field for each psymtab in OBJFILE. */
5921
5922 static void
5923 set_partial_user (struct objfile *objfile)
5924 {
5925 int i;
5926
5927 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5928 {
5929 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5930 struct partial_symtab *pst = per_cu->v.psymtab;
5931 int j;
5932
5933 if (pst == NULL)
5934 continue;
5935
5936 for (j = 0; j < pst->number_of_dependencies; ++j)
5937 {
5938 /* Set the 'user' field only if it is not already set. */
5939 if (pst->dependencies[j]->user == NULL)
5940 pst->dependencies[j]->user = pst;
5941 }
5942 }
5943 }
5944
5945 /* Build the partial symbol table by doing a quick pass through the
5946 .debug_info and .debug_abbrev sections. */
5947
5948 static void
5949 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5950 {
5951 struct cleanup *back_to, *addrmap_cleanup;
5952 struct obstack temp_obstack;
5953 int i;
5954
5955 if (dwarf2_read_debug)
5956 {
5957 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5958 objfile->name);
5959 }
5960
5961 dwarf2_per_objfile->reading_partial_symbols = 1;
5962
5963 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5964
5965 /* Any cached compilation units will be linked by the per-objfile
5966 read_in_chain. Make sure to free them when we're done. */
5967 back_to = make_cleanup (free_cached_comp_units, NULL);
5968
5969 build_type_psymtabs (objfile);
5970
5971 create_all_comp_units (objfile);
5972
5973 /* Create a temporary address map on a temporary obstack. We later
5974 copy this to the final obstack. */
5975 obstack_init (&temp_obstack);
5976 make_cleanup_obstack_free (&temp_obstack);
5977 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5978 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5979
5980 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5981 {
5982 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5983
5984 process_psymtab_comp_unit (per_cu, 0, language_minimal);
5985 }
5986
5987 set_partial_user (objfile);
5988
5989 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5990 &objfile->objfile_obstack);
5991 discard_cleanups (addrmap_cleanup);
5992
5993 do_cleanups (back_to);
5994
5995 if (dwarf2_read_debug)
5996 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5997 objfile->name);
5998 }
5999
6000 /* die_reader_func for load_partial_comp_unit. */
6001
6002 static void
6003 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6004 const gdb_byte *info_ptr,
6005 struct die_info *comp_unit_die,
6006 int has_children,
6007 void *data)
6008 {
6009 struct dwarf2_cu *cu = reader->cu;
6010
6011 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6012
6013 /* Check if comp unit has_children.
6014 If so, read the rest of the partial symbols from this comp unit.
6015 If not, there's no more debug_info for this comp unit. */
6016 if (has_children)
6017 load_partial_dies (reader, info_ptr, 0);
6018 }
6019
6020 /* Load the partial DIEs for a secondary CU into memory.
6021 This is also used when rereading a primary CU with load_all_dies. */
6022
6023 static void
6024 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6025 {
6026 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6027 load_partial_comp_unit_reader, NULL);
6028 }
6029
6030 static void
6031 read_comp_units_from_section (struct objfile *objfile,
6032 struct dwarf2_section_info *section,
6033 unsigned int is_dwz,
6034 int *n_allocated,
6035 int *n_comp_units,
6036 struct dwarf2_per_cu_data ***all_comp_units)
6037 {
6038 const gdb_byte *info_ptr;
6039 bfd *abfd = section->asection->owner;
6040
6041 if (dwarf2_read_debug)
6042 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6043 section->asection->name, bfd_get_filename (abfd));
6044
6045 dwarf2_read_section (objfile, section);
6046
6047 info_ptr = section->buffer;
6048
6049 while (info_ptr < section->buffer + section->size)
6050 {
6051 unsigned int length, initial_length_size;
6052 struct dwarf2_per_cu_data *this_cu;
6053 sect_offset offset;
6054
6055 offset.sect_off = info_ptr - section->buffer;
6056
6057 /* Read just enough information to find out where the next
6058 compilation unit is. */
6059 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6060
6061 /* Save the compilation unit for later lookup. */
6062 this_cu = obstack_alloc (&objfile->objfile_obstack,
6063 sizeof (struct dwarf2_per_cu_data));
6064 memset (this_cu, 0, sizeof (*this_cu));
6065 this_cu->offset = offset;
6066 this_cu->length = length + initial_length_size;
6067 this_cu->is_dwz = is_dwz;
6068 this_cu->objfile = objfile;
6069 this_cu->section = section;
6070
6071 if (*n_comp_units == *n_allocated)
6072 {
6073 *n_allocated *= 2;
6074 *all_comp_units = xrealloc (*all_comp_units,
6075 *n_allocated
6076 * sizeof (struct dwarf2_per_cu_data *));
6077 }
6078 (*all_comp_units)[*n_comp_units] = this_cu;
6079 ++*n_comp_units;
6080
6081 info_ptr = info_ptr + this_cu->length;
6082 }
6083 }
6084
6085 /* Create a list of all compilation units in OBJFILE.
6086 This is only done for -readnow and building partial symtabs. */
6087
6088 static void
6089 create_all_comp_units (struct objfile *objfile)
6090 {
6091 int n_allocated;
6092 int n_comp_units;
6093 struct dwarf2_per_cu_data **all_comp_units;
6094 struct dwz_file *dwz;
6095
6096 n_comp_units = 0;
6097 n_allocated = 10;
6098 all_comp_units = xmalloc (n_allocated
6099 * sizeof (struct dwarf2_per_cu_data *));
6100
6101 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6102 &n_allocated, &n_comp_units, &all_comp_units);
6103
6104 dwz = dwarf2_get_dwz_file ();
6105 if (dwz != NULL)
6106 read_comp_units_from_section (objfile, &dwz->info, 1,
6107 &n_allocated, &n_comp_units,
6108 &all_comp_units);
6109
6110 dwarf2_per_objfile->all_comp_units
6111 = obstack_alloc (&objfile->objfile_obstack,
6112 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6113 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6114 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6115 xfree (all_comp_units);
6116 dwarf2_per_objfile->n_comp_units = n_comp_units;
6117 }
6118
6119 /* Process all loaded DIEs for compilation unit CU, starting at
6120 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6121 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6122 DW_AT_ranges). If NEED_PC is set, then this function will set
6123 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6124 and record the covered ranges in the addrmap. */
6125
6126 static void
6127 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6128 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6129 {
6130 struct partial_die_info *pdi;
6131
6132 /* Now, march along the PDI's, descending into ones which have
6133 interesting children but skipping the children of the other ones,
6134 until we reach the end of the compilation unit. */
6135
6136 pdi = first_die;
6137
6138 while (pdi != NULL)
6139 {
6140 fixup_partial_die (pdi, cu);
6141
6142 /* Anonymous namespaces or modules have no name but have interesting
6143 children, so we need to look at them. Ditto for anonymous
6144 enums. */
6145
6146 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6147 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6148 || pdi->tag == DW_TAG_imported_unit)
6149 {
6150 switch (pdi->tag)
6151 {
6152 case DW_TAG_subprogram:
6153 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6154 break;
6155 case DW_TAG_constant:
6156 case DW_TAG_variable:
6157 case DW_TAG_typedef:
6158 case DW_TAG_union_type:
6159 if (!pdi->is_declaration)
6160 {
6161 add_partial_symbol (pdi, cu);
6162 }
6163 break;
6164 case DW_TAG_class_type:
6165 case DW_TAG_interface_type:
6166 case DW_TAG_structure_type:
6167 if (!pdi->is_declaration)
6168 {
6169 add_partial_symbol (pdi, cu);
6170 }
6171 break;
6172 case DW_TAG_enumeration_type:
6173 if (!pdi->is_declaration)
6174 add_partial_enumeration (pdi, cu);
6175 break;
6176 case DW_TAG_base_type:
6177 case DW_TAG_subrange_type:
6178 /* File scope base type definitions are added to the partial
6179 symbol table. */
6180 add_partial_symbol (pdi, cu);
6181 break;
6182 case DW_TAG_namespace:
6183 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6184 break;
6185 case DW_TAG_module:
6186 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6187 break;
6188 case DW_TAG_imported_unit:
6189 {
6190 struct dwarf2_per_cu_data *per_cu;
6191
6192 /* For now we don't handle imported units in type units. */
6193 if (cu->per_cu->is_debug_types)
6194 {
6195 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6196 " supported in type units [in module %s]"),
6197 cu->objfile->name);
6198 }
6199
6200 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6201 pdi->is_dwz,
6202 cu->objfile);
6203
6204 /* Go read the partial unit, if needed. */
6205 if (per_cu->v.psymtab == NULL)
6206 process_psymtab_comp_unit (per_cu, 1, cu->language);
6207
6208 VEC_safe_push (dwarf2_per_cu_ptr,
6209 cu->per_cu->imported_symtabs, per_cu);
6210 }
6211 break;
6212 default:
6213 break;
6214 }
6215 }
6216
6217 /* If the die has a sibling, skip to the sibling. */
6218
6219 pdi = pdi->die_sibling;
6220 }
6221 }
6222
6223 /* Functions used to compute the fully scoped name of a partial DIE.
6224
6225 Normally, this is simple. For C++, the parent DIE's fully scoped
6226 name is concatenated with "::" and the partial DIE's name. For
6227 Java, the same thing occurs except that "." is used instead of "::".
6228 Enumerators are an exception; they use the scope of their parent
6229 enumeration type, i.e. the name of the enumeration type is not
6230 prepended to the enumerator.
6231
6232 There are two complexities. One is DW_AT_specification; in this
6233 case "parent" means the parent of the target of the specification,
6234 instead of the direct parent of the DIE. The other is compilers
6235 which do not emit DW_TAG_namespace; in this case we try to guess
6236 the fully qualified name of structure types from their members'
6237 linkage names. This must be done using the DIE's children rather
6238 than the children of any DW_AT_specification target. We only need
6239 to do this for structures at the top level, i.e. if the target of
6240 any DW_AT_specification (if any; otherwise the DIE itself) does not
6241 have a parent. */
6242
6243 /* Compute the scope prefix associated with PDI's parent, in
6244 compilation unit CU. The result will be allocated on CU's
6245 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6246 field. NULL is returned if no prefix is necessary. */
6247 static const char *
6248 partial_die_parent_scope (struct partial_die_info *pdi,
6249 struct dwarf2_cu *cu)
6250 {
6251 const char *grandparent_scope;
6252 struct partial_die_info *parent, *real_pdi;
6253
6254 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6255 then this means the parent of the specification DIE. */
6256
6257 real_pdi = pdi;
6258 while (real_pdi->has_specification)
6259 real_pdi = find_partial_die (real_pdi->spec_offset,
6260 real_pdi->spec_is_dwz, cu);
6261
6262 parent = real_pdi->die_parent;
6263 if (parent == NULL)
6264 return NULL;
6265
6266 if (parent->scope_set)
6267 return parent->scope;
6268
6269 fixup_partial_die (parent, cu);
6270
6271 grandparent_scope = partial_die_parent_scope (parent, cu);
6272
6273 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6274 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6275 Work around this problem here. */
6276 if (cu->language == language_cplus
6277 && parent->tag == DW_TAG_namespace
6278 && strcmp (parent->name, "::") == 0
6279 && grandparent_scope == NULL)
6280 {
6281 parent->scope = NULL;
6282 parent->scope_set = 1;
6283 return NULL;
6284 }
6285
6286 if (pdi->tag == DW_TAG_enumerator)
6287 /* Enumerators should not get the name of the enumeration as a prefix. */
6288 parent->scope = grandparent_scope;
6289 else if (parent->tag == DW_TAG_namespace
6290 || parent->tag == DW_TAG_module
6291 || parent->tag == DW_TAG_structure_type
6292 || parent->tag == DW_TAG_class_type
6293 || parent->tag == DW_TAG_interface_type
6294 || parent->tag == DW_TAG_union_type
6295 || parent->tag == DW_TAG_enumeration_type)
6296 {
6297 if (grandparent_scope == NULL)
6298 parent->scope = parent->name;
6299 else
6300 parent->scope = typename_concat (&cu->comp_unit_obstack,
6301 grandparent_scope,
6302 parent->name, 0, cu);
6303 }
6304 else
6305 {
6306 /* FIXME drow/2004-04-01: What should we be doing with
6307 function-local names? For partial symbols, we should probably be
6308 ignoring them. */
6309 complaint (&symfile_complaints,
6310 _("unhandled containing DIE tag %d for DIE at %d"),
6311 parent->tag, pdi->offset.sect_off);
6312 parent->scope = grandparent_scope;
6313 }
6314
6315 parent->scope_set = 1;
6316 return parent->scope;
6317 }
6318
6319 /* Return the fully scoped name associated with PDI, from compilation unit
6320 CU. The result will be allocated with malloc. */
6321
6322 static char *
6323 partial_die_full_name (struct partial_die_info *pdi,
6324 struct dwarf2_cu *cu)
6325 {
6326 const char *parent_scope;
6327
6328 /* If this is a template instantiation, we can not work out the
6329 template arguments from partial DIEs. So, unfortunately, we have
6330 to go through the full DIEs. At least any work we do building
6331 types here will be reused if full symbols are loaded later. */
6332 if (pdi->has_template_arguments)
6333 {
6334 fixup_partial_die (pdi, cu);
6335
6336 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6337 {
6338 struct die_info *die;
6339 struct attribute attr;
6340 struct dwarf2_cu *ref_cu = cu;
6341
6342 /* DW_FORM_ref_addr is using section offset. */
6343 attr.name = 0;
6344 attr.form = DW_FORM_ref_addr;
6345 attr.u.unsnd = pdi->offset.sect_off;
6346 die = follow_die_ref (NULL, &attr, &ref_cu);
6347
6348 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6349 }
6350 }
6351
6352 parent_scope = partial_die_parent_scope (pdi, cu);
6353 if (parent_scope == NULL)
6354 return NULL;
6355 else
6356 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6357 }
6358
6359 static void
6360 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6361 {
6362 struct objfile *objfile = cu->objfile;
6363 CORE_ADDR addr = 0;
6364 const char *actual_name = NULL;
6365 CORE_ADDR baseaddr;
6366 char *built_actual_name;
6367
6368 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6369
6370 built_actual_name = partial_die_full_name (pdi, cu);
6371 if (built_actual_name != NULL)
6372 actual_name = built_actual_name;
6373
6374 if (actual_name == NULL)
6375 actual_name = pdi->name;
6376
6377 switch (pdi->tag)
6378 {
6379 case DW_TAG_subprogram:
6380 if (pdi->is_external || cu->language == language_ada)
6381 {
6382 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6383 of the global scope. But in Ada, we want to be able to access
6384 nested procedures globally. So all Ada subprograms are stored
6385 in the global scope. */
6386 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6387 mst_text, objfile); */
6388 add_psymbol_to_list (actual_name, strlen (actual_name),
6389 built_actual_name != NULL,
6390 VAR_DOMAIN, LOC_BLOCK,
6391 &objfile->global_psymbols,
6392 0, pdi->lowpc + baseaddr,
6393 cu->language, objfile);
6394 }
6395 else
6396 {
6397 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6398 mst_file_text, objfile); */
6399 add_psymbol_to_list (actual_name, strlen (actual_name),
6400 built_actual_name != NULL,
6401 VAR_DOMAIN, LOC_BLOCK,
6402 &objfile->static_psymbols,
6403 0, pdi->lowpc + baseaddr,
6404 cu->language, objfile);
6405 }
6406 break;
6407 case DW_TAG_constant:
6408 {
6409 struct psymbol_allocation_list *list;
6410
6411 if (pdi->is_external)
6412 list = &objfile->global_psymbols;
6413 else
6414 list = &objfile->static_psymbols;
6415 add_psymbol_to_list (actual_name, strlen (actual_name),
6416 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6417 list, 0, 0, cu->language, objfile);
6418 }
6419 break;
6420 case DW_TAG_variable:
6421 if (pdi->d.locdesc)
6422 addr = decode_locdesc (pdi->d.locdesc, cu);
6423
6424 if (pdi->d.locdesc
6425 && addr == 0
6426 && !dwarf2_per_objfile->has_section_at_zero)
6427 {
6428 /* A global or static variable may also have been stripped
6429 out by the linker if unused, in which case its address
6430 will be nullified; do not add such variables into partial
6431 symbol table then. */
6432 }
6433 else if (pdi->is_external)
6434 {
6435 /* Global Variable.
6436 Don't enter into the minimal symbol tables as there is
6437 a minimal symbol table entry from the ELF symbols already.
6438 Enter into partial symbol table if it has a location
6439 descriptor or a type.
6440 If the location descriptor is missing, new_symbol will create
6441 a LOC_UNRESOLVED symbol, the address of the variable will then
6442 be determined from the minimal symbol table whenever the variable
6443 is referenced.
6444 The address for the partial symbol table entry is not
6445 used by GDB, but it comes in handy for debugging partial symbol
6446 table building. */
6447
6448 if (pdi->d.locdesc || pdi->has_type)
6449 add_psymbol_to_list (actual_name, strlen (actual_name),
6450 built_actual_name != NULL,
6451 VAR_DOMAIN, LOC_STATIC,
6452 &objfile->global_psymbols,
6453 0, addr + baseaddr,
6454 cu->language, objfile);
6455 }
6456 else
6457 {
6458 /* Static Variable. Skip symbols without location descriptors. */
6459 if (pdi->d.locdesc == NULL)
6460 {
6461 xfree (built_actual_name);
6462 return;
6463 }
6464 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6465 mst_file_data, objfile); */
6466 add_psymbol_to_list (actual_name, strlen (actual_name),
6467 built_actual_name != NULL,
6468 VAR_DOMAIN, LOC_STATIC,
6469 &objfile->static_psymbols,
6470 0, addr + baseaddr,
6471 cu->language, objfile);
6472 }
6473 break;
6474 case DW_TAG_typedef:
6475 case DW_TAG_base_type:
6476 case DW_TAG_subrange_type:
6477 add_psymbol_to_list (actual_name, strlen (actual_name),
6478 built_actual_name != NULL,
6479 VAR_DOMAIN, LOC_TYPEDEF,
6480 &objfile->static_psymbols,
6481 0, (CORE_ADDR) 0, cu->language, objfile);
6482 break;
6483 case DW_TAG_namespace:
6484 add_psymbol_to_list (actual_name, strlen (actual_name),
6485 built_actual_name != NULL,
6486 VAR_DOMAIN, LOC_TYPEDEF,
6487 &objfile->global_psymbols,
6488 0, (CORE_ADDR) 0, cu->language, objfile);
6489 break;
6490 case DW_TAG_class_type:
6491 case DW_TAG_interface_type:
6492 case DW_TAG_structure_type:
6493 case DW_TAG_union_type:
6494 case DW_TAG_enumeration_type:
6495 /* Skip external references. The DWARF standard says in the section
6496 about "Structure, Union, and Class Type Entries": "An incomplete
6497 structure, union or class type is represented by a structure,
6498 union or class entry that does not have a byte size attribute
6499 and that has a DW_AT_declaration attribute." */
6500 if (!pdi->has_byte_size && pdi->is_declaration)
6501 {
6502 xfree (built_actual_name);
6503 return;
6504 }
6505
6506 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6507 static vs. global. */
6508 add_psymbol_to_list (actual_name, strlen (actual_name),
6509 built_actual_name != NULL,
6510 STRUCT_DOMAIN, LOC_TYPEDEF,
6511 (cu->language == language_cplus
6512 || cu->language == language_java)
6513 ? &objfile->global_psymbols
6514 : &objfile->static_psymbols,
6515 0, (CORE_ADDR) 0, cu->language, objfile);
6516
6517 break;
6518 case DW_TAG_enumerator:
6519 add_psymbol_to_list (actual_name, strlen (actual_name),
6520 built_actual_name != NULL,
6521 VAR_DOMAIN, LOC_CONST,
6522 (cu->language == language_cplus
6523 || cu->language == language_java)
6524 ? &objfile->global_psymbols
6525 : &objfile->static_psymbols,
6526 0, (CORE_ADDR) 0, cu->language, objfile);
6527 break;
6528 default:
6529 break;
6530 }
6531
6532 xfree (built_actual_name);
6533 }
6534
6535 /* Read a partial die corresponding to a namespace; also, add a symbol
6536 corresponding to that namespace to the symbol table. NAMESPACE is
6537 the name of the enclosing namespace. */
6538
6539 static void
6540 add_partial_namespace (struct partial_die_info *pdi,
6541 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6542 int need_pc, struct dwarf2_cu *cu)
6543 {
6544 /* Add a symbol for the namespace. */
6545
6546 add_partial_symbol (pdi, cu);
6547
6548 /* Now scan partial symbols in that namespace. */
6549
6550 if (pdi->has_children)
6551 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6552 }
6553
6554 /* Read a partial die corresponding to a Fortran module. */
6555
6556 static void
6557 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6558 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6559 {
6560 /* Now scan partial symbols in that module. */
6561
6562 if (pdi->has_children)
6563 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6564 }
6565
6566 /* Read a partial die corresponding to a subprogram and create a partial
6567 symbol for that subprogram. When the CU language allows it, this
6568 routine also defines a partial symbol for each nested subprogram
6569 that this subprogram contains.
6570
6571 DIE my also be a lexical block, in which case we simply search
6572 recursively for suprograms defined inside that lexical block.
6573 Again, this is only performed when the CU language allows this
6574 type of definitions. */
6575
6576 static void
6577 add_partial_subprogram (struct partial_die_info *pdi,
6578 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6579 int need_pc, struct dwarf2_cu *cu)
6580 {
6581 if (pdi->tag == DW_TAG_subprogram)
6582 {
6583 if (pdi->has_pc_info)
6584 {
6585 if (pdi->lowpc < *lowpc)
6586 *lowpc = pdi->lowpc;
6587 if (pdi->highpc > *highpc)
6588 *highpc = pdi->highpc;
6589 if (need_pc)
6590 {
6591 CORE_ADDR baseaddr;
6592 struct objfile *objfile = cu->objfile;
6593
6594 baseaddr = ANOFFSET (objfile->section_offsets,
6595 SECT_OFF_TEXT (objfile));
6596 addrmap_set_empty (objfile->psymtabs_addrmap,
6597 pdi->lowpc + baseaddr,
6598 pdi->highpc - 1 + baseaddr,
6599 cu->per_cu->v.psymtab);
6600 }
6601 }
6602
6603 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6604 {
6605 if (!pdi->is_declaration)
6606 /* Ignore subprogram DIEs that do not have a name, they are
6607 illegal. Do not emit a complaint at this point, we will
6608 do so when we convert this psymtab into a symtab. */
6609 if (pdi->name)
6610 add_partial_symbol (pdi, cu);
6611 }
6612 }
6613
6614 if (! pdi->has_children)
6615 return;
6616
6617 if (cu->language == language_ada)
6618 {
6619 pdi = pdi->die_child;
6620 while (pdi != NULL)
6621 {
6622 fixup_partial_die (pdi, cu);
6623 if (pdi->tag == DW_TAG_subprogram
6624 || pdi->tag == DW_TAG_lexical_block)
6625 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6626 pdi = pdi->die_sibling;
6627 }
6628 }
6629 }
6630
6631 /* Read a partial die corresponding to an enumeration type. */
6632
6633 static void
6634 add_partial_enumeration (struct partial_die_info *enum_pdi,
6635 struct dwarf2_cu *cu)
6636 {
6637 struct partial_die_info *pdi;
6638
6639 if (enum_pdi->name != NULL)
6640 add_partial_symbol (enum_pdi, cu);
6641
6642 pdi = enum_pdi->die_child;
6643 while (pdi)
6644 {
6645 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6646 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6647 else
6648 add_partial_symbol (pdi, cu);
6649 pdi = pdi->die_sibling;
6650 }
6651 }
6652
6653 /* Return the initial uleb128 in the die at INFO_PTR. */
6654
6655 static unsigned int
6656 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6657 {
6658 unsigned int bytes_read;
6659
6660 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6661 }
6662
6663 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6664 Return the corresponding abbrev, or NULL if the number is zero (indicating
6665 an empty DIE). In either case *BYTES_READ will be set to the length of
6666 the initial number. */
6667
6668 static struct abbrev_info *
6669 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6670 struct dwarf2_cu *cu)
6671 {
6672 bfd *abfd = cu->objfile->obfd;
6673 unsigned int abbrev_number;
6674 struct abbrev_info *abbrev;
6675
6676 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6677
6678 if (abbrev_number == 0)
6679 return NULL;
6680
6681 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6682 if (!abbrev)
6683 {
6684 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6685 abbrev_number, bfd_get_filename (abfd));
6686 }
6687
6688 return abbrev;
6689 }
6690
6691 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6692 Returns a pointer to the end of a series of DIEs, terminated by an empty
6693 DIE. Any children of the skipped DIEs will also be skipped. */
6694
6695 static const gdb_byte *
6696 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6697 {
6698 struct dwarf2_cu *cu = reader->cu;
6699 struct abbrev_info *abbrev;
6700 unsigned int bytes_read;
6701
6702 while (1)
6703 {
6704 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6705 if (abbrev == NULL)
6706 return info_ptr + bytes_read;
6707 else
6708 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6709 }
6710 }
6711
6712 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6713 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6714 abbrev corresponding to that skipped uleb128 should be passed in
6715 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6716 children. */
6717
6718 static const gdb_byte *
6719 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6720 struct abbrev_info *abbrev)
6721 {
6722 unsigned int bytes_read;
6723 struct attribute attr;
6724 bfd *abfd = reader->abfd;
6725 struct dwarf2_cu *cu = reader->cu;
6726 const gdb_byte *buffer = reader->buffer;
6727 const gdb_byte *buffer_end = reader->buffer_end;
6728 const gdb_byte *start_info_ptr = info_ptr;
6729 unsigned int form, i;
6730
6731 for (i = 0; i < abbrev->num_attrs; i++)
6732 {
6733 /* The only abbrev we care about is DW_AT_sibling. */
6734 if (abbrev->attrs[i].name == DW_AT_sibling)
6735 {
6736 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6737 if (attr.form == DW_FORM_ref_addr)
6738 complaint (&symfile_complaints,
6739 _("ignoring absolute DW_AT_sibling"));
6740 else
6741 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6742 }
6743
6744 /* If it isn't DW_AT_sibling, skip this attribute. */
6745 form = abbrev->attrs[i].form;
6746 skip_attribute:
6747 switch (form)
6748 {
6749 case DW_FORM_ref_addr:
6750 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6751 and later it is offset sized. */
6752 if (cu->header.version == 2)
6753 info_ptr += cu->header.addr_size;
6754 else
6755 info_ptr += cu->header.offset_size;
6756 break;
6757 case DW_FORM_GNU_ref_alt:
6758 info_ptr += cu->header.offset_size;
6759 break;
6760 case DW_FORM_addr:
6761 info_ptr += cu->header.addr_size;
6762 break;
6763 case DW_FORM_data1:
6764 case DW_FORM_ref1:
6765 case DW_FORM_flag:
6766 info_ptr += 1;
6767 break;
6768 case DW_FORM_flag_present:
6769 break;
6770 case DW_FORM_data2:
6771 case DW_FORM_ref2:
6772 info_ptr += 2;
6773 break;
6774 case DW_FORM_data4:
6775 case DW_FORM_ref4:
6776 info_ptr += 4;
6777 break;
6778 case DW_FORM_data8:
6779 case DW_FORM_ref8:
6780 case DW_FORM_ref_sig8:
6781 info_ptr += 8;
6782 break;
6783 case DW_FORM_string:
6784 read_direct_string (abfd, info_ptr, &bytes_read);
6785 info_ptr += bytes_read;
6786 break;
6787 case DW_FORM_sec_offset:
6788 case DW_FORM_strp:
6789 case DW_FORM_GNU_strp_alt:
6790 info_ptr += cu->header.offset_size;
6791 break;
6792 case DW_FORM_exprloc:
6793 case DW_FORM_block:
6794 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6795 info_ptr += bytes_read;
6796 break;
6797 case DW_FORM_block1:
6798 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6799 break;
6800 case DW_FORM_block2:
6801 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6802 break;
6803 case DW_FORM_block4:
6804 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6805 break;
6806 case DW_FORM_sdata:
6807 case DW_FORM_udata:
6808 case DW_FORM_ref_udata:
6809 case DW_FORM_GNU_addr_index:
6810 case DW_FORM_GNU_str_index:
6811 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6812 break;
6813 case DW_FORM_indirect:
6814 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6815 info_ptr += bytes_read;
6816 /* We need to continue parsing from here, so just go back to
6817 the top. */
6818 goto skip_attribute;
6819
6820 default:
6821 error (_("Dwarf Error: Cannot handle %s "
6822 "in DWARF reader [in module %s]"),
6823 dwarf_form_name (form),
6824 bfd_get_filename (abfd));
6825 }
6826 }
6827
6828 if (abbrev->has_children)
6829 return skip_children (reader, info_ptr);
6830 else
6831 return info_ptr;
6832 }
6833
6834 /* Locate ORIG_PDI's sibling.
6835 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6836
6837 static const gdb_byte *
6838 locate_pdi_sibling (const struct die_reader_specs *reader,
6839 struct partial_die_info *orig_pdi,
6840 const gdb_byte *info_ptr)
6841 {
6842 /* Do we know the sibling already? */
6843
6844 if (orig_pdi->sibling)
6845 return orig_pdi->sibling;
6846
6847 /* Are there any children to deal with? */
6848
6849 if (!orig_pdi->has_children)
6850 return info_ptr;
6851
6852 /* Skip the children the long way. */
6853
6854 return skip_children (reader, info_ptr);
6855 }
6856
6857 /* Expand this partial symbol table into a full symbol table. SELF is
6858 not NULL. */
6859
6860 static void
6861 dwarf2_read_symtab (struct partial_symtab *self,
6862 struct objfile *objfile)
6863 {
6864 if (self->readin)
6865 {
6866 warning (_("bug: psymtab for %s is already read in."),
6867 self->filename);
6868 }
6869 else
6870 {
6871 if (info_verbose)
6872 {
6873 printf_filtered (_("Reading in symbols for %s..."),
6874 self->filename);
6875 gdb_flush (gdb_stdout);
6876 }
6877
6878 /* Restore our global data. */
6879 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6880
6881 /* If this psymtab is constructed from a debug-only objfile, the
6882 has_section_at_zero flag will not necessarily be correct. We
6883 can get the correct value for this flag by looking at the data
6884 associated with the (presumably stripped) associated objfile. */
6885 if (objfile->separate_debug_objfile_backlink)
6886 {
6887 struct dwarf2_per_objfile *dpo_backlink
6888 = objfile_data (objfile->separate_debug_objfile_backlink,
6889 dwarf2_objfile_data_key);
6890
6891 dwarf2_per_objfile->has_section_at_zero
6892 = dpo_backlink->has_section_at_zero;
6893 }
6894
6895 dwarf2_per_objfile->reading_partial_symbols = 0;
6896
6897 psymtab_to_symtab_1 (self);
6898
6899 /* Finish up the debug error message. */
6900 if (info_verbose)
6901 printf_filtered (_("done.\n"));
6902 }
6903
6904 process_cu_includes ();
6905 }
6906 \f
6907 /* Reading in full CUs. */
6908
6909 /* Add PER_CU to the queue. */
6910
6911 static void
6912 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6913 enum language pretend_language)
6914 {
6915 struct dwarf2_queue_item *item;
6916
6917 per_cu->queued = 1;
6918 item = xmalloc (sizeof (*item));
6919 item->per_cu = per_cu;
6920 item->pretend_language = pretend_language;
6921 item->next = NULL;
6922
6923 if (dwarf2_queue == NULL)
6924 dwarf2_queue = item;
6925 else
6926 dwarf2_queue_tail->next = item;
6927
6928 dwarf2_queue_tail = item;
6929 }
6930
6931 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6932 unit and add it to our queue.
6933 The result is non-zero if PER_CU was queued, otherwise the result is zero
6934 meaning either PER_CU is already queued or it is already loaded. */
6935
6936 static int
6937 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6938 struct dwarf2_per_cu_data *per_cu,
6939 enum language pretend_language)
6940 {
6941 /* We may arrive here during partial symbol reading, if we need full
6942 DIEs to process an unusual case (e.g. template arguments). Do
6943 not queue PER_CU, just tell our caller to load its DIEs. */
6944 if (dwarf2_per_objfile->reading_partial_symbols)
6945 {
6946 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6947 return 1;
6948 return 0;
6949 }
6950
6951 /* Mark the dependence relation so that we don't flush PER_CU
6952 too early. */
6953 dwarf2_add_dependence (this_cu, per_cu);
6954
6955 /* If it's already on the queue, we have nothing to do. */
6956 if (per_cu->queued)
6957 return 0;
6958
6959 /* If the compilation unit is already loaded, just mark it as
6960 used. */
6961 if (per_cu->cu != NULL)
6962 {
6963 per_cu->cu->last_used = 0;
6964 return 0;
6965 }
6966
6967 /* Add it to the queue. */
6968 queue_comp_unit (per_cu, pretend_language);
6969
6970 return 1;
6971 }
6972
6973 /* Process the queue. */
6974
6975 static void
6976 process_queue (void)
6977 {
6978 struct dwarf2_queue_item *item, *next_item;
6979
6980 if (dwarf2_read_debug)
6981 {
6982 fprintf_unfiltered (gdb_stdlog,
6983 "Expanding one or more symtabs of objfile %s ...\n",
6984 dwarf2_per_objfile->objfile->name);
6985 }
6986
6987 /* The queue starts out with one item, but following a DIE reference
6988 may load a new CU, adding it to the end of the queue. */
6989 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6990 {
6991 if (dwarf2_per_objfile->using_index
6992 ? !item->per_cu->v.quick->symtab
6993 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6994 {
6995 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6996 char buf[100];
6997
6998 if (per_cu->is_debug_types)
6999 {
7000 struct signatured_type *sig_type =
7001 (struct signatured_type *) per_cu;
7002
7003 sprintf (buf, "TU %s at offset 0x%x",
7004 hex_string (sig_type->signature), per_cu->offset.sect_off);
7005 }
7006 else
7007 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7008
7009 if (dwarf2_read_debug)
7010 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7011
7012 if (per_cu->is_debug_types)
7013 process_full_type_unit (per_cu, item->pretend_language);
7014 else
7015 process_full_comp_unit (per_cu, item->pretend_language);
7016
7017 if (dwarf2_read_debug)
7018 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7019 }
7020
7021 item->per_cu->queued = 0;
7022 next_item = item->next;
7023 xfree (item);
7024 }
7025
7026 dwarf2_queue_tail = NULL;
7027
7028 if (dwarf2_read_debug)
7029 {
7030 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7031 dwarf2_per_objfile->objfile->name);
7032 }
7033 }
7034
7035 /* Free all allocated queue entries. This function only releases anything if
7036 an error was thrown; if the queue was processed then it would have been
7037 freed as we went along. */
7038
7039 static void
7040 dwarf2_release_queue (void *dummy)
7041 {
7042 struct dwarf2_queue_item *item, *last;
7043
7044 item = dwarf2_queue;
7045 while (item)
7046 {
7047 /* Anything still marked queued is likely to be in an
7048 inconsistent state, so discard it. */
7049 if (item->per_cu->queued)
7050 {
7051 if (item->per_cu->cu != NULL)
7052 free_one_cached_comp_unit (item->per_cu);
7053 item->per_cu->queued = 0;
7054 }
7055
7056 last = item;
7057 item = item->next;
7058 xfree (last);
7059 }
7060
7061 dwarf2_queue = dwarf2_queue_tail = NULL;
7062 }
7063
7064 /* Read in full symbols for PST, and anything it depends on. */
7065
7066 static void
7067 psymtab_to_symtab_1 (struct partial_symtab *pst)
7068 {
7069 struct dwarf2_per_cu_data *per_cu;
7070 int i;
7071
7072 if (pst->readin)
7073 return;
7074
7075 for (i = 0; i < pst->number_of_dependencies; i++)
7076 if (!pst->dependencies[i]->readin
7077 && pst->dependencies[i]->user == NULL)
7078 {
7079 /* Inform about additional files that need to be read in. */
7080 if (info_verbose)
7081 {
7082 /* FIXME: i18n: Need to make this a single string. */
7083 fputs_filtered (" ", gdb_stdout);
7084 wrap_here ("");
7085 fputs_filtered ("and ", gdb_stdout);
7086 wrap_here ("");
7087 printf_filtered ("%s...", pst->dependencies[i]->filename);
7088 wrap_here (""); /* Flush output. */
7089 gdb_flush (gdb_stdout);
7090 }
7091 psymtab_to_symtab_1 (pst->dependencies[i]);
7092 }
7093
7094 per_cu = pst->read_symtab_private;
7095
7096 if (per_cu == NULL)
7097 {
7098 /* It's an include file, no symbols to read for it.
7099 Everything is in the parent symtab. */
7100 pst->readin = 1;
7101 return;
7102 }
7103
7104 dw2_do_instantiate_symtab (per_cu);
7105 }
7106
7107 /* Trivial hash function for die_info: the hash value of a DIE
7108 is its offset in .debug_info for this objfile. */
7109
7110 static hashval_t
7111 die_hash (const void *item)
7112 {
7113 const struct die_info *die = item;
7114
7115 return die->offset.sect_off;
7116 }
7117
7118 /* Trivial comparison function for die_info structures: two DIEs
7119 are equal if they have the same offset. */
7120
7121 static int
7122 die_eq (const void *item_lhs, const void *item_rhs)
7123 {
7124 const struct die_info *die_lhs = item_lhs;
7125 const struct die_info *die_rhs = item_rhs;
7126
7127 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7128 }
7129
7130 /* die_reader_func for load_full_comp_unit.
7131 This is identical to read_signatured_type_reader,
7132 but is kept separate for now. */
7133
7134 static void
7135 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7136 const gdb_byte *info_ptr,
7137 struct die_info *comp_unit_die,
7138 int has_children,
7139 void *data)
7140 {
7141 struct dwarf2_cu *cu = reader->cu;
7142 enum language *language_ptr = data;
7143
7144 gdb_assert (cu->die_hash == NULL);
7145 cu->die_hash =
7146 htab_create_alloc_ex (cu->header.length / 12,
7147 die_hash,
7148 die_eq,
7149 NULL,
7150 &cu->comp_unit_obstack,
7151 hashtab_obstack_allocate,
7152 dummy_obstack_deallocate);
7153
7154 if (has_children)
7155 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7156 &info_ptr, comp_unit_die);
7157 cu->dies = comp_unit_die;
7158 /* comp_unit_die is not stored in die_hash, no need. */
7159
7160 /* We try not to read any attributes in this function, because not
7161 all CUs needed for references have been loaded yet, and symbol
7162 table processing isn't initialized. But we have to set the CU language,
7163 or we won't be able to build types correctly.
7164 Similarly, if we do not read the producer, we can not apply
7165 producer-specific interpretation. */
7166 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7167 }
7168
7169 /* Load the DIEs associated with PER_CU into memory. */
7170
7171 static void
7172 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7173 enum language pretend_language)
7174 {
7175 gdb_assert (! this_cu->is_debug_types);
7176
7177 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7178 load_full_comp_unit_reader, &pretend_language);
7179 }
7180
7181 /* Add a DIE to the delayed physname list. */
7182
7183 static void
7184 add_to_method_list (struct type *type, int fnfield_index, int index,
7185 const char *name, struct die_info *die,
7186 struct dwarf2_cu *cu)
7187 {
7188 struct delayed_method_info mi;
7189 mi.type = type;
7190 mi.fnfield_index = fnfield_index;
7191 mi.index = index;
7192 mi.name = name;
7193 mi.die = die;
7194 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7195 }
7196
7197 /* A cleanup for freeing the delayed method list. */
7198
7199 static void
7200 free_delayed_list (void *ptr)
7201 {
7202 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7203 if (cu->method_list != NULL)
7204 {
7205 VEC_free (delayed_method_info, cu->method_list);
7206 cu->method_list = NULL;
7207 }
7208 }
7209
7210 /* Compute the physnames of any methods on the CU's method list.
7211
7212 The computation of method physnames is delayed in order to avoid the
7213 (bad) condition that one of the method's formal parameters is of an as yet
7214 incomplete type. */
7215
7216 static void
7217 compute_delayed_physnames (struct dwarf2_cu *cu)
7218 {
7219 int i;
7220 struct delayed_method_info *mi;
7221 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7222 {
7223 const char *physname;
7224 struct fn_fieldlist *fn_flp
7225 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7226 physname = dwarf2_physname (mi->name, mi->die, cu);
7227 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7228 }
7229 }
7230
7231 /* Go objects should be embedded in a DW_TAG_module DIE,
7232 and it's not clear if/how imported objects will appear.
7233 To keep Go support simple until that's worked out,
7234 go back through what we've read and create something usable.
7235 We could do this while processing each DIE, and feels kinda cleaner,
7236 but that way is more invasive.
7237 This is to, for example, allow the user to type "p var" or "b main"
7238 without having to specify the package name, and allow lookups
7239 of module.object to work in contexts that use the expression
7240 parser. */
7241
7242 static void
7243 fixup_go_packaging (struct dwarf2_cu *cu)
7244 {
7245 char *package_name = NULL;
7246 struct pending *list;
7247 int i;
7248
7249 for (list = global_symbols; list != NULL; list = list->next)
7250 {
7251 for (i = 0; i < list->nsyms; ++i)
7252 {
7253 struct symbol *sym = list->symbol[i];
7254
7255 if (SYMBOL_LANGUAGE (sym) == language_go
7256 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7257 {
7258 char *this_package_name = go_symbol_package_name (sym);
7259
7260 if (this_package_name == NULL)
7261 continue;
7262 if (package_name == NULL)
7263 package_name = this_package_name;
7264 else
7265 {
7266 if (strcmp (package_name, this_package_name) != 0)
7267 complaint (&symfile_complaints,
7268 _("Symtab %s has objects from two different Go packages: %s and %s"),
7269 (SYMBOL_SYMTAB (sym)
7270 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7271 : cu->objfile->name),
7272 this_package_name, package_name);
7273 xfree (this_package_name);
7274 }
7275 }
7276 }
7277 }
7278
7279 if (package_name != NULL)
7280 {
7281 struct objfile *objfile = cu->objfile;
7282 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7283 package_name,
7284 strlen (package_name));
7285 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7286 saved_package_name, objfile);
7287 struct symbol *sym;
7288
7289 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7290
7291 sym = allocate_symbol (objfile);
7292 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7293 SYMBOL_SET_NAMES (sym, saved_package_name,
7294 strlen (saved_package_name), 0, objfile);
7295 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7296 e.g., "main" finds the "main" module and not C's main(). */
7297 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7298 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7299 SYMBOL_TYPE (sym) = type;
7300
7301 add_symbol_to_list (sym, &global_symbols);
7302
7303 xfree (package_name);
7304 }
7305 }
7306
7307 /* Return the symtab for PER_CU. This works properly regardless of
7308 whether we're using the index or psymtabs. */
7309
7310 static struct symtab *
7311 get_symtab (struct dwarf2_per_cu_data *per_cu)
7312 {
7313 return (dwarf2_per_objfile->using_index
7314 ? per_cu->v.quick->symtab
7315 : per_cu->v.psymtab->symtab);
7316 }
7317
7318 /* A helper function for computing the list of all symbol tables
7319 included by PER_CU. */
7320
7321 static void
7322 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7323 htab_t all_children, htab_t all_type_symtabs,
7324 struct dwarf2_per_cu_data *per_cu,
7325 struct symtab *immediate_parent)
7326 {
7327 void **slot;
7328 int ix;
7329 struct symtab *symtab;
7330 struct dwarf2_per_cu_data *iter;
7331
7332 slot = htab_find_slot (all_children, per_cu, INSERT);
7333 if (*slot != NULL)
7334 {
7335 /* This inclusion and its children have been processed. */
7336 return;
7337 }
7338
7339 *slot = per_cu;
7340 /* Only add a CU if it has a symbol table. */
7341 symtab = get_symtab (per_cu);
7342 if (symtab != NULL)
7343 {
7344 /* If this is a type unit only add its symbol table if we haven't
7345 seen it yet (type unit per_cu's can share symtabs). */
7346 if (per_cu->is_debug_types)
7347 {
7348 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7349 if (*slot == NULL)
7350 {
7351 *slot = symtab;
7352 VEC_safe_push (symtab_ptr, *result, symtab);
7353 if (symtab->user == NULL)
7354 symtab->user = immediate_parent;
7355 }
7356 }
7357 else
7358 {
7359 VEC_safe_push (symtab_ptr, *result, symtab);
7360 if (symtab->user == NULL)
7361 symtab->user = immediate_parent;
7362 }
7363 }
7364
7365 for (ix = 0;
7366 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7367 ++ix)
7368 {
7369 recursively_compute_inclusions (result, all_children,
7370 all_type_symtabs, iter, symtab);
7371 }
7372 }
7373
7374 /* Compute the symtab 'includes' fields for the symtab related to
7375 PER_CU. */
7376
7377 static void
7378 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7379 {
7380 gdb_assert (! per_cu->is_debug_types);
7381
7382 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7383 {
7384 int ix, len;
7385 struct dwarf2_per_cu_data *per_cu_iter;
7386 struct symtab *symtab_iter;
7387 VEC (symtab_ptr) *result_symtabs = NULL;
7388 htab_t all_children, all_type_symtabs;
7389 struct symtab *symtab = get_symtab (per_cu);
7390
7391 /* If we don't have a symtab, we can just skip this case. */
7392 if (symtab == NULL)
7393 return;
7394
7395 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7396 NULL, xcalloc, xfree);
7397 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7398 NULL, xcalloc, xfree);
7399
7400 for (ix = 0;
7401 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7402 ix, per_cu_iter);
7403 ++ix)
7404 {
7405 recursively_compute_inclusions (&result_symtabs, all_children,
7406 all_type_symtabs, per_cu_iter,
7407 symtab);
7408 }
7409
7410 /* Now we have a transitive closure of all the included symtabs. */
7411 len = VEC_length (symtab_ptr, result_symtabs);
7412 symtab->includes
7413 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7414 (len + 1) * sizeof (struct symtab *));
7415 for (ix = 0;
7416 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7417 ++ix)
7418 symtab->includes[ix] = symtab_iter;
7419 symtab->includes[len] = NULL;
7420
7421 VEC_free (symtab_ptr, result_symtabs);
7422 htab_delete (all_children);
7423 htab_delete (all_type_symtabs);
7424 }
7425 }
7426
7427 /* Compute the 'includes' field for the symtabs of all the CUs we just
7428 read. */
7429
7430 static void
7431 process_cu_includes (void)
7432 {
7433 int ix;
7434 struct dwarf2_per_cu_data *iter;
7435
7436 for (ix = 0;
7437 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7438 ix, iter);
7439 ++ix)
7440 {
7441 if (! iter->is_debug_types)
7442 compute_symtab_includes (iter);
7443 }
7444
7445 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7446 }
7447
7448 /* Generate full symbol information for PER_CU, whose DIEs have
7449 already been loaded into memory. */
7450
7451 static void
7452 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7453 enum language pretend_language)
7454 {
7455 struct dwarf2_cu *cu = per_cu->cu;
7456 struct objfile *objfile = per_cu->objfile;
7457 CORE_ADDR lowpc, highpc;
7458 struct symtab *symtab;
7459 struct cleanup *back_to, *delayed_list_cleanup;
7460 CORE_ADDR baseaddr;
7461 struct block *static_block;
7462
7463 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7464
7465 buildsym_init ();
7466 back_to = make_cleanup (really_free_pendings, NULL);
7467 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7468
7469 cu->list_in_scope = &file_symbols;
7470
7471 cu->language = pretend_language;
7472 cu->language_defn = language_def (cu->language);
7473
7474 /* Do line number decoding in read_file_scope () */
7475 process_die (cu->dies, cu);
7476
7477 /* For now fudge the Go package. */
7478 if (cu->language == language_go)
7479 fixup_go_packaging (cu);
7480
7481 /* Now that we have processed all the DIEs in the CU, all the types
7482 should be complete, and it should now be safe to compute all of the
7483 physnames. */
7484 compute_delayed_physnames (cu);
7485 do_cleanups (delayed_list_cleanup);
7486
7487 /* Some compilers don't define a DW_AT_high_pc attribute for the
7488 compilation unit. If the DW_AT_high_pc is missing, synthesize
7489 it, by scanning the DIE's below the compilation unit. */
7490 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7491
7492 static_block
7493 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7494
7495 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7496 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7497 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7498 addrmap to help ensure it has an accurate map of pc values belonging to
7499 this comp unit. */
7500 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7501
7502 symtab = end_symtab_from_static_block (static_block, objfile,
7503 SECT_OFF_TEXT (objfile), 0);
7504
7505 if (symtab != NULL)
7506 {
7507 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7508
7509 /* Set symtab language to language from DW_AT_language. If the
7510 compilation is from a C file generated by language preprocessors, do
7511 not set the language if it was already deduced by start_subfile. */
7512 if (!(cu->language == language_c && symtab->language != language_c))
7513 symtab->language = cu->language;
7514
7515 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7516 produce DW_AT_location with location lists but it can be possibly
7517 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7518 there were bugs in prologue debug info, fixed later in GCC-4.5
7519 by "unwind info for epilogues" patch (which is not directly related).
7520
7521 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7522 needed, it would be wrong due to missing DW_AT_producer there.
7523
7524 Still one can confuse GDB by using non-standard GCC compilation
7525 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7526 */
7527 if (cu->has_loclist && gcc_4_minor >= 5)
7528 symtab->locations_valid = 1;
7529
7530 if (gcc_4_minor >= 5)
7531 symtab->epilogue_unwind_valid = 1;
7532
7533 symtab->call_site_htab = cu->call_site_htab;
7534 }
7535
7536 if (dwarf2_per_objfile->using_index)
7537 per_cu->v.quick->symtab = symtab;
7538 else
7539 {
7540 struct partial_symtab *pst = per_cu->v.psymtab;
7541 pst->symtab = symtab;
7542 pst->readin = 1;
7543 }
7544
7545 /* Push it for inclusion processing later. */
7546 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7547
7548 do_cleanups (back_to);
7549 }
7550
7551 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7552 already been loaded into memory. */
7553
7554 static void
7555 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7556 enum language pretend_language)
7557 {
7558 struct dwarf2_cu *cu = per_cu->cu;
7559 struct objfile *objfile = per_cu->objfile;
7560 struct symtab *symtab;
7561 struct cleanup *back_to, *delayed_list_cleanup;
7562 struct signatured_type *sig_type;
7563
7564 gdb_assert (per_cu->is_debug_types);
7565 sig_type = (struct signatured_type *) per_cu;
7566
7567 buildsym_init ();
7568 back_to = make_cleanup (really_free_pendings, NULL);
7569 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7570
7571 cu->list_in_scope = &file_symbols;
7572
7573 cu->language = pretend_language;
7574 cu->language_defn = language_def (cu->language);
7575
7576 /* The symbol tables are set up in read_type_unit_scope. */
7577 process_die (cu->dies, cu);
7578
7579 /* For now fudge the Go package. */
7580 if (cu->language == language_go)
7581 fixup_go_packaging (cu);
7582
7583 /* Now that we have processed all the DIEs in the CU, all the types
7584 should be complete, and it should now be safe to compute all of the
7585 physnames. */
7586 compute_delayed_physnames (cu);
7587 do_cleanups (delayed_list_cleanup);
7588
7589 /* TUs share symbol tables.
7590 If this is the first TU to use this symtab, complete the construction
7591 of it with end_expandable_symtab. Otherwise, complete the addition of
7592 this TU's symbols to the existing symtab. */
7593 if (sig_type->type_unit_group->primary_symtab == NULL)
7594 {
7595 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7596 sig_type->type_unit_group->primary_symtab = symtab;
7597
7598 if (symtab != NULL)
7599 {
7600 /* Set symtab language to language from DW_AT_language. If the
7601 compilation is from a C file generated by language preprocessors,
7602 do not set the language if it was already deduced by
7603 start_subfile. */
7604 if (!(cu->language == language_c && symtab->language != language_c))
7605 symtab->language = cu->language;
7606 }
7607 }
7608 else
7609 {
7610 augment_type_symtab (objfile,
7611 sig_type->type_unit_group->primary_symtab);
7612 symtab = sig_type->type_unit_group->primary_symtab;
7613 }
7614
7615 if (dwarf2_per_objfile->using_index)
7616 per_cu->v.quick->symtab = symtab;
7617 else
7618 {
7619 struct partial_symtab *pst = per_cu->v.psymtab;
7620 pst->symtab = symtab;
7621 pst->readin = 1;
7622 }
7623
7624 do_cleanups (back_to);
7625 }
7626
7627 /* Process an imported unit DIE. */
7628
7629 static void
7630 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7631 {
7632 struct attribute *attr;
7633
7634 /* For now we don't handle imported units in type units. */
7635 if (cu->per_cu->is_debug_types)
7636 {
7637 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7638 " supported in type units [in module %s]"),
7639 cu->objfile->name);
7640 }
7641
7642 attr = dwarf2_attr (die, DW_AT_import, cu);
7643 if (attr != NULL)
7644 {
7645 struct dwarf2_per_cu_data *per_cu;
7646 struct symtab *imported_symtab;
7647 sect_offset offset;
7648 int is_dwz;
7649
7650 offset = dwarf2_get_ref_die_offset (attr);
7651 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7652 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7653
7654 /* Queue the unit, if needed. */
7655 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7656 load_full_comp_unit (per_cu, cu->language);
7657
7658 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7659 per_cu);
7660 }
7661 }
7662
7663 /* Process a die and its children. */
7664
7665 static void
7666 process_die (struct die_info *die, struct dwarf2_cu *cu)
7667 {
7668 switch (die->tag)
7669 {
7670 case DW_TAG_padding:
7671 break;
7672 case DW_TAG_compile_unit:
7673 case DW_TAG_partial_unit:
7674 read_file_scope (die, cu);
7675 break;
7676 case DW_TAG_type_unit:
7677 read_type_unit_scope (die, cu);
7678 break;
7679 case DW_TAG_subprogram:
7680 case DW_TAG_inlined_subroutine:
7681 read_func_scope (die, cu);
7682 break;
7683 case DW_TAG_lexical_block:
7684 case DW_TAG_try_block:
7685 case DW_TAG_catch_block:
7686 read_lexical_block_scope (die, cu);
7687 break;
7688 case DW_TAG_GNU_call_site:
7689 read_call_site_scope (die, cu);
7690 break;
7691 case DW_TAG_class_type:
7692 case DW_TAG_interface_type:
7693 case DW_TAG_structure_type:
7694 case DW_TAG_union_type:
7695 process_structure_scope (die, cu);
7696 break;
7697 case DW_TAG_enumeration_type:
7698 process_enumeration_scope (die, cu);
7699 break;
7700
7701 /* These dies have a type, but processing them does not create
7702 a symbol or recurse to process the children. Therefore we can
7703 read them on-demand through read_type_die. */
7704 case DW_TAG_subroutine_type:
7705 case DW_TAG_set_type:
7706 case DW_TAG_array_type:
7707 case DW_TAG_pointer_type:
7708 case DW_TAG_ptr_to_member_type:
7709 case DW_TAG_reference_type:
7710 case DW_TAG_string_type:
7711 break;
7712
7713 case DW_TAG_base_type:
7714 case DW_TAG_subrange_type:
7715 case DW_TAG_typedef:
7716 /* Add a typedef symbol for the type definition, if it has a
7717 DW_AT_name. */
7718 new_symbol (die, read_type_die (die, cu), cu);
7719 break;
7720 case DW_TAG_common_block:
7721 read_common_block (die, cu);
7722 break;
7723 case DW_TAG_common_inclusion:
7724 break;
7725 case DW_TAG_namespace:
7726 cu->processing_has_namespace_info = 1;
7727 read_namespace (die, cu);
7728 break;
7729 case DW_TAG_module:
7730 cu->processing_has_namespace_info = 1;
7731 read_module (die, cu);
7732 break;
7733 case DW_TAG_imported_declaration:
7734 case DW_TAG_imported_module:
7735 cu->processing_has_namespace_info = 1;
7736 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7737 || cu->language != language_fortran))
7738 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7739 dwarf_tag_name (die->tag));
7740 read_import_statement (die, cu);
7741 break;
7742
7743 case DW_TAG_imported_unit:
7744 process_imported_unit_die (die, cu);
7745 break;
7746
7747 default:
7748 new_symbol (die, NULL, cu);
7749 break;
7750 }
7751 }
7752 \f
7753 /* DWARF name computation. */
7754
7755 /* A helper function for dwarf2_compute_name which determines whether DIE
7756 needs to have the name of the scope prepended to the name listed in the
7757 die. */
7758
7759 static int
7760 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7761 {
7762 struct attribute *attr;
7763
7764 switch (die->tag)
7765 {
7766 case DW_TAG_namespace:
7767 case DW_TAG_typedef:
7768 case DW_TAG_class_type:
7769 case DW_TAG_interface_type:
7770 case DW_TAG_structure_type:
7771 case DW_TAG_union_type:
7772 case DW_TAG_enumeration_type:
7773 case DW_TAG_enumerator:
7774 case DW_TAG_subprogram:
7775 case DW_TAG_member:
7776 return 1;
7777
7778 case DW_TAG_variable:
7779 case DW_TAG_constant:
7780 /* We only need to prefix "globally" visible variables. These include
7781 any variable marked with DW_AT_external or any variable that
7782 lives in a namespace. [Variables in anonymous namespaces
7783 require prefixing, but they are not DW_AT_external.] */
7784
7785 if (dwarf2_attr (die, DW_AT_specification, cu))
7786 {
7787 struct dwarf2_cu *spec_cu = cu;
7788
7789 return die_needs_namespace (die_specification (die, &spec_cu),
7790 spec_cu);
7791 }
7792
7793 attr = dwarf2_attr (die, DW_AT_external, cu);
7794 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7795 && die->parent->tag != DW_TAG_module)
7796 return 0;
7797 /* A variable in a lexical block of some kind does not need a
7798 namespace, even though in C++ such variables may be external
7799 and have a mangled name. */
7800 if (die->parent->tag == DW_TAG_lexical_block
7801 || die->parent->tag == DW_TAG_try_block
7802 || die->parent->tag == DW_TAG_catch_block
7803 || die->parent->tag == DW_TAG_subprogram)
7804 return 0;
7805 return 1;
7806
7807 default:
7808 return 0;
7809 }
7810 }
7811
7812 /* Retrieve the last character from a mem_file. */
7813
7814 static void
7815 do_ui_file_peek_last (void *object, const char *buffer, long length)
7816 {
7817 char *last_char_p = (char *) object;
7818
7819 if (length > 0)
7820 *last_char_p = buffer[length - 1];
7821 }
7822
7823 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7824 compute the physname for the object, which include a method's:
7825 - formal parameters (C++/Java),
7826 - receiver type (Go),
7827 - return type (Java).
7828
7829 The term "physname" is a bit confusing.
7830 For C++, for example, it is the demangled name.
7831 For Go, for example, it's the mangled name.
7832
7833 For Ada, return the DIE's linkage name rather than the fully qualified
7834 name. PHYSNAME is ignored..
7835
7836 The result is allocated on the objfile_obstack and canonicalized. */
7837
7838 static const char *
7839 dwarf2_compute_name (const char *name,
7840 struct die_info *die, struct dwarf2_cu *cu,
7841 int physname)
7842 {
7843 struct objfile *objfile = cu->objfile;
7844
7845 if (name == NULL)
7846 name = dwarf2_name (die, cu);
7847
7848 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7849 compute it by typename_concat inside GDB. */
7850 if (cu->language == language_ada
7851 || (cu->language == language_fortran && physname))
7852 {
7853 /* For Ada unit, we prefer the linkage name over the name, as
7854 the former contains the exported name, which the user expects
7855 to be able to reference. Ideally, we want the user to be able
7856 to reference this entity using either natural or linkage name,
7857 but we haven't started looking at this enhancement yet. */
7858 struct attribute *attr;
7859
7860 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7861 if (attr == NULL)
7862 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7863 if (attr && DW_STRING (attr))
7864 return DW_STRING (attr);
7865 }
7866
7867 /* These are the only languages we know how to qualify names in. */
7868 if (name != NULL
7869 && (cu->language == language_cplus || cu->language == language_java
7870 || cu->language == language_fortran))
7871 {
7872 if (die_needs_namespace (die, cu))
7873 {
7874 long length;
7875 const char *prefix;
7876 struct ui_file *buf;
7877
7878 prefix = determine_prefix (die, cu);
7879 buf = mem_fileopen ();
7880 if (*prefix != '\0')
7881 {
7882 char *prefixed_name = typename_concat (NULL, prefix, name,
7883 physname, cu);
7884
7885 fputs_unfiltered (prefixed_name, buf);
7886 xfree (prefixed_name);
7887 }
7888 else
7889 fputs_unfiltered (name, buf);
7890
7891 /* Template parameters may be specified in the DIE's DW_AT_name, or
7892 as children with DW_TAG_template_type_param or
7893 DW_TAG_value_type_param. If the latter, add them to the name
7894 here. If the name already has template parameters, then
7895 skip this step; some versions of GCC emit both, and
7896 it is more efficient to use the pre-computed name.
7897
7898 Something to keep in mind about this process: it is very
7899 unlikely, or in some cases downright impossible, to produce
7900 something that will match the mangled name of a function.
7901 If the definition of the function has the same debug info,
7902 we should be able to match up with it anyway. But fallbacks
7903 using the minimal symbol, for instance to find a method
7904 implemented in a stripped copy of libstdc++, will not work.
7905 If we do not have debug info for the definition, we will have to
7906 match them up some other way.
7907
7908 When we do name matching there is a related problem with function
7909 templates; two instantiated function templates are allowed to
7910 differ only by their return types, which we do not add here. */
7911
7912 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7913 {
7914 struct attribute *attr;
7915 struct die_info *child;
7916 int first = 1;
7917
7918 die->building_fullname = 1;
7919
7920 for (child = die->child; child != NULL; child = child->sibling)
7921 {
7922 struct type *type;
7923 LONGEST value;
7924 const gdb_byte *bytes;
7925 struct dwarf2_locexpr_baton *baton;
7926 struct value *v;
7927
7928 if (child->tag != DW_TAG_template_type_param
7929 && child->tag != DW_TAG_template_value_param)
7930 continue;
7931
7932 if (first)
7933 {
7934 fputs_unfiltered ("<", buf);
7935 first = 0;
7936 }
7937 else
7938 fputs_unfiltered (", ", buf);
7939
7940 attr = dwarf2_attr (child, DW_AT_type, cu);
7941 if (attr == NULL)
7942 {
7943 complaint (&symfile_complaints,
7944 _("template parameter missing DW_AT_type"));
7945 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7946 continue;
7947 }
7948 type = die_type (child, cu);
7949
7950 if (child->tag == DW_TAG_template_type_param)
7951 {
7952 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7953 continue;
7954 }
7955
7956 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7957 if (attr == NULL)
7958 {
7959 complaint (&symfile_complaints,
7960 _("template parameter missing "
7961 "DW_AT_const_value"));
7962 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7963 continue;
7964 }
7965
7966 dwarf2_const_value_attr (attr, type, name,
7967 &cu->comp_unit_obstack, cu,
7968 &value, &bytes, &baton);
7969
7970 if (TYPE_NOSIGN (type))
7971 /* GDB prints characters as NUMBER 'CHAR'. If that's
7972 changed, this can use value_print instead. */
7973 c_printchar (value, type, buf);
7974 else
7975 {
7976 struct value_print_options opts;
7977
7978 if (baton != NULL)
7979 v = dwarf2_evaluate_loc_desc (type, NULL,
7980 baton->data,
7981 baton->size,
7982 baton->per_cu);
7983 else if (bytes != NULL)
7984 {
7985 v = allocate_value (type);
7986 memcpy (value_contents_writeable (v), bytes,
7987 TYPE_LENGTH (type));
7988 }
7989 else
7990 v = value_from_longest (type, value);
7991
7992 /* Specify decimal so that we do not depend on
7993 the radix. */
7994 get_formatted_print_options (&opts, 'd');
7995 opts.raw = 1;
7996 value_print (v, buf, &opts);
7997 release_value (v);
7998 value_free (v);
7999 }
8000 }
8001
8002 die->building_fullname = 0;
8003
8004 if (!first)
8005 {
8006 /* Close the argument list, with a space if necessary
8007 (nested templates). */
8008 char last_char = '\0';
8009 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8010 if (last_char == '>')
8011 fputs_unfiltered (" >", buf);
8012 else
8013 fputs_unfiltered (">", buf);
8014 }
8015 }
8016
8017 /* For Java and C++ methods, append formal parameter type
8018 information, if PHYSNAME. */
8019
8020 if (physname && die->tag == DW_TAG_subprogram
8021 && (cu->language == language_cplus
8022 || cu->language == language_java))
8023 {
8024 struct type *type = read_type_die (die, cu);
8025
8026 c_type_print_args (type, buf, 1, cu->language,
8027 &type_print_raw_options);
8028
8029 if (cu->language == language_java)
8030 {
8031 /* For java, we must append the return type to method
8032 names. */
8033 if (die->tag == DW_TAG_subprogram)
8034 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8035 0, 0, &type_print_raw_options);
8036 }
8037 else if (cu->language == language_cplus)
8038 {
8039 /* Assume that an artificial first parameter is
8040 "this", but do not crash if it is not. RealView
8041 marks unnamed (and thus unused) parameters as
8042 artificial; there is no way to differentiate
8043 the two cases. */
8044 if (TYPE_NFIELDS (type) > 0
8045 && TYPE_FIELD_ARTIFICIAL (type, 0)
8046 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8047 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8048 0))))
8049 fputs_unfiltered (" const", buf);
8050 }
8051 }
8052
8053 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8054 &length);
8055 ui_file_delete (buf);
8056
8057 if (cu->language == language_cplus)
8058 {
8059 const char *cname
8060 = dwarf2_canonicalize_name (name, cu,
8061 &objfile->objfile_obstack);
8062
8063 if (cname != NULL)
8064 name = cname;
8065 }
8066 }
8067 }
8068
8069 return name;
8070 }
8071
8072 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8073 If scope qualifiers are appropriate they will be added. The result
8074 will be allocated on the objfile_obstack, or NULL if the DIE does
8075 not have a name. NAME may either be from a previous call to
8076 dwarf2_name or NULL.
8077
8078 The output string will be canonicalized (if C++/Java). */
8079
8080 static const char *
8081 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8082 {
8083 return dwarf2_compute_name (name, die, cu, 0);
8084 }
8085
8086 /* Construct a physname for the given DIE in CU. NAME may either be
8087 from a previous call to dwarf2_name or NULL. The result will be
8088 allocated on the objfile_objstack or NULL if the DIE does not have a
8089 name.
8090
8091 The output string will be canonicalized (if C++/Java). */
8092
8093 static const char *
8094 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8095 {
8096 struct objfile *objfile = cu->objfile;
8097 struct attribute *attr;
8098 const char *retval, *mangled = NULL, *canon = NULL;
8099 struct cleanup *back_to;
8100 int need_copy = 1;
8101
8102 /* In this case dwarf2_compute_name is just a shortcut not building anything
8103 on its own. */
8104 if (!die_needs_namespace (die, cu))
8105 return dwarf2_compute_name (name, die, cu, 1);
8106
8107 back_to = make_cleanup (null_cleanup, NULL);
8108
8109 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8110 if (!attr)
8111 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8112
8113 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8114 has computed. */
8115 if (attr && DW_STRING (attr))
8116 {
8117 char *demangled;
8118
8119 mangled = DW_STRING (attr);
8120
8121 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8122 type. It is easier for GDB users to search for such functions as
8123 `name(params)' than `long name(params)'. In such case the minimal
8124 symbol names do not match the full symbol names but for template
8125 functions there is never a need to look up their definition from their
8126 declaration so the only disadvantage remains the minimal symbol
8127 variant `long name(params)' does not have the proper inferior type.
8128 */
8129
8130 if (cu->language == language_go)
8131 {
8132 /* This is a lie, but we already lie to the caller new_symbol_full.
8133 new_symbol_full assumes we return the mangled name.
8134 This just undoes that lie until things are cleaned up. */
8135 demangled = NULL;
8136 }
8137 else
8138 {
8139 demangled = gdb_demangle (mangled,
8140 (DMGL_PARAMS | DMGL_ANSI
8141 | (cu->language == language_java
8142 ? DMGL_JAVA | DMGL_RET_POSTFIX
8143 : DMGL_RET_DROP)));
8144 }
8145 if (demangled)
8146 {
8147 make_cleanup (xfree, demangled);
8148 canon = demangled;
8149 }
8150 else
8151 {
8152 canon = mangled;
8153 need_copy = 0;
8154 }
8155 }
8156
8157 if (canon == NULL || check_physname)
8158 {
8159 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8160
8161 if (canon != NULL && strcmp (physname, canon) != 0)
8162 {
8163 /* It may not mean a bug in GDB. The compiler could also
8164 compute DW_AT_linkage_name incorrectly. But in such case
8165 GDB would need to be bug-to-bug compatible. */
8166
8167 complaint (&symfile_complaints,
8168 _("Computed physname <%s> does not match demangled <%s> "
8169 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8170 physname, canon, mangled, die->offset.sect_off, objfile->name);
8171
8172 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8173 is available here - over computed PHYSNAME. It is safer
8174 against both buggy GDB and buggy compilers. */
8175
8176 retval = canon;
8177 }
8178 else
8179 {
8180 retval = physname;
8181 need_copy = 0;
8182 }
8183 }
8184 else
8185 retval = canon;
8186
8187 if (need_copy)
8188 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8189
8190 do_cleanups (back_to);
8191 return retval;
8192 }
8193
8194 /* Read the import statement specified by the given die and record it. */
8195
8196 static void
8197 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8198 {
8199 struct objfile *objfile = cu->objfile;
8200 struct attribute *import_attr;
8201 struct die_info *imported_die, *child_die;
8202 struct dwarf2_cu *imported_cu;
8203 const char *imported_name;
8204 const char *imported_name_prefix;
8205 const char *canonical_name;
8206 const char *import_alias;
8207 const char *imported_declaration = NULL;
8208 const char *import_prefix;
8209 VEC (const_char_ptr) *excludes = NULL;
8210 struct cleanup *cleanups;
8211
8212 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8213 if (import_attr == NULL)
8214 {
8215 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8216 dwarf_tag_name (die->tag));
8217 return;
8218 }
8219
8220 imported_cu = cu;
8221 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8222 imported_name = dwarf2_name (imported_die, imported_cu);
8223 if (imported_name == NULL)
8224 {
8225 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8226
8227 The import in the following code:
8228 namespace A
8229 {
8230 typedef int B;
8231 }
8232
8233 int main ()
8234 {
8235 using A::B;
8236 B b;
8237 return b;
8238 }
8239
8240 ...
8241 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8242 <52> DW_AT_decl_file : 1
8243 <53> DW_AT_decl_line : 6
8244 <54> DW_AT_import : <0x75>
8245 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8246 <59> DW_AT_name : B
8247 <5b> DW_AT_decl_file : 1
8248 <5c> DW_AT_decl_line : 2
8249 <5d> DW_AT_type : <0x6e>
8250 ...
8251 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8252 <76> DW_AT_byte_size : 4
8253 <77> DW_AT_encoding : 5 (signed)
8254
8255 imports the wrong die ( 0x75 instead of 0x58 ).
8256 This case will be ignored until the gcc bug is fixed. */
8257 return;
8258 }
8259
8260 /* Figure out the local name after import. */
8261 import_alias = dwarf2_name (die, cu);
8262
8263 /* Figure out where the statement is being imported to. */
8264 import_prefix = determine_prefix (die, cu);
8265
8266 /* Figure out what the scope of the imported die is and prepend it
8267 to the name of the imported die. */
8268 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8269
8270 if (imported_die->tag != DW_TAG_namespace
8271 && imported_die->tag != DW_TAG_module)
8272 {
8273 imported_declaration = imported_name;
8274 canonical_name = imported_name_prefix;
8275 }
8276 else if (strlen (imported_name_prefix) > 0)
8277 canonical_name = obconcat (&objfile->objfile_obstack,
8278 imported_name_prefix, "::", imported_name,
8279 (char *) NULL);
8280 else
8281 canonical_name = imported_name;
8282
8283 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8284
8285 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8286 for (child_die = die->child; child_die && child_die->tag;
8287 child_die = sibling_die (child_die))
8288 {
8289 /* DWARF-4: A Fortran use statement with a “rename list” may be
8290 represented by an imported module entry with an import attribute
8291 referring to the module and owned entries corresponding to those
8292 entities that are renamed as part of being imported. */
8293
8294 if (child_die->tag != DW_TAG_imported_declaration)
8295 {
8296 complaint (&symfile_complaints,
8297 _("child DW_TAG_imported_declaration expected "
8298 "- DIE at 0x%x [in module %s]"),
8299 child_die->offset.sect_off, objfile->name);
8300 continue;
8301 }
8302
8303 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8304 if (import_attr == NULL)
8305 {
8306 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8307 dwarf_tag_name (child_die->tag));
8308 continue;
8309 }
8310
8311 imported_cu = cu;
8312 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8313 &imported_cu);
8314 imported_name = dwarf2_name (imported_die, imported_cu);
8315 if (imported_name == NULL)
8316 {
8317 complaint (&symfile_complaints,
8318 _("child DW_TAG_imported_declaration has unknown "
8319 "imported name - DIE at 0x%x [in module %s]"),
8320 child_die->offset.sect_off, objfile->name);
8321 continue;
8322 }
8323
8324 VEC_safe_push (const_char_ptr, excludes, imported_name);
8325
8326 process_die (child_die, cu);
8327 }
8328
8329 cp_add_using_directive (import_prefix,
8330 canonical_name,
8331 import_alias,
8332 imported_declaration,
8333 excludes,
8334 0,
8335 &objfile->objfile_obstack);
8336
8337 do_cleanups (cleanups);
8338 }
8339
8340 /* Cleanup function for handle_DW_AT_stmt_list. */
8341
8342 static void
8343 free_cu_line_header (void *arg)
8344 {
8345 struct dwarf2_cu *cu = arg;
8346
8347 free_line_header (cu->line_header);
8348 cu->line_header = NULL;
8349 }
8350
8351 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8352 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8353 this, it was first present in GCC release 4.3.0. */
8354
8355 static int
8356 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8357 {
8358 if (!cu->checked_producer)
8359 check_producer (cu);
8360
8361 return cu->producer_is_gcc_lt_4_3;
8362 }
8363
8364 static void
8365 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8366 const char **name, const char **comp_dir)
8367 {
8368 struct attribute *attr;
8369
8370 *name = NULL;
8371 *comp_dir = NULL;
8372
8373 /* Find the filename. Do not use dwarf2_name here, since the filename
8374 is not a source language identifier. */
8375 attr = dwarf2_attr (die, DW_AT_name, cu);
8376 if (attr)
8377 {
8378 *name = DW_STRING (attr);
8379 }
8380
8381 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8382 if (attr)
8383 *comp_dir = DW_STRING (attr);
8384 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8385 && IS_ABSOLUTE_PATH (*name))
8386 {
8387 char *d = ldirname (*name);
8388
8389 *comp_dir = d;
8390 if (d != NULL)
8391 make_cleanup (xfree, d);
8392 }
8393 if (*comp_dir != NULL)
8394 {
8395 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8396 directory, get rid of it. */
8397 char *cp = strchr (*comp_dir, ':');
8398
8399 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8400 *comp_dir = cp + 1;
8401 }
8402
8403 if (*name == NULL)
8404 *name = "<unknown>";
8405 }
8406
8407 /* Handle DW_AT_stmt_list for a compilation unit.
8408 DIE is the DW_TAG_compile_unit die for CU.
8409 COMP_DIR is the compilation directory.
8410 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8411
8412 static void
8413 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8414 const char *comp_dir) /* ARI: editCase function */
8415 {
8416 struct attribute *attr;
8417
8418 gdb_assert (! cu->per_cu->is_debug_types);
8419
8420 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8421 if (attr)
8422 {
8423 unsigned int line_offset = DW_UNSND (attr);
8424 struct line_header *line_header
8425 = dwarf_decode_line_header (line_offset, cu);
8426
8427 if (line_header)
8428 {
8429 cu->line_header = line_header;
8430 make_cleanup (free_cu_line_header, cu);
8431 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8432 }
8433 }
8434 }
8435
8436 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8437
8438 static void
8439 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8440 {
8441 struct objfile *objfile = dwarf2_per_objfile->objfile;
8442 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8443 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8444 CORE_ADDR highpc = ((CORE_ADDR) 0);
8445 struct attribute *attr;
8446 const char *name = NULL;
8447 const char *comp_dir = NULL;
8448 struct die_info *child_die;
8449 bfd *abfd = objfile->obfd;
8450 CORE_ADDR baseaddr;
8451
8452 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8453
8454 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8455
8456 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8457 from finish_block. */
8458 if (lowpc == ((CORE_ADDR) -1))
8459 lowpc = highpc;
8460 lowpc += baseaddr;
8461 highpc += baseaddr;
8462
8463 find_file_and_directory (die, cu, &name, &comp_dir);
8464
8465 prepare_one_comp_unit (cu, die, cu->language);
8466
8467 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8468 standardised yet. As a workaround for the language detection we fall
8469 back to the DW_AT_producer string. */
8470 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8471 cu->language = language_opencl;
8472
8473 /* Similar hack for Go. */
8474 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8475 set_cu_language (DW_LANG_Go, cu);
8476
8477 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8478
8479 /* Decode line number information if present. We do this before
8480 processing child DIEs, so that the line header table is available
8481 for DW_AT_decl_file. */
8482 handle_DW_AT_stmt_list (die, cu, comp_dir);
8483
8484 /* Process all dies in compilation unit. */
8485 if (die->child != NULL)
8486 {
8487 child_die = die->child;
8488 while (child_die && child_die->tag)
8489 {
8490 process_die (child_die, cu);
8491 child_die = sibling_die (child_die);
8492 }
8493 }
8494
8495 /* Decode macro information, if present. Dwarf 2 macro information
8496 refers to information in the line number info statement program
8497 header, so we can only read it if we've read the header
8498 successfully. */
8499 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8500 if (attr && cu->line_header)
8501 {
8502 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8503 complaint (&symfile_complaints,
8504 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8505
8506 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8507 }
8508 else
8509 {
8510 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8511 if (attr && cu->line_header)
8512 {
8513 unsigned int macro_offset = DW_UNSND (attr);
8514
8515 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8516 }
8517 }
8518
8519 do_cleanups (back_to);
8520 }
8521
8522 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8523 Create the set of symtabs used by this TU, or if this TU is sharing
8524 symtabs with another TU and the symtabs have already been created
8525 then restore those symtabs in the line header.
8526 We don't need the pc/line-number mapping for type units. */
8527
8528 static void
8529 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8530 {
8531 struct objfile *objfile = dwarf2_per_objfile->objfile;
8532 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8533 struct type_unit_group *tu_group;
8534 int first_time;
8535 struct line_header *lh;
8536 struct attribute *attr;
8537 unsigned int i, line_offset;
8538 struct signatured_type *sig_type;
8539
8540 gdb_assert (per_cu->is_debug_types);
8541 sig_type = (struct signatured_type *) per_cu;
8542
8543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8544
8545 /* If we're using .gdb_index (includes -readnow) then
8546 per_cu->type_unit_group may not have been set up yet. */
8547 if (sig_type->type_unit_group == NULL)
8548 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8549 tu_group = sig_type->type_unit_group;
8550
8551 /* If we've already processed this stmt_list there's no real need to
8552 do it again, we could fake it and just recreate the part we need
8553 (file name,index -> symtab mapping). If data shows this optimization
8554 is useful we can do it then. */
8555 first_time = tu_group->primary_symtab == NULL;
8556
8557 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8558 debug info. */
8559 lh = NULL;
8560 if (attr != NULL)
8561 {
8562 line_offset = DW_UNSND (attr);
8563 lh = dwarf_decode_line_header (line_offset, cu);
8564 }
8565 if (lh == NULL)
8566 {
8567 if (first_time)
8568 dwarf2_start_symtab (cu, "", NULL, 0);
8569 else
8570 {
8571 gdb_assert (tu_group->symtabs == NULL);
8572 restart_symtab (0);
8573 }
8574 /* Note: The primary symtab will get allocated at the end. */
8575 return;
8576 }
8577
8578 cu->line_header = lh;
8579 make_cleanup (free_cu_line_header, cu);
8580
8581 if (first_time)
8582 {
8583 dwarf2_start_symtab (cu, "", NULL, 0);
8584
8585 tu_group->num_symtabs = lh->num_file_names;
8586 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8587
8588 for (i = 0; i < lh->num_file_names; ++i)
8589 {
8590 const char *dir = NULL;
8591 struct file_entry *fe = &lh->file_names[i];
8592
8593 if (fe->dir_index)
8594 dir = lh->include_dirs[fe->dir_index - 1];
8595 dwarf2_start_subfile (fe->name, dir, NULL);
8596
8597 /* Note: We don't have to watch for the main subfile here, type units
8598 don't have DW_AT_name. */
8599
8600 if (current_subfile->symtab == NULL)
8601 {
8602 /* NOTE: start_subfile will recognize when it's been passed
8603 a file it has already seen. So we can't assume there's a
8604 simple mapping from lh->file_names to subfiles,
8605 lh->file_names may contain dups. */
8606 current_subfile->symtab = allocate_symtab (current_subfile->name,
8607 objfile);
8608 }
8609
8610 fe->symtab = current_subfile->symtab;
8611 tu_group->symtabs[i] = fe->symtab;
8612 }
8613 }
8614 else
8615 {
8616 restart_symtab (0);
8617
8618 for (i = 0; i < lh->num_file_names; ++i)
8619 {
8620 struct file_entry *fe = &lh->file_names[i];
8621
8622 fe->symtab = tu_group->symtabs[i];
8623 }
8624 }
8625
8626 /* The main symtab is allocated last. Type units don't have DW_AT_name
8627 so they don't have a "real" (so to speak) symtab anyway.
8628 There is later code that will assign the main symtab to all symbols
8629 that don't have one. We need to handle the case of a symbol with a
8630 missing symtab (DW_AT_decl_file) anyway. */
8631 }
8632
8633 /* Process DW_TAG_type_unit.
8634 For TUs we want to skip the first top level sibling if it's not the
8635 actual type being defined by this TU. In this case the first top
8636 level sibling is there to provide context only. */
8637
8638 static void
8639 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8640 {
8641 struct die_info *child_die;
8642
8643 prepare_one_comp_unit (cu, die, language_minimal);
8644
8645 /* Initialize (or reinitialize) the machinery for building symtabs.
8646 We do this before processing child DIEs, so that the line header table
8647 is available for DW_AT_decl_file. */
8648 setup_type_unit_groups (die, cu);
8649
8650 if (die->child != NULL)
8651 {
8652 child_die = die->child;
8653 while (child_die && child_die->tag)
8654 {
8655 process_die (child_die, cu);
8656 child_die = sibling_die (child_die);
8657 }
8658 }
8659 }
8660 \f
8661 /* DWO/DWP files.
8662
8663 http://gcc.gnu.org/wiki/DebugFission
8664 http://gcc.gnu.org/wiki/DebugFissionDWP
8665
8666 To simplify handling of both DWO files ("object" files with the DWARF info)
8667 and DWP files (a file with the DWOs packaged up into one file), we treat
8668 DWP files as having a collection of virtual DWO files. */
8669
8670 static hashval_t
8671 hash_dwo_file (const void *item)
8672 {
8673 const struct dwo_file *dwo_file = item;
8674 hashval_t hash;
8675
8676 hash = htab_hash_string (dwo_file->dwo_name);
8677 if (dwo_file->comp_dir != NULL)
8678 hash += htab_hash_string (dwo_file->comp_dir);
8679 return hash;
8680 }
8681
8682 static int
8683 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8684 {
8685 const struct dwo_file *lhs = item_lhs;
8686 const struct dwo_file *rhs = item_rhs;
8687
8688 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8689 return 0;
8690 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8691 return lhs->comp_dir == rhs->comp_dir;
8692 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8693 }
8694
8695 /* Allocate a hash table for DWO files. */
8696
8697 static htab_t
8698 allocate_dwo_file_hash_table (void)
8699 {
8700 struct objfile *objfile = dwarf2_per_objfile->objfile;
8701
8702 return htab_create_alloc_ex (41,
8703 hash_dwo_file,
8704 eq_dwo_file,
8705 NULL,
8706 &objfile->objfile_obstack,
8707 hashtab_obstack_allocate,
8708 dummy_obstack_deallocate);
8709 }
8710
8711 /* Lookup DWO file DWO_NAME. */
8712
8713 static void **
8714 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8715 {
8716 struct dwo_file find_entry;
8717 void **slot;
8718
8719 if (dwarf2_per_objfile->dwo_files == NULL)
8720 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8721
8722 memset (&find_entry, 0, sizeof (find_entry));
8723 find_entry.dwo_name = dwo_name;
8724 find_entry.comp_dir = comp_dir;
8725 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8726
8727 return slot;
8728 }
8729
8730 static hashval_t
8731 hash_dwo_unit (const void *item)
8732 {
8733 const struct dwo_unit *dwo_unit = item;
8734
8735 /* This drops the top 32 bits of the id, but is ok for a hash. */
8736 return dwo_unit->signature;
8737 }
8738
8739 static int
8740 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8741 {
8742 const struct dwo_unit *lhs = item_lhs;
8743 const struct dwo_unit *rhs = item_rhs;
8744
8745 /* The signature is assumed to be unique within the DWO file.
8746 So while object file CU dwo_id's always have the value zero,
8747 that's OK, assuming each object file DWO file has only one CU,
8748 and that's the rule for now. */
8749 return lhs->signature == rhs->signature;
8750 }
8751
8752 /* Allocate a hash table for DWO CUs,TUs.
8753 There is one of these tables for each of CUs,TUs for each DWO file. */
8754
8755 static htab_t
8756 allocate_dwo_unit_table (struct objfile *objfile)
8757 {
8758 /* Start out with a pretty small number.
8759 Generally DWO files contain only one CU and maybe some TUs. */
8760 return htab_create_alloc_ex (3,
8761 hash_dwo_unit,
8762 eq_dwo_unit,
8763 NULL,
8764 &objfile->objfile_obstack,
8765 hashtab_obstack_allocate,
8766 dummy_obstack_deallocate);
8767 }
8768
8769 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8770
8771 struct create_dwo_cu_data
8772 {
8773 struct dwo_file *dwo_file;
8774 struct dwo_unit dwo_unit;
8775 };
8776
8777 /* die_reader_func for create_dwo_cu. */
8778
8779 static void
8780 create_dwo_cu_reader (const struct die_reader_specs *reader,
8781 const gdb_byte *info_ptr,
8782 struct die_info *comp_unit_die,
8783 int has_children,
8784 void *datap)
8785 {
8786 struct dwarf2_cu *cu = reader->cu;
8787 struct objfile *objfile = dwarf2_per_objfile->objfile;
8788 sect_offset offset = cu->per_cu->offset;
8789 struct dwarf2_section_info *section = cu->per_cu->section;
8790 struct create_dwo_cu_data *data = datap;
8791 struct dwo_file *dwo_file = data->dwo_file;
8792 struct dwo_unit *dwo_unit = &data->dwo_unit;
8793 struct attribute *attr;
8794
8795 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8796 if (attr == NULL)
8797 {
8798 complaint (&symfile_complaints,
8799 _("Dwarf Error: debug entry at offset 0x%x is missing"
8800 " its dwo_id [in module %s]"),
8801 offset.sect_off, dwo_file->dwo_name);
8802 return;
8803 }
8804
8805 dwo_unit->dwo_file = dwo_file;
8806 dwo_unit->signature = DW_UNSND (attr);
8807 dwo_unit->section = section;
8808 dwo_unit->offset = offset;
8809 dwo_unit->length = cu->per_cu->length;
8810
8811 if (dwarf2_read_debug)
8812 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8813 offset.sect_off, hex_string (dwo_unit->signature));
8814 }
8815
8816 /* Create the dwo_unit for the lone CU in DWO_FILE.
8817 Note: This function processes DWO files only, not DWP files. */
8818
8819 static struct dwo_unit *
8820 create_dwo_cu (struct dwo_file *dwo_file)
8821 {
8822 struct objfile *objfile = dwarf2_per_objfile->objfile;
8823 struct dwarf2_section_info *section = &dwo_file->sections.info;
8824 bfd *abfd;
8825 htab_t cu_htab;
8826 const gdb_byte *info_ptr, *end_ptr;
8827 struct create_dwo_cu_data create_dwo_cu_data;
8828 struct dwo_unit *dwo_unit;
8829
8830 dwarf2_read_section (objfile, section);
8831 info_ptr = section->buffer;
8832
8833 if (info_ptr == NULL)
8834 return NULL;
8835
8836 /* We can't set abfd until now because the section may be empty or
8837 not present, in which case section->asection will be NULL. */
8838 abfd = section->asection->owner;
8839
8840 if (dwarf2_read_debug)
8841 {
8842 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8843 bfd_section_name (abfd, section->asection),
8844 bfd_get_filename (abfd));
8845 }
8846
8847 create_dwo_cu_data.dwo_file = dwo_file;
8848 dwo_unit = NULL;
8849
8850 end_ptr = info_ptr + section->size;
8851 while (info_ptr < end_ptr)
8852 {
8853 struct dwarf2_per_cu_data per_cu;
8854
8855 memset (&create_dwo_cu_data.dwo_unit, 0,
8856 sizeof (create_dwo_cu_data.dwo_unit));
8857 memset (&per_cu, 0, sizeof (per_cu));
8858 per_cu.objfile = objfile;
8859 per_cu.is_debug_types = 0;
8860 per_cu.offset.sect_off = info_ptr - section->buffer;
8861 per_cu.section = section;
8862
8863 init_cutu_and_read_dies_no_follow (&per_cu,
8864 &dwo_file->sections.abbrev,
8865 dwo_file,
8866 create_dwo_cu_reader,
8867 &create_dwo_cu_data);
8868
8869 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8870 {
8871 /* If we've already found one, complain. We only support one
8872 because having more than one requires hacking the dwo_name of
8873 each to match, which is highly unlikely to happen. */
8874 if (dwo_unit != NULL)
8875 {
8876 complaint (&symfile_complaints,
8877 _("Multiple CUs in DWO file %s [in module %s]"),
8878 dwo_file->dwo_name, objfile->name);
8879 break;
8880 }
8881
8882 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8883 *dwo_unit = create_dwo_cu_data.dwo_unit;
8884 }
8885
8886 info_ptr += per_cu.length;
8887 }
8888
8889 return dwo_unit;
8890 }
8891
8892 /* DWP file .debug_{cu,tu}_index section format:
8893 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8894
8895 DWP Version 1:
8896
8897 Both index sections have the same format, and serve to map a 64-bit
8898 signature to a set of section numbers. Each section begins with a header,
8899 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8900 indexes, and a pool of 32-bit section numbers. The index sections will be
8901 aligned at 8-byte boundaries in the file.
8902
8903 The index section header consists of:
8904
8905 V, 32 bit version number
8906 -, 32 bits unused
8907 N, 32 bit number of compilation units or type units in the index
8908 M, 32 bit number of slots in the hash table
8909
8910 Numbers are recorded using the byte order of the application binary.
8911
8912 We assume that N and M will not exceed 2^32 - 1.
8913
8914 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8915
8916 The hash table begins at offset 16 in the section, and consists of an array
8917 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8918 order of the application binary). Unused slots in the hash table are 0.
8919 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8920
8921 The parallel table begins immediately after the hash table
8922 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8923 array of 32-bit indexes (using the byte order of the application binary),
8924 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8925 table contains a 32-bit index into the pool of section numbers. For unused
8926 hash table slots, the corresponding entry in the parallel table will be 0.
8927
8928 Given a 64-bit compilation unit signature or a type signature S, an entry
8929 in the hash table is located as follows:
8930
8931 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8932 the low-order k bits all set to 1.
8933
8934 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8935
8936 3) If the hash table entry at index H matches the signature, use that
8937 entry. If the hash table entry at index H is unused (all zeroes),
8938 terminate the search: the signature is not present in the table.
8939
8940 4) Let H = (H + H') modulo M. Repeat at Step 3.
8941
8942 Because M > N and H' and M are relatively prime, the search is guaranteed
8943 to stop at an unused slot or find the match.
8944
8945 The pool of section numbers begins immediately following the hash table
8946 (at offset 16 + 12 * M from the beginning of the section). The pool of
8947 section numbers consists of an array of 32-bit words (using the byte order
8948 of the application binary). Each item in the array is indexed starting
8949 from 0. The hash table entry provides the index of the first section
8950 number in the set. Additional section numbers in the set follow, and the
8951 set is terminated by a 0 entry (section number 0 is not used in ELF).
8952
8953 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8954 section must be the first entry in the set, and the .debug_abbrev.dwo must
8955 be the second entry. Other members of the set may follow in any order. */
8956
8957 /* Create a hash table to map DWO IDs to their CU/TU entry in
8958 .debug_{info,types}.dwo in DWP_FILE.
8959 Returns NULL if there isn't one.
8960 Note: This function processes DWP files only, not DWO files. */
8961
8962 static struct dwp_hash_table *
8963 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8964 {
8965 struct objfile *objfile = dwarf2_per_objfile->objfile;
8966 bfd *dbfd = dwp_file->dbfd;
8967 const gdb_byte *index_ptr, *index_end;
8968 struct dwarf2_section_info *index;
8969 uint32_t version, nr_units, nr_slots;
8970 struct dwp_hash_table *htab;
8971
8972 if (is_debug_types)
8973 index = &dwp_file->sections.tu_index;
8974 else
8975 index = &dwp_file->sections.cu_index;
8976
8977 if (dwarf2_section_empty_p (index))
8978 return NULL;
8979 dwarf2_read_section (objfile, index);
8980
8981 index_ptr = index->buffer;
8982 index_end = index_ptr + index->size;
8983
8984 version = read_4_bytes (dbfd, index_ptr);
8985 index_ptr += 8; /* Skip the unused word. */
8986 nr_units = read_4_bytes (dbfd, index_ptr);
8987 index_ptr += 4;
8988 nr_slots = read_4_bytes (dbfd, index_ptr);
8989 index_ptr += 4;
8990
8991 if (version != 1)
8992 {
8993 error (_("Dwarf Error: unsupported DWP file version (%s)"
8994 " [in module %s]"),
8995 pulongest (version), dwp_file->name);
8996 }
8997 if (nr_slots != (nr_slots & -nr_slots))
8998 {
8999 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9000 " is not power of 2 [in module %s]"),
9001 pulongest (nr_slots), dwp_file->name);
9002 }
9003
9004 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9005 htab->nr_units = nr_units;
9006 htab->nr_slots = nr_slots;
9007 htab->hash_table = index_ptr;
9008 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9009 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9010
9011 return htab;
9012 }
9013
9014 /* Update SECTIONS with the data from SECTP.
9015
9016 This function is like the other "locate" section routines that are
9017 passed to bfd_map_over_sections, but in this context the sections to
9018 read comes from the DWP hash table, not the full ELF section table.
9019
9020 The result is non-zero for success, or zero if an error was found. */
9021
9022 static int
9023 locate_virtual_dwo_sections (asection *sectp,
9024 struct virtual_dwo_sections *sections)
9025 {
9026 const struct dwop_section_names *names = &dwop_section_names;
9027
9028 if (section_is_p (sectp->name, &names->abbrev_dwo))
9029 {
9030 /* There can be only one. */
9031 if (sections->abbrev.asection != NULL)
9032 return 0;
9033 sections->abbrev.asection = sectp;
9034 sections->abbrev.size = bfd_get_section_size (sectp);
9035 }
9036 else if (section_is_p (sectp->name, &names->info_dwo)
9037 || section_is_p (sectp->name, &names->types_dwo))
9038 {
9039 /* There can be only one. */
9040 if (sections->info_or_types.asection != NULL)
9041 return 0;
9042 sections->info_or_types.asection = sectp;
9043 sections->info_or_types.size = bfd_get_section_size (sectp);
9044 }
9045 else if (section_is_p (sectp->name, &names->line_dwo))
9046 {
9047 /* There can be only one. */
9048 if (sections->line.asection != NULL)
9049 return 0;
9050 sections->line.asection = sectp;
9051 sections->line.size = bfd_get_section_size (sectp);
9052 }
9053 else if (section_is_p (sectp->name, &names->loc_dwo))
9054 {
9055 /* There can be only one. */
9056 if (sections->loc.asection != NULL)
9057 return 0;
9058 sections->loc.asection = sectp;
9059 sections->loc.size = bfd_get_section_size (sectp);
9060 }
9061 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9062 {
9063 /* There can be only one. */
9064 if (sections->macinfo.asection != NULL)
9065 return 0;
9066 sections->macinfo.asection = sectp;
9067 sections->macinfo.size = bfd_get_section_size (sectp);
9068 }
9069 else if (section_is_p (sectp->name, &names->macro_dwo))
9070 {
9071 /* There can be only one. */
9072 if (sections->macro.asection != NULL)
9073 return 0;
9074 sections->macro.asection = sectp;
9075 sections->macro.size = bfd_get_section_size (sectp);
9076 }
9077 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9078 {
9079 /* There can be only one. */
9080 if (sections->str_offsets.asection != NULL)
9081 return 0;
9082 sections->str_offsets.asection = sectp;
9083 sections->str_offsets.size = bfd_get_section_size (sectp);
9084 }
9085 else
9086 {
9087 /* No other kind of section is valid. */
9088 return 0;
9089 }
9090
9091 return 1;
9092 }
9093
9094 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9095 HTAB is the hash table from the DWP file.
9096 SECTION_INDEX is the index of the DWO in HTAB.
9097 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9098
9099 static struct dwo_unit *
9100 create_dwo_in_dwp (struct dwp_file *dwp_file,
9101 const struct dwp_hash_table *htab,
9102 uint32_t section_index,
9103 const char *comp_dir,
9104 ULONGEST signature, int is_debug_types)
9105 {
9106 struct objfile *objfile = dwarf2_per_objfile->objfile;
9107 bfd *dbfd = dwp_file->dbfd;
9108 const char *kind = is_debug_types ? "TU" : "CU";
9109 struct dwo_file *dwo_file;
9110 struct dwo_unit *dwo_unit;
9111 struct virtual_dwo_sections sections;
9112 void **dwo_file_slot;
9113 char *virtual_dwo_name;
9114 struct dwarf2_section_info *cutu;
9115 struct cleanup *cleanups;
9116 int i;
9117
9118 if (dwarf2_read_debug)
9119 {
9120 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9121 kind,
9122 pulongest (section_index), hex_string (signature),
9123 dwp_file->name);
9124 }
9125
9126 /* Fetch the sections of this DWO.
9127 Put a limit on the number of sections we look for so that bad data
9128 doesn't cause us to loop forever. */
9129
9130 #define MAX_NR_DWO_SECTIONS \
9131 (1 /* .debug_info or .debug_types */ \
9132 + 1 /* .debug_abbrev */ \
9133 + 1 /* .debug_line */ \
9134 + 1 /* .debug_loc */ \
9135 + 1 /* .debug_str_offsets */ \
9136 + 1 /* .debug_macro */ \
9137 + 1 /* .debug_macinfo */ \
9138 + 1 /* trailing zero */)
9139
9140 memset (&sections, 0, sizeof (sections));
9141 cleanups = make_cleanup (null_cleanup, 0);
9142
9143 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9144 {
9145 asection *sectp;
9146 uint32_t section_nr =
9147 read_4_bytes (dbfd,
9148 htab->section_pool
9149 + (section_index + i) * sizeof (uint32_t));
9150
9151 if (section_nr == 0)
9152 break;
9153 if (section_nr >= dwp_file->num_sections)
9154 {
9155 error (_("Dwarf Error: bad DWP hash table, section number too large"
9156 " [in module %s]"),
9157 dwp_file->name);
9158 }
9159
9160 sectp = dwp_file->elf_sections[section_nr];
9161 if (! locate_virtual_dwo_sections (sectp, &sections))
9162 {
9163 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9164 " [in module %s]"),
9165 dwp_file->name);
9166 }
9167 }
9168
9169 if (i < 2
9170 || sections.info_or_types.asection == NULL
9171 || sections.abbrev.asection == NULL)
9172 {
9173 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9174 " [in module %s]"),
9175 dwp_file->name);
9176 }
9177 if (i == MAX_NR_DWO_SECTIONS)
9178 {
9179 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9180 " [in module %s]"),
9181 dwp_file->name);
9182 }
9183
9184 /* It's easier for the rest of the code if we fake a struct dwo_file and
9185 have dwo_unit "live" in that. At least for now.
9186
9187 The DWP file can be made up of a random collection of CUs and TUs.
9188 However, for each CU + set of TUs that came from the same original DWO
9189 file, we want to combine them back into a virtual DWO file to save space
9190 (fewer struct dwo_file objects to allocated). Remember that for really
9191 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9192
9193 virtual_dwo_name =
9194 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9195 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9196 sections.line.asection ? sections.line.asection->id : 0,
9197 sections.loc.asection ? sections.loc.asection->id : 0,
9198 (sections.str_offsets.asection
9199 ? sections.str_offsets.asection->id
9200 : 0));
9201 make_cleanup (xfree, virtual_dwo_name);
9202 /* Can we use an existing virtual DWO file? */
9203 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9204 /* Create one if necessary. */
9205 if (*dwo_file_slot == NULL)
9206 {
9207 if (dwarf2_read_debug)
9208 {
9209 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9210 virtual_dwo_name);
9211 }
9212 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9213 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9214 virtual_dwo_name,
9215 strlen (virtual_dwo_name));
9216 dwo_file->comp_dir = comp_dir;
9217 dwo_file->sections.abbrev = sections.abbrev;
9218 dwo_file->sections.line = sections.line;
9219 dwo_file->sections.loc = sections.loc;
9220 dwo_file->sections.macinfo = sections.macinfo;
9221 dwo_file->sections.macro = sections.macro;
9222 dwo_file->sections.str_offsets = sections.str_offsets;
9223 /* The "str" section is global to the entire DWP file. */
9224 dwo_file->sections.str = dwp_file->sections.str;
9225 /* The info or types section is assigned later to dwo_unit,
9226 there's no need to record it in dwo_file.
9227 Also, we can't simply record type sections in dwo_file because
9228 we record a pointer into the vector in dwo_unit. As we collect more
9229 types we'll grow the vector and eventually have to reallocate space
9230 for it, invalidating all the pointers into the current copy. */
9231 *dwo_file_slot = dwo_file;
9232 }
9233 else
9234 {
9235 if (dwarf2_read_debug)
9236 {
9237 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9238 virtual_dwo_name);
9239 }
9240 dwo_file = *dwo_file_slot;
9241 }
9242 do_cleanups (cleanups);
9243
9244 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9245 dwo_unit->dwo_file = dwo_file;
9246 dwo_unit->signature = signature;
9247 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9248 sizeof (struct dwarf2_section_info));
9249 *dwo_unit->section = sections.info_or_types;
9250 /* offset, length, type_offset_in_tu are set later. */
9251
9252 return dwo_unit;
9253 }
9254
9255 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9256
9257 static struct dwo_unit *
9258 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9259 const struct dwp_hash_table *htab,
9260 const char *comp_dir,
9261 ULONGEST signature, int is_debug_types)
9262 {
9263 bfd *dbfd = dwp_file->dbfd;
9264 uint32_t mask = htab->nr_slots - 1;
9265 uint32_t hash = signature & mask;
9266 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9267 unsigned int i;
9268 void **slot;
9269 struct dwo_unit find_dwo_cu, *dwo_cu;
9270
9271 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9272 find_dwo_cu.signature = signature;
9273 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9274
9275 if (*slot != NULL)
9276 return *slot;
9277
9278 /* Use a for loop so that we don't loop forever on bad debug info. */
9279 for (i = 0; i < htab->nr_slots; ++i)
9280 {
9281 ULONGEST signature_in_table;
9282
9283 signature_in_table =
9284 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9285 if (signature_in_table == signature)
9286 {
9287 uint32_t section_index =
9288 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9289
9290 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9291 comp_dir, signature, is_debug_types);
9292 return *slot;
9293 }
9294 if (signature_in_table == 0)
9295 return NULL;
9296 hash = (hash + hash2) & mask;
9297 }
9298
9299 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9300 " [in module %s]"),
9301 dwp_file->name);
9302 }
9303
9304 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9305 Open the file specified by FILE_NAME and hand it off to BFD for
9306 preliminary analysis. Return a newly initialized bfd *, which
9307 includes a canonicalized copy of FILE_NAME.
9308 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9309 SEARCH_CWD is true if the current directory is to be searched.
9310 It will be searched before debug-file-directory.
9311 If unable to find/open the file, return NULL.
9312 NOTE: This function is derived from symfile_bfd_open. */
9313
9314 static bfd *
9315 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
9316 {
9317 bfd *sym_bfd;
9318 int desc, flags;
9319 char *absolute_name;
9320 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9321 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9322 to debug_file_directory. */
9323 char *search_path;
9324 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9325
9326 if (search_cwd)
9327 {
9328 if (*debug_file_directory != '\0')
9329 search_path = concat (".", dirname_separator_string,
9330 debug_file_directory, NULL);
9331 else
9332 search_path = xstrdup (".");
9333 }
9334 else
9335 search_path = xstrdup (debug_file_directory);
9336
9337 flags = 0;
9338 if (is_dwp)
9339 flags |= OPF_SEARCH_IN_PATH;
9340 desc = openp (search_path, flags, file_name,
9341 O_RDONLY | O_BINARY, &absolute_name);
9342 xfree (search_path);
9343 if (desc < 0)
9344 return NULL;
9345
9346 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9347 xfree (absolute_name);
9348 if (sym_bfd == NULL)
9349 return NULL;
9350 bfd_set_cacheable (sym_bfd, 1);
9351
9352 if (!bfd_check_format (sym_bfd, bfd_object))
9353 {
9354 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9355 return NULL;
9356 }
9357
9358 return sym_bfd;
9359 }
9360
9361 /* Try to open DWO file FILE_NAME.
9362 COMP_DIR is the DW_AT_comp_dir attribute.
9363 The result is the bfd handle of the file.
9364 If there is a problem finding or opening the file, return NULL.
9365 Upon success, the canonicalized path of the file is stored in the bfd,
9366 same as symfile_bfd_open. */
9367
9368 static bfd *
9369 open_dwo_file (const char *file_name, const char *comp_dir)
9370 {
9371 bfd *abfd;
9372
9373 if (IS_ABSOLUTE_PATH (file_name))
9374 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
9375
9376 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9377
9378 if (comp_dir != NULL)
9379 {
9380 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9381
9382 /* NOTE: If comp_dir is a relative path, this will also try the
9383 search path, which seems useful. */
9384 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
9385 xfree (path_to_try);
9386 if (abfd != NULL)
9387 return abfd;
9388 }
9389
9390 /* That didn't work, try debug-file-directory, which, despite its name,
9391 is a list of paths. */
9392
9393 if (*debug_file_directory == '\0')
9394 return NULL;
9395
9396 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
9397 }
9398
9399 /* This function is mapped across the sections and remembers the offset and
9400 size of each of the DWO debugging sections we are interested in. */
9401
9402 static void
9403 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9404 {
9405 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9406 const struct dwop_section_names *names = &dwop_section_names;
9407
9408 if (section_is_p (sectp->name, &names->abbrev_dwo))
9409 {
9410 dwo_sections->abbrev.asection = sectp;
9411 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9412 }
9413 else if (section_is_p (sectp->name, &names->info_dwo))
9414 {
9415 dwo_sections->info.asection = sectp;
9416 dwo_sections->info.size = bfd_get_section_size (sectp);
9417 }
9418 else if (section_is_p (sectp->name, &names->line_dwo))
9419 {
9420 dwo_sections->line.asection = sectp;
9421 dwo_sections->line.size = bfd_get_section_size (sectp);
9422 }
9423 else if (section_is_p (sectp->name, &names->loc_dwo))
9424 {
9425 dwo_sections->loc.asection = sectp;
9426 dwo_sections->loc.size = bfd_get_section_size (sectp);
9427 }
9428 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9429 {
9430 dwo_sections->macinfo.asection = sectp;
9431 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9432 }
9433 else if (section_is_p (sectp->name, &names->macro_dwo))
9434 {
9435 dwo_sections->macro.asection = sectp;
9436 dwo_sections->macro.size = bfd_get_section_size (sectp);
9437 }
9438 else if (section_is_p (sectp->name, &names->str_dwo))
9439 {
9440 dwo_sections->str.asection = sectp;
9441 dwo_sections->str.size = bfd_get_section_size (sectp);
9442 }
9443 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9444 {
9445 dwo_sections->str_offsets.asection = sectp;
9446 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9447 }
9448 else if (section_is_p (sectp->name, &names->types_dwo))
9449 {
9450 struct dwarf2_section_info type_section;
9451
9452 memset (&type_section, 0, sizeof (type_section));
9453 type_section.asection = sectp;
9454 type_section.size = bfd_get_section_size (sectp);
9455 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9456 &type_section);
9457 }
9458 }
9459
9460 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9461 by PER_CU. This is for the non-DWP case.
9462 The result is NULL if DWO_NAME can't be found. */
9463
9464 static struct dwo_file *
9465 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9466 const char *dwo_name, const char *comp_dir)
9467 {
9468 struct objfile *objfile = dwarf2_per_objfile->objfile;
9469 struct dwo_file *dwo_file;
9470 bfd *dbfd;
9471 struct cleanup *cleanups;
9472
9473 dbfd = open_dwo_file (dwo_name, comp_dir);
9474 if (dbfd == NULL)
9475 {
9476 if (dwarf2_read_debug)
9477 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9478 return NULL;
9479 }
9480 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9481 dwo_file->dwo_name = dwo_name;
9482 dwo_file->comp_dir = comp_dir;
9483 dwo_file->dbfd = dbfd;
9484
9485 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9486
9487 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9488
9489 dwo_file->cu = create_dwo_cu (dwo_file);
9490
9491 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9492 dwo_file->sections.types);
9493
9494 discard_cleanups (cleanups);
9495
9496 if (dwarf2_read_debug)
9497 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9498
9499 return dwo_file;
9500 }
9501
9502 /* This function is mapped across the sections and remembers the offset and
9503 size of each of the DWP debugging sections we are interested in. */
9504
9505 static void
9506 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9507 {
9508 struct dwp_file *dwp_file = dwp_file_ptr;
9509 const struct dwop_section_names *names = &dwop_section_names;
9510 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9511
9512 /* Record the ELF section number for later lookup: this is what the
9513 .debug_cu_index,.debug_tu_index tables use. */
9514 gdb_assert (elf_section_nr < dwp_file->num_sections);
9515 dwp_file->elf_sections[elf_section_nr] = sectp;
9516
9517 /* Look for specific sections that we need. */
9518 if (section_is_p (sectp->name, &names->str_dwo))
9519 {
9520 dwp_file->sections.str.asection = sectp;
9521 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9522 }
9523 else if (section_is_p (sectp->name, &names->cu_index))
9524 {
9525 dwp_file->sections.cu_index.asection = sectp;
9526 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9527 }
9528 else if (section_is_p (sectp->name, &names->tu_index))
9529 {
9530 dwp_file->sections.tu_index.asection = sectp;
9531 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9532 }
9533 }
9534
9535 /* Hash function for dwp_file loaded CUs/TUs. */
9536
9537 static hashval_t
9538 hash_dwp_loaded_cutus (const void *item)
9539 {
9540 const struct dwo_unit *dwo_unit = item;
9541
9542 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9543 return dwo_unit->signature;
9544 }
9545
9546 /* Equality function for dwp_file loaded CUs/TUs. */
9547
9548 static int
9549 eq_dwp_loaded_cutus (const void *a, const void *b)
9550 {
9551 const struct dwo_unit *dua = a;
9552 const struct dwo_unit *dub = b;
9553
9554 return dua->signature == dub->signature;
9555 }
9556
9557 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9558
9559 static htab_t
9560 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9561 {
9562 return htab_create_alloc_ex (3,
9563 hash_dwp_loaded_cutus,
9564 eq_dwp_loaded_cutus,
9565 NULL,
9566 &objfile->objfile_obstack,
9567 hashtab_obstack_allocate,
9568 dummy_obstack_deallocate);
9569 }
9570
9571 /* Try to open DWP file FILE_NAME.
9572 The result is the bfd handle of the file.
9573 If there is a problem finding or opening the file, return NULL.
9574 Upon success, the canonicalized path of the file is stored in the bfd,
9575 same as symfile_bfd_open. */
9576
9577 static bfd *
9578 open_dwp_file (const char *file_name)
9579 {
9580 bfd *abfd;
9581
9582 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9583 if (abfd != NULL)
9584 return abfd;
9585
9586 /* Work around upstream bug 15652.
9587 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9588 [Whether that's a "bug" is debatable, but it is getting in our way.]
9589 We have no real idea where the dwp file is, because gdb's realpath-ing
9590 of the executable's path may have discarded the needed info.
9591 [IWBN if the dwp file name was recorded in the executable, akin to
9592 .gnu_debuglink, but that doesn't exist yet.]
9593 Strip the directory from FILE_NAME and search again. */
9594 if (*debug_file_directory != '\0')
9595 {
9596 /* Don't implicitly search the current directory here.
9597 If the user wants to search "." to handle this case,
9598 it must be added to debug-file-directory. */
9599 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9600 0 /*search_cwd*/);
9601 }
9602
9603 return NULL;
9604 }
9605
9606 /* Initialize the use of the DWP file for the current objfile.
9607 By convention the name of the DWP file is ${objfile}.dwp.
9608 The result is NULL if it can't be found. */
9609
9610 static struct dwp_file *
9611 open_and_init_dwp_file (void)
9612 {
9613 struct objfile *objfile = dwarf2_per_objfile->objfile;
9614 struct dwp_file *dwp_file;
9615 char *dwp_name;
9616 bfd *dbfd;
9617 struct cleanup *cleanups;
9618
9619 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9620 cleanups = make_cleanup (xfree, dwp_name);
9621
9622 dbfd = open_dwp_file (dwp_name);
9623 if (dbfd == NULL)
9624 {
9625 if (dwarf2_read_debug)
9626 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9627 do_cleanups (cleanups);
9628 return NULL;
9629 }
9630 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9631 dwp_file->name = bfd_get_filename (dbfd);
9632 dwp_file->dbfd = dbfd;
9633 do_cleanups (cleanups);
9634
9635 /* +1: section 0 is unused */
9636 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9637 dwp_file->elf_sections =
9638 OBSTACK_CALLOC (&objfile->objfile_obstack,
9639 dwp_file->num_sections, asection *);
9640
9641 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9642
9643 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9644
9645 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9646
9647 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9648
9649 if (dwarf2_read_debug)
9650 {
9651 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9652 fprintf_unfiltered (gdb_stdlog,
9653 " %s CUs, %s TUs\n",
9654 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9655 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9656 }
9657
9658 return dwp_file;
9659 }
9660
9661 /* Wrapper around open_and_init_dwp_file, only open it once. */
9662
9663 static struct dwp_file *
9664 get_dwp_file (void)
9665 {
9666 if (! dwarf2_per_objfile->dwp_checked)
9667 {
9668 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9669 dwarf2_per_objfile->dwp_checked = 1;
9670 }
9671 return dwarf2_per_objfile->dwp_file;
9672 }
9673
9674 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9675 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9676 or in the DWP file for the objfile, referenced by THIS_UNIT.
9677 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9678 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9679
9680 This is called, for example, when wanting to read a variable with a
9681 complex location. Therefore we don't want to do file i/o for every call.
9682 Therefore we don't want to look for a DWO file on every call.
9683 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9684 then we check if we've already seen DWO_NAME, and only THEN do we check
9685 for a DWO file.
9686
9687 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9688 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9689
9690 static struct dwo_unit *
9691 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9692 const char *dwo_name, const char *comp_dir,
9693 ULONGEST signature, int is_debug_types)
9694 {
9695 struct objfile *objfile = dwarf2_per_objfile->objfile;
9696 const char *kind = is_debug_types ? "TU" : "CU";
9697 void **dwo_file_slot;
9698 struct dwo_file *dwo_file;
9699 struct dwp_file *dwp_file;
9700
9701 /* First see if there's a DWP file.
9702 If we have a DWP file but didn't find the DWO inside it, don't
9703 look for the original DWO file. It makes gdb behave differently
9704 depending on whether one is debugging in the build tree. */
9705
9706 dwp_file = get_dwp_file ();
9707 if (dwp_file != NULL)
9708 {
9709 const struct dwp_hash_table *dwp_htab =
9710 is_debug_types ? dwp_file->tus : dwp_file->cus;
9711
9712 if (dwp_htab != NULL)
9713 {
9714 struct dwo_unit *dwo_cutu =
9715 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9716 signature, is_debug_types);
9717
9718 if (dwo_cutu != NULL)
9719 {
9720 if (dwarf2_read_debug)
9721 {
9722 fprintf_unfiltered (gdb_stdlog,
9723 "Virtual DWO %s %s found: @%s\n",
9724 kind, hex_string (signature),
9725 host_address_to_string (dwo_cutu));
9726 }
9727 return dwo_cutu;
9728 }
9729 }
9730 }
9731 else
9732 {
9733 /* No DWP file, look for the DWO file. */
9734
9735 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9736 if (*dwo_file_slot == NULL)
9737 {
9738 /* Read in the file and build a table of the CUs/TUs it contains. */
9739 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9740 }
9741 /* NOTE: This will be NULL if unable to open the file. */
9742 dwo_file = *dwo_file_slot;
9743
9744 if (dwo_file != NULL)
9745 {
9746 struct dwo_unit *dwo_cutu = NULL;
9747
9748 if (is_debug_types && dwo_file->tus)
9749 {
9750 struct dwo_unit find_dwo_cutu;
9751
9752 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9753 find_dwo_cutu.signature = signature;
9754 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9755 }
9756 else if (!is_debug_types && dwo_file->cu)
9757 {
9758 if (signature == dwo_file->cu->signature)
9759 dwo_cutu = dwo_file->cu;
9760 }
9761
9762 if (dwo_cutu != NULL)
9763 {
9764 if (dwarf2_read_debug)
9765 {
9766 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9767 kind, dwo_name, hex_string (signature),
9768 host_address_to_string (dwo_cutu));
9769 }
9770 return dwo_cutu;
9771 }
9772 }
9773 }
9774
9775 /* We didn't find it. This could mean a dwo_id mismatch, or
9776 someone deleted the DWO/DWP file, or the search path isn't set up
9777 correctly to find the file. */
9778
9779 if (dwarf2_read_debug)
9780 {
9781 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9782 kind, dwo_name, hex_string (signature));
9783 }
9784
9785 /* This is a warning and not a complaint because it can be caused by
9786 pilot error (e.g., user accidentally deleting the DWO). */
9787 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9788 " [in module %s]"),
9789 kind, dwo_name, hex_string (signature),
9790 this_unit->is_debug_types ? "TU" : "CU",
9791 this_unit->offset.sect_off, objfile->name);
9792 return NULL;
9793 }
9794
9795 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9796 See lookup_dwo_cutu_unit for details. */
9797
9798 static struct dwo_unit *
9799 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9800 const char *dwo_name, const char *comp_dir,
9801 ULONGEST signature)
9802 {
9803 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9804 }
9805
9806 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9807 See lookup_dwo_cutu_unit for details. */
9808
9809 static struct dwo_unit *
9810 lookup_dwo_type_unit (struct signatured_type *this_tu,
9811 const char *dwo_name, const char *comp_dir)
9812 {
9813 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9814 }
9815
9816 /* Free all resources associated with DWO_FILE.
9817 Close the DWO file and munmap the sections.
9818 All memory should be on the objfile obstack. */
9819
9820 static void
9821 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9822 {
9823 int ix;
9824 struct dwarf2_section_info *section;
9825
9826 /* Note: dbfd is NULL for virtual DWO files. */
9827 gdb_bfd_unref (dwo_file->dbfd);
9828
9829 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9830 }
9831
9832 /* Wrapper for free_dwo_file for use in cleanups. */
9833
9834 static void
9835 free_dwo_file_cleanup (void *arg)
9836 {
9837 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9838 struct objfile *objfile = dwarf2_per_objfile->objfile;
9839
9840 free_dwo_file (dwo_file, objfile);
9841 }
9842
9843 /* Traversal function for free_dwo_files. */
9844
9845 static int
9846 free_dwo_file_from_slot (void **slot, void *info)
9847 {
9848 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9849 struct objfile *objfile = (struct objfile *) info;
9850
9851 free_dwo_file (dwo_file, objfile);
9852
9853 return 1;
9854 }
9855
9856 /* Free all resources associated with DWO_FILES. */
9857
9858 static void
9859 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9860 {
9861 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9862 }
9863 \f
9864 /* Read in various DIEs. */
9865
9866 /* qsort helper for inherit_abstract_dies. */
9867
9868 static int
9869 unsigned_int_compar (const void *ap, const void *bp)
9870 {
9871 unsigned int a = *(unsigned int *) ap;
9872 unsigned int b = *(unsigned int *) bp;
9873
9874 return (a > b) - (b > a);
9875 }
9876
9877 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9878 Inherit only the children of the DW_AT_abstract_origin DIE not being
9879 already referenced by DW_AT_abstract_origin from the children of the
9880 current DIE. */
9881
9882 static void
9883 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9884 {
9885 struct die_info *child_die;
9886 unsigned die_children_count;
9887 /* CU offsets which were referenced by children of the current DIE. */
9888 sect_offset *offsets;
9889 sect_offset *offsets_end, *offsetp;
9890 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9891 struct die_info *origin_die;
9892 /* Iterator of the ORIGIN_DIE children. */
9893 struct die_info *origin_child_die;
9894 struct cleanup *cleanups;
9895 struct attribute *attr;
9896 struct dwarf2_cu *origin_cu;
9897 struct pending **origin_previous_list_in_scope;
9898
9899 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9900 if (!attr)
9901 return;
9902
9903 /* Note that following die references may follow to a die in a
9904 different cu. */
9905
9906 origin_cu = cu;
9907 origin_die = follow_die_ref (die, attr, &origin_cu);
9908
9909 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9910 symbols in. */
9911 origin_previous_list_in_scope = origin_cu->list_in_scope;
9912 origin_cu->list_in_scope = cu->list_in_scope;
9913
9914 if (die->tag != origin_die->tag
9915 && !(die->tag == DW_TAG_inlined_subroutine
9916 && origin_die->tag == DW_TAG_subprogram))
9917 complaint (&symfile_complaints,
9918 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9919 die->offset.sect_off, origin_die->offset.sect_off);
9920
9921 child_die = die->child;
9922 die_children_count = 0;
9923 while (child_die && child_die->tag)
9924 {
9925 child_die = sibling_die (child_die);
9926 die_children_count++;
9927 }
9928 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9929 cleanups = make_cleanup (xfree, offsets);
9930
9931 offsets_end = offsets;
9932 child_die = die->child;
9933 while (child_die && child_die->tag)
9934 {
9935 /* For each CHILD_DIE, find the corresponding child of
9936 ORIGIN_DIE. If there is more than one layer of
9937 DW_AT_abstract_origin, follow them all; there shouldn't be,
9938 but GCC versions at least through 4.4 generate this (GCC PR
9939 40573). */
9940 struct die_info *child_origin_die = child_die;
9941 struct dwarf2_cu *child_origin_cu = cu;
9942
9943 while (1)
9944 {
9945 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9946 child_origin_cu);
9947 if (attr == NULL)
9948 break;
9949 child_origin_die = follow_die_ref (child_origin_die, attr,
9950 &child_origin_cu);
9951 }
9952
9953 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9954 counterpart may exist. */
9955 if (child_origin_die != child_die)
9956 {
9957 if (child_die->tag != child_origin_die->tag
9958 && !(child_die->tag == DW_TAG_inlined_subroutine
9959 && child_origin_die->tag == DW_TAG_subprogram))
9960 complaint (&symfile_complaints,
9961 _("Child DIE 0x%x and its abstract origin 0x%x have "
9962 "different tags"), child_die->offset.sect_off,
9963 child_origin_die->offset.sect_off);
9964 if (child_origin_die->parent != origin_die)
9965 complaint (&symfile_complaints,
9966 _("Child DIE 0x%x and its abstract origin 0x%x have "
9967 "different parents"), child_die->offset.sect_off,
9968 child_origin_die->offset.sect_off);
9969 else
9970 *offsets_end++ = child_origin_die->offset;
9971 }
9972 child_die = sibling_die (child_die);
9973 }
9974 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9975 unsigned_int_compar);
9976 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9977 if (offsetp[-1].sect_off == offsetp->sect_off)
9978 complaint (&symfile_complaints,
9979 _("Multiple children of DIE 0x%x refer "
9980 "to DIE 0x%x as their abstract origin"),
9981 die->offset.sect_off, offsetp->sect_off);
9982
9983 offsetp = offsets;
9984 origin_child_die = origin_die->child;
9985 while (origin_child_die && origin_child_die->tag)
9986 {
9987 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9988 while (offsetp < offsets_end
9989 && offsetp->sect_off < origin_child_die->offset.sect_off)
9990 offsetp++;
9991 if (offsetp >= offsets_end
9992 || offsetp->sect_off > origin_child_die->offset.sect_off)
9993 {
9994 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9995 process_die (origin_child_die, origin_cu);
9996 }
9997 origin_child_die = sibling_die (origin_child_die);
9998 }
9999 origin_cu->list_in_scope = origin_previous_list_in_scope;
10000
10001 do_cleanups (cleanups);
10002 }
10003
10004 static void
10005 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10006 {
10007 struct objfile *objfile = cu->objfile;
10008 struct context_stack *new;
10009 CORE_ADDR lowpc;
10010 CORE_ADDR highpc;
10011 struct die_info *child_die;
10012 struct attribute *attr, *call_line, *call_file;
10013 const char *name;
10014 CORE_ADDR baseaddr;
10015 struct block *block;
10016 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10017 VEC (symbolp) *template_args = NULL;
10018 struct template_symbol *templ_func = NULL;
10019
10020 if (inlined_func)
10021 {
10022 /* If we do not have call site information, we can't show the
10023 caller of this inlined function. That's too confusing, so
10024 only use the scope for local variables. */
10025 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10026 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10027 if (call_line == NULL || call_file == NULL)
10028 {
10029 read_lexical_block_scope (die, cu);
10030 return;
10031 }
10032 }
10033
10034 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10035
10036 name = dwarf2_name (die, cu);
10037
10038 /* Ignore functions with missing or empty names. These are actually
10039 illegal according to the DWARF standard. */
10040 if (name == NULL)
10041 {
10042 complaint (&symfile_complaints,
10043 _("missing name for subprogram DIE at %d"),
10044 die->offset.sect_off);
10045 return;
10046 }
10047
10048 /* Ignore functions with missing or invalid low and high pc attributes. */
10049 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10050 {
10051 attr = dwarf2_attr (die, DW_AT_external, cu);
10052 if (!attr || !DW_UNSND (attr))
10053 complaint (&symfile_complaints,
10054 _("cannot get low and high bounds "
10055 "for subprogram DIE at %d"),
10056 die->offset.sect_off);
10057 return;
10058 }
10059
10060 lowpc += baseaddr;
10061 highpc += baseaddr;
10062
10063 /* If we have any template arguments, then we must allocate a
10064 different sort of symbol. */
10065 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10066 {
10067 if (child_die->tag == DW_TAG_template_type_param
10068 || child_die->tag == DW_TAG_template_value_param)
10069 {
10070 templ_func = allocate_template_symbol (objfile);
10071 templ_func->base.is_cplus_template_function = 1;
10072 break;
10073 }
10074 }
10075
10076 new = push_context (0, lowpc);
10077 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10078 (struct symbol *) templ_func);
10079
10080 /* If there is a location expression for DW_AT_frame_base, record
10081 it. */
10082 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10083 if (attr)
10084 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10085
10086 cu->list_in_scope = &local_symbols;
10087
10088 if (die->child != NULL)
10089 {
10090 child_die = die->child;
10091 while (child_die && child_die->tag)
10092 {
10093 if (child_die->tag == DW_TAG_template_type_param
10094 || child_die->tag == DW_TAG_template_value_param)
10095 {
10096 struct symbol *arg = new_symbol (child_die, NULL, cu);
10097
10098 if (arg != NULL)
10099 VEC_safe_push (symbolp, template_args, arg);
10100 }
10101 else
10102 process_die (child_die, cu);
10103 child_die = sibling_die (child_die);
10104 }
10105 }
10106
10107 inherit_abstract_dies (die, cu);
10108
10109 /* If we have a DW_AT_specification, we might need to import using
10110 directives from the context of the specification DIE. See the
10111 comment in determine_prefix. */
10112 if (cu->language == language_cplus
10113 && dwarf2_attr (die, DW_AT_specification, cu))
10114 {
10115 struct dwarf2_cu *spec_cu = cu;
10116 struct die_info *spec_die = die_specification (die, &spec_cu);
10117
10118 while (spec_die)
10119 {
10120 child_die = spec_die->child;
10121 while (child_die && child_die->tag)
10122 {
10123 if (child_die->tag == DW_TAG_imported_module)
10124 process_die (child_die, spec_cu);
10125 child_die = sibling_die (child_die);
10126 }
10127
10128 /* In some cases, GCC generates specification DIEs that
10129 themselves contain DW_AT_specification attributes. */
10130 spec_die = die_specification (spec_die, &spec_cu);
10131 }
10132 }
10133
10134 new = pop_context ();
10135 /* Make a block for the local symbols within. */
10136 block = finish_block (new->name, &local_symbols, new->old_blocks,
10137 lowpc, highpc, objfile);
10138
10139 /* For C++, set the block's scope. */
10140 if ((cu->language == language_cplus || cu->language == language_fortran)
10141 && cu->processing_has_namespace_info)
10142 block_set_scope (block, determine_prefix (die, cu),
10143 &objfile->objfile_obstack);
10144
10145 /* If we have address ranges, record them. */
10146 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10147
10148 /* Attach template arguments to function. */
10149 if (! VEC_empty (symbolp, template_args))
10150 {
10151 gdb_assert (templ_func != NULL);
10152
10153 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10154 templ_func->template_arguments
10155 = obstack_alloc (&objfile->objfile_obstack,
10156 (templ_func->n_template_arguments
10157 * sizeof (struct symbol *)));
10158 memcpy (templ_func->template_arguments,
10159 VEC_address (symbolp, template_args),
10160 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10161 VEC_free (symbolp, template_args);
10162 }
10163
10164 /* In C++, we can have functions nested inside functions (e.g., when
10165 a function declares a class that has methods). This means that
10166 when we finish processing a function scope, we may need to go
10167 back to building a containing block's symbol lists. */
10168 local_symbols = new->locals;
10169 using_directives = new->using_directives;
10170
10171 /* If we've finished processing a top-level function, subsequent
10172 symbols go in the file symbol list. */
10173 if (outermost_context_p ())
10174 cu->list_in_scope = &file_symbols;
10175 }
10176
10177 /* Process all the DIES contained within a lexical block scope. Start
10178 a new scope, process the dies, and then close the scope. */
10179
10180 static void
10181 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10182 {
10183 struct objfile *objfile = cu->objfile;
10184 struct context_stack *new;
10185 CORE_ADDR lowpc, highpc;
10186 struct die_info *child_die;
10187 CORE_ADDR baseaddr;
10188
10189 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10190
10191 /* Ignore blocks with missing or invalid low and high pc attributes. */
10192 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10193 as multiple lexical blocks? Handling children in a sane way would
10194 be nasty. Might be easier to properly extend generic blocks to
10195 describe ranges. */
10196 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10197 return;
10198 lowpc += baseaddr;
10199 highpc += baseaddr;
10200
10201 push_context (0, lowpc);
10202 if (die->child != NULL)
10203 {
10204 child_die = die->child;
10205 while (child_die && child_die->tag)
10206 {
10207 process_die (child_die, cu);
10208 child_die = sibling_die (child_die);
10209 }
10210 }
10211 new = pop_context ();
10212
10213 if (local_symbols != NULL || using_directives != NULL)
10214 {
10215 struct block *block
10216 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10217 highpc, objfile);
10218
10219 /* Note that recording ranges after traversing children, as we
10220 do here, means that recording a parent's ranges entails
10221 walking across all its children's ranges as they appear in
10222 the address map, which is quadratic behavior.
10223
10224 It would be nicer to record the parent's ranges before
10225 traversing its children, simply overriding whatever you find
10226 there. But since we don't even decide whether to create a
10227 block until after we've traversed its children, that's hard
10228 to do. */
10229 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10230 }
10231 local_symbols = new->locals;
10232 using_directives = new->using_directives;
10233 }
10234
10235 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10236
10237 static void
10238 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10239 {
10240 struct objfile *objfile = cu->objfile;
10241 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10242 CORE_ADDR pc, baseaddr;
10243 struct attribute *attr;
10244 struct call_site *call_site, call_site_local;
10245 void **slot;
10246 int nparams;
10247 struct die_info *child_die;
10248
10249 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10250
10251 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10252 if (!attr)
10253 {
10254 complaint (&symfile_complaints,
10255 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10256 "DIE 0x%x [in module %s]"),
10257 die->offset.sect_off, objfile->name);
10258 return;
10259 }
10260 pc = DW_ADDR (attr) + baseaddr;
10261
10262 if (cu->call_site_htab == NULL)
10263 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10264 NULL, &objfile->objfile_obstack,
10265 hashtab_obstack_allocate, NULL);
10266 call_site_local.pc = pc;
10267 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10268 if (*slot != NULL)
10269 {
10270 complaint (&symfile_complaints,
10271 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10272 "DIE 0x%x [in module %s]"),
10273 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
10274 return;
10275 }
10276
10277 /* Count parameters at the caller. */
10278
10279 nparams = 0;
10280 for (child_die = die->child; child_die && child_die->tag;
10281 child_die = sibling_die (child_die))
10282 {
10283 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10284 {
10285 complaint (&symfile_complaints,
10286 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10287 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10288 child_die->tag, child_die->offset.sect_off, objfile->name);
10289 continue;
10290 }
10291
10292 nparams++;
10293 }
10294
10295 call_site = obstack_alloc (&objfile->objfile_obstack,
10296 (sizeof (*call_site)
10297 + (sizeof (*call_site->parameter)
10298 * (nparams - 1))));
10299 *slot = call_site;
10300 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10301 call_site->pc = pc;
10302
10303 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10304 {
10305 struct die_info *func_die;
10306
10307 /* Skip also over DW_TAG_inlined_subroutine. */
10308 for (func_die = die->parent;
10309 func_die && func_die->tag != DW_TAG_subprogram
10310 && func_die->tag != DW_TAG_subroutine_type;
10311 func_die = func_die->parent);
10312
10313 /* DW_AT_GNU_all_call_sites is a superset
10314 of DW_AT_GNU_all_tail_call_sites. */
10315 if (func_die
10316 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10317 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10318 {
10319 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10320 not complete. But keep CALL_SITE for look ups via call_site_htab,
10321 both the initial caller containing the real return address PC and
10322 the final callee containing the current PC of a chain of tail
10323 calls do not need to have the tail call list complete. But any
10324 function candidate for a virtual tail call frame searched via
10325 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10326 determined unambiguously. */
10327 }
10328 else
10329 {
10330 struct type *func_type = NULL;
10331
10332 if (func_die)
10333 func_type = get_die_type (func_die, cu);
10334 if (func_type != NULL)
10335 {
10336 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10337
10338 /* Enlist this call site to the function. */
10339 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10340 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10341 }
10342 else
10343 complaint (&symfile_complaints,
10344 _("Cannot find function owning DW_TAG_GNU_call_site "
10345 "DIE 0x%x [in module %s]"),
10346 die->offset.sect_off, objfile->name);
10347 }
10348 }
10349
10350 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10351 if (attr == NULL)
10352 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10353 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10354 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10355 /* Keep NULL DWARF_BLOCK. */;
10356 else if (attr_form_is_block (attr))
10357 {
10358 struct dwarf2_locexpr_baton *dlbaton;
10359
10360 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10361 dlbaton->data = DW_BLOCK (attr)->data;
10362 dlbaton->size = DW_BLOCK (attr)->size;
10363 dlbaton->per_cu = cu->per_cu;
10364
10365 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10366 }
10367 else if (attr_form_is_ref (attr))
10368 {
10369 struct dwarf2_cu *target_cu = cu;
10370 struct die_info *target_die;
10371
10372 target_die = follow_die_ref (die, attr, &target_cu);
10373 gdb_assert (target_cu->objfile == objfile);
10374 if (die_is_declaration (target_die, target_cu))
10375 {
10376 const char *target_physname = NULL;
10377 struct attribute *target_attr;
10378
10379 /* Prefer the mangled name; otherwise compute the demangled one. */
10380 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10381 if (target_attr == NULL)
10382 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10383 target_cu);
10384 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10385 target_physname = DW_STRING (target_attr);
10386 else
10387 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10388 if (target_physname == NULL)
10389 complaint (&symfile_complaints,
10390 _("DW_AT_GNU_call_site_target target DIE has invalid "
10391 "physname, for referencing DIE 0x%x [in module %s]"),
10392 die->offset.sect_off, objfile->name);
10393 else
10394 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10395 }
10396 else
10397 {
10398 CORE_ADDR lowpc;
10399
10400 /* DW_AT_entry_pc should be preferred. */
10401 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10402 complaint (&symfile_complaints,
10403 _("DW_AT_GNU_call_site_target target DIE has invalid "
10404 "low pc, for referencing DIE 0x%x [in module %s]"),
10405 die->offset.sect_off, objfile->name);
10406 else
10407 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10408 }
10409 }
10410 else
10411 complaint (&symfile_complaints,
10412 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10413 "block nor reference, for DIE 0x%x [in module %s]"),
10414 die->offset.sect_off, objfile->name);
10415
10416 call_site->per_cu = cu->per_cu;
10417
10418 for (child_die = die->child;
10419 child_die && child_die->tag;
10420 child_die = sibling_die (child_die))
10421 {
10422 struct call_site_parameter *parameter;
10423 struct attribute *loc, *origin;
10424
10425 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10426 {
10427 /* Already printed the complaint above. */
10428 continue;
10429 }
10430
10431 gdb_assert (call_site->parameter_count < nparams);
10432 parameter = &call_site->parameter[call_site->parameter_count];
10433
10434 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10435 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10436 register is contained in DW_AT_GNU_call_site_value. */
10437
10438 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10439 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10440 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
10441 {
10442 sect_offset offset;
10443
10444 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10445 offset = dwarf2_get_ref_die_offset (origin);
10446 if (!offset_in_cu_p (&cu->header, offset))
10447 {
10448 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10449 binding can be done only inside one CU. Such referenced DIE
10450 therefore cannot be even moved to DW_TAG_partial_unit. */
10451 complaint (&symfile_complaints,
10452 _("DW_AT_abstract_origin offset is not in CU for "
10453 "DW_TAG_GNU_call_site child DIE 0x%x "
10454 "[in module %s]"),
10455 child_die->offset.sect_off, objfile->name);
10456 continue;
10457 }
10458 parameter->u.param_offset.cu_off = (offset.sect_off
10459 - cu->header.offset.sect_off);
10460 }
10461 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10462 {
10463 complaint (&symfile_complaints,
10464 _("No DW_FORM_block* DW_AT_location for "
10465 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10466 child_die->offset.sect_off, objfile->name);
10467 continue;
10468 }
10469 else
10470 {
10471 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10472 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10473 if (parameter->u.dwarf_reg != -1)
10474 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10475 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10476 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10477 &parameter->u.fb_offset))
10478 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10479 else
10480 {
10481 complaint (&symfile_complaints,
10482 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10483 "for DW_FORM_block* DW_AT_location is supported for "
10484 "DW_TAG_GNU_call_site child DIE 0x%x "
10485 "[in module %s]"),
10486 child_die->offset.sect_off, objfile->name);
10487 continue;
10488 }
10489 }
10490
10491 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10492 if (!attr_form_is_block (attr))
10493 {
10494 complaint (&symfile_complaints,
10495 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10496 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10497 child_die->offset.sect_off, objfile->name);
10498 continue;
10499 }
10500 parameter->value = DW_BLOCK (attr)->data;
10501 parameter->value_size = DW_BLOCK (attr)->size;
10502
10503 /* Parameters are not pre-cleared by memset above. */
10504 parameter->data_value = NULL;
10505 parameter->data_value_size = 0;
10506 call_site->parameter_count++;
10507
10508 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10509 if (attr)
10510 {
10511 if (!attr_form_is_block (attr))
10512 complaint (&symfile_complaints,
10513 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10514 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10515 child_die->offset.sect_off, objfile->name);
10516 else
10517 {
10518 parameter->data_value = DW_BLOCK (attr)->data;
10519 parameter->data_value_size = DW_BLOCK (attr)->size;
10520 }
10521 }
10522 }
10523 }
10524
10525 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10526 Return 1 if the attributes are present and valid, otherwise, return 0.
10527 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10528
10529 static int
10530 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10531 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10532 struct partial_symtab *ranges_pst)
10533 {
10534 struct objfile *objfile = cu->objfile;
10535 struct comp_unit_head *cu_header = &cu->header;
10536 bfd *obfd = objfile->obfd;
10537 unsigned int addr_size = cu_header->addr_size;
10538 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10539 /* Base address selection entry. */
10540 CORE_ADDR base;
10541 int found_base;
10542 unsigned int dummy;
10543 const gdb_byte *buffer;
10544 CORE_ADDR marker;
10545 int low_set;
10546 CORE_ADDR low = 0;
10547 CORE_ADDR high = 0;
10548 CORE_ADDR baseaddr;
10549
10550 found_base = cu->base_known;
10551 base = cu->base_address;
10552
10553 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10554 if (offset >= dwarf2_per_objfile->ranges.size)
10555 {
10556 complaint (&symfile_complaints,
10557 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10558 offset);
10559 return 0;
10560 }
10561 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10562
10563 /* Read in the largest possible address. */
10564 marker = read_address (obfd, buffer, cu, &dummy);
10565 if ((marker & mask) == mask)
10566 {
10567 /* If we found the largest possible address, then
10568 read the base address. */
10569 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10570 buffer += 2 * addr_size;
10571 offset += 2 * addr_size;
10572 found_base = 1;
10573 }
10574
10575 low_set = 0;
10576
10577 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10578
10579 while (1)
10580 {
10581 CORE_ADDR range_beginning, range_end;
10582
10583 range_beginning = read_address (obfd, buffer, cu, &dummy);
10584 buffer += addr_size;
10585 range_end = read_address (obfd, buffer, cu, &dummy);
10586 buffer += addr_size;
10587 offset += 2 * addr_size;
10588
10589 /* An end of list marker is a pair of zero addresses. */
10590 if (range_beginning == 0 && range_end == 0)
10591 /* Found the end of list entry. */
10592 break;
10593
10594 /* Each base address selection entry is a pair of 2 values.
10595 The first is the largest possible address, the second is
10596 the base address. Check for a base address here. */
10597 if ((range_beginning & mask) == mask)
10598 {
10599 /* If we found the largest possible address, then
10600 read the base address. */
10601 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10602 found_base = 1;
10603 continue;
10604 }
10605
10606 if (!found_base)
10607 {
10608 /* We have no valid base address for the ranges
10609 data. */
10610 complaint (&symfile_complaints,
10611 _("Invalid .debug_ranges data (no base address)"));
10612 return 0;
10613 }
10614
10615 if (range_beginning > range_end)
10616 {
10617 /* Inverted range entries are invalid. */
10618 complaint (&symfile_complaints,
10619 _("Invalid .debug_ranges data (inverted range)"));
10620 return 0;
10621 }
10622
10623 /* Empty range entries have no effect. */
10624 if (range_beginning == range_end)
10625 continue;
10626
10627 range_beginning += base;
10628 range_end += base;
10629
10630 /* A not-uncommon case of bad debug info.
10631 Don't pollute the addrmap with bad data. */
10632 if (range_beginning + baseaddr == 0
10633 && !dwarf2_per_objfile->has_section_at_zero)
10634 {
10635 complaint (&symfile_complaints,
10636 _(".debug_ranges entry has start address of zero"
10637 " [in module %s]"), objfile->name);
10638 continue;
10639 }
10640
10641 if (ranges_pst != NULL)
10642 addrmap_set_empty (objfile->psymtabs_addrmap,
10643 range_beginning + baseaddr,
10644 range_end - 1 + baseaddr,
10645 ranges_pst);
10646
10647 /* FIXME: This is recording everything as a low-high
10648 segment of consecutive addresses. We should have a
10649 data structure for discontiguous block ranges
10650 instead. */
10651 if (! low_set)
10652 {
10653 low = range_beginning;
10654 high = range_end;
10655 low_set = 1;
10656 }
10657 else
10658 {
10659 if (range_beginning < low)
10660 low = range_beginning;
10661 if (range_end > high)
10662 high = range_end;
10663 }
10664 }
10665
10666 if (! low_set)
10667 /* If the first entry is an end-of-list marker, the range
10668 describes an empty scope, i.e. no instructions. */
10669 return 0;
10670
10671 if (low_return)
10672 *low_return = low;
10673 if (high_return)
10674 *high_return = high;
10675 return 1;
10676 }
10677
10678 /* Get low and high pc attributes from a die. Return 1 if the attributes
10679 are present and valid, otherwise, return 0. Return -1 if the range is
10680 discontinuous, i.e. derived from DW_AT_ranges information. */
10681
10682 static int
10683 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10684 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10685 struct partial_symtab *pst)
10686 {
10687 struct attribute *attr;
10688 struct attribute *attr_high;
10689 CORE_ADDR low = 0;
10690 CORE_ADDR high = 0;
10691 int ret = 0;
10692
10693 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10694 if (attr_high)
10695 {
10696 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10697 if (attr)
10698 {
10699 low = DW_ADDR (attr);
10700 if (attr_high->form == DW_FORM_addr
10701 || attr_high->form == DW_FORM_GNU_addr_index)
10702 high = DW_ADDR (attr_high);
10703 else
10704 high = low + DW_UNSND (attr_high);
10705 }
10706 else
10707 /* Found high w/o low attribute. */
10708 return 0;
10709
10710 /* Found consecutive range of addresses. */
10711 ret = 1;
10712 }
10713 else
10714 {
10715 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10716 if (attr != NULL)
10717 {
10718 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10719 We take advantage of the fact that DW_AT_ranges does not appear
10720 in DW_TAG_compile_unit of DWO files. */
10721 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10722 unsigned int ranges_offset = (DW_UNSND (attr)
10723 + (need_ranges_base
10724 ? cu->ranges_base
10725 : 0));
10726
10727 /* Value of the DW_AT_ranges attribute is the offset in the
10728 .debug_ranges section. */
10729 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10730 return 0;
10731 /* Found discontinuous range of addresses. */
10732 ret = -1;
10733 }
10734 }
10735
10736 /* read_partial_die has also the strict LOW < HIGH requirement. */
10737 if (high <= low)
10738 return 0;
10739
10740 /* When using the GNU linker, .gnu.linkonce. sections are used to
10741 eliminate duplicate copies of functions and vtables and such.
10742 The linker will arbitrarily choose one and discard the others.
10743 The AT_*_pc values for such functions refer to local labels in
10744 these sections. If the section from that file was discarded, the
10745 labels are not in the output, so the relocs get a value of 0.
10746 If this is a discarded function, mark the pc bounds as invalid,
10747 so that GDB will ignore it. */
10748 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10749 return 0;
10750
10751 *lowpc = low;
10752 if (highpc)
10753 *highpc = high;
10754 return ret;
10755 }
10756
10757 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10758 its low and high PC addresses. Do nothing if these addresses could not
10759 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10760 and HIGHPC to the high address if greater than HIGHPC. */
10761
10762 static void
10763 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10764 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10765 struct dwarf2_cu *cu)
10766 {
10767 CORE_ADDR low, high;
10768 struct die_info *child = die->child;
10769
10770 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10771 {
10772 *lowpc = min (*lowpc, low);
10773 *highpc = max (*highpc, high);
10774 }
10775
10776 /* If the language does not allow nested subprograms (either inside
10777 subprograms or lexical blocks), we're done. */
10778 if (cu->language != language_ada)
10779 return;
10780
10781 /* Check all the children of the given DIE. If it contains nested
10782 subprograms, then check their pc bounds. Likewise, we need to
10783 check lexical blocks as well, as they may also contain subprogram
10784 definitions. */
10785 while (child && child->tag)
10786 {
10787 if (child->tag == DW_TAG_subprogram
10788 || child->tag == DW_TAG_lexical_block)
10789 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10790 child = sibling_die (child);
10791 }
10792 }
10793
10794 /* Get the low and high pc's represented by the scope DIE, and store
10795 them in *LOWPC and *HIGHPC. If the correct values can't be
10796 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10797
10798 static void
10799 get_scope_pc_bounds (struct die_info *die,
10800 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10801 struct dwarf2_cu *cu)
10802 {
10803 CORE_ADDR best_low = (CORE_ADDR) -1;
10804 CORE_ADDR best_high = (CORE_ADDR) 0;
10805 CORE_ADDR current_low, current_high;
10806
10807 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10808 {
10809 best_low = current_low;
10810 best_high = current_high;
10811 }
10812 else
10813 {
10814 struct die_info *child = die->child;
10815
10816 while (child && child->tag)
10817 {
10818 switch (child->tag) {
10819 case DW_TAG_subprogram:
10820 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10821 break;
10822 case DW_TAG_namespace:
10823 case DW_TAG_module:
10824 /* FIXME: carlton/2004-01-16: Should we do this for
10825 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10826 that current GCC's always emit the DIEs corresponding
10827 to definitions of methods of classes as children of a
10828 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10829 the DIEs giving the declarations, which could be
10830 anywhere). But I don't see any reason why the
10831 standards says that they have to be there. */
10832 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10833
10834 if (current_low != ((CORE_ADDR) -1))
10835 {
10836 best_low = min (best_low, current_low);
10837 best_high = max (best_high, current_high);
10838 }
10839 break;
10840 default:
10841 /* Ignore. */
10842 break;
10843 }
10844
10845 child = sibling_die (child);
10846 }
10847 }
10848
10849 *lowpc = best_low;
10850 *highpc = best_high;
10851 }
10852
10853 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10854 in DIE. */
10855
10856 static void
10857 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10858 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10859 {
10860 struct objfile *objfile = cu->objfile;
10861 struct attribute *attr;
10862 struct attribute *attr_high;
10863
10864 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10865 if (attr_high)
10866 {
10867 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10868 if (attr)
10869 {
10870 CORE_ADDR low = DW_ADDR (attr);
10871 CORE_ADDR high;
10872 if (attr_high->form == DW_FORM_addr
10873 || attr_high->form == DW_FORM_GNU_addr_index)
10874 high = DW_ADDR (attr_high);
10875 else
10876 high = low + DW_UNSND (attr_high);
10877
10878 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10879 }
10880 }
10881
10882 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10883 if (attr)
10884 {
10885 bfd *obfd = objfile->obfd;
10886 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10887 We take advantage of the fact that DW_AT_ranges does not appear
10888 in DW_TAG_compile_unit of DWO files. */
10889 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10890
10891 /* The value of the DW_AT_ranges attribute is the offset of the
10892 address range list in the .debug_ranges section. */
10893 unsigned long offset = (DW_UNSND (attr)
10894 + (need_ranges_base ? cu->ranges_base : 0));
10895 const gdb_byte *buffer;
10896
10897 /* For some target architectures, but not others, the
10898 read_address function sign-extends the addresses it returns.
10899 To recognize base address selection entries, we need a
10900 mask. */
10901 unsigned int addr_size = cu->header.addr_size;
10902 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10903
10904 /* The base address, to which the next pair is relative. Note
10905 that this 'base' is a DWARF concept: most entries in a range
10906 list are relative, to reduce the number of relocs against the
10907 debugging information. This is separate from this function's
10908 'baseaddr' argument, which GDB uses to relocate debugging
10909 information from a shared library based on the address at
10910 which the library was loaded. */
10911 CORE_ADDR base = cu->base_address;
10912 int base_known = cu->base_known;
10913
10914 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10915 if (offset >= dwarf2_per_objfile->ranges.size)
10916 {
10917 complaint (&symfile_complaints,
10918 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10919 offset);
10920 return;
10921 }
10922 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10923
10924 for (;;)
10925 {
10926 unsigned int bytes_read;
10927 CORE_ADDR start, end;
10928
10929 start = read_address (obfd, buffer, cu, &bytes_read);
10930 buffer += bytes_read;
10931 end = read_address (obfd, buffer, cu, &bytes_read);
10932 buffer += bytes_read;
10933
10934 /* Did we find the end of the range list? */
10935 if (start == 0 && end == 0)
10936 break;
10937
10938 /* Did we find a base address selection entry? */
10939 else if ((start & base_select_mask) == base_select_mask)
10940 {
10941 base = end;
10942 base_known = 1;
10943 }
10944
10945 /* We found an ordinary address range. */
10946 else
10947 {
10948 if (!base_known)
10949 {
10950 complaint (&symfile_complaints,
10951 _("Invalid .debug_ranges data "
10952 "(no base address)"));
10953 return;
10954 }
10955
10956 if (start > end)
10957 {
10958 /* Inverted range entries are invalid. */
10959 complaint (&symfile_complaints,
10960 _("Invalid .debug_ranges data "
10961 "(inverted range)"));
10962 return;
10963 }
10964
10965 /* Empty range entries have no effect. */
10966 if (start == end)
10967 continue;
10968
10969 start += base + baseaddr;
10970 end += base + baseaddr;
10971
10972 /* A not-uncommon case of bad debug info.
10973 Don't pollute the addrmap with bad data. */
10974 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10975 {
10976 complaint (&symfile_complaints,
10977 _(".debug_ranges entry has start address of zero"
10978 " [in module %s]"), objfile->name);
10979 continue;
10980 }
10981
10982 record_block_range (block, start, end - 1);
10983 }
10984 }
10985 }
10986 }
10987
10988 /* Check whether the producer field indicates either of GCC < 4.6, or the
10989 Intel C/C++ compiler, and cache the result in CU. */
10990
10991 static void
10992 check_producer (struct dwarf2_cu *cu)
10993 {
10994 const char *cs;
10995 int major, minor, release;
10996
10997 if (cu->producer == NULL)
10998 {
10999 /* For unknown compilers expect their behavior is DWARF version
11000 compliant.
11001
11002 GCC started to support .debug_types sections by -gdwarf-4 since
11003 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11004 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11005 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11006 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11007 }
11008 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11009 {
11010 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11011
11012 cs = &cu->producer[strlen ("GNU ")];
11013 while (*cs && !isdigit (*cs))
11014 cs++;
11015 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11016 {
11017 /* Not recognized as GCC. */
11018 }
11019 else
11020 {
11021 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11022 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11023 }
11024 }
11025 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11026 cu->producer_is_icc = 1;
11027 else
11028 {
11029 /* For other non-GCC compilers, expect their behavior is DWARF version
11030 compliant. */
11031 }
11032
11033 cu->checked_producer = 1;
11034 }
11035
11036 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11037 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11038 during 4.6.0 experimental. */
11039
11040 static int
11041 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11042 {
11043 if (!cu->checked_producer)
11044 check_producer (cu);
11045
11046 return cu->producer_is_gxx_lt_4_6;
11047 }
11048
11049 /* Return the default accessibility type if it is not overriden by
11050 DW_AT_accessibility. */
11051
11052 static enum dwarf_access_attribute
11053 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11054 {
11055 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11056 {
11057 /* The default DWARF 2 accessibility for members is public, the default
11058 accessibility for inheritance is private. */
11059
11060 if (die->tag != DW_TAG_inheritance)
11061 return DW_ACCESS_public;
11062 else
11063 return DW_ACCESS_private;
11064 }
11065 else
11066 {
11067 /* DWARF 3+ defines the default accessibility a different way. The same
11068 rules apply now for DW_TAG_inheritance as for the members and it only
11069 depends on the container kind. */
11070
11071 if (die->parent->tag == DW_TAG_class_type)
11072 return DW_ACCESS_private;
11073 else
11074 return DW_ACCESS_public;
11075 }
11076 }
11077
11078 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11079 offset. If the attribute was not found return 0, otherwise return
11080 1. If it was found but could not properly be handled, set *OFFSET
11081 to 0. */
11082
11083 static int
11084 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11085 LONGEST *offset)
11086 {
11087 struct attribute *attr;
11088
11089 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11090 if (attr != NULL)
11091 {
11092 *offset = 0;
11093
11094 /* Note that we do not check for a section offset first here.
11095 This is because DW_AT_data_member_location is new in DWARF 4,
11096 so if we see it, we can assume that a constant form is really
11097 a constant and not a section offset. */
11098 if (attr_form_is_constant (attr))
11099 *offset = dwarf2_get_attr_constant_value (attr, 0);
11100 else if (attr_form_is_section_offset (attr))
11101 dwarf2_complex_location_expr_complaint ();
11102 else if (attr_form_is_block (attr))
11103 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11104 else
11105 dwarf2_complex_location_expr_complaint ();
11106
11107 return 1;
11108 }
11109
11110 return 0;
11111 }
11112
11113 /* Add an aggregate field to the field list. */
11114
11115 static void
11116 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11117 struct dwarf2_cu *cu)
11118 {
11119 struct objfile *objfile = cu->objfile;
11120 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11121 struct nextfield *new_field;
11122 struct attribute *attr;
11123 struct field *fp;
11124 const char *fieldname = "";
11125
11126 /* Allocate a new field list entry and link it in. */
11127 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11128 make_cleanup (xfree, new_field);
11129 memset (new_field, 0, sizeof (struct nextfield));
11130
11131 if (die->tag == DW_TAG_inheritance)
11132 {
11133 new_field->next = fip->baseclasses;
11134 fip->baseclasses = new_field;
11135 }
11136 else
11137 {
11138 new_field->next = fip->fields;
11139 fip->fields = new_field;
11140 }
11141 fip->nfields++;
11142
11143 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11144 if (attr)
11145 new_field->accessibility = DW_UNSND (attr);
11146 else
11147 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11148 if (new_field->accessibility != DW_ACCESS_public)
11149 fip->non_public_fields = 1;
11150
11151 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11152 if (attr)
11153 new_field->virtuality = DW_UNSND (attr);
11154 else
11155 new_field->virtuality = DW_VIRTUALITY_none;
11156
11157 fp = &new_field->field;
11158
11159 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11160 {
11161 LONGEST offset;
11162
11163 /* Data member other than a C++ static data member. */
11164
11165 /* Get type of field. */
11166 fp->type = die_type (die, cu);
11167
11168 SET_FIELD_BITPOS (*fp, 0);
11169
11170 /* Get bit size of field (zero if none). */
11171 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11172 if (attr)
11173 {
11174 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11175 }
11176 else
11177 {
11178 FIELD_BITSIZE (*fp) = 0;
11179 }
11180
11181 /* Get bit offset of field. */
11182 if (handle_data_member_location (die, cu, &offset))
11183 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11184 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11185 if (attr)
11186 {
11187 if (gdbarch_bits_big_endian (gdbarch))
11188 {
11189 /* For big endian bits, the DW_AT_bit_offset gives the
11190 additional bit offset from the MSB of the containing
11191 anonymous object to the MSB of the field. We don't
11192 have to do anything special since we don't need to
11193 know the size of the anonymous object. */
11194 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11195 }
11196 else
11197 {
11198 /* For little endian bits, compute the bit offset to the
11199 MSB of the anonymous object, subtract off the number of
11200 bits from the MSB of the field to the MSB of the
11201 object, and then subtract off the number of bits of
11202 the field itself. The result is the bit offset of
11203 the LSB of the field. */
11204 int anonymous_size;
11205 int bit_offset = DW_UNSND (attr);
11206
11207 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11208 if (attr)
11209 {
11210 /* The size of the anonymous object containing
11211 the bit field is explicit, so use the
11212 indicated size (in bytes). */
11213 anonymous_size = DW_UNSND (attr);
11214 }
11215 else
11216 {
11217 /* The size of the anonymous object containing
11218 the bit field must be inferred from the type
11219 attribute of the data member containing the
11220 bit field. */
11221 anonymous_size = TYPE_LENGTH (fp->type);
11222 }
11223 SET_FIELD_BITPOS (*fp,
11224 (FIELD_BITPOS (*fp)
11225 + anonymous_size * bits_per_byte
11226 - bit_offset - FIELD_BITSIZE (*fp)));
11227 }
11228 }
11229
11230 /* Get name of field. */
11231 fieldname = dwarf2_name (die, cu);
11232 if (fieldname == NULL)
11233 fieldname = "";
11234
11235 /* The name is already allocated along with this objfile, so we don't
11236 need to duplicate it for the type. */
11237 fp->name = fieldname;
11238
11239 /* Change accessibility for artificial fields (e.g. virtual table
11240 pointer or virtual base class pointer) to private. */
11241 if (dwarf2_attr (die, DW_AT_artificial, cu))
11242 {
11243 FIELD_ARTIFICIAL (*fp) = 1;
11244 new_field->accessibility = DW_ACCESS_private;
11245 fip->non_public_fields = 1;
11246 }
11247 }
11248 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11249 {
11250 /* C++ static member. */
11251
11252 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11253 is a declaration, but all versions of G++ as of this writing
11254 (so through at least 3.2.1) incorrectly generate
11255 DW_TAG_variable tags. */
11256
11257 const char *physname;
11258
11259 /* Get name of field. */
11260 fieldname = dwarf2_name (die, cu);
11261 if (fieldname == NULL)
11262 return;
11263
11264 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11265 if (attr
11266 /* Only create a symbol if this is an external value.
11267 new_symbol checks this and puts the value in the global symbol
11268 table, which we want. If it is not external, new_symbol
11269 will try to put the value in cu->list_in_scope which is wrong. */
11270 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11271 {
11272 /* A static const member, not much different than an enum as far as
11273 we're concerned, except that we can support more types. */
11274 new_symbol (die, NULL, cu);
11275 }
11276
11277 /* Get physical name. */
11278 physname = dwarf2_physname (fieldname, die, cu);
11279
11280 /* The name is already allocated along with this objfile, so we don't
11281 need to duplicate it for the type. */
11282 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11283 FIELD_TYPE (*fp) = die_type (die, cu);
11284 FIELD_NAME (*fp) = fieldname;
11285 }
11286 else if (die->tag == DW_TAG_inheritance)
11287 {
11288 LONGEST offset;
11289
11290 /* C++ base class field. */
11291 if (handle_data_member_location (die, cu, &offset))
11292 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11293 FIELD_BITSIZE (*fp) = 0;
11294 FIELD_TYPE (*fp) = die_type (die, cu);
11295 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11296 fip->nbaseclasses++;
11297 }
11298 }
11299
11300 /* Add a typedef defined in the scope of the FIP's class. */
11301
11302 static void
11303 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11304 struct dwarf2_cu *cu)
11305 {
11306 struct objfile *objfile = cu->objfile;
11307 struct typedef_field_list *new_field;
11308 struct attribute *attr;
11309 struct typedef_field *fp;
11310 char *fieldname = "";
11311
11312 /* Allocate a new field list entry and link it in. */
11313 new_field = xzalloc (sizeof (*new_field));
11314 make_cleanup (xfree, new_field);
11315
11316 gdb_assert (die->tag == DW_TAG_typedef);
11317
11318 fp = &new_field->field;
11319
11320 /* Get name of field. */
11321 fp->name = dwarf2_name (die, cu);
11322 if (fp->name == NULL)
11323 return;
11324
11325 fp->type = read_type_die (die, cu);
11326
11327 new_field->next = fip->typedef_field_list;
11328 fip->typedef_field_list = new_field;
11329 fip->typedef_field_list_count++;
11330 }
11331
11332 /* Create the vector of fields, and attach it to the type. */
11333
11334 static void
11335 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11336 struct dwarf2_cu *cu)
11337 {
11338 int nfields = fip->nfields;
11339
11340 /* Record the field count, allocate space for the array of fields,
11341 and create blank accessibility bitfields if necessary. */
11342 TYPE_NFIELDS (type) = nfields;
11343 TYPE_FIELDS (type) = (struct field *)
11344 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11345 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11346
11347 if (fip->non_public_fields && cu->language != language_ada)
11348 {
11349 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11350
11351 TYPE_FIELD_PRIVATE_BITS (type) =
11352 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11353 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11354
11355 TYPE_FIELD_PROTECTED_BITS (type) =
11356 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11357 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11358
11359 TYPE_FIELD_IGNORE_BITS (type) =
11360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11361 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11362 }
11363
11364 /* If the type has baseclasses, allocate and clear a bit vector for
11365 TYPE_FIELD_VIRTUAL_BITS. */
11366 if (fip->nbaseclasses && cu->language != language_ada)
11367 {
11368 int num_bytes = B_BYTES (fip->nbaseclasses);
11369 unsigned char *pointer;
11370
11371 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11372 pointer = TYPE_ALLOC (type, num_bytes);
11373 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11374 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11375 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11376 }
11377
11378 /* Copy the saved-up fields into the field vector. Start from the head of
11379 the list, adding to the tail of the field array, so that they end up in
11380 the same order in the array in which they were added to the list. */
11381 while (nfields-- > 0)
11382 {
11383 struct nextfield *fieldp;
11384
11385 if (fip->fields)
11386 {
11387 fieldp = fip->fields;
11388 fip->fields = fieldp->next;
11389 }
11390 else
11391 {
11392 fieldp = fip->baseclasses;
11393 fip->baseclasses = fieldp->next;
11394 }
11395
11396 TYPE_FIELD (type, nfields) = fieldp->field;
11397 switch (fieldp->accessibility)
11398 {
11399 case DW_ACCESS_private:
11400 if (cu->language != language_ada)
11401 SET_TYPE_FIELD_PRIVATE (type, nfields);
11402 break;
11403
11404 case DW_ACCESS_protected:
11405 if (cu->language != language_ada)
11406 SET_TYPE_FIELD_PROTECTED (type, nfields);
11407 break;
11408
11409 case DW_ACCESS_public:
11410 break;
11411
11412 default:
11413 /* Unknown accessibility. Complain and treat it as public. */
11414 {
11415 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11416 fieldp->accessibility);
11417 }
11418 break;
11419 }
11420 if (nfields < fip->nbaseclasses)
11421 {
11422 switch (fieldp->virtuality)
11423 {
11424 case DW_VIRTUALITY_virtual:
11425 case DW_VIRTUALITY_pure_virtual:
11426 if (cu->language == language_ada)
11427 error (_("unexpected virtuality in component of Ada type"));
11428 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11429 break;
11430 }
11431 }
11432 }
11433 }
11434
11435 /* Return true if this member function is a constructor, false
11436 otherwise. */
11437
11438 static int
11439 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11440 {
11441 const char *fieldname;
11442 const char *typename;
11443 int len;
11444
11445 if (die->parent == NULL)
11446 return 0;
11447
11448 if (die->parent->tag != DW_TAG_structure_type
11449 && die->parent->tag != DW_TAG_union_type
11450 && die->parent->tag != DW_TAG_class_type)
11451 return 0;
11452
11453 fieldname = dwarf2_name (die, cu);
11454 typename = dwarf2_name (die->parent, cu);
11455 if (fieldname == NULL || typename == NULL)
11456 return 0;
11457
11458 len = strlen (fieldname);
11459 return (strncmp (fieldname, typename, len) == 0
11460 && (typename[len] == '\0' || typename[len] == '<'));
11461 }
11462
11463 /* Add a member function to the proper fieldlist. */
11464
11465 static void
11466 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11467 struct type *type, struct dwarf2_cu *cu)
11468 {
11469 struct objfile *objfile = cu->objfile;
11470 struct attribute *attr;
11471 struct fnfieldlist *flp;
11472 int i;
11473 struct fn_field *fnp;
11474 const char *fieldname;
11475 struct nextfnfield *new_fnfield;
11476 struct type *this_type;
11477 enum dwarf_access_attribute accessibility;
11478
11479 if (cu->language == language_ada)
11480 error (_("unexpected member function in Ada type"));
11481
11482 /* Get name of member function. */
11483 fieldname = dwarf2_name (die, cu);
11484 if (fieldname == NULL)
11485 return;
11486
11487 /* Look up member function name in fieldlist. */
11488 for (i = 0; i < fip->nfnfields; i++)
11489 {
11490 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11491 break;
11492 }
11493
11494 /* Create new list element if necessary. */
11495 if (i < fip->nfnfields)
11496 flp = &fip->fnfieldlists[i];
11497 else
11498 {
11499 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11500 {
11501 fip->fnfieldlists = (struct fnfieldlist *)
11502 xrealloc (fip->fnfieldlists,
11503 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11504 * sizeof (struct fnfieldlist));
11505 if (fip->nfnfields == 0)
11506 make_cleanup (free_current_contents, &fip->fnfieldlists);
11507 }
11508 flp = &fip->fnfieldlists[fip->nfnfields];
11509 flp->name = fieldname;
11510 flp->length = 0;
11511 flp->head = NULL;
11512 i = fip->nfnfields++;
11513 }
11514
11515 /* Create a new member function field and chain it to the field list
11516 entry. */
11517 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11518 make_cleanup (xfree, new_fnfield);
11519 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11520 new_fnfield->next = flp->head;
11521 flp->head = new_fnfield;
11522 flp->length++;
11523
11524 /* Fill in the member function field info. */
11525 fnp = &new_fnfield->fnfield;
11526
11527 /* Delay processing of the physname until later. */
11528 if (cu->language == language_cplus || cu->language == language_java)
11529 {
11530 add_to_method_list (type, i, flp->length - 1, fieldname,
11531 die, cu);
11532 }
11533 else
11534 {
11535 const char *physname = dwarf2_physname (fieldname, die, cu);
11536 fnp->physname = physname ? physname : "";
11537 }
11538
11539 fnp->type = alloc_type (objfile);
11540 this_type = read_type_die (die, cu);
11541 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11542 {
11543 int nparams = TYPE_NFIELDS (this_type);
11544
11545 /* TYPE is the domain of this method, and THIS_TYPE is the type
11546 of the method itself (TYPE_CODE_METHOD). */
11547 smash_to_method_type (fnp->type, type,
11548 TYPE_TARGET_TYPE (this_type),
11549 TYPE_FIELDS (this_type),
11550 TYPE_NFIELDS (this_type),
11551 TYPE_VARARGS (this_type));
11552
11553 /* Handle static member functions.
11554 Dwarf2 has no clean way to discern C++ static and non-static
11555 member functions. G++ helps GDB by marking the first
11556 parameter for non-static member functions (which is the this
11557 pointer) as artificial. We obtain this information from
11558 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11559 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11560 fnp->voffset = VOFFSET_STATIC;
11561 }
11562 else
11563 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11564 dwarf2_full_name (fieldname, die, cu));
11565
11566 /* Get fcontext from DW_AT_containing_type if present. */
11567 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11568 fnp->fcontext = die_containing_type (die, cu);
11569
11570 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11571 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11572
11573 /* Get accessibility. */
11574 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11575 if (attr)
11576 accessibility = DW_UNSND (attr);
11577 else
11578 accessibility = dwarf2_default_access_attribute (die, cu);
11579 switch (accessibility)
11580 {
11581 case DW_ACCESS_private:
11582 fnp->is_private = 1;
11583 break;
11584 case DW_ACCESS_protected:
11585 fnp->is_protected = 1;
11586 break;
11587 }
11588
11589 /* Check for artificial methods. */
11590 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11591 if (attr && DW_UNSND (attr) != 0)
11592 fnp->is_artificial = 1;
11593
11594 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11595
11596 /* Get index in virtual function table if it is a virtual member
11597 function. For older versions of GCC, this is an offset in the
11598 appropriate virtual table, as specified by DW_AT_containing_type.
11599 For everyone else, it is an expression to be evaluated relative
11600 to the object address. */
11601
11602 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11603 if (attr)
11604 {
11605 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11606 {
11607 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11608 {
11609 /* Old-style GCC. */
11610 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11611 }
11612 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11613 || (DW_BLOCK (attr)->size > 1
11614 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11615 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11616 {
11617 struct dwarf_block blk;
11618 int offset;
11619
11620 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11621 ? 1 : 2);
11622 blk.size = DW_BLOCK (attr)->size - offset;
11623 blk.data = DW_BLOCK (attr)->data + offset;
11624 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11625 if ((fnp->voffset % cu->header.addr_size) != 0)
11626 dwarf2_complex_location_expr_complaint ();
11627 else
11628 fnp->voffset /= cu->header.addr_size;
11629 fnp->voffset += 2;
11630 }
11631 else
11632 dwarf2_complex_location_expr_complaint ();
11633
11634 if (!fnp->fcontext)
11635 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11636 }
11637 else if (attr_form_is_section_offset (attr))
11638 {
11639 dwarf2_complex_location_expr_complaint ();
11640 }
11641 else
11642 {
11643 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11644 fieldname);
11645 }
11646 }
11647 else
11648 {
11649 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11650 if (attr && DW_UNSND (attr))
11651 {
11652 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11653 complaint (&symfile_complaints,
11654 _("Member function \"%s\" (offset %d) is virtual "
11655 "but the vtable offset is not specified"),
11656 fieldname, die->offset.sect_off);
11657 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11658 TYPE_CPLUS_DYNAMIC (type) = 1;
11659 }
11660 }
11661 }
11662
11663 /* Create the vector of member function fields, and attach it to the type. */
11664
11665 static void
11666 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11667 struct dwarf2_cu *cu)
11668 {
11669 struct fnfieldlist *flp;
11670 int i;
11671
11672 if (cu->language == language_ada)
11673 error (_("unexpected member functions in Ada type"));
11674
11675 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11676 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11677 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11678
11679 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11680 {
11681 struct nextfnfield *nfp = flp->head;
11682 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11683 int k;
11684
11685 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11686 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11687 fn_flp->fn_fields = (struct fn_field *)
11688 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11689 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11690 fn_flp->fn_fields[k] = nfp->fnfield;
11691 }
11692
11693 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11694 }
11695
11696 /* Returns non-zero if NAME is the name of a vtable member in CU's
11697 language, zero otherwise. */
11698 static int
11699 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11700 {
11701 static const char vptr[] = "_vptr";
11702 static const char vtable[] = "vtable";
11703
11704 /* Look for the C++ and Java forms of the vtable. */
11705 if ((cu->language == language_java
11706 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11707 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11708 && is_cplus_marker (name[sizeof (vptr) - 1])))
11709 return 1;
11710
11711 return 0;
11712 }
11713
11714 /* GCC outputs unnamed structures that are really pointers to member
11715 functions, with the ABI-specified layout. If TYPE describes
11716 such a structure, smash it into a member function type.
11717
11718 GCC shouldn't do this; it should just output pointer to member DIEs.
11719 This is GCC PR debug/28767. */
11720
11721 static void
11722 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11723 {
11724 struct type *pfn_type, *domain_type, *new_type;
11725
11726 /* Check for a structure with no name and two children. */
11727 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11728 return;
11729
11730 /* Check for __pfn and __delta members. */
11731 if (TYPE_FIELD_NAME (type, 0) == NULL
11732 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11733 || TYPE_FIELD_NAME (type, 1) == NULL
11734 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11735 return;
11736
11737 /* Find the type of the method. */
11738 pfn_type = TYPE_FIELD_TYPE (type, 0);
11739 if (pfn_type == NULL
11740 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11741 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11742 return;
11743
11744 /* Look for the "this" argument. */
11745 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11746 if (TYPE_NFIELDS (pfn_type) == 0
11747 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11748 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11749 return;
11750
11751 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11752 new_type = alloc_type (objfile);
11753 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11754 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11755 TYPE_VARARGS (pfn_type));
11756 smash_to_methodptr_type (type, new_type);
11757 }
11758
11759 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11760 (icc). */
11761
11762 static int
11763 producer_is_icc (struct dwarf2_cu *cu)
11764 {
11765 if (!cu->checked_producer)
11766 check_producer (cu);
11767
11768 return cu->producer_is_icc;
11769 }
11770
11771 /* Called when we find the DIE that starts a structure or union scope
11772 (definition) to create a type for the structure or union. Fill in
11773 the type's name and general properties; the members will not be
11774 processed until process_structure_scope.
11775
11776 NOTE: we need to call these functions regardless of whether or not the
11777 DIE has a DW_AT_name attribute, since it might be an anonymous
11778 structure or union. This gets the type entered into our set of
11779 user defined types.
11780
11781 However, if the structure is incomplete (an opaque struct/union)
11782 then suppress creating a symbol table entry for it since gdb only
11783 wants to find the one with the complete definition. Note that if
11784 it is complete, we just call new_symbol, which does it's own
11785 checking about whether the struct/union is anonymous or not (and
11786 suppresses creating a symbol table entry itself). */
11787
11788 static struct type *
11789 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11790 {
11791 struct objfile *objfile = cu->objfile;
11792 struct type *type;
11793 struct attribute *attr;
11794 const char *name;
11795
11796 /* If the definition of this type lives in .debug_types, read that type.
11797 Don't follow DW_AT_specification though, that will take us back up
11798 the chain and we want to go down. */
11799 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11800 if (attr)
11801 {
11802 type = get_DW_AT_signature_type (die, attr, cu);
11803
11804 /* The type's CU may not be the same as CU.
11805 Ensure TYPE is recorded with CU in die_type_hash. */
11806 return set_die_type (die, type, cu);
11807 }
11808
11809 type = alloc_type (objfile);
11810 INIT_CPLUS_SPECIFIC (type);
11811
11812 name = dwarf2_name (die, cu);
11813 if (name != NULL)
11814 {
11815 if (cu->language == language_cplus
11816 || cu->language == language_java)
11817 {
11818 const char *full_name = dwarf2_full_name (name, die, cu);
11819
11820 /* dwarf2_full_name might have already finished building the DIE's
11821 type. If so, there is no need to continue. */
11822 if (get_die_type (die, cu) != NULL)
11823 return get_die_type (die, cu);
11824
11825 TYPE_TAG_NAME (type) = full_name;
11826 if (die->tag == DW_TAG_structure_type
11827 || die->tag == DW_TAG_class_type)
11828 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11829 }
11830 else
11831 {
11832 /* The name is already allocated along with this objfile, so
11833 we don't need to duplicate it for the type. */
11834 TYPE_TAG_NAME (type) = name;
11835 if (die->tag == DW_TAG_class_type)
11836 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11837 }
11838 }
11839
11840 if (die->tag == DW_TAG_structure_type)
11841 {
11842 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11843 }
11844 else if (die->tag == DW_TAG_union_type)
11845 {
11846 TYPE_CODE (type) = TYPE_CODE_UNION;
11847 }
11848 else
11849 {
11850 TYPE_CODE (type) = TYPE_CODE_CLASS;
11851 }
11852
11853 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11854 TYPE_DECLARED_CLASS (type) = 1;
11855
11856 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11857 if (attr)
11858 {
11859 TYPE_LENGTH (type) = DW_UNSND (attr);
11860 }
11861 else
11862 {
11863 TYPE_LENGTH (type) = 0;
11864 }
11865
11866 if (producer_is_icc (cu))
11867 {
11868 /* ICC does not output the required DW_AT_declaration
11869 on incomplete types, but gives them a size of zero. */
11870 }
11871 else
11872 TYPE_STUB_SUPPORTED (type) = 1;
11873
11874 if (die_is_declaration (die, cu))
11875 TYPE_STUB (type) = 1;
11876 else if (attr == NULL && die->child == NULL
11877 && producer_is_realview (cu->producer))
11878 /* RealView does not output the required DW_AT_declaration
11879 on incomplete types. */
11880 TYPE_STUB (type) = 1;
11881
11882 /* We need to add the type field to the die immediately so we don't
11883 infinitely recurse when dealing with pointers to the structure
11884 type within the structure itself. */
11885 set_die_type (die, type, cu);
11886
11887 /* set_die_type should be already done. */
11888 set_descriptive_type (type, die, cu);
11889
11890 return type;
11891 }
11892
11893 /* Finish creating a structure or union type, including filling in
11894 its members and creating a symbol for it. */
11895
11896 static void
11897 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11898 {
11899 struct objfile *objfile = cu->objfile;
11900 struct die_info *child_die = die->child;
11901 struct type *type;
11902
11903 type = get_die_type (die, cu);
11904 if (type == NULL)
11905 type = read_structure_type (die, cu);
11906
11907 if (die->child != NULL && ! die_is_declaration (die, cu))
11908 {
11909 struct field_info fi;
11910 struct die_info *child_die;
11911 VEC (symbolp) *template_args = NULL;
11912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11913
11914 memset (&fi, 0, sizeof (struct field_info));
11915
11916 child_die = die->child;
11917
11918 while (child_die && child_die->tag)
11919 {
11920 if (child_die->tag == DW_TAG_member
11921 || child_die->tag == DW_TAG_variable)
11922 {
11923 /* NOTE: carlton/2002-11-05: A C++ static data member
11924 should be a DW_TAG_member that is a declaration, but
11925 all versions of G++ as of this writing (so through at
11926 least 3.2.1) incorrectly generate DW_TAG_variable
11927 tags for them instead. */
11928 dwarf2_add_field (&fi, child_die, cu);
11929 }
11930 else if (child_die->tag == DW_TAG_subprogram)
11931 {
11932 /* C++ member function. */
11933 dwarf2_add_member_fn (&fi, child_die, type, cu);
11934 }
11935 else if (child_die->tag == DW_TAG_inheritance)
11936 {
11937 /* C++ base class field. */
11938 dwarf2_add_field (&fi, child_die, cu);
11939 }
11940 else if (child_die->tag == DW_TAG_typedef)
11941 dwarf2_add_typedef (&fi, child_die, cu);
11942 else if (child_die->tag == DW_TAG_template_type_param
11943 || child_die->tag == DW_TAG_template_value_param)
11944 {
11945 struct symbol *arg = new_symbol (child_die, NULL, cu);
11946
11947 if (arg != NULL)
11948 VEC_safe_push (symbolp, template_args, arg);
11949 }
11950
11951 child_die = sibling_die (child_die);
11952 }
11953
11954 /* Attach template arguments to type. */
11955 if (! VEC_empty (symbolp, template_args))
11956 {
11957 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11958 TYPE_N_TEMPLATE_ARGUMENTS (type)
11959 = VEC_length (symbolp, template_args);
11960 TYPE_TEMPLATE_ARGUMENTS (type)
11961 = obstack_alloc (&objfile->objfile_obstack,
11962 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11963 * sizeof (struct symbol *)));
11964 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11965 VEC_address (symbolp, template_args),
11966 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11967 * sizeof (struct symbol *)));
11968 VEC_free (symbolp, template_args);
11969 }
11970
11971 /* Attach fields and member functions to the type. */
11972 if (fi.nfields)
11973 dwarf2_attach_fields_to_type (&fi, type, cu);
11974 if (fi.nfnfields)
11975 {
11976 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11977
11978 /* Get the type which refers to the base class (possibly this
11979 class itself) which contains the vtable pointer for the current
11980 class from the DW_AT_containing_type attribute. This use of
11981 DW_AT_containing_type is a GNU extension. */
11982
11983 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11984 {
11985 struct type *t = die_containing_type (die, cu);
11986
11987 TYPE_VPTR_BASETYPE (type) = t;
11988 if (type == t)
11989 {
11990 int i;
11991
11992 /* Our own class provides vtbl ptr. */
11993 for (i = TYPE_NFIELDS (t) - 1;
11994 i >= TYPE_N_BASECLASSES (t);
11995 --i)
11996 {
11997 const char *fieldname = TYPE_FIELD_NAME (t, i);
11998
11999 if (is_vtable_name (fieldname, cu))
12000 {
12001 TYPE_VPTR_FIELDNO (type) = i;
12002 break;
12003 }
12004 }
12005
12006 /* Complain if virtual function table field not found. */
12007 if (i < TYPE_N_BASECLASSES (t))
12008 complaint (&symfile_complaints,
12009 _("virtual function table pointer "
12010 "not found when defining class '%s'"),
12011 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12012 "");
12013 }
12014 else
12015 {
12016 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12017 }
12018 }
12019 else if (cu->producer
12020 && strncmp (cu->producer,
12021 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12022 {
12023 /* The IBM XLC compiler does not provide direct indication
12024 of the containing type, but the vtable pointer is
12025 always named __vfp. */
12026
12027 int i;
12028
12029 for (i = TYPE_NFIELDS (type) - 1;
12030 i >= TYPE_N_BASECLASSES (type);
12031 --i)
12032 {
12033 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12034 {
12035 TYPE_VPTR_FIELDNO (type) = i;
12036 TYPE_VPTR_BASETYPE (type) = type;
12037 break;
12038 }
12039 }
12040 }
12041 }
12042
12043 /* Copy fi.typedef_field_list linked list elements content into the
12044 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12045 if (fi.typedef_field_list)
12046 {
12047 int i = fi.typedef_field_list_count;
12048
12049 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12050 TYPE_TYPEDEF_FIELD_ARRAY (type)
12051 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12052 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12053
12054 /* Reverse the list order to keep the debug info elements order. */
12055 while (--i >= 0)
12056 {
12057 struct typedef_field *dest, *src;
12058
12059 dest = &TYPE_TYPEDEF_FIELD (type, i);
12060 src = &fi.typedef_field_list->field;
12061 fi.typedef_field_list = fi.typedef_field_list->next;
12062 *dest = *src;
12063 }
12064 }
12065
12066 do_cleanups (back_to);
12067
12068 if (HAVE_CPLUS_STRUCT (type))
12069 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12070 }
12071
12072 quirk_gcc_member_function_pointer (type, objfile);
12073
12074 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12075 snapshots) has been known to create a die giving a declaration
12076 for a class that has, as a child, a die giving a definition for a
12077 nested class. So we have to process our children even if the
12078 current die is a declaration. Normally, of course, a declaration
12079 won't have any children at all. */
12080
12081 while (child_die != NULL && child_die->tag)
12082 {
12083 if (child_die->tag == DW_TAG_member
12084 || child_die->tag == DW_TAG_variable
12085 || child_die->tag == DW_TAG_inheritance
12086 || child_die->tag == DW_TAG_template_value_param
12087 || child_die->tag == DW_TAG_template_type_param)
12088 {
12089 /* Do nothing. */
12090 }
12091 else
12092 process_die (child_die, cu);
12093
12094 child_die = sibling_die (child_die);
12095 }
12096
12097 /* Do not consider external references. According to the DWARF standard,
12098 these DIEs are identified by the fact that they have no byte_size
12099 attribute, and a declaration attribute. */
12100 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12101 || !die_is_declaration (die, cu))
12102 new_symbol (die, type, cu);
12103 }
12104
12105 /* Given a DW_AT_enumeration_type die, set its type. We do not
12106 complete the type's fields yet, or create any symbols. */
12107
12108 static struct type *
12109 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12110 {
12111 struct objfile *objfile = cu->objfile;
12112 struct type *type;
12113 struct attribute *attr;
12114 const char *name;
12115
12116 /* If the definition of this type lives in .debug_types, read that type.
12117 Don't follow DW_AT_specification though, that will take us back up
12118 the chain and we want to go down. */
12119 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12120 if (attr)
12121 {
12122 type = get_DW_AT_signature_type (die, attr, cu);
12123
12124 /* The type's CU may not be the same as CU.
12125 Ensure TYPE is recorded with CU in die_type_hash. */
12126 return set_die_type (die, type, cu);
12127 }
12128
12129 type = alloc_type (objfile);
12130
12131 TYPE_CODE (type) = TYPE_CODE_ENUM;
12132 name = dwarf2_full_name (NULL, die, cu);
12133 if (name != NULL)
12134 TYPE_TAG_NAME (type) = name;
12135
12136 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12137 if (attr)
12138 {
12139 TYPE_LENGTH (type) = DW_UNSND (attr);
12140 }
12141 else
12142 {
12143 TYPE_LENGTH (type) = 0;
12144 }
12145
12146 /* The enumeration DIE can be incomplete. In Ada, any type can be
12147 declared as private in the package spec, and then defined only
12148 inside the package body. Such types are known as Taft Amendment
12149 Types. When another package uses such a type, an incomplete DIE
12150 may be generated by the compiler. */
12151 if (die_is_declaration (die, cu))
12152 TYPE_STUB (type) = 1;
12153
12154 return set_die_type (die, type, cu);
12155 }
12156
12157 /* Given a pointer to a die which begins an enumeration, process all
12158 the dies that define the members of the enumeration, and create the
12159 symbol for the enumeration type.
12160
12161 NOTE: We reverse the order of the element list. */
12162
12163 static void
12164 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12165 {
12166 struct type *this_type;
12167
12168 this_type = get_die_type (die, cu);
12169 if (this_type == NULL)
12170 this_type = read_enumeration_type (die, cu);
12171
12172 if (die->child != NULL)
12173 {
12174 struct die_info *child_die;
12175 struct symbol *sym;
12176 struct field *fields = NULL;
12177 int num_fields = 0;
12178 int unsigned_enum = 1;
12179 const char *name;
12180 int flag_enum = 1;
12181 ULONGEST mask = 0;
12182
12183 child_die = die->child;
12184 while (child_die && child_die->tag)
12185 {
12186 if (child_die->tag != DW_TAG_enumerator)
12187 {
12188 process_die (child_die, cu);
12189 }
12190 else
12191 {
12192 name = dwarf2_name (child_die, cu);
12193 if (name)
12194 {
12195 sym = new_symbol (child_die, this_type, cu);
12196 if (SYMBOL_VALUE (sym) < 0)
12197 {
12198 unsigned_enum = 0;
12199 flag_enum = 0;
12200 }
12201 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12202 flag_enum = 0;
12203 else
12204 mask |= SYMBOL_VALUE (sym);
12205
12206 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12207 {
12208 fields = (struct field *)
12209 xrealloc (fields,
12210 (num_fields + DW_FIELD_ALLOC_CHUNK)
12211 * sizeof (struct field));
12212 }
12213
12214 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12215 FIELD_TYPE (fields[num_fields]) = NULL;
12216 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12217 FIELD_BITSIZE (fields[num_fields]) = 0;
12218
12219 num_fields++;
12220 }
12221 }
12222
12223 child_die = sibling_die (child_die);
12224 }
12225
12226 if (num_fields)
12227 {
12228 TYPE_NFIELDS (this_type) = num_fields;
12229 TYPE_FIELDS (this_type) = (struct field *)
12230 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12231 memcpy (TYPE_FIELDS (this_type), fields,
12232 sizeof (struct field) * num_fields);
12233 xfree (fields);
12234 }
12235 if (unsigned_enum)
12236 TYPE_UNSIGNED (this_type) = 1;
12237 if (flag_enum)
12238 TYPE_FLAG_ENUM (this_type) = 1;
12239 }
12240
12241 /* If we are reading an enum from a .debug_types unit, and the enum
12242 is a declaration, and the enum is not the signatured type in the
12243 unit, then we do not want to add a symbol for it. Adding a
12244 symbol would in some cases obscure the true definition of the
12245 enum, giving users an incomplete type when the definition is
12246 actually available. Note that we do not want to do this for all
12247 enums which are just declarations, because C++0x allows forward
12248 enum declarations. */
12249 if (cu->per_cu->is_debug_types
12250 && die_is_declaration (die, cu))
12251 {
12252 struct signatured_type *sig_type;
12253
12254 sig_type = (struct signatured_type *) cu->per_cu;
12255 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12256 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12257 return;
12258 }
12259
12260 new_symbol (die, this_type, cu);
12261 }
12262
12263 /* Extract all information from a DW_TAG_array_type DIE and put it in
12264 the DIE's type field. For now, this only handles one dimensional
12265 arrays. */
12266
12267 static struct type *
12268 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12269 {
12270 struct objfile *objfile = cu->objfile;
12271 struct die_info *child_die;
12272 struct type *type;
12273 struct type *element_type, *range_type, *index_type;
12274 struct type **range_types = NULL;
12275 struct attribute *attr;
12276 int ndim = 0;
12277 struct cleanup *back_to;
12278 const char *name;
12279
12280 element_type = die_type (die, cu);
12281
12282 /* The die_type call above may have already set the type for this DIE. */
12283 type = get_die_type (die, cu);
12284 if (type)
12285 return type;
12286
12287 /* Irix 6.2 native cc creates array types without children for
12288 arrays with unspecified length. */
12289 if (die->child == NULL)
12290 {
12291 index_type = objfile_type (objfile)->builtin_int;
12292 range_type = create_range_type (NULL, index_type, 0, -1);
12293 type = create_array_type (NULL, element_type, range_type);
12294 return set_die_type (die, type, cu);
12295 }
12296
12297 back_to = make_cleanup (null_cleanup, NULL);
12298 child_die = die->child;
12299 while (child_die && child_die->tag)
12300 {
12301 if (child_die->tag == DW_TAG_subrange_type)
12302 {
12303 struct type *child_type = read_type_die (child_die, cu);
12304
12305 if (child_type != NULL)
12306 {
12307 /* The range type was succesfully read. Save it for the
12308 array type creation. */
12309 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12310 {
12311 range_types = (struct type **)
12312 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12313 * sizeof (struct type *));
12314 if (ndim == 0)
12315 make_cleanup (free_current_contents, &range_types);
12316 }
12317 range_types[ndim++] = child_type;
12318 }
12319 }
12320 child_die = sibling_die (child_die);
12321 }
12322
12323 /* Dwarf2 dimensions are output from left to right, create the
12324 necessary array types in backwards order. */
12325
12326 type = element_type;
12327
12328 if (read_array_order (die, cu) == DW_ORD_col_major)
12329 {
12330 int i = 0;
12331
12332 while (i < ndim)
12333 type = create_array_type (NULL, type, range_types[i++]);
12334 }
12335 else
12336 {
12337 while (ndim-- > 0)
12338 type = create_array_type (NULL, type, range_types[ndim]);
12339 }
12340
12341 /* Understand Dwarf2 support for vector types (like they occur on
12342 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12343 array type. This is not part of the Dwarf2/3 standard yet, but a
12344 custom vendor extension. The main difference between a regular
12345 array and the vector variant is that vectors are passed by value
12346 to functions. */
12347 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12348 if (attr)
12349 make_vector_type (type);
12350
12351 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12352 implementation may choose to implement triple vectors using this
12353 attribute. */
12354 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12355 if (attr)
12356 {
12357 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12358 TYPE_LENGTH (type) = DW_UNSND (attr);
12359 else
12360 complaint (&symfile_complaints,
12361 _("DW_AT_byte_size for array type smaller "
12362 "than the total size of elements"));
12363 }
12364
12365 name = dwarf2_name (die, cu);
12366 if (name)
12367 TYPE_NAME (type) = name;
12368
12369 /* Install the type in the die. */
12370 set_die_type (die, type, cu);
12371
12372 /* set_die_type should be already done. */
12373 set_descriptive_type (type, die, cu);
12374
12375 do_cleanups (back_to);
12376
12377 return type;
12378 }
12379
12380 static enum dwarf_array_dim_ordering
12381 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12382 {
12383 struct attribute *attr;
12384
12385 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12386
12387 if (attr) return DW_SND (attr);
12388
12389 /* GNU F77 is a special case, as at 08/2004 array type info is the
12390 opposite order to the dwarf2 specification, but data is still
12391 laid out as per normal fortran.
12392
12393 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12394 version checking. */
12395
12396 if (cu->language == language_fortran
12397 && cu->producer && strstr (cu->producer, "GNU F77"))
12398 {
12399 return DW_ORD_row_major;
12400 }
12401
12402 switch (cu->language_defn->la_array_ordering)
12403 {
12404 case array_column_major:
12405 return DW_ORD_col_major;
12406 case array_row_major:
12407 default:
12408 return DW_ORD_row_major;
12409 };
12410 }
12411
12412 /* Extract all information from a DW_TAG_set_type DIE and put it in
12413 the DIE's type field. */
12414
12415 static struct type *
12416 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12417 {
12418 struct type *domain_type, *set_type;
12419 struct attribute *attr;
12420
12421 domain_type = die_type (die, cu);
12422
12423 /* The die_type call above may have already set the type for this DIE. */
12424 set_type = get_die_type (die, cu);
12425 if (set_type)
12426 return set_type;
12427
12428 set_type = create_set_type (NULL, domain_type);
12429
12430 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12431 if (attr)
12432 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12433
12434 return set_die_type (die, set_type, cu);
12435 }
12436
12437 /* A helper for read_common_block that creates a locexpr baton.
12438 SYM is the symbol which we are marking as computed.
12439 COMMON_DIE is the DIE for the common block.
12440 COMMON_LOC is the location expression attribute for the common
12441 block itself.
12442 MEMBER_LOC is the location expression attribute for the particular
12443 member of the common block that we are processing.
12444 CU is the CU from which the above come. */
12445
12446 static void
12447 mark_common_block_symbol_computed (struct symbol *sym,
12448 struct die_info *common_die,
12449 struct attribute *common_loc,
12450 struct attribute *member_loc,
12451 struct dwarf2_cu *cu)
12452 {
12453 struct objfile *objfile = dwarf2_per_objfile->objfile;
12454 struct dwarf2_locexpr_baton *baton;
12455 gdb_byte *ptr;
12456 unsigned int cu_off;
12457 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12458 LONGEST offset = 0;
12459
12460 gdb_assert (common_loc && member_loc);
12461 gdb_assert (attr_form_is_block (common_loc));
12462 gdb_assert (attr_form_is_block (member_loc)
12463 || attr_form_is_constant (member_loc));
12464
12465 baton = obstack_alloc (&objfile->objfile_obstack,
12466 sizeof (struct dwarf2_locexpr_baton));
12467 baton->per_cu = cu->per_cu;
12468 gdb_assert (baton->per_cu);
12469
12470 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12471
12472 if (attr_form_is_constant (member_loc))
12473 {
12474 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12475 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12476 }
12477 else
12478 baton->size += DW_BLOCK (member_loc)->size;
12479
12480 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12481 baton->data = ptr;
12482
12483 *ptr++ = DW_OP_call4;
12484 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12485 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12486 ptr += 4;
12487
12488 if (attr_form_is_constant (member_loc))
12489 {
12490 *ptr++ = DW_OP_addr;
12491 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12492 ptr += cu->header.addr_size;
12493 }
12494 else
12495 {
12496 /* We have to copy the data here, because DW_OP_call4 will only
12497 use a DW_AT_location attribute. */
12498 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12499 ptr += DW_BLOCK (member_loc)->size;
12500 }
12501
12502 *ptr++ = DW_OP_plus;
12503 gdb_assert (ptr - baton->data == baton->size);
12504
12505 SYMBOL_LOCATION_BATON (sym) = baton;
12506 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12507 }
12508
12509 /* Create appropriate locally-scoped variables for all the
12510 DW_TAG_common_block entries. Also create a struct common_block
12511 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12512 is used to sepate the common blocks name namespace from regular
12513 variable names. */
12514
12515 static void
12516 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12517 {
12518 struct attribute *attr;
12519
12520 attr = dwarf2_attr (die, DW_AT_location, cu);
12521 if (attr)
12522 {
12523 /* Support the .debug_loc offsets. */
12524 if (attr_form_is_block (attr))
12525 {
12526 /* Ok. */
12527 }
12528 else if (attr_form_is_section_offset (attr))
12529 {
12530 dwarf2_complex_location_expr_complaint ();
12531 attr = NULL;
12532 }
12533 else
12534 {
12535 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12536 "common block member");
12537 attr = NULL;
12538 }
12539 }
12540
12541 if (die->child != NULL)
12542 {
12543 struct objfile *objfile = cu->objfile;
12544 struct die_info *child_die;
12545 size_t n_entries = 0, size;
12546 struct common_block *common_block;
12547 struct symbol *sym;
12548
12549 for (child_die = die->child;
12550 child_die && child_die->tag;
12551 child_die = sibling_die (child_die))
12552 ++n_entries;
12553
12554 size = (sizeof (struct common_block)
12555 + (n_entries - 1) * sizeof (struct symbol *));
12556 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12557 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12558 common_block->n_entries = 0;
12559
12560 for (child_die = die->child;
12561 child_die && child_die->tag;
12562 child_die = sibling_die (child_die))
12563 {
12564 /* Create the symbol in the DW_TAG_common_block block in the current
12565 symbol scope. */
12566 sym = new_symbol (child_die, NULL, cu);
12567 if (sym != NULL)
12568 {
12569 struct attribute *member_loc;
12570
12571 common_block->contents[common_block->n_entries++] = sym;
12572
12573 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12574 cu);
12575 if (member_loc)
12576 {
12577 /* GDB has handled this for a long time, but it is
12578 not specified by DWARF. It seems to have been
12579 emitted by gfortran at least as recently as:
12580 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12581 complaint (&symfile_complaints,
12582 _("Variable in common block has "
12583 "DW_AT_data_member_location "
12584 "- DIE at 0x%x [in module %s]"),
12585 child_die->offset.sect_off, cu->objfile->name);
12586
12587 if (attr_form_is_section_offset (member_loc))
12588 dwarf2_complex_location_expr_complaint ();
12589 else if (attr_form_is_constant (member_loc)
12590 || attr_form_is_block (member_loc))
12591 {
12592 if (attr)
12593 mark_common_block_symbol_computed (sym, die, attr,
12594 member_loc, cu);
12595 }
12596 else
12597 dwarf2_complex_location_expr_complaint ();
12598 }
12599 }
12600 }
12601
12602 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12603 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12604 }
12605 }
12606
12607 /* Create a type for a C++ namespace. */
12608
12609 static struct type *
12610 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12611 {
12612 struct objfile *objfile = cu->objfile;
12613 const char *previous_prefix, *name;
12614 int is_anonymous;
12615 struct type *type;
12616
12617 /* For extensions, reuse the type of the original namespace. */
12618 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12619 {
12620 struct die_info *ext_die;
12621 struct dwarf2_cu *ext_cu = cu;
12622
12623 ext_die = dwarf2_extension (die, &ext_cu);
12624 type = read_type_die (ext_die, ext_cu);
12625
12626 /* EXT_CU may not be the same as CU.
12627 Ensure TYPE is recorded with CU in die_type_hash. */
12628 return set_die_type (die, type, cu);
12629 }
12630
12631 name = namespace_name (die, &is_anonymous, cu);
12632
12633 /* Now build the name of the current namespace. */
12634
12635 previous_prefix = determine_prefix (die, cu);
12636 if (previous_prefix[0] != '\0')
12637 name = typename_concat (&objfile->objfile_obstack,
12638 previous_prefix, name, 0, cu);
12639
12640 /* Create the type. */
12641 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12642 objfile);
12643 TYPE_NAME (type) = name;
12644 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12645
12646 return set_die_type (die, type, cu);
12647 }
12648
12649 /* Read a C++ namespace. */
12650
12651 static void
12652 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12653 {
12654 struct objfile *objfile = cu->objfile;
12655 int is_anonymous;
12656
12657 /* Add a symbol associated to this if we haven't seen the namespace
12658 before. Also, add a using directive if it's an anonymous
12659 namespace. */
12660
12661 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12662 {
12663 struct type *type;
12664
12665 type = read_type_die (die, cu);
12666 new_symbol (die, type, cu);
12667
12668 namespace_name (die, &is_anonymous, cu);
12669 if (is_anonymous)
12670 {
12671 const char *previous_prefix = determine_prefix (die, cu);
12672
12673 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12674 NULL, NULL, 0, &objfile->objfile_obstack);
12675 }
12676 }
12677
12678 if (die->child != NULL)
12679 {
12680 struct die_info *child_die = die->child;
12681
12682 while (child_die && child_die->tag)
12683 {
12684 process_die (child_die, cu);
12685 child_die = sibling_die (child_die);
12686 }
12687 }
12688 }
12689
12690 /* Read a Fortran module as type. This DIE can be only a declaration used for
12691 imported module. Still we need that type as local Fortran "use ... only"
12692 declaration imports depend on the created type in determine_prefix. */
12693
12694 static struct type *
12695 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12696 {
12697 struct objfile *objfile = cu->objfile;
12698 const char *module_name;
12699 struct type *type;
12700
12701 module_name = dwarf2_name (die, cu);
12702 if (!module_name)
12703 complaint (&symfile_complaints,
12704 _("DW_TAG_module has no name, offset 0x%x"),
12705 die->offset.sect_off);
12706 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12707
12708 /* determine_prefix uses TYPE_TAG_NAME. */
12709 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12710
12711 return set_die_type (die, type, cu);
12712 }
12713
12714 /* Read a Fortran module. */
12715
12716 static void
12717 read_module (struct die_info *die, struct dwarf2_cu *cu)
12718 {
12719 struct die_info *child_die = die->child;
12720
12721 while (child_die && child_die->tag)
12722 {
12723 process_die (child_die, cu);
12724 child_die = sibling_die (child_die);
12725 }
12726 }
12727
12728 /* Return the name of the namespace represented by DIE. Set
12729 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12730 namespace. */
12731
12732 static const char *
12733 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12734 {
12735 struct die_info *current_die;
12736 const char *name = NULL;
12737
12738 /* Loop through the extensions until we find a name. */
12739
12740 for (current_die = die;
12741 current_die != NULL;
12742 current_die = dwarf2_extension (die, &cu))
12743 {
12744 name = dwarf2_name (current_die, cu);
12745 if (name != NULL)
12746 break;
12747 }
12748
12749 /* Is it an anonymous namespace? */
12750
12751 *is_anonymous = (name == NULL);
12752 if (*is_anonymous)
12753 name = CP_ANONYMOUS_NAMESPACE_STR;
12754
12755 return name;
12756 }
12757
12758 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12759 the user defined type vector. */
12760
12761 static struct type *
12762 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12763 {
12764 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12765 struct comp_unit_head *cu_header = &cu->header;
12766 struct type *type;
12767 struct attribute *attr_byte_size;
12768 struct attribute *attr_address_class;
12769 int byte_size, addr_class;
12770 struct type *target_type;
12771
12772 target_type = die_type (die, cu);
12773
12774 /* The die_type call above may have already set the type for this DIE. */
12775 type = get_die_type (die, cu);
12776 if (type)
12777 return type;
12778
12779 type = lookup_pointer_type (target_type);
12780
12781 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12782 if (attr_byte_size)
12783 byte_size = DW_UNSND (attr_byte_size);
12784 else
12785 byte_size = cu_header->addr_size;
12786
12787 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12788 if (attr_address_class)
12789 addr_class = DW_UNSND (attr_address_class);
12790 else
12791 addr_class = DW_ADDR_none;
12792
12793 /* If the pointer size or address class is different than the
12794 default, create a type variant marked as such and set the
12795 length accordingly. */
12796 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12797 {
12798 if (gdbarch_address_class_type_flags_p (gdbarch))
12799 {
12800 int type_flags;
12801
12802 type_flags = gdbarch_address_class_type_flags
12803 (gdbarch, byte_size, addr_class);
12804 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12805 == 0);
12806 type = make_type_with_address_space (type, type_flags);
12807 }
12808 else if (TYPE_LENGTH (type) != byte_size)
12809 {
12810 complaint (&symfile_complaints,
12811 _("invalid pointer size %d"), byte_size);
12812 }
12813 else
12814 {
12815 /* Should we also complain about unhandled address classes? */
12816 }
12817 }
12818
12819 TYPE_LENGTH (type) = byte_size;
12820 return set_die_type (die, type, cu);
12821 }
12822
12823 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12824 the user defined type vector. */
12825
12826 static struct type *
12827 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12828 {
12829 struct type *type;
12830 struct type *to_type;
12831 struct type *domain;
12832
12833 to_type = die_type (die, cu);
12834 domain = die_containing_type (die, cu);
12835
12836 /* The calls above may have already set the type for this DIE. */
12837 type = get_die_type (die, cu);
12838 if (type)
12839 return type;
12840
12841 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12842 type = lookup_methodptr_type (to_type);
12843 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12844 {
12845 struct type *new_type = alloc_type (cu->objfile);
12846
12847 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12848 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12849 TYPE_VARARGS (to_type));
12850 type = lookup_methodptr_type (new_type);
12851 }
12852 else
12853 type = lookup_memberptr_type (to_type, domain);
12854
12855 return set_die_type (die, type, cu);
12856 }
12857
12858 /* Extract all information from a DW_TAG_reference_type DIE and add to
12859 the user defined type vector. */
12860
12861 static struct type *
12862 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12863 {
12864 struct comp_unit_head *cu_header = &cu->header;
12865 struct type *type, *target_type;
12866 struct attribute *attr;
12867
12868 target_type = die_type (die, cu);
12869
12870 /* The die_type call above may have already set the type for this DIE. */
12871 type = get_die_type (die, cu);
12872 if (type)
12873 return type;
12874
12875 type = lookup_reference_type (target_type);
12876 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12877 if (attr)
12878 {
12879 TYPE_LENGTH (type) = DW_UNSND (attr);
12880 }
12881 else
12882 {
12883 TYPE_LENGTH (type) = cu_header->addr_size;
12884 }
12885 return set_die_type (die, type, cu);
12886 }
12887
12888 static struct type *
12889 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12890 {
12891 struct type *base_type, *cv_type;
12892
12893 base_type = die_type (die, cu);
12894
12895 /* The die_type call above may have already set the type for this DIE. */
12896 cv_type = get_die_type (die, cu);
12897 if (cv_type)
12898 return cv_type;
12899
12900 /* In case the const qualifier is applied to an array type, the element type
12901 is so qualified, not the array type (section 6.7.3 of C99). */
12902 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12903 {
12904 struct type *el_type, *inner_array;
12905
12906 base_type = copy_type (base_type);
12907 inner_array = base_type;
12908
12909 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12910 {
12911 TYPE_TARGET_TYPE (inner_array) =
12912 copy_type (TYPE_TARGET_TYPE (inner_array));
12913 inner_array = TYPE_TARGET_TYPE (inner_array);
12914 }
12915
12916 el_type = TYPE_TARGET_TYPE (inner_array);
12917 TYPE_TARGET_TYPE (inner_array) =
12918 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12919
12920 return set_die_type (die, base_type, cu);
12921 }
12922
12923 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12924 return set_die_type (die, cv_type, cu);
12925 }
12926
12927 static struct type *
12928 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12929 {
12930 struct type *base_type, *cv_type;
12931
12932 base_type = die_type (die, cu);
12933
12934 /* The die_type call above may have already set the type for this DIE. */
12935 cv_type = get_die_type (die, cu);
12936 if (cv_type)
12937 return cv_type;
12938
12939 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12940 return set_die_type (die, cv_type, cu);
12941 }
12942
12943 /* Handle DW_TAG_restrict_type. */
12944
12945 static struct type *
12946 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12947 {
12948 struct type *base_type, *cv_type;
12949
12950 base_type = die_type (die, cu);
12951
12952 /* The die_type call above may have already set the type for this DIE. */
12953 cv_type = get_die_type (die, cu);
12954 if (cv_type)
12955 return cv_type;
12956
12957 cv_type = make_restrict_type (base_type);
12958 return set_die_type (die, cv_type, cu);
12959 }
12960
12961 /* Extract all information from a DW_TAG_string_type DIE and add to
12962 the user defined type vector. It isn't really a user defined type,
12963 but it behaves like one, with other DIE's using an AT_user_def_type
12964 attribute to reference it. */
12965
12966 static struct type *
12967 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12968 {
12969 struct objfile *objfile = cu->objfile;
12970 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12971 struct type *type, *range_type, *index_type, *char_type;
12972 struct attribute *attr;
12973 unsigned int length;
12974
12975 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12976 if (attr)
12977 {
12978 length = DW_UNSND (attr);
12979 }
12980 else
12981 {
12982 /* Check for the DW_AT_byte_size attribute. */
12983 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12984 if (attr)
12985 {
12986 length = DW_UNSND (attr);
12987 }
12988 else
12989 {
12990 length = 1;
12991 }
12992 }
12993
12994 index_type = objfile_type (objfile)->builtin_int;
12995 range_type = create_range_type (NULL, index_type, 1, length);
12996 char_type = language_string_char_type (cu->language_defn, gdbarch);
12997 type = create_string_type (NULL, char_type, range_type);
12998
12999 return set_die_type (die, type, cu);
13000 }
13001
13002 /* Assuming that DIE corresponds to a function, returns nonzero
13003 if the function is prototyped. */
13004
13005 static int
13006 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13007 {
13008 struct attribute *attr;
13009
13010 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13011 if (attr && (DW_UNSND (attr) != 0))
13012 return 1;
13013
13014 /* The DWARF standard implies that the DW_AT_prototyped attribute
13015 is only meaninful for C, but the concept also extends to other
13016 languages that allow unprototyped functions (Eg: Objective C).
13017 For all other languages, assume that functions are always
13018 prototyped. */
13019 if (cu->language != language_c
13020 && cu->language != language_objc
13021 && cu->language != language_opencl)
13022 return 1;
13023
13024 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13025 prototyped and unprototyped functions; default to prototyped,
13026 since that is more common in modern code (and RealView warns
13027 about unprototyped functions). */
13028 if (producer_is_realview (cu->producer))
13029 return 1;
13030
13031 return 0;
13032 }
13033
13034 /* Handle DIES due to C code like:
13035
13036 struct foo
13037 {
13038 int (*funcp)(int a, long l);
13039 int b;
13040 };
13041
13042 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13043
13044 static struct type *
13045 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13046 {
13047 struct objfile *objfile = cu->objfile;
13048 struct type *type; /* Type that this function returns. */
13049 struct type *ftype; /* Function that returns above type. */
13050 struct attribute *attr;
13051
13052 type = die_type (die, cu);
13053
13054 /* The die_type call above may have already set the type for this DIE. */
13055 ftype = get_die_type (die, cu);
13056 if (ftype)
13057 return ftype;
13058
13059 ftype = lookup_function_type (type);
13060
13061 if (prototyped_function_p (die, cu))
13062 TYPE_PROTOTYPED (ftype) = 1;
13063
13064 /* Store the calling convention in the type if it's available in
13065 the subroutine die. Otherwise set the calling convention to
13066 the default value DW_CC_normal. */
13067 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13068 if (attr)
13069 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13070 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13071 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13072 else
13073 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13074
13075 /* We need to add the subroutine type to the die immediately so
13076 we don't infinitely recurse when dealing with parameters
13077 declared as the same subroutine type. */
13078 set_die_type (die, ftype, cu);
13079
13080 if (die->child != NULL)
13081 {
13082 struct type *void_type = objfile_type (objfile)->builtin_void;
13083 struct die_info *child_die;
13084 int nparams, iparams;
13085
13086 /* Count the number of parameters.
13087 FIXME: GDB currently ignores vararg functions, but knows about
13088 vararg member functions. */
13089 nparams = 0;
13090 child_die = die->child;
13091 while (child_die && child_die->tag)
13092 {
13093 if (child_die->tag == DW_TAG_formal_parameter)
13094 nparams++;
13095 else if (child_die->tag == DW_TAG_unspecified_parameters)
13096 TYPE_VARARGS (ftype) = 1;
13097 child_die = sibling_die (child_die);
13098 }
13099
13100 /* Allocate storage for parameters and fill them in. */
13101 TYPE_NFIELDS (ftype) = nparams;
13102 TYPE_FIELDS (ftype) = (struct field *)
13103 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13104
13105 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13106 even if we error out during the parameters reading below. */
13107 for (iparams = 0; iparams < nparams; iparams++)
13108 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13109
13110 iparams = 0;
13111 child_die = die->child;
13112 while (child_die && child_die->tag)
13113 {
13114 if (child_die->tag == DW_TAG_formal_parameter)
13115 {
13116 struct type *arg_type;
13117
13118 /* DWARF version 2 has no clean way to discern C++
13119 static and non-static member functions. G++ helps
13120 GDB by marking the first parameter for non-static
13121 member functions (which is the this pointer) as
13122 artificial. We pass this information to
13123 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13124
13125 DWARF version 3 added DW_AT_object_pointer, which GCC
13126 4.5 does not yet generate. */
13127 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13128 if (attr)
13129 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13130 else
13131 {
13132 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13133
13134 /* GCC/43521: In java, the formal parameter
13135 "this" is sometimes not marked with DW_AT_artificial. */
13136 if (cu->language == language_java)
13137 {
13138 const char *name = dwarf2_name (child_die, cu);
13139
13140 if (name && !strcmp (name, "this"))
13141 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13142 }
13143 }
13144 arg_type = die_type (child_die, cu);
13145
13146 /* RealView does not mark THIS as const, which the testsuite
13147 expects. GCC marks THIS as const in method definitions,
13148 but not in the class specifications (GCC PR 43053). */
13149 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13150 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13151 {
13152 int is_this = 0;
13153 struct dwarf2_cu *arg_cu = cu;
13154 const char *name = dwarf2_name (child_die, cu);
13155
13156 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13157 if (attr)
13158 {
13159 /* If the compiler emits this, use it. */
13160 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13161 is_this = 1;
13162 }
13163 else if (name && strcmp (name, "this") == 0)
13164 /* Function definitions will have the argument names. */
13165 is_this = 1;
13166 else if (name == NULL && iparams == 0)
13167 /* Declarations may not have the names, so like
13168 elsewhere in GDB, assume an artificial first
13169 argument is "this". */
13170 is_this = 1;
13171
13172 if (is_this)
13173 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13174 arg_type, 0);
13175 }
13176
13177 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13178 iparams++;
13179 }
13180 child_die = sibling_die (child_die);
13181 }
13182 }
13183
13184 return ftype;
13185 }
13186
13187 static struct type *
13188 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13189 {
13190 struct objfile *objfile = cu->objfile;
13191 const char *name = NULL;
13192 struct type *this_type, *target_type;
13193
13194 name = dwarf2_full_name (NULL, die, cu);
13195 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13196 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13197 TYPE_NAME (this_type) = name;
13198 set_die_type (die, this_type, cu);
13199 target_type = die_type (die, cu);
13200 if (target_type != this_type)
13201 TYPE_TARGET_TYPE (this_type) = target_type;
13202 else
13203 {
13204 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13205 spec and cause infinite loops in GDB. */
13206 complaint (&symfile_complaints,
13207 _("Self-referential DW_TAG_typedef "
13208 "- DIE at 0x%x [in module %s]"),
13209 die->offset.sect_off, objfile->name);
13210 TYPE_TARGET_TYPE (this_type) = NULL;
13211 }
13212 return this_type;
13213 }
13214
13215 /* Find a representation of a given base type and install
13216 it in the TYPE field of the die. */
13217
13218 static struct type *
13219 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13220 {
13221 struct objfile *objfile = cu->objfile;
13222 struct type *type;
13223 struct attribute *attr;
13224 int encoding = 0, size = 0;
13225 const char *name;
13226 enum type_code code = TYPE_CODE_INT;
13227 int type_flags = 0;
13228 struct type *target_type = NULL;
13229
13230 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13231 if (attr)
13232 {
13233 encoding = DW_UNSND (attr);
13234 }
13235 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13236 if (attr)
13237 {
13238 size = DW_UNSND (attr);
13239 }
13240 name = dwarf2_name (die, cu);
13241 if (!name)
13242 {
13243 complaint (&symfile_complaints,
13244 _("DW_AT_name missing from DW_TAG_base_type"));
13245 }
13246
13247 switch (encoding)
13248 {
13249 case DW_ATE_address:
13250 /* Turn DW_ATE_address into a void * pointer. */
13251 code = TYPE_CODE_PTR;
13252 type_flags |= TYPE_FLAG_UNSIGNED;
13253 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13254 break;
13255 case DW_ATE_boolean:
13256 code = TYPE_CODE_BOOL;
13257 type_flags |= TYPE_FLAG_UNSIGNED;
13258 break;
13259 case DW_ATE_complex_float:
13260 code = TYPE_CODE_COMPLEX;
13261 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13262 break;
13263 case DW_ATE_decimal_float:
13264 code = TYPE_CODE_DECFLOAT;
13265 break;
13266 case DW_ATE_float:
13267 code = TYPE_CODE_FLT;
13268 break;
13269 case DW_ATE_signed:
13270 break;
13271 case DW_ATE_unsigned:
13272 type_flags |= TYPE_FLAG_UNSIGNED;
13273 if (cu->language == language_fortran
13274 && name
13275 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13276 code = TYPE_CODE_CHAR;
13277 break;
13278 case DW_ATE_signed_char:
13279 if (cu->language == language_ada || cu->language == language_m2
13280 || cu->language == language_pascal
13281 || cu->language == language_fortran)
13282 code = TYPE_CODE_CHAR;
13283 break;
13284 case DW_ATE_unsigned_char:
13285 if (cu->language == language_ada || cu->language == language_m2
13286 || cu->language == language_pascal
13287 || cu->language == language_fortran)
13288 code = TYPE_CODE_CHAR;
13289 type_flags |= TYPE_FLAG_UNSIGNED;
13290 break;
13291 case DW_ATE_UTF:
13292 /* We just treat this as an integer and then recognize the
13293 type by name elsewhere. */
13294 break;
13295
13296 default:
13297 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13298 dwarf_type_encoding_name (encoding));
13299 break;
13300 }
13301
13302 type = init_type (code, size, type_flags, NULL, objfile);
13303 TYPE_NAME (type) = name;
13304 TYPE_TARGET_TYPE (type) = target_type;
13305
13306 if (name && strcmp (name, "char") == 0)
13307 TYPE_NOSIGN (type) = 1;
13308
13309 return set_die_type (die, type, cu);
13310 }
13311
13312 /* Read the given DW_AT_subrange DIE. */
13313
13314 static struct type *
13315 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13316 {
13317 struct type *base_type, *orig_base_type;
13318 struct type *range_type;
13319 struct attribute *attr;
13320 LONGEST low, high;
13321 int low_default_is_valid;
13322 const char *name;
13323 LONGEST negative_mask;
13324
13325 orig_base_type = die_type (die, cu);
13326 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13327 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13328 creating the range type, but we use the result of check_typedef
13329 when examining properties of the type. */
13330 base_type = check_typedef (orig_base_type);
13331
13332 /* The die_type call above may have already set the type for this DIE. */
13333 range_type = get_die_type (die, cu);
13334 if (range_type)
13335 return range_type;
13336
13337 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13338 omitting DW_AT_lower_bound. */
13339 switch (cu->language)
13340 {
13341 case language_c:
13342 case language_cplus:
13343 low = 0;
13344 low_default_is_valid = 1;
13345 break;
13346 case language_fortran:
13347 low = 1;
13348 low_default_is_valid = 1;
13349 break;
13350 case language_d:
13351 case language_java:
13352 case language_objc:
13353 low = 0;
13354 low_default_is_valid = (cu->header.version >= 4);
13355 break;
13356 case language_ada:
13357 case language_m2:
13358 case language_pascal:
13359 low = 1;
13360 low_default_is_valid = (cu->header.version >= 4);
13361 break;
13362 default:
13363 low = 0;
13364 low_default_is_valid = 0;
13365 break;
13366 }
13367
13368 /* FIXME: For variable sized arrays either of these could be
13369 a variable rather than a constant value. We'll allow it,
13370 but we don't know how to handle it. */
13371 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13372 if (attr)
13373 low = dwarf2_get_attr_constant_value (attr, low);
13374 else if (!low_default_is_valid)
13375 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13376 "- DIE at 0x%x [in module %s]"),
13377 die->offset.sect_off, cu->objfile->name);
13378
13379 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13380 if (attr)
13381 {
13382 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
13383 {
13384 /* GCC encodes arrays with unspecified or dynamic length
13385 with a DW_FORM_block1 attribute or a reference attribute.
13386 FIXME: GDB does not yet know how to handle dynamic
13387 arrays properly, treat them as arrays with unspecified
13388 length for now.
13389
13390 FIXME: jimb/2003-09-22: GDB does not really know
13391 how to handle arrays of unspecified length
13392 either; we just represent them as zero-length
13393 arrays. Choose an appropriate upper bound given
13394 the lower bound we've computed above. */
13395 high = low - 1;
13396 }
13397 else
13398 high = dwarf2_get_attr_constant_value (attr, 1);
13399 }
13400 else
13401 {
13402 attr = dwarf2_attr (die, DW_AT_count, cu);
13403 if (attr)
13404 {
13405 int count = dwarf2_get_attr_constant_value (attr, 1);
13406 high = low + count - 1;
13407 }
13408 else
13409 {
13410 /* Unspecified array length. */
13411 high = low - 1;
13412 }
13413 }
13414
13415 /* Dwarf-2 specifications explicitly allows to create subrange types
13416 without specifying a base type.
13417 In that case, the base type must be set to the type of
13418 the lower bound, upper bound or count, in that order, if any of these
13419 three attributes references an object that has a type.
13420 If no base type is found, the Dwarf-2 specifications say that
13421 a signed integer type of size equal to the size of an address should
13422 be used.
13423 For the following C code: `extern char gdb_int [];'
13424 GCC produces an empty range DIE.
13425 FIXME: muller/2010-05-28: Possible references to object for low bound,
13426 high bound or count are not yet handled by this code. */
13427 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13428 {
13429 struct objfile *objfile = cu->objfile;
13430 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13431 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13432 struct type *int_type = objfile_type (objfile)->builtin_int;
13433
13434 /* Test "int", "long int", and "long long int" objfile types,
13435 and select the first one having a size above or equal to the
13436 architecture address size. */
13437 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13438 base_type = int_type;
13439 else
13440 {
13441 int_type = objfile_type (objfile)->builtin_long;
13442 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13443 base_type = int_type;
13444 else
13445 {
13446 int_type = objfile_type (objfile)->builtin_long_long;
13447 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13448 base_type = int_type;
13449 }
13450 }
13451 }
13452
13453 negative_mask =
13454 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13455 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13456 low |= negative_mask;
13457 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13458 high |= negative_mask;
13459
13460 range_type = create_range_type (NULL, orig_base_type, low, high);
13461
13462 /* Mark arrays with dynamic length at least as an array of unspecified
13463 length. GDB could check the boundary but before it gets implemented at
13464 least allow accessing the array elements. */
13465 if (attr && attr_form_is_block (attr))
13466 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13467
13468 /* Ada expects an empty array on no boundary attributes. */
13469 if (attr == NULL && cu->language != language_ada)
13470 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13471
13472 name = dwarf2_name (die, cu);
13473 if (name)
13474 TYPE_NAME (range_type) = name;
13475
13476 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13477 if (attr)
13478 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13479
13480 set_die_type (die, range_type, cu);
13481
13482 /* set_die_type should be already done. */
13483 set_descriptive_type (range_type, die, cu);
13484
13485 return range_type;
13486 }
13487
13488 static struct type *
13489 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13490 {
13491 struct type *type;
13492
13493 /* For now, we only support the C meaning of an unspecified type: void. */
13494
13495 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13496 TYPE_NAME (type) = dwarf2_name (die, cu);
13497
13498 return set_die_type (die, type, cu);
13499 }
13500
13501 /* Read a single die and all its descendents. Set the die's sibling
13502 field to NULL; set other fields in the die correctly, and set all
13503 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13504 location of the info_ptr after reading all of those dies. PARENT
13505 is the parent of the die in question. */
13506
13507 static struct die_info *
13508 read_die_and_children (const struct die_reader_specs *reader,
13509 const gdb_byte *info_ptr,
13510 const gdb_byte **new_info_ptr,
13511 struct die_info *parent)
13512 {
13513 struct die_info *die;
13514 const gdb_byte *cur_ptr;
13515 int has_children;
13516
13517 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13518 if (die == NULL)
13519 {
13520 *new_info_ptr = cur_ptr;
13521 return NULL;
13522 }
13523 store_in_ref_table (die, reader->cu);
13524
13525 if (has_children)
13526 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13527 else
13528 {
13529 die->child = NULL;
13530 *new_info_ptr = cur_ptr;
13531 }
13532
13533 die->sibling = NULL;
13534 die->parent = parent;
13535 return die;
13536 }
13537
13538 /* Read a die, all of its descendents, and all of its siblings; set
13539 all of the fields of all of the dies correctly. Arguments are as
13540 in read_die_and_children. */
13541
13542 static struct die_info *
13543 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13544 const gdb_byte *info_ptr,
13545 const gdb_byte **new_info_ptr,
13546 struct die_info *parent)
13547 {
13548 struct die_info *first_die, *last_sibling;
13549 const gdb_byte *cur_ptr;
13550
13551 cur_ptr = info_ptr;
13552 first_die = last_sibling = NULL;
13553
13554 while (1)
13555 {
13556 struct die_info *die
13557 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13558
13559 if (die == NULL)
13560 {
13561 *new_info_ptr = cur_ptr;
13562 return first_die;
13563 }
13564
13565 if (!first_die)
13566 first_die = die;
13567 else
13568 last_sibling->sibling = die;
13569
13570 last_sibling = die;
13571 }
13572 }
13573
13574 /* Read a die, all of its descendents, and all of its siblings; set
13575 all of the fields of all of the dies correctly. Arguments are as
13576 in read_die_and_children.
13577 This the main entry point for reading a DIE and all its children. */
13578
13579 static struct die_info *
13580 read_die_and_siblings (const struct die_reader_specs *reader,
13581 const gdb_byte *info_ptr,
13582 const gdb_byte **new_info_ptr,
13583 struct die_info *parent)
13584 {
13585 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13586 new_info_ptr, parent);
13587
13588 if (dwarf2_die_debug)
13589 {
13590 fprintf_unfiltered (gdb_stdlog,
13591 "Read die from %s@0x%x of %s:\n",
13592 bfd_section_name (reader->abfd,
13593 reader->die_section->asection),
13594 (unsigned) (info_ptr - reader->die_section->buffer),
13595 bfd_get_filename (reader->abfd));
13596 dump_die (die, dwarf2_die_debug);
13597 }
13598
13599 return die;
13600 }
13601
13602 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13603 attributes.
13604 The caller is responsible for filling in the extra attributes
13605 and updating (*DIEP)->num_attrs.
13606 Set DIEP to point to a newly allocated die with its information,
13607 except for its child, sibling, and parent fields.
13608 Set HAS_CHILDREN to tell whether the die has children or not. */
13609
13610 static const gdb_byte *
13611 read_full_die_1 (const struct die_reader_specs *reader,
13612 struct die_info **diep, const gdb_byte *info_ptr,
13613 int *has_children, int num_extra_attrs)
13614 {
13615 unsigned int abbrev_number, bytes_read, i;
13616 sect_offset offset;
13617 struct abbrev_info *abbrev;
13618 struct die_info *die;
13619 struct dwarf2_cu *cu = reader->cu;
13620 bfd *abfd = reader->abfd;
13621
13622 offset.sect_off = info_ptr - reader->buffer;
13623 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13624 info_ptr += bytes_read;
13625 if (!abbrev_number)
13626 {
13627 *diep = NULL;
13628 *has_children = 0;
13629 return info_ptr;
13630 }
13631
13632 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13633 if (!abbrev)
13634 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13635 abbrev_number,
13636 bfd_get_filename (abfd));
13637
13638 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13639 die->offset = offset;
13640 die->tag = abbrev->tag;
13641 die->abbrev = abbrev_number;
13642
13643 /* Make the result usable.
13644 The caller needs to update num_attrs after adding the extra
13645 attributes. */
13646 die->num_attrs = abbrev->num_attrs;
13647
13648 for (i = 0; i < abbrev->num_attrs; ++i)
13649 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13650 info_ptr);
13651
13652 *diep = die;
13653 *has_children = abbrev->has_children;
13654 return info_ptr;
13655 }
13656
13657 /* Read a die and all its attributes.
13658 Set DIEP to point to a newly allocated die with its information,
13659 except for its child, sibling, and parent fields.
13660 Set HAS_CHILDREN to tell whether the die has children or not. */
13661
13662 static const gdb_byte *
13663 read_full_die (const struct die_reader_specs *reader,
13664 struct die_info **diep, const gdb_byte *info_ptr,
13665 int *has_children)
13666 {
13667 const gdb_byte *result;
13668
13669 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13670
13671 if (dwarf2_die_debug)
13672 {
13673 fprintf_unfiltered (gdb_stdlog,
13674 "Read die from %s@0x%x of %s:\n",
13675 bfd_section_name (reader->abfd,
13676 reader->die_section->asection),
13677 (unsigned) (info_ptr - reader->die_section->buffer),
13678 bfd_get_filename (reader->abfd));
13679 dump_die (*diep, dwarf2_die_debug);
13680 }
13681
13682 return result;
13683 }
13684 \f
13685 /* Abbreviation tables.
13686
13687 In DWARF version 2, the description of the debugging information is
13688 stored in a separate .debug_abbrev section. Before we read any
13689 dies from a section we read in all abbreviations and install them
13690 in a hash table. */
13691
13692 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13693
13694 static struct abbrev_info *
13695 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13696 {
13697 struct abbrev_info *abbrev;
13698
13699 abbrev = (struct abbrev_info *)
13700 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13701 memset (abbrev, 0, sizeof (struct abbrev_info));
13702 return abbrev;
13703 }
13704
13705 /* Add an abbreviation to the table. */
13706
13707 static void
13708 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13709 unsigned int abbrev_number,
13710 struct abbrev_info *abbrev)
13711 {
13712 unsigned int hash_number;
13713
13714 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13715 abbrev->next = abbrev_table->abbrevs[hash_number];
13716 abbrev_table->abbrevs[hash_number] = abbrev;
13717 }
13718
13719 /* Look up an abbrev in the table.
13720 Returns NULL if the abbrev is not found. */
13721
13722 static struct abbrev_info *
13723 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13724 unsigned int abbrev_number)
13725 {
13726 unsigned int hash_number;
13727 struct abbrev_info *abbrev;
13728
13729 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13730 abbrev = abbrev_table->abbrevs[hash_number];
13731
13732 while (abbrev)
13733 {
13734 if (abbrev->number == abbrev_number)
13735 return abbrev;
13736 abbrev = abbrev->next;
13737 }
13738 return NULL;
13739 }
13740
13741 /* Read in an abbrev table. */
13742
13743 static struct abbrev_table *
13744 abbrev_table_read_table (struct dwarf2_section_info *section,
13745 sect_offset offset)
13746 {
13747 struct objfile *objfile = dwarf2_per_objfile->objfile;
13748 bfd *abfd = section->asection->owner;
13749 struct abbrev_table *abbrev_table;
13750 const gdb_byte *abbrev_ptr;
13751 struct abbrev_info *cur_abbrev;
13752 unsigned int abbrev_number, bytes_read, abbrev_name;
13753 unsigned int abbrev_form;
13754 struct attr_abbrev *cur_attrs;
13755 unsigned int allocated_attrs;
13756
13757 abbrev_table = XMALLOC (struct abbrev_table);
13758 abbrev_table->offset = offset;
13759 obstack_init (&abbrev_table->abbrev_obstack);
13760 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13761 (ABBREV_HASH_SIZE
13762 * sizeof (struct abbrev_info *)));
13763 memset (abbrev_table->abbrevs, 0,
13764 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13765
13766 dwarf2_read_section (objfile, section);
13767 abbrev_ptr = section->buffer + offset.sect_off;
13768 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13769 abbrev_ptr += bytes_read;
13770
13771 allocated_attrs = ATTR_ALLOC_CHUNK;
13772 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13773
13774 /* Loop until we reach an abbrev number of 0. */
13775 while (abbrev_number)
13776 {
13777 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13778
13779 /* read in abbrev header */
13780 cur_abbrev->number = abbrev_number;
13781 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13782 abbrev_ptr += bytes_read;
13783 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13784 abbrev_ptr += 1;
13785
13786 /* now read in declarations */
13787 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13788 abbrev_ptr += bytes_read;
13789 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13790 abbrev_ptr += bytes_read;
13791 while (abbrev_name)
13792 {
13793 if (cur_abbrev->num_attrs == allocated_attrs)
13794 {
13795 allocated_attrs += ATTR_ALLOC_CHUNK;
13796 cur_attrs
13797 = xrealloc (cur_attrs, (allocated_attrs
13798 * sizeof (struct attr_abbrev)));
13799 }
13800
13801 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13802 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13803 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13804 abbrev_ptr += bytes_read;
13805 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13806 abbrev_ptr += bytes_read;
13807 }
13808
13809 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13810 (cur_abbrev->num_attrs
13811 * sizeof (struct attr_abbrev)));
13812 memcpy (cur_abbrev->attrs, cur_attrs,
13813 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13814
13815 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13816
13817 /* Get next abbreviation.
13818 Under Irix6 the abbreviations for a compilation unit are not
13819 always properly terminated with an abbrev number of 0.
13820 Exit loop if we encounter an abbreviation which we have
13821 already read (which means we are about to read the abbreviations
13822 for the next compile unit) or if the end of the abbreviation
13823 table is reached. */
13824 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13825 break;
13826 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13827 abbrev_ptr += bytes_read;
13828 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13829 break;
13830 }
13831
13832 xfree (cur_attrs);
13833 return abbrev_table;
13834 }
13835
13836 /* Free the resources held by ABBREV_TABLE. */
13837
13838 static void
13839 abbrev_table_free (struct abbrev_table *abbrev_table)
13840 {
13841 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13842 xfree (abbrev_table);
13843 }
13844
13845 /* Same as abbrev_table_free but as a cleanup.
13846 We pass in a pointer to the pointer to the table so that we can
13847 set the pointer to NULL when we're done. It also simplifies
13848 build_type_unit_groups. */
13849
13850 static void
13851 abbrev_table_free_cleanup (void *table_ptr)
13852 {
13853 struct abbrev_table **abbrev_table_ptr = table_ptr;
13854
13855 if (*abbrev_table_ptr != NULL)
13856 abbrev_table_free (*abbrev_table_ptr);
13857 *abbrev_table_ptr = NULL;
13858 }
13859
13860 /* Read the abbrev table for CU from ABBREV_SECTION. */
13861
13862 static void
13863 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13864 struct dwarf2_section_info *abbrev_section)
13865 {
13866 cu->abbrev_table =
13867 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13868 }
13869
13870 /* Release the memory used by the abbrev table for a compilation unit. */
13871
13872 static void
13873 dwarf2_free_abbrev_table (void *ptr_to_cu)
13874 {
13875 struct dwarf2_cu *cu = ptr_to_cu;
13876
13877 if (cu->abbrev_table != NULL)
13878 abbrev_table_free (cu->abbrev_table);
13879 /* Set this to NULL so that we SEGV if we try to read it later,
13880 and also because free_comp_unit verifies this is NULL. */
13881 cu->abbrev_table = NULL;
13882 }
13883 \f
13884 /* Returns nonzero if TAG represents a type that we might generate a partial
13885 symbol for. */
13886
13887 static int
13888 is_type_tag_for_partial (int tag)
13889 {
13890 switch (tag)
13891 {
13892 #if 0
13893 /* Some types that would be reasonable to generate partial symbols for,
13894 that we don't at present. */
13895 case DW_TAG_array_type:
13896 case DW_TAG_file_type:
13897 case DW_TAG_ptr_to_member_type:
13898 case DW_TAG_set_type:
13899 case DW_TAG_string_type:
13900 case DW_TAG_subroutine_type:
13901 #endif
13902 case DW_TAG_base_type:
13903 case DW_TAG_class_type:
13904 case DW_TAG_interface_type:
13905 case DW_TAG_enumeration_type:
13906 case DW_TAG_structure_type:
13907 case DW_TAG_subrange_type:
13908 case DW_TAG_typedef:
13909 case DW_TAG_union_type:
13910 return 1;
13911 default:
13912 return 0;
13913 }
13914 }
13915
13916 /* Load all DIEs that are interesting for partial symbols into memory. */
13917
13918 static struct partial_die_info *
13919 load_partial_dies (const struct die_reader_specs *reader,
13920 const gdb_byte *info_ptr, int building_psymtab)
13921 {
13922 struct dwarf2_cu *cu = reader->cu;
13923 struct objfile *objfile = cu->objfile;
13924 struct partial_die_info *part_die;
13925 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13926 struct abbrev_info *abbrev;
13927 unsigned int bytes_read;
13928 unsigned int load_all = 0;
13929 int nesting_level = 1;
13930
13931 parent_die = NULL;
13932 last_die = NULL;
13933
13934 gdb_assert (cu->per_cu != NULL);
13935 if (cu->per_cu->load_all_dies)
13936 load_all = 1;
13937
13938 cu->partial_dies
13939 = htab_create_alloc_ex (cu->header.length / 12,
13940 partial_die_hash,
13941 partial_die_eq,
13942 NULL,
13943 &cu->comp_unit_obstack,
13944 hashtab_obstack_allocate,
13945 dummy_obstack_deallocate);
13946
13947 part_die = obstack_alloc (&cu->comp_unit_obstack,
13948 sizeof (struct partial_die_info));
13949
13950 while (1)
13951 {
13952 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13953
13954 /* A NULL abbrev means the end of a series of children. */
13955 if (abbrev == NULL)
13956 {
13957 if (--nesting_level == 0)
13958 {
13959 /* PART_DIE was probably the last thing allocated on the
13960 comp_unit_obstack, so we could call obstack_free
13961 here. We don't do that because the waste is small,
13962 and will be cleaned up when we're done with this
13963 compilation unit. This way, we're also more robust
13964 against other users of the comp_unit_obstack. */
13965 return first_die;
13966 }
13967 info_ptr += bytes_read;
13968 last_die = parent_die;
13969 parent_die = parent_die->die_parent;
13970 continue;
13971 }
13972
13973 /* Check for template arguments. We never save these; if
13974 they're seen, we just mark the parent, and go on our way. */
13975 if (parent_die != NULL
13976 && cu->language == language_cplus
13977 && (abbrev->tag == DW_TAG_template_type_param
13978 || abbrev->tag == DW_TAG_template_value_param))
13979 {
13980 parent_die->has_template_arguments = 1;
13981
13982 if (!load_all)
13983 {
13984 /* We don't need a partial DIE for the template argument. */
13985 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13986 continue;
13987 }
13988 }
13989
13990 /* We only recurse into c++ subprograms looking for template arguments.
13991 Skip their other children. */
13992 if (!load_all
13993 && cu->language == language_cplus
13994 && parent_die != NULL
13995 && parent_die->tag == DW_TAG_subprogram)
13996 {
13997 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13998 continue;
13999 }
14000
14001 /* Check whether this DIE is interesting enough to save. Normally
14002 we would not be interested in members here, but there may be
14003 later variables referencing them via DW_AT_specification (for
14004 static members). */
14005 if (!load_all
14006 && !is_type_tag_for_partial (abbrev->tag)
14007 && abbrev->tag != DW_TAG_constant
14008 && abbrev->tag != DW_TAG_enumerator
14009 && abbrev->tag != DW_TAG_subprogram
14010 && abbrev->tag != DW_TAG_lexical_block
14011 && abbrev->tag != DW_TAG_variable
14012 && abbrev->tag != DW_TAG_namespace
14013 && abbrev->tag != DW_TAG_module
14014 && abbrev->tag != DW_TAG_member
14015 && abbrev->tag != DW_TAG_imported_unit)
14016 {
14017 /* Otherwise we skip to the next sibling, if any. */
14018 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14019 continue;
14020 }
14021
14022 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14023 info_ptr);
14024
14025 /* This two-pass algorithm for processing partial symbols has a
14026 high cost in cache pressure. Thus, handle some simple cases
14027 here which cover the majority of C partial symbols. DIEs
14028 which neither have specification tags in them, nor could have
14029 specification tags elsewhere pointing at them, can simply be
14030 processed and discarded.
14031
14032 This segment is also optional; scan_partial_symbols and
14033 add_partial_symbol will handle these DIEs if we chain
14034 them in normally. When compilers which do not emit large
14035 quantities of duplicate debug information are more common,
14036 this code can probably be removed. */
14037
14038 /* Any complete simple types at the top level (pretty much all
14039 of them, for a language without namespaces), can be processed
14040 directly. */
14041 if (parent_die == NULL
14042 && part_die->has_specification == 0
14043 && part_die->is_declaration == 0
14044 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14045 || part_die->tag == DW_TAG_base_type
14046 || part_die->tag == DW_TAG_subrange_type))
14047 {
14048 if (building_psymtab && part_die->name != NULL)
14049 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14050 VAR_DOMAIN, LOC_TYPEDEF,
14051 &objfile->static_psymbols,
14052 0, (CORE_ADDR) 0, cu->language, objfile);
14053 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14054 continue;
14055 }
14056
14057 /* The exception for DW_TAG_typedef with has_children above is
14058 a workaround of GCC PR debug/47510. In the case of this complaint
14059 type_name_no_tag_or_error will error on such types later.
14060
14061 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14062 it could not find the child DIEs referenced later, this is checked
14063 above. In correct DWARF DW_TAG_typedef should have no children. */
14064
14065 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14066 complaint (&symfile_complaints,
14067 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14068 "- DIE at 0x%x [in module %s]"),
14069 part_die->offset.sect_off, objfile->name);
14070
14071 /* If we're at the second level, and we're an enumerator, and
14072 our parent has no specification (meaning possibly lives in a
14073 namespace elsewhere), then we can add the partial symbol now
14074 instead of queueing it. */
14075 if (part_die->tag == DW_TAG_enumerator
14076 && parent_die != NULL
14077 && parent_die->die_parent == NULL
14078 && parent_die->tag == DW_TAG_enumeration_type
14079 && parent_die->has_specification == 0)
14080 {
14081 if (part_die->name == NULL)
14082 complaint (&symfile_complaints,
14083 _("malformed enumerator DIE ignored"));
14084 else if (building_psymtab)
14085 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14086 VAR_DOMAIN, LOC_CONST,
14087 (cu->language == language_cplus
14088 || cu->language == language_java)
14089 ? &objfile->global_psymbols
14090 : &objfile->static_psymbols,
14091 0, (CORE_ADDR) 0, cu->language, objfile);
14092
14093 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14094 continue;
14095 }
14096
14097 /* We'll save this DIE so link it in. */
14098 part_die->die_parent = parent_die;
14099 part_die->die_sibling = NULL;
14100 part_die->die_child = NULL;
14101
14102 if (last_die && last_die == parent_die)
14103 last_die->die_child = part_die;
14104 else if (last_die)
14105 last_die->die_sibling = part_die;
14106
14107 last_die = part_die;
14108
14109 if (first_die == NULL)
14110 first_die = part_die;
14111
14112 /* Maybe add the DIE to the hash table. Not all DIEs that we
14113 find interesting need to be in the hash table, because we
14114 also have the parent/sibling/child chains; only those that we
14115 might refer to by offset later during partial symbol reading.
14116
14117 For now this means things that might have be the target of a
14118 DW_AT_specification, DW_AT_abstract_origin, or
14119 DW_AT_extension. DW_AT_extension will refer only to
14120 namespaces; DW_AT_abstract_origin refers to functions (and
14121 many things under the function DIE, but we do not recurse
14122 into function DIEs during partial symbol reading) and
14123 possibly variables as well; DW_AT_specification refers to
14124 declarations. Declarations ought to have the DW_AT_declaration
14125 flag. It happens that GCC forgets to put it in sometimes, but
14126 only for functions, not for types.
14127
14128 Adding more things than necessary to the hash table is harmless
14129 except for the performance cost. Adding too few will result in
14130 wasted time in find_partial_die, when we reread the compilation
14131 unit with load_all_dies set. */
14132
14133 if (load_all
14134 || abbrev->tag == DW_TAG_constant
14135 || abbrev->tag == DW_TAG_subprogram
14136 || abbrev->tag == DW_TAG_variable
14137 || abbrev->tag == DW_TAG_namespace
14138 || part_die->is_declaration)
14139 {
14140 void **slot;
14141
14142 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14143 part_die->offset.sect_off, INSERT);
14144 *slot = part_die;
14145 }
14146
14147 part_die = obstack_alloc (&cu->comp_unit_obstack,
14148 sizeof (struct partial_die_info));
14149
14150 /* For some DIEs we want to follow their children (if any). For C
14151 we have no reason to follow the children of structures; for other
14152 languages we have to, so that we can get at method physnames
14153 to infer fully qualified class names, for DW_AT_specification,
14154 and for C++ template arguments. For C++, we also look one level
14155 inside functions to find template arguments (if the name of the
14156 function does not already contain the template arguments).
14157
14158 For Ada, we need to scan the children of subprograms and lexical
14159 blocks as well because Ada allows the definition of nested
14160 entities that could be interesting for the debugger, such as
14161 nested subprograms for instance. */
14162 if (last_die->has_children
14163 && (load_all
14164 || last_die->tag == DW_TAG_namespace
14165 || last_die->tag == DW_TAG_module
14166 || last_die->tag == DW_TAG_enumeration_type
14167 || (cu->language == language_cplus
14168 && last_die->tag == DW_TAG_subprogram
14169 && (last_die->name == NULL
14170 || strchr (last_die->name, '<') == NULL))
14171 || (cu->language != language_c
14172 && (last_die->tag == DW_TAG_class_type
14173 || last_die->tag == DW_TAG_interface_type
14174 || last_die->tag == DW_TAG_structure_type
14175 || last_die->tag == DW_TAG_union_type))
14176 || (cu->language == language_ada
14177 && (last_die->tag == DW_TAG_subprogram
14178 || last_die->tag == DW_TAG_lexical_block))))
14179 {
14180 nesting_level++;
14181 parent_die = last_die;
14182 continue;
14183 }
14184
14185 /* Otherwise we skip to the next sibling, if any. */
14186 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14187
14188 /* Back to the top, do it again. */
14189 }
14190 }
14191
14192 /* Read a minimal amount of information into the minimal die structure. */
14193
14194 static const gdb_byte *
14195 read_partial_die (const struct die_reader_specs *reader,
14196 struct partial_die_info *part_die,
14197 struct abbrev_info *abbrev, unsigned int abbrev_len,
14198 const gdb_byte *info_ptr)
14199 {
14200 struct dwarf2_cu *cu = reader->cu;
14201 struct objfile *objfile = cu->objfile;
14202 const gdb_byte *buffer = reader->buffer;
14203 unsigned int i;
14204 struct attribute attr;
14205 int has_low_pc_attr = 0;
14206 int has_high_pc_attr = 0;
14207 int high_pc_relative = 0;
14208
14209 memset (part_die, 0, sizeof (struct partial_die_info));
14210
14211 part_die->offset.sect_off = info_ptr - buffer;
14212
14213 info_ptr += abbrev_len;
14214
14215 if (abbrev == NULL)
14216 return info_ptr;
14217
14218 part_die->tag = abbrev->tag;
14219 part_die->has_children = abbrev->has_children;
14220
14221 for (i = 0; i < abbrev->num_attrs; ++i)
14222 {
14223 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14224
14225 /* Store the data if it is of an attribute we want to keep in a
14226 partial symbol table. */
14227 switch (attr.name)
14228 {
14229 case DW_AT_name:
14230 switch (part_die->tag)
14231 {
14232 case DW_TAG_compile_unit:
14233 case DW_TAG_partial_unit:
14234 case DW_TAG_type_unit:
14235 /* Compilation units have a DW_AT_name that is a filename, not
14236 a source language identifier. */
14237 case DW_TAG_enumeration_type:
14238 case DW_TAG_enumerator:
14239 /* These tags always have simple identifiers already; no need
14240 to canonicalize them. */
14241 part_die->name = DW_STRING (&attr);
14242 break;
14243 default:
14244 part_die->name
14245 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14246 &objfile->objfile_obstack);
14247 break;
14248 }
14249 break;
14250 case DW_AT_linkage_name:
14251 case DW_AT_MIPS_linkage_name:
14252 /* Note that both forms of linkage name might appear. We
14253 assume they will be the same, and we only store the last
14254 one we see. */
14255 if (cu->language == language_ada)
14256 part_die->name = DW_STRING (&attr);
14257 part_die->linkage_name = DW_STRING (&attr);
14258 break;
14259 case DW_AT_low_pc:
14260 has_low_pc_attr = 1;
14261 part_die->lowpc = DW_ADDR (&attr);
14262 break;
14263 case DW_AT_high_pc:
14264 has_high_pc_attr = 1;
14265 if (attr.form == DW_FORM_addr
14266 || attr.form == DW_FORM_GNU_addr_index)
14267 part_die->highpc = DW_ADDR (&attr);
14268 else
14269 {
14270 high_pc_relative = 1;
14271 part_die->highpc = DW_UNSND (&attr);
14272 }
14273 break;
14274 case DW_AT_location:
14275 /* Support the .debug_loc offsets. */
14276 if (attr_form_is_block (&attr))
14277 {
14278 part_die->d.locdesc = DW_BLOCK (&attr);
14279 }
14280 else if (attr_form_is_section_offset (&attr))
14281 {
14282 dwarf2_complex_location_expr_complaint ();
14283 }
14284 else
14285 {
14286 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14287 "partial symbol information");
14288 }
14289 break;
14290 case DW_AT_external:
14291 part_die->is_external = DW_UNSND (&attr);
14292 break;
14293 case DW_AT_declaration:
14294 part_die->is_declaration = DW_UNSND (&attr);
14295 break;
14296 case DW_AT_type:
14297 part_die->has_type = 1;
14298 break;
14299 case DW_AT_abstract_origin:
14300 case DW_AT_specification:
14301 case DW_AT_extension:
14302 part_die->has_specification = 1;
14303 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14304 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14305 || cu->per_cu->is_dwz);
14306 break;
14307 case DW_AT_sibling:
14308 /* Ignore absolute siblings, they might point outside of
14309 the current compile unit. */
14310 if (attr.form == DW_FORM_ref_addr)
14311 complaint (&symfile_complaints,
14312 _("ignoring absolute DW_AT_sibling"));
14313 else
14314 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14315 break;
14316 case DW_AT_byte_size:
14317 part_die->has_byte_size = 1;
14318 break;
14319 case DW_AT_calling_convention:
14320 /* DWARF doesn't provide a way to identify a program's source-level
14321 entry point. DW_AT_calling_convention attributes are only meant
14322 to describe functions' calling conventions.
14323
14324 However, because it's a necessary piece of information in
14325 Fortran, and because DW_CC_program is the only piece of debugging
14326 information whose definition refers to a 'main program' at all,
14327 several compilers have begun marking Fortran main programs with
14328 DW_CC_program --- even when those functions use the standard
14329 calling conventions.
14330
14331 So until DWARF specifies a way to provide this information and
14332 compilers pick up the new representation, we'll support this
14333 practice. */
14334 if (DW_UNSND (&attr) == DW_CC_program
14335 && cu->language == language_fortran)
14336 {
14337 set_main_name (part_die->name);
14338
14339 /* As this DIE has a static linkage the name would be difficult
14340 to look up later. */
14341 language_of_main = language_fortran;
14342 }
14343 break;
14344 case DW_AT_inline:
14345 if (DW_UNSND (&attr) == DW_INL_inlined
14346 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14347 part_die->may_be_inlined = 1;
14348 break;
14349
14350 case DW_AT_import:
14351 if (part_die->tag == DW_TAG_imported_unit)
14352 {
14353 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14354 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14355 || cu->per_cu->is_dwz);
14356 }
14357 break;
14358
14359 default:
14360 break;
14361 }
14362 }
14363
14364 if (high_pc_relative)
14365 part_die->highpc += part_die->lowpc;
14366
14367 if (has_low_pc_attr && has_high_pc_attr)
14368 {
14369 /* When using the GNU linker, .gnu.linkonce. sections are used to
14370 eliminate duplicate copies of functions and vtables and such.
14371 The linker will arbitrarily choose one and discard the others.
14372 The AT_*_pc values for such functions refer to local labels in
14373 these sections. If the section from that file was discarded, the
14374 labels are not in the output, so the relocs get a value of 0.
14375 If this is a discarded function, mark the pc bounds as invalid,
14376 so that GDB will ignore it. */
14377 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14378 {
14379 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14380
14381 complaint (&symfile_complaints,
14382 _("DW_AT_low_pc %s is zero "
14383 "for DIE at 0x%x [in module %s]"),
14384 paddress (gdbarch, part_die->lowpc),
14385 part_die->offset.sect_off, objfile->name);
14386 }
14387 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14388 else if (part_die->lowpc >= part_die->highpc)
14389 {
14390 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14391
14392 complaint (&symfile_complaints,
14393 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14394 "for DIE at 0x%x [in module %s]"),
14395 paddress (gdbarch, part_die->lowpc),
14396 paddress (gdbarch, part_die->highpc),
14397 part_die->offset.sect_off, objfile->name);
14398 }
14399 else
14400 part_die->has_pc_info = 1;
14401 }
14402
14403 return info_ptr;
14404 }
14405
14406 /* Find a cached partial DIE at OFFSET in CU. */
14407
14408 static struct partial_die_info *
14409 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14410 {
14411 struct partial_die_info *lookup_die = NULL;
14412 struct partial_die_info part_die;
14413
14414 part_die.offset = offset;
14415 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14416 offset.sect_off);
14417
14418 return lookup_die;
14419 }
14420
14421 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14422 except in the case of .debug_types DIEs which do not reference
14423 outside their CU (they do however referencing other types via
14424 DW_FORM_ref_sig8). */
14425
14426 static struct partial_die_info *
14427 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14428 {
14429 struct objfile *objfile = cu->objfile;
14430 struct dwarf2_per_cu_data *per_cu = NULL;
14431 struct partial_die_info *pd = NULL;
14432
14433 if (offset_in_dwz == cu->per_cu->is_dwz
14434 && offset_in_cu_p (&cu->header, offset))
14435 {
14436 pd = find_partial_die_in_comp_unit (offset, cu);
14437 if (pd != NULL)
14438 return pd;
14439 /* We missed recording what we needed.
14440 Load all dies and try again. */
14441 per_cu = cu->per_cu;
14442 }
14443 else
14444 {
14445 /* TUs don't reference other CUs/TUs (except via type signatures). */
14446 if (cu->per_cu->is_debug_types)
14447 {
14448 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14449 " external reference to offset 0x%lx [in module %s].\n"),
14450 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14451 bfd_get_filename (objfile->obfd));
14452 }
14453 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14454 objfile);
14455
14456 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14457 load_partial_comp_unit (per_cu);
14458
14459 per_cu->cu->last_used = 0;
14460 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14461 }
14462
14463 /* If we didn't find it, and not all dies have been loaded,
14464 load them all and try again. */
14465
14466 if (pd == NULL && per_cu->load_all_dies == 0)
14467 {
14468 per_cu->load_all_dies = 1;
14469
14470 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14471 THIS_CU->cu may already be in use. So we can't just free it and
14472 replace its DIEs with the ones we read in. Instead, we leave those
14473 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14474 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14475 set. */
14476 load_partial_comp_unit (per_cu);
14477
14478 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14479 }
14480
14481 if (pd == NULL)
14482 internal_error (__FILE__, __LINE__,
14483 _("could not find partial DIE 0x%x "
14484 "in cache [from module %s]\n"),
14485 offset.sect_off, bfd_get_filename (objfile->obfd));
14486 return pd;
14487 }
14488
14489 /* See if we can figure out if the class lives in a namespace. We do
14490 this by looking for a member function; its demangled name will
14491 contain namespace info, if there is any. */
14492
14493 static void
14494 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14495 struct dwarf2_cu *cu)
14496 {
14497 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14498 what template types look like, because the demangler
14499 frequently doesn't give the same name as the debug info. We
14500 could fix this by only using the demangled name to get the
14501 prefix (but see comment in read_structure_type). */
14502
14503 struct partial_die_info *real_pdi;
14504 struct partial_die_info *child_pdi;
14505
14506 /* If this DIE (this DIE's specification, if any) has a parent, then
14507 we should not do this. We'll prepend the parent's fully qualified
14508 name when we create the partial symbol. */
14509
14510 real_pdi = struct_pdi;
14511 while (real_pdi->has_specification)
14512 real_pdi = find_partial_die (real_pdi->spec_offset,
14513 real_pdi->spec_is_dwz, cu);
14514
14515 if (real_pdi->die_parent != NULL)
14516 return;
14517
14518 for (child_pdi = struct_pdi->die_child;
14519 child_pdi != NULL;
14520 child_pdi = child_pdi->die_sibling)
14521 {
14522 if (child_pdi->tag == DW_TAG_subprogram
14523 && child_pdi->linkage_name != NULL)
14524 {
14525 char *actual_class_name
14526 = language_class_name_from_physname (cu->language_defn,
14527 child_pdi->linkage_name);
14528 if (actual_class_name != NULL)
14529 {
14530 struct_pdi->name
14531 = obstack_copy0 (&cu->objfile->objfile_obstack,
14532 actual_class_name,
14533 strlen (actual_class_name));
14534 xfree (actual_class_name);
14535 }
14536 break;
14537 }
14538 }
14539 }
14540
14541 /* Adjust PART_DIE before generating a symbol for it. This function
14542 may set the is_external flag or change the DIE's name. */
14543
14544 static void
14545 fixup_partial_die (struct partial_die_info *part_die,
14546 struct dwarf2_cu *cu)
14547 {
14548 /* Once we've fixed up a die, there's no point in doing so again.
14549 This also avoids a memory leak if we were to call
14550 guess_partial_die_structure_name multiple times. */
14551 if (part_die->fixup_called)
14552 return;
14553
14554 /* If we found a reference attribute and the DIE has no name, try
14555 to find a name in the referred to DIE. */
14556
14557 if (part_die->name == NULL && part_die->has_specification)
14558 {
14559 struct partial_die_info *spec_die;
14560
14561 spec_die = find_partial_die (part_die->spec_offset,
14562 part_die->spec_is_dwz, cu);
14563
14564 fixup_partial_die (spec_die, cu);
14565
14566 if (spec_die->name)
14567 {
14568 part_die->name = spec_die->name;
14569
14570 /* Copy DW_AT_external attribute if it is set. */
14571 if (spec_die->is_external)
14572 part_die->is_external = spec_die->is_external;
14573 }
14574 }
14575
14576 /* Set default names for some unnamed DIEs. */
14577
14578 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14579 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14580
14581 /* If there is no parent die to provide a namespace, and there are
14582 children, see if we can determine the namespace from their linkage
14583 name. */
14584 if (cu->language == language_cplus
14585 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14586 && part_die->die_parent == NULL
14587 && part_die->has_children
14588 && (part_die->tag == DW_TAG_class_type
14589 || part_die->tag == DW_TAG_structure_type
14590 || part_die->tag == DW_TAG_union_type))
14591 guess_partial_die_structure_name (part_die, cu);
14592
14593 /* GCC might emit a nameless struct or union that has a linkage
14594 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14595 if (part_die->name == NULL
14596 && (part_die->tag == DW_TAG_class_type
14597 || part_die->tag == DW_TAG_interface_type
14598 || part_die->tag == DW_TAG_structure_type
14599 || part_die->tag == DW_TAG_union_type)
14600 && part_die->linkage_name != NULL)
14601 {
14602 char *demangled;
14603
14604 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14605 if (demangled)
14606 {
14607 const char *base;
14608
14609 /* Strip any leading namespaces/classes, keep only the base name.
14610 DW_AT_name for named DIEs does not contain the prefixes. */
14611 base = strrchr (demangled, ':');
14612 if (base && base > demangled && base[-1] == ':')
14613 base++;
14614 else
14615 base = demangled;
14616
14617 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14618 base, strlen (base));
14619 xfree (demangled);
14620 }
14621 }
14622
14623 part_die->fixup_called = 1;
14624 }
14625
14626 /* Read an attribute value described by an attribute form. */
14627
14628 static const gdb_byte *
14629 read_attribute_value (const struct die_reader_specs *reader,
14630 struct attribute *attr, unsigned form,
14631 const gdb_byte *info_ptr)
14632 {
14633 struct dwarf2_cu *cu = reader->cu;
14634 bfd *abfd = reader->abfd;
14635 struct comp_unit_head *cu_header = &cu->header;
14636 unsigned int bytes_read;
14637 struct dwarf_block *blk;
14638
14639 attr->form = form;
14640 switch (form)
14641 {
14642 case DW_FORM_ref_addr:
14643 if (cu->header.version == 2)
14644 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14645 else
14646 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14647 &cu->header, &bytes_read);
14648 info_ptr += bytes_read;
14649 break;
14650 case DW_FORM_GNU_ref_alt:
14651 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14652 info_ptr += bytes_read;
14653 break;
14654 case DW_FORM_addr:
14655 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14656 info_ptr += bytes_read;
14657 break;
14658 case DW_FORM_block2:
14659 blk = dwarf_alloc_block (cu);
14660 blk->size = read_2_bytes (abfd, info_ptr);
14661 info_ptr += 2;
14662 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14663 info_ptr += blk->size;
14664 DW_BLOCK (attr) = blk;
14665 break;
14666 case DW_FORM_block4:
14667 blk = dwarf_alloc_block (cu);
14668 blk->size = read_4_bytes (abfd, info_ptr);
14669 info_ptr += 4;
14670 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14671 info_ptr += blk->size;
14672 DW_BLOCK (attr) = blk;
14673 break;
14674 case DW_FORM_data2:
14675 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14676 info_ptr += 2;
14677 break;
14678 case DW_FORM_data4:
14679 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14680 info_ptr += 4;
14681 break;
14682 case DW_FORM_data8:
14683 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14684 info_ptr += 8;
14685 break;
14686 case DW_FORM_sec_offset:
14687 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14688 info_ptr += bytes_read;
14689 break;
14690 case DW_FORM_string:
14691 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14692 DW_STRING_IS_CANONICAL (attr) = 0;
14693 info_ptr += bytes_read;
14694 break;
14695 case DW_FORM_strp:
14696 if (!cu->per_cu->is_dwz)
14697 {
14698 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14699 &bytes_read);
14700 DW_STRING_IS_CANONICAL (attr) = 0;
14701 info_ptr += bytes_read;
14702 break;
14703 }
14704 /* FALLTHROUGH */
14705 case DW_FORM_GNU_strp_alt:
14706 {
14707 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14708 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14709 &bytes_read);
14710
14711 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14712 DW_STRING_IS_CANONICAL (attr) = 0;
14713 info_ptr += bytes_read;
14714 }
14715 break;
14716 case DW_FORM_exprloc:
14717 case DW_FORM_block:
14718 blk = dwarf_alloc_block (cu);
14719 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14720 info_ptr += bytes_read;
14721 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14722 info_ptr += blk->size;
14723 DW_BLOCK (attr) = blk;
14724 break;
14725 case DW_FORM_block1:
14726 blk = dwarf_alloc_block (cu);
14727 blk->size = read_1_byte (abfd, info_ptr);
14728 info_ptr += 1;
14729 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14730 info_ptr += blk->size;
14731 DW_BLOCK (attr) = blk;
14732 break;
14733 case DW_FORM_data1:
14734 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14735 info_ptr += 1;
14736 break;
14737 case DW_FORM_flag:
14738 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14739 info_ptr += 1;
14740 break;
14741 case DW_FORM_flag_present:
14742 DW_UNSND (attr) = 1;
14743 break;
14744 case DW_FORM_sdata:
14745 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14746 info_ptr += bytes_read;
14747 break;
14748 case DW_FORM_udata:
14749 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14750 info_ptr += bytes_read;
14751 break;
14752 case DW_FORM_ref1:
14753 DW_UNSND (attr) = (cu->header.offset.sect_off
14754 + read_1_byte (abfd, info_ptr));
14755 info_ptr += 1;
14756 break;
14757 case DW_FORM_ref2:
14758 DW_UNSND (attr) = (cu->header.offset.sect_off
14759 + read_2_bytes (abfd, info_ptr));
14760 info_ptr += 2;
14761 break;
14762 case DW_FORM_ref4:
14763 DW_UNSND (attr) = (cu->header.offset.sect_off
14764 + read_4_bytes (abfd, info_ptr));
14765 info_ptr += 4;
14766 break;
14767 case DW_FORM_ref8:
14768 DW_UNSND (attr) = (cu->header.offset.sect_off
14769 + read_8_bytes (abfd, info_ptr));
14770 info_ptr += 8;
14771 break;
14772 case DW_FORM_ref_sig8:
14773 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14774 info_ptr += 8;
14775 break;
14776 case DW_FORM_ref_udata:
14777 DW_UNSND (attr) = (cu->header.offset.sect_off
14778 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14779 info_ptr += bytes_read;
14780 break;
14781 case DW_FORM_indirect:
14782 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14783 info_ptr += bytes_read;
14784 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14785 break;
14786 case DW_FORM_GNU_addr_index:
14787 if (reader->dwo_file == NULL)
14788 {
14789 /* For now flag a hard error.
14790 Later we can turn this into a complaint. */
14791 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14792 dwarf_form_name (form),
14793 bfd_get_filename (abfd));
14794 }
14795 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14796 info_ptr += bytes_read;
14797 break;
14798 case DW_FORM_GNU_str_index:
14799 if (reader->dwo_file == NULL)
14800 {
14801 /* For now flag a hard error.
14802 Later we can turn this into a complaint if warranted. */
14803 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14804 dwarf_form_name (form),
14805 bfd_get_filename (abfd));
14806 }
14807 {
14808 ULONGEST str_index =
14809 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14810
14811 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14812 DW_STRING_IS_CANONICAL (attr) = 0;
14813 info_ptr += bytes_read;
14814 }
14815 break;
14816 default:
14817 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14818 dwarf_form_name (form),
14819 bfd_get_filename (abfd));
14820 }
14821
14822 /* Super hack. */
14823 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
14824 attr->form = DW_FORM_GNU_ref_alt;
14825
14826 /* We have seen instances where the compiler tried to emit a byte
14827 size attribute of -1 which ended up being encoded as an unsigned
14828 0xffffffff. Although 0xffffffff is technically a valid size value,
14829 an object of this size seems pretty unlikely so we can relatively
14830 safely treat these cases as if the size attribute was invalid and
14831 treat them as zero by default. */
14832 if (attr->name == DW_AT_byte_size
14833 && form == DW_FORM_data4
14834 && DW_UNSND (attr) >= 0xffffffff)
14835 {
14836 complaint
14837 (&symfile_complaints,
14838 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14839 hex_string (DW_UNSND (attr)));
14840 DW_UNSND (attr) = 0;
14841 }
14842
14843 return info_ptr;
14844 }
14845
14846 /* Read an attribute described by an abbreviated attribute. */
14847
14848 static const gdb_byte *
14849 read_attribute (const struct die_reader_specs *reader,
14850 struct attribute *attr, struct attr_abbrev *abbrev,
14851 const gdb_byte *info_ptr)
14852 {
14853 attr->name = abbrev->name;
14854 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14855 }
14856
14857 /* Read dwarf information from a buffer. */
14858
14859 static unsigned int
14860 read_1_byte (bfd *abfd, const gdb_byte *buf)
14861 {
14862 return bfd_get_8 (abfd, buf);
14863 }
14864
14865 static int
14866 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14867 {
14868 return bfd_get_signed_8 (abfd, buf);
14869 }
14870
14871 static unsigned int
14872 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14873 {
14874 return bfd_get_16 (abfd, buf);
14875 }
14876
14877 static int
14878 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14879 {
14880 return bfd_get_signed_16 (abfd, buf);
14881 }
14882
14883 static unsigned int
14884 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14885 {
14886 return bfd_get_32 (abfd, buf);
14887 }
14888
14889 static int
14890 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14891 {
14892 return bfd_get_signed_32 (abfd, buf);
14893 }
14894
14895 static ULONGEST
14896 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14897 {
14898 return bfd_get_64 (abfd, buf);
14899 }
14900
14901 static CORE_ADDR
14902 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14903 unsigned int *bytes_read)
14904 {
14905 struct comp_unit_head *cu_header = &cu->header;
14906 CORE_ADDR retval = 0;
14907
14908 if (cu_header->signed_addr_p)
14909 {
14910 switch (cu_header->addr_size)
14911 {
14912 case 2:
14913 retval = bfd_get_signed_16 (abfd, buf);
14914 break;
14915 case 4:
14916 retval = bfd_get_signed_32 (abfd, buf);
14917 break;
14918 case 8:
14919 retval = bfd_get_signed_64 (abfd, buf);
14920 break;
14921 default:
14922 internal_error (__FILE__, __LINE__,
14923 _("read_address: bad switch, signed [in module %s]"),
14924 bfd_get_filename (abfd));
14925 }
14926 }
14927 else
14928 {
14929 switch (cu_header->addr_size)
14930 {
14931 case 2:
14932 retval = bfd_get_16 (abfd, buf);
14933 break;
14934 case 4:
14935 retval = bfd_get_32 (abfd, buf);
14936 break;
14937 case 8:
14938 retval = bfd_get_64 (abfd, buf);
14939 break;
14940 default:
14941 internal_error (__FILE__, __LINE__,
14942 _("read_address: bad switch, "
14943 "unsigned [in module %s]"),
14944 bfd_get_filename (abfd));
14945 }
14946 }
14947
14948 *bytes_read = cu_header->addr_size;
14949 return retval;
14950 }
14951
14952 /* Read the initial length from a section. The (draft) DWARF 3
14953 specification allows the initial length to take up either 4 bytes
14954 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14955 bytes describe the length and all offsets will be 8 bytes in length
14956 instead of 4.
14957
14958 An older, non-standard 64-bit format is also handled by this
14959 function. The older format in question stores the initial length
14960 as an 8-byte quantity without an escape value. Lengths greater
14961 than 2^32 aren't very common which means that the initial 4 bytes
14962 is almost always zero. Since a length value of zero doesn't make
14963 sense for the 32-bit format, this initial zero can be considered to
14964 be an escape value which indicates the presence of the older 64-bit
14965 format. As written, the code can't detect (old format) lengths
14966 greater than 4GB. If it becomes necessary to handle lengths
14967 somewhat larger than 4GB, we could allow other small values (such
14968 as the non-sensical values of 1, 2, and 3) to also be used as
14969 escape values indicating the presence of the old format.
14970
14971 The value returned via bytes_read should be used to increment the
14972 relevant pointer after calling read_initial_length().
14973
14974 [ Note: read_initial_length() and read_offset() are based on the
14975 document entitled "DWARF Debugging Information Format", revision
14976 3, draft 8, dated November 19, 2001. This document was obtained
14977 from:
14978
14979 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14980
14981 This document is only a draft and is subject to change. (So beware.)
14982
14983 Details regarding the older, non-standard 64-bit format were
14984 determined empirically by examining 64-bit ELF files produced by
14985 the SGI toolchain on an IRIX 6.5 machine.
14986
14987 - Kevin, July 16, 2002
14988 ] */
14989
14990 static LONGEST
14991 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14992 {
14993 LONGEST length = bfd_get_32 (abfd, buf);
14994
14995 if (length == 0xffffffff)
14996 {
14997 length = bfd_get_64 (abfd, buf + 4);
14998 *bytes_read = 12;
14999 }
15000 else if (length == 0)
15001 {
15002 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15003 length = bfd_get_64 (abfd, buf);
15004 *bytes_read = 8;
15005 }
15006 else
15007 {
15008 *bytes_read = 4;
15009 }
15010
15011 return length;
15012 }
15013
15014 /* Cover function for read_initial_length.
15015 Returns the length of the object at BUF, and stores the size of the
15016 initial length in *BYTES_READ and stores the size that offsets will be in
15017 *OFFSET_SIZE.
15018 If the initial length size is not equivalent to that specified in
15019 CU_HEADER then issue a complaint.
15020 This is useful when reading non-comp-unit headers. */
15021
15022 static LONGEST
15023 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15024 const struct comp_unit_head *cu_header,
15025 unsigned int *bytes_read,
15026 unsigned int *offset_size)
15027 {
15028 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15029
15030 gdb_assert (cu_header->initial_length_size == 4
15031 || cu_header->initial_length_size == 8
15032 || cu_header->initial_length_size == 12);
15033
15034 if (cu_header->initial_length_size != *bytes_read)
15035 complaint (&symfile_complaints,
15036 _("intermixed 32-bit and 64-bit DWARF sections"));
15037
15038 *offset_size = (*bytes_read == 4) ? 4 : 8;
15039 return length;
15040 }
15041
15042 /* Read an offset from the data stream. The size of the offset is
15043 given by cu_header->offset_size. */
15044
15045 static LONGEST
15046 read_offset (bfd *abfd, const gdb_byte *buf,
15047 const struct comp_unit_head *cu_header,
15048 unsigned int *bytes_read)
15049 {
15050 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15051
15052 *bytes_read = cu_header->offset_size;
15053 return offset;
15054 }
15055
15056 /* Read an offset from the data stream. */
15057
15058 static LONGEST
15059 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15060 {
15061 LONGEST retval = 0;
15062
15063 switch (offset_size)
15064 {
15065 case 4:
15066 retval = bfd_get_32 (abfd, buf);
15067 break;
15068 case 8:
15069 retval = bfd_get_64 (abfd, buf);
15070 break;
15071 default:
15072 internal_error (__FILE__, __LINE__,
15073 _("read_offset_1: bad switch [in module %s]"),
15074 bfd_get_filename (abfd));
15075 }
15076
15077 return retval;
15078 }
15079
15080 static const gdb_byte *
15081 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15082 {
15083 /* If the size of a host char is 8 bits, we can return a pointer
15084 to the buffer, otherwise we have to copy the data to a buffer
15085 allocated on the temporary obstack. */
15086 gdb_assert (HOST_CHAR_BIT == 8);
15087 return buf;
15088 }
15089
15090 static const char *
15091 read_direct_string (bfd *abfd, const gdb_byte *buf,
15092 unsigned int *bytes_read_ptr)
15093 {
15094 /* If the size of a host char is 8 bits, we can return a pointer
15095 to the string, otherwise we have to copy the string to a buffer
15096 allocated on the temporary obstack. */
15097 gdb_assert (HOST_CHAR_BIT == 8);
15098 if (*buf == '\0')
15099 {
15100 *bytes_read_ptr = 1;
15101 return NULL;
15102 }
15103 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15104 return (const char *) buf;
15105 }
15106
15107 static const char *
15108 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15109 {
15110 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15111 if (dwarf2_per_objfile->str.buffer == NULL)
15112 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15113 bfd_get_filename (abfd));
15114 if (str_offset >= dwarf2_per_objfile->str.size)
15115 error (_("DW_FORM_strp pointing outside of "
15116 ".debug_str section [in module %s]"),
15117 bfd_get_filename (abfd));
15118 gdb_assert (HOST_CHAR_BIT == 8);
15119 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15120 return NULL;
15121 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15122 }
15123
15124 /* Read a string at offset STR_OFFSET in the .debug_str section from
15125 the .dwz file DWZ. Throw an error if the offset is too large. If
15126 the string consists of a single NUL byte, return NULL; otherwise
15127 return a pointer to the string. */
15128
15129 static const char *
15130 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15131 {
15132 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15133
15134 if (dwz->str.buffer == NULL)
15135 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15136 "section [in module %s]"),
15137 bfd_get_filename (dwz->dwz_bfd));
15138 if (str_offset >= dwz->str.size)
15139 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15140 ".debug_str section [in module %s]"),
15141 bfd_get_filename (dwz->dwz_bfd));
15142 gdb_assert (HOST_CHAR_BIT == 8);
15143 if (dwz->str.buffer[str_offset] == '\0')
15144 return NULL;
15145 return (const char *) (dwz->str.buffer + str_offset);
15146 }
15147
15148 static const char *
15149 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15150 const struct comp_unit_head *cu_header,
15151 unsigned int *bytes_read_ptr)
15152 {
15153 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15154
15155 return read_indirect_string_at_offset (abfd, str_offset);
15156 }
15157
15158 static ULONGEST
15159 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15160 unsigned int *bytes_read_ptr)
15161 {
15162 ULONGEST result;
15163 unsigned int num_read;
15164 int i, shift;
15165 unsigned char byte;
15166
15167 result = 0;
15168 shift = 0;
15169 num_read = 0;
15170 i = 0;
15171 while (1)
15172 {
15173 byte = bfd_get_8 (abfd, buf);
15174 buf++;
15175 num_read++;
15176 result |= ((ULONGEST) (byte & 127) << shift);
15177 if ((byte & 128) == 0)
15178 {
15179 break;
15180 }
15181 shift += 7;
15182 }
15183 *bytes_read_ptr = num_read;
15184 return result;
15185 }
15186
15187 static LONGEST
15188 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15189 unsigned int *bytes_read_ptr)
15190 {
15191 LONGEST result;
15192 int i, shift, num_read;
15193 unsigned char byte;
15194
15195 result = 0;
15196 shift = 0;
15197 num_read = 0;
15198 i = 0;
15199 while (1)
15200 {
15201 byte = bfd_get_8 (abfd, buf);
15202 buf++;
15203 num_read++;
15204 result |= ((LONGEST) (byte & 127) << shift);
15205 shift += 7;
15206 if ((byte & 128) == 0)
15207 {
15208 break;
15209 }
15210 }
15211 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15212 result |= -(((LONGEST) 1) << shift);
15213 *bytes_read_ptr = num_read;
15214 return result;
15215 }
15216
15217 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15218 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15219 ADDR_SIZE is the size of addresses from the CU header. */
15220
15221 static CORE_ADDR
15222 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15223 {
15224 struct objfile *objfile = dwarf2_per_objfile->objfile;
15225 bfd *abfd = objfile->obfd;
15226 const gdb_byte *info_ptr;
15227
15228 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15229 if (dwarf2_per_objfile->addr.buffer == NULL)
15230 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15231 objfile->name);
15232 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15233 error (_("DW_FORM_addr_index pointing outside of "
15234 ".debug_addr section [in module %s]"),
15235 objfile->name);
15236 info_ptr = (dwarf2_per_objfile->addr.buffer
15237 + addr_base + addr_index * addr_size);
15238 if (addr_size == 4)
15239 return bfd_get_32 (abfd, info_ptr);
15240 else
15241 return bfd_get_64 (abfd, info_ptr);
15242 }
15243
15244 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15245
15246 static CORE_ADDR
15247 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15248 {
15249 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15250 }
15251
15252 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15253
15254 static CORE_ADDR
15255 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15256 unsigned int *bytes_read)
15257 {
15258 bfd *abfd = cu->objfile->obfd;
15259 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15260
15261 return read_addr_index (cu, addr_index);
15262 }
15263
15264 /* Data structure to pass results from dwarf2_read_addr_index_reader
15265 back to dwarf2_read_addr_index. */
15266
15267 struct dwarf2_read_addr_index_data
15268 {
15269 ULONGEST addr_base;
15270 int addr_size;
15271 };
15272
15273 /* die_reader_func for dwarf2_read_addr_index. */
15274
15275 static void
15276 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15277 const gdb_byte *info_ptr,
15278 struct die_info *comp_unit_die,
15279 int has_children,
15280 void *data)
15281 {
15282 struct dwarf2_cu *cu = reader->cu;
15283 struct dwarf2_read_addr_index_data *aidata =
15284 (struct dwarf2_read_addr_index_data *) data;
15285
15286 aidata->addr_base = cu->addr_base;
15287 aidata->addr_size = cu->header.addr_size;
15288 }
15289
15290 /* Given an index in .debug_addr, fetch the value.
15291 NOTE: This can be called during dwarf expression evaluation,
15292 long after the debug information has been read, and thus per_cu->cu
15293 may no longer exist. */
15294
15295 CORE_ADDR
15296 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15297 unsigned int addr_index)
15298 {
15299 struct objfile *objfile = per_cu->objfile;
15300 struct dwarf2_cu *cu = per_cu->cu;
15301 ULONGEST addr_base;
15302 int addr_size;
15303
15304 /* This is intended to be called from outside this file. */
15305 dw2_setup (objfile);
15306
15307 /* We need addr_base and addr_size.
15308 If we don't have PER_CU->cu, we have to get it.
15309 Nasty, but the alternative is storing the needed info in PER_CU,
15310 which at this point doesn't seem justified: it's not clear how frequently
15311 it would get used and it would increase the size of every PER_CU.
15312 Entry points like dwarf2_per_cu_addr_size do a similar thing
15313 so we're not in uncharted territory here.
15314 Alas we need to be a bit more complicated as addr_base is contained
15315 in the DIE.
15316
15317 We don't need to read the entire CU(/TU).
15318 We just need the header and top level die.
15319
15320 IWBN to use the aging mechanism to let us lazily later discard the CU.
15321 For now we skip this optimization. */
15322
15323 if (cu != NULL)
15324 {
15325 addr_base = cu->addr_base;
15326 addr_size = cu->header.addr_size;
15327 }
15328 else
15329 {
15330 struct dwarf2_read_addr_index_data aidata;
15331
15332 /* Note: We can't use init_cutu_and_read_dies_simple here,
15333 we need addr_base. */
15334 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15335 dwarf2_read_addr_index_reader, &aidata);
15336 addr_base = aidata.addr_base;
15337 addr_size = aidata.addr_size;
15338 }
15339
15340 return read_addr_index_1 (addr_index, addr_base, addr_size);
15341 }
15342
15343 /* Given a DW_AT_str_index, fetch the string. */
15344
15345 static const char *
15346 read_str_index (const struct die_reader_specs *reader,
15347 struct dwarf2_cu *cu, ULONGEST str_index)
15348 {
15349 struct objfile *objfile = dwarf2_per_objfile->objfile;
15350 const char *dwo_name = objfile->name;
15351 bfd *abfd = objfile->obfd;
15352 struct dwo_sections *sections = &reader->dwo_file->sections;
15353 const gdb_byte *info_ptr;
15354 ULONGEST str_offset;
15355
15356 dwarf2_read_section (objfile, &sections->str);
15357 dwarf2_read_section (objfile, &sections->str_offsets);
15358 if (sections->str.buffer == NULL)
15359 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15360 " in CU at offset 0x%lx [in module %s]"),
15361 (long) cu->header.offset.sect_off, dwo_name);
15362 if (sections->str_offsets.buffer == NULL)
15363 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15364 " in CU at offset 0x%lx [in module %s]"),
15365 (long) cu->header.offset.sect_off, dwo_name);
15366 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15367 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15368 " section in CU at offset 0x%lx [in module %s]"),
15369 (long) cu->header.offset.sect_off, dwo_name);
15370 info_ptr = (sections->str_offsets.buffer
15371 + str_index * cu->header.offset_size);
15372 if (cu->header.offset_size == 4)
15373 str_offset = bfd_get_32 (abfd, info_ptr);
15374 else
15375 str_offset = bfd_get_64 (abfd, info_ptr);
15376 if (str_offset >= sections->str.size)
15377 error (_("Offset from DW_FORM_str_index pointing outside of"
15378 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15379 (long) cu->header.offset.sect_off, dwo_name);
15380 return (const char *) (sections->str.buffer + str_offset);
15381 }
15382
15383 /* Return the length of an LEB128 number in BUF. */
15384
15385 static int
15386 leb128_size (const gdb_byte *buf)
15387 {
15388 const gdb_byte *begin = buf;
15389 gdb_byte byte;
15390
15391 while (1)
15392 {
15393 byte = *buf++;
15394 if ((byte & 128) == 0)
15395 return buf - begin;
15396 }
15397 }
15398
15399 static void
15400 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15401 {
15402 switch (lang)
15403 {
15404 case DW_LANG_C89:
15405 case DW_LANG_C99:
15406 case DW_LANG_C:
15407 case DW_LANG_UPC:
15408 cu->language = language_c;
15409 break;
15410 case DW_LANG_C_plus_plus:
15411 cu->language = language_cplus;
15412 break;
15413 case DW_LANG_D:
15414 cu->language = language_d;
15415 break;
15416 case DW_LANG_Fortran77:
15417 case DW_LANG_Fortran90:
15418 case DW_LANG_Fortran95:
15419 cu->language = language_fortran;
15420 break;
15421 case DW_LANG_Go:
15422 cu->language = language_go;
15423 break;
15424 case DW_LANG_Mips_Assembler:
15425 cu->language = language_asm;
15426 break;
15427 case DW_LANG_Java:
15428 cu->language = language_java;
15429 break;
15430 case DW_LANG_Ada83:
15431 case DW_LANG_Ada95:
15432 cu->language = language_ada;
15433 break;
15434 case DW_LANG_Modula2:
15435 cu->language = language_m2;
15436 break;
15437 case DW_LANG_Pascal83:
15438 cu->language = language_pascal;
15439 break;
15440 case DW_LANG_ObjC:
15441 cu->language = language_objc;
15442 break;
15443 case DW_LANG_Cobol74:
15444 case DW_LANG_Cobol85:
15445 default:
15446 cu->language = language_minimal;
15447 break;
15448 }
15449 cu->language_defn = language_def (cu->language);
15450 }
15451
15452 /* Return the named attribute or NULL if not there. */
15453
15454 static struct attribute *
15455 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15456 {
15457 for (;;)
15458 {
15459 unsigned int i;
15460 struct attribute *spec = NULL;
15461
15462 for (i = 0; i < die->num_attrs; ++i)
15463 {
15464 if (die->attrs[i].name == name)
15465 return &die->attrs[i];
15466 if (die->attrs[i].name == DW_AT_specification
15467 || die->attrs[i].name == DW_AT_abstract_origin)
15468 spec = &die->attrs[i];
15469 }
15470
15471 if (!spec)
15472 break;
15473
15474 die = follow_die_ref (die, spec, &cu);
15475 }
15476
15477 return NULL;
15478 }
15479
15480 /* Return the named attribute or NULL if not there,
15481 but do not follow DW_AT_specification, etc.
15482 This is for use in contexts where we're reading .debug_types dies.
15483 Following DW_AT_specification, DW_AT_abstract_origin will take us
15484 back up the chain, and we want to go down. */
15485
15486 static struct attribute *
15487 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15488 {
15489 unsigned int i;
15490
15491 for (i = 0; i < die->num_attrs; ++i)
15492 if (die->attrs[i].name == name)
15493 return &die->attrs[i];
15494
15495 return NULL;
15496 }
15497
15498 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15499 and holds a non-zero value. This function should only be used for
15500 DW_FORM_flag or DW_FORM_flag_present attributes. */
15501
15502 static int
15503 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15504 {
15505 struct attribute *attr = dwarf2_attr (die, name, cu);
15506
15507 return (attr && DW_UNSND (attr));
15508 }
15509
15510 static int
15511 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15512 {
15513 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15514 which value is non-zero. However, we have to be careful with
15515 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15516 (via dwarf2_flag_true_p) follows this attribute. So we may
15517 end up accidently finding a declaration attribute that belongs
15518 to a different DIE referenced by the specification attribute,
15519 even though the given DIE does not have a declaration attribute. */
15520 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15521 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15522 }
15523
15524 /* Return the die giving the specification for DIE, if there is
15525 one. *SPEC_CU is the CU containing DIE on input, and the CU
15526 containing the return value on output. If there is no
15527 specification, but there is an abstract origin, that is
15528 returned. */
15529
15530 static struct die_info *
15531 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15532 {
15533 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15534 *spec_cu);
15535
15536 if (spec_attr == NULL)
15537 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15538
15539 if (spec_attr == NULL)
15540 return NULL;
15541 else
15542 return follow_die_ref (die, spec_attr, spec_cu);
15543 }
15544
15545 /* Free the line_header structure *LH, and any arrays and strings it
15546 refers to.
15547 NOTE: This is also used as a "cleanup" function. */
15548
15549 static void
15550 free_line_header (struct line_header *lh)
15551 {
15552 if (lh->standard_opcode_lengths)
15553 xfree (lh->standard_opcode_lengths);
15554
15555 /* Remember that all the lh->file_names[i].name pointers are
15556 pointers into debug_line_buffer, and don't need to be freed. */
15557 if (lh->file_names)
15558 xfree (lh->file_names);
15559
15560 /* Similarly for the include directory names. */
15561 if (lh->include_dirs)
15562 xfree (lh->include_dirs);
15563
15564 xfree (lh);
15565 }
15566
15567 /* Add an entry to LH's include directory table. */
15568
15569 static void
15570 add_include_dir (struct line_header *lh, const char *include_dir)
15571 {
15572 /* Grow the array if necessary. */
15573 if (lh->include_dirs_size == 0)
15574 {
15575 lh->include_dirs_size = 1; /* for testing */
15576 lh->include_dirs = xmalloc (lh->include_dirs_size
15577 * sizeof (*lh->include_dirs));
15578 }
15579 else if (lh->num_include_dirs >= lh->include_dirs_size)
15580 {
15581 lh->include_dirs_size *= 2;
15582 lh->include_dirs = xrealloc (lh->include_dirs,
15583 (lh->include_dirs_size
15584 * sizeof (*lh->include_dirs)));
15585 }
15586
15587 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15588 }
15589
15590 /* Add an entry to LH's file name table. */
15591
15592 static void
15593 add_file_name (struct line_header *lh,
15594 const char *name,
15595 unsigned int dir_index,
15596 unsigned int mod_time,
15597 unsigned int length)
15598 {
15599 struct file_entry *fe;
15600
15601 /* Grow the array if necessary. */
15602 if (lh->file_names_size == 0)
15603 {
15604 lh->file_names_size = 1; /* for testing */
15605 lh->file_names = xmalloc (lh->file_names_size
15606 * sizeof (*lh->file_names));
15607 }
15608 else if (lh->num_file_names >= lh->file_names_size)
15609 {
15610 lh->file_names_size *= 2;
15611 lh->file_names = xrealloc (lh->file_names,
15612 (lh->file_names_size
15613 * sizeof (*lh->file_names)));
15614 }
15615
15616 fe = &lh->file_names[lh->num_file_names++];
15617 fe->name = name;
15618 fe->dir_index = dir_index;
15619 fe->mod_time = mod_time;
15620 fe->length = length;
15621 fe->included_p = 0;
15622 fe->symtab = NULL;
15623 }
15624
15625 /* A convenience function to find the proper .debug_line section for a
15626 CU. */
15627
15628 static struct dwarf2_section_info *
15629 get_debug_line_section (struct dwarf2_cu *cu)
15630 {
15631 struct dwarf2_section_info *section;
15632
15633 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15634 DWO file. */
15635 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15636 section = &cu->dwo_unit->dwo_file->sections.line;
15637 else if (cu->per_cu->is_dwz)
15638 {
15639 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15640
15641 section = &dwz->line;
15642 }
15643 else
15644 section = &dwarf2_per_objfile->line;
15645
15646 return section;
15647 }
15648
15649 /* Read the statement program header starting at OFFSET in
15650 .debug_line, or .debug_line.dwo. Return a pointer
15651 to a struct line_header, allocated using xmalloc.
15652
15653 NOTE: the strings in the include directory and file name tables of
15654 the returned object point into the dwarf line section buffer,
15655 and must not be freed. */
15656
15657 static struct line_header *
15658 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15659 {
15660 struct cleanup *back_to;
15661 struct line_header *lh;
15662 const gdb_byte *line_ptr;
15663 unsigned int bytes_read, offset_size;
15664 int i;
15665 const char *cur_dir, *cur_file;
15666 struct dwarf2_section_info *section;
15667 bfd *abfd;
15668
15669 section = get_debug_line_section (cu);
15670 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15671 if (section->buffer == NULL)
15672 {
15673 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15674 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15675 else
15676 complaint (&symfile_complaints, _("missing .debug_line section"));
15677 return 0;
15678 }
15679
15680 /* We can't do this until we know the section is non-empty.
15681 Only then do we know we have such a section. */
15682 abfd = section->asection->owner;
15683
15684 /* Make sure that at least there's room for the total_length field.
15685 That could be 12 bytes long, but we're just going to fudge that. */
15686 if (offset + 4 >= section->size)
15687 {
15688 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15689 return 0;
15690 }
15691
15692 lh = xmalloc (sizeof (*lh));
15693 memset (lh, 0, sizeof (*lh));
15694 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15695 (void *) lh);
15696
15697 line_ptr = section->buffer + offset;
15698
15699 /* Read in the header. */
15700 lh->total_length =
15701 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15702 &bytes_read, &offset_size);
15703 line_ptr += bytes_read;
15704 if (line_ptr + lh->total_length > (section->buffer + section->size))
15705 {
15706 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15707 do_cleanups (back_to);
15708 return 0;
15709 }
15710 lh->statement_program_end = line_ptr + lh->total_length;
15711 lh->version = read_2_bytes (abfd, line_ptr);
15712 line_ptr += 2;
15713 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15714 line_ptr += offset_size;
15715 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15716 line_ptr += 1;
15717 if (lh->version >= 4)
15718 {
15719 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15720 line_ptr += 1;
15721 }
15722 else
15723 lh->maximum_ops_per_instruction = 1;
15724
15725 if (lh->maximum_ops_per_instruction == 0)
15726 {
15727 lh->maximum_ops_per_instruction = 1;
15728 complaint (&symfile_complaints,
15729 _("invalid maximum_ops_per_instruction "
15730 "in `.debug_line' section"));
15731 }
15732
15733 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15734 line_ptr += 1;
15735 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15736 line_ptr += 1;
15737 lh->line_range = read_1_byte (abfd, line_ptr);
15738 line_ptr += 1;
15739 lh->opcode_base = read_1_byte (abfd, line_ptr);
15740 line_ptr += 1;
15741 lh->standard_opcode_lengths
15742 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15743
15744 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15745 for (i = 1; i < lh->opcode_base; ++i)
15746 {
15747 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15748 line_ptr += 1;
15749 }
15750
15751 /* Read directory table. */
15752 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15753 {
15754 line_ptr += bytes_read;
15755 add_include_dir (lh, cur_dir);
15756 }
15757 line_ptr += bytes_read;
15758
15759 /* Read file name table. */
15760 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15761 {
15762 unsigned int dir_index, mod_time, length;
15763
15764 line_ptr += bytes_read;
15765 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15766 line_ptr += bytes_read;
15767 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15768 line_ptr += bytes_read;
15769 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15770 line_ptr += bytes_read;
15771
15772 add_file_name (lh, cur_file, dir_index, mod_time, length);
15773 }
15774 line_ptr += bytes_read;
15775 lh->statement_program_start = line_ptr;
15776
15777 if (line_ptr > (section->buffer + section->size))
15778 complaint (&symfile_complaints,
15779 _("line number info header doesn't "
15780 "fit in `.debug_line' section"));
15781
15782 discard_cleanups (back_to);
15783 return lh;
15784 }
15785
15786 /* Subroutine of dwarf_decode_lines to simplify it.
15787 Return the file name of the psymtab for included file FILE_INDEX
15788 in line header LH of PST.
15789 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15790 If space for the result is malloc'd, it will be freed by a cleanup.
15791 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15792
15793 The function creates dangling cleanup registration. */
15794
15795 static const char *
15796 psymtab_include_file_name (const struct line_header *lh, int file_index,
15797 const struct partial_symtab *pst,
15798 const char *comp_dir)
15799 {
15800 const struct file_entry fe = lh->file_names [file_index];
15801 const char *include_name = fe.name;
15802 const char *include_name_to_compare = include_name;
15803 const char *dir_name = NULL;
15804 const char *pst_filename;
15805 char *copied_name = NULL;
15806 int file_is_pst;
15807
15808 if (fe.dir_index)
15809 dir_name = lh->include_dirs[fe.dir_index - 1];
15810
15811 if (!IS_ABSOLUTE_PATH (include_name)
15812 && (dir_name != NULL || comp_dir != NULL))
15813 {
15814 /* Avoid creating a duplicate psymtab for PST.
15815 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15816 Before we do the comparison, however, we need to account
15817 for DIR_NAME and COMP_DIR.
15818 First prepend dir_name (if non-NULL). If we still don't
15819 have an absolute path prepend comp_dir (if non-NULL).
15820 However, the directory we record in the include-file's
15821 psymtab does not contain COMP_DIR (to match the
15822 corresponding symtab(s)).
15823
15824 Example:
15825
15826 bash$ cd /tmp
15827 bash$ gcc -g ./hello.c
15828 include_name = "hello.c"
15829 dir_name = "."
15830 DW_AT_comp_dir = comp_dir = "/tmp"
15831 DW_AT_name = "./hello.c" */
15832
15833 if (dir_name != NULL)
15834 {
15835 char *tem = concat (dir_name, SLASH_STRING,
15836 include_name, (char *)NULL);
15837
15838 make_cleanup (xfree, tem);
15839 include_name = tem;
15840 include_name_to_compare = include_name;
15841 }
15842 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15843 {
15844 char *tem = concat (comp_dir, SLASH_STRING,
15845 include_name, (char *)NULL);
15846
15847 make_cleanup (xfree, tem);
15848 include_name_to_compare = tem;
15849 }
15850 }
15851
15852 pst_filename = pst->filename;
15853 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15854 {
15855 copied_name = concat (pst->dirname, SLASH_STRING,
15856 pst_filename, (char *)NULL);
15857 pst_filename = copied_name;
15858 }
15859
15860 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15861
15862 if (copied_name != NULL)
15863 xfree (copied_name);
15864
15865 if (file_is_pst)
15866 return NULL;
15867 return include_name;
15868 }
15869
15870 /* Ignore this record_line request. */
15871
15872 static void
15873 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15874 {
15875 return;
15876 }
15877
15878 /* Subroutine of dwarf_decode_lines to simplify it.
15879 Process the line number information in LH. */
15880
15881 static void
15882 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15883 struct dwarf2_cu *cu, struct partial_symtab *pst)
15884 {
15885 const gdb_byte *line_ptr, *extended_end;
15886 const gdb_byte *line_end;
15887 unsigned int bytes_read, extended_len;
15888 unsigned char op_code, extended_op, adj_opcode;
15889 CORE_ADDR baseaddr;
15890 struct objfile *objfile = cu->objfile;
15891 bfd *abfd = objfile->obfd;
15892 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15893 const int decode_for_pst_p = (pst != NULL);
15894 struct subfile *last_subfile = NULL;
15895 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15896 = record_line;
15897
15898 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15899
15900 line_ptr = lh->statement_program_start;
15901 line_end = lh->statement_program_end;
15902
15903 /* Read the statement sequences until there's nothing left. */
15904 while (line_ptr < line_end)
15905 {
15906 /* state machine registers */
15907 CORE_ADDR address = 0;
15908 unsigned int file = 1;
15909 unsigned int line = 1;
15910 unsigned int column = 0;
15911 int is_stmt = lh->default_is_stmt;
15912 int basic_block = 0;
15913 int end_sequence = 0;
15914 CORE_ADDR addr;
15915 unsigned char op_index = 0;
15916
15917 if (!decode_for_pst_p && lh->num_file_names >= file)
15918 {
15919 /* Start a subfile for the current file of the state machine. */
15920 /* lh->include_dirs and lh->file_names are 0-based, but the
15921 directory and file name numbers in the statement program
15922 are 1-based. */
15923 struct file_entry *fe = &lh->file_names[file - 1];
15924 const char *dir = NULL;
15925
15926 if (fe->dir_index)
15927 dir = lh->include_dirs[fe->dir_index - 1];
15928
15929 dwarf2_start_subfile (fe->name, dir, comp_dir);
15930 }
15931
15932 /* Decode the table. */
15933 while (!end_sequence)
15934 {
15935 op_code = read_1_byte (abfd, line_ptr);
15936 line_ptr += 1;
15937 if (line_ptr > line_end)
15938 {
15939 dwarf2_debug_line_missing_end_sequence_complaint ();
15940 break;
15941 }
15942
15943 if (op_code >= lh->opcode_base)
15944 {
15945 /* Special operand. */
15946 adj_opcode = op_code - lh->opcode_base;
15947 address += (((op_index + (adj_opcode / lh->line_range))
15948 / lh->maximum_ops_per_instruction)
15949 * lh->minimum_instruction_length);
15950 op_index = ((op_index + (adj_opcode / lh->line_range))
15951 % lh->maximum_ops_per_instruction);
15952 line += lh->line_base + (adj_opcode % lh->line_range);
15953 if (lh->num_file_names < file || file == 0)
15954 dwarf2_debug_line_missing_file_complaint ();
15955 /* For now we ignore lines not starting on an
15956 instruction boundary. */
15957 else if (op_index == 0)
15958 {
15959 lh->file_names[file - 1].included_p = 1;
15960 if (!decode_for_pst_p && is_stmt)
15961 {
15962 if (last_subfile != current_subfile)
15963 {
15964 addr = gdbarch_addr_bits_remove (gdbarch, address);
15965 if (last_subfile)
15966 (*p_record_line) (last_subfile, 0, addr);
15967 last_subfile = current_subfile;
15968 }
15969 /* Append row to matrix using current values. */
15970 addr = gdbarch_addr_bits_remove (gdbarch, address);
15971 (*p_record_line) (current_subfile, line, addr);
15972 }
15973 }
15974 basic_block = 0;
15975 }
15976 else switch (op_code)
15977 {
15978 case DW_LNS_extended_op:
15979 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15980 &bytes_read);
15981 line_ptr += bytes_read;
15982 extended_end = line_ptr + extended_len;
15983 extended_op = read_1_byte (abfd, line_ptr);
15984 line_ptr += 1;
15985 switch (extended_op)
15986 {
15987 case DW_LNE_end_sequence:
15988 p_record_line = record_line;
15989 end_sequence = 1;
15990 break;
15991 case DW_LNE_set_address:
15992 address = read_address (abfd, line_ptr, cu, &bytes_read);
15993
15994 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15995 {
15996 /* This line table is for a function which has been
15997 GCd by the linker. Ignore it. PR gdb/12528 */
15998
15999 long line_offset
16000 = line_ptr - get_debug_line_section (cu)->buffer;
16001
16002 complaint (&symfile_complaints,
16003 _(".debug_line address at offset 0x%lx is 0 "
16004 "[in module %s]"),
16005 line_offset, objfile->name);
16006 p_record_line = noop_record_line;
16007 }
16008
16009 op_index = 0;
16010 line_ptr += bytes_read;
16011 address += baseaddr;
16012 break;
16013 case DW_LNE_define_file:
16014 {
16015 const char *cur_file;
16016 unsigned int dir_index, mod_time, length;
16017
16018 cur_file = read_direct_string (abfd, line_ptr,
16019 &bytes_read);
16020 line_ptr += bytes_read;
16021 dir_index =
16022 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16023 line_ptr += bytes_read;
16024 mod_time =
16025 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16026 line_ptr += bytes_read;
16027 length =
16028 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16029 line_ptr += bytes_read;
16030 add_file_name (lh, cur_file, dir_index, mod_time, length);
16031 }
16032 break;
16033 case DW_LNE_set_discriminator:
16034 /* The discriminator is not interesting to the debugger;
16035 just ignore it. */
16036 line_ptr = extended_end;
16037 break;
16038 default:
16039 complaint (&symfile_complaints,
16040 _("mangled .debug_line section"));
16041 return;
16042 }
16043 /* Make sure that we parsed the extended op correctly. If e.g.
16044 we expected a different address size than the producer used,
16045 we may have read the wrong number of bytes. */
16046 if (line_ptr != extended_end)
16047 {
16048 complaint (&symfile_complaints,
16049 _("mangled .debug_line section"));
16050 return;
16051 }
16052 break;
16053 case DW_LNS_copy:
16054 if (lh->num_file_names < file || file == 0)
16055 dwarf2_debug_line_missing_file_complaint ();
16056 else
16057 {
16058 lh->file_names[file - 1].included_p = 1;
16059 if (!decode_for_pst_p && is_stmt)
16060 {
16061 if (last_subfile != current_subfile)
16062 {
16063 addr = gdbarch_addr_bits_remove (gdbarch, address);
16064 if (last_subfile)
16065 (*p_record_line) (last_subfile, 0, addr);
16066 last_subfile = current_subfile;
16067 }
16068 addr = gdbarch_addr_bits_remove (gdbarch, address);
16069 (*p_record_line) (current_subfile, line, addr);
16070 }
16071 }
16072 basic_block = 0;
16073 break;
16074 case DW_LNS_advance_pc:
16075 {
16076 CORE_ADDR adjust
16077 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16078
16079 address += (((op_index + adjust)
16080 / lh->maximum_ops_per_instruction)
16081 * lh->minimum_instruction_length);
16082 op_index = ((op_index + adjust)
16083 % lh->maximum_ops_per_instruction);
16084 line_ptr += bytes_read;
16085 }
16086 break;
16087 case DW_LNS_advance_line:
16088 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16089 line_ptr += bytes_read;
16090 break;
16091 case DW_LNS_set_file:
16092 {
16093 /* The arrays lh->include_dirs and lh->file_names are
16094 0-based, but the directory and file name numbers in
16095 the statement program are 1-based. */
16096 struct file_entry *fe;
16097 const char *dir = NULL;
16098
16099 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16100 line_ptr += bytes_read;
16101 if (lh->num_file_names < file || file == 0)
16102 dwarf2_debug_line_missing_file_complaint ();
16103 else
16104 {
16105 fe = &lh->file_names[file - 1];
16106 if (fe->dir_index)
16107 dir = lh->include_dirs[fe->dir_index - 1];
16108 if (!decode_for_pst_p)
16109 {
16110 last_subfile = current_subfile;
16111 dwarf2_start_subfile (fe->name, dir, comp_dir);
16112 }
16113 }
16114 }
16115 break;
16116 case DW_LNS_set_column:
16117 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16118 line_ptr += bytes_read;
16119 break;
16120 case DW_LNS_negate_stmt:
16121 is_stmt = (!is_stmt);
16122 break;
16123 case DW_LNS_set_basic_block:
16124 basic_block = 1;
16125 break;
16126 /* Add to the address register of the state machine the
16127 address increment value corresponding to special opcode
16128 255. I.e., this value is scaled by the minimum
16129 instruction length since special opcode 255 would have
16130 scaled the increment. */
16131 case DW_LNS_const_add_pc:
16132 {
16133 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16134
16135 address += (((op_index + adjust)
16136 / lh->maximum_ops_per_instruction)
16137 * lh->minimum_instruction_length);
16138 op_index = ((op_index + adjust)
16139 % lh->maximum_ops_per_instruction);
16140 }
16141 break;
16142 case DW_LNS_fixed_advance_pc:
16143 address += read_2_bytes (abfd, line_ptr);
16144 op_index = 0;
16145 line_ptr += 2;
16146 break;
16147 default:
16148 {
16149 /* Unknown standard opcode, ignore it. */
16150 int i;
16151
16152 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16153 {
16154 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16155 line_ptr += bytes_read;
16156 }
16157 }
16158 }
16159 }
16160 if (lh->num_file_names < file || file == 0)
16161 dwarf2_debug_line_missing_file_complaint ();
16162 else
16163 {
16164 lh->file_names[file - 1].included_p = 1;
16165 if (!decode_for_pst_p)
16166 {
16167 addr = gdbarch_addr_bits_remove (gdbarch, address);
16168 (*p_record_line) (current_subfile, 0, addr);
16169 }
16170 }
16171 }
16172 }
16173
16174 /* Decode the Line Number Program (LNP) for the given line_header
16175 structure and CU. The actual information extracted and the type
16176 of structures created from the LNP depends on the value of PST.
16177
16178 1. If PST is NULL, then this procedure uses the data from the program
16179 to create all necessary symbol tables, and their linetables.
16180
16181 2. If PST is not NULL, this procedure reads the program to determine
16182 the list of files included by the unit represented by PST, and
16183 builds all the associated partial symbol tables.
16184
16185 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16186 It is used for relative paths in the line table.
16187 NOTE: When processing partial symtabs (pst != NULL),
16188 comp_dir == pst->dirname.
16189
16190 NOTE: It is important that psymtabs have the same file name (via strcmp)
16191 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16192 symtab we don't use it in the name of the psymtabs we create.
16193 E.g. expand_line_sal requires this when finding psymtabs to expand.
16194 A good testcase for this is mb-inline.exp. */
16195
16196 static void
16197 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16198 struct dwarf2_cu *cu, struct partial_symtab *pst,
16199 int want_line_info)
16200 {
16201 struct objfile *objfile = cu->objfile;
16202 const int decode_for_pst_p = (pst != NULL);
16203 struct subfile *first_subfile = current_subfile;
16204
16205 if (want_line_info)
16206 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16207
16208 if (decode_for_pst_p)
16209 {
16210 int file_index;
16211
16212 /* Now that we're done scanning the Line Header Program, we can
16213 create the psymtab of each included file. */
16214 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16215 if (lh->file_names[file_index].included_p == 1)
16216 {
16217 const char *include_name =
16218 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16219 if (include_name != NULL)
16220 dwarf2_create_include_psymtab (include_name, pst, objfile);
16221 }
16222 }
16223 else
16224 {
16225 /* Make sure a symtab is created for every file, even files
16226 which contain only variables (i.e. no code with associated
16227 line numbers). */
16228 int i;
16229
16230 for (i = 0; i < lh->num_file_names; i++)
16231 {
16232 const char *dir = NULL;
16233 struct file_entry *fe;
16234
16235 fe = &lh->file_names[i];
16236 if (fe->dir_index)
16237 dir = lh->include_dirs[fe->dir_index - 1];
16238 dwarf2_start_subfile (fe->name, dir, comp_dir);
16239
16240 /* Skip the main file; we don't need it, and it must be
16241 allocated last, so that it will show up before the
16242 non-primary symtabs in the objfile's symtab list. */
16243 if (current_subfile == first_subfile)
16244 continue;
16245
16246 if (current_subfile->symtab == NULL)
16247 current_subfile->symtab = allocate_symtab (current_subfile->name,
16248 objfile);
16249 fe->symtab = current_subfile->symtab;
16250 }
16251 }
16252 }
16253
16254 /* Start a subfile for DWARF. FILENAME is the name of the file and
16255 DIRNAME the name of the source directory which contains FILENAME
16256 or NULL if not known. COMP_DIR is the compilation directory for the
16257 linetable's compilation unit or NULL if not known.
16258 This routine tries to keep line numbers from identical absolute and
16259 relative file names in a common subfile.
16260
16261 Using the `list' example from the GDB testsuite, which resides in
16262 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16263 of /srcdir/list0.c yields the following debugging information for list0.c:
16264
16265 DW_AT_name: /srcdir/list0.c
16266 DW_AT_comp_dir: /compdir
16267 files.files[0].name: list0.h
16268 files.files[0].dir: /srcdir
16269 files.files[1].name: list0.c
16270 files.files[1].dir: /srcdir
16271
16272 The line number information for list0.c has to end up in a single
16273 subfile, so that `break /srcdir/list0.c:1' works as expected.
16274 start_subfile will ensure that this happens provided that we pass the
16275 concatenation of files.files[1].dir and files.files[1].name as the
16276 subfile's name. */
16277
16278 static void
16279 dwarf2_start_subfile (const char *filename, const char *dirname,
16280 const char *comp_dir)
16281 {
16282 char *copy = NULL;
16283
16284 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16285 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16286 second argument to start_subfile. To be consistent, we do the
16287 same here. In order not to lose the line information directory,
16288 we concatenate it to the filename when it makes sense.
16289 Note that the Dwarf3 standard says (speaking of filenames in line
16290 information): ``The directory index is ignored for file names
16291 that represent full path names''. Thus ignoring dirname in the
16292 `else' branch below isn't an issue. */
16293
16294 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16295 {
16296 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16297 filename = copy;
16298 }
16299
16300 start_subfile (filename, comp_dir);
16301
16302 if (copy != NULL)
16303 xfree (copy);
16304 }
16305
16306 /* Start a symtab for DWARF.
16307 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16308
16309 static void
16310 dwarf2_start_symtab (struct dwarf2_cu *cu,
16311 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16312 {
16313 start_symtab (name, comp_dir, low_pc);
16314 record_debugformat ("DWARF 2");
16315 record_producer (cu->producer);
16316
16317 /* We assume that we're processing GCC output. */
16318 processing_gcc_compilation = 2;
16319
16320 cu->processing_has_namespace_info = 0;
16321 }
16322
16323 static void
16324 var_decode_location (struct attribute *attr, struct symbol *sym,
16325 struct dwarf2_cu *cu)
16326 {
16327 struct objfile *objfile = cu->objfile;
16328 struct comp_unit_head *cu_header = &cu->header;
16329
16330 /* NOTE drow/2003-01-30: There used to be a comment and some special
16331 code here to turn a symbol with DW_AT_external and a
16332 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16333 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16334 with some versions of binutils) where shared libraries could have
16335 relocations against symbols in their debug information - the
16336 minimal symbol would have the right address, but the debug info
16337 would not. It's no longer necessary, because we will explicitly
16338 apply relocations when we read in the debug information now. */
16339
16340 /* A DW_AT_location attribute with no contents indicates that a
16341 variable has been optimized away. */
16342 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16343 {
16344 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16345 return;
16346 }
16347
16348 /* Handle one degenerate form of location expression specially, to
16349 preserve GDB's previous behavior when section offsets are
16350 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16351 then mark this symbol as LOC_STATIC. */
16352
16353 if (attr_form_is_block (attr)
16354 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16355 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16356 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16357 && (DW_BLOCK (attr)->size
16358 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16359 {
16360 unsigned int dummy;
16361
16362 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16363 SYMBOL_VALUE_ADDRESS (sym) =
16364 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16365 else
16366 SYMBOL_VALUE_ADDRESS (sym) =
16367 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16368 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16369 fixup_symbol_section (sym, objfile);
16370 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16371 SYMBOL_SECTION (sym));
16372 return;
16373 }
16374
16375 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16376 expression evaluator, and use LOC_COMPUTED only when necessary
16377 (i.e. when the value of a register or memory location is
16378 referenced, or a thread-local block, etc.). Then again, it might
16379 not be worthwhile. I'm assuming that it isn't unless performance
16380 or memory numbers show me otherwise. */
16381
16382 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16383
16384 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16385 cu->has_loclist = 1;
16386 }
16387
16388 /* Given a pointer to a DWARF information entry, figure out if we need
16389 to make a symbol table entry for it, and if so, create a new entry
16390 and return a pointer to it.
16391 If TYPE is NULL, determine symbol type from the die, otherwise
16392 used the passed type.
16393 If SPACE is not NULL, use it to hold the new symbol. If it is
16394 NULL, allocate a new symbol on the objfile's obstack. */
16395
16396 static struct symbol *
16397 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16398 struct symbol *space)
16399 {
16400 struct objfile *objfile = cu->objfile;
16401 struct symbol *sym = NULL;
16402 const char *name;
16403 struct attribute *attr = NULL;
16404 struct attribute *attr2 = NULL;
16405 CORE_ADDR baseaddr;
16406 struct pending **list_to_add = NULL;
16407
16408 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16409
16410 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16411
16412 name = dwarf2_name (die, cu);
16413 if (name)
16414 {
16415 const char *linkagename;
16416 int suppress_add = 0;
16417
16418 if (space)
16419 sym = space;
16420 else
16421 sym = allocate_symbol (objfile);
16422 OBJSTAT (objfile, n_syms++);
16423
16424 /* Cache this symbol's name and the name's demangled form (if any). */
16425 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16426 linkagename = dwarf2_physname (name, die, cu);
16427 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16428
16429 /* Fortran does not have mangling standard and the mangling does differ
16430 between gfortran, iFort etc. */
16431 if (cu->language == language_fortran
16432 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16433 symbol_set_demangled_name (&(sym->ginfo),
16434 dwarf2_full_name (name, die, cu),
16435 NULL);
16436
16437 /* Default assumptions.
16438 Use the passed type or decode it from the die. */
16439 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16440 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16441 if (type != NULL)
16442 SYMBOL_TYPE (sym) = type;
16443 else
16444 SYMBOL_TYPE (sym) = die_type (die, cu);
16445 attr = dwarf2_attr (die,
16446 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16447 cu);
16448 if (attr)
16449 {
16450 SYMBOL_LINE (sym) = DW_UNSND (attr);
16451 }
16452
16453 attr = dwarf2_attr (die,
16454 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16455 cu);
16456 if (attr)
16457 {
16458 int file_index = DW_UNSND (attr);
16459
16460 if (cu->line_header == NULL
16461 || file_index > cu->line_header->num_file_names)
16462 complaint (&symfile_complaints,
16463 _("file index out of range"));
16464 else if (file_index > 0)
16465 {
16466 struct file_entry *fe;
16467
16468 fe = &cu->line_header->file_names[file_index - 1];
16469 SYMBOL_SYMTAB (sym) = fe->symtab;
16470 }
16471 }
16472
16473 switch (die->tag)
16474 {
16475 case DW_TAG_label:
16476 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16477 if (attr)
16478 {
16479 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16480 }
16481 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16482 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16483 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16484 add_symbol_to_list (sym, cu->list_in_scope);
16485 break;
16486 case DW_TAG_subprogram:
16487 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16488 finish_block. */
16489 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16490 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16491 if ((attr2 && (DW_UNSND (attr2) != 0))
16492 || cu->language == language_ada)
16493 {
16494 /* Subprograms marked external are stored as a global symbol.
16495 Ada subprograms, whether marked external or not, are always
16496 stored as a global symbol, because we want to be able to
16497 access them globally. For instance, we want to be able
16498 to break on a nested subprogram without having to
16499 specify the context. */
16500 list_to_add = &global_symbols;
16501 }
16502 else
16503 {
16504 list_to_add = cu->list_in_scope;
16505 }
16506 break;
16507 case DW_TAG_inlined_subroutine:
16508 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16509 finish_block. */
16510 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16511 SYMBOL_INLINED (sym) = 1;
16512 list_to_add = cu->list_in_scope;
16513 break;
16514 case DW_TAG_template_value_param:
16515 suppress_add = 1;
16516 /* Fall through. */
16517 case DW_TAG_constant:
16518 case DW_TAG_variable:
16519 case DW_TAG_member:
16520 /* Compilation with minimal debug info may result in
16521 variables with missing type entries. Change the
16522 misleading `void' type to something sensible. */
16523 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16524 SYMBOL_TYPE (sym)
16525 = objfile_type (objfile)->nodebug_data_symbol;
16526
16527 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16528 /* In the case of DW_TAG_member, we should only be called for
16529 static const members. */
16530 if (die->tag == DW_TAG_member)
16531 {
16532 /* dwarf2_add_field uses die_is_declaration,
16533 so we do the same. */
16534 gdb_assert (die_is_declaration (die, cu));
16535 gdb_assert (attr);
16536 }
16537 if (attr)
16538 {
16539 dwarf2_const_value (attr, sym, cu);
16540 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16541 if (!suppress_add)
16542 {
16543 if (attr2 && (DW_UNSND (attr2) != 0))
16544 list_to_add = &global_symbols;
16545 else
16546 list_to_add = cu->list_in_scope;
16547 }
16548 break;
16549 }
16550 attr = dwarf2_attr (die, DW_AT_location, cu);
16551 if (attr)
16552 {
16553 var_decode_location (attr, sym, cu);
16554 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16555
16556 /* Fortran explicitly imports any global symbols to the local
16557 scope by DW_TAG_common_block. */
16558 if (cu->language == language_fortran && die->parent
16559 && die->parent->tag == DW_TAG_common_block)
16560 attr2 = NULL;
16561
16562 if (SYMBOL_CLASS (sym) == LOC_STATIC
16563 && SYMBOL_VALUE_ADDRESS (sym) == 0
16564 && !dwarf2_per_objfile->has_section_at_zero)
16565 {
16566 /* When a static variable is eliminated by the linker,
16567 the corresponding debug information is not stripped
16568 out, but the variable address is set to null;
16569 do not add such variables into symbol table. */
16570 }
16571 else if (attr2 && (DW_UNSND (attr2) != 0))
16572 {
16573 /* Workaround gfortran PR debug/40040 - it uses
16574 DW_AT_location for variables in -fPIC libraries which may
16575 get overriden by other libraries/executable and get
16576 a different address. Resolve it by the minimal symbol
16577 which may come from inferior's executable using copy
16578 relocation. Make this workaround only for gfortran as for
16579 other compilers GDB cannot guess the minimal symbol
16580 Fortran mangling kind. */
16581 if (cu->language == language_fortran && die->parent
16582 && die->parent->tag == DW_TAG_module
16583 && cu->producer
16584 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16585 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16586
16587 /* A variable with DW_AT_external is never static,
16588 but it may be block-scoped. */
16589 list_to_add = (cu->list_in_scope == &file_symbols
16590 ? &global_symbols : cu->list_in_scope);
16591 }
16592 else
16593 list_to_add = cu->list_in_scope;
16594 }
16595 else
16596 {
16597 /* We do not know the address of this symbol.
16598 If it is an external symbol and we have type information
16599 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16600 The address of the variable will then be determined from
16601 the minimal symbol table whenever the variable is
16602 referenced. */
16603 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16604
16605 /* Fortran explicitly imports any global symbols to the local
16606 scope by DW_TAG_common_block. */
16607 if (cu->language == language_fortran && die->parent
16608 && die->parent->tag == DW_TAG_common_block)
16609 {
16610 /* SYMBOL_CLASS doesn't matter here because
16611 read_common_block is going to reset it. */
16612 if (!suppress_add)
16613 list_to_add = cu->list_in_scope;
16614 }
16615 else if (attr2 && (DW_UNSND (attr2) != 0)
16616 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16617 {
16618 /* A variable with DW_AT_external is never static, but it
16619 may be block-scoped. */
16620 list_to_add = (cu->list_in_scope == &file_symbols
16621 ? &global_symbols : cu->list_in_scope);
16622
16623 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16624 }
16625 else if (!die_is_declaration (die, cu))
16626 {
16627 /* Use the default LOC_OPTIMIZED_OUT class. */
16628 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16629 if (!suppress_add)
16630 list_to_add = cu->list_in_scope;
16631 }
16632 }
16633 break;
16634 case DW_TAG_formal_parameter:
16635 /* If we are inside a function, mark this as an argument. If
16636 not, we might be looking at an argument to an inlined function
16637 when we do not have enough information to show inlined frames;
16638 pretend it's a local variable in that case so that the user can
16639 still see it. */
16640 if (context_stack_depth > 0
16641 && context_stack[context_stack_depth - 1].name != NULL)
16642 SYMBOL_IS_ARGUMENT (sym) = 1;
16643 attr = dwarf2_attr (die, DW_AT_location, cu);
16644 if (attr)
16645 {
16646 var_decode_location (attr, sym, cu);
16647 }
16648 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16649 if (attr)
16650 {
16651 dwarf2_const_value (attr, sym, cu);
16652 }
16653
16654 list_to_add = cu->list_in_scope;
16655 break;
16656 case DW_TAG_unspecified_parameters:
16657 /* From varargs functions; gdb doesn't seem to have any
16658 interest in this information, so just ignore it for now.
16659 (FIXME?) */
16660 break;
16661 case DW_TAG_template_type_param:
16662 suppress_add = 1;
16663 /* Fall through. */
16664 case DW_TAG_class_type:
16665 case DW_TAG_interface_type:
16666 case DW_TAG_structure_type:
16667 case DW_TAG_union_type:
16668 case DW_TAG_set_type:
16669 case DW_TAG_enumeration_type:
16670 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16671 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16672
16673 {
16674 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16675 really ever be static objects: otherwise, if you try
16676 to, say, break of a class's method and you're in a file
16677 which doesn't mention that class, it won't work unless
16678 the check for all static symbols in lookup_symbol_aux
16679 saves you. See the OtherFileClass tests in
16680 gdb.c++/namespace.exp. */
16681
16682 if (!suppress_add)
16683 {
16684 list_to_add = (cu->list_in_scope == &file_symbols
16685 && (cu->language == language_cplus
16686 || cu->language == language_java)
16687 ? &global_symbols : cu->list_in_scope);
16688
16689 /* The semantics of C++ state that "struct foo {
16690 ... }" also defines a typedef for "foo". A Java
16691 class declaration also defines a typedef for the
16692 class. */
16693 if (cu->language == language_cplus
16694 || cu->language == language_java
16695 || cu->language == language_ada)
16696 {
16697 /* The symbol's name is already allocated along
16698 with this objfile, so we don't need to
16699 duplicate it for the type. */
16700 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16701 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16702 }
16703 }
16704 }
16705 break;
16706 case DW_TAG_typedef:
16707 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16708 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16709 list_to_add = cu->list_in_scope;
16710 break;
16711 case DW_TAG_base_type:
16712 case DW_TAG_subrange_type:
16713 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16714 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16715 list_to_add = cu->list_in_scope;
16716 break;
16717 case DW_TAG_enumerator:
16718 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16719 if (attr)
16720 {
16721 dwarf2_const_value (attr, sym, cu);
16722 }
16723 {
16724 /* NOTE: carlton/2003-11-10: See comment above in the
16725 DW_TAG_class_type, etc. block. */
16726
16727 list_to_add = (cu->list_in_scope == &file_symbols
16728 && (cu->language == language_cplus
16729 || cu->language == language_java)
16730 ? &global_symbols : cu->list_in_scope);
16731 }
16732 break;
16733 case DW_TAG_namespace:
16734 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16735 list_to_add = &global_symbols;
16736 break;
16737 case DW_TAG_common_block:
16738 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16739 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16740 add_symbol_to_list (sym, cu->list_in_scope);
16741 break;
16742 default:
16743 /* Not a tag we recognize. Hopefully we aren't processing
16744 trash data, but since we must specifically ignore things
16745 we don't recognize, there is nothing else we should do at
16746 this point. */
16747 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16748 dwarf_tag_name (die->tag));
16749 break;
16750 }
16751
16752 if (suppress_add)
16753 {
16754 sym->hash_next = objfile->template_symbols;
16755 objfile->template_symbols = sym;
16756 list_to_add = NULL;
16757 }
16758
16759 if (list_to_add != NULL)
16760 add_symbol_to_list (sym, list_to_add);
16761
16762 /* For the benefit of old versions of GCC, check for anonymous
16763 namespaces based on the demangled name. */
16764 if (!cu->processing_has_namespace_info
16765 && cu->language == language_cplus)
16766 cp_scan_for_anonymous_namespaces (sym, objfile);
16767 }
16768 return (sym);
16769 }
16770
16771 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16772
16773 static struct symbol *
16774 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16775 {
16776 return new_symbol_full (die, type, cu, NULL);
16777 }
16778
16779 /* Given an attr with a DW_FORM_dataN value in host byte order,
16780 zero-extend it as appropriate for the symbol's type. The DWARF
16781 standard (v4) is not entirely clear about the meaning of using
16782 DW_FORM_dataN for a constant with a signed type, where the type is
16783 wider than the data. The conclusion of a discussion on the DWARF
16784 list was that this is unspecified. We choose to always zero-extend
16785 because that is the interpretation long in use by GCC. */
16786
16787 static gdb_byte *
16788 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
16789 struct dwarf2_cu *cu, LONGEST *value, int bits)
16790 {
16791 struct objfile *objfile = cu->objfile;
16792 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16793 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16794 LONGEST l = DW_UNSND (attr);
16795
16796 if (bits < sizeof (*value) * 8)
16797 {
16798 l &= ((LONGEST) 1 << bits) - 1;
16799 *value = l;
16800 }
16801 else if (bits == sizeof (*value) * 8)
16802 *value = l;
16803 else
16804 {
16805 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16806 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16807 return bytes;
16808 }
16809
16810 return NULL;
16811 }
16812
16813 /* Read a constant value from an attribute. Either set *VALUE, or if
16814 the value does not fit in *VALUE, set *BYTES - either already
16815 allocated on the objfile obstack, or newly allocated on OBSTACK,
16816 or, set *BATON, if we translated the constant to a location
16817 expression. */
16818
16819 static void
16820 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
16821 const char *name, struct obstack *obstack,
16822 struct dwarf2_cu *cu,
16823 LONGEST *value, const gdb_byte **bytes,
16824 struct dwarf2_locexpr_baton **baton)
16825 {
16826 struct objfile *objfile = cu->objfile;
16827 struct comp_unit_head *cu_header = &cu->header;
16828 struct dwarf_block *blk;
16829 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16830 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16831
16832 *value = 0;
16833 *bytes = NULL;
16834 *baton = NULL;
16835
16836 switch (attr->form)
16837 {
16838 case DW_FORM_addr:
16839 case DW_FORM_GNU_addr_index:
16840 {
16841 gdb_byte *data;
16842
16843 if (TYPE_LENGTH (type) != cu_header->addr_size)
16844 dwarf2_const_value_length_mismatch_complaint (name,
16845 cu_header->addr_size,
16846 TYPE_LENGTH (type));
16847 /* Symbols of this form are reasonably rare, so we just
16848 piggyback on the existing location code rather than writing
16849 a new implementation of symbol_computed_ops. */
16850 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16851 (*baton)->per_cu = cu->per_cu;
16852 gdb_assert ((*baton)->per_cu);
16853
16854 (*baton)->size = 2 + cu_header->addr_size;
16855 data = obstack_alloc (obstack, (*baton)->size);
16856 (*baton)->data = data;
16857
16858 data[0] = DW_OP_addr;
16859 store_unsigned_integer (&data[1], cu_header->addr_size,
16860 byte_order, DW_ADDR (attr));
16861 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16862 }
16863 break;
16864 case DW_FORM_string:
16865 case DW_FORM_strp:
16866 case DW_FORM_GNU_str_index:
16867 case DW_FORM_GNU_strp_alt:
16868 /* DW_STRING is already allocated on the objfile obstack, point
16869 directly to it. */
16870 *bytes = (const gdb_byte *) DW_STRING (attr);
16871 break;
16872 case DW_FORM_block1:
16873 case DW_FORM_block2:
16874 case DW_FORM_block4:
16875 case DW_FORM_block:
16876 case DW_FORM_exprloc:
16877 blk = DW_BLOCK (attr);
16878 if (TYPE_LENGTH (type) != blk->size)
16879 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16880 TYPE_LENGTH (type));
16881 *bytes = blk->data;
16882 break;
16883
16884 /* The DW_AT_const_value attributes are supposed to carry the
16885 symbol's value "represented as it would be on the target
16886 architecture." By the time we get here, it's already been
16887 converted to host endianness, so we just need to sign- or
16888 zero-extend it as appropriate. */
16889 case DW_FORM_data1:
16890 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16891 break;
16892 case DW_FORM_data2:
16893 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16894 break;
16895 case DW_FORM_data4:
16896 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16897 break;
16898 case DW_FORM_data8:
16899 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16900 break;
16901
16902 case DW_FORM_sdata:
16903 *value = DW_SND (attr);
16904 break;
16905
16906 case DW_FORM_udata:
16907 *value = DW_UNSND (attr);
16908 break;
16909
16910 default:
16911 complaint (&symfile_complaints,
16912 _("unsupported const value attribute form: '%s'"),
16913 dwarf_form_name (attr->form));
16914 *value = 0;
16915 break;
16916 }
16917 }
16918
16919
16920 /* Copy constant value from an attribute to a symbol. */
16921
16922 static void
16923 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
16924 struct dwarf2_cu *cu)
16925 {
16926 struct objfile *objfile = cu->objfile;
16927 struct comp_unit_head *cu_header = &cu->header;
16928 LONGEST value;
16929 const gdb_byte *bytes;
16930 struct dwarf2_locexpr_baton *baton;
16931
16932 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16933 SYMBOL_PRINT_NAME (sym),
16934 &objfile->objfile_obstack, cu,
16935 &value, &bytes, &baton);
16936
16937 if (baton != NULL)
16938 {
16939 SYMBOL_LOCATION_BATON (sym) = baton;
16940 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16941 }
16942 else if (bytes != NULL)
16943 {
16944 SYMBOL_VALUE_BYTES (sym) = bytes;
16945 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16946 }
16947 else
16948 {
16949 SYMBOL_VALUE (sym) = value;
16950 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16951 }
16952 }
16953
16954 /* Return the type of the die in question using its DW_AT_type attribute. */
16955
16956 static struct type *
16957 die_type (struct die_info *die, struct dwarf2_cu *cu)
16958 {
16959 struct attribute *type_attr;
16960
16961 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16962 if (!type_attr)
16963 {
16964 /* A missing DW_AT_type represents a void type. */
16965 return objfile_type (cu->objfile)->builtin_void;
16966 }
16967
16968 return lookup_die_type (die, type_attr, cu);
16969 }
16970
16971 /* True iff CU's producer generates GNAT Ada auxiliary information
16972 that allows to find parallel types through that information instead
16973 of having to do expensive parallel lookups by type name. */
16974
16975 static int
16976 need_gnat_info (struct dwarf2_cu *cu)
16977 {
16978 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16979 of GNAT produces this auxiliary information, without any indication
16980 that it is produced. Part of enhancing the FSF version of GNAT
16981 to produce that information will be to put in place an indicator
16982 that we can use in order to determine whether the descriptive type
16983 info is available or not. One suggestion that has been made is
16984 to use a new attribute, attached to the CU die. For now, assume
16985 that the descriptive type info is not available. */
16986 return 0;
16987 }
16988
16989 /* Return the auxiliary type of the die in question using its
16990 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16991 attribute is not present. */
16992
16993 static struct type *
16994 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16995 {
16996 struct attribute *type_attr;
16997
16998 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16999 if (!type_attr)
17000 return NULL;
17001
17002 return lookup_die_type (die, type_attr, cu);
17003 }
17004
17005 /* If DIE has a descriptive_type attribute, then set the TYPE's
17006 descriptive type accordingly. */
17007
17008 static void
17009 set_descriptive_type (struct type *type, struct die_info *die,
17010 struct dwarf2_cu *cu)
17011 {
17012 struct type *descriptive_type = die_descriptive_type (die, cu);
17013
17014 if (descriptive_type)
17015 {
17016 ALLOCATE_GNAT_AUX_TYPE (type);
17017 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17018 }
17019 }
17020
17021 /* Return the containing type of the die in question using its
17022 DW_AT_containing_type attribute. */
17023
17024 static struct type *
17025 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17026 {
17027 struct attribute *type_attr;
17028
17029 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17030 if (!type_attr)
17031 error (_("Dwarf Error: Problem turning containing type into gdb type "
17032 "[in module %s]"), cu->objfile->name);
17033
17034 return lookup_die_type (die, type_attr, cu);
17035 }
17036
17037 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17038
17039 static struct type *
17040 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17041 {
17042 struct objfile *objfile = dwarf2_per_objfile->objfile;
17043 char *message, *saved;
17044
17045 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17046 objfile->name,
17047 cu->header.offset.sect_off,
17048 die->offset.sect_off);
17049 saved = obstack_copy0 (&objfile->objfile_obstack,
17050 message, strlen (message));
17051 xfree (message);
17052
17053 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17054 }
17055
17056 /* Look up the type of DIE in CU using its type attribute ATTR.
17057 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17058 DW_AT_containing_type.
17059 If there is no type substitute an error marker. */
17060
17061 static struct type *
17062 lookup_die_type (struct die_info *die, const struct attribute *attr,
17063 struct dwarf2_cu *cu)
17064 {
17065 struct objfile *objfile = cu->objfile;
17066 struct type *this_type;
17067
17068 gdb_assert (attr->name == DW_AT_type
17069 || attr->name == DW_AT_GNAT_descriptive_type
17070 || attr->name == DW_AT_containing_type);
17071
17072 /* First see if we have it cached. */
17073
17074 if (attr->form == DW_FORM_GNU_ref_alt)
17075 {
17076 struct dwarf2_per_cu_data *per_cu;
17077 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17078
17079 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17080 this_type = get_die_type_at_offset (offset, per_cu);
17081 }
17082 else if (attr_form_is_ref (attr))
17083 {
17084 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17085
17086 this_type = get_die_type_at_offset (offset, cu->per_cu);
17087 }
17088 else if (attr->form == DW_FORM_ref_sig8)
17089 {
17090 ULONGEST signature = DW_SIGNATURE (attr);
17091
17092 return get_signatured_type (die, signature, cu);
17093 }
17094 else
17095 {
17096 complaint (&symfile_complaints,
17097 _("Dwarf Error: Bad type attribute %s in DIE"
17098 " at 0x%x [in module %s]"),
17099 dwarf_attr_name (attr->name), die->offset.sect_off,
17100 objfile->name);
17101 return build_error_marker_type (cu, die);
17102 }
17103
17104 /* If not cached we need to read it in. */
17105
17106 if (this_type == NULL)
17107 {
17108 struct die_info *type_die = NULL;
17109 struct dwarf2_cu *type_cu = cu;
17110
17111 if (attr_form_is_ref (attr))
17112 type_die = follow_die_ref (die, attr, &type_cu);
17113 if (type_die == NULL)
17114 return build_error_marker_type (cu, die);
17115 /* If we find the type now, it's probably because the type came
17116 from an inter-CU reference and the type's CU got expanded before
17117 ours. */
17118 this_type = read_type_die (type_die, type_cu);
17119 }
17120
17121 /* If we still don't have a type use an error marker. */
17122
17123 if (this_type == NULL)
17124 return build_error_marker_type (cu, die);
17125
17126 return this_type;
17127 }
17128
17129 /* Return the type in DIE, CU.
17130 Returns NULL for invalid types.
17131
17132 This first does a lookup in die_type_hash,
17133 and only reads the die in if necessary.
17134
17135 NOTE: This can be called when reading in partial or full symbols. */
17136
17137 static struct type *
17138 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17139 {
17140 struct type *this_type;
17141
17142 this_type = get_die_type (die, cu);
17143 if (this_type)
17144 return this_type;
17145
17146 return read_type_die_1 (die, cu);
17147 }
17148
17149 /* Read the type in DIE, CU.
17150 Returns NULL for invalid types. */
17151
17152 static struct type *
17153 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17154 {
17155 struct type *this_type = NULL;
17156
17157 switch (die->tag)
17158 {
17159 case DW_TAG_class_type:
17160 case DW_TAG_interface_type:
17161 case DW_TAG_structure_type:
17162 case DW_TAG_union_type:
17163 this_type = read_structure_type (die, cu);
17164 break;
17165 case DW_TAG_enumeration_type:
17166 this_type = read_enumeration_type (die, cu);
17167 break;
17168 case DW_TAG_subprogram:
17169 case DW_TAG_subroutine_type:
17170 case DW_TAG_inlined_subroutine:
17171 this_type = read_subroutine_type (die, cu);
17172 break;
17173 case DW_TAG_array_type:
17174 this_type = read_array_type (die, cu);
17175 break;
17176 case DW_TAG_set_type:
17177 this_type = read_set_type (die, cu);
17178 break;
17179 case DW_TAG_pointer_type:
17180 this_type = read_tag_pointer_type (die, cu);
17181 break;
17182 case DW_TAG_ptr_to_member_type:
17183 this_type = read_tag_ptr_to_member_type (die, cu);
17184 break;
17185 case DW_TAG_reference_type:
17186 this_type = read_tag_reference_type (die, cu);
17187 break;
17188 case DW_TAG_const_type:
17189 this_type = read_tag_const_type (die, cu);
17190 break;
17191 case DW_TAG_volatile_type:
17192 this_type = read_tag_volatile_type (die, cu);
17193 break;
17194 case DW_TAG_restrict_type:
17195 this_type = read_tag_restrict_type (die, cu);
17196 break;
17197 case DW_TAG_string_type:
17198 this_type = read_tag_string_type (die, cu);
17199 break;
17200 case DW_TAG_typedef:
17201 this_type = read_typedef (die, cu);
17202 break;
17203 case DW_TAG_subrange_type:
17204 this_type = read_subrange_type (die, cu);
17205 break;
17206 case DW_TAG_base_type:
17207 this_type = read_base_type (die, cu);
17208 break;
17209 case DW_TAG_unspecified_type:
17210 this_type = read_unspecified_type (die, cu);
17211 break;
17212 case DW_TAG_namespace:
17213 this_type = read_namespace_type (die, cu);
17214 break;
17215 case DW_TAG_module:
17216 this_type = read_module_type (die, cu);
17217 break;
17218 default:
17219 complaint (&symfile_complaints,
17220 _("unexpected tag in read_type_die: '%s'"),
17221 dwarf_tag_name (die->tag));
17222 break;
17223 }
17224
17225 return this_type;
17226 }
17227
17228 /* See if we can figure out if the class lives in a namespace. We do
17229 this by looking for a member function; its demangled name will
17230 contain namespace info, if there is any.
17231 Return the computed name or NULL.
17232 Space for the result is allocated on the objfile's obstack.
17233 This is the full-die version of guess_partial_die_structure_name.
17234 In this case we know DIE has no useful parent. */
17235
17236 static char *
17237 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17238 {
17239 struct die_info *spec_die;
17240 struct dwarf2_cu *spec_cu;
17241 struct die_info *child;
17242
17243 spec_cu = cu;
17244 spec_die = die_specification (die, &spec_cu);
17245 if (spec_die != NULL)
17246 {
17247 die = spec_die;
17248 cu = spec_cu;
17249 }
17250
17251 for (child = die->child;
17252 child != NULL;
17253 child = child->sibling)
17254 {
17255 if (child->tag == DW_TAG_subprogram)
17256 {
17257 struct attribute *attr;
17258
17259 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17260 if (attr == NULL)
17261 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17262 if (attr != NULL)
17263 {
17264 char *actual_name
17265 = language_class_name_from_physname (cu->language_defn,
17266 DW_STRING (attr));
17267 char *name = NULL;
17268
17269 if (actual_name != NULL)
17270 {
17271 const char *die_name = dwarf2_name (die, cu);
17272
17273 if (die_name != NULL
17274 && strcmp (die_name, actual_name) != 0)
17275 {
17276 /* Strip off the class name from the full name.
17277 We want the prefix. */
17278 int die_name_len = strlen (die_name);
17279 int actual_name_len = strlen (actual_name);
17280
17281 /* Test for '::' as a sanity check. */
17282 if (actual_name_len > die_name_len + 2
17283 && actual_name[actual_name_len
17284 - die_name_len - 1] == ':')
17285 name =
17286 obstack_copy0 (&cu->objfile->objfile_obstack,
17287 actual_name,
17288 actual_name_len - die_name_len - 2);
17289 }
17290 }
17291 xfree (actual_name);
17292 return name;
17293 }
17294 }
17295 }
17296
17297 return NULL;
17298 }
17299
17300 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17301 prefix part in such case. See
17302 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17303
17304 static char *
17305 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17306 {
17307 struct attribute *attr;
17308 char *base;
17309
17310 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17311 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17312 return NULL;
17313
17314 attr = dwarf2_attr (die, DW_AT_name, cu);
17315 if (attr != NULL && DW_STRING (attr) != NULL)
17316 return NULL;
17317
17318 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17319 if (attr == NULL)
17320 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17321 if (attr == NULL || DW_STRING (attr) == NULL)
17322 return NULL;
17323
17324 /* dwarf2_name had to be already called. */
17325 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17326
17327 /* Strip the base name, keep any leading namespaces/classes. */
17328 base = strrchr (DW_STRING (attr), ':');
17329 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17330 return "";
17331
17332 return obstack_copy0 (&cu->objfile->objfile_obstack,
17333 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17334 }
17335
17336 /* Return the name of the namespace/class that DIE is defined within,
17337 or "" if we can't tell. The caller should not xfree the result.
17338
17339 For example, if we're within the method foo() in the following
17340 code:
17341
17342 namespace N {
17343 class C {
17344 void foo () {
17345 }
17346 };
17347 }
17348
17349 then determine_prefix on foo's die will return "N::C". */
17350
17351 static const char *
17352 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17353 {
17354 struct die_info *parent, *spec_die;
17355 struct dwarf2_cu *spec_cu;
17356 struct type *parent_type;
17357 char *retval;
17358
17359 if (cu->language != language_cplus && cu->language != language_java
17360 && cu->language != language_fortran)
17361 return "";
17362
17363 retval = anonymous_struct_prefix (die, cu);
17364 if (retval)
17365 return retval;
17366
17367 /* We have to be careful in the presence of DW_AT_specification.
17368 For example, with GCC 3.4, given the code
17369
17370 namespace N {
17371 void foo() {
17372 // Definition of N::foo.
17373 }
17374 }
17375
17376 then we'll have a tree of DIEs like this:
17377
17378 1: DW_TAG_compile_unit
17379 2: DW_TAG_namespace // N
17380 3: DW_TAG_subprogram // declaration of N::foo
17381 4: DW_TAG_subprogram // definition of N::foo
17382 DW_AT_specification // refers to die #3
17383
17384 Thus, when processing die #4, we have to pretend that we're in
17385 the context of its DW_AT_specification, namely the contex of die
17386 #3. */
17387 spec_cu = cu;
17388 spec_die = die_specification (die, &spec_cu);
17389 if (spec_die == NULL)
17390 parent = die->parent;
17391 else
17392 {
17393 parent = spec_die->parent;
17394 cu = spec_cu;
17395 }
17396
17397 if (parent == NULL)
17398 return "";
17399 else if (parent->building_fullname)
17400 {
17401 const char *name;
17402 const char *parent_name;
17403
17404 /* It has been seen on RealView 2.2 built binaries,
17405 DW_TAG_template_type_param types actually _defined_ as
17406 children of the parent class:
17407
17408 enum E {};
17409 template class <class Enum> Class{};
17410 Class<enum E> class_e;
17411
17412 1: DW_TAG_class_type (Class)
17413 2: DW_TAG_enumeration_type (E)
17414 3: DW_TAG_enumerator (enum1:0)
17415 3: DW_TAG_enumerator (enum2:1)
17416 ...
17417 2: DW_TAG_template_type_param
17418 DW_AT_type DW_FORM_ref_udata (E)
17419
17420 Besides being broken debug info, it can put GDB into an
17421 infinite loop. Consider:
17422
17423 When we're building the full name for Class<E>, we'll start
17424 at Class, and go look over its template type parameters,
17425 finding E. We'll then try to build the full name of E, and
17426 reach here. We're now trying to build the full name of E,
17427 and look over the parent DIE for containing scope. In the
17428 broken case, if we followed the parent DIE of E, we'd again
17429 find Class, and once again go look at its template type
17430 arguments, etc., etc. Simply don't consider such parent die
17431 as source-level parent of this die (it can't be, the language
17432 doesn't allow it), and break the loop here. */
17433 name = dwarf2_name (die, cu);
17434 parent_name = dwarf2_name (parent, cu);
17435 complaint (&symfile_complaints,
17436 _("template param type '%s' defined within parent '%s'"),
17437 name ? name : "<unknown>",
17438 parent_name ? parent_name : "<unknown>");
17439 return "";
17440 }
17441 else
17442 switch (parent->tag)
17443 {
17444 case DW_TAG_namespace:
17445 parent_type = read_type_die (parent, cu);
17446 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17447 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17448 Work around this problem here. */
17449 if (cu->language == language_cplus
17450 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17451 return "";
17452 /* We give a name to even anonymous namespaces. */
17453 return TYPE_TAG_NAME (parent_type);
17454 case DW_TAG_class_type:
17455 case DW_TAG_interface_type:
17456 case DW_TAG_structure_type:
17457 case DW_TAG_union_type:
17458 case DW_TAG_module:
17459 parent_type = read_type_die (parent, cu);
17460 if (TYPE_TAG_NAME (parent_type) != NULL)
17461 return TYPE_TAG_NAME (parent_type);
17462 else
17463 /* An anonymous structure is only allowed non-static data
17464 members; no typedefs, no member functions, et cetera.
17465 So it does not need a prefix. */
17466 return "";
17467 case DW_TAG_compile_unit:
17468 case DW_TAG_partial_unit:
17469 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17470 if (cu->language == language_cplus
17471 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17472 && die->child != NULL
17473 && (die->tag == DW_TAG_class_type
17474 || die->tag == DW_TAG_structure_type
17475 || die->tag == DW_TAG_union_type))
17476 {
17477 char *name = guess_full_die_structure_name (die, cu);
17478 if (name != NULL)
17479 return name;
17480 }
17481 return "";
17482 default:
17483 return determine_prefix (parent, cu);
17484 }
17485 }
17486
17487 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17488 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17489 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17490 an obconcat, otherwise allocate storage for the result. The CU argument is
17491 used to determine the language and hence, the appropriate separator. */
17492
17493 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17494
17495 static char *
17496 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17497 int physname, struct dwarf2_cu *cu)
17498 {
17499 const char *lead = "";
17500 const char *sep;
17501
17502 if (suffix == NULL || suffix[0] == '\0'
17503 || prefix == NULL || prefix[0] == '\0')
17504 sep = "";
17505 else if (cu->language == language_java)
17506 sep = ".";
17507 else if (cu->language == language_fortran && physname)
17508 {
17509 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17510 DW_AT_MIPS_linkage_name is preferred and used instead. */
17511
17512 lead = "__";
17513 sep = "_MOD_";
17514 }
17515 else
17516 sep = "::";
17517
17518 if (prefix == NULL)
17519 prefix = "";
17520 if (suffix == NULL)
17521 suffix = "";
17522
17523 if (obs == NULL)
17524 {
17525 char *retval
17526 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17527
17528 strcpy (retval, lead);
17529 strcat (retval, prefix);
17530 strcat (retval, sep);
17531 strcat (retval, suffix);
17532 return retval;
17533 }
17534 else
17535 {
17536 /* We have an obstack. */
17537 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17538 }
17539 }
17540
17541 /* Return sibling of die, NULL if no sibling. */
17542
17543 static struct die_info *
17544 sibling_die (struct die_info *die)
17545 {
17546 return die->sibling;
17547 }
17548
17549 /* Get name of a die, return NULL if not found. */
17550
17551 static const char *
17552 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17553 struct obstack *obstack)
17554 {
17555 if (name && cu->language == language_cplus)
17556 {
17557 char *canon_name = cp_canonicalize_string (name);
17558
17559 if (canon_name != NULL)
17560 {
17561 if (strcmp (canon_name, name) != 0)
17562 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17563 xfree (canon_name);
17564 }
17565 }
17566
17567 return name;
17568 }
17569
17570 /* Get name of a die, return NULL if not found. */
17571
17572 static const char *
17573 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17574 {
17575 struct attribute *attr;
17576
17577 attr = dwarf2_attr (die, DW_AT_name, cu);
17578 if ((!attr || !DW_STRING (attr))
17579 && die->tag != DW_TAG_class_type
17580 && die->tag != DW_TAG_interface_type
17581 && die->tag != DW_TAG_structure_type
17582 && die->tag != DW_TAG_union_type)
17583 return NULL;
17584
17585 switch (die->tag)
17586 {
17587 case DW_TAG_compile_unit:
17588 case DW_TAG_partial_unit:
17589 /* Compilation units have a DW_AT_name that is a filename, not
17590 a source language identifier. */
17591 case DW_TAG_enumeration_type:
17592 case DW_TAG_enumerator:
17593 /* These tags always have simple identifiers already; no need
17594 to canonicalize them. */
17595 return DW_STRING (attr);
17596
17597 case DW_TAG_subprogram:
17598 /* Java constructors will all be named "<init>", so return
17599 the class name when we see this special case. */
17600 if (cu->language == language_java
17601 && DW_STRING (attr) != NULL
17602 && strcmp (DW_STRING (attr), "<init>") == 0)
17603 {
17604 struct dwarf2_cu *spec_cu = cu;
17605 struct die_info *spec_die;
17606
17607 /* GCJ will output '<init>' for Java constructor names.
17608 For this special case, return the name of the parent class. */
17609
17610 /* GCJ may output suprogram DIEs with AT_specification set.
17611 If so, use the name of the specified DIE. */
17612 spec_die = die_specification (die, &spec_cu);
17613 if (spec_die != NULL)
17614 return dwarf2_name (spec_die, spec_cu);
17615
17616 do
17617 {
17618 die = die->parent;
17619 if (die->tag == DW_TAG_class_type)
17620 return dwarf2_name (die, cu);
17621 }
17622 while (die->tag != DW_TAG_compile_unit
17623 && die->tag != DW_TAG_partial_unit);
17624 }
17625 break;
17626
17627 case DW_TAG_class_type:
17628 case DW_TAG_interface_type:
17629 case DW_TAG_structure_type:
17630 case DW_TAG_union_type:
17631 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17632 structures or unions. These were of the form "._%d" in GCC 4.1,
17633 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17634 and GCC 4.4. We work around this problem by ignoring these. */
17635 if (attr && DW_STRING (attr)
17636 && (strncmp (DW_STRING (attr), "._", 2) == 0
17637 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17638 return NULL;
17639
17640 /* GCC might emit a nameless typedef that has a linkage name. See
17641 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17642 if (!attr || DW_STRING (attr) == NULL)
17643 {
17644 char *demangled = NULL;
17645
17646 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17647 if (attr == NULL)
17648 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17649
17650 if (attr == NULL || DW_STRING (attr) == NULL)
17651 return NULL;
17652
17653 /* Avoid demangling DW_STRING (attr) the second time on a second
17654 call for the same DIE. */
17655 if (!DW_STRING_IS_CANONICAL (attr))
17656 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17657
17658 if (demangled)
17659 {
17660 char *base;
17661
17662 /* FIXME: we already did this for the partial symbol... */
17663 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17664 demangled, strlen (demangled));
17665 DW_STRING_IS_CANONICAL (attr) = 1;
17666 xfree (demangled);
17667
17668 /* Strip any leading namespaces/classes, keep only the base name.
17669 DW_AT_name for named DIEs does not contain the prefixes. */
17670 base = strrchr (DW_STRING (attr), ':');
17671 if (base && base > DW_STRING (attr) && base[-1] == ':')
17672 return &base[1];
17673 else
17674 return DW_STRING (attr);
17675 }
17676 }
17677 break;
17678
17679 default:
17680 break;
17681 }
17682
17683 if (!DW_STRING_IS_CANONICAL (attr))
17684 {
17685 DW_STRING (attr)
17686 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17687 &cu->objfile->objfile_obstack);
17688 DW_STRING_IS_CANONICAL (attr) = 1;
17689 }
17690 return DW_STRING (attr);
17691 }
17692
17693 /* Return the die that this die in an extension of, or NULL if there
17694 is none. *EXT_CU is the CU containing DIE on input, and the CU
17695 containing the return value on output. */
17696
17697 static struct die_info *
17698 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17699 {
17700 struct attribute *attr;
17701
17702 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17703 if (attr == NULL)
17704 return NULL;
17705
17706 return follow_die_ref (die, attr, ext_cu);
17707 }
17708
17709 /* Convert a DIE tag into its string name. */
17710
17711 static const char *
17712 dwarf_tag_name (unsigned tag)
17713 {
17714 const char *name = get_DW_TAG_name (tag);
17715
17716 if (name == NULL)
17717 return "DW_TAG_<unknown>";
17718
17719 return name;
17720 }
17721
17722 /* Convert a DWARF attribute code into its string name. */
17723
17724 static const char *
17725 dwarf_attr_name (unsigned attr)
17726 {
17727 const char *name;
17728
17729 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17730 if (attr == DW_AT_MIPS_fde)
17731 return "DW_AT_MIPS_fde";
17732 #else
17733 if (attr == DW_AT_HP_block_index)
17734 return "DW_AT_HP_block_index";
17735 #endif
17736
17737 name = get_DW_AT_name (attr);
17738
17739 if (name == NULL)
17740 return "DW_AT_<unknown>";
17741
17742 return name;
17743 }
17744
17745 /* Convert a DWARF value form code into its string name. */
17746
17747 static const char *
17748 dwarf_form_name (unsigned form)
17749 {
17750 const char *name = get_DW_FORM_name (form);
17751
17752 if (name == NULL)
17753 return "DW_FORM_<unknown>";
17754
17755 return name;
17756 }
17757
17758 static char *
17759 dwarf_bool_name (unsigned mybool)
17760 {
17761 if (mybool)
17762 return "TRUE";
17763 else
17764 return "FALSE";
17765 }
17766
17767 /* Convert a DWARF type code into its string name. */
17768
17769 static const char *
17770 dwarf_type_encoding_name (unsigned enc)
17771 {
17772 const char *name = get_DW_ATE_name (enc);
17773
17774 if (name == NULL)
17775 return "DW_ATE_<unknown>";
17776
17777 return name;
17778 }
17779
17780 static void
17781 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17782 {
17783 unsigned int i;
17784
17785 print_spaces (indent, f);
17786 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17787 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17788
17789 if (die->parent != NULL)
17790 {
17791 print_spaces (indent, f);
17792 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17793 die->parent->offset.sect_off);
17794 }
17795
17796 print_spaces (indent, f);
17797 fprintf_unfiltered (f, " has children: %s\n",
17798 dwarf_bool_name (die->child != NULL));
17799
17800 print_spaces (indent, f);
17801 fprintf_unfiltered (f, " attributes:\n");
17802
17803 for (i = 0; i < die->num_attrs; ++i)
17804 {
17805 print_spaces (indent, f);
17806 fprintf_unfiltered (f, " %s (%s) ",
17807 dwarf_attr_name (die->attrs[i].name),
17808 dwarf_form_name (die->attrs[i].form));
17809
17810 switch (die->attrs[i].form)
17811 {
17812 case DW_FORM_addr:
17813 case DW_FORM_GNU_addr_index:
17814 fprintf_unfiltered (f, "address: ");
17815 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17816 break;
17817 case DW_FORM_block2:
17818 case DW_FORM_block4:
17819 case DW_FORM_block:
17820 case DW_FORM_block1:
17821 fprintf_unfiltered (f, "block: size %s",
17822 pulongest (DW_BLOCK (&die->attrs[i])->size));
17823 break;
17824 case DW_FORM_exprloc:
17825 fprintf_unfiltered (f, "expression: size %s",
17826 pulongest (DW_BLOCK (&die->attrs[i])->size));
17827 break;
17828 case DW_FORM_ref_addr:
17829 fprintf_unfiltered (f, "ref address: ");
17830 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17831 break;
17832 case DW_FORM_GNU_ref_alt:
17833 fprintf_unfiltered (f, "alt ref address: ");
17834 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17835 break;
17836 case DW_FORM_ref1:
17837 case DW_FORM_ref2:
17838 case DW_FORM_ref4:
17839 case DW_FORM_ref8:
17840 case DW_FORM_ref_udata:
17841 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17842 (long) (DW_UNSND (&die->attrs[i])));
17843 break;
17844 case DW_FORM_data1:
17845 case DW_FORM_data2:
17846 case DW_FORM_data4:
17847 case DW_FORM_data8:
17848 case DW_FORM_udata:
17849 case DW_FORM_sdata:
17850 fprintf_unfiltered (f, "constant: %s",
17851 pulongest (DW_UNSND (&die->attrs[i])));
17852 break;
17853 case DW_FORM_sec_offset:
17854 fprintf_unfiltered (f, "section offset: %s",
17855 pulongest (DW_UNSND (&die->attrs[i])));
17856 break;
17857 case DW_FORM_ref_sig8:
17858 fprintf_unfiltered (f, "signature: %s",
17859 hex_string (DW_SIGNATURE (&die->attrs[i])));
17860 break;
17861 case DW_FORM_string:
17862 case DW_FORM_strp:
17863 case DW_FORM_GNU_str_index:
17864 case DW_FORM_GNU_strp_alt:
17865 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17866 DW_STRING (&die->attrs[i])
17867 ? DW_STRING (&die->attrs[i]) : "",
17868 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17869 break;
17870 case DW_FORM_flag:
17871 if (DW_UNSND (&die->attrs[i]))
17872 fprintf_unfiltered (f, "flag: TRUE");
17873 else
17874 fprintf_unfiltered (f, "flag: FALSE");
17875 break;
17876 case DW_FORM_flag_present:
17877 fprintf_unfiltered (f, "flag: TRUE");
17878 break;
17879 case DW_FORM_indirect:
17880 /* The reader will have reduced the indirect form to
17881 the "base form" so this form should not occur. */
17882 fprintf_unfiltered (f,
17883 "unexpected attribute form: DW_FORM_indirect");
17884 break;
17885 default:
17886 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17887 die->attrs[i].form);
17888 break;
17889 }
17890 fprintf_unfiltered (f, "\n");
17891 }
17892 }
17893
17894 static void
17895 dump_die_for_error (struct die_info *die)
17896 {
17897 dump_die_shallow (gdb_stderr, 0, die);
17898 }
17899
17900 static void
17901 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17902 {
17903 int indent = level * 4;
17904
17905 gdb_assert (die != NULL);
17906
17907 if (level >= max_level)
17908 return;
17909
17910 dump_die_shallow (f, indent, die);
17911
17912 if (die->child != NULL)
17913 {
17914 print_spaces (indent, f);
17915 fprintf_unfiltered (f, " Children:");
17916 if (level + 1 < max_level)
17917 {
17918 fprintf_unfiltered (f, "\n");
17919 dump_die_1 (f, level + 1, max_level, die->child);
17920 }
17921 else
17922 {
17923 fprintf_unfiltered (f,
17924 " [not printed, max nesting level reached]\n");
17925 }
17926 }
17927
17928 if (die->sibling != NULL && level > 0)
17929 {
17930 dump_die_1 (f, level, max_level, die->sibling);
17931 }
17932 }
17933
17934 /* This is called from the pdie macro in gdbinit.in.
17935 It's not static so gcc will keep a copy callable from gdb. */
17936
17937 void
17938 dump_die (struct die_info *die, int max_level)
17939 {
17940 dump_die_1 (gdb_stdlog, 0, max_level, die);
17941 }
17942
17943 static void
17944 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17945 {
17946 void **slot;
17947
17948 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17949 INSERT);
17950
17951 *slot = die;
17952 }
17953
17954 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17955 required kind. */
17956
17957 static sect_offset
17958 dwarf2_get_ref_die_offset (const struct attribute *attr)
17959 {
17960 sect_offset retval = { DW_UNSND (attr) };
17961
17962 if (attr_form_is_ref (attr))
17963 return retval;
17964
17965 retval.sect_off = 0;
17966 complaint (&symfile_complaints,
17967 _("unsupported die ref attribute form: '%s'"),
17968 dwarf_form_name (attr->form));
17969 return retval;
17970 }
17971
17972 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17973 * the value held by the attribute is not constant. */
17974
17975 static LONGEST
17976 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
17977 {
17978 if (attr->form == DW_FORM_sdata)
17979 return DW_SND (attr);
17980 else if (attr->form == DW_FORM_udata
17981 || attr->form == DW_FORM_data1
17982 || attr->form == DW_FORM_data2
17983 || attr->form == DW_FORM_data4
17984 || attr->form == DW_FORM_data8)
17985 return DW_UNSND (attr);
17986 else
17987 {
17988 complaint (&symfile_complaints,
17989 _("Attribute value is not a constant (%s)"),
17990 dwarf_form_name (attr->form));
17991 return default_value;
17992 }
17993 }
17994
17995 /* Follow reference or signature attribute ATTR of SRC_DIE.
17996 On entry *REF_CU is the CU of SRC_DIE.
17997 On exit *REF_CU is the CU of the result. */
17998
17999 static struct die_info *
18000 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18001 struct dwarf2_cu **ref_cu)
18002 {
18003 struct die_info *die;
18004
18005 if (attr_form_is_ref (attr))
18006 die = follow_die_ref (src_die, attr, ref_cu);
18007 else if (attr->form == DW_FORM_ref_sig8)
18008 die = follow_die_sig (src_die, attr, ref_cu);
18009 else
18010 {
18011 dump_die_for_error (src_die);
18012 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18013 (*ref_cu)->objfile->name);
18014 }
18015
18016 return die;
18017 }
18018
18019 /* Follow reference OFFSET.
18020 On entry *REF_CU is the CU of the source die referencing OFFSET.
18021 On exit *REF_CU is the CU of the result.
18022 Returns NULL if OFFSET is invalid. */
18023
18024 static struct die_info *
18025 follow_die_offset (sect_offset offset, int offset_in_dwz,
18026 struct dwarf2_cu **ref_cu)
18027 {
18028 struct die_info temp_die;
18029 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18030
18031 gdb_assert (cu->per_cu != NULL);
18032
18033 target_cu = cu;
18034
18035 if (cu->per_cu->is_debug_types)
18036 {
18037 /* .debug_types CUs cannot reference anything outside their CU.
18038 If they need to, they have to reference a signatured type via
18039 DW_FORM_ref_sig8. */
18040 if (! offset_in_cu_p (&cu->header, offset))
18041 return NULL;
18042 }
18043 else if (offset_in_dwz != cu->per_cu->is_dwz
18044 || ! offset_in_cu_p (&cu->header, offset))
18045 {
18046 struct dwarf2_per_cu_data *per_cu;
18047
18048 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18049 cu->objfile);
18050
18051 /* If necessary, add it to the queue and load its DIEs. */
18052 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18053 load_full_comp_unit (per_cu, cu->language);
18054
18055 target_cu = per_cu->cu;
18056 }
18057 else if (cu->dies == NULL)
18058 {
18059 /* We're loading full DIEs during partial symbol reading. */
18060 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18061 load_full_comp_unit (cu->per_cu, language_minimal);
18062 }
18063
18064 *ref_cu = target_cu;
18065 temp_die.offset = offset;
18066 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18067 }
18068
18069 /* Follow reference attribute ATTR of SRC_DIE.
18070 On entry *REF_CU is the CU of SRC_DIE.
18071 On exit *REF_CU is the CU of the result. */
18072
18073 static struct die_info *
18074 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
18075 struct dwarf2_cu **ref_cu)
18076 {
18077 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18078 struct dwarf2_cu *cu = *ref_cu;
18079 struct die_info *die;
18080
18081 die = follow_die_offset (offset,
18082 (attr->form == DW_FORM_GNU_ref_alt
18083 || cu->per_cu->is_dwz),
18084 ref_cu);
18085 if (!die)
18086 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18087 "at 0x%x [in module %s]"),
18088 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
18089
18090 return die;
18091 }
18092
18093 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18094 Returned value is intended for DW_OP_call*. Returned
18095 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18096
18097 struct dwarf2_locexpr_baton
18098 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18099 struct dwarf2_per_cu_data *per_cu,
18100 CORE_ADDR (*get_frame_pc) (void *baton),
18101 void *baton)
18102 {
18103 struct dwarf2_cu *cu;
18104 struct die_info *die;
18105 struct attribute *attr;
18106 struct dwarf2_locexpr_baton retval;
18107
18108 dw2_setup (per_cu->objfile);
18109
18110 if (per_cu->cu == NULL)
18111 load_cu (per_cu);
18112 cu = per_cu->cu;
18113
18114 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18115 if (!die)
18116 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18117 offset.sect_off, per_cu->objfile->name);
18118
18119 attr = dwarf2_attr (die, DW_AT_location, cu);
18120 if (!attr)
18121 {
18122 /* DWARF: "If there is no such attribute, then there is no effect.".
18123 DATA is ignored if SIZE is 0. */
18124
18125 retval.data = NULL;
18126 retval.size = 0;
18127 }
18128 else if (attr_form_is_section_offset (attr))
18129 {
18130 struct dwarf2_loclist_baton loclist_baton;
18131 CORE_ADDR pc = (*get_frame_pc) (baton);
18132 size_t size;
18133
18134 fill_in_loclist_baton (cu, &loclist_baton, attr);
18135
18136 retval.data = dwarf2_find_location_expression (&loclist_baton,
18137 &size, pc);
18138 retval.size = size;
18139 }
18140 else
18141 {
18142 if (!attr_form_is_block (attr))
18143 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18144 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18145 offset.sect_off, per_cu->objfile->name);
18146
18147 retval.data = DW_BLOCK (attr)->data;
18148 retval.size = DW_BLOCK (attr)->size;
18149 }
18150 retval.per_cu = cu->per_cu;
18151
18152 age_cached_comp_units ();
18153
18154 return retval;
18155 }
18156
18157 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18158 offset. */
18159
18160 struct dwarf2_locexpr_baton
18161 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18162 struct dwarf2_per_cu_data *per_cu,
18163 CORE_ADDR (*get_frame_pc) (void *baton),
18164 void *baton)
18165 {
18166 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18167
18168 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18169 }
18170
18171 /* Write a constant of a given type as target-ordered bytes into
18172 OBSTACK. */
18173
18174 static const gdb_byte *
18175 write_constant_as_bytes (struct obstack *obstack,
18176 enum bfd_endian byte_order,
18177 struct type *type,
18178 ULONGEST value,
18179 LONGEST *len)
18180 {
18181 gdb_byte *result;
18182
18183 *len = TYPE_LENGTH (type);
18184 result = obstack_alloc (obstack, *len);
18185 store_unsigned_integer (result, *len, byte_order, value);
18186
18187 return result;
18188 }
18189
18190 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18191 pointer to the constant bytes and set LEN to the length of the
18192 data. If memory is needed, allocate it on OBSTACK. If the DIE
18193 does not have a DW_AT_const_value, return NULL. */
18194
18195 const gdb_byte *
18196 dwarf2_fetch_constant_bytes (sect_offset offset,
18197 struct dwarf2_per_cu_data *per_cu,
18198 struct obstack *obstack,
18199 LONGEST *len)
18200 {
18201 struct dwarf2_cu *cu;
18202 struct die_info *die;
18203 struct attribute *attr;
18204 const gdb_byte *result = NULL;
18205 struct type *type;
18206 LONGEST value;
18207 enum bfd_endian byte_order;
18208
18209 dw2_setup (per_cu->objfile);
18210
18211 if (per_cu->cu == NULL)
18212 load_cu (per_cu);
18213 cu = per_cu->cu;
18214
18215 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18216 if (!die)
18217 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18218 offset.sect_off, per_cu->objfile->name);
18219
18220
18221 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18222 if (attr == NULL)
18223 return NULL;
18224
18225 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18226 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18227
18228 switch (attr->form)
18229 {
18230 case DW_FORM_addr:
18231 case DW_FORM_GNU_addr_index:
18232 {
18233 gdb_byte *tem;
18234
18235 *len = cu->header.addr_size;
18236 tem = obstack_alloc (obstack, *len);
18237 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18238 result = tem;
18239 }
18240 break;
18241 case DW_FORM_string:
18242 case DW_FORM_strp:
18243 case DW_FORM_GNU_str_index:
18244 case DW_FORM_GNU_strp_alt:
18245 /* DW_STRING is already allocated on the objfile obstack, point
18246 directly to it. */
18247 result = (const gdb_byte *) DW_STRING (attr);
18248 *len = strlen (DW_STRING (attr));
18249 break;
18250 case DW_FORM_block1:
18251 case DW_FORM_block2:
18252 case DW_FORM_block4:
18253 case DW_FORM_block:
18254 case DW_FORM_exprloc:
18255 result = DW_BLOCK (attr)->data;
18256 *len = DW_BLOCK (attr)->size;
18257 break;
18258
18259 /* The DW_AT_const_value attributes are supposed to carry the
18260 symbol's value "represented as it would be on the target
18261 architecture." By the time we get here, it's already been
18262 converted to host endianness, so we just need to sign- or
18263 zero-extend it as appropriate. */
18264 case DW_FORM_data1:
18265 type = die_type (die, cu);
18266 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18267 if (result == NULL)
18268 result = write_constant_as_bytes (obstack, byte_order,
18269 type, value, len);
18270 break;
18271 case DW_FORM_data2:
18272 type = die_type (die, cu);
18273 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18274 if (result == NULL)
18275 result = write_constant_as_bytes (obstack, byte_order,
18276 type, value, len);
18277 break;
18278 case DW_FORM_data4:
18279 type = die_type (die, cu);
18280 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18281 if (result == NULL)
18282 result = write_constant_as_bytes (obstack, byte_order,
18283 type, value, len);
18284 break;
18285 case DW_FORM_data8:
18286 type = die_type (die, cu);
18287 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18288 if (result == NULL)
18289 result = write_constant_as_bytes (obstack, byte_order,
18290 type, value, len);
18291 break;
18292
18293 case DW_FORM_sdata:
18294 type = die_type (die, cu);
18295 result = write_constant_as_bytes (obstack, byte_order,
18296 type, DW_SND (attr), len);
18297 break;
18298
18299 case DW_FORM_udata:
18300 type = die_type (die, cu);
18301 result = write_constant_as_bytes (obstack, byte_order,
18302 type, DW_UNSND (attr), len);
18303 break;
18304
18305 default:
18306 complaint (&symfile_complaints,
18307 _("unsupported const value attribute form: '%s'"),
18308 dwarf_form_name (attr->form));
18309 break;
18310 }
18311
18312 return result;
18313 }
18314
18315 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18316 PER_CU. */
18317
18318 struct type *
18319 dwarf2_get_die_type (cu_offset die_offset,
18320 struct dwarf2_per_cu_data *per_cu)
18321 {
18322 sect_offset die_offset_sect;
18323
18324 dw2_setup (per_cu->objfile);
18325
18326 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18327 return get_die_type_at_offset (die_offset_sect, per_cu);
18328 }
18329
18330 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18331 On entry *REF_CU is the CU of SRC_DIE.
18332 On exit *REF_CU is the CU of the result.
18333 Returns NULL if the referenced DIE isn't found. */
18334
18335 static struct die_info *
18336 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18337 struct dwarf2_cu **ref_cu)
18338 {
18339 struct objfile *objfile = (*ref_cu)->objfile;
18340 struct die_info temp_die;
18341 struct dwarf2_cu *sig_cu;
18342 struct die_info *die;
18343
18344 /* While it might be nice to assert sig_type->type == NULL here,
18345 we can get here for DW_AT_imported_declaration where we need
18346 the DIE not the type. */
18347
18348 /* If necessary, add it to the queue and load its DIEs. */
18349
18350 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18351 read_signatured_type (sig_type);
18352
18353 gdb_assert (sig_type->per_cu.cu != NULL);
18354
18355 sig_cu = sig_type->per_cu.cu;
18356 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18357 temp_die.offset = sig_type->type_offset_in_section;
18358 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18359 temp_die.offset.sect_off);
18360 if (die)
18361 {
18362 /* For .gdb_index version 7 keep track of included TUs.
18363 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18364 if (dwarf2_per_objfile->index_table != NULL
18365 && dwarf2_per_objfile->index_table->version <= 7)
18366 {
18367 VEC_safe_push (dwarf2_per_cu_ptr,
18368 (*ref_cu)->per_cu->imported_symtabs,
18369 sig_cu->per_cu);
18370 }
18371
18372 *ref_cu = sig_cu;
18373 return die;
18374 }
18375
18376 return NULL;
18377 }
18378
18379 /* Follow signatured type referenced by ATTR in SRC_DIE.
18380 On entry *REF_CU is the CU of SRC_DIE.
18381 On exit *REF_CU is the CU of the result.
18382 The result is the DIE of the type.
18383 If the referenced type cannot be found an error is thrown. */
18384
18385 static struct die_info *
18386 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
18387 struct dwarf2_cu **ref_cu)
18388 {
18389 ULONGEST signature = DW_SIGNATURE (attr);
18390 struct signatured_type *sig_type;
18391 struct die_info *die;
18392
18393 gdb_assert (attr->form == DW_FORM_ref_sig8);
18394
18395 sig_type = lookup_signatured_type (*ref_cu, signature);
18396 /* sig_type will be NULL if the signatured type is missing from
18397 the debug info. */
18398 if (sig_type == NULL)
18399 {
18400 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18401 " from DIE at 0x%x [in module %s]"),
18402 hex_string (signature), src_die->offset.sect_off,
18403 (*ref_cu)->objfile->name);
18404 }
18405
18406 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18407 if (die == NULL)
18408 {
18409 dump_die_for_error (src_die);
18410 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18411 " from DIE at 0x%x [in module %s]"),
18412 hex_string (signature), src_die->offset.sect_off,
18413 (*ref_cu)->objfile->name);
18414 }
18415
18416 return die;
18417 }
18418
18419 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18420 reading in and processing the type unit if necessary. */
18421
18422 static struct type *
18423 get_signatured_type (struct die_info *die, ULONGEST signature,
18424 struct dwarf2_cu *cu)
18425 {
18426 struct signatured_type *sig_type;
18427 struct dwarf2_cu *type_cu;
18428 struct die_info *type_die;
18429 struct type *type;
18430
18431 sig_type = lookup_signatured_type (cu, signature);
18432 /* sig_type will be NULL if the signatured type is missing from
18433 the debug info. */
18434 if (sig_type == NULL)
18435 {
18436 complaint (&symfile_complaints,
18437 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18438 " from DIE at 0x%x [in module %s]"),
18439 hex_string (signature), die->offset.sect_off,
18440 dwarf2_per_objfile->objfile->name);
18441 return build_error_marker_type (cu, die);
18442 }
18443
18444 /* If we already know the type we're done. */
18445 if (sig_type->type != NULL)
18446 return sig_type->type;
18447
18448 type_cu = cu;
18449 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18450 if (type_die != NULL)
18451 {
18452 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18453 is created. This is important, for example, because for c++ classes
18454 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18455 type = read_type_die (type_die, type_cu);
18456 if (type == NULL)
18457 {
18458 complaint (&symfile_complaints,
18459 _("Dwarf Error: Cannot build signatured type %s"
18460 " referenced from DIE at 0x%x [in module %s]"),
18461 hex_string (signature), die->offset.sect_off,
18462 dwarf2_per_objfile->objfile->name);
18463 type = build_error_marker_type (cu, die);
18464 }
18465 }
18466 else
18467 {
18468 complaint (&symfile_complaints,
18469 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18470 " from DIE at 0x%x [in module %s]"),
18471 hex_string (signature), die->offset.sect_off,
18472 dwarf2_per_objfile->objfile->name);
18473 type = build_error_marker_type (cu, die);
18474 }
18475 sig_type->type = type;
18476
18477 return type;
18478 }
18479
18480 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18481 reading in and processing the type unit if necessary. */
18482
18483 static struct type *
18484 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
18485 struct dwarf2_cu *cu) /* ARI: editCase function */
18486 {
18487 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18488 if (attr_form_is_ref (attr))
18489 {
18490 struct dwarf2_cu *type_cu = cu;
18491 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18492
18493 return read_type_die (type_die, type_cu);
18494 }
18495 else if (attr->form == DW_FORM_ref_sig8)
18496 {
18497 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18498 }
18499 else
18500 {
18501 complaint (&symfile_complaints,
18502 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18503 " at 0x%x [in module %s]"),
18504 dwarf_form_name (attr->form), die->offset.sect_off,
18505 dwarf2_per_objfile->objfile->name);
18506 return build_error_marker_type (cu, die);
18507 }
18508 }
18509
18510 /* Load the DIEs associated with type unit PER_CU into memory. */
18511
18512 static void
18513 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18514 {
18515 struct signatured_type *sig_type;
18516
18517 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18518 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18519
18520 /* We have the per_cu, but we need the signatured_type.
18521 Fortunately this is an easy translation. */
18522 gdb_assert (per_cu->is_debug_types);
18523 sig_type = (struct signatured_type *) per_cu;
18524
18525 gdb_assert (per_cu->cu == NULL);
18526
18527 read_signatured_type (sig_type);
18528
18529 gdb_assert (per_cu->cu != NULL);
18530 }
18531
18532 /* die_reader_func for read_signatured_type.
18533 This is identical to load_full_comp_unit_reader,
18534 but is kept separate for now. */
18535
18536 static void
18537 read_signatured_type_reader (const struct die_reader_specs *reader,
18538 const gdb_byte *info_ptr,
18539 struct die_info *comp_unit_die,
18540 int has_children,
18541 void *data)
18542 {
18543 struct dwarf2_cu *cu = reader->cu;
18544
18545 gdb_assert (cu->die_hash == NULL);
18546 cu->die_hash =
18547 htab_create_alloc_ex (cu->header.length / 12,
18548 die_hash,
18549 die_eq,
18550 NULL,
18551 &cu->comp_unit_obstack,
18552 hashtab_obstack_allocate,
18553 dummy_obstack_deallocate);
18554
18555 if (has_children)
18556 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18557 &info_ptr, comp_unit_die);
18558 cu->dies = comp_unit_die;
18559 /* comp_unit_die is not stored in die_hash, no need. */
18560
18561 /* We try not to read any attributes in this function, because not
18562 all CUs needed for references have been loaded yet, and symbol
18563 table processing isn't initialized. But we have to set the CU language,
18564 or we won't be able to build types correctly.
18565 Similarly, if we do not read the producer, we can not apply
18566 producer-specific interpretation. */
18567 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18568 }
18569
18570 /* Read in a signatured type and build its CU and DIEs.
18571 If the type is a stub for the real type in a DWO file,
18572 read in the real type from the DWO file as well. */
18573
18574 static void
18575 read_signatured_type (struct signatured_type *sig_type)
18576 {
18577 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18578
18579 gdb_assert (per_cu->is_debug_types);
18580 gdb_assert (per_cu->cu == NULL);
18581
18582 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18583 read_signatured_type_reader, NULL);
18584 sig_type->per_cu.tu_read = 1;
18585 }
18586
18587 /* Decode simple location descriptions.
18588 Given a pointer to a dwarf block that defines a location, compute
18589 the location and return the value.
18590
18591 NOTE drow/2003-11-18: This function is called in two situations
18592 now: for the address of static or global variables (partial symbols
18593 only) and for offsets into structures which are expected to be
18594 (more or less) constant. The partial symbol case should go away,
18595 and only the constant case should remain. That will let this
18596 function complain more accurately. A few special modes are allowed
18597 without complaint for global variables (for instance, global
18598 register values and thread-local values).
18599
18600 A location description containing no operations indicates that the
18601 object is optimized out. The return value is 0 for that case.
18602 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18603 callers will only want a very basic result and this can become a
18604 complaint.
18605
18606 Note that stack[0] is unused except as a default error return. */
18607
18608 static CORE_ADDR
18609 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18610 {
18611 struct objfile *objfile = cu->objfile;
18612 size_t i;
18613 size_t size = blk->size;
18614 const gdb_byte *data = blk->data;
18615 CORE_ADDR stack[64];
18616 int stacki;
18617 unsigned int bytes_read, unsnd;
18618 gdb_byte op;
18619
18620 i = 0;
18621 stacki = 0;
18622 stack[stacki] = 0;
18623 stack[++stacki] = 0;
18624
18625 while (i < size)
18626 {
18627 op = data[i++];
18628 switch (op)
18629 {
18630 case DW_OP_lit0:
18631 case DW_OP_lit1:
18632 case DW_OP_lit2:
18633 case DW_OP_lit3:
18634 case DW_OP_lit4:
18635 case DW_OP_lit5:
18636 case DW_OP_lit6:
18637 case DW_OP_lit7:
18638 case DW_OP_lit8:
18639 case DW_OP_lit9:
18640 case DW_OP_lit10:
18641 case DW_OP_lit11:
18642 case DW_OP_lit12:
18643 case DW_OP_lit13:
18644 case DW_OP_lit14:
18645 case DW_OP_lit15:
18646 case DW_OP_lit16:
18647 case DW_OP_lit17:
18648 case DW_OP_lit18:
18649 case DW_OP_lit19:
18650 case DW_OP_lit20:
18651 case DW_OP_lit21:
18652 case DW_OP_lit22:
18653 case DW_OP_lit23:
18654 case DW_OP_lit24:
18655 case DW_OP_lit25:
18656 case DW_OP_lit26:
18657 case DW_OP_lit27:
18658 case DW_OP_lit28:
18659 case DW_OP_lit29:
18660 case DW_OP_lit30:
18661 case DW_OP_lit31:
18662 stack[++stacki] = op - DW_OP_lit0;
18663 break;
18664
18665 case DW_OP_reg0:
18666 case DW_OP_reg1:
18667 case DW_OP_reg2:
18668 case DW_OP_reg3:
18669 case DW_OP_reg4:
18670 case DW_OP_reg5:
18671 case DW_OP_reg6:
18672 case DW_OP_reg7:
18673 case DW_OP_reg8:
18674 case DW_OP_reg9:
18675 case DW_OP_reg10:
18676 case DW_OP_reg11:
18677 case DW_OP_reg12:
18678 case DW_OP_reg13:
18679 case DW_OP_reg14:
18680 case DW_OP_reg15:
18681 case DW_OP_reg16:
18682 case DW_OP_reg17:
18683 case DW_OP_reg18:
18684 case DW_OP_reg19:
18685 case DW_OP_reg20:
18686 case DW_OP_reg21:
18687 case DW_OP_reg22:
18688 case DW_OP_reg23:
18689 case DW_OP_reg24:
18690 case DW_OP_reg25:
18691 case DW_OP_reg26:
18692 case DW_OP_reg27:
18693 case DW_OP_reg28:
18694 case DW_OP_reg29:
18695 case DW_OP_reg30:
18696 case DW_OP_reg31:
18697 stack[++stacki] = op - DW_OP_reg0;
18698 if (i < size)
18699 dwarf2_complex_location_expr_complaint ();
18700 break;
18701
18702 case DW_OP_regx:
18703 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18704 i += bytes_read;
18705 stack[++stacki] = unsnd;
18706 if (i < size)
18707 dwarf2_complex_location_expr_complaint ();
18708 break;
18709
18710 case DW_OP_addr:
18711 stack[++stacki] = read_address (objfile->obfd, &data[i],
18712 cu, &bytes_read);
18713 i += bytes_read;
18714 break;
18715
18716 case DW_OP_const1u:
18717 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18718 i += 1;
18719 break;
18720
18721 case DW_OP_const1s:
18722 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18723 i += 1;
18724 break;
18725
18726 case DW_OP_const2u:
18727 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18728 i += 2;
18729 break;
18730
18731 case DW_OP_const2s:
18732 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18733 i += 2;
18734 break;
18735
18736 case DW_OP_const4u:
18737 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18738 i += 4;
18739 break;
18740
18741 case DW_OP_const4s:
18742 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18743 i += 4;
18744 break;
18745
18746 case DW_OP_const8u:
18747 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18748 i += 8;
18749 break;
18750
18751 case DW_OP_constu:
18752 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18753 &bytes_read);
18754 i += bytes_read;
18755 break;
18756
18757 case DW_OP_consts:
18758 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18759 i += bytes_read;
18760 break;
18761
18762 case DW_OP_dup:
18763 stack[stacki + 1] = stack[stacki];
18764 stacki++;
18765 break;
18766
18767 case DW_OP_plus:
18768 stack[stacki - 1] += stack[stacki];
18769 stacki--;
18770 break;
18771
18772 case DW_OP_plus_uconst:
18773 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18774 &bytes_read);
18775 i += bytes_read;
18776 break;
18777
18778 case DW_OP_minus:
18779 stack[stacki - 1] -= stack[stacki];
18780 stacki--;
18781 break;
18782
18783 case DW_OP_deref:
18784 /* If we're not the last op, then we definitely can't encode
18785 this using GDB's address_class enum. This is valid for partial
18786 global symbols, although the variable's address will be bogus
18787 in the psymtab. */
18788 if (i < size)
18789 dwarf2_complex_location_expr_complaint ();
18790 break;
18791
18792 case DW_OP_GNU_push_tls_address:
18793 /* The top of the stack has the offset from the beginning
18794 of the thread control block at which the variable is located. */
18795 /* Nothing should follow this operator, so the top of stack would
18796 be returned. */
18797 /* This is valid for partial global symbols, but the variable's
18798 address will be bogus in the psymtab. Make it always at least
18799 non-zero to not look as a variable garbage collected by linker
18800 which have DW_OP_addr 0. */
18801 if (i < size)
18802 dwarf2_complex_location_expr_complaint ();
18803 stack[stacki]++;
18804 break;
18805
18806 case DW_OP_GNU_uninit:
18807 break;
18808
18809 case DW_OP_GNU_addr_index:
18810 case DW_OP_GNU_const_index:
18811 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18812 &bytes_read);
18813 i += bytes_read;
18814 break;
18815
18816 default:
18817 {
18818 const char *name = get_DW_OP_name (op);
18819
18820 if (name)
18821 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18822 name);
18823 else
18824 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18825 op);
18826 }
18827
18828 return (stack[stacki]);
18829 }
18830
18831 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18832 outside of the allocated space. Also enforce minimum>0. */
18833 if (stacki >= ARRAY_SIZE (stack) - 1)
18834 {
18835 complaint (&symfile_complaints,
18836 _("location description stack overflow"));
18837 return 0;
18838 }
18839
18840 if (stacki <= 0)
18841 {
18842 complaint (&symfile_complaints,
18843 _("location description stack underflow"));
18844 return 0;
18845 }
18846 }
18847 return (stack[stacki]);
18848 }
18849
18850 /* memory allocation interface */
18851
18852 static struct dwarf_block *
18853 dwarf_alloc_block (struct dwarf2_cu *cu)
18854 {
18855 struct dwarf_block *blk;
18856
18857 blk = (struct dwarf_block *)
18858 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18859 return (blk);
18860 }
18861
18862 static struct die_info *
18863 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18864 {
18865 struct die_info *die;
18866 size_t size = sizeof (struct die_info);
18867
18868 if (num_attrs > 1)
18869 size += (num_attrs - 1) * sizeof (struct attribute);
18870
18871 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18872 memset (die, 0, sizeof (struct die_info));
18873 return (die);
18874 }
18875
18876 \f
18877 /* Macro support. */
18878
18879 /* Return file name relative to the compilation directory of file number I in
18880 *LH's file name table. The result is allocated using xmalloc; the caller is
18881 responsible for freeing it. */
18882
18883 static char *
18884 file_file_name (int file, struct line_header *lh)
18885 {
18886 /* Is the file number a valid index into the line header's file name
18887 table? Remember that file numbers start with one, not zero. */
18888 if (1 <= file && file <= lh->num_file_names)
18889 {
18890 struct file_entry *fe = &lh->file_names[file - 1];
18891
18892 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18893 return xstrdup (fe->name);
18894 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18895 fe->name, NULL);
18896 }
18897 else
18898 {
18899 /* The compiler produced a bogus file number. We can at least
18900 record the macro definitions made in the file, even if we
18901 won't be able to find the file by name. */
18902 char fake_name[80];
18903
18904 xsnprintf (fake_name, sizeof (fake_name),
18905 "<bad macro file number %d>", file);
18906
18907 complaint (&symfile_complaints,
18908 _("bad file number in macro information (%d)"),
18909 file);
18910
18911 return xstrdup (fake_name);
18912 }
18913 }
18914
18915 /* Return the full name of file number I in *LH's file name table.
18916 Use COMP_DIR as the name of the current directory of the
18917 compilation. The result is allocated using xmalloc; the caller is
18918 responsible for freeing it. */
18919 static char *
18920 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18921 {
18922 /* Is the file number a valid index into the line header's file name
18923 table? Remember that file numbers start with one, not zero. */
18924 if (1 <= file && file <= lh->num_file_names)
18925 {
18926 char *relative = file_file_name (file, lh);
18927
18928 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18929 return relative;
18930 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18931 }
18932 else
18933 return file_file_name (file, lh);
18934 }
18935
18936
18937 static struct macro_source_file *
18938 macro_start_file (int file, int line,
18939 struct macro_source_file *current_file,
18940 const char *comp_dir,
18941 struct line_header *lh, struct objfile *objfile)
18942 {
18943 /* File name relative to the compilation directory of this source file. */
18944 char *file_name = file_file_name (file, lh);
18945
18946 if (! current_file)
18947 {
18948 /* Note: We don't create a macro table for this compilation unit
18949 at all until we actually get a filename. */
18950 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
18951
18952 /* If we have no current file, then this must be the start_file
18953 directive for the compilation unit's main source file. */
18954 current_file = macro_set_main (macro_table, file_name);
18955 macro_define_special (macro_table);
18956 }
18957 else
18958 current_file = macro_include (current_file, line, file_name);
18959
18960 xfree (file_name);
18961
18962 return current_file;
18963 }
18964
18965
18966 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18967 followed by a null byte. */
18968 static char *
18969 copy_string (const char *buf, int len)
18970 {
18971 char *s = xmalloc (len + 1);
18972
18973 memcpy (s, buf, len);
18974 s[len] = '\0';
18975 return s;
18976 }
18977
18978
18979 static const char *
18980 consume_improper_spaces (const char *p, const char *body)
18981 {
18982 if (*p == ' ')
18983 {
18984 complaint (&symfile_complaints,
18985 _("macro definition contains spaces "
18986 "in formal argument list:\n`%s'"),
18987 body);
18988
18989 while (*p == ' ')
18990 p++;
18991 }
18992
18993 return p;
18994 }
18995
18996
18997 static void
18998 parse_macro_definition (struct macro_source_file *file, int line,
18999 const char *body)
19000 {
19001 const char *p;
19002
19003 /* The body string takes one of two forms. For object-like macro
19004 definitions, it should be:
19005
19006 <macro name> " " <definition>
19007
19008 For function-like macro definitions, it should be:
19009
19010 <macro name> "() " <definition>
19011 or
19012 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19013
19014 Spaces may appear only where explicitly indicated, and in the
19015 <definition>.
19016
19017 The Dwarf 2 spec says that an object-like macro's name is always
19018 followed by a space, but versions of GCC around March 2002 omit
19019 the space when the macro's definition is the empty string.
19020
19021 The Dwarf 2 spec says that there should be no spaces between the
19022 formal arguments in a function-like macro's formal argument list,
19023 but versions of GCC around March 2002 include spaces after the
19024 commas. */
19025
19026
19027 /* Find the extent of the macro name. The macro name is terminated
19028 by either a space or null character (for an object-like macro) or
19029 an opening paren (for a function-like macro). */
19030 for (p = body; *p; p++)
19031 if (*p == ' ' || *p == '(')
19032 break;
19033
19034 if (*p == ' ' || *p == '\0')
19035 {
19036 /* It's an object-like macro. */
19037 int name_len = p - body;
19038 char *name = copy_string (body, name_len);
19039 const char *replacement;
19040
19041 if (*p == ' ')
19042 replacement = body + name_len + 1;
19043 else
19044 {
19045 dwarf2_macro_malformed_definition_complaint (body);
19046 replacement = body + name_len;
19047 }
19048
19049 macro_define_object (file, line, name, replacement);
19050
19051 xfree (name);
19052 }
19053 else if (*p == '(')
19054 {
19055 /* It's a function-like macro. */
19056 char *name = copy_string (body, p - body);
19057 int argc = 0;
19058 int argv_size = 1;
19059 char **argv = xmalloc (argv_size * sizeof (*argv));
19060
19061 p++;
19062
19063 p = consume_improper_spaces (p, body);
19064
19065 /* Parse the formal argument list. */
19066 while (*p && *p != ')')
19067 {
19068 /* Find the extent of the current argument name. */
19069 const char *arg_start = p;
19070
19071 while (*p && *p != ',' && *p != ')' && *p != ' ')
19072 p++;
19073
19074 if (! *p || p == arg_start)
19075 dwarf2_macro_malformed_definition_complaint (body);
19076 else
19077 {
19078 /* Make sure argv has room for the new argument. */
19079 if (argc >= argv_size)
19080 {
19081 argv_size *= 2;
19082 argv = xrealloc (argv, argv_size * sizeof (*argv));
19083 }
19084
19085 argv[argc++] = copy_string (arg_start, p - arg_start);
19086 }
19087
19088 p = consume_improper_spaces (p, body);
19089
19090 /* Consume the comma, if present. */
19091 if (*p == ',')
19092 {
19093 p++;
19094
19095 p = consume_improper_spaces (p, body);
19096 }
19097 }
19098
19099 if (*p == ')')
19100 {
19101 p++;
19102
19103 if (*p == ' ')
19104 /* Perfectly formed definition, no complaints. */
19105 macro_define_function (file, line, name,
19106 argc, (const char **) argv,
19107 p + 1);
19108 else if (*p == '\0')
19109 {
19110 /* Complain, but do define it. */
19111 dwarf2_macro_malformed_definition_complaint (body);
19112 macro_define_function (file, line, name,
19113 argc, (const char **) argv,
19114 p);
19115 }
19116 else
19117 /* Just complain. */
19118 dwarf2_macro_malformed_definition_complaint (body);
19119 }
19120 else
19121 /* Just complain. */
19122 dwarf2_macro_malformed_definition_complaint (body);
19123
19124 xfree (name);
19125 {
19126 int i;
19127
19128 for (i = 0; i < argc; i++)
19129 xfree (argv[i]);
19130 }
19131 xfree (argv);
19132 }
19133 else
19134 dwarf2_macro_malformed_definition_complaint (body);
19135 }
19136
19137 /* Skip some bytes from BYTES according to the form given in FORM.
19138 Returns the new pointer. */
19139
19140 static const gdb_byte *
19141 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19142 enum dwarf_form form,
19143 unsigned int offset_size,
19144 struct dwarf2_section_info *section)
19145 {
19146 unsigned int bytes_read;
19147
19148 switch (form)
19149 {
19150 case DW_FORM_data1:
19151 case DW_FORM_flag:
19152 ++bytes;
19153 break;
19154
19155 case DW_FORM_data2:
19156 bytes += 2;
19157 break;
19158
19159 case DW_FORM_data4:
19160 bytes += 4;
19161 break;
19162
19163 case DW_FORM_data8:
19164 bytes += 8;
19165 break;
19166
19167 case DW_FORM_string:
19168 read_direct_string (abfd, bytes, &bytes_read);
19169 bytes += bytes_read;
19170 break;
19171
19172 case DW_FORM_sec_offset:
19173 case DW_FORM_strp:
19174 case DW_FORM_GNU_strp_alt:
19175 bytes += offset_size;
19176 break;
19177
19178 case DW_FORM_block:
19179 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19180 bytes += bytes_read;
19181 break;
19182
19183 case DW_FORM_block1:
19184 bytes += 1 + read_1_byte (abfd, bytes);
19185 break;
19186 case DW_FORM_block2:
19187 bytes += 2 + read_2_bytes (abfd, bytes);
19188 break;
19189 case DW_FORM_block4:
19190 bytes += 4 + read_4_bytes (abfd, bytes);
19191 break;
19192
19193 case DW_FORM_sdata:
19194 case DW_FORM_udata:
19195 case DW_FORM_GNU_addr_index:
19196 case DW_FORM_GNU_str_index:
19197 bytes = gdb_skip_leb128 (bytes, buffer_end);
19198 if (bytes == NULL)
19199 {
19200 dwarf2_section_buffer_overflow_complaint (section);
19201 return NULL;
19202 }
19203 break;
19204
19205 default:
19206 {
19207 complain:
19208 complaint (&symfile_complaints,
19209 _("invalid form 0x%x in `%s'"),
19210 form,
19211 section->asection->name);
19212 return NULL;
19213 }
19214 }
19215
19216 return bytes;
19217 }
19218
19219 /* A helper for dwarf_decode_macros that handles skipping an unknown
19220 opcode. Returns an updated pointer to the macro data buffer; or,
19221 on error, issues a complaint and returns NULL. */
19222
19223 static const gdb_byte *
19224 skip_unknown_opcode (unsigned int opcode,
19225 const gdb_byte **opcode_definitions,
19226 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19227 bfd *abfd,
19228 unsigned int offset_size,
19229 struct dwarf2_section_info *section)
19230 {
19231 unsigned int bytes_read, i;
19232 unsigned long arg;
19233 const gdb_byte *defn;
19234
19235 if (opcode_definitions[opcode] == NULL)
19236 {
19237 complaint (&symfile_complaints,
19238 _("unrecognized DW_MACFINO opcode 0x%x"),
19239 opcode);
19240 return NULL;
19241 }
19242
19243 defn = opcode_definitions[opcode];
19244 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19245 defn += bytes_read;
19246
19247 for (i = 0; i < arg; ++i)
19248 {
19249 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19250 section);
19251 if (mac_ptr == NULL)
19252 {
19253 /* skip_form_bytes already issued the complaint. */
19254 return NULL;
19255 }
19256 }
19257
19258 return mac_ptr;
19259 }
19260
19261 /* A helper function which parses the header of a macro section.
19262 If the macro section is the extended (for now called "GNU") type,
19263 then this updates *OFFSET_SIZE. Returns a pointer to just after
19264 the header, or issues a complaint and returns NULL on error. */
19265
19266 static const gdb_byte *
19267 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19268 bfd *abfd,
19269 const gdb_byte *mac_ptr,
19270 unsigned int *offset_size,
19271 int section_is_gnu)
19272 {
19273 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19274
19275 if (section_is_gnu)
19276 {
19277 unsigned int version, flags;
19278
19279 version = read_2_bytes (abfd, mac_ptr);
19280 if (version != 4)
19281 {
19282 complaint (&symfile_complaints,
19283 _("unrecognized version `%d' in .debug_macro section"),
19284 version);
19285 return NULL;
19286 }
19287 mac_ptr += 2;
19288
19289 flags = read_1_byte (abfd, mac_ptr);
19290 ++mac_ptr;
19291 *offset_size = (flags & 1) ? 8 : 4;
19292
19293 if ((flags & 2) != 0)
19294 /* We don't need the line table offset. */
19295 mac_ptr += *offset_size;
19296
19297 /* Vendor opcode descriptions. */
19298 if ((flags & 4) != 0)
19299 {
19300 unsigned int i, count;
19301
19302 count = read_1_byte (abfd, mac_ptr);
19303 ++mac_ptr;
19304 for (i = 0; i < count; ++i)
19305 {
19306 unsigned int opcode, bytes_read;
19307 unsigned long arg;
19308
19309 opcode = read_1_byte (abfd, mac_ptr);
19310 ++mac_ptr;
19311 opcode_definitions[opcode] = mac_ptr;
19312 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19313 mac_ptr += bytes_read;
19314 mac_ptr += arg;
19315 }
19316 }
19317 }
19318
19319 return mac_ptr;
19320 }
19321
19322 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19323 including DW_MACRO_GNU_transparent_include. */
19324
19325 static void
19326 dwarf_decode_macro_bytes (bfd *abfd,
19327 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19328 struct macro_source_file *current_file,
19329 struct line_header *lh, const char *comp_dir,
19330 struct dwarf2_section_info *section,
19331 int section_is_gnu, int section_is_dwz,
19332 unsigned int offset_size,
19333 struct objfile *objfile,
19334 htab_t include_hash)
19335 {
19336 enum dwarf_macro_record_type macinfo_type;
19337 int at_commandline;
19338 const gdb_byte *opcode_definitions[256];
19339
19340 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19341 &offset_size, section_is_gnu);
19342 if (mac_ptr == NULL)
19343 {
19344 /* We already issued a complaint. */
19345 return;
19346 }
19347
19348 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19349 GDB is still reading the definitions from command line. First
19350 DW_MACINFO_start_file will need to be ignored as it was already executed
19351 to create CURRENT_FILE for the main source holding also the command line
19352 definitions. On first met DW_MACINFO_start_file this flag is reset to
19353 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19354
19355 at_commandline = 1;
19356
19357 do
19358 {
19359 /* Do we at least have room for a macinfo type byte? */
19360 if (mac_ptr >= mac_end)
19361 {
19362 dwarf2_section_buffer_overflow_complaint (section);
19363 break;
19364 }
19365
19366 macinfo_type = read_1_byte (abfd, mac_ptr);
19367 mac_ptr++;
19368
19369 /* Note that we rely on the fact that the corresponding GNU and
19370 DWARF constants are the same. */
19371 switch (macinfo_type)
19372 {
19373 /* A zero macinfo type indicates the end of the macro
19374 information. */
19375 case 0:
19376 break;
19377
19378 case DW_MACRO_GNU_define:
19379 case DW_MACRO_GNU_undef:
19380 case DW_MACRO_GNU_define_indirect:
19381 case DW_MACRO_GNU_undef_indirect:
19382 case DW_MACRO_GNU_define_indirect_alt:
19383 case DW_MACRO_GNU_undef_indirect_alt:
19384 {
19385 unsigned int bytes_read;
19386 int line;
19387 const char *body;
19388 int is_define;
19389
19390 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19391 mac_ptr += bytes_read;
19392
19393 if (macinfo_type == DW_MACRO_GNU_define
19394 || macinfo_type == DW_MACRO_GNU_undef)
19395 {
19396 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19397 mac_ptr += bytes_read;
19398 }
19399 else
19400 {
19401 LONGEST str_offset;
19402
19403 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19404 mac_ptr += offset_size;
19405
19406 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19407 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19408 || section_is_dwz)
19409 {
19410 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19411
19412 body = read_indirect_string_from_dwz (dwz, str_offset);
19413 }
19414 else
19415 body = read_indirect_string_at_offset (abfd, str_offset);
19416 }
19417
19418 is_define = (macinfo_type == DW_MACRO_GNU_define
19419 || macinfo_type == DW_MACRO_GNU_define_indirect
19420 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19421 if (! current_file)
19422 {
19423 /* DWARF violation as no main source is present. */
19424 complaint (&symfile_complaints,
19425 _("debug info with no main source gives macro %s "
19426 "on line %d: %s"),
19427 is_define ? _("definition") : _("undefinition"),
19428 line, body);
19429 break;
19430 }
19431 if ((line == 0 && !at_commandline)
19432 || (line != 0 && at_commandline))
19433 complaint (&symfile_complaints,
19434 _("debug info gives %s macro %s with %s line %d: %s"),
19435 at_commandline ? _("command-line") : _("in-file"),
19436 is_define ? _("definition") : _("undefinition"),
19437 line == 0 ? _("zero") : _("non-zero"), line, body);
19438
19439 if (is_define)
19440 parse_macro_definition (current_file, line, body);
19441 else
19442 {
19443 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19444 || macinfo_type == DW_MACRO_GNU_undef_indirect
19445 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19446 macro_undef (current_file, line, body);
19447 }
19448 }
19449 break;
19450
19451 case DW_MACRO_GNU_start_file:
19452 {
19453 unsigned int bytes_read;
19454 int line, file;
19455
19456 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19457 mac_ptr += bytes_read;
19458 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19459 mac_ptr += bytes_read;
19460
19461 if ((line == 0 && !at_commandline)
19462 || (line != 0 && at_commandline))
19463 complaint (&symfile_complaints,
19464 _("debug info gives source %d included "
19465 "from %s at %s line %d"),
19466 file, at_commandline ? _("command-line") : _("file"),
19467 line == 0 ? _("zero") : _("non-zero"), line);
19468
19469 if (at_commandline)
19470 {
19471 /* This DW_MACRO_GNU_start_file was executed in the
19472 pass one. */
19473 at_commandline = 0;
19474 }
19475 else
19476 current_file = macro_start_file (file, line,
19477 current_file, comp_dir,
19478 lh, objfile);
19479 }
19480 break;
19481
19482 case DW_MACRO_GNU_end_file:
19483 if (! current_file)
19484 complaint (&symfile_complaints,
19485 _("macro debug info has an unmatched "
19486 "`close_file' directive"));
19487 else
19488 {
19489 current_file = current_file->included_by;
19490 if (! current_file)
19491 {
19492 enum dwarf_macro_record_type next_type;
19493
19494 /* GCC circa March 2002 doesn't produce the zero
19495 type byte marking the end of the compilation
19496 unit. Complain if it's not there, but exit no
19497 matter what. */
19498
19499 /* Do we at least have room for a macinfo type byte? */
19500 if (mac_ptr >= mac_end)
19501 {
19502 dwarf2_section_buffer_overflow_complaint (section);
19503 return;
19504 }
19505
19506 /* We don't increment mac_ptr here, so this is just
19507 a look-ahead. */
19508 next_type = read_1_byte (abfd, mac_ptr);
19509 if (next_type != 0)
19510 complaint (&symfile_complaints,
19511 _("no terminating 0-type entry for "
19512 "macros in `.debug_macinfo' section"));
19513
19514 return;
19515 }
19516 }
19517 break;
19518
19519 case DW_MACRO_GNU_transparent_include:
19520 case DW_MACRO_GNU_transparent_include_alt:
19521 {
19522 LONGEST offset;
19523 void **slot;
19524 bfd *include_bfd = abfd;
19525 struct dwarf2_section_info *include_section = section;
19526 struct dwarf2_section_info alt_section;
19527 const gdb_byte *include_mac_end = mac_end;
19528 int is_dwz = section_is_dwz;
19529 const gdb_byte *new_mac_ptr;
19530
19531 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19532 mac_ptr += offset_size;
19533
19534 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19535 {
19536 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19537
19538 dwarf2_read_section (dwarf2_per_objfile->objfile,
19539 &dwz->macro);
19540
19541 include_bfd = dwz->macro.asection->owner;
19542 include_section = &dwz->macro;
19543 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19544 is_dwz = 1;
19545 }
19546
19547 new_mac_ptr = include_section->buffer + offset;
19548 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19549
19550 if (*slot != NULL)
19551 {
19552 /* This has actually happened; see
19553 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19554 complaint (&symfile_complaints,
19555 _("recursive DW_MACRO_GNU_transparent_include in "
19556 ".debug_macro section"));
19557 }
19558 else
19559 {
19560 *slot = (void *) new_mac_ptr;
19561
19562 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19563 include_mac_end, current_file,
19564 lh, comp_dir,
19565 section, section_is_gnu, is_dwz,
19566 offset_size, objfile, include_hash);
19567
19568 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19569 }
19570 }
19571 break;
19572
19573 case DW_MACINFO_vendor_ext:
19574 if (!section_is_gnu)
19575 {
19576 unsigned int bytes_read;
19577 int constant;
19578
19579 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19580 mac_ptr += bytes_read;
19581 read_direct_string (abfd, mac_ptr, &bytes_read);
19582 mac_ptr += bytes_read;
19583
19584 /* We don't recognize any vendor extensions. */
19585 break;
19586 }
19587 /* FALLTHROUGH */
19588
19589 default:
19590 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19591 mac_ptr, mac_end, abfd, offset_size,
19592 section);
19593 if (mac_ptr == NULL)
19594 return;
19595 break;
19596 }
19597 } while (macinfo_type != 0);
19598 }
19599
19600 static void
19601 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19602 const char *comp_dir, int section_is_gnu)
19603 {
19604 struct objfile *objfile = dwarf2_per_objfile->objfile;
19605 struct line_header *lh = cu->line_header;
19606 bfd *abfd;
19607 const gdb_byte *mac_ptr, *mac_end;
19608 struct macro_source_file *current_file = 0;
19609 enum dwarf_macro_record_type macinfo_type;
19610 unsigned int offset_size = cu->header.offset_size;
19611 const gdb_byte *opcode_definitions[256];
19612 struct cleanup *cleanup;
19613 htab_t include_hash;
19614 void **slot;
19615 struct dwarf2_section_info *section;
19616 const char *section_name;
19617
19618 if (cu->dwo_unit != NULL)
19619 {
19620 if (section_is_gnu)
19621 {
19622 section = &cu->dwo_unit->dwo_file->sections.macro;
19623 section_name = ".debug_macro.dwo";
19624 }
19625 else
19626 {
19627 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19628 section_name = ".debug_macinfo.dwo";
19629 }
19630 }
19631 else
19632 {
19633 if (section_is_gnu)
19634 {
19635 section = &dwarf2_per_objfile->macro;
19636 section_name = ".debug_macro";
19637 }
19638 else
19639 {
19640 section = &dwarf2_per_objfile->macinfo;
19641 section_name = ".debug_macinfo";
19642 }
19643 }
19644
19645 dwarf2_read_section (objfile, section);
19646 if (section->buffer == NULL)
19647 {
19648 complaint (&symfile_complaints, _("missing %s section"), section_name);
19649 return;
19650 }
19651 abfd = section->asection->owner;
19652
19653 /* First pass: Find the name of the base filename.
19654 This filename is needed in order to process all macros whose definition
19655 (or undefinition) comes from the command line. These macros are defined
19656 before the first DW_MACINFO_start_file entry, and yet still need to be
19657 associated to the base file.
19658
19659 To determine the base file name, we scan the macro definitions until we
19660 reach the first DW_MACINFO_start_file entry. We then initialize
19661 CURRENT_FILE accordingly so that any macro definition found before the
19662 first DW_MACINFO_start_file can still be associated to the base file. */
19663
19664 mac_ptr = section->buffer + offset;
19665 mac_end = section->buffer + section->size;
19666
19667 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19668 &offset_size, section_is_gnu);
19669 if (mac_ptr == NULL)
19670 {
19671 /* We already issued a complaint. */
19672 return;
19673 }
19674
19675 do
19676 {
19677 /* Do we at least have room for a macinfo type byte? */
19678 if (mac_ptr >= mac_end)
19679 {
19680 /* Complaint is printed during the second pass as GDB will probably
19681 stop the first pass earlier upon finding
19682 DW_MACINFO_start_file. */
19683 break;
19684 }
19685
19686 macinfo_type = read_1_byte (abfd, mac_ptr);
19687 mac_ptr++;
19688
19689 /* Note that we rely on the fact that the corresponding GNU and
19690 DWARF constants are the same. */
19691 switch (macinfo_type)
19692 {
19693 /* A zero macinfo type indicates the end of the macro
19694 information. */
19695 case 0:
19696 break;
19697
19698 case DW_MACRO_GNU_define:
19699 case DW_MACRO_GNU_undef:
19700 /* Only skip the data by MAC_PTR. */
19701 {
19702 unsigned int bytes_read;
19703
19704 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19705 mac_ptr += bytes_read;
19706 read_direct_string (abfd, mac_ptr, &bytes_read);
19707 mac_ptr += bytes_read;
19708 }
19709 break;
19710
19711 case DW_MACRO_GNU_start_file:
19712 {
19713 unsigned int bytes_read;
19714 int line, file;
19715
19716 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19717 mac_ptr += bytes_read;
19718 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19719 mac_ptr += bytes_read;
19720
19721 current_file = macro_start_file (file, line, current_file,
19722 comp_dir, lh, objfile);
19723 }
19724 break;
19725
19726 case DW_MACRO_GNU_end_file:
19727 /* No data to skip by MAC_PTR. */
19728 break;
19729
19730 case DW_MACRO_GNU_define_indirect:
19731 case DW_MACRO_GNU_undef_indirect:
19732 case DW_MACRO_GNU_define_indirect_alt:
19733 case DW_MACRO_GNU_undef_indirect_alt:
19734 {
19735 unsigned int bytes_read;
19736
19737 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19738 mac_ptr += bytes_read;
19739 mac_ptr += offset_size;
19740 }
19741 break;
19742
19743 case DW_MACRO_GNU_transparent_include:
19744 case DW_MACRO_GNU_transparent_include_alt:
19745 /* Note that, according to the spec, a transparent include
19746 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19747 skip this opcode. */
19748 mac_ptr += offset_size;
19749 break;
19750
19751 case DW_MACINFO_vendor_ext:
19752 /* Only skip the data by MAC_PTR. */
19753 if (!section_is_gnu)
19754 {
19755 unsigned int bytes_read;
19756
19757 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19758 mac_ptr += bytes_read;
19759 read_direct_string (abfd, mac_ptr, &bytes_read);
19760 mac_ptr += bytes_read;
19761 }
19762 /* FALLTHROUGH */
19763
19764 default:
19765 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19766 mac_ptr, mac_end, abfd, offset_size,
19767 section);
19768 if (mac_ptr == NULL)
19769 return;
19770 break;
19771 }
19772 } while (macinfo_type != 0 && current_file == NULL);
19773
19774 /* Second pass: Process all entries.
19775
19776 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19777 command-line macro definitions/undefinitions. This flag is unset when we
19778 reach the first DW_MACINFO_start_file entry. */
19779
19780 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19781 NULL, xcalloc, xfree);
19782 cleanup = make_cleanup_htab_delete (include_hash);
19783 mac_ptr = section->buffer + offset;
19784 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19785 *slot = (void *) mac_ptr;
19786 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19787 current_file, lh, comp_dir, section,
19788 section_is_gnu, 0,
19789 offset_size, objfile, include_hash);
19790 do_cleanups (cleanup);
19791 }
19792
19793 /* Check if the attribute's form is a DW_FORM_block*
19794 if so return true else false. */
19795
19796 static int
19797 attr_form_is_block (const struct attribute *attr)
19798 {
19799 return (attr == NULL ? 0 :
19800 attr->form == DW_FORM_block1
19801 || attr->form == DW_FORM_block2
19802 || attr->form == DW_FORM_block4
19803 || attr->form == DW_FORM_block
19804 || attr->form == DW_FORM_exprloc);
19805 }
19806
19807 /* Return non-zero if ATTR's value is a section offset --- classes
19808 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19809 You may use DW_UNSND (attr) to retrieve such offsets.
19810
19811 Section 7.5.4, "Attribute Encodings", explains that no attribute
19812 may have a value that belongs to more than one of these classes; it
19813 would be ambiguous if we did, because we use the same forms for all
19814 of them. */
19815
19816 static int
19817 attr_form_is_section_offset (const struct attribute *attr)
19818 {
19819 return (attr->form == DW_FORM_data4
19820 || attr->form == DW_FORM_data8
19821 || attr->form == DW_FORM_sec_offset);
19822 }
19823
19824 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19825 zero otherwise. When this function returns true, you can apply
19826 dwarf2_get_attr_constant_value to it.
19827
19828 However, note that for some attributes you must check
19829 attr_form_is_section_offset before using this test. DW_FORM_data4
19830 and DW_FORM_data8 are members of both the constant class, and of
19831 the classes that contain offsets into other debug sections
19832 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19833 that, if an attribute's can be either a constant or one of the
19834 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19835 taken as section offsets, not constants. */
19836
19837 static int
19838 attr_form_is_constant (const struct attribute *attr)
19839 {
19840 switch (attr->form)
19841 {
19842 case DW_FORM_sdata:
19843 case DW_FORM_udata:
19844 case DW_FORM_data1:
19845 case DW_FORM_data2:
19846 case DW_FORM_data4:
19847 case DW_FORM_data8:
19848 return 1;
19849 default:
19850 return 0;
19851 }
19852 }
19853
19854
19855 /* DW_ADDR is always stored already as sect_offset; despite for the forms
19856 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
19857
19858 static int
19859 attr_form_is_ref (const struct attribute *attr)
19860 {
19861 switch (attr->form)
19862 {
19863 case DW_FORM_ref_addr:
19864 case DW_FORM_ref1:
19865 case DW_FORM_ref2:
19866 case DW_FORM_ref4:
19867 case DW_FORM_ref8:
19868 case DW_FORM_ref_udata:
19869 case DW_FORM_GNU_ref_alt:
19870 return 1;
19871 default:
19872 return 0;
19873 }
19874 }
19875
19876 /* Return the .debug_loc section to use for CU.
19877 For DWO files use .debug_loc.dwo. */
19878
19879 static struct dwarf2_section_info *
19880 cu_debug_loc_section (struct dwarf2_cu *cu)
19881 {
19882 if (cu->dwo_unit)
19883 return &cu->dwo_unit->dwo_file->sections.loc;
19884 return &dwarf2_per_objfile->loc;
19885 }
19886
19887 /* A helper function that fills in a dwarf2_loclist_baton. */
19888
19889 static void
19890 fill_in_loclist_baton (struct dwarf2_cu *cu,
19891 struct dwarf2_loclist_baton *baton,
19892 const struct attribute *attr)
19893 {
19894 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19895
19896 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19897
19898 baton->per_cu = cu->per_cu;
19899 gdb_assert (baton->per_cu);
19900 /* We don't know how long the location list is, but make sure we
19901 don't run off the edge of the section. */
19902 baton->size = section->size - DW_UNSND (attr);
19903 baton->data = section->buffer + DW_UNSND (attr);
19904 baton->base_address = cu->base_address;
19905 baton->from_dwo = cu->dwo_unit != NULL;
19906 }
19907
19908 static void
19909 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
19910 struct dwarf2_cu *cu, int is_block)
19911 {
19912 struct objfile *objfile = dwarf2_per_objfile->objfile;
19913 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19914
19915 if (attr_form_is_section_offset (attr)
19916 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19917 the section. If so, fall through to the complaint in the
19918 other branch. */
19919 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19920 {
19921 struct dwarf2_loclist_baton *baton;
19922
19923 baton = obstack_alloc (&objfile->objfile_obstack,
19924 sizeof (struct dwarf2_loclist_baton));
19925
19926 fill_in_loclist_baton (cu, baton, attr);
19927
19928 if (cu->base_known == 0)
19929 complaint (&symfile_complaints,
19930 _("Location list used without "
19931 "specifying the CU base address."));
19932
19933 SYMBOL_ACLASS_INDEX (sym) = (is_block
19934 ? dwarf2_loclist_block_index
19935 : dwarf2_loclist_index);
19936 SYMBOL_LOCATION_BATON (sym) = baton;
19937 }
19938 else
19939 {
19940 struct dwarf2_locexpr_baton *baton;
19941
19942 baton = obstack_alloc (&objfile->objfile_obstack,
19943 sizeof (struct dwarf2_locexpr_baton));
19944 baton->per_cu = cu->per_cu;
19945 gdb_assert (baton->per_cu);
19946
19947 if (attr_form_is_block (attr))
19948 {
19949 /* Note that we're just copying the block's data pointer
19950 here, not the actual data. We're still pointing into the
19951 info_buffer for SYM's objfile; right now we never release
19952 that buffer, but when we do clean up properly this may
19953 need to change. */
19954 baton->size = DW_BLOCK (attr)->size;
19955 baton->data = DW_BLOCK (attr)->data;
19956 }
19957 else
19958 {
19959 dwarf2_invalid_attrib_class_complaint ("location description",
19960 SYMBOL_NATURAL_NAME (sym));
19961 baton->size = 0;
19962 }
19963
19964 SYMBOL_ACLASS_INDEX (sym) = (is_block
19965 ? dwarf2_locexpr_block_index
19966 : dwarf2_locexpr_index);
19967 SYMBOL_LOCATION_BATON (sym) = baton;
19968 }
19969 }
19970
19971 /* Return the OBJFILE associated with the compilation unit CU. If CU
19972 came from a separate debuginfo file, then the master objfile is
19973 returned. */
19974
19975 struct objfile *
19976 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19977 {
19978 struct objfile *objfile = per_cu->objfile;
19979
19980 /* Return the master objfile, so that we can report and look up the
19981 correct file containing this variable. */
19982 if (objfile->separate_debug_objfile_backlink)
19983 objfile = objfile->separate_debug_objfile_backlink;
19984
19985 return objfile;
19986 }
19987
19988 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19989 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19990 CU_HEADERP first. */
19991
19992 static const struct comp_unit_head *
19993 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19994 struct dwarf2_per_cu_data *per_cu)
19995 {
19996 const gdb_byte *info_ptr;
19997
19998 if (per_cu->cu)
19999 return &per_cu->cu->header;
20000
20001 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20002
20003 memset (cu_headerp, 0, sizeof (*cu_headerp));
20004 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20005
20006 return cu_headerp;
20007 }
20008
20009 /* Return the address size given in the compilation unit header for CU. */
20010
20011 int
20012 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20013 {
20014 struct comp_unit_head cu_header_local;
20015 const struct comp_unit_head *cu_headerp;
20016
20017 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20018
20019 return cu_headerp->addr_size;
20020 }
20021
20022 /* Return the offset size given in the compilation unit header for CU. */
20023
20024 int
20025 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20026 {
20027 struct comp_unit_head cu_header_local;
20028 const struct comp_unit_head *cu_headerp;
20029
20030 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20031
20032 return cu_headerp->offset_size;
20033 }
20034
20035 /* See its dwarf2loc.h declaration. */
20036
20037 int
20038 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20039 {
20040 struct comp_unit_head cu_header_local;
20041 const struct comp_unit_head *cu_headerp;
20042
20043 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20044
20045 if (cu_headerp->version == 2)
20046 return cu_headerp->addr_size;
20047 else
20048 return cu_headerp->offset_size;
20049 }
20050
20051 /* Return the text offset of the CU. The returned offset comes from
20052 this CU's objfile. If this objfile came from a separate debuginfo
20053 file, then the offset may be different from the corresponding
20054 offset in the parent objfile. */
20055
20056 CORE_ADDR
20057 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20058 {
20059 struct objfile *objfile = per_cu->objfile;
20060
20061 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20062 }
20063
20064 /* Locate the .debug_info compilation unit from CU's objfile which contains
20065 the DIE at OFFSET. Raises an error on failure. */
20066
20067 static struct dwarf2_per_cu_data *
20068 dwarf2_find_containing_comp_unit (sect_offset offset,
20069 unsigned int offset_in_dwz,
20070 struct objfile *objfile)
20071 {
20072 struct dwarf2_per_cu_data *this_cu;
20073 int low, high;
20074 const sect_offset *cu_off;
20075
20076 low = 0;
20077 high = dwarf2_per_objfile->n_comp_units - 1;
20078 while (high > low)
20079 {
20080 struct dwarf2_per_cu_data *mid_cu;
20081 int mid = low + (high - low) / 2;
20082
20083 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20084 cu_off = &mid_cu->offset;
20085 if (mid_cu->is_dwz > offset_in_dwz
20086 || (mid_cu->is_dwz == offset_in_dwz
20087 && cu_off->sect_off >= offset.sect_off))
20088 high = mid;
20089 else
20090 low = mid + 1;
20091 }
20092 gdb_assert (low == high);
20093 this_cu = dwarf2_per_objfile->all_comp_units[low];
20094 cu_off = &this_cu->offset;
20095 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20096 {
20097 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20098 error (_("Dwarf Error: could not find partial DIE containing "
20099 "offset 0x%lx [in module %s]"),
20100 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20101
20102 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20103 <= offset.sect_off);
20104 return dwarf2_per_objfile->all_comp_units[low-1];
20105 }
20106 else
20107 {
20108 this_cu = dwarf2_per_objfile->all_comp_units[low];
20109 if (low == dwarf2_per_objfile->n_comp_units - 1
20110 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20111 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20112 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20113 return this_cu;
20114 }
20115 }
20116
20117 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20118
20119 static void
20120 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20121 {
20122 memset (cu, 0, sizeof (*cu));
20123 per_cu->cu = cu;
20124 cu->per_cu = per_cu;
20125 cu->objfile = per_cu->objfile;
20126 obstack_init (&cu->comp_unit_obstack);
20127 }
20128
20129 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20130
20131 static void
20132 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20133 enum language pretend_language)
20134 {
20135 struct attribute *attr;
20136
20137 /* Set the language we're debugging. */
20138 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20139 if (attr)
20140 set_cu_language (DW_UNSND (attr), cu);
20141 else
20142 {
20143 cu->language = pretend_language;
20144 cu->language_defn = language_def (cu->language);
20145 }
20146
20147 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20148 if (attr)
20149 cu->producer = DW_STRING (attr);
20150 }
20151
20152 /* Release one cached compilation unit, CU. We unlink it from the tree
20153 of compilation units, but we don't remove it from the read_in_chain;
20154 the caller is responsible for that.
20155 NOTE: DATA is a void * because this function is also used as a
20156 cleanup routine. */
20157
20158 static void
20159 free_heap_comp_unit (void *data)
20160 {
20161 struct dwarf2_cu *cu = data;
20162
20163 gdb_assert (cu->per_cu != NULL);
20164 cu->per_cu->cu = NULL;
20165 cu->per_cu = NULL;
20166
20167 obstack_free (&cu->comp_unit_obstack, NULL);
20168
20169 xfree (cu);
20170 }
20171
20172 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20173 when we're finished with it. We can't free the pointer itself, but be
20174 sure to unlink it from the cache. Also release any associated storage. */
20175
20176 static void
20177 free_stack_comp_unit (void *data)
20178 {
20179 struct dwarf2_cu *cu = data;
20180
20181 gdb_assert (cu->per_cu != NULL);
20182 cu->per_cu->cu = NULL;
20183 cu->per_cu = NULL;
20184
20185 obstack_free (&cu->comp_unit_obstack, NULL);
20186 cu->partial_dies = NULL;
20187 }
20188
20189 /* Free all cached compilation units. */
20190
20191 static void
20192 free_cached_comp_units (void *data)
20193 {
20194 struct dwarf2_per_cu_data *per_cu, **last_chain;
20195
20196 per_cu = dwarf2_per_objfile->read_in_chain;
20197 last_chain = &dwarf2_per_objfile->read_in_chain;
20198 while (per_cu != NULL)
20199 {
20200 struct dwarf2_per_cu_data *next_cu;
20201
20202 next_cu = per_cu->cu->read_in_chain;
20203
20204 free_heap_comp_unit (per_cu->cu);
20205 *last_chain = next_cu;
20206
20207 per_cu = next_cu;
20208 }
20209 }
20210
20211 /* Increase the age counter on each cached compilation unit, and free
20212 any that are too old. */
20213
20214 static void
20215 age_cached_comp_units (void)
20216 {
20217 struct dwarf2_per_cu_data *per_cu, **last_chain;
20218
20219 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20220 per_cu = dwarf2_per_objfile->read_in_chain;
20221 while (per_cu != NULL)
20222 {
20223 per_cu->cu->last_used ++;
20224 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20225 dwarf2_mark (per_cu->cu);
20226 per_cu = per_cu->cu->read_in_chain;
20227 }
20228
20229 per_cu = dwarf2_per_objfile->read_in_chain;
20230 last_chain = &dwarf2_per_objfile->read_in_chain;
20231 while (per_cu != NULL)
20232 {
20233 struct dwarf2_per_cu_data *next_cu;
20234
20235 next_cu = per_cu->cu->read_in_chain;
20236
20237 if (!per_cu->cu->mark)
20238 {
20239 free_heap_comp_unit (per_cu->cu);
20240 *last_chain = next_cu;
20241 }
20242 else
20243 last_chain = &per_cu->cu->read_in_chain;
20244
20245 per_cu = next_cu;
20246 }
20247 }
20248
20249 /* Remove a single compilation unit from the cache. */
20250
20251 static void
20252 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20253 {
20254 struct dwarf2_per_cu_data *per_cu, **last_chain;
20255
20256 per_cu = dwarf2_per_objfile->read_in_chain;
20257 last_chain = &dwarf2_per_objfile->read_in_chain;
20258 while (per_cu != NULL)
20259 {
20260 struct dwarf2_per_cu_data *next_cu;
20261
20262 next_cu = per_cu->cu->read_in_chain;
20263
20264 if (per_cu == target_per_cu)
20265 {
20266 free_heap_comp_unit (per_cu->cu);
20267 per_cu->cu = NULL;
20268 *last_chain = next_cu;
20269 break;
20270 }
20271 else
20272 last_chain = &per_cu->cu->read_in_chain;
20273
20274 per_cu = next_cu;
20275 }
20276 }
20277
20278 /* Release all extra memory associated with OBJFILE. */
20279
20280 void
20281 dwarf2_free_objfile (struct objfile *objfile)
20282 {
20283 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20284
20285 if (dwarf2_per_objfile == NULL)
20286 return;
20287
20288 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20289 free_cached_comp_units (NULL);
20290
20291 if (dwarf2_per_objfile->quick_file_names_table)
20292 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20293
20294 /* Everything else should be on the objfile obstack. */
20295 }
20296
20297 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20298 We store these in a hash table separate from the DIEs, and preserve them
20299 when the DIEs are flushed out of cache.
20300
20301 The CU "per_cu" pointer is needed because offset alone is not enough to
20302 uniquely identify the type. A file may have multiple .debug_types sections,
20303 or the type may come from a DWO file. Furthermore, while it's more logical
20304 to use per_cu->section+offset, with Fission the section with the data is in
20305 the DWO file but we don't know that section at the point we need it.
20306 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20307 because we can enter the lookup routine, get_die_type_at_offset, from
20308 outside this file, and thus won't necessarily have PER_CU->cu.
20309 Fortunately, PER_CU is stable for the life of the objfile. */
20310
20311 struct dwarf2_per_cu_offset_and_type
20312 {
20313 const struct dwarf2_per_cu_data *per_cu;
20314 sect_offset offset;
20315 struct type *type;
20316 };
20317
20318 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20319
20320 static hashval_t
20321 per_cu_offset_and_type_hash (const void *item)
20322 {
20323 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20324
20325 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20326 }
20327
20328 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20329
20330 static int
20331 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20332 {
20333 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20334 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20335
20336 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20337 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20338 }
20339
20340 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20341 table if necessary. For convenience, return TYPE.
20342
20343 The DIEs reading must have careful ordering to:
20344 * Not cause infite loops trying to read in DIEs as a prerequisite for
20345 reading current DIE.
20346 * Not trying to dereference contents of still incompletely read in types
20347 while reading in other DIEs.
20348 * Enable referencing still incompletely read in types just by a pointer to
20349 the type without accessing its fields.
20350
20351 Therefore caller should follow these rules:
20352 * Try to fetch any prerequisite types we may need to build this DIE type
20353 before building the type and calling set_die_type.
20354 * After building type call set_die_type for current DIE as soon as
20355 possible before fetching more types to complete the current type.
20356 * Make the type as complete as possible before fetching more types. */
20357
20358 static struct type *
20359 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20360 {
20361 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20362 struct objfile *objfile = cu->objfile;
20363
20364 /* For Ada types, make sure that the gnat-specific data is always
20365 initialized (if not already set). There are a few types where
20366 we should not be doing so, because the type-specific area is
20367 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20368 where the type-specific area is used to store the floatformat).
20369 But this is not a problem, because the gnat-specific information
20370 is actually not needed for these types. */
20371 if (need_gnat_info (cu)
20372 && TYPE_CODE (type) != TYPE_CODE_FUNC
20373 && TYPE_CODE (type) != TYPE_CODE_FLT
20374 && !HAVE_GNAT_AUX_INFO (type))
20375 INIT_GNAT_SPECIFIC (type);
20376
20377 if (dwarf2_per_objfile->die_type_hash == NULL)
20378 {
20379 dwarf2_per_objfile->die_type_hash =
20380 htab_create_alloc_ex (127,
20381 per_cu_offset_and_type_hash,
20382 per_cu_offset_and_type_eq,
20383 NULL,
20384 &objfile->objfile_obstack,
20385 hashtab_obstack_allocate,
20386 dummy_obstack_deallocate);
20387 }
20388
20389 ofs.per_cu = cu->per_cu;
20390 ofs.offset = die->offset;
20391 ofs.type = type;
20392 slot = (struct dwarf2_per_cu_offset_and_type **)
20393 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20394 if (*slot)
20395 complaint (&symfile_complaints,
20396 _("A problem internal to GDB: DIE 0x%x has type already set"),
20397 die->offset.sect_off);
20398 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20399 **slot = ofs;
20400 return type;
20401 }
20402
20403 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20404 or return NULL if the die does not have a saved type. */
20405
20406 static struct type *
20407 get_die_type_at_offset (sect_offset offset,
20408 struct dwarf2_per_cu_data *per_cu)
20409 {
20410 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20411
20412 if (dwarf2_per_objfile->die_type_hash == NULL)
20413 return NULL;
20414
20415 ofs.per_cu = per_cu;
20416 ofs.offset = offset;
20417 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20418 if (slot)
20419 return slot->type;
20420 else
20421 return NULL;
20422 }
20423
20424 /* Look up the type for DIE in CU in die_type_hash,
20425 or return NULL if DIE does not have a saved type. */
20426
20427 static struct type *
20428 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20429 {
20430 return get_die_type_at_offset (die->offset, cu->per_cu);
20431 }
20432
20433 /* Add a dependence relationship from CU to REF_PER_CU. */
20434
20435 static void
20436 dwarf2_add_dependence (struct dwarf2_cu *cu,
20437 struct dwarf2_per_cu_data *ref_per_cu)
20438 {
20439 void **slot;
20440
20441 if (cu->dependencies == NULL)
20442 cu->dependencies
20443 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20444 NULL, &cu->comp_unit_obstack,
20445 hashtab_obstack_allocate,
20446 dummy_obstack_deallocate);
20447
20448 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20449 if (*slot == NULL)
20450 *slot = ref_per_cu;
20451 }
20452
20453 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20454 Set the mark field in every compilation unit in the
20455 cache that we must keep because we are keeping CU. */
20456
20457 static int
20458 dwarf2_mark_helper (void **slot, void *data)
20459 {
20460 struct dwarf2_per_cu_data *per_cu;
20461
20462 per_cu = (struct dwarf2_per_cu_data *) *slot;
20463
20464 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20465 reading of the chain. As such dependencies remain valid it is not much
20466 useful to track and undo them during QUIT cleanups. */
20467 if (per_cu->cu == NULL)
20468 return 1;
20469
20470 if (per_cu->cu->mark)
20471 return 1;
20472 per_cu->cu->mark = 1;
20473
20474 if (per_cu->cu->dependencies != NULL)
20475 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20476
20477 return 1;
20478 }
20479
20480 /* Set the mark field in CU and in every other compilation unit in the
20481 cache that we must keep because we are keeping CU. */
20482
20483 static void
20484 dwarf2_mark (struct dwarf2_cu *cu)
20485 {
20486 if (cu->mark)
20487 return;
20488 cu->mark = 1;
20489 if (cu->dependencies != NULL)
20490 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20491 }
20492
20493 static void
20494 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20495 {
20496 while (per_cu)
20497 {
20498 per_cu->cu->mark = 0;
20499 per_cu = per_cu->cu->read_in_chain;
20500 }
20501 }
20502
20503 /* Trivial hash function for partial_die_info: the hash value of a DIE
20504 is its offset in .debug_info for this objfile. */
20505
20506 static hashval_t
20507 partial_die_hash (const void *item)
20508 {
20509 const struct partial_die_info *part_die = item;
20510
20511 return part_die->offset.sect_off;
20512 }
20513
20514 /* Trivial comparison function for partial_die_info structures: two DIEs
20515 are equal if they have the same offset. */
20516
20517 static int
20518 partial_die_eq (const void *item_lhs, const void *item_rhs)
20519 {
20520 const struct partial_die_info *part_die_lhs = item_lhs;
20521 const struct partial_die_info *part_die_rhs = item_rhs;
20522
20523 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20524 }
20525
20526 static struct cmd_list_element *set_dwarf2_cmdlist;
20527 static struct cmd_list_element *show_dwarf2_cmdlist;
20528
20529 static void
20530 set_dwarf2_cmd (char *args, int from_tty)
20531 {
20532 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20533 }
20534
20535 static void
20536 show_dwarf2_cmd (char *args, int from_tty)
20537 {
20538 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20539 }
20540
20541 /* Free data associated with OBJFILE, if necessary. */
20542
20543 static void
20544 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20545 {
20546 struct dwarf2_per_objfile *data = d;
20547 int ix;
20548
20549 /* Make sure we don't accidentally use dwarf2_per_objfile while
20550 cleaning up. */
20551 dwarf2_per_objfile = NULL;
20552
20553 for (ix = 0; ix < data->n_comp_units; ++ix)
20554 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
20555
20556 for (ix = 0; ix < data->n_type_units; ++ix)
20557 VEC_free (dwarf2_per_cu_ptr,
20558 data->all_type_units[ix]->per_cu.imported_symtabs);
20559 xfree (data->all_type_units);
20560
20561 VEC_free (dwarf2_section_info_def, data->types);
20562
20563 if (data->dwo_files)
20564 free_dwo_files (data->dwo_files, objfile);
20565 if (data->dwp_file)
20566 gdb_bfd_unref (data->dwp_file->dbfd);
20567
20568 if (data->dwz_file && data->dwz_file->dwz_bfd)
20569 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20570 }
20571
20572 \f
20573 /* The "save gdb-index" command. */
20574
20575 /* The contents of the hash table we create when building the string
20576 table. */
20577 struct strtab_entry
20578 {
20579 offset_type offset;
20580 const char *str;
20581 };
20582
20583 /* Hash function for a strtab_entry.
20584
20585 Function is used only during write_hash_table so no index format backward
20586 compatibility is needed. */
20587
20588 static hashval_t
20589 hash_strtab_entry (const void *e)
20590 {
20591 const struct strtab_entry *entry = e;
20592 return mapped_index_string_hash (INT_MAX, entry->str);
20593 }
20594
20595 /* Equality function for a strtab_entry. */
20596
20597 static int
20598 eq_strtab_entry (const void *a, const void *b)
20599 {
20600 const struct strtab_entry *ea = a;
20601 const struct strtab_entry *eb = b;
20602 return !strcmp (ea->str, eb->str);
20603 }
20604
20605 /* Create a strtab_entry hash table. */
20606
20607 static htab_t
20608 create_strtab (void)
20609 {
20610 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20611 xfree, xcalloc, xfree);
20612 }
20613
20614 /* Add a string to the constant pool. Return the string's offset in
20615 host order. */
20616
20617 static offset_type
20618 add_string (htab_t table, struct obstack *cpool, const char *str)
20619 {
20620 void **slot;
20621 struct strtab_entry entry;
20622 struct strtab_entry *result;
20623
20624 entry.str = str;
20625 slot = htab_find_slot (table, &entry, INSERT);
20626 if (*slot)
20627 result = *slot;
20628 else
20629 {
20630 result = XNEW (struct strtab_entry);
20631 result->offset = obstack_object_size (cpool);
20632 result->str = str;
20633 obstack_grow_str0 (cpool, str);
20634 *slot = result;
20635 }
20636 return result->offset;
20637 }
20638
20639 /* An entry in the symbol table. */
20640 struct symtab_index_entry
20641 {
20642 /* The name of the symbol. */
20643 const char *name;
20644 /* The offset of the name in the constant pool. */
20645 offset_type index_offset;
20646 /* A sorted vector of the indices of all the CUs that hold an object
20647 of this name. */
20648 VEC (offset_type) *cu_indices;
20649 };
20650
20651 /* The symbol table. This is a power-of-2-sized hash table. */
20652 struct mapped_symtab
20653 {
20654 offset_type n_elements;
20655 offset_type size;
20656 struct symtab_index_entry **data;
20657 };
20658
20659 /* Hash function for a symtab_index_entry. */
20660
20661 static hashval_t
20662 hash_symtab_entry (const void *e)
20663 {
20664 const struct symtab_index_entry *entry = e;
20665 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20666 sizeof (offset_type) * VEC_length (offset_type,
20667 entry->cu_indices),
20668 0);
20669 }
20670
20671 /* Equality function for a symtab_index_entry. */
20672
20673 static int
20674 eq_symtab_entry (const void *a, const void *b)
20675 {
20676 const struct symtab_index_entry *ea = a;
20677 const struct symtab_index_entry *eb = b;
20678 int len = VEC_length (offset_type, ea->cu_indices);
20679 if (len != VEC_length (offset_type, eb->cu_indices))
20680 return 0;
20681 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20682 VEC_address (offset_type, eb->cu_indices),
20683 sizeof (offset_type) * len);
20684 }
20685
20686 /* Destroy a symtab_index_entry. */
20687
20688 static void
20689 delete_symtab_entry (void *p)
20690 {
20691 struct symtab_index_entry *entry = p;
20692 VEC_free (offset_type, entry->cu_indices);
20693 xfree (entry);
20694 }
20695
20696 /* Create a hash table holding symtab_index_entry objects. */
20697
20698 static htab_t
20699 create_symbol_hash_table (void)
20700 {
20701 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20702 delete_symtab_entry, xcalloc, xfree);
20703 }
20704
20705 /* Create a new mapped symtab object. */
20706
20707 static struct mapped_symtab *
20708 create_mapped_symtab (void)
20709 {
20710 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20711 symtab->n_elements = 0;
20712 symtab->size = 1024;
20713 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20714 return symtab;
20715 }
20716
20717 /* Destroy a mapped_symtab. */
20718
20719 static void
20720 cleanup_mapped_symtab (void *p)
20721 {
20722 struct mapped_symtab *symtab = p;
20723 /* The contents of the array are freed when the other hash table is
20724 destroyed. */
20725 xfree (symtab->data);
20726 xfree (symtab);
20727 }
20728
20729 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20730 the slot.
20731
20732 Function is used only during write_hash_table so no index format backward
20733 compatibility is needed. */
20734
20735 static struct symtab_index_entry **
20736 find_slot (struct mapped_symtab *symtab, const char *name)
20737 {
20738 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20739
20740 index = hash & (symtab->size - 1);
20741 step = ((hash * 17) & (symtab->size - 1)) | 1;
20742
20743 for (;;)
20744 {
20745 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20746 return &symtab->data[index];
20747 index = (index + step) & (symtab->size - 1);
20748 }
20749 }
20750
20751 /* Expand SYMTAB's hash table. */
20752
20753 static void
20754 hash_expand (struct mapped_symtab *symtab)
20755 {
20756 offset_type old_size = symtab->size;
20757 offset_type i;
20758 struct symtab_index_entry **old_entries = symtab->data;
20759
20760 symtab->size *= 2;
20761 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20762
20763 for (i = 0; i < old_size; ++i)
20764 {
20765 if (old_entries[i])
20766 {
20767 struct symtab_index_entry **slot = find_slot (symtab,
20768 old_entries[i]->name);
20769 *slot = old_entries[i];
20770 }
20771 }
20772
20773 xfree (old_entries);
20774 }
20775
20776 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20777 CU_INDEX is the index of the CU in which the symbol appears.
20778 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20779
20780 static void
20781 add_index_entry (struct mapped_symtab *symtab, const char *name,
20782 int is_static, gdb_index_symbol_kind kind,
20783 offset_type cu_index)
20784 {
20785 struct symtab_index_entry **slot;
20786 offset_type cu_index_and_attrs;
20787
20788 ++symtab->n_elements;
20789 if (4 * symtab->n_elements / 3 >= symtab->size)
20790 hash_expand (symtab);
20791
20792 slot = find_slot (symtab, name);
20793 if (!*slot)
20794 {
20795 *slot = XNEW (struct symtab_index_entry);
20796 (*slot)->name = name;
20797 /* index_offset is set later. */
20798 (*slot)->cu_indices = NULL;
20799 }
20800
20801 cu_index_and_attrs = 0;
20802 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20803 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20804 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20805
20806 /* We don't want to record an index value twice as we want to avoid the
20807 duplication.
20808 We process all global symbols and then all static symbols
20809 (which would allow us to avoid the duplication by only having to check
20810 the last entry pushed), but a symbol could have multiple kinds in one CU.
20811 To keep things simple we don't worry about the duplication here and
20812 sort and uniqufy the list after we've processed all symbols. */
20813 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20814 }
20815
20816 /* qsort helper routine for uniquify_cu_indices. */
20817
20818 static int
20819 offset_type_compare (const void *ap, const void *bp)
20820 {
20821 offset_type a = *(offset_type *) ap;
20822 offset_type b = *(offset_type *) bp;
20823
20824 return (a > b) - (b > a);
20825 }
20826
20827 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20828
20829 static void
20830 uniquify_cu_indices (struct mapped_symtab *symtab)
20831 {
20832 int i;
20833
20834 for (i = 0; i < symtab->size; ++i)
20835 {
20836 struct symtab_index_entry *entry = symtab->data[i];
20837
20838 if (entry
20839 && entry->cu_indices != NULL)
20840 {
20841 unsigned int next_to_insert, next_to_check;
20842 offset_type last_value;
20843
20844 qsort (VEC_address (offset_type, entry->cu_indices),
20845 VEC_length (offset_type, entry->cu_indices),
20846 sizeof (offset_type), offset_type_compare);
20847
20848 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20849 next_to_insert = 1;
20850 for (next_to_check = 1;
20851 next_to_check < VEC_length (offset_type, entry->cu_indices);
20852 ++next_to_check)
20853 {
20854 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20855 != last_value)
20856 {
20857 last_value = VEC_index (offset_type, entry->cu_indices,
20858 next_to_check);
20859 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20860 last_value);
20861 ++next_to_insert;
20862 }
20863 }
20864 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20865 }
20866 }
20867 }
20868
20869 /* Add a vector of indices to the constant pool. */
20870
20871 static offset_type
20872 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20873 struct symtab_index_entry *entry)
20874 {
20875 void **slot;
20876
20877 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20878 if (!*slot)
20879 {
20880 offset_type len = VEC_length (offset_type, entry->cu_indices);
20881 offset_type val = MAYBE_SWAP (len);
20882 offset_type iter;
20883 int i;
20884
20885 *slot = entry;
20886 entry->index_offset = obstack_object_size (cpool);
20887
20888 obstack_grow (cpool, &val, sizeof (val));
20889 for (i = 0;
20890 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20891 ++i)
20892 {
20893 val = MAYBE_SWAP (iter);
20894 obstack_grow (cpool, &val, sizeof (val));
20895 }
20896 }
20897 else
20898 {
20899 struct symtab_index_entry *old_entry = *slot;
20900 entry->index_offset = old_entry->index_offset;
20901 entry = old_entry;
20902 }
20903 return entry->index_offset;
20904 }
20905
20906 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20907 constant pool entries going into the obstack CPOOL. */
20908
20909 static void
20910 write_hash_table (struct mapped_symtab *symtab,
20911 struct obstack *output, struct obstack *cpool)
20912 {
20913 offset_type i;
20914 htab_t symbol_hash_table;
20915 htab_t str_table;
20916
20917 symbol_hash_table = create_symbol_hash_table ();
20918 str_table = create_strtab ();
20919
20920 /* We add all the index vectors to the constant pool first, to
20921 ensure alignment is ok. */
20922 for (i = 0; i < symtab->size; ++i)
20923 {
20924 if (symtab->data[i])
20925 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20926 }
20927
20928 /* Now write out the hash table. */
20929 for (i = 0; i < symtab->size; ++i)
20930 {
20931 offset_type str_off, vec_off;
20932
20933 if (symtab->data[i])
20934 {
20935 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20936 vec_off = symtab->data[i]->index_offset;
20937 }
20938 else
20939 {
20940 /* While 0 is a valid constant pool index, it is not valid
20941 to have 0 for both offsets. */
20942 str_off = 0;
20943 vec_off = 0;
20944 }
20945
20946 str_off = MAYBE_SWAP (str_off);
20947 vec_off = MAYBE_SWAP (vec_off);
20948
20949 obstack_grow (output, &str_off, sizeof (str_off));
20950 obstack_grow (output, &vec_off, sizeof (vec_off));
20951 }
20952
20953 htab_delete (str_table);
20954 htab_delete (symbol_hash_table);
20955 }
20956
20957 /* Struct to map psymtab to CU index in the index file. */
20958 struct psymtab_cu_index_map
20959 {
20960 struct partial_symtab *psymtab;
20961 unsigned int cu_index;
20962 };
20963
20964 static hashval_t
20965 hash_psymtab_cu_index (const void *item)
20966 {
20967 const struct psymtab_cu_index_map *map = item;
20968
20969 return htab_hash_pointer (map->psymtab);
20970 }
20971
20972 static int
20973 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20974 {
20975 const struct psymtab_cu_index_map *lhs = item_lhs;
20976 const struct psymtab_cu_index_map *rhs = item_rhs;
20977
20978 return lhs->psymtab == rhs->psymtab;
20979 }
20980
20981 /* Helper struct for building the address table. */
20982 struct addrmap_index_data
20983 {
20984 struct objfile *objfile;
20985 struct obstack *addr_obstack;
20986 htab_t cu_index_htab;
20987
20988 /* Non-zero if the previous_* fields are valid.
20989 We can't write an entry until we see the next entry (since it is only then
20990 that we know the end of the entry). */
20991 int previous_valid;
20992 /* Index of the CU in the table of all CUs in the index file. */
20993 unsigned int previous_cu_index;
20994 /* Start address of the CU. */
20995 CORE_ADDR previous_cu_start;
20996 };
20997
20998 /* Write an address entry to OBSTACK. */
20999
21000 static void
21001 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21002 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21003 {
21004 offset_type cu_index_to_write;
21005 gdb_byte addr[8];
21006 CORE_ADDR baseaddr;
21007
21008 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21009
21010 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21011 obstack_grow (obstack, addr, 8);
21012 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21013 obstack_grow (obstack, addr, 8);
21014 cu_index_to_write = MAYBE_SWAP (cu_index);
21015 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21016 }
21017
21018 /* Worker function for traversing an addrmap to build the address table. */
21019
21020 static int
21021 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21022 {
21023 struct addrmap_index_data *data = datap;
21024 struct partial_symtab *pst = obj;
21025
21026 if (data->previous_valid)
21027 add_address_entry (data->objfile, data->addr_obstack,
21028 data->previous_cu_start, start_addr,
21029 data->previous_cu_index);
21030
21031 data->previous_cu_start = start_addr;
21032 if (pst != NULL)
21033 {
21034 struct psymtab_cu_index_map find_map, *map;
21035 find_map.psymtab = pst;
21036 map = htab_find (data->cu_index_htab, &find_map);
21037 gdb_assert (map != NULL);
21038 data->previous_cu_index = map->cu_index;
21039 data->previous_valid = 1;
21040 }
21041 else
21042 data->previous_valid = 0;
21043
21044 return 0;
21045 }
21046
21047 /* Write OBJFILE's address map to OBSTACK.
21048 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21049 in the index file. */
21050
21051 static void
21052 write_address_map (struct objfile *objfile, struct obstack *obstack,
21053 htab_t cu_index_htab)
21054 {
21055 struct addrmap_index_data addrmap_index_data;
21056
21057 /* When writing the address table, we have to cope with the fact that
21058 the addrmap iterator only provides the start of a region; we have to
21059 wait until the next invocation to get the start of the next region. */
21060
21061 addrmap_index_data.objfile = objfile;
21062 addrmap_index_data.addr_obstack = obstack;
21063 addrmap_index_data.cu_index_htab = cu_index_htab;
21064 addrmap_index_data.previous_valid = 0;
21065
21066 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21067 &addrmap_index_data);
21068
21069 /* It's highly unlikely the last entry (end address = 0xff...ff)
21070 is valid, but we should still handle it.
21071 The end address is recorded as the start of the next region, but that
21072 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21073 anyway. */
21074 if (addrmap_index_data.previous_valid)
21075 add_address_entry (objfile, obstack,
21076 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21077 addrmap_index_data.previous_cu_index);
21078 }
21079
21080 /* Return the symbol kind of PSYM. */
21081
21082 static gdb_index_symbol_kind
21083 symbol_kind (struct partial_symbol *psym)
21084 {
21085 domain_enum domain = PSYMBOL_DOMAIN (psym);
21086 enum address_class aclass = PSYMBOL_CLASS (psym);
21087
21088 switch (domain)
21089 {
21090 case VAR_DOMAIN:
21091 switch (aclass)
21092 {
21093 case LOC_BLOCK:
21094 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21095 case LOC_TYPEDEF:
21096 return GDB_INDEX_SYMBOL_KIND_TYPE;
21097 case LOC_COMPUTED:
21098 case LOC_CONST_BYTES:
21099 case LOC_OPTIMIZED_OUT:
21100 case LOC_STATIC:
21101 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21102 case LOC_CONST:
21103 /* Note: It's currently impossible to recognize psyms as enum values
21104 short of reading the type info. For now punt. */
21105 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21106 default:
21107 /* There are other LOC_FOO values that one might want to classify
21108 as variables, but dwarf2read.c doesn't currently use them. */
21109 return GDB_INDEX_SYMBOL_KIND_OTHER;
21110 }
21111 case STRUCT_DOMAIN:
21112 return GDB_INDEX_SYMBOL_KIND_TYPE;
21113 default:
21114 return GDB_INDEX_SYMBOL_KIND_OTHER;
21115 }
21116 }
21117
21118 /* Add a list of partial symbols to SYMTAB. */
21119
21120 static void
21121 write_psymbols (struct mapped_symtab *symtab,
21122 htab_t psyms_seen,
21123 struct partial_symbol **psymp,
21124 int count,
21125 offset_type cu_index,
21126 int is_static)
21127 {
21128 for (; count-- > 0; ++psymp)
21129 {
21130 struct partial_symbol *psym = *psymp;
21131 void **slot;
21132
21133 if (SYMBOL_LANGUAGE (psym) == language_ada)
21134 error (_("Ada is not currently supported by the index"));
21135
21136 /* Only add a given psymbol once. */
21137 slot = htab_find_slot (psyms_seen, psym, INSERT);
21138 if (!*slot)
21139 {
21140 gdb_index_symbol_kind kind = symbol_kind (psym);
21141
21142 *slot = psym;
21143 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21144 is_static, kind, cu_index);
21145 }
21146 }
21147 }
21148
21149 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21150 exception if there is an error. */
21151
21152 static void
21153 write_obstack (FILE *file, struct obstack *obstack)
21154 {
21155 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21156 file)
21157 != obstack_object_size (obstack))
21158 error (_("couldn't data write to file"));
21159 }
21160
21161 /* Unlink a file if the argument is not NULL. */
21162
21163 static void
21164 unlink_if_set (void *p)
21165 {
21166 char **filename = p;
21167 if (*filename)
21168 unlink (*filename);
21169 }
21170
21171 /* A helper struct used when iterating over debug_types. */
21172 struct signatured_type_index_data
21173 {
21174 struct objfile *objfile;
21175 struct mapped_symtab *symtab;
21176 struct obstack *types_list;
21177 htab_t psyms_seen;
21178 int cu_index;
21179 };
21180
21181 /* A helper function that writes a single signatured_type to an
21182 obstack. */
21183
21184 static int
21185 write_one_signatured_type (void **slot, void *d)
21186 {
21187 struct signatured_type_index_data *info = d;
21188 struct signatured_type *entry = (struct signatured_type *) *slot;
21189 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21190 gdb_byte val[8];
21191
21192 write_psymbols (info->symtab,
21193 info->psyms_seen,
21194 info->objfile->global_psymbols.list
21195 + psymtab->globals_offset,
21196 psymtab->n_global_syms, info->cu_index,
21197 0);
21198 write_psymbols (info->symtab,
21199 info->psyms_seen,
21200 info->objfile->static_psymbols.list
21201 + psymtab->statics_offset,
21202 psymtab->n_static_syms, info->cu_index,
21203 1);
21204
21205 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21206 entry->per_cu.offset.sect_off);
21207 obstack_grow (info->types_list, val, 8);
21208 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21209 entry->type_offset_in_tu.cu_off);
21210 obstack_grow (info->types_list, val, 8);
21211 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21212 obstack_grow (info->types_list, val, 8);
21213
21214 ++info->cu_index;
21215
21216 return 1;
21217 }
21218
21219 /* Recurse into all "included" dependencies and write their symbols as
21220 if they appeared in this psymtab. */
21221
21222 static void
21223 recursively_write_psymbols (struct objfile *objfile,
21224 struct partial_symtab *psymtab,
21225 struct mapped_symtab *symtab,
21226 htab_t psyms_seen,
21227 offset_type cu_index)
21228 {
21229 int i;
21230
21231 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21232 if (psymtab->dependencies[i]->user != NULL)
21233 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21234 symtab, psyms_seen, cu_index);
21235
21236 write_psymbols (symtab,
21237 psyms_seen,
21238 objfile->global_psymbols.list + psymtab->globals_offset,
21239 psymtab->n_global_syms, cu_index,
21240 0);
21241 write_psymbols (symtab,
21242 psyms_seen,
21243 objfile->static_psymbols.list + psymtab->statics_offset,
21244 psymtab->n_static_syms, cu_index,
21245 1);
21246 }
21247
21248 /* Create an index file for OBJFILE in the directory DIR. */
21249
21250 static void
21251 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21252 {
21253 struct cleanup *cleanup;
21254 char *filename, *cleanup_filename;
21255 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21256 struct obstack cu_list, types_cu_list;
21257 int i;
21258 FILE *out_file;
21259 struct mapped_symtab *symtab;
21260 offset_type val, size_of_contents, total_len;
21261 struct stat st;
21262 htab_t psyms_seen;
21263 htab_t cu_index_htab;
21264 struct psymtab_cu_index_map *psymtab_cu_index_map;
21265
21266 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21267 return;
21268
21269 if (dwarf2_per_objfile->using_index)
21270 error (_("Cannot use an index to create the index"));
21271
21272 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21273 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21274
21275 if (stat (objfile->name, &st) < 0)
21276 perror_with_name (objfile->name);
21277
21278 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21279 INDEX_SUFFIX, (char *) NULL);
21280 cleanup = make_cleanup (xfree, filename);
21281
21282 out_file = gdb_fopen_cloexec (filename, "wb");
21283 if (!out_file)
21284 error (_("Can't open `%s' for writing"), filename);
21285
21286 cleanup_filename = filename;
21287 make_cleanup (unlink_if_set, &cleanup_filename);
21288
21289 symtab = create_mapped_symtab ();
21290 make_cleanup (cleanup_mapped_symtab, symtab);
21291
21292 obstack_init (&addr_obstack);
21293 make_cleanup_obstack_free (&addr_obstack);
21294
21295 obstack_init (&cu_list);
21296 make_cleanup_obstack_free (&cu_list);
21297
21298 obstack_init (&types_cu_list);
21299 make_cleanup_obstack_free (&types_cu_list);
21300
21301 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21302 NULL, xcalloc, xfree);
21303 make_cleanup_htab_delete (psyms_seen);
21304
21305 /* While we're scanning CU's create a table that maps a psymtab pointer
21306 (which is what addrmap records) to its index (which is what is recorded
21307 in the index file). This will later be needed to write the address
21308 table. */
21309 cu_index_htab = htab_create_alloc (100,
21310 hash_psymtab_cu_index,
21311 eq_psymtab_cu_index,
21312 NULL, xcalloc, xfree);
21313 make_cleanup_htab_delete (cu_index_htab);
21314 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21315 xmalloc (sizeof (struct psymtab_cu_index_map)
21316 * dwarf2_per_objfile->n_comp_units);
21317 make_cleanup (xfree, psymtab_cu_index_map);
21318
21319 /* The CU list is already sorted, so we don't need to do additional
21320 work here. Also, the debug_types entries do not appear in
21321 all_comp_units, but only in their own hash table. */
21322 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21323 {
21324 struct dwarf2_per_cu_data *per_cu
21325 = dwarf2_per_objfile->all_comp_units[i];
21326 struct partial_symtab *psymtab = per_cu->v.psymtab;
21327 gdb_byte val[8];
21328 struct psymtab_cu_index_map *map;
21329 void **slot;
21330
21331 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21332 It may be referenced from a local scope but in such case it does not
21333 need to be present in .gdb_index. */
21334 if (psymtab == NULL)
21335 continue;
21336
21337 if (psymtab->user == NULL)
21338 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21339
21340 map = &psymtab_cu_index_map[i];
21341 map->psymtab = psymtab;
21342 map->cu_index = i;
21343 slot = htab_find_slot (cu_index_htab, map, INSERT);
21344 gdb_assert (slot != NULL);
21345 gdb_assert (*slot == NULL);
21346 *slot = map;
21347
21348 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21349 per_cu->offset.sect_off);
21350 obstack_grow (&cu_list, val, 8);
21351 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21352 obstack_grow (&cu_list, val, 8);
21353 }
21354
21355 /* Dump the address map. */
21356 write_address_map (objfile, &addr_obstack, cu_index_htab);
21357
21358 /* Write out the .debug_type entries, if any. */
21359 if (dwarf2_per_objfile->signatured_types)
21360 {
21361 struct signatured_type_index_data sig_data;
21362
21363 sig_data.objfile = objfile;
21364 sig_data.symtab = symtab;
21365 sig_data.types_list = &types_cu_list;
21366 sig_data.psyms_seen = psyms_seen;
21367 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21368 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21369 write_one_signatured_type, &sig_data);
21370 }
21371
21372 /* Now that we've processed all symbols we can shrink their cu_indices
21373 lists. */
21374 uniquify_cu_indices (symtab);
21375
21376 obstack_init (&constant_pool);
21377 make_cleanup_obstack_free (&constant_pool);
21378 obstack_init (&symtab_obstack);
21379 make_cleanup_obstack_free (&symtab_obstack);
21380 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21381
21382 obstack_init (&contents);
21383 make_cleanup_obstack_free (&contents);
21384 size_of_contents = 6 * sizeof (offset_type);
21385 total_len = size_of_contents;
21386
21387 /* The version number. */
21388 val = MAYBE_SWAP (8);
21389 obstack_grow (&contents, &val, sizeof (val));
21390
21391 /* The offset of the CU list from the start of the file. */
21392 val = MAYBE_SWAP (total_len);
21393 obstack_grow (&contents, &val, sizeof (val));
21394 total_len += obstack_object_size (&cu_list);
21395
21396 /* The offset of the types CU list from the start of the file. */
21397 val = MAYBE_SWAP (total_len);
21398 obstack_grow (&contents, &val, sizeof (val));
21399 total_len += obstack_object_size (&types_cu_list);
21400
21401 /* The offset of the address table from the start of the file. */
21402 val = MAYBE_SWAP (total_len);
21403 obstack_grow (&contents, &val, sizeof (val));
21404 total_len += obstack_object_size (&addr_obstack);
21405
21406 /* The offset of the symbol table from the start of the file. */
21407 val = MAYBE_SWAP (total_len);
21408 obstack_grow (&contents, &val, sizeof (val));
21409 total_len += obstack_object_size (&symtab_obstack);
21410
21411 /* The offset of the constant pool from the start of the file. */
21412 val = MAYBE_SWAP (total_len);
21413 obstack_grow (&contents, &val, sizeof (val));
21414 total_len += obstack_object_size (&constant_pool);
21415
21416 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21417
21418 write_obstack (out_file, &contents);
21419 write_obstack (out_file, &cu_list);
21420 write_obstack (out_file, &types_cu_list);
21421 write_obstack (out_file, &addr_obstack);
21422 write_obstack (out_file, &symtab_obstack);
21423 write_obstack (out_file, &constant_pool);
21424
21425 fclose (out_file);
21426
21427 /* We want to keep the file, so we set cleanup_filename to NULL
21428 here. See unlink_if_set. */
21429 cleanup_filename = NULL;
21430
21431 do_cleanups (cleanup);
21432 }
21433
21434 /* Implementation of the `save gdb-index' command.
21435
21436 Note that the file format used by this command is documented in the
21437 GDB manual. Any changes here must be documented there. */
21438
21439 static void
21440 save_gdb_index_command (char *arg, int from_tty)
21441 {
21442 struct objfile *objfile;
21443
21444 if (!arg || !*arg)
21445 error (_("usage: save gdb-index DIRECTORY"));
21446
21447 ALL_OBJFILES (objfile)
21448 {
21449 struct stat st;
21450
21451 /* If the objfile does not correspond to an actual file, skip it. */
21452 if (stat (objfile->name, &st) < 0)
21453 continue;
21454
21455 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21456 if (dwarf2_per_objfile)
21457 {
21458 volatile struct gdb_exception except;
21459
21460 TRY_CATCH (except, RETURN_MASK_ERROR)
21461 {
21462 write_psymtabs_to_index (objfile, arg);
21463 }
21464 if (except.reason < 0)
21465 exception_fprintf (gdb_stderr, except,
21466 _("Error while writing index for `%s': "),
21467 objfile->name);
21468 }
21469 }
21470 }
21471
21472 \f
21473
21474 int dwarf2_always_disassemble;
21475
21476 static void
21477 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21478 struct cmd_list_element *c, const char *value)
21479 {
21480 fprintf_filtered (file,
21481 _("Whether to always disassemble "
21482 "DWARF expressions is %s.\n"),
21483 value);
21484 }
21485
21486 static void
21487 show_check_physname (struct ui_file *file, int from_tty,
21488 struct cmd_list_element *c, const char *value)
21489 {
21490 fprintf_filtered (file,
21491 _("Whether to check \"physname\" is %s.\n"),
21492 value);
21493 }
21494
21495 void _initialize_dwarf2_read (void);
21496
21497 void
21498 _initialize_dwarf2_read (void)
21499 {
21500 struct cmd_list_element *c;
21501
21502 dwarf2_objfile_data_key
21503 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21504
21505 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21506 Set DWARF 2 specific variables.\n\
21507 Configure DWARF 2 variables such as the cache size"),
21508 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21509 0/*allow-unknown*/, &maintenance_set_cmdlist);
21510
21511 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21512 Show DWARF 2 specific variables\n\
21513 Show DWARF 2 variables such as the cache size"),
21514 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21515 0/*allow-unknown*/, &maintenance_show_cmdlist);
21516
21517 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21518 &dwarf2_max_cache_age, _("\
21519 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21520 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21521 A higher limit means that cached compilation units will be stored\n\
21522 in memory longer, and more total memory will be used. Zero disables\n\
21523 caching, which can slow down startup."),
21524 NULL,
21525 show_dwarf2_max_cache_age,
21526 &set_dwarf2_cmdlist,
21527 &show_dwarf2_cmdlist);
21528
21529 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21530 &dwarf2_always_disassemble, _("\
21531 Set whether `info address' always disassembles DWARF expressions."), _("\
21532 Show whether `info address' always disassembles DWARF expressions."), _("\
21533 When enabled, DWARF expressions are always printed in an assembly-like\n\
21534 syntax. When disabled, expressions will be printed in a more\n\
21535 conversational style, when possible."),
21536 NULL,
21537 show_dwarf2_always_disassemble,
21538 &set_dwarf2_cmdlist,
21539 &show_dwarf2_cmdlist);
21540
21541 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21542 Set debugging of the dwarf2 reader."), _("\
21543 Show debugging of the dwarf2 reader."), _("\
21544 When enabled, debugging messages are printed during dwarf2 reading\n\
21545 and symtab expansion."),
21546 NULL,
21547 NULL,
21548 &setdebuglist, &showdebuglist);
21549
21550 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21551 Set debugging of the dwarf2 DIE reader."), _("\
21552 Show debugging of the dwarf2 DIE reader."), _("\
21553 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21554 The value is the maximum depth to print."),
21555 NULL,
21556 NULL,
21557 &setdebuglist, &showdebuglist);
21558
21559 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21560 Set cross-checking of \"physname\" code against demangler."), _("\
21561 Show cross-checking of \"physname\" code against demangler."), _("\
21562 When enabled, GDB's internal \"physname\" code is checked against\n\
21563 the demangler."),
21564 NULL, show_check_physname,
21565 &setdebuglist, &showdebuglist);
21566
21567 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21568 no_class, &use_deprecated_index_sections, _("\
21569 Set whether to use deprecated gdb_index sections."), _("\
21570 Show whether to use deprecated gdb_index sections."), _("\
21571 When enabled, deprecated .gdb_index sections are used anyway.\n\
21572 Normally they are ignored either because of a missing feature or\n\
21573 performance issue.\n\
21574 Warning: This option must be enabled before gdb reads the file."),
21575 NULL,
21576 NULL,
21577 &setlist, &showlist);
21578
21579 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21580 _("\
21581 Save a gdb-index file.\n\
21582 Usage: save gdb-index DIRECTORY"),
21583 &save_cmdlist);
21584 set_cmd_completer (c, filename_completer);
21585
21586 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21587 &dwarf2_locexpr_funcs);
21588 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21589 &dwarf2_loclist_funcs);
21590
21591 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21592 &dwarf2_block_frame_base_locexpr_funcs);
21593 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21594 &dwarf2_block_frame_base_loclist_funcs);
21595 }
This page took 0.484853 seconds and 4 git commands to generate.