*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004
4 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support in dwarfread.c
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or (at
18 your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 59 Temple Place - Suite 330,
28 Boston, MA 02111-1307, USA. */
29
30 #include "defs.h"
31 #include "bfd.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "elf/dwarf2.h"
36 #include "buildsym.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47 #include "hashtab.h"
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_assert.h"
54 #include <sys/types.h>
55
56 /* A note on memory usage for this file.
57
58 At the present time, this code reads the debug info sections into
59 the objfile's objfile_obstack. A definite improvement for startup
60 time, on platforms which do not emit relocations for debug
61 sections, would be to use mmap instead. The object's complete
62 debug information is loaded into memory, partly to simplify
63 absolute DIE references.
64
65 Whether using obstacks or mmap, the sections should remain loaded
66 until the objfile is released, and pointers into the section data
67 can be used for any other data associated to the objfile (symbol
68 names, type names, location expressions to name a few). */
69
70 #ifndef DWARF2_REG_TO_REGNUM
71 #define DWARF2_REG_TO_REGNUM(REG) (REG)
72 #endif
73
74 #if 0
75 /* .debug_info header for a compilation unit
76 Because of alignment constraints, this structure has padding and cannot
77 be mapped directly onto the beginning of the .debug_info section. */
78 typedef struct comp_unit_header
79 {
80 unsigned int length; /* length of the .debug_info
81 contribution */
82 unsigned short version; /* version number -- 2 for DWARF
83 version 2 */
84 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
85 unsigned char addr_size; /* byte size of an address -- 4 */
86 }
87 _COMP_UNIT_HEADER;
88 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
89 #endif
90
91 /* .debug_pubnames header
92 Because of alignment constraints, this structure has padding and cannot
93 be mapped directly onto the beginning of the .debug_info section. */
94 typedef struct pubnames_header
95 {
96 unsigned int length; /* length of the .debug_pubnames
97 contribution */
98 unsigned char version; /* version number -- 2 for DWARF
99 version 2 */
100 unsigned int info_offset; /* offset into .debug_info section */
101 unsigned int info_size; /* byte size of .debug_info section
102 portion */
103 }
104 _PUBNAMES_HEADER;
105 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
106
107 /* .debug_pubnames header
108 Because of alignment constraints, this structure has padding and cannot
109 be mapped directly onto the beginning of the .debug_info section. */
110 typedef struct aranges_header
111 {
112 unsigned int length; /* byte len of the .debug_aranges
113 contribution */
114 unsigned short version; /* version number -- 2 for DWARF
115 version 2 */
116 unsigned int info_offset; /* offset into .debug_info section */
117 unsigned char addr_size; /* byte size of an address */
118 unsigned char seg_size; /* byte size of segment descriptor */
119 }
120 _ARANGES_HEADER;
121 #define _ACTUAL_ARANGES_HEADER_SIZE 12
122
123 /* .debug_line statement program prologue
124 Because of alignment constraints, this structure has padding and cannot
125 be mapped directly onto the beginning of the .debug_info section. */
126 typedef struct statement_prologue
127 {
128 unsigned int total_length; /* byte length of the statement
129 information */
130 unsigned short version; /* version number -- 2 for DWARF
131 version 2 */
132 unsigned int prologue_length; /* # bytes between prologue &
133 stmt program */
134 unsigned char minimum_instruction_length; /* byte size of
135 smallest instr */
136 unsigned char default_is_stmt; /* initial value of is_stmt
137 register */
138 char line_base;
139 unsigned char line_range;
140 unsigned char opcode_base; /* number assigned to first special
141 opcode */
142 unsigned char *standard_opcode_lengths;
143 }
144 _STATEMENT_PROLOGUE;
145
146 static const struct objfile_data *dwarf2_objfile_data_key;
147
148 struct dwarf2_per_objfile
149 {
150 /* Sizes of debugging sections. */
151 unsigned int info_size;
152 unsigned int abbrev_size;
153 unsigned int line_size;
154 unsigned int pubnames_size;
155 unsigned int aranges_size;
156 unsigned int loc_size;
157 unsigned int macinfo_size;
158 unsigned int str_size;
159 unsigned int ranges_size;
160 unsigned int frame_size;
161 unsigned int eh_frame_size;
162
163 /* Loaded data from the sections. */
164 char *info_buffer;
165 char *abbrev_buffer;
166 char *line_buffer;
167 char *str_buffer;
168 char *macinfo_buffer;
169 char *ranges_buffer;
170 char *loc_buffer;
171
172 /* A list of all the compilation units. This is used to locate
173 the target compilation unit of a particular reference. */
174 struct dwarf2_per_cu_data **all_comp_units;
175
176 /* The number of compilation units in ALL_COMP_UNITS. */
177 int n_comp_units;
178
179 /* A chain of compilation units that are currently read in, so that
180 they can be freed later. */
181 struct dwarf2_per_cu_data *read_in_chain;
182 };
183
184 static struct dwarf2_per_objfile *dwarf2_per_objfile;
185
186 static asection *dwarf_info_section;
187 static asection *dwarf_abbrev_section;
188 static asection *dwarf_line_section;
189 static asection *dwarf_pubnames_section;
190 static asection *dwarf_aranges_section;
191 static asection *dwarf_loc_section;
192 static asection *dwarf_macinfo_section;
193 static asection *dwarf_str_section;
194 static asection *dwarf_ranges_section;
195 asection *dwarf_frame_section;
196 asection *dwarf_eh_frame_section;
197
198 /* names of the debugging sections */
199
200 #define INFO_SECTION ".debug_info"
201 #define ABBREV_SECTION ".debug_abbrev"
202 #define LINE_SECTION ".debug_line"
203 #define PUBNAMES_SECTION ".debug_pubnames"
204 #define ARANGES_SECTION ".debug_aranges"
205 #define LOC_SECTION ".debug_loc"
206 #define MACINFO_SECTION ".debug_macinfo"
207 #define STR_SECTION ".debug_str"
208 #define RANGES_SECTION ".debug_ranges"
209 #define FRAME_SECTION ".debug_frame"
210 #define EH_FRAME_SECTION ".eh_frame"
211
212 /* local data types */
213
214 /* We hold several abbreviation tables in memory at the same time. */
215 #ifndef ABBREV_HASH_SIZE
216 #define ABBREV_HASH_SIZE 121
217 #endif
218
219 /* The data in a compilation unit header, after target2host
220 translation, looks like this. */
221 struct comp_unit_head
222 {
223 unsigned long length;
224 short version;
225 unsigned int abbrev_offset;
226 unsigned char addr_size;
227 unsigned char signed_addr_p;
228
229 /* Size of file offsets; either 4 or 8. */
230 unsigned int offset_size;
231
232 /* Size of the length field; either 4 or 12. */
233 unsigned int initial_length_size;
234
235 /* Offset to the first byte of this compilation unit header in the
236 .debug_info section, for resolving relative reference dies. */
237 unsigned int offset;
238
239 /* Pointer to this compilation unit header in the .debug_info
240 section. */
241 char *cu_head_ptr;
242
243 /* Pointer to the first die of this compilation unit. This will be
244 the first byte following the compilation unit header. */
245 char *first_die_ptr;
246
247 /* Pointer to the next compilation unit header in the program. */
248 struct comp_unit_head *next;
249
250 /* Base address of this compilation unit. */
251 CORE_ADDR base_address;
252
253 /* Non-zero if base_address has been set. */
254 int base_known;
255 };
256
257 /* Fixed size for the DIE hash table. */
258 #ifndef REF_HASH_SIZE
259 #define REF_HASH_SIZE 1021
260 #endif
261
262 /* Internal state when decoding a particular compilation unit. */
263 struct dwarf2_cu
264 {
265 /* The objfile containing this compilation unit. */
266 struct objfile *objfile;
267
268 /* The header of the compilation unit.
269
270 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
271 should logically be moved to the dwarf2_cu structure. */
272 struct comp_unit_head header;
273
274 struct function_range *first_fn, *last_fn, *cached_fn;
275
276 /* The language we are debugging. */
277 enum language language;
278 const struct language_defn *language_defn;
279
280 const char *producer;
281
282 /* The generic symbol table building routines have separate lists for
283 file scope symbols and all all other scopes (local scopes). So
284 we need to select the right one to pass to add_symbol_to_list().
285 We do it by keeping a pointer to the correct list in list_in_scope.
286
287 FIXME: The original dwarf code just treated the file scope as the
288 first local scope, and all other local scopes as nested local
289 scopes, and worked fine. Check to see if we really need to
290 distinguish these in buildsym.c. */
291 struct pending **list_in_scope;
292
293 /* Maintain an array of referenced fundamental types for the current
294 compilation unit being read. For DWARF version 1, we have to construct
295 the fundamental types on the fly, since no information about the
296 fundamental types is supplied. Each such fundamental type is created by
297 calling a language dependent routine to create the type, and then a
298 pointer to that type is then placed in the array at the index specified
299 by it's FT_<TYPENAME> value. The array has a fixed size set by the
300 FT_NUM_MEMBERS compile time constant, which is the number of predefined
301 fundamental types gdb knows how to construct. */
302 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
303
304 /* DWARF abbreviation table associated with this compilation unit. */
305 struct abbrev_info **dwarf2_abbrevs;
306
307 /* Storage for the abbrev table. */
308 struct obstack abbrev_obstack;
309
310 /* Hash table holding all the loaded partial DIEs. */
311 htab_t partial_dies;
312
313 /* Storage for things with the same lifetime as this read-in compilation
314 unit, including partial DIEs. */
315 struct obstack comp_unit_obstack;
316
317 /* When multiple dwarf2_cu structures are living in memory, this field
318 chains them all together, so that they can be released efficiently.
319 We will probably also want a generation counter so that most-recently-used
320 compilation units are cached... */
321 struct dwarf2_per_cu_data *read_in_chain;
322
323 /* Backchain to our per_cu entry if the tree has been built. */
324 struct dwarf2_per_cu_data *per_cu;
325
326 /* How many compilation units ago was this CU last referenced? */
327 int last_used;
328
329 /* A hash table of die offsets for following references. */
330 struct die_info *die_ref_table[REF_HASH_SIZE];
331
332 /* Full DIEs if read in. */
333 struct die_info *dies;
334
335 /* A set of pointers to dwarf2_per_cu_data objects for compilation
336 units referenced by this one. Only set during full symbol processing;
337 partial symbol tables do not have dependencies. */
338 htab_t dependencies;
339
340 /* Mark used when releasing cached dies. */
341 unsigned int mark : 1;
342
343 /* This flag will be set if this compilation unit might include
344 inter-compilation-unit references. */
345 unsigned int has_form_ref_addr : 1;
346
347 /* This flag will be set if this compilation unit includes any
348 DW_TAG_namespace DIEs. If we know that there are explicit
349 DIEs for namespaces, we don't need to try to infer them
350 from mangled names. */
351 unsigned int has_namespace_info : 1;
352 };
353
354 /* Persistent data held for a compilation unit, even when not
355 processing it. We put a pointer to this structure in the
356 read_symtab_private field of the psymtab. If we encounter
357 inter-compilation-unit references, we also maintain a sorted
358 list of all compilation units. */
359
360 struct dwarf2_per_cu_data
361 {
362 /* The start offset and length of this compilation unit. 2**31-1
363 bytes should suffice to store the length of any compilation unit
364 - if it doesn't, GDB will fall over anyway. */
365 unsigned long offset;
366 unsigned long length : 31;
367
368 /* Flag indicating this compilation unit will be read in before
369 any of the current compilation units are processed. */
370 unsigned long queued : 1;
371
372 /* Set iff currently read in. */
373 struct dwarf2_cu *cu;
374
375 /* If full symbols for this CU have been read in, then this field
376 holds a map of DIE offsets to types. It isn't always possible
377 to reconstruct this information later, so we have to preserve
378 it. */
379 htab_t type_hash;
380
381 /* The partial symbol table associated with this compilation unit. */
382 struct partial_symtab *psymtab;
383 };
384
385 /* The line number information for a compilation unit (found in the
386 .debug_line section) begins with a "statement program header",
387 which contains the following information. */
388 struct line_header
389 {
390 unsigned int total_length;
391 unsigned short version;
392 unsigned int header_length;
393 unsigned char minimum_instruction_length;
394 unsigned char default_is_stmt;
395 int line_base;
396 unsigned char line_range;
397 unsigned char opcode_base;
398
399 /* standard_opcode_lengths[i] is the number of operands for the
400 standard opcode whose value is i. This means that
401 standard_opcode_lengths[0] is unused, and the last meaningful
402 element is standard_opcode_lengths[opcode_base - 1]. */
403 unsigned char *standard_opcode_lengths;
404
405 /* The include_directories table. NOTE! These strings are not
406 allocated with xmalloc; instead, they are pointers into
407 debug_line_buffer. If you try to free them, `free' will get
408 indigestion. */
409 unsigned int num_include_dirs, include_dirs_size;
410 char **include_dirs;
411
412 /* The file_names table. NOTE! These strings are not allocated
413 with xmalloc; instead, they are pointers into debug_line_buffer.
414 Don't try to free them directly. */
415 unsigned int num_file_names, file_names_size;
416 struct file_entry
417 {
418 char *name;
419 unsigned int dir_index;
420 unsigned int mod_time;
421 unsigned int length;
422 int included_p; /* Non-zero if referenced by the Line Number Program. */
423 } *file_names;
424
425 /* The start and end of the statement program following this
426 header. These point into dwarf2_per_objfile->line_buffer. */
427 char *statement_program_start, *statement_program_end;
428 };
429
430 /* When we construct a partial symbol table entry we only
431 need this much information. */
432 struct partial_die_info
433 {
434 /* Offset of this DIE. */
435 unsigned int offset;
436
437 /* DWARF-2 tag for this DIE. */
438 ENUM_BITFIELD(dwarf_tag) tag : 16;
439
440 /* Language code associated with this DIE. This is only used
441 for the compilation unit DIE. */
442 unsigned int language : 8;
443
444 /* Assorted flags describing the data found in this DIE. */
445 unsigned int has_children : 1;
446 unsigned int is_external : 1;
447 unsigned int is_declaration : 1;
448 unsigned int has_type : 1;
449 unsigned int has_specification : 1;
450 unsigned int has_stmt_list : 1;
451 unsigned int has_pc_info : 1;
452
453 /* Flag set if the SCOPE field of this structure has been
454 computed. */
455 unsigned int scope_set : 1;
456
457 /* The name of this DIE. Normally the value of DW_AT_name, but
458 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
459 other fashion. */
460 char *name;
461 char *dirname;
462
463 /* The scope to prepend to our children. This is generally
464 allocated on the comp_unit_obstack, so will disappear
465 when this compilation unit leaves the cache. */
466 char *scope;
467
468 /* The location description associated with this DIE, if any. */
469 struct dwarf_block *locdesc;
470
471 /* If HAS_PC_INFO, the PC range associated with this DIE. */
472 CORE_ADDR lowpc;
473 CORE_ADDR highpc;
474
475 /* Pointer into the info_buffer pointing at the target of
476 DW_AT_sibling, if any. */
477 char *sibling;
478
479 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
480 DW_AT_specification (or DW_AT_abstract_origin or
481 DW_AT_extension). */
482 unsigned int spec_offset;
483
484 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
485 unsigned int line_offset;
486
487 /* Pointers to this DIE's parent, first child, and next sibling,
488 if any. */
489 struct partial_die_info *die_parent, *die_child, *die_sibling;
490 };
491
492 /* This data structure holds the information of an abbrev. */
493 struct abbrev_info
494 {
495 unsigned int number; /* number identifying abbrev */
496 enum dwarf_tag tag; /* dwarf tag */
497 unsigned short has_children; /* boolean */
498 unsigned short num_attrs; /* number of attributes */
499 struct attr_abbrev *attrs; /* an array of attribute descriptions */
500 struct abbrev_info *next; /* next in chain */
501 };
502
503 struct attr_abbrev
504 {
505 enum dwarf_attribute name;
506 enum dwarf_form form;
507 };
508
509 /* This data structure holds a complete die structure. */
510 struct die_info
511 {
512 enum dwarf_tag tag; /* Tag indicating type of die */
513 unsigned int abbrev; /* Abbrev number */
514 unsigned int offset; /* Offset in .debug_info section */
515 unsigned int num_attrs; /* Number of attributes */
516 struct attribute *attrs; /* An array of attributes */
517 struct die_info *next_ref; /* Next die in ref hash table */
518
519 /* The dies in a compilation unit form an n-ary tree. PARENT
520 points to this die's parent; CHILD points to the first child of
521 this node; and all the children of a given node are chained
522 together via their SIBLING fields, terminated by a die whose
523 tag is zero. */
524 struct die_info *child; /* Its first child, if any. */
525 struct die_info *sibling; /* Its next sibling, if any. */
526 struct die_info *parent; /* Its parent, if any. */
527
528 struct type *type; /* Cached type information */
529 };
530
531 /* Attributes have a name and a value */
532 struct attribute
533 {
534 enum dwarf_attribute name;
535 enum dwarf_form form;
536 union
537 {
538 char *str;
539 struct dwarf_block *blk;
540 unsigned long unsnd;
541 long int snd;
542 CORE_ADDR addr;
543 }
544 u;
545 };
546
547 struct function_range
548 {
549 const char *name;
550 CORE_ADDR lowpc, highpc;
551 int seen_line;
552 struct function_range *next;
553 };
554
555 /* Get at parts of an attribute structure */
556
557 #define DW_STRING(attr) ((attr)->u.str)
558 #define DW_UNSND(attr) ((attr)->u.unsnd)
559 #define DW_BLOCK(attr) ((attr)->u.blk)
560 #define DW_SND(attr) ((attr)->u.snd)
561 #define DW_ADDR(attr) ((attr)->u.addr)
562
563 /* Blocks are a bunch of untyped bytes. */
564 struct dwarf_block
565 {
566 unsigned int size;
567 char *data;
568 };
569
570 #ifndef ATTR_ALLOC_CHUNK
571 #define ATTR_ALLOC_CHUNK 4
572 #endif
573
574 /* Allocate fields for structs, unions and enums in this size. */
575 #ifndef DW_FIELD_ALLOC_CHUNK
576 #define DW_FIELD_ALLOC_CHUNK 4
577 #endif
578
579 /* A zeroed version of a partial die for initialization purposes. */
580 static struct partial_die_info zeroed_partial_die;
581
582 /* FIXME: decode_locdesc sets these variables to describe the location
583 to the caller. These ought to be a structure or something. If
584 none of the flags are set, the object lives at the address returned
585 by decode_locdesc. */
586
587 static int isreg; /* Object lives in register.
588 decode_locdesc's return value is
589 the register number. */
590
591 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
592 but this would require a corresponding change in unpack_field_as_long
593 and friends. */
594 static int bits_per_byte = 8;
595
596 /* The routines that read and process dies for a C struct or C++ class
597 pass lists of data member fields and lists of member function fields
598 in an instance of a field_info structure, as defined below. */
599 struct field_info
600 {
601 /* List of data member and baseclasses fields. */
602 struct nextfield
603 {
604 struct nextfield *next;
605 int accessibility;
606 int virtuality;
607 struct field field;
608 }
609 *fields;
610
611 /* Number of fields. */
612 int nfields;
613
614 /* Number of baseclasses. */
615 int nbaseclasses;
616
617 /* Set if the accesibility of one of the fields is not public. */
618 int non_public_fields;
619
620 /* Member function fields array, entries are allocated in the order they
621 are encountered in the object file. */
622 struct nextfnfield
623 {
624 struct nextfnfield *next;
625 struct fn_field fnfield;
626 }
627 *fnfields;
628
629 /* Member function fieldlist array, contains name of possibly overloaded
630 member function, number of overloaded member functions and a pointer
631 to the head of the member function field chain. */
632 struct fnfieldlist
633 {
634 char *name;
635 int length;
636 struct nextfnfield *head;
637 }
638 *fnfieldlists;
639
640 /* Number of entries in the fnfieldlists array. */
641 int nfnfields;
642 };
643
644 /* One item on the queue of compilation units to read in full symbols
645 for. */
646 struct dwarf2_queue_item
647 {
648 struct dwarf2_per_cu_data *per_cu;
649 struct dwarf2_queue_item *next;
650 };
651
652 /* The current queue. */
653 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
654
655 /* Loaded secondary compilation units are kept in memory until they
656 have not been referenced for the processing of this many
657 compilation units. Set this to zero to disable caching. Cache
658 sizes of up to at least twenty will improve startup time for
659 typical inter-CU-reference binaries, at an obvious memory cost. */
660 static int dwarf2_max_cache_age = 5;
661
662 /* Various complaints about symbol reading that don't abort the process */
663
664 static void
665 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
666 {
667 complaint (&symfile_complaints,
668 "statement list doesn't fit in .debug_line section");
669 }
670
671 static void
672 dwarf2_complex_location_expr_complaint (void)
673 {
674 complaint (&symfile_complaints, "location expression too complex");
675 }
676
677 static void
678 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
679 int arg3)
680 {
681 complaint (&symfile_complaints,
682 "const value length mismatch for '%s', got %d, expected %d", arg1,
683 arg2, arg3);
684 }
685
686 static void
687 dwarf2_macros_too_long_complaint (void)
688 {
689 complaint (&symfile_complaints,
690 "macro info runs off end of `.debug_macinfo' section");
691 }
692
693 static void
694 dwarf2_macro_malformed_definition_complaint (const char *arg1)
695 {
696 complaint (&symfile_complaints,
697 "macro debug info contains a malformed macro definition:\n`%s'",
698 arg1);
699 }
700
701 static void
702 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
703 {
704 complaint (&symfile_complaints,
705 "invalid attribute class or form for '%s' in '%s'", arg1, arg2);
706 }
707
708 /* local function prototypes */
709
710 static void dwarf2_locate_sections (bfd *, asection *, void *);
711
712 #if 0
713 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
714 #endif
715
716 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
717 struct objfile *);
718
719 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
720 struct partial_die_info *,
721 struct partial_symtab *);
722
723 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
724
725 static void scan_partial_symbols (struct partial_die_info *,
726 CORE_ADDR *, CORE_ADDR *,
727 struct dwarf2_cu *);
728
729 static void add_partial_symbol (struct partial_die_info *,
730 struct dwarf2_cu *);
731
732 static int pdi_needs_namespace (enum dwarf_tag tag);
733
734 static void add_partial_namespace (struct partial_die_info *pdi,
735 CORE_ADDR *lowpc, CORE_ADDR *highpc,
736 struct dwarf2_cu *cu);
737
738 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
739 struct dwarf2_cu *cu);
740
741 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
742 char *info_ptr,
743 bfd *abfd,
744 struct dwarf2_cu *cu);
745
746 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
747
748 static void psymtab_to_symtab_1 (struct partial_symtab *);
749
750 char *dwarf2_read_section (struct objfile *, asection *);
751
752 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
753
754 static void dwarf2_free_abbrev_table (void *);
755
756 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
757
758 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
759 struct dwarf2_cu *);
760
761 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
762 struct dwarf2_cu *);
763
764 static char *read_partial_die (struct partial_die_info *,
765 struct abbrev_info *abbrev, unsigned int,
766 bfd *, char *, struct dwarf2_cu *);
767
768 static struct partial_die_info *find_partial_die (unsigned long,
769 struct dwarf2_cu *);
770
771 static void fixup_partial_die (struct partial_die_info *,
772 struct dwarf2_cu *);
773
774 static char *read_full_die (struct die_info **, bfd *, char *,
775 struct dwarf2_cu *, int *);
776
777 static char *read_attribute (struct attribute *, struct attr_abbrev *,
778 bfd *, char *, struct dwarf2_cu *);
779
780 static char *read_attribute_value (struct attribute *, unsigned,
781 bfd *, char *, struct dwarf2_cu *);
782
783 static unsigned int read_1_byte (bfd *, char *);
784
785 static int read_1_signed_byte (bfd *, char *);
786
787 static unsigned int read_2_bytes (bfd *, char *);
788
789 static unsigned int read_4_bytes (bfd *, char *);
790
791 static unsigned long read_8_bytes (bfd *, char *);
792
793 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
794 int *bytes_read);
795
796 static LONGEST read_initial_length (bfd *, char *,
797 struct comp_unit_head *, int *bytes_read);
798
799 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
800 int *bytes_read);
801
802 static char *read_n_bytes (bfd *, char *, unsigned int);
803
804 static char *read_string (bfd *, char *, unsigned int *);
805
806 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
807 unsigned int *);
808
809 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
810
811 static long read_signed_leb128 (bfd *, char *, unsigned int *);
812
813 static char *skip_leb128 (bfd *, char *);
814
815 static void set_cu_language (unsigned int, struct dwarf2_cu *);
816
817 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
818 struct dwarf2_cu *);
819
820 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
821 struct dwarf2_cu *cu);
822
823 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
824
825 static struct die_info *die_specification (struct die_info *die,
826 struct dwarf2_cu *);
827
828 static void free_line_header (struct line_header *lh);
829
830 static void add_file_name (struct line_header *, char *, unsigned int,
831 unsigned int, unsigned int);
832
833 static struct line_header *(dwarf_decode_line_header
834 (unsigned int offset,
835 bfd *abfd, struct dwarf2_cu *cu));
836
837 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
838 struct dwarf2_cu *, struct partial_symtab *);
839
840 static void dwarf2_start_subfile (char *, char *);
841
842 static struct symbol *new_symbol (struct die_info *, struct type *,
843 struct dwarf2_cu *);
844
845 static void dwarf2_const_value (struct attribute *, struct symbol *,
846 struct dwarf2_cu *);
847
848 static void dwarf2_const_value_data (struct attribute *attr,
849 struct symbol *sym,
850 int bits);
851
852 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
853
854 static struct type *die_containing_type (struct die_info *,
855 struct dwarf2_cu *);
856
857 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
858
859 static void read_type_die (struct die_info *, struct dwarf2_cu *);
860
861 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
862
863 static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
864 struct dwarf2_cu *);
865
866 static void read_typedef (struct die_info *, struct dwarf2_cu *);
867
868 static void read_base_type (struct die_info *, struct dwarf2_cu *);
869
870 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
871
872 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
873
874 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
875
876 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
877
878 static int dwarf2_get_pc_bounds (struct die_info *,
879 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
880
881 static void get_scope_pc_bounds (struct die_info *,
882 CORE_ADDR *, CORE_ADDR *,
883 struct dwarf2_cu *);
884
885 static void dwarf2_add_field (struct field_info *, struct die_info *,
886 struct dwarf2_cu *);
887
888 static void dwarf2_attach_fields_to_type (struct field_info *,
889 struct type *, struct dwarf2_cu *);
890
891 static void dwarf2_add_member_fn (struct field_info *,
892 struct die_info *, struct type *,
893 struct dwarf2_cu *);
894
895 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
896 struct type *, struct dwarf2_cu *);
897
898 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
899
900 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
901
902 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
903
904 static void read_common_block (struct die_info *, struct dwarf2_cu *);
905
906 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
907
908 static const char *namespace_name (struct die_info *die,
909 int *is_anonymous, struct dwarf2_cu *);
910
911 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
912
913 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
914
915 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
916
917 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
918
919 static void read_array_type (struct die_info *, struct dwarf2_cu *);
920
921 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
922 struct dwarf2_cu *);
923
924 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
925
926 static void read_tag_ptr_to_member_type (struct die_info *,
927 struct dwarf2_cu *);
928
929 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
930
931 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
932
933 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
934
935 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
936
937 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
938
939 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
940
941 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
942 struct dwarf2_cu *,
943 char **new_info_ptr,
944 struct die_info *parent);
945
946 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
947 struct dwarf2_cu *,
948 char **new_info_ptr,
949 struct die_info *parent);
950
951 static void free_die_list (struct die_info *);
952
953 static void process_die (struct die_info *, struct dwarf2_cu *);
954
955 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
956
957 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
958
959 static struct die_info *dwarf2_extension (struct die_info *die,
960 struct dwarf2_cu *);
961
962 static char *dwarf_tag_name (unsigned int);
963
964 static char *dwarf_attr_name (unsigned int);
965
966 static char *dwarf_form_name (unsigned int);
967
968 static char *dwarf_stack_op_name (unsigned int);
969
970 static char *dwarf_bool_name (unsigned int);
971
972 static char *dwarf_type_encoding_name (unsigned int);
973
974 #if 0
975 static char *dwarf_cfi_name (unsigned int);
976
977 struct die_info *copy_die (struct die_info *);
978 #endif
979
980 static struct die_info *sibling_die (struct die_info *);
981
982 static void dump_die (struct die_info *);
983
984 static void dump_die_list (struct die_info *);
985
986 static void store_in_ref_table (unsigned int, struct die_info *,
987 struct dwarf2_cu *);
988
989 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
990 struct dwarf2_cu *);
991
992 static int dwarf2_get_attr_constant_value (struct attribute *, int);
993
994 static struct die_info *follow_die_ref (struct die_info *,
995 struct attribute *,
996 struct dwarf2_cu *);
997
998 static struct type *dwarf2_fundamental_type (struct objfile *, int,
999 struct dwarf2_cu *);
1000
1001 /* memory allocation interface */
1002
1003 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1004
1005 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1006
1007 static struct die_info *dwarf_alloc_die (void);
1008
1009 static void initialize_cu_func_list (struct dwarf2_cu *);
1010
1011 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1012 struct dwarf2_cu *);
1013
1014 static void dwarf_decode_macros (struct line_header *, unsigned int,
1015 char *, bfd *, struct dwarf2_cu *);
1016
1017 static int attr_form_is_block (struct attribute *);
1018
1019 static void
1020 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1021 struct dwarf2_cu *cu);
1022
1023 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1024 struct dwarf2_cu *cu);
1025
1026 static void free_stack_comp_unit (void *);
1027
1028 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1029
1030 static void dummy_obstack_deallocate (void *object, void *data);
1031
1032 static hashval_t partial_die_hash (const void *item);
1033
1034 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1035
1036 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1037 (unsigned long offset, struct objfile *objfile);
1038
1039 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1040 (unsigned long offset, struct objfile *objfile);
1041
1042 static void free_one_comp_unit (void *);
1043
1044 static void free_cached_comp_units (void *);
1045
1046 static void age_cached_comp_units (void);
1047
1048 static void free_one_cached_comp_unit (void *);
1049
1050 static void set_die_type (struct die_info *, struct type *,
1051 struct dwarf2_cu *);
1052
1053 static void reset_die_and_siblings_types (struct die_info *,
1054 struct dwarf2_cu *);
1055
1056 static void create_all_comp_units (struct objfile *);
1057
1058 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1059
1060 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1061
1062 static void dwarf2_add_dependence (struct dwarf2_cu *,
1063 struct dwarf2_per_cu_data *);
1064
1065 static void dwarf2_mark (struct dwarf2_cu *);
1066
1067 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1068
1069 /* Try to locate the sections we need for DWARF 2 debugging
1070 information and return true if we have enough to do something. */
1071
1072 int
1073 dwarf2_has_info (struct objfile *objfile)
1074 {
1075 struct dwarf2_per_objfile *data;
1076
1077 /* Initialize per-objfile state. */
1078 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1079 memset (data, 0, sizeof (*data));
1080 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1081 dwarf2_per_objfile = data;
1082
1083 dwarf_info_section = 0;
1084 dwarf_abbrev_section = 0;
1085 dwarf_line_section = 0;
1086 dwarf_str_section = 0;
1087 dwarf_macinfo_section = 0;
1088 dwarf_frame_section = 0;
1089 dwarf_eh_frame_section = 0;
1090 dwarf_ranges_section = 0;
1091 dwarf_loc_section = 0;
1092
1093 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1094 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1095 }
1096
1097 /* This function is mapped across the sections and remembers the
1098 offset and size of each of the debugging sections we are interested
1099 in. */
1100
1101 static void
1102 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1103 {
1104 if (strcmp (sectp->name, INFO_SECTION) == 0)
1105 {
1106 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1107 dwarf_info_section = sectp;
1108 }
1109 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1110 {
1111 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1112 dwarf_abbrev_section = sectp;
1113 }
1114 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1115 {
1116 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1117 dwarf_line_section = sectp;
1118 }
1119 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1120 {
1121 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1122 dwarf_pubnames_section = sectp;
1123 }
1124 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1125 {
1126 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1127 dwarf_aranges_section = sectp;
1128 }
1129 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1130 {
1131 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1132 dwarf_loc_section = sectp;
1133 }
1134 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1137 dwarf_macinfo_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, STR_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1142 dwarf_str_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1147 dwarf_frame_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1150 {
1151 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1152 if (aflag & SEC_HAS_CONTENTS)
1153 {
1154 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1155 dwarf_eh_frame_section = sectp;
1156 }
1157 }
1158 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1159 {
1160 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1161 dwarf_ranges_section = sectp;
1162 }
1163 }
1164
1165 /* Build a partial symbol table. */
1166
1167 void
1168 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1169 {
1170 /* We definitely need the .debug_info and .debug_abbrev sections */
1171
1172 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1173 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1174
1175 if (dwarf_line_section)
1176 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1177 else
1178 dwarf2_per_objfile->line_buffer = NULL;
1179
1180 if (dwarf_str_section)
1181 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1182 else
1183 dwarf2_per_objfile->str_buffer = NULL;
1184
1185 if (dwarf_macinfo_section)
1186 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1187 dwarf_macinfo_section);
1188 else
1189 dwarf2_per_objfile->macinfo_buffer = NULL;
1190
1191 if (dwarf_ranges_section)
1192 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1193 else
1194 dwarf2_per_objfile->ranges_buffer = NULL;
1195
1196 if (dwarf_loc_section)
1197 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1198 else
1199 dwarf2_per_objfile->loc_buffer = NULL;
1200
1201 if (mainline
1202 || (objfile->global_psymbols.size == 0
1203 && objfile->static_psymbols.size == 0))
1204 {
1205 init_psymbol_list (objfile, 1024);
1206 }
1207
1208 #if 0
1209 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1210 {
1211 /* Things are significantly easier if we have .debug_aranges and
1212 .debug_pubnames sections */
1213
1214 dwarf2_build_psymtabs_easy (objfile, mainline);
1215 }
1216 else
1217 #endif
1218 /* only test this case for now */
1219 {
1220 /* In this case we have to work a bit harder */
1221 dwarf2_build_psymtabs_hard (objfile, mainline);
1222 }
1223 }
1224
1225 #if 0
1226 /* Build the partial symbol table from the information in the
1227 .debug_pubnames and .debug_aranges sections. */
1228
1229 static void
1230 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1231 {
1232 bfd *abfd = objfile->obfd;
1233 char *aranges_buffer, *pubnames_buffer;
1234 char *aranges_ptr, *pubnames_ptr;
1235 unsigned int entry_length, version, info_offset, info_size;
1236
1237 pubnames_buffer = dwarf2_read_section (objfile,
1238 dwarf_pubnames_section);
1239 pubnames_ptr = pubnames_buffer;
1240 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1241 {
1242 struct comp_unit_head cu_header;
1243 int bytes_read;
1244
1245 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1246 &bytes_read);
1247 pubnames_ptr += bytes_read;
1248 version = read_1_byte (abfd, pubnames_ptr);
1249 pubnames_ptr += 1;
1250 info_offset = read_4_bytes (abfd, pubnames_ptr);
1251 pubnames_ptr += 4;
1252 info_size = read_4_bytes (abfd, pubnames_ptr);
1253 pubnames_ptr += 4;
1254 }
1255
1256 aranges_buffer = dwarf2_read_section (objfile,
1257 dwarf_aranges_section);
1258
1259 }
1260 #endif
1261
1262 /* Read in the comp unit header information from the debug_info at
1263 info_ptr. */
1264
1265 static char *
1266 read_comp_unit_head (struct comp_unit_head *cu_header,
1267 char *info_ptr, bfd *abfd)
1268 {
1269 int signed_addr;
1270 int bytes_read;
1271 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1272 &bytes_read);
1273 info_ptr += bytes_read;
1274 cu_header->version = read_2_bytes (abfd, info_ptr);
1275 info_ptr += 2;
1276 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1277 &bytes_read);
1278 info_ptr += bytes_read;
1279 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1280 info_ptr += 1;
1281 signed_addr = bfd_get_sign_extend_vma (abfd);
1282 if (signed_addr < 0)
1283 internal_error (__FILE__, __LINE__,
1284 "read_comp_unit_head: dwarf from non elf file");
1285 cu_header->signed_addr_p = signed_addr;
1286 return info_ptr;
1287 }
1288
1289 static char *
1290 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1291 bfd *abfd)
1292 {
1293 char *beg_of_comp_unit = info_ptr;
1294
1295 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1296
1297 if (header->version != 2)
1298 error ("Dwarf Error: wrong version in compilation unit header "
1299 "(is %d, should be %d) [in module %s]", header->version,
1300 2, bfd_get_filename (abfd));
1301
1302 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1303 error ("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1304 "(offset 0x%lx + 6) [in module %s]",
1305 (long) header->abbrev_offset,
1306 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1307 bfd_get_filename (abfd));
1308
1309 if (beg_of_comp_unit + header->length + header->initial_length_size
1310 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1311 error ("Dwarf Error: bad length (0x%lx) in compilation unit header "
1312 "(offset 0x%lx + 0) [in module %s]",
1313 (long) header->length,
1314 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1315 bfd_get_filename (abfd));
1316
1317 return info_ptr;
1318 }
1319
1320 /* Allocate a new partial symtab for file named NAME and mark this new
1321 partial symtab as being an include of PST. */
1322
1323 static void
1324 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1325 struct objfile *objfile)
1326 {
1327 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1328
1329 subpst->section_offsets = pst->section_offsets;
1330 subpst->textlow = 0;
1331 subpst->texthigh = 0;
1332
1333 subpst->dependencies = (struct partial_symtab **)
1334 obstack_alloc (&objfile->objfile_obstack,
1335 sizeof (struct partial_symtab *));
1336 subpst->dependencies[0] = pst;
1337 subpst->number_of_dependencies = 1;
1338
1339 subpst->globals_offset = 0;
1340 subpst->n_global_syms = 0;
1341 subpst->statics_offset = 0;
1342 subpst->n_static_syms = 0;
1343 subpst->symtab = NULL;
1344 subpst->read_symtab = pst->read_symtab;
1345 subpst->readin = 0;
1346
1347 /* No private part is necessary for include psymtabs. This property
1348 can be used to differentiate between such include psymtabs and
1349 the regular ones. */
1350 subpst->read_symtab_private = NULL;
1351 }
1352
1353 /* Read the Line Number Program data and extract the list of files
1354 included by the source file represented by PST. Build an include
1355 partial symtab for each of these included files.
1356
1357 This procedure assumes that there *is* a Line Number Program in
1358 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1359 before calling this procedure. */
1360
1361 static void
1362 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1363 struct partial_die_info *pdi,
1364 struct partial_symtab *pst)
1365 {
1366 struct objfile *objfile = cu->objfile;
1367 bfd *abfd = objfile->obfd;
1368 struct line_header *lh;
1369
1370 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1371 if (lh == NULL)
1372 return; /* No linetable, so no includes. */
1373
1374 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1375
1376 free_line_header (lh);
1377 }
1378
1379
1380 /* Build the partial symbol table by doing a quick pass through the
1381 .debug_info and .debug_abbrev sections. */
1382
1383 static void
1384 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1385 {
1386 /* Instead of reading this into a big buffer, we should probably use
1387 mmap() on architectures that support it. (FIXME) */
1388 bfd *abfd = objfile->obfd;
1389 char *info_ptr;
1390 char *beg_of_comp_unit;
1391 struct partial_die_info comp_unit_die;
1392 struct partial_symtab *pst;
1393 struct cleanup *back_to;
1394 CORE_ADDR lowpc, highpc, baseaddr;
1395
1396 info_ptr = dwarf2_per_objfile->info_buffer;
1397
1398 /* Any cached compilation units will be linked by the per-objfile
1399 read_in_chain. Make sure to free them when we're done. */
1400 back_to = make_cleanup (free_cached_comp_units, NULL);
1401
1402 create_all_comp_units (objfile);
1403
1404 /* Since the objects we're extracting from .debug_info vary in
1405 length, only the individual functions to extract them (like
1406 read_comp_unit_head and load_partial_die) can really know whether
1407 the buffer is large enough to hold another complete object.
1408
1409 At the moment, they don't actually check that. If .debug_info
1410 holds just one extra byte after the last compilation unit's dies,
1411 then read_comp_unit_head will happily read off the end of the
1412 buffer. read_partial_die is similarly casual. Those functions
1413 should be fixed.
1414
1415 For this loop condition, simply checking whether there's any data
1416 left at all should be sufficient. */
1417 while (info_ptr < (dwarf2_per_objfile->info_buffer
1418 + dwarf2_per_objfile->info_size))
1419 {
1420 struct cleanup *back_to_inner;
1421 struct dwarf2_cu cu;
1422 struct abbrev_info *abbrev;
1423 unsigned int bytes_read;
1424 struct dwarf2_per_cu_data *this_cu;
1425
1426 beg_of_comp_unit = info_ptr;
1427
1428 memset (&cu, 0, sizeof (cu));
1429
1430 obstack_init (&cu.comp_unit_obstack);
1431
1432 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1433
1434 cu.objfile = objfile;
1435 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1436
1437 /* Complete the cu_header */
1438 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1439 cu.header.first_die_ptr = info_ptr;
1440 cu.header.cu_head_ptr = beg_of_comp_unit;
1441
1442 cu.list_in_scope = &file_symbols;
1443
1444 /* Read the abbrevs for this compilation unit into a table */
1445 dwarf2_read_abbrevs (abfd, &cu);
1446 make_cleanup (dwarf2_free_abbrev_table, &cu);
1447
1448 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1449
1450 /* Read the compilation unit die */
1451 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1452 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1453 abfd, info_ptr, &cu);
1454
1455 /* Set the language we're debugging */
1456 set_cu_language (comp_unit_die.language, &cu);
1457
1458 /* Allocate a new partial symbol table structure */
1459 pst = start_psymtab_common (objfile, objfile->section_offsets,
1460 comp_unit_die.name ? comp_unit_die.name : "",
1461 comp_unit_die.lowpc,
1462 objfile->global_psymbols.next,
1463 objfile->static_psymbols.next);
1464
1465 if (comp_unit_die.dirname)
1466 pst->dirname = xstrdup (comp_unit_die.dirname);
1467
1468 pst->read_symtab_private = (char *) this_cu;
1469
1470 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1471
1472 /* Store the function that reads in the rest of the symbol table */
1473 pst->read_symtab = dwarf2_psymtab_to_symtab;
1474
1475 /* If this compilation unit was already read in, free the
1476 cached copy in order to read it in again. This is
1477 necessary because we skipped some symbols when we first
1478 read in the compilation unit (see load_partial_dies).
1479 This problem could be avoided, but the benefit is
1480 unclear. */
1481 if (this_cu->cu != NULL)
1482 free_one_cached_comp_unit (this_cu->cu);
1483
1484 cu.per_cu = this_cu;
1485
1486 /* Note that this is a pointer to our stack frame, being
1487 added to a global data structure. It will be cleaned up
1488 in free_stack_comp_unit when we finish with this
1489 compilation unit. */
1490 this_cu->cu = &cu;
1491
1492 this_cu->psymtab = pst;
1493
1494 /* Check if comp unit has_children.
1495 If so, read the rest of the partial symbols from this comp unit.
1496 If not, there's no more debug_info for this comp unit. */
1497 if (comp_unit_die.has_children)
1498 {
1499 struct partial_die_info *first_die;
1500
1501 lowpc = ((CORE_ADDR) -1);
1502 highpc = ((CORE_ADDR) 0);
1503
1504 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1505
1506 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1507
1508 /* If we didn't find a lowpc, set it to highpc to avoid
1509 complaints from `maint check'. */
1510 if (lowpc == ((CORE_ADDR) -1))
1511 lowpc = highpc;
1512
1513 /* If the compilation unit didn't have an explicit address range,
1514 then use the information extracted from its child dies. */
1515 if (! comp_unit_die.has_pc_info)
1516 {
1517 comp_unit_die.lowpc = lowpc;
1518 comp_unit_die.highpc = highpc;
1519 }
1520 }
1521 pst->textlow = comp_unit_die.lowpc + baseaddr;
1522 pst->texthigh = comp_unit_die.highpc + baseaddr;
1523
1524 pst->n_global_syms = objfile->global_psymbols.next -
1525 (objfile->global_psymbols.list + pst->globals_offset);
1526 pst->n_static_syms = objfile->static_psymbols.next -
1527 (objfile->static_psymbols.list + pst->statics_offset);
1528 sort_pst_symbols (pst);
1529
1530 /* If there is already a psymtab or symtab for a file of this
1531 name, remove it. (If there is a symtab, more drastic things
1532 also happen.) This happens in VxWorks. */
1533 free_named_symtabs (pst->filename);
1534
1535 if (comp_unit_die.has_stmt_list)
1536 {
1537 /* Get the list of files included in the current compilation unit,
1538 and build a psymtab for each of them. */
1539 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1540 }
1541
1542 info_ptr = beg_of_comp_unit + cu.header.length
1543 + cu.header.initial_length_size;
1544
1545 do_cleanups (back_to_inner);
1546 }
1547 do_cleanups (back_to);
1548 }
1549
1550 /* Load the DIEs for a secondary CU into memory. */
1551
1552 static void
1553 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1554 {
1555 bfd *abfd = objfile->obfd;
1556 char *info_ptr, *beg_of_comp_unit;
1557 struct partial_die_info comp_unit_die;
1558 struct dwarf2_cu *cu;
1559 struct abbrev_info *abbrev;
1560 unsigned int bytes_read;
1561 struct cleanup *back_to;
1562
1563 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1564 beg_of_comp_unit = info_ptr;
1565
1566 cu = xmalloc (sizeof (struct dwarf2_cu));
1567 memset (cu, 0, sizeof (struct dwarf2_cu));
1568
1569 obstack_init (&cu->comp_unit_obstack);
1570
1571 cu->objfile = objfile;
1572 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1573
1574 /* Complete the cu_header. */
1575 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1576 cu->header.first_die_ptr = info_ptr;
1577 cu->header.cu_head_ptr = beg_of_comp_unit;
1578
1579 /* Read the abbrevs for this compilation unit into a table. */
1580 dwarf2_read_abbrevs (abfd, cu);
1581 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1582
1583 /* Read the compilation unit die. */
1584 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1585 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1586 abfd, info_ptr, cu);
1587
1588 /* Set the language we're debugging. */
1589 set_cu_language (comp_unit_die.language, cu);
1590
1591 /* Link this compilation unit into the compilation unit tree. */
1592 this_cu->cu = cu;
1593 cu->per_cu = this_cu;
1594
1595 /* Check if comp unit has_children.
1596 If so, read the rest of the partial symbols from this comp unit.
1597 If not, there's no more debug_info for this comp unit. */
1598 if (comp_unit_die.has_children)
1599 load_partial_dies (abfd, info_ptr, 0, cu);
1600
1601 do_cleanups (back_to);
1602 }
1603
1604 /* Create a list of all compilation units in OBJFILE. We do this only
1605 if an inter-comp-unit reference is found; presumably if there is one,
1606 there will be many, and one will occur early in the .debug_info section.
1607 So there's no point in building this list incrementally. */
1608
1609 static void
1610 create_all_comp_units (struct objfile *objfile)
1611 {
1612 int n_allocated;
1613 int n_comp_units;
1614 struct dwarf2_per_cu_data **all_comp_units;
1615 char *info_ptr = dwarf2_per_objfile->info_buffer;
1616
1617 n_comp_units = 0;
1618 n_allocated = 10;
1619 all_comp_units = xmalloc (n_allocated
1620 * sizeof (struct dwarf2_per_cu_data *));
1621
1622 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1623 {
1624 struct comp_unit_head cu_header;
1625 char *beg_of_comp_unit;
1626 struct dwarf2_per_cu_data *this_cu;
1627 unsigned long offset;
1628 int bytes_read;
1629
1630 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1631
1632 /* Read just enough information to find out where the next
1633 compilation unit is. */
1634 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1635 &cu_header, &bytes_read);
1636
1637 /* Save the compilation unit for later lookup. */
1638 this_cu = obstack_alloc (&objfile->objfile_obstack,
1639 sizeof (struct dwarf2_per_cu_data));
1640 memset (this_cu, 0, sizeof (*this_cu));
1641 this_cu->offset = offset;
1642 this_cu->length = cu_header.length + cu_header.initial_length_size;
1643
1644 if (n_comp_units == n_allocated)
1645 {
1646 n_allocated *= 2;
1647 all_comp_units = xrealloc (all_comp_units,
1648 n_allocated
1649 * sizeof (struct dwarf2_per_cu_data *));
1650 }
1651 all_comp_units[n_comp_units++] = this_cu;
1652
1653 info_ptr = info_ptr + this_cu->length;
1654 }
1655
1656 dwarf2_per_objfile->all_comp_units
1657 = obstack_alloc (&objfile->objfile_obstack,
1658 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1659 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1660 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1661 xfree (all_comp_units);
1662 dwarf2_per_objfile->n_comp_units = n_comp_units;
1663 }
1664
1665 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1666 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1667 in CU. */
1668
1669 static void
1670 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1671 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1672 {
1673 struct objfile *objfile = cu->objfile;
1674 bfd *abfd = objfile->obfd;
1675 struct partial_die_info *pdi;
1676
1677 /* Now, march along the PDI's, descending into ones which have
1678 interesting children but skipping the children of the other ones,
1679 until we reach the end of the compilation unit. */
1680
1681 pdi = first_die;
1682
1683 while (pdi != NULL)
1684 {
1685 fixup_partial_die (pdi, cu);
1686
1687 /* Anonymous namespaces have no name but have interesting
1688 children, so we need to look at them. Ditto for anonymous
1689 enums. */
1690
1691 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1692 || pdi->tag == DW_TAG_enumeration_type)
1693 {
1694 switch (pdi->tag)
1695 {
1696 case DW_TAG_subprogram:
1697 if (pdi->has_pc_info)
1698 {
1699 if (pdi->lowpc < *lowpc)
1700 {
1701 *lowpc = pdi->lowpc;
1702 }
1703 if (pdi->highpc > *highpc)
1704 {
1705 *highpc = pdi->highpc;
1706 }
1707 if (!pdi->is_declaration)
1708 {
1709 add_partial_symbol (pdi, cu);
1710 }
1711 }
1712 break;
1713 case DW_TAG_variable:
1714 case DW_TAG_typedef:
1715 case DW_TAG_union_type:
1716 if (!pdi->is_declaration)
1717 {
1718 add_partial_symbol (pdi, cu);
1719 }
1720 break;
1721 case DW_TAG_class_type:
1722 case DW_TAG_structure_type:
1723 if (!pdi->is_declaration)
1724 {
1725 add_partial_symbol (pdi, cu);
1726 }
1727 break;
1728 case DW_TAG_enumeration_type:
1729 if (!pdi->is_declaration)
1730 add_partial_enumeration (pdi, cu);
1731 break;
1732 case DW_TAG_base_type:
1733 case DW_TAG_subrange_type:
1734 /* File scope base type definitions are added to the partial
1735 symbol table. */
1736 add_partial_symbol (pdi, cu);
1737 break;
1738 case DW_TAG_namespace:
1739 add_partial_namespace (pdi, lowpc, highpc, cu);
1740 break;
1741 default:
1742 break;
1743 }
1744 }
1745
1746 /* If the die has a sibling, skip to the sibling. */
1747
1748 pdi = pdi->die_sibling;
1749 }
1750 }
1751
1752 /* Functions used to compute the fully scoped name of a partial DIE.
1753
1754 Normally, this is simple. For C++, the parent DIE's fully scoped
1755 name is concatenated with "::" and the partial DIE's name. For
1756 Java, the same thing occurs except that "." is used instead of "::".
1757 Enumerators are an exception; they use the scope of their parent
1758 enumeration type, i.e. the name of the enumeration type is not
1759 prepended to the enumerator.
1760
1761 There are two complexities. One is DW_AT_specification; in this
1762 case "parent" means the parent of the target of the specification,
1763 instead of the direct parent of the DIE. The other is compilers
1764 which do not emit DW_TAG_namespace; in this case we try to guess
1765 the fully qualified name of structure types from their members'
1766 linkage names. This must be done using the DIE's children rather
1767 than the children of any DW_AT_specification target. We only need
1768 to do this for structures at the top level, i.e. if the target of
1769 any DW_AT_specification (if any; otherwise the DIE itself) does not
1770 have a parent. */
1771
1772 /* Compute the scope prefix associated with PDI's parent, in
1773 compilation unit CU. The result will be allocated on CU's
1774 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1775 field. NULL is returned if no prefix is necessary. */
1776 static char *
1777 partial_die_parent_scope (struct partial_die_info *pdi,
1778 struct dwarf2_cu *cu)
1779 {
1780 char *grandparent_scope;
1781 struct partial_die_info *parent, *real_pdi;
1782
1783 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1784 then this means the parent of the specification DIE. */
1785
1786 real_pdi = pdi;
1787 while (real_pdi->has_specification)
1788 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1789
1790 parent = real_pdi->die_parent;
1791 if (parent == NULL)
1792 return NULL;
1793
1794 if (parent->scope_set)
1795 return parent->scope;
1796
1797 fixup_partial_die (parent, cu);
1798
1799 grandparent_scope = partial_die_parent_scope (parent, cu);
1800
1801 if (parent->tag == DW_TAG_namespace
1802 || parent->tag == DW_TAG_structure_type
1803 || parent->tag == DW_TAG_class_type
1804 || parent->tag == DW_TAG_union_type)
1805 {
1806 if (grandparent_scope == NULL)
1807 parent->scope = parent->name;
1808 else
1809 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1810 parent->name, cu);
1811 }
1812 else if (parent->tag == DW_TAG_enumeration_type)
1813 /* Enumerators should not get the name of the enumeration as a prefix. */
1814 parent->scope = grandparent_scope;
1815 else
1816 {
1817 /* FIXME drow/2004-04-01: What should we be doing with
1818 function-local names? For partial symbols, we should probably be
1819 ignoring them. */
1820 complaint (&symfile_complaints,
1821 "unhandled containing DIE tag %d for DIE at %d",
1822 parent->tag, pdi->offset);
1823 parent->scope = grandparent_scope;
1824 }
1825
1826 parent->scope_set = 1;
1827 return parent->scope;
1828 }
1829
1830 /* Return the fully scoped name associated with PDI, from compilation unit
1831 CU. The result will be allocated with malloc. */
1832 static char *
1833 partial_die_full_name (struct partial_die_info *pdi,
1834 struct dwarf2_cu *cu)
1835 {
1836 char *parent_scope;
1837
1838 parent_scope = partial_die_parent_scope (pdi, cu);
1839 if (parent_scope == NULL)
1840 return NULL;
1841 else
1842 return typename_concat (NULL, parent_scope, pdi->name, cu);
1843 }
1844
1845 static void
1846 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1847 {
1848 struct objfile *objfile = cu->objfile;
1849 CORE_ADDR addr = 0;
1850 char *actual_name;
1851 const char *my_prefix;
1852 const struct partial_symbol *psym = NULL;
1853 CORE_ADDR baseaddr;
1854 int built_actual_name = 0;
1855
1856 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1857
1858 actual_name = NULL;
1859
1860 if (pdi_needs_namespace (pdi->tag))
1861 {
1862 actual_name = partial_die_full_name (pdi, cu);
1863 if (actual_name)
1864 built_actual_name = 1;
1865 }
1866
1867 if (actual_name == NULL)
1868 actual_name = pdi->name;
1869
1870 switch (pdi->tag)
1871 {
1872 case DW_TAG_subprogram:
1873 if (pdi->is_external)
1874 {
1875 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1876 mst_text, objfile); */
1877 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1878 VAR_DOMAIN, LOC_BLOCK,
1879 &objfile->global_psymbols,
1880 0, pdi->lowpc + baseaddr,
1881 cu->language, objfile);
1882 }
1883 else
1884 {
1885 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1886 mst_file_text, objfile); */
1887 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1888 VAR_DOMAIN, LOC_BLOCK,
1889 &objfile->static_psymbols,
1890 0, pdi->lowpc + baseaddr,
1891 cu->language, objfile);
1892 }
1893 break;
1894 case DW_TAG_variable:
1895 if (pdi->is_external)
1896 {
1897 /* Global Variable.
1898 Don't enter into the minimal symbol tables as there is
1899 a minimal symbol table entry from the ELF symbols already.
1900 Enter into partial symbol table if it has a location
1901 descriptor or a type.
1902 If the location descriptor is missing, new_symbol will create
1903 a LOC_UNRESOLVED symbol, the address of the variable will then
1904 be determined from the minimal symbol table whenever the variable
1905 is referenced.
1906 The address for the partial symbol table entry is not
1907 used by GDB, but it comes in handy for debugging partial symbol
1908 table building. */
1909
1910 if (pdi->locdesc)
1911 addr = decode_locdesc (pdi->locdesc, cu);
1912 if (pdi->locdesc || pdi->has_type)
1913 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1914 VAR_DOMAIN, LOC_STATIC,
1915 &objfile->global_psymbols,
1916 0, addr + baseaddr,
1917 cu->language, objfile);
1918 }
1919 else
1920 {
1921 /* Static Variable. Skip symbols without location descriptors. */
1922 if (pdi->locdesc == NULL)
1923 return;
1924 addr = decode_locdesc (pdi->locdesc, cu);
1925 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1926 mst_file_data, objfile); */
1927 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1928 VAR_DOMAIN, LOC_STATIC,
1929 &objfile->static_psymbols,
1930 0, addr + baseaddr,
1931 cu->language, objfile);
1932 }
1933 break;
1934 case DW_TAG_typedef:
1935 case DW_TAG_base_type:
1936 case DW_TAG_subrange_type:
1937 add_psymbol_to_list (actual_name, strlen (actual_name),
1938 VAR_DOMAIN, LOC_TYPEDEF,
1939 &objfile->static_psymbols,
1940 0, (CORE_ADDR) 0, cu->language, objfile);
1941 break;
1942 case DW_TAG_namespace:
1943 add_psymbol_to_list (actual_name, strlen (actual_name),
1944 VAR_DOMAIN, LOC_TYPEDEF,
1945 &objfile->global_psymbols,
1946 0, (CORE_ADDR) 0, cu->language, objfile);
1947 break;
1948 case DW_TAG_class_type:
1949 case DW_TAG_structure_type:
1950 case DW_TAG_union_type:
1951 case DW_TAG_enumeration_type:
1952 /* Skip aggregate types without children, these are external
1953 references. */
1954 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1955 static vs. global. */
1956 if (pdi->has_children == 0)
1957 return;
1958 add_psymbol_to_list (actual_name, strlen (actual_name),
1959 STRUCT_DOMAIN, LOC_TYPEDEF,
1960 (cu->language == language_cplus
1961 || cu->language == language_java)
1962 ? &objfile->global_psymbols
1963 : &objfile->static_psymbols,
1964 0, (CORE_ADDR) 0, cu->language, objfile);
1965
1966 if (cu->language == language_cplus
1967 || cu->language == language_java)
1968 {
1969 /* For C++ and Java, these implicitly act as typedefs as well. */
1970 add_psymbol_to_list (actual_name, strlen (actual_name),
1971 VAR_DOMAIN, LOC_TYPEDEF,
1972 &objfile->global_psymbols,
1973 0, (CORE_ADDR) 0, cu->language, objfile);
1974 }
1975 break;
1976 case DW_TAG_enumerator:
1977 add_psymbol_to_list (actual_name, strlen (actual_name),
1978 VAR_DOMAIN, LOC_CONST,
1979 (cu->language == language_cplus
1980 || cu->language == language_java)
1981 ? &objfile->global_psymbols
1982 : &objfile->static_psymbols,
1983 0, (CORE_ADDR) 0, cu->language, objfile);
1984 break;
1985 default:
1986 break;
1987 }
1988
1989 /* Check to see if we should scan the name for possible namespace
1990 info. Only do this if this is C++, if we don't have namespace
1991 debugging info in the file, if the psym is of an appropriate type
1992 (otherwise we'll have psym == NULL), and if we actually had a
1993 mangled name to begin with. */
1994
1995 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
1996 cases which do not set PSYM above? */
1997
1998 if (cu->language == language_cplus
1999 && cu->has_namespace_info == 0
2000 && psym != NULL
2001 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2002 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2003 objfile);
2004
2005 if (built_actual_name)
2006 xfree (actual_name);
2007 }
2008
2009 /* Determine whether a die of type TAG living in a C++ class or
2010 namespace needs to have the name of the scope prepended to the
2011 name listed in the die. */
2012
2013 static int
2014 pdi_needs_namespace (enum dwarf_tag tag)
2015 {
2016 switch (tag)
2017 {
2018 case DW_TAG_namespace:
2019 case DW_TAG_typedef:
2020 case DW_TAG_class_type:
2021 case DW_TAG_structure_type:
2022 case DW_TAG_union_type:
2023 case DW_TAG_enumeration_type:
2024 case DW_TAG_enumerator:
2025 return 1;
2026 default:
2027 return 0;
2028 }
2029 }
2030
2031 /* Read a partial die corresponding to a namespace; also, add a symbol
2032 corresponding to that namespace to the symbol table. NAMESPACE is
2033 the name of the enclosing namespace. */
2034
2035 static void
2036 add_partial_namespace (struct partial_die_info *pdi,
2037 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2038 struct dwarf2_cu *cu)
2039 {
2040 struct objfile *objfile = cu->objfile;
2041
2042 /* Add a symbol for the namespace. */
2043
2044 add_partial_symbol (pdi, cu);
2045
2046 /* Now scan partial symbols in that namespace. */
2047
2048 if (pdi->has_children)
2049 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2050 }
2051
2052 /* See if we can figure out if the class lives in a namespace. We do
2053 this by looking for a member function; its demangled name will
2054 contain namespace info, if there is any. */
2055
2056 static void
2057 guess_structure_name (struct partial_die_info *struct_pdi,
2058 struct dwarf2_cu *cu)
2059 {
2060 if ((cu->language == language_cplus
2061 || cu->language == language_java)
2062 && cu->has_namespace_info == 0
2063 && struct_pdi->has_children)
2064 {
2065 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2066 what template types look like, because the demangler
2067 frequently doesn't give the same name as the debug info. We
2068 could fix this by only using the demangled name to get the
2069 prefix (but see comment in read_structure_type). */
2070
2071 struct partial_die_info *child_pdi = struct_pdi->die_child;
2072 struct partial_die_info *real_pdi;
2073
2074 /* If this DIE (this DIE's specification, if any) has a parent, then
2075 we should not do this. We'll prepend the parent's fully qualified
2076 name when we create the partial symbol. */
2077
2078 real_pdi = struct_pdi;
2079 while (real_pdi->has_specification)
2080 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2081
2082 if (real_pdi->die_parent != NULL)
2083 return;
2084
2085 while (child_pdi != NULL)
2086 {
2087 if (child_pdi->tag == DW_TAG_subprogram)
2088 {
2089 char *actual_class_name
2090 = language_class_name_from_physname (cu->language_defn,
2091 child_pdi->name);
2092 if (actual_class_name != NULL)
2093 {
2094 struct_pdi->name
2095 = obsavestring (actual_class_name,
2096 strlen (actual_class_name),
2097 &cu->comp_unit_obstack);
2098 xfree (actual_class_name);
2099 }
2100 break;
2101 }
2102
2103 child_pdi = child_pdi->die_sibling;
2104 }
2105 }
2106 }
2107
2108 /* Read a partial die corresponding to an enumeration type. */
2109
2110 static void
2111 add_partial_enumeration (struct partial_die_info *enum_pdi,
2112 struct dwarf2_cu *cu)
2113 {
2114 struct objfile *objfile = cu->objfile;
2115 bfd *abfd = objfile->obfd;
2116 struct partial_die_info *pdi;
2117
2118 if (enum_pdi->name != NULL)
2119 add_partial_symbol (enum_pdi, cu);
2120
2121 pdi = enum_pdi->die_child;
2122 while (pdi)
2123 {
2124 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2125 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
2126 else
2127 add_partial_symbol (pdi, cu);
2128 pdi = pdi->die_sibling;
2129 }
2130 }
2131
2132 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2133 Return the corresponding abbrev, or NULL if the number is zero (indicating
2134 an empty DIE). In either case *BYTES_READ will be set to the length of
2135 the initial number. */
2136
2137 static struct abbrev_info *
2138 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2139 {
2140 bfd *abfd = cu->objfile->obfd;
2141 unsigned int abbrev_number;
2142 struct abbrev_info *abbrev;
2143
2144 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2145
2146 if (abbrev_number == 0)
2147 return NULL;
2148
2149 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2150 if (!abbrev)
2151 {
2152 error ("Dwarf Error: Could not find abbrev number %d [in module %s]", abbrev_number,
2153 bfd_get_filename (abfd));
2154 }
2155
2156 return abbrev;
2157 }
2158
2159 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2160 pointer to the end of a series of DIEs, terminated by an empty
2161 DIE. Any children of the skipped DIEs will also be skipped. */
2162
2163 static char *
2164 skip_children (char *info_ptr, struct dwarf2_cu *cu)
2165 {
2166 struct abbrev_info *abbrev;
2167 unsigned int bytes_read;
2168
2169 while (1)
2170 {
2171 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2172 if (abbrev == NULL)
2173 return info_ptr + bytes_read;
2174 else
2175 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2176 }
2177 }
2178
2179 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2180 should point just after the initial uleb128 of a DIE, and the
2181 abbrev corresponding to that skipped uleb128 should be passed in
2182 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2183 children. */
2184
2185 static char *
2186 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2187 struct dwarf2_cu *cu)
2188 {
2189 unsigned int bytes_read;
2190 struct attribute attr;
2191 bfd *abfd = cu->objfile->obfd;
2192 unsigned int form, i;
2193
2194 for (i = 0; i < abbrev->num_attrs; i++)
2195 {
2196 /* The only abbrev we care about is DW_AT_sibling. */
2197 if (abbrev->attrs[i].name == DW_AT_sibling)
2198 {
2199 read_attribute (&attr, &abbrev->attrs[i],
2200 abfd, info_ptr, cu);
2201 if (attr.form == DW_FORM_ref_addr)
2202 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
2203 else
2204 return dwarf2_per_objfile->info_buffer
2205 + dwarf2_get_ref_die_offset (&attr, cu);
2206 }
2207
2208 /* If it isn't DW_AT_sibling, skip this attribute. */
2209 form = abbrev->attrs[i].form;
2210 skip_attribute:
2211 switch (form)
2212 {
2213 case DW_FORM_addr:
2214 case DW_FORM_ref_addr:
2215 info_ptr += cu->header.addr_size;
2216 break;
2217 case DW_FORM_data1:
2218 case DW_FORM_ref1:
2219 case DW_FORM_flag:
2220 info_ptr += 1;
2221 break;
2222 case DW_FORM_data2:
2223 case DW_FORM_ref2:
2224 info_ptr += 2;
2225 break;
2226 case DW_FORM_data4:
2227 case DW_FORM_ref4:
2228 info_ptr += 4;
2229 break;
2230 case DW_FORM_data8:
2231 case DW_FORM_ref8:
2232 info_ptr += 8;
2233 break;
2234 case DW_FORM_string:
2235 read_string (abfd, info_ptr, &bytes_read);
2236 info_ptr += bytes_read;
2237 break;
2238 case DW_FORM_strp:
2239 info_ptr += cu->header.offset_size;
2240 break;
2241 case DW_FORM_block:
2242 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2243 info_ptr += bytes_read;
2244 break;
2245 case DW_FORM_block1:
2246 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2247 break;
2248 case DW_FORM_block2:
2249 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2250 break;
2251 case DW_FORM_block4:
2252 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2253 break;
2254 case DW_FORM_sdata:
2255 case DW_FORM_udata:
2256 case DW_FORM_ref_udata:
2257 info_ptr = skip_leb128 (abfd, info_ptr);
2258 break;
2259 case DW_FORM_indirect:
2260 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2261 info_ptr += bytes_read;
2262 /* We need to continue parsing from here, so just go back to
2263 the top. */
2264 goto skip_attribute;
2265
2266 default:
2267 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
2268 dwarf_form_name (form),
2269 bfd_get_filename (abfd));
2270 }
2271 }
2272
2273 if (abbrev->has_children)
2274 return skip_children (info_ptr, cu);
2275 else
2276 return info_ptr;
2277 }
2278
2279 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2280 the next DIE after ORIG_PDI. */
2281
2282 static char *
2283 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2284 bfd *abfd, struct dwarf2_cu *cu)
2285 {
2286 /* Do we know the sibling already? */
2287
2288 if (orig_pdi->sibling)
2289 return orig_pdi->sibling;
2290
2291 /* Are there any children to deal with? */
2292
2293 if (!orig_pdi->has_children)
2294 return info_ptr;
2295
2296 /* Skip the children the long way. */
2297
2298 return skip_children (info_ptr, cu);
2299 }
2300
2301 /* Expand this partial symbol table into a full symbol table. */
2302
2303 static void
2304 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2305 {
2306 /* FIXME: This is barely more than a stub. */
2307 if (pst != NULL)
2308 {
2309 if (pst->readin)
2310 {
2311 warning ("bug: psymtab for %s is already read in.", pst->filename);
2312 }
2313 else
2314 {
2315 if (info_verbose)
2316 {
2317 printf_filtered ("Reading in symbols for %s...", pst->filename);
2318 gdb_flush (gdb_stdout);
2319 }
2320
2321 /* Restore our global data. */
2322 dwarf2_per_objfile = objfile_data (pst->objfile,
2323 dwarf2_objfile_data_key);
2324
2325 psymtab_to_symtab_1 (pst);
2326
2327 /* Finish up the debug error message. */
2328 if (info_verbose)
2329 printf_filtered ("done.\n");
2330 }
2331 }
2332 }
2333
2334 /* Add PER_CU to the queue. */
2335
2336 static void
2337 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2338 {
2339 struct dwarf2_queue_item *item;
2340
2341 per_cu->queued = 1;
2342 item = xmalloc (sizeof (*item));
2343 item->per_cu = per_cu;
2344 item->next = NULL;
2345
2346 if (dwarf2_queue == NULL)
2347 dwarf2_queue = item;
2348 else
2349 dwarf2_queue_tail->next = item;
2350
2351 dwarf2_queue_tail = item;
2352 }
2353
2354 /* Process the queue. */
2355
2356 static void
2357 process_queue (struct objfile *objfile)
2358 {
2359 struct dwarf2_queue_item *item, *next_item;
2360
2361 /* Initially, there is just one item on the queue. Load its DIEs,
2362 and the DIEs of any other compilation units it requires,
2363 transitively. */
2364
2365 for (item = dwarf2_queue; item != NULL; item = item->next)
2366 {
2367 /* Read in this compilation unit. This may add new items to
2368 the end of the queue. */
2369 load_full_comp_unit (item->per_cu);
2370
2371 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2372 dwarf2_per_objfile->read_in_chain = item->per_cu;
2373
2374 /* If this compilation unit has already had full symbols created,
2375 reset the TYPE fields in each DIE. */
2376 if (item->per_cu->psymtab->readin)
2377 reset_die_and_siblings_types (item->per_cu->cu->dies,
2378 item->per_cu->cu);
2379 }
2380
2381 /* Now everything left on the queue needs to be read in. Process
2382 them, one at a time, removing from the queue as we finish. */
2383 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2384 {
2385 if (!item->per_cu->psymtab->readin)
2386 process_full_comp_unit (item->per_cu);
2387
2388 item->per_cu->queued = 0;
2389 next_item = item->next;
2390 xfree (item);
2391 }
2392
2393 dwarf2_queue_tail = NULL;
2394 }
2395
2396 /* Free all allocated queue entries. This function only releases anything if
2397 an error was thrown; if the queue was processed then it would have been
2398 freed as we went along. */
2399
2400 static void
2401 dwarf2_release_queue (void *dummy)
2402 {
2403 struct dwarf2_queue_item *item, *last;
2404
2405 item = dwarf2_queue;
2406 while (item)
2407 {
2408 /* Anything still marked queued is likely to be in an
2409 inconsistent state, so discard it. */
2410 if (item->per_cu->queued)
2411 {
2412 if (item->per_cu->cu != NULL)
2413 free_one_cached_comp_unit (item->per_cu->cu);
2414 item->per_cu->queued = 0;
2415 }
2416
2417 last = item;
2418 item = item->next;
2419 xfree (last);
2420 }
2421
2422 dwarf2_queue = dwarf2_queue_tail = NULL;
2423 }
2424
2425 /* Read in full symbols for PST, and anything it depends on. */
2426
2427 static void
2428 psymtab_to_symtab_1 (struct partial_symtab *pst)
2429 {
2430 struct dwarf2_per_cu_data *per_cu;
2431 struct cleanup *back_to;
2432 int i;
2433
2434 for (i = 0; i < pst->number_of_dependencies; i++)
2435 if (!pst->dependencies[i]->readin)
2436 {
2437 /* Inform about additional files that need to be read in. */
2438 if (info_verbose)
2439 {
2440 fputs_filtered (" ", gdb_stdout);
2441 wrap_here ("");
2442 fputs_filtered ("and ", gdb_stdout);
2443 wrap_here ("");
2444 printf_filtered ("%s...", pst->dependencies[i]->filename);
2445 wrap_here (""); /* Flush output */
2446 gdb_flush (gdb_stdout);
2447 }
2448 psymtab_to_symtab_1 (pst->dependencies[i]);
2449 }
2450
2451 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2452
2453 if (per_cu == NULL)
2454 {
2455 /* It's an include file, no symbols to read for it.
2456 Everything is in the parent symtab. */
2457 pst->readin = 1;
2458 return;
2459 }
2460
2461 back_to = make_cleanup (dwarf2_release_queue, NULL);
2462
2463 queue_comp_unit (per_cu);
2464
2465 process_queue (pst->objfile);
2466
2467 /* Age the cache, releasing compilation units that have not
2468 been used recently. */
2469 age_cached_comp_units ();
2470
2471 do_cleanups (back_to);
2472 }
2473
2474 /* Load the DIEs associated with PST and PER_CU into memory. */
2475
2476 static struct dwarf2_cu *
2477 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2478 {
2479 struct partial_symtab *pst = per_cu->psymtab;
2480 bfd *abfd = pst->objfile->obfd;
2481 struct dwarf2_cu *cu;
2482 unsigned long offset;
2483 char *info_ptr;
2484 struct cleanup *back_to, *free_cu_cleanup;
2485 struct attribute *attr;
2486 CORE_ADDR baseaddr;
2487
2488 /* Set local variables from the partial symbol table info. */
2489 offset = per_cu->offset;
2490
2491 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2492
2493 cu = xmalloc (sizeof (struct dwarf2_cu));
2494 memset (cu, 0, sizeof (struct dwarf2_cu));
2495
2496 /* If an error occurs while loading, release our storage. */
2497 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2498
2499 cu->objfile = pst->objfile;
2500
2501 /* read in the comp_unit header */
2502 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2503
2504 /* Read the abbrevs for this compilation unit */
2505 dwarf2_read_abbrevs (abfd, cu);
2506 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2507
2508 cu->header.offset = offset;
2509
2510 cu->per_cu = per_cu;
2511 per_cu->cu = cu;
2512
2513 /* We use this obstack for block values in dwarf_alloc_block. */
2514 obstack_init (&cu->comp_unit_obstack);
2515
2516 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2517
2518 /* We try not to read any attributes in this function, because not
2519 all objfiles needed for references have been loaded yet, and symbol
2520 table processing isn't initialized. But we have to set the CU language,
2521 or we won't be able to build types correctly. */
2522 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2523 if (attr)
2524 set_cu_language (DW_UNSND (attr), cu);
2525 else
2526 set_cu_language (language_minimal, cu);
2527
2528 do_cleanups (back_to);
2529
2530 /* We've successfully allocated this compilation unit. Let our caller
2531 clean it up when finished with it. */
2532 discard_cleanups (free_cu_cleanup);
2533
2534 return cu;
2535 }
2536
2537 /* Generate full symbol information for PST and CU, whose DIEs have
2538 already been loaded into memory. */
2539
2540 static void
2541 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2542 {
2543 struct partial_symtab *pst = per_cu->psymtab;
2544 struct dwarf2_cu *cu = per_cu->cu;
2545 struct objfile *objfile = pst->objfile;
2546 bfd *abfd = objfile->obfd;
2547 CORE_ADDR lowpc, highpc;
2548 struct symtab *symtab;
2549 struct cleanup *back_to;
2550 struct attribute *attr;
2551 CORE_ADDR baseaddr;
2552
2553 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2554
2555 /* We're in the global namespace. */
2556 processing_current_prefix = "";
2557
2558 buildsym_init ();
2559 back_to = make_cleanup (really_free_pendings, NULL);
2560
2561 cu->list_in_scope = &file_symbols;
2562
2563 /* Find the base address of the compilation unit for range lists and
2564 location lists. It will normally be specified by DW_AT_low_pc.
2565 In DWARF-3 draft 4, the base address could be overridden by
2566 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2567 compilation units with discontinuous ranges. */
2568
2569 cu->header.base_known = 0;
2570 cu->header.base_address = 0;
2571
2572 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2573 if (attr)
2574 {
2575 cu->header.base_address = DW_ADDR (attr);
2576 cu->header.base_known = 1;
2577 }
2578 else
2579 {
2580 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2581 if (attr)
2582 {
2583 cu->header.base_address = DW_ADDR (attr);
2584 cu->header.base_known = 1;
2585 }
2586 }
2587
2588 /* Do line number decoding in read_file_scope () */
2589 process_die (cu->dies, cu);
2590
2591 /* Some compilers don't define a DW_AT_high_pc attribute for the
2592 compilation unit. If the DW_AT_high_pc is missing, synthesize
2593 it, by scanning the DIE's below the compilation unit. */
2594 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2595
2596 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2597
2598 /* Set symtab language to language from DW_AT_language.
2599 If the compilation is from a C file generated by language preprocessors,
2600 do not set the language if it was already deduced by start_subfile. */
2601 if (symtab != NULL
2602 && !(cu->language == language_c && symtab->language != language_c))
2603 {
2604 symtab->language = cu->language;
2605 }
2606 pst->symtab = symtab;
2607 pst->readin = 1;
2608
2609 do_cleanups (back_to);
2610 }
2611
2612 /* Process a die and its children. */
2613
2614 static void
2615 process_die (struct die_info *die, struct dwarf2_cu *cu)
2616 {
2617 switch (die->tag)
2618 {
2619 case DW_TAG_padding:
2620 break;
2621 case DW_TAG_compile_unit:
2622 read_file_scope (die, cu);
2623 break;
2624 case DW_TAG_subprogram:
2625 read_subroutine_type (die, cu);
2626 read_func_scope (die, cu);
2627 break;
2628 case DW_TAG_inlined_subroutine:
2629 /* FIXME: These are ignored for now.
2630 They could be used to set breakpoints on all inlined instances
2631 of a function and make GDB `next' properly over inlined functions. */
2632 break;
2633 case DW_TAG_lexical_block:
2634 case DW_TAG_try_block:
2635 case DW_TAG_catch_block:
2636 read_lexical_block_scope (die, cu);
2637 break;
2638 case DW_TAG_class_type:
2639 case DW_TAG_structure_type:
2640 case DW_TAG_union_type:
2641 read_structure_type (die, cu);
2642 process_structure_scope (die, cu);
2643 break;
2644 case DW_TAG_enumeration_type:
2645 read_enumeration_type (die, cu);
2646 process_enumeration_scope (die, cu);
2647 break;
2648
2649 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2650 a symbol or process any children. Therefore it doesn't do anything
2651 that won't be done on-demand by read_type_die. */
2652 case DW_TAG_subroutine_type:
2653 read_subroutine_type (die, cu);
2654 break;
2655 case DW_TAG_array_type:
2656 read_array_type (die, cu);
2657 break;
2658 case DW_TAG_pointer_type:
2659 read_tag_pointer_type (die, cu);
2660 break;
2661 case DW_TAG_ptr_to_member_type:
2662 read_tag_ptr_to_member_type (die, cu);
2663 break;
2664 case DW_TAG_reference_type:
2665 read_tag_reference_type (die, cu);
2666 break;
2667 case DW_TAG_string_type:
2668 read_tag_string_type (die, cu);
2669 break;
2670 /* END FIXME */
2671
2672 case DW_TAG_base_type:
2673 read_base_type (die, cu);
2674 /* Add a typedef symbol for the type definition, if it has a
2675 DW_AT_name. */
2676 new_symbol (die, die->type, cu);
2677 break;
2678 case DW_TAG_subrange_type:
2679 read_subrange_type (die, cu);
2680 /* Add a typedef symbol for the type definition, if it has a
2681 DW_AT_name. */
2682 new_symbol (die, die->type, cu);
2683 break;
2684 case DW_TAG_common_block:
2685 read_common_block (die, cu);
2686 break;
2687 case DW_TAG_common_inclusion:
2688 break;
2689 case DW_TAG_namespace:
2690 processing_has_namespace_info = 1;
2691 read_namespace (die, cu);
2692 break;
2693 case DW_TAG_imported_declaration:
2694 case DW_TAG_imported_module:
2695 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2696 information contained in these. DW_TAG_imported_declaration
2697 dies shouldn't have children; DW_TAG_imported_module dies
2698 shouldn't in the C++ case, but conceivably could in the
2699 Fortran case, so we'll have to replace this gdb_assert if
2700 Fortran compilers start generating that info. */
2701 processing_has_namespace_info = 1;
2702 gdb_assert (die->child == NULL);
2703 break;
2704 default:
2705 new_symbol (die, NULL, cu);
2706 break;
2707 }
2708 }
2709
2710 static void
2711 initialize_cu_func_list (struct dwarf2_cu *cu)
2712 {
2713 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2714 }
2715
2716 static void
2717 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2718 {
2719 struct objfile *objfile = cu->objfile;
2720 struct comp_unit_head *cu_header = &cu->header;
2721 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2722 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2723 CORE_ADDR highpc = ((CORE_ADDR) 0);
2724 struct attribute *attr;
2725 char *name = "<unknown>";
2726 char *comp_dir = NULL;
2727 struct die_info *child_die;
2728 bfd *abfd = objfile->obfd;
2729 struct line_header *line_header = 0;
2730 CORE_ADDR baseaddr;
2731
2732 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2733
2734 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2735
2736 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2737 from finish_block. */
2738 if (lowpc == ((CORE_ADDR) -1))
2739 lowpc = highpc;
2740 lowpc += baseaddr;
2741 highpc += baseaddr;
2742
2743 attr = dwarf2_attr (die, DW_AT_name, cu);
2744 if (attr)
2745 {
2746 name = DW_STRING (attr);
2747 }
2748 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2749 if (attr)
2750 {
2751 comp_dir = DW_STRING (attr);
2752 if (comp_dir)
2753 {
2754 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2755 directory, get rid of it. */
2756 char *cp = strchr (comp_dir, ':');
2757
2758 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2759 comp_dir = cp + 1;
2760 }
2761 }
2762
2763 attr = dwarf2_attr (die, DW_AT_language, cu);
2764 if (attr)
2765 {
2766 set_cu_language (DW_UNSND (attr), cu);
2767 }
2768
2769 attr = dwarf2_attr (die, DW_AT_producer, cu);
2770 if (attr)
2771 cu->producer = DW_STRING (attr);
2772
2773 /* We assume that we're processing GCC output. */
2774 processing_gcc_compilation = 2;
2775 #if 0
2776 /* FIXME:Do something here. */
2777 if (dip->at_producer != NULL)
2778 {
2779 handle_producer (dip->at_producer);
2780 }
2781 #endif
2782
2783 /* The compilation unit may be in a different language or objfile,
2784 zero out all remembered fundamental types. */
2785 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2786
2787 start_symtab (name, comp_dir, lowpc);
2788 record_debugformat ("DWARF 2");
2789
2790 initialize_cu_func_list (cu);
2791
2792 /* Process all dies in compilation unit. */
2793 if (die->child != NULL)
2794 {
2795 child_die = die->child;
2796 while (child_die && child_die->tag)
2797 {
2798 process_die (child_die, cu);
2799 child_die = sibling_die (child_die);
2800 }
2801 }
2802
2803 /* Decode line number information if present. */
2804 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2805 if (attr)
2806 {
2807 unsigned int line_offset = DW_UNSND (attr);
2808 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2809 if (line_header)
2810 {
2811 make_cleanup ((make_cleanup_ftype *) free_line_header,
2812 (void *) line_header);
2813 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2814 }
2815 }
2816
2817 /* Decode macro information, if present. Dwarf 2 macro information
2818 refers to information in the line number info statement program
2819 header, so we can only read it if we've read the header
2820 successfully. */
2821 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2822 if (attr && line_header)
2823 {
2824 unsigned int macro_offset = DW_UNSND (attr);
2825 dwarf_decode_macros (line_header, macro_offset,
2826 comp_dir, abfd, cu);
2827 }
2828 do_cleanups (back_to);
2829 }
2830
2831 static void
2832 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2833 struct dwarf2_cu *cu)
2834 {
2835 struct function_range *thisfn;
2836
2837 thisfn = (struct function_range *)
2838 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2839 thisfn->name = name;
2840 thisfn->lowpc = lowpc;
2841 thisfn->highpc = highpc;
2842 thisfn->seen_line = 0;
2843 thisfn->next = NULL;
2844
2845 if (cu->last_fn == NULL)
2846 cu->first_fn = thisfn;
2847 else
2848 cu->last_fn->next = thisfn;
2849
2850 cu->last_fn = thisfn;
2851 }
2852
2853 static void
2854 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2855 {
2856 struct objfile *objfile = cu->objfile;
2857 struct context_stack *new;
2858 CORE_ADDR lowpc;
2859 CORE_ADDR highpc;
2860 struct die_info *child_die;
2861 struct attribute *attr;
2862 char *name;
2863 const char *previous_prefix = processing_current_prefix;
2864 struct cleanup *back_to = NULL;
2865 CORE_ADDR baseaddr;
2866
2867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2868
2869 name = dwarf2_linkage_name (die, cu);
2870
2871 /* Ignore functions with missing or empty names and functions with
2872 missing or invalid low and high pc attributes. */
2873 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2874 return;
2875
2876 if (cu->language == language_cplus
2877 || cu->language == language_java)
2878 {
2879 struct die_info *spec_die = die_specification (die, cu);
2880
2881 /* NOTE: carlton/2004-01-23: We have to be careful in the
2882 presence of DW_AT_specification. For example, with GCC 3.4,
2883 given the code
2884
2885 namespace N {
2886 void foo() {
2887 // Definition of N::foo.
2888 }
2889 }
2890
2891 then we'll have a tree of DIEs like this:
2892
2893 1: DW_TAG_compile_unit
2894 2: DW_TAG_namespace // N
2895 3: DW_TAG_subprogram // declaration of N::foo
2896 4: DW_TAG_subprogram // definition of N::foo
2897 DW_AT_specification // refers to die #3
2898
2899 Thus, when processing die #4, we have to pretend that we're
2900 in the context of its DW_AT_specification, namely the contex
2901 of die #3. */
2902
2903 if (spec_die != NULL)
2904 {
2905 char *specification_prefix = determine_prefix (spec_die, cu);
2906 processing_current_prefix = specification_prefix;
2907 back_to = make_cleanup (xfree, specification_prefix);
2908 }
2909 }
2910
2911 lowpc += baseaddr;
2912 highpc += baseaddr;
2913
2914 /* Record the function range for dwarf_decode_lines. */
2915 add_to_cu_func_list (name, lowpc, highpc, cu);
2916
2917 new = push_context (0, lowpc);
2918 new->name = new_symbol (die, die->type, cu);
2919
2920 /* If there is a location expression for DW_AT_frame_base, record
2921 it. */
2922 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2923 if (attr)
2924 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2925 expression is being recorded directly in the function's symbol
2926 and not in a separate frame-base object. I guess this hack is
2927 to avoid adding some sort of frame-base adjunct/annex to the
2928 function's symbol :-(. The problem with doing this is that it
2929 results in a function symbol with a location expression that
2930 has nothing to do with the location of the function, ouch! The
2931 relationship should be: a function's symbol has-a frame base; a
2932 frame-base has-a location expression. */
2933 dwarf2_symbol_mark_computed (attr, new->name, cu);
2934
2935 cu->list_in_scope = &local_symbols;
2936
2937 if (die->child != NULL)
2938 {
2939 child_die = die->child;
2940 while (child_die && child_die->tag)
2941 {
2942 process_die (child_die, cu);
2943 child_die = sibling_die (child_die);
2944 }
2945 }
2946
2947 new = pop_context ();
2948 /* Make a block for the local symbols within. */
2949 finish_block (new->name, &local_symbols, new->old_blocks,
2950 lowpc, highpc, objfile);
2951
2952 /* In C++, we can have functions nested inside functions (e.g., when
2953 a function declares a class that has methods). This means that
2954 when we finish processing a function scope, we may need to go
2955 back to building a containing block's symbol lists. */
2956 local_symbols = new->locals;
2957 param_symbols = new->params;
2958
2959 /* If we've finished processing a top-level function, subsequent
2960 symbols go in the file symbol list. */
2961 if (outermost_context_p ())
2962 cu->list_in_scope = &file_symbols;
2963
2964 processing_current_prefix = previous_prefix;
2965 if (back_to != NULL)
2966 do_cleanups (back_to);
2967 }
2968
2969 /* Process all the DIES contained within a lexical block scope. Start
2970 a new scope, process the dies, and then close the scope. */
2971
2972 static void
2973 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2974 {
2975 struct objfile *objfile = cu->objfile;
2976 struct context_stack *new;
2977 CORE_ADDR lowpc, highpc;
2978 struct die_info *child_die;
2979 CORE_ADDR baseaddr;
2980
2981 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2982
2983 /* Ignore blocks with missing or invalid low and high pc attributes. */
2984 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2985 as multiple lexical blocks? Handling children in a sane way would
2986 be nasty. Might be easier to properly extend generic blocks to
2987 describe ranges. */
2988 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2989 return;
2990 lowpc += baseaddr;
2991 highpc += baseaddr;
2992
2993 push_context (0, lowpc);
2994 if (die->child != NULL)
2995 {
2996 child_die = die->child;
2997 while (child_die && child_die->tag)
2998 {
2999 process_die (child_die, cu);
3000 child_die = sibling_die (child_die);
3001 }
3002 }
3003 new = pop_context ();
3004
3005 if (local_symbols != NULL)
3006 {
3007 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3008 highpc, objfile);
3009 }
3010 local_symbols = new->locals;
3011 }
3012
3013 /* Get low and high pc attributes from a die. Return 1 if the attributes
3014 are present and valid, otherwise, return 0. Return -1 if the range is
3015 discontinuous, i.e. derived from DW_AT_ranges information. */
3016 static int
3017 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3018 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3019 {
3020 struct objfile *objfile = cu->objfile;
3021 struct comp_unit_head *cu_header = &cu->header;
3022 struct attribute *attr;
3023 bfd *obfd = objfile->obfd;
3024 CORE_ADDR low = 0;
3025 CORE_ADDR high = 0;
3026 int ret = 0;
3027
3028 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3029 if (attr)
3030 {
3031 high = DW_ADDR (attr);
3032 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3033 if (attr)
3034 low = DW_ADDR (attr);
3035 else
3036 /* Found high w/o low attribute. */
3037 return 0;
3038
3039 /* Found consecutive range of addresses. */
3040 ret = 1;
3041 }
3042 else
3043 {
3044 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3045 if (attr != NULL)
3046 {
3047 unsigned int addr_size = cu_header->addr_size;
3048 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3049 /* Value of the DW_AT_ranges attribute is the offset in the
3050 .debug_ranges section. */
3051 unsigned int offset = DW_UNSND (attr);
3052 /* Base address selection entry. */
3053 CORE_ADDR base;
3054 int found_base;
3055 int dummy;
3056 char *buffer;
3057 CORE_ADDR marker;
3058 int low_set;
3059
3060 found_base = cu_header->base_known;
3061 base = cu_header->base_address;
3062
3063 if (offset >= dwarf2_per_objfile->ranges_size)
3064 {
3065 complaint (&symfile_complaints,
3066 "Offset %d out of bounds for DW_AT_ranges attribute",
3067 offset);
3068 return 0;
3069 }
3070 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3071
3072 /* Read in the largest possible address. */
3073 marker = read_address (obfd, buffer, cu, &dummy);
3074 if ((marker & mask) == mask)
3075 {
3076 /* If we found the largest possible address, then
3077 read the base address. */
3078 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3079 buffer += 2 * addr_size;
3080 offset += 2 * addr_size;
3081 found_base = 1;
3082 }
3083
3084 low_set = 0;
3085
3086 while (1)
3087 {
3088 CORE_ADDR range_beginning, range_end;
3089
3090 range_beginning = read_address (obfd, buffer, cu, &dummy);
3091 buffer += addr_size;
3092 range_end = read_address (obfd, buffer, cu, &dummy);
3093 buffer += addr_size;
3094 offset += 2 * addr_size;
3095
3096 /* An end of list marker is a pair of zero addresses. */
3097 if (range_beginning == 0 && range_end == 0)
3098 /* Found the end of list entry. */
3099 break;
3100
3101 /* Each base address selection entry is a pair of 2 values.
3102 The first is the largest possible address, the second is
3103 the base address. Check for a base address here. */
3104 if ((range_beginning & mask) == mask)
3105 {
3106 /* If we found the largest possible address, then
3107 read the base address. */
3108 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3109 found_base = 1;
3110 continue;
3111 }
3112
3113 if (!found_base)
3114 {
3115 /* We have no valid base address for the ranges
3116 data. */
3117 complaint (&symfile_complaints,
3118 "Invalid .debug_ranges data (no base address)");
3119 return 0;
3120 }
3121
3122 range_beginning += base;
3123 range_end += base;
3124
3125 /* FIXME: This is recording everything as a low-high
3126 segment of consecutive addresses. We should have a
3127 data structure for discontiguous block ranges
3128 instead. */
3129 if (! low_set)
3130 {
3131 low = range_beginning;
3132 high = range_end;
3133 low_set = 1;
3134 }
3135 else
3136 {
3137 if (range_beginning < low)
3138 low = range_beginning;
3139 if (range_end > high)
3140 high = range_end;
3141 }
3142 }
3143
3144 if (! low_set)
3145 /* If the first entry is an end-of-list marker, the range
3146 describes an empty scope, i.e. no instructions. */
3147 return 0;
3148
3149 ret = -1;
3150 }
3151 }
3152
3153 if (high < low)
3154 return 0;
3155
3156 /* When using the GNU linker, .gnu.linkonce. sections are used to
3157 eliminate duplicate copies of functions and vtables and such.
3158 The linker will arbitrarily choose one and discard the others.
3159 The AT_*_pc values for such functions refer to local labels in
3160 these sections. If the section from that file was discarded, the
3161 labels are not in the output, so the relocs get a value of 0.
3162 If this is a discarded function, mark the pc bounds as invalid,
3163 so that GDB will ignore it. */
3164 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
3165 return 0;
3166
3167 *lowpc = low;
3168 *highpc = high;
3169 return ret;
3170 }
3171
3172 /* Get the low and high pc's represented by the scope DIE, and store
3173 them in *LOWPC and *HIGHPC. If the correct values can't be
3174 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3175
3176 static void
3177 get_scope_pc_bounds (struct die_info *die,
3178 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3179 struct dwarf2_cu *cu)
3180 {
3181 CORE_ADDR best_low = (CORE_ADDR) -1;
3182 CORE_ADDR best_high = (CORE_ADDR) 0;
3183 CORE_ADDR current_low, current_high;
3184
3185 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3186 {
3187 best_low = current_low;
3188 best_high = current_high;
3189 }
3190 else
3191 {
3192 struct die_info *child = die->child;
3193
3194 while (child && child->tag)
3195 {
3196 switch (child->tag) {
3197 case DW_TAG_subprogram:
3198 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3199 {
3200 best_low = min (best_low, current_low);
3201 best_high = max (best_high, current_high);
3202 }
3203 break;
3204 case DW_TAG_namespace:
3205 /* FIXME: carlton/2004-01-16: Should we do this for
3206 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3207 that current GCC's always emit the DIEs corresponding
3208 to definitions of methods of classes as children of a
3209 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3210 the DIEs giving the declarations, which could be
3211 anywhere). But I don't see any reason why the
3212 standards says that they have to be there. */
3213 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3214
3215 if (current_low != ((CORE_ADDR) -1))
3216 {
3217 best_low = min (best_low, current_low);
3218 best_high = max (best_high, current_high);
3219 }
3220 break;
3221 default:
3222 /* Ignore. */
3223 break;
3224 }
3225
3226 child = sibling_die (child);
3227 }
3228 }
3229
3230 *lowpc = best_low;
3231 *highpc = best_high;
3232 }
3233
3234 /* Add an aggregate field to the field list. */
3235
3236 static void
3237 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3238 struct dwarf2_cu *cu)
3239 {
3240 struct objfile *objfile = cu->objfile;
3241 struct nextfield *new_field;
3242 struct attribute *attr;
3243 struct field *fp;
3244 char *fieldname = "";
3245
3246 /* Allocate a new field list entry and link it in. */
3247 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3248 make_cleanup (xfree, new_field);
3249 memset (new_field, 0, sizeof (struct nextfield));
3250 new_field->next = fip->fields;
3251 fip->fields = new_field;
3252 fip->nfields++;
3253
3254 /* Handle accessibility and virtuality of field.
3255 The default accessibility for members is public, the default
3256 accessibility for inheritance is private. */
3257 if (die->tag != DW_TAG_inheritance)
3258 new_field->accessibility = DW_ACCESS_public;
3259 else
3260 new_field->accessibility = DW_ACCESS_private;
3261 new_field->virtuality = DW_VIRTUALITY_none;
3262
3263 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3264 if (attr)
3265 new_field->accessibility = DW_UNSND (attr);
3266 if (new_field->accessibility != DW_ACCESS_public)
3267 fip->non_public_fields = 1;
3268 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3269 if (attr)
3270 new_field->virtuality = DW_UNSND (attr);
3271
3272 fp = &new_field->field;
3273
3274 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3275 {
3276 /* Data member other than a C++ static data member. */
3277
3278 /* Get type of field. */
3279 fp->type = die_type (die, cu);
3280
3281 FIELD_STATIC_KIND (*fp) = 0;
3282
3283 /* Get bit size of field (zero if none). */
3284 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3285 if (attr)
3286 {
3287 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3288 }
3289 else
3290 {
3291 FIELD_BITSIZE (*fp) = 0;
3292 }
3293
3294 /* Get bit offset of field. */
3295 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3296 if (attr)
3297 {
3298 FIELD_BITPOS (*fp) =
3299 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3300 }
3301 else
3302 FIELD_BITPOS (*fp) = 0;
3303 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3304 if (attr)
3305 {
3306 if (BITS_BIG_ENDIAN)
3307 {
3308 /* For big endian bits, the DW_AT_bit_offset gives the
3309 additional bit offset from the MSB of the containing
3310 anonymous object to the MSB of the field. We don't
3311 have to do anything special since we don't need to
3312 know the size of the anonymous object. */
3313 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3314 }
3315 else
3316 {
3317 /* For little endian bits, compute the bit offset to the
3318 MSB of the anonymous object, subtract off the number of
3319 bits from the MSB of the field to the MSB of the
3320 object, and then subtract off the number of bits of
3321 the field itself. The result is the bit offset of
3322 the LSB of the field. */
3323 int anonymous_size;
3324 int bit_offset = DW_UNSND (attr);
3325
3326 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3327 if (attr)
3328 {
3329 /* The size of the anonymous object containing
3330 the bit field is explicit, so use the
3331 indicated size (in bytes). */
3332 anonymous_size = DW_UNSND (attr);
3333 }
3334 else
3335 {
3336 /* The size of the anonymous object containing
3337 the bit field must be inferred from the type
3338 attribute of the data member containing the
3339 bit field. */
3340 anonymous_size = TYPE_LENGTH (fp->type);
3341 }
3342 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3343 - bit_offset - FIELD_BITSIZE (*fp);
3344 }
3345 }
3346
3347 /* Get name of field. */
3348 attr = dwarf2_attr (die, DW_AT_name, cu);
3349 if (attr && DW_STRING (attr))
3350 fieldname = DW_STRING (attr);
3351
3352 /* The name is already allocated along with this objfile, so we don't
3353 need to duplicate it for the type. */
3354 fp->name = fieldname;
3355
3356 /* Change accessibility for artificial fields (e.g. virtual table
3357 pointer or virtual base class pointer) to private. */
3358 if (dwarf2_attr (die, DW_AT_artificial, cu))
3359 {
3360 new_field->accessibility = DW_ACCESS_private;
3361 fip->non_public_fields = 1;
3362 }
3363 }
3364 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3365 {
3366 /* C++ static member. */
3367
3368 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3369 is a declaration, but all versions of G++ as of this writing
3370 (so through at least 3.2.1) incorrectly generate
3371 DW_TAG_variable tags. */
3372
3373 char *physname;
3374
3375 /* Get name of field. */
3376 attr = dwarf2_attr (die, DW_AT_name, cu);
3377 if (attr && DW_STRING (attr))
3378 fieldname = DW_STRING (attr);
3379 else
3380 return;
3381
3382 /* Get physical name. */
3383 physname = dwarf2_linkage_name (die, cu);
3384
3385 /* The name is already allocated along with this objfile, so we don't
3386 need to duplicate it for the type. */
3387 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3388 FIELD_TYPE (*fp) = die_type (die, cu);
3389 FIELD_NAME (*fp) = fieldname;
3390 }
3391 else if (die->tag == DW_TAG_inheritance)
3392 {
3393 /* C++ base class field. */
3394 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3395 if (attr)
3396 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3397 * bits_per_byte);
3398 FIELD_BITSIZE (*fp) = 0;
3399 FIELD_STATIC_KIND (*fp) = 0;
3400 FIELD_TYPE (*fp) = die_type (die, cu);
3401 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3402 fip->nbaseclasses++;
3403 }
3404 }
3405
3406 /* Create the vector of fields, and attach it to the type. */
3407
3408 static void
3409 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3410 struct dwarf2_cu *cu)
3411 {
3412 int nfields = fip->nfields;
3413
3414 /* Record the field count, allocate space for the array of fields,
3415 and create blank accessibility bitfields if necessary. */
3416 TYPE_NFIELDS (type) = nfields;
3417 TYPE_FIELDS (type) = (struct field *)
3418 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3419 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3420
3421 if (fip->non_public_fields)
3422 {
3423 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3424
3425 TYPE_FIELD_PRIVATE_BITS (type) =
3426 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3427 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3428
3429 TYPE_FIELD_PROTECTED_BITS (type) =
3430 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3431 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3432
3433 TYPE_FIELD_IGNORE_BITS (type) =
3434 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3435 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3436 }
3437
3438 /* If the type has baseclasses, allocate and clear a bit vector for
3439 TYPE_FIELD_VIRTUAL_BITS. */
3440 if (fip->nbaseclasses)
3441 {
3442 int num_bytes = B_BYTES (fip->nbaseclasses);
3443 char *pointer;
3444
3445 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3446 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3447 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3448 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3449 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3450 }
3451
3452 /* Copy the saved-up fields into the field vector. Start from the head
3453 of the list, adding to the tail of the field array, so that they end
3454 up in the same order in the array in which they were added to the list. */
3455 while (nfields-- > 0)
3456 {
3457 TYPE_FIELD (type, nfields) = fip->fields->field;
3458 switch (fip->fields->accessibility)
3459 {
3460 case DW_ACCESS_private:
3461 SET_TYPE_FIELD_PRIVATE (type, nfields);
3462 break;
3463
3464 case DW_ACCESS_protected:
3465 SET_TYPE_FIELD_PROTECTED (type, nfields);
3466 break;
3467
3468 case DW_ACCESS_public:
3469 break;
3470
3471 default:
3472 /* Unknown accessibility. Complain and treat it as public. */
3473 {
3474 complaint (&symfile_complaints, "unsupported accessibility %d",
3475 fip->fields->accessibility);
3476 }
3477 break;
3478 }
3479 if (nfields < fip->nbaseclasses)
3480 {
3481 switch (fip->fields->virtuality)
3482 {
3483 case DW_VIRTUALITY_virtual:
3484 case DW_VIRTUALITY_pure_virtual:
3485 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3486 break;
3487 }
3488 }
3489 fip->fields = fip->fields->next;
3490 }
3491 }
3492
3493 /* Add a member function to the proper fieldlist. */
3494
3495 static void
3496 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3497 struct type *type, struct dwarf2_cu *cu)
3498 {
3499 struct objfile *objfile = cu->objfile;
3500 struct attribute *attr;
3501 struct fnfieldlist *flp;
3502 int i;
3503 struct fn_field *fnp;
3504 char *fieldname;
3505 char *physname;
3506 struct nextfnfield *new_fnfield;
3507
3508 /* Get name of member function. */
3509 attr = dwarf2_attr (die, DW_AT_name, cu);
3510 if (attr && DW_STRING (attr))
3511 fieldname = DW_STRING (attr);
3512 else
3513 return;
3514
3515 /* Get the mangled name. */
3516 physname = dwarf2_linkage_name (die, cu);
3517
3518 /* Look up member function name in fieldlist. */
3519 for (i = 0; i < fip->nfnfields; i++)
3520 {
3521 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3522 break;
3523 }
3524
3525 /* Create new list element if necessary. */
3526 if (i < fip->nfnfields)
3527 flp = &fip->fnfieldlists[i];
3528 else
3529 {
3530 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3531 {
3532 fip->fnfieldlists = (struct fnfieldlist *)
3533 xrealloc (fip->fnfieldlists,
3534 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3535 * sizeof (struct fnfieldlist));
3536 if (fip->nfnfields == 0)
3537 make_cleanup (free_current_contents, &fip->fnfieldlists);
3538 }
3539 flp = &fip->fnfieldlists[fip->nfnfields];
3540 flp->name = fieldname;
3541 flp->length = 0;
3542 flp->head = NULL;
3543 fip->nfnfields++;
3544 }
3545
3546 /* Create a new member function field and chain it to the field list
3547 entry. */
3548 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3549 make_cleanup (xfree, new_fnfield);
3550 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3551 new_fnfield->next = flp->head;
3552 flp->head = new_fnfield;
3553 flp->length++;
3554
3555 /* Fill in the member function field info. */
3556 fnp = &new_fnfield->fnfield;
3557 /* The name is already allocated along with this objfile, so we don't
3558 need to duplicate it for the type. */
3559 fnp->physname = physname ? physname : "";
3560 fnp->type = alloc_type (objfile);
3561 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3562 {
3563 int nparams = TYPE_NFIELDS (die->type);
3564
3565 /* TYPE is the domain of this method, and DIE->TYPE is the type
3566 of the method itself (TYPE_CODE_METHOD). */
3567 smash_to_method_type (fnp->type, type,
3568 TYPE_TARGET_TYPE (die->type),
3569 TYPE_FIELDS (die->type),
3570 TYPE_NFIELDS (die->type),
3571 TYPE_VARARGS (die->type));
3572
3573 /* Handle static member functions.
3574 Dwarf2 has no clean way to discern C++ static and non-static
3575 member functions. G++ helps GDB by marking the first
3576 parameter for non-static member functions (which is the
3577 this pointer) as artificial. We obtain this information
3578 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3579 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3580 fnp->voffset = VOFFSET_STATIC;
3581 }
3582 else
3583 complaint (&symfile_complaints, "member function type missing for '%s'",
3584 physname);
3585
3586 /* Get fcontext from DW_AT_containing_type if present. */
3587 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3588 fnp->fcontext = die_containing_type (die, cu);
3589
3590 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3591 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3592
3593 /* Get accessibility. */
3594 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3595 if (attr)
3596 {
3597 switch (DW_UNSND (attr))
3598 {
3599 case DW_ACCESS_private:
3600 fnp->is_private = 1;
3601 break;
3602 case DW_ACCESS_protected:
3603 fnp->is_protected = 1;
3604 break;
3605 }
3606 }
3607
3608 /* Check for artificial methods. */
3609 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3610 if (attr && DW_UNSND (attr) != 0)
3611 fnp->is_artificial = 1;
3612
3613 /* Get index in virtual function table if it is a virtual member function. */
3614 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3615 if (attr)
3616 {
3617 /* Support the .debug_loc offsets */
3618 if (attr_form_is_block (attr))
3619 {
3620 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3621 }
3622 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3623 {
3624 dwarf2_complex_location_expr_complaint ();
3625 }
3626 else
3627 {
3628 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3629 fieldname);
3630 }
3631 }
3632 }
3633
3634 /* Create the vector of member function fields, and attach it to the type. */
3635
3636 static void
3637 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3638 struct dwarf2_cu *cu)
3639 {
3640 struct fnfieldlist *flp;
3641 int total_length = 0;
3642 int i;
3643
3644 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3645 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3646 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3647
3648 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3649 {
3650 struct nextfnfield *nfp = flp->head;
3651 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3652 int k;
3653
3654 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3655 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3656 fn_flp->fn_fields = (struct fn_field *)
3657 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3658 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3659 fn_flp->fn_fields[k] = nfp->fnfield;
3660
3661 total_length += flp->length;
3662 }
3663
3664 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3665 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3666 }
3667
3668
3669 /* Returns non-zero if NAME is the name of a vtable member in CU's
3670 language, zero otherwise. */
3671 static int
3672 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3673 {
3674 static const char vptr[] = "_vptr";
3675 static const char vtable[] = "vtable";
3676
3677 /* Look for the C++ and Java forms of the vtable. */
3678 if ((cu->language == language_java
3679 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3680 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3681 && is_cplus_marker (name[sizeof (vptr) - 1])))
3682 return 1;
3683
3684 return 0;
3685 }
3686
3687
3688 /* Called when we find the DIE that starts a structure or union scope
3689 (definition) to process all dies that define the members of the
3690 structure or union.
3691
3692 NOTE: we need to call struct_type regardless of whether or not the
3693 DIE has an at_name attribute, since it might be an anonymous
3694 structure or union. This gets the type entered into our set of
3695 user defined types.
3696
3697 However, if the structure is incomplete (an opaque struct/union)
3698 then suppress creating a symbol table entry for it since gdb only
3699 wants to find the one with the complete definition. Note that if
3700 it is complete, we just call new_symbol, which does it's own
3701 checking about whether the struct/union is anonymous or not (and
3702 suppresses creating a symbol table entry itself). */
3703
3704 static void
3705 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3706 {
3707 struct objfile *objfile = cu->objfile;
3708 struct type *type;
3709 struct attribute *attr;
3710 const char *previous_prefix = processing_current_prefix;
3711 struct cleanup *back_to = NULL;
3712
3713 if (die->type)
3714 return;
3715
3716 type = alloc_type (objfile);
3717
3718 INIT_CPLUS_SPECIFIC (type);
3719 attr = dwarf2_attr (die, DW_AT_name, cu);
3720 if (attr && DW_STRING (attr))
3721 {
3722 if (cu->language == language_cplus
3723 || cu->language == language_java)
3724 {
3725 char *new_prefix = determine_class_name (die, cu);
3726 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3727 strlen (new_prefix),
3728 &objfile->objfile_obstack);
3729 back_to = make_cleanup (xfree, new_prefix);
3730 processing_current_prefix = new_prefix;
3731 }
3732 else
3733 {
3734 /* The name is already allocated along with this objfile, so
3735 we don't need to duplicate it for the type. */
3736 TYPE_TAG_NAME (type) = DW_STRING (attr);
3737 }
3738 }
3739
3740 if (die->tag == DW_TAG_structure_type)
3741 {
3742 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3743 }
3744 else if (die->tag == DW_TAG_union_type)
3745 {
3746 TYPE_CODE (type) = TYPE_CODE_UNION;
3747 }
3748 else
3749 {
3750 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3751 in gdbtypes.h. */
3752 TYPE_CODE (type) = TYPE_CODE_CLASS;
3753 }
3754
3755 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3756 if (attr)
3757 {
3758 TYPE_LENGTH (type) = DW_UNSND (attr);
3759 }
3760 else
3761 {
3762 TYPE_LENGTH (type) = 0;
3763 }
3764
3765 if (die_is_declaration (die, cu))
3766 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3767
3768 /* We need to add the type field to the die immediately so we don't
3769 infinitely recurse when dealing with pointers to the structure
3770 type within the structure itself. */
3771 set_die_type (die, type, cu);
3772
3773 if (die->child != NULL && ! die_is_declaration (die, cu))
3774 {
3775 struct field_info fi;
3776 struct die_info *child_die;
3777 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3778
3779 memset (&fi, 0, sizeof (struct field_info));
3780
3781 child_die = die->child;
3782
3783 while (child_die && child_die->tag)
3784 {
3785 if (child_die->tag == DW_TAG_member
3786 || child_die->tag == DW_TAG_variable)
3787 {
3788 /* NOTE: carlton/2002-11-05: A C++ static data member
3789 should be a DW_TAG_member that is a declaration, but
3790 all versions of G++ as of this writing (so through at
3791 least 3.2.1) incorrectly generate DW_TAG_variable
3792 tags for them instead. */
3793 dwarf2_add_field (&fi, child_die, cu);
3794 }
3795 else if (child_die->tag == DW_TAG_subprogram)
3796 {
3797 /* C++ member function. */
3798 read_type_die (child_die, cu);
3799 dwarf2_add_member_fn (&fi, child_die, type, cu);
3800 }
3801 else if (child_die->tag == DW_TAG_inheritance)
3802 {
3803 /* C++ base class field. */
3804 dwarf2_add_field (&fi, child_die, cu);
3805 }
3806 child_die = sibling_die (child_die);
3807 }
3808
3809 /* Attach fields and member functions to the type. */
3810 if (fi.nfields)
3811 dwarf2_attach_fields_to_type (&fi, type, cu);
3812 if (fi.nfnfields)
3813 {
3814 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3815
3816 /* Get the type which refers to the base class (possibly this
3817 class itself) which contains the vtable pointer for the current
3818 class from the DW_AT_containing_type attribute. */
3819
3820 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3821 {
3822 struct type *t = die_containing_type (die, cu);
3823
3824 TYPE_VPTR_BASETYPE (type) = t;
3825 if (type == t)
3826 {
3827 int i;
3828
3829 /* Our own class provides vtbl ptr. */
3830 for (i = TYPE_NFIELDS (t) - 1;
3831 i >= TYPE_N_BASECLASSES (t);
3832 --i)
3833 {
3834 char *fieldname = TYPE_FIELD_NAME (t, i);
3835
3836 if (is_vtable_name (fieldname, cu))
3837 {
3838 TYPE_VPTR_FIELDNO (type) = i;
3839 break;
3840 }
3841 }
3842
3843 /* Complain if virtual function table field not found. */
3844 if (i < TYPE_N_BASECLASSES (t))
3845 complaint (&symfile_complaints,
3846 "virtual function table pointer not found when defining class '%s'",
3847 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3848 "");
3849 }
3850 else
3851 {
3852 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3853 }
3854 }
3855 }
3856
3857 do_cleanups (back_to);
3858 }
3859
3860 processing_current_prefix = previous_prefix;
3861 if (back_to != NULL)
3862 do_cleanups (back_to);
3863 }
3864
3865 static void
3866 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3867 {
3868 struct objfile *objfile = cu->objfile;
3869 const char *previous_prefix = processing_current_prefix;
3870 struct die_info *child_die = die->child;
3871
3872 if (TYPE_TAG_NAME (die->type) != NULL)
3873 processing_current_prefix = TYPE_TAG_NAME (die->type);
3874
3875 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3876 snapshots) has been known to create a die giving a declaration
3877 for a class that has, as a child, a die giving a definition for a
3878 nested class. So we have to process our children even if the
3879 current die is a declaration. Normally, of course, a declaration
3880 won't have any children at all. */
3881
3882 while (child_die != NULL && child_die->tag)
3883 {
3884 if (child_die->tag == DW_TAG_member
3885 || child_die->tag == DW_TAG_variable
3886 || child_die->tag == DW_TAG_inheritance)
3887 {
3888 /* Do nothing. */
3889 }
3890 else
3891 process_die (child_die, cu);
3892
3893 child_die = sibling_die (child_die);
3894 }
3895
3896 if (die->child != NULL && ! die_is_declaration (die, cu))
3897 new_symbol (die, die->type, cu);
3898
3899 processing_current_prefix = previous_prefix;
3900 }
3901
3902 /* Given a DW_AT_enumeration_type die, set its type. We do not
3903 complete the type's fields yet, or create any symbols. */
3904
3905 static void
3906 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3907 {
3908 struct objfile *objfile = cu->objfile;
3909 struct type *type;
3910 struct attribute *attr;
3911
3912 if (die->type)
3913 return;
3914
3915 type = alloc_type (objfile);
3916
3917 TYPE_CODE (type) = TYPE_CODE_ENUM;
3918 attr = dwarf2_attr (die, DW_AT_name, cu);
3919 if (attr && DW_STRING (attr))
3920 {
3921 char *name = DW_STRING (attr);
3922
3923 if (processing_has_namespace_info)
3924 {
3925 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3926 processing_current_prefix,
3927 name, cu);
3928 }
3929 else
3930 {
3931 /* The name is already allocated along with this objfile, so
3932 we don't need to duplicate it for the type. */
3933 TYPE_TAG_NAME (type) = name;
3934 }
3935 }
3936
3937 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3938 if (attr)
3939 {
3940 TYPE_LENGTH (type) = DW_UNSND (attr);
3941 }
3942 else
3943 {
3944 TYPE_LENGTH (type) = 0;
3945 }
3946
3947 set_die_type (die, type, cu);
3948 }
3949
3950 /* Determine the name of the type represented by DIE, which should be
3951 a named C++ or Java compound type. Return the name in question; the caller
3952 is responsible for xfree()'ing it. */
3953
3954 static char *
3955 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3956 {
3957 struct cleanup *back_to = NULL;
3958 struct die_info *spec_die = die_specification (die, cu);
3959 char *new_prefix = NULL;
3960
3961 /* If this is the definition of a class that is declared by another
3962 die, then processing_current_prefix may not be accurate; see
3963 read_func_scope for a similar example. */
3964 if (spec_die != NULL)
3965 {
3966 char *specification_prefix = determine_prefix (spec_die, cu);
3967 processing_current_prefix = specification_prefix;
3968 back_to = make_cleanup (xfree, specification_prefix);
3969 }
3970
3971 /* If we don't have namespace debug info, guess the name by trying
3972 to demangle the names of members, just like we did in
3973 guess_structure_name. */
3974 if (!processing_has_namespace_info)
3975 {
3976 struct die_info *child;
3977
3978 for (child = die->child;
3979 child != NULL && child->tag != 0;
3980 child = sibling_die (child))
3981 {
3982 if (child->tag == DW_TAG_subprogram)
3983 {
3984 new_prefix
3985 = language_class_name_from_physname (cu->language_defn,
3986 dwarf2_linkage_name
3987 (child, cu));
3988
3989 if (new_prefix != NULL)
3990 break;
3991 }
3992 }
3993 }
3994
3995 if (new_prefix == NULL)
3996 {
3997 const char *name = dwarf2_name (die, cu);
3998 new_prefix = typename_concat (NULL, processing_current_prefix,
3999 name ? name : "<<anonymous>>",
4000 cu);
4001 }
4002
4003 if (back_to != NULL)
4004 do_cleanups (back_to);
4005
4006 return new_prefix;
4007 }
4008
4009 /* Given a pointer to a die which begins an enumeration, process all
4010 the dies that define the members of the enumeration, and create the
4011 symbol for the enumeration type.
4012
4013 NOTE: We reverse the order of the element list. */
4014
4015 static void
4016 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4017 {
4018 struct objfile *objfile = cu->objfile;
4019 struct die_info *child_die;
4020 struct field *fields;
4021 struct attribute *attr;
4022 struct symbol *sym;
4023 int num_fields;
4024 int unsigned_enum = 1;
4025
4026 num_fields = 0;
4027 fields = NULL;
4028 if (die->child != NULL)
4029 {
4030 child_die = die->child;
4031 while (child_die && child_die->tag)
4032 {
4033 if (child_die->tag != DW_TAG_enumerator)
4034 {
4035 process_die (child_die, cu);
4036 }
4037 else
4038 {
4039 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4040 if (attr)
4041 {
4042 sym = new_symbol (child_die, die->type, cu);
4043 if (SYMBOL_VALUE (sym) < 0)
4044 unsigned_enum = 0;
4045
4046 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4047 {
4048 fields = (struct field *)
4049 xrealloc (fields,
4050 (num_fields + DW_FIELD_ALLOC_CHUNK)
4051 * sizeof (struct field));
4052 }
4053
4054 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4055 FIELD_TYPE (fields[num_fields]) = NULL;
4056 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4057 FIELD_BITSIZE (fields[num_fields]) = 0;
4058 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4059
4060 num_fields++;
4061 }
4062 }
4063
4064 child_die = sibling_die (child_die);
4065 }
4066
4067 if (num_fields)
4068 {
4069 TYPE_NFIELDS (die->type) = num_fields;
4070 TYPE_FIELDS (die->type) = (struct field *)
4071 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4072 memcpy (TYPE_FIELDS (die->type), fields,
4073 sizeof (struct field) * num_fields);
4074 xfree (fields);
4075 }
4076 if (unsigned_enum)
4077 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4078 }
4079
4080 new_symbol (die, die->type, cu);
4081 }
4082
4083 /* Extract all information from a DW_TAG_array_type DIE and put it in
4084 the DIE's type field. For now, this only handles one dimensional
4085 arrays. */
4086
4087 static void
4088 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4089 {
4090 struct objfile *objfile = cu->objfile;
4091 struct die_info *child_die;
4092 struct type *type = NULL;
4093 struct type *element_type, *range_type, *index_type;
4094 struct type **range_types = NULL;
4095 struct attribute *attr;
4096 int ndim = 0;
4097 struct cleanup *back_to;
4098
4099 /* Return if we've already decoded this type. */
4100 if (die->type)
4101 {
4102 return;
4103 }
4104
4105 element_type = die_type (die, cu);
4106
4107 /* Irix 6.2 native cc creates array types without children for
4108 arrays with unspecified length. */
4109 if (die->child == NULL)
4110 {
4111 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4112 range_type = create_range_type (NULL, index_type, 0, -1);
4113 set_die_type (die, create_array_type (NULL, element_type, range_type),
4114 cu);
4115 return;
4116 }
4117
4118 back_to = make_cleanup (null_cleanup, NULL);
4119 child_die = die->child;
4120 while (child_die && child_die->tag)
4121 {
4122 if (child_die->tag == DW_TAG_subrange_type)
4123 {
4124 read_subrange_type (child_die, cu);
4125
4126 if (child_die->type != NULL)
4127 {
4128 /* The range type was succesfully read. Save it for
4129 the array type creation. */
4130 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4131 {
4132 range_types = (struct type **)
4133 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4134 * sizeof (struct type *));
4135 if (ndim == 0)
4136 make_cleanup (free_current_contents, &range_types);
4137 }
4138 range_types[ndim++] = child_die->type;
4139 }
4140 }
4141 child_die = sibling_die (child_die);
4142 }
4143
4144 /* Dwarf2 dimensions are output from left to right, create the
4145 necessary array types in backwards order. */
4146
4147 type = element_type;
4148
4149 if (read_array_order (die, cu) == DW_ORD_col_major)
4150 {
4151 int i = 0;
4152 while (i < ndim)
4153 type = create_array_type (NULL, type, range_types[i++]);
4154 }
4155 else
4156 {
4157 while (ndim-- > 0)
4158 type = create_array_type (NULL, type, range_types[ndim]);
4159 }
4160
4161 /* Understand Dwarf2 support for vector types (like they occur on
4162 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4163 array type. This is not part of the Dwarf2/3 standard yet, but a
4164 custom vendor extension. The main difference between a regular
4165 array and the vector variant is that vectors are passed by value
4166 to functions. */
4167 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4168 if (attr)
4169 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4170
4171 do_cleanups (back_to);
4172
4173 /* Install the type in the die. */
4174 set_die_type (die, type, cu);
4175 }
4176
4177 static enum dwarf_array_dim_ordering
4178 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4179 {
4180 struct attribute *attr;
4181
4182 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4183
4184 if (attr) return DW_SND (attr);
4185
4186 /*
4187 GNU F77 is a special case, as at 08/2004 array type info is the
4188 opposite order to the dwarf2 specification, but data is still
4189 laid out as per normal fortran.
4190
4191 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4192 version checking.
4193 */
4194
4195 if (cu->language == language_fortran &&
4196 cu->producer && strstr (cu->producer, "GNU F77"))
4197 {
4198 return DW_ORD_row_major;
4199 }
4200
4201 switch (cu->language_defn->la_array_ordering)
4202 {
4203 case array_column_major:
4204 return DW_ORD_col_major;
4205 case array_row_major:
4206 default:
4207 return DW_ORD_row_major;
4208 };
4209 }
4210
4211
4212 /* First cut: install each common block member as a global variable. */
4213
4214 static void
4215 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4216 {
4217 struct die_info *child_die;
4218 struct attribute *attr;
4219 struct symbol *sym;
4220 CORE_ADDR base = (CORE_ADDR) 0;
4221
4222 attr = dwarf2_attr (die, DW_AT_location, cu);
4223 if (attr)
4224 {
4225 /* Support the .debug_loc offsets */
4226 if (attr_form_is_block (attr))
4227 {
4228 base = decode_locdesc (DW_BLOCK (attr), cu);
4229 }
4230 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4231 {
4232 dwarf2_complex_location_expr_complaint ();
4233 }
4234 else
4235 {
4236 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4237 "common block member");
4238 }
4239 }
4240 if (die->child != NULL)
4241 {
4242 child_die = die->child;
4243 while (child_die && child_die->tag)
4244 {
4245 sym = new_symbol (child_die, NULL, cu);
4246 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4247 if (attr)
4248 {
4249 SYMBOL_VALUE_ADDRESS (sym) =
4250 base + decode_locdesc (DW_BLOCK (attr), cu);
4251 add_symbol_to_list (sym, &global_symbols);
4252 }
4253 child_die = sibling_die (child_die);
4254 }
4255 }
4256 }
4257
4258 /* Read a C++ namespace. */
4259
4260 static void
4261 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4262 {
4263 struct objfile *objfile = cu->objfile;
4264 const char *previous_prefix = processing_current_prefix;
4265 const char *name;
4266 int is_anonymous;
4267 struct die_info *current_die;
4268 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4269
4270 name = namespace_name (die, &is_anonymous, cu);
4271
4272 /* Now build the name of the current namespace. */
4273
4274 if (previous_prefix[0] == '\0')
4275 {
4276 processing_current_prefix = name;
4277 }
4278 else
4279 {
4280 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4281 make_cleanup (xfree, temp_name);
4282 processing_current_prefix = temp_name;
4283 }
4284
4285 /* Add a symbol associated to this if we haven't seen the namespace
4286 before. Also, add a using directive if it's an anonymous
4287 namespace. */
4288
4289 if (dwarf2_extension (die, cu) == NULL)
4290 {
4291 struct type *type;
4292
4293 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4294 this cast will hopefully become unnecessary. */
4295 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4296 (char *) processing_current_prefix,
4297 objfile);
4298 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4299
4300 new_symbol (die, type, cu);
4301 set_die_type (die, type, cu);
4302
4303 if (is_anonymous)
4304 cp_add_using_directive (processing_current_prefix,
4305 strlen (previous_prefix),
4306 strlen (processing_current_prefix));
4307 }
4308
4309 if (die->child != NULL)
4310 {
4311 struct die_info *child_die = die->child;
4312
4313 while (child_die && child_die->tag)
4314 {
4315 process_die (child_die, cu);
4316 child_die = sibling_die (child_die);
4317 }
4318 }
4319
4320 processing_current_prefix = previous_prefix;
4321 do_cleanups (back_to);
4322 }
4323
4324 /* Return the name of the namespace represented by DIE. Set
4325 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4326 namespace. */
4327
4328 static const char *
4329 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4330 {
4331 struct die_info *current_die;
4332 const char *name = NULL;
4333
4334 /* Loop through the extensions until we find a name. */
4335
4336 for (current_die = die;
4337 current_die != NULL;
4338 current_die = dwarf2_extension (die, cu))
4339 {
4340 name = dwarf2_name (current_die, cu);
4341 if (name != NULL)
4342 break;
4343 }
4344
4345 /* Is it an anonymous namespace? */
4346
4347 *is_anonymous = (name == NULL);
4348 if (*is_anonymous)
4349 name = "(anonymous namespace)";
4350
4351 return name;
4352 }
4353
4354 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4355 the user defined type vector. */
4356
4357 static void
4358 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4359 {
4360 struct comp_unit_head *cu_header = &cu->header;
4361 struct type *type;
4362 struct attribute *attr_byte_size;
4363 struct attribute *attr_address_class;
4364 int byte_size, addr_class;
4365
4366 if (die->type)
4367 {
4368 return;
4369 }
4370
4371 type = lookup_pointer_type (die_type (die, cu));
4372
4373 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4374 if (attr_byte_size)
4375 byte_size = DW_UNSND (attr_byte_size);
4376 else
4377 byte_size = cu_header->addr_size;
4378
4379 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4380 if (attr_address_class)
4381 addr_class = DW_UNSND (attr_address_class);
4382 else
4383 addr_class = DW_ADDR_none;
4384
4385 /* If the pointer size or address class is different than the
4386 default, create a type variant marked as such and set the
4387 length accordingly. */
4388 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4389 {
4390 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4391 {
4392 int type_flags;
4393
4394 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4395 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4396 type = make_type_with_address_space (type, type_flags);
4397 }
4398 else if (TYPE_LENGTH (type) != byte_size)
4399 {
4400 complaint (&symfile_complaints, "invalid pointer size %d", byte_size);
4401 }
4402 else {
4403 /* Should we also complain about unhandled address classes? */
4404 }
4405 }
4406
4407 TYPE_LENGTH (type) = byte_size;
4408 set_die_type (die, type, cu);
4409 }
4410
4411 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4412 the user defined type vector. */
4413
4414 static void
4415 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4416 {
4417 struct objfile *objfile = cu->objfile;
4418 struct type *type;
4419 struct type *to_type;
4420 struct type *domain;
4421
4422 if (die->type)
4423 {
4424 return;
4425 }
4426
4427 type = alloc_type (objfile);
4428 to_type = die_type (die, cu);
4429 domain = die_containing_type (die, cu);
4430 smash_to_member_type (type, domain, to_type);
4431
4432 set_die_type (die, type, cu);
4433 }
4434
4435 /* Extract all information from a DW_TAG_reference_type DIE and add to
4436 the user defined type vector. */
4437
4438 static void
4439 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4440 {
4441 struct comp_unit_head *cu_header = &cu->header;
4442 struct type *type;
4443 struct attribute *attr;
4444
4445 if (die->type)
4446 {
4447 return;
4448 }
4449
4450 type = lookup_reference_type (die_type (die, cu));
4451 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4452 if (attr)
4453 {
4454 TYPE_LENGTH (type) = DW_UNSND (attr);
4455 }
4456 else
4457 {
4458 TYPE_LENGTH (type) = cu_header->addr_size;
4459 }
4460 set_die_type (die, type, cu);
4461 }
4462
4463 static void
4464 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4465 {
4466 struct type *base_type;
4467
4468 if (die->type)
4469 {
4470 return;
4471 }
4472
4473 base_type = die_type (die, cu);
4474 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4475 cu);
4476 }
4477
4478 static void
4479 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4480 {
4481 struct type *base_type;
4482
4483 if (die->type)
4484 {
4485 return;
4486 }
4487
4488 base_type = die_type (die, cu);
4489 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4490 cu);
4491 }
4492
4493 /* Extract all information from a DW_TAG_string_type DIE and add to
4494 the user defined type vector. It isn't really a user defined type,
4495 but it behaves like one, with other DIE's using an AT_user_def_type
4496 attribute to reference it. */
4497
4498 static void
4499 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4500 {
4501 struct objfile *objfile = cu->objfile;
4502 struct type *type, *range_type, *index_type, *char_type;
4503 struct attribute *attr;
4504 unsigned int length;
4505
4506 if (die->type)
4507 {
4508 return;
4509 }
4510
4511 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4512 if (attr)
4513 {
4514 length = DW_UNSND (attr);
4515 }
4516 else
4517 {
4518 /* check for the DW_AT_byte_size attribute */
4519 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4520 if (attr)
4521 {
4522 length = DW_UNSND (attr);
4523 }
4524 else
4525 {
4526 length = 1;
4527 }
4528 }
4529 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4530 range_type = create_range_type (NULL, index_type, 1, length);
4531 if (cu->language == language_fortran)
4532 {
4533 /* Need to create a unique string type for bounds
4534 information */
4535 type = create_string_type (0, range_type);
4536 }
4537 else
4538 {
4539 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4540 type = create_string_type (char_type, range_type);
4541 }
4542 set_die_type (die, type, cu);
4543 }
4544
4545 /* Handle DIES due to C code like:
4546
4547 struct foo
4548 {
4549 int (*funcp)(int a, long l);
4550 int b;
4551 };
4552
4553 ('funcp' generates a DW_TAG_subroutine_type DIE)
4554 */
4555
4556 static void
4557 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4558 {
4559 struct type *type; /* Type that this function returns */
4560 struct type *ftype; /* Function that returns above type */
4561 struct attribute *attr;
4562
4563 /* Decode the type that this subroutine returns */
4564 if (die->type)
4565 {
4566 return;
4567 }
4568 type = die_type (die, cu);
4569 ftype = make_function_type (type, (struct type **) 0);
4570
4571 /* All functions in C++ and Java have prototypes. */
4572 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4573 if ((attr && (DW_UNSND (attr) != 0))
4574 || cu->language == language_cplus
4575 || cu->language == language_java)
4576 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4577
4578 if (die->child != NULL)
4579 {
4580 struct die_info *child_die;
4581 int nparams = 0;
4582 int iparams = 0;
4583
4584 /* Count the number of parameters.
4585 FIXME: GDB currently ignores vararg functions, but knows about
4586 vararg member functions. */
4587 child_die = die->child;
4588 while (child_die && child_die->tag)
4589 {
4590 if (child_die->tag == DW_TAG_formal_parameter)
4591 nparams++;
4592 else if (child_die->tag == DW_TAG_unspecified_parameters)
4593 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4594 child_die = sibling_die (child_die);
4595 }
4596
4597 /* Allocate storage for parameters and fill them in. */
4598 TYPE_NFIELDS (ftype) = nparams;
4599 TYPE_FIELDS (ftype) = (struct field *)
4600 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4601
4602 child_die = die->child;
4603 while (child_die && child_die->tag)
4604 {
4605 if (child_die->tag == DW_TAG_formal_parameter)
4606 {
4607 /* Dwarf2 has no clean way to discern C++ static and non-static
4608 member functions. G++ helps GDB by marking the first
4609 parameter for non-static member functions (which is the
4610 this pointer) as artificial. We pass this information
4611 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4612 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4613 if (attr)
4614 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4615 else
4616 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4617 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4618 iparams++;
4619 }
4620 child_die = sibling_die (child_die);
4621 }
4622 }
4623
4624 set_die_type (die, ftype, cu);
4625 }
4626
4627 static void
4628 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4629 {
4630 struct objfile *objfile = cu->objfile;
4631 struct attribute *attr;
4632 char *name = NULL;
4633
4634 if (!die->type)
4635 {
4636 attr = dwarf2_attr (die, DW_AT_name, cu);
4637 if (attr && DW_STRING (attr))
4638 {
4639 name = DW_STRING (attr);
4640 }
4641 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4642 TYPE_FLAG_TARGET_STUB, name, objfile),
4643 cu);
4644 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4645 }
4646 }
4647
4648 /* Find a representation of a given base type and install
4649 it in the TYPE field of the die. */
4650
4651 static void
4652 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4653 {
4654 struct objfile *objfile = cu->objfile;
4655 struct type *type;
4656 struct attribute *attr;
4657 int encoding = 0, size = 0;
4658
4659 /* If we've already decoded this die, this is a no-op. */
4660 if (die->type)
4661 {
4662 return;
4663 }
4664
4665 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4666 if (attr)
4667 {
4668 encoding = DW_UNSND (attr);
4669 }
4670 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4671 if (attr)
4672 {
4673 size = DW_UNSND (attr);
4674 }
4675 attr = dwarf2_attr (die, DW_AT_name, cu);
4676 if (attr && DW_STRING (attr))
4677 {
4678 enum type_code code = TYPE_CODE_INT;
4679 int type_flags = 0;
4680
4681 switch (encoding)
4682 {
4683 case DW_ATE_address:
4684 /* Turn DW_ATE_address into a void * pointer. */
4685 code = TYPE_CODE_PTR;
4686 type_flags |= TYPE_FLAG_UNSIGNED;
4687 break;
4688 case DW_ATE_boolean:
4689 code = TYPE_CODE_BOOL;
4690 type_flags |= TYPE_FLAG_UNSIGNED;
4691 break;
4692 case DW_ATE_complex_float:
4693 code = TYPE_CODE_COMPLEX;
4694 break;
4695 case DW_ATE_float:
4696 code = TYPE_CODE_FLT;
4697 break;
4698 case DW_ATE_signed:
4699 case DW_ATE_signed_char:
4700 break;
4701 case DW_ATE_unsigned:
4702 case DW_ATE_unsigned_char:
4703 type_flags |= TYPE_FLAG_UNSIGNED;
4704 break;
4705 default:
4706 complaint (&symfile_complaints, "unsupported DW_AT_encoding: '%s'",
4707 dwarf_type_encoding_name (encoding));
4708 break;
4709 }
4710 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4711 if (encoding == DW_ATE_address)
4712 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4713 cu);
4714 else if (encoding == DW_ATE_complex_float)
4715 {
4716 if (size == 32)
4717 TYPE_TARGET_TYPE (type)
4718 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4719 else if (size == 16)
4720 TYPE_TARGET_TYPE (type)
4721 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4722 else if (size == 8)
4723 TYPE_TARGET_TYPE (type)
4724 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4725 }
4726 }
4727 else
4728 {
4729 type = dwarf_base_type (encoding, size, cu);
4730 }
4731 set_die_type (die, type, cu);
4732 }
4733
4734 /* Read the given DW_AT_subrange DIE. */
4735
4736 static void
4737 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4738 {
4739 struct type *base_type;
4740 struct type *range_type;
4741 struct attribute *attr;
4742 int low = 0;
4743 int high = -1;
4744
4745 /* If we have already decoded this die, then nothing more to do. */
4746 if (die->type)
4747 return;
4748
4749 base_type = die_type (die, cu);
4750 if (base_type == NULL)
4751 {
4752 complaint (&symfile_complaints,
4753 "DW_AT_type missing from DW_TAG_subrange_type");
4754 return;
4755 }
4756
4757 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4758 base_type = alloc_type (NULL);
4759
4760 if (cu->language == language_fortran)
4761 {
4762 /* FORTRAN implies a lower bound of 1, if not given. */
4763 low = 1;
4764 }
4765
4766 /* FIXME: For variable sized arrays either of these could be
4767 a variable rather than a constant value. We'll allow it,
4768 but we don't know how to handle it. */
4769 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4770 if (attr)
4771 low = dwarf2_get_attr_constant_value (attr, 0);
4772
4773 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4774 if (attr)
4775 {
4776 if (attr->form == DW_FORM_block1)
4777 {
4778 /* GCC encodes arrays with unspecified or dynamic length
4779 with a DW_FORM_block1 attribute.
4780 FIXME: GDB does not yet know how to handle dynamic
4781 arrays properly, treat them as arrays with unspecified
4782 length for now.
4783
4784 FIXME: jimb/2003-09-22: GDB does not really know
4785 how to handle arrays of unspecified length
4786 either; we just represent them as zero-length
4787 arrays. Choose an appropriate upper bound given
4788 the lower bound we've computed above. */
4789 high = low - 1;
4790 }
4791 else
4792 high = dwarf2_get_attr_constant_value (attr, 1);
4793 }
4794
4795 range_type = create_range_type (NULL, base_type, low, high);
4796
4797 attr = dwarf2_attr (die, DW_AT_name, cu);
4798 if (attr && DW_STRING (attr))
4799 TYPE_NAME (range_type) = DW_STRING (attr);
4800
4801 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4802 if (attr)
4803 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4804
4805 set_die_type (die, range_type, cu);
4806 }
4807
4808
4809 /* Read a whole compilation unit into a linked list of dies. */
4810
4811 static struct die_info *
4812 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4813 {
4814 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4815 }
4816
4817 /* Read a single die and all its descendents. Set the die's sibling
4818 field to NULL; set other fields in the die correctly, and set all
4819 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4820 location of the info_ptr after reading all of those dies. PARENT
4821 is the parent of the die in question. */
4822
4823 static struct die_info *
4824 read_die_and_children (char *info_ptr, bfd *abfd,
4825 struct dwarf2_cu *cu,
4826 char **new_info_ptr,
4827 struct die_info *parent)
4828 {
4829 struct die_info *die;
4830 char *cur_ptr;
4831 int has_children;
4832
4833 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4834 store_in_ref_table (die->offset, die, cu);
4835
4836 if (has_children)
4837 {
4838 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4839 new_info_ptr, die);
4840 }
4841 else
4842 {
4843 die->child = NULL;
4844 *new_info_ptr = cur_ptr;
4845 }
4846
4847 die->sibling = NULL;
4848 die->parent = parent;
4849 return die;
4850 }
4851
4852 /* Read a die, all of its descendents, and all of its siblings; set
4853 all of the fields of all of the dies correctly. Arguments are as
4854 in read_die_and_children. */
4855
4856 static struct die_info *
4857 read_die_and_siblings (char *info_ptr, bfd *abfd,
4858 struct dwarf2_cu *cu,
4859 char **new_info_ptr,
4860 struct die_info *parent)
4861 {
4862 struct die_info *first_die, *last_sibling;
4863 char *cur_ptr;
4864
4865 cur_ptr = info_ptr;
4866 first_die = last_sibling = NULL;
4867
4868 while (1)
4869 {
4870 struct die_info *die
4871 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4872
4873 if (!first_die)
4874 {
4875 first_die = die;
4876 }
4877 else
4878 {
4879 last_sibling->sibling = die;
4880 }
4881
4882 if (die->tag == 0)
4883 {
4884 *new_info_ptr = cur_ptr;
4885 return first_die;
4886 }
4887 else
4888 {
4889 last_sibling = die;
4890 }
4891 }
4892 }
4893
4894 /* Free a linked list of dies. */
4895
4896 static void
4897 free_die_list (struct die_info *dies)
4898 {
4899 struct die_info *die, *next;
4900
4901 die = dies;
4902 while (die)
4903 {
4904 if (die->child != NULL)
4905 free_die_list (die->child);
4906 next = die->sibling;
4907 xfree (die->attrs);
4908 xfree (die);
4909 die = next;
4910 }
4911 }
4912
4913 /* Read the contents of the section at OFFSET and of size SIZE from the
4914 object file specified by OBJFILE into the objfile_obstack and return it. */
4915
4916 char *
4917 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4918 {
4919 bfd *abfd = objfile->obfd;
4920 char *buf, *retbuf;
4921 bfd_size_type size = bfd_get_section_size (sectp);
4922
4923 if (size == 0)
4924 return NULL;
4925
4926 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4927 retbuf
4928 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4929 if (retbuf != NULL)
4930 return retbuf;
4931
4932 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4933 || bfd_bread (buf, size, abfd) != size)
4934 error ("Dwarf Error: Can't read DWARF data from '%s'",
4935 bfd_get_filename (abfd));
4936
4937 return buf;
4938 }
4939
4940 /* In DWARF version 2, the description of the debugging information is
4941 stored in a separate .debug_abbrev section. Before we read any
4942 dies from a section we read in all abbreviations and install them
4943 in a hash table. This function also sets flags in CU describing
4944 the data found in the abbrev table. */
4945
4946 static void
4947 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4948 {
4949 struct comp_unit_head *cu_header = &cu->header;
4950 char *abbrev_ptr;
4951 struct abbrev_info *cur_abbrev;
4952 unsigned int abbrev_number, bytes_read, abbrev_name;
4953 unsigned int abbrev_form, hash_number;
4954 struct attr_abbrev *cur_attrs;
4955 unsigned int allocated_attrs;
4956
4957 /* Initialize dwarf2 abbrevs */
4958 obstack_init (&cu->abbrev_obstack);
4959 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4960 (ABBREV_HASH_SIZE
4961 * sizeof (struct abbrev_info *)));
4962 memset (cu->dwarf2_abbrevs, 0,
4963 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4964
4965 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4966 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4967 abbrev_ptr += bytes_read;
4968
4969 allocated_attrs = ATTR_ALLOC_CHUNK;
4970 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4971
4972 /* loop until we reach an abbrev number of 0 */
4973 while (abbrev_number)
4974 {
4975 cur_abbrev = dwarf_alloc_abbrev (cu);
4976
4977 /* read in abbrev header */
4978 cur_abbrev->number = abbrev_number;
4979 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4980 abbrev_ptr += bytes_read;
4981 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4982 abbrev_ptr += 1;
4983
4984 if (cur_abbrev->tag == DW_TAG_namespace)
4985 cu->has_namespace_info = 1;
4986
4987 /* now read in declarations */
4988 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4989 abbrev_ptr += bytes_read;
4990 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4991 abbrev_ptr += bytes_read;
4992 while (abbrev_name)
4993 {
4994 if (cur_abbrev->num_attrs == allocated_attrs)
4995 {
4996 allocated_attrs += ATTR_ALLOC_CHUNK;
4997 cur_attrs
4998 = xrealloc (cur_attrs, (allocated_attrs
4999 * sizeof (struct attr_abbrev)));
5000 }
5001
5002 /* Record whether this compilation unit might have
5003 inter-compilation-unit references. If we don't know what form
5004 this attribute will have, then it might potentially be a
5005 DW_FORM_ref_addr, so we conservatively expect inter-CU
5006 references. */
5007
5008 if (abbrev_form == DW_FORM_ref_addr
5009 || abbrev_form == DW_FORM_indirect)
5010 cu->has_form_ref_addr = 1;
5011
5012 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5013 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5014 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5015 abbrev_ptr += bytes_read;
5016 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5017 abbrev_ptr += bytes_read;
5018 }
5019
5020 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5021 (cur_abbrev->num_attrs
5022 * sizeof (struct attr_abbrev)));
5023 memcpy (cur_abbrev->attrs, cur_attrs,
5024 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5025
5026 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5027 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5028 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5029
5030 /* Get next abbreviation.
5031 Under Irix6 the abbreviations for a compilation unit are not
5032 always properly terminated with an abbrev number of 0.
5033 Exit loop if we encounter an abbreviation which we have
5034 already read (which means we are about to read the abbreviations
5035 for the next compile unit) or if the end of the abbreviation
5036 table is reached. */
5037 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5038 >= dwarf2_per_objfile->abbrev_size)
5039 break;
5040 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5041 abbrev_ptr += bytes_read;
5042 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5043 break;
5044 }
5045
5046 xfree (cur_attrs);
5047 }
5048
5049 /* Release the memory used by the abbrev table for a compilation unit. */
5050
5051 static void
5052 dwarf2_free_abbrev_table (void *ptr_to_cu)
5053 {
5054 struct dwarf2_cu *cu = ptr_to_cu;
5055
5056 obstack_free (&cu->abbrev_obstack, NULL);
5057 cu->dwarf2_abbrevs = NULL;
5058 }
5059
5060 /* Lookup an abbrev_info structure in the abbrev hash table. */
5061
5062 static struct abbrev_info *
5063 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5064 {
5065 unsigned int hash_number;
5066 struct abbrev_info *abbrev;
5067
5068 hash_number = number % ABBREV_HASH_SIZE;
5069 abbrev = cu->dwarf2_abbrevs[hash_number];
5070
5071 while (abbrev)
5072 {
5073 if (abbrev->number == number)
5074 return abbrev;
5075 else
5076 abbrev = abbrev->next;
5077 }
5078 return NULL;
5079 }
5080
5081 /* Returns nonzero if TAG represents a type that we might generate a partial
5082 symbol for. */
5083
5084 static int
5085 is_type_tag_for_partial (int tag)
5086 {
5087 switch (tag)
5088 {
5089 #if 0
5090 /* Some types that would be reasonable to generate partial symbols for,
5091 that we don't at present. */
5092 case DW_TAG_array_type:
5093 case DW_TAG_file_type:
5094 case DW_TAG_ptr_to_member_type:
5095 case DW_TAG_set_type:
5096 case DW_TAG_string_type:
5097 case DW_TAG_subroutine_type:
5098 #endif
5099 case DW_TAG_base_type:
5100 case DW_TAG_class_type:
5101 case DW_TAG_enumeration_type:
5102 case DW_TAG_structure_type:
5103 case DW_TAG_subrange_type:
5104 case DW_TAG_typedef:
5105 case DW_TAG_union_type:
5106 return 1;
5107 default:
5108 return 0;
5109 }
5110 }
5111
5112 /* Load all DIEs that are interesting for partial symbols into memory. */
5113
5114 static struct partial_die_info *
5115 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
5116 struct dwarf2_cu *cu)
5117 {
5118 struct partial_die_info *part_die;
5119 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5120 struct abbrev_info *abbrev;
5121 unsigned int bytes_read;
5122
5123 int nesting_level = 1;
5124
5125 parent_die = NULL;
5126 last_die = NULL;
5127
5128 cu->partial_dies
5129 = htab_create_alloc_ex (cu->header.length / 12,
5130 partial_die_hash,
5131 partial_die_eq,
5132 NULL,
5133 &cu->comp_unit_obstack,
5134 hashtab_obstack_allocate,
5135 dummy_obstack_deallocate);
5136
5137 part_die = obstack_alloc (&cu->comp_unit_obstack,
5138 sizeof (struct partial_die_info));
5139
5140 while (1)
5141 {
5142 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5143
5144 /* A NULL abbrev means the end of a series of children. */
5145 if (abbrev == NULL)
5146 {
5147 if (--nesting_level == 0)
5148 {
5149 /* PART_DIE was probably the last thing allocated on the
5150 comp_unit_obstack, so we could call obstack_free
5151 here. We don't do that because the waste is small,
5152 and will be cleaned up when we're done with this
5153 compilation unit. This way, we're also more robust
5154 against other users of the comp_unit_obstack. */
5155 return first_die;
5156 }
5157 info_ptr += bytes_read;
5158 last_die = parent_die;
5159 parent_die = parent_die->die_parent;
5160 continue;
5161 }
5162
5163 /* Check whether this DIE is interesting enough to save. */
5164 if (!is_type_tag_for_partial (abbrev->tag)
5165 && abbrev->tag != DW_TAG_enumerator
5166 && abbrev->tag != DW_TAG_subprogram
5167 && abbrev->tag != DW_TAG_variable
5168 && abbrev->tag != DW_TAG_namespace)
5169 {
5170 /* Otherwise we skip to the next sibling, if any. */
5171 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5172 continue;
5173 }
5174
5175 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5176 abfd, info_ptr, cu);
5177
5178 /* This two-pass algorithm for processing partial symbols has a
5179 high cost in cache pressure. Thus, handle some simple cases
5180 here which cover the majority of C partial symbols. DIEs
5181 which neither have specification tags in them, nor could have
5182 specification tags elsewhere pointing at them, can simply be
5183 processed and discarded.
5184
5185 This segment is also optional; scan_partial_symbols and
5186 add_partial_symbol will handle these DIEs if we chain
5187 them in normally. When compilers which do not emit large
5188 quantities of duplicate debug information are more common,
5189 this code can probably be removed. */
5190
5191 /* Any complete simple types at the top level (pretty much all
5192 of them, for a language without namespaces), can be processed
5193 directly. */
5194 if (parent_die == NULL
5195 && part_die->has_specification == 0
5196 && part_die->is_declaration == 0
5197 && (part_die->tag == DW_TAG_typedef
5198 || part_die->tag == DW_TAG_base_type
5199 || part_die->tag == DW_TAG_subrange_type))
5200 {
5201 if (building_psymtab && part_die->name != NULL)
5202 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5203 VAR_DOMAIN, LOC_TYPEDEF,
5204 &cu->objfile->static_psymbols,
5205 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5206 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5207 continue;
5208 }
5209
5210 /* If we're at the second level, and we're an enumerator, and
5211 our parent has no specification (meaning possibly lives in a
5212 namespace elsewhere), then we can add the partial symbol now
5213 instead of queueing it. */
5214 if (part_die->tag == DW_TAG_enumerator
5215 && parent_die != NULL
5216 && parent_die->die_parent == NULL
5217 && parent_die->tag == DW_TAG_enumeration_type
5218 && parent_die->has_specification == 0)
5219 {
5220 if (part_die->name == NULL)
5221 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
5222 else if (building_psymtab)
5223 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5224 VAR_DOMAIN, LOC_CONST,
5225 (cu->language == language_cplus
5226 || cu->language == language_java)
5227 ? &cu->objfile->global_psymbols
5228 : &cu->objfile->static_psymbols,
5229 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5230
5231 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5232 continue;
5233 }
5234
5235 /* We'll save this DIE so link it in. */
5236 part_die->die_parent = parent_die;
5237 part_die->die_sibling = NULL;
5238 part_die->die_child = NULL;
5239
5240 if (last_die && last_die == parent_die)
5241 last_die->die_child = part_die;
5242 else if (last_die)
5243 last_die->die_sibling = part_die;
5244
5245 last_die = part_die;
5246
5247 if (first_die == NULL)
5248 first_die = part_die;
5249
5250 /* Maybe add the DIE to the hash table. Not all DIEs that we
5251 find interesting need to be in the hash table, because we
5252 also have the parent/sibling/child chains; only those that we
5253 might refer to by offset later during partial symbol reading.
5254
5255 For now this means things that might have be the target of a
5256 DW_AT_specification, DW_AT_abstract_origin, or
5257 DW_AT_extension. DW_AT_extension will refer only to
5258 namespaces; DW_AT_abstract_origin refers to functions (and
5259 many things under the function DIE, but we do not recurse
5260 into function DIEs during partial symbol reading) and
5261 possibly variables as well; DW_AT_specification refers to
5262 declarations. Declarations ought to have the DW_AT_declaration
5263 flag. It happens that GCC forgets to put it in sometimes, but
5264 only for functions, not for types.
5265
5266 Adding more things than necessary to the hash table is harmless
5267 except for the performance cost. Adding too few will result in
5268 internal errors in find_partial_die. */
5269
5270 if (abbrev->tag == DW_TAG_subprogram
5271 || abbrev->tag == DW_TAG_variable
5272 || abbrev->tag == DW_TAG_namespace
5273 || part_die->is_declaration)
5274 {
5275 void **slot;
5276
5277 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5278 part_die->offset, INSERT);
5279 *slot = part_die;
5280 }
5281
5282 part_die = obstack_alloc (&cu->comp_unit_obstack,
5283 sizeof (struct partial_die_info));
5284
5285 /* For some DIEs we want to follow their children (if any). For C
5286 we have no reason to follow the children of structures; for other
5287 languages we have to, both so that we can get at method physnames
5288 to infer fully qualified class names, and for DW_AT_specification. */
5289 if (last_die->has_children
5290 && (last_die->tag == DW_TAG_namespace
5291 || last_die->tag == DW_TAG_enumeration_type
5292 || (cu->language != language_c
5293 && (last_die->tag == DW_TAG_class_type
5294 || last_die->tag == DW_TAG_structure_type
5295 || last_die->tag == DW_TAG_union_type))))
5296 {
5297 nesting_level++;
5298 parent_die = last_die;
5299 continue;
5300 }
5301
5302 /* Otherwise we skip to the next sibling, if any. */
5303 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5304
5305 /* Back to the top, do it again. */
5306 }
5307 }
5308
5309 /* Read a minimal amount of information into the minimal die structure. */
5310
5311 static char *
5312 read_partial_die (struct partial_die_info *part_die,
5313 struct abbrev_info *abbrev,
5314 unsigned int abbrev_len, bfd *abfd,
5315 char *info_ptr, struct dwarf2_cu *cu)
5316 {
5317 unsigned int bytes_read, i;
5318 struct attribute attr;
5319 int has_low_pc_attr = 0;
5320 int has_high_pc_attr = 0;
5321
5322 memset (part_die, 0, sizeof (struct partial_die_info));
5323
5324 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5325
5326 info_ptr += abbrev_len;
5327
5328 if (abbrev == NULL)
5329 return info_ptr;
5330
5331 part_die->tag = abbrev->tag;
5332 part_die->has_children = abbrev->has_children;
5333
5334 for (i = 0; i < abbrev->num_attrs; ++i)
5335 {
5336 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5337
5338 /* Store the data if it is of an attribute we want to keep in a
5339 partial symbol table. */
5340 switch (attr.name)
5341 {
5342 case DW_AT_name:
5343
5344 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5345 if (part_die->name == NULL)
5346 part_die->name = DW_STRING (&attr);
5347 break;
5348 case DW_AT_comp_dir:
5349 if (part_die->dirname == NULL)
5350 part_die->dirname = DW_STRING (&attr);
5351 break;
5352 case DW_AT_MIPS_linkage_name:
5353 part_die->name = DW_STRING (&attr);
5354 break;
5355 case DW_AT_low_pc:
5356 has_low_pc_attr = 1;
5357 part_die->lowpc = DW_ADDR (&attr);
5358 break;
5359 case DW_AT_high_pc:
5360 has_high_pc_attr = 1;
5361 part_die->highpc = DW_ADDR (&attr);
5362 break;
5363 case DW_AT_location:
5364 /* Support the .debug_loc offsets */
5365 if (attr_form_is_block (&attr))
5366 {
5367 part_die->locdesc = DW_BLOCK (&attr);
5368 }
5369 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5370 {
5371 dwarf2_complex_location_expr_complaint ();
5372 }
5373 else
5374 {
5375 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5376 "partial symbol information");
5377 }
5378 break;
5379 case DW_AT_language:
5380 part_die->language = DW_UNSND (&attr);
5381 break;
5382 case DW_AT_external:
5383 part_die->is_external = DW_UNSND (&attr);
5384 break;
5385 case DW_AT_declaration:
5386 part_die->is_declaration = DW_UNSND (&attr);
5387 break;
5388 case DW_AT_type:
5389 part_die->has_type = 1;
5390 break;
5391 case DW_AT_abstract_origin:
5392 case DW_AT_specification:
5393 case DW_AT_extension:
5394 part_die->has_specification = 1;
5395 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5396 break;
5397 case DW_AT_sibling:
5398 /* Ignore absolute siblings, they might point outside of
5399 the current compile unit. */
5400 if (attr.form == DW_FORM_ref_addr)
5401 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
5402 else
5403 part_die->sibling = dwarf2_per_objfile->info_buffer
5404 + dwarf2_get_ref_die_offset (&attr, cu);
5405 break;
5406 case DW_AT_stmt_list:
5407 part_die->has_stmt_list = 1;
5408 part_die->line_offset = DW_UNSND (&attr);
5409 break;
5410 default:
5411 break;
5412 }
5413 }
5414
5415 /* When using the GNU linker, .gnu.linkonce. sections are used to
5416 eliminate duplicate copies of functions and vtables and such.
5417 The linker will arbitrarily choose one and discard the others.
5418 The AT_*_pc values for such functions refer to local labels in
5419 these sections. If the section from that file was discarded, the
5420 labels are not in the output, so the relocs get a value of 0.
5421 If this is a discarded function, mark the pc bounds as invalid,
5422 so that GDB will ignore it. */
5423 if (has_low_pc_attr && has_high_pc_attr
5424 && part_die->lowpc < part_die->highpc
5425 && (part_die->lowpc != 0
5426 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
5427 part_die->has_pc_info = 1;
5428 return info_ptr;
5429 }
5430
5431 /* Find a cached partial DIE at OFFSET in CU. */
5432
5433 static struct partial_die_info *
5434 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5435 {
5436 struct partial_die_info *lookup_die = NULL;
5437 struct partial_die_info part_die;
5438
5439 part_die.offset = offset;
5440 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5441
5442 if (lookup_die == NULL)
5443 internal_error (__FILE__, __LINE__,
5444 "could not find partial DIE in cache\n");
5445
5446 return lookup_die;
5447 }
5448
5449 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5450
5451 static struct partial_die_info *
5452 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5453 {
5454 struct dwarf2_per_cu_data *per_cu;
5455
5456 if (offset >= cu->header.offset
5457 && offset < cu->header.offset + cu->header.length)
5458 return find_partial_die_in_comp_unit (offset, cu);
5459
5460 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5461
5462 if (per_cu->cu == NULL)
5463 {
5464 load_comp_unit (per_cu, cu->objfile);
5465 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5466 dwarf2_per_objfile->read_in_chain = per_cu;
5467 }
5468
5469 per_cu->cu->last_used = 0;
5470 return find_partial_die_in_comp_unit (offset, per_cu->cu);
5471 }
5472
5473 /* Adjust PART_DIE before generating a symbol for it. This function
5474 may set the is_external flag or change the DIE's name. */
5475
5476 static void
5477 fixup_partial_die (struct partial_die_info *part_die,
5478 struct dwarf2_cu *cu)
5479 {
5480 /* If we found a reference attribute and the DIE has no name, try
5481 to find a name in the referred to DIE. */
5482
5483 if (part_die->name == NULL && part_die->has_specification)
5484 {
5485 struct partial_die_info *spec_die;
5486
5487 spec_die = find_partial_die (part_die->spec_offset, cu);
5488
5489 fixup_partial_die (spec_die, cu);
5490
5491 if (spec_die->name)
5492 {
5493 part_die->name = spec_die->name;
5494
5495 /* Copy DW_AT_external attribute if it is set. */
5496 if (spec_die->is_external)
5497 part_die->is_external = spec_die->is_external;
5498 }
5499 }
5500
5501 /* Set default names for some unnamed DIEs. */
5502 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5503 || part_die->tag == DW_TAG_class_type))
5504 part_die->name = "(anonymous class)";
5505
5506 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5507 part_die->name = "(anonymous namespace)";
5508
5509 if (part_die->tag == DW_TAG_structure_type
5510 || part_die->tag == DW_TAG_class_type
5511 || part_die->tag == DW_TAG_union_type)
5512 guess_structure_name (part_die, cu);
5513 }
5514
5515 /* Read the die from the .debug_info section buffer. Set DIEP to
5516 point to a newly allocated die with its information, except for its
5517 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5518 whether the die has children or not. */
5519
5520 static char *
5521 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5522 struct dwarf2_cu *cu, int *has_children)
5523 {
5524 unsigned int abbrev_number, bytes_read, i, offset;
5525 struct abbrev_info *abbrev;
5526 struct die_info *die;
5527
5528 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5529 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5530 info_ptr += bytes_read;
5531 if (!abbrev_number)
5532 {
5533 die = dwarf_alloc_die ();
5534 die->tag = 0;
5535 die->abbrev = abbrev_number;
5536 die->type = NULL;
5537 *diep = die;
5538 *has_children = 0;
5539 return info_ptr;
5540 }
5541
5542 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5543 if (!abbrev)
5544 {
5545 error ("Dwarf Error: could not find abbrev number %d [in module %s]",
5546 abbrev_number,
5547 bfd_get_filename (abfd));
5548 }
5549 die = dwarf_alloc_die ();
5550 die->offset = offset;
5551 die->tag = abbrev->tag;
5552 die->abbrev = abbrev_number;
5553 die->type = NULL;
5554
5555 die->num_attrs = abbrev->num_attrs;
5556 die->attrs = (struct attribute *)
5557 xmalloc (die->num_attrs * sizeof (struct attribute));
5558
5559 for (i = 0; i < abbrev->num_attrs; ++i)
5560 {
5561 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5562 abfd, info_ptr, cu);
5563
5564 /* If this attribute is an absolute reference to a different
5565 compilation unit, make sure that compilation unit is loaded
5566 also. */
5567 if (die->attrs[i].form == DW_FORM_ref_addr
5568 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5569 || (DW_ADDR (&die->attrs[i])
5570 >= cu->header.offset + cu->header.length)))
5571 {
5572 struct dwarf2_per_cu_data *per_cu;
5573 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5574 cu->objfile);
5575
5576 /* Mark the dependence relation so that we don't flush PER_CU
5577 too early. */
5578 dwarf2_add_dependence (cu, per_cu);
5579
5580 /* If it's already on the queue, we have nothing to do. */
5581 if (per_cu->queued)
5582 continue;
5583
5584 /* If the compilation unit is already loaded, just mark it as
5585 used. */
5586 if (per_cu->cu != NULL)
5587 {
5588 per_cu->cu->last_used = 0;
5589 continue;
5590 }
5591
5592 /* Add it to the queue. */
5593 queue_comp_unit (per_cu);
5594 }
5595 }
5596
5597 *diep = die;
5598 *has_children = abbrev->has_children;
5599 return info_ptr;
5600 }
5601
5602 /* Read an attribute value described by an attribute form. */
5603
5604 static char *
5605 read_attribute_value (struct attribute *attr, unsigned form,
5606 bfd *abfd, char *info_ptr,
5607 struct dwarf2_cu *cu)
5608 {
5609 struct comp_unit_head *cu_header = &cu->header;
5610 unsigned int bytes_read;
5611 struct dwarf_block *blk;
5612
5613 attr->form = form;
5614 switch (form)
5615 {
5616 case DW_FORM_addr:
5617 case DW_FORM_ref_addr:
5618 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5619 info_ptr += bytes_read;
5620 break;
5621 case DW_FORM_block2:
5622 blk = dwarf_alloc_block (cu);
5623 blk->size = read_2_bytes (abfd, info_ptr);
5624 info_ptr += 2;
5625 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5626 info_ptr += blk->size;
5627 DW_BLOCK (attr) = blk;
5628 break;
5629 case DW_FORM_block4:
5630 blk = dwarf_alloc_block (cu);
5631 blk->size = read_4_bytes (abfd, info_ptr);
5632 info_ptr += 4;
5633 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5634 info_ptr += blk->size;
5635 DW_BLOCK (attr) = blk;
5636 break;
5637 case DW_FORM_data2:
5638 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5639 info_ptr += 2;
5640 break;
5641 case DW_FORM_data4:
5642 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5643 info_ptr += 4;
5644 break;
5645 case DW_FORM_data8:
5646 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5647 info_ptr += 8;
5648 break;
5649 case DW_FORM_string:
5650 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5651 info_ptr += bytes_read;
5652 break;
5653 case DW_FORM_strp:
5654 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5655 &bytes_read);
5656 info_ptr += bytes_read;
5657 break;
5658 case DW_FORM_block:
5659 blk = dwarf_alloc_block (cu);
5660 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5661 info_ptr += bytes_read;
5662 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5663 info_ptr += blk->size;
5664 DW_BLOCK (attr) = blk;
5665 break;
5666 case DW_FORM_block1:
5667 blk = dwarf_alloc_block (cu);
5668 blk->size = read_1_byte (abfd, info_ptr);
5669 info_ptr += 1;
5670 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5671 info_ptr += blk->size;
5672 DW_BLOCK (attr) = blk;
5673 break;
5674 case DW_FORM_data1:
5675 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5676 info_ptr += 1;
5677 break;
5678 case DW_FORM_flag:
5679 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5680 info_ptr += 1;
5681 break;
5682 case DW_FORM_sdata:
5683 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5684 info_ptr += bytes_read;
5685 break;
5686 case DW_FORM_udata:
5687 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5688 info_ptr += bytes_read;
5689 break;
5690 case DW_FORM_ref1:
5691 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5692 info_ptr += 1;
5693 break;
5694 case DW_FORM_ref2:
5695 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5696 info_ptr += 2;
5697 break;
5698 case DW_FORM_ref4:
5699 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5700 info_ptr += 4;
5701 break;
5702 case DW_FORM_ref8:
5703 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5704 info_ptr += 8;
5705 break;
5706 case DW_FORM_ref_udata:
5707 DW_ADDR (attr) = (cu->header.offset
5708 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5709 info_ptr += bytes_read;
5710 break;
5711 case DW_FORM_indirect:
5712 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5713 info_ptr += bytes_read;
5714 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5715 break;
5716 default:
5717 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
5718 dwarf_form_name (form),
5719 bfd_get_filename (abfd));
5720 }
5721 return info_ptr;
5722 }
5723
5724 /* Read an attribute described by an abbreviated attribute. */
5725
5726 static char *
5727 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5728 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5729 {
5730 attr->name = abbrev->name;
5731 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5732 }
5733
5734 /* read dwarf information from a buffer */
5735
5736 static unsigned int
5737 read_1_byte (bfd *abfd, char *buf)
5738 {
5739 return bfd_get_8 (abfd, (bfd_byte *) buf);
5740 }
5741
5742 static int
5743 read_1_signed_byte (bfd *abfd, char *buf)
5744 {
5745 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5746 }
5747
5748 static unsigned int
5749 read_2_bytes (bfd *abfd, char *buf)
5750 {
5751 return bfd_get_16 (abfd, (bfd_byte *) buf);
5752 }
5753
5754 static int
5755 read_2_signed_bytes (bfd *abfd, char *buf)
5756 {
5757 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5758 }
5759
5760 static unsigned int
5761 read_4_bytes (bfd *abfd, char *buf)
5762 {
5763 return bfd_get_32 (abfd, (bfd_byte *) buf);
5764 }
5765
5766 static int
5767 read_4_signed_bytes (bfd *abfd, char *buf)
5768 {
5769 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5770 }
5771
5772 static unsigned long
5773 read_8_bytes (bfd *abfd, char *buf)
5774 {
5775 return bfd_get_64 (abfd, (bfd_byte *) buf);
5776 }
5777
5778 static CORE_ADDR
5779 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5780 {
5781 struct comp_unit_head *cu_header = &cu->header;
5782 CORE_ADDR retval = 0;
5783
5784 if (cu_header->signed_addr_p)
5785 {
5786 switch (cu_header->addr_size)
5787 {
5788 case 2:
5789 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5790 break;
5791 case 4:
5792 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5793 break;
5794 case 8:
5795 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5796 break;
5797 default:
5798 internal_error (__FILE__, __LINE__,
5799 "read_address: bad switch, signed [in module %s]",
5800 bfd_get_filename (abfd));
5801 }
5802 }
5803 else
5804 {
5805 switch (cu_header->addr_size)
5806 {
5807 case 2:
5808 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5809 break;
5810 case 4:
5811 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5812 break;
5813 case 8:
5814 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5815 break;
5816 default:
5817 internal_error (__FILE__, __LINE__,
5818 "read_address: bad switch, unsigned [in module %s]",
5819 bfd_get_filename (abfd));
5820 }
5821 }
5822
5823 *bytes_read = cu_header->addr_size;
5824 return retval;
5825 }
5826
5827 /* Read the initial length from a section. The (draft) DWARF 3
5828 specification allows the initial length to take up either 4 bytes
5829 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5830 bytes describe the length and all offsets will be 8 bytes in length
5831 instead of 4.
5832
5833 An older, non-standard 64-bit format is also handled by this
5834 function. The older format in question stores the initial length
5835 as an 8-byte quantity without an escape value. Lengths greater
5836 than 2^32 aren't very common which means that the initial 4 bytes
5837 is almost always zero. Since a length value of zero doesn't make
5838 sense for the 32-bit format, this initial zero can be considered to
5839 be an escape value which indicates the presence of the older 64-bit
5840 format. As written, the code can't detect (old format) lengths
5841 greater than 4GB. If it becomes necessary to handle lengths somewhat
5842 larger than 4GB, we could allow other small values (such as the
5843 non-sensical values of 1, 2, and 3) to also be used as escape values
5844 indicating the presence of the old format.
5845
5846 The value returned via bytes_read should be used to increment
5847 the relevant pointer after calling read_initial_length().
5848
5849 As a side effect, this function sets the fields initial_length_size
5850 and offset_size in cu_header to the values appropriate for the
5851 length field. (The format of the initial length field determines
5852 the width of file offsets to be fetched later with fetch_offset().)
5853
5854 [ Note: read_initial_length() and read_offset() are based on the
5855 document entitled "DWARF Debugging Information Format", revision
5856 3, draft 8, dated November 19, 2001. This document was obtained
5857 from:
5858
5859 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5860
5861 This document is only a draft and is subject to change. (So beware.)
5862
5863 Details regarding the older, non-standard 64-bit format were
5864 determined empirically by examining 64-bit ELF files produced
5865 by the SGI toolchain on an IRIX 6.5 machine.
5866
5867 - Kevin, July 16, 2002
5868 ] */
5869
5870 static LONGEST
5871 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5872 int *bytes_read)
5873 {
5874 LONGEST retval = 0;
5875
5876 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5877
5878 if (retval == 0xffffffff)
5879 {
5880 retval = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5881 *bytes_read = 12;
5882 if (cu_header != NULL)
5883 {
5884 cu_header->initial_length_size = 12;
5885 cu_header->offset_size = 8;
5886 }
5887 }
5888 else if (retval == 0)
5889 {
5890 /* Handle (non-standard) 64-bit DWARF2 formats such as that used
5891 by IRIX. */
5892 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5893 *bytes_read = 8;
5894 if (cu_header != NULL)
5895 {
5896 cu_header->initial_length_size = 8;
5897 cu_header->offset_size = 8;
5898 }
5899 }
5900 else
5901 {
5902 *bytes_read = 4;
5903 if (cu_header != NULL)
5904 {
5905 cu_header->initial_length_size = 4;
5906 cu_header->offset_size = 4;
5907 }
5908 }
5909
5910 return retval;
5911 }
5912
5913 /* Read an offset from the data stream. The size of the offset is
5914 given by cu_header->offset_size. */
5915
5916 static LONGEST
5917 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5918 int *bytes_read)
5919 {
5920 LONGEST retval = 0;
5921
5922 switch (cu_header->offset_size)
5923 {
5924 case 4:
5925 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5926 *bytes_read = 4;
5927 break;
5928 case 8:
5929 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5930 *bytes_read = 8;
5931 break;
5932 default:
5933 internal_error (__FILE__, __LINE__,
5934 "read_offset: bad switch [in module %s]",
5935 bfd_get_filename (abfd));
5936 }
5937
5938 return retval;
5939 }
5940
5941 static char *
5942 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5943 {
5944 /* If the size of a host char is 8 bits, we can return a pointer
5945 to the buffer, otherwise we have to copy the data to a buffer
5946 allocated on the temporary obstack. */
5947 gdb_assert (HOST_CHAR_BIT == 8);
5948 return buf;
5949 }
5950
5951 static char *
5952 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5953 {
5954 /* If the size of a host char is 8 bits, we can return a pointer
5955 to the string, otherwise we have to copy the string to a buffer
5956 allocated on the temporary obstack. */
5957 gdb_assert (HOST_CHAR_BIT == 8);
5958 if (*buf == '\0')
5959 {
5960 *bytes_read_ptr = 1;
5961 return NULL;
5962 }
5963 *bytes_read_ptr = strlen (buf) + 1;
5964 return buf;
5965 }
5966
5967 static char *
5968 read_indirect_string (bfd *abfd, char *buf,
5969 const struct comp_unit_head *cu_header,
5970 unsigned int *bytes_read_ptr)
5971 {
5972 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5973 (int *) bytes_read_ptr);
5974
5975 if (dwarf2_per_objfile->str_buffer == NULL)
5976 {
5977 error ("DW_FORM_strp used without .debug_str section [in module %s]",
5978 bfd_get_filename (abfd));
5979 return NULL;
5980 }
5981 if (str_offset >= dwarf2_per_objfile->str_size)
5982 {
5983 error ("DW_FORM_strp pointing outside of .debug_str section [in module %s]",
5984 bfd_get_filename (abfd));
5985 return NULL;
5986 }
5987 gdb_assert (HOST_CHAR_BIT == 8);
5988 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5989 return NULL;
5990 return dwarf2_per_objfile->str_buffer + str_offset;
5991 }
5992
5993 static unsigned long
5994 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5995 {
5996 unsigned long result;
5997 unsigned int num_read;
5998 int i, shift;
5999 unsigned char byte;
6000
6001 result = 0;
6002 shift = 0;
6003 num_read = 0;
6004 i = 0;
6005 while (1)
6006 {
6007 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6008 buf++;
6009 num_read++;
6010 result |= ((unsigned long)(byte & 127) << shift);
6011 if ((byte & 128) == 0)
6012 {
6013 break;
6014 }
6015 shift += 7;
6016 }
6017 *bytes_read_ptr = num_read;
6018 return result;
6019 }
6020
6021 static long
6022 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6023 {
6024 long result;
6025 int i, shift, size, num_read;
6026 unsigned char byte;
6027
6028 result = 0;
6029 shift = 0;
6030 size = 32;
6031 num_read = 0;
6032 i = 0;
6033 while (1)
6034 {
6035 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6036 buf++;
6037 num_read++;
6038 result |= ((long)(byte & 127) << shift);
6039 shift += 7;
6040 if ((byte & 128) == 0)
6041 {
6042 break;
6043 }
6044 }
6045 if ((shift < size) && (byte & 0x40))
6046 {
6047 result |= -(1 << shift);
6048 }
6049 *bytes_read_ptr = num_read;
6050 return result;
6051 }
6052
6053 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6054
6055 static char *
6056 skip_leb128 (bfd *abfd, char *buf)
6057 {
6058 int byte;
6059
6060 while (1)
6061 {
6062 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6063 buf++;
6064 if ((byte & 128) == 0)
6065 return buf;
6066 }
6067 }
6068
6069 static void
6070 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6071 {
6072 switch (lang)
6073 {
6074 case DW_LANG_C89:
6075 case DW_LANG_C:
6076 cu->language = language_c;
6077 break;
6078 case DW_LANG_C_plus_plus:
6079 cu->language = language_cplus;
6080 break;
6081 case DW_LANG_Fortran77:
6082 case DW_LANG_Fortran90:
6083 case DW_LANG_Fortran95:
6084 cu->language = language_fortran;
6085 break;
6086 case DW_LANG_Mips_Assembler:
6087 cu->language = language_asm;
6088 break;
6089 case DW_LANG_Java:
6090 cu->language = language_java;
6091 break;
6092 case DW_LANG_Ada83:
6093 case DW_LANG_Ada95:
6094 cu->language = language_ada;
6095 break;
6096 case DW_LANG_Cobol74:
6097 case DW_LANG_Cobol85:
6098 case DW_LANG_Pascal83:
6099 case DW_LANG_Modula2:
6100 default:
6101 cu->language = language_minimal;
6102 break;
6103 }
6104 cu->language_defn = language_def (cu->language);
6105 }
6106
6107 /* Return the named attribute or NULL if not there. */
6108
6109 static struct attribute *
6110 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6111 {
6112 unsigned int i;
6113 struct attribute *spec = NULL;
6114
6115 for (i = 0; i < die->num_attrs; ++i)
6116 {
6117 if (die->attrs[i].name == name)
6118 return &die->attrs[i];
6119 if (die->attrs[i].name == DW_AT_specification
6120 || die->attrs[i].name == DW_AT_abstract_origin)
6121 spec = &die->attrs[i];
6122 }
6123
6124 if (spec)
6125 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6126
6127 return NULL;
6128 }
6129
6130 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6131 and holds a non-zero value. This function should only be used for
6132 DW_FORM_flag attributes. */
6133
6134 static int
6135 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6136 {
6137 struct attribute *attr = dwarf2_attr (die, name, cu);
6138
6139 return (attr && DW_UNSND (attr));
6140 }
6141
6142 static int
6143 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6144 {
6145 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6146 which value is non-zero. However, we have to be careful with
6147 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6148 (via dwarf2_flag_true_p) follows this attribute. So we may
6149 end up accidently finding a declaration attribute that belongs
6150 to a different DIE referenced by the specification attribute,
6151 even though the given DIE does not have a declaration attribute. */
6152 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6153 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6154 }
6155
6156 /* Return the die giving the specification for DIE, if there is
6157 one. */
6158
6159 static struct die_info *
6160 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6161 {
6162 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6163
6164 if (spec_attr == NULL)
6165 return NULL;
6166 else
6167 return follow_die_ref (die, spec_attr, cu);
6168 }
6169
6170 /* Free the line_header structure *LH, and any arrays and strings it
6171 refers to. */
6172 static void
6173 free_line_header (struct line_header *lh)
6174 {
6175 if (lh->standard_opcode_lengths)
6176 xfree (lh->standard_opcode_lengths);
6177
6178 /* Remember that all the lh->file_names[i].name pointers are
6179 pointers into debug_line_buffer, and don't need to be freed. */
6180 if (lh->file_names)
6181 xfree (lh->file_names);
6182
6183 /* Similarly for the include directory names. */
6184 if (lh->include_dirs)
6185 xfree (lh->include_dirs);
6186
6187 xfree (lh);
6188 }
6189
6190
6191 /* Add an entry to LH's include directory table. */
6192 static void
6193 add_include_dir (struct line_header *lh, char *include_dir)
6194 {
6195 /* Grow the array if necessary. */
6196 if (lh->include_dirs_size == 0)
6197 {
6198 lh->include_dirs_size = 1; /* for testing */
6199 lh->include_dirs = xmalloc (lh->include_dirs_size
6200 * sizeof (*lh->include_dirs));
6201 }
6202 else if (lh->num_include_dirs >= lh->include_dirs_size)
6203 {
6204 lh->include_dirs_size *= 2;
6205 lh->include_dirs = xrealloc (lh->include_dirs,
6206 (lh->include_dirs_size
6207 * sizeof (*lh->include_dirs)));
6208 }
6209
6210 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6211 }
6212
6213
6214 /* Add an entry to LH's file name table. */
6215 static void
6216 add_file_name (struct line_header *lh,
6217 char *name,
6218 unsigned int dir_index,
6219 unsigned int mod_time,
6220 unsigned int length)
6221 {
6222 struct file_entry *fe;
6223
6224 /* Grow the array if necessary. */
6225 if (lh->file_names_size == 0)
6226 {
6227 lh->file_names_size = 1; /* for testing */
6228 lh->file_names = xmalloc (lh->file_names_size
6229 * sizeof (*lh->file_names));
6230 }
6231 else if (lh->num_file_names >= lh->file_names_size)
6232 {
6233 lh->file_names_size *= 2;
6234 lh->file_names = xrealloc (lh->file_names,
6235 (lh->file_names_size
6236 * sizeof (*lh->file_names)));
6237 }
6238
6239 fe = &lh->file_names[lh->num_file_names++];
6240 fe->name = name;
6241 fe->dir_index = dir_index;
6242 fe->mod_time = mod_time;
6243 fe->length = length;
6244 fe->included_p = 0;
6245 }
6246
6247
6248 /* Read the statement program header starting at OFFSET in
6249 .debug_line, according to the endianness of ABFD. Return a pointer
6250 to a struct line_header, allocated using xmalloc.
6251
6252 NOTE: the strings in the include directory and file name tables of
6253 the returned object point into debug_line_buffer, and must not be
6254 freed. */
6255 static struct line_header *
6256 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6257 struct dwarf2_cu *cu)
6258 {
6259 struct cleanup *back_to;
6260 struct line_header *lh;
6261 char *line_ptr;
6262 int bytes_read;
6263 int i;
6264 char *cur_dir, *cur_file;
6265
6266 if (dwarf2_per_objfile->line_buffer == NULL)
6267 {
6268 complaint (&symfile_complaints, "missing .debug_line section");
6269 return 0;
6270 }
6271
6272 /* Make sure that at least there's room for the total_length field.
6273 That could be 12 bytes long, but we're just going to fudge that. */
6274 if (offset + 4 >= dwarf2_per_objfile->line_size)
6275 {
6276 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6277 return 0;
6278 }
6279
6280 lh = xmalloc (sizeof (*lh));
6281 memset (lh, 0, sizeof (*lh));
6282 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6283 (void *) lh);
6284
6285 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6286
6287 /* Read in the header. */
6288 lh->total_length = read_initial_length (abfd, line_ptr, NULL, &bytes_read);
6289 line_ptr += bytes_read;
6290 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6291 + dwarf2_per_objfile->line_size))
6292 {
6293 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6294 return 0;
6295 }
6296 lh->statement_program_end = line_ptr + lh->total_length;
6297 lh->version = read_2_bytes (abfd, line_ptr);
6298 line_ptr += 2;
6299 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6300 line_ptr += bytes_read;
6301 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6302 line_ptr += 1;
6303 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6304 line_ptr += 1;
6305 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6306 line_ptr += 1;
6307 lh->line_range = read_1_byte (abfd, line_ptr);
6308 line_ptr += 1;
6309 lh->opcode_base = read_1_byte (abfd, line_ptr);
6310 line_ptr += 1;
6311 lh->standard_opcode_lengths
6312 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
6313
6314 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6315 for (i = 1; i < lh->opcode_base; ++i)
6316 {
6317 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6318 line_ptr += 1;
6319 }
6320
6321 /* Read directory table. */
6322 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6323 {
6324 line_ptr += bytes_read;
6325 add_include_dir (lh, cur_dir);
6326 }
6327 line_ptr += bytes_read;
6328
6329 /* Read file name table. */
6330 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6331 {
6332 unsigned int dir_index, mod_time, length;
6333
6334 line_ptr += bytes_read;
6335 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6336 line_ptr += bytes_read;
6337 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6338 line_ptr += bytes_read;
6339 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6340 line_ptr += bytes_read;
6341
6342 add_file_name (lh, cur_file, dir_index, mod_time, length);
6343 }
6344 line_ptr += bytes_read;
6345 lh->statement_program_start = line_ptr;
6346
6347 if (line_ptr > (dwarf2_per_objfile->line_buffer
6348 + dwarf2_per_objfile->line_size))
6349 complaint (&symfile_complaints,
6350 "line number info header doesn't fit in `.debug_line' section");
6351
6352 discard_cleanups (back_to);
6353 return lh;
6354 }
6355
6356 /* This function exists to work around a bug in certain compilers
6357 (particularly GCC 2.95), in which the first line number marker of a
6358 function does not show up until after the prologue, right before
6359 the second line number marker. This function shifts ADDRESS down
6360 to the beginning of the function if necessary, and is called on
6361 addresses passed to record_line. */
6362
6363 static CORE_ADDR
6364 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6365 {
6366 struct function_range *fn;
6367
6368 /* Find the function_range containing address. */
6369 if (!cu->first_fn)
6370 return address;
6371
6372 if (!cu->cached_fn)
6373 cu->cached_fn = cu->first_fn;
6374
6375 fn = cu->cached_fn;
6376 while (fn)
6377 if (fn->lowpc <= address && fn->highpc > address)
6378 goto found;
6379 else
6380 fn = fn->next;
6381
6382 fn = cu->first_fn;
6383 while (fn && fn != cu->cached_fn)
6384 if (fn->lowpc <= address && fn->highpc > address)
6385 goto found;
6386 else
6387 fn = fn->next;
6388
6389 return address;
6390
6391 found:
6392 if (fn->seen_line)
6393 return address;
6394 if (address != fn->lowpc)
6395 complaint (&symfile_complaints,
6396 "misplaced first line number at 0x%lx for '%s'",
6397 (unsigned long) address, fn->name);
6398 fn->seen_line = 1;
6399 return fn->lowpc;
6400 }
6401
6402 /* Decode the Line Number Program (LNP) for the given line_header
6403 structure and CU. The actual information extracted and the type
6404 of structures created from the LNP depends on the value of PST.
6405
6406 1. If PST is NULL, then this procedure uses the data from the program
6407 to create all necessary symbol tables, and their linetables.
6408 The compilation directory of the file is passed in COMP_DIR,
6409 and must not be NULL.
6410
6411 2. If PST is not NULL, this procedure reads the program to determine
6412 the list of files included by the unit represented by PST, and
6413 builds all the associated partial symbol tables. In this case,
6414 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6415 is not used to compute the full name of the symtab, and therefore
6416 omitting it when building the partial symtab does not introduce
6417 the potential for inconsistency - a partial symtab and its associated
6418 symbtab having a different fullname -). */
6419
6420 static void
6421 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6422 struct dwarf2_cu *cu, struct partial_symtab *pst)
6423 {
6424 char *line_ptr;
6425 char *line_end;
6426 unsigned int bytes_read;
6427 unsigned char op_code, extended_op, adj_opcode;
6428 CORE_ADDR baseaddr;
6429 struct objfile *objfile = cu->objfile;
6430 const int decode_for_pst_p = (pst != NULL);
6431
6432 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6433
6434 line_ptr = lh->statement_program_start;
6435 line_end = lh->statement_program_end;
6436
6437 /* Read the statement sequences until there's nothing left. */
6438 while (line_ptr < line_end)
6439 {
6440 /* state machine registers */
6441 CORE_ADDR address = 0;
6442 unsigned int file = 1;
6443 unsigned int line = 1;
6444 unsigned int column = 0;
6445 int is_stmt = lh->default_is_stmt;
6446 int basic_block = 0;
6447 int end_sequence = 0;
6448
6449 if (!decode_for_pst_p && lh->num_file_names >= file)
6450 {
6451 /* Start a subfile for the current file of the state machine. */
6452 /* lh->include_dirs and lh->file_names are 0-based, but the
6453 directory and file name numbers in the statement program
6454 are 1-based. */
6455 struct file_entry *fe = &lh->file_names[file - 1];
6456 char *dir;
6457
6458 if (fe->dir_index)
6459 dir = lh->include_dirs[fe->dir_index - 1];
6460 else
6461 dir = comp_dir;
6462 dwarf2_start_subfile (fe->name, dir);
6463 }
6464
6465 /* Decode the table. */
6466 while (!end_sequence)
6467 {
6468 op_code = read_1_byte (abfd, line_ptr);
6469 line_ptr += 1;
6470
6471 if (op_code >= lh->opcode_base)
6472 {
6473 /* Special operand. */
6474 adj_opcode = op_code - lh->opcode_base;
6475 address += (adj_opcode / lh->line_range)
6476 * lh->minimum_instruction_length;
6477 line += lh->line_base + (adj_opcode % lh->line_range);
6478 lh->file_names[file - 1].included_p = 1;
6479 if (!decode_for_pst_p)
6480 {
6481 /* Append row to matrix using current values. */
6482 record_line (current_subfile, line,
6483 check_cu_functions (address, cu));
6484 }
6485 basic_block = 1;
6486 }
6487 else switch (op_code)
6488 {
6489 case DW_LNS_extended_op:
6490 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6491 line_ptr += bytes_read;
6492 extended_op = read_1_byte (abfd, line_ptr);
6493 line_ptr += 1;
6494 switch (extended_op)
6495 {
6496 case DW_LNE_end_sequence:
6497 end_sequence = 1;
6498 lh->file_names[file - 1].included_p = 1;
6499 if (!decode_for_pst_p)
6500 record_line (current_subfile, 0, address);
6501 break;
6502 case DW_LNE_set_address:
6503 address = read_address (abfd, line_ptr, cu, &bytes_read);
6504 line_ptr += bytes_read;
6505 address += baseaddr;
6506 break;
6507 case DW_LNE_define_file:
6508 {
6509 char *cur_file;
6510 unsigned int dir_index, mod_time, length;
6511
6512 cur_file = read_string (abfd, line_ptr, &bytes_read);
6513 line_ptr += bytes_read;
6514 dir_index =
6515 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6516 line_ptr += bytes_read;
6517 mod_time =
6518 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6519 line_ptr += bytes_read;
6520 length =
6521 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6522 line_ptr += bytes_read;
6523 add_file_name (lh, cur_file, dir_index, mod_time, length);
6524 }
6525 break;
6526 default:
6527 complaint (&symfile_complaints,
6528 "mangled .debug_line section");
6529 return;
6530 }
6531 break;
6532 case DW_LNS_copy:
6533 lh->file_names[file - 1].included_p = 1;
6534 if (!decode_for_pst_p)
6535 record_line (current_subfile, line,
6536 check_cu_functions (address, cu));
6537 basic_block = 0;
6538 break;
6539 case DW_LNS_advance_pc:
6540 address += lh->minimum_instruction_length
6541 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6542 line_ptr += bytes_read;
6543 break;
6544 case DW_LNS_advance_line:
6545 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6546 line_ptr += bytes_read;
6547 break;
6548 case DW_LNS_set_file:
6549 {
6550 /* The arrays lh->include_dirs and lh->file_names are
6551 0-based, but the directory and file name numbers in
6552 the statement program are 1-based. */
6553 struct file_entry *fe;
6554 char *dir;
6555
6556 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6557 line_ptr += bytes_read;
6558 fe = &lh->file_names[file - 1];
6559 if (fe->dir_index)
6560 dir = lh->include_dirs[fe->dir_index - 1];
6561 else
6562 dir = comp_dir;
6563 if (!decode_for_pst_p)
6564 dwarf2_start_subfile (fe->name, dir);
6565 }
6566 break;
6567 case DW_LNS_set_column:
6568 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6569 line_ptr += bytes_read;
6570 break;
6571 case DW_LNS_negate_stmt:
6572 is_stmt = (!is_stmt);
6573 break;
6574 case DW_LNS_set_basic_block:
6575 basic_block = 1;
6576 break;
6577 /* Add to the address register of the state machine the
6578 address increment value corresponding to special opcode
6579 255. I.e., this value is scaled by the minimum
6580 instruction length since special opcode 255 would have
6581 scaled the the increment. */
6582 case DW_LNS_const_add_pc:
6583 address += (lh->minimum_instruction_length
6584 * ((255 - lh->opcode_base) / lh->line_range));
6585 break;
6586 case DW_LNS_fixed_advance_pc:
6587 address += read_2_bytes (abfd, line_ptr);
6588 line_ptr += 2;
6589 break;
6590 default:
6591 {
6592 /* Unknown standard opcode, ignore it. */
6593 int i;
6594
6595 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6596 {
6597 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6598 line_ptr += bytes_read;
6599 }
6600 }
6601 }
6602 }
6603 }
6604
6605 if (decode_for_pst_p)
6606 {
6607 int file_index;
6608
6609 /* Now that we're done scanning the Line Header Program, we can
6610 create the psymtab of each included file. */
6611 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6612 if (lh->file_names[file_index].included_p == 1)
6613 {
6614 char *include_name = lh->file_names [file_index].name;
6615
6616 if (strcmp (include_name, pst->filename) != 0)
6617 dwarf2_create_include_psymtab (include_name, pst, objfile);
6618 }
6619 }
6620 }
6621
6622 /* Start a subfile for DWARF. FILENAME is the name of the file and
6623 DIRNAME the name of the source directory which contains FILENAME
6624 or NULL if not known.
6625 This routine tries to keep line numbers from identical absolute and
6626 relative file names in a common subfile.
6627
6628 Using the `list' example from the GDB testsuite, which resides in
6629 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6630 of /srcdir/list0.c yields the following debugging information for list0.c:
6631
6632 DW_AT_name: /srcdir/list0.c
6633 DW_AT_comp_dir: /compdir
6634 files.files[0].name: list0.h
6635 files.files[0].dir: /srcdir
6636 files.files[1].name: list0.c
6637 files.files[1].dir: /srcdir
6638
6639 The line number information for list0.c has to end up in a single
6640 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6641
6642 static void
6643 dwarf2_start_subfile (char *filename, char *dirname)
6644 {
6645 /* If the filename isn't absolute, try to match an existing subfile
6646 with the full pathname. */
6647
6648 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6649 {
6650 struct subfile *subfile;
6651 char *fullname = concat (dirname, "/", filename, NULL);
6652
6653 for (subfile = subfiles; subfile; subfile = subfile->next)
6654 {
6655 if (FILENAME_CMP (subfile->name, fullname) == 0)
6656 {
6657 current_subfile = subfile;
6658 xfree (fullname);
6659 return;
6660 }
6661 }
6662 xfree (fullname);
6663 }
6664 start_subfile (filename, dirname);
6665 }
6666
6667 static void
6668 var_decode_location (struct attribute *attr, struct symbol *sym,
6669 struct dwarf2_cu *cu)
6670 {
6671 struct objfile *objfile = cu->objfile;
6672 struct comp_unit_head *cu_header = &cu->header;
6673
6674 /* NOTE drow/2003-01-30: There used to be a comment and some special
6675 code here to turn a symbol with DW_AT_external and a
6676 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6677 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6678 with some versions of binutils) where shared libraries could have
6679 relocations against symbols in their debug information - the
6680 minimal symbol would have the right address, but the debug info
6681 would not. It's no longer necessary, because we will explicitly
6682 apply relocations when we read in the debug information now. */
6683
6684 /* A DW_AT_location attribute with no contents indicates that a
6685 variable has been optimized away. */
6686 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6687 {
6688 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6689 return;
6690 }
6691
6692 /* Handle one degenerate form of location expression specially, to
6693 preserve GDB's previous behavior when section offsets are
6694 specified. If this is just a DW_OP_addr then mark this symbol
6695 as LOC_STATIC. */
6696
6697 if (attr_form_is_block (attr)
6698 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6699 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6700 {
6701 int dummy;
6702
6703 SYMBOL_VALUE_ADDRESS (sym) =
6704 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6705 fixup_symbol_section (sym, objfile);
6706 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6707 SYMBOL_SECTION (sym));
6708 SYMBOL_CLASS (sym) = LOC_STATIC;
6709 return;
6710 }
6711
6712 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6713 expression evaluator, and use LOC_COMPUTED only when necessary
6714 (i.e. when the value of a register or memory location is
6715 referenced, or a thread-local block, etc.). Then again, it might
6716 not be worthwhile. I'm assuming that it isn't unless performance
6717 or memory numbers show me otherwise. */
6718
6719 dwarf2_symbol_mark_computed (attr, sym, cu);
6720 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6721 }
6722
6723 /* Given a pointer to a DWARF information entry, figure out if we need
6724 to make a symbol table entry for it, and if so, create a new entry
6725 and return a pointer to it.
6726 If TYPE is NULL, determine symbol type from the die, otherwise
6727 used the passed type. */
6728
6729 static struct symbol *
6730 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6731 {
6732 struct objfile *objfile = cu->objfile;
6733 struct symbol *sym = NULL;
6734 char *name;
6735 struct attribute *attr = NULL;
6736 struct attribute *attr2 = NULL;
6737 CORE_ADDR baseaddr;
6738
6739 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6740
6741 if (die->tag != DW_TAG_namespace)
6742 name = dwarf2_linkage_name (die, cu);
6743 else
6744 name = TYPE_NAME (type);
6745
6746 if (name)
6747 {
6748 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6749 sizeof (struct symbol));
6750 OBJSTAT (objfile, n_syms++);
6751 memset (sym, 0, sizeof (struct symbol));
6752
6753 /* Cache this symbol's name and the name's demangled form (if any). */
6754 SYMBOL_LANGUAGE (sym) = cu->language;
6755 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6756
6757 /* Default assumptions.
6758 Use the passed type or decode it from the die. */
6759 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6760 SYMBOL_CLASS (sym) = LOC_STATIC;
6761 if (type != NULL)
6762 SYMBOL_TYPE (sym) = type;
6763 else
6764 SYMBOL_TYPE (sym) = die_type (die, cu);
6765 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6766 if (attr)
6767 {
6768 SYMBOL_LINE (sym) = DW_UNSND (attr);
6769 }
6770 switch (die->tag)
6771 {
6772 case DW_TAG_label:
6773 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6774 if (attr)
6775 {
6776 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6777 }
6778 SYMBOL_CLASS (sym) = LOC_LABEL;
6779 break;
6780 case DW_TAG_subprogram:
6781 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6782 finish_block. */
6783 SYMBOL_CLASS (sym) = LOC_BLOCK;
6784 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6785 if (attr2 && (DW_UNSND (attr2) != 0))
6786 {
6787 add_symbol_to_list (sym, &global_symbols);
6788 }
6789 else
6790 {
6791 add_symbol_to_list (sym, cu->list_in_scope);
6792 }
6793 break;
6794 case DW_TAG_variable:
6795 /* Compilation with minimal debug info may result in variables
6796 with missing type entries. Change the misleading `void' type
6797 to something sensible. */
6798 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6799 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6800 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6801 "<variable, no debug info>",
6802 objfile);
6803 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6804 if (attr)
6805 {
6806 dwarf2_const_value (attr, sym, cu);
6807 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6808 if (attr2 && (DW_UNSND (attr2) != 0))
6809 add_symbol_to_list (sym, &global_symbols);
6810 else
6811 add_symbol_to_list (sym, cu->list_in_scope);
6812 break;
6813 }
6814 attr = dwarf2_attr (die, DW_AT_location, cu);
6815 if (attr)
6816 {
6817 var_decode_location (attr, sym, cu);
6818 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6819 if (attr2 && (DW_UNSND (attr2) != 0))
6820 add_symbol_to_list (sym, &global_symbols);
6821 else
6822 add_symbol_to_list (sym, cu->list_in_scope);
6823 }
6824 else
6825 {
6826 /* We do not know the address of this symbol.
6827 If it is an external symbol and we have type information
6828 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6829 The address of the variable will then be determined from
6830 the minimal symbol table whenever the variable is
6831 referenced. */
6832 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6833 if (attr2 && (DW_UNSND (attr2) != 0)
6834 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6835 {
6836 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6837 add_symbol_to_list (sym, &global_symbols);
6838 }
6839 }
6840 break;
6841 case DW_TAG_formal_parameter:
6842 attr = dwarf2_attr (die, DW_AT_location, cu);
6843 if (attr)
6844 {
6845 var_decode_location (attr, sym, cu);
6846 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6847 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6848 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6849 }
6850 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6851 if (attr)
6852 {
6853 dwarf2_const_value (attr, sym, cu);
6854 }
6855 add_symbol_to_list (sym, cu->list_in_scope);
6856 break;
6857 case DW_TAG_unspecified_parameters:
6858 /* From varargs functions; gdb doesn't seem to have any
6859 interest in this information, so just ignore it for now.
6860 (FIXME?) */
6861 break;
6862 case DW_TAG_class_type:
6863 case DW_TAG_structure_type:
6864 case DW_TAG_union_type:
6865 case DW_TAG_enumeration_type:
6866 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6867 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6868
6869 /* Make sure that the symbol includes appropriate enclosing
6870 classes/namespaces in its name. These are calculated in
6871 read_structure_type, and the correct name is saved in
6872 the type. */
6873
6874 if (cu->language == language_cplus
6875 || cu->language == language_java)
6876 {
6877 struct type *type = SYMBOL_TYPE (sym);
6878
6879 if (TYPE_TAG_NAME (type) != NULL)
6880 {
6881 /* FIXME: carlton/2003-11-10: Should this use
6882 SYMBOL_SET_NAMES instead? (The same problem also
6883 arises further down in this function.) */
6884 /* The type's name is already allocated along with
6885 this objfile, so we don't need to duplicate it
6886 for the symbol. */
6887 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6888 }
6889 }
6890
6891 {
6892 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
6893 really ever be static objects: otherwise, if you try
6894 to, say, break of a class's method and you're in a file
6895 which doesn't mention that class, it won't work unless
6896 the check for all static symbols in lookup_symbol_aux
6897 saves you. See the OtherFileClass tests in
6898 gdb.c++/namespace.exp. */
6899
6900 struct pending **list_to_add;
6901
6902 list_to_add = (cu->list_in_scope == &file_symbols
6903 && (cu->language == language_cplus
6904 || cu->language == language_java)
6905 ? &global_symbols : cu->list_in_scope);
6906
6907 add_symbol_to_list (sym, list_to_add);
6908
6909 /* The semantics of C++ state that "struct foo { ... }" also
6910 defines a typedef for "foo". A Java class declaration also
6911 defines a typedef for the class. Synthesize a typedef symbol
6912 so that "ptype foo" works as expected. */
6913 if (cu->language == language_cplus
6914 || cu->language == language_java)
6915 {
6916 struct symbol *typedef_sym = (struct symbol *)
6917 obstack_alloc (&objfile->objfile_obstack,
6918 sizeof (struct symbol));
6919 *typedef_sym = *sym;
6920 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6921 /* The symbol's name is already allocated along with
6922 this objfile, so we don't need to duplicate it for
6923 the type. */
6924 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6925 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NATURAL_NAME (sym);
6926 add_symbol_to_list (typedef_sym, list_to_add);
6927 }
6928 }
6929 break;
6930 case DW_TAG_typedef:
6931 if (processing_has_namespace_info
6932 && processing_current_prefix[0] != '\0')
6933 {
6934 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6935 processing_current_prefix,
6936 name, cu);
6937 }
6938 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6939 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6940 add_symbol_to_list (sym, cu->list_in_scope);
6941 break;
6942 case DW_TAG_base_type:
6943 case DW_TAG_subrange_type:
6944 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6945 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6946 add_symbol_to_list (sym, cu->list_in_scope);
6947 break;
6948 case DW_TAG_enumerator:
6949 if (processing_has_namespace_info
6950 && processing_current_prefix[0] != '\0')
6951 {
6952 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6953 processing_current_prefix,
6954 name, cu);
6955 }
6956 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6957 if (attr)
6958 {
6959 dwarf2_const_value (attr, sym, cu);
6960 }
6961 {
6962 /* NOTE: carlton/2003-11-10: See comment above in the
6963 DW_TAG_class_type, etc. block. */
6964
6965 struct pending **list_to_add;
6966
6967 list_to_add = (cu->list_in_scope == &file_symbols
6968 && (cu->language == language_cplus
6969 || cu->language == language_java)
6970 ? &global_symbols : cu->list_in_scope);
6971
6972 add_symbol_to_list (sym, list_to_add);
6973 }
6974 break;
6975 case DW_TAG_namespace:
6976 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6977 add_symbol_to_list (sym, &global_symbols);
6978 break;
6979 default:
6980 /* Not a tag we recognize. Hopefully we aren't processing
6981 trash data, but since we must specifically ignore things
6982 we don't recognize, there is nothing else we should do at
6983 this point. */
6984 complaint (&symfile_complaints, "unsupported tag: '%s'",
6985 dwarf_tag_name (die->tag));
6986 break;
6987 }
6988 }
6989 return (sym);
6990 }
6991
6992 /* Copy constant value from an attribute to a symbol. */
6993
6994 static void
6995 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
6996 struct dwarf2_cu *cu)
6997 {
6998 struct objfile *objfile = cu->objfile;
6999 struct comp_unit_head *cu_header = &cu->header;
7000 struct dwarf_block *blk;
7001
7002 switch (attr->form)
7003 {
7004 case DW_FORM_addr:
7005 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7006 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7007 cu_header->addr_size,
7008 TYPE_LENGTH (SYMBOL_TYPE
7009 (sym)));
7010 SYMBOL_VALUE_BYTES (sym) = (char *)
7011 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7012 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7013 it's body - store_unsigned_integer. */
7014 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7015 DW_ADDR (attr));
7016 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7017 break;
7018 case DW_FORM_block1:
7019 case DW_FORM_block2:
7020 case DW_FORM_block4:
7021 case DW_FORM_block:
7022 blk = DW_BLOCK (attr);
7023 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7024 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7025 blk->size,
7026 TYPE_LENGTH (SYMBOL_TYPE
7027 (sym)));
7028 SYMBOL_VALUE_BYTES (sym) = (char *)
7029 obstack_alloc (&objfile->objfile_obstack, blk->size);
7030 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7031 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7032 break;
7033
7034 /* The DW_AT_const_value attributes are supposed to carry the
7035 symbol's value "represented as it would be on the target
7036 architecture." By the time we get here, it's already been
7037 converted to host endianness, so we just need to sign- or
7038 zero-extend it as appropriate. */
7039 case DW_FORM_data1:
7040 dwarf2_const_value_data (attr, sym, 8);
7041 break;
7042 case DW_FORM_data2:
7043 dwarf2_const_value_data (attr, sym, 16);
7044 break;
7045 case DW_FORM_data4:
7046 dwarf2_const_value_data (attr, sym, 32);
7047 break;
7048 case DW_FORM_data8:
7049 dwarf2_const_value_data (attr, sym, 64);
7050 break;
7051
7052 case DW_FORM_sdata:
7053 SYMBOL_VALUE (sym) = DW_SND (attr);
7054 SYMBOL_CLASS (sym) = LOC_CONST;
7055 break;
7056
7057 case DW_FORM_udata:
7058 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7059 SYMBOL_CLASS (sym) = LOC_CONST;
7060 break;
7061
7062 default:
7063 complaint (&symfile_complaints,
7064 "unsupported const value attribute form: '%s'",
7065 dwarf_form_name (attr->form));
7066 SYMBOL_VALUE (sym) = 0;
7067 SYMBOL_CLASS (sym) = LOC_CONST;
7068 break;
7069 }
7070 }
7071
7072
7073 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7074 or zero-extend it as appropriate for the symbol's type. */
7075 static void
7076 dwarf2_const_value_data (struct attribute *attr,
7077 struct symbol *sym,
7078 int bits)
7079 {
7080 LONGEST l = DW_UNSND (attr);
7081
7082 if (bits < sizeof (l) * 8)
7083 {
7084 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7085 l &= ((LONGEST) 1 << bits) - 1;
7086 else
7087 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7088 }
7089
7090 SYMBOL_VALUE (sym) = l;
7091 SYMBOL_CLASS (sym) = LOC_CONST;
7092 }
7093
7094
7095 /* Return the type of the die in question using its DW_AT_type attribute. */
7096
7097 static struct type *
7098 die_type (struct die_info *die, struct dwarf2_cu *cu)
7099 {
7100 struct type *type;
7101 struct attribute *type_attr;
7102 struct die_info *type_die;
7103
7104 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7105 if (!type_attr)
7106 {
7107 /* A missing DW_AT_type represents a void type. */
7108 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7109 }
7110 else
7111 type_die = follow_die_ref (die, type_attr, cu);
7112
7113 type = tag_type_to_type (type_die, cu);
7114 if (!type)
7115 {
7116 dump_die (type_die);
7117 error ("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]",
7118 cu->objfile->name);
7119 }
7120 return type;
7121 }
7122
7123 /* Return the containing type of the die in question using its
7124 DW_AT_containing_type attribute. */
7125
7126 static struct type *
7127 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7128 {
7129 struct type *type = NULL;
7130 struct attribute *type_attr;
7131 struct die_info *type_die = NULL;
7132
7133 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7134 if (type_attr)
7135 {
7136 type_die = follow_die_ref (die, type_attr, cu);
7137 type = tag_type_to_type (type_die, cu);
7138 }
7139 if (!type)
7140 {
7141 if (type_die)
7142 dump_die (type_die);
7143 error ("Dwarf Error: Problem turning containing type into gdb type [in module %s]",
7144 cu->objfile->name);
7145 }
7146 return type;
7147 }
7148
7149 static struct type *
7150 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7151 {
7152 if (die->type)
7153 {
7154 return die->type;
7155 }
7156 else
7157 {
7158 read_type_die (die, cu);
7159 if (!die->type)
7160 {
7161 dump_die (die);
7162 error ("Dwarf Error: Cannot find type of die [in module %s]",
7163 cu->objfile->name);
7164 }
7165 return die->type;
7166 }
7167 }
7168
7169 static void
7170 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7171 {
7172 char *prefix = determine_prefix (die, cu);
7173 const char *old_prefix = processing_current_prefix;
7174 struct cleanup *back_to = make_cleanup (xfree, prefix);
7175 processing_current_prefix = prefix;
7176
7177 switch (die->tag)
7178 {
7179 case DW_TAG_class_type:
7180 case DW_TAG_structure_type:
7181 case DW_TAG_union_type:
7182 read_structure_type (die, cu);
7183 break;
7184 case DW_TAG_enumeration_type:
7185 read_enumeration_type (die, cu);
7186 break;
7187 case DW_TAG_subprogram:
7188 case DW_TAG_subroutine_type:
7189 read_subroutine_type (die, cu);
7190 break;
7191 case DW_TAG_array_type:
7192 read_array_type (die, cu);
7193 break;
7194 case DW_TAG_pointer_type:
7195 read_tag_pointer_type (die, cu);
7196 break;
7197 case DW_TAG_ptr_to_member_type:
7198 read_tag_ptr_to_member_type (die, cu);
7199 break;
7200 case DW_TAG_reference_type:
7201 read_tag_reference_type (die, cu);
7202 break;
7203 case DW_TAG_const_type:
7204 read_tag_const_type (die, cu);
7205 break;
7206 case DW_TAG_volatile_type:
7207 read_tag_volatile_type (die, cu);
7208 break;
7209 case DW_TAG_string_type:
7210 read_tag_string_type (die, cu);
7211 break;
7212 case DW_TAG_typedef:
7213 read_typedef (die, cu);
7214 break;
7215 case DW_TAG_subrange_type:
7216 read_subrange_type (die, cu);
7217 break;
7218 case DW_TAG_base_type:
7219 read_base_type (die, cu);
7220 break;
7221 default:
7222 complaint (&symfile_complaints, "unexepected tag in read_type_die: '%s'",
7223 dwarf_tag_name (die->tag));
7224 break;
7225 }
7226
7227 processing_current_prefix = old_prefix;
7228 do_cleanups (back_to);
7229 }
7230
7231 /* Return the name of the namespace/class that DIE is defined within,
7232 or "" if we can't tell. The caller should xfree the result. */
7233
7234 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7235 therein) for an example of how to use this function to deal with
7236 DW_AT_specification. */
7237
7238 static char *
7239 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7240 {
7241 struct die_info *parent;
7242
7243 if (cu->language != language_cplus
7244 && cu->language != language_java)
7245 return NULL;
7246
7247 parent = die->parent;
7248
7249 if (parent == NULL)
7250 {
7251 return xstrdup ("");
7252 }
7253 else
7254 {
7255 switch (parent->tag) {
7256 case DW_TAG_namespace:
7257 {
7258 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7259 before doing this check? */
7260 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7261 {
7262 return xstrdup (TYPE_TAG_NAME (parent->type));
7263 }
7264 else
7265 {
7266 int dummy;
7267 char *parent_prefix = determine_prefix (parent, cu);
7268 char *retval = typename_concat (NULL, parent_prefix,
7269 namespace_name (parent, &dummy,
7270 cu),
7271 cu);
7272 xfree (parent_prefix);
7273 return retval;
7274 }
7275 }
7276 break;
7277 case DW_TAG_class_type:
7278 case DW_TAG_structure_type:
7279 {
7280 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7281 {
7282 return xstrdup (TYPE_TAG_NAME (parent->type));
7283 }
7284 else
7285 {
7286 const char *old_prefix = processing_current_prefix;
7287 char *new_prefix = determine_prefix (parent, cu);
7288 char *retval;
7289
7290 processing_current_prefix = new_prefix;
7291 retval = determine_class_name (parent, cu);
7292 processing_current_prefix = old_prefix;
7293
7294 xfree (new_prefix);
7295 return retval;
7296 }
7297 }
7298 default:
7299 return determine_prefix (parent, cu);
7300 }
7301 }
7302 }
7303
7304 /* Return a newly-allocated string formed by concatenating PREFIX and
7305 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7306 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7307 perform an obconcat, otherwise allocate storage for the result. The CU argument
7308 is used to determine the language and hence, the appropriate separator. */
7309
7310 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7311
7312 static char *
7313 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7314 struct dwarf2_cu *cu)
7315 {
7316 char *sep;
7317
7318 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7319 sep = "";
7320 else if (cu->language == language_java)
7321 sep = ".";
7322 else
7323 sep = "::";
7324
7325 if (obs == NULL)
7326 {
7327 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7328 retval[0] = '\0';
7329
7330 if (prefix)
7331 {
7332 strcpy (retval, prefix);
7333 strcat (retval, sep);
7334 }
7335 if (suffix)
7336 strcat (retval, suffix);
7337
7338 return retval;
7339 }
7340 else
7341 {
7342 /* We have an obstack. */
7343 return obconcat (obs, prefix, sep, suffix);
7344 }
7345 }
7346
7347 static struct type *
7348 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7349 {
7350 struct objfile *objfile = cu->objfile;
7351
7352 /* FIXME - this should not produce a new (struct type *)
7353 every time. It should cache base types. */
7354 struct type *type;
7355 switch (encoding)
7356 {
7357 case DW_ATE_address:
7358 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7359 return type;
7360 case DW_ATE_boolean:
7361 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7362 return type;
7363 case DW_ATE_complex_float:
7364 if (size == 16)
7365 {
7366 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7367 }
7368 else
7369 {
7370 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7371 }
7372 return type;
7373 case DW_ATE_float:
7374 if (size == 8)
7375 {
7376 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7377 }
7378 else
7379 {
7380 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7381 }
7382 return type;
7383 case DW_ATE_signed:
7384 switch (size)
7385 {
7386 case 1:
7387 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7388 break;
7389 case 2:
7390 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7391 break;
7392 default:
7393 case 4:
7394 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7395 break;
7396 }
7397 return type;
7398 case DW_ATE_signed_char:
7399 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7400 return type;
7401 case DW_ATE_unsigned:
7402 switch (size)
7403 {
7404 case 1:
7405 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7406 break;
7407 case 2:
7408 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7409 break;
7410 default:
7411 case 4:
7412 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7413 break;
7414 }
7415 return type;
7416 case DW_ATE_unsigned_char:
7417 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7418 return type;
7419 default:
7420 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7421 return type;
7422 }
7423 }
7424
7425 #if 0
7426 struct die_info *
7427 copy_die (struct die_info *old_die)
7428 {
7429 struct die_info *new_die;
7430 int i, num_attrs;
7431
7432 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7433 memset (new_die, 0, sizeof (struct die_info));
7434
7435 new_die->tag = old_die->tag;
7436 new_die->has_children = old_die->has_children;
7437 new_die->abbrev = old_die->abbrev;
7438 new_die->offset = old_die->offset;
7439 new_die->type = NULL;
7440
7441 num_attrs = old_die->num_attrs;
7442 new_die->num_attrs = num_attrs;
7443 new_die->attrs = (struct attribute *)
7444 xmalloc (num_attrs * sizeof (struct attribute));
7445
7446 for (i = 0; i < old_die->num_attrs; ++i)
7447 {
7448 new_die->attrs[i].name = old_die->attrs[i].name;
7449 new_die->attrs[i].form = old_die->attrs[i].form;
7450 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7451 }
7452
7453 new_die->next = NULL;
7454 return new_die;
7455 }
7456 #endif
7457
7458 /* Return sibling of die, NULL if no sibling. */
7459
7460 static struct die_info *
7461 sibling_die (struct die_info *die)
7462 {
7463 return die->sibling;
7464 }
7465
7466 /* Get linkage name of a die, return NULL if not found. */
7467
7468 static char *
7469 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7470 {
7471 struct attribute *attr;
7472
7473 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7474 if (attr && DW_STRING (attr))
7475 return DW_STRING (attr);
7476 attr = dwarf2_attr (die, DW_AT_name, cu);
7477 if (attr && DW_STRING (attr))
7478 return DW_STRING (attr);
7479 return NULL;
7480 }
7481
7482 /* Get name of a die, return NULL if not found. */
7483
7484 static char *
7485 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7486 {
7487 struct attribute *attr;
7488
7489 attr = dwarf2_attr (die, DW_AT_name, cu);
7490 if (attr && DW_STRING (attr))
7491 return DW_STRING (attr);
7492 return NULL;
7493 }
7494
7495 /* Return the die that this die in an extension of, or NULL if there
7496 is none. */
7497
7498 static struct die_info *
7499 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7500 {
7501 struct attribute *attr;
7502
7503 attr = dwarf2_attr (die, DW_AT_extension, cu);
7504 if (attr == NULL)
7505 return NULL;
7506
7507 return follow_die_ref (die, attr, cu);
7508 }
7509
7510 /* Convert a DIE tag into its string name. */
7511
7512 static char *
7513 dwarf_tag_name (unsigned tag)
7514 {
7515 switch (tag)
7516 {
7517 case DW_TAG_padding:
7518 return "DW_TAG_padding";
7519 case DW_TAG_array_type:
7520 return "DW_TAG_array_type";
7521 case DW_TAG_class_type:
7522 return "DW_TAG_class_type";
7523 case DW_TAG_entry_point:
7524 return "DW_TAG_entry_point";
7525 case DW_TAG_enumeration_type:
7526 return "DW_TAG_enumeration_type";
7527 case DW_TAG_formal_parameter:
7528 return "DW_TAG_formal_parameter";
7529 case DW_TAG_imported_declaration:
7530 return "DW_TAG_imported_declaration";
7531 case DW_TAG_label:
7532 return "DW_TAG_label";
7533 case DW_TAG_lexical_block:
7534 return "DW_TAG_lexical_block";
7535 case DW_TAG_member:
7536 return "DW_TAG_member";
7537 case DW_TAG_pointer_type:
7538 return "DW_TAG_pointer_type";
7539 case DW_TAG_reference_type:
7540 return "DW_TAG_reference_type";
7541 case DW_TAG_compile_unit:
7542 return "DW_TAG_compile_unit";
7543 case DW_TAG_string_type:
7544 return "DW_TAG_string_type";
7545 case DW_TAG_structure_type:
7546 return "DW_TAG_structure_type";
7547 case DW_TAG_subroutine_type:
7548 return "DW_TAG_subroutine_type";
7549 case DW_TAG_typedef:
7550 return "DW_TAG_typedef";
7551 case DW_TAG_union_type:
7552 return "DW_TAG_union_type";
7553 case DW_TAG_unspecified_parameters:
7554 return "DW_TAG_unspecified_parameters";
7555 case DW_TAG_variant:
7556 return "DW_TAG_variant";
7557 case DW_TAG_common_block:
7558 return "DW_TAG_common_block";
7559 case DW_TAG_common_inclusion:
7560 return "DW_TAG_common_inclusion";
7561 case DW_TAG_inheritance:
7562 return "DW_TAG_inheritance";
7563 case DW_TAG_inlined_subroutine:
7564 return "DW_TAG_inlined_subroutine";
7565 case DW_TAG_module:
7566 return "DW_TAG_module";
7567 case DW_TAG_ptr_to_member_type:
7568 return "DW_TAG_ptr_to_member_type";
7569 case DW_TAG_set_type:
7570 return "DW_TAG_set_type";
7571 case DW_TAG_subrange_type:
7572 return "DW_TAG_subrange_type";
7573 case DW_TAG_with_stmt:
7574 return "DW_TAG_with_stmt";
7575 case DW_TAG_access_declaration:
7576 return "DW_TAG_access_declaration";
7577 case DW_TAG_base_type:
7578 return "DW_TAG_base_type";
7579 case DW_TAG_catch_block:
7580 return "DW_TAG_catch_block";
7581 case DW_TAG_const_type:
7582 return "DW_TAG_const_type";
7583 case DW_TAG_constant:
7584 return "DW_TAG_constant";
7585 case DW_TAG_enumerator:
7586 return "DW_TAG_enumerator";
7587 case DW_TAG_file_type:
7588 return "DW_TAG_file_type";
7589 case DW_TAG_friend:
7590 return "DW_TAG_friend";
7591 case DW_TAG_namelist:
7592 return "DW_TAG_namelist";
7593 case DW_TAG_namelist_item:
7594 return "DW_TAG_namelist_item";
7595 case DW_TAG_packed_type:
7596 return "DW_TAG_packed_type";
7597 case DW_TAG_subprogram:
7598 return "DW_TAG_subprogram";
7599 case DW_TAG_template_type_param:
7600 return "DW_TAG_template_type_param";
7601 case DW_TAG_template_value_param:
7602 return "DW_TAG_template_value_param";
7603 case DW_TAG_thrown_type:
7604 return "DW_TAG_thrown_type";
7605 case DW_TAG_try_block:
7606 return "DW_TAG_try_block";
7607 case DW_TAG_variant_part:
7608 return "DW_TAG_variant_part";
7609 case DW_TAG_variable:
7610 return "DW_TAG_variable";
7611 case DW_TAG_volatile_type:
7612 return "DW_TAG_volatile_type";
7613 case DW_TAG_dwarf_procedure:
7614 return "DW_TAG_dwarf_procedure";
7615 case DW_TAG_restrict_type:
7616 return "DW_TAG_restrict_type";
7617 case DW_TAG_interface_type:
7618 return "DW_TAG_interface_type";
7619 case DW_TAG_namespace:
7620 return "DW_TAG_namespace";
7621 case DW_TAG_imported_module:
7622 return "DW_TAG_imported_module";
7623 case DW_TAG_unspecified_type:
7624 return "DW_TAG_unspecified_type";
7625 case DW_TAG_partial_unit:
7626 return "DW_TAG_partial_unit";
7627 case DW_TAG_imported_unit:
7628 return "DW_TAG_imported_unit";
7629 case DW_TAG_MIPS_loop:
7630 return "DW_TAG_MIPS_loop";
7631 case DW_TAG_format_label:
7632 return "DW_TAG_format_label";
7633 case DW_TAG_function_template:
7634 return "DW_TAG_function_template";
7635 case DW_TAG_class_template:
7636 return "DW_TAG_class_template";
7637 default:
7638 return "DW_TAG_<unknown>";
7639 }
7640 }
7641
7642 /* Convert a DWARF attribute code into its string name. */
7643
7644 static char *
7645 dwarf_attr_name (unsigned attr)
7646 {
7647 switch (attr)
7648 {
7649 case DW_AT_sibling:
7650 return "DW_AT_sibling";
7651 case DW_AT_location:
7652 return "DW_AT_location";
7653 case DW_AT_name:
7654 return "DW_AT_name";
7655 case DW_AT_ordering:
7656 return "DW_AT_ordering";
7657 case DW_AT_subscr_data:
7658 return "DW_AT_subscr_data";
7659 case DW_AT_byte_size:
7660 return "DW_AT_byte_size";
7661 case DW_AT_bit_offset:
7662 return "DW_AT_bit_offset";
7663 case DW_AT_bit_size:
7664 return "DW_AT_bit_size";
7665 case DW_AT_element_list:
7666 return "DW_AT_element_list";
7667 case DW_AT_stmt_list:
7668 return "DW_AT_stmt_list";
7669 case DW_AT_low_pc:
7670 return "DW_AT_low_pc";
7671 case DW_AT_high_pc:
7672 return "DW_AT_high_pc";
7673 case DW_AT_language:
7674 return "DW_AT_language";
7675 case DW_AT_member:
7676 return "DW_AT_member";
7677 case DW_AT_discr:
7678 return "DW_AT_discr";
7679 case DW_AT_discr_value:
7680 return "DW_AT_discr_value";
7681 case DW_AT_visibility:
7682 return "DW_AT_visibility";
7683 case DW_AT_import:
7684 return "DW_AT_import";
7685 case DW_AT_string_length:
7686 return "DW_AT_string_length";
7687 case DW_AT_common_reference:
7688 return "DW_AT_common_reference";
7689 case DW_AT_comp_dir:
7690 return "DW_AT_comp_dir";
7691 case DW_AT_const_value:
7692 return "DW_AT_const_value";
7693 case DW_AT_containing_type:
7694 return "DW_AT_containing_type";
7695 case DW_AT_default_value:
7696 return "DW_AT_default_value";
7697 case DW_AT_inline:
7698 return "DW_AT_inline";
7699 case DW_AT_is_optional:
7700 return "DW_AT_is_optional";
7701 case DW_AT_lower_bound:
7702 return "DW_AT_lower_bound";
7703 case DW_AT_producer:
7704 return "DW_AT_producer";
7705 case DW_AT_prototyped:
7706 return "DW_AT_prototyped";
7707 case DW_AT_return_addr:
7708 return "DW_AT_return_addr";
7709 case DW_AT_start_scope:
7710 return "DW_AT_start_scope";
7711 case DW_AT_stride_size:
7712 return "DW_AT_stride_size";
7713 case DW_AT_upper_bound:
7714 return "DW_AT_upper_bound";
7715 case DW_AT_abstract_origin:
7716 return "DW_AT_abstract_origin";
7717 case DW_AT_accessibility:
7718 return "DW_AT_accessibility";
7719 case DW_AT_address_class:
7720 return "DW_AT_address_class";
7721 case DW_AT_artificial:
7722 return "DW_AT_artificial";
7723 case DW_AT_base_types:
7724 return "DW_AT_base_types";
7725 case DW_AT_calling_convention:
7726 return "DW_AT_calling_convention";
7727 case DW_AT_count:
7728 return "DW_AT_count";
7729 case DW_AT_data_member_location:
7730 return "DW_AT_data_member_location";
7731 case DW_AT_decl_column:
7732 return "DW_AT_decl_column";
7733 case DW_AT_decl_file:
7734 return "DW_AT_decl_file";
7735 case DW_AT_decl_line:
7736 return "DW_AT_decl_line";
7737 case DW_AT_declaration:
7738 return "DW_AT_declaration";
7739 case DW_AT_discr_list:
7740 return "DW_AT_discr_list";
7741 case DW_AT_encoding:
7742 return "DW_AT_encoding";
7743 case DW_AT_external:
7744 return "DW_AT_external";
7745 case DW_AT_frame_base:
7746 return "DW_AT_frame_base";
7747 case DW_AT_friend:
7748 return "DW_AT_friend";
7749 case DW_AT_identifier_case:
7750 return "DW_AT_identifier_case";
7751 case DW_AT_macro_info:
7752 return "DW_AT_macro_info";
7753 case DW_AT_namelist_items:
7754 return "DW_AT_namelist_items";
7755 case DW_AT_priority:
7756 return "DW_AT_priority";
7757 case DW_AT_segment:
7758 return "DW_AT_segment";
7759 case DW_AT_specification:
7760 return "DW_AT_specification";
7761 case DW_AT_static_link:
7762 return "DW_AT_static_link";
7763 case DW_AT_type:
7764 return "DW_AT_type";
7765 case DW_AT_use_location:
7766 return "DW_AT_use_location";
7767 case DW_AT_variable_parameter:
7768 return "DW_AT_variable_parameter";
7769 case DW_AT_virtuality:
7770 return "DW_AT_virtuality";
7771 case DW_AT_vtable_elem_location:
7772 return "DW_AT_vtable_elem_location";
7773 case DW_AT_allocated:
7774 return "DW_AT_allocated";
7775 case DW_AT_associated:
7776 return "DW_AT_associated";
7777 case DW_AT_data_location:
7778 return "DW_AT_data_location";
7779 case DW_AT_stride:
7780 return "DW_AT_stride";
7781 case DW_AT_entry_pc:
7782 return "DW_AT_entry_pc";
7783 case DW_AT_use_UTF8:
7784 return "DW_AT_use_UTF8";
7785 case DW_AT_extension:
7786 return "DW_AT_extension";
7787 case DW_AT_ranges:
7788 return "DW_AT_ranges";
7789 case DW_AT_trampoline:
7790 return "DW_AT_trampoline";
7791 case DW_AT_call_column:
7792 return "DW_AT_call_column";
7793 case DW_AT_call_file:
7794 return "DW_AT_call_file";
7795 case DW_AT_call_line:
7796 return "DW_AT_call_line";
7797 #ifdef MIPS
7798 case DW_AT_MIPS_fde:
7799 return "DW_AT_MIPS_fde";
7800 case DW_AT_MIPS_loop_begin:
7801 return "DW_AT_MIPS_loop_begin";
7802 case DW_AT_MIPS_tail_loop_begin:
7803 return "DW_AT_MIPS_tail_loop_begin";
7804 case DW_AT_MIPS_epilog_begin:
7805 return "DW_AT_MIPS_epilog_begin";
7806 case DW_AT_MIPS_loop_unroll_factor:
7807 return "DW_AT_MIPS_loop_unroll_factor";
7808 case DW_AT_MIPS_software_pipeline_depth:
7809 return "DW_AT_MIPS_software_pipeline_depth";
7810 #endif
7811 case DW_AT_MIPS_linkage_name:
7812 return "DW_AT_MIPS_linkage_name";
7813
7814 case DW_AT_sf_names:
7815 return "DW_AT_sf_names";
7816 case DW_AT_src_info:
7817 return "DW_AT_src_info";
7818 case DW_AT_mac_info:
7819 return "DW_AT_mac_info";
7820 case DW_AT_src_coords:
7821 return "DW_AT_src_coords";
7822 case DW_AT_body_begin:
7823 return "DW_AT_body_begin";
7824 case DW_AT_body_end:
7825 return "DW_AT_body_end";
7826 case DW_AT_GNU_vector:
7827 return "DW_AT_GNU_vector";
7828 default:
7829 return "DW_AT_<unknown>";
7830 }
7831 }
7832
7833 /* Convert a DWARF value form code into its string name. */
7834
7835 static char *
7836 dwarf_form_name (unsigned form)
7837 {
7838 switch (form)
7839 {
7840 case DW_FORM_addr:
7841 return "DW_FORM_addr";
7842 case DW_FORM_block2:
7843 return "DW_FORM_block2";
7844 case DW_FORM_block4:
7845 return "DW_FORM_block4";
7846 case DW_FORM_data2:
7847 return "DW_FORM_data2";
7848 case DW_FORM_data4:
7849 return "DW_FORM_data4";
7850 case DW_FORM_data8:
7851 return "DW_FORM_data8";
7852 case DW_FORM_string:
7853 return "DW_FORM_string";
7854 case DW_FORM_block:
7855 return "DW_FORM_block";
7856 case DW_FORM_block1:
7857 return "DW_FORM_block1";
7858 case DW_FORM_data1:
7859 return "DW_FORM_data1";
7860 case DW_FORM_flag:
7861 return "DW_FORM_flag";
7862 case DW_FORM_sdata:
7863 return "DW_FORM_sdata";
7864 case DW_FORM_strp:
7865 return "DW_FORM_strp";
7866 case DW_FORM_udata:
7867 return "DW_FORM_udata";
7868 case DW_FORM_ref_addr:
7869 return "DW_FORM_ref_addr";
7870 case DW_FORM_ref1:
7871 return "DW_FORM_ref1";
7872 case DW_FORM_ref2:
7873 return "DW_FORM_ref2";
7874 case DW_FORM_ref4:
7875 return "DW_FORM_ref4";
7876 case DW_FORM_ref8:
7877 return "DW_FORM_ref8";
7878 case DW_FORM_ref_udata:
7879 return "DW_FORM_ref_udata";
7880 case DW_FORM_indirect:
7881 return "DW_FORM_indirect";
7882 default:
7883 return "DW_FORM_<unknown>";
7884 }
7885 }
7886
7887 /* Convert a DWARF stack opcode into its string name. */
7888
7889 static char *
7890 dwarf_stack_op_name (unsigned op)
7891 {
7892 switch (op)
7893 {
7894 case DW_OP_addr:
7895 return "DW_OP_addr";
7896 case DW_OP_deref:
7897 return "DW_OP_deref";
7898 case DW_OP_const1u:
7899 return "DW_OP_const1u";
7900 case DW_OP_const1s:
7901 return "DW_OP_const1s";
7902 case DW_OP_const2u:
7903 return "DW_OP_const2u";
7904 case DW_OP_const2s:
7905 return "DW_OP_const2s";
7906 case DW_OP_const4u:
7907 return "DW_OP_const4u";
7908 case DW_OP_const4s:
7909 return "DW_OP_const4s";
7910 case DW_OP_const8u:
7911 return "DW_OP_const8u";
7912 case DW_OP_const8s:
7913 return "DW_OP_const8s";
7914 case DW_OP_constu:
7915 return "DW_OP_constu";
7916 case DW_OP_consts:
7917 return "DW_OP_consts";
7918 case DW_OP_dup:
7919 return "DW_OP_dup";
7920 case DW_OP_drop:
7921 return "DW_OP_drop";
7922 case DW_OP_over:
7923 return "DW_OP_over";
7924 case DW_OP_pick:
7925 return "DW_OP_pick";
7926 case DW_OP_swap:
7927 return "DW_OP_swap";
7928 case DW_OP_rot:
7929 return "DW_OP_rot";
7930 case DW_OP_xderef:
7931 return "DW_OP_xderef";
7932 case DW_OP_abs:
7933 return "DW_OP_abs";
7934 case DW_OP_and:
7935 return "DW_OP_and";
7936 case DW_OP_div:
7937 return "DW_OP_div";
7938 case DW_OP_minus:
7939 return "DW_OP_minus";
7940 case DW_OP_mod:
7941 return "DW_OP_mod";
7942 case DW_OP_mul:
7943 return "DW_OP_mul";
7944 case DW_OP_neg:
7945 return "DW_OP_neg";
7946 case DW_OP_not:
7947 return "DW_OP_not";
7948 case DW_OP_or:
7949 return "DW_OP_or";
7950 case DW_OP_plus:
7951 return "DW_OP_plus";
7952 case DW_OP_plus_uconst:
7953 return "DW_OP_plus_uconst";
7954 case DW_OP_shl:
7955 return "DW_OP_shl";
7956 case DW_OP_shr:
7957 return "DW_OP_shr";
7958 case DW_OP_shra:
7959 return "DW_OP_shra";
7960 case DW_OP_xor:
7961 return "DW_OP_xor";
7962 case DW_OP_bra:
7963 return "DW_OP_bra";
7964 case DW_OP_eq:
7965 return "DW_OP_eq";
7966 case DW_OP_ge:
7967 return "DW_OP_ge";
7968 case DW_OP_gt:
7969 return "DW_OP_gt";
7970 case DW_OP_le:
7971 return "DW_OP_le";
7972 case DW_OP_lt:
7973 return "DW_OP_lt";
7974 case DW_OP_ne:
7975 return "DW_OP_ne";
7976 case DW_OP_skip:
7977 return "DW_OP_skip";
7978 case DW_OP_lit0:
7979 return "DW_OP_lit0";
7980 case DW_OP_lit1:
7981 return "DW_OP_lit1";
7982 case DW_OP_lit2:
7983 return "DW_OP_lit2";
7984 case DW_OP_lit3:
7985 return "DW_OP_lit3";
7986 case DW_OP_lit4:
7987 return "DW_OP_lit4";
7988 case DW_OP_lit5:
7989 return "DW_OP_lit5";
7990 case DW_OP_lit6:
7991 return "DW_OP_lit6";
7992 case DW_OP_lit7:
7993 return "DW_OP_lit7";
7994 case DW_OP_lit8:
7995 return "DW_OP_lit8";
7996 case DW_OP_lit9:
7997 return "DW_OP_lit9";
7998 case DW_OP_lit10:
7999 return "DW_OP_lit10";
8000 case DW_OP_lit11:
8001 return "DW_OP_lit11";
8002 case DW_OP_lit12:
8003 return "DW_OP_lit12";
8004 case DW_OP_lit13:
8005 return "DW_OP_lit13";
8006 case DW_OP_lit14:
8007 return "DW_OP_lit14";
8008 case DW_OP_lit15:
8009 return "DW_OP_lit15";
8010 case DW_OP_lit16:
8011 return "DW_OP_lit16";
8012 case DW_OP_lit17:
8013 return "DW_OP_lit17";
8014 case DW_OP_lit18:
8015 return "DW_OP_lit18";
8016 case DW_OP_lit19:
8017 return "DW_OP_lit19";
8018 case DW_OP_lit20:
8019 return "DW_OP_lit20";
8020 case DW_OP_lit21:
8021 return "DW_OP_lit21";
8022 case DW_OP_lit22:
8023 return "DW_OP_lit22";
8024 case DW_OP_lit23:
8025 return "DW_OP_lit23";
8026 case DW_OP_lit24:
8027 return "DW_OP_lit24";
8028 case DW_OP_lit25:
8029 return "DW_OP_lit25";
8030 case DW_OP_lit26:
8031 return "DW_OP_lit26";
8032 case DW_OP_lit27:
8033 return "DW_OP_lit27";
8034 case DW_OP_lit28:
8035 return "DW_OP_lit28";
8036 case DW_OP_lit29:
8037 return "DW_OP_lit29";
8038 case DW_OP_lit30:
8039 return "DW_OP_lit30";
8040 case DW_OP_lit31:
8041 return "DW_OP_lit31";
8042 case DW_OP_reg0:
8043 return "DW_OP_reg0";
8044 case DW_OP_reg1:
8045 return "DW_OP_reg1";
8046 case DW_OP_reg2:
8047 return "DW_OP_reg2";
8048 case DW_OP_reg3:
8049 return "DW_OP_reg3";
8050 case DW_OP_reg4:
8051 return "DW_OP_reg4";
8052 case DW_OP_reg5:
8053 return "DW_OP_reg5";
8054 case DW_OP_reg6:
8055 return "DW_OP_reg6";
8056 case DW_OP_reg7:
8057 return "DW_OP_reg7";
8058 case DW_OP_reg8:
8059 return "DW_OP_reg8";
8060 case DW_OP_reg9:
8061 return "DW_OP_reg9";
8062 case DW_OP_reg10:
8063 return "DW_OP_reg10";
8064 case DW_OP_reg11:
8065 return "DW_OP_reg11";
8066 case DW_OP_reg12:
8067 return "DW_OP_reg12";
8068 case DW_OP_reg13:
8069 return "DW_OP_reg13";
8070 case DW_OP_reg14:
8071 return "DW_OP_reg14";
8072 case DW_OP_reg15:
8073 return "DW_OP_reg15";
8074 case DW_OP_reg16:
8075 return "DW_OP_reg16";
8076 case DW_OP_reg17:
8077 return "DW_OP_reg17";
8078 case DW_OP_reg18:
8079 return "DW_OP_reg18";
8080 case DW_OP_reg19:
8081 return "DW_OP_reg19";
8082 case DW_OP_reg20:
8083 return "DW_OP_reg20";
8084 case DW_OP_reg21:
8085 return "DW_OP_reg21";
8086 case DW_OP_reg22:
8087 return "DW_OP_reg22";
8088 case DW_OP_reg23:
8089 return "DW_OP_reg23";
8090 case DW_OP_reg24:
8091 return "DW_OP_reg24";
8092 case DW_OP_reg25:
8093 return "DW_OP_reg25";
8094 case DW_OP_reg26:
8095 return "DW_OP_reg26";
8096 case DW_OP_reg27:
8097 return "DW_OP_reg27";
8098 case DW_OP_reg28:
8099 return "DW_OP_reg28";
8100 case DW_OP_reg29:
8101 return "DW_OP_reg29";
8102 case DW_OP_reg30:
8103 return "DW_OP_reg30";
8104 case DW_OP_reg31:
8105 return "DW_OP_reg31";
8106 case DW_OP_breg0:
8107 return "DW_OP_breg0";
8108 case DW_OP_breg1:
8109 return "DW_OP_breg1";
8110 case DW_OP_breg2:
8111 return "DW_OP_breg2";
8112 case DW_OP_breg3:
8113 return "DW_OP_breg3";
8114 case DW_OP_breg4:
8115 return "DW_OP_breg4";
8116 case DW_OP_breg5:
8117 return "DW_OP_breg5";
8118 case DW_OP_breg6:
8119 return "DW_OP_breg6";
8120 case DW_OP_breg7:
8121 return "DW_OP_breg7";
8122 case DW_OP_breg8:
8123 return "DW_OP_breg8";
8124 case DW_OP_breg9:
8125 return "DW_OP_breg9";
8126 case DW_OP_breg10:
8127 return "DW_OP_breg10";
8128 case DW_OP_breg11:
8129 return "DW_OP_breg11";
8130 case DW_OP_breg12:
8131 return "DW_OP_breg12";
8132 case DW_OP_breg13:
8133 return "DW_OP_breg13";
8134 case DW_OP_breg14:
8135 return "DW_OP_breg14";
8136 case DW_OP_breg15:
8137 return "DW_OP_breg15";
8138 case DW_OP_breg16:
8139 return "DW_OP_breg16";
8140 case DW_OP_breg17:
8141 return "DW_OP_breg17";
8142 case DW_OP_breg18:
8143 return "DW_OP_breg18";
8144 case DW_OP_breg19:
8145 return "DW_OP_breg19";
8146 case DW_OP_breg20:
8147 return "DW_OP_breg20";
8148 case DW_OP_breg21:
8149 return "DW_OP_breg21";
8150 case DW_OP_breg22:
8151 return "DW_OP_breg22";
8152 case DW_OP_breg23:
8153 return "DW_OP_breg23";
8154 case DW_OP_breg24:
8155 return "DW_OP_breg24";
8156 case DW_OP_breg25:
8157 return "DW_OP_breg25";
8158 case DW_OP_breg26:
8159 return "DW_OP_breg26";
8160 case DW_OP_breg27:
8161 return "DW_OP_breg27";
8162 case DW_OP_breg28:
8163 return "DW_OP_breg28";
8164 case DW_OP_breg29:
8165 return "DW_OP_breg29";
8166 case DW_OP_breg30:
8167 return "DW_OP_breg30";
8168 case DW_OP_breg31:
8169 return "DW_OP_breg31";
8170 case DW_OP_regx:
8171 return "DW_OP_regx";
8172 case DW_OP_fbreg:
8173 return "DW_OP_fbreg";
8174 case DW_OP_bregx:
8175 return "DW_OP_bregx";
8176 case DW_OP_piece:
8177 return "DW_OP_piece";
8178 case DW_OP_deref_size:
8179 return "DW_OP_deref_size";
8180 case DW_OP_xderef_size:
8181 return "DW_OP_xderef_size";
8182 case DW_OP_nop:
8183 return "DW_OP_nop";
8184 /* DWARF 3 extensions. */
8185 case DW_OP_push_object_address:
8186 return "DW_OP_push_object_address";
8187 case DW_OP_call2:
8188 return "DW_OP_call2";
8189 case DW_OP_call4:
8190 return "DW_OP_call4";
8191 case DW_OP_call_ref:
8192 return "DW_OP_call_ref";
8193 /* GNU extensions. */
8194 case DW_OP_GNU_push_tls_address:
8195 return "DW_OP_GNU_push_tls_address";
8196 default:
8197 return "OP_<unknown>";
8198 }
8199 }
8200
8201 static char *
8202 dwarf_bool_name (unsigned mybool)
8203 {
8204 if (mybool)
8205 return "TRUE";
8206 else
8207 return "FALSE";
8208 }
8209
8210 /* Convert a DWARF type code into its string name. */
8211
8212 static char *
8213 dwarf_type_encoding_name (unsigned enc)
8214 {
8215 switch (enc)
8216 {
8217 case DW_ATE_address:
8218 return "DW_ATE_address";
8219 case DW_ATE_boolean:
8220 return "DW_ATE_boolean";
8221 case DW_ATE_complex_float:
8222 return "DW_ATE_complex_float";
8223 case DW_ATE_float:
8224 return "DW_ATE_float";
8225 case DW_ATE_signed:
8226 return "DW_ATE_signed";
8227 case DW_ATE_signed_char:
8228 return "DW_ATE_signed_char";
8229 case DW_ATE_unsigned:
8230 return "DW_ATE_unsigned";
8231 case DW_ATE_unsigned_char:
8232 return "DW_ATE_unsigned_char";
8233 case DW_ATE_imaginary_float:
8234 return "DW_ATE_imaginary_float";
8235 default:
8236 return "DW_ATE_<unknown>";
8237 }
8238 }
8239
8240 /* Convert a DWARF call frame info operation to its string name. */
8241
8242 #if 0
8243 static char *
8244 dwarf_cfi_name (unsigned cfi_opc)
8245 {
8246 switch (cfi_opc)
8247 {
8248 case DW_CFA_advance_loc:
8249 return "DW_CFA_advance_loc";
8250 case DW_CFA_offset:
8251 return "DW_CFA_offset";
8252 case DW_CFA_restore:
8253 return "DW_CFA_restore";
8254 case DW_CFA_nop:
8255 return "DW_CFA_nop";
8256 case DW_CFA_set_loc:
8257 return "DW_CFA_set_loc";
8258 case DW_CFA_advance_loc1:
8259 return "DW_CFA_advance_loc1";
8260 case DW_CFA_advance_loc2:
8261 return "DW_CFA_advance_loc2";
8262 case DW_CFA_advance_loc4:
8263 return "DW_CFA_advance_loc4";
8264 case DW_CFA_offset_extended:
8265 return "DW_CFA_offset_extended";
8266 case DW_CFA_restore_extended:
8267 return "DW_CFA_restore_extended";
8268 case DW_CFA_undefined:
8269 return "DW_CFA_undefined";
8270 case DW_CFA_same_value:
8271 return "DW_CFA_same_value";
8272 case DW_CFA_register:
8273 return "DW_CFA_register";
8274 case DW_CFA_remember_state:
8275 return "DW_CFA_remember_state";
8276 case DW_CFA_restore_state:
8277 return "DW_CFA_restore_state";
8278 case DW_CFA_def_cfa:
8279 return "DW_CFA_def_cfa";
8280 case DW_CFA_def_cfa_register:
8281 return "DW_CFA_def_cfa_register";
8282 case DW_CFA_def_cfa_offset:
8283 return "DW_CFA_def_cfa_offset";
8284
8285 /* DWARF 3 */
8286 case DW_CFA_def_cfa_expression:
8287 return "DW_CFA_def_cfa_expression";
8288 case DW_CFA_expression:
8289 return "DW_CFA_expression";
8290 case DW_CFA_offset_extended_sf:
8291 return "DW_CFA_offset_extended_sf";
8292 case DW_CFA_def_cfa_sf:
8293 return "DW_CFA_def_cfa_sf";
8294 case DW_CFA_def_cfa_offset_sf:
8295 return "DW_CFA_def_cfa_offset_sf";
8296
8297 /* SGI/MIPS specific */
8298 case DW_CFA_MIPS_advance_loc8:
8299 return "DW_CFA_MIPS_advance_loc8";
8300
8301 /* GNU extensions */
8302 case DW_CFA_GNU_window_save:
8303 return "DW_CFA_GNU_window_save";
8304 case DW_CFA_GNU_args_size:
8305 return "DW_CFA_GNU_args_size";
8306 case DW_CFA_GNU_negative_offset_extended:
8307 return "DW_CFA_GNU_negative_offset_extended";
8308
8309 default:
8310 return "DW_CFA_<unknown>";
8311 }
8312 }
8313 #endif
8314
8315 static void
8316 dump_die (struct die_info *die)
8317 {
8318 unsigned int i;
8319
8320 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8321 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8322 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8323 dwarf_bool_name (die->child != NULL));
8324
8325 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8326 for (i = 0; i < die->num_attrs; ++i)
8327 {
8328 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8329 dwarf_attr_name (die->attrs[i].name),
8330 dwarf_form_name (die->attrs[i].form));
8331 switch (die->attrs[i].form)
8332 {
8333 case DW_FORM_ref_addr:
8334 case DW_FORM_addr:
8335 fprintf_unfiltered (gdb_stderr, "address: ");
8336 print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8337 break;
8338 case DW_FORM_block2:
8339 case DW_FORM_block4:
8340 case DW_FORM_block:
8341 case DW_FORM_block1:
8342 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8343 break;
8344 case DW_FORM_ref1:
8345 case DW_FORM_ref2:
8346 case DW_FORM_ref4:
8347 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8348 (long) (DW_ADDR (&die->attrs[i])));
8349 break;
8350 case DW_FORM_data1:
8351 case DW_FORM_data2:
8352 case DW_FORM_data4:
8353 case DW_FORM_data8:
8354 case DW_FORM_udata:
8355 case DW_FORM_sdata:
8356 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8357 break;
8358 case DW_FORM_string:
8359 case DW_FORM_strp:
8360 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8361 DW_STRING (&die->attrs[i])
8362 ? DW_STRING (&die->attrs[i]) : "");
8363 break;
8364 case DW_FORM_flag:
8365 if (DW_UNSND (&die->attrs[i]))
8366 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8367 else
8368 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8369 break;
8370 case DW_FORM_indirect:
8371 /* the reader will have reduced the indirect form to
8372 the "base form" so this form should not occur */
8373 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8374 break;
8375 default:
8376 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8377 die->attrs[i].form);
8378 }
8379 fprintf_unfiltered (gdb_stderr, "\n");
8380 }
8381 }
8382
8383 static void
8384 dump_die_list (struct die_info *die)
8385 {
8386 while (die)
8387 {
8388 dump_die (die);
8389 if (die->child != NULL)
8390 dump_die_list (die->child);
8391 if (die->sibling != NULL)
8392 dump_die_list (die->sibling);
8393 }
8394 }
8395
8396 static void
8397 store_in_ref_table (unsigned int offset, struct die_info *die,
8398 struct dwarf2_cu *cu)
8399 {
8400 int h;
8401 struct die_info *old;
8402
8403 h = (offset % REF_HASH_SIZE);
8404 old = cu->die_ref_table[h];
8405 die->next_ref = old;
8406 cu->die_ref_table[h] = die;
8407 }
8408
8409 static unsigned int
8410 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8411 {
8412 unsigned int result = 0;
8413
8414 switch (attr->form)
8415 {
8416 case DW_FORM_ref_addr:
8417 case DW_FORM_ref1:
8418 case DW_FORM_ref2:
8419 case DW_FORM_ref4:
8420 case DW_FORM_ref8:
8421 case DW_FORM_ref_udata:
8422 result = DW_ADDR (attr);
8423 break;
8424 default:
8425 complaint (&symfile_complaints,
8426 "unsupported die ref attribute form: '%s'",
8427 dwarf_form_name (attr->form));
8428 }
8429 return result;
8430 }
8431
8432 /* Return the constant value held by the given attribute. Return -1
8433 if the value held by the attribute is not constant. */
8434
8435 static int
8436 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8437 {
8438 if (attr->form == DW_FORM_sdata)
8439 return DW_SND (attr);
8440 else if (attr->form == DW_FORM_udata
8441 || attr->form == DW_FORM_data1
8442 || attr->form == DW_FORM_data2
8443 || attr->form == DW_FORM_data4
8444 || attr->form == DW_FORM_data8)
8445 return DW_UNSND (attr);
8446 else
8447 {
8448 complaint (&symfile_complaints, "Attribute value is not a constant (%s)",
8449 dwarf_form_name (attr->form));
8450 return default_value;
8451 }
8452 }
8453
8454 static struct die_info *
8455 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8456 struct dwarf2_cu *cu)
8457 {
8458 struct die_info *die;
8459 unsigned int offset;
8460 int h;
8461 struct die_info temp_die;
8462 struct dwarf2_cu *target_cu;
8463
8464 offset = dwarf2_get_ref_die_offset (attr, cu);
8465
8466 if (DW_ADDR (attr) < cu->header.offset
8467 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8468 {
8469 struct dwarf2_per_cu_data *per_cu;
8470 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8471 cu->objfile);
8472 target_cu = per_cu->cu;
8473 }
8474 else
8475 target_cu = cu;
8476
8477 h = (offset % REF_HASH_SIZE);
8478 die = target_cu->die_ref_table[h];
8479 while (die)
8480 {
8481 if (die->offset == offset)
8482 return die;
8483 die = die->next_ref;
8484 }
8485
8486 error ("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8487 "at 0x%lx [in module %s]",
8488 (long) src_die->offset, (long) offset, cu->objfile->name);
8489
8490 return NULL;
8491 }
8492
8493 static struct type *
8494 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8495 struct dwarf2_cu *cu)
8496 {
8497 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8498 {
8499 error ("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]",
8500 typeid, objfile->name);
8501 }
8502
8503 /* Look for this particular type in the fundamental type vector. If
8504 one is not found, create and install one appropriate for the
8505 current language and the current target machine. */
8506
8507 if (cu->ftypes[typeid] == NULL)
8508 {
8509 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8510 }
8511
8512 return (cu->ftypes[typeid]);
8513 }
8514
8515 /* Decode simple location descriptions.
8516 Given a pointer to a dwarf block that defines a location, compute
8517 the location and return the value.
8518
8519 NOTE drow/2003-11-18: This function is called in two situations
8520 now: for the address of static or global variables (partial symbols
8521 only) and for offsets into structures which are expected to be
8522 (more or less) constant. The partial symbol case should go away,
8523 and only the constant case should remain. That will let this
8524 function complain more accurately. A few special modes are allowed
8525 without complaint for global variables (for instance, global
8526 register values and thread-local values).
8527
8528 A location description containing no operations indicates that the
8529 object is optimized out. The return value is 0 for that case.
8530 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8531 callers will only want a very basic result and this can become a
8532 complaint.
8533
8534 When the result is a register number, the global isreg flag is set,
8535 otherwise it is cleared.
8536
8537 Note that stack[0] is unused except as a default error return.
8538 Note that stack overflow is not yet handled. */
8539
8540 static CORE_ADDR
8541 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8542 {
8543 struct objfile *objfile = cu->objfile;
8544 struct comp_unit_head *cu_header = &cu->header;
8545 int i;
8546 int size = blk->size;
8547 char *data = blk->data;
8548 CORE_ADDR stack[64];
8549 int stacki;
8550 unsigned int bytes_read, unsnd;
8551 unsigned char op;
8552
8553 i = 0;
8554 stacki = 0;
8555 stack[stacki] = 0;
8556 isreg = 0;
8557
8558 while (i < size)
8559 {
8560 op = data[i++];
8561 switch (op)
8562 {
8563 case DW_OP_lit0:
8564 case DW_OP_lit1:
8565 case DW_OP_lit2:
8566 case DW_OP_lit3:
8567 case DW_OP_lit4:
8568 case DW_OP_lit5:
8569 case DW_OP_lit6:
8570 case DW_OP_lit7:
8571 case DW_OP_lit8:
8572 case DW_OP_lit9:
8573 case DW_OP_lit10:
8574 case DW_OP_lit11:
8575 case DW_OP_lit12:
8576 case DW_OP_lit13:
8577 case DW_OP_lit14:
8578 case DW_OP_lit15:
8579 case DW_OP_lit16:
8580 case DW_OP_lit17:
8581 case DW_OP_lit18:
8582 case DW_OP_lit19:
8583 case DW_OP_lit20:
8584 case DW_OP_lit21:
8585 case DW_OP_lit22:
8586 case DW_OP_lit23:
8587 case DW_OP_lit24:
8588 case DW_OP_lit25:
8589 case DW_OP_lit26:
8590 case DW_OP_lit27:
8591 case DW_OP_lit28:
8592 case DW_OP_lit29:
8593 case DW_OP_lit30:
8594 case DW_OP_lit31:
8595 stack[++stacki] = op - DW_OP_lit0;
8596 break;
8597
8598 case DW_OP_reg0:
8599 case DW_OP_reg1:
8600 case DW_OP_reg2:
8601 case DW_OP_reg3:
8602 case DW_OP_reg4:
8603 case DW_OP_reg5:
8604 case DW_OP_reg6:
8605 case DW_OP_reg7:
8606 case DW_OP_reg8:
8607 case DW_OP_reg9:
8608 case DW_OP_reg10:
8609 case DW_OP_reg11:
8610 case DW_OP_reg12:
8611 case DW_OP_reg13:
8612 case DW_OP_reg14:
8613 case DW_OP_reg15:
8614 case DW_OP_reg16:
8615 case DW_OP_reg17:
8616 case DW_OP_reg18:
8617 case DW_OP_reg19:
8618 case DW_OP_reg20:
8619 case DW_OP_reg21:
8620 case DW_OP_reg22:
8621 case DW_OP_reg23:
8622 case DW_OP_reg24:
8623 case DW_OP_reg25:
8624 case DW_OP_reg26:
8625 case DW_OP_reg27:
8626 case DW_OP_reg28:
8627 case DW_OP_reg29:
8628 case DW_OP_reg30:
8629 case DW_OP_reg31:
8630 isreg = 1;
8631 stack[++stacki] = op - DW_OP_reg0;
8632 if (i < size)
8633 dwarf2_complex_location_expr_complaint ();
8634 break;
8635
8636 case DW_OP_regx:
8637 isreg = 1;
8638 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8639 i += bytes_read;
8640 stack[++stacki] = unsnd;
8641 if (i < size)
8642 dwarf2_complex_location_expr_complaint ();
8643 break;
8644
8645 case DW_OP_addr:
8646 stack[++stacki] = read_address (objfile->obfd, &data[i],
8647 cu, &bytes_read);
8648 i += bytes_read;
8649 break;
8650
8651 case DW_OP_const1u:
8652 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8653 i += 1;
8654 break;
8655
8656 case DW_OP_const1s:
8657 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8658 i += 1;
8659 break;
8660
8661 case DW_OP_const2u:
8662 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8663 i += 2;
8664 break;
8665
8666 case DW_OP_const2s:
8667 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8668 i += 2;
8669 break;
8670
8671 case DW_OP_const4u:
8672 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8673 i += 4;
8674 break;
8675
8676 case DW_OP_const4s:
8677 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8678 i += 4;
8679 break;
8680
8681 case DW_OP_constu:
8682 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8683 &bytes_read);
8684 i += bytes_read;
8685 break;
8686
8687 case DW_OP_consts:
8688 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8689 i += bytes_read;
8690 break;
8691
8692 case DW_OP_dup:
8693 stack[stacki + 1] = stack[stacki];
8694 stacki++;
8695 break;
8696
8697 case DW_OP_plus:
8698 stack[stacki - 1] += stack[stacki];
8699 stacki--;
8700 break;
8701
8702 case DW_OP_plus_uconst:
8703 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8704 i += bytes_read;
8705 break;
8706
8707 case DW_OP_minus:
8708 stack[stacki - 1] -= stack[stacki];
8709 stacki--;
8710 break;
8711
8712 case DW_OP_deref:
8713 /* If we're not the last op, then we definitely can't encode
8714 this using GDB's address_class enum. This is valid for partial
8715 global symbols, although the variable's address will be bogus
8716 in the psymtab. */
8717 if (i < size)
8718 dwarf2_complex_location_expr_complaint ();
8719 break;
8720
8721 case DW_OP_GNU_push_tls_address:
8722 /* The top of the stack has the offset from the beginning
8723 of the thread control block at which the variable is located. */
8724 /* Nothing should follow this operator, so the top of stack would
8725 be returned. */
8726 /* This is valid for partial global symbols, but the variable's
8727 address will be bogus in the psymtab. */
8728 if (i < size)
8729 dwarf2_complex_location_expr_complaint ();
8730 break;
8731
8732 default:
8733 complaint (&symfile_complaints, "unsupported stack op: '%s'",
8734 dwarf_stack_op_name (op));
8735 return (stack[stacki]);
8736 }
8737 }
8738 return (stack[stacki]);
8739 }
8740
8741 /* memory allocation interface */
8742
8743 static struct dwarf_block *
8744 dwarf_alloc_block (struct dwarf2_cu *cu)
8745 {
8746 struct dwarf_block *blk;
8747
8748 blk = (struct dwarf_block *)
8749 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8750 return (blk);
8751 }
8752
8753 static struct abbrev_info *
8754 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8755 {
8756 struct abbrev_info *abbrev;
8757
8758 abbrev = (struct abbrev_info *)
8759 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8760 memset (abbrev, 0, sizeof (struct abbrev_info));
8761 return (abbrev);
8762 }
8763
8764 static struct die_info *
8765 dwarf_alloc_die (void)
8766 {
8767 struct die_info *die;
8768
8769 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8770 memset (die, 0, sizeof (struct die_info));
8771 return (die);
8772 }
8773
8774 \f
8775 /* Macro support. */
8776
8777
8778 /* Return the full name of file number I in *LH's file name table.
8779 Use COMP_DIR as the name of the current directory of the
8780 compilation. The result is allocated using xmalloc; the caller is
8781 responsible for freeing it. */
8782 static char *
8783 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8784 {
8785 struct file_entry *fe = &lh->file_names[file - 1];
8786
8787 if (IS_ABSOLUTE_PATH (fe->name))
8788 return xstrdup (fe->name);
8789 else
8790 {
8791 const char *dir;
8792 int dir_len;
8793 char *full_name;
8794
8795 if (fe->dir_index)
8796 dir = lh->include_dirs[fe->dir_index - 1];
8797 else
8798 dir = comp_dir;
8799
8800 if (dir)
8801 {
8802 dir_len = strlen (dir);
8803 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8804 strcpy (full_name, dir);
8805 full_name[dir_len] = '/';
8806 strcpy (full_name + dir_len + 1, fe->name);
8807 return full_name;
8808 }
8809 else
8810 return xstrdup (fe->name);
8811 }
8812 }
8813
8814
8815 static struct macro_source_file *
8816 macro_start_file (int file, int line,
8817 struct macro_source_file *current_file,
8818 const char *comp_dir,
8819 struct line_header *lh, struct objfile *objfile)
8820 {
8821 /* The full name of this source file. */
8822 char *full_name = file_full_name (file, lh, comp_dir);
8823
8824 /* We don't create a macro table for this compilation unit
8825 at all until we actually get a filename. */
8826 if (! pending_macros)
8827 pending_macros = new_macro_table (&objfile->objfile_obstack,
8828 objfile->macro_cache);
8829
8830 if (! current_file)
8831 /* If we have no current file, then this must be the start_file
8832 directive for the compilation unit's main source file. */
8833 current_file = macro_set_main (pending_macros, full_name);
8834 else
8835 current_file = macro_include (current_file, line, full_name);
8836
8837 xfree (full_name);
8838
8839 return current_file;
8840 }
8841
8842
8843 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8844 followed by a null byte. */
8845 static char *
8846 copy_string (const char *buf, int len)
8847 {
8848 char *s = xmalloc (len + 1);
8849 memcpy (s, buf, len);
8850 s[len] = '\0';
8851
8852 return s;
8853 }
8854
8855
8856 static const char *
8857 consume_improper_spaces (const char *p, const char *body)
8858 {
8859 if (*p == ' ')
8860 {
8861 complaint (&symfile_complaints,
8862 "macro definition contains spaces in formal argument list:\n`%s'",
8863 body);
8864
8865 while (*p == ' ')
8866 p++;
8867 }
8868
8869 return p;
8870 }
8871
8872
8873 static void
8874 parse_macro_definition (struct macro_source_file *file, int line,
8875 const char *body)
8876 {
8877 const char *p;
8878
8879 /* The body string takes one of two forms. For object-like macro
8880 definitions, it should be:
8881
8882 <macro name> " " <definition>
8883
8884 For function-like macro definitions, it should be:
8885
8886 <macro name> "() " <definition>
8887 or
8888 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8889
8890 Spaces may appear only where explicitly indicated, and in the
8891 <definition>.
8892
8893 The Dwarf 2 spec says that an object-like macro's name is always
8894 followed by a space, but versions of GCC around March 2002 omit
8895 the space when the macro's definition is the empty string.
8896
8897 The Dwarf 2 spec says that there should be no spaces between the
8898 formal arguments in a function-like macro's formal argument list,
8899 but versions of GCC around March 2002 include spaces after the
8900 commas. */
8901
8902
8903 /* Find the extent of the macro name. The macro name is terminated
8904 by either a space or null character (for an object-like macro) or
8905 an opening paren (for a function-like macro). */
8906 for (p = body; *p; p++)
8907 if (*p == ' ' || *p == '(')
8908 break;
8909
8910 if (*p == ' ' || *p == '\0')
8911 {
8912 /* It's an object-like macro. */
8913 int name_len = p - body;
8914 char *name = copy_string (body, name_len);
8915 const char *replacement;
8916
8917 if (*p == ' ')
8918 replacement = body + name_len + 1;
8919 else
8920 {
8921 dwarf2_macro_malformed_definition_complaint (body);
8922 replacement = body + name_len;
8923 }
8924
8925 macro_define_object (file, line, name, replacement);
8926
8927 xfree (name);
8928 }
8929 else if (*p == '(')
8930 {
8931 /* It's a function-like macro. */
8932 char *name = copy_string (body, p - body);
8933 int argc = 0;
8934 int argv_size = 1;
8935 char **argv = xmalloc (argv_size * sizeof (*argv));
8936
8937 p++;
8938
8939 p = consume_improper_spaces (p, body);
8940
8941 /* Parse the formal argument list. */
8942 while (*p && *p != ')')
8943 {
8944 /* Find the extent of the current argument name. */
8945 const char *arg_start = p;
8946
8947 while (*p && *p != ',' && *p != ')' && *p != ' ')
8948 p++;
8949
8950 if (! *p || p == arg_start)
8951 dwarf2_macro_malformed_definition_complaint (body);
8952 else
8953 {
8954 /* Make sure argv has room for the new argument. */
8955 if (argc >= argv_size)
8956 {
8957 argv_size *= 2;
8958 argv = xrealloc (argv, argv_size * sizeof (*argv));
8959 }
8960
8961 argv[argc++] = copy_string (arg_start, p - arg_start);
8962 }
8963
8964 p = consume_improper_spaces (p, body);
8965
8966 /* Consume the comma, if present. */
8967 if (*p == ',')
8968 {
8969 p++;
8970
8971 p = consume_improper_spaces (p, body);
8972 }
8973 }
8974
8975 if (*p == ')')
8976 {
8977 p++;
8978
8979 if (*p == ' ')
8980 /* Perfectly formed definition, no complaints. */
8981 macro_define_function (file, line, name,
8982 argc, (const char **) argv,
8983 p + 1);
8984 else if (*p == '\0')
8985 {
8986 /* Complain, but do define it. */
8987 dwarf2_macro_malformed_definition_complaint (body);
8988 macro_define_function (file, line, name,
8989 argc, (const char **) argv,
8990 p);
8991 }
8992 else
8993 /* Just complain. */
8994 dwarf2_macro_malformed_definition_complaint (body);
8995 }
8996 else
8997 /* Just complain. */
8998 dwarf2_macro_malformed_definition_complaint (body);
8999
9000 xfree (name);
9001 {
9002 int i;
9003
9004 for (i = 0; i < argc; i++)
9005 xfree (argv[i]);
9006 }
9007 xfree (argv);
9008 }
9009 else
9010 dwarf2_macro_malformed_definition_complaint (body);
9011 }
9012
9013
9014 static void
9015 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9016 char *comp_dir, bfd *abfd,
9017 struct dwarf2_cu *cu)
9018 {
9019 char *mac_ptr, *mac_end;
9020 struct macro_source_file *current_file = 0;
9021
9022 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9023 {
9024 complaint (&symfile_complaints, "missing .debug_macinfo section");
9025 return;
9026 }
9027
9028 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9029 mac_end = dwarf2_per_objfile->macinfo_buffer
9030 + dwarf2_per_objfile->macinfo_size;
9031
9032 for (;;)
9033 {
9034 enum dwarf_macinfo_record_type macinfo_type;
9035
9036 /* Do we at least have room for a macinfo type byte? */
9037 if (mac_ptr >= mac_end)
9038 {
9039 dwarf2_macros_too_long_complaint ();
9040 return;
9041 }
9042
9043 macinfo_type = read_1_byte (abfd, mac_ptr);
9044 mac_ptr++;
9045
9046 switch (macinfo_type)
9047 {
9048 /* A zero macinfo type indicates the end of the macro
9049 information. */
9050 case 0:
9051 return;
9052
9053 case DW_MACINFO_define:
9054 case DW_MACINFO_undef:
9055 {
9056 int bytes_read;
9057 int line;
9058 char *body;
9059
9060 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9061 mac_ptr += bytes_read;
9062 body = read_string (abfd, mac_ptr, &bytes_read);
9063 mac_ptr += bytes_read;
9064
9065 if (! current_file)
9066 complaint (&symfile_complaints,
9067 "debug info gives macro %s outside of any file: %s",
9068 macinfo_type ==
9069 DW_MACINFO_define ? "definition" : macinfo_type ==
9070 DW_MACINFO_undef ? "undefinition" :
9071 "something-or-other", body);
9072 else
9073 {
9074 if (macinfo_type == DW_MACINFO_define)
9075 parse_macro_definition (current_file, line, body);
9076 else if (macinfo_type == DW_MACINFO_undef)
9077 macro_undef (current_file, line, body);
9078 }
9079 }
9080 break;
9081
9082 case DW_MACINFO_start_file:
9083 {
9084 int bytes_read;
9085 int line, file;
9086
9087 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9088 mac_ptr += bytes_read;
9089 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9090 mac_ptr += bytes_read;
9091
9092 current_file = macro_start_file (file, line,
9093 current_file, comp_dir,
9094 lh, cu->objfile);
9095 }
9096 break;
9097
9098 case DW_MACINFO_end_file:
9099 if (! current_file)
9100 complaint (&symfile_complaints,
9101 "macro debug info has an unmatched `close_file' directive");
9102 else
9103 {
9104 current_file = current_file->included_by;
9105 if (! current_file)
9106 {
9107 enum dwarf_macinfo_record_type next_type;
9108
9109 /* GCC circa March 2002 doesn't produce the zero
9110 type byte marking the end of the compilation
9111 unit. Complain if it's not there, but exit no
9112 matter what. */
9113
9114 /* Do we at least have room for a macinfo type byte? */
9115 if (mac_ptr >= mac_end)
9116 {
9117 dwarf2_macros_too_long_complaint ();
9118 return;
9119 }
9120
9121 /* We don't increment mac_ptr here, so this is just
9122 a look-ahead. */
9123 next_type = read_1_byte (abfd, mac_ptr);
9124 if (next_type != 0)
9125 complaint (&symfile_complaints,
9126 "no terminating 0-type entry for macros in `.debug_macinfo' section");
9127
9128 return;
9129 }
9130 }
9131 break;
9132
9133 case DW_MACINFO_vendor_ext:
9134 {
9135 int bytes_read;
9136 int constant;
9137 char *string;
9138
9139 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9140 mac_ptr += bytes_read;
9141 string = read_string (abfd, mac_ptr, &bytes_read);
9142 mac_ptr += bytes_read;
9143
9144 /* We don't recognize any vendor extensions. */
9145 }
9146 break;
9147 }
9148 }
9149 }
9150
9151 /* Check if the attribute's form is a DW_FORM_block*
9152 if so return true else false. */
9153 static int
9154 attr_form_is_block (struct attribute *attr)
9155 {
9156 return (attr == NULL ? 0 :
9157 attr->form == DW_FORM_block1
9158 || attr->form == DW_FORM_block2
9159 || attr->form == DW_FORM_block4
9160 || attr->form == DW_FORM_block);
9161 }
9162
9163 static void
9164 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9165 struct dwarf2_cu *cu)
9166 {
9167 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9168 {
9169 struct dwarf2_loclist_baton *baton;
9170
9171 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9172 sizeof (struct dwarf2_loclist_baton));
9173 baton->objfile = cu->objfile;
9174
9175 /* We don't know how long the location list is, but make sure we
9176 don't run off the edge of the section. */
9177 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9178 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9179 baton->base_address = cu->header.base_address;
9180 if (cu->header.base_known == 0)
9181 complaint (&symfile_complaints,
9182 "Location list used without specifying the CU base address.");
9183
9184 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9185 SYMBOL_LOCATION_BATON (sym) = baton;
9186 }
9187 else
9188 {
9189 struct dwarf2_locexpr_baton *baton;
9190
9191 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9192 sizeof (struct dwarf2_locexpr_baton));
9193 baton->objfile = cu->objfile;
9194
9195 if (attr_form_is_block (attr))
9196 {
9197 /* Note that we're just copying the block's data pointer
9198 here, not the actual data. We're still pointing into the
9199 info_buffer for SYM's objfile; right now we never release
9200 that buffer, but when we do clean up properly this may
9201 need to change. */
9202 baton->size = DW_BLOCK (attr)->size;
9203 baton->data = DW_BLOCK (attr)->data;
9204 }
9205 else
9206 {
9207 dwarf2_invalid_attrib_class_complaint ("location description",
9208 SYMBOL_NATURAL_NAME (sym));
9209 baton->size = 0;
9210 baton->data = NULL;
9211 }
9212
9213 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9214 SYMBOL_LOCATION_BATON (sym) = baton;
9215 }
9216 }
9217
9218 /* Locate the compilation unit from CU's objfile which contains the
9219 DIE at OFFSET. Raises an error on failure. */
9220
9221 static struct dwarf2_per_cu_data *
9222 dwarf2_find_containing_comp_unit (unsigned long offset,
9223 struct objfile *objfile)
9224 {
9225 struct dwarf2_per_cu_data *this_cu;
9226 int low, high;
9227
9228 low = 0;
9229 high = dwarf2_per_objfile->n_comp_units - 1;
9230 while (high > low)
9231 {
9232 int mid = low + (high - low) / 2;
9233 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9234 high = mid;
9235 else
9236 low = mid + 1;
9237 }
9238 gdb_assert (low == high);
9239 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9240 {
9241 if (low == 0)
9242 error ("Dwarf Error: could not find partial DIE containing "
9243 "offset 0x%lx [in module %s]",
9244 (long) offset, bfd_get_filename (objfile->obfd));
9245
9246 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9247 return dwarf2_per_objfile->all_comp_units[low-1];
9248 }
9249 else
9250 {
9251 this_cu = dwarf2_per_objfile->all_comp_units[low];
9252 if (low == dwarf2_per_objfile->n_comp_units - 1
9253 && offset >= this_cu->offset + this_cu->length)
9254 error ("invalid dwarf2 offset %ld", offset);
9255 gdb_assert (offset < this_cu->offset + this_cu->length);
9256 return this_cu;
9257 }
9258 }
9259
9260 /* Locate the compilation unit from OBJFILE which is located at exactly
9261 OFFSET. Raises an error on failure. */
9262
9263 static struct dwarf2_per_cu_data *
9264 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9265 {
9266 struct dwarf2_per_cu_data *this_cu;
9267 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9268 if (this_cu->offset != offset)
9269 error ("no compilation unit with offset %ld\n", offset);
9270 return this_cu;
9271 }
9272
9273 /* Release one cached compilation unit, CU. We unlink it from the tree
9274 of compilation units, but we don't remove it from the read_in_chain;
9275 the caller is responsible for that. */
9276
9277 static void
9278 free_one_comp_unit (void *data)
9279 {
9280 struct dwarf2_cu *cu = data;
9281
9282 if (cu->per_cu != NULL)
9283 cu->per_cu->cu = NULL;
9284 cu->per_cu = NULL;
9285
9286 obstack_free (&cu->comp_unit_obstack, NULL);
9287 if (cu->dies)
9288 free_die_list (cu->dies);
9289
9290 xfree (cu);
9291 }
9292
9293 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9294 when we're finished with it. We can't free the pointer itself, but be
9295 sure to unlink it from the cache. Also release any associated storage
9296 and perform cache maintenance.
9297
9298 Only used during partial symbol parsing. */
9299
9300 static void
9301 free_stack_comp_unit (void *data)
9302 {
9303 struct dwarf2_cu *cu = data;
9304
9305 obstack_free (&cu->comp_unit_obstack, NULL);
9306 cu->partial_dies = NULL;
9307
9308 if (cu->per_cu != NULL)
9309 {
9310 /* This compilation unit is on the stack in our caller, so we
9311 should not xfree it. Just unlink it. */
9312 cu->per_cu->cu = NULL;
9313 cu->per_cu = NULL;
9314
9315 /* If we had a per-cu pointer, then we may have other compilation
9316 units loaded, so age them now. */
9317 age_cached_comp_units ();
9318 }
9319 }
9320
9321 /* Free all cached compilation units. */
9322
9323 static void
9324 free_cached_comp_units (void *data)
9325 {
9326 struct dwarf2_per_cu_data *per_cu, **last_chain;
9327
9328 per_cu = dwarf2_per_objfile->read_in_chain;
9329 last_chain = &dwarf2_per_objfile->read_in_chain;
9330 while (per_cu != NULL)
9331 {
9332 struct dwarf2_per_cu_data *next_cu;
9333
9334 next_cu = per_cu->cu->read_in_chain;
9335
9336 free_one_comp_unit (per_cu->cu);
9337 *last_chain = next_cu;
9338
9339 per_cu = next_cu;
9340 }
9341 }
9342
9343 /* Increase the age counter on each cached compilation unit, and free
9344 any that are too old. */
9345
9346 static void
9347 age_cached_comp_units (void)
9348 {
9349 struct dwarf2_per_cu_data *per_cu, **last_chain;
9350
9351 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9352 per_cu = dwarf2_per_objfile->read_in_chain;
9353 while (per_cu != NULL)
9354 {
9355 per_cu->cu->last_used ++;
9356 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9357 dwarf2_mark (per_cu->cu);
9358 per_cu = per_cu->cu->read_in_chain;
9359 }
9360
9361 per_cu = dwarf2_per_objfile->read_in_chain;
9362 last_chain = &dwarf2_per_objfile->read_in_chain;
9363 while (per_cu != NULL)
9364 {
9365 struct dwarf2_per_cu_data *next_cu;
9366
9367 next_cu = per_cu->cu->read_in_chain;
9368
9369 if (!per_cu->cu->mark)
9370 {
9371 free_one_comp_unit (per_cu->cu);
9372 *last_chain = next_cu;
9373 }
9374 else
9375 last_chain = &per_cu->cu->read_in_chain;
9376
9377 per_cu = next_cu;
9378 }
9379 }
9380
9381 /* Remove a single compilation unit from the cache. */
9382
9383 static void
9384 free_one_cached_comp_unit (void *target_cu)
9385 {
9386 struct dwarf2_per_cu_data *per_cu, **last_chain;
9387
9388 per_cu = dwarf2_per_objfile->read_in_chain;
9389 last_chain = &dwarf2_per_objfile->read_in_chain;
9390 while (per_cu != NULL)
9391 {
9392 struct dwarf2_per_cu_data *next_cu;
9393
9394 next_cu = per_cu->cu->read_in_chain;
9395
9396 if (per_cu->cu == target_cu)
9397 {
9398 free_one_comp_unit (per_cu->cu);
9399 *last_chain = next_cu;
9400 break;
9401 }
9402 else
9403 last_chain = &per_cu->cu->read_in_chain;
9404
9405 per_cu = next_cu;
9406 }
9407 }
9408
9409 /* A pair of DIE offset and GDB type pointer. We store these
9410 in a hash table separate from the DIEs, and preserve them
9411 when the DIEs are flushed out of cache. */
9412
9413 struct dwarf2_offset_and_type
9414 {
9415 unsigned int offset;
9416 struct type *type;
9417 };
9418
9419 /* Hash function for a dwarf2_offset_and_type. */
9420
9421 static hashval_t
9422 offset_and_type_hash (const void *item)
9423 {
9424 const struct dwarf2_offset_and_type *ofs = item;
9425 return ofs->offset;
9426 }
9427
9428 /* Equality function for a dwarf2_offset_and_type. */
9429
9430 static int
9431 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9432 {
9433 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9434 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9435 return ofs_lhs->offset == ofs_rhs->offset;
9436 }
9437
9438 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9439 table if necessary. */
9440
9441 static void
9442 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9443 {
9444 struct dwarf2_offset_and_type **slot, ofs;
9445
9446 die->type = type;
9447
9448 if (cu->per_cu == NULL)
9449 return;
9450
9451 if (cu->per_cu->type_hash == NULL)
9452 cu->per_cu->type_hash
9453 = htab_create_alloc_ex (cu->header.length / 24,
9454 offset_and_type_hash,
9455 offset_and_type_eq,
9456 NULL,
9457 &cu->objfile->objfile_obstack,
9458 hashtab_obstack_allocate,
9459 dummy_obstack_deallocate);
9460
9461 ofs.offset = die->offset;
9462 ofs.type = type;
9463 slot = (struct dwarf2_offset_and_type **)
9464 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9465 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9466 **slot = ofs;
9467 }
9468
9469 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9470 have a saved type. */
9471
9472 static struct type *
9473 get_die_type (struct die_info *die, htab_t type_hash)
9474 {
9475 struct dwarf2_offset_and_type *slot, ofs;
9476
9477 ofs.offset = die->offset;
9478 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9479 if (slot)
9480 return slot->type;
9481 else
9482 return NULL;
9483 }
9484
9485 /* Restore the types of the DIE tree starting at START_DIE from the hash
9486 table saved in CU. */
9487
9488 static void
9489 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9490 {
9491 struct die_info *die;
9492
9493 if (cu->per_cu->type_hash == NULL)
9494 return;
9495
9496 for (die = start_die; die != NULL; die = die->sibling)
9497 {
9498 die->type = get_die_type (die, cu->per_cu->type_hash);
9499 if (die->child != NULL)
9500 reset_die_and_siblings_types (die->child, cu);
9501 }
9502 }
9503
9504 /* Set the mark field in CU and in every other compilation unit in the
9505 cache that we must keep because we are keeping CU. */
9506
9507 /* Add a dependence relationship from CU to REF_PER_CU. */
9508
9509 static void
9510 dwarf2_add_dependence (struct dwarf2_cu *cu,
9511 struct dwarf2_per_cu_data *ref_per_cu)
9512 {
9513 void **slot;
9514
9515 if (cu->dependencies == NULL)
9516 cu->dependencies
9517 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9518 NULL, &cu->comp_unit_obstack,
9519 hashtab_obstack_allocate,
9520 dummy_obstack_deallocate);
9521
9522 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9523 if (*slot == NULL)
9524 *slot = ref_per_cu;
9525 }
9526
9527 /* Set the mark field in CU and in every other compilation unit in the
9528 cache that we must keep because we are keeping CU. */
9529
9530 static int
9531 dwarf2_mark_helper (void **slot, void *data)
9532 {
9533 struct dwarf2_per_cu_data *per_cu;
9534
9535 per_cu = (struct dwarf2_per_cu_data *) *slot;
9536 if (per_cu->cu->mark)
9537 return 1;
9538 per_cu->cu->mark = 1;
9539
9540 if (per_cu->cu->dependencies != NULL)
9541 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9542
9543 return 1;
9544 }
9545
9546 static void
9547 dwarf2_mark (struct dwarf2_cu *cu)
9548 {
9549 if (cu->mark)
9550 return;
9551 cu->mark = 1;
9552 if (cu->dependencies != NULL)
9553 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9554 }
9555
9556 static void
9557 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9558 {
9559 while (per_cu)
9560 {
9561 per_cu->cu->mark = 0;
9562 per_cu = per_cu->cu->read_in_chain;
9563 }
9564 }
9565
9566 /* Allocation function for the libiberty hash table which uses an
9567 obstack. */
9568
9569 static void *
9570 hashtab_obstack_allocate (void *data, size_t size, size_t count)
9571 {
9572 unsigned int total = size * count;
9573 void *ptr = obstack_alloc ((struct obstack *) data, total);
9574 memset (ptr, 0, total);
9575 return ptr;
9576 }
9577
9578 /* Trivial deallocation function for the libiberty splay tree and hash
9579 table - don't deallocate anything. Rely on later deletion of the
9580 obstack. */
9581
9582 static void
9583 dummy_obstack_deallocate (void *object, void *data)
9584 {
9585 return;
9586 }
9587
9588 /* Trivial hash function for partial_die_info: the hash value of a DIE
9589 is its offset in .debug_info for this objfile. */
9590
9591 static hashval_t
9592 partial_die_hash (const void *item)
9593 {
9594 const struct partial_die_info *part_die = item;
9595 return part_die->offset;
9596 }
9597
9598 /* Trivial comparison function for partial_die_info structures: two DIEs
9599 are equal if they have the same offset. */
9600
9601 static int
9602 partial_die_eq (const void *item_lhs, const void *item_rhs)
9603 {
9604 const struct partial_die_info *part_die_lhs = item_lhs;
9605 const struct partial_die_info *part_die_rhs = item_rhs;
9606 return part_die_lhs->offset == part_die_rhs->offset;
9607 }
9608
9609 static struct cmd_list_element *set_dwarf2_cmdlist;
9610 static struct cmd_list_element *show_dwarf2_cmdlist;
9611
9612 static void
9613 set_dwarf2_cmd (char *args, int from_tty)
9614 {
9615 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9616 }
9617
9618 static void
9619 show_dwarf2_cmd (char *args, int from_tty)
9620 {
9621 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9622 }
9623
9624 void _initialize_dwarf2_read (void);
9625
9626 void
9627 _initialize_dwarf2_read (void)
9628 {
9629 dwarf2_objfile_data_key = register_objfile_data ();
9630
9631 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd,
9632 "Set DWARF 2 specific variables.\n"
9633 "Configure DWARF 2 variables such as the cache size",
9634 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9635 0/*allow-unknown*/, &maintenance_set_cmdlist);
9636
9637 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd,
9638 "Show DWARF 2 specific variables\n"
9639 "Show DWARF 2 variables such as the cache size",
9640 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9641 0/*allow-unknown*/, &maintenance_show_cmdlist);
9642
9643 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9644 &dwarf2_max_cache_age,
9645 "Set the upper bound on the age of cached "
9646 "dwarf2 compilation units.",
9647 "Show the upper bound on the age of cached "
9648 "dwarf2 compilation units.",
9649 "A higher limit means that cached "
9650 "compilation units will be stored\n"
9651 "in memory longer, and more total memory will "
9652 "be used. Zero disables\n"
9653 "caching, which can slow down startup.",
9654 "The upper bound on the age of cached "
9655 "dwarf2 compilation units is %d.",
9656 NULL, NULL, &set_dwarf2_cmdlist,
9657 &show_dwarf2_cmdlist);
9658 }
This page took 0.251858 seconds and 4 git commands to generate.