2013-11-11 Phil Muldoon <pmuldoon@redhat.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include "gdb_string.h"
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 /* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030 struct line_header
1031 {
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072 };
1073
1074 /* When we construct a partial symbol table entry we only
1075 need this much information. */
1076 struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154 /* This data structure holds the information of an abbrev. */
1155 struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165 struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171 /* Size of abbrev_table.abbrev_hash_table. */
1172 #define ABBREV_HASH_SIZE 121
1173
1174 /* Top level data structure to contain an abbreviation table. */
1175
1176 struct abbrev_table
1177 {
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190 };
1191
1192 /* Attributes have a name and a value. */
1193 struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215 /* This data structure holds a complete die structure. */
1216 struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* Abbrev number */
1229 unsigned int abbrev;
1230
1231 /* Offset in .debug_info or .debug_types section. */
1232 sect_offset offset;
1233
1234 /* The dies in a compilation unit form an n-ary tree. PARENT
1235 points to this die's parent; CHILD points to the first child of
1236 this node; and all the children of a given node are chained
1237 together via their SIBLING fields. */
1238 struct die_info *child; /* Its first child, if any. */
1239 struct die_info *sibling; /* Its next sibling, if any. */
1240 struct die_info *parent; /* Its parent, if any. */
1241
1242 /* An array of attributes, with NUM_ATTRS elements. There may be
1243 zero, but it's not common and zero-sized arrays are not
1244 sufficiently portable C. */
1245 struct attribute attrs[1];
1246 };
1247
1248 /* Get at parts of an attribute structure. */
1249
1250 #define DW_STRING(attr) ((attr)->u.str)
1251 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1252 #define DW_UNSND(attr) ((attr)->u.unsnd)
1253 #define DW_BLOCK(attr) ((attr)->u.blk)
1254 #define DW_SND(attr) ((attr)->u.snd)
1255 #define DW_ADDR(attr) ((attr)->u.addr)
1256 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1257
1258 /* Blocks are a bunch of untyped bytes. */
1259 struct dwarf_block
1260 {
1261 size_t size;
1262
1263 /* Valid only if SIZE is not zero. */
1264 const gdb_byte *data;
1265 };
1266
1267 #ifndef ATTR_ALLOC_CHUNK
1268 #define ATTR_ALLOC_CHUNK 4
1269 #endif
1270
1271 /* Allocate fields for structs, unions and enums in this size. */
1272 #ifndef DW_FIELD_ALLOC_CHUNK
1273 #define DW_FIELD_ALLOC_CHUNK 4
1274 #endif
1275
1276 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1277 but this would require a corresponding change in unpack_field_as_long
1278 and friends. */
1279 static int bits_per_byte = 8;
1280
1281 /* The routines that read and process dies for a C struct or C++ class
1282 pass lists of data member fields and lists of member function fields
1283 in an instance of a field_info structure, as defined below. */
1284 struct field_info
1285 {
1286 /* List of data member and baseclasses fields. */
1287 struct nextfield
1288 {
1289 struct nextfield *next;
1290 int accessibility;
1291 int virtuality;
1292 struct field field;
1293 }
1294 *fields, *baseclasses;
1295
1296 /* Number of fields (including baseclasses). */
1297 int nfields;
1298
1299 /* Number of baseclasses. */
1300 int nbaseclasses;
1301
1302 /* Set if the accesibility of one of the fields is not public. */
1303 int non_public_fields;
1304
1305 /* Member function fields array, entries are allocated in the order they
1306 are encountered in the object file. */
1307 struct nextfnfield
1308 {
1309 struct nextfnfield *next;
1310 struct fn_field fnfield;
1311 }
1312 *fnfields;
1313
1314 /* Member function fieldlist array, contains name of possibly overloaded
1315 member function, number of overloaded member functions and a pointer
1316 to the head of the member function field chain. */
1317 struct fnfieldlist
1318 {
1319 const char *name;
1320 int length;
1321 struct nextfnfield *head;
1322 }
1323 *fnfieldlists;
1324
1325 /* Number of entries in the fnfieldlists array. */
1326 int nfnfields;
1327
1328 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1329 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1330 struct typedef_field_list
1331 {
1332 struct typedef_field field;
1333 struct typedef_field_list *next;
1334 }
1335 *typedef_field_list;
1336 unsigned typedef_field_list_count;
1337 };
1338
1339 /* One item on the queue of compilation units to read in full symbols
1340 for. */
1341 struct dwarf2_queue_item
1342 {
1343 struct dwarf2_per_cu_data *per_cu;
1344 enum language pretend_language;
1345 struct dwarf2_queue_item *next;
1346 };
1347
1348 /* The current queue. */
1349 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350
1351 /* Loaded secondary compilation units are kept in memory until they
1352 have not been referenced for the processing of this many
1353 compilation units. Set this to zero to disable caching. Cache
1354 sizes of up to at least twenty will improve startup time for
1355 typical inter-CU-reference binaries, at an obvious memory cost. */
1356 static int dwarf2_max_cache_age = 5;
1357 static void
1358 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360 {
1361 fprintf_filtered (file, _("The upper bound on the age of cached "
1362 "dwarf2 compilation units is %s.\n"),
1363 value);
1364 }
1365 \f
1366 /* local function prototypes */
1367
1368 static const char *get_section_name (const struct dwarf2_section_info *);
1369
1370 static const char *get_section_file_name (const struct dwarf2_section_info *);
1371
1372 static void dwarf2_locate_sections (bfd *, asection *, void *);
1373
1374 static void dwarf2_find_base_address (struct die_info *die,
1375 struct dwarf2_cu *cu);
1376
1377 static struct partial_symtab *create_partial_symtab
1378 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379
1380 static void dwarf2_build_psymtabs_hard (struct objfile *);
1381
1382 static void scan_partial_symbols (struct partial_die_info *,
1383 CORE_ADDR *, CORE_ADDR *,
1384 int, struct dwarf2_cu *);
1385
1386 static void add_partial_symbol (struct partial_die_info *,
1387 struct dwarf2_cu *);
1388
1389 static void add_partial_namespace (struct partial_die_info *pdi,
1390 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1391 int need_pc, struct dwarf2_cu *cu);
1392
1393 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1394 CORE_ADDR *highpc, int need_pc,
1395 struct dwarf2_cu *cu);
1396
1397 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_subprogram (struct partial_die_info *pdi,
1401 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1402 int need_pc, struct dwarf2_cu *cu);
1403
1404 static void dwarf2_read_symtab (struct partial_symtab *,
1405 struct objfile *);
1406
1407 static void psymtab_to_symtab_1 (struct partial_symtab *);
1408
1409 static struct abbrev_info *abbrev_table_lookup_abbrev
1410 (const struct abbrev_table *, unsigned int);
1411
1412 static struct abbrev_table *abbrev_table_read_table
1413 (struct dwarf2_section_info *, sect_offset);
1414
1415 static void abbrev_table_free (struct abbrev_table *);
1416
1417 static void abbrev_table_free_cleanup (void *);
1418
1419 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1420 struct dwarf2_section_info *);
1421
1422 static void dwarf2_free_abbrev_table (void *);
1423
1424 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1425
1426 static struct partial_die_info *load_partial_dies
1427 (const struct die_reader_specs *, const gdb_byte *, int);
1428
1429 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1430 struct partial_die_info *,
1431 struct abbrev_info *,
1432 unsigned int,
1433 const gdb_byte *);
1434
1435 static struct partial_die_info *find_partial_die (sect_offset, int,
1436 struct dwarf2_cu *);
1437
1438 static void fixup_partial_die (struct partial_die_info *,
1439 struct dwarf2_cu *);
1440
1441 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1442 struct attribute *, struct attr_abbrev *,
1443 const gdb_byte *);
1444
1445 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1446
1447 static int read_1_signed_byte (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1450
1451 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1452
1453 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1454
1455 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1456 unsigned int *);
1457
1458 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1459
1460 static LONGEST read_checked_initial_length_and_offset
1461 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1462 unsigned int *, unsigned int *);
1463
1464 static LONGEST read_offset (bfd *, const gdb_byte *,
1465 const struct comp_unit_head *,
1466 unsigned int *);
1467
1468 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1469
1470 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1471 sect_offset);
1472
1473 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1474
1475 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1476
1477 static const char *read_indirect_string (bfd *, const gdb_byte *,
1478 const struct comp_unit_head *,
1479 unsigned int *);
1480
1481 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1482
1483 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1486
1487 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1488 const gdb_byte *,
1489 unsigned int *);
1490
1491 static const char *read_str_index (const struct die_reader_specs *reader,
1492 struct dwarf2_cu *cu, ULONGEST str_index);
1493
1494 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1495
1496 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1497 struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1500 unsigned int);
1501
1502 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1503 struct dwarf2_cu *cu);
1504
1505 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1506
1507 static struct die_info *die_specification (struct die_info *die,
1508 struct dwarf2_cu **);
1509
1510 static void free_line_header (struct line_header *lh);
1511
1512 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1513 struct dwarf2_cu *cu);
1514
1515 static void dwarf_decode_lines (struct line_header *, const char *,
1516 struct dwarf2_cu *, struct partial_symtab *,
1517 int);
1518
1519 static void dwarf2_start_subfile (const char *, const char *, const char *);
1520
1521 static void dwarf2_start_symtab (struct dwarf2_cu *,
1522 const char *, const char *, CORE_ADDR);
1523
1524 static struct symbol *new_symbol (struct die_info *, struct type *,
1525 struct dwarf2_cu *);
1526
1527 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1528 struct dwarf2_cu *, struct symbol *);
1529
1530 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1531 struct dwarf2_cu *);
1532
1533 static void dwarf2_const_value_attr (const struct attribute *attr,
1534 struct type *type,
1535 const char *name,
1536 struct obstack *obstack,
1537 struct dwarf2_cu *cu, LONGEST *value,
1538 const gdb_byte **bytes,
1539 struct dwarf2_locexpr_baton **baton);
1540
1541 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1542
1543 static int need_gnat_info (struct dwarf2_cu *);
1544
1545 static struct type *die_descriptive_type (struct die_info *,
1546 struct dwarf2_cu *);
1547
1548 static void set_descriptive_type (struct type *, struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static struct type *die_containing_type (struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1558
1559 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1560
1561 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1562
1563 static char *typename_concat (struct obstack *obs, const char *prefix,
1564 const char *suffix, int physname,
1565 struct dwarf2_cu *cu);
1566
1567 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1574
1575 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1576
1577 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *, struct partial_symtab *);
1579
1580 static int dwarf2_get_pc_bounds (struct die_info *,
1581 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1582 struct partial_symtab *);
1583
1584 static void get_scope_pc_bounds (struct die_info *,
1585 CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *);
1587
1588 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1589 CORE_ADDR, struct dwarf2_cu *);
1590
1591 static void dwarf2_add_field (struct field_info *, struct die_info *,
1592 struct dwarf2_cu *);
1593
1594 static void dwarf2_attach_fields_to_type (struct field_info *,
1595 struct type *, struct dwarf2_cu *);
1596
1597 static void dwarf2_add_member_fn (struct field_info *,
1598 struct die_info *, struct type *,
1599 struct dwarf2_cu *);
1600
1601 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1602 struct type *,
1603 struct dwarf2_cu *);
1604
1605 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1608
1609 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1610
1611 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1612
1613 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614
1615 static struct type *read_module_type (struct die_info *die,
1616 struct dwarf2_cu *cu);
1617
1618 static const char *namespace_name (struct die_info *die,
1619 int *is_anonymous, struct dwarf2_cu *);
1620
1621 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1624
1625 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1626 struct dwarf2_cu *);
1627
1628 static struct die_info *read_die_and_siblings_1
1629 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1630 struct die_info *);
1631
1632 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1633 const gdb_byte *info_ptr,
1634 const gdb_byte **new_info_ptr,
1635 struct die_info *parent);
1636
1637 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1638 struct die_info **, const gdb_byte *,
1639 int *, int);
1640
1641 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1642 struct die_info **, const gdb_byte *,
1643 int *);
1644
1645 static void process_die (struct die_info *, struct dwarf2_cu *);
1646
1647 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1648 struct obstack *);
1649
1650 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_full_name (const char *name,
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1655
1656 static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
1659 static struct die_info *dwarf2_extension (struct die_info *die,
1660 struct dwarf2_cu **);
1661
1662 static const char *dwarf_tag_name (unsigned int);
1663
1664 static const char *dwarf_attr_name (unsigned int);
1665
1666 static const char *dwarf_form_name (unsigned int);
1667
1668 static char *dwarf_bool_name (unsigned int);
1669
1670 static const char *dwarf_type_encoding_name (unsigned int);
1671
1672 static struct die_info *sibling_die (struct die_info *);
1673
1674 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1675
1676 static void dump_die_for_error (struct die_info *);
1677
1678 static void dump_die_1 (struct ui_file *, int level, int max_level,
1679 struct die_info *);
1680
1681 /*static*/ void dump_die (struct die_info *, int max_level);
1682
1683 static void store_in_ref_table (struct die_info *,
1684 struct dwarf2_cu *);
1685
1686 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1687
1688 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1689
1690 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1691 const struct attribute *,
1692 struct dwarf2_cu **);
1693
1694 static struct die_info *follow_die_ref (struct die_info *,
1695 const struct attribute *,
1696 struct dwarf2_cu **);
1697
1698 static struct die_info *follow_die_sig (struct die_info *,
1699 const struct attribute *,
1700 struct dwarf2_cu **);
1701
1702 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1703 struct dwarf2_cu *);
1704
1705 static struct type *get_DW_AT_signature_type (struct die_info *,
1706 const struct attribute *,
1707 struct dwarf2_cu *);
1708
1709 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1710
1711 static void read_signatured_type (struct signatured_type *);
1712
1713 static struct type_unit_group *get_type_unit_group
1714 (struct dwarf2_cu *, const struct attribute *);
1715
1716 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1717
1718 /* memory allocation interface */
1719
1720 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1721
1722 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1723
1724 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1725 const char *, int);
1726
1727 static int attr_form_is_block (const struct attribute *);
1728
1729 static int attr_form_is_section_offset (const struct attribute *);
1730
1731 static int attr_form_is_constant (const struct attribute *);
1732
1733 static int attr_form_is_ref (const struct attribute *);
1734
1735 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1736 struct dwarf2_loclist_baton *baton,
1737 const struct attribute *attr);
1738
1739 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1740 struct symbol *sym,
1741 struct dwarf2_cu *cu,
1742 int is_block);
1743
1744 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1745 const gdb_byte *info_ptr,
1746 struct abbrev_info *abbrev);
1747
1748 static void free_stack_comp_unit (void *);
1749
1750 static hashval_t partial_die_hash (const void *item);
1751
1752 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1753
1754 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1755 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1756
1757 static void init_one_comp_unit (struct dwarf2_cu *cu,
1758 struct dwarf2_per_cu_data *per_cu);
1759
1760 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1761 struct die_info *comp_unit_die,
1762 enum language pretend_language);
1763
1764 static void free_heap_comp_unit (void *);
1765
1766 static void free_cached_comp_units (void *);
1767
1768 static void age_cached_comp_units (void);
1769
1770 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1771
1772 static struct type *set_die_type (struct die_info *, struct type *,
1773 struct dwarf2_cu *);
1774
1775 static void create_all_comp_units (struct objfile *);
1776
1777 static int create_all_type_units (struct objfile *);
1778
1779 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1780 enum language);
1781
1782 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1783 enum language);
1784
1785 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1786 enum language);
1787
1788 static void dwarf2_add_dependence (struct dwarf2_cu *,
1789 struct dwarf2_per_cu_data *);
1790
1791 static void dwarf2_mark (struct dwarf2_cu *);
1792
1793 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1794
1795 static struct type *get_die_type_at_offset (sect_offset,
1796 struct dwarf2_per_cu_data *);
1797
1798 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1799
1800 static void dwarf2_release_queue (void *dummy);
1801
1802 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1803 enum language pretend_language);
1804
1805 static void process_queue (void);
1806
1807 static void find_file_and_directory (struct die_info *die,
1808 struct dwarf2_cu *cu,
1809 const char **name, const char **comp_dir);
1810
1811 static char *file_full_name (int file, struct line_header *lh,
1812 const char *comp_dir);
1813
1814 static const gdb_byte *read_and_check_comp_unit_head
1815 (struct comp_unit_head *header,
1816 struct dwarf2_section_info *section,
1817 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1818 int is_debug_types_section);
1819
1820 static void init_cutu_and_read_dies
1821 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1822 int use_existing_cu, int keep,
1823 die_reader_func_ftype *die_reader_func, void *data);
1824
1825 static void init_cutu_and_read_dies_simple
1826 (struct dwarf2_per_cu_data *this_cu,
1827 die_reader_func_ftype *die_reader_func, void *data);
1828
1829 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1830
1831 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1832
1833 static struct dwo_unit *lookup_dwo_unit_in_dwp
1834 (struct dwp_file *dwp_file, const char *comp_dir,
1835 ULONGEST signature, int is_debug_types);
1836
1837 static struct dwp_file *get_dwp_file (void);
1838
1839 static struct dwo_unit *lookup_dwo_comp_unit
1840 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1841
1842 static struct dwo_unit *lookup_dwo_type_unit
1843 (struct signatured_type *, const char *, const char *);
1844
1845 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1846
1847 static void free_dwo_file_cleanup (void *);
1848
1849 static void process_cu_includes (void);
1850
1851 static void check_producer (struct dwarf2_cu *cu);
1852 \f
1853 /* Various complaints about symbol reading that don't abort the process. */
1854
1855 static void
1856 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1857 {
1858 complaint (&symfile_complaints,
1859 _("statement list doesn't fit in .debug_line section"));
1860 }
1861
1862 static void
1863 dwarf2_debug_line_missing_file_complaint (void)
1864 {
1865 complaint (&symfile_complaints,
1866 _(".debug_line section has line data without a file"));
1867 }
1868
1869 static void
1870 dwarf2_debug_line_missing_end_sequence_complaint (void)
1871 {
1872 complaint (&symfile_complaints,
1873 _(".debug_line section has line "
1874 "program sequence without an end"));
1875 }
1876
1877 static void
1878 dwarf2_complex_location_expr_complaint (void)
1879 {
1880 complaint (&symfile_complaints, _("location expression too complex"));
1881 }
1882
1883 static void
1884 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1885 int arg3)
1886 {
1887 complaint (&symfile_complaints,
1888 _("const value length mismatch for '%s', got %d, expected %d"),
1889 arg1, arg2, arg3);
1890 }
1891
1892 static void
1893 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1894 {
1895 complaint (&symfile_complaints,
1896 _("debug info runs off end of %s section"
1897 " [in module %s]"),
1898 get_section_name (section),
1899 get_section_file_name (section));
1900 }
1901
1902 static void
1903 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1904 {
1905 complaint (&symfile_complaints,
1906 _("macro debug info contains a "
1907 "malformed macro definition:\n`%s'"),
1908 arg1);
1909 }
1910
1911 static void
1912 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1913 {
1914 complaint (&symfile_complaints,
1915 _("invalid attribute class or form for '%s' in '%s'"),
1916 arg1, arg2);
1917 }
1918 \f
1919 #if WORDS_BIGENDIAN
1920
1921 /* Convert VALUE between big- and little-endian. */
1922 static offset_type
1923 byte_swap (offset_type value)
1924 {
1925 offset_type result;
1926
1927 result = (value & 0xff) << 24;
1928 result |= (value & 0xff00) << 8;
1929 result |= (value & 0xff0000) >> 8;
1930 result |= (value & 0xff000000) >> 24;
1931 return result;
1932 }
1933
1934 #define MAYBE_SWAP(V) byte_swap (V)
1935
1936 #else
1937 #define MAYBE_SWAP(V) (V)
1938 #endif /* WORDS_BIGENDIAN */
1939
1940 /* The suffix for an index file. */
1941 #define INDEX_SUFFIX ".gdb-index"
1942
1943 /* Try to locate the sections we need for DWARF 2 debugging
1944 information and return true if we have enough to do something.
1945 NAMES points to the dwarf2 section names, or is NULL if the standard
1946 ELF names are used. */
1947
1948 int
1949 dwarf2_has_info (struct objfile *objfile,
1950 const struct dwarf2_debug_sections *names)
1951 {
1952 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1953 if (!dwarf2_per_objfile)
1954 {
1955 /* Initialize per-objfile state. */
1956 struct dwarf2_per_objfile *data
1957 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1958
1959 memset (data, 0, sizeof (*data));
1960 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1961 dwarf2_per_objfile = data;
1962
1963 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1964 (void *) names);
1965 dwarf2_per_objfile->objfile = objfile;
1966 }
1967 return (!dwarf2_per_objfile->info.is_virtual
1968 && dwarf2_per_objfile->info.s.asection != NULL
1969 && !dwarf2_per_objfile->abbrev.is_virtual
1970 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1971 }
1972
1973 /* Return the containing section of virtual section SECTION. */
1974
1975 static struct dwarf2_section_info *
1976 get_containing_section (const struct dwarf2_section_info *section)
1977 {
1978 gdb_assert (section->is_virtual);
1979 return section->s.containing_section;
1980 }
1981
1982 /* Return the bfd owner of SECTION. */
1983
1984 static struct bfd *
1985 get_section_bfd_owner (const struct dwarf2_section_info *section)
1986 {
1987 if (section->is_virtual)
1988 {
1989 section = get_containing_section (section);
1990 gdb_assert (!section->is_virtual);
1991 }
1992 return section->s.asection->owner;
1993 }
1994
1995 /* Return the bfd section of SECTION.
1996 Returns NULL if the section is not present. */
1997
1998 static asection *
1999 get_section_bfd_section (const struct dwarf2_section_info *section)
2000 {
2001 if (section->is_virtual)
2002 {
2003 section = get_containing_section (section);
2004 gdb_assert (!section->is_virtual);
2005 }
2006 return section->s.asection;
2007 }
2008
2009 /* Return the name of SECTION. */
2010
2011 static const char *
2012 get_section_name (const struct dwarf2_section_info *section)
2013 {
2014 asection *sectp = get_section_bfd_section (section);
2015
2016 gdb_assert (sectp != NULL);
2017 return bfd_section_name (get_section_bfd_owner (section), sectp);
2018 }
2019
2020 /* Return the name of the file SECTION is in. */
2021
2022 static const char *
2023 get_section_file_name (const struct dwarf2_section_info *section)
2024 {
2025 bfd *abfd = get_section_bfd_owner (section);
2026
2027 return bfd_get_filename (abfd);
2028 }
2029
2030 /* Return the id of SECTION.
2031 Returns 0 if SECTION doesn't exist. */
2032
2033 static int
2034 get_section_id (const struct dwarf2_section_info *section)
2035 {
2036 asection *sectp = get_section_bfd_section (section);
2037
2038 if (sectp == NULL)
2039 return 0;
2040 return sectp->id;
2041 }
2042
2043 /* Return the flags of SECTION.
2044 SECTION (or containing section if this is a virtual section) must exist. */
2045
2046 static int
2047 get_section_flags (const struct dwarf2_section_info *section)
2048 {
2049 asection *sectp = get_section_bfd_section (section);
2050
2051 gdb_assert (sectp != NULL);
2052 return bfd_get_section_flags (sectp->owner, sectp);
2053 }
2054
2055 /* When loading sections, we look either for uncompressed section or for
2056 compressed section names. */
2057
2058 static int
2059 section_is_p (const char *section_name,
2060 const struct dwarf2_section_names *names)
2061 {
2062 if (names->normal != NULL
2063 && strcmp (section_name, names->normal) == 0)
2064 return 1;
2065 if (names->compressed != NULL
2066 && strcmp (section_name, names->compressed) == 0)
2067 return 1;
2068 return 0;
2069 }
2070
2071 /* This function is mapped across the sections and remembers the
2072 offset and size of each of the debugging sections we are interested
2073 in. */
2074
2075 static void
2076 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2077 {
2078 const struct dwarf2_debug_sections *names;
2079 flagword aflag = bfd_get_section_flags (abfd, sectp);
2080
2081 if (vnames == NULL)
2082 names = &dwarf2_elf_names;
2083 else
2084 names = (const struct dwarf2_debug_sections *) vnames;
2085
2086 if ((aflag & SEC_HAS_CONTENTS) == 0)
2087 {
2088 }
2089 else if (section_is_p (sectp->name, &names->info))
2090 {
2091 dwarf2_per_objfile->info.s.asection = sectp;
2092 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2093 }
2094 else if (section_is_p (sectp->name, &names->abbrev))
2095 {
2096 dwarf2_per_objfile->abbrev.s.asection = sectp;
2097 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2098 }
2099 else if (section_is_p (sectp->name, &names->line))
2100 {
2101 dwarf2_per_objfile->line.s.asection = sectp;
2102 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2103 }
2104 else if (section_is_p (sectp->name, &names->loc))
2105 {
2106 dwarf2_per_objfile->loc.s.asection = sectp;
2107 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2108 }
2109 else if (section_is_p (sectp->name, &names->macinfo))
2110 {
2111 dwarf2_per_objfile->macinfo.s.asection = sectp;
2112 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2113 }
2114 else if (section_is_p (sectp->name, &names->macro))
2115 {
2116 dwarf2_per_objfile->macro.s.asection = sectp;
2117 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->str))
2120 {
2121 dwarf2_per_objfile->str.s.asection = sectp;
2122 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->addr))
2125 {
2126 dwarf2_per_objfile->addr.s.asection = sectp;
2127 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->frame))
2130 {
2131 dwarf2_per_objfile->frame.s.asection = sectp;
2132 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->eh_frame))
2135 {
2136 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2137 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->ranges))
2140 {
2141 dwarf2_per_objfile->ranges.s.asection = sectp;
2142 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->types))
2145 {
2146 struct dwarf2_section_info type_section;
2147
2148 memset (&type_section, 0, sizeof (type_section));
2149 type_section.s.asection = sectp;
2150 type_section.size = bfd_get_section_size (sectp);
2151
2152 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2153 &type_section);
2154 }
2155 else if (section_is_p (sectp->name, &names->gdb_index))
2156 {
2157 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2158 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2159 }
2160
2161 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2162 && bfd_section_vma (abfd, sectp) == 0)
2163 dwarf2_per_objfile->has_section_at_zero = 1;
2164 }
2165
2166 /* A helper function that decides whether a section is empty,
2167 or not present. */
2168
2169 static int
2170 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2171 {
2172 if (section->is_virtual)
2173 return section->size == 0;
2174 return section->s.asection == NULL || section->size == 0;
2175 }
2176
2177 /* Read the contents of the section INFO.
2178 OBJFILE is the main object file, but not necessarily the file where
2179 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2180 of the DWO file.
2181 If the section is compressed, uncompress it before returning. */
2182
2183 static void
2184 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2185 {
2186 asection *sectp;
2187 bfd *abfd;
2188 gdb_byte *buf, *retbuf;
2189
2190 if (info->readin)
2191 return;
2192 info->buffer = NULL;
2193 info->readin = 1;
2194
2195 if (dwarf2_section_empty_p (info))
2196 return;
2197
2198 sectp = get_section_bfd_section (info);
2199
2200 /* If this is a virtual section we need to read in the real one first. */
2201 if (info->is_virtual)
2202 {
2203 struct dwarf2_section_info *containing_section =
2204 get_containing_section (info);
2205
2206 gdb_assert (sectp != NULL);
2207 if ((sectp->flags & SEC_RELOC) != 0)
2208 {
2209 error (_("Dwarf Error: DWP format V2 with relocations is not"
2210 " supported in section %s [in module %s]"),
2211 get_section_name (info), get_section_file_name (info));
2212 }
2213 dwarf2_read_section (objfile, containing_section);
2214 /* Other code should have already caught virtual sections that don't
2215 fit. */
2216 gdb_assert (info->virtual_offset + info->size
2217 <= containing_section->size);
2218 /* If the real section is empty or there was a problem reading the
2219 section we shouldn't get here. */
2220 gdb_assert (containing_section->buffer != NULL);
2221 info->buffer = containing_section->buffer + info->virtual_offset;
2222 return;
2223 }
2224
2225 /* If the section has relocations, we must read it ourselves.
2226 Otherwise we attach it to the BFD. */
2227 if ((sectp->flags & SEC_RELOC) == 0)
2228 {
2229 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2230 return;
2231 }
2232
2233 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2234 info->buffer = buf;
2235
2236 /* When debugging .o files, we may need to apply relocations; see
2237 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2238 We never compress sections in .o files, so we only need to
2239 try this when the section is not compressed. */
2240 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2241 if (retbuf != NULL)
2242 {
2243 info->buffer = retbuf;
2244 return;
2245 }
2246
2247 abfd = get_section_bfd_owner (info);
2248 gdb_assert (abfd != NULL);
2249
2250 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2251 || bfd_bread (buf, info->size, abfd) != info->size)
2252 {
2253 error (_("Dwarf Error: Can't read DWARF data"
2254 " in section %s [in module %s]"),
2255 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2256 }
2257 }
2258
2259 /* A helper function that returns the size of a section in a safe way.
2260 If you are positive that the section has been read before using the
2261 size, then it is safe to refer to the dwarf2_section_info object's
2262 "size" field directly. In other cases, you must call this
2263 function, because for compressed sections the size field is not set
2264 correctly until the section has been read. */
2265
2266 static bfd_size_type
2267 dwarf2_section_size (struct objfile *objfile,
2268 struct dwarf2_section_info *info)
2269 {
2270 if (!info->readin)
2271 dwarf2_read_section (objfile, info);
2272 return info->size;
2273 }
2274
2275 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2276 SECTION_NAME. */
2277
2278 void
2279 dwarf2_get_section_info (struct objfile *objfile,
2280 enum dwarf2_section_enum sect,
2281 asection **sectp, const gdb_byte **bufp,
2282 bfd_size_type *sizep)
2283 {
2284 struct dwarf2_per_objfile *data
2285 = objfile_data (objfile, dwarf2_objfile_data_key);
2286 struct dwarf2_section_info *info;
2287
2288 /* We may see an objfile without any DWARF, in which case we just
2289 return nothing. */
2290 if (data == NULL)
2291 {
2292 *sectp = NULL;
2293 *bufp = NULL;
2294 *sizep = 0;
2295 return;
2296 }
2297 switch (sect)
2298 {
2299 case DWARF2_DEBUG_FRAME:
2300 info = &data->frame;
2301 break;
2302 case DWARF2_EH_FRAME:
2303 info = &data->eh_frame;
2304 break;
2305 default:
2306 gdb_assert_not_reached ("unexpected section");
2307 }
2308
2309 dwarf2_read_section (objfile, info);
2310
2311 *sectp = get_section_bfd_section (info);
2312 *bufp = info->buffer;
2313 *sizep = info->size;
2314 }
2315
2316 /* A helper function to find the sections for a .dwz file. */
2317
2318 static void
2319 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2320 {
2321 struct dwz_file *dwz_file = arg;
2322
2323 /* Note that we only support the standard ELF names, because .dwz
2324 is ELF-only (at the time of writing). */
2325 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2326 {
2327 dwz_file->abbrev.s.asection = sectp;
2328 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2329 }
2330 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2331 {
2332 dwz_file->info.s.asection = sectp;
2333 dwz_file->info.size = bfd_get_section_size (sectp);
2334 }
2335 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2336 {
2337 dwz_file->str.s.asection = sectp;
2338 dwz_file->str.size = bfd_get_section_size (sectp);
2339 }
2340 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2341 {
2342 dwz_file->line.s.asection = sectp;
2343 dwz_file->line.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2346 {
2347 dwz_file->macro.s.asection = sectp;
2348 dwz_file->macro.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2351 {
2352 dwz_file->gdb_index.s.asection = sectp;
2353 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2354 }
2355 }
2356
2357 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2358 there is no .gnu_debugaltlink section in the file. Error if there
2359 is such a section but the file cannot be found. */
2360
2361 static struct dwz_file *
2362 dwarf2_get_dwz_file (void)
2363 {
2364 bfd *dwz_bfd;
2365 char *data;
2366 struct cleanup *cleanup;
2367 const char *filename;
2368 struct dwz_file *result;
2369 bfd_size_type buildid_len_arg;
2370 size_t buildid_len;
2371 bfd_byte *buildid;
2372
2373 if (dwarf2_per_objfile->dwz_file != NULL)
2374 return dwarf2_per_objfile->dwz_file;
2375
2376 bfd_set_error (bfd_error_no_error);
2377 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2378 &buildid_len_arg, &buildid);
2379 if (data == NULL)
2380 {
2381 if (bfd_get_error () == bfd_error_no_error)
2382 return NULL;
2383 error (_("could not read '.gnu_debugaltlink' section: %s"),
2384 bfd_errmsg (bfd_get_error ()));
2385 }
2386 cleanup = make_cleanup (xfree, data);
2387 make_cleanup (xfree, buildid);
2388
2389 buildid_len = (size_t) buildid_len_arg;
2390
2391 filename = (const char *) data;
2392 if (!IS_ABSOLUTE_PATH (filename))
2393 {
2394 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2395 char *rel;
2396
2397 make_cleanup (xfree, abs);
2398 abs = ldirname (abs);
2399 make_cleanup (xfree, abs);
2400
2401 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2402 make_cleanup (xfree, rel);
2403 filename = rel;
2404 }
2405
2406 /* First try the file name given in the section. If that doesn't
2407 work, try to use the build-id instead. */
2408 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2409 if (dwz_bfd != NULL)
2410 {
2411 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2412 {
2413 gdb_bfd_unref (dwz_bfd);
2414 dwz_bfd = NULL;
2415 }
2416 }
2417
2418 if (dwz_bfd == NULL)
2419 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2420
2421 if (dwz_bfd == NULL)
2422 error (_("could not find '.gnu_debugaltlink' file for %s"),
2423 objfile_name (dwarf2_per_objfile->objfile));
2424
2425 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2426 struct dwz_file);
2427 result->dwz_bfd = dwz_bfd;
2428
2429 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2430
2431 do_cleanups (cleanup);
2432
2433 dwarf2_per_objfile->dwz_file = result;
2434 return result;
2435 }
2436 \f
2437 /* DWARF quick_symbols_functions support. */
2438
2439 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2440 unique line tables, so we maintain a separate table of all .debug_line
2441 derived entries to support the sharing.
2442 All the quick functions need is the list of file names. We discard the
2443 line_header when we're done and don't need to record it here. */
2444 struct quick_file_names
2445 {
2446 /* The data used to construct the hash key. */
2447 struct stmt_list_hash hash;
2448
2449 /* The number of entries in file_names, real_names. */
2450 unsigned int num_file_names;
2451
2452 /* The file names from the line table, after being run through
2453 file_full_name. */
2454 const char **file_names;
2455
2456 /* The file names from the line table after being run through
2457 gdb_realpath. These are computed lazily. */
2458 const char **real_names;
2459 };
2460
2461 /* When using the index (and thus not using psymtabs), each CU has an
2462 object of this type. This is used to hold information needed by
2463 the various "quick" methods. */
2464 struct dwarf2_per_cu_quick_data
2465 {
2466 /* The file table. This can be NULL if there was no file table
2467 or it's currently not read in.
2468 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2469 struct quick_file_names *file_names;
2470
2471 /* The corresponding symbol table. This is NULL if symbols for this
2472 CU have not yet been read. */
2473 struct symtab *symtab;
2474
2475 /* A temporary mark bit used when iterating over all CUs in
2476 expand_symtabs_matching. */
2477 unsigned int mark : 1;
2478
2479 /* True if we've tried to read the file table and found there isn't one.
2480 There will be no point in trying to read it again next time. */
2481 unsigned int no_file_data : 1;
2482 };
2483
2484 /* Utility hash function for a stmt_list_hash. */
2485
2486 static hashval_t
2487 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2488 {
2489 hashval_t v = 0;
2490
2491 if (stmt_list_hash->dwo_unit != NULL)
2492 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2493 v += stmt_list_hash->line_offset.sect_off;
2494 return v;
2495 }
2496
2497 /* Utility equality function for a stmt_list_hash. */
2498
2499 static int
2500 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2501 const struct stmt_list_hash *rhs)
2502 {
2503 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2504 return 0;
2505 if (lhs->dwo_unit != NULL
2506 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2507 return 0;
2508
2509 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2510 }
2511
2512 /* Hash function for a quick_file_names. */
2513
2514 static hashval_t
2515 hash_file_name_entry (const void *e)
2516 {
2517 const struct quick_file_names *file_data = e;
2518
2519 return hash_stmt_list_entry (&file_data->hash);
2520 }
2521
2522 /* Equality function for a quick_file_names. */
2523
2524 static int
2525 eq_file_name_entry (const void *a, const void *b)
2526 {
2527 const struct quick_file_names *ea = a;
2528 const struct quick_file_names *eb = b;
2529
2530 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2531 }
2532
2533 /* Delete function for a quick_file_names. */
2534
2535 static void
2536 delete_file_name_entry (void *e)
2537 {
2538 struct quick_file_names *file_data = e;
2539 int i;
2540
2541 for (i = 0; i < file_data->num_file_names; ++i)
2542 {
2543 xfree ((void*) file_data->file_names[i]);
2544 if (file_data->real_names)
2545 xfree ((void*) file_data->real_names[i]);
2546 }
2547
2548 /* The space for the struct itself lives on objfile_obstack,
2549 so we don't free it here. */
2550 }
2551
2552 /* Create a quick_file_names hash table. */
2553
2554 static htab_t
2555 create_quick_file_names_table (unsigned int nr_initial_entries)
2556 {
2557 return htab_create_alloc (nr_initial_entries,
2558 hash_file_name_entry, eq_file_name_entry,
2559 delete_file_name_entry, xcalloc, xfree);
2560 }
2561
2562 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2563 have to be created afterwards. You should call age_cached_comp_units after
2564 processing PER_CU->CU. dw2_setup must have been already called. */
2565
2566 static void
2567 load_cu (struct dwarf2_per_cu_data *per_cu)
2568 {
2569 if (per_cu->is_debug_types)
2570 load_full_type_unit (per_cu);
2571 else
2572 load_full_comp_unit (per_cu, language_minimal);
2573
2574 gdb_assert (per_cu->cu != NULL);
2575
2576 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2577 }
2578
2579 /* Read in the symbols for PER_CU. */
2580
2581 static void
2582 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2583 {
2584 struct cleanup *back_to;
2585
2586 /* Skip type_unit_groups, reading the type units they contain
2587 is handled elsewhere. */
2588 if (IS_TYPE_UNIT_GROUP (per_cu))
2589 return;
2590
2591 back_to = make_cleanup (dwarf2_release_queue, NULL);
2592
2593 if (dwarf2_per_objfile->using_index
2594 ? per_cu->v.quick->symtab == NULL
2595 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2596 {
2597 queue_comp_unit (per_cu, language_minimal);
2598 load_cu (per_cu);
2599
2600 /* If we just loaded a CU from a DWO, and we're working with an index
2601 that may badly handle TUs, load all the TUs in that DWO as well.
2602 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2603 if (!per_cu->is_debug_types
2604 && per_cu->cu->dwo_unit != NULL
2605 && dwarf2_per_objfile->index_table != NULL
2606 && dwarf2_per_objfile->index_table->version <= 7
2607 /* DWP files aren't supported yet. */
2608 && get_dwp_file () == NULL)
2609 queue_and_load_all_dwo_tus (per_cu);
2610 }
2611
2612 process_queue ();
2613
2614 /* Age the cache, releasing compilation units that have not
2615 been used recently. */
2616 age_cached_comp_units ();
2617
2618 do_cleanups (back_to);
2619 }
2620
2621 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2622 the objfile from which this CU came. Returns the resulting symbol
2623 table. */
2624
2625 static struct symtab *
2626 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2627 {
2628 gdb_assert (dwarf2_per_objfile->using_index);
2629 if (!per_cu->v.quick->symtab)
2630 {
2631 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2632 increment_reading_symtab ();
2633 dw2_do_instantiate_symtab (per_cu);
2634 process_cu_includes ();
2635 do_cleanups (back_to);
2636 }
2637 return per_cu->v.quick->symtab;
2638 }
2639
2640 /* Return the CU given its index.
2641
2642 This is intended for loops like:
2643
2644 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2645 + dwarf2_per_objfile->n_type_units); ++i)
2646 {
2647 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2648
2649 ...;
2650 }
2651 */
2652
2653 static struct dwarf2_per_cu_data *
2654 dw2_get_cu (int index)
2655 {
2656 if (index >= dwarf2_per_objfile->n_comp_units)
2657 {
2658 index -= dwarf2_per_objfile->n_comp_units;
2659 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2660 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2661 }
2662
2663 return dwarf2_per_objfile->all_comp_units[index];
2664 }
2665
2666 /* Return the primary CU given its index.
2667 The difference between this function and dw2_get_cu is in the handling
2668 of type units (TUs). Here we return the type_unit_group object.
2669
2670 This is intended for loops like:
2671
2672 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2673 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2674 {
2675 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2676
2677 ...;
2678 }
2679 */
2680
2681 static struct dwarf2_per_cu_data *
2682 dw2_get_primary_cu (int index)
2683 {
2684 if (index >= dwarf2_per_objfile->n_comp_units)
2685 {
2686 index -= dwarf2_per_objfile->n_comp_units;
2687 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2688 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2689 }
2690
2691 return dwarf2_per_objfile->all_comp_units[index];
2692 }
2693
2694 /* A helper for create_cus_from_index that handles a given list of
2695 CUs. */
2696
2697 static void
2698 create_cus_from_index_list (struct objfile *objfile,
2699 const gdb_byte *cu_list, offset_type n_elements,
2700 struct dwarf2_section_info *section,
2701 int is_dwz,
2702 int base_offset)
2703 {
2704 offset_type i;
2705
2706 for (i = 0; i < n_elements; i += 2)
2707 {
2708 struct dwarf2_per_cu_data *the_cu;
2709 ULONGEST offset, length;
2710
2711 gdb_static_assert (sizeof (ULONGEST) >= 8);
2712 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2713 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2714 cu_list += 2 * 8;
2715
2716 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2717 struct dwarf2_per_cu_data);
2718 the_cu->offset.sect_off = offset;
2719 the_cu->length = length;
2720 the_cu->objfile = objfile;
2721 the_cu->section = section;
2722 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2723 struct dwarf2_per_cu_quick_data);
2724 the_cu->is_dwz = is_dwz;
2725 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2726 }
2727 }
2728
2729 /* Read the CU list from the mapped index, and use it to create all
2730 the CU objects for this objfile. */
2731
2732 static void
2733 create_cus_from_index (struct objfile *objfile,
2734 const gdb_byte *cu_list, offset_type cu_list_elements,
2735 const gdb_byte *dwz_list, offset_type dwz_elements)
2736 {
2737 struct dwz_file *dwz;
2738
2739 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2740 dwarf2_per_objfile->all_comp_units
2741 = obstack_alloc (&objfile->objfile_obstack,
2742 dwarf2_per_objfile->n_comp_units
2743 * sizeof (struct dwarf2_per_cu_data *));
2744
2745 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2746 &dwarf2_per_objfile->info, 0, 0);
2747
2748 if (dwz_elements == 0)
2749 return;
2750
2751 dwz = dwarf2_get_dwz_file ();
2752 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2753 cu_list_elements / 2);
2754 }
2755
2756 /* Create the signatured type hash table from the index. */
2757
2758 static void
2759 create_signatured_type_table_from_index (struct objfile *objfile,
2760 struct dwarf2_section_info *section,
2761 const gdb_byte *bytes,
2762 offset_type elements)
2763 {
2764 offset_type i;
2765 htab_t sig_types_hash;
2766
2767 dwarf2_per_objfile->n_type_units = elements / 3;
2768 dwarf2_per_objfile->all_type_units
2769 = xmalloc (dwarf2_per_objfile->n_type_units
2770 * sizeof (struct signatured_type *));
2771
2772 sig_types_hash = allocate_signatured_type_table (objfile);
2773
2774 for (i = 0; i < elements; i += 3)
2775 {
2776 struct signatured_type *sig_type;
2777 ULONGEST offset, type_offset_in_tu, signature;
2778 void **slot;
2779
2780 gdb_static_assert (sizeof (ULONGEST) >= 8);
2781 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2782 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2783 BFD_ENDIAN_LITTLE);
2784 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2785 bytes += 3 * 8;
2786
2787 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2788 struct signatured_type);
2789 sig_type->signature = signature;
2790 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2791 sig_type->per_cu.is_debug_types = 1;
2792 sig_type->per_cu.section = section;
2793 sig_type->per_cu.offset.sect_off = offset;
2794 sig_type->per_cu.objfile = objfile;
2795 sig_type->per_cu.v.quick
2796 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2797 struct dwarf2_per_cu_quick_data);
2798
2799 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2800 *slot = sig_type;
2801
2802 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2803 }
2804
2805 dwarf2_per_objfile->signatured_types = sig_types_hash;
2806 }
2807
2808 /* Read the address map data from the mapped index, and use it to
2809 populate the objfile's psymtabs_addrmap. */
2810
2811 static void
2812 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2813 {
2814 const gdb_byte *iter, *end;
2815 struct obstack temp_obstack;
2816 struct addrmap *mutable_map;
2817 struct cleanup *cleanup;
2818 CORE_ADDR baseaddr;
2819
2820 obstack_init (&temp_obstack);
2821 cleanup = make_cleanup_obstack_free (&temp_obstack);
2822 mutable_map = addrmap_create_mutable (&temp_obstack);
2823
2824 iter = index->address_table;
2825 end = iter + index->address_table_size;
2826
2827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2828
2829 while (iter < end)
2830 {
2831 ULONGEST hi, lo, cu_index;
2832 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2833 iter += 8;
2834 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2835 iter += 8;
2836 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2837 iter += 4;
2838
2839 if (lo > hi)
2840 {
2841 complaint (&symfile_complaints,
2842 _(".gdb_index address table has invalid range (%s - %s)"),
2843 hex_string (lo), hex_string (hi));
2844 continue;
2845 }
2846
2847 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2848 {
2849 complaint (&symfile_complaints,
2850 _(".gdb_index address table has invalid CU number %u"),
2851 (unsigned) cu_index);
2852 continue;
2853 }
2854
2855 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2856 dw2_get_cu (cu_index));
2857 }
2858
2859 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2860 &objfile->objfile_obstack);
2861 do_cleanups (cleanup);
2862 }
2863
2864 /* The hash function for strings in the mapped index. This is the same as
2865 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2866 implementation. This is necessary because the hash function is tied to the
2867 format of the mapped index file. The hash values do not have to match with
2868 SYMBOL_HASH_NEXT.
2869
2870 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2871
2872 static hashval_t
2873 mapped_index_string_hash (int index_version, const void *p)
2874 {
2875 const unsigned char *str = (const unsigned char *) p;
2876 hashval_t r = 0;
2877 unsigned char c;
2878
2879 while ((c = *str++) != 0)
2880 {
2881 if (index_version >= 5)
2882 c = tolower (c);
2883 r = r * 67 + c - 113;
2884 }
2885
2886 return r;
2887 }
2888
2889 /* Find a slot in the mapped index INDEX for the object named NAME.
2890 If NAME is found, set *VEC_OUT to point to the CU vector in the
2891 constant pool and return 1. If NAME cannot be found, return 0. */
2892
2893 static int
2894 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2895 offset_type **vec_out)
2896 {
2897 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2898 offset_type hash;
2899 offset_type slot, step;
2900 int (*cmp) (const char *, const char *);
2901
2902 if (current_language->la_language == language_cplus
2903 || current_language->la_language == language_java
2904 || current_language->la_language == language_fortran)
2905 {
2906 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2907 not contain any. */
2908 const char *paren = strchr (name, '(');
2909
2910 if (paren)
2911 {
2912 char *dup;
2913
2914 dup = xmalloc (paren - name + 1);
2915 memcpy (dup, name, paren - name);
2916 dup[paren - name] = 0;
2917
2918 make_cleanup (xfree, dup);
2919 name = dup;
2920 }
2921 }
2922
2923 /* Index version 4 did not support case insensitive searches. But the
2924 indices for case insensitive languages are built in lowercase, therefore
2925 simulate our NAME being searched is also lowercased. */
2926 hash = mapped_index_string_hash ((index->version == 4
2927 && case_sensitivity == case_sensitive_off
2928 ? 5 : index->version),
2929 name);
2930
2931 slot = hash & (index->symbol_table_slots - 1);
2932 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2933 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2934
2935 for (;;)
2936 {
2937 /* Convert a slot number to an offset into the table. */
2938 offset_type i = 2 * slot;
2939 const char *str;
2940 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2941 {
2942 do_cleanups (back_to);
2943 return 0;
2944 }
2945
2946 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2947 if (!cmp (name, str))
2948 {
2949 *vec_out = (offset_type *) (index->constant_pool
2950 + MAYBE_SWAP (index->symbol_table[i + 1]));
2951 do_cleanups (back_to);
2952 return 1;
2953 }
2954
2955 slot = (slot + step) & (index->symbol_table_slots - 1);
2956 }
2957 }
2958
2959 /* A helper function that reads the .gdb_index from SECTION and fills
2960 in MAP. FILENAME is the name of the file containing the section;
2961 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2962 ok to use deprecated sections.
2963
2964 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2965 out parameters that are filled in with information about the CU and
2966 TU lists in the section.
2967
2968 Returns 1 if all went well, 0 otherwise. */
2969
2970 static int
2971 read_index_from_section (struct objfile *objfile,
2972 const char *filename,
2973 int deprecated_ok,
2974 struct dwarf2_section_info *section,
2975 struct mapped_index *map,
2976 const gdb_byte **cu_list,
2977 offset_type *cu_list_elements,
2978 const gdb_byte **types_list,
2979 offset_type *types_list_elements)
2980 {
2981 const gdb_byte *addr;
2982 offset_type version;
2983 offset_type *metadata;
2984 int i;
2985
2986 if (dwarf2_section_empty_p (section))
2987 return 0;
2988
2989 /* Older elfutils strip versions could keep the section in the main
2990 executable while splitting it for the separate debug info file. */
2991 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
2992 return 0;
2993
2994 dwarf2_read_section (objfile, section);
2995
2996 addr = section->buffer;
2997 /* Version check. */
2998 version = MAYBE_SWAP (*(offset_type *) addr);
2999 /* Versions earlier than 3 emitted every copy of a psymbol. This
3000 causes the index to behave very poorly for certain requests. Version 3
3001 contained incomplete addrmap. So, it seems better to just ignore such
3002 indices. */
3003 if (version < 4)
3004 {
3005 static int warning_printed = 0;
3006 if (!warning_printed)
3007 {
3008 warning (_("Skipping obsolete .gdb_index section in %s."),
3009 filename);
3010 warning_printed = 1;
3011 }
3012 return 0;
3013 }
3014 /* Index version 4 uses a different hash function than index version
3015 5 and later.
3016
3017 Versions earlier than 6 did not emit psymbols for inlined
3018 functions. Using these files will cause GDB not to be able to
3019 set breakpoints on inlined functions by name, so we ignore these
3020 indices unless the user has done
3021 "set use-deprecated-index-sections on". */
3022 if (version < 6 && !deprecated_ok)
3023 {
3024 static int warning_printed = 0;
3025 if (!warning_printed)
3026 {
3027 warning (_("\
3028 Skipping deprecated .gdb_index section in %s.\n\
3029 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3030 to use the section anyway."),
3031 filename);
3032 warning_printed = 1;
3033 }
3034 return 0;
3035 }
3036 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3037 of the TU (for symbols coming from TUs). It's just a performance bug, and
3038 we can't distinguish gdb-generated indices from gold-generated ones, so
3039 nothing to do here. */
3040
3041 /* Indexes with higher version than the one supported by GDB may be no
3042 longer backward compatible. */
3043 if (version > 8)
3044 return 0;
3045
3046 map->version = version;
3047 map->total_size = section->size;
3048
3049 metadata = (offset_type *) (addr + sizeof (offset_type));
3050
3051 i = 0;
3052 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3053 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3054 / 8);
3055 ++i;
3056
3057 *types_list = addr + MAYBE_SWAP (metadata[i]);
3058 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3059 - MAYBE_SWAP (metadata[i]))
3060 / 8);
3061 ++i;
3062
3063 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3064 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3065 - MAYBE_SWAP (metadata[i]));
3066 ++i;
3067
3068 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3069 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3070 - MAYBE_SWAP (metadata[i]))
3071 / (2 * sizeof (offset_type)));
3072 ++i;
3073
3074 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3075
3076 return 1;
3077 }
3078
3079
3080 /* Read the index file. If everything went ok, initialize the "quick"
3081 elements of all the CUs and return 1. Otherwise, return 0. */
3082
3083 static int
3084 dwarf2_read_index (struct objfile *objfile)
3085 {
3086 struct mapped_index local_map, *map;
3087 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3088 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3089 struct dwz_file *dwz;
3090
3091 if (!read_index_from_section (objfile, objfile_name (objfile),
3092 use_deprecated_index_sections,
3093 &dwarf2_per_objfile->gdb_index, &local_map,
3094 &cu_list, &cu_list_elements,
3095 &types_list, &types_list_elements))
3096 return 0;
3097
3098 /* Don't use the index if it's empty. */
3099 if (local_map.symbol_table_slots == 0)
3100 return 0;
3101
3102 /* If there is a .dwz file, read it so we can get its CU list as
3103 well. */
3104 dwz = dwarf2_get_dwz_file ();
3105 if (dwz != NULL)
3106 {
3107 struct mapped_index dwz_map;
3108 const gdb_byte *dwz_types_ignore;
3109 offset_type dwz_types_elements_ignore;
3110
3111 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3112 1,
3113 &dwz->gdb_index, &dwz_map,
3114 &dwz_list, &dwz_list_elements,
3115 &dwz_types_ignore,
3116 &dwz_types_elements_ignore))
3117 {
3118 warning (_("could not read '.gdb_index' section from %s; skipping"),
3119 bfd_get_filename (dwz->dwz_bfd));
3120 return 0;
3121 }
3122 }
3123
3124 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3125 dwz_list_elements);
3126
3127 if (types_list_elements)
3128 {
3129 struct dwarf2_section_info *section;
3130
3131 /* We can only handle a single .debug_types when we have an
3132 index. */
3133 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3134 return 0;
3135
3136 section = VEC_index (dwarf2_section_info_def,
3137 dwarf2_per_objfile->types, 0);
3138
3139 create_signatured_type_table_from_index (objfile, section, types_list,
3140 types_list_elements);
3141 }
3142
3143 create_addrmap_from_index (objfile, &local_map);
3144
3145 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3146 *map = local_map;
3147
3148 dwarf2_per_objfile->index_table = map;
3149 dwarf2_per_objfile->using_index = 1;
3150 dwarf2_per_objfile->quick_file_names_table =
3151 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3152
3153 return 1;
3154 }
3155
3156 /* A helper for the "quick" functions which sets the global
3157 dwarf2_per_objfile according to OBJFILE. */
3158
3159 static void
3160 dw2_setup (struct objfile *objfile)
3161 {
3162 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3163 gdb_assert (dwarf2_per_objfile);
3164 }
3165
3166 /* die_reader_func for dw2_get_file_names. */
3167
3168 static void
3169 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3170 const gdb_byte *info_ptr,
3171 struct die_info *comp_unit_die,
3172 int has_children,
3173 void *data)
3174 {
3175 struct dwarf2_cu *cu = reader->cu;
3176 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3177 struct objfile *objfile = dwarf2_per_objfile->objfile;
3178 struct dwarf2_per_cu_data *lh_cu;
3179 struct line_header *lh;
3180 struct attribute *attr;
3181 int i;
3182 const char *name, *comp_dir;
3183 void **slot;
3184 struct quick_file_names *qfn;
3185 unsigned int line_offset;
3186
3187 gdb_assert (! this_cu->is_debug_types);
3188
3189 /* Our callers never want to match partial units -- instead they
3190 will match the enclosing full CU. */
3191 if (comp_unit_die->tag == DW_TAG_partial_unit)
3192 {
3193 this_cu->v.quick->no_file_data = 1;
3194 return;
3195 }
3196
3197 lh_cu = this_cu;
3198 lh = NULL;
3199 slot = NULL;
3200 line_offset = 0;
3201
3202 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3203 if (attr)
3204 {
3205 struct quick_file_names find_entry;
3206
3207 line_offset = DW_UNSND (attr);
3208
3209 /* We may have already read in this line header (TU line header sharing).
3210 If we have we're done. */
3211 find_entry.hash.dwo_unit = cu->dwo_unit;
3212 find_entry.hash.line_offset.sect_off = line_offset;
3213 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3214 &find_entry, INSERT);
3215 if (*slot != NULL)
3216 {
3217 lh_cu->v.quick->file_names = *slot;
3218 return;
3219 }
3220
3221 lh = dwarf_decode_line_header (line_offset, cu);
3222 }
3223 if (lh == NULL)
3224 {
3225 lh_cu->v.quick->no_file_data = 1;
3226 return;
3227 }
3228
3229 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3230 qfn->hash.dwo_unit = cu->dwo_unit;
3231 qfn->hash.line_offset.sect_off = line_offset;
3232 gdb_assert (slot != NULL);
3233 *slot = qfn;
3234
3235 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3236
3237 qfn->num_file_names = lh->num_file_names;
3238 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3239 lh->num_file_names * sizeof (char *));
3240 for (i = 0; i < lh->num_file_names; ++i)
3241 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3242 qfn->real_names = NULL;
3243
3244 free_line_header (lh);
3245
3246 lh_cu->v.quick->file_names = qfn;
3247 }
3248
3249 /* A helper for the "quick" functions which attempts to read the line
3250 table for THIS_CU. */
3251
3252 static struct quick_file_names *
3253 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3254 {
3255 /* This should never be called for TUs. */
3256 gdb_assert (! this_cu->is_debug_types);
3257 /* Nor type unit groups. */
3258 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3259
3260 if (this_cu->v.quick->file_names != NULL)
3261 return this_cu->v.quick->file_names;
3262 /* If we know there is no line data, no point in looking again. */
3263 if (this_cu->v.quick->no_file_data)
3264 return NULL;
3265
3266 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3267
3268 if (this_cu->v.quick->no_file_data)
3269 return NULL;
3270 return this_cu->v.quick->file_names;
3271 }
3272
3273 /* A helper for the "quick" functions which computes and caches the
3274 real path for a given file name from the line table. */
3275
3276 static const char *
3277 dw2_get_real_path (struct objfile *objfile,
3278 struct quick_file_names *qfn, int index)
3279 {
3280 if (qfn->real_names == NULL)
3281 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3282 qfn->num_file_names, char *);
3283
3284 if (qfn->real_names[index] == NULL)
3285 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3286
3287 return qfn->real_names[index];
3288 }
3289
3290 static struct symtab *
3291 dw2_find_last_source_symtab (struct objfile *objfile)
3292 {
3293 int index;
3294
3295 dw2_setup (objfile);
3296 index = dwarf2_per_objfile->n_comp_units - 1;
3297 return dw2_instantiate_symtab (dw2_get_cu (index));
3298 }
3299
3300 /* Traversal function for dw2_forget_cached_source_info. */
3301
3302 static int
3303 dw2_free_cached_file_names (void **slot, void *info)
3304 {
3305 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3306
3307 if (file_data->real_names)
3308 {
3309 int i;
3310
3311 for (i = 0; i < file_data->num_file_names; ++i)
3312 {
3313 xfree ((void*) file_data->real_names[i]);
3314 file_data->real_names[i] = NULL;
3315 }
3316 }
3317
3318 return 1;
3319 }
3320
3321 static void
3322 dw2_forget_cached_source_info (struct objfile *objfile)
3323 {
3324 dw2_setup (objfile);
3325
3326 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3327 dw2_free_cached_file_names, NULL);
3328 }
3329
3330 /* Helper function for dw2_map_symtabs_matching_filename that expands
3331 the symtabs and calls the iterator. */
3332
3333 static int
3334 dw2_map_expand_apply (struct objfile *objfile,
3335 struct dwarf2_per_cu_data *per_cu,
3336 const char *name, const char *real_path,
3337 int (*callback) (struct symtab *, void *),
3338 void *data)
3339 {
3340 struct symtab *last_made = objfile->symtabs;
3341
3342 /* Don't visit already-expanded CUs. */
3343 if (per_cu->v.quick->symtab)
3344 return 0;
3345
3346 /* This may expand more than one symtab, and we want to iterate over
3347 all of them. */
3348 dw2_instantiate_symtab (per_cu);
3349
3350 return iterate_over_some_symtabs (name, real_path, callback, data,
3351 objfile->symtabs, last_made);
3352 }
3353
3354 /* Implementation of the map_symtabs_matching_filename method. */
3355
3356 static int
3357 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3358 const char *real_path,
3359 int (*callback) (struct symtab *, void *),
3360 void *data)
3361 {
3362 int i;
3363 const char *name_basename = lbasename (name);
3364
3365 dw2_setup (objfile);
3366
3367 /* The rule is CUs specify all the files, including those used by
3368 any TU, so there's no need to scan TUs here. */
3369
3370 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3371 {
3372 int j;
3373 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3374 struct quick_file_names *file_data;
3375
3376 /* We only need to look at symtabs not already expanded. */
3377 if (per_cu->v.quick->symtab)
3378 continue;
3379
3380 file_data = dw2_get_file_names (per_cu);
3381 if (file_data == NULL)
3382 continue;
3383
3384 for (j = 0; j < file_data->num_file_names; ++j)
3385 {
3386 const char *this_name = file_data->file_names[j];
3387 const char *this_real_name;
3388
3389 if (compare_filenames_for_search (this_name, name))
3390 {
3391 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3392 callback, data))
3393 return 1;
3394 continue;
3395 }
3396
3397 /* Before we invoke realpath, which can get expensive when many
3398 files are involved, do a quick comparison of the basenames. */
3399 if (! basenames_may_differ
3400 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3401 continue;
3402
3403 this_real_name = dw2_get_real_path (objfile, file_data, j);
3404 if (compare_filenames_for_search (this_real_name, name))
3405 {
3406 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3407 callback, data))
3408 return 1;
3409 continue;
3410 }
3411
3412 if (real_path != NULL)
3413 {
3414 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3415 gdb_assert (IS_ABSOLUTE_PATH (name));
3416 if (this_real_name != NULL
3417 && FILENAME_CMP (real_path, this_real_name) == 0)
3418 {
3419 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3420 callback, data))
3421 return 1;
3422 continue;
3423 }
3424 }
3425 }
3426 }
3427
3428 return 0;
3429 }
3430
3431 /* Struct used to manage iterating over all CUs looking for a symbol. */
3432
3433 struct dw2_symtab_iterator
3434 {
3435 /* The internalized form of .gdb_index. */
3436 struct mapped_index *index;
3437 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3438 int want_specific_block;
3439 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3440 Unused if !WANT_SPECIFIC_BLOCK. */
3441 int block_index;
3442 /* The kind of symbol we're looking for. */
3443 domain_enum domain;
3444 /* The list of CUs from the index entry of the symbol,
3445 or NULL if not found. */
3446 offset_type *vec;
3447 /* The next element in VEC to look at. */
3448 int next;
3449 /* The number of elements in VEC, or zero if there is no match. */
3450 int length;
3451 };
3452
3453 /* Initialize the index symtab iterator ITER.
3454 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3455 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3456
3457 static void
3458 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3459 struct mapped_index *index,
3460 int want_specific_block,
3461 int block_index,
3462 domain_enum domain,
3463 const char *name)
3464 {
3465 iter->index = index;
3466 iter->want_specific_block = want_specific_block;
3467 iter->block_index = block_index;
3468 iter->domain = domain;
3469 iter->next = 0;
3470
3471 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3472 iter->length = MAYBE_SWAP (*iter->vec);
3473 else
3474 {
3475 iter->vec = NULL;
3476 iter->length = 0;
3477 }
3478 }
3479
3480 /* Return the next matching CU or NULL if there are no more. */
3481
3482 static struct dwarf2_per_cu_data *
3483 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3484 {
3485 for ( ; iter->next < iter->length; ++iter->next)
3486 {
3487 offset_type cu_index_and_attrs =
3488 MAYBE_SWAP (iter->vec[iter->next + 1]);
3489 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3490 struct dwarf2_per_cu_data *per_cu;
3491 int want_static = iter->block_index != GLOBAL_BLOCK;
3492 /* This value is only valid for index versions >= 7. */
3493 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3494 gdb_index_symbol_kind symbol_kind =
3495 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3496 /* Only check the symbol attributes if they're present.
3497 Indices prior to version 7 don't record them,
3498 and indices >= 7 may elide them for certain symbols
3499 (gold does this). */
3500 int attrs_valid =
3501 (iter->index->version >= 7
3502 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3503
3504 /* Don't crash on bad data. */
3505 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3506 + dwarf2_per_objfile->n_type_units))
3507 {
3508 complaint (&symfile_complaints,
3509 _(".gdb_index entry has bad CU index"
3510 " [in module %s]"),
3511 objfile_name (dwarf2_per_objfile->objfile));
3512 continue;
3513 }
3514
3515 per_cu = dw2_get_cu (cu_index);
3516
3517 /* Skip if already read in. */
3518 if (per_cu->v.quick->symtab)
3519 continue;
3520
3521 if (attrs_valid
3522 && iter->want_specific_block
3523 && want_static != is_static)
3524 continue;
3525
3526 /* Only check the symbol's kind if it has one. */
3527 if (attrs_valid)
3528 {
3529 switch (iter->domain)
3530 {
3531 case VAR_DOMAIN:
3532 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3533 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3534 /* Some types are also in VAR_DOMAIN. */
3535 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3536 continue;
3537 break;
3538 case STRUCT_DOMAIN:
3539 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3540 continue;
3541 break;
3542 case LABEL_DOMAIN:
3543 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3544 continue;
3545 break;
3546 default:
3547 break;
3548 }
3549 }
3550
3551 ++iter->next;
3552 return per_cu;
3553 }
3554
3555 return NULL;
3556 }
3557
3558 static struct symtab *
3559 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3560 const char *name, domain_enum domain)
3561 {
3562 struct symtab *stab_best = NULL;
3563 struct mapped_index *index;
3564
3565 dw2_setup (objfile);
3566
3567 index = dwarf2_per_objfile->index_table;
3568
3569 /* index is NULL if OBJF_READNOW. */
3570 if (index)
3571 {
3572 struct dw2_symtab_iterator iter;
3573 struct dwarf2_per_cu_data *per_cu;
3574
3575 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3576
3577 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3578 {
3579 struct symbol *sym = NULL;
3580 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3581
3582 /* Some caution must be observed with overloaded functions
3583 and methods, since the index will not contain any overload
3584 information (but NAME might contain it). */
3585 if (stab->primary)
3586 {
3587 struct blockvector *bv = BLOCKVECTOR (stab);
3588 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3589
3590 sym = lookup_block_symbol (block, name, domain);
3591 }
3592
3593 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3594 {
3595 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3596 return stab;
3597
3598 stab_best = stab;
3599 }
3600
3601 /* Keep looking through other CUs. */
3602 }
3603 }
3604
3605 return stab_best;
3606 }
3607
3608 static void
3609 dw2_print_stats (struct objfile *objfile)
3610 {
3611 int i, total, count;
3612
3613 dw2_setup (objfile);
3614 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3615 count = 0;
3616 for (i = 0; i < total; ++i)
3617 {
3618 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3619
3620 if (!per_cu->v.quick->symtab)
3621 ++count;
3622 }
3623 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3624 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3625 }
3626
3627 /* This dumps minimal information about the index.
3628 It is called via "mt print objfiles".
3629 One use is to verify .gdb_index has been loaded by the
3630 gdb.dwarf2/gdb-index.exp testcase. */
3631
3632 static void
3633 dw2_dump (struct objfile *objfile)
3634 {
3635 dw2_setup (objfile);
3636 gdb_assert (dwarf2_per_objfile->using_index);
3637 printf_filtered (".gdb_index:");
3638 if (dwarf2_per_objfile->index_table != NULL)
3639 {
3640 printf_filtered (" version %d\n",
3641 dwarf2_per_objfile->index_table->version);
3642 }
3643 else
3644 printf_filtered (" faked for \"readnow\"\n");
3645 printf_filtered ("\n");
3646 }
3647
3648 static void
3649 dw2_relocate (struct objfile *objfile,
3650 const struct section_offsets *new_offsets,
3651 const struct section_offsets *delta)
3652 {
3653 /* There's nothing to relocate here. */
3654 }
3655
3656 static void
3657 dw2_expand_symtabs_for_function (struct objfile *objfile,
3658 const char *func_name)
3659 {
3660 struct mapped_index *index;
3661
3662 dw2_setup (objfile);
3663
3664 index = dwarf2_per_objfile->index_table;
3665
3666 /* index is NULL if OBJF_READNOW. */
3667 if (index)
3668 {
3669 struct dw2_symtab_iterator iter;
3670 struct dwarf2_per_cu_data *per_cu;
3671
3672 /* Note: It doesn't matter what we pass for block_index here. */
3673 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3674 func_name);
3675
3676 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3677 dw2_instantiate_symtab (per_cu);
3678 }
3679 }
3680
3681 static void
3682 dw2_expand_all_symtabs (struct objfile *objfile)
3683 {
3684 int i;
3685
3686 dw2_setup (objfile);
3687
3688 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3689 + dwarf2_per_objfile->n_type_units); ++i)
3690 {
3691 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3692
3693 dw2_instantiate_symtab (per_cu);
3694 }
3695 }
3696
3697 static void
3698 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3699 const char *fullname)
3700 {
3701 int i;
3702
3703 dw2_setup (objfile);
3704
3705 /* We don't need to consider type units here.
3706 This is only called for examining code, e.g. expand_line_sal.
3707 There can be an order of magnitude (or more) more type units
3708 than comp units, and we avoid them if we can. */
3709
3710 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3711 {
3712 int j;
3713 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3714 struct quick_file_names *file_data;
3715
3716 /* We only need to look at symtabs not already expanded. */
3717 if (per_cu->v.quick->symtab)
3718 continue;
3719
3720 file_data = dw2_get_file_names (per_cu);
3721 if (file_data == NULL)
3722 continue;
3723
3724 for (j = 0; j < file_data->num_file_names; ++j)
3725 {
3726 const char *this_fullname = file_data->file_names[j];
3727
3728 if (filename_cmp (this_fullname, fullname) == 0)
3729 {
3730 dw2_instantiate_symtab (per_cu);
3731 break;
3732 }
3733 }
3734 }
3735 }
3736
3737 static void
3738 dw2_map_matching_symbols (struct objfile *objfile,
3739 const char * name, domain_enum namespace,
3740 int global,
3741 int (*callback) (struct block *,
3742 struct symbol *, void *),
3743 void *data, symbol_compare_ftype *match,
3744 symbol_compare_ftype *ordered_compare)
3745 {
3746 /* Currently unimplemented; used for Ada. The function can be called if the
3747 current language is Ada for a non-Ada objfile using GNU index. As Ada
3748 does not look for non-Ada symbols this function should just return. */
3749 }
3750
3751 static void
3752 dw2_expand_symtabs_matching
3753 (struct objfile *objfile,
3754 int (*file_matcher) (const char *, void *, int basenames),
3755 int (*name_matcher) (const char *, void *),
3756 enum search_domain kind,
3757 void *data)
3758 {
3759 int i;
3760 offset_type iter;
3761 struct mapped_index *index;
3762
3763 dw2_setup (objfile);
3764
3765 /* index_table is NULL if OBJF_READNOW. */
3766 if (!dwarf2_per_objfile->index_table)
3767 return;
3768 index = dwarf2_per_objfile->index_table;
3769
3770 if (file_matcher != NULL)
3771 {
3772 struct cleanup *cleanup;
3773 htab_t visited_found, visited_not_found;
3774
3775 visited_found = htab_create_alloc (10,
3776 htab_hash_pointer, htab_eq_pointer,
3777 NULL, xcalloc, xfree);
3778 cleanup = make_cleanup_htab_delete (visited_found);
3779 visited_not_found = htab_create_alloc (10,
3780 htab_hash_pointer, htab_eq_pointer,
3781 NULL, xcalloc, xfree);
3782 make_cleanup_htab_delete (visited_not_found);
3783
3784 /* The rule is CUs specify all the files, including those used by
3785 any TU, so there's no need to scan TUs here. */
3786
3787 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3788 {
3789 int j;
3790 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3791 struct quick_file_names *file_data;
3792 void **slot;
3793
3794 per_cu->v.quick->mark = 0;
3795
3796 /* We only need to look at symtabs not already expanded. */
3797 if (per_cu->v.quick->symtab)
3798 continue;
3799
3800 file_data = dw2_get_file_names (per_cu);
3801 if (file_data == NULL)
3802 continue;
3803
3804 if (htab_find (visited_not_found, file_data) != NULL)
3805 continue;
3806 else if (htab_find (visited_found, file_data) != NULL)
3807 {
3808 per_cu->v.quick->mark = 1;
3809 continue;
3810 }
3811
3812 for (j = 0; j < file_data->num_file_names; ++j)
3813 {
3814 const char *this_real_name;
3815
3816 if (file_matcher (file_data->file_names[j], data, 0))
3817 {
3818 per_cu->v.quick->mark = 1;
3819 break;
3820 }
3821
3822 /* Before we invoke realpath, which can get expensive when many
3823 files are involved, do a quick comparison of the basenames. */
3824 if (!basenames_may_differ
3825 && !file_matcher (lbasename (file_data->file_names[j]),
3826 data, 1))
3827 continue;
3828
3829 this_real_name = dw2_get_real_path (objfile, file_data, j);
3830 if (file_matcher (this_real_name, data, 0))
3831 {
3832 per_cu->v.quick->mark = 1;
3833 break;
3834 }
3835 }
3836
3837 slot = htab_find_slot (per_cu->v.quick->mark
3838 ? visited_found
3839 : visited_not_found,
3840 file_data, INSERT);
3841 *slot = file_data;
3842 }
3843
3844 do_cleanups (cleanup);
3845 }
3846
3847 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3848 {
3849 offset_type idx = 2 * iter;
3850 const char *name;
3851 offset_type *vec, vec_len, vec_idx;
3852
3853 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3854 continue;
3855
3856 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3857
3858 if (! (*name_matcher) (name, data))
3859 continue;
3860
3861 /* The name was matched, now expand corresponding CUs that were
3862 marked. */
3863 vec = (offset_type *) (index->constant_pool
3864 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3865 vec_len = MAYBE_SWAP (vec[0]);
3866 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3867 {
3868 struct dwarf2_per_cu_data *per_cu;
3869 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3870 gdb_index_symbol_kind symbol_kind =
3871 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3872 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3873 /* Only check the symbol attributes if they're present.
3874 Indices prior to version 7 don't record them,
3875 and indices >= 7 may elide them for certain symbols
3876 (gold does this). */
3877 int attrs_valid =
3878 (index->version >= 7
3879 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3880
3881 /* Only check the symbol's kind if it has one. */
3882 if (attrs_valid)
3883 {
3884 switch (kind)
3885 {
3886 case VARIABLES_DOMAIN:
3887 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3888 continue;
3889 break;
3890 case FUNCTIONS_DOMAIN:
3891 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3892 continue;
3893 break;
3894 case TYPES_DOMAIN:
3895 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3896 continue;
3897 break;
3898 default:
3899 break;
3900 }
3901 }
3902
3903 /* Don't crash on bad data. */
3904 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3905 + dwarf2_per_objfile->n_type_units))
3906 {
3907 complaint (&symfile_complaints,
3908 _(".gdb_index entry has bad CU index"
3909 " [in module %s]"), objfile_name (objfile));
3910 continue;
3911 }
3912
3913 per_cu = dw2_get_cu (cu_index);
3914 if (file_matcher == NULL || per_cu->v.quick->mark)
3915 dw2_instantiate_symtab (per_cu);
3916 }
3917 }
3918 }
3919
3920 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3921 symtab. */
3922
3923 static struct symtab *
3924 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3925 {
3926 int i;
3927
3928 if (BLOCKVECTOR (symtab) != NULL
3929 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3930 return symtab;
3931
3932 if (symtab->includes == NULL)
3933 return NULL;
3934
3935 for (i = 0; symtab->includes[i]; ++i)
3936 {
3937 struct symtab *s = symtab->includes[i];
3938
3939 s = recursively_find_pc_sect_symtab (s, pc);
3940 if (s != NULL)
3941 return s;
3942 }
3943
3944 return NULL;
3945 }
3946
3947 static struct symtab *
3948 dw2_find_pc_sect_symtab (struct objfile *objfile,
3949 struct minimal_symbol *msymbol,
3950 CORE_ADDR pc,
3951 struct obj_section *section,
3952 int warn_if_readin)
3953 {
3954 struct dwarf2_per_cu_data *data;
3955 struct symtab *result;
3956
3957 dw2_setup (objfile);
3958
3959 if (!objfile->psymtabs_addrmap)
3960 return NULL;
3961
3962 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3963 if (!data)
3964 return NULL;
3965
3966 if (warn_if_readin && data->v.quick->symtab)
3967 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3968 paddress (get_objfile_arch (objfile), pc));
3969
3970 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3971 gdb_assert (result != NULL);
3972 return result;
3973 }
3974
3975 static void
3976 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3977 void *data, int need_fullname)
3978 {
3979 int i;
3980 struct cleanup *cleanup;
3981 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3982 NULL, xcalloc, xfree);
3983
3984 cleanup = make_cleanup_htab_delete (visited);
3985 dw2_setup (objfile);
3986
3987 /* The rule is CUs specify all the files, including those used by
3988 any TU, so there's no need to scan TUs here.
3989 We can ignore file names coming from already-expanded CUs. */
3990
3991 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3992 {
3993 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3994
3995 if (per_cu->v.quick->symtab)
3996 {
3997 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3998 INSERT);
3999
4000 *slot = per_cu->v.quick->file_names;
4001 }
4002 }
4003
4004 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4005 {
4006 int j;
4007 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4008 struct quick_file_names *file_data;
4009 void **slot;
4010
4011 /* We only need to look at symtabs not already expanded. */
4012 if (per_cu->v.quick->symtab)
4013 continue;
4014
4015 file_data = dw2_get_file_names (per_cu);
4016 if (file_data == NULL)
4017 continue;
4018
4019 slot = htab_find_slot (visited, file_data, INSERT);
4020 if (*slot)
4021 {
4022 /* Already visited. */
4023 continue;
4024 }
4025 *slot = file_data;
4026
4027 for (j = 0; j < file_data->num_file_names; ++j)
4028 {
4029 const char *this_real_name;
4030
4031 if (need_fullname)
4032 this_real_name = dw2_get_real_path (objfile, file_data, j);
4033 else
4034 this_real_name = NULL;
4035 (*fun) (file_data->file_names[j], this_real_name, data);
4036 }
4037 }
4038
4039 do_cleanups (cleanup);
4040 }
4041
4042 static int
4043 dw2_has_symbols (struct objfile *objfile)
4044 {
4045 return 1;
4046 }
4047
4048 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4049 {
4050 dw2_has_symbols,
4051 dw2_find_last_source_symtab,
4052 dw2_forget_cached_source_info,
4053 dw2_map_symtabs_matching_filename,
4054 dw2_lookup_symbol,
4055 dw2_print_stats,
4056 dw2_dump,
4057 dw2_relocate,
4058 dw2_expand_symtabs_for_function,
4059 dw2_expand_all_symtabs,
4060 dw2_expand_symtabs_with_fullname,
4061 dw2_map_matching_symbols,
4062 dw2_expand_symtabs_matching,
4063 dw2_find_pc_sect_symtab,
4064 dw2_map_symbol_filenames
4065 };
4066
4067 /* Initialize for reading DWARF for this objfile. Return 0 if this
4068 file will use psymtabs, or 1 if using the GNU index. */
4069
4070 int
4071 dwarf2_initialize_objfile (struct objfile *objfile)
4072 {
4073 /* If we're about to read full symbols, don't bother with the
4074 indices. In this case we also don't care if some other debug
4075 format is making psymtabs, because they are all about to be
4076 expanded anyway. */
4077 if ((objfile->flags & OBJF_READNOW))
4078 {
4079 int i;
4080
4081 dwarf2_per_objfile->using_index = 1;
4082 create_all_comp_units (objfile);
4083 create_all_type_units (objfile);
4084 dwarf2_per_objfile->quick_file_names_table =
4085 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4086
4087 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4088 + dwarf2_per_objfile->n_type_units); ++i)
4089 {
4090 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4091
4092 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4093 struct dwarf2_per_cu_quick_data);
4094 }
4095
4096 /* Return 1 so that gdb sees the "quick" functions. However,
4097 these functions will be no-ops because we will have expanded
4098 all symtabs. */
4099 return 1;
4100 }
4101
4102 if (dwarf2_read_index (objfile))
4103 return 1;
4104
4105 return 0;
4106 }
4107
4108 \f
4109
4110 /* Build a partial symbol table. */
4111
4112 void
4113 dwarf2_build_psymtabs (struct objfile *objfile)
4114 {
4115 volatile struct gdb_exception except;
4116
4117 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4118 {
4119 init_psymbol_list (objfile, 1024);
4120 }
4121
4122 TRY_CATCH (except, RETURN_MASK_ERROR)
4123 {
4124 /* This isn't really ideal: all the data we allocate on the
4125 objfile's obstack is still uselessly kept around. However,
4126 freeing it seems unsafe. */
4127 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4128
4129 dwarf2_build_psymtabs_hard (objfile);
4130 discard_cleanups (cleanups);
4131 }
4132 if (except.reason < 0)
4133 exception_print (gdb_stderr, except);
4134 }
4135
4136 /* Return the total length of the CU described by HEADER. */
4137
4138 static unsigned int
4139 get_cu_length (const struct comp_unit_head *header)
4140 {
4141 return header->initial_length_size + header->length;
4142 }
4143
4144 /* Return TRUE if OFFSET is within CU_HEADER. */
4145
4146 static inline int
4147 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4148 {
4149 sect_offset bottom = { cu_header->offset.sect_off };
4150 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4151
4152 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4153 }
4154
4155 /* Find the base address of the compilation unit for range lists and
4156 location lists. It will normally be specified by DW_AT_low_pc.
4157 In DWARF-3 draft 4, the base address could be overridden by
4158 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4159 compilation units with discontinuous ranges. */
4160
4161 static void
4162 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4163 {
4164 struct attribute *attr;
4165
4166 cu->base_known = 0;
4167 cu->base_address = 0;
4168
4169 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4170 if (attr)
4171 {
4172 cu->base_address = DW_ADDR (attr);
4173 cu->base_known = 1;
4174 }
4175 else
4176 {
4177 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4178 if (attr)
4179 {
4180 cu->base_address = DW_ADDR (attr);
4181 cu->base_known = 1;
4182 }
4183 }
4184 }
4185
4186 /* Read in the comp unit header information from the debug_info at info_ptr.
4187 NOTE: This leaves members offset, first_die_offset to be filled in
4188 by the caller. */
4189
4190 static const gdb_byte *
4191 read_comp_unit_head (struct comp_unit_head *cu_header,
4192 const gdb_byte *info_ptr, bfd *abfd)
4193 {
4194 int signed_addr;
4195 unsigned int bytes_read;
4196
4197 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4198 cu_header->initial_length_size = bytes_read;
4199 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4200 info_ptr += bytes_read;
4201 cu_header->version = read_2_bytes (abfd, info_ptr);
4202 info_ptr += 2;
4203 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4204 &bytes_read);
4205 info_ptr += bytes_read;
4206 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4207 info_ptr += 1;
4208 signed_addr = bfd_get_sign_extend_vma (abfd);
4209 if (signed_addr < 0)
4210 internal_error (__FILE__, __LINE__,
4211 _("read_comp_unit_head: dwarf from non elf file"));
4212 cu_header->signed_addr_p = signed_addr;
4213
4214 return info_ptr;
4215 }
4216
4217 /* Helper function that returns the proper abbrev section for
4218 THIS_CU. */
4219
4220 static struct dwarf2_section_info *
4221 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4222 {
4223 struct dwarf2_section_info *abbrev;
4224
4225 if (this_cu->is_dwz)
4226 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4227 else
4228 abbrev = &dwarf2_per_objfile->abbrev;
4229
4230 return abbrev;
4231 }
4232
4233 /* Subroutine of read_and_check_comp_unit_head and
4234 read_and_check_type_unit_head to simplify them.
4235 Perform various error checking on the header. */
4236
4237 static void
4238 error_check_comp_unit_head (struct comp_unit_head *header,
4239 struct dwarf2_section_info *section,
4240 struct dwarf2_section_info *abbrev_section)
4241 {
4242 bfd *abfd = get_section_bfd_owner (section);
4243 const char *filename = get_section_file_name (section);
4244
4245 if (header->version != 2 && header->version != 3 && header->version != 4)
4246 error (_("Dwarf Error: wrong version in compilation unit header "
4247 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4248 filename);
4249
4250 if (header->abbrev_offset.sect_off
4251 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4252 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4253 "(offset 0x%lx + 6) [in module %s]"),
4254 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4255 filename);
4256
4257 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4258 avoid potential 32-bit overflow. */
4259 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4260 > section->size)
4261 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4262 "(offset 0x%lx + 0) [in module %s]"),
4263 (long) header->length, (long) header->offset.sect_off,
4264 filename);
4265 }
4266
4267 /* Read in a CU/TU header and perform some basic error checking.
4268 The contents of the header are stored in HEADER.
4269 The result is a pointer to the start of the first DIE. */
4270
4271 static const gdb_byte *
4272 read_and_check_comp_unit_head (struct comp_unit_head *header,
4273 struct dwarf2_section_info *section,
4274 struct dwarf2_section_info *abbrev_section,
4275 const gdb_byte *info_ptr,
4276 int is_debug_types_section)
4277 {
4278 const gdb_byte *beg_of_comp_unit = info_ptr;
4279 bfd *abfd = get_section_bfd_owner (section);
4280
4281 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4282
4283 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4284
4285 /* If we're reading a type unit, skip over the signature and
4286 type_offset fields. */
4287 if (is_debug_types_section)
4288 info_ptr += 8 /*signature*/ + header->offset_size;
4289
4290 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4291
4292 error_check_comp_unit_head (header, section, abbrev_section);
4293
4294 return info_ptr;
4295 }
4296
4297 /* Read in the types comp unit header information from .debug_types entry at
4298 types_ptr. The result is a pointer to one past the end of the header. */
4299
4300 static const gdb_byte *
4301 read_and_check_type_unit_head (struct comp_unit_head *header,
4302 struct dwarf2_section_info *section,
4303 struct dwarf2_section_info *abbrev_section,
4304 const gdb_byte *info_ptr,
4305 ULONGEST *signature,
4306 cu_offset *type_offset_in_tu)
4307 {
4308 const gdb_byte *beg_of_comp_unit = info_ptr;
4309 bfd *abfd = get_section_bfd_owner (section);
4310
4311 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4312
4313 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4314
4315 /* If we're reading a type unit, skip over the signature and
4316 type_offset fields. */
4317 if (signature != NULL)
4318 *signature = read_8_bytes (abfd, info_ptr);
4319 info_ptr += 8;
4320 if (type_offset_in_tu != NULL)
4321 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4322 header->offset_size);
4323 info_ptr += header->offset_size;
4324
4325 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4326
4327 error_check_comp_unit_head (header, section, abbrev_section);
4328
4329 return info_ptr;
4330 }
4331
4332 /* Fetch the abbreviation table offset from a comp or type unit header. */
4333
4334 static sect_offset
4335 read_abbrev_offset (struct dwarf2_section_info *section,
4336 sect_offset offset)
4337 {
4338 bfd *abfd = get_section_bfd_owner (section);
4339 const gdb_byte *info_ptr;
4340 unsigned int length, initial_length_size, offset_size;
4341 sect_offset abbrev_offset;
4342
4343 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4344 info_ptr = section->buffer + offset.sect_off;
4345 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4346 offset_size = initial_length_size == 4 ? 4 : 8;
4347 info_ptr += initial_length_size + 2 /*version*/;
4348 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4349 return abbrev_offset;
4350 }
4351
4352 /* Allocate a new partial symtab for file named NAME and mark this new
4353 partial symtab as being an include of PST. */
4354
4355 static void
4356 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4357 struct objfile *objfile)
4358 {
4359 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4360
4361 if (!IS_ABSOLUTE_PATH (subpst->filename))
4362 {
4363 /* It shares objfile->objfile_obstack. */
4364 subpst->dirname = pst->dirname;
4365 }
4366
4367 subpst->section_offsets = pst->section_offsets;
4368 subpst->textlow = 0;
4369 subpst->texthigh = 0;
4370
4371 subpst->dependencies = (struct partial_symtab **)
4372 obstack_alloc (&objfile->objfile_obstack,
4373 sizeof (struct partial_symtab *));
4374 subpst->dependencies[0] = pst;
4375 subpst->number_of_dependencies = 1;
4376
4377 subpst->globals_offset = 0;
4378 subpst->n_global_syms = 0;
4379 subpst->statics_offset = 0;
4380 subpst->n_static_syms = 0;
4381 subpst->symtab = NULL;
4382 subpst->read_symtab = pst->read_symtab;
4383 subpst->readin = 0;
4384
4385 /* No private part is necessary for include psymtabs. This property
4386 can be used to differentiate between such include psymtabs and
4387 the regular ones. */
4388 subpst->read_symtab_private = NULL;
4389 }
4390
4391 /* Read the Line Number Program data and extract the list of files
4392 included by the source file represented by PST. Build an include
4393 partial symtab for each of these included files. */
4394
4395 static void
4396 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4397 struct die_info *die,
4398 struct partial_symtab *pst)
4399 {
4400 struct line_header *lh = NULL;
4401 struct attribute *attr;
4402
4403 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4404 if (attr)
4405 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4406 if (lh == NULL)
4407 return; /* No linetable, so no includes. */
4408
4409 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4410 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4411
4412 free_line_header (lh);
4413 }
4414
4415 static hashval_t
4416 hash_signatured_type (const void *item)
4417 {
4418 const struct signatured_type *sig_type = item;
4419
4420 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4421 return sig_type->signature;
4422 }
4423
4424 static int
4425 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4426 {
4427 const struct signatured_type *lhs = item_lhs;
4428 const struct signatured_type *rhs = item_rhs;
4429
4430 return lhs->signature == rhs->signature;
4431 }
4432
4433 /* Allocate a hash table for signatured types. */
4434
4435 static htab_t
4436 allocate_signatured_type_table (struct objfile *objfile)
4437 {
4438 return htab_create_alloc_ex (41,
4439 hash_signatured_type,
4440 eq_signatured_type,
4441 NULL,
4442 &objfile->objfile_obstack,
4443 hashtab_obstack_allocate,
4444 dummy_obstack_deallocate);
4445 }
4446
4447 /* A helper function to add a signatured type CU to a table. */
4448
4449 static int
4450 add_signatured_type_cu_to_table (void **slot, void *datum)
4451 {
4452 struct signatured_type *sigt = *slot;
4453 struct signatured_type ***datap = datum;
4454
4455 **datap = sigt;
4456 ++*datap;
4457
4458 return 1;
4459 }
4460
4461 /* Create the hash table of all entries in the .debug_types
4462 (or .debug_types.dwo) section(s).
4463 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4464 otherwise it is NULL.
4465
4466 The result is a pointer to the hash table or NULL if there are no types.
4467
4468 Note: This function processes DWO files only, not DWP files. */
4469
4470 static htab_t
4471 create_debug_types_hash_table (struct dwo_file *dwo_file,
4472 VEC (dwarf2_section_info_def) *types)
4473 {
4474 struct objfile *objfile = dwarf2_per_objfile->objfile;
4475 htab_t types_htab = NULL;
4476 int ix;
4477 struct dwarf2_section_info *section;
4478 struct dwarf2_section_info *abbrev_section;
4479
4480 if (VEC_empty (dwarf2_section_info_def, types))
4481 return NULL;
4482
4483 abbrev_section = (dwo_file != NULL
4484 ? &dwo_file->sections.abbrev
4485 : &dwarf2_per_objfile->abbrev);
4486
4487 if (dwarf2_read_debug)
4488 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4489 dwo_file ? ".dwo" : "",
4490 get_section_file_name (abbrev_section));
4491
4492 for (ix = 0;
4493 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4494 ++ix)
4495 {
4496 bfd *abfd;
4497 const gdb_byte *info_ptr, *end_ptr;
4498
4499 dwarf2_read_section (objfile, section);
4500 info_ptr = section->buffer;
4501
4502 if (info_ptr == NULL)
4503 continue;
4504
4505 /* We can't set abfd until now because the section may be empty or
4506 not present, in which case the bfd is unknown. */
4507 abfd = get_section_bfd_owner (section);
4508
4509 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4510 because we don't need to read any dies: the signature is in the
4511 header. */
4512
4513 end_ptr = info_ptr + section->size;
4514 while (info_ptr < end_ptr)
4515 {
4516 sect_offset offset;
4517 cu_offset type_offset_in_tu;
4518 ULONGEST signature;
4519 struct signatured_type *sig_type;
4520 struct dwo_unit *dwo_tu;
4521 void **slot;
4522 const gdb_byte *ptr = info_ptr;
4523 struct comp_unit_head header;
4524 unsigned int length;
4525
4526 offset.sect_off = ptr - section->buffer;
4527
4528 /* We need to read the type's signature in order to build the hash
4529 table, but we don't need anything else just yet. */
4530
4531 ptr = read_and_check_type_unit_head (&header, section,
4532 abbrev_section, ptr,
4533 &signature, &type_offset_in_tu);
4534
4535 length = get_cu_length (&header);
4536
4537 /* Skip dummy type units. */
4538 if (ptr >= info_ptr + length
4539 || peek_abbrev_code (abfd, ptr) == 0)
4540 {
4541 info_ptr += length;
4542 continue;
4543 }
4544
4545 if (types_htab == NULL)
4546 {
4547 if (dwo_file)
4548 types_htab = allocate_dwo_unit_table (objfile);
4549 else
4550 types_htab = allocate_signatured_type_table (objfile);
4551 }
4552
4553 if (dwo_file)
4554 {
4555 sig_type = NULL;
4556 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4557 struct dwo_unit);
4558 dwo_tu->dwo_file = dwo_file;
4559 dwo_tu->signature = signature;
4560 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4561 dwo_tu->section = section;
4562 dwo_tu->offset = offset;
4563 dwo_tu->length = length;
4564 }
4565 else
4566 {
4567 /* N.B.: type_offset is not usable if this type uses a DWO file.
4568 The real type_offset is in the DWO file. */
4569 dwo_tu = NULL;
4570 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4571 struct signatured_type);
4572 sig_type->signature = signature;
4573 sig_type->type_offset_in_tu = type_offset_in_tu;
4574 sig_type->per_cu.objfile = objfile;
4575 sig_type->per_cu.is_debug_types = 1;
4576 sig_type->per_cu.section = section;
4577 sig_type->per_cu.offset = offset;
4578 sig_type->per_cu.length = length;
4579 }
4580
4581 slot = htab_find_slot (types_htab,
4582 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4583 INSERT);
4584 gdb_assert (slot != NULL);
4585 if (*slot != NULL)
4586 {
4587 sect_offset dup_offset;
4588
4589 if (dwo_file)
4590 {
4591 const struct dwo_unit *dup_tu = *slot;
4592
4593 dup_offset = dup_tu->offset;
4594 }
4595 else
4596 {
4597 const struct signatured_type *dup_tu = *slot;
4598
4599 dup_offset = dup_tu->per_cu.offset;
4600 }
4601
4602 complaint (&symfile_complaints,
4603 _("debug type entry at offset 0x%x is duplicate to"
4604 " the entry at offset 0x%x, signature %s"),
4605 offset.sect_off, dup_offset.sect_off,
4606 hex_string (signature));
4607 }
4608 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4609
4610 if (dwarf2_read_debug > 1)
4611 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4612 offset.sect_off,
4613 hex_string (signature));
4614
4615 info_ptr += length;
4616 }
4617 }
4618
4619 return types_htab;
4620 }
4621
4622 /* Create the hash table of all entries in the .debug_types section,
4623 and initialize all_type_units.
4624 The result is zero if there is an error (e.g. missing .debug_types section),
4625 otherwise non-zero. */
4626
4627 static int
4628 create_all_type_units (struct objfile *objfile)
4629 {
4630 htab_t types_htab;
4631 struct signatured_type **iter;
4632
4633 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4634 if (types_htab == NULL)
4635 {
4636 dwarf2_per_objfile->signatured_types = NULL;
4637 return 0;
4638 }
4639
4640 dwarf2_per_objfile->signatured_types = types_htab;
4641
4642 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4643 dwarf2_per_objfile->all_type_units
4644 = xmalloc (dwarf2_per_objfile->n_type_units
4645 * sizeof (struct signatured_type *));
4646 iter = &dwarf2_per_objfile->all_type_units[0];
4647 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4648 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4649 == dwarf2_per_objfile->n_type_units);
4650
4651 return 1;
4652 }
4653
4654 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4655 Fill in SIG_ENTRY with DWO_ENTRY. */
4656
4657 static void
4658 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4659 struct signatured_type *sig_entry,
4660 struct dwo_unit *dwo_entry)
4661 {
4662 /* Make sure we're not clobbering something we don't expect to. */
4663 gdb_assert (! sig_entry->per_cu.queued);
4664 gdb_assert (sig_entry->per_cu.cu == NULL);
4665 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4666 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4667 gdb_assert (sig_entry->signature == dwo_entry->signature);
4668 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4669 gdb_assert (sig_entry->type_unit_group == NULL);
4670 gdb_assert (sig_entry->dwo_unit == NULL);
4671
4672 sig_entry->per_cu.section = dwo_entry->section;
4673 sig_entry->per_cu.offset = dwo_entry->offset;
4674 sig_entry->per_cu.length = dwo_entry->length;
4675 sig_entry->per_cu.reading_dwo_directly = 1;
4676 sig_entry->per_cu.objfile = objfile;
4677 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4678 sig_entry->dwo_unit = dwo_entry;
4679 }
4680
4681 /* Subroutine of lookup_signatured_type.
4682 If we haven't read the TU yet, create the signatured_type data structure
4683 for a TU to be read in directly from a DWO file, bypassing the stub.
4684 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4685 using .gdb_index, then when reading a CU we want to stay in the DWO file
4686 containing that CU. Otherwise we could end up reading several other DWO
4687 files (due to comdat folding) to process the transitive closure of all the
4688 mentioned TUs, and that can be slow. The current DWO file will have every
4689 type signature that it needs.
4690 We only do this for .gdb_index because in the psymtab case we already have
4691 to read all the DWOs to build the type unit groups. */
4692
4693 static struct signatured_type *
4694 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4695 {
4696 struct objfile *objfile = dwarf2_per_objfile->objfile;
4697 struct dwo_file *dwo_file;
4698 struct dwo_unit find_dwo_entry, *dwo_entry;
4699 struct signatured_type find_sig_entry, *sig_entry;
4700
4701 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4702
4703 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4704 dwo_unit of the TU itself. */
4705 dwo_file = cu->dwo_unit->dwo_file;
4706
4707 /* We only ever need to read in one copy of a signatured type.
4708 Just use the global signatured_types array. If this is the first time
4709 we're reading this type, replace the recorded data from .gdb_index with
4710 this TU. */
4711
4712 if (dwarf2_per_objfile->signatured_types == NULL)
4713 return NULL;
4714 find_sig_entry.signature = sig;
4715 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4716 if (sig_entry == NULL)
4717 return NULL;
4718
4719 /* We can get here with the TU already read, *or* in the process of being
4720 read. Don't reassign it if that's the case. Also note that if the TU is
4721 already being read, it may not have come from a DWO, the program may be
4722 a mix of Fission-compiled code and non-Fission-compiled code. */
4723 /* Have we already tried to read this TU? */
4724 if (sig_entry->per_cu.tu_read)
4725 return sig_entry;
4726
4727 /* Ok, this is the first time we're reading this TU. */
4728 if (dwo_file->tus == NULL)
4729 return NULL;
4730 find_dwo_entry.signature = sig;
4731 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4732 if (dwo_entry == NULL)
4733 return NULL;
4734
4735 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4736 sig_entry->per_cu.tu_read = 1;
4737 return sig_entry;
4738 }
4739
4740 /* Subroutine of lookup_dwp_signatured_type.
4741 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4742
4743 static struct signatured_type *
4744 add_type_unit (ULONGEST sig)
4745 {
4746 struct objfile *objfile = dwarf2_per_objfile->objfile;
4747 int n_type_units = dwarf2_per_objfile->n_type_units;
4748 struct signatured_type *sig_type;
4749 void **slot;
4750
4751 ++n_type_units;
4752 dwarf2_per_objfile->all_type_units =
4753 xrealloc (dwarf2_per_objfile->all_type_units,
4754 n_type_units * sizeof (struct signatured_type *));
4755 dwarf2_per_objfile->n_type_units = n_type_units;
4756 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4757 struct signatured_type);
4758 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4759 sig_type->signature = sig;
4760 sig_type->per_cu.is_debug_types = 1;
4761 sig_type->per_cu.v.quick =
4762 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4763 struct dwarf2_per_cu_quick_data);
4764 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4765 sig_type, INSERT);
4766 gdb_assert (*slot == NULL);
4767 *slot = sig_type;
4768 /* The rest of sig_type must be filled in by the caller. */
4769 return sig_type;
4770 }
4771
4772 /* Subroutine of lookup_signatured_type.
4773 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4774 then try the DWP file.
4775 Normally this "can't happen", but if there's a bug in signature
4776 generation and/or the DWP file is built incorrectly, it can happen.
4777 Using the type directly from the DWP file means we don't have the stub
4778 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4779 not critical. [Eventually the stub may go away for type units anyway.] */
4780
4781 static struct signatured_type *
4782 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4783 {
4784 struct objfile *objfile = dwarf2_per_objfile->objfile;
4785 struct dwp_file *dwp_file = get_dwp_file ();
4786 struct dwo_unit *dwo_entry;
4787 struct signatured_type find_sig_entry, *sig_entry;
4788
4789 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4790 gdb_assert (dwp_file != NULL);
4791
4792 if (dwarf2_per_objfile->signatured_types != NULL)
4793 {
4794 find_sig_entry.signature = sig;
4795 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4796 &find_sig_entry);
4797 if (sig_entry != NULL)
4798 return sig_entry;
4799 }
4800
4801 /* This is the "shouldn't happen" case.
4802 Try the DWP file and hope for the best. */
4803 if (dwp_file->tus == NULL)
4804 return NULL;
4805 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4806 sig, 1 /* is_debug_types */);
4807 if (dwo_entry == NULL)
4808 return NULL;
4809
4810 sig_entry = add_type_unit (sig);
4811 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4812
4813 /* The caller will signal a complaint if we return NULL.
4814 Here we don't return NULL but we still want to complain. */
4815 complaint (&symfile_complaints,
4816 _("Bad type signature %s referenced by %s at 0x%x,"
4817 " coping by using copy in DWP [in module %s]"),
4818 hex_string (sig),
4819 cu->per_cu->is_debug_types ? "TU" : "CU",
4820 cu->per_cu->offset.sect_off,
4821 objfile_name (objfile));
4822
4823 return sig_entry;
4824 }
4825
4826 /* Lookup a signature based type for DW_FORM_ref_sig8.
4827 Returns NULL if signature SIG is not present in the table.
4828 It is up to the caller to complain about this. */
4829
4830 static struct signatured_type *
4831 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4832 {
4833 if (cu->dwo_unit
4834 && dwarf2_per_objfile->using_index)
4835 {
4836 /* We're in a DWO/DWP file, and we're using .gdb_index.
4837 These cases require special processing. */
4838 if (get_dwp_file () == NULL)
4839 return lookup_dwo_signatured_type (cu, sig);
4840 else
4841 return lookup_dwp_signatured_type (cu, sig);
4842 }
4843 else
4844 {
4845 struct signatured_type find_entry, *entry;
4846
4847 if (dwarf2_per_objfile->signatured_types == NULL)
4848 return NULL;
4849 find_entry.signature = sig;
4850 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4851 return entry;
4852 }
4853 }
4854 \f
4855 /* Low level DIE reading support. */
4856
4857 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4858
4859 static void
4860 init_cu_die_reader (struct die_reader_specs *reader,
4861 struct dwarf2_cu *cu,
4862 struct dwarf2_section_info *section,
4863 struct dwo_file *dwo_file)
4864 {
4865 gdb_assert (section->readin && section->buffer != NULL);
4866 reader->abfd = get_section_bfd_owner (section);
4867 reader->cu = cu;
4868 reader->dwo_file = dwo_file;
4869 reader->die_section = section;
4870 reader->buffer = section->buffer;
4871 reader->buffer_end = section->buffer + section->size;
4872 reader->comp_dir = NULL;
4873 }
4874
4875 /* Subroutine of init_cutu_and_read_dies to simplify it.
4876 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4877 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4878 already.
4879
4880 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4881 from it to the DIE in the DWO. If NULL we are skipping the stub.
4882 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4883 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4884 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4885 COMP_DIR must be non-NULL.
4886 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4887 are filled in with the info of the DIE from the DWO file.
4888 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4889 provided an abbrev table to use.
4890 The result is non-zero if a valid (non-dummy) DIE was found. */
4891
4892 static int
4893 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4894 struct dwo_unit *dwo_unit,
4895 int abbrev_table_provided,
4896 struct die_info *stub_comp_unit_die,
4897 const char *stub_comp_dir,
4898 struct die_reader_specs *result_reader,
4899 const gdb_byte **result_info_ptr,
4900 struct die_info **result_comp_unit_die,
4901 int *result_has_children)
4902 {
4903 struct objfile *objfile = dwarf2_per_objfile->objfile;
4904 struct dwarf2_cu *cu = this_cu->cu;
4905 struct dwarf2_section_info *section;
4906 bfd *abfd;
4907 const gdb_byte *begin_info_ptr, *info_ptr;
4908 const char *comp_dir_string;
4909 ULONGEST signature; /* Or dwo_id. */
4910 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4911 int i,num_extra_attrs;
4912 struct dwarf2_section_info *dwo_abbrev_section;
4913 struct attribute *attr;
4914 struct attribute comp_dir_attr;
4915 struct die_info *comp_unit_die;
4916
4917 /* Both can't be provided. */
4918 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4919
4920 /* These attributes aren't processed until later:
4921 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4922 However, the attribute is found in the stub which we won't have later.
4923 In order to not impose this complication on the rest of the code,
4924 we read them here and copy them to the DWO CU/TU die. */
4925
4926 stmt_list = NULL;
4927 low_pc = NULL;
4928 high_pc = NULL;
4929 ranges = NULL;
4930 comp_dir = NULL;
4931
4932 if (stub_comp_unit_die != NULL)
4933 {
4934 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4935 DWO file. */
4936 if (! this_cu->is_debug_types)
4937 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4938 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4939 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4940 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4941 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4942
4943 /* There should be a DW_AT_addr_base attribute here (if needed).
4944 We need the value before we can process DW_FORM_GNU_addr_index. */
4945 cu->addr_base = 0;
4946 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4947 if (attr)
4948 cu->addr_base = DW_UNSND (attr);
4949
4950 /* There should be a DW_AT_ranges_base attribute here (if needed).
4951 We need the value before we can process DW_AT_ranges. */
4952 cu->ranges_base = 0;
4953 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4954 if (attr)
4955 cu->ranges_base = DW_UNSND (attr);
4956 }
4957 else if (stub_comp_dir != NULL)
4958 {
4959 /* Reconstruct the comp_dir attribute to simplify the code below. */
4960 comp_dir = (struct attribute *)
4961 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4962 comp_dir->name = DW_AT_comp_dir;
4963 comp_dir->form = DW_FORM_string;
4964 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4965 DW_STRING (comp_dir) = stub_comp_dir;
4966 }
4967
4968 /* Set up for reading the DWO CU/TU. */
4969 cu->dwo_unit = dwo_unit;
4970 section = dwo_unit->section;
4971 dwarf2_read_section (objfile, section);
4972 abfd = get_section_bfd_owner (section);
4973 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4974 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4975 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4976
4977 if (this_cu->is_debug_types)
4978 {
4979 ULONGEST header_signature;
4980 cu_offset type_offset_in_tu;
4981 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4982
4983 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4984 dwo_abbrev_section,
4985 info_ptr,
4986 &header_signature,
4987 &type_offset_in_tu);
4988 /* This is not an assert because it can be caused by bad debug info. */
4989 if (sig_type->signature != header_signature)
4990 {
4991 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4992 " TU at offset 0x%x [in module %s]"),
4993 hex_string (sig_type->signature),
4994 hex_string (header_signature),
4995 dwo_unit->offset.sect_off,
4996 bfd_get_filename (abfd));
4997 }
4998 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4999 /* For DWOs coming from DWP files, we don't know the CU length
5000 nor the type's offset in the TU until now. */
5001 dwo_unit->length = get_cu_length (&cu->header);
5002 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5003
5004 /* Establish the type offset that can be used to lookup the type.
5005 For DWO files, we don't know it until now. */
5006 sig_type->type_offset_in_section.sect_off =
5007 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5008 }
5009 else
5010 {
5011 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5012 dwo_abbrev_section,
5013 info_ptr, 0);
5014 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5015 /* For DWOs coming from DWP files, we don't know the CU length
5016 until now. */
5017 dwo_unit->length = get_cu_length (&cu->header);
5018 }
5019
5020 /* Replace the CU's original abbrev table with the DWO's.
5021 Reminder: We can't read the abbrev table until we've read the header. */
5022 if (abbrev_table_provided)
5023 {
5024 /* Don't free the provided abbrev table, the caller of
5025 init_cutu_and_read_dies owns it. */
5026 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5027 /* Ensure the DWO abbrev table gets freed. */
5028 make_cleanup (dwarf2_free_abbrev_table, cu);
5029 }
5030 else
5031 {
5032 dwarf2_free_abbrev_table (cu);
5033 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5034 /* Leave any existing abbrev table cleanup as is. */
5035 }
5036
5037 /* Read in the die, but leave space to copy over the attributes
5038 from the stub. This has the benefit of simplifying the rest of
5039 the code - all the work to maintain the illusion of a single
5040 DW_TAG_{compile,type}_unit DIE is done here. */
5041 num_extra_attrs = ((stmt_list != NULL)
5042 + (low_pc != NULL)
5043 + (high_pc != NULL)
5044 + (ranges != NULL)
5045 + (comp_dir != NULL));
5046 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5047 result_has_children, num_extra_attrs);
5048
5049 /* Copy over the attributes from the stub to the DIE we just read in. */
5050 comp_unit_die = *result_comp_unit_die;
5051 i = comp_unit_die->num_attrs;
5052 if (stmt_list != NULL)
5053 comp_unit_die->attrs[i++] = *stmt_list;
5054 if (low_pc != NULL)
5055 comp_unit_die->attrs[i++] = *low_pc;
5056 if (high_pc != NULL)
5057 comp_unit_die->attrs[i++] = *high_pc;
5058 if (ranges != NULL)
5059 comp_unit_die->attrs[i++] = *ranges;
5060 if (comp_dir != NULL)
5061 comp_unit_die->attrs[i++] = *comp_dir;
5062 comp_unit_die->num_attrs += num_extra_attrs;
5063
5064 if (dwarf2_die_debug)
5065 {
5066 fprintf_unfiltered (gdb_stdlog,
5067 "Read die from %s@0x%x of %s:\n",
5068 get_section_name (section),
5069 (unsigned) (begin_info_ptr - section->buffer),
5070 bfd_get_filename (abfd));
5071 dump_die (comp_unit_die, dwarf2_die_debug);
5072 }
5073
5074 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5075 TUs by skipping the stub and going directly to the entry in the DWO file.
5076 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5077 to get it via circuitous means. Blech. */
5078 if (comp_dir != NULL)
5079 result_reader->comp_dir = DW_STRING (comp_dir);
5080
5081 /* Skip dummy compilation units. */
5082 if (info_ptr >= begin_info_ptr + dwo_unit->length
5083 || peek_abbrev_code (abfd, info_ptr) == 0)
5084 return 0;
5085
5086 *result_info_ptr = info_ptr;
5087 return 1;
5088 }
5089
5090 /* Subroutine of init_cutu_and_read_dies to simplify it.
5091 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5092 Returns NULL if the specified DWO unit cannot be found. */
5093
5094 static struct dwo_unit *
5095 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5096 struct die_info *comp_unit_die)
5097 {
5098 struct dwarf2_cu *cu = this_cu->cu;
5099 struct attribute *attr;
5100 ULONGEST signature;
5101 struct dwo_unit *dwo_unit;
5102 const char *comp_dir, *dwo_name;
5103
5104 gdb_assert (cu != NULL);
5105
5106 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5107 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5108 gdb_assert (attr != NULL);
5109 dwo_name = DW_STRING (attr);
5110 comp_dir = NULL;
5111 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5112 if (attr)
5113 comp_dir = DW_STRING (attr);
5114
5115 if (this_cu->is_debug_types)
5116 {
5117 struct signatured_type *sig_type;
5118
5119 /* Since this_cu is the first member of struct signatured_type,
5120 we can go from a pointer to one to a pointer to the other. */
5121 sig_type = (struct signatured_type *) this_cu;
5122 signature = sig_type->signature;
5123 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5124 }
5125 else
5126 {
5127 struct attribute *attr;
5128
5129 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5130 if (! attr)
5131 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5132 " [in module %s]"),
5133 dwo_name, objfile_name (this_cu->objfile));
5134 signature = DW_UNSND (attr);
5135 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5136 signature);
5137 }
5138
5139 return dwo_unit;
5140 }
5141
5142 /* Subroutine of init_cutu_and_read_dies to simplify it.
5143 Read a TU directly from a DWO file, bypassing the stub. */
5144
5145 static void
5146 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5147 die_reader_func_ftype *die_reader_func,
5148 void *data)
5149 {
5150 struct dwarf2_cu *cu;
5151 struct signatured_type *sig_type;
5152 struct cleanup *cleanups, *free_cu_cleanup;
5153 struct die_reader_specs reader;
5154 const gdb_byte *info_ptr;
5155 struct die_info *comp_unit_die;
5156 int has_children;
5157
5158 /* Verify we can do the following downcast, and that we have the
5159 data we need. */
5160 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5161 sig_type = (struct signatured_type *) this_cu;
5162 gdb_assert (sig_type->dwo_unit != NULL);
5163
5164 cleanups = make_cleanup (null_cleanup, NULL);
5165
5166 gdb_assert (this_cu->cu == NULL);
5167 cu = xmalloc (sizeof (*cu));
5168 init_one_comp_unit (cu, this_cu);
5169 /* If an error occurs while loading, release our storage. */
5170 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5171
5172 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5173 0 /* abbrev_table_provided */,
5174 NULL /* stub_comp_unit_die */,
5175 sig_type->dwo_unit->dwo_file->comp_dir,
5176 &reader, &info_ptr,
5177 &comp_unit_die, &has_children) == 0)
5178 {
5179 /* Dummy die. */
5180 do_cleanups (cleanups);
5181 return;
5182 }
5183
5184 /* All the "real" work is done here. */
5185 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5186
5187 /* This duplicates some code in init_cutu_and_read_dies,
5188 but the alternative is making the latter more complex.
5189 This function is only for the special case of using DWO files directly:
5190 no point in overly complicating the general case just to handle this. */
5191 if (keep)
5192 {
5193 /* We've successfully allocated this compilation unit. Let our
5194 caller clean it up when finished with it. */
5195 discard_cleanups (free_cu_cleanup);
5196
5197 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5198 So we have to manually free the abbrev table. */
5199 dwarf2_free_abbrev_table (cu);
5200
5201 /* Link this CU into read_in_chain. */
5202 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5203 dwarf2_per_objfile->read_in_chain = this_cu;
5204 }
5205 else
5206 do_cleanups (free_cu_cleanup);
5207
5208 do_cleanups (cleanups);
5209 }
5210
5211 /* Initialize a CU (or TU) and read its DIEs.
5212 If the CU defers to a DWO file, read the DWO file as well.
5213
5214 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5215 Otherwise the table specified in the comp unit header is read in and used.
5216 This is an optimization for when we already have the abbrev table.
5217
5218 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5219 Otherwise, a new CU is allocated with xmalloc.
5220
5221 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5222 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5223
5224 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5225 linker) then DIE_READER_FUNC will not get called. */
5226
5227 static void
5228 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5229 struct abbrev_table *abbrev_table,
5230 int use_existing_cu, int keep,
5231 die_reader_func_ftype *die_reader_func,
5232 void *data)
5233 {
5234 struct objfile *objfile = dwarf2_per_objfile->objfile;
5235 struct dwarf2_section_info *section = this_cu->section;
5236 bfd *abfd = get_section_bfd_owner (section);
5237 struct dwarf2_cu *cu;
5238 const gdb_byte *begin_info_ptr, *info_ptr;
5239 struct die_reader_specs reader;
5240 struct die_info *comp_unit_die;
5241 int has_children;
5242 struct attribute *attr;
5243 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5244 struct signatured_type *sig_type = NULL;
5245 struct dwarf2_section_info *abbrev_section;
5246 /* Non-zero if CU currently points to a DWO file and we need to
5247 reread it. When this happens we need to reread the skeleton die
5248 before we can reread the DWO file (this only applies to CUs, not TUs). */
5249 int rereading_dwo_cu = 0;
5250
5251 if (dwarf2_die_debug)
5252 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5253 this_cu->is_debug_types ? "type" : "comp",
5254 this_cu->offset.sect_off);
5255
5256 if (use_existing_cu)
5257 gdb_assert (keep);
5258
5259 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5260 file (instead of going through the stub), short-circuit all of this. */
5261 if (this_cu->reading_dwo_directly)
5262 {
5263 /* Narrow down the scope of possibilities to have to understand. */
5264 gdb_assert (this_cu->is_debug_types);
5265 gdb_assert (abbrev_table == NULL);
5266 gdb_assert (!use_existing_cu);
5267 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5268 return;
5269 }
5270
5271 cleanups = make_cleanup (null_cleanup, NULL);
5272
5273 /* This is cheap if the section is already read in. */
5274 dwarf2_read_section (objfile, section);
5275
5276 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5277
5278 abbrev_section = get_abbrev_section_for_cu (this_cu);
5279
5280 if (use_existing_cu && this_cu->cu != NULL)
5281 {
5282 cu = this_cu->cu;
5283
5284 /* If this CU is from a DWO file we need to start over, we need to
5285 refetch the attributes from the skeleton CU.
5286 This could be optimized by retrieving those attributes from when we
5287 were here the first time: the previous comp_unit_die was stored in
5288 comp_unit_obstack. But there's no data yet that we need this
5289 optimization. */
5290 if (cu->dwo_unit != NULL)
5291 rereading_dwo_cu = 1;
5292 }
5293 else
5294 {
5295 /* If !use_existing_cu, this_cu->cu must be NULL. */
5296 gdb_assert (this_cu->cu == NULL);
5297
5298 cu = xmalloc (sizeof (*cu));
5299 init_one_comp_unit (cu, this_cu);
5300
5301 /* If an error occurs while loading, release our storage. */
5302 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5303 }
5304
5305 /* Get the header. */
5306 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5307 {
5308 /* We already have the header, there's no need to read it in again. */
5309 info_ptr += cu->header.first_die_offset.cu_off;
5310 }
5311 else
5312 {
5313 if (this_cu->is_debug_types)
5314 {
5315 ULONGEST signature;
5316 cu_offset type_offset_in_tu;
5317
5318 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5319 abbrev_section, info_ptr,
5320 &signature,
5321 &type_offset_in_tu);
5322
5323 /* Since per_cu is the first member of struct signatured_type,
5324 we can go from a pointer to one to a pointer to the other. */
5325 sig_type = (struct signatured_type *) this_cu;
5326 gdb_assert (sig_type->signature == signature);
5327 gdb_assert (sig_type->type_offset_in_tu.cu_off
5328 == type_offset_in_tu.cu_off);
5329 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5330
5331 /* LENGTH has not been set yet for type units if we're
5332 using .gdb_index. */
5333 this_cu->length = get_cu_length (&cu->header);
5334
5335 /* Establish the type offset that can be used to lookup the type. */
5336 sig_type->type_offset_in_section.sect_off =
5337 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5338 }
5339 else
5340 {
5341 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5342 abbrev_section,
5343 info_ptr, 0);
5344
5345 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5346 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5347 }
5348 }
5349
5350 /* Skip dummy compilation units. */
5351 if (info_ptr >= begin_info_ptr + this_cu->length
5352 || peek_abbrev_code (abfd, info_ptr) == 0)
5353 {
5354 do_cleanups (cleanups);
5355 return;
5356 }
5357
5358 /* If we don't have them yet, read the abbrevs for this compilation unit.
5359 And if we need to read them now, make sure they're freed when we're
5360 done. Note that it's important that if the CU had an abbrev table
5361 on entry we don't free it when we're done: Somewhere up the call stack
5362 it may be in use. */
5363 if (abbrev_table != NULL)
5364 {
5365 gdb_assert (cu->abbrev_table == NULL);
5366 gdb_assert (cu->header.abbrev_offset.sect_off
5367 == abbrev_table->offset.sect_off);
5368 cu->abbrev_table = abbrev_table;
5369 }
5370 else if (cu->abbrev_table == NULL)
5371 {
5372 dwarf2_read_abbrevs (cu, abbrev_section);
5373 make_cleanup (dwarf2_free_abbrev_table, cu);
5374 }
5375 else if (rereading_dwo_cu)
5376 {
5377 dwarf2_free_abbrev_table (cu);
5378 dwarf2_read_abbrevs (cu, abbrev_section);
5379 }
5380
5381 /* Read the top level CU/TU die. */
5382 init_cu_die_reader (&reader, cu, section, NULL);
5383 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5384
5385 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5386 from the DWO file.
5387 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5388 DWO CU, that this test will fail (the attribute will not be present). */
5389 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5390 if (attr)
5391 {
5392 struct dwo_unit *dwo_unit;
5393 struct die_info *dwo_comp_unit_die;
5394
5395 if (has_children)
5396 {
5397 complaint (&symfile_complaints,
5398 _("compilation unit with DW_AT_GNU_dwo_name"
5399 " has children (offset 0x%x) [in module %s]"),
5400 this_cu->offset.sect_off, bfd_get_filename (abfd));
5401 }
5402 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5403 if (dwo_unit != NULL)
5404 {
5405 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5406 abbrev_table != NULL,
5407 comp_unit_die, NULL,
5408 &reader, &info_ptr,
5409 &dwo_comp_unit_die, &has_children) == 0)
5410 {
5411 /* Dummy die. */
5412 do_cleanups (cleanups);
5413 return;
5414 }
5415 comp_unit_die = dwo_comp_unit_die;
5416 }
5417 else
5418 {
5419 /* Yikes, we couldn't find the rest of the DIE, we only have
5420 the stub. A complaint has already been logged. There's
5421 not much more we can do except pass on the stub DIE to
5422 die_reader_func. We don't want to throw an error on bad
5423 debug info. */
5424 }
5425 }
5426
5427 /* All of the above is setup for this call. Yikes. */
5428 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5429
5430 /* Done, clean up. */
5431 if (free_cu_cleanup != NULL)
5432 {
5433 if (keep)
5434 {
5435 /* We've successfully allocated this compilation unit. Let our
5436 caller clean it up when finished with it. */
5437 discard_cleanups (free_cu_cleanup);
5438
5439 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5440 So we have to manually free the abbrev table. */
5441 dwarf2_free_abbrev_table (cu);
5442
5443 /* Link this CU into read_in_chain. */
5444 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5445 dwarf2_per_objfile->read_in_chain = this_cu;
5446 }
5447 else
5448 do_cleanups (free_cu_cleanup);
5449 }
5450
5451 do_cleanups (cleanups);
5452 }
5453
5454 /* Read CU/TU THIS_CU in section SECTION,
5455 but do not follow DW_AT_GNU_dwo_name if present.
5456 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5457 to have already done the lookup to find the DWO/DWP file).
5458
5459 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5460 THIS_CU->is_debug_types, but nothing else.
5461
5462 We fill in THIS_CU->length.
5463
5464 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5465 linker) then DIE_READER_FUNC will not get called.
5466
5467 THIS_CU->cu is always freed when done.
5468 This is done in order to not leave THIS_CU->cu in a state where we have
5469 to care whether it refers to the "main" CU or the DWO CU. */
5470
5471 static void
5472 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5473 struct dwarf2_section_info *abbrev_section,
5474 struct dwo_file *dwo_file,
5475 die_reader_func_ftype *die_reader_func,
5476 void *data)
5477 {
5478 struct objfile *objfile = dwarf2_per_objfile->objfile;
5479 struct dwarf2_section_info *section = this_cu->section;
5480 bfd *abfd = get_section_bfd_owner (section);
5481 struct dwarf2_cu cu;
5482 const gdb_byte *begin_info_ptr, *info_ptr;
5483 struct die_reader_specs reader;
5484 struct cleanup *cleanups;
5485 struct die_info *comp_unit_die;
5486 int has_children;
5487
5488 if (dwarf2_die_debug)
5489 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5490 this_cu->is_debug_types ? "type" : "comp",
5491 this_cu->offset.sect_off);
5492
5493 gdb_assert (this_cu->cu == NULL);
5494
5495 /* This is cheap if the section is already read in. */
5496 dwarf2_read_section (objfile, section);
5497
5498 init_one_comp_unit (&cu, this_cu);
5499
5500 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5501
5502 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5503 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5504 abbrev_section, info_ptr,
5505 this_cu->is_debug_types);
5506
5507 this_cu->length = get_cu_length (&cu.header);
5508
5509 /* Skip dummy compilation units. */
5510 if (info_ptr >= begin_info_ptr + this_cu->length
5511 || peek_abbrev_code (abfd, info_ptr) == 0)
5512 {
5513 do_cleanups (cleanups);
5514 return;
5515 }
5516
5517 dwarf2_read_abbrevs (&cu, abbrev_section);
5518 make_cleanup (dwarf2_free_abbrev_table, &cu);
5519
5520 init_cu_die_reader (&reader, &cu, section, dwo_file);
5521 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5522
5523 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5524
5525 do_cleanups (cleanups);
5526 }
5527
5528 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5529 does not lookup the specified DWO file.
5530 This cannot be used to read DWO files.
5531
5532 THIS_CU->cu is always freed when done.
5533 This is done in order to not leave THIS_CU->cu in a state where we have
5534 to care whether it refers to the "main" CU or the DWO CU.
5535 We can revisit this if the data shows there's a performance issue. */
5536
5537 static void
5538 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5539 die_reader_func_ftype *die_reader_func,
5540 void *data)
5541 {
5542 init_cutu_and_read_dies_no_follow (this_cu,
5543 get_abbrev_section_for_cu (this_cu),
5544 NULL,
5545 die_reader_func, data);
5546 }
5547 \f
5548 /* Type Unit Groups.
5549
5550 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5551 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5552 so that all types coming from the same compilation (.o file) are grouped
5553 together. A future step could be to put the types in the same symtab as
5554 the CU the types ultimately came from. */
5555
5556 static hashval_t
5557 hash_type_unit_group (const void *item)
5558 {
5559 const struct type_unit_group *tu_group = item;
5560
5561 return hash_stmt_list_entry (&tu_group->hash);
5562 }
5563
5564 static int
5565 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5566 {
5567 const struct type_unit_group *lhs = item_lhs;
5568 const struct type_unit_group *rhs = item_rhs;
5569
5570 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5571 }
5572
5573 /* Allocate a hash table for type unit groups. */
5574
5575 static htab_t
5576 allocate_type_unit_groups_table (void)
5577 {
5578 return htab_create_alloc_ex (3,
5579 hash_type_unit_group,
5580 eq_type_unit_group,
5581 NULL,
5582 &dwarf2_per_objfile->objfile->objfile_obstack,
5583 hashtab_obstack_allocate,
5584 dummy_obstack_deallocate);
5585 }
5586
5587 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5588 partial symtabs. We combine several TUs per psymtab to not let the size
5589 of any one psymtab grow too big. */
5590 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5591 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5592
5593 /* Helper routine for get_type_unit_group.
5594 Create the type_unit_group object used to hold one or more TUs. */
5595
5596 static struct type_unit_group *
5597 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5598 {
5599 struct objfile *objfile = dwarf2_per_objfile->objfile;
5600 struct dwarf2_per_cu_data *per_cu;
5601 struct type_unit_group *tu_group;
5602
5603 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5604 struct type_unit_group);
5605 per_cu = &tu_group->per_cu;
5606 per_cu->objfile = objfile;
5607
5608 if (dwarf2_per_objfile->using_index)
5609 {
5610 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5611 struct dwarf2_per_cu_quick_data);
5612 }
5613 else
5614 {
5615 unsigned int line_offset = line_offset_struct.sect_off;
5616 struct partial_symtab *pst;
5617 char *name;
5618
5619 /* Give the symtab a useful name for debug purposes. */
5620 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5621 name = xstrprintf ("<type_units_%d>",
5622 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5623 else
5624 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5625
5626 pst = create_partial_symtab (per_cu, name);
5627 pst->anonymous = 1;
5628
5629 xfree (name);
5630 }
5631
5632 tu_group->hash.dwo_unit = cu->dwo_unit;
5633 tu_group->hash.line_offset = line_offset_struct;
5634
5635 return tu_group;
5636 }
5637
5638 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5639 STMT_LIST is a DW_AT_stmt_list attribute. */
5640
5641 static struct type_unit_group *
5642 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5643 {
5644 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5645 struct type_unit_group *tu_group;
5646 void **slot;
5647 unsigned int line_offset;
5648 struct type_unit_group type_unit_group_for_lookup;
5649
5650 if (dwarf2_per_objfile->type_unit_groups == NULL)
5651 {
5652 dwarf2_per_objfile->type_unit_groups =
5653 allocate_type_unit_groups_table ();
5654 }
5655
5656 /* Do we need to create a new group, or can we use an existing one? */
5657
5658 if (stmt_list)
5659 {
5660 line_offset = DW_UNSND (stmt_list);
5661 ++tu_stats->nr_symtab_sharers;
5662 }
5663 else
5664 {
5665 /* Ugh, no stmt_list. Rare, but we have to handle it.
5666 We can do various things here like create one group per TU or
5667 spread them over multiple groups to split up the expansion work.
5668 To avoid worst case scenarios (too many groups or too large groups)
5669 we, umm, group them in bunches. */
5670 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5671 | (tu_stats->nr_stmt_less_type_units
5672 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5673 ++tu_stats->nr_stmt_less_type_units;
5674 }
5675
5676 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5677 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5678 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5679 &type_unit_group_for_lookup, INSERT);
5680 if (*slot != NULL)
5681 {
5682 tu_group = *slot;
5683 gdb_assert (tu_group != NULL);
5684 }
5685 else
5686 {
5687 sect_offset line_offset_struct;
5688
5689 line_offset_struct.sect_off = line_offset;
5690 tu_group = create_type_unit_group (cu, line_offset_struct);
5691 *slot = tu_group;
5692 ++tu_stats->nr_symtabs;
5693 }
5694
5695 return tu_group;
5696 }
5697
5698 /* Struct used to sort TUs by their abbreviation table offset. */
5699
5700 struct tu_abbrev_offset
5701 {
5702 struct signatured_type *sig_type;
5703 sect_offset abbrev_offset;
5704 };
5705
5706 /* Helper routine for build_type_unit_groups, passed to qsort. */
5707
5708 static int
5709 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5710 {
5711 const struct tu_abbrev_offset * const *a = ap;
5712 const struct tu_abbrev_offset * const *b = bp;
5713 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5714 unsigned int boff = (*b)->abbrev_offset.sect_off;
5715
5716 return (aoff > boff) - (aoff < boff);
5717 }
5718
5719 /* A helper function to add a type_unit_group to a table. */
5720
5721 static int
5722 add_type_unit_group_to_table (void **slot, void *datum)
5723 {
5724 struct type_unit_group *tu_group = *slot;
5725 struct type_unit_group ***datap = datum;
5726
5727 **datap = tu_group;
5728 ++*datap;
5729
5730 return 1;
5731 }
5732
5733 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5734 each one passing FUNC,DATA.
5735
5736 The efficiency is because we sort TUs by the abbrev table they use and
5737 only read each abbrev table once. In one program there are 200K TUs
5738 sharing 8K abbrev tables.
5739
5740 The main purpose of this function is to support building the
5741 dwarf2_per_objfile->type_unit_groups table.
5742 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5743 can collapse the search space by grouping them by stmt_list.
5744 The savings can be significant, in the same program from above the 200K TUs
5745 share 8K stmt_list tables.
5746
5747 FUNC is expected to call get_type_unit_group, which will create the
5748 struct type_unit_group if necessary and add it to
5749 dwarf2_per_objfile->type_unit_groups. */
5750
5751 static void
5752 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5753 {
5754 struct objfile *objfile = dwarf2_per_objfile->objfile;
5755 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5756 struct cleanup *cleanups;
5757 struct abbrev_table *abbrev_table;
5758 sect_offset abbrev_offset;
5759 struct tu_abbrev_offset *sorted_by_abbrev;
5760 struct type_unit_group **iter;
5761 int i;
5762
5763 /* It's up to the caller to not call us multiple times. */
5764 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5765
5766 if (dwarf2_per_objfile->n_type_units == 0)
5767 return;
5768
5769 /* TUs typically share abbrev tables, and there can be way more TUs than
5770 abbrev tables. Sort by abbrev table to reduce the number of times we
5771 read each abbrev table in.
5772 Alternatives are to punt or to maintain a cache of abbrev tables.
5773 This is simpler and efficient enough for now.
5774
5775 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5776 symtab to use). Typically TUs with the same abbrev offset have the same
5777 stmt_list value too so in practice this should work well.
5778
5779 The basic algorithm here is:
5780
5781 sort TUs by abbrev table
5782 for each TU with same abbrev table:
5783 read abbrev table if first user
5784 read TU top level DIE
5785 [IWBN if DWO skeletons had DW_AT_stmt_list]
5786 call FUNC */
5787
5788 if (dwarf2_read_debug)
5789 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5790
5791 /* Sort in a separate table to maintain the order of all_type_units
5792 for .gdb_index: TU indices directly index all_type_units. */
5793 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5794 dwarf2_per_objfile->n_type_units);
5795 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5796 {
5797 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5798
5799 sorted_by_abbrev[i].sig_type = sig_type;
5800 sorted_by_abbrev[i].abbrev_offset =
5801 read_abbrev_offset (sig_type->per_cu.section,
5802 sig_type->per_cu.offset);
5803 }
5804 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5805 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5806 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5807
5808 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5809 called any number of times, so we don't reset tu_stats here. */
5810
5811 abbrev_offset.sect_off = ~(unsigned) 0;
5812 abbrev_table = NULL;
5813 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5814
5815 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5816 {
5817 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5818
5819 /* Switch to the next abbrev table if necessary. */
5820 if (abbrev_table == NULL
5821 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5822 {
5823 if (abbrev_table != NULL)
5824 {
5825 abbrev_table_free (abbrev_table);
5826 /* Reset to NULL in case abbrev_table_read_table throws
5827 an error: abbrev_table_free_cleanup will get called. */
5828 abbrev_table = NULL;
5829 }
5830 abbrev_offset = tu->abbrev_offset;
5831 abbrev_table =
5832 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5833 abbrev_offset);
5834 ++tu_stats->nr_uniq_abbrev_tables;
5835 }
5836
5837 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5838 func, data);
5839 }
5840
5841 /* type_unit_groups can be NULL if there is an error in the debug info.
5842 Just create an empty table so the rest of gdb doesn't have to watch
5843 for this error case. */
5844 if (dwarf2_per_objfile->type_unit_groups == NULL)
5845 {
5846 dwarf2_per_objfile->type_unit_groups =
5847 allocate_type_unit_groups_table ();
5848 dwarf2_per_objfile->n_type_unit_groups = 0;
5849 }
5850
5851 /* Create a vector of pointers to primary type units to make it easy to
5852 iterate over them and CUs. See dw2_get_primary_cu. */
5853 dwarf2_per_objfile->n_type_unit_groups =
5854 htab_elements (dwarf2_per_objfile->type_unit_groups);
5855 dwarf2_per_objfile->all_type_unit_groups =
5856 obstack_alloc (&objfile->objfile_obstack,
5857 dwarf2_per_objfile->n_type_unit_groups
5858 * sizeof (struct type_unit_group *));
5859 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5860 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5861 add_type_unit_group_to_table, &iter);
5862 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5863 == dwarf2_per_objfile->n_type_unit_groups);
5864
5865 do_cleanups (cleanups);
5866
5867 if (dwarf2_read_debug)
5868 {
5869 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5870 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5871 dwarf2_per_objfile->n_type_units);
5872 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5873 tu_stats->nr_uniq_abbrev_tables);
5874 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5875 tu_stats->nr_symtabs);
5876 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5877 tu_stats->nr_symtab_sharers);
5878 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5879 tu_stats->nr_stmt_less_type_units);
5880 }
5881 }
5882 \f
5883 /* Partial symbol tables. */
5884
5885 /* Create a psymtab named NAME and assign it to PER_CU.
5886
5887 The caller must fill in the following details:
5888 dirname, textlow, texthigh. */
5889
5890 static struct partial_symtab *
5891 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5892 {
5893 struct objfile *objfile = per_cu->objfile;
5894 struct partial_symtab *pst;
5895
5896 pst = start_psymtab_common (objfile, objfile->section_offsets,
5897 name, 0,
5898 objfile->global_psymbols.next,
5899 objfile->static_psymbols.next);
5900
5901 pst->psymtabs_addrmap_supported = 1;
5902
5903 /* This is the glue that links PST into GDB's symbol API. */
5904 pst->read_symtab_private = per_cu;
5905 pst->read_symtab = dwarf2_read_symtab;
5906 per_cu->v.psymtab = pst;
5907
5908 return pst;
5909 }
5910
5911 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5912 type. */
5913
5914 struct process_psymtab_comp_unit_data
5915 {
5916 /* True if we are reading a DW_TAG_partial_unit. */
5917
5918 int want_partial_unit;
5919
5920 /* The "pretend" language that is used if the CU doesn't declare a
5921 language. */
5922
5923 enum language pretend_language;
5924 };
5925
5926 /* die_reader_func for process_psymtab_comp_unit. */
5927
5928 static void
5929 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5930 const gdb_byte *info_ptr,
5931 struct die_info *comp_unit_die,
5932 int has_children,
5933 void *data)
5934 {
5935 struct dwarf2_cu *cu = reader->cu;
5936 struct objfile *objfile = cu->objfile;
5937 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5938 struct attribute *attr;
5939 CORE_ADDR baseaddr;
5940 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5941 struct partial_symtab *pst;
5942 int has_pc_info;
5943 const char *filename;
5944 struct process_psymtab_comp_unit_data *info = data;
5945
5946 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5947 return;
5948
5949 gdb_assert (! per_cu->is_debug_types);
5950
5951 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5952
5953 cu->list_in_scope = &file_symbols;
5954
5955 /* Allocate a new partial symbol table structure. */
5956 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5957 if (attr == NULL || !DW_STRING (attr))
5958 filename = "";
5959 else
5960 filename = DW_STRING (attr);
5961
5962 pst = create_partial_symtab (per_cu, filename);
5963
5964 /* This must be done before calling dwarf2_build_include_psymtabs. */
5965 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5966 if (attr != NULL)
5967 pst->dirname = DW_STRING (attr);
5968
5969 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5970
5971 dwarf2_find_base_address (comp_unit_die, cu);
5972
5973 /* Possibly set the default values of LOWPC and HIGHPC from
5974 `DW_AT_ranges'. */
5975 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5976 &best_highpc, cu, pst);
5977 if (has_pc_info == 1 && best_lowpc < best_highpc)
5978 /* Store the contiguous range if it is not empty; it can be empty for
5979 CUs with no code. */
5980 addrmap_set_empty (objfile->psymtabs_addrmap,
5981 best_lowpc + baseaddr,
5982 best_highpc + baseaddr - 1, pst);
5983
5984 /* Check if comp unit has_children.
5985 If so, read the rest of the partial symbols from this comp unit.
5986 If not, there's no more debug_info for this comp unit. */
5987 if (has_children)
5988 {
5989 struct partial_die_info *first_die;
5990 CORE_ADDR lowpc, highpc;
5991
5992 lowpc = ((CORE_ADDR) -1);
5993 highpc = ((CORE_ADDR) 0);
5994
5995 first_die = load_partial_dies (reader, info_ptr, 1);
5996
5997 scan_partial_symbols (first_die, &lowpc, &highpc,
5998 ! has_pc_info, cu);
5999
6000 /* If we didn't find a lowpc, set it to highpc to avoid
6001 complaints from `maint check'. */
6002 if (lowpc == ((CORE_ADDR) -1))
6003 lowpc = highpc;
6004
6005 /* If the compilation unit didn't have an explicit address range,
6006 then use the information extracted from its child dies. */
6007 if (! has_pc_info)
6008 {
6009 best_lowpc = lowpc;
6010 best_highpc = highpc;
6011 }
6012 }
6013 pst->textlow = best_lowpc + baseaddr;
6014 pst->texthigh = best_highpc + baseaddr;
6015
6016 pst->n_global_syms = objfile->global_psymbols.next -
6017 (objfile->global_psymbols.list + pst->globals_offset);
6018 pst->n_static_syms = objfile->static_psymbols.next -
6019 (objfile->static_psymbols.list + pst->statics_offset);
6020 sort_pst_symbols (objfile, pst);
6021
6022 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6023 {
6024 int i;
6025 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6026 struct dwarf2_per_cu_data *iter;
6027
6028 /* Fill in 'dependencies' here; we fill in 'users' in a
6029 post-pass. */
6030 pst->number_of_dependencies = len;
6031 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6032 len * sizeof (struct symtab *));
6033 for (i = 0;
6034 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6035 i, iter);
6036 ++i)
6037 pst->dependencies[i] = iter->v.psymtab;
6038
6039 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6040 }
6041
6042 /* Get the list of files included in the current compilation unit,
6043 and build a psymtab for each of them. */
6044 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6045
6046 if (dwarf2_read_debug)
6047 {
6048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6049
6050 fprintf_unfiltered (gdb_stdlog,
6051 "Psymtab for %s unit @0x%x: %s - %s"
6052 ", %d global, %d static syms\n",
6053 per_cu->is_debug_types ? "type" : "comp",
6054 per_cu->offset.sect_off,
6055 paddress (gdbarch, pst->textlow),
6056 paddress (gdbarch, pst->texthigh),
6057 pst->n_global_syms, pst->n_static_syms);
6058 }
6059 }
6060
6061 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6062 Process compilation unit THIS_CU for a psymtab. */
6063
6064 static void
6065 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6066 int want_partial_unit,
6067 enum language pretend_language)
6068 {
6069 struct process_psymtab_comp_unit_data info;
6070
6071 /* If this compilation unit was already read in, free the
6072 cached copy in order to read it in again. This is
6073 necessary because we skipped some symbols when we first
6074 read in the compilation unit (see load_partial_dies).
6075 This problem could be avoided, but the benefit is unclear. */
6076 if (this_cu->cu != NULL)
6077 free_one_cached_comp_unit (this_cu);
6078
6079 gdb_assert (! this_cu->is_debug_types);
6080 info.want_partial_unit = want_partial_unit;
6081 info.pretend_language = pretend_language;
6082 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6083 process_psymtab_comp_unit_reader,
6084 &info);
6085
6086 /* Age out any secondary CUs. */
6087 age_cached_comp_units ();
6088 }
6089
6090 /* Reader function for build_type_psymtabs. */
6091
6092 static void
6093 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6094 const gdb_byte *info_ptr,
6095 struct die_info *type_unit_die,
6096 int has_children,
6097 void *data)
6098 {
6099 struct objfile *objfile = dwarf2_per_objfile->objfile;
6100 struct dwarf2_cu *cu = reader->cu;
6101 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6102 struct signatured_type *sig_type;
6103 struct type_unit_group *tu_group;
6104 struct attribute *attr;
6105 struct partial_die_info *first_die;
6106 CORE_ADDR lowpc, highpc;
6107 struct partial_symtab *pst;
6108
6109 gdb_assert (data == NULL);
6110 gdb_assert (per_cu->is_debug_types);
6111 sig_type = (struct signatured_type *) per_cu;
6112
6113 if (! has_children)
6114 return;
6115
6116 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6117 tu_group = get_type_unit_group (cu, attr);
6118
6119 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6120
6121 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6122 cu->list_in_scope = &file_symbols;
6123 pst = create_partial_symtab (per_cu, "");
6124 pst->anonymous = 1;
6125
6126 first_die = load_partial_dies (reader, info_ptr, 1);
6127
6128 lowpc = (CORE_ADDR) -1;
6129 highpc = (CORE_ADDR) 0;
6130 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6131
6132 pst->n_global_syms = objfile->global_psymbols.next -
6133 (objfile->global_psymbols.list + pst->globals_offset);
6134 pst->n_static_syms = objfile->static_psymbols.next -
6135 (objfile->static_psymbols.list + pst->statics_offset);
6136 sort_pst_symbols (objfile, pst);
6137 }
6138
6139 /* Traversal function for build_type_psymtabs. */
6140
6141 static int
6142 build_type_psymtab_dependencies (void **slot, void *info)
6143 {
6144 struct objfile *objfile = dwarf2_per_objfile->objfile;
6145 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6146 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6147 struct partial_symtab *pst = per_cu->v.psymtab;
6148 int len = VEC_length (sig_type_ptr, tu_group->tus);
6149 struct signatured_type *iter;
6150 int i;
6151
6152 gdb_assert (len > 0);
6153 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6154
6155 pst->number_of_dependencies = len;
6156 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6157 len * sizeof (struct psymtab *));
6158 for (i = 0;
6159 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6160 ++i)
6161 {
6162 gdb_assert (iter->per_cu.is_debug_types);
6163 pst->dependencies[i] = iter->per_cu.v.psymtab;
6164 iter->type_unit_group = tu_group;
6165 }
6166
6167 VEC_free (sig_type_ptr, tu_group->tus);
6168
6169 return 1;
6170 }
6171
6172 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6173 Build partial symbol tables for the .debug_types comp-units. */
6174
6175 static void
6176 build_type_psymtabs (struct objfile *objfile)
6177 {
6178 if (! create_all_type_units (objfile))
6179 return;
6180
6181 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6182
6183 /* Now that all TUs have been processed we can fill in the dependencies. */
6184 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6185 build_type_psymtab_dependencies, NULL);
6186 }
6187
6188 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6189
6190 static void
6191 psymtabs_addrmap_cleanup (void *o)
6192 {
6193 struct objfile *objfile = o;
6194
6195 objfile->psymtabs_addrmap = NULL;
6196 }
6197
6198 /* Compute the 'user' field for each psymtab in OBJFILE. */
6199
6200 static void
6201 set_partial_user (struct objfile *objfile)
6202 {
6203 int i;
6204
6205 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6206 {
6207 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6208 struct partial_symtab *pst = per_cu->v.psymtab;
6209 int j;
6210
6211 if (pst == NULL)
6212 continue;
6213
6214 for (j = 0; j < pst->number_of_dependencies; ++j)
6215 {
6216 /* Set the 'user' field only if it is not already set. */
6217 if (pst->dependencies[j]->user == NULL)
6218 pst->dependencies[j]->user = pst;
6219 }
6220 }
6221 }
6222
6223 /* Build the partial symbol table by doing a quick pass through the
6224 .debug_info and .debug_abbrev sections. */
6225
6226 static void
6227 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6228 {
6229 struct cleanup *back_to, *addrmap_cleanup;
6230 struct obstack temp_obstack;
6231 int i;
6232
6233 if (dwarf2_read_debug)
6234 {
6235 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6236 objfile_name (objfile));
6237 }
6238
6239 dwarf2_per_objfile->reading_partial_symbols = 1;
6240
6241 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6242
6243 /* Any cached compilation units will be linked by the per-objfile
6244 read_in_chain. Make sure to free them when we're done. */
6245 back_to = make_cleanup (free_cached_comp_units, NULL);
6246
6247 build_type_psymtabs (objfile);
6248
6249 create_all_comp_units (objfile);
6250
6251 /* Create a temporary address map on a temporary obstack. We later
6252 copy this to the final obstack. */
6253 obstack_init (&temp_obstack);
6254 make_cleanup_obstack_free (&temp_obstack);
6255 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6256 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6257
6258 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6259 {
6260 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6261
6262 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6263 }
6264
6265 set_partial_user (objfile);
6266
6267 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6268 &objfile->objfile_obstack);
6269 discard_cleanups (addrmap_cleanup);
6270
6271 do_cleanups (back_to);
6272
6273 if (dwarf2_read_debug)
6274 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6275 objfile_name (objfile));
6276 }
6277
6278 /* die_reader_func for load_partial_comp_unit. */
6279
6280 static void
6281 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6282 const gdb_byte *info_ptr,
6283 struct die_info *comp_unit_die,
6284 int has_children,
6285 void *data)
6286 {
6287 struct dwarf2_cu *cu = reader->cu;
6288
6289 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6290
6291 /* Check if comp unit has_children.
6292 If so, read the rest of the partial symbols from this comp unit.
6293 If not, there's no more debug_info for this comp unit. */
6294 if (has_children)
6295 load_partial_dies (reader, info_ptr, 0);
6296 }
6297
6298 /* Load the partial DIEs for a secondary CU into memory.
6299 This is also used when rereading a primary CU with load_all_dies. */
6300
6301 static void
6302 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6303 {
6304 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6305 load_partial_comp_unit_reader, NULL);
6306 }
6307
6308 static void
6309 read_comp_units_from_section (struct objfile *objfile,
6310 struct dwarf2_section_info *section,
6311 unsigned int is_dwz,
6312 int *n_allocated,
6313 int *n_comp_units,
6314 struct dwarf2_per_cu_data ***all_comp_units)
6315 {
6316 const gdb_byte *info_ptr;
6317 bfd *abfd = get_section_bfd_owner (section);
6318
6319 if (dwarf2_read_debug)
6320 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6321 get_section_name (section),
6322 get_section_file_name (section));
6323
6324 dwarf2_read_section (objfile, section);
6325
6326 info_ptr = section->buffer;
6327
6328 while (info_ptr < section->buffer + section->size)
6329 {
6330 unsigned int length, initial_length_size;
6331 struct dwarf2_per_cu_data *this_cu;
6332 sect_offset offset;
6333
6334 offset.sect_off = info_ptr - section->buffer;
6335
6336 /* Read just enough information to find out where the next
6337 compilation unit is. */
6338 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6339
6340 /* Save the compilation unit for later lookup. */
6341 this_cu = obstack_alloc (&objfile->objfile_obstack,
6342 sizeof (struct dwarf2_per_cu_data));
6343 memset (this_cu, 0, sizeof (*this_cu));
6344 this_cu->offset = offset;
6345 this_cu->length = length + initial_length_size;
6346 this_cu->is_dwz = is_dwz;
6347 this_cu->objfile = objfile;
6348 this_cu->section = section;
6349
6350 if (*n_comp_units == *n_allocated)
6351 {
6352 *n_allocated *= 2;
6353 *all_comp_units = xrealloc (*all_comp_units,
6354 *n_allocated
6355 * sizeof (struct dwarf2_per_cu_data *));
6356 }
6357 (*all_comp_units)[*n_comp_units] = this_cu;
6358 ++*n_comp_units;
6359
6360 info_ptr = info_ptr + this_cu->length;
6361 }
6362 }
6363
6364 /* Create a list of all compilation units in OBJFILE.
6365 This is only done for -readnow and building partial symtabs. */
6366
6367 static void
6368 create_all_comp_units (struct objfile *objfile)
6369 {
6370 int n_allocated;
6371 int n_comp_units;
6372 struct dwarf2_per_cu_data **all_comp_units;
6373 struct dwz_file *dwz;
6374
6375 n_comp_units = 0;
6376 n_allocated = 10;
6377 all_comp_units = xmalloc (n_allocated
6378 * sizeof (struct dwarf2_per_cu_data *));
6379
6380 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6381 &n_allocated, &n_comp_units, &all_comp_units);
6382
6383 dwz = dwarf2_get_dwz_file ();
6384 if (dwz != NULL)
6385 read_comp_units_from_section (objfile, &dwz->info, 1,
6386 &n_allocated, &n_comp_units,
6387 &all_comp_units);
6388
6389 dwarf2_per_objfile->all_comp_units
6390 = obstack_alloc (&objfile->objfile_obstack,
6391 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6392 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6393 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6394 xfree (all_comp_units);
6395 dwarf2_per_objfile->n_comp_units = n_comp_units;
6396 }
6397
6398 /* Process all loaded DIEs for compilation unit CU, starting at
6399 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6400 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6401 DW_AT_ranges). If NEED_PC is set, then this function will set
6402 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6403 and record the covered ranges in the addrmap. */
6404
6405 static void
6406 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6407 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6408 {
6409 struct partial_die_info *pdi;
6410
6411 /* Now, march along the PDI's, descending into ones which have
6412 interesting children but skipping the children of the other ones,
6413 until we reach the end of the compilation unit. */
6414
6415 pdi = first_die;
6416
6417 while (pdi != NULL)
6418 {
6419 fixup_partial_die (pdi, cu);
6420
6421 /* Anonymous namespaces or modules have no name but have interesting
6422 children, so we need to look at them. Ditto for anonymous
6423 enums. */
6424
6425 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6426 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6427 || pdi->tag == DW_TAG_imported_unit)
6428 {
6429 switch (pdi->tag)
6430 {
6431 case DW_TAG_subprogram:
6432 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6433 break;
6434 case DW_TAG_constant:
6435 case DW_TAG_variable:
6436 case DW_TAG_typedef:
6437 case DW_TAG_union_type:
6438 if (!pdi->is_declaration)
6439 {
6440 add_partial_symbol (pdi, cu);
6441 }
6442 break;
6443 case DW_TAG_class_type:
6444 case DW_TAG_interface_type:
6445 case DW_TAG_structure_type:
6446 if (!pdi->is_declaration)
6447 {
6448 add_partial_symbol (pdi, cu);
6449 }
6450 break;
6451 case DW_TAG_enumeration_type:
6452 if (!pdi->is_declaration)
6453 add_partial_enumeration (pdi, cu);
6454 break;
6455 case DW_TAG_base_type:
6456 case DW_TAG_subrange_type:
6457 /* File scope base type definitions are added to the partial
6458 symbol table. */
6459 add_partial_symbol (pdi, cu);
6460 break;
6461 case DW_TAG_namespace:
6462 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6463 break;
6464 case DW_TAG_module:
6465 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6466 break;
6467 case DW_TAG_imported_unit:
6468 {
6469 struct dwarf2_per_cu_data *per_cu;
6470
6471 /* For now we don't handle imported units in type units. */
6472 if (cu->per_cu->is_debug_types)
6473 {
6474 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6475 " supported in type units [in module %s]"),
6476 objfile_name (cu->objfile));
6477 }
6478
6479 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6480 pdi->is_dwz,
6481 cu->objfile);
6482
6483 /* Go read the partial unit, if needed. */
6484 if (per_cu->v.psymtab == NULL)
6485 process_psymtab_comp_unit (per_cu, 1, cu->language);
6486
6487 VEC_safe_push (dwarf2_per_cu_ptr,
6488 cu->per_cu->imported_symtabs, per_cu);
6489 }
6490 break;
6491 default:
6492 break;
6493 }
6494 }
6495
6496 /* If the die has a sibling, skip to the sibling. */
6497
6498 pdi = pdi->die_sibling;
6499 }
6500 }
6501
6502 /* Functions used to compute the fully scoped name of a partial DIE.
6503
6504 Normally, this is simple. For C++, the parent DIE's fully scoped
6505 name is concatenated with "::" and the partial DIE's name. For
6506 Java, the same thing occurs except that "." is used instead of "::".
6507 Enumerators are an exception; they use the scope of their parent
6508 enumeration type, i.e. the name of the enumeration type is not
6509 prepended to the enumerator.
6510
6511 There are two complexities. One is DW_AT_specification; in this
6512 case "parent" means the parent of the target of the specification,
6513 instead of the direct parent of the DIE. The other is compilers
6514 which do not emit DW_TAG_namespace; in this case we try to guess
6515 the fully qualified name of structure types from their members'
6516 linkage names. This must be done using the DIE's children rather
6517 than the children of any DW_AT_specification target. We only need
6518 to do this for structures at the top level, i.e. if the target of
6519 any DW_AT_specification (if any; otherwise the DIE itself) does not
6520 have a parent. */
6521
6522 /* Compute the scope prefix associated with PDI's parent, in
6523 compilation unit CU. The result will be allocated on CU's
6524 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6525 field. NULL is returned if no prefix is necessary. */
6526 static const char *
6527 partial_die_parent_scope (struct partial_die_info *pdi,
6528 struct dwarf2_cu *cu)
6529 {
6530 const char *grandparent_scope;
6531 struct partial_die_info *parent, *real_pdi;
6532
6533 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6534 then this means the parent of the specification DIE. */
6535
6536 real_pdi = pdi;
6537 while (real_pdi->has_specification)
6538 real_pdi = find_partial_die (real_pdi->spec_offset,
6539 real_pdi->spec_is_dwz, cu);
6540
6541 parent = real_pdi->die_parent;
6542 if (parent == NULL)
6543 return NULL;
6544
6545 if (parent->scope_set)
6546 return parent->scope;
6547
6548 fixup_partial_die (parent, cu);
6549
6550 grandparent_scope = partial_die_parent_scope (parent, cu);
6551
6552 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6553 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6554 Work around this problem here. */
6555 if (cu->language == language_cplus
6556 && parent->tag == DW_TAG_namespace
6557 && strcmp (parent->name, "::") == 0
6558 && grandparent_scope == NULL)
6559 {
6560 parent->scope = NULL;
6561 parent->scope_set = 1;
6562 return NULL;
6563 }
6564
6565 if (pdi->tag == DW_TAG_enumerator)
6566 /* Enumerators should not get the name of the enumeration as a prefix. */
6567 parent->scope = grandparent_scope;
6568 else if (parent->tag == DW_TAG_namespace
6569 || parent->tag == DW_TAG_module
6570 || parent->tag == DW_TAG_structure_type
6571 || parent->tag == DW_TAG_class_type
6572 || parent->tag == DW_TAG_interface_type
6573 || parent->tag == DW_TAG_union_type
6574 || parent->tag == DW_TAG_enumeration_type)
6575 {
6576 if (grandparent_scope == NULL)
6577 parent->scope = parent->name;
6578 else
6579 parent->scope = typename_concat (&cu->comp_unit_obstack,
6580 grandparent_scope,
6581 parent->name, 0, cu);
6582 }
6583 else
6584 {
6585 /* FIXME drow/2004-04-01: What should we be doing with
6586 function-local names? For partial symbols, we should probably be
6587 ignoring them. */
6588 complaint (&symfile_complaints,
6589 _("unhandled containing DIE tag %d for DIE at %d"),
6590 parent->tag, pdi->offset.sect_off);
6591 parent->scope = grandparent_scope;
6592 }
6593
6594 parent->scope_set = 1;
6595 return parent->scope;
6596 }
6597
6598 /* Return the fully scoped name associated with PDI, from compilation unit
6599 CU. The result will be allocated with malloc. */
6600
6601 static char *
6602 partial_die_full_name (struct partial_die_info *pdi,
6603 struct dwarf2_cu *cu)
6604 {
6605 const char *parent_scope;
6606
6607 /* If this is a template instantiation, we can not work out the
6608 template arguments from partial DIEs. So, unfortunately, we have
6609 to go through the full DIEs. At least any work we do building
6610 types here will be reused if full symbols are loaded later. */
6611 if (pdi->has_template_arguments)
6612 {
6613 fixup_partial_die (pdi, cu);
6614
6615 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6616 {
6617 struct die_info *die;
6618 struct attribute attr;
6619 struct dwarf2_cu *ref_cu = cu;
6620
6621 /* DW_FORM_ref_addr is using section offset. */
6622 attr.name = 0;
6623 attr.form = DW_FORM_ref_addr;
6624 attr.u.unsnd = pdi->offset.sect_off;
6625 die = follow_die_ref (NULL, &attr, &ref_cu);
6626
6627 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6628 }
6629 }
6630
6631 parent_scope = partial_die_parent_scope (pdi, cu);
6632 if (parent_scope == NULL)
6633 return NULL;
6634 else
6635 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6636 }
6637
6638 static void
6639 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6640 {
6641 struct objfile *objfile = cu->objfile;
6642 CORE_ADDR addr = 0;
6643 const char *actual_name = NULL;
6644 CORE_ADDR baseaddr;
6645 char *built_actual_name;
6646
6647 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6648
6649 built_actual_name = partial_die_full_name (pdi, cu);
6650 if (built_actual_name != NULL)
6651 actual_name = built_actual_name;
6652
6653 if (actual_name == NULL)
6654 actual_name = pdi->name;
6655
6656 switch (pdi->tag)
6657 {
6658 case DW_TAG_subprogram:
6659 if (pdi->is_external || cu->language == language_ada)
6660 {
6661 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6662 of the global scope. But in Ada, we want to be able to access
6663 nested procedures globally. So all Ada subprograms are stored
6664 in the global scope. */
6665 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6666 mst_text, objfile); */
6667 add_psymbol_to_list (actual_name, strlen (actual_name),
6668 built_actual_name != NULL,
6669 VAR_DOMAIN, LOC_BLOCK,
6670 &objfile->global_psymbols,
6671 0, pdi->lowpc + baseaddr,
6672 cu->language, objfile);
6673 }
6674 else
6675 {
6676 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6677 mst_file_text, objfile); */
6678 add_psymbol_to_list (actual_name, strlen (actual_name),
6679 built_actual_name != NULL,
6680 VAR_DOMAIN, LOC_BLOCK,
6681 &objfile->static_psymbols,
6682 0, pdi->lowpc + baseaddr,
6683 cu->language, objfile);
6684 }
6685 break;
6686 case DW_TAG_constant:
6687 {
6688 struct psymbol_allocation_list *list;
6689
6690 if (pdi->is_external)
6691 list = &objfile->global_psymbols;
6692 else
6693 list = &objfile->static_psymbols;
6694 add_psymbol_to_list (actual_name, strlen (actual_name),
6695 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6696 list, 0, 0, cu->language, objfile);
6697 }
6698 break;
6699 case DW_TAG_variable:
6700 if (pdi->d.locdesc)
6701 addr = decode_locdesc (pdi->d.locdesc, cu);
6702
6703 if (pdi->d.locdesc
6704 && addr == 0
6705 && !dwarf2_per_objfile->has_section_at_zero)
6706 {
6707 /* A global or static variable may also have been stripped
6708 out by the linker if unused, in which case its address
6709 will be nullified; do not add such variables into partial
6710 symbol table then. */
6711 }
6712 else if (pdi->is_external)
6713 {
6714 /* Global Variable.
6715 Don't enter into the minimal symbol tables as there is
6716 a minimal symbol table entry from the ELF symbols already.
6717 Enter into partial symbol table if it has a location
6718 descriptor or a type.
6719 If the location descriptor is missing, new_symbol will create
6720 a LOC_UNRESOLVED symbol, the address of the variable will then
6721 be determined from the minimal symbol table whenever the variable
6722 is referenced.
6723 The address for the partial symbol table entry is not
6724 used by GDB, but it comes in handy for debugging partial symbol
6725 table building. */
6726
6727 if (pdi->d.locdesc || pdi->has_type)
6728 add_psymbol_to_list (actual_name, strlen (actual_name),
6729 built_actual_name != NULL,
6730 VAR_DOMAIN, LOC_STATIC,
6731 &objfile->global_psymbols,
6732 0, addr + baseaddr,
6733 cu->language, objfile);
6734 }
6735 else
6736 {
6737 /* Static Variable. Skip symbols without location descriptors. */
6738 if (pdi->d.locdesc == NULL)
6739 {
6740 xfree (built_actual_name);
6741 return;
6742 }
6743 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6744 mst_file_data, objfile); */
6745 add_psymbol_to_list (actual_name, strlen (actual_name),
6746 built_actual_name != NULL,
6747 VAR_DOMAIN, LOC_STATIC,
6748 &objfile->static_psymbols,
6749 0, addr + baseaddr,
6750 cu->language, objfile);
6751 }
6752 break;
6753 case DW_TAG_typedef:
6754 case DW_TAG_base_type:
6755 case DW_TAG_subrange_type:
6756 add_psymbol_to_list (actual_name, strlen (actual_name),
6757 built_actual_name != NULL,
6758 VAR_DOMAIN, LOC_TYPEDEF,
6759 &objfile->static_psymbols,
6760 0, (CORE_ADDR) 0, cu->language, objfile);
6761 break;
6762 case DW_TAG_namespace:
6763 add_psymbol_to_list (actual_name, strlen (actual_name),
6764 built_actual_name != NULL,
6765 VAR_DOMAIN, LOC_TYPEDEF,
6766 &objfile->global_psymbols,
6767 0, (CORE_ADDR) 0, cu->language, objfile);
6768 break;
6769 case DW_TAG_class_type:
6770 case DW_TAG_interface_type:
6771 case DW_TAG_structure_type:
6772 case DW_TAG_union_type:
6773 case DW_TAG_enumeration_type:
6774 /* Skip external references. The DWARF standard says in the section
6775 about "Structure, Union, and Class Type Entries": "An incomplete
6776 structure, union or class type is represented by a structure,
6777 union or class entry that does not have a byte size attribute
6778 and that has a DW_AT_declaration attribute." */
6779 if (!pdi->has_byte_size && pdi->is_declaration)
6780 {
6781 xfree (built_actual_name);
6782 return;
6783 }
6784
6785 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6786 static vs. global. */
6787 add_psymbol_to_list (actual_name, strlen (actual_name),
6788 built_actual_name != NULL,
6789 STRUCT_DOMAIN, LOC_TYPEDEF,
6790 (cu->language == language_cplus
6791 || cu->language == language_java)
6792 ? &objfile->global_psymbols
6793 : &objfile->static_psymbols,
6794 0, (CORE_ADDR) 0, cu->language, objfile);
6795
6796 break;
6797 case DW_TAG_enumerator:
6798 add_psymbol_to_list (actual_name, strlen (actual_name),
6799 built_actual_name != NULL,
6800 VAR_DOMAIN, LOC_CONST,
6801 (cu->language == language_cplus
6802 || cu->language == language_java)
6803 ? &objfile->global_psymbols
6804 : &objfile->static_psymbols,
6805 0, (CORE_ADDR) 0, cu->language, objfile);
6806 break;
6807 default:
6808 break;
6809 }
6810
6811 xfree (built_actual_name);
6812 }
6813
6814 /* Read a partial die corresponding to a namespace; also, add a symbol
6815 corresponding to that namespace to the symbol table. NAMESPACE is
6816 the name of the enclosing namespace. */
6817
6818 static void
6819 add_partial_namespace (struct partial_die_info *pdi,
6820 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6821 int need_pc, struct dwarf2_cu *cu)
6822 {
6823 /* Add a symbol for the namespace. */
6824
6825 add_partial_symbol (pdi, cu);
6826
6827 /* Now scan partial symbols in that namespace. */
6828
6829 if (pdi->has_children)
6830 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6831 }
6832
6833 /* Read a partial die corresponding to a Fortran module. */
6834
6835 static void
6836 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6837 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6838 {
6839 /* Now scan partial symbols in that module. */
6840
6841 if (pdi->has_children)
6842 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6843 }
6844
6845 /* Read a partial die corresponding to a subprogram and create a partial
6846 symbol for that subprogram. When the CU language allows it, this
6847 routine also defines a partial symbol for each nested subprogram
6848 that this subprogram contains.
6849
6850 DIE my also be a lexical block, in which case we simply search
6851 recursively for suprograms defined inside that lexical block.
6852 Again, this is only performed when the CU language allows this
6853 type of definitions. */
6854
6855 static void
6856 add_partial_subprogram (struct partial_die_info *pdi,
6857 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6858 int need_pc, struct dwarf2_cu *cu)
6859 {
6860 if (pdi->tag == DW_TAG_subprogram)
6861 {
6862 if (pdi->has_pc_info)
6863 {
6864 if (pdi->lowpc < *lowpc)
6865 *lowpc = pdi->lowpc;
6866 if (pdi->highpc > *highpc)
6867 *highpc = pdi->highpc;
6868 if (need_pc)
6869 {
6870 CORE_ADDR baseaddr;
6871 struct objfile *objfile = cu->objfile;
6872
6873 baseaddr = ANOFFSET (objfile->section_offsets,
6874 SECT_OFF_TEXT (objfile));
6875 addrmap_set_empty (objfile->psymtabs_addrmap,
6876 pdi->lowpc + baseaddr,
6877 pdi->highpc - 1 + baseaddr,
6878 cu->per_cu->v.psymtab);
6879 }
6880 }
6881
6882 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6883 {
6884 if (!pdi->is_declaration)
6885 /* Ignore subprogram DIEs that do not have a name, they are
6886 illegal. Do not emit a complaint at this point, we will
6887 do so when we convert this psymtab into a symtab. */
6888 if (pdi->name)
6889 add_partial_symbol (pdi, cu);
6890 }
6891 }
6892
6893 if (! pdi->has_children)
6894 return;
6895
6896 if (cu->language == language_ada)
6897 {
6898 pdi = pdi->die_child;
6899 while (pdi != NULL)
6900 {
6901 fixup_partial_die (pdi, cu);
6902 if (pdi->tag == DW_TAG_subprogram
6903 || pdi->tag == DW_TAG_lexical_block)
6904 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6905 pdi = pdi->die_sibling;
6906 }
6907 }
6908 }
6909
6910 /* Read a partial die corresponding to an enumeration type. */
6911
6912 static void
6913 add_partial_enumeration (struct partial_die_info *enum_pdi,
6914 struct dwarf2_cu *cu)
6915 {
6916 struct partial_die_info *pdi;
6917
6918 if (enum_pdi->name != NULL)
6919 add_partial_symbol (enum_pdi, cu);
6920
6921 pdi = enum_pdi->die_child;
6922 while (pdi)
6923 {
6924 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6925 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6926 else
6927 add_partial_symbol (pdi, cu);
6928 pdi = pdi->die_sibling;
6929 }
6930 }
6931
6932 /* Return the initial uleb128 in the die at INFO_PTR. */
6933
6934 static unsigned int
6935 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6936 {
6937 unsigned int bytes_read;
6938
6939 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6940 }
6941
6942 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6943 Return the corresponding abbrev, or NULL if the number is zero (indicating
6944 an empty DIE). In either case *BYTES_READ will be set to the length of
6945 the initial number. */
6946
6947 static struct abbrev_info *
6948 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6949 struct dwarf2_cu *cu)
6950 {
6951 bfd *abfd = cu->objfile->obfd;
6952 unsigned int abbrev_number;
6953 struct abbrev_info *abbrev;
6954
6955 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6956
6957 if (abbrev_number == 0)
6958 return NULL;
6959
6960 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6961 if (!abbrev)
6962 {
6963 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6964 abbrev_number, bfd_get_filename (abfd));
6965 }
6966
6967 return abbrev;
6968 }
6969
6970 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6971 Returns a pointer to the end of a series of DIEs, terminated by an empty
6972 DIE. Any children of the skipped DIEs will also be skipped. */
6973
6974 static const gdb_byte *
6975 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6976 {
6977 struct dwarf2_cu *cu = reader->cu;
6978 struct abbrev_info *abbrev;
6979 unsigned int bytes_read;
6980
6981 while (1)
6982 {
6983 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6984 if (abbrev == NULL)
6985 return info_ptr + bytes_read;
6986 else
6987 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6988 }
6989 }
6990
6991 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6992 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6993 abbrev corresponding to that skipped uleb128 should be passed in
6994 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6995 children. */
6996
6997 static const gdb_byte *
6998 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6999 struct abbrev_info *abbrev)
7000 {
7001 unsigned int bytes_read;
7002 struct attribute attr;
7003 bfd *abfd = reader->abfd;
7004 struct dwarf2_cu *cu = reader->cu;
7005 const gdb_byte *buffer = reader->buffer;
7006 const gdb_byte *buffer_end = reader->buffer_end;
7007 const gdb_byte *start_info_ptr = info_ptr;
7008 unsigned int form, i;
7009
7010 for (i = 0; i < abbrev->num_attrs; i++)
7011 {
7012 /* The only abbrev we care about is DW_AT_sibling. */
7013 if (abbrev->attrs[i].name == DW_AT_sibling)
7014 {
7015 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7016 if (attr.form == DW_FORM_ref_addr)
7017 complaint (&symfile_complaints,
7018 _("ignoring absolute DW_AT_sibling"));
7019 else
7020 {
7021 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7022 const gdb_byte *sibling_ptr = buffer + off;
7023
7024 if (sibling_ptr < info_ptr)
7025 complaint (&symfile_complaints,
7026 _("DW_AT_sibling points backwards"));
7027 else
7028 return sibling_ptr;
7029 }
7030 }
7031
7032 /* If it isn't DW_AT_sibling, skip this attribute. */
7033 form = abbrev->attrs[i].form;
7034 skip_attribute:
7035 switch (form)
7036 {
7037 case DW_FORM_ref_addr:
7038 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7039 and later it is offset sized. */
7040 if (cu->header.version == 2)
7041 info_ptr += cu->header.addr_size;
7042 else
7043 info_ptr += cu->header.offset_size;
7044 break;
7045 case DW_FORM_GNU_ref_alt:
7046 info_ptr += cu->header.offset_size;
7047 break;
7048 case DW_FORM_addr:
7049 info_ptr += cu->header.addr_size;
7050 break;
7051 case DW_FORM_data1:
7052 case DW_FORM_ref1:
7053 case DW_FORM_flag:
7054 info_ptr += 1;
7055 break;
7056 case DW_FORM_flag_present:
7057 break;
7058 case DW_FORM_data2:
7059 case DW_FORM_ref2:
7060 info_ptr += 2;
7061 break;
7062 case DW_FORM_data4:
7063 case DW_FORM_ref4:
7064 info_ptr += 4;
7065 break;
7066 case DW_FORM_data8:
7067 case DW_FORM_ref8:
7068 case DW_FORM_ref_sig8:
7069 info_ptr += 8;
7070 break;
7071 case DW_FORM_string:
7072 read_direct_string (abfd, info_ptr, &bytes_read);
7073 info_ptr += bytes_read;
7074 break;
7075 case DW_FORM_sec_offset:
7076 case DW_FORM_strp:
7077 case DW_FORM_GNU_strp_alt:
7078 info_ptr += cu->header.offset_size;
7079 break;
7080 case DW_FORM_exprloc:
7081 case DW_FORM_block:
7082 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7083 info_ptr += bytes_read;
7084 break;
7085 case DW_FORM_block1:
7086 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7087 break;
7088 case DW_FORM_block2:
7089 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7090 break;
7091 case DW_FORM_block4:
7092 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7093 break;
7094 case DW_FORM_sdata:
7095 case DW_FORM_udata:
7096 case DW_FORM_ref_udata:
7097 case DW_FORM_GNU_addr_index:
7098 case DW_FORM_GNU_str_index:
7099 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7100 break;
7101 case DW_FORM_indirect:
7102 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7103 info_ptr += bytes_read;
7104 /* We need to continue parsing from here, so just go back to
7105 the top. */
7106 goto skip_attribute;
7107
7108 default:
7109 error (_("Dwarf Error: Cannot handle %s "
7110 "in DWARF reader [in module %s]"),
7111 dwarf_form_name (form),
7112 bfd_get_filename (abfd));
7113 }
7114 }
7115
7116 if (abbrev->has_children)
7117 return skip_children (reader, info_ptr);
7118 else
7119 return info_ptr;
7120 }
7121
7122 /* Locate ORIG_PDI's sibling.
7123 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7124
7125 static const gdb_byte *
7126 locate_pdi_sibling (const struct die_reader_specs *reader,
7127 struct partial_die_info *orig_pdi,
7128 const gdb_byte *info_ptr)
7129 {
7130 /* Do we know the sibling already? */
7131
7132 if (orig_pdi->sibling)
7133 return orig_pdi->sibling;
7134
7135 /* Are there any children to deal with? */
7136
7137 if (!orig_pdi->has_children)
7138 return info_ptr;
7139
7140 /* Skip the children the long way. */
7141
7142 return skip_children (reader, info_ptr);
7143 }
7144
7145 /* Expand this partial symbol table into a full symbol table. SELF is
7146 not NULL. */
7147
7148 static void
7149 dwarf2_read_symtab (struct partial_symtab *self,
7150 struct objfile *objfile)
7151 {
7152 if (self->readin)
7153 {
7154 warning (_("bug: psymtab for %s is already read in."),
7155 self->filename);
7156 }
7157 else
7158 {
7159 if (info_verbose)
7160 {
7161 printf_filtered (_("Reading in symbols for %s..."),
7162 self->filename);
7163 gdb_flush (gdb_stdout);
7164 }
7165
7166 /* Restore our global data. */
7167 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7168
7169 /* If this psymtab is constructed from a debug-only objfile, the
7170 has_section_at_zero flag will not necessarily be correct. We
7171 can get the correct value for this flag by looking at the data
7172 associated with the (presumably stripped) associated objfile. */
7173 if (objfile->separate_debug_objfile_backlink)
7174 {
7175 struct dwarf2_per_objfile *dpo_backlink
7176 = objfile_data (objfile->separate_debug_objfile_backlink,
7177 dwarf2_objfile_data_key);
7178
7179 dwarf2_per_objfile->has_section_at_zero
7180 = dpo_backlink->has_section_at_zero;
7181 }
7182
7183 dwarf2_per_objfile->reading_partial_symbols = 0;
7184
7185 psymtab_to_symtab_1 (self);
7186
7187 /* Finish up the debug error message. */
7188 if (info_verbose)
7189 printf_filtered (_("done.\n"));
7190 }
7191
7192 process_cu_includes ();
7193 }
7194 \f
7195 /* Reading in full CUs. */
7196
7197 /* Add PER_CU to the queue. */
7198
7199 static void
7200 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7201 enum language pretend_language)
7202 {
7203 struct dwarf2_queue_item *item;
7204
7205 per_cu->queued = 1;
7206 item = xmalloc (sizeof (*item));
7207 item->per_cu = per_cu;
7208 item->pretend_language = pretend_language;
7209 item->next = NULL;
7210
7211 if (dwarf2_queue == NULL)
7212 dwarf2_queue = item;
7213 else
7214 dwarf2_queue_tail->next = item;
7215
7216 dwarf2_queue_tail = item;
7217 }
7218
7219 /* If PER_CU is not yet queued, add it to the queue.
7220 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7221 dependency.
7222 The result is non-zero if PER_CU was queued, otherwise the result is zero
7223 meaning either PER_CU is already queued or it is already loaded.
7224
7225 N.B. There is an invariant here that if a CU is queued then it is loaded.
7226 The caller is required to load PER_CU if we return non-zero. */
7227
7228 static int
7229 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7230 struct dwarf2_per_cu_data *per_cu,
7231 enum language pretend_language)
7232 {
7233 /* We may arrive here during partial symbol reading, if we need full
7234 DIEs to process an unusual case (e.g. template arguments). Do
7235 not queue PER_CU, just tell our caller to load its DIEs. */
7236 if (dwarf2_per_objfile->reading_partial_symbols)
7237 {
7238 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7239 return 1;
7240 return 0;
7241 }
7242
7243 /* Mark the dependence relation so that we don't flush PER_CU
7244 too early. */
7245 if (dependent_cu != NULL)
7246 dwarf2_add_dependence (dependent_cu, per_cu);
7247
7248 /* If it's already on the queue, we have nothing to do. */
7249 if (per_cu->queued)
7250 return 0;
7251
7252 /* If the compilation unit is already loaded, just mark it as
7253 used. */
7254 if (per_cu->cu != NULL)
7255 {
7256 per_cu->cu->last_used = 0;
7257 return 0;
7258 }
7259
7260 /* Add it to the queue. */
7261 queue_comp_unit (per_cu, pretend_language);
7262
7263 return 1;
7264 }
7265
7266 /* Process the queue. */
7267
7268 static void
7269 process_queue (void)
7270 {
7271 struct dwarf2_queue_item *item, *next_item;
7272
7273 if (dwarf2_read_debug)
7274 {
7275 fprintf_unfiltered (gdb_stdlog,
7276 "Expanding one or more symtabs of objfile %s ...\n",
7277 objfile_name (dwarf2_per_objfile->objfile));
7278 }
7279
7280 /* The queue starts out with one item, but following a DIE reference
7281 may load a new CU, adding it to the end of the queue. */
7282 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7283 {
7284 if (dwarf2_per_objfile->using_index
7285 ? !item->per_cu->v.quick->symtab
7286 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7287 {
7288 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7289 unsigned int debug_print_threshold;
7290 char buf[100];
7291
7292 if (per_cu->is_debug_types)
7293 {
7294 struct signatured_type *sig_type =
7295 (struct signatured_type *) per_cu;
7296
7297 sprintf (buf, "TU %s at offset 0x%x",
7298 hex_string (sig_type->signature),
7299 per_cu->offset.sect_off);
7300 /* There can be 100s of TUs.
7301 Only print them in verbose mode. */
7302 debug_print_threshold = 2;
7303 }
7304 else
7305 {
7306 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7307 debug_print_threshold = 1;
7308 }
7309
7310 if (dwarf2_read_debug >= debug_print_threshold)
7311 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7312
7313 if (per_cu->is_debug_types)
7314 process_full_type_unit (per_cu, item->pretend_language);
7315 else
7316 process_full_comp_unit (per_cu, item->pretend_language);
7317
7318 if (dwarf2_read_debug >= debug_print_threshold)
7319 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7320 }
7321
7322 item->per_cu->queued = 0;
7323 next_item = item->next;
7324 xfree (item);
7325 }
7326
7327 dwarf2_queue_tail = NULL;
7328
7329 if (dwarf2_read_debug)
7330 {
7331 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7332 objfile_name (dwarf2_per_objfile->objfile));
7333 }
7334 }
7335
7336 /* Free all allocated queue entries. This function only releases anything if
7337 an error was thrown; if the queue was processed then it would have been
7338 freed as we went along. */
7339
7340 static void
7341 dwarf2_release_queue (void *dummy)
7342 {
7343 struct dwarf2_queue_item *item, *last;
7344
7345 item = dwarf2_queue;
7346 while (item)
7347 {
7348 /* Anything still marked queued is likely to be in an
7349 inconsistent state, so discard it. */
7350 if (item->per_cu->queued)
7351 {
7352 if (item->per_cu->cu != NULL)
7353 free_one_cached_comp_unit (item->per_cu);
7354 item->per_cu->queued = 0;
7355 }
7356
7357 last = item;
7358 item = item->next;
7359 xfree (last);
7360 }
7361
7362 dwarf2_queue = dwarf2_queue_tail = NULL;
7363 }
7364
7365 /* Read in full symbols for PST, and anything it depends on. */
7366
7367 static void
7368 psymtab_to_symtab_1 (struct partial_symtab *pst)
7369 {
7370 struct dwarf2_per_cu_data *per_cu;
7371 int i;
7372
7373 if (pst->readin)
7374 return;
7375
7376 for (i = 0; i < pst->number_of_dependencies; i++)
7377 if (!pst->dependencies[i]->readin
7378 && pst->dependencies[i]->user == NULL)
7379 {
7380 /* Inform about additional files that need to be read in. */
7381 if (info_verbose)
7382 {
7383 /* FIXME: i18n: Need to make this a single string. */
7384 fputs_filtered (" ", gdb_stdout);
7385 wrap_here ("");
7386 fputs_filtered ("and ", gdb_stdout);
7387 wrap_here ("");
7388 printf_filtered ("%s...", pst->dependencies[i]->filename);
7389 wrap_here (""); /* Flush output. */
7390 gdb_flush (gdb_stdout);
7391 }
7392 psymtab_to_symtab_1 (pst->dependencies[i]);
7393 }
7394
7395 per_cu = pst->read_symtab_private;
7396
7397 if (per_cu == NULL)
7398 {
7399 /* It's an include file, no symbols to read for it.
7400 Everything is in the parent symtab. */
7401 pst->readin = 1;
7402 return;
7403 }
7404
7405 dw2_do_instantiate_symtab (per_cu);
7406 }
7407
7408 /* Trivial hash function for die_info: the hash value of a DIE
7409 is its offset in .debug_info for this objfile. */
7410
7411 static hashval_t
7412 die_hash (const void *item)
7413 {
7414 const struct die_info *die = item;
7415
7416 return die->offset.sect_off;
7417 }
7418
7419 /* Trivial comparison function for die_info structures: two DIEs
7420 are equal if they have the same offset. */
7421
7422 static int
7423 die_eq (const void *item_lhs, const void *item_rhs)
7424 {
7425 const struct die_info *die_lhs = item_lhs;
7426 const struct die_info *die_rhs = item_rhs;
7427
7428 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7429 }
7430
7431 /* die_reader_func for load_full_comp_unit.
7432 This is identical to read_signatured_type_reader,
7433 but is kept separate for now. */
7434
7435 static void
7436 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7437 const gdb_byte *info_ptr,
7438 struct die_info *comp_unit_die,
7439 int has_children,
7440 void *data)
7441 {
7442 struct dwarf2_cu *cu = reader->cu;
7443 enum language *language_ptr = data;
7444
7445 gdb_assert (cu->die_hash == NULL);
7446 cu->die_hash =
7447 htab_create_alloc_ex (cu->header.length / 12,
7448 die_hash,
7449 die_eq,
7450 NULL,
7451 &cu->comp_unit_obstack,
7452 hashtab_obstack_allocate,
7453 dummy_obstack_deallocate);
7454
7455 if (has_children)
7456 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7457 &info_ptr, comp_unit_die);
7458 cu->dies = comp_unit_die;
7459 /* comp_unit_die is not stored in die_hash, no need. */
7460
7461 /* We try not to read any attributes in this function, because not
7462 all CUs needed for references have been loaded yet, and symbol
7463 table processing isn't initialized. But we have to set the CU language,
7464 or we won't be able to build types correctly.
7465 Similarly, if we do not read the producer, we can not apply
7466 producer-specific interpretation. */
7467 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7468 }
7469
7470 /* Load the DIEs associated with PER_CU into memory. */
7471
7472 static void
7473 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7474 enum language pretend_language)
7475 {
7476 gdb_assert (! this_cu->is_debug_types);
7477
7478 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7479 load_full_comp_unit_reader, &pretend_language);
7480 }
7481
7482 /* Add a DIE to the delayed physname list. */
7483
7484 static void
7485 add_to_method_list (struct type *type, int fnfield_index, int index,
7486 const char *name, struct die_info *die,
7487 struct dwarf2_cu *cu)
7488 {
7489 struct delayed_method_info mi;
7490 mi.type = type;
7491 mi.fnfield_index = fnfield_index;
7492 mi.index = index;
7493 mi.name = name;
7494 mi.die = die;
7495 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7496 }
7497
7498 /* A cleanup for freeing the delayed method list. */
7499
7500 static void
7501 free_delayed_list (void *ptr)
7502 {
7503 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7504 if (cu->method_list != NULL)
7505 {
7506 VEC_free (delayed_method_info, cu->method_list);
7507 cu->method_list = NULL;
7508 }
7509 }
7510
7511 /* Compute the physnames of any methods on the CU's method list.
7512
7513 The computation of method physnames is delayed in order to avoid the
7514 (bad) condition that one of the method's formal parameters is of an as yet
7515 incomplete type. */
7516
7517 static void
7518 compute_delayed_physnames (struct dwarf2_cu *cu)
7519 {
7520 int i;
7521 struct delayed_method_info *mi;
7522 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7523 {
7524 const char *physname;
7525 struct fn_fieldlist *fn_flp
7526 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7527 physname = dwarf2_physname (mi->name, mi->die, cu);
7528 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7529 }
7530 }
7531
7532 /* Go objects should be embedded in a DW_TAG_module DIE,
7533 and it's not clear if/how imported objects will appear.
7534 To keep Go support simple until that's worked out,
7535 go back through what we've read and create something usable.
7536 We could do this while processing each DIE, and feels kinda cleaner,
7537 but that way is more invasive.
7538 This is to, for example, allow the user to type "p var" or "b main"
7539 without having to specify the package name, and allow lookups
7540 of module.object to work in contexts that use the expression
7541 parser. */
7542
7543 static void
7544 fixup_go_packaging (struct dwarf2_cu *cu)
7545 {
7546 char *package_name = NULL;
7547 struct pending *list;
7548 int i;
7549
7550 for (list = global_symbols; list != NULL; list = list->next)
7551 {
7552 for (i = 0; i < list->nsyms; ++i)
7553 {
7554 struct symbol *sym = list->symbol[i];
7555
7556 if (SYMBOL_LANGUAGE (sym) == language_go
7557 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7558 {
7559 char *this_package_name = go_symbol_package_name (sym);
7560
7561 if (this_package_name == NULL)
7562 continue;
7563 if (package_name == NULL)
7564 package_name = this_package_name;
7565 else
7566 {
7567 if (strcmp (package_name, this_package_name) != 0)
7568 complaint (&symfile_complaints,
7569 _("Symtab %s has objects from two different Go packages: %s and %s"),
7570 (SYMBOL_SYMTAB (sym)
7571 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7572 : objfile_name (cu->objfile)),
7573 this_package_name, package_name);
7574 xfree (this_package_name);
7575 }
7576 }
7577 }
7578 }
7579
7580 if (package_name != NULL)
7581 {
7582 struct objfile *objfile = cu->objfile;
7583 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7584 package_name,
7585 strlen (package_name));
7586 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7587 saved_package_name, objfile);
7588 struct symbol *sym;
7589
7590 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7591
7592 sym = allocate_symbol (objfile);
7593 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7594 SYMBOL_SET_NAMES (sym, saved_package_name,
7595 strlen (saved_package_name), 0, objfile);
7596 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7597 e.g., "main" finds the "main" module and not C's main(). */
7598 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7599 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7600 SYMBOL_TYPE (sym) = type;
7601
7602 add_symbol_to_list (sym, &global_symbols);
7603
7604 xfree (package_name);
7605 }
7606 }
7607
7608 /* Return the symtab for PER_CU. This works properly regardless of
7609 whether we're using the index or psymtabs. */
7610
7611 static struct symtab *
7612 get_symtab (struct dwarf2_per_cu_data *per_cu)
7613 {
7614 return (dwarf2_per_objfile->using_index
7615 ? per_cu->v.quick->symtab
7616 : per_cu->v.psymtab->symtab);
7617 }
7618
7619 /* A helper function for computing the list of all symbol tables
7620 included by PER_CU. */
7621
7622 static void
7623 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7624 htab_t all_children, htab_t all_type_symtabs,
7625 struct dwarf2_per_cu_data *per_cu,
7626 struct symtab *immediate_parent)
7627 {
7628 void **slot;
7629 int ix;
7630 struct symtab *symtab;
7631 struct dwarf2_per_cu_data *iter;
7632
7633 slot = htab_find_slot (all_children, per_cu, INSERT);
7634 if (*slot != NULL)
7635 {
7636 /* This inclusion and its children have been processed. */
7637 return;
7638 }
7639
7640 *slot = per_cu;
7641 /* Only add a CU if it has a symbol table. */
7642 symtab = get_symtab (per_cu);
7643 if (symtab != NULL)
7644 {
7645 /* If this is a type unit only add its symbol table if we haven't
7646 seen it yet (type unit per_cu's can share symtabs). */
7647 if (per_cu->is_debug_types)
7648 {
7649 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7650 if (*slot == NULL)
7651 {
7652 *slot = symtab;
7653 VEC_safe_push (symtab_ptr, *result, symtab);
7654 if (symtab->user == NULL)
7655 symtab->user = immediate_parent;
7656 }
7657 }
7658 else
7659 {
7660 VEC_safe_push (symtab_ptr, *result, symtab);
7661 if (symtab->user == NULL)
7662 symtab->user = immediate_parent;
7663 }
7664 }
7665
7666 for (ix = 0;
7667 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7668 ++ix)
7669 {
7670 recursively_compute_inclusions (result, all_children,
7671 all_type_symtabs, iter, symtab);
7672 }
7673 }
7674
7675 /* Compute the symtab 'includes' fields for the symtab related to
7676 PER_CU. */
7677
7678 static void
7679 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7680 {
7681 gdb_assert (! per_cu->is_debug_types);
7682
7683 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7684 {
7685 int ix, len;
7686 struct dwarf2_per_cu_data *per_cu_iter;
7687 struct symtab *symtab_iter;
7688 VEC (symtab_ptr) *result_symtabs = NULL;
7689 htab_t all_children, all_type_symtabs;
7690 struct symtab *symtab = get_symtab (per_cu);
7691
7692 /* If we don't have a symtab, we can just skip this case. */
7693 if (symtab == NULL)
7694 return;
7695
7696 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7697 NULL, xcalloc, xfree);
7698 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7699 NULL, xcalloc, xfree);
7700
7701 for (ix = 0;
7702 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7703 ix, per_cu_iter);
7704 ++ix)
7705 {
7706 recursively_compute_inclusions (&result_symtabs, all_children,
7707 all_type_symtabs, per_cu_iter,
7708 symtab);
7709 }
7710
7711 /* Now we have a transitive closure of all the included symtabs. */
7712 len = VEC_length (symtab_ptr, result_symtabs);
7713 symtab->includes
7714 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7715 (len + 1) * sizeof (struct symtab *));
7716 for (ix = 0;
7717 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7718 ++ix)
7719 symtab->includes[ix] = symtab_iter;
7720 symtab->includes[len] = NULL;
7721
7722 VEC_free (symtab_ptr, result_symtabs);
7723 htab_delete (all_children);
7724 htab_delete (all_type_symtabs);
7725 }
7726 }
7727
7728 /* Compute the 'includes' field for the symtabs of all the CUs we just
7729 read. */
7730
7731 static void
7732 process_cu_includes (void)
7733 {
7734 int ix;
7735 struct dwarf2_per_cu_data *iter;
7736
7737 for (ix = 0;
7738 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7739 ix, iter);
7740 ++ix)
7741 {
7742 if (! iter->is_debug_types)
7743 compute_symtab_includes (iter);
7744 }
7745
7746 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7747 }
7748
7749 /* Generate full symbol information for PER_CU, whose DIEs have
7750 already been loaded into memory. */
7751
7752 static void
7753 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7754 enum language pretend_language)
7755 {
7756 struct dwarf2_cu *cu = per_cu->cu;
7757 struct objfile *objfile = per_cu->objfile;
7758 CORE_ADDR lowpc, highpc;
7759 struct symtab *symtab;
7760 struct cleanup *back_to, *delayed_list_cleanup;
7761 CORE_ADDR baseaddr;
7762 struct block *static_block;
7763
7764 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7765
7766 buildsym_init ();
7767 back_to = make_cleanup (really_free_pendings, NULL);
7768 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7769
7770 cu->list_in_scope = &file_symbols;
7771
7772 cu->language = pretend_language;
7773 cu->language_defn = language_def (cu->language);
7774
7775 /* Do line number decoding in read_file_scope () */
7776 process_die (cu->dies, cu);
7777
7778 /* For now fudge the Go package. */
7779 if (cu->language == language_go)
7780 fixup_go_packaging (cu);
7781
7782 /* Now that we have processed all the DIEs in the CU, all the types
7783 should be complete, and it should now be safe to compute all of the
7784 physnames. */
7785 compute_delayed_physnames (cu);
7786 do_cleanups (delayed_list_cleanup);
7787
7788 /* Some compilers don't define a DW_AT_high_pc attribute for the
7789 compilation unit. If the DW_AT_high_pc is missing, synthesize
7790 it, by scanning the DIE's below the compilation unit. */
7791 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7792
7793 static_block
7794 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7795
7796 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7797 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7798 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7799 addrmap to help ensure it has an accurate map of pc values belonging to
7800 this comp unit. */
7801 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7802
7803 symtab = end_symtab_from_static_block (static_block, objfile,
7804 SECT_OFF_TEXT (objfile), 0);
7805
7806 if (symtab != NULL)
7807 {
7808 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7809
7810 /* Set symtab language to language from DW_AT_language. If the
7811 compilation is from a C file generated by language preprocessors, do
7812 not set the language if it was already deduced by start_subfile. */
7813 if (!(cu->language == language_c && symtab->language != language_c))
7814 symtab->language = cu->language;
7815
7816 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7817 produce DW_AT_location with location lists but it can be possibly
7818 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7819 there were bugs in prologue debug info, fixed later in GCC-4.5
7820 by "unwind info for epilogues" patch (which is not directly related).
7821
7822 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7823 needed, it would be wrong due to missing DW_AT_producer there.
7824
7825 Still one can confuse GDB by using non-standard GCC compilation
7826 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7827 */
7828 if (cu->has_loclist && gcc_4_minor >= 5)
7829 symtab->locations_valid = 1;
7830
7831 if (gcc_4_minor >= 5)
7832 symtab->epilogue_unwind_valid = 1;
7833
7834 symtab->call_site_htab = cu->call_site_htab;
7835 }
7836
7837 if (dwarf2_per_objfile->using_index)
7838 per_cu->v.quick->symtab = symtab;
7839 else
7840 {
7841 struct partial_symtab *pst = per_cu->v.psymtab;
7842 pst->symtab = symtab;
7843 pst->readin = 1;
7844 }
7845
7846 /* Push it for inclusion processing later. */
7847 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7848
7849 do_cleanups (back_to);
7850 }
7851
7852 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7853 already been loaded into memory. */
7854
7855 static void
7856 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7857 enum language pretend_language)
7858 {
7859 struct dwarf2_cu *cu = per_cu->cu;
7860 struct objfile *objfile = per_cu->objfile;
7861 struct symtab *symtab;
7862 struct cleanup *back_to, *delayed_list_cleanup;
7863 struct signatured_type *sig_type;
7864
7865 gdb_assert (per_cu->is_debug_types);
7866 sig_type = (struct signatured_type *) per_cu;
7867
7868 buildsym_init ();
7869 back_to = make_cleanup (really_free_pendings, NULL);
7870 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7871
7872 cu->list_in_scope = &file_symbols;
7873
7874 cu->language = pretend_language;
7875 cu->language_defn = language_def (cu->language);
7876
7877 /* The symbol tables are set up in read_type_unit_scope. */
7878 process_die (cu->dies, cu);
7879
7880 /* For now fudge the Go package. */
7881 if (cu->language == language_go)
7882 fixup_go_packaging (cu);
7883
7884 /* Now that we have processed all the DIEs in the CU, all the types
7885 should be complete, and it should now be safe to compute all of the
7886 physnames. */
7887 compute_delayed_physnames (cu);
7888 do_cleanups (delayed_list_cleanup);
7889
7890 /* TUs share symbol tables.
7891 If this is the first TU to use this symtab, complete the construction
7892 of it with end_expandable_symtab. Otherwise, complete the addition of
7893 this TU's symbols to the existing symtab. */
7894 if (sig_type->type_unit_group->primary_symtab == NULL)
7895 {
7896 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7897 sig_type->type_unit_group->primary_symtab = symtab;
7898
7899 if (symtab != NULL)
7900 {
7901 /* Set symtab language to language from DW_AT_language. If the
7902 compilation is from a C file generated by language preprocessors,
7903 do not set the language if it was already deduced by
7904 start_subfile. */
7905 if (!(cu->language == language_c && symtab->language != language_c))
7906 symtab->language = cu->language;
7907 }
7908 }
7909 else
7910 {
7911 augment_type_symtab (objfile,
7912 sig_type->type_unit_group->primary_symtab);
7913 symtab = sig_type->type_unit_group->primary_symtab;
7914 }
7915
7916 if (dwarf2_per_objfile->using_index)
7917 per_cu->v.quick->symtab = symtab;
7918 else
7919 {
7920 struct partial_symtab *pst = per_cu->v.psymtab;
7921 pst->symtab = symtab;
7922 pst->readin = 1;
7923 }
7924
7925 do_cleanups (back_to);
7926 }
7927
7928 /* Process an imported unit DIE. */
7929
7930 static void
7931 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7932 {
7933 struct attribute *attr;
7934
7935 /* For now we don't handle imported units in type units. */
7936 if (cu->per_cu->is_debug_types)
7937 {
7938 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7939 " supported in type units [in module %s]"),
7940 objfile_name (cu->objfile));
7941 }
7942
7943 attr = dwarf2_attr (die, DW_AT_import, cu);
7944 if (attr != NULL)
7945 {
7946 struct dwarf2_per_cu_data *per_cu;
7947 struct symtab *imported_symtab;
7948 sect_offset offset;
7949 int is_dwz;
7950
7951 offset = dwarf2_get_ref_die_offset (attr);
7952 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7953 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7954
7955 /* If necessary, add it to the queue and load its DIEs. */
7956 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7957 load_full_comp_unit (per_cu, cu->language);
7958
7959 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7960 per_cu);
7961 }
7962 }
7963
7964 /* Process a die and its children. */
7965
7966 static void
7967 process_die (struct die_info *die, struct dwarf2_cu *cu)
7968 {
7969 switch (die->tag)
7970 {
7971 case DW_TAG_padding:
7972 break;
7973 case DW_TAG_compile_unit:
7974 case DW_TAG_partial_unit:
7975 read_file_scope (die, cu);
7976 break;
7977 case DW_TAG_type_unit:
7978 read_type_unit_scope (die, cu);
7979 break;
7980 case DW_TAG_subprogram:
7981 case DW_TAG_inlined_subroutine:
7982 read_func_scope (die, cu);
7983 break;
7984 case DW_TAG_lexical_block:
7985 case DW_TAG_try_block:
7986 case DW_TAG_catch_block:
7987 read_lexical_block_scope (die, cu);
7988 break;
7989 case DW_TAG_GNU_call_site:
7990 read_call_site_scope (die, cu);
7991 break;
7992 case DW_TAG_class_type:
7993 case DW_TAG_interface_type:
7994 case DW_TAG_structure_type:
7995 case DW_TAG_union_type:
7996 process_structure_scope (die, cu);
7997 break;
7998 case DW_TAG_enumeration_type:
7999 process_enumeration_scope (die, cu);
8000 break;
8001
8002 /* These dies have a type, but processing them does not create
8003 a symbol or recurse to process the children. Therefore we can
8004 read them on-demand through read_type_die. */
8005 case DW_TAG_subroutine_type:
8006 case DW_TAG_set_type:
8007 case DW_TAG_array_type:
8008 case DW_TAG_pointer_type:
8009 case DW_TAG_ptr_to_member_type:
8010 case DW_TAG_reference_type:
8011 case DW_TAG_string_type:
8012 break;
8013
8014 case DW_TAG_base_type:
8015 case DW_TAG_subrange_type:
8016 case DW_TAG_typedef:
8017 /* Add a typedef symbol for the type definition, if it has a
8018 DW_AT_name. */
8019 new_symbol (die, read_type_die (die, cu), cu);
8020 break;
8021 case DW_TAG_common_block:
8022 read_common_block (die, cu);
8023 break;
8024 case DW_TAG_common_inclusion:
8025 break;
8026 case DW_TAG_namespace:
8027 cu->processing_has_namespace_info = 1;
8028 read_namespace (die, cu);
8029 break;
8030 case DW_TAG_module:
8031 cu->processing_has_namespace_info = 1;
8032 read_module (die, cu);
8033 break;
8034 case DW_TAG_imported_declaration:
8035 case DW_TAG_imported_module:
8036 cu->processing_has_namespace_info = 1;
8037 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8038 || cu->language != language_fortran))
8039 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8040 dwarf_tag_name (die->tag));
8041 read_import_statement (die, cu);
8042 break;
8043
8044 case DW_TAG_imported_unit:
8045 process_imported_unit_die (die, cu);
8046 break;
8047
8048 default:
8049 new_symbol (die, NULL, cu);
8050 break;
8051 }
8052 }
8053 \f
8054 /* DWARF name computation. */
8055
8056 /* A helper function for dwarf2_compute_name which determines whether DIE
8057 needs to have the name of the scope prepended to the name listed in the
8058 die. */
8059
8060 static int
8061 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8062 {
8063 struct attribute *attr;
8064
8065 switch (die->tag)
8066 {
8067 case DW_TAG_namespace:
8068 case DW_TAG_typedef:
8069 case DW_TAG_class_type:
8070 case DW_TAG_interface_type:
8071 case DW_TAG_structure_type:
8072 case DW_TAG_union_type:
8073 case DW_TAG_enumeration_type:
8074 case DW_TAG_enumerator:
8075 case DW_TAG_subprogram:
8076 case DW_TAG_member:
8077 return 1;
8078
8079 case DW_TAG_variable:
8080 case DW_TAG_constant:
8081 /* We only need to prefix "globally" visible variables. These include
8082 any variable marked with DW_AT_external or any variable that
8083 lives in a namespace. [Variables in anonymous namespaces
8084 require prefixing, but they are not DW_AT_external.] */
8085
8086 if (dwarf2_attr (die, DW_AT_specification, cu))
8087 {
8088 struct dwarf2_cu *spec_cu = cu;
8089
8090 return die_needs_namespace (die_specification (die, &spec_cu),
8091 spec_cu);
8092 }
8093
8094 attr = dwarf2_attr (die, DW_AT_external, cu);
8095 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8096 && die->parent->tag != DW_TAG_module)
8097 return 0;
8098 /* A variable in a lexical block of some kind does not need a
8099 namespace, even though in C++ such variables may be external
8100 and have a mangled name. */
8101 if (die->parent->tag == DW_TAG_lexical_block
8102 || die->parent->tag == DW_TAG_try_block
8103 || die->parent->tag == DW_TAG_catch_block
8104 || die->parent->tag == DW_TAG_subprogram)
8105 return 0;
8106 return 1;
8107
8108 default:
8109 return 0;
8110 }
8111 }
8112
8113 /* Retrieve the last character from a mem_file. */
8114
8115 static void
8116 do_ui_file_peek_last (void *object, const char *buffer, long length)
8117 {
8118 char *last_char_p = (char *) object;
8119
8120 if (length > 0)
8121 *last_char_p = buffer[length - 1];
8122 }
8123
8124 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8125 compute the physname for the object, which include a method's:
8126 - formal parameters (C++/Java),
8127 - receiver type (Go),
8128 - return type (Java).
8129
8130 The term "physname" is a bit confusing.
8131 For C++, for example, it is the demangled name.
8132 For Go, for example, it's the mangled name.
8133
8134 For Ada, return the DIE's linkage name rather than the fully qualified
8135 name. PHYSNAME is ignored..
8136
8137 The result is allocated on the objfile_obstack and canonicalized. */
8138
8139 static const char *
8140 dwarf2_compute_name (const char *name,
8141 struct die_info *die, struct dwarf2_cu *cu,
8142 int physname)
8143 {
8144 struct objfile *objfile = cu->objfile;
8145
8146 if (name == NULL)
8147 name = dwarf2_name (die, cu);
8148
8149 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8150 compute it by typename_concat inside GDB. */
8151 if (cu->language == language_ada
8152 || (cu->language == language_fortran && physname))
8153 {
8154 /* For Ada unit, we prefer the linkage name over the name, as
8155 the former contains the exported name, which the user expects
8156 to be able to reference. Ideally, we want the user to be able
8157 to reference this entity using either natural or linkage name,
8158 but we haven't started looking at this enhancement yet. */
8159 struct attribute *attr;
8160
8161 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8162 if (attr == NULL)
8163 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8164 if (attr && DW_STRING (attr))
8165 return DW_STRING (attr);
8166 }
8167
8168 /* These are the only languages we know how to qualify names in. */
8169 if (name != NULL
8170 && (cu->language == language_cplus || cu->language == language_java
8171 || cu->language == language_fortran))
8172 {
8173 if (die_needs_namespace (die, cu))
8174 {
8175 long length;
8176 const char *prefix;
8177 struct ui_file *buf;
8178
8179 prefix = determine_prefix (die, cu);
8180 buf = mem_fileopen ();
8181 if (*prefix != '\0')
8182 {
8183 char *prefixed_name = typename_concat (NULL, prefix, name,
8184 physname, cu);
8185
8186 fputs_unfiltered (prefixed_name, buf);
8187 xfree (prefixed_name);
8188 }
8189 else
8190 fputs_unfiltered (name, buf);
8191
8192 /* Template parameters may be specified in the DIE's DW_AT_name, or
8193 as children with DW_TAG_template_type_param or
8194 DW_TAG_value_type_param. If the latter, add them to the name
8195 here. If the name already has template parameters, then
8196 skip this step; some versions of GCC emit both, and
8197 it is more efficient to use the pre-computed name.
8198
8199 Something to keep in mind about this process: it is very
8200 unlikely, or in some cases downright impossible, to produce
8201 something that will match the mangled name of a function.
8202 If the definition of the function has the same debug info,
8203 we should be able to match up with it anyway. But fallbacks
8204 using the minimal symbol, for instance to find a method
8205 implemented in a stripped copy of libstdc++, will not work.
8206 If we do not have debug info for the definition, we will have to
8207 match them up some other way.
8208
8209 When we do name matching there is a related problem with function
8210 templates; two instantiated function templates are allowed to
8211 differ only by their return types, which we do not add here. */
8212
8213 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8214 {
8215 struct attribute *attr;
8216 struct die_info *child;
8217 int first = 1;
8218
8219 die->building_fullname = 1;
8220
8221 for (child = die->child; child != NULL; child = child->sibling)
8222 {
8223 struct type *type;
8224 LONGEST value;
8225 const gdb_byte *bytes;
8226 struct dwarf2_locexpr_baton *baton;
8227 struct value *v;
8228
8229 if (child->tag != DW_TAG_template_type_param
8230 && child->tag != DW_TAG_template_value_param)
8231 continue;
8232
8233 if (first)
8234 {
8235 fputs_unfiltered ("<", buf);
8236 first = 0;
8237 }
8238 else
8239 fputs_unfiltered (", ", buf);
8240
8241 attr = dwarf2_attr (child, DW_AT_type, cu);
8242 if (attr == NULL)
8243 {
8244 complaint (&symfile_complaints,
8245 _("template parameter missing DW_AT_type"));
8246 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8247 continue;
8248 }
8249 type = die_type (child, cu);
8250
8251 if (child->tag == DW_TAG_template_type_param)
8252 {
8253 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8254 continue;
8255 }
8256
8257 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8258 if (attr == NULL)
8259 {
8260 complaint (&symfile_complaints,
8261 _("template parameter missing "
8262 "DW_AT_const_value"));
8263 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8264 continue;
8265 }
8266
8267 dwarf2_const_value_attr (attr, type, name,
8268 &cu->comp_unit_obstack, cu,
8269 &value, &bytes, &baton);
8270
8271 if (TYPE_NOSIGN (type))
8272 /* GDB prints characters as NUMBER 'CHAR'. If that's
8273 changed, this can use value_print instead. */
8274 c_printchar (value, type, buf);
8275 else
8276 {
8277 struct value_print_options opts;
8278
8279 if (baton != NULL)
8280 v = dwarf2_evaluate_loc_desc (type, NULL,
8281 baton->data,
8282 baton->size,
8283 baton->per_cu);
8284 else if (bytes != NULL)
8285 {
8286 v = allocate_value (type);
8287 memcpy (value_contents_writeable (v), bytes,
8288 TYPE_LENGTH (type));
8289 }
8290 else
8291 v = value_from_longest (type, value);
8292
8293 /* Specify decimal so that we do not depend on
8294 the radix. */
8295 get_formatted_print_options (&opts, 'd');
8296 opts.raw = 1;
8297 value_print (v, buf, &opts);
8298 release_value (v);
8299 value_free (v);
8300 }
8301 }
8302
8303 die->building_fullname = 0;
8304
8305 if (!first)
8306 {
8307 /* Close the argument list, with a space if necessary
8308 (nested templates). */
8309 char last_char = '\0';
8310 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8311 if (last_char == '>')
8312 fputs_unfiltered (" >", buf);
8313 else
8314 fputs_unfiltered (">", buf);
8315 }
8316 }
8317
8318 /* For Java and C++ methods, append formal parameter type
8319 information, if PHYSNAME. */
8320
8321 if (physname && die->tag == DW_TAG_subprogram
8322 && (cu->language == language_cplus
8323 || cu->language == language_java))
8324 {
8325 struct type *type = read_type_die (die, cu);
8326
8327 c_type_print_args (type, buf, 1, cu->language,
8328 &type_print_raw_options);
8329
8330 if (cu->language == language_java)
8331 {
8332 /* For java, we must append the return type to method
8333 names. */
8334 if (die->tag == DW_TAG_subprogram)
8335 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8336 0, 0, &type_print_raw_options);
8337 }
8338 else if (cu->language == language_cplus)
8339 {
8340 /* Assume that an artificial first parameter is
8341 "this", but do not crash if it is not. RealView
8342 marks unnamed (and thus unused) parameters as
8343 artificial; there is no way to differentiate
8344 the two cases. */
8345 if (TYPE_NFIELDS (type) > 0
8346 && TYPE_FIELD_ARTIFICIAL (type, 0)
8347 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8348 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8349 0))))
8350 fputs_unfiltered (" const", buf);
8351 }
8352 }
8353
8354 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8355 &length);
8356 ui_file_delete (buf);
8357
8358 if (cu->language == language_cplus)
8359 {
8360 const char *cname
8361 = dwarf2_canonicalize_name (name, cu,
8362 &objfile->objfile_obstack);
8363
8364 if (cname != NULL)
8365 name = cname;
8366 }
8367 }
8368 }
8369
8370 return name;
8371 }
8372
8373 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8374 If scope qualifiers are appropriate they will be added. The result
8375 will be allocated on the objfile_obstack, or NULL if the DIE does
8376 not have a name. NAME may either be from a previous call to
8377 dwarf2_name or NULL.
8378
8379 The output string will be canonicalized (if C++/Java). */
8380
8381 static const char *
8382 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8383 {
8384 return dwarf2_compute_name (name, die, cu, 0);
8385 }
8386
8387 /* Construct a physname for the given DIE in CU. NAME may either be
8388 from a previous call to dwarf2_name or NULL. The result will be
8389 allocated on the objfile_objstack or NULL if the DIE does not have a
8390 name.
8391
8392 The output string will be canonicalized (if C++/Java). */
8393
8394 static const char *
8395 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8396 {
8397 struct objfile *objfile = cu->objfile;
8398 struct attribute *attr;
8399 const char *retval, *mangled = NULL, *canon = NULL;
8400 struct cleanup *back_to;
8401 int need_copy = 1;
8402
8403 /* In this case dwarf2_compute_name is just a shortcut not building anything
8404 on its own. */
8405 if (!die_needs_namespace (die, cu))
8406 return dwarf2_compute_name (name, die, cu, 1);
8407
8408 back_to = make_cleanup (null_cleanup, NULL);
8409
8410 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8411 if (!attr)
8412 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8413
8414 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8415 has computed. */
8416 if (attr && DW_STRING (attr))
8417 {
8418 char *demangled;
8419
8420 mangled = DW_STRING (attr);
8421
8422 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8423 type. It is easier for GDB users to search for such functions as
8424 `name(params)' than `long name(params)'. In such case the minimal
8425 symbol names do not match the full symbol names but for template
8426 functions there is never a need to look up their definition from their
8427 declaration so the only disadvantage remains the minimal symbol
8428 variant `long name(params)' does not have the proper inferior type.
8429 */
8430
8431 if (cu->language == language_go)
8432 {
8433 /* This is a lie, but we already lie to the caller new_symbol_full.
8434 new_symbol_full assumes we return the mangled name.
8435 This just undoes that lie until things are cleaned up. */
8436 demangled = NULL;
8437 }
8438 else
8439 {
8440 demangled = gdb_demangle (mangled,
8441 (DMGL_PARAMS | DMGL_ANSI
8442 | (cu->language == language_java
8443 ? DMGL_JAVA | DMGL_RET_POSTFIX
8444 : DMGL_RET_DROP)));
8445 }
8446 if (demangled)
8447 {
8448 make_cleanup (xfree, demangled);
8449 canon = demangled;
8450 }
8451 else
8452 {
8453 canon = mangled;
8454 need_copy = 0;
8455 }
8456 }
8457
8458 if (canon == NULL || check_physname)
8459 {
8460 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8461
8462 if (canon != NULL && strcmp (physname, canon) != 0)
8463 {
8464 /* It may not mean a bug in GDB. The compiler could also
8465 compute DW_AT_linkage_name incorrectly. But in such case
8466 GDB would need to be bug-to-bug compatible. */
8467
8468 complaint (&symfile_complaints,
8469 _("Computed physname <%s> does not match demangled <%s> "
8470 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8471 physname, canon, mangled, die->offset.sect_off,
8472 objfile_name (objfile));
8473
8474 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8475 is available here - over computed PHYSNAME. It is safer
8476 against both buggy GDB and buggy compilers. */
8477
8478 retval = canon;
8479 }
8480 else
8481 {
8482 retval = physname;
8483 need_copy = 0;
8484 }
8485 }
8486 else
8487 retval = canon;
8488
8489 if (need_copy)
8490 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8491
8492 do_cleanups (back_to);
8493 return retval;
8494 }
8495
8496 /* Read the import statement specified by the given die and record it. */
8497
8498 static void
8499 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8500 {
8501 struct objfile *objfile = cu->objfile;
8502 struct attribute *import_attr;
8503 struct die_info *imported_die, *child_die;
8504 struct dwarf2_cu *imported_cu;
8505 const char *imported_name;
8506 const char *imported_name_prefix;
8507 const char *canonical_name;
8508 const char *import_alias;
8509 const char *imported_declaration = NULL;
8510 const char *import_prefix;
8511 VEC (const_char_ptr) *excludes = NULL;
8512 struct cleanup *cleanups;
8513
8514 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8515 if (import_attr == NULL)
8516 {
8517 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8518 dwarf_tag_name (die->tag));
8519 return;
8520 }
8521
8522 imported_cu = cu;
8523 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8524 imported_name = dwarf2_name (imported_die, imported_cu);
8525 if (imported_name == NULL)
8526 {
8527 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8528
8529 The import in the following code:
8530 namespace A
8531 {
8532 typedef int B;
8533 }
8534
8535 int main ()
8536 {
8537 using A::B;
8538 B b;
8539 return b;
8540 }
8541
8542 ...
8543 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8544 <52> DW_AT_decl_file : 1
8545 <53> DW_AT_decl_line : 6
8546 <54> DW_AT_import : <0x75>
8547 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8548 <59> DW_AT_name : B
8549 <5b> DW_AT_decl_file : 1
8550 <5c> DW_AT_decl_line : 2
8551 <5d> DW_AT_type : <0x6e>
8552 ...
8553 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8554 <76> DW_AT_byte_size : 4
8555 <77> DW_AT_encoding : 5 (signed)
8556
8557 imports the wrong die ( 0x75 instead of 0x58 ).
8558 This case will be ignored until the gcc bug is fixed. */
8559 return;
8560 }
8561
8562 /* Figure out the local name after import. */
8563 import_alias = dwarf2_name (die, cu);
8564
8565 /* Figure out where the statement is being imported to. */
8566 import_prefix = determine_prefix (die, cu);
8567
8568 /* Figure out what the scope of the imported die is and prepend it
8569 to the name of the imported die. */
8570 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8571
8572 if (imported_die->tag != DW_TAG_namespace
8573 && imported_die->tag != DW_TAG_module)
8574 {
8575 imported_declaration = imported_name;
8576 canonical_name = imported_name_prefix;
8577 }
8578 else if (strlen (imported_name_prefix) > 0)
8579 canonical_name = obconcat (&objfile->objfile_obstack,
8580 imported_name_prefix, "::", imported_name,
8581 (char *) NULL);
8582 else
8583 canonical_name = imported_name;
8584
8585 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8586
8587 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8588 for (child_die = die->child; child_die && child_die->tag;
8589 child_die = sibling_die (child_die))
8590 {
8591 /* DWARF-4: A Fortran use statement with a “rename list” may be
8592 represented by an imported module entry with an import attribute
8593 referring to the module and owned entries corresponding to those
8594 entities that are renamed as part of being imported. */
8595
8596 if (child_die->tag != DW_TAG_imported_declaration)
8597 {
8598 complaint (&symfile_complaints,
8599 _("child DW_TAG_imported_declaration expected "
8600 "- DIE at 0x%x [in module %s]"),
8601 child_die->offset.sect_off, objfile_name (objfile));
8602 continue;
8603 }
8604
8605 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8606 if (import_attr == NULL)
8607 {
8608 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8609 dwarf_tag_name (child_die->tag));
8610 continue;
8611 }
8612
8613 imported_cu = cu;
8614 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8615 &imported_cu);
8616 imported_name = dwarf2_name (imported_die, imported_cu);
8617 if (imported_name == NULL)
8618 {
8619 complaint (&symfile_complaints,
8620 _("child DW_TAG_imported_declaration has unknown "
8621 "imported name - DIE at 0x%x [in module %s]"),
8622 child_die->offset.sect_off, objfile_name (objfile));
8623 continue;
8624 }
8625
8626 VEC_safe_push (const_char_ptr, excludes, imported_name);
8627
8628 process_die (child_die, cu);
8629 }
8630
8631 cp_add_using_directive (import_prefix,
8632 canonical_name,
8633 import_alias,
8634 imported_declaration,
8635 excludes,
8636 0,
8637 &objfile->objfile_obstack);
8638
8639 do_cleanups (cleanups);
8640 }
8641
8642 /* Cleanup function for handle_DW_AT_stmt_list. */
8643
8644 static void
8645 free_cu_line_header (void *arg)
8646 {
8647 struct dwarf2_cu *cu = arg;
8648
8649 free_line_header (cu->line_header);
8650 cu->line_header = NULL;
8651 }
8652
8653 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8654 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8655 this, it was first present in GCC release 4.3.0. */
8656
8657 static int
8658 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8659 {
8660 if (!cu->checked_producer)
8661 check_producer (cu);
8662
8663 return cu->producer_is_gcc_lt_4_3;
8664 }
8665
8666 static void
8667 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8668 const char **name, const char **comp_dir)
8669 {
8670 struct attribute *attr;
8671
8672 *name = NULL;
8673 *comp_dir = NULL;
8674
8675 /* Find the filename. Do not use dwarf2_name here, since the filename
8676 is not a source language identifier. */
8677 attr = dwarf2_attr (die, DW_AT_name, cu);
8678 if (attr)
8679 {
8680 *name = DW_STRING (attr);
8681 }
8682
8683 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8684 if (attr)
8685 *comp_dir = DW_STRING (attr);
8686 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8687 && IS_ABSOLUTE_PATH (*name))
8688 {
8689 char *d = ldirname (*name);
8690
8691 *comp_dir = d;
8692 if (d != NULL)
8693 make_cleanup (xfree, d);
8694 }
8695 if (*comp_dir != NULL)
8696 {
8697 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8698 directory, get rid of it. */
8699 char *cp = strchr (*comp_dir, ':');
8700
8701 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8702 *comp_dir = cp + 1;
8703 }
8704
8705 if (*name == NULL)
8706 *name = "<unknown>";
8707 }
8708
8709 /* Handle DW_AT_stmt_list for a compilation unit.
8710 DIE is the DW_TAG_compile_unit die for CU.
8711 COMP_DIR is the compilation directory.
8712 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8713
8714 static void
8715 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8716 const char *comp_dir) /* ARI: editCase function */
8717 {
8718 struct attribute *attr;
8719
8720 gdb_assert (! cu->per_cu->is_debug_types);
8721
8722 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8723 if (attr)
8724 {
8725 unsigned int line_offset = DW_UNSND (attr);
8726 struct line_header *line_header
8727 = dwarf_decode_line_header (line_offset, cu);
8728
8729 if (line_header)
8730 {
8731 cu->line_header = line_header;
8732 make_cleanup (free_cu_line_header, cu);
8733 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8734 }
8735 }
8736 }
8737
8738 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8739
8740 static void
8741 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8742 {
8743 struct objfile *objfile = dwarf2_per_objfile->objfile;
8744 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8745 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8746 CORE_ADDR highpc = ((CORE_ADDR) 0);
8747 struct attribute *attr;
8748 const char *name = NULL;
8749 const char *comp_dir = NULL;
8750 struct die_info *child_die;
8751 bfd *abfd = objfile->obfd;
8752 CORE_ADDR baseaddr;
8753
8754 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8755
8756 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8757
8758 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8759 from finish_block. */
8760 if (lowpc == ((CORE_ADDR) -1))
8761 lowpc = highpc;
8762 lowpc += baseaddr;
8763 highpc += baseaddr;
8764
8765 find_file_and_directory (die, cu, &name, &comp_dir);
8766
8767 prepare_one_comp_unit (cu, die, cu->language);
8768
8769 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8770 standardised yet. As a workaround for the language detection we fall
8771 back to the DW_AT_producer string. */
8772 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8773 cu->language = language_opencl;
8774
8775 /* Similar hack for Go. */
8776 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8777 set_cu_language (DW_LANG_Go, cu);
8778
8779 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8780
8781 /* Decode line number information if present. We do this before
8782 processing child DIEs, so that the line header table is available
8783 for DW_AT_decl_file. */
8784 handle_DW_AT_stmt_list (die, cu, comp_dir);
8785
8786 /* Process all dies in compilation unit. */
8787 if (die->child != NULL)
8788 {
8789 child_die = die->child;
8790 while (child_die && child_die->tag)
8791 {
8792 process_die (child_die, cu);
8793 child_die = sibling_die (child_die);
8794 }
8795 }
8796
8797 /* Decode macro information, if present. Dwarf 2 macro information
8798 refers to information in the line number info statement program
8799 header, so we can only read it if we've read the header
8800 successfully. */
8801 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8802 if (attr && cu->line_header)
8803 {
8804 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8805 complaint (&symfile_complaints,
8806 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8807
8808 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8809 }
8810 else
8811 {
8812 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8813 if (attr && cu->line_header)
8814 {
8815 unsigned int macro_offset = DW_UNSND (attr);
8816
8817 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8818 }
8819 }
8820
8821 do_cleanups (back_to);
8822 }
8823
8824 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8825 Create the set of symtabs used by this TU, or if this TU is sharing
8826 symtabs with another TU and the symtabs have already been created
8827 then restore those symtabs in the line header.
8828 We don't need the pc/line-number mapping for type units. */
8829
8830 static void
8831 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8832 {
8833 struct objfile *objfile = dwarf2_per_objfile->objfile;
8834 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8835 struct type_unit_group *tu_group;
8836 int first_time;
8837 struct line_header *lh;
8838 struct attribute *attr;
8839 unsigned int i, line_offset;
8840 struct signatured_type *sig_type;
8841
8842 gdb_assert (per_cu->is_debug_types);
8843 sig_type = (struct signatured_type *) per_cu;
8844
8845 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8846
8847 /* If we're using .gdb_index (includes -readnow) then
8848 per_cu->type_unit_group may not have been set up yet. */
8849 if (sig_type->type_unit_group == NULL)
8850 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8851 tu_group = sig_type->type_unit_group;
8852
8853 /* If we've already processed this stmt_list there's no real need to
8854 do it again, we could fake it and just recreate the part we need
8855 (file name,index -> symtab mapping). If data shows this optimization
8856 is useful we can do it then. */
8857 first_time = tu_group->primary_symtab == NULL;
8858
8859 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8860 debug info. */
8861 lh = NULL;
8862 if (attr != NULL)
8863 {
8864 line_offset = DW_UNSND (attr);
8865 lh = dwarf_decode_line_header (line_offset, cu);
8866 }
8867 if (lh == NULL)
8868 {
8869 if (first_time)
8870 dwarf2_start_symtab (cu, "", NULL, 0);
8871 else
8872 {
8873 gdb_assert (tu_group->symtabs == NULL);
8874 restart_symtab (0);
8875 }
8876 /* Note: The primary symtab will get allocated at the end. */
8877 return;
8878 }
8879
8880 cu->line_header = lh;
8881 make_cleanup (free_cu_line_header, cu);
8882
8883 if (first_time)
8884 {
8885 dwarf2_start_symtab (cu, "", NULL, 0);
8886
8887 tu_group->num_symtabs = lh->num_file_names;
8888 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8889
8890 for (i = 0; i < lh->num_file_names; ++i)
8891 {
8892 const char *dir = NULL;
8893 struct file_entry *fe = &lh->file_names[i];
8894
8895 if (fe->dir_index)
8896 dir = lh->include_dirs[fe->dir_index - 1];
8897 dwarf2_start_subfile (fe->name, dir, NULL);
8898
8899 /* Note: We don't have to watch for the main subfile here, type units
8900 don't have DW_AT_name. */
8901
8902 if (current_subfile->symtab == NULL)
8903 {
8904 /* NOTE: start_subfile will recognize when it's been passed
8905 a file it has already seen. So we can't assume there's a
8906 simple mapping from lh->file_names to subfiles,
8907 lh->file_names may contain dups. */
8908 current_subfile->symtab = allocate_symtab (current_subfile->name,
8909 objfile);
8910 }
8911
8912 fe->symtab = current_subfile->symtab;
8913 tu_group->symtabs[i] = fe->symtab;
8914 }
8915 }
8916 else
8917 {
8918 restart_symtab (0);
8919
8920 for (i = 0; i < lh->num_file_names; ++i)
8921 {
8922 struct file_entry *fe = &lh->file_names[i];
8923
8924 fe->symtab = tu_group->symtabs[i];
8925 }
8926 }
8927
8928 /* The main symtab is allocated last. Type units don't have DW_AT_name
8929 so they don't have a "real" (so to speak) symtab anyway.
8930 There is later code that will assign the main symtab to all symbols
8931 that don't have one. We need to handle the case of a symbol with a
8932 missing symtab (DW_AT_decl_file) anyway. */
8933 }
8934
8935 /* Process DW_TAG_type_unit.
8936 For TUs we want to skip the first top level sibling if it's not the
8937 actual type being defined by this TU. In this case the first top
8938 level sibling is there to provide context only. */
8939
8940 static void
8941 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8942 {
8943 struct die_info *child_die;
8944
8945 prepare_one_comp_unit (cu, die, language_minimal);
8946
8947 /* Initialize (or reinitialize) the machinery for building symtabs.
8948 We do this before processing child DIEs, so that the line header table
8949 is available for DW_AT_decl_file. */
8950 setup_type_unit_groups (die, cu);
8951
8952 if (die->child != NULL)
8953 {
8954 child_die = die->child;
8955 while (child_die && child_die->tag)
8956 {
8957 process_die (child_die, cu);
8958 child_die = sibling_die (child_die);
8959 }
8960 }
8961 }
8962 \f
8963 /* DWO/DWP files.
8964
8965 http://gcc.gnu.org/wiki/DebugFission
8966 http://gcc.gnu.org/wiki/DebugFissionDWP
8967
8968 To simplify handling of both DWO files ("object" files with the DWARF info)
8969 and DWP files (a file with the DWOs packaged up into one file), we treat
8970 DWP files as having a collection of virtual DWO files. */
8971
8972 static hashval_t
8973 hash_dwo_file (const void *item)
8974 {
8975 const struct dwo_file *dwo_file = item;
8976 hashval_t hash;
8977
8978 hash = htab_hash_string (dwo_file->dwo_name);
8979 if (dwo_file->comp_dir != NULL)
8980 hash += htab_hash_string (dwo_file->comp_dir);
8981 return hash;
8982 }
8983
8984 static int
8985 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8986 {
8987 const struct dwo_file *lhs = item_lhs;
8988 const struct dwo_file *rhs = item_rhs;
8989
8990 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8991 return 0;
8992 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8993 return lhs->comp_dir == rhs->comp_dir;
8994 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8995 }
8996
8997 /* Allocate a hash table for DWO files. */
8998
8999 static htab_t
9000 allocate_dwo_file_hash_table (void)
9001 {
9002 struct objfile *objfile = dwarf2_per_objfile->objfile;
9003
9004 return htab_create_alloc_ex (41,
9005 hash_dwo_file,
9006 eq_dwo_file,
9007 NULL,
9008 &objfile->objfile_obstack,
9009 hashtab_obstack_allocate,
9010 dummy_obstack_deallocate);
9011 }
9012
9013 /* Lookup DWO file DWO_NAME. */
9014
9015 static void **
9016 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9017 {
9018 struct dwo_file find_entry;
9019 void **slot;
9020
9021 if (dwarf2_per_objfile->dwo_files == NULL)
9022 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9023
9024 memset (&find_entry, 0, sizeof (find_entry));
9025 find_entry.dwo_name = dwo_name;
9026 find_entry.comp_dir = comp_dir;
9027 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9028
9029 return slot;
9030 }
9031
9032 static hashval_t
9033 hash_dwo_unit (const void *item)
9034 {
9035 const struct dwo_unit *dwo_unit = item;
9036
9037 /* This drops the top 32 bits of the id, but is ok for a hash. */
9038 return dwo_unit->signature;
9039 }
9040
9041 static int
9042 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9043 {
9044 const struct dwo_unit *lhs = item_lhs;
9045 const struct dwo_unit *rhs = item_rhs;
9046
9047 /* The signature is assumed to be unique within the DWO file.
9048 So while object file CU dwo_id's always have the value zero,
9049 that's OK, assuming each object file DWO file has only one CU,
9050 and that's the rule for now. */
9051 return lhs->signature == rhs->signature;
9052 }
9053
9054 /* Allocate a hash table for DWO CUs,TUs.
9055 There is one of these tables for each of CUs,TUs for each DWO file. */
9056
9057 static htab_t
9058 allocate_dwo_unit_table (struct objfile *objfile)
9059 {
9060 /* Start out with a pretty small number.
9061 Generally DWO files contain only one CU and maybe some TUs. */
9062 return htab_create_alloc_ex (3,
9063 hash_dwo_unit,
9064 eq_dwo_unit,
9065 NULL,
9066 &objfile->objfile_obstack,
9067 hashtab_obstack_allocate,
9068 dummy_obstack_deallocate);
9069 }
9070
9071 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9072
9073 struct create_dwo_cu_data
9074 {
9075 struct dwo_file *dwo_file;
9076 struct dwo_unit dwo_unit;
9077 };
9078
9079 /* die_reader_func for create_dwo_cu. */
9080
9081 static void
9082 create_dwo_cu_reader (const struct die_reader_specs *reader,
9083 const gdb_byte *info_ptr,
9084 struct die_info *comp_unit_die,
9085 int has_children,
9086 void *datap)
9087 {
9088 struct dwarf2_cu *cu = reader->cu;
9089 struct objfile *objfile = dwarf2_per_objfile->objfile;
9090 sect_offset offset = cu->per_cu->offset;
9091 struct dwarf2_section_info *section = cu->per_cu->section;
9092 struct create_dwo_cu_data *data = datap;
9093 struct dwo_file *dwo_file = data->dwo_file;
9094 struct dwo_unit *dwo_unit = &data->dwo_unit;
9095 struct attribute *attr;
9096
9097 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9098 if (attr == NULL)
9099 {
9100 complaint (&symfile_complaints,
9101 _("Dwarf Error: debug entry at offset 0x%x is missing"
9102 " its dwo_id [in module %s]"),
9103 offset.sect_off, dwo_file->dwo_name);
9104 return;
9105 }
9106
9107 dwo_unit->dwo_file = dwo_file;
9108 dwo_unit->signature = DW_UNSND (attr);
9109 dwo_unit->section = section;
9110 dwo_unit->offset = offset;
9111 dwo_unit->length = cu->per_cu->length;
9112
9113 if (dwarf2_read_debug)
9114 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9115 offset.sect_off, hex_string (dwo_unit->signature));
9116 }
9117
9118 /* Create the dwo_unit for the lone CU in DWO_FILE.
9119 Note: This function processes DWO files only, not DWP files. */
9120
9121 static struct dwo_unit *
9122 create_dwo_cu (struct dwo_file *dwo_file)
9123 {
9124 struct objfile *objfile = dwarf2_per_objfile->objfile;
9125 struct dwarf2_section_info *section = &dwo_file->sections.info;
9126 bfd *abfd;
9127 htab_t cu_htab;
9128 const gdb_byte *info_ptr, *end_ptr;
9129 struct create_dwo_cu_data create_dwo_cu_data;
9130 struct dwo_unit *dwo_unit;
9131
9132 dwarf2_read_section (objfile, section);
9133 info_ptr = section->buffer;
9134
9135 if (info_ptr == NULL)
9136 return NULL;
9137
9138 /* We can't set abfd until now because the section may be empty or
9139 not present, in which case section->asection will be NULL. */
9140 abfd = get_section_bfd_owner (section);
9141
9142 if (dwarf2_read_debug)
9143 {
9144 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9145 get_section_name (section),
9146 get_section_file_name (section));
9147 }
9148
9149 create_dwo_cu_data.dwo_file = dwo_file;
9150 dwo_unit = NULL;
9151
9152 end_ptr = info_ptr + section->size;
9153 while (info_ptr < end_ptr)
9154 {
9155 struct dwarf2_per_cu_data per_cu;
9156
9157 memset (&create_dwo_cu_data.dwo_unit, 0,
9158 sizeof (create_dwo_cu_data.dwo_unit));
9159 memset (&per_cu, 0, sizeof (per_cu));
9160 per_cu.objfile = objfile;
9161 per_cu.is_debug_types = 0;
9162 per_cu.offset.sect_off = info_ptr - section->buffer;
9163 per_cu.section = section;
9164
9165 init_cutu_and_read_dies_no_follow (&per_cu,
9166 &dwo_file->sections.abbrev,
9167 dwo_file,
9168 create_dwo_cu_reader,
9169 &create_dwo_cu_data);
9170
9171 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9172 {
9173 /* If we've already found one, complain. We only support one
9174 because having more than one requires hacking the dwo_name of
9175 each to match, which is highly unlikely to happen. */
9176 if (dwo_unit != NULL)
9177 {
9178 complaint (&symfile_complaints,
9179 _("Multiple CUs in DWO file %s [in module %s]"),
9180 dwo_file->dwo_name, objfile_name (objfile));
9181 break;
9182 }
9183
9184 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9185 *dwo_unit = create_dwo_cu_data.dwo_unit;
9186 }
9187
9188 info_ptr += per_cu.length;
9189 }
9190
9191 return dwo_unit;
9192 }
9193
9194 /* DWP file .debug_{cu,tu}_index section format:
9195 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9196
9197 DWP Version 1:
9198
9199 Both index sections have the same format, and serve to map a 64-bit
9200 signature to a set of section numbers. Each section begins with a header,
9201 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9202 indexes, and a pool of 32-bit section numbers. The index sections will be
9203 aligned at 8-byte boundaries in the file.
9204
9205 The index section header consists of:
9206
9207 V, 32 bit version number
9208 -, 32 bits unused
9209 N, 32 bit number of compilation units or type units in the index
9210 M, 32 bit number of slots in the hash table
9211
9212 Numbers are recorded using the byte order of the application binary.
9213
9214 The hash table begins at offset 16 in the section, and consists of an array
9215 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9216 order of the application binary). Unused slots in the hash table are 0.
9217 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9218
9219 The parallel table begins immediately after the hash table
9220 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9221 array of 32-bit indexes (using the byte order of the application binary),
9222 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9223 table contains a 32-bit index into the pool of section numbers. For unused
9224 hash table slots, the corresponding entry in the parallel table will be 0.
9225
9226 The pool of section numbers begins immediately following the hash table
9227 (at offset 16 + 12 * M from the beginning of the section). The pool of
9228 section numbers consists of an array of 32-bit words (using the byte order
9229 of the application binary). Each item in the array is indexed starting
9230 from 0. The hash table entry provides the index of the first section
9231 number in the set. Additional section numbers in the set follow, and the
9232 set is terminated by a 0 entry (section number 0 is not used in ELF).
9233
9234 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9235 section must be the first entry in the set, and the .debug_abbrev.dwo must
9236 be the second entry. Other members of the set may follow in any order.
9237
9238 ---
9239
9240 DWP Version 2:
9241
9242 DWP Version 2 combines all the .debug_info, etc. sections into one,
9243 and the entries in the index tables are now offsets into these sections.
9244 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9245 section.
9246
9247 Index Section Contents:
9248 Header
9249 Hash Table of Signatures dwp_hash_table.hash_table
9250 Parallel Table of Indices dwp_hash_table.unit_table
9251 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9252 Table of Section Sizes dwp_hash_table.v2.sizes
9253
9254 The index section header consists of:
9255
9256 V, 32 bit version number
9257 L, 32 bit number of columns in the table of section offsets
9258 N, 32 bit number of compilation units or type units in the index
9259 M, 32 bit number of slots in the hash table
9260
9261 Numbers are recorded using the byte order of the application binary.
9262
9263 The hash table has the same format as version 1.
9264 The parallel table of indices has the same format as version 1,
9265 except that the entries are origin-1 indices into the table of sections
9266 offsets and the table of section sizes.
9267
9268 The table of offsets begins immediately following the parallel table
9269 (at offset 16 + 12 * M from the beginning of the section). The table is
9270 a two-dimensional array of 32-bit words (using the byte order of the
9271 application binary), with L columns and N+1 rows, in row-major order.
9272 Each row in the array is indexed starting from 0. The first row provides
9273 a key to the remaining rows: each column in this row provides an identifier
9274 for a debug section, and the offsets in the same column of subsequent rows
9275 refer to that section. The section identifiers are:
9276
9277 DW_SECT_INFO 1 .debug_info.dwo
9278 DW_SECT_TYPES 2 .debug_types.dwo
9279 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9280 DW_SECT_LINE 4 .debug_line.dwo
9281 DW_SECT_LOC 5 .debug_loc.dwo
9282 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9283 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9284 DW_SECT_MACRO 8 .debug_macro.dwo
9285
9286 The offsets provided by the CU and TU index sections are the base offsets
9287 for the contributions made by each CU or TU to the corresponding section
9288 in the package file. Each CU and TU header contains an abbrev_offset
9289 field, used to find the abbreviations table for that CU or TU within the
9290 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9291 be interpreted as relative to the base offset given in the index section.
9292 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9293 should be interpreted as relative to the base offset for .debug_line.dwo,
9294 and offsets into other debug sections obtained from DWARF attributes should
9295 also be interpreted as relative to the corresponding base offset.
9296
9297 The table of sizes begins immediately following the table of offsets.
9298 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9299 with L columns and N rows, in row-major order. Each row in the array is
9300 indexed starting from 1 (row 0 is shared by the two tables).
9301
9302 ---
9303
9304 Hash table lookup is handled the same in version 1 and 2:
9305
9306 We assume that N and M will not exceed 2^32 - 1.
9307 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9308
9309 Given a 64-bit compilation unit signature or a type signature S, an entry
9310 in the hash table is located as follows:
9311
9312 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9313 the low-order k bits all set to 1.
9314
9315 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9316
9317 3) If the hash table entry at index H matches the signature, use that
9318 entry. If the hash table entry at index H is unused (all zeroes),
9319 terminate the search: the signature is not present in the table.
9320
9321 4) Let H = (H + H') modulo M. Repeat at Step 3.
9322
9323 Because M > N and H' and M are relatively prime, the search is guaranteed
9324 to stop at an unused slot or find the match. */
9325
9326 /* Create a hash table to map DWO IDs to their CU/TU entry in
9327 .debug_{info,types}.dwo in DWP_FILE.
9328 Returns NULL if there isn't one.
9329 Note: This function processes DWP files only, not DWO files. */
9330
9331 static struct dwp_hash_table *
9332 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9333 {
9334 struct objfile *objfile = dwarf2_per_objfile->objfile;
9335 bfd *dbfd = dwp_file->dbfd;
9336 const gdb_byte *index_ptr, *index_end;
9337 struct dwarf2_section_info *index;
9338 uint32_t version, nr_columns, nr_units, nr_slots;
9339 struct dwp_hash_table *htab;
9340
9341 if (is_debug_types)
9342 index = &dwp_file->sections.tu_index;
9343 else
9344 index = &dwp_file->sections.cu_index;
9345
9346 if (dwarf2_section_empty_p (index))
9347 return NULL;
9348 dwarf2_read_section (objfile, index);
9349
9350 index_ptr = index->buffer;
9351 index_end = index_ptr + index->size;
9352
9353 version = read_4_bytes (dbfd, index_ptr);
9354 index_ptr += 4;
9355 if (version == 2)
9356 nr_columns = read_4_bytes (dbfd, index_ptr);
9357 else
9358 nr_columns = 0;
9359 index_ptr += 4;
9360 nr_units = read_4_bytes (dbfd, index_ptr);
9361 index_ptr += 4;
9362 nr_slots = read_4_bytes (dbfd, index_ptr);
9363 index_ptr += 4;
9364
9365 if (version != 1 && version != 2)
9366 {
9367 error (_("Dwarf Error: unsupported DWP file version (%s)"
9368 " [in module %s]"),
9369 pulongest (version), dwp_file->name);
9370 }
9371 if (nr_slots != (nr_slots & -nr_slots))
9372 {
9373 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9374 " is not power of 2 [in module %s]"),
9375 pulongest (nr_slots), dwp_file->name);
9376 }
9377
9378 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9379 htab->version = version;
9380 htab->nr_columns = nr_columns;
9381 htab->nr_units = nr_units;
9382 htab->nr_slots = nr_slots;
9383 htab->hash_table = index_ptr;
9384 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9385
9386 /* Exit early if the table is empty. */
9387 if (nr_slots == 0 || nr_units == 0
9388 || (version == 2 && nr_columns == 0))
9389 {
9390 /* All must be zero. */
9391 if (nr_slots != 0 || nr_units != 0
9392 || (version == 2 && nr_columns != 0))
9393 {
9394 complaint (&symfile_complaints,
9395 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9396 " all zero [in modules %s]"),
9397 dwp_file->name);
9398 }
9399 return htab;
9400 }
9401
9402 if (version == 1)
9403 {
9404 htab->section_pool.v1.indices =
9405 htab->unit_table + sizeof (uint32_t) * nr_slots;
9406 /* It's harder to decide whether the section is too small in v1.
9407 V1 is deprecated anyway so we punt. */
9408 }
9409 else
9410 {
9411 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9412 int *ids = htab->section_pool.v2.section_ids;
9413 /* Reverse map for error checking. */
9414 int ids_seen[DW_SECT_MAX + 1];
9415 int i;
9416
9417 if (nr_columns < 2)
9418 {
9419 error (_("Dwarf Error: bad DWP hash table, too few columns"
9420 " in section table [in module %s]"),
9421 dwp_file->name);
9422 }
9423 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9424 {
9425 error (_("Dwarf Error: bad DWP hash table, too many columns"
9426 " in section table [in module %s]"),
9427 dwp_file->name);
9428 }
9429 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9430 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9431 for (i = 0; i < nr_columns; ++i)
9432 {
9433 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9434
9435 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9436 {
9437 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9438 " in section table [in module %s]"),
9439 id, dwp_file->name);
9440 }
9441 if (ids_seen[id] != -1)
9442 {
9443 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9444 " id %d in section table [in module %s]"),
9445 id, dwp_file->name);
9446 }
9447 ids_seen[id] = i;
9448 ids[i] = id;
9449 }
9450 /* Must have exactly one info or types section. */
9451 if (((ids_seen[DW_SECT_INFO] != -1)
9452 + (ids_seen[DW_SECT_TYPES] != -1))
9453 != 1)
9454 {
9455 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9456 " DWO info/types section [in module %s]"),
9457 dwp_file->name);
9458 }
9459 /* Must have an abbrev section. */
9460 if (ids_seen[DW_SECT_ABBREV] == -1)
9461 {
9462 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9463 " section [in module %s]"),
9464 dwp_file->name);
9465 }
9466 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9467 htab->section_pool.v2.sizes =
9468 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9469 * nr_units * nr_columns);
9470 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9471 * nr_units * nr_columns))
9472 > index_end)
9473 {
9474 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9475 " [in module %s]"),
9476 dwp_file->name);
9477 }
9478 }
9479
9480 return htab;
9481 }
9482
9483 /* Update SECTIONS with the data from SECTP.
9484
9485 This function is like the other "locate" section routines that are
9486 passed to bfd_map_over_sections, but in this context the sections to
9487 read comes from the DWP V1 hash table, not the full ELF section table.
9488
9489 The result is non-zero for success, or zero if an error was found. */
9490
9491 static int
9492 locate_v1_virtual_dwo_sections (asection *sectp,
9493 struct virtual_v1_dwo_sections *sections)
9494 {
9495 const struct dwop_section_names *names = &dwop_section_names;
9496
9497 if (section_is_p (sectp->name, &names->abbrev_dwo))
9498 {
9499 /* There can be only one. */
9500 if (sections->abbrev.s.asection != NULL)
9501 return 0;
9502 sections->abbrev.s.asection = sectp;
9503 sections->abbrev.size = bfd_get_section_size (sectp);
9504 }
9505 else if (section_is_p (sectp->name, &names->info_dwo)
9506 || section_is_p (sectp->name, &names->types_dwo))
9507 {
9508 /* There can be only one. */
9509 if (sections->info_or_types.s.asection != NULL)
9510 return 0;
9511 sections->info_or_types.s.asection = sectp;
9512 sections->info_or_types.size = bfd_get_section_size (sectp);
9513 }
9514 else if (section_is_p (sectp->name, &names->line_dwo))
9515 {
9516 /* There can be only one. */
9517 if (sections->line.s.asection != NULL)
9518 return 0;
9519 sections->line.s.asection = sectp;
9520 sections->line.size = bfd_get_section_size (sectp);
9521 }
9522 else if (section_is_p (sectp->name, &names->loc_dwo))
9523 {
9524 /* There can be only one. */
9525 if (sections->loc.s.asection != NULL)
9526 return 0;
9527 sections->loc.s.asection = sectp;
9528 sections->loc.size = bfd_get_section_size (sectp);
9529 }
9530 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9531 {
9532 /* There can be only one. */
9533 if (sections->macinfo.s.asection != NULL)
9534 return 0;
9535 sections->macinfo.s.asection = sectp;
9536 sections->macinfo.size = bfd_get_section_size (sectp);
9537 }
9538 else if (section_is_p (sectp->name, &names->macro_dwo))
9539 {
9540 /* There can be only one. */
9541 if (sections->macro.s.asection != NULL)
9542 return 0;
9543 sections->macro.s.asection = sectp;
9544 sections->macro.size = bfd_get_section_size (sectp);
9545 }
9546 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9547 {
9548 /* There can be only one. */
9549 if (sections->str_offsets.s.asection != NULL)
9550 return 0;
9551 sections->str_offsets.s.asection = sectp;
9552 sections->str_offsets.size = bfd_get_section_size (sectp);
9553 }
9554 else
9555 {
9556 /* No other kind of section is valid. */
9557 return 0;
9558 }
9559
9560 return 1;
9561 }
9562
9563 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9564 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9565 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9566 This is for DWP version 1 files. */
9567
9568 static struct dwo_unit *
9569 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9570 uint32_t unit_index,
9571 const char *comp_dir,
9572 ULONGEST signature, int is_debug_types)
9573 {
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 const struct dwp_hash_table *dwp_htab =
9576 is_debug_types ? dwp_file->tus : dwp_file->cus;
9577 bfd *dbfd = dwp_file->dbfd;
9578 const char *kind = is_debug_types ? "TU" : "CU";
9579 struct dwo_file *dwo_file;
9580 struct dwo_unit *dwo_unit;
9581 struct virtual_v1_dwo_sections sections;
9582 void **dwo_file_slot;
9583 char *virtual_dwo_name;
9584 struct dwarf2_section_info *cutu;
9585 struct cleanup *cleanups;
9586 int i;
9587
9588 gdb_assert (dwp_file->version == 1);
9589
9590 if (dwarf2_read_debug)
9591 {
9592 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9593 kind,
9594 pulongest (unit_index), hex_string (signature),
9595 dwp_file->name);
9596 }
9597
9598 /* Fetch the sections of this DWO unit.
9599 Put a limit on the number of sections we look for so that bad data
9600 doesn't cause us to loop forever. */
9601
9602 #define MAX_NR_V1_DWO_SECTIONS \
9603 (1 /* .debug_info or .debug_types */ \
9604 + 1 /* .debug_abbrev */ \
9605 + 1 /* .debug_line */ \
9606 + 1 /* .debug_loc */ \
9607 + 1 /* .debug_str_offsets */ \
9608 + 1 /* .debug_macro or .debug_macinfo */ \
9609 + 1 /* trailing zero */)
9610
9611 memset (&sections, 0, sizeof (sections));
9612 cleanups = make_cleanup (null_cleanup, 0);
9613
9614 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9615 {
9616 asection *sectp;
9617 uint32_t section_nr =
9618 read_4_bytes (dbfd,
9619 dwp_htab->section_pool.v1.indices
9620 + (unit_index + i) * sizeof (uint32_t));
9621
9622 if (section_nr == 0)
9623 break;
9624 if (section_nr >= dwp_file->num_sections)
9625 {
9626 error (_("Dwarf Error: bad DWP hash table, section number too large"
9627 " [in module %s]"),
9628 dwp_file->name);
9629 }
9630
9631 sectp = dwp_file->elf_sections[section_nr];
9632 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9633 {
9634 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9635 " [in module %s]"),
9636 dwp_file->name);
9637 }
9638 }
9639
9640 if (i < 2
9641 || dwarf2_section_empty_p (&sections.info_or_types)
9642 || dwarf2_section_empty_p (&sections.abbrev))
9643 {
9644 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9645 " [in module %s]"),
9646 dwp_file->name);
9647 }
9648 if (i == MAX_NR_V1_DWO_SECTIONS)
9649 {
9650 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9651 " [in module %s]"),
9652 dwp_file->name);
9653 }
9654
9655 /* It's easier for the rest of the code if we fake a struct dwo_file and
9656 have dwo_unit "live" in that. At least for now.
9657
9658 The DWP file can be made up of a random collection of CUs and TUs.
9659 However, for each CU + set of TUs that came from the same original DWO
9660 file, we can combine them back into a virtual DWO file to save space
9661 (fewer struct dwo_file objects to allocate). Remember that for really
9662 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9663
9664 virtual_dwo_name =
9665 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9666 get_section_id (&sections.abbrev),
9667 get_section_id (&sections.line),
9668 get_section_id (&sections.loc),
9669 get_section_id (&sections.str_offsets));
9670 make_cleanup (xfree, virtual_dwo_name);
9671 /* Can we use an existing virtual DWO file? */
9672 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9673 /* Create one if necessary. */
9674 if (*dwo_file_slot == NULL)
9675 {
9676 if (dwarf2_read_debug)
9677 {
9678 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9679 virtual_dwo_name);
9680 }
9681 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9682 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9683 virtual_dwo_name,
9684 strlen (virtual_dwo_name));
9685 dwo_file->comp_dir = comp_dir;
9686 dwo_file->sections.abbrev = sections.abbrev;
9687 dwo_file->sections.line = sections.line;
9688 dwo_file->sections.loc = sections.loc;
9689 dwo_file->sections.macinfo = sections.macinfo;
9690 dwo_file->sections.macro = sections.macro;
9691 dwo_file->sections.str_offsets = sections.str_offsets;
9692 /* The "str" section is global to the entire DWP file. */
9693 dwo_file->sections.str = dwp_file->sections.str;
9694 /* The info or types section is assigned below to dwo_unit,
9695 there's no need to record it in dwo_file.
9696 Also, we can't simply record type sections in dwo_file because
9697 we record a pointer into the vector in dwo_unit. As we collect more
9698 types we'll grow the vector and eventually have to reallocate space
9699 for it, invalidating all copies of pointers into the previous
9700 contents. */
9701 *dwo_file_slot = dwo_file;
9702 }
9703 else
9704 {
9705 if (dwarf2_read_debug)
9706 {
9707 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9708 virtual_dwo_name);
9709 }
9710 dwo_file = *dwo_file_slot;
9711 }
9712 do_cleanups (cleanups);
9713
9714 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9715 dwo_unit->dwo_file = dwo_file;
9716 dwo_unit->signature = signature;
9717 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9718 sizeof (struct dwarf2_section_info));
9719 *dwo_unit->section = sections.info_or_types;
9720 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9721
9722 return dwo_unit;
9723 }
9724
9725 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9726 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9727 piece within that section used by a TU/CU, return a virtual section
9728 of just that piece. */
9729
9730 static struct dwarf2_section_info
9731 create_dwp_v2_section (struct dwarf2_section_info *section,
9732 bfd_size_type offset, bfd_size_type size)
9733 {
9734 struct dwarf2_section_info result;
9735 asection *sectp;
9736
9737 gdb_assert (section != NULL);
9738 gdb_assert (!section->is_virtual);
9739
9740 memset (&result, 0, sizeof (result));
9741 result.s.containing_section = section;
9742 result.is_virtual = 1;
9743
9744 if (size == 0)
9745 return result;
9746
9747 sectp = get_section_bfd_section (section);
9748
9749 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9750 bounds of the real section. This is a pretty-rare event, so just
9751 flag an error (easier) instead of a warning and trying to cope. */
9752 if (sectp == NULL
9753 || offset + size > bfd_get_section_size (sectp))
9754 {
9755 bfd *abfd = sectp->owner;
9756
9757 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9758 " in section %s [in module %s]"),
9759 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9760 objfile_name (dwarf2_per_objfile->objfile));
9761 }
9762
9763 result.virtual_offset = offset;
9764 result.size = size;
9765 return result;
9766 }
9767
9768 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9769 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9770 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9771 This is for DWP version 2 files. */
9772
9773 static struct dwo_unit *
9774 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9775 uint32_t unit_index,
9776 const char *comp_dir,
9777 ULONGEST signature, int is_debug_types)
9778 {
9779 struct objfile *objfile = dwarf2_per_objfile->objfile;
9780 const struct dwp_hash_table *dwp_htab =
9781 is_debug_types ? dwp_file->tus : dwp_file->cus;
9782 bfd *dbfd = dwp_file->dbfd;
9783 const char *kind = is_debug_types ? "TU" : "CU";
9784 struct dwo_file *dwo_file;
9785 struct dwo_unit *dwo_unit;
9786 struct virtual_v2_dwo_sections sections;
9787 void **dwo_file_slot;
9788 char *virtual_dwo_name;
9789 struct dwarf2_section_info *cutu;
9790 struct cleanup *cleanups;
9791 int i;
9792
9793 gdb_assert (dwp_file->version == 2);
9794
9795 if (dwarf2_read_debug)
9796 {
9797 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9798 kind,
9799 pulongest (unit_index), hex_string (signature),
9800 dwp_file->name);
9801 }
9802
9803 /* Fetch the section offsets of this DWO unit. */
9804
9805 memset (&sections, 0, sizeof (sections));
9806 cleanups = make_cleanup (null_cleanup, 0);
9807
9808 for (i = 0; i < dwp_htab->nr_columns; ++i)
9809 {
9810 uint32_t offset = read_4_bytes (dbfd,
9811 dwp_htab->section_pool.v2.offsets
9812 + (((unit_index - 1) * dwp_htab->nr_columns
9813 + i)
9814 * sizeof (uint32_t)));
9815 uint32_t size = read_4_bytes (dbfd,
9816 dwp_htab->section_pool.v2.sizes
9817 + (((unit_index - 1) * dwp_htab->nr_columns
9818 + i)
9819 * sizeof (uint32_t)));
9820
9821 switch (dwp_htab->section_pool.v2.section_ids[i])
9822 {
9823 case DW_SECT_INFO:
9824 case DW_SECT_TYPES:
9825 sections.info_or_types_offset = offset;
9826 sections.info_or_types_size = size;
9827 break;
9828 case DW_SECT_ABBREV:
9829 sections.abbrev_offset = offset;
9830 sections.abbrev_size = size;
9831 break;
9832 case DW_SECT_LINE:
9833 sections.line_offset = offset;
9834 sections.line_size = size;
9835 break;
9836 case DW_SECT_LOC:
9837 sections.loc_offset = offset;
9838 sections.loc_size = size;
9839 break;
9840 case DW_SECT_STR_OFFSETS:
9841 sections.str_offsets_offset = offset;
9842 sections.str_offsets_size = size;
9843 break;
9844 case DW_SECT_MACINFO:
9845 sections.macinfo_offset = offset;
9846 sections.macinfo_size = size;
9847 break;
9848 case DW_SECT_MACRO:
9849 sections.macro_offset = offset;
9850 sections.macro_size = size;
9851 break;
9852 }
9853 }
9854
9855 /* It's easier for the rest of the code if we fake a struct dwo_file and
9856 have dwo_unit "live" in that. At least for now.
9857
9858 The DWP file can be made up of a random collection of CUs and TUs.
9859 However, for each CU + set of TUs that came from the same original DWO
9860 file, we can combine them back into a virtual DWO file to save space
9861 (fewer struct dwo_file objects to allocate). Remember that for really
9862 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9863
9864 virtual_dwo_name =
9865 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
9866 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
9867 (long) (sections.line_size ? sections.line_offset : 0),
9868 (long) (sections.loc_size ? sections.loc_offset : 0),
9869 (long) (sections.str_offsets_size
9870 ? sections.str_offsets_offset : 0));
9871 make_cleanup (xfree, virtual_dwo_name);
9872 /* Can we use an existing virtual DWO file? */
9873 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9874 /* Create one if necessary. */
9875 if (*dwo_file_slot == NULL)
9876 {
9877 if (dwarf2_read_debug)
9878 {
9879 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9880 virtual_dwo_name);
9881 }
9882 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9883 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9884 virtual_dwo_name,
9885 strlen (virtual_dwo_name));
9886 dwo_file->comp_dir = comp_dir;
9887 dwo_file->sections.abbrev =
9888 create_dwp_v2_section (&dwp_file->sections.abbrev,
9889 sections.abbrev_offset, sections.abbrev_size);
9890 dwo_file->sections.line =
9891 create_dwp_v2_section (&dwp_file->sections.line,
9892 sections.line_offset, sections.line_size);
9893 dwo_file->sections.loc =
9894 create_dwp_v2_section (&dwp_file->sections.loc,
9895 sections.loc_offset, sections.loc_size);
9896 dwo_file->sections.macinfo =
9897 create_dwp_v2_section (&dwp_file->sections.macinfo,
9898 sections.macinfo_offset, sections.macinfo_size);
9899 dwo_file->sections.macro =
9900 create_dwp_v2_section (&dwp_file->sections.macro,
9901 sections.macro_offset, sections.macro_size);
9902 dwo_file->sections.str_offsets =
9903 create_dwp_v2_section (&dwp_file->sections.str_offsets,
9904 sections.str_offsets_offset,
9905 sections.str_offsets_size);
9906 /* The "str" section is global to the entire DWP file. */
9907 dwo_file->sections.str = dwp_file->sections.str;
9908 /* The info or types section is assigned below to dwo_unit,
9909 there's no need to record it in dwo_file.
9910 Also, we can't simply record type sections in dwo_file because
9911 we record a pointer into the vector in dwo_unit. As we collect more
9912 types we'll grow the vector and eventually have to reallocate space
9913 for it, invalidating all copies of pointers into the previous
9914 contents. */
9915 *dwo_file_slot = dwo_file;
9916 }
9917 else
9918 {
9919 if (dwarf2_read_debug)
9920 {
9921 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9922 virtual_dwo_name);
9923 }
9924 dwo_file = *dwo_file_slot;
9925 }
9926 do_cleanups (cleanups);
9927
9928 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9929 dwo_unit->dwo_file = dwo_file;
9930 dwo_unit->signature = signature;
9931 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9932 sizeof (struct dwarf2_section_info));
9933 *dwo_unit->section = create_dwp_v2_section (is_debug_types
9934 ? &dwp_file->sections.types
9935 : &dwp_file->sections.info,
9936 sections.info_or_types_offset,
9937 sections.info_or_types_size);
9938 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9939
9940 return dwo_unit;
9941 }
9942
9943 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
9944 Returns NULL if the signature isn't found. */
9945
9946 static struct dwo_unit *
9947 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
9948 ULONGEST signature, int is_debug_types)
9949 {
9950 const struct dwp_hash_table *dwp_htab =
9951 is_debug_types ? dwp_file->tus : dwp_file->cus;
9952 bfd *dbfd = dwp_file->dbfd;
9953 uint32_t mask = dwp_htab->nr_slots - 1;
9954 uint32_t hash = signature & mask;
9955 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9956 unsigned int i;
9957 void **slot;
9958 struct dwo_unit find_dwo_cu, *dwo_cu;
9959
9960 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9961 find_dwo_cu.signature = signature;
9962 slot = htab_find_slot (is_debug_types
9963 ? dwp_file->loaded_tus
9964 : dwp_file->loaded_cus,
9965 &find_dwo_cu, INSERT);
9966
9967 if (*slot != NULL)
9968 return *slot;
9969
9970 /* Use a for loop so that we don't loop forever on bad debug info. */
9971 for (i = 0; i < dwp_htab->nr_slots; ++i)
9972 {
9973 ULONGEST signature_in_table;
9974
9975 signature_in_table =
9976 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
9977 if (signature_in_table == signature)
9978 {
9979 uint32_t unit_index =
9980 read_4_bytes (dbfd,
9981 dwp_htab->unit_table + hash * sizeof (uint32_t));
9982
9983 if (dwp_file->version == 1)
9984 {
9985 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
9986 comp_dir, signature,
9987 is_debug_types);
9988 }
9989 else
9990 {
9991 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
9992 comp_dir, signature,
9993 is_debug_types);
9994 }
9995 return *slot;
9996 }
9997 if (signature_in_table == 0)
9998 return NULL;
9999 hash = (hash + hash2) & mask;
10000 }
10001
10002 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10003 " [in module %s]"),
10004 dwp_file->name);
10005 }
10006
10007 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10008 Open the file specified by FILE_NAME and hand it off to BFD for
10009 preliminary analysis. Return a newly initialized bfd *, which
10010 includes a canonicalized copy of FILE_NAME.
10011 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10012 SEARCH_CWD is true if the current directory is to be searched.
10013 It will be searched before debug-file-directory.
10014 If unable to find/open the file, return NULL.
10015 NOTE: This function is derived from symfile_bfd_open. */
10016
10017 static bfd *
10018 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10019 {
10020 bfd *sym_bfd;
10021 int desc, flags;
10022 char *absolute_name;
10023 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10024 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10025 to debug_file_directory. */
10026 char *search_path;
10027 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10028
10029 if (search_cwd)
10030 {
10031 if (*debug_file_directory != '\0')
10032 search_path = concat (".", dirname_separator_string,
10033 debug_file_directory, NULL);
10034 else
10035 search_path = xstrdup (".");
10036 }
10037 else
10038 search_path = xstrdup (debug_file_directory);
10039
10040 flags = OPF_RETURN_REALPATH;
10041 if (is_dwp)
10042 flags |= OPF_SEARCH_IN_PATH;
10043 desc = openp (search_path, flags, file_name,
10044 O_RDONLY | O_BINARY, &absolute_name);
10045 xfree (search_path);
10046 if (desc < 0)
10047 return NULL;
10048
10049 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10050 xfree (absolute_name);
10051 if (sym_bfd == NULL)
10052 return NULL;
10053 bfd_set_cacheable (sym_bfd, 1);
10054
10055 if (!bfd_check_format (sym_bfd, bfd_object))
10056 {
10057 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10058 return NULL;
10059 }
10060
10061 return sym_bfd;
10062 }
10063
10064 /* Try to open DWO file FILE_NAME.
10065 COMP_DIR is the DW_AT_comp_dir attribute.
10066 The result is the bfd handle of the file.
10067 If there is a problem finding or opening the file, return NULL.
10068 Upon success, the canonicalized path of the file is stored in the bfd,
10069 same as symfile_bfd_open. */
10070
10071 static bfd *
10072 open_dwo_file (const char *file_name, const char *comp_dir)
10073 {
10074 bfd *abfd;
10075
10076 if (IS_ABSOLUTE_PATH (file_name))
10077 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10078
10079 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10080
10081 if (comp_dir != NULL)
10082 {
10083 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10084
10085 /* NOTE: If comp_dir is a relative path, this will also try the
10086 search path, which seems useful. */
10087 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10088 xfree (path_to_try);
10089 if (abfd != NULL)
10090 return abfd;
10091 }
10092
10093 /* That didn't work, try debug-file-directory, which, despite its name,
10094 is a list of paths. */
10095
10096 if (*debug_file_directory == '\0')
10097 return NULL;
10098
10099 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10100 }
10101
10102 /* This function is mapped across the sections and remembers the offset and
10103 size of each of the DWO debugging sections we are interested in. */
10104
10105 static void
10106 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10107 {
10108 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10109 const struct dwop_section_names *names = &dwop_section_names;
10110
10111 if (section_is_p (sectp->name, &names->abbrev_dwo))
10112 {
10113 dwo_sections->abbrev.s.asection = sectp;
10114 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10115 }
10116 else if (section_is_p (sectp->name, &names->info_dwo))
10117 {
10118 dwo_sections->info.s.asection = sectp;
10119 dwo_sections->info.size = bfd_get_section_size (sectp);
10120 }
10121 else if (section_is_p (sectp->name, &names->line_dwo))
10122 {
10123 dwo_sections->line.s.asection = sectp;
10124 dwo_sections->line.size = bfd_get_section_size (sectp);
10125 }
10126 else if (section_is_p (sectp->name, &names->loc_dwo))
10127 {
10128 dwo_sections->loc.s.asection = sectp;
10129 dwo_sections->loc.size = bfd_get_section_size (sectp);
10130 }
10131 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10132 {
10133 dwo_sections->macinfo.s.asection = sectp;
10134 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10135 }
10136 else if (section_is_p (sectp->name, &names->macro_dwo))
10137 {
10138 dwo_sections->macro.s.asection = sectp;
10139 dwo_sections->macro.size = bfd_get_section_size (sectp);
10140 }
10141 else if (section_is_p (sectp->name, &names->str_dwo))
10142 {
10143 dwo_sections->str.s.asection = sectp;
10144 dwo_sections->str.size = bfd_get_section_size (sectp);
10145 }
10146 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10147 {
10148 dwo_sections->str_offsets.s.asection = sectp;
10149 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10150 }
10151 else if (section_is_p (sectp->name, &names->types_dwo))
10152 {
10153 struct dwarf2_section_info type_section;
10154
10155 memset (&type_section, 0, sizeof (type_section));
10156 type_section.s.asection = sectp;
10157 type_section.size = bfd_get_section_size (sectp);
10158 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10159 &type_section);
10160 }
10161 }
10162
10163 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10164 by PER_CU. This is for the non-DWP case.
10165 The result is NULL if DWO_NAME can't be found. */
10166
10167 static struct dwo_file *
10168 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10169 const char *dwo_name, const char *comp_dir)
10170 {
10171 struct objfile *objfile = dwarf2_per_objfile->objfile;
10172 struct dwo_file *dwo_file;
10173 bfd *dbfd;
10174 struct cleanup *cleanups;
10175
10176 dbfd = open_dwo_file (dwo_name, comp_dir);
10177 if (dbfd == NULL)
10178 {
10179 if (dwarf2_read_debug)
10180 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10181 return NULL;
10182 }
10183 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10184 dwo_file->dwo_name = dwo_name;
10185 dwo_file->comp_dir = comp_dir;
10186 dwo_file->dbfd = dbfd;
10187
10188 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10189
10190 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10191
10192 dwo_file->cu = create_dwo_cu (dwo_file);
10193
10194 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10195 dwo_file->sections.types);
10196
10197 discard_cleanups (cleanups);
10198
10199 if (dwarf2_read_debug)
10200 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10201
10202 return dwo_file;
10203 }
10204
10205 /* This function is mapped across the sections and remembers the offset and
10206 size of each of the DWP debugging sections common to version 1 and 2 that
10207 we are interested in. */
10208
10209 static void
10210 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10211 void *dwp_file_ptr)
10212 {
10213 struct dwp_file *dwp_file = dwp_file_ptr;
10214 const struct dwop_section_names *names = &dwop_section_names;
10215 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10216
10217 /* Record the ELF section number for later lookup: this is what the
10218 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10219 gdb_assert (elf_section_nr < dwp_file->num_sections);
10220 dwp_file->elf_sections[elf_section_nr] = sectp;
10221
10222 /* Look for specific sections that we need. */
10223 if (section_is_p (sectp->name, &names->str_dwo))
10224 {
10225 dwp_file->sections.str.s.asection = sectp;
10226 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10227 }
10228 else if (section_is_p (sectp->name, &names->cu_index))
10229 {
10230 dwp_file->sections.cu_index.s.asection = sectp;
10231 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10232 }
10233 else if (section_is_p (sectp->name, &names->tu_index))
10234 {
10235 dwp_file->sections.tu_index.s.asection = sectp;
10236 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10237 }
10238 }
10239
10240 /* This function is mapped across the sections and remembers the offset and
10241 size of each of the DWP version 2 debugging sections that we are interested
10242 in. This is split into a separate function because we don't know if we
10243 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10244
10245 static void
10246 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10247 {
10248 struct dwp_file *dwp_file = dwp_file_ptr;
10249 const struct dwop_section_names *names = &dwop_section_names;
10250 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10251
10252 /* Record the ELF section number for later lookup: this is what the
10253 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10254 gdb_assert (elf_section_nr < dwp_file->num_sections);
10255 dwp_file->elf_sections[elf_section_nr] = sectp;
10256
10257 /* Look for specific sections that we need. */
10258 if (section_is_p (sectp->name, &names->abbrev_dwo))
10259 {
10260 dwp_file->sections.abbrev.s.asection = sectp;
10261 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10262 }
10263 else if (section_is_p (sectp->name, &names->info_dwo))
10264 {
10265 dwp_file->sections.info.s.asection = sectp;
10266 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10267 }
10268 else if (section_is_p (sectp->name, &names->line_dwo))
10269 {
10270 dwp_file->sections.line.s.asection = sectp;
10271 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10272 }
10273 else if (section_is_p (sectp->name, &names->loc_dwo))
10274 {
10275 dwp_file->sections.loc.s.asection = sectp;
10276 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10277 }
10278 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10279 {
10280 dwp_file->sections.macinfo.s.asection = sectp;
10281 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10282 }
10283 else if (section_is_p (sectp->name, &names->macro_dwo))
10284 {
10285 dwp_file->sections.macro.s.asection = sectp;
10286 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10287 }
10288 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10289 {
10290 dwp_file->sections.str_offsets.s.asection = sectp;
10291 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10292 }
10293 else if (section_is_p (sectp->name, &names->types_dwo))
10294 {
10295 dwp_file->sections.types.s.asection = sectp;
10296 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10297 }
10298 }
10299
10300 /* Hash function for dwp_file loaded CUs/TUs. */
10301
10302 static hashval_t
10303 hash_dwp_loaded_cutus (const void *item)
10304 {
10305 const struct dwo_unit *dwo_unit = item;
10306
10307 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10308 return dwo_unit->signature;
10309 }
10310
10311 /* Equality function for dwp_file loaded CUs/TUs. */
10312
10313 static int
10314 eq_dwp_loaded_cutus (const void *a, const void *b)
10315 {
10316 const struct dwo_unit *dua = a;
10317 const struct dwo_unit *dub = b;
10318
10319 return dua->signature == dub->signature;
10320 }
10321
10322 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10323
10324 static htab_t
10325 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10326 {
10327 return htab_create_alloc_ex (3,
10328 hash_dwp_loaded_cutus,
10329 eq_dwp_loaded_cutus,
10330 NULL,
10331 &objfile->objfile_obstack,
10332 hashtab_obstack_allocate,
10333 dummy_obstack_deallocate);
10334 }
10335
10336 /* Try to open DWP file FILE_NAME.
10337 The result is the bfd handle of the file.
10338 If there is a problem finding or opening the file, return NULL.
10339 Upon success, the canonicalized path of the file is stored in the bfd,
10340 same as symfile_bfd_open. */
10341
10342 static bfd *
10343 open_dwp_file (const char *file_name)
10344 {
10345 bfd *abfd;
10346
10347 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10348 if (abfd != NULL)
10349 return abfd;
10350
10351 /* Work around upstream bug 15652.
10352 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10353 [Whether that's a "bug" is debatable, but it is getting in our way.]
10354 We have no real idea where the dwp file is, because gdb's realpath-ing
10355 of the executable's path may have discarded the needed info.
10356 [IWBN if the dwp file name was recorded in the executable, akin to
10357 .gnu_debuglink, but that doesn't exist yet.]
10358 Strip the directory from FILE_NAME and search again. */
10359 if (*debug_file_directory != '\0')
10360 {
10361 /* Don't implicitly search the current directory here.
10362 If the user wants to search "." to handle this case,
10363 it must be added to debug-file-directory. */
10364 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10365 0 /*search_cwd*/);
10366 }
10367
10368 return NULL;
10369 }
10370
10371 /* Initialize the use of the DWP file for the current objfile.
10372 By convention the name of the DWP file is ${objfile}.dwp.
10373 The result is NULL if it can't be found. */
10374
10375 static struct dwp_file *
10376 open_and_init_dwp_file (void)
10377 {
10378 struct objfile *objfile = dwarf2_per_objfile->objfile;
10379 struct dwp_file *dwp_file;
10380 char *dwp_name;
10381 bfd *dbfd;
10382 struct cleanup *cleanups;
10383
10384 /* Try to find first .dwp for the binary file before any symbolic links
10385 resolving. */
10386 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10387 cleanups = make_cleanup (xfree, dwp_name);
10388
10389 dbfd = open_dwp_file (dwp_name);
10390 if (dbfd == NULL
10391 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10392 {
10393 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10394 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10395 make_cleanup (xfree, dwp_name);
10396 dbfd = open_dwp_file (dwp_name);
10397 }
10398
10399 if (dbfd == NULL)
10400 {
10401 if (dwarf2_read_debug)
10402 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10403 do_cleanups (cleanups);
10404 return NULL;
10405 }
10406 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10407 dwp_file->name = bfd_get_filename (dbfd);
10408 dwp_file->dbfd = dbfd;
10409 do_cleanups (cleanups);
10410
10411 /* +1: section 0 is unused */
10412 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10413 dwp_file->elf_sections =
10414 OBSTACK_CALLOC (&objfile->objfile_obstack,
10415 dwp_file->num_sections, asection *);
10416
10417 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10418
10419 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10420
10421 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10422
10423 /* The DWP file version is stored in the hash table. Oh well. */
10424 if (dwp_file->cus->version != dwp_file->tus->version)
10425 {
10426 /* Technically speaking, we should try to limp along, but this is
10427 pretty bizarre. */
10428 error (_("Dwarf Error: DWP file CU version %d doesn't match"
10429 " TU version %d [in DWP file %s]"),
10430 dwp_file->cus->version, dwp_file->tus->version, dwp_name);
10431 }
10432 dwp_file->version = dwp_file->cus->version;
10433
10434 if (dwp_file->version == 2)
10435 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10436
10437 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10438 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10439
10440 if (dwarf2_read_debug)
10441 {
10442 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10443 fprintf_unfiltered (gdb_stdlog,
10444 " %s CUs, %s TUs\n",
10445 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10446 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10447 }
10448
10449 return dwp_file;
10450 }
10451
10452 /* Wrapper around open_and_init_dwp_file, only open it once. */
10453
10454 static struct dwp_file *
10455 get_dwp_file (void)
10456 {
10457 if (! dwarf2_per_objfile->dwp_checked)
10458 {
10459 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10460 dwarf2_per_objfile->dwp_checked = 1;
10461 }
10462 return dwarf2_per_objfile->dwp_file;
10463 }
10464
10465 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10466 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10467 or in the DWP file for the objfile, referenced by THIS_UNIT.
10468 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10469 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10470
10471 This is called, for example, when wanting to read a variable with a
10472 complex location. Therefore we don't want to do file i/o for every call.
10473 Therefore we don't want to look for a DWO file on every call.
10474 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10475 then we check if we've already seen DWO_NAME, and only THEN do we check
10476 for a DWO file.
10477
10478 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10479 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10480
10481 static struct dwo_unit *
10482 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10483 const char *dwo_name, const char *comp_dir,
10484 ULONGEST signature, int is_debug_types)
10485 {
10486 struct objfile *objfile = dwarf2_per_objfile->objfile;
10487 const char *kind = is_debug_types ? "TU" : "CU";
10488 void **dwo_file_slot;
10489 struct dwo_file *dwo_file;
10490 struct dwp_file *dwp_file;
10491
10492 /* First see if there's a DWP file.
10493 If we have a DWP file but didn't find the DWO inside it, don't
10494 look for the original DWO file. It makes gdb behave differently
10495 depending on whether one is debugging in the build tree. */
10496
10497 dwp_file = get_dwp_file ();
10498 if (dwp_file != NULL)
10499 {
10500 const struct dwp_hash_table *dwp_htab =
10501 is_debug_types ? dwp_file->tus : dwp_file->cus;
10502
10503 if (dwp_htab != NULL)
10504 {
10505 struct dwo_unit *dwo_cutu =
10506 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10507 signature, is_debug_types);
10508
10509 if (dwo_cutu != NULL)
10510 {
10511 if (dwarf2_read_debug)
10512 {
10513 fprintf_unfiltered (gdb_stdlog,
10514 "Virtual DWO %s %s found: @%s\n",
10515 kind, hex_string (signature),
10516 host_address_to_string (dwo_cutu));
10517 }
10518 return dwo_cutu;
10519 }
10520 }
10521 }
10522 else
10523 {
10524 /* No DWP file, look for the DWO file. */
10525
10526 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10527 if (*dwo_file_slot == NULL)
10528 {
10529 /* Read in the file and build a table of the CUs/TUs it contains. */
10530 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10531 }
10532 /* NOTE: This will be NULL if unable to open the file. */
10533 dwo_file = *dwo_file_slot;
10534
10535 if (dwo_file != NULL)
10536 {
10537 struct dwo_unit *dwo_cutu = NULL;
10538
10539 if (is_debug_types && dwo_file->tus)
10540 {
10541 struct dwo_unit find_dwo_cutu;
10542
10543 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10544 find_dwo_cutu.signature = signature;
10545 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10546 }
10547 else if (!is_debug_types && dwo_file->cu)
10548 {
10549 if (signature == dwo_file->cu->signature)
10550 dwo_cutu = dwo_file->cu;
10551 }
10552
10553 if (dwo_cutu != NULL)
10554 {
10555 if (dwarf2_read_debug)
10556 {
10557 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10558 kind, dwo_name, hex_string (signature),
10559 host_address_to_string (dwo_cutu));
10560 }
10561 return dwo_cutu;
10562 }
10563 }
10564 }
10565
10566 /* We didn't find it. This could mean a dwo_id mismatch, or
10567 someone deleted the DWO/DWP file, or the search path isn't set up
10568 correctly to find the file. */
10569
10570 if (dwarf2_read_debug)
10571 {
10572 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10573 kind, dwo_name, hex_string (signature));
10574 }
10575
10576 /* This is a warning and not a complaint because it can be caused by
10577 pilot error (e.g., user accidentally deleting the DWO). */
10578 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
10579 " [in module %s]"),
10580 kind, dwo_name, hex_string (signature),
10581 this_unit->is_debug_types ? "TU" : "CU",
10582 this_unit->offset.sect_off, objfile_name (objfile));
10583 return NULL;
10584 }
10585
10586 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10587 See lookup_dwo_cutu_unit for details. */
10588
10589 static struct dwo_unit *
10590 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10591 const char *dwo_name, const char *comp_dir,
10592 ULONGEST signature)
10593 {
10594 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10595 }
10596
10597 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10598 See lookup_dwo_cutu_unit for details. */
10599
10600 static struct dwo_unit *
10601 lookup_dwo_type_unit (struct signatured_type *this_tu,
10602 const char *dwo_name, const char *comp_dir)
10603 {
10604 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10605 }
10606
10607 /* Traversal function for queue_and_load_all_dwo_tus. */
10608
10609 static int
10610 queue_and_load_dwo_tu (void **slot, void *info)
10611 {
10612 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10613 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10614 ULONGEST signature = dwo_unit->signature;
10615 struct signatured_type *sig_type =
10616 lookup_dwo_signatured_type (per_cu->cu, signature);
10617
10618 if (sig_type != NULL)
10619 {
10620 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10621
10622 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10623 a real dependency of PER_CU on SIG_TYPE. That is detected later
10624 while processing PER_CU. */
10625 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10626 load_full_type_unit (sig_cu);
10627 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10628 }
10629
10630 return 1;
10631 }
10632
10633 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10634 The DWO may have the only definition of the type, though it may not be
10635 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10636 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10637
10638 static void
10639 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10640 {
10641 struct dwo_unit *dwo_unit;
10642 struct dwo_file *dwo_file;
10643
10644 gdb_assert (!per_cu->is_debug_types);
10645 gdb_assert (get_dwp_file () == NULL);
10646 gdb_assert (per_cu->cu != NULL);
10647
10648 dwo_unit = per_cu->cu->dwo_unit;
10649 gdb_assert (dwo_unit != NULL);
10650
10651 dwo_file = dwo_unit->dwo_file;
10652 if (dwo_file->tus != NULL)
10653 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10654 }
10655
10656 /* Free all resources associated with DWO_FILE.
10657 Close the DWO file and munmap the sections.
10658 All memory should be on the objfile obstack. */
10659
10660 static void
10661 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10662 {
10663 int ix;
10664 struct dwarf2_section_info *section;
10665
10666 /* Note: dbfd is NULL for virtual DWO files. */
10667 gdb_bfd_unref (dwo_file->dbfd);
10668
10669 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10670 }
10671
10672 /* Wrapper for free_dwo_file for use in cleanups. */
10673
10674 static void
10675 free_dwo_file_cleanup (void *arg)
10676 {
10677 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10678 struct objfile *objfile = dwarf2_per_objfile->objfile;
10679
10680 free_dwo_file (dwo_file, objfile);
10681 }
10682
10683 /* Traversal function for free_dwo_files. */
10684
10685 static int
10686 free_dwo_file_from_slot (void **slot, void *info)
10687 {
10688 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10689 struct objfile *objfile = (struct objfile *) info;
10690
10691 free_dwo_file (dwo_file, objfile);
10692
10693 return 1;
10694 }
10695
10696 /* Free all resources associated with DWO_FILES. */
10697
10698 static void
10699 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10700 {
10701 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10702 }
10703 \f
10704 /* Read in various DIEs. */
10705
10706 /* qsort helper for inherit_abstract_dies. */
10707
10708 static int
10709 unsigned_int_compar (const void *ap, const void *bp)
10710 {
10711 unsigned int a = *(unsigned int *) ap;
10712 unsigned int b = *(unsigned int *) bp;
10713
10714 return (a > b) - (b > a);
10715 }
10716
10717 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10718 Inherit only the children of the DW_AT_abstract_origin DIE not being
10719 already referenced by DW_AT_abstract_origin from the children of the
10720 current DIE. */
10721
10722 static void
10723 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10724 {
10725 struct die_info *child_die;
10726 unsigned die_children_count;
10727 /* CU offsets which were referenced by children of the current DIE. */
10728 sect_offset *offsets;
10729 sect_offset *offsets_end, *offsetp;
10730 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10731 struct die_info *origin_die;
10732 /* Iterator of the ORIGIN_DIE children. */
10733 struct die_info *origin_child_die;
10734 struct cleanup *cleanups;
10735 struct attribute *attr;
10736 struct dwarf2_cu *origin_cu;
10737 struct pending **origin_previous_list_in_scope;
10738
10739 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10740 if (!attr)
10741 return;
10742
10743 /* Note that following die references may follow to a die in a
10744 different cu. */
10745
10746 origin_cu = cu;
10747 origin_die = follow_die_ref (die, attr, &origin_cu);
10748
10749 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10750 symbols in. */
10751 origin_previous_list_in_scope = origin_cu->list_in_scope;
10752 origin_cu->list_in_scope = cu->list_in_scope;
10753
10754 if (die->tag != origin_die->tag
10755 && !(die->tag == DW_TAG_inlined_subroutine
10756 && origin_die->tag == DW_TAG_subprogram))
10757 complaint (&symfile_complaints,
10758 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10759 die->offset.sect_off, origin_die->offset.sect_off);
10760
10761 child_die = die->child;
10762 die_children_count = 0;
10763 while (child_die && child_die->tag)
10764 {
10765 child_die = sibling_die (child_die);
10766 die_children_count++;
10767 }
10768 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10769 cleanups = make_cleanup (xfree, offsets);
10770
10771 offsets_end = offsets;
10772 child_die = die->child;
10773 while (child_die && child_die->tag)
10774 {
10775 /* For each CHILD_DIE, find the corresponding child of
10776 ORIGIN_DIE. If there is more than one layer of
10777 DW_AT_abstract_origin, follow them all; there shouldn't be,
10778 but GCC versions at least through 4.4 generate this (GCC PR
10779 40573). */
10780 struct die_info *child_origin_die = child_die;
10781 struct dwarf2_cu *child_origin_cu = cu;
10782
10783 while (1)
10784 {
10785 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10786 child_origin_cu);
10787 if (attr == NULL)
10788 break;
10789 child_origin_die = follow_die_ref (child_origin_die, attr,
10790 &child_origin_cu);
10791 }
10792
10793 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10794 counterpart may exist. */
10795 if (child_origin_die != child_die)
10796 {
10797 if (child_die->tag != child_origin_die->tag
10798 && !(child_die->tag == DW_TAG_inlined_subroutine
10799 && child_origin_die->tag == DW_TAG_subprogram))
10800 complaint (&symfile_complaints,
10801 _("Child DIE 0x%x and its abstract origin 0x%x have "
10802 "different tags"), child_die->offset.sect_off,
10803 child_origin_die->offset.sect_off);
10804 if (child_origin_die->parent != origin_die)
10805 complaint (&symfile_complaints,
10806 _("Child DIE 0x%x and its abstract origin 0x%x have "
10807 "different parents"), child_die->offset.sect_off,
10808 child_origin_die->offset.sect_off);
10809 else
10810 *offsets_end++ = child_origin_die->offset;
10811 }
10812 child_die = sibling_die (child_die);
10813 }
10814 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10815 unsigned_int_compar);
10816 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10817 if (offsetp[-1].sect_off == offsetp->sect_off)
10818 complaint (&symfile_complaints,
10819 _("Multiple children of DIE 0x%x refer "
10820 "to DIE 0x%x as their abstract origin"),
10821 die->offset.sect_off, offsetp->sect_off);
10822
10823 offsetp = offsets;
10824 origin_child_die = origin_die->child;
10825 while (origin_child_die && origin_child_die->tag)
10826 {
10827 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10828 while (offsetp < offsets_end
10829 && offsetp->sect_off < origin_child_die->offset.sect_off)
10830 offsetp++;
10831 if (offsetp >= offsets_end
10832 || offsetp->sect_off > origin_child_die->offset.sect_off)
10833 {
10834 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10835 process_die (origin_child_die, origin_cu);
10836 }
10837 origin_child_die = sibling_die (origin_child_die);
10838 }
10839 origin_cu->list_in_scope = origin_previous_list_in_scope;
10840
10841 do_cleanups (cleanups);
10842 }
10843
10844 static void
10845 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10846 {
10847 struct objfile *objfile = cu->objfile;
10848 struct context_stack *new;
10849 CORE_ADDR lowpc;
10850 CORE_ADDR highpc;
10851 struct die_info *child_die;
10852 struct attribute *attr, *call_line, *call_file;
10853 const char *name;
10854 CORE_ADDR baseaddr;
10855 struct block *block;
10856 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10857 VEC (symbolp) *template_args = NULL;
10858 struct template_symbol *templ_func = NULL;
10859
10860 if (inlined_func)
10861 {
10862 /* If we do not have call site information, we can't show the
10863 caller of this inlined function. That's too confusing, so
10864 only use the scope for local variables. */
10865 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10866 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10867 if (call_line == NULL || call_file == NULL)
10868 {
10869 read_lexical_block_scope (die, cu);
10870 return;
10871 }
10872 }
10873
10874 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10875
10876 name = dwarf2_name (die, cu);
10877
10878 /* Ignore functions with missing or empty names. These are actually
10879 illegal according to the DWARF standard. */
10880 if (name == NULL)
10881 {
10882 complaint (&symfile_complaints,
10883 _("missing name for subprogram DIE at %d"),
10884 die->offset.sect_off);
10885 return;
10886 }
10887
10888 /* Ignore functions with missing or invalid low and high pc attributes. */
10889 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10890 {
10891 attr = dwarf2_attr (die, DW_AT_external, cu);
10892 if (!attr || !DW_UNSND (attr))
10893 complaint (&symfile_complaints,
10894 _("cannot get low and high bounds "
10895 "for subprogram DIE at %d"),
10896 die->offset.sect_off);
10897 return;
10898 }
10899
10900 lowpc += baseaddr;
10901 highpc += baseaddr;
10902
10903 /* If we have any template arguments, then we must allocate a
10904 different sort of symbol. */
10905 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10906 {
10907 if (child_die->tag == DW_TAG_template_type_param
10908 || child_die->tag == DW_TAG_template_value_param)
10909 {
10910 templ_func = allocate_template_symbol (objfile);
10911 templ_func->base.is_cplus_template_function = 1;
10912 break;
10913 }
10914 }
10915
10916 new = push_context (0, lowpc);
10917 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10918 (struct symbol *) templ_func);
10919
10920 /* If there is a location expression for DW_AT_frame_base, record
10921 it. */
10922 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10923 if (attr)
10924 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10925
10926 cu->list_in_scope = &local_symbols;
10927
10928 if (die->child != NULL)
10929 {
10930 child_die = die->child;
10931 while (child_die && child_die->tag)
10932 {
10933 if (child_die->tag == DW_TAG_template_type_param
10934 || child_die->tag == DW_TAG_template_value_param)
10935 {
10936 struct symbol *arg = new_symbol (child_die, NULL, cu);
10937
10938 if (arg != NULL)
10939 VEC_safe_push (symbolp, template_args, arg);
10940 }
10941 else
10942 process_die (child_die, cu);
10943 child_die = sibling_die (child_die);
10944 }
10945 }
10946
10947 inherit_abstract_dies (die, cu);
10948
10949 /* If we have a DW_AT_specification, we might need to import using
10950 directives from the context of the specification DIE. See the
10951 comment in determine_prefix. */
10952 if (cu->language == language_cplus
10953 && dwarf2_attr (die, DW_AT_specification, cu))
10954 {
10955 struct dwarf2_cu *spec_cu = cu;
10956 struct die_info *spec_die = die_specification (die, &spec_cu);
10957
10958 while (spec_die)
10959 {
10960 child_die = spec_die->child;
10961 while (child_die && child_die->tag)
10962 {
10963 if (child_die->tag == DW_TAG_imported_module)
10964 process_die (child_die, spec_cu);
10965 child_die = sibling_die (child_die);
10966 }
10967
10968 /* In some cases, GCC generates specification DIEs that
10969 themselves contain DW_AT_specification attributes. */
10970 spec_die = die_specification (spec_die, &spec_cu);
10971 }
10972 }
10973
10974 new = pop_context ();
10975 /* Make a block for the local symbols within. */
10976 block = finish_block (new->name, &local_symbols, new->old_blocks,
10977 lowpc, highpc, objfile);
10978
10979 /* For C++, set the block's scope. */
10980 if ((cu->language == language_cplus || cu->language == language_fortran)
10981 && cu->processing_has_namespace_info)
10982 block_set_scope (block, determine_prefix (die, cu),
10983 &objfile->objfile_obstack);
10984
10985 /* If we have address ranges, record them. */
10986 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10987
10988 /* Attach template arguments to function. */
10989 if (! VEC_empty (symbolp, template_args))
10990 {
10991 gdb_assert (templ_func != NULL);
10992
10993 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10994 templ_func->template_arguments
10995 = obstack_alloc (&objfile->objfile_obstack,
10996 (templ_func->n_template_arguments
10997 * sizeof (struct symbol *)));
10998 memcpy (templ_func->template_arguments,
10999 VEC_address (symbolp, template_args),
11000 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11001 VEC_free (symbolp, template_args);
11002 }
11003
11004 /* In C++, we can have functions nested inside functions (e.g., when
11005 a function declares a class that has methods). This means that
11006 when we finish processing a function scope, we may need to go
11007 back to building a containing block's symbol lists. */
11008 local_symbols = new->locals;
11009 using_directives = new->using_directives;
11010
11011 /* If we've finished processing a top-level function, subsequent
11012 symbols go in the file symbol list. */
11013 if (outermost_context_p ())
11014 cu->list_in_scope = &file_symbols;
11015 }
11016
11017 /* Process all the DIES contained within a lexical block scope. Start
11018 a new scope, process the dies, and then close the scope. */
11019
11020 static void
11021 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11022 {
11023 struct objfile *objfile = cu->objfile;
11024 struct context_stack *new;
11025 CORE_ADDR lowpc, highpc;
11026 struct die_info *child_die;
11027 CORE_ADDR baseaddr;
11028
11029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11030
11031 /* Ignore blocks with missing or invalid low and high pc attributes. */
11032 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11033 as multiple lexical blocks? Handling children in a sane way would
11034 be nasty. Might be easier to properly extend generic blocks to
11035 describe ranges. */
11036 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11037 return;
11038 lowpc += baseaddr;
11039 highpc += baseaddr;
11040
11041 push_context (0, lowpc);
11042 if (die->child != NULL)
11043 {
11044 child_die = die->child;
11045 while (child_die && child_die->tag)
11046 {
11047 process_die (child_die, cu);
11048 child_die = sibling_die (child_die);
11049 }
11050 }
11051 new = pop_context ();
11052
11053 if (local_symbols != NULL || using_directives != NULL)
11054 {
11055 struct block *block
11056 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11057 highpc, objfile);
11058
11059 /* Note that recording ranges after traversing children, as we
11060 do here, means that recording a parent's ranges entails
11061 walking across all its children's ranges as they appear in
11062 the address map, which is quadratic behavior.
11063
11064 It would be nicer to record the parent's ranges before
11065 traversing its children, simply overriding whatever you find
11066 there. But since we don't even decide whether to create a
11067 block until after we've traversed its children, that's hard
11068 to do. */
11069 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11070 }
11071 local_symbols = new->locals;
11072 using_directives = new->using_directives;
11073 }
11074
11075 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11076
11077 static void
11078 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11079 {
11080 struct objfile *objfile = cu->objfile;
11081 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11082 CORE_ADDR pc, baseaddr;
11083 struct attribute *attr;
11084 struct call_site *call_site, call_site_local;
11085 void **slot;
11086 int nparams;
11087 struct die_info *child_die;
11088
11089 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11090
11091 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11092 if (!attr)
11093 {
11094 complaint (&symfile_complaints,
11095 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11096 "DIE 0x%x [in module %s]"),
11097 die->offset.sect_off, objfile_name (objfile));
11098 return;
11099 }
11100 pc = DW_ADDR (attr) + baseaddr;
11101
11102 if (cu->call_site_htab == NULL)
11103 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11104 NULL, &objfile->objfile_obstack,
11105 hashtab_obstack_allocate, NULL);
11106 call_site_local.pc = pc;
11107 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11108 if (*slot != NULL)
11109 {
11110 complaint (&symfile_complaints,
11111 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11112 "DIE 0x%x [in module %s]"),
11113 paddress (gdbarch, pc), die->offset.sect_off,
11114 objfile_name (objfile));
11115 return;
11116 }
11117
11118 /* Count parameters at the caller. */
11119
11120 nparams = 0;
11121 for (child_die = die->child; child_die && child_die->tag;
11122 child_die = sibling_die (child_die))
11123 {
11124 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11125 {
11126 complaint (&symfile_complaints,
11127 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11128 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11129 child_die->tag, child_die->offset.sect_off,
11130 objfile_name (objfile));
11131 continue;
11132 }
11133
11134 nparams++;
11135 }
11136
11137 call_site = obstack_alloc (&objfile->objfile_obstack,
11138 (sizeof (*call_site)
11139 + (sizeof (*call_site->parameter)
11140 * (nparams - 1))));
11141 *slot = call_site;
11142 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11143 call_site->pc = pc;
11144
11145 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11146 {
11147 struct die_info *func_die;
11148
11149 /* Skip also over DW_TAG_inlined_subroutine. */
11150 for (func_die = die->parent;
11151 func_die && func_die->tag != DW_TAG_subprogram
11152 && func_die->tag != DW_TAG_subroutine_type;
11153 func_die = func_die->parent);
11154
11155 /* DW_AT_GNU_all_call_sites is a superset
11156 of DW_AT_GNU_all_tail_call_sites. */
11157 if (func_die
11158 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11159 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11160 {
11161 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11162 not complete. But keep CALL_SITE for look ups via call_site_htab,
11163 both the initial caller containing the real return address PC and
11164 the final callee containing the current PC of a chain of tail
11165 calls do not need to have the tail call list complete. But any
11166 function candidate for a virtual tail call frame searched via
11167 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11168 determined unambiguously. */
11169 }
11170 else
11171 {
11172 struct type *func_type = NULL;
11173
11174 if (func_die)
11175 func_type = get_die_type (func_die, cu);
11176 if (func_type != NULL)
11177 {
11178 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11179
11180 /* Enlist this call site to the function. */
11181 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11182 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11183 }
11184 else
11185 complaint (&symfile_complaints,
11186 _("Cannot find function owning DW_TAG_GNU_call_site "
11187 "DIE 0x%x [in module %s]"),
11188 die->offset.sect_off, objfile_name (objfile));
11189 }
11190 }
11191
11192 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11193 if (attr == NULL)
11194 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11195 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11196 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11197 /* Keep NULL DWARF_BLOCK. */;
11198 else if (attr_form_is_block (attr))
11199 {
11200 struct dwarf2_locexpr_baton *dlbaton;
11201
11202 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11203 dlbaton->data = DW_BLOCK (attr)->data;
11204 dlbaton->size = DW_BLOCK (attr)->size;
11205 dlbaton->per_cu = cu->per_cu;
11206
11207 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11208 }
11209 else if (attr_form_is_ref (attr))
11210 {
11211 struct dwarf2_cu *target_cu = cu;
11212 struct die_info *target_die;
11213
11214 target_die = follow_die_ref (die, attr, &target_cu);
11215 gdb_assert (target_cu->objfile == objfile);
11216 if (die_is_declaration (target_die, target_cu))
11217 {
11218 const char *target_physname = NULL;
11219 struct attribute *target_attr;
11220
11221 /* Prefer the mangled name; otherwise compute the demangled one. */
11222 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11223 if (target_attr == NULL)
11224 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11225 target_cu);
11226 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11227 target_physname = DW_STRING (target_attr);
11228 else
11229 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11230 if (target_physname == NULL)
11231 complaint (&symfile_complaints,
11232 _("DW_AT_GNU_call_site_target target DIE has invalid "
11233 "physname, for referencing DIE 0x%x [in module %s]"),
11234 die->offset.sect_off, objfile_name (objfile));
11235 else
11236 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11237 }
11238 else
11239 {
11240 CORE_ADDR lowpc;
11241
11242 /* DW_AT_entry_pc should be preferred. */
11243 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11244 complaint (&symfile_complaints,
11245 _("DW_AT_GNU_call_site_target target DIE has invalid "
11246 "low pc, for referencing DIE 0x%x [in module %s]"),
11247 die->offset.sect_off, objfile_name (objfile));
11248 else
11249 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11250 }
11251 }
11252 else
11253 complaint (&symfile_complaints,
11254 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11255 "block nor reference, for DIE 0x%x [in module %s]"),
11256 die->offset.sect_off, objfile_name (objfile));
11257
11258 call_site->per_cu = cu->per_cu;
11259
11260 for (child_die = die->child;
11261 child_die && child_die->tag;
11262 child_die = sibling_die (child_die))
11263 {
11264 struct call_site_parameter *parameter;
11265 struct attribute *loc, *origin;
11266
11267 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11268 {
11269 /* Already printed the complaint above. */
11270 continue;
11271 }
11272
11273 gdb_assert (call_site->parameter_count < nparams);
11274 parameter = &call_site->parameter[call_site->parameter_count];
11275
11276 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11277 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11278 register is contained in DW_AT_GNU_call_site_value. */
11279
11280 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11281 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11282 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11283 {
11284 sect_offset offset;
11285
11286 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11287 offset = dwarf2_get_ref_die_offset (origin);
11288 if (!offset_in_cu_p (&cu->header, offset))
11289 {
11290 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11291 binding can be done only inside one CU. Such referenced DIE
11292 therefore cannot be even moved to DW_TAG_partial_unit. */
11293 complaint (&symfile_complaints,
11294 _("DW_AT_abstract_origin offset is not in CU for "
11295 "DW_TAG_GNU_call_site child DIE 0x%x "
11296 "[in module %s]"),
11297 child_die->offset.sect_off, objfile_name (objfile));
11298 continue;
11299 }
11300 parameter->u.param_offset.cu_off = (offset.sect_off
11301 - cu->header.offset.sect_off);
11302 }
11303 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11304 {
11305 complaint (&symfile_complaints,
11306 _("No DW_FORM_block* DW_AT_location for "
11307 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11308 child_die->offset.sect_off, objfile_name (objfile));
11309 continue;
11310 }
11311 else
11312 {
11313 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11314 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11315 if (parameter->u.dwarf_reg != -1)
11316 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11317 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11318 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11319 &parameter->u.fb_offset))
11320 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11321 else
11322 {
11323 complaint (&symfile_complaints,
11324 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11325 "for DW_FORM_block* DW_AT_location is supported for "
11326 "DW_TAG_GNU_call_site child DIE 0x%x "
11327 "[in module %s]"),
11328 child_die->offset.sect_off, objfile_name (objfile));
11329 continue;
11330 }
11331 }
11332
11333 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11334 if (!attr_form_is_block (attr))
11335 {
11336 complaint (&symfile_complaints,
11337 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11338 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11339 child_die->offset.sect_off, objfile_name (objfile));
11340 continue;
11341 }
11342 parameter->value = DW_BLOCK (attr)->data;
11343 parameter->value_size = DW_BLOCK (attr)->size;
11344
11345 /* Parameters are not pre-cleared by memset above. */
11346 parameter->data_value = NULL;
11347 parameter->data_value_size = 0;
11348 call_site->parameter_count++;
11349
11350 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11351 if (attr)
11352 {
11353 if (!attr_form_is_block (attr))
11354 complaint (&symfile_complaints,
11355 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11356 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11357 child_die->offset.sect_off, objfile_name (objfile));
11358 else
11359 {
11360 parameter->data_value = DW_BLOCK (attr)->data;
11361 parameter->data_value_size = DW_BLOCK (attr)->size;
11362 }
11363 }
11364 }
11365 }
11366
11367 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11368 Return 1 if the attributes are present and valid, otherwise, return 0.
11369 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11370
11371 static int
11372 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11373 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11374 struct partial_symtab *ranges_pst)
11375 {
11376 struct objfile *objfile = cu->objfile;
11377 struct comp_unit_head *cu_header = &cu->header;
11378 bfd *obfd = objfile->obfd;
11379 unsigned int addr_size = cu_header->addr_size;
11380 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11381 /* Base address selection entry. */
11382 CORE_ADDR base;
11383 int found_base;
11384 unsigned int dummy;
11385 const gdb_byte *buffer;
11386 CORE_ADDR marker;
11387 int low_set;
11388 CORE_ADDR low = 0;
11389 CORE_ADDR high = 0;
11390 CORE_ADDR baseaddr;
11391
11392 found_base = cu->base_known;
11393 base = cu->base_address;
11394
11395 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11396 if (offset >= dwarf2_per_objfile->ranges.size)
11397 {
11398 complaint (&symfile_complaints,
11399 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11400 offset);
11401 return 0;
11402 }
11403 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11404
11405 /* Read in the largest possible address. */
11406 marker = read_address (obfd, buffer, cu, &dummy);
11407 if ((marker & mask) == mask)
11408 {
11409 /* If we found the largest possible address, then
11410 read the base address. */
11411 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11412 buffer += 2 * addr_size;
11413 offset += 2 * addr_size;
11414 found_base = 1;
11415 }
11416
11417 low_set = 0;
11418
11419 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11420
11421 while (1)
11422 {
11423 CORE_ADDR range_beginning, range_end;
11424
11425 range_beginning = read_address (obfd, buffer, cu, &dummy);
11426 buffer += addr_size;
11427 range_end = read_address (obfd, buffer, cu, &dummy);
11428 buffer += addr_size;
11429 offset += 2 * addr_size;
11430
11431 /* An end of list marker is a pair of zero addresses. */
11432 if (range_beginning == 0 && range_end == 0)
11433 /* Found the end of list entry. */
11434 break;
11435
11436 /* Each base address selection entry is a pair of 2 values.
11437 The first is the largest possible address, the second is
11438 the base address. Check for a base address here. */
11439 if ((range_beginning & mask) == mask)
11440 {
11441 /* If we found the largest possible address, then
11442 read the base address. */
11443 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11444 found_base = 1;
11445 continue;
11446 }
11447
11448 if (!found_base)
11449 {
11450 /* We have no valid base address for the ranges
11451 data. */
11452 complaint (&symfile_complaints,
11453 _("Invalid .debug_ranges data (no base address)"));
11454 return 0;
11455 }
11456
11457 if (range_beginning > range_end)
11458 {
11459 /* Inverted range entries are invalid. */
11460 complaint (&symfile_complaints,
11461 _("Invalid .debug_ranges data (inverted range)"));
11462 return 0;
11463 }
11464
11465 /* Empty range entries have no effect. */
11466 if (range_beginning == range_end)
11467 continue;
11468
11469 range_beginning += base;
11470 range_end += base;
11471
11472 /* A not-uncommon case of bad debug info.
11473 Don't pollute the addrmap with bad data. */
11474 if (range_beginning + baseaddr == 0
11475 && !dwarf2_per_objfile->has_section_at_zero)
11476 {
11477 complaint (&symfile_complaints,
11478 _(".debug_ranges entry has start address of zero"
11479 " [in module %s]"), objfile_name (objfile));
11480 continue;
11481 }
11482
11483 if (ranges_pst != NULL)
11484 addrmap_set_empty (objfile->psymtabs_addrmap,
11485 range_beginning + baseaddr,
11486 range_end - 1 + baseaddr,
11487 ranges_pst);
11488
11489 /* FIXME: This is recording everything as a low-high
11490 segment of consecutive addresses. We should have a
11491 data structure for discontiguous block ranges
11492 instead. */
11493 if (! low_set)
11494 {
11495 low = range_beginning;
11496 high = range_end;
11497 low_set = 1;
11498 }
11499 else
11500 {
11501 if (range_beginning < low)
11502 low = range_beginning;
11503 if (range_end > high)
11504 high = range_end;
11505 }
11506 }
11507
11508 if (! low_set)
11509 /* If the first entry is an end-of-list marker, the range
11510 describes an empty scope, i.e. no instructions. */
11511 return 0;
11512
11513 if (low_return)
11514 *low_return = low;
11515 if (high_return)
11516 *high_return = high;
11517 return 1;
11518 }
11519
11520 /* Get low and high pc attributes from a die. Return 1 if the attributes
11521 are present and valid, otherwise, return 0. Return -1 if the range is
11522 discontinuous, i.e. derived from DW_AT_ranges information. */
11523
11524 static int
11525 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11526 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11527 struct partial_symtab *pst)
11528 {
11529 struct attribute *attr;
11530 struct attribute *attr_high;
11531 CORE_ADDR low = 0;
11532 CORE_ADDR high = 0;
11533 int ret = 0;
11534
11535 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11536 if (attr_high)
11537 {
11538 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11539 if (attr)
11540 {
11541 low = DW_ADDR (attr);
11542 if (attr_high->form == DW_FORM_addr
11543 || attr_high->form == DW_FORM_GNU_addr_index)
11544 high = DW_ADDR (attr_high);
11545 else
11546 high = low + DW_UNSND (attr_high);
11547 }
11548 else
11549 /* Found high w/o low attribute. */
11550 return 0;
11551
11552 /* Found consecutive range of addresses. */
11553 ret = 1;
11554 }
11555 else
11556 {
11557 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11558 if (attr != NULL)
11559 {
11560 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11561 We take advantage of the fact that DW_AT_ranges does not appear
11562 in DW_TAG_compile_unit of DWO files. */
11563 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11564 unsigned int ranges_offset = (DW_UNSND (attr)
11565 + (need_ranges_base
11566 ? cu->ranges_base
11567 : 0));
11568
11569 /* Value of the DW_AT_ranges attribute is the offset in the
11570 .debug_ranges section. */
11571 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11572 return 0;
11573 /* Found discontinuous range of addresses. */
11574 ret = -1;
11575 }
11576 }
11577
11578 /* read_partial_die has also the strict LOW < HIGH requirement. */
11579 if (high <= low)
11580 return 0;
11581
11582 /* When using the GNU linker, .gnu.linkonce. sections are used to
11583 eliminate duplicate copies of functions and vtables and such.
11584 The linker will arbitrarily choose one and discard the others.
11585 The AT_*_pc values for such functions refer to local labels in
11586 these sections. If the section from that file was discarded, the
11587 labels are not in the output, so the relocs get a value of 0.
11588 If this is a discarded function, mark the pc bounds as invalid,
11589 so that GDB will ignore it. */
11590 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11591 return 0;
11592
11593 *lowpc = low;
11594 if (highpc)
11595 *highpc = high;
11596 return ret;
11597 }
11598
11599 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11600 its low and high PC addresses. Do nothing if these addresses could not
11601 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11602 and HIGHPC to the high address if greater than HIGHPC. */
11603
11604 static void
11605 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11606 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11607 struct dwarf2_cu *cu)
11608 {
11609 CORE_ADDR low, high;
11610 struct die_info *child = die->child;
11611
11612 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11613 {
11614 *lowpc = min (*lowpc, low);
11615 *highpc = max (*highpc, high);
11616 }
11617
11618 /* If the language does not allow nested subprograms (either inside
11619 subprograms or lexical blocks), we're done. */
11620 if (cu->language != language_ada)
11621 return;
11622
11623 /* Check all the children of the given DIE. If it contains nested
11624 subprograms, then check their pc bounds. Likewise, we need to
11625 check lexical blocks as well, as they may also contain subprogram
11626 definitions. */
11627 while (child && child->tag)
11628 {
11629 if (child->tag == DW_TAG_subprogram
11630 || child->tag == DW_TAG_lexical_block)
11631 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11632 child = sibling_die (child);
11633 }
11634 }
11635
11636 /* Get the low and high pc's represented by the scope DIE, and store
11637 them in *LOWPC and *HIGHPC. If the correct values can't be
11638 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11639
11640 static void
11641 get_scope_pc_bounds (struct die_info *die,
11642 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11643 struct dwarf2_cu *cu)
11644 {
11645 CORE_ADDR best_low = (CORE_ADDR) -1;
11646 CORE_ADDR best_high = (CORE_ADDR) 0;
11647 CORE_ADDR current_low, current_high;
11648
11649 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11650 {
11651 best_low = current_low;
11652 best_high = current_high;
11653 }
11654 else
11655 {
11656 struct die_info *child = die->child;
11657
11658 while (child && child->tag)
11659 {
11660 switch (child->tag) {
11661 case DW_TAG_subprogram:
11662 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11663 break;
11664 case DW_TAG_namespace:
11665 case DW_TAG_module:
11666 /* FIXME: carlton/2004-01-16: Should we do this for
11667 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11668 that current GCC's always emit the DIEs corresponding
11669 to definitions of methods of classes as children of a
11670 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11671 the DIEs giving the declarations, which could be
11672 anywhere). But I don't see any reason why the
11673 standards says that they have to be there. */
11674 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11675
11676 if (current_low != ((CORE_ADDR) -1))
11677 {
11678 best_low = min (best_low, current_low);
11679 best_high = max (best_high, current_high);
11680 }
11681 break;
11682 default:
11683 /* Ignore. */
11684 break;
11685 }
11686
11687 child = sibling_die (child);
11688 }
11689 }
11690
11691 *lowpc = best_low;
11692 *highpc = best_high;
11693 }
11694
11695 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11696 in DIE. */
11697
11698 static void
11699 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11700 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11701 {
11702 struct objfile *objfile = cu->objfile;
11703 struct attribute *attr;
11704 struct attribute *attr_high;
11705
11706 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11707 if (attr_high)
11708 {
11709 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11710 if (attr)
11711 {
11712 CORE_ADDR low = DW_ADDR (attr);
11713 CORE_ADDR high;
11714 if (attr_high->form == DW_FORM_addr
11715 || attr_high->form == DW_FORM_GNU_addr_index)
11716 high = DW_ADDR (attr_high);
11717 else
11718 high = low + DW_UNSND (attr_high);
11719
11720 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11721 }
11722 }
11723
11724 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11725 if (attr)
11726 {
11727 bfd *obfd = objfile->obfd;
11728 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11729 We take advantage of the fact that DW_AT_ranges does not appear
11730 in DW_TAG_compile_unit of DWO files. */
11731 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11732
11733 /* The value of the DW_AT_ranges attribute is the offset of the
11734 address range list in the .debug_ranges section. */
11735 unsigned long offset = (DW_UNSND (attr)
11736 + (need_ranges_base ? cu->ranges_base : 0));
11737 const gdb_byte *buffer;
11738
11739 /* For some target architectures, but not others, the
11740 read_address function sign-extends the addresses it returns.
11741 To recognize base address selection entries, we need a
11742 mask. */
11743 unsigned int addr_size = cu->header.addr_size;
11744 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11745
11746 /* The base address, to which the next pair is relative. Note
11747 that this 'base' is a DWARF concept: most entries in a range
11748 list are relative, to reduce the number of relocs against the
11749 debugging information. This is separate from this function's
11750 'baseaddr' argument, which GDB uses to relocate debugging
11751 information from a shared library based on the address at
11752 which the library was loaded. */
11753 CORE_ADDR base = cu->base_address;
11754 int base_known = cu->base_known;
11755
11756 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11757 if (offset >= dwarf2_per_objfile->ranges.size)
11758 {
11759 complaint (&symfile_complaints,
11760 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11761 offset);
11762 return;
11763 }
11764 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11765
11766 for (;;)
11767 {
11768 unsigned int bytes_read;
11769 CORE_ADDR start, end;
11770
11771 start = read_address (obfd, buffer, cu, &bytes_read);
11772 buffer += bytes_read;
11773 end = read_address (obfd, buffer, cu, &bytes_read);
11774 buffer += bytes_read;
11775
11776 /* Did we find the end of the range list? */
11777 if (start == 0 && end == 0)
11778 break;
11779
11780 /* Did we find a base address selection entry? */
11781 else if ((start & base_select_mask) == base_select_mask)
11782 {
11783 base = end;
11784 base_known = 1;
11785 }
11786
11787 /* We found an ordinary address range. */
11788 else
11789 {
11790 if (!base_known)
11791 {
11792 complaint (&symfile_complaints,
11793 _("Invalid .debug_ranges data "
11794 "(no base address)"));
11795 return;
11796 }
11797
11798 if (start > end)
11799 {
11800 /* Inverted range entries are invalid. */
11801 complaint (&symfile_complaints,
11802 _("Invalid .debug_ranges data "
11803 "(inverted range)"));
11804 return;
11805 }
11806
11807 /* Empty range entries have no effect. */
11808 if (start == end)
11809 continue;
11810
11811 start += base + baseaddr;
11812 end += base + baseaddr;
11813
11814 /* A not-uncommon case of bad debug info.
11815 Don't pollute the addrmap with bad data. */
11816 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11817 {
11818 complaint (&symfile_complaints,
11819 _(".debug_ranges entry has start address of zero"
11820 " [in module %s]"), objfile_name (objfile));
11821 continue;
11822 }
11823
11824 record_block_range (block, start, end - 1);
11825 }
11826 }
11827 }
11828 }
11829
11830 /* Check whether the producer field indicates either of GCC < 4.6, or the
11831 Intel C/C++ compiler, and cache the result in CU. */
11832
11833 static void
11834 check_producer (struct dwarf2_cu *cu)
11835 {
11836 const char *cs;
11837 int major, minor, release;
11838
11839 if (cu->producer == NULL)
11840 {
11841 /* For unknown compilers expect their behavior is DWARF version
11842 compliant.
11843
11844 GCC started to support .debug_types sections by -gdwarf-4 since
11845 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11846 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11847 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11848 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11849 }
11850 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11851 {
11852 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11853
11854 cs = &cu->producer[strlen ("GNU ")];
11855 while (*cs && !isdigit (*cs))
11856 cs++;
11857 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11858 {
11859 /* Not recognized as GCC. */
11860 }
11861 else
11862 {
11863 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11864 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11865 }
11866 }
11867 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11868 cu->producer_is_icc = 1;
11869 else
11870 {
11871 /* For other non-GCC compilers, expect their behavior is DWARF version
11872 compliant. */
11873 }
11874
11875 cu->checked_producer = 1;
11876 }
11877
11878 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11879 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11880 during 4.6.0 experimental. */
11881
11882 static int
11883 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11884 {
11885 if (!cu->checked_producer)
11886 check_producer (cu);
11887
11888 return cu->producer_is_gxx_lt_4_6;
11889 }
11890
11891 /* Return the default accessibility type if it is not overriden by
11892 DW_AT_accessibility. */
11893
11894 static enum dwarf_access_attribute
11895 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11896 {
11897 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11898 {
11899 /* The default DWARF 2 accessibility for members is public, the default
11900 accessibility for inheritance is private. */
11901
11902 if (die->tag != DW_TAG_inheritance)
11903 return DW_ACCESS_public;
11904 else
11905 return DW_ACCESS_private;
11906 }
11907 else
11908 {
11909 /* DWARF 3+ defines the default accessibility a different way. The same
11910 rules apply now for DW_TAG_inheritance as for the members and it only
11911 depends on the container kind. */
11912
11913 if (die->parent->tag == DW_TAG_class_type)
11914 return DW_ACCESS_private;
11915 else
11916 return DW_ACCESS_public;
11917 }
11918 }
11919
11920 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11921 offset. If the attribute was not found return 0, otherwise return
11922 1. If it was found but could not properly be handled, set *OFFSET
11923 to 0. */
11924
11925 static int
11926 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11927 LONGEST *offset)
11928 {
11929 struct attribute *attr;
11930
11931 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11932 if (attr != NULL)
11933 {
11934 *offset = 0;
11935
11936 /* Note that we do not check for a section offset first here.
11937 This is because DW_AT_data_member_location is new in DWARF 4,
11938 so if we see it, we can assume that a constant form is really
11939 a constant and not a section offset. */
11940 if (attr_form_is_constant (attr))
11941 *offset = dwarf2_get_attr_constant_value (attr, 0);
11942 else if (attr_form_is_section_offset (attr))
11943 dwarf2_complex_location_expr_complaint ();
11944 else if (attr_form_is_block (attr))
11945 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11946 else
11947 dwarf2_complex_location_expr_complaint ();
11948
11949 return 1;
11950 }
11951
11952 return 0;
11953 }
11954
11955 /* Add an aggregate field to the field list. */
11956
11957 static void
11958 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11959 struct dwarf2_cu *cu)
11960 {
11961 struct objfile *objfile = cu->objfile;
11962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11963 struct nextfield *new_field;
11964 struct attribute *attr;
11965 struct field *fp;
11966 const char *fieldname = "";
11967
11968 /* Allocate a new field list entry and link it in. */
11969 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11970 make_cleanup (xfree, new_field);
11971 memset (new_field, 0, sizeof (struct nextfield));
11972
11973 if (die->tag == DW_TAG_inheritance)
11974 {
11975 new_field->next = fip->baseclasses;
11976 fip->baseclasses = new_field;
11977 }
11978 else
11979 {
11980 new_field->next = fip->fields;
11981 fip->fields = new_field;
11982 }
11983 fip->nfields++;
11984
11985 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11986 if (attr)
11987 new_field->accessibility = DW_UNSND (attr);
11988 else
11989 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11990 if (new_field->accessibility != DW_ACCESS_public)
11991 fip->non_public_fields = 1;
11992
11993 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11994 if (attr)
11995 new_field->virtuality = DW_UNSND (attr);
11996 else
11997 new_field->virtuality = DW_VIRTUALITY_none;
11998
11999 fp = &new_field->field;
12000
12001 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12002 {
12003 LONGEST offset;
12004
12005 /* Data member other than a C++ static data member. */
12006
12007 /* Get type of field. */
12008 fp->type = die_type (die, cu);
12009
12010 SET_FIELD_BITPOS (*fp, 0);
12011
12012 /* Get bit size of field (zero if none). */
12013 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12014 if (attr)
12015 {
12016 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12017 }
12018 else
12019 {
12020 FIELD_BITSIZE (*fp) = 0;
12021 }
12022
12023 /* Get bit offset of field. */
12024 if (handle_data_member_location (die, cu, &offset))
12025 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12026 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12027 if (attr)
12028 {
12029 if (gdbarch_bits_big_endian (gdbarch))
12030 {
12031 /* For big endian bits, the DW_AT_bit_offset gives the
12032 additional bit offset from the MSB of the containing
12033 anonymous object to the MSB of the field. We don't
12034 have to do anything special since we don't need to
12035 know the size of the anonymous object. */
12036 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12037 }
12038 else
12039 {
12040 /* For little endian bits, compute the bit offset to the
12041 MSB of the anonymous object, subtract off the number of
12042 bits from the MSB of the field to the MSB of the
12043 object, and then subtract off the number of bits of
12044 the field itself. The result is the bit offset of
12045 the LSB of the field. */
12046 int anonymous_size;
12047 int bit_offset = DW_UNSND (attr);
12048
12049 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12050 if (attr)
12051 {
12052 /* The size of the anonymous object containing
12053 the bit field is explicit, so use the
12054 indicated size (in bytes). */
12055 anonymous_size = DW_UNSND (attr);
12056 }
12057 else
12058 {
12059 /* The size of the anonymous object containing
12060 the bit field must be inferred from the type
12061 attribute of the data member containing the
12062 bit field. */
12063 anonymous_size = TYPE_LENGTH (fp->type);
12064 }
12065 SET_FIELD_BITPOS (*fp,
12066 (FIELD_BITPOS (*fp)
12067 + anonymous_size * bits_per_byte
12068 - bit_offset - FIELD_BITSIZE (*fp)));
12069 }
12070 }
12071
12072 /* Get name of field. */
12073 fieldname = dwarf2_name (die, cu);
12074 if (fieldname == NULL)
12075 fieldname = "";
12076
12077 /* The name is already allocated along with this objfile, so we don't
12078 need to duplicate it for the type. */
12079 fp->name = fieldname;
12080
12081 /* Change accessibility for artificial fields (e.g. virtual table
12082 pointer or virtual base class pointer) to private. */
12083 if (dwarf2_attr (die, DW_AT_artificial, cu))
12084 {
12085 FIELD_ARTIFICIAL (*fp) = 1;
12086 new_field->accessibility = DW_ACCESS_private;
12087 fip->non_public_fields = 1;
12088 }
12089 }
12090 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12091 {
12092 /* C++ static member. */
12093
12094 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12095 is a declaration, but all versions of G++ as of this writing
12096 (so through at least 3.2.1) incorrectly generate
12097 DW_TAG_variable tags. */
12098
12099 const char *physname;
12100
12101 /* Get name of field. */
12102 fieldname = dwarf2_name (die, cu);
12103 if (fieldname == NULL)
12104 return;
12105
12106 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12107 if (attr
12108 /* Only create a symbol if this is an external value.
12109 new_symbol checks this and puts the value in the global symbol
12110 table, which we want. If it is not external, new_symbol
12111 will try to put the value in cu->list_in_scope which is wrong. */
12112 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12113 {
12114 /* A static const member, not much different than an enum as far as
12115 we're concerned, except that we can support more types. */
12116 new_symbol (die, NULL, cu);
12117 }
12118
12119 /* Get physical name. */
12120 physname = dwarf2_physname (fieldname, die, cu);
12121
12122 /* The name is already allocated along with this objfile, so we don't
12123 need to duplicate it for the type. */
12124 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12125 FIELD_TYPE (*fp) = die_type (die, cu);
12126 FIELD_NAME (*fp) = fieldname;
12127 }
12128 else if (die->tag == DW_TAG_inheritance)
12129 {
12130 LONGEST offset;
12131
12132 /* C++ base class field. */
12133 if (handle_data_member_location (die, cu, &offset))
12134 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12135 FIELD_BITSIZE (*fp) = 0;
12136 FIELD_TYPE (*fp) = die_type (die, cu);
12137 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12138 fip->nbaseclasses++;
12139 }
12140 }
12141
12142 /* Add a typedef defined in the scope of the FIP's class. */
12143
12144 static void
12145 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12146 struct dwarf2_cu *cu)
12147 {
12148 struct objfile *objfile = cu->objfile;
12149 struct typedef_field_list *new_field;
12150 struct attribute *attr;
12151 struct typedef_field *fp;
12152 char *fieldname = "";
12153
12154 /* Allocate a new field list entry and link it in. */
12155 new_field = xzalloc (sizeof (*new_field));
12156 make_cleanup (xfree, new_field);
12157
12158 gdb_assert (die->tag == DW_TAG_typedef);
12159
12160 fp = &new_field->field;
12161
12162 /* Get name of field. */
12163 fp->name = dwarf2_name (die, cu);
12164 if (fp->name == NULL)
12165 return;
12166
12167 fp->type = read_type_die (die, cu);
12168
12169 new_field->next = fip->typedef_field_list;
12170 fip->typedef_field_list = new_field;
12171 fip->typedef_field_list_count++;
12172 }
12173
12174 /* Create the vector of fields, and attach it to the type. */
12175
12176 static void
12177 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12178 struct dwarf2_cu *cu)
12179 {
12180 int nfields = fip->nfields;
12181
12182 /* Record the field count, allocate space for the array of fields,
12183 and create blank accessibility bitfields if necessary. */
12184 TYPE_NFIELDS (type) = nfields;
12185 TYPE_FIELDS (type) = (struct field *)
12186 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12187 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12188
12189 if (fip->non_public_fields && cu->language != language_ada)
12190 {
12191 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12192
12193 TYPE_FIELD_PRIVATE_BITS (type) =
12194 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12195 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12196
12197 TYPE_FIELD_PROTECTED_BITS (type) =
12198 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12199 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12200
12201 TYPE_FIELD_IGNORE_BITS (type) =
12202 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12203 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12204 }
12205
12206 /* If the type has baseclasses, allocate and clear a bit vector for
12207 TYPE_FIELD_VIRTUAL_BITS. */
12208 if (fip->nbaseclasses && cu->language != language_ada)
12209 {
12210 int num_bytes = B_BYTES (fip->nbaseclasses);
12211 unsigned char *pointer;
12212
12213 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12214 pointer = TYPE_ALLOC (type, num_bytes);
12215 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12216 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12217 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12218 }
12219
12220 /* Copy the saved-up fields into the field vector. Start from the head of
12221 the list, adding to the tail of the field array, so that they end up in
12222 the same order in the array in which they were added to the list. */
12223 while (nfields-- > 0)
12224 {
12225 struct nextfield *fieldp;
12226
12227 if (fip->fields)
12228 {
12229 fieldp = fip->fields;
12230 fip->fields = fieldp->next;
12231 }
12232 else
12233 {
12234 fieldp = fip->baseclasses;
12235 fip->baseclasses = fieldp->next;
12236 }
12237
12238 TYPE_FIELD (type, nfields) = fieldp->field;
12239 switch (fieldp->accessibility)
12240 {
12241 case DW_ACCESS_private:
12242 if (cu->language != language_ada)
12243 SET_TYPE_FIELD_PRIVATE (type, nfields);
12244 break;
12245
12246 case DW_ACCESS_protected:
12247 if (cu->language != language_ada)
12248 SET_TYPE_FIELD_PROTECTED (type, nfields);
12249 break;
12250
12251 case DW_ACCESS_public:
12252 break;
12253
12254 default:
12255 /* Unknown accessibility. Complain and treat it as public. */
12256 {
12257 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12258 fieldp->accessibility);
12259 }
12260 break;
12261 }
12262 if (nfields < fip->nbaseclasses)
12263 {
12264 switch (fieldp->virtuality)
12265 {
12266 case DW_VIRTUALITY_virtual:
12267 case DW_VIRTUALITY_pure_virtual:
12268 if (cu->language == language_ada)
12269 error (_("unexpected virtuality in component of Ada type"));
12270 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12271 break;
12272 }
12273 }
12274 }
12275 }
12276
12277 /* Return true if this member function is a constructor, false
12278 otherwise. */
12279
12280 static int
12281 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12282 {
12283 const char *fieldname;
12284 const char *typename;
12285 int len;
12286
12287 if (die->parent == NULL)
12288 return 0;
12289
12290 if (die->parent->tag != DW_TAG_structure_type
12291 && die->parent->tag != DW_TAG_union_type
12292 && die->parent->tag != DW_TAG_class_type)
12293 return 0;
12294
12295 fieldname = dwarf2_name (die, cu);
12296 typename = dwarf2_name (die->parent, cu);
12297 if (fieldname == NULL || typename == NULL)
12298 return 0;
12299
12300 len = strlen (fieldname);
12301 return (strncmp (fieldname, typename, len) == 0
12302 && (typename[len] == '\0' || typename[len] == '<'));
12303 }
12304
12305 /* Add a member function to the proper fieldlist. */
12306
12307 static void
12308 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12309 struct type *type, struct dwarf2_cu *cu)
12310 {
12311 struct objfile *objfile = cu->objfile;
12312 struct attribute *attr;
12313 struct fnfieldlist *flp;
12314 int i;
12315 struct fn_field *fnp;
12316 const char *fieldname;
12317 struct nextfnfield *new_fnfield;
12318 struct type *this_type;
12319 enum dwarf_access_attribute accessibility;
12320
12321 if (cu->language == language_ada)
12322 error (_("unexpected member function in Ada type"));
12323
12324 /* Get name of member function. */
12325 fieldname = dwarf2_name (die, cu);
12326 if (fieldname == NULL)
12327 return;
12328
12329 /* Look up member function name in fieldlist. */
12330 for (i = 0; i < fip->nfnfields; i++)
12331 {
12332 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12333 break;
12334 }
12335
12336 /* Create new list element if necessary. */
12337 if (i < fip->nfnfields)
12338 flp = &fip->fnfieldlists[i];
12339 else
12340 {
12341 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12342 {
12343 fip->fnfieldlists = (struct fnfieldlist *)
12344 xrealloc (fip->fnfieldlists,
12345 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12346 * sizeof (struct fnfieldlist));
12347 if (fip->nfnfields == 0)
12348 make_cleanup (free_current_contents, &fip->fnfieldlists);
12349 }
12350 flp = &fip->fnfieldlists[fip->nfnfields];
12351 flp->name = fieldname;
12352 flp->length = 0;
12353 flp->head = NULL;
12354 i = fip->nfnfields++;
12355 }
12356
12357 /* Create a new member function field and chain it to the field list
12358 entry. */
12359 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12360 make_cleanup (xfree, new_fnfield);
12361 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12362 new_fnfield->next = flp->head;
12363 flp->head = new_fnfield;
12364 flp->length++;
12365
12366 /* Fill in the member function field info. */
12367 fnp = &new_fnfield->fnfield;
12368
12369 /* Delay processing of the physname until later. */
12370 if (cu->language == language_cplus || cu->language == language_java)
12371 {
12372 add_to_method_list (type, i, flp->length - 1, fieldname,
12373 die, cu);
12374 }
12375 else
12376 {
12377 const char *physname = dwarf2_physname (fieldname, die, cu);
12378 fnp->physname = physname ? physname : "";
12379 }
12380
12381 fnp->type = alloc_type (objfile);
12382 this_type = read_type_die (die, cu);
12383 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12384 {
12385 int nparams = TYPE_NFIELDS (this_type);
12386
12387 /* TYPE is the domain of this method, and THIS_TYPE is the type
12388 of the method itself (TYPE_CODE_METHOD). */
12389 smash_to_method_type (fnp->type, type,
12390 TYPE_TARGET_TYPE (this_type),
12391 TYPE_FIELDS (this_type),
12392 TYPE_NFIELDS (this_type),
12393 TYPE_VARARGS (this_type));
12394
12395 /* Handle static member functions.
12396 Dwarf2 has no clean way to discern C++ static and non-static
12397 member functions. G++ helps GDB by marking the first
12398 parameter for non-static member functions (which is the this
12399 pointer) as artificial. We obtain this information from
12400 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12401 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12402 fnp->voffset = VOFFSET_STATIC;
12403 }
12404 else
12405 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12406 dwarf2_full_name (fieldname, die, cu));
12407
12408 /* Get fcontext from DW_AT_containing_type if present. */
12409 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12410 fnp->fcontext = die_containing_type (die, cu);
12411
12412 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12413 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12414
12415 /* Get accessibility. */
12416 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12417 if (attr)
12418 accessibility = DW_UNSND (attr);
12419 else
12420 accessibility = dwarf2_default_access_attribute (die, cu);
12421 switch (accessibility)
12422 {
12423 case DW_ACCESS_private:
12424 fnp->is_private = 1;
12425 break;
12426 case DW_ACCESS_protected:
12427 fnp->is_protected = 1;
12428 break;
12429 }
12430
12431 /* Check for artificial methods. */
12432 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12433 if (attr && DW_UNSND (attr) != 0)
12434 fnp->is_artificial = 1;
12435
12436 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12437
12438 /* Get index in virtual function table if it is a virtual member
12439 function. For older versions of GCC, this is an offset in the
12440 appropriate virtual table, as specified by DW_AT_containing_type.
12441 For everyone else, it is an expression to be evaluated relative
12442 to the object address. */
12443
12444 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12445 if (attr)
12446 {
12447 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12448 {
12449 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12450 {
12451 /* Old-style GCC. */
12452 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12453 }
12454 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12455 || (DW_BLOCK (attr)->size > 1
12456 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12457 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12458 {
12459 struct dwarf_block blk;
12460 int offset;
12461
12462 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12463 ? 1 : 2);
12464 blk.size = DW_BLOCK (attr)->size - offset;
12465 blk.data = DW_BLOCK (attr)->data + offset;
12466 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12467 if ((fnp->voffset % cu->header.addr_size) != 0)
12468 dwarf2_complex_location_expr_complaint ();
12469 else
12470 fnp->voffset /= cu->header.addr_size;
12471 fnp->voffset += 2;
12472 }
12473 else
12474 dwarf2_complex_location_expr_complaint ();
12475
12476 if (!fnp->fcontext)
12477 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12478 }
12479 else if (attr_form_is_section_offset (attr))
12480 {
12481 dwarf2_complex_location_expr_complaint ();
12482 }
12483 else
12484 {
12485 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12486 fieldname);
12487 }
12488 }
12489 else
12490 {
12491 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12492 if (attr && DW_UNSND (attr))
12493 {
12494 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12495 complaint (&symfile_complaints,
12496 _("Member function \"%s\" (offset %d) is virtual "
12497 "but the vtable offset is not specified"),
12498 fieldname, die->offset.sect_off);
12499 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12500 TYPE_CPLUS_DYNAMIC (type) = 1;
12501 }
12502 }
12503 }
12504
12505 /* Create the vector of member function fields, and attach it to the type. */
12506
12507 static void
12508 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12509 struct dwarf2_cu *cu)
12510 {
12511 struct fnfieldlist *flp;
12512 int i;
12513
12514 if (cu->language == language_ada)
12515 error (_("unexpected member functions in Ada type"));
12516
12517 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12518 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12519 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12520
12521 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12522 {
12523 struct nextfnfield *nfp = flp->head;
12524 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12525 int k;
12526
12527 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12528 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12529 fn_flp->fn_fields = (struct fn_field *)
12530 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12531 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12532 fn_flp->fn_fields[k] = nfp->fnfield;
12533 }
12534
12535 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12536 }
12537
12538 /* Returns non-zero if NAME is the name of a vtable member in CU's
12539 language, zero otherwise. */
12540 static int
12541 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12542 {
12543 static const char vptr[] = "_vptr";
12544 static const char vtable[] = "vtable";
12545
12546 /* Look for the C++ and Java forms of the vtable. */
12547 if ((cu->language == language_java
12548 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12549 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12550 && is_cplus_marker (name[sizeof (vptr) - 1])))
12551 return 1;
12552
12553 return 0;
12554 }
12555
12556 /* GCC outputs unnamed structures that are really pointers to member
12557 functions, with the ABI-specified layout. If TYPE describes
12558 such a structure, smash it into a member function type.
12559
12560 GCC shouldn't do this; it should just output pointer to member DIEs.
12561 This is GCC PR debug/28767. */
12562
12563 static void
12564 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12565 {
12566 struct type *pfn_type, *domain_type, *new_type;
12567
12568 /* Check for a structure with no name and two children. */
12569 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12570 return;
12571
12572 /* Check for __pfn and __delta members. */
12573 if (TYPE_FIELD_NAME (type, 0) == NULL
12574 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12575 || TYPE_FIELD_NAME (type, 1) == NULL
12576 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12577 return;
12578
12579 /* Find the type of the method. */
12580 pfn_type = TYPE_FIELD_TYPE (type, 0);
12581 if (pfn_type == NULL
12582 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12583 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12584 return;
12585
12586 /* Look for the "this" argument. */
12587 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12588 if (TYPE_NFIELDS (pfn_type) == 0
12589 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12590 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12591 return;
12592
12593 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12594 new_type = alloc_type (objfile);
12595 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12596 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12597 TYPE_VARARGS (pfn_type));
12598 smash_to_methodptr_type (type, new_type);
12599 }
12600
12601 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12602 (icc). */
12603
12604 static int
12605 producer_is_icc (struct dwarf2_cu *cu)
12606 {
12607 if (!cu->checked_producer)
12608 check_producer (cu);
12609
12610 return cu->producer_is_icc;
12611 }
12612
12613 /* Called when we find the DIE that starts a structure or union scope
12614 (definition) to create a type for the structure or union. Fill in
12615 the type's name and general properties; the members will not be
12616 processed until process_structure_scope.
12617
12618 NOTE: we need to call these functions regardless of whether or not the
12619 DIE has a DW_AT_name attribute, since it might be an anonymous
12620 structure or union. This gets the type entered into our set of
12621 user defined types.
12622
12623 However, if the structure is incomplete (an opaque struct/union)
12624 then suppress creating a symbol table entry for it since gdb only
12625 wants to find the one with the complete definition. Note that if
12626 it is complete, we just call new_symbol, which does it's own
12627 checking about whether the struct/union is anonymous or not (and
12628 suppresses creating a symbol table entry itself). */
12629
12630 static struct type *
12631 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12632 {
12633 struct objfile *objfile = cu->objfile;
12634 struct type *type;
12635 struct attribute *attr;
12636 const char *name;
12637
12638 /* If the definition of this type lives in .debug_types, read that type.
12639 Don't follow DW_AT_specification though, that will take us back up
12640 the chain and we want to go down. */
12641 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12642 if (attr)
12643 {
12644 type = get_DW_AT_signature_type (die, attr, cu);
12645
12646 /* The type's CU may not be the same as CU.
12647 Ensure TYPE is recorded with CU in die_type_hash. */
12648 return set_die_type (die, type, cu);
12649 }
12650
12651 type = alloc_type (objfile);
12652 INIT_CPLUS_SPECIFIC (type);
12653
12654 name = dwarf2_name (die, cu);
12655 if (name != NULL)
12656 {
12657 if (cu->language == language_cplus
12658 || cu->language == language_java)
12659 {
12660 const char *full_name = dwarf2_full_name (name, die, cu);
12661
12662 /* dwarf2_full_name might have already finished building the DIE's
12663 type. If so, there is no need to continue. */
12664 if (get_die_type (die, cu) != NULL)
12665 return get_die_type (die, cu);
12666
12667 TYPE_TAG_NAME (type) = full_name;
12668 if (die->tag == DW_TAG_structure_type
12669 || die->tag == DW_TAG_class_type)
12670 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12671 }
12672 else
12673 {
12674 /* The name is already allocated along with this objfile, so
12675 we don't need to duplicate it for the type. */
12676 TYPE_TAG_NAME (type) = name;
12677 if (die->tag == DW_TAG_class_type)
12678 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12679 }
12680 }
12681
12682 if (die->tag == DW_TAG_structure_type)
12683 {
12684 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12685 }
12686 else if (die->tag == DW_TAG_union_type)
12687 {
12688 TYPE_CODE (type) = TYPE_CODE_UNION;
12689 }
12690 else
12691 {
12692 TYPE_CODE (type) = TYPE_CODE_CLASS;
12693 }
12694
12695 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12696 TYPE_DECLARED_CLASS (type) = 1;
12697
12698 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12699 if (attr)
12700 {
12701 TYPE_LENGTH (type) = DW_UNSND (attr);
12702 }
12703 else
12704 {
12705 TYPE_LENGTH (type) = 0;
12706 }
12707
12708 if (producer_is_icc (cu))
12709 {
12710 /* ICC does not output the required DW_AT_declaration
12711 on incomplete types, but gives them a size of zero. */
12712 }
12713 else
12714 TYPE_STUB_SUPPORTED (type) = 1;
12715
12716 if (die_is_declaration (die, cu))
12717 TYPE_STUB (type) = 1;
12718 else if (attr == NULL && die->child == NULL
12719 && producer_is_realview (cu->producer))
12720 /* RealView does not output the required DW_AT_declaration
12721 on incomplete types. */
12722 TYPE_STUB (type) = 1;
12723
12724 /* We need to add the type field to the die immediately so we don't
12725 infinitely recurse when dealing with pointers to the structure
12726 type within the structure itself. */
12727 set_die_type (die, type, cu);
12728
12729 /* set_die_type should be already done. */
12730 set_descriptive_type (type, die, cu);
12731
12732 return type;
12733 }
12734
12735 /* Finish creating a structure or union type, including filling in
12736 its members and creating a symbol for it. */
12737
12738 static void
12739 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12740 {
12741 struct objfile *objfile = cu->objfile;
12742 struct die_info *child_die = die->child;
12743 struct type *type;
12744
12745 type = get_die_type (die, cu);
12746 if (type == NULL)
12747 type = read_structure_type (die, cu);
12748
12749 if (die->child != NULL && ! die_is_declaration (die, cu))
12750 {
12751 struct field_info fi;
12752 struct die_info *child_die;
12753 VEC (symbolp) *template_args = NULL;
12754 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12755
12756 memset (&fi, 0, sizeof (struct field_info));
12757
12758 child_die = die->child;
12759
12760 while (child_die && child_die->tag)
12761 {
12762 if (child_die->tag == DW_TAG_member
12763 || child_die->tag == DW_TAG_variable)
12764 {
12765 /* NOTE: carlton/2002-11-05: A C++ static data member
12766 should be a DW_TAG_member that is a declaration, but
12767 all versions of G++ as of this writing (so through at
12768 least 3.2.1) incorrectly generate DW_TAG_variable
12769 tags for them instead. */
12770 dwarf2_add_field (&fi, child_die, cu);
12771 }
12772 else if (child_die->tag == DW_TAG_subprogram)
12773 {
12774 /* C++ member function. */
12775 dwarf2_add_member_fn (&fi, child_die, type, cu);
12776 }
12777 else if (child_die->tag == DW_TAG_inheritance)
12778 {
12779 /* C++ base class field. */
12780 dwarf2_add_field (&fi, child_die, cu);
12781 }
12782 else if (child_die->tag == DW_TAG_typedef)
12783 dwarf2_add_typedef (&fi, child_die, cu);
12784 else if (child_die->tag == DW_TAG_template_type_param
12785 || child_die->tag == DW_TAG_template_value_param)
12786 {
12787 struct symbol *arg = new_symbol (child_die, NULL, cu);
12788
12789 if (arg != NULL)
12790 VEC_safe_push (symbolp, template_args, arg);
12791 }
12792
12793 child_die = sibling_die (child_die);
12794 }
12795
12796 /* Attach template arguments to type. */
12797 if (! VEC_empty (symbolp, template_args))
12798 {
12799 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12800 TYPE_N_TEMPLATE_ARGUMENTS (type)
12801 = VEC_length (symbolp, template_args);
12802 TYPE_TEMPLATE_ARGUMENTS (type)
12803 = obstack_alloc (&objfile->objfile_obstack,
12804 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12805 * sizeof (struct symbol *)));
12806 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12807 VEC_address (symbolp, template_args),
12808 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12809 * sizeof (struct symbol *)));
12810 VEC_free (symbolp, template_args);
12811 }
12812
12813 /* Attach fields and member functions to the type. */
12814 if (fi.nfields)
12815 dwarf2_attach_fields_to_type (&fi, type, cu);
12816 if (fi.nfnfields)
12817 {
12818 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12819
12820 /* Get the type which refers to the base class (possibly this
12821 class itself) which contains the vtable pointer for the current
12822 class from the DW_AT_containing_type attribute. This use of
12823 DW_AT_containing_type is a GNU extension. */
12824
12825 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12826 {
12827 struct type *t = die_containing_type (die, cu);
12828
12829 TYPE_VPTR_BASETYPE (type) = t;
12830 if (type == t)
12831 {
12832 int i;
12833
12834 /* Our own class provides vtbl ptr. */
12835 for (i = TYPE_NFIELDS (t) - 1;
12836 i >= TYPE_N_BASECLASSES (t);
12837 --i)
12838 {
12839 const char *fieldname = TYPE_FIELD_NAME (t, i);
12840
12841 if (is_vtable_name (fieldname, cu))
12842 {
12843 TYPE_VPTR_FIELDNO (type) = i;
12844 break;
12845 }
12846 }
12847
12848 /* Complain if virtual function table field not found. */
12849 if (i < TYPE_N_BASECLASSES (t))
12850 complaint (&symfile_complaints,
12851 _("virtual function table pointer "
12852 "not found when defining class '%s'"),
12853 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12854 "");
12855 }
12856 else
12857 {
12858 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12859 }
12860 }
12861 else if (cu->producer
12862 && strncmp (cu->producer,
12863 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12864 {
12865 /* The IBM XLC compiler does not provide direct indication
12866 of the containing type, but the vtable pointer is
12867 always named __vfp. */
12868
12869 int i;
12870
12871 for (i = TYPE_NFIELDS (type) - 1;
12872 i >= TYPE_N_BASECLASSES (type);
12873 --i)
12874 {
12875 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12876 {
12877 TYPE_VPTR_FIELDNO (type) = i;
12878 TYPE_VPTR_BASETYPE (type) = type;
12879 break;
12880 }
12881 }
12882 }
12883 }
12884
12885 /* Copy fi.typedef_field_list linked list elements content into the
12886 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12887 if (fi.typedef_field_list)
12888 {
12889 int i = fi.typedef_field_list_count;
12890
12891 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12892 TYPE_TYPEDEF_FIELD_ARRAY (type)
12893 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12894 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12895
12896 /* Reverse the list order to keep the debug info elements order. */
12897 while (--i >= 0)
12898 {
12899 struct typedef_field *dest, *src;
12900
12901 dest = &TYPE_TYPEDEF_FIELD (type, i);
12902 src = &fi.typedef_field_list->field;
12903 fi.typedef_field_list = fi.typedef_field_list->next;
12904 *dest = *src;
12905 }
12906 }
12907
12908 do_cleanups (back_to);
12909
12910 if (HAVE_CPLUS_STRUCT (type))
12911 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12912 }
12913
12914 quirk_gcc_member_function_pointer (type, objfile);
12915
12916 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12917 snapshots) has been known to create a die giving a declaration
12918 for a class that has, as a child, a die giving a definition for a
12919 nested class. So we have to process our children even if the
12920 current die is a declaration. Normally, of course, a declaration
12921 won't have any children at all. */
12922
12923 while (child_die != NULL && child_die->tag)
12924 {
12925 if (child_die->tag == DW_TAG_member
12926 || child_die->tag == DW_TAG_variable
12927 || child_die->tag == DW_TAG_inheritance
12928 || child_die->tag == DW_TAG_template_value_param
12929 || child_die->tag == DW_TAG_template_type_param)
12930 {
12931 /* Do nothing. */
12932 }
12933 else
12934 process_die (child_die, cu);
12935
12936 child_die = sibling_die (child_die);
12937 }
12938
12939 /* Do not consider external references. According to the DWARF standard,
12940 these DIEs are identified by the fact that they have no byte_size
12941 attribute, and a declaration attribute. */
12942 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12943 || !die_is_declaration (die, cu))
12944 new_symbol (die, type, cu);
12945 }
12946
12947 /* Given a DW_AT_enumeration_type die, set its type. We do not
12948 complete the type's fields yet, or create any symbols. */
12949
12950 static struct type *
12951 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12952 {
12953 struct objfile *objfile = cu->objfile;
12954 struct type *type;
12955 struct attribute *attr;
12956 const char *name;
12957
12958 /* If the definition of this type lives in .debug_types, read that type.
12959 Don't follow DW_AT_specification though, that will take us back up
12960 the chain and we want to go down. */
12961 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12962 if (attr)
12963 {
12964 type = get_DW_AT_signature_type (die, attr, cu);
12965
12966 /* The type's CU may not be the same as CU.
12967 Ensure TYPE is recorded with CU in die_type_hash. */
12968 return set_die_type (die, type, cu);
12969 }
12970
12971 type = alloc_type (objfile);
12972
12973 TYPE_CODE (type) = TYPE_CODE_ENUM;
12974 name = dwarf2_full_name (NULL, die, cu);
12975 if (name != NULL)
12976 TYPE_TAG_NAME (type) = name;
12977
12978 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12979 if (attr)
12980 {
12981 TYPE_LENGTH (type) = DW_UNSND (attr);
12982 }
12983 else
12984 {
12985 TYPE_LENGTH (type) = 0;
12986 }
12987
12988 /* The enumeration DIE can be incomplete. In Ada, any type can be
12989 declared as private in the package spec, and then defined only
12990 inside the package body. Such types are known as Taft Amendment
12991 Types. When another package uses such a type, an incomplete DIE
12992 may be generated by the compiler. */
12993 if (die_is_declaration (die, cu))
12994 TYPE_STUB (type) = 1;
12995
12996 return set_die_type (die, type, cu);
12997 }
12998
12999 /* Given a pointer to a die which begins an enumeration, process all
13000 the dies that define the members of the enumeration, and create the
13001 symbol for the enumeration type.
13002
13003 NOTE: We reverse the order of the element list. */
13004
13005 static void
13006 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13007 {
13008 struct type *this_type;
13009
13010 this_type = get_die_type (die, cu);
13011 if (this_type == NULL)
13012 this_type = read_enumeration_type (die, cu);
13013
13014 if (die->child != NULL)
13015 {
13016 struct die_info *child_die;
13017 struct symbol *sym;
13018 struct field *fields = NULL;
13019 int num_fields = 0;
13020 int unsigned_enum = 1;
13021 const char *name;
13022 int flag_enum = 1;
13023 ULONGEST mask = 0;
13024
13025 child_die = die->child;
13026 while (child_die && child_die->tag)
13027 {
13028 if (child_die->tag != DW_TAG_enumerator)
13029 {
13030 process_die (child_die, cu);
13031 }
13032 else
13033 {
13034 name = dwarf2_name (child_die, cu);
13035 if (name)
13036 {
13037 sym = new_symbol (child_die, this_type, cu);
13038 if (SYMBOL_VALUE (sym) < 0)
13039 {
13040 unsigned_enum = 0;
13041 flag_enum = 0;
13042 }
13043 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13044 flag_enum = 0;
13045 else
13046 mask |= SYMBOL_VALUE (sym);
13047
13048 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13049 {
13050 fields = (struct field *)
13051 xrealloc (fields,
13052 (num_fields + DW_FIELD_ALLOC_CHUNK)
13053 * sizeof (struct field));
13054 }
13055
13056 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13057 FIELD_TYPE (fields[num_fields]) = NULL;
13058 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13059 FIELD_BITSIZE (fields[num_fields]) = 0;
13060
13061 num_fields++;
13062 }
13063 }
13064
13065 child_die = sibling_die (child_die);
13066 }
13067
13068 if (num_fields)
13069 {
13070 TYPE_NFIELDS (this_type) = num_fields;
13071 TYPE_FIELDS (this_type) = (struct field *)
13072 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13073 memcpy (TYPE_FIELDS (this_type), fields,
13074 sizeof (struct field) * num_fields);
13075 xfree (fields);
13076 }
13077 if (unsigned_enum)
13078 TYPE_UNSIGNED (this_type) = 1;
13079 if (flag_enum)
13080 TYPE_FLAG_ENUM (this_type) = 1;
13081 }
13082
13083 /* If we are reading an enum from a .debug_types unit, and the enum
13084 is a declaration, and the enum is not the signatured type in the
13085 unit, then we do not want to add a symbol for it. Adding a
13086 symbol would in some cases obscure the true definition of the
13087 enum, giving users an incomplete type when the definition is
13088 actually available. Note that we do not want to do this for all
13089 enums which are just declarations, because C++0x allows forward
13090 enum declarations. */
13091 if (cu->per_cu->is_debug_types
13092 && die_is_declaration (die, cu))
13093 {
13094 struct signatured_type *sig_type;
13095
13096 sig_type = (struct signatured_type *) cu->per_cu;
13097 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13098 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13099 return;
13100 }
13101
13102 new_symbol (die, this_type, cu);
13103 }
13104
13105 /* Extract all information from a DW_TAG_array_type DIE and put it in
13106 the DIE's type field. For now, this only handles one dimensional
13107 arrays. */
13108
13109 static struct type *
13110 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13111 {
13112 struct objfile *objfile = cu->objfile;
13113 struct die_info *child_die;
13114 struct type *type;
13115 struct type *element_type, *range_type, *index_type;
13116 struct type **range_types = NULL;
13117 struct attribute *attr;
13118 int ndim = 0;
13119 struct cleanup *back_to;
13120 const char *name;
13121
13122 element_type = die_type (die, cu);
13123
13124 /* The die_type call above may have already set the type for this DIE. */
13125 type = get_die_type (die, cu);
13126 if (type)
13127 return type;
13128
13129 /* Irix 6.2 native cc creates array types without children for
13130 arrays with unspecified length. */
13131 if (die->child == NULL)
13132 {
13133 index_type = objfile_type (objfile)->builtin_int;
13134 range_type = create_range_type (NULL, index_type, 0, -1);
13135 type = create_array_type (NULL, element_type, range_type);
13136 return set_die_type (die, type, cu);
13137 }
13138
13139 back_to = make_cleanup (null_cleanup, NULL);
13140 child_die = die->child;
13141 while (child_die && child_die->tag)
13142 {
13143 if (child_die->tag == DW_TAG_subrange_type)
13144 {
13145 struct type *child_type = read_type_die (child_die, cu);
13146
13147 if (child_type != NULL)
13148 {
13149 /* The range type was succesfully read. Save it for the
13150 array type creation. */
13151 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13152 {
13153 range_types = (struct type **)
13154 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13155 * sizeof (struct type *));
13156 if (ndim == 0)
13157 make_cleanup (free_current_contents, &range_types);
13158 }
13159 range_types[ndim++] = child_type;
13160 }
13161 }
13162 child_die = sibling_die (child_die);
13163 }
13164
13165 /* Dwarf2 dimensions are output from left to right, create the
13166 necessary array types in backwards order. */
13167
13168 type = element_type;
13169
13170 if (read_array_order (die, cu) == DW_ORD_col_major)
13171 {
13172 int i = 0;
13173
13174 while (i < ndim)
13175 type = create_array_type (NULL, type, range_types[i++]);
13176 }
13177 else
13178 {
13179 while (ndim-- > 0)
13180 type = create_array_type (NULL, type, range_types[ndim]);
13181 }
13182
13183 /* Understand Dwarf2 support for vector types (like they occur on
13184 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13185 array type. This is not part of the Dwarf2/3 standard yet, but a
13186 custom vendor extension. The main difference between a regular
13187 array and the vector variant is that vectors are passed by value
13188 to functions. */
13189 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13190 if (attr)
13191 make_vector_type (type);
13192
13193 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13194 implementation may choose to implement triple vectors using this
13195 attribute. */
13196 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13197 if (attr)
13198 {
13199 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13200 TYPE_LENGTH (type) = DW_UNSND (attr);
13201 else
13202 complaint (&symfile_complaints,
13203 _("DW_AT_byte_size for array type smaller "
13204 "than the total size of elements"));
13205 }
13206
13207 name = dwarf2_name (die, cu);
13208 if (name)
13209 TYPE_NAME (type) = name;
13210
13211 /* Install the type in the die. */
13212 set_die_type (die, type, cu);
13213
13214 /* set_die_type should be already done. */
13215 set_descriptive_type (type, die, cu);
13216
13217 do_cleanups (back_to);
13218
13219 return type;
13220 }
13221
13222 static enum dwarf_array_dim_ordering
13223 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13224 {
13225 struct attribute *attr;
13226
13227 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13228
13229 if (attr) return DW_SND (attr);
13230
13231 /* GNU F77 is a special case, as at 08/2004 array type info is the
13232 opposite order to the dwarf2 specification, but data is still
13233 laid out as per normal fortran.
13234
13235 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13236 version checking. */
13237
13238 if (cu->language == language_fortran
13239 && cu->producer && strstr (cu->producer, "GNU F77"))
13240 {
13241 return DW_ORD_row_major;
13242 }
13243
13244 switch (cu->language_defn->la_array_ordering)
13245 {
13246 case array_column_major:
13247 return DW_ORD_col_major;
13248 case array_row_major:
13249 default:
13250 return DW_ORD_row_major;
13251 };
13252 }
13253
13254 /* Extract all information from a DW_TAG_set_type DIE and put it in
13255 the DIE's type field. */
13256
13257 static struct type *
13258 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13259 {
13260 struct type *domain_type, *set_type;
13261 struct attribute *attr;
13262
13263 domain_type = die_type (die, cu);
13264
13265 /* The die_type call above may have already set the type for this DIE. */
13266 set_type = get_die_type (die, cu);
13267 if (set_type)
13268 return set_type;
13269
13270 set_type = create_set_type (NULL, domain_type);
13271
13272 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13273 if (attr)
13274 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13275
13276 return set_die_type (die, set_type, cu);
13277 }
13278
13279 /* A helper for read_common_block that creates a locexpr baton.
13280 SYM is the symbol which we are marking as computed.
13281 COMMON_DIE is the DIE for the common block.
13282 COMMON_LOC is the location expression attribute for the common
13283 block itself.
13284 MEMBER_LOC is the location expression attribute for the particular
13285 member of the common block that we are processing.
13286 CU is the CU from which the above come. */
13287
13288 static void
13289 mark_common_block_symbol_computed (struct symbol *sym,
13290 struct die_info *common_die,
13291 struct attribute *common_loc,
13292 struct attribute *member_loc,
13293 struct dwarf2_cu *cu)
13294 {
13295 struct objfile *objfile = dwarf2_per_objfile->objfile;
13296 struct dwarf2_locexpr_baton *baton;
13297 gdb_byte *ptr;
13298 unsigned int cu_off;
13299 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13300 LONGEST offset = 0;
13301
13302 gdb_assert (common_loc && member_loc);
13303 gdb_assert (attr_form_is_block (common_loc));
13304 gdb_assert (attr_form_is_block (member_loc)
13305 || attr_form_is_constant (member_loc));
13306
13307 baton = obstack_alloc (&objfile->objfile_obstack,
13308 sizeof (struct dwarf2_locexpr_baton));
13309 baton->per_cu = cu->per_cu;
13310 gdb_assert (baton->per_cu);
13311
13312 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13313
13314 if (attr_form_is_constant (member_loc))
13315 {
13316 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13317 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13318 }
13319 else
13320 baton->size += DW_BLOCK (member_loc)->size;
13321
13322 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13323 baton->data = ptr;
13324
13325 *ptr++ = DW_OP_call4;
13326 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13327 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13328 ptr += 4;
13329
13330 if (attr_form_is_constant (member_loc))
13331 {
13332 *ptr++ = DW_OP_addr;
13333 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13334 ptr += cu->header.addr_size;
13335 }
13336 else
13337 {
13338 /* We have to copy the data here, because DW_OP_call4 will only
13339 use a DW_AT_location attribute. */
13340 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13341 ptr += DW_BLOCK (member_loc)->size;
13342 }
13343
13344 *ptr++ = DW_OP_plus;
13345 gdb_assert (ptr - baton->data == baton->size);
13346
13347 SYMBOL_LOCATION_BATON (sym) = baton;
13348 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13349 }
13350
13351 /* Create appropriate locally-scoped variables for all the
13352 DW_TAG_common_block entries. Also create a struct common_block
13353 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13354 is used to sepate the common blocks name namespace from regular
13355 variable names. */
13356
13357 static void
13358 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13359 {
13360 struct attribute *attr;
13361
13362 attr = dwarf2_attr (die, DW_AT_location, cu);
13363 if (attr)
13364 {
13365 /* Support the .debug_loc offsets. */
13366 if (attr_form_is_block (attr))
13367 {
13368 /* Ok. */
13369 }
13370 else if (attr_form_is_section_offset (attr))
13371 {
13372 dwarf2_complex_location_expr_complaint ();
13373 attr = NULL;
13374 }
13375 else
13376 {
13377 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13378 "common block member");
13379 attr = NULL;
13380 }
13381 }
13382
13383 if (die->child != NULL)
13384 {
13385 struct objfile *objfile = cu->objfile;
13386 struct die_info *child_die;
13387 size_t n_entries = 0, size;
13388 struct common_block *common_block;
13389 struct symbol *sym;
13390
13391 for (child_die = die->child;
13392 child_die && child_die->tag;
13393 child_die = sibling_die (child_die))
13394 ++n_entries;
13395
13396 size = (sizeof (struct common_block)
13397 + (n_entries - 1) * sizeof (struct symbol *));
13398 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13399 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13400 common_block->n_entries = 0;
13401
13402 for (child_die = die->child;
13403 child_die && child_die->tag;
13404 child_die = sibling_die (child_die))
13405 {
13406 /* Create the symbol in the DW_TAG_common_block block in the current
13407 symbol scope. */
13408 sym = new_symbol (child_die, NULL, cu);
13409 if (sym != NULL)
13410 {
13411 struct attribute *member_loc;
13412
13413 common_block->contents[common_block->n_entries++] = sym;
13414
13415 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13416 cu);
13417 if (member_loc)
13418 {
13419 /* GDB has handled this for a long time, but it is
13420 not specified by DWARF. It seems to have been
13421 emitted by gfortran at least as recently as:
13422 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13423 complaint (&symfile_complaints,
13424 _("Variable in common block has "
13425 "DW_AT_data_member_location "
13426 "- DIE at 0x%x [in module %s]"),
13427 child_die->offset.sect_off,
13428 objfile_name (cu->objfile));
13429
13430 if (attr_form_is_section_offset (member_loc))
13431 dwarf2_complex_location_expr_complaint ();
13432 else if (attr_form_is_constant (member_loc)
13433 || attr_form_is_block (member_loc))
13434 {
13435 if (attr)
13436 mark_common_block_symbol_computed (sym, die, attr,
13437 member_loc, cu);
13438 }
13439 else
13440 dwarf2_complex_location_expr_complaint ();
13441 }
13442 }
13443 }
13444
13445 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13446 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13447 }
13448 }
13449
13450 /* Create a type for a C++ namespace. */
13451
13452 static struct type *
13453 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13454 {
13455 struct objfile *objfile = cu->objfile;
13456 const char *previous_prefix, *name;
13457 int is_anonymous;
13458 struct type *type;
13459
13460 /* For extensions, reuse the type of the original namespace. */
13461 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13462 {
13463 struct die_info *ext_die;
13464 struct dwarf2_cu *ext_cu = cu;
13465
13466 ext_die = dwarf2_extension (die, &ext_cu);
13467 type = read_type_die (ext_die, ext_cu);
13468
13469 /* EXT_CU may not be the same as CU.
13470 Ensure TYPE is recorded with CU in die_type_hash. */
13471 return set_die_type (die, type, cu);
13472 }
13473
13474 name = namespace_name (die, &is_anonymous, cu);
13475
13476 /* Now build the name of the current namespace. */
13477
13478 previous_prefix = determine_prefix (die, cu);
13479 if (previous_prefix[0] != '\0')
13480 name = typename_concat (&objfile->objfile_obstack,
13481 previous_prefix, name, 0, cu);
13482
13483 /* Create the type. */
13484 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13485 objfile);
13486 TYPE_NAME (type) = name;
13487 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13488
13489 return set_die_type (die, type, cu);
13490 }
13491
13492 /* Read a C++ namespace. */
13493
13494 static void
13495 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13496 {
13497 struct objfile *objfile = cu->objfile;
13498 int is_anonymous;
13499
13500 /* Add a symbol associated to this if we haven't seen the namespace
13501 before. Also, add a using directive if it's an anonymous
13502 namespace. */
13503
13504 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13505 {
13506 struct type *type;
13507
13508 type = read_type_die (die, cu);
13509 new_symbol (die, type, cu);
13510
13511 namespace_name (die, &is_anonymous, cu);
13512 if (is_anonymous)
13513 {
13514 const char *previous_prefix = determine_prefix (die, cu);
13515
13516 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13517 NULL, NULL, 0, &objfile->objfile_obstack);
13518 }
13519 }
13520
13521 if (die->child != NULL)
13522 {
13523 struct die_info *child_die = die->child;
13524
13525 while (child_die && child_die->tag)
13526 {
13527 process_die (child_die, cu);
13528 child_die = sibling_die (child_die);
13529 }
13530 }
13531 }
13532
13533 /* Read a Fortran module as type. This DIE can be only a declaration used for
13534 imported module. Still we need that type as local Fortran "use ... only"
13535 declaration imports depend on the created type in determine_prefix. */
13536
13537 static struct type *
13538 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13539 {
13540 struct objfile *objfile = cu->objfile;
13541 const char *module_name;
13542 struct type *type;
13543
13544 module_name = dwarf2_name (die, cu);
13545 if (!module_name)
13546 complaint (&symfile_complaints,
13547 _("DW_TAG_module has no name, offset 0x%x"),
13548 die->offset.sect_off);
13549 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13550
13551 /* determine_prefix uses TYPE_TAG_NAME. */
13552 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13553
13554 return set_die_type (die, type, cu);
13555 }
13556
13557 /* Read a Fortran module. */
13558
13559 static void
13560 read_module (struct die_info *die, struct dwarf2_cu *cu)
13561 {
13562 struct die_info *child_die = die->child;
13563
13564 while (child_die && child_die->tag)
13565 {
13566 process_die (child_die, cu);
13567 child_die = sibling_die (child_die);
13568 }
13569 }
13570
13571 /* Return the name of the namespace represented by DIE. Set
13572 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13573 namespace. */
13574
13575 static const char *
13576 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13577 {
13578 struct die_info *current_die;
13579 const char *name = NULL;
13580
13581 /* Loop through the extensions until we find a name. */
13582
13583 for (current_die = die;
13584 current_die != NULL;
13585 current_die = dwarf2_extension (die, &cu))
13586 {
13587 name = dwarf2_name (current_die, cu);
13588 if (name != NULL)
13589 break;
13590 }
13591
13592 /* Is it an anonymous namespace? */
13593
13594 *is_anonymous = (name == NULL);
13595 if (*is_anonymous)
13596 name = CP_ANONYMOUS_NAMESPACE_STR;
13597
13598 return name;
13599 }
13600
13601 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13602 the user defined type vector. */
13603
13604 static struct type *
13605 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13606 {
13607 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13608 struct comp_unit_head *cu_header = &cu->header;
13609 struct type *type;
13610 struct attribute *attr_byte_size;
13611 struct attribute *attr_address_class;
13612 int byte_size, addr_class;
13613 struct type *target_type;
13614
13615 target_type = die_type (die, cu);
13616
13617 /* The die_type call above may have already set the type for this DIE. */
13618 type = get_die_type (die, cu);
13619 if (type)
13620 return type;
13621
13622 type = lookup_pointer_type (target_type);
13623
13624 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13625 if (attr_byte_size)
13626 byte_size = DW_UNSND (attr_byte_size);
13627 else
13628 byte_size = cu_header->addr_size;
13629
13630 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13631 if (attr_address_class)
13632 addr_class = DW_UNSND (attr_address_class);
13633 else
13634 addr_class = DW_ADDR_none;
13635
13636 /* If the pointer size or address class is different than the
13637 default, create a type variant marked as such and set the
13638 length accordingly. */
13639 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13640 {
13641 if (gdbarch_address_class_type_flags_p (gdbarch))
13642 {
13643 int type_flags;
13644
13645 type_flags = gdbarch_address_class_type_flags
13646 (gdbarch, byte_size, addr_class);
13647 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13648 == 0);
13649 type = make_type_with_address_space (type, type_flags);
13650 }
13651 else if (TYPE_LENGTH (type) != byte_size)
13652 {
13653 complaint (&symfile_complaints,
13654 _("invalid pointer size %d"), byte_size);
13655 }
13656 else
13657 {
13658 /* Should we also complain about unhandled address classes? */
13659 }
13660 }
13661
13662 TYPE_LENGTH (type) = byte_size;
13663 return set_die_type (die, type, cu);
13664 }
13665
13666 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13667 the user defined type vector. */
13668
13669 static struct type *
13670 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13671 {
13672 struct type *type;
13673 struct type *to_type;
13674 struct type *domain;
13675
13676 to_type = die_type (die, cu);
13677 domain = die_containing_type (die, cu);
13678
13679 /* The calls above may have already set the type for this DIE. */
13680 type = get_die_type (die, cu);
13681 if (type)
13682 return type;
13683
13684 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13685 type = lookup_methodptr_type (to_type);
13686 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13687 {
13688 struct type *new_type = alloc_type (cu->objfile);
13689
13690 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13691 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13692 TYPE_VARARGS (to_type));
13693 type = lookup_methodptr_type (new_type);
13694 }
13695 else
13696 type = lookup_memberptr_type (to_type, domain);
13697
13698 return set_die_type (die, type, cu);
13699 }
13700
13701 /* Extract all information from a DW_TAG_reference_type DIE and add to
13702 the user defined type vector. */
13703
13704 static struct type *
13705 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13706 {
13707 struct comp_unit_head *cu_header = &cu->header;
13708 struct type *type, *target_type;
13709 struct attribute *attr;
13710
13711 target_type = die_type (die, cu);
13712
13713 /* The die_type call above may have already set the type for this DIE. */
13714 type = get_die_type (die, cu);
13715 if (type)
13716 return type;
13717
13718 type = lookup_reference_type (target_type);
13719 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13720 if (attr)
13721 {
13722 TYPE_LENGTH (type) = DW_UNSND (attr);
13723 }
13724 else
13725 {
13726 TYPE_LENGTH (type) = cu_header->addr_size;
13727 }
13728 return set_die_type (die, type, cu);
13729 }
13730
13731 static struct type *
13732 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13733 {
13734 struct type *base_type, *cv_type;
13735
13736 base_type = die_type (die, cu);
13737
13738 /* The die_type call above may have already set the type for this DIE. */
13739 cv_type = get_die_type (die, cu);
13740 if (cv_type)
13741 return cv_type;
13742
13743 /* In case the const qualifier is applied to an array type, the element type
13744 is so qualified, not the array type (section 6.7.3 of C99). */
13745 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13746 {
13747 struct type *el_type, *inner_array;
13748
13749 base_type = copy_type (base_type);
13750 inner_array = base_type;
13751
13752 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13753 {
13754 TYPE_TARGET_TYPE (inner_array) =
13755 copy_type (TYPE_TARGET_TYPE (inner_array));
13756 inner_array = TYPE_TARGET_TYPE (inner_array);
13757 }
13758
13759 el_type = TYPE_TARGET_TYPE (inner_array);
13760 TYPE_TARGET_TYPE (inner_array) =
13761 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13762
13763 return set_die_type (die, base_type, cu);
13764 }
13765
13766 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13767 return set_die_type (die, cv_type, cu);
13768 }
13769
13770 static struct type *
13771 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13772 {
13773 struct type *base_type, *cv_type;
13774
13775 base_type = die_type (die, cu);
13776
13777 /* The die_type call above may have already set the type for this DIE. */
13778 cv_type = get_die_type (die, cu);
13779 if (cv_type)
13780 return cv_type;
13781
13782 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13783 return set_die_type (die, cv_type, cu);
13784 }
13785
13786 /* Handle DW_TAG_restrict_type. */
13787
13788 static struct type *
13789 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13790 {
13791 struct type *base_type, *cv_type;
13792
13793 base_type = die_type (die, cu);
13794
13795 /* The die_type call above may have already set the type for this DIE. */
13796 cv_type = get_die_type (die, cu);
13797 if (cv_type)
13798 return cv_type;
13799
13800 cv_type = make_restrict_type (base_type);
13801 return set_die_type (die, cv_type, cu);
13802 }
13803
13804 /* Extract all information from a DW_TAG_string_type DIE and add to
13805 the user defined type vector. It isn't really a user defined type,
13806 but it behaves like one, with other DIE's using an AT_user_def_type
13807 attribute to reference it. */
13808
13809 static struct type *
13810 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13811 {
13812 struct objfile *objfile = cu->objfile;
13813 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13814 struct type *type, *range_type, *index_type, *char_type;
13815 struct attribute *attr;
13816 unsigned int length;
13817
13818 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13819 if (attr)
13820 {
13821 length = DW_UNSND (attr);
13822 }
13823 else
13824 {
13825 /* Check for the DW_AT_byte_size attribute. */
13826 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13827 if (attr)
13828 {
13829 length = DW_UNSND (attr);
13830 }
13831 else
13832 {
13833 length = 1;
13834 }
13835 }
13836
13837 index_type = objfile_type (objfile)->builtin_int;
13838 range_type = create_range_type (NULL, index_type, 1, length);
13839 char_type = language_string_char_type (cu->language_defn, gdbarch);
13840 type = create_string_type (NULL, char_type, range_type);
13841
13842 return set_die_type (die, type, cu);
13843 }
13844
13845 /* Assuming that DIE corresponds to a function, returns nonzero
13846 if the function is prototyped. */
13847
13848 static int
13849 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13850 {
13851 struct attribute *attr;
13852
13853 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13854 if (attr && (DW_UNSND (attr) != 0))
13855 return 1;
13856
13857 /* The DWARF standard implies that the DW_AT_prototyped attribute
13858 is only meaninful for C, but the concept also extends to other
13859 languages that allow unprototyped functions (Eg: Objective C).
13860 For all other languages, assume that functions are always
13861 prototyped. */
13862 if (cu->language != language_c
13863 && cu->language != language_objc
13864 && cu->language != language_opencl)
13865 return 1;
13866
13867 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13868 prototyped and unprototyped functions; default to prototyped,
13869 since that is more common in modern code (and RealView warns
13870 about unprototyped functions). */
13871 if (producer_is_realview (cu->producer))
13872 return 1;
13873
13874 return 0;
13875 }
13876
13877 /* Handle DIES due to C code like:
13878
13879 struct foo
13880 {
13881 int (*funcp)(int a, long l);
13882 int b;
13883 };
13884
13885 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13886
13887 static struct type *
13888 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13889 {
13890 struct objfile *objfile = cu->objfile;
13891 struct type *type; /* Type that this function returns. */
13892 struct type *ftype; /* Function that returns above type. */
13893 struct attribute *attr;
13894
13895 type = die_type (die, cu);
13896
13897 /* The die_type call above may have already set the type for this DIE. */
13898 ftype = get_die_type (die, cu);
13899 if (ftype)
13900 return ftype;
13901
13902 ftype = lookup_function_type (type);
13903
13904 if (prototyped_function_p (die, cu))
13905 TYPE_PROTOTYPED (ftype) = 1;
13906
13907 /* Store the calling convention in the type if it's available in
13908 the subroutine die. Otherwise set the calling convention to
13909 the default value DW_CC_normal. */
13910 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13911 if (attr)
13912 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13913 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13914 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13915 else
13916 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13917
13918 /* We need to add the subroutine type to the die immediately so
13919 we don't infinitely recurse when dealing with parameters
13920 declared as the same subroutine type. */
13921 set_die_type (die, ftype, cu);
13922
13923 if (die->child != NULL)
13924 {
13925 struct type *void_type = objfile_type (objfile)->builtin_void;
13926 struct die_info *child_die;
13927 int nparams, iparams;
13928
13929 /* Count the number of parameters.
13930 FIXME: GDB currently ignores vararg functions, but knows about
13931 vararg member functions. */
13932 nparams = 0;
13933 child_die = die->child;
13934 while (child_die && child_die->tag)
13935 {
13936 if (child_die->tag == DW_TAG_formal_parameter)
13937 nparams++;
13938 else if (child_die->tag == DW_TAG_unspecified_parameters)
13939 TYPE_VARARGS (ftype) = 1;
13940 child_die = sibling_die (child_die);
13941 }
13942
13943 /* Allocate storage for parameters and fill them in. */
13944 TYPE_NFIELDS (ftype) = nparams;
13945 TYPE_FIELDS (ftype) = (struct field *)
13946 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13947
13948 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13949 even if we error out during the parameters reading below. */
13950 for (iparams = 0; iparams < nparams; iparams++)
13951 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13952
13953 iparams = 0;
13954 child_die = die->child;
13955 while (child_die && child_die->tag)
13956 {
13957 if (child_die->tag == DW_TAG_formal_parameter)
13958 {
13959 struct type *arg_type;
13960
13961 /* DWARF version 2 has no clean way to discern C++
13962 static and non-static member functions. G++ helps
13963 GDB by marking the first parameter for non-static
13964 member functions (which is the this pointer) as
13965 artificial. We pass this information to
13966 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13967
13968 DWARF version 3 added DW_AT_object_pointer, which GCC
13969 4.5 does not yet generate. */
13970 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13971 if (attr)
13972 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13973 else
13974 {
13975 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13976
13977 /* GCC/43521: In java, the formal parameter
13978 "this" is sometimes not marked with DW_AT_artificial. */
13979 if (cu->language == language_java)
13980 {
13981 const char *name = dwarf2_name (child_die, cu);
13982
13983 if (name && !strcmp (name, "this"))
13984 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13985 }
13986 }
13987 arg_type = die_type (child_die, cu);
13988
13989 /* RealView does not mark THIS as const, which the testsuite
13990 expects. GCC marks THIS as const in method definitions,
13991 but not in the class specifications (GCC PR 43053). */
13992 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13993 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13994 {
13995 int is_this = 0;
13996 struct dwarf2_cu *arg_cu = cu;
13997 const char *name = dwarf2_name (child_die, cu);
13998
13999 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14000 if (attr)
14001 {
14002 /* If the compiler emits this, use it. */
14003 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14004 is_this = 1;
14005 }
14006 else if (name && strcmp (name, "this") == 0)
14007 /* Function definitions will have the argument names. */
14008 is_this = 1;
14009 else if (name == NULL && iparams == 0)
14010 /* Declarations may not have the names, so like
14011 elsewhere in GDB, assume an artificial first
14012 argument is "this". */
14013 is_this = 1;
14014
14015 if (is_this)
14016 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14017 arg_type, 0);
14018 }
14019
14020 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14021 iparams++;
14022 }
14023 child_die = sibling_die (child_die);
14024 }
14025 }
14026
14027 return ftype;
14028 }
14029
14030 static struct type *
14031 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14032 {
14033 struct objfile *objfile = cu->objfile;
14034 const char *name = NULL;
14035 struct type *this_type, *target_type;
14036
14037 name = dwarf2_full_name (NULL, die, cu);
14038 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14039 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14040 TYPE_NAME (this_type) = name;
14041 set_die_type (die, this_type, cu);
14042 target_type = die_type (die, cu);
14043 if (target_type != this_type)
14044 TYPE_TARGET_TYPE (this_type) = target_type;
14045 else
14046 {
14047 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14048 spec and cause infinite loops in GDB. */
14049 complaint (&symfile_complaints,
14050 _("Self-referential DW_TAG_typedef "
14051 "- DIE at 0x%x [in module %s]"),
14052 die->offset.sect_off, objfile_name (objfile));
14053 TYPE_TARGET_TYPE (this_type) = NULL;
14054 }
14055 return this_type;
14056 }
14057
14058 /* Find a representation of a given base type and install
14059 it in the TYPE field of the die. */
14060
14061 static struct type *
14062 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14063 {
14064 struct objfile *objfile = cu->objfile;
14065 struct type *type;
14066 struct attribute *attr;
14067 int encoding = 0, size = 0;
14068 const char *name;
14069 enum type_code code = TYPE_CODE_INT;
14070 int type_flags = 0;
14071 struct type *target_type = NULL;
14072
14073 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14074 if (attr)
14075 {
14076 encoding = DW_UNSND (attr);
14077 }
14078 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14079 if (attr)
14080 {
14081 size = DW_UNSND (attr);
14082 }
14083 name = dwarf2_name (die, cu);
14084 if (!name)
14085 {
14086 complaint (&symfile_complaints,
14087 _("DW_AT_name missing from DW_TAG_base_type"));
14088 }
14089
14090 switch (encoding)
14091 {
14092 case DW_ATE_address:
14093 /* Turn DW_ATE_address into a void * pointer. */
14094 code = TYPE_CODE_PTR;
14095 type_flags |= TYPE_FLAG_UNSIGNED;
14096 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14097 break;
14098 case DW_ATE_boolean:
14099 code = TYPE_CODE_BOOL;
14100 type_flags |= TYPE_FLAG_UNSIGNED;
14101 break;
14102 case DW_ATE_complex_float:
14103 code = TYPE_CODE_COMPLEX;
14104 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14105 break;
14106 case DW_ATE_decimal_float:
14107 code = TYPE_CODE_DECFLOAT;
14108 break;
14109 case DW_ATE_float:
14110 code = TYPE_CODE_FLT;
14111 break;
14112 case DW_ATE_signed:
14113 break;
14114 case DW_ATE_unsigned:
14115 type_flags |= TYPE_FLAG_UNSIGNED;
14116 if (cu->language == language_fortran
14117 && name
14118 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14119 code = TYPE_CODE_CHAR;
14120 break;
14121 case DW_ATE_signed_char:
14122 if (cu->language == language_ada || cu->language == language_m2
14123 || cu->language == language_pascal
14124 || cu->language == language_fortran)
14125 code = TYPE_CODE_CHAR;
14126 break;
14127 case DW_ATE_unsigned_char:
14128 if (cu->language == language_ada || cu->language == language_m2
14129 || cu->language == language_pascal
14130 || cu->language == language_fortran)
14131 code = TYPE_CODE_CHAR;
14132 type_flags |= TYPE_FLAG_UNSIGNED;
14133 break;
14134 case DW_ATE_UTF:
14135 /* We just treat this as an integer and then recognize the
14136 type by name elsewhere. */
14137 break;
14138
14139 default:
14140 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14141 dwarf_type_encoding_name (encoding));
14142 break;
14143 }
14144
14145 type = init_type (code, size, type_flags, NULL, objfile);
14146 TYPE_NAME (type) = name;
14147 TYPE_TARGET_TYPE (type) = target_type;
14148
14149 if (name && strcmp (name, "char") == 0)
14150 TYPE_NOSIGN (type) = 1;
14151
14152 return set_die_type (die, type, cu);
14153 }
14154
14155 /* Read the given DW_AT_subrange DIE. */
14156
14157 static struct type *
14158 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14159 {
14160 struct type *base_type, *orig_base_type;
14161 struct type *range_type;
14162 struct attribute *attr;
14163 LONGEST low, high;
14164 int low_default_is_valid;
14165 const char *name;
14166 LONGEST negative_mask;
14167
14168 orig_base_type = die_type (die, cu);
14169 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14170 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14171 creating the range type, but we use the result of check_typedef
14172 when examining properties of the type. */
14173 base_type = check_typedef (orig_base_type);
14174
14175 /* The die_type call above may have already set the type for this DIE. */
14176 range_type = get_die_type (die, cu);
14177 if (range_type)
14178 return range_type;
14179
14180 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14181 omitting DW_AT_lower_bound. */
14182 switch (cu->language)
14183 {
14184 case language_c:
14185 case language_cplus:
14186 low = 0;
14187 low_default_is_valid = 1;
14188 break;
14189 case language_fortran:
14190 low = 1;
14191 low_default_is_valid = 1;
14192 break;
14193 case language_d:
14194 case language_java:
14195 case language_objc:
14196 low = 0;
14197 low_default_is_valid = (cu->header.version >= 4);
14198 break;
14199 case language_ada:
14200 case language_m2:
14201 case language_pascal:
14202 low = 1;
14203 low_default_is_valid = (cu->header.version >= 4);
14204 break;
14205 default:
14206 low = 0;
14207 low_default_is_valid = 0;
14208 break;
14209 }
14210
14211 /* FIXME: For variable sized arrays either of these could be
14212 a variable rather than a constant value. We'll allow it,
14213 but we don't know how to handle it. */
14214 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14215 if (attr)
14216 low = dwarf2_get_attr_constant_value (attr, low);
14217 else if (!low_default_is_valid)
14218 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14219 "- DIE at 0x%x [in module %s]"),
14220 die->offset.sect_off, objfile_name (cu->objfile));
14221
14222 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14223 if (attr)
14224 {
14225 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14226 {
14227 /* GCC encodes arrays with unspecified or dynamic length
14228 with a DW_FORM_block1 attribute or a reference attribute.
14229 FIXME: GDB does not yet know how to handle dynamic
14230 arrays properly, treat them as arrays with unspecified
14231 length for now.
14232
14233 FIXME: jimb/2003-09-22: GDB does not really know
14234 how to handle arrays of unspecified length
14235 either; we just represent them as zero-length
14236 arrays. Choose an appropriate upper bound given
14237 the lower bound we've computed above. */
14238 high = low - 1;
14239 }
14240 else
14241 high = dwarf2_get_attr_constant_value (attr, 1);
14242 }
14243 else
14244 {
14245 attr = dwarf2_attr (die, DW_AT_count, cu);
14246 if (attr)
14247 {
14248 int count = dwarf2_get_attr_constant_value (attr, 1);
14249 high = low + count - 1;
14250 }
14251 else
14252 {
14253 /* Unspecified array length. */
14254 high = low - 1;
14255 }
14256 }
14257
14258 /* Dwarf-2 specifications explicitly allows to create subrange types
14259 without specifying a base type.
14260 In that case, the base type must be set to the type of
14261 the lower bound, upper bound or count, in that order, if any of these
14262 three attributes references an object that has a type.
14263 If no base type is found, the Dwarf-2 specifications say that
14264 a signed integer type of size equal to the size of an address should
14265 be used.
14266 For the following C code: `extern char gdb_int [];'
14267 GCC produces an empty range DIE.
14268 FIXME: muller/2010-05-28: Possible references to object for low bound,
14269 high bound or count are not yet handled by this code. */
14270 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14271 {
14272 struct objfile *objfile = cu->objfile;
14273 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14274 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14275 struct type *int_type = objfile_type (objfile)->builtin_int;
14276
14277 /* Test "int", "long int", and "long long int" objfile types,
14278 and select the first one having a size above or equal to the
14279 architecture address size. */
14280 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14281 base_type = int_type;
14282 else
14283 {
14284 int_type = objfile_type (objfile)->builtin_long;
14285 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14286 base_type = int_type;
14287 else
14288 {
14289 int_type = objfile_type (objfile)->builtin_long_long;
14290 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14291 base_type = int_type;
14292 }
14293 }
14294 }
14295
14296 negative_mask =
14297 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14298 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14299 low |= negative_mask;
14300 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14301 high |= negative_mask;
14302
14303 range_type = create_range_type (NULL, orig_base_type, low, high);
14304
14305 /* Mark arrays with dynamic length at least as an array of unspecified
14306 length. GDB could check the boundary but before it gets implemented at
14307 least allow accessing the array elements. */
14308 if (attr && attr_form_is_block (attr))
14309 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14310
14311 /* Ada expects an empty array on no boundary attributes. */
14312 if (attr == NULL && cu->language != language_ada)
14313 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14314
14315 name = dwarf2_name (die, cu);
14316 if (name)
14317 TYPE_NAME (range_type) = name;
14318
14319 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14320 if (attr)
14321 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14322
14323 set_die_type (die, range_type, cu);
14324
14325 /* set_die_type should be already done. */
14326 set_descriptive_type (range_type, die, cu);
14327
14328 return range_type;
14329 }
14330
14331 static struct type *
14332 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14333 {
14334 struct type *type;
14335
14336 /* For now, we only support the C meaning of an unspecified type: void. */
14337
14338 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14339 TYPE_NAME (type) = dwarf2_name (die, cu);
14340
14341 return set_die_type (die, type, cu);
14342 }
14343
14344 /* Read a single die and all its descendents. Set the die's sibling
14345 field to NULL; set other fields in the die correctly, and set all
14346 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14347 location of the info_ptr after reading all of those dies. PARENT
14348 is the parent of the die in question. */
14349
14350 static struct die_info *
14351 read_die_and_children (const struct die_reader_specs *reader,
14352 const gdb_byte *info_ptr,
14353 const gdb_byte **new_info_ptr,
14354 struct die_info *parent)
14355 {
14356 struct die_info *die;
14357 const gdb_byte *cur_ptr;
14358 int has_children;
14359
14360 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14361 if (die == NULL)
14362 {
14363 *new_info_ptr = cur_ptr;
14364 return NULL;
14365 }
14366 store_in_ref_table (die, reader->cu);
14367
14368 if (has_children)
14369 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14370 else
14371 {
14372 die->child = NULL;
14373 *new_info_ptr = cur_ptr;
14374 }
14375
14376 die->sibling = NULL;
14377 die->parent = parent;
14378 return die;
14379 }
14380
14381 /* Read a die, all of its descendents, and all of its siblings; set
14382 all of the fields of all of the dies correctly. Arguments are as
14383 in read_die_and_children. */
14384
14385 static struct die_info *
14386 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14387 const gdb_byte *info_ptr,
14388 const gdb_byte **new_info_ptr,
14389 struct die_info *parent)
14390 {
14391 struct die_info *first_die, *last_sibling;
14392 const gdb_byte *cur_ptr;
14393
14394 cur_ptr = info_ptr;
14395 first_die = last_sibling = NULL;
14396
14397 while (1)
14398 {
14399 struct die_info *die
14400 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14401
14402 if (die == NULL)
14403 {
14404 *new_info_ptr = cur_ptr;
14405 return first_die;
14406 }
14407
14408 if (!first_die)
14409 first_die = die;
14410 else
14411 last_sibling->sibling = die;
14412
14413 last_sibling = die;
14414 }
14415 }
14416
14417 /* Read a die, all of its descendents, and all of its siblings; set
14418 all of the fields of all of the dies correctly. Arguments are as
14419 in read_die_and_children.
14420 This the main entry point for reading a DIE and all its children. */
14421
14422 static struct die_info *
14423 read_die_and_siblings (const struct die_reader_specs *reader,
14424 const gdb_byte *info_ptr,
14425 const gdb_byte **new_info_ptr,
14426 struct die_info *parent)
14427 {
14428 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14429 new_info_ptr, parent);
14430
14431 if (dwarf2_die_debug)
14432 {
14433 fprintf_unfiltered (gdb_stdlog,
14434 "Read die from %s@0x%x of %s:\n",
14435 get_section_name (reader->die_section),
14436 (unsigned) (info_ptr - reader->die_section->buffer),
14437 bfd_get_filename (reader->abfd));
14438 dump_die (die, dwarf2_die_debug);
14439 }
14440
14441 return die;
14442 }
14443
14444 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14445 attributes.
14446 The caller is responsible for filling in the extra attributes
14447 and updating (*DIEP)->num_attrs.
14448 Set DIEP to point to a newly allocated die with its information,
14449 except for its child, sibling, and parent fields.
14450 Set HAS_CHILDREN to tell whether the die has children or not. */
14451
14452 static const gdb_byte *
14453 read_full_die_1 (const struct die_reader_specs *reader,
14454 struct die_info **diep, const gdb_byte *info_ptr,
14455 int *has_children, int num_extra_attrs)
14456 {
14457 unsigned int abbrev_number, bytes_read, i;
14458 sect_offset offset;
14459 struct abbrev_info *abbrev;
14460 struct die_info *die;
14461 struct dwarf2_cu *cu = reader->cu;
14462 bfd *abfd = reader->abfd;
14463
14464 offset.sect_off = info_ptr - reader->buffer;
14465 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14466 info_ptr += bytes_read;
14467 if (!abbrev_number)
14468 {
14469 *diep = NULL;
14470 *has_children = 0;
14471 return info_ptr;
14472 }
14473
14474 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14475 if (!abbrev)
14476 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14477 abbrev_number,
14478 bfd_get_filename (abfd));
14479
14480 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14481 die->offset = offset;
14482 die->tag = abbrev->tag;
14483 die->abbrev = abbrev_number;
14484
14485 /* Make the result usable.
14486 The caller needs to update num_attrs after adding the extra
14487 attributes. */
14488 die->num_attrs = abbrev->num_attrs;
14489
14490 for (i = 0; i < abbrev->num_attrs; ++i)
14491 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14492 info_ptr);
14493
14494 *diep = die;
14495 *has_children = abbrev->has_children;
14496 return info_ptr;
14497 }
14498
14499 /* Read a die and all its attributes.
14500 Set DIEP to point to a newly allocated die with its information,
14501 except for its child, sibling, and parent fields.
14502 Set HAS_CHILDREN to tell whether the die has children or not. */
14503
14504 static const gdb_byte *
14505 read_full_die (const struct die_reader_specs *reader,
14506 struct die_info **diep, const gdb_byte *info_ptr,
14507 int *has_children)
14508 {
14509 const gdb_byte *result;
14510
14511 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14512
14513 if (dwarf2_die_debug)
14514 {
14515 fprintf_unfiltered (gdb_stdlog,
14516 "Read die from %s@0x%x of %s:\n",
14517 get_section_name (reader->die_section),
14518 (unsigned) (info_ptr - reader->die_section->buffer),
14519 bfd_get_filename (reader->abfd));
14520 dump_die (*diep, dwarf2_die_debug);
14521 }
14522
14523 return result;
14524 }
14525 \f
14526 /* Abbreviation tables.
14527
14528 In DWARF version 2, the description of the debugging information is
14529 stored in a separate .debug_abbrev section. Before we read any
14530 dies from a section we read in all abbreviations and install them
14531 in a hash table. */
14532
14533 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14534
14535 static struct abbrev_info *
14536 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14537 {
14538 struct abbrev_info *abbrev;
14539
14540 abbrev = (struct abbrev_info *)
14541 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14542 memset (abbrev, 0, sizeof (struct abbrev_info));
14543 return abbrev;
14544 }
14545
14546 /* Add an abbreviation to the table. */
14547
14548 static void
14549 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14550 unsigned int abbrev_number,
14551 struct abbrev_info *abbrev)
14552 {
14553 unsigned int hash_number;
14554
14555 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14556 abbrev->next = abbrev_table->abbrevs[hash_number];
14557 abbrev_table->abbrevs[hash_number] = abbrev;
14558 }
14559
14560 /* Look up an abbrev in the table.
14561 Returns NULL if the abbrev is not found. */
14562
14563 static struct abbrev_info *
14564 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14565 unsigned int abbrev_number)
14566 {
14567 unsigned int hash_number;
14568 struct abbrev_info *abbrev;
14569
14570 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14571 abbrev = abbrev_table->abbrevs[hash_number];
14572
14573 while (abbrev)
14574 {
14575 if (abbrev->number == abbrev_number)
14576 return abbrev;
14577 abbrev = abbrev->next;
14578 }
14579 return NULL;
14580 }
14581
14582 /* Read in an abbrev table. */
14583
14584 static struct abbrev_table *
14585 abbrev_table_read_table (struct dwarf2_section_info *section,
14586 sect_offset offset)
14587 {
14588 struct objfile *objfile = dwarf2_per_objfile->objfile;
14589 bfd *abfd = get_section_bfd_owner (section);
14590 struct abbrev_table *abbrev_table;
14591 const gdb_byte *abbrev_ptr;
14592 struct abbrev_info *cur_abbrev;
14593 unsigned int abbrev_number, bytes_read, abbrev_name;
14594 unsigned int abbrev_form;
14595 struct attr_abbrev *cur_attrs;
14596 unsigned int allocated_attrs;
14597
14598 abbrev_table = XMALLOC (struct abbrev_table);
14599 abbrev_table->offset = offset;
14600 obstack_init (&abbrev_table->abbrev_obstack);
14601 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14602 (ABBREV_HASH_SIZE
14603 * sizeof (struct abbrev_info *)));
14604 memset (abbrev_table->abbrevs, 0,
14605 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14606
14607 dwarf2_read_section (objfile, section);
14608 abbrev_ptr = section->buffer + offset.sect_off;
14609 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14610 abbrev_ptr += bytes_read;
14611
14612 allocated_attrs = ATTR_ALLOC_CHUNK;
14613 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14614
14615 /* Loop until we reach an abbrev number of 0. */
14616 while (abbrev_number)
14617 {
14618 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14619
14620 /* read in abbrev header */
14621 cur_abbrev->number = abbrev_number;
14622 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14623 abbrev_ptr += bytes_read;
14624 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14625 abbrev_ptr += 1;
14626
14627 /* now read in declarations */
14628 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14629 abbrev_ptr += bytes_read;
14630 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14631 abbrev_ptr += bytes_read;
14632 while (abbrev_name)
14633 {
14634 if (cur_abbrev->num_attrs == allocated_attrs)
14635 {
14636 allocated_attrs += ATTR_ALLOC_CHUNK;
14637 cur_attrs
14638 = xrealloc (cur_attrs, (allocated_attrs
14639 * sizeof (struct attr_abbrev)));
14640 }
14641
14642 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14643 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14644 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14645 abbrev_ptr += bytes_read;
14646 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14647 abbrev_ptr += bytes_read;
14648 }
14649
14650 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14651 (cur_abbrev->num_attrs
14652 * sizeof (struct attr_abbrev)));
14653 memcpy (cur_abbrev->attrs, cur_attrs,
14654 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14655
14656 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14657
14658 /* Get next abbreviation.
14659 Under Irix6 the abbreviations for a compilation unit are not
14660 always properly terminated with an abbrev number of 0.
14661 Exit loop if we encounter an abbreviation which we have
14662 already read (which means we are about to read the abbreviations
14663 for the next compile unit) or if the end of the abbreviation
14664 table is reached. */
14665 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14666 break;
14667 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14668 abbrev_ptr += bytes_read;
14669 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14670 break;
14671 }
14672
14673 xfree (cur_attrs);
14674 return abbrev_table;
14675 }
14676
14677 /* Free the resources held by ABBREV_TABLE. */
14678
14679 static void
14680 abbrev_table_free (struct abbrev_table *abbrev_table)
14681 {
14682 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14683 xfree (abbrev_table);
14684 }
14685
14686 /* Same as abbrev_table_free but as a cleanup.
14687 We pass in a pointer to the pointer to the table so that we can
14688 set the pointer to NULL when we're done. It also simplifies
14689 build_type_unit_groups. */
14690
14691 static void
14692 abbrev_table_free_cleanup (void *table_ptr)
14693 {
14694 struct abbrev_table **abbrev_table_ptr = table_ptr;
14695
14696 if (*abbrev_table_ptr != NULL)
14697 abbrev_table_free (*abbrev_table_ptr);
14698 *abbrev_table_ptr = NULL;
14699 }
14700
14701 /* Read the abbrev table for CU from ABBREV_SECTION. */
14702
14703 static void
14704 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14705 struct dwarf2_section_info *abbrev_section)
14706 {
14707 cu->abbrev_table =
14708 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14709 }
14710
14711 /* Release the memory used by the abbrev table for a compilation unit. */
14712
14713 static void
14714 dwarf2_free_abbrev_table (void *ptr_to_cu)
14715 {
14716 struct dwarf2_cu *cu = ptr_to_cu;
14717
14718 if (cu->abbrev_table != NULL)
14719 abbrev_table_free (cu->abbrev_table);
14720 /* Set this to NULL so that we SEGV if we try to read it later,
14721 and also because free_comp_unit verifies this is NULL. */
14722 cu->abbrev_table = NULL;
14723 }
14724 \f
14725 /* Returns nonzero if TAG represents a type that we might generate a partial
14726 symbol for. */
14727
14728 static int
14729 is_type_tag_for_partial (int tag)
14730 {
14731 switch (tag)
14732 {
14733 #if 0
14734 /* Some types that would be reasonable to generate partial symbols for,
14735 that we don't at present. */
14736 case DW_TAG_array_type:
14737 case DW_TAG_file_type:
14738 case DW_TAG_ptr_to_member_type:
14739 case DW_TAG_set_type:
14740 case DW_TAG_string_type:
14741 case DW_TAG_subroutine_type:
14742 #endif
14743 case DW_TAG_base_type:
14744 case DW_TAG_class_type:
14745 case DW_TAG_interface_type:
14746 case DW_TAG_enumeration_type:
14747 case DW_TAG_structure_type:
14748 case DW_TAG_subrange_type:
14749 case DW_TAG_typedef:
14750 case DW_TAG_union_type:
14751 return 1;
14752 default:
14753 return 0;
14754 }
14755 }
14756
14757 /* Load all DIEs that are interesting for partial symbols into memory. */
14758
14759 static struct partial_die_info *
14760 load_partial_dies (const struct die_reader_specs *reader,
14761 const gdb_byte *info_ptr, int building_psymtab)
14762 {
14763 struct dwarf2_cu *cu = reader->cu;
14764 struct objfile *objfile = cu->objfile;
14765 struct partial_die_info *part_die;
14766 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14767 struct abbrev_info *abbrev;
14768 unsigned int bytes_read;
14769 unsigned int load_all = 0;
14770 int nesting_level = 1;
14771
14772 parent_die = NULL;
14773 last_die = NULL;
14774
14775 gdb_assert (cu->per_cu != NULL);
14776 if (cu->per_cu->load_all_dies)
14777 load_all = 1;
14778
14779 cu->partial_dies
14780 = htab_create_alloc_ex (cu->header.length / 12,
14781 partial_die_hash,
14782 partial_die_eq,
14783 NULL,
14784 &cu->comp_unit_obstack,
14785 hashtab_obstack_allocate,
14786 dummy_obstack_deallocate);
14787
14788 part_die = obstack_alloc (&cu->comp_unit_obstack,
14789 sizeof (struct partial_die_info));
14790
14791 while (1)
14792 {
14793 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14794
14795 /* A NULL abbrev means the end of a series of children. */
14796 if (abbrev == NULL)
14797 {
14798 if (--nesting_level == 0)
14799 {
14800 /* PART_DIE was probably the last thing allocated on the
14801 comp_unit_obstack, so we could call obstack_free
14802 here. We don't do that because the waste is small,
14803 and will be cleaned up when we're done with this
14804 compilation unit. This way, we're also more robust
14805 against other users of the comp_unit_obstack. */
14806 return first_die;
14807 }
14808 info_ptr += bytes_read;
14809 last_die = parent_die;
14810 parent_die = parent_die->die_parent;
14811 continue;
14812 }
14813
14814 /* Check for template arguments. We never save these; if
14815 they're seen, we just mark the parent, and go on our way. */
14816 if (parent_die != NULL
14817 && cu->language == language_cplus
14818 && (abbrev->tag == DW_TAG_template_type_param
14819 || abbrev->tag == DW_TAG_template_value_param))
14820 {
14821 parent_die->has_template_arguments = 1;
14822
14823 if (!load_all)
14824 {
14825 /* We don't need a partial DIE for the template argument. */
14826 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14827 continue;
14828 }
14829 }
14830
14831 /* We only recurse into c++ subprograms looking for template arguments.
14832 Skip their other children. */
14833 if (!load_all
14834 && cu->language == language_cplus
14835 && parent_die != NULL
14836 && parent_die->tag == DW_TAG_subprogram)
14837 {
14838 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14839 continue;
14840 }
14841
14842 /* Check whether this DIE is interesting enough to save. Normally
14843 we would not be interested in members here, but there may be
14844 later variables referencing them via DW_AT_specification (for
14845 static members). */
14846 if (!load_all
14847 && !is_type_tag_for_partial (abbrev->tag)
14848 && abbrev->tag != DW_TAG_constant
14849 && abbrev->tag != DW_TAG_enumerator
14850 && abbrev->tag != DW_TAG_subprogram
14851 && abbrev->tag != DW_TAG_lexical_block
14852 && abbrev->tag != DW_TAG_variable
14853 && abbrev->tag != DW_TAG_namespace
14854 && abbrev->tag != DW_TAG_module
14855 && abbrev->tag != DW_TAG_member
14856 && abbrev->tag != DW_TAG_imported_unit)
14857 {
14858 /* Otherwise we skip to the next sibling, if any. */
14859 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14860 continue;
14861 }
14862
14863 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14864 info_ptr);
14865
14866 /* This two-pass algorithm for processing partial symbols has a
14867 high cost in cache pressure. Thus, handle some simple cases
14868 here which cover the majority of C partial symbols. DIEs
14869 which neither have specification tags in them, nor could have
14870 specification tags elsewhere pointing at them, can simply be
14871 processed and discarded.
14872
14873 This segment is also optional; scan_partial_symbols and
14874 add_partial_symbol will handle these DIEs if we chain
14875 them in normally. When compilers which do not emit large
14876 quantities of duplicate debug information are more common,
14877 this code can probably be removed. */
14878
14879 /* Any complete simple types at the top level (pretty much all
14880 of them, for a language without namespaces), can be processed
14881 directly. */
14882 if (parent_die == NULL
14883 && part_die->has_specification == 0
14884 && part_die->is_declaration == 0
14885 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14886 || part_die->tag == DW_TAG_base_type
14887 || part_die->tag == DW_TAG_subrange_type))
14888 {
14889 if (building_psymtab && part_die->name != NULL)
14890 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14891 VAR_DOMAIN, LOC_TYPEDEF,
14892 &objfile->static_psymbols,
14893 0, (CORE_ADDR) 0, cu->language, objfile);
14894 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14895 continue;
14896 }
14897
14898 /* The exception for DW_TAG_typedef with has_children above is
14899 a workaround of GCC PR debug/47510. In the case of this complaint
14900 type_name_no_tag_or_error will error on such types later.
14901
14902 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14903 it could not find the child DIEs referenced later, this is checked
14904 above. In correct DWARF DW_TAG_typedef should have no children. */
14905
14906 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14907 complaint (&symfile_complaints,
14908 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14909 "- DIE at 0x%x [in module %s]"),
14910 part_die->offset.sect_off, objfile_name (objfile));
14911
14912 /* If we're at the second level, and we're an enumerator, and
14913 our parent has no specification (meaning possibly lives in a
14914 namespace elsewhere), then we can add the partial symbol now
14915 instead of queueing it. */
14916 if (part_die->tag == DW_TAG_enumerator
14917 && parent_die != NULL
14918 && parent_die->die_parent == NULL
14919 && parent_die->tag == DW_TAG_enumeration_type
14920 && parent_die->has_specification == 0)
14921 {
14922 if (part_die->name == NULL)
14923 complaint (&symfile_complaints,
14924 _("malformed enumerator DIE ignored"));
14925 else if (building_psymtab)
14926 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14927 VAR_DOMAIN, LOC_CONST,
14928 (cu->language == language_cplus
14929 || cu->language == language_java)
14930 ? &objfile->global_psymbols
14931 : &objfile->static_psymbols,
14932 0, (CORE_ADDR) 0, cu->language, objfile);
14933
14934 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14935 continue;
14936 }
14937
14938 /* We'll save this DIE so link it in. */
14939 part_die->die_parent = parent_die;
14940 part_die->die_sibling = NULL;
14941 part_die->die_child = NULL;
14942
14943 if (last_die && last_die == parent_die)
14944 last_die->die_child = part_die;
14945 else if (last_die)
14946 last_die->die_sibling = part_die;
14947
14948 last_die = part_die;
14949
14950 if (first_die == NULL)
14951 first_die = part_die;
14952
14953 /* Maybe add the DIE to the hash table. Not all DIEs that we
14954 find interesting need to be in the hash table, because we
14955 also have the parent/sibling/child chains; only those that we
14956 might refer to by offset later during partial symbol reading.
14957
14958 For now this means things that might have be the target of a
14959 DW_AT_specification, DW_AT_abstract_origin, or
14960 DW_AT_extension. DW_AT_extension will refer only to
14961 namespaces; DW_AT_abstract_origin refers to functions (and
14962 many things under the function DIE, but we do not recurse
14963 into function DIEs during partial symbol reading) and
14964 possibly variables as well; DW_AT_specification refers to
14965 declarations. Declarations ought to have the DW_AT_declaration
14966 flag. It happens that GCC forgets to put it in sometimes, but
14967 only for functions, not for types.
14968
14969 Adding more things than necessary to the hash table is harmless
14970 except for the performance cost. Adding too few will result in
14971 wasted time in find_partial_die, when we reread the compilation
14972 unit with load_all_dies set. */
14973
14974 if (load_all
14975 || abbrev->tag == DW_TAG_constant
14976 || abbrev->tag == DW_TAG_subprogram
14977 || abbrev->tag == DW_TAG_variable
14978 || abbrev->tag == DW_TAG_namespace
14979 || part_die->is_declaration)
14980 {
14981 void **slot;
14982
14983 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14984 part_die->offset.sect_off, INSERT);
14985 *slot = part_die;
14986 }
14987
14988 part_die = obstack_alloc (&cu->comp_unit_obstack,
14989 sizeof (struct partial_die_info));
14990
14991 /* For some DIEs we want to follow their children (if any). For C
14992 we have no reason to follow the children of structures; for other
14993 languages we have to, so that we can get at method physnames
14994 to infer fully qualified class names, for DW_AT_specification,
14995 and for C++ template arguments. For C++, we also look one level
14996 inside functions to find template arguments (if the name of the
14997 function does not already contain the template arguments).
14998
14999 For Ada, we need to scan the children of subprograms and lexical
15000 blocks as well because Ada allows the definition of nested
15001 entities that could be interesting for the debugger, such as
15002 nested subprograms for instance. */
15003 if (last_die->has_children
15004 && (load_all
15005 || last_die->tag == DW_TAG_namespace
15006 || last_die->tag == DW_TAG_module
15007 || last_die->tag == DW_TAG_enumeration_type
15008 || (cu->language == language_cplus
15009 && last_die->tag == DW_TAG_subprogram
15010 && (last_die->name == NULL
15011 || strchr (last_die->name, '<') == NULL))
15012 || (cu->language != language_c
15013 && (last_die->tag == DW_TAG_class_type
15014 || last_die->tag == DW_TAG_interface_type
15015 || last_die->tag == DW_TAG_structure_type
15016 || last_die->tag == DW_TAG_union_type))
15017 || (cu->language == language_ada
15018 && (last_die->tag == DW_TAG_subprogram
15019 || last_die->tag == DW_TAG_lexical_block))))
15020 {
15021 nesting_level++;
15022 parent_die = last_die;
15023 continue;
15024 }
15025
15026 /* Otherwise we skip to the next sibling, if any. */
15027 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15028
15029 /* Back to the top, do it again. */
15030 }
15031 }
15032
15033 /* Read a minimal amount of information into the minimal die structure. */
15034
15035 static const gdb_byte *
15036 read_partial_die (const struct die_reader_specs *reader,
15037 struct partial_die_info *part_die,
15038 struct abbrev_info *abbrev, unsigned int abbrev_len,
15039 const gdb_byte *info_ptr)
15040 {
15041 struct dwarf2_cu *cu = reader->cu;
15042 struct objfile *objfile = cu->objfile;
15043 const gdb_byte *buffer = reader->buffer;
15044 unsigned int i;
15045 struct attribute attr;
15046 int has_low_pc_attr = 0;
15047 int has_high_pc_attr = 0;
15048 int high_pc_relative = 0;
15049
15050 memset (part_die, 0, sizeof (struct partial_die_info));
15051
15052 part_die->offset.sect_off = info_ptr - buffer;
15053
15054 info_ptr += abbrev_len;
15055
15056 if (abbrev == NULL)
15057 return info_ptr;
15058
15059 part_die->tag = abbrev->tag;
15060 part_die->has_children = abbrev->has_children;
15061
15062 for (i = 0; i < abbrev->num_attrs; ++i)
15063 {
15064 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15065
15066 /* Store the data if it is of an attribute we want to keep in a
15067 partial symbol table. */
15068 switch (attr.name)
15069 {
15070 case DW_AT_name:
15071 switch (part_die->tag)
15072 {
15073 case DW_TAG_compile_unit:
15074 case DW_TAG_partial_unit:
15075 case DW_TAG_type_unit:
15076 /* Compilation units have a DW_AT_name that is a filename, not
15077 a source language identifier. */
15078 case DW_TAG_enumeration_type:
15079 case DW_TAG_enumerator:
15080 /* These tags always have simple identifiers already; no need
15081 to canonicalize them. */
15082 part_die->name = DW_STRING (&attr);
15083 break;
15084 default:
15085 part_die->name
15086 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15087 &objfile->objfile_obstack);
15088 break;
15089 }
15090 break;
15091 case DW_AT_linkage_name:
15092 case DW_AT_MIPS_linkage_name:
15093 /* Note that both forms of linkage name might appear. We
15094 assume they will be the same, and we only store the last
15095 one we see. */
15096 if (cu->language == language_ada)
15097 part_die->name = DW_STRING (&attr);
15098 part_die->linkage_name = DW_STRING (&attr);
15099 break;
15100 case DW_AT_low_pc:
15101 has_low_pc_attr = 1;
15102 part_die->lowpc = DW_ADDR (&attr);
15103 break;
15104 case DW_AT_high_pc:
15105 has_high_pc_attr = 1;
15106 if (attr.form == DW_FORM_addr
15107 || attr.form == DW_FORM_GNU_addr_index)
15108 part_die->highpc = DW_ADDR (&attr);
15109 else
15110 {
15111 high_pc_relative = 1;
15112 part_die->highpc = DW_UNSND (&attr);
15113 }
15114 break;
15115 case DW_AT_location:
15116 /* Support the .debug_loc offsets. */
15117 if (attr_form_is_block (&attr))
15118 {
15119 part_die->d.locdesc = DW_BLOCK (&attr);
15120 }
15121 else if (attr_form_is_section_offset (&attr))
15122 {
15123 dwarf2_complex_location_expr_complaint ();
15124 }
15125 else
15126 {
15127 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15128 "partial symbol information");
15129 }
15130 break;
15131 case DW_AT_external:
15132 part_die->is_external = DW_UNSND (&attr);
15133 break;
15134 case DW_AT_declaration:
15135 part_die->is_declaration = DW_UNSND (&attr);
15136 break;
15137 case DW_AT_type:
15138 part_die->has_type = 1;
15139 break;
15140 case DW_AT_abstract_origin:
15141 case DW_AT_specification:
15142 case DW_AT_extension:
15143 part_die->has_specification = 1;
15144 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15145 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15146 || cu->per_cu->is_dwz);
15147 break;
15148 case DW_AT_sibling:
15149 /* Ignore absolute siblings, they might point outside of
15150 the current compile unit. */
15151 if (attr.form == DW_FORM_ref_addr)
15152 complaint (&symfile_complaints,
15153 _("ignoring absolute DW_AT_sibling"));
15154 else
15155 {
15156 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15157 const gdb_byte *sibling_ptr = buffer + off;
15158
15159 if (sibling_ptr < info_ptr)
15160 complaint (&symfile_complaints,
15161 _("DW_AT_sibling points backwards"));
15162 else
15163 part_die->sibling = sibling_ptr;
15164 }
15165 break;
15166 case DW_AT_byte_size:
15167 part_die->has_byte_size = 1;
15168 break;
15169 case DW_AT_calling_convention:
15170 /* DWARF doesn't provide a way to identify a program's source-level
15171 entry point. DW_AT_calling_convention attributes are only meant
15172 to describe functions' calling conventions.
15173
15174 However, because it's a necessary piece of information in
15175 Fortran, and because DW_CC_program is the only piece of debugging
15176 information whose definition refers to a 'main program' at all,
15177 several compilers have begun marking Fortran main programs with
15178 DW_CC_program --- even when those functions use the standard
15179 calling conventions.
15180
15181 So until DWARF specifies a way to provide this information and
15182 compilers pick up the new representation, we'll support this
15183 practice. */
15184 if (DW_UNSND (&attr) == DW_CC_program
15185 && cu->language == language_fortran)
15186 {
15187 set_main_name (part_die->name);
15188
15189 /* As this DIE has a static linkage the name would be difficult
15190 to look up later. */
15191 language_of_main = language_fortran;
15192 }
15193 break;
15194 case DW_AT_inline:
15195 if (DW_UNSND (&attr) == DW_INL_inlined
15196 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15197 part_die->may_be_inlined = 1;
15198 break;
15199
15200 case DW_AT_import:
15201 if (part_die->tag == DW_TAG_imported_unit)
15202 {
15203 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15204 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15205 || cu->per_cu->is_dwz);
15206 }
15207 break;
15208
15209 default:
15210 break;
15211 }
15212 }
15213
15214 if (high_pc_relative)
15215 part_die->highpc += part_die->lowpc;
15216
15217 if (has_low_pc_attr && has_high_pc_attr)
15218 {
15219 /* When using the GNU linker, .gnu.linkonce. sections are used to
15220 eliminate duplicate copies of functions and vtables and such.
15221 The linker will arbitrarily choose one and discard the others.
15222 The AT_*_pc values for such functions refer to local labels in
15223 these sections. If the section from that file was discarded, the
15224 labels are not in the output, so the relocs get a value of 0.
15225 If this is a discarded function, mark the pc bounds as invalid,
15226 so that GDB will ignore it. */
15227 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15228 {
15229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15230
15231 complaint (&symfile_complaints,
15232 _("DW_AT_low_pc %s is zero "
15233 "for DIE at 0x%x [in module %s]"),
15234 paddress (gdbarch, part_die->lowpc),
15235 part_die->offset.sect_off, objfile_name (objfile));
15236 }
15237 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15238 else if (part_die->lowpc >= part_die->highpc)
15239 {
15240 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15241
15242 complaint (&symfile_complaints,
15243 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15244 "for DIE at 0x%x [in module %s]"),
15245 paddress (gdbarch, part_die->lowpc),
15246 paddress (gdbarch, part_die->highpc),
15247 part_die->offset.sect_off, objfile_name (objfile));
15248 }
15249 else
15250 part_die->has_pc_info = 1;
15251 }
15252
15253 return info_ptr;
15254 }
15255
15256 /* Find a cached partial DIE at OFFSET in CU. */
15257
15258 static struct partial_die_info *
15259 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15260 {
15261 struct partial_die_info *lookup_die = NULL;
15262 struct partial_die_info part_die;
15263
15264 part_die.offset = offset;
15265 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15266 offset.sect_off);
15267
15268 return lookup_die;
15269 }
15270
15271 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15272 except in the case of .debug_types DIEs which do not reference
15273 outside their CU (they do however referencing other types via
15274 DW_FORM_ref_sig8). */
15275
15276 static struct partial_die_info *
15277 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15278 {
15279 struct objfile *objfile = cu->objfile;
15280 struct dwarf2_per_cu_data *per_cu = NULL;
15281 struct partial_die_info *pd = NULL;
15282
15283 if (offset_in_dwz == cu->per_cu->is_dwz
15284 && offset_in_cu_p (&cu->header, offset))
15285 {
15286 pd = find_partial_die_in_comp_unit (offset, cu);
15287 if (pd != NULL)
15288 return pd;
15289 /* We missed recording what we needed.
15290 Load all dies and try again. */
15291 per_cu = cu->per_cu;
15292 }
15293 else
15294 {
15295 /* TUs don't reference other CUs/TUs (except via type signatures). */
15296 if (cu->per_cu->is_debug_types)
15297 {
15298 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15299 " external reference to offset 0x%lx [in module %s].\n"),
15300 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15301 bfd_get_filename (objfile->obfd));
15302 }
15303 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15304 objfile);
15305
15306 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15307 load_partial_comp_unit (per_cu);
15308
15309 per_cu->cu->last_used = 0;
15310 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15311 }
15312
15313 /* If we didn't find it, and not all dies have been loaded,
15314 load them all and try again. */
15315
15316 if (pd == NULL && per_cu->load_all_dies == 0)
15317 {
15318 per_cu->load_all_dies = 1;
15319
15320 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15321 THIS_CU->cu may already be in use. So we can't just free it and
15322 replace its DIEs with the ones we read in. Instead, we leave those
15323 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15324 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15325 set. */
15326 load_partial_comp_unit (per_cu);
15327
15328 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15329 }
15330
15331 if (pd == NULL)
15332 internal_error (__FILE__, __LINE__,
15333 _("could not find partial DIE 0x%x "
15334 "in cache [from module %s]\n"),
15335 offset.sect_off, bfd_get_filename (objfile->obfd));
15336 return pd;
15337 }
15338
15339 /* See if we can figure out if the class lives in a namespace. We do
15340 this by looking for a member function; its demangled name will
15341 contain namespace info, if there is any. */
15342
15343 static void
15344 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15345 struct dwarf2_cu *cu)
15346 {
15347 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15348 what template types look like, because the demangler
15349 frequently doesn't give the same name as the debug info. We
15350 could fix this by only using the demangled name to get the
15351 prefix (but see comment in read_structure_type). */
15352
15353 struct partial_die_info *real_pdi;
15354 struct partial_die_info *child_pdi;
15355
15356 /* If this DIE (this DIE's specification, if any) has a parent, then
15357 we should not do this. We'll prepend the parent's fully qualified
15358 name when we create the partial symbol. */
15359
15360 real_pdi = struct_pdi;
15361 while (real_pdi->has_specification)
15362 real_pdi = find_partial_die (real_pdi->spec_offset,
15363 real_pdi->spec_is_dwz, cu);
15364
15365 if (real_pdi->die_parent != NULL)
15366 return;
15367
15368 for (child_pdi = struct_pdi->die_child;
15369 child_pdi != NULL;
15370 child_pdi = child_pdi->die_sibling)
15371 {
15372 if (child_pdi->tag == DW_TAG_subprogram
15373 && child_pdi->linkage_name != NULL)
15374 {
15375 char *actual_class_name
15376 = language_class_name_from_physname (cu->language_defn,
15377 child_pdi->linkage_name);
15378 if (actual_class_name != NULL)
15379 {
15380 struct_pdi->name
15381 = obstack_copy0 (&cu->objfile->objfile_obstack,
15382 actual_class_name,
15383 strlen (actual_class_name));
15384 xfree (actual_class_name);
15385 }
15386 break;
15387 }
15388 }
15389 }
15390
15391 /* Adjust PART_DIE before generating a symbol for it. This function
15392 may set the is_external flag or change the DIE's name. */
15393
15394 static void
15395 fixup_partial_die (struct partial_die_info *part_die,
15396 struct dwarf2_cu *cu)
15397 {
15398 /* Once we've fixed up a die, there's no point in doing so again.
15399 This also avoids a memory leak if we were to call
15400 guess_partial_die_structure_name multiple times. */
15401 if (part_die->fixup_called)
15402 return;
15403
15404 /* If we found a reference attribute and the DIE has no name, try
15405 to find a name in the referred to DIE. */
15406
15407 if (part_die->name == NULL && part_die->has_specification)
15408 {
15409 struct partial_die_info *spec_die;
15410
15411 spec_die = find_partial_die (part_die->spec_offset,
15412 part_die->spec_is_dwz, cu);
15413
15414 fixup_partial_die (spec_die, cu);
15415
15416 if (spec_die->name)
15417 {
15418 part_die->name = spec_die->name;
15419
15420 /* Copy DW_AT_external attribute if it is set. */
15421 if (spec_die->is_external)
15422 part_die->is_external = spec_die->is_external;
15423 }
15424 }
15425
15426 /* Set default names for some unnamed DIEs. */
15427
15428 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15429 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15430
15431 /* If there is no parent die to provide a namespace, and there are
15432 children, see if we can determine the namespace from their linkage
15433 name. */
15434 if (cu->language == language_cplus
15435 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15436 && part_die->die_parent == NULL
15437 && part_die->has_children
15438 && (part_die->tag == DW_TAG_class_type
15439 || part_die->tag == DW_TAG_structure_type
15440 || part_die->tag == DW_TAG_union_type))
15441 guess_partial_die_structure_name (part_die, cu);
15442
15443 /* GCC might emit a nameless struct or union that has a linkage
15444 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15445 if (part_die->name == NULL
15446 && (part_die->tag == DW_TAG_class_type
15447 || part_die->tag == DW_TAG_interface_type
15448 || part_die->tag == DW_TAG_structure_type
15449 || part_die->tag == DW_TAG_union_type)
15450 && part_die->linkage_name != NULL)
15451 {
15452 char *demangled;
15453
15454 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15455 if (demangled)
15456 {
15457 const char *base;
15458
15459 /* Strip any leading namespaces/classes, keep only the base name.
15460 DW_AT_name for named DIEs does not contain the prefixes. */
15461 base = strrchr (demangled, ':');
15462 if (base && base > demangled && base[-1] == ':')
15463 base++;
15464 else
15465 base = demangled;
15466
15467 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15468 base, strlen (base));
15469 xfree (demangled);
15470 }
15471 }
15472
15473 part_die->fixup_called = 1;
15474 }
15475
15476 /* Read an attribute value described by an attribute form. */
15477
15478 static const gdb_byte *
15479 read_attribute_value (const struct die_reader_specs *reader,
15480 struct attribute *attr, unsigned form,
15481 const gdb_byte *info_ptr)
15482 {
15483 struct dwarf2_cu *cu = reader->cu;
15484 bfd *abfd = reader->abfd;
15485 struct comp_unit_head *cu_header = &cu->header;
15486 unsigned int bytes_read;
15487 struct dwarf_block *blk;
15488
15489 attr->form = form;
15490 switch (form)
15491 {
15492 case DW_FORM_ref_addr:
15493 if (cu->header.version == 2)
15494 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15495 else
15496 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15497 &cu->header, &bytes_read);
15498 info_ptr += bytes_read;
15499 break;
15500 case DW_FORM_GNU_ref_alt:
15501 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15502 info_ptr += bytes_read;
15503 break;
15504 case DW_FORM_addr:
15505 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15506 info_ptr += bytes_read;
15507 break;
15508 case DW_FORM_block2:
15509 blk = dwarf_alloc_block (cu);
15510 blk->size = read_2_bytes (abfd, info_ptr);
15511 info_ptr += 2;
15512 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15513 info_ptr += blk->size;
15514 DW_BLOCK (attr) = blk;
15515 break;
15516 case DW_FORM_block4:
15517 blk = dwarf_alloc_block (cu);
15518 blk->size = read_4_bytes (abfd, info_ptr);
15519 info_ptr += 4;
15520 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15521 info_ptr += blk->size;
15522 DW_BLOCK (attr) = blk;
15523 break;
15524 case DW_FORM_data2:
15525 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15526 info_ptr += 2;
15527 break;
15528 case DW_FORM_data4:
15529 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15530 info_ptr += 4;
15531 break;
15532 case DW_FORM_data8:
15533 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15534 info_ptr += 8;
15535 break;
15536 case DW_FORM_sec_offset:
15537 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15538 info_ptr += bytes_read;
15539 break;
15540 case DW_FORM_string:
15541 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15542 DW_STRING_IS_CANONICAL (attr) = 0;
15543 info_ptr += bytes_read;
15544 break;
15545 case DW_FORM_strp:
15546 if (!cu->per_cu->is_dwz)
15547 {
15548 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15549 &bytes_read);
15550 DW_STRING_IS_CANONICAL (attr) = 0;
15551 info_ptr += bytes_read;
15552 break;
15553 }
15554 /* FALLTHROUGH */
15555 case DW_FORM_GNU_strp_alt:
15556 {
15557 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15558 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15559 &bytes_read);
15560
15561 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15562 DW_STRING_IS_CANONICAL (attr) = 0;
15563 info_ptr += bytes_read;
15564 }
15565 break;
15566 case DW_FORM_exprloc:
15567 case DW_FORM_block:
15568 blk = dwarf_alloc_block (cu);
15569 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15570 info_ptr += bytes_read;
15571 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15572 info_ptr += blk->size;
15573 DW_BLOCK (attr) = blk;
15574 break;
15575 case DW_FORM_block1:
15576 blk = dwarf_alloc_block (cu);
15577 blk->size = read_1_byte (abfd, info_ptr);
15578 info_ptr += 1;
15579 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15580 info_ptr += blk->size;
15581 DW_BLOCK (attr) = blk;
15582 break;
15583 case DW_FORM_data1:
15584 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15585 info_ptr += 1;
15586 break;
15587 case DW_FORM_flag:
15588 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15589 info_ptr += 1;
15590 break;
15591 case DW_FORM_flag_present:
15592 DW_UNSND (attr) = 1;
15593 break;
15594 case DW_FORM_sdata:
15595 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15596 info_ptr += bytes_read;
15597 break;
15598 case DW_FORM_udata:
15599 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15600 info_ptr += bytes_read;
15601 break;
15602 case DW_FORM_ref1:
15603 DW_UNSND (attr) = (cu->header.offset.sect_off
15604 + read_1_byte (abfd, info_ptr));
15605 info_ptr += 1;
15606 break;
15607 case DW_FORM_ref2:
15608 DW_UNSND (attr) = (cu->header.offset.sect_off
15609 + read_2_bytes (abfd, info_ptr));
15610 info_ptr += 2;
15611 break;
15612 case DW_FORM_ref4:
15613 DW_UNSND (attr) = (cu->header.offset.sect_off
15614 + read_4_bytes (abfd, info_ptr));
15615 info_ptr += 4;
15616 break;
15617 case DW_FORM_ref8:
15618 DW_UNSND (attr) = (cu->header.offset.sect_off
15619 + read_8_bytes (abfd, info_ptr));
15620 info_ptr += 8;
15621 break;
15622 case DW_FORM_ref_sig8:
15623 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15624 info_ptr += 8;
15625 break;
15626 case DW_FORM_ref_udata:
15627 DW_UNSND (attr) = (cu->header.offset.sect_off
15628 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15629 info_ptr += bytes_read;
15630 break;
15631 case DW_FORM_indirect:
15632 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15633 info_ptr += bytes_read;
15634 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15635 break;
15636 case DW_FORM_GNU_addr_index:
15637 if (reader->dwo_file == NULL)
15638 {
15639 /* For now flag a hard error.
15640 Later we can turn this into a complaint. */
15641 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15642 dwarf_form_name (form),
15643 bfd_get_filename (abfd));
15644 }
15645 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15646 info_ptr += bytes_read;
15647 break;
15648 case DW_FORM_GNU_str_index:
15649 if (reader->dwo_file == NULL)
15650 {
15651 /* For now flag a hard error.
15652 Later we can turn this into a complaint if warranted. */
15653 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15654 dwarf_form_name (form),
15655 bfd_get_filename (abfd));
15656 }
15657 {
15658 ULONGEST str_index =
15659 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15660
15661 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15662 DW_STRING_IS_CANONICAL (attr) = 0;
15663 info_ptr += bytes_read;
15664 }
15665 break;
15666 default:
15667 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15668 dwarf_form_name (form),
15669 bfd_get_filename (abfd));
15670 }
15671
15672 /* Super hack. */
15673 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15674 attr->form = DW_FORM_GNU_ref_alt;
15675
15676 /* We have seen instances where the compiler tried to emit a byte
15677 size attribute of -1 which ended up being encoded as an unsigned
15678 0xffffffff. Although 0xffffffff is technically a valid size value,
15679 an object of this size seems pretty unlikely so we can relatively
15680 safely treat these cases as if the size attribute was invalid and
15681 treat them as zero by default. */
15682 if (attr->name == DW_AT_byte_size
15683 && form == DW_FORM_data4
15684 && DW_UNSND (attr) >= 0xffffffff)
15685 {
15686 complaint
15687 (&symfile_complaints,
15688 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15689 hex_string (DW_UNSND (attr)));
15690 DW_UNSND (attr) = 0;
15691 }
15692
15693 return info_ptr;
15694 }
15695
15696 /* Read an attribute described by an abbreviated attribute. */
15697
15698 static const gdb_byte *
15699 read_attribute (const struct die_reader_specs *reader,
15700 struct attribute *attr, struct attr_abbrev *abbrev,
15701 const gdb_byte *info_ptr)
15702 {
15703 attr->name = abbrev->name;
15704 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15705 }
15706
15707 /* Read dwarf information from a buffer. */
15708
15709 static unsigned int
15710 read_1_byte (bfd *abfd, const gdb_byte *buf)
15711 {
15712 return bfd_get_8 (abfd, buf);
15713 }
15714
15715 static int
15716 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15717 {
15718 return bfd_get_signed_8 (abfd, buf);
15719 }
15720
15721 static unsigned int
15722 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15723 {
15724 return bfd_get_16 (abfd, buf);
15725 }
15726
15727 static int
15728 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15729 {
15730 return bfd_get_signed_16 (abfd, buf);
15731 }
15732
15733 static unsigned int
15734 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15735 {
15736 return bfd_get_32 (abfd, buf);
15737 }
15738
15739 static int
15740 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15741 {
15742 return bfd_get_signed_32 (abfd, buf);
15743 }
15744
15745 static ULONGEST
15746 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15747 {
15748 return bfd_get_64 (abfd, buf);
15749 }
15750
15751 static CORE_ADDR
15752 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
15753 unsigned int *bytes_read)
15754 {
15755 struct comp_unit_head *cu_header = &cu->header;
15756 CORE_ADDR retval = 0;
15757
15758 if (cu_header->signed_addr_p)
15759 {
15760 switch (cu_header->addr_size)
15761 {
15762 case 2:
15763 retval = bfd_get_signed_16 (abfd, buf);
15764 break;
15765 case 4:
15766 retval = bfd_get_signed_32 (abfd, buf);
15767 break;
15768 case 8:
15769 retval = bfd_get_signed_64 (abfd, buf);
15770 break;
15771 default:
15772 internal_error (__FILE__, __LINE__,
15773 _("read_address: bad switch, signed [in module %s]"),
15774 bfd_get_filename (abfd));
15775 }
15776 }
15777 else
15778 {
15779 switch (cu_header->addr_size)
15780 {
15781 case 2:
15782 retval = bfd_get_16 (abfd, buf);
15783 break;
15784 case 4:
15785 retval = bfd_get_32 (abfd, buf);
15786 break;
15787 case 8:
15788 retval = bfd_get_64 (abfd, buf);
15789 break;
15790 default:
15791 internal_error (__FILE__, __LINE__,
15792 _("read_address: bad switch, "
15793 "unsigned [in module %s]"),
15794 bfd_get_filename (abfd));
15795 }
15796 }
15797
15798 *bytes_read = cu_header->addr_size;
15799 return retval;
15800 }
15801
15802 /* Read the initial length from a section. The (draft) DWARF 3
15803 specification allows the initial length to take up either 4 bytes
15804 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15805 bytes describe the length and all offsets will be 8 bytes in length
15806 instead of 4.
15807
15808 An older, non-standard 64-bit format is also handled by this
15809 function. The older format in question stores the initial length
15810 as an 8-byte quantity without an escape value. Lengths greater
15811 than 2^32 aren't very common which means that the initial 4 bytes
15812 is almost always zero. Since a length value of zero doesn't make
15813 sense for the 32-bit format, this initial zero can be considered to
15814 be an escape value which indicates the presence of the older 64-bit
15815 format. As written, the code can't detect (old format) lengths
15816 greater than 4GB. If it becomes necessary to handle lengths
15817 somewhat larger than 4GB, we could allow other small values (such
15818 as the non-sensical values of 1, 2, and 3) to also be used as
15819 escape values indicating the presence of the old format.
15820
15821 The value returned via bytes_read should be used to increment the
15822 relevant pointer after calling read_initial_length().
15823
15824 [ Note: read_initial_length() and read_offset() are based on the
15825 document entitled "DWARF Debugging Information Format", revision
15826 3, draft 8, dated November 19, 2001. This document was obtained
15827 from:
15828
15829 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15830
15831 This document is only a draft and is subject to change. (So beware.)
15832
15833 Details regarding the older, non-standard 64-bit format were
15834 determined empirically by examining 64-bit ELF files produced by
15835 the SGI toolchain on an IRIX 6.5 machine.
15836
15837 - Kevin, July 16, 2002
15838 ] */
15839
15840 static LONGEST
15841 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15842 {
15843 LONGEST length = bfd_get_32 (abfd, buf);
15844
15845 if (length == 0xffffffff)
15846 {
15847 length = bfd_get_64 (abfd, buf + 4);
15848 *bytes_read = 12;
15849 }
15850 else if (length == 0)
15851 {
15852 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15853 length = bfd_get_64 (abfd, buf);
15854 *bytes_read = 8;
15855 }
15856 else
15857 {
15858 *bytes_read = 4;
15859 }
15860
15861 return length;
15862 }
15863
15864 /* Cover function for read_initial_length.
15865 Returns the length of the object at BUF, and stores the size of the
15866 initial length in *BYTES_READ and stores the size that offsets will be in
15867 *OFFSET_SIZE.
15868 If the initial length size is not equivalent to that specified in
15869 CU_HEADER then issue a complaint.
15870 This is useful when reading non-comp-unit headers. */
15871
15872 static LONGEST
15873 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15874 const struct comp_unit_head *cu_header,
15875 unsigned int *bytes_read,
15876 unsigned int *offset_size)
15877 {
15878 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15879
15880 gdb_assert (cu_header->initial_length_size == 4
15881 || cu_header->initial_length_size == 8
15882 || cu_header->initial_length_size == 12);
15883
15884 if (cu_header->initial_length_size != *bytes_read)
15885 complaint (&symfile_complaints,
15886 _("intermixed 32-bit and 64-bit DWARF sections"));
15887
15888 *offset_size = (*bytes_read == 4) ? 4 : 8;
15889 return length;
15890 }
15891
15892 /* Read an offset from the data stream. The size of the offset is
15893 given by cu_header->offset_size. */
15894
15895 static LONGEST
15896 read_offset (bfd *abfd, const gdb_byte *buf,
15897 const struct comp_unit_head *cu_header,
15898 unsigned int *bytes_read)
15899 {
15900 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15901
15902 *bytes_read = cu_header->offset_size;
15903 return offset;
15904 }
15905
15906 /* Read an offset from the data stream. */
15907
15908 static LONGEST
15909 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15910 {
15911 LONGEST retval = 0;
15912
15913 switch (offset_size)
15914 {
15915 case 4:
15916 retval = bfd_get_32 (abfd, buf);
15917 break;
15918 case 8:
15919 retval = bfd_get_64 (abfd, buf);
15920 break;
15921 default:
15922 internal_error (__FILE__, __LINE__,
15923 _("read_offset_1: bad switch [in module %s]"),
15924 bfd_get_filename (abfd));
15925 }
15926
15927 return retval;
15928 }
15929
15930 static const gdb_byte *
15931 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15932 {
15933 /* If the size of a host char is 8 bits, we can return a pointer
15934 to the buffer, otherwise we have to copy the data to a buffer
15935 allocated on the temporary obstack. */
15936 gdb_assert (HOST_CHAR_BIT == 8);
15937 return buf;
15938 }
15939
15940 static const char *
15941 read_direct_string (bfd *abfd, const gdb_byte *buf,
15942 unsigned int *bytes_read_ptr)
15943 {
15944 /* If the size of a host char is 8 bits, we can return a pointer
15945 to the string, otherwise we have to copy the string to a buffer
15946 allocated on the temporary obstack. */
15947 gdb_assert (HOST_CHAR_BIT == 8);
15948 if (*buf == '\0')
15949 {
15950 *bytes_read_ptr = 1;
15951 return NULL;
15952 }
15953 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15954 return (const char *) buf;
15955 }
15956
15957 static const char *
15958 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15959 {
15960 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15961 if (dwarf2_per_objfile->str.buffer == NULL)
15962 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15963 bfd_get_filename (abfd));
15964 if (str_offset >= dwarf2_per_objfile->str.size)
15965 error (_("DW_FORM_strp pointing outside of "
15966 ".debug_str section [in module %s]"),
15967 bfd_get_filename (abfd));
15968 gdb_assert (HOST_CHAR_BIT == 8);
15969 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15970 return NULL;
15971 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15972 }
15973
15974 /* Read a string at offset STR_OFFSET in the .debug_str section from
15975 the .dwz file DWZ. Throw an error if the offset is too large. If
15976 the string consists of a single NUL byte, return NULL; otherwise
15977 return a pointer to the string. */
15978
15979 static const char *
15980 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15981 {
15982 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15983
15984 if (dwz->str.buffer == NULL)
15985 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15986 "section [in module %s]"),
15987 bfd_get_filename (dwz->dwz_bfd));
15988 if (str_offset >= dwz->str.size)
15989 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15990 ".debug_str section [in module %s]"),
15991 bfd_get_filename (dwz->dwz_bfd));
15992 gdb_assert (HOST_CHAR_BIT == 8);
15993 if (dwz->str.buffer[str_offset] == '\0')
15994 return NULL;
15995 return (const char *) (dwz->str.buffer + str_offset);
15996 }
15997
15998 static const char *
15999 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16000 const struct comp_unit_head *cu_header,
16001 unsigned int *bytes_read_ptr)
16002 {
16003 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16004
16005 return read_indirect_string_at_offset (abfd, str_offset);
16006 }
16007
16008 static ULONGEST
16009 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16010 unsigned int *bytes_read_ptr)
16011 {
16012 ULONGEST result;
16013 unsigned int num_read;
16014 int i, shift;
16015 unsigned char byte;
16016
16017 result = 0;
16018 shift = 0;
16019 num_read = 0;
16020 i = 0;
16021 while (1)
16022 {
16023 byte = bfd_get_8 (abfd, buf);
16024 buf++;
16025 num_read++;
16026 result |= ((ULONGEST) (byte & 127) << shift);
16027 if ((byte & 128) == 0)
16028 {
16029 break;
16030 }
16031 shift += 7;
16032 }
16033 *bytes_read_ptr = num_read;
16034 return result;
16035 }
16036
16037 static LONGEST
16038 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16039 unsigned int *bytes_read_ptr)
16040 {
16041 LONGEST result;
16042 int i, shift, num_read;
16043 unsigned char byte;
16044
16045 result = 0;
16046 shift = 0;
16047 num_read = 0;
16048 i = 0;
16049 while (1)
16050 {
16051 byte = bfd_get_8 (abfd, buf);
16052 buf++;
16053 num_read++;
16054 result |= ((LONGEST) (byte & 127) << shift);
16055 shift += 7;
16056 if ((byte & 128) == 0)
16057 {
16058 break;
16059 }
16060 }
16061 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16062 result |= -(((LONGEST) 1) << shift);
16063 *bytes_read_ptr = num_read;
16064 return result;
16065 }
16066
16067 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16068 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16069 ADDR_SIZE is the size of addresses from the CU header. */
16070
16071 static CORE_ADDR
16072 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16073 {
16074 struct objfile *objfile = dwarf2_per_objfile->objfile;
16075 bfd *abfd = objfile->obfd;
16076 const gdb_byte *info_ptr;
16077
16078 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16079 if (dwarf2_per_objfile->addr.buffer == NULL)
16080 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16081 objfile_name (objfile));
16082 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16083 error (_("DW_FORM_addr_index pointing outside of "
16084 ".debug_addr section [in module %s]"),
16085 objfile_name (objfile));
16086 info_ptr = (dwarf2_per_objfile->addr.buffer
16087 + addr_base + addr_index * addr_size);
16088 if (addr_size == 4)
16089 return bfd_get_32 (abfd, info_ptr);
16090 else
16091 return bfd_get_64 (abfd, info_ptr);
16092 }
16093
16094 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16095
16096 static CORE_ADDR
16097 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16098 {
16099 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16100 }
16101
16102 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16103
16104 static CORE_ADDR
16105 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16106 unsigned int *bytes_read)
16107 {
16108 bfd *abfd = cu->objfile->obfd;
16109 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16110
16111 return read_addr_index (cu, addr_index);
16112 }
16113
16114 /* Data structure to pass results from dwarf2_read_addr_index_reader
16115 back to dwarf2_read_addr_index. */
16116
16117 struct dwarf2_read_addr_index_data
16118 {
16119 ULONGEST addr_base;
16120 int addr_size;
16121 };
16122
16123 /* die_reader_func for dwarf2_read_addr_index. */
16124
16125 static void
16126 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16127 const gdb_byte *info_ptr,
16128 struct die_info *comp_unit_die,
16129 int has_children,
16130 void *data)
16131 {
16132 struct dwarf2_cu *cu = reader->cu;
16133 struct dwarf2_read_addr_index_data *aidata =
16134 (struct dwarf2_read_addr_index_data *) data;
16135
16136 aidata->addr_base = cu->addr_base;
16137 aidata->addr_size = cu->header.addr_size;
16138 }
16139
16140 /* Given an index in .debug_addr, fetch the value.
16141 NOTE: This can be called during dwarf expression evaluation,
16142 long after the debug information has been read, and thus per_cu->cu
16143 may no longer exist. */
16144
16145 CORE_ADDR
16146 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16147 unsigned int addr_index)
16148 {
16149 struct objfile *objfile = per_cu->objfile;
16150 struct dwarf2_cu *cu = per_cu->cu;
16151 ULONGEST addr_base;
16152 int addr_size;
16153
16154 /* This is intended to be called from outside this file. */
16155 dw2_setup (objfile);
16156
16157 /* We need addr_base and addr_size.
16158 If we don't have PER_CU->cu, we have to get it.
16159 Nasty, but the alternative is storing the needed info in PER_CU,
16160 which at this point doesn't seem justified: it's not clear how frequently
16161 it would get used and it would increase the size of every PER_CU.
16162 Entry points like dwarf2_per_cu_addr_size do a similar thing
16163 so we're not in uncharted territory here.
16164 Alas we need to be a bit more complicated as addr_base is contained
16165 in the DIE.
16166
16167 We don't need to read the entire CU(/TU).
16168 We just need the header and top level die.
16169
16170 IWBN to use the aging mechanism to let us lazily later discard the CU.
16171 For now we skip this optimization. */
16172
16173 if (cu != NULL)
16174 {
16175 addr_base = cu->addr_base;
16176 addr_size = cu->header.addr_size;
16177 }
16178 else
16179 {
16180 struct dwarf2_read_addr_index_data aidata;
16181
16182 /* Note: We can't use init_cutu_and_read_dies_simple here,
16183 we need addr_base. */
16184 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16185 dwarf2_read_addr_index_reader, &aidata);
16186 addr_base = aidata.addr_base;
16187 addr_size = aidata.addr_size;
16188 }
16189
16190 return read_addr_index_1 (addr_index, addr_base, addr_size);
16191 }
16192
16193 /* Given a DW_FORM_GNU_str_index, fetch the string.
16194 This is only used by the Fission support. */
16195
16196 static const char *
16197 read_str_index (const struct die_reader_specs *reader,
16198 struct dwarf2_cu *cu, ULONGEST str_index)
16199 {
16200 struct objfile *objfile = dwarf2_per_objfile->objfile;
16201 const char *dwo_name = objfile_name (objfile);
16202 bfd *abfd = objfile->obfd;
16203 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16204 struct dwarf2_section_info *str_offsets_section =
16205 &reader->dwo_file->sections.str_offsets;
16206 const gdb_byte *info_ptr;
16207 ULONGEST str_offset;
16208 static const char form_name[] = "DW_FORM_GNU_str_index";
16209
16210 dwarf2_read_section (objfile, str_section);
16211 dwarf2_read_section (objfile, str_offsets_section);
16212 if (str_section->buffer == NULL)
16213 error (_("%s used without .debug_str.dwo section"
16214 " in CU at offset 0x%lx [in module %s]"),
16215 form_name, (long) cu->header.offset.sect_off, dwo_name);
16216 if (str_offsets_section->buffer == NULL)
16217 error (_("%s used without .debug_str_offsets.dwo section"
16218 " in CU at offset 0x%lx [in module %s]"),
16219 form_name, (long) cu->header.offset.sect_off, dwo_name);
16220 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16221 error (_("%s pointing outside of .debug_str_offsets.dwo"
16222 " section in CU at offset 0x%lx [in module %s]"),
16223 form_name, (long) cu->header.offset.sect_off, dwo_name);
16224 info_ptr = (str_offsets_section->buffer
16225 + str_index * cu->header.offset_size);
16226 if (cu->header.offset_size == 4)
16227 str_offset = bfd_get_32 (abfd, info_ptr);
16228 else
16229 str_offset = bfd_get_64 (abfd, info_ptr);
16230 if (str_offset >= str_section->size)
16231 error (_("Offset from %s pointing outside of"
16232 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16233 form_name, (long) cu->header.offset.sect_off, dwo_name);
16234 return (const char *) (str_section->buffer + str_offset);
16235 }
16236
16237 /* Return the length of an LEB128 number in BUF. */
16238
16239 static int
16240 leb128_size (const gdb_byte *buf)
16241 {
16242 const gdb_byte *begin = buf;
16243 gdb_byte byte;
16244
16245 while (1)
16246 {
16247 byte = *buf++;
16248 if ((byte & 128) == 0)
16249 return buf - begin;
16250 }
16251 }
16252
16253 static void
16254 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16255 {
16256 switch (lang)
16257 {
16258 case DW_LANG_C89:
16259 case DW_LANG_C99:
16260 case DW_LANG_C:
16261 case DW_LANG_UPC:
16262 cu->language = language_c;
16263 break;
16264 case DW_LANG_C_plus_plus:
16265 cu->language = language_cplus;
16266 break;
16267 case DW_LANG_D:
16268 cu->language = language_d;
16269 break;
16270 case DW_LANG_Fortran77:
16271 case DW_LANG_Fortran90:
16272 case DW_LANG_Fortran95:
16273 cu->language = language_fortran;
16274 break;
16275 case DW_LANG_Go:
16276 cu->language = language_go;
16277 break;
16278 case DW_LANG_Mips_Assembler:
16279 cu->language = language_asm;
16280 break;
16281 case DW_LANG_Java:
16282 cu->language = language_java;
16283 break;
16284 case DW_LANG_Ada83:
16285 case DW_LANG_Ada95:
16286 cu->language = language_ada;
16287 break;
16288 case DW_LANG_Modula2:
16289 cu->language = language_m2;
16290 break;
16291 case DW_LANG_Pascal83:
16292 cu->language = language_pascal;
16293 break;
16294 case DW_LANG_ObjC:
16295 cu->language = language_objc;
16296 break;
16297 case DW_LANG_Cobol74:
16298 case DW_LANG_Cobol85:
16299 default:
16300 cu->language = language_minimal;
16301 break;
16302 }
16303 cu->language_defn = language_def (cu->language);
16304 }
16305
16306 /* Return the named attribute or NULL if not there. */
16307
16308 static struct attribute *
16309 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16310 {
16311 for (;;)
16312 {
16313 unsigned int i;
16314 struct attribute *spec = NULL;
16315
16316 for (i = 0; i < die->num_attrs; ++i)
16317 {
16318 if (die->attrs[i].name == name)
16319 return &die->attrs[i];
16320 if (die->attrs[i].name == DW_AT_specification
16321 || die->attrs[i].name == DW_AT_abstract_origin)
16322 spec = &die->attrs[i];
16323 }
16324
16325 if (!spec)
16326 break;
16327
16328 die = follow_die_ref (die, spec, &cu);
16329 }
16330
16331 return NULL;
16332 }
16333
16334 /* Return the named attribute or NULL if not there,
16335 but do not follow DW_AT_specification, etc.
16336 This is for use in contexts where we're reading .debug_types dies.
16337 Following DW_AT_specification, DW_AT_abstract_origin will take us
16338 back up the chain, and we want to go down. */
16339
16340 static struct attribute *
16341 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16342 {
16343 unsigned int i;
16344
16345 for (i = 0; i < die->num_attrs; ++i)
16346 if (die->attrs[i].name == name)
16347 return &die->attrs[i];
16348
16349 return NULL;
16350 }
16351
16352 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16353 and holds a non-zero value. This function should only be used for
16354 DW_FORM_flag or DW_FORM_flag_present attributes. */
16355
16356 static int
16357 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16358 {
16359 struct attribute *attr = dwarf2_attr (die, name, cu);
16360
16361 return (attr && DW_UNSND (attr));
16362 }
16363
16364 static int
16365 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16366 {
16367 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16368 which value is non-zero. However, we have to be careful with
16369 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16370 (via dwarf2_flag_true_p) follows this attribute. So we may
16371 end up accidently finding a declaration attribute that belongs
16372 to a different DIE referenced by the specification attribute,
16373 even though the given DIE does not have a declaration attribute. */
16374 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16375 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16376 }
16377
16378 /* Return the die giving the specification for DIE, if there is
16379 one. *SPEC_CU is the CU containing DIE on input, and the CU
16380 containing the return value on output. If there is no
16381 specification, but there is an abstract origin, that is
16382 returned. */
16383
16384 static struct die_info *
16385 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16386 {
16387 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16388 *spec_cu);
16389
16390 if (spec_attr == NULL)
16391 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16392
16393 if (spec_attr == NULL)
16394 return NULL;
16395 else
16396 return follow_die_ref (die, spec_attr, spec_cu);
16397 }
16398
16399 /* Free the line_header structure *LH, and any arrays and strings it
16400 refers to.
16401 NOTE: This is also used as a "cleanup" function. */
16402
16403 static void
16404 free_line_header (struct line_header *lh)
16405 {
16406 if (lh->standard_opcode_lengths)
16407 xfree (lh->standard_opcode_lengths);
16408
16409 /* Remember that all the lh->file_names[i].name pointers are
16410 pointers into debug_line_buffer, and don't need to be freed. */
16411 if (lh->file_names)
16412 xfree (lh->file_names);
16413
16414 /* Similarly for the include directory names. */
16415 if (lh->include_dirs)
16416 xfree (lh->include_dirs);
16417
16418 xfree (lh);
16419 }
16420
16421 /* Add an entry to LH's include directory table. */
16422
16423 static void
16424 add_include_dir (struct line_header *lh, const char *include_dir)
16425 {
16426 /* Grow the array if necessary. */
16427 if (lh->include_dirs_size == 0)
16428 {
16429 lh->include_dirs_size = 1; /* for testing */
16430 lh->include_dirs = xmalloc (lh->include_dirs_size
16431 * sizeof (*lh->include_dirs));
16432 }
16433 else if (lh->num_include_dirs >= lh->include_dirs_size)
16434 {
16435 lh->include_dirs_size *= 2;
16436 lh->include_dirs = xrealloc (lh->include_dirs,
16437 (lh->include_dirs_size
16438 * sizeof (*lh->include_dirs)));
16439 }
16440
16441 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16442 }
16443
16444 /* Add an entry to LH's file name table. */
16445
16446 static void
16447 add_file_name (struct line_header *lh,
16448 const char *name,
16449 unsigned int dir_index,
16450 unsigned int mod_time,
16451 unsigned int length)
16452 {
16453 struct file_entry *fe;
16454
16455 /* Grow the array if necessary. */
16456 if (lh->file_names_size == 0)
16457 {
16458 lh->file_names_size = 1; /* for testing */
16459 lh->file_names = xmalloc (lh->file_names_size
16460 * sizeof (*lh->file_names));
16461 }
16462 else if (lh->num_file_names >= lh->file_names_size)
16463 {
16464 lh->file_names_size *= 2;
16465 lh->file_names = xrealloc (lh->file_names,
16466 (lh->file_names_size
16467 * sizeof (*lh->file_names)));
16468 }
16469
16470 fe = &lh->file_names[lh->num_file_names++];
16471 fe->name = name;
16472 fe->dir_index = dir_index;
16473 fe->mod_time = mod_time;
16474 fe->length = length;
16475 fe->included_p = 0;
16476 fe->symtab = NULL;
16477 }
16478
16479 /* A convenience function to find the proper .debug_line section for a
16480 CU. */
16481
16482 static struct dwarf2_section_info *
16483 get_debug_line_section (struct dwarf2_cu *cu)
16484 {
16485 struct dwarf2_section_info *section;
16486
16487 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16488 DWO file. */
16489 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16490 section = &cu->dwo_unit->dwo_file->sections.line;
16491 else if (cu->per_cu->is_dwz)
16492 {
16493 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16494
16495 section = &dwz->line;
16496 }
16497 else
16498 section = &dwarf2_per_objfile->line;
16499
16500 return section;
16501 }
16502
16503 /* Read the statement program header starting at OFFSET in
16504 .debug_line, or .debug_line.dwo. Return a pointer
16505 to a struct line_header, allocated using xmalloc.
16506
16507 NOTE: the strings in the include directory and file name tables of
16508 the returned object point into the dwarf line section buffer,
16509 and must not be freed. */
16510
16511 static struct line_header *
16512 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16513 {
16514 struct cleanup *back_to;
16515 struct line_header *lh;
16516 const gdb_byte *line_ptr;
16517 unsigned int bytes_read, offset_size;
16518 int i;
16519 const char *cur_dir, *cur_file;
16520 struct dwarf2_section_info *section;
16521 bfd *abfd;
16522
16523 section = get_debug_line_section (cu);
16524 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16525 if (section->buffer == NULL)
16526 {
16527 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16528 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16529 else
16530 complaint (&symfile_complaints, _("missing .debug_line section"));
16531 return 0;
16532 }
16533
16534 /* We can't do this until we know the section is non-empty.
16535 Only then do we know we have such a section. */
16536 abfd = get_section_bfd_owner (section);
16537
16538 /* Make sure that at least there's room for the total_length field.
16539 That could be 12 bytes long, but we're just going to fudge that. */
16540 if (offset + 4 >= section->size)
16541 {
16542 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16543 return 0;
16544 }
16545
16546 lh = xmalloc (sizeof (*lh));
16547 memset (lh, 0, sizeof (*lh));
16548 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16549 (void *) lh);
16550
16551 line_ptr = section->buffer + offset;
16552
16553 /* Read in the header. */
16554 lh->total_length =
16555 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16556 &bytes_read, &offset_size);
16557 line_ptr += bytes_read;
16558 if (line_ptr + lh->total_length > (section->buffer + section->size))
16559 {
16560 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16561 do_cleanups (back_to);
16562 return 0;
16563 }
16564 lh->statement_program_end = line_ptr + lh->total_length;
16565 lh->version = read_2_bytes (abfd, line_ptr);
16566 line_ptr += 2;
16567 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16568 line_ptr += offset_size;
16569 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16570 line_ptr += 1;
16571 if (lh->version >= 4)
16572 {
16573 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16574 line_ptr += 1;
16575 }
16576 else
16577 lh->maximum_ops_per_instruction = 1;
16578
16579 if (lh->maximum_ops_per_instruction == 0)
16580 {
16581 lh->maximum_ops_per_instruction = 1;
16582 complaint (&symfile_complaints,
16583 _("invalid maximum_ops_per_instruction "
16584 "in `.debug_line' section"));
16585 }
16586
16587 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16588 line_ptr += 1;
16589 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16590 line_ptr += 1;
16591 lh->line_range = read_1_byte (abfd, line_ptr);
16592 line_ptr += 1;
16593 lh->opcode_base = read_1_byte (abfd, line_ptr);
16594 line_ptr += 1;
16595 lh->standard_opcode_lengths
16596 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16597
16598 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16599 for (i = 1; i < lh->opcode_base; ++i)
16600 {
16601 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16602 line_ptr += 1;
16603 }
16604
16605 /* Read directory table. */
16606 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16607 {
16608 line_ptr += bytes_read;
16609 add_include_dir (lh, cur_dir);
16610 }
16611 line_ptr += bytes_read;
16612
16613 /* Read file name table. */
16614 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16615 {
16616 unsigned int dir_index, mod_time, length;
16617
16618 line_ptr += bytes_read;
16619 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16620 line_ptr += bytes_read;
16621 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16622 line_ptr += bytes_read;
16623 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16624 line_ptr += bytes_read;
16625
16626 add_file_name (lh, cur_file, dir_index, mod_time, length);
16627 }
16628 line_ptr += bytes_read;
16629 lh->statement_program_start = line_ptr;
16630
16631 if (line_ptr > (section->buffer + section->size))
16632 complaint (&symfile_complaints,
16633 _("line number info header doesn't "
16634 "fit in `.debug_line' section"));
16635
16636 discard_cleanups (back_to);
16637 return lh;
16638 }
16639
16640 /* Subroutine of dwarf_decode_lines to simplify it.
16641 Return the file name of the psymtab for included file FILE_INDEX
16642 in line header LH of PST.
16643 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16644 If space for the result is malloc'd, it will be freed by a cleanup.
16645 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16646
16647 The function creates dangling cleanup registration. */
16648
16649 static const char *
16650 psymtab_include_file_name (const struct line_header *lh, int file_index,
16651 const struct partial_symtab *pst,
16652 const char *comp_dir)
16653 {
16654 const struct file_entry fe = lh->file_names [file_index];
16655 const char *include_name = fe.name;
16656 const char *include_name_to_compare = include_name;
16657 const char *dir_name = NULL;
16658 const char *pst_filename;
16659 char *copied_name = NULL;
16660 int file_is_pst;
16661
16662 if (fe.dir_index)
16663 dir_name = lh->include_dirs[fe.dir_index - 1];
16664
16665 if (!IS_ABSOLUTE_PATH (include_name)
16666 && (dir_name != NULL || comp_dir != NULL))
16667 {
16668 /* Avoid creating a duplicate psymtab for PST.
16669 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16670 Before we do the comparison, however, we need to account
16671 for DIR_NAME and COMP_DIR.
16672 First prepend dir_name (if non-NULL). If we still don't
16673 have an absolute path prepend comp_dir (if non-NULL).
16674 However, the directory we record in the include-file's
16675 psymtab does not contain COMP_DIR (to match the
16676 corresponding symtab(s)).
16677
16678 Example:
16679
16680 bash$ cd /tmp
16681 bash$ gcc -g ./hello.c
16682 include_name = "hello.c"
16683 dir_name = "."
16684 DW_AT_comp_dir = comp_dir = "/tmp"
16685 DW_AT_name = "./hello.c" */
16686
16687 if (dir_name != NULL)
16688 {
16689 char *tem = concat (dir_name, SLASH_STRING,
16690 include_name, (char *)NULL);
16691
16692 make_cleanup (xfree, tem);
16693 include_name = tem;
16694 include_name_to_compare = include_name;
16695 }
16696 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16697 {
16698 char *tem = concat (comp_dir, SLASH_STRING,
16699 include_name, (char *)NULL);
16700
16701 make_cleanup (xfree, tem);
16702 include_name_to_compare = tem;
16703 }
16704 }
16705
16706 pst_filename = pst->filename;
16707 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16708 {
16709 copied_name = concat (pst->dirname, SLASH_STRING,
16710 pst_filename, (char *)NULL);
16711 pst_filename = copied_name;
16712 }
16713
16714 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16715
16716 if (copied_name != NULL)
16717 xfree (copied_name);
16718
16719 if (file_is_pst)
16720 return NULL;
16721 return include_name;
16722 }
16723
16724 /* Ignore this record_line request. */
16725
16726 static void
16727 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16728 {
16729 return;
16730 }
16731
16732 /* Subroutine of dwarf_decode_lines to simplify it.
16733 Process the line number information in LH. */
16734
16735 static void
16736 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16737 struct dwarf2_cu *cu, struct partial_symtab *pst)
16738 {
16739 const gdb_byte *line_ptr, *extended_end;
16740 const gdb_byte *line_end;
16741 unsigned int bytes_read, extended_len;
16742 unsigned char op_code, extended_op, adj_opcode;
16743 CORE_ADDR baseaddr;
16744 struct objfile *objfile = cu->objfile;
16745 bfd *abfd = objfile->obfd;
16746 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16747 const int decode_for_pst_p = (pst != NULL);
16748 struct subfile *last_subfile = NULL;
16749 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16750 = record_line;
16751
16752 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16753
16754 line_ptr = lh->statement_program_start;
16755 line_end = lh->statement_program_end;
16756
16757 /* Read the statement sequences until there's nothing left. */
16758 while (line_ptr < line_end)
16759 {
16760 /* state machine registers */
16761 CORE_ADDR address = 0;
16762 unsigned int file = 1;
16763 unsigned int line = 1;
16764 unsigned int column = 0;
16765 int is_stmt = lh->default_is_stmt;
16766 int basic_block = 0;
16767 int end_sequence = 0;
16768 CORE_ADDR addr;
16769 unsigned char op_index = 0;
16770
16771 if (!decode_for_pst_p && lh->num_file_names >= file)
16772 {
16773 /* Start a subfile for the current file of the state machine. */
16774 /* lh->include_dirs and lh->file_names are 0-based, but the
16775 directory and file name numbers in the statement program
16776 are 1-based. */
16777 struct file_entry *fe = &lh->file_names[file - 1];
16778 const char *dir = NULL;
16779
16780 if (fe->dir_index)
16781 dir = lh->include_dirs[fe->dir_index - 1];
16782
16783 dwarf2_start_subfile (fe->name, dir, comp_dir);
16784 }
16785
16786 /* Decode the table. */
16787 while (!end_sequence)
16788 {
16789 op_code = read_1_byte (abfd, line_ptr);
16790 line_ptr += 1;
16791 if (line_ptr > line_end)
16792 {
16793 dwarf2_debug_line_missing_end_sequence_complaint ();
16794 break;
16795 }
16796
16797 if (op_code >= lh->opcode_base)
16798 {
16799 /* Special operand. */
16800 adj_opcode = op_code - lh->opcode_base;
16801 address += (((op_index + (adj_opcode / lh->line_range))
16802 / lh->maximum_ops_per_instruction)
16803 * lh->minimum_instruction_length);
16804 op_index = ((op_index + (adj_opcode / lh->line_range))
16805 % lh->maximum_ops_per_instruction);
16806 line += lh->line_base + (adj_opcode % lh->line_range);
16807 if (lh->num_file_names < file || file == 0)
16808 dwarf2_debug_line_missing_file_complaint ();
16809 /* For now we ignore lines not starting on an
16810 instruction boundary. */
16811 else if (op_index == 0)
16812 {
16813 lh->file_names[file - 1].included_p = 1;
16814 if (!decode_for_pst_p && is_stmt)
16815 {
16816 if (last_subfile != current_subfile)
16817 {
16818 addr = gdbarch_addr_bits_remove (gdbarch, address);
16819 if (last_subfile)
16820 (*p_record_line) (last_subfile, 0, addr);
16821 last_subfile = current_subfile;
16822 }
16823 /* Append row to matrix using current values. */
16824 addr = gdbarch_addr_bits_remove (gdbarch, address);
16825 (*p_record_line) (current_subfile, line, addr);
16826 }
16827 }
16828 basic_block = 0;
16829 }
16830 else switch (op_code)
16831 {
16832 case DW_LNS_extended_op:
16833 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16834 &bytes_read);
16835 line_ptr += bytes_read;
16836 extended_end = line_ptr + extended_len;
16837 extended_op = read_1_byte (abfd, line_ptr);
16838 line_ptr += 1;
16839 switch (extended_op)
16840 {
16841 case DW_LNE_end_sequence:
16842 p_record_line = record_line;
16843 end_sequence = 1;
16844 break;
16845 case DW_LNE_set_address:
16846 address = read_address (abfd, line_ptr, cu, &bytes_read);
16847
16848 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16849 {
16850 /* This line table is for a function which has been
16851 GCd by the linker. Ignore it. PR gdb/12528 */
16852
16853 long line_offset
16854 = line_ptr - get_debug_line_section (cu)->buffer;
16855
16856 complaint (&symfile_complaints,
16857 _(".debug_line address at offset 0x%lx is 0 "
16858 "[in module %s]"),
16859 line_offset, objfile_name (objfile));
16860 p_record_line = noop_record_line;
16861 }
16862
16863 op_index = 0;
16864 line_ptr += bytes_read;
16865 address += baseaddr;
16866 break;
16867 case DW_LNE_define_file:
16868 {
16869 const char *cur_file;
16870 unsigned int dir_index, mod_time, length;
16871
16872 cur_file = read_direct_string (abfd, line_ptr,
16873 &bytes_read);
16874 line_ptr += bytes_read;
16875 dir_index =
16876 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16877 line_ptr += bytes_read;
16878 mod_time =
16879 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16880 line_ptr += bytes_read;
16881 length =
16882 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16883 line_ptr += bytes_read;
16884 add_file_name (lh, cur_file, dir_index, mod_time, length);
16885 }
16886 break;
16887 case DW_LNE_set_discriminator:
16888 /* The discriminator is not interesting to the debugger;
16889 just ignore it. */
16890 line_ptr = extended_end;
16891 break;
16892 default:
16893 complaint (&symfile_complaints,
16894 _("mangled .debug_line section"));
16895 return;
16896 }
16897 /* Make sure that we parsed the extended op correctly. If e.g.
16898 we expected a different address size than the producer used,
16899 we may have read the wrong number of bytes. */
16900 if (line_ptr != extended_end)
16901 {
16902 complaint (&symfile_complaints,
16903 _("mangled .debug_line section"));
16904 return;
16905 }
16906 break;
16907 case DW_LNS_copy:
16908 if (lh->num_file_names < file || file == 0)
16909 dwarf2_debug_line_missing_file_complaint ();
16910 else
16911 {
16912 lh->file_names[file - 1].included_p = 1;
16913 if (!decode_for_pst_p && is_stmt)
16914 {
16915 if (last_subfile != current_subfile)
16916 {
16917 addr = gdbarch_addr_bits_remove (gdbarch, address);
16918 if (last_subfile)
16919 (*p_record_line) (last_subfile, 0, addr);
16920 last_subfile = current_subfile;
16921 }
16922 addr = gdbarch_addr_bits_remove (gdbarch, address);
16923 (*p_record_line) (current_subfile, line, addr);
16924 }
16925 }
16926 basic_block = 0;
16927 break;
16928 case DW_LNS_advance_pc:
16929 {
16930 CORE_ADDR adjust
16931 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16932
16933 address += (((op_index + adjust)
16934 / lh->maximum_ops_per_instruction)
16935 * lh->minimum_instruction_length);
16936 op_index = ((op_index + adjust)
16937 % lh->maximum_ops_per_instruction);
16938 line_ptr += bytes_read;
16939 }
16940 break;
16941 case DW_LNS_advance_line:
16942 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16943 line_ptr += bytes_read;
16944 break;
16945 case DW_LNS_set_file:
16946 {
16947 /* The arrays lh->include_dirs and lh->file_names are
16948 0-based, but the directory and file name numbers in
16949 the statement program are 1-based. */
16950 struct file_entry *fe;
16951 const char *dir = NULL;
16952
16953 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16954 line_ptr += bytes_read;
16955 if (lh->num_file_names < file || file == 0)
16956 dwarf2_debug_line_missing_file_complaint ();
16957 else
16958 {
16959 fe = &lh->file_names[file - 1];
16960 if (fe->dir_index)
16961 dir = lh->include_dirs[fe->dir_index - 1];
16962 if (!decode_for_pst_p)
16963 {
16964 last_subfile = current_subfile;
16965 dwarf2_start_subfile (fe->name, dir, comp_dir);
16966 }
16967 }
16968 }
16969 break;
16970 case DW_LNS_set_column:
16971 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16972 line_ptr += bytes_read;
16973 break;
16974 case DW_LNS_negate_stmt:
16975 is_stmt = (!is_stmt);
16976 break;
16977 case DW_LNS_set_basic_block:
16978 basic_block = 1;
16979 break;
16980 /* Add to the address register of the state machine the
16981 address increment value corresponding to special opcode
16982 255. I.e., this value is scaled by the minimum
16983 instruction length since special opcode 255 would have
16984 scaled the increment. */
16985 case DW_LNS_const_add_pc:
16986 {
16987 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16988
16989 address += (((op_index + adjust)
16990 / lh->maximum_ops_per_instruction)
16991 * lh->minimum_instruction_length);
16992 op_index = ((op_index + adjust)
16993 % lh->maximum_ops_per_instruction);
16994 }
16995 break;
16996 case DW_LNS_fixed_advance_pc:
16997 address += read_2_bytes (abfd, line_ptr);
16998 op_index = 0;
16999 line_ptr += 2;
17000 break;
17001 default:
17002 {
17003 /* Unknown standard opcode, ignore it. */
17004 int i;
17005
17006 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17007 {
17008 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17009 line_ptr += bytes_read;
17010 }
17011 }
17012 }
17013 }
17014 if (lh->num_file_names < file || file == 0)
17015 dwarf2_debug_line_missing_file_complaint ();
17016 else
17017 {
17018 lh->file_names[file - 1].included_p = 1;
17019 if (!decode_for_pst_p)
17020 {
17021 addr = gdbarch_addr_bits_remove (gdbarch, address);
17022 (*p_record_line) (current_subfile, 0, addr);
17023 }
17024 }
17025 }
17026 }
17027
17028 /* Decode the Line Number Program (LNP) for the given line_header
17029 structure and CU. The actual information extracted and the type
17030 of structures created from the LNP depends on the value of PST.
17031
17032 1. If PST is NULL, then this procedure uses the data from the program
17033 to create all necessary symbol tables, and their linetables.
17034
17035 2. If PST is not NULL, this procedure reads the program to determine
17036 the list of files included by the unit represented by PST, and
17037 builds all the associated partial symbol tables.
17038
17039 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17040 It is used for relative paths in the line table.
17041 NOTE: When processing partial symtabs (pst != NULL),
17042 comp_dir == pst->dirname.
17043
17044 NOTE: It is important that psymtabs have the same file name (via strcmp)
17045 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17046 symtab we don't use it in the name of the psymtabs we create.
17047 E.g. expand_line_sal requires this when finding psymtabs to expand.
17048 A good testcase for this is mb-inline.exp. */
17049
17050 static void
17051 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17052 struct dwarf2_cu *cu, struct partial_symtab *pst,
17053 int want_line_info)
17054 {
17055 struct objfile *objfile = cu->objfile;
17056 const int decode_for_pst_p = (pst != NULL);
17057 struct subfile *first_subfile = current_subfile;
17058
17059 if (want_line_info)
17060 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17061
17062 if (decode_for_pst_p)
17063 {
17064 int file_index;
17065
17066 /* Now that we're done scanning the Line Header Program, we can
17067 create the psymtab of each included file. */
17068 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17069 if (lh->file_names[file_index].included_p == 1)
17070 {
17071 const char *include_name =
17072 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17073 if (include_name != NULL)
17074 dwarf2_create_include_psymtab (include_name, pst, objfile);
17075 }
17076 }
17077 else
17078 {
17079 /* Make sure a symtab is created for every file, even files
17080 which contain only variables (i.e. no code with associated
17081 line numbers). */
17082 int i;
17083
17084 for (i = 0; i < lh->num_file_names; i++)
17085 {
17086 const char *dir = NULL;
17087 struct file_entry *fe;
17088
17089 fe = &lh->file_names[i];
17090 if (fe->dir_index)
17091 dir = lh->include_dirs[fe->dir_index - 1];
17092 dwarf2_start_subfile (fe->name, dir, comp_dir);
17093
17094 /* Skip the main file; we don't need it, and it must be
17095 allocated last, so that it will show up before the
17096 non-primary symtabs in the objfile's symtab list. */
17097 if (current_subfile == first_subfile)
17098 continue;
17099
17100 if (current_subfile->symtab == NULL)
17101 current_subfile->symtab = allocate_symtab (current_subfile->name,
17102 objfile);
17103 fe->symtab = current_subfile->symtab;
17104 }
17105 }
17106 }
17107
17108 /* Start a subfile for DWARF. FILENAME is the name of the file and
17109 DIRNAME the name of the source directory which contains FILENAME
17110 or NULL if not known. COMP_DIR is the compilation directory for the
17111 linetable's compilation unit or NULL if not known.
17112 This routine tries to keep line numbers from identical absolute and
17113 relative file names in a common subfile.
17114
17115 Using the `list' example from the GDB testsuite, which resides in
17116 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17117 of /srcdir/list0.c yields the following debugging information for list0.c:
17118
17119 DW_AT_name: /srcdir/list0.c
17120 DW_AT_comp_dir: /compdir
17121 files.files[0].name: list0.h
17122 files.files[0].dir: /srcdir
17123 files.files[1].name: list0.c
17124 files.files[1].dir: /srcdir
17125
17126 The line number information for list0.c has to end up in a single
17127 subfile, so that `break /srcdir/list0.c:1' works as expected.
17128 start_subfile will ensure that this happens provided that we pass the
17129 concatenation of files.files[1].dir and files.files[1].name as the
17130 subfile's name. */
17131
17132 static void
17133 dwarf2_start_subfile (const char *filename, const char *dirname,
17134 const char *comp_dir)
17135 {
17136 char *copy = NULL;
17137
17138 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17139 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17140 second argument to start_subfile. To be consistent, we do the
17141 same here. In order not to lose the line information directory,
17142 we concatenate it to the filename when it makes sense.
17143 Note that the Dwarf3 standard says (speaking of filenames in line
17144 information): ``The directory index is ignored for file names
17145 that represent full path names''. Thus ignoring dirname in the
17146 `else' branch below isn't an issue. */
17147
17148 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17149 {
17150 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17151 filename = copy;
17152 }
17153
17154 start_subfile (filename, comp_dir);
17155
17156 if (copy != NULL)
17157 xfree (copy);
17158 }
17159
17160 /* Start a symtab for DWARF.
17161 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17162
17163 static void
17164 dwarf2_start_symtab (struct dwarf2_cu *cu,
17165 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17166 {
17167 start_symtab (name, comp_dir, low_pc);
17168 record_debugformat ("DWARF 2");
17169 record_producer (cu->producer);
17170
17171 /* We assume that we're processing GCC output. */
17172 processing_gcc_compilation = 2;
17173
17174 cu->processing_has_namespace_info = 0;
17175 }
17176
17177 static void
17178 var_decode_location (struct attribute *attr, struct symbol *sym,
17179 struct dwarf2_cu *cu)
17180 {
17181 struct objfile *objfile = cu->objfile;
17182 struct comp_unit_head *cu_header = &cu->header;
17183
17184 /* NOTE drow/2003-01-30: There used to be a comment and some special
17185 code here to turn a symbol with DW_AT_external and a
17186 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17187 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17188 with some versions of binutils) where shared libraries could have
17189 relocations against symbols in their debug information - the
17190 minimal symbol would have the right address, but the debug info
17191 would not. It's no longer necessary, because we will explicitly
17192 apply relocations when we read in the debug information now. */
17193
17194 /* A DW_AT_location attribute with no contents indicates that a
17195 variable has been optimized away. */
17196 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17197 {
17198 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17199 return;
17200 }
17201
17202 /* Handle one degenerate form of location expression specially, to
17203 preserve GDB's previous behavior when section offsets are
17204 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17205 then mark this symbol as LOC_STATIC. */
17206
17207 if (attr_form_is_block (attr)
17208 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17209 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17210 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17211 && (DW_BLOCK (attr)->size
17212 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17213 {
17214 unsigned int dummy;
17215
17216 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17217 SYMBOL_VALUE_ADDRESS (sym) =
17218 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17219 else
17220 SYMBOL_VALUE_ADDRESS (sym) =
17221 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17222 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17223 fixup_symbol_section (sym, objfile);
17224 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17225 SYMBOL_SECTION (sym));
17226 return;
17227 }
17228
17229 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17230 expression evaluator, and use LOC_COMPUTED only when necessary
17231 (i.e. when the value of a register or memory location is
17232 referenced, or a thread-local block, etc.). Then again, it might
17233 not be worthwhile. I'm assuming that it isn't unless performance
17234 or memory numbers show me otherwise. */
17235
17236 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17237
17238 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17239 cu->has_loclist = 1;
17240 }
17241
17242 /* Given a pointer to a DWARF information entry, figure out if we need
17243 to make a symbol table entry for it, and if so, create a new entry
17244 and return a pointer to it.
17245 If TYPE is NULL, determine symbol type from the die, otherwise
17246 used the passed type.
17247 If SPACE is not NULL, use it to hold the new symbol. If it is
17248 NULL, allocate a new symbol on the objfile's obstack. */
17249
17250 static struct symbol *
17251 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17252 struct symbol *space)
17253 {
17254 struct objfile *objfile = cu->objfile;
17255 struct symbol *sym = NULL;
17256 const char *name;
17257 struct attribute *attr = NULL;
17258 struct attribute *attr2 = NULL;
17259 CORE_ADDR baseaddr;
17260 struct pending **list_to_add = NULL;
17261
17262 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17263
17264 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17265
17266 name = dwarf2_name (die, cu);
17267 if (name)
17268 {
17269 const char *linkagename;
17270 int suppress_add = 0;
17271
17272 if (space)
17273 sym = space;
17274 else
17275 sym = allocate_symbol (objfile);
17276 OBJSTAT (objfile, n_syms++);
17277
17278 /* Cache this symbol's name and the name's demangled form (if any). */
17279 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17280 linkagename = dwarf2_physname (name, die, cu);
17281 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17282
17283 /* Fortran does not have mangling standard and the mangling does differ
17284 between gfortran, iFort etc. */
17285 if (cu->language == language_fortran
17286 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17287 symbol_set_demangled_name (&(sym->ginfo),
17288 dwarf2_full_name (name, die, cu),
17289 NULL);
17290
17291 /* Default assumptions.
17292 Use the passed type or decode it from the die. */
17293 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17294 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17295 if (type != NULL)
17296 SYMBOL_TYPE (sym) = type;
17297 else
17298 SYMBOL_TYPE (sym) = die_type (die, cu);
17299 attr = dwarf2_attr (die,
17300 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17301 cu);
17302 if (attr)
17303 {
17304 SYMBOL_LINE (sym) = DW_UNSND (attr);
17305 }
17306
17307 attr = dwarf2_attr (die,
17308 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17309 cu);
17310 if (attr)
17311 {
17312 int file_index = DW_UNSND (attr);
17313
17314 if (cu->line_header == NULL
17315 || file_index > cu->line_header->num_file_names)
17316 complaint (&symfile_complaints,
17317 _("file index out of range"));
17318 else if (file_index > 0)
17319 {
17320 struct file_entry *fe;
17321
17322 fe = &cu->line_header->file_names[file_index - 1];
17323 SYMBOL_SYMTAB (sym) = fe->symtab;
17324 }
17325 }
17326
17327 switch (die->tag)
17328 {
17329 case DW_TAG_label:
17330 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17331 if (attr)
17332 {
17333 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17334 }
17335 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17336 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17337 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17338 add_symbol_to_list (sym, cu->list_in_scope);
17339 break;
17340 case DW_TAG_subprogram:
17341 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17342 finish_block. */
17343 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17344 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17345 if ((attr2 && (DW_UNSND (attr2) != 0))
17346 || cu->language == language_ada)
17347 {
17348 /* Subprograms marked external are stored as a global symbol.
17349 Ada subprograms, whether marked external or not, are always
17350 stored as a global symbol, because we want to be able to
17351 access them globally. For instance, we want to be able
17352 to break on a nested subprogram without having to
17353 specify the context. */
17354 list_to_add = &global_symbols;
17355 }
17356 else
17357 {
17358 list_to_add = cu->list_in_scope;
17359 }
17360 break;
17361 case DW_TAG_inlined_subroutine:
17362 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17363 finish_block. */
17364 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17365 SYMBOL_INLINED (sym) = 1;
17366 list_to_add = cu->list_in_scope;
17367 break;
17368 case DW_TAG_template_value_param:
17369 suppress_add = 1;
17370 /* Fall through. */
17371 case DW_TAG_constant:
17372 case DW_TAG_variable:
17373 case DW_TAG_member:
17374 /* Compilation with minimal debug info may result in
17375 variables with missing type entries. Change the
17376 misleading `void' type to something sensible. */
17377 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17378 SYMBOL_TYPE (sym)
17379 = objfile_type (objfile)->nodebug_data_symbol;
17380
17381 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17382 /* In the case of DW_TAG_member, we should only be called for
17383 static const members. */
17384 if (die->tag == DW_TAG_member)
17385 {
17386 /* dwarf2_add_field uses die_is_declaration,
17387 so we do the same. */
17388 gdb_assert (die_is_declaration (die, cu));
17389 gdb_assert (attr);
17390 }
17391 if (attr)
17392 {
17393 dwarf2_const_value (attr, sym, cu);
17394 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17395 if (!suppress_add)
17396 {
17397 if (attr2 && (DW_UNSND (attr2) != 0))
17398 list_to_add = &global_symbols;
17399 else
17400 list_to_add = cu->list_in_scope;
17401 }
17402 break;
17403 }
17404 attr = dwarf2_attr (die, DW_AT_location, cu);
17405 if (attr)
17406 {
17407 var_decode_location (attr, sym, cu);
17408 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17409
17410 /* Fortran explicitly imports any global symbols to the local
17411 scope by DW_TAG_common_block. */
17412 if (cu->language == language_fortran && die->parent
17413 && die->parent->tag == DW_TAG_common_block)
17414 attr2 = NULL;
17415
17416 if (SYMBOL_CLASS (sym) == LOC_STATIC
17417 && SYMBOL_VALUE_ADDRESS (sym) == 0
17418 && !dwarf2_per_objfile->has_section_at_zero)
17419 {
17420 /* When a static variable is eliminated by the linker,
17421 the corresponding debug information is not stripped
17422 out, but the variable address is set to null;
17423 do not add such variables into symbol table. */
17424 }
17425 else if (attr2 && (DW_UNSND (attr2) != 0))
17426 {
17427 /* Workaround gfortran PR debug/40040 - it uses
17428 DW_AT_location for variables in -fPIC libraries which may
17429 get overriden by other libraries/executable and get
17430 a different address. Resolve it by the minimal symbol
17431 which may come from inferior's executable using copy
17432 relocation. Make this workaround only for gfortran as for
17433 other compilers GDB cannot guess the minimal symbol
17434 Fortran mangling kind. */
17435 if (cu->language == language_fortran && die->parent
17436 && die->parent->tag == DW_TAG_module
17437 && cu->producer
17438 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17439 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17440
17441 /* A variable with DW_AT_external is never static,
17442 but it may be block-scoped. */
17443 list_to_add = (cu->list_in_scope == &file_symbols
17444 ? &global_symbols : cu->list_in_scope);
17445 }
17446 else
17447 list_to_add = cu->list_in_scope;
17448 }
17449 else
17450 {
17451 /* We do not know the address of this symbol.
17452 If it is an external symbol and we have type information
17453 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17454 The address of the variable will then be determined from
17455 the minimal symbol table whenever the variable is
17456 referenced. */
17457 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17458
17459 /* Fortran explicitly imports any global symbols to the local
17460 scope by DW_TAG_common_block. */
17461 if (cu->language == language_fortran && die->parent
17462 && die->parent->tag == DW_TAG_common_block)
17463 {
17464 /* SYMBOL_CLASS doesn't matter here because
17465 read_common_block is going to reset it. */
17466 if (!suppress_add)
17467 list_to_add = cu->list_in_scope;
17468 }
17469 else if (attr2 && (DW_UNSND (attr2) != 0)
17470 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17471 {
17472 /* A variable with DW_AT_external is never static, but it
17473 may be block-scoped. */
17474 list_to_add = (cu->list_in_scope == &file_symbols
17475 ? &global_symbols : cu->list_in_scope);
17476
17477 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17478 }
17479 else if (!die_is_declaration (die, cu))
17480 {
17481 /* Use the default LOC_OPTIMIZED_OUT class. */
17482 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17483 if (!suppress_add)
17484 list_to_add = cu->list_in_scope;
17485 }
17486 }
17487 break;
17488 case DW_TAG_formal_parameter:
17489 /* If we are inside a function, mark this as an argument. If
17490 not, we might be looking at an argument to an inlined function
17491 when we do not have enough information to show inlined frames;
17492 pretend it's a local variable in that case so that the user can
17493 still see it. */
17494 if (context_stack_depth > 0
17495 && context_stack[context_stack_depth - 1].name != NULL)
17496 SYMBOL_IS_ARGUMENT (sym) = 1;
17497 attr = dwarf2_attr (die, DW_AT_location, cu);
17498 if (attr)
17499 {
17500 var_decode_location (attr, sym, cu);
17501 }
17502 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17503 if (attr)
17504 {
17505 dwarf2_const_value (attr, sym, cu);
17506 }
17507
17508 list_to_add = cu->list_in_scope;
17509 break;
17510 case DW_TAG_unspecified_parameters:
17511 /* From varargs functions; gdb doesn't seem to have any
17512 interest in this information, so just ignore it for now.
17513 (FIXME?) */
17514 break;
17515 case DW_TAG_template_type_param:
17516 suppress_add = 1;
17517 /* Fall through. */
17518 case DW_TAG_class_type:
17519 case DW_TAG_interface_type:
17520 case DW_TAG_structure_type:
17521 case DW_TAG_union_type:
17522 case DW_TAG_set_type:
17523 case DW_TAG_enumeration_type:
17524 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17525 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17526
17527 {
17528 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17529 really ever be static objects: otherwise, if you try
17530 to, say, break of a class's method and you're in a file
17531 which doesn't mention that class, it won't work unless
17532 the check for all static symbols in lookup_symbol_aux
17533 saves you. See the OtherFileClass tests in
17534 gdb.c++/namespace.exp. */
17535
17536 if (!suppress_add)
17537 {
17538 list_to_add = (cu->list_in_scope == &file_symbols
17539 && (cu->language == language_cplus
17540 || cu->language == language_java)
17541 ? &global_symbols : cu->list_in_scope);
17542
17543 /* The semantics of C++ state that "struct foo {
17544 ... }" also defines a typedef for "foo". A Java
17545 class declaration also defines a typedef for the
17546 class. */
17547 if (cu->language == language_cplus
17548 || cu->language == language_java
17549 || cu->language == language_ada)
17550 {
17551 /* The symbol's name is already allocated along
17552 with this objfile, so we don't need to
17553 duplicate it for the type. */
17554 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17555 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17556 }
17557 }
17558 }
17559 break;
17560 case DW_TAG_typedef:
17561 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17562 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17563 list_to_add = cu->list_in_scope;
17564 break;
17565 case DW_TAG_base_type:
17566 case DW_TAG_subrange_type:
17567 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17568 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17569 list_to_add = cu->list_in_scope;
17570 break;
17571 case DW_TAG_enumerator:
17572 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17573 if (attr)
17574 {
17575 dwarf2_const_value (attr, sym, cu);
17576 }
17577 {
17578 /* NOTE: carlton/2003-11-10: See comment above in the
17579 DW_TAG_class_type, etc. block. */
17580
17581 list_to_add = (cu->list_in_scope == &file_symbols
17582 && (cu->language == language_cplus
17583 || cu->language == language_java)
17584 ? &global_symbols : cu->list_in_scope);
17585 }
17586 break;
17587 case DW_TAG_namespace:
17588 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17589 list_to_add = &global_symbols;
17590 break;
17591 case DW_TAG_common_block:
17592 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17593 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17594 add_symbol_to_list (sym, cu->list_in_scope);
17595 break;
17596 default:
17597 /* Not a tag we recognize. Hopefully we aren't processing
17598 trash data, but since we must specifically ignore things
17599 we don't recognize, there is nothing else we should do at
17600 this point. */
17601 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17602 dwarf_tag_name (die->tag));
17603 break;
17604 }
17605
17606 if (suppress_add)
17607 {
17608 sym->hash_next = objfile->template_symbols;
17609 objfile->template_symbols = sym;
17610 list_to_add = NULL;
17611 }
17612
17613 if (list_to_add != NULL)
17614 add_symbol_to_list (sym, list_to_add);
17615
17616 /* For the benefit of old versions of GCC, check for anonymous
17617 namespaces based on the demangled name. */
17618 if (!cu->processing_has_namespace_info
17619 && cu->language == language_cplus)
17620 cp_scan_for_anonymous_namespaces (sym, objfile);
17621 }
17622 return (sym);
17623 }
17624
17625 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17626
17627 static struct symbol *
17628 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17629 {
17630 return new_symbol_full (die, type, cu, NULL);
17631 }
17632
17633 /* Given an attr with a DW_FORM_dataN value in host byte order,
17634 zero-extend it as appropriate for the symbol's type. The DWARF
17635 standard (v4) is not entirely clear about the meaning of using
17636 DW_FORM_dataN for a constant with a signed type, where the type is
17637 wider than the data. The conclusion of a discussion on the DWARF
17638 list was that this is unspecified. We choose to always zero-extend
17639 because that is the interpretation long in use by GCC. */
17640
17641 static gdb_byte *
17642 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17643 struct dwarf2_cu *cu, LONGEST *value, int bits)
17644 {
17645 struct objfile *objfile = cu->objfile;
17646 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17647 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17648 LONGEST l = DW_UNSND (attr);
17649
17650 if (bits < sizeof (*value) * 8)
17651 {
17652 l &= ((LONGEST) 1 << bits) - 1;
17653 *value = l;
17654 }
17655 else if (bits == sizeof (*value) * 8)
17656 *value = l;
17657 else
17658 {
17659 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17660 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17661 return bytes;
17662 }
17663
17664 return NULL;
17665 }
17666
17667 /* Read a constant value from an attribute. Either set *VALUE, or if
17668 the value does not fit in *VALUE, set *BYTES - either already
17669 allocated on the objfile obstack, or newly allocated on OBSTACK,
17670 or, set *BATON, if we translated the constant to a location
17671 expression. */
17672
17673 static void
17674 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17675 const char *name, struct obstack *obstack,
17676 struct dwarf2_cu *cu,
17677 LONGEST *value, const gdb_byte **bytes,
17678 struct dwarf2_locexpr_baton **baton)
17679 {
17680 struct objfile *objfile = cu->objfile;
17681 struct comp_unit_head *cu_header = &cu->header;
17682 struct dwarf_block *blk;
17683 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17684 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17685
17686 *value = 0;
17687 *bytes = NULL;
17688 *baton = NULL;
17689
17690 switch (attr->form)
17691 {
17692 case DW_FORM_addr:
17693 case DW_FORM_GNU_addr_index:
17694 {
17695 gdb_byte *data;
17696
17697 if (TYPE_LENGTH (type) != cu_header->addr_size)
17698 dwarf2_const_value_length_mismatch_complaint (name,
17699 cu_header->addr_size,
17700 TYPE_LENGTH (type));
17701 /* Symbols of this form are reasonably rare, so we just
17702 piggyback on the existing location code rather than writing
17703 a new implementation of symbol_computed_ops. */
17704 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17705 (*baton)->per_cu = cu->per_cu;
17706 gdb_assert ((*baton)->per_cu);
17707
17708 (*baton)->size = 2 + cu_header->addr_size;
17709 data = obstack_alloc (obstack, (*baton)->size);
17710 (*baton)->data = data;
17711
17712 data[0] = DW_OP_addr;
17713 store_unsigned_integer (&data[1], cu_header->addr_size,
17714 byte_order, DW_ADDR (attr));
17715 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17716 }
17717 break;
17718 case DW_FORM_string:
17719 case DW_FORM_strp:
17720 case DW_FORM_GNU_str_index:
17721 case DW_FORM_GNU_strp_alt:
17722 /* DW_STRING is already allocated on the objfile obstack, point
17723 directly to it. */
17724 *bytes = (const gdb_byte *) DW_STRING (attr);
17725 break;
17726 case DW_FORM_block1:
17727 case DW_FORM_block2:
17728 case DW_FORM_block4:
17729 case DW_FORM_block:
17730 case DW_FORM_exprloc:
17731 blk = DW_BLOCK (attr);
17732 if (TYPE_LENGTH (type) != blk->size)
17733 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17734 TYPE_LENGTH (type));
17735 *bytes = blk->data;
17736 break;
17737
17738 /* The DW_AT_const_value attributes are supposed to carry the
17739 symbol's value "represented as it would be on the target
17740 architecture." By the time we get here, it's already been
17741 converted to host endianness, so we just need to sign- or
17742 zero-extend it as appropriate. */
17743 case DW_FORM_data1:
17744 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17745 break;
17746 case DW_FORM_data2:
17747 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
17748 break;
17749 case DW_FORM_data4:
17750 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
17751 break;
17752 case DW_FORM_data8:
17753 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
17754 break;
17755
17756 case DW_FORM_sdata:
17757 *value = DW_SND (attr);
17758 break;
17759
17760 case DW_FORM_udata:
17761 *value = DW_UNSND (attr);
17762 break;
17763
17764 default:
17765 complaint (&symfile_complaints,
17766 _("unsupported const value attribute form: '%s'"),
17767 dwarf_form_name (attr->form));
17768 *value = 0;
17769 break;
17770 }
17771 }
17772
17773
17774 /* Copy constant value from an attribute to a symbol. */
17775
17776 static void
17777 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17778 struct dwarf2_cu *cu)
17779 {
17780 struct objfile *objfile = cu->objfile;
17781 struct comp_unit_head *cu_header = &cu->header;
17782 LONGEST value;
17783 const gdb_byte *bytes;
17784 struct dwarf2_locexpr_baton *baton;
17785
17786 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17787 SYMBOL_PRINT_NAME (sym),
17788 &objfile->objfile_obstack, cu,
17789 &value, &bytes, &baton);
17790
17791 if (baton != NULL)
17792 {
17793 SYMBOL_LOCATION_BATON (sym) = baton;
17794 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17795 }
17796 else if (bytes != NULL)
17797 {
17798 SYMBOL_VALUE_BYTES (sym) = bytes;
17799 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17800 }
17801 else
17802 {
17803 SYMBOL_VALUE (sym) = value;
17804 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17805 }
17806 }
17807
17808 /* Return the type of the die in question using its DW_AT_type attribute. */
17809
17810 static struct type *
17811 die_type (struct die_info *die, struct dwarf2_cu *cu)
17812 {
17813 struct attribute *type_attr;
17814
17815 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17816 if (!type_attr)
17817 {
17818 /* A missing DW_AT_type represents a void type. */
17819 return objfile_type (cu->objfile)->builtin_void;
17820 }
17821
17822 return lookup_die_type (die, type_attr, cu);
17823 }
17824
17825 /* True iff CU's producer generates GNAT Ada auxiliary information
17826 that allows to find parallel types through that information instead
17827 of having to do expensive parallel lookups by type name. */
17828
17829 static int
17830 need_gnat_info (struct dwarf2_cu *cu)
17831 {
17832 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17833 of GNAT produces this auxiliary information, without any indication
17834 that it is produced. Part of enhancing the FSF version of GNAT
17835 to produce that information will be to put in place an indicator
17836 that we can use in order to determine whether the descriptive type
17837 info is available or not. One suggestion that has been made is
17838 to use a new attribute, attached to the CU die. For now, assume
17839 that the descriptive type info is not available. */
17840 return 0;
17841 }
17842
17843 /* Return the auxiliary type of the die in question using its
17844 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17845 attribute is not present. */
17846
17847 static struct type *
17848 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17849 {
17850 struct attribute *type_attr;
17851
17852 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17853 if (!type_attr)
17854 return NULL;
17855
17856 return lookup_die_type (die, type_attr, cu);
17857 }
17858
17859 /* If DIE has a descriptive_type attribute, then set the TYPE's
17860 descriptive type accordingly. */
17861
17862 static void
17863 set_descriptive_type (struct type *type, struct die_info *die,
17864 struct dwarf2_cu *cu)
17865 {
17866 struct type *descriptive_type = die_descriptive_type (die, cu);
17867
17868 if (descriptive_type)
17869 {
17870 ALLOCATE_GNAT_AUX_TYPE (type);
17871 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17872 }
17873 }
17874
17875 /* Return the containing type of the die in question using its
17876 DW_AT_containing_type attribute. */
17877
17878 static struct type *
17879 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17880 {
17881 struct attribute *type_attr;
17882
17883 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17884 if (!type_attr)
17885 error (_("Dwarf Error: Problem turning containing type into gdb type "
17886 "[in module %s]"), objfile_name (cu->objfile));
17887
17888 return lookup_die_type (die, type_attr, cu);
17889 }
17890
17891 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17892
17893 static struct type *
17894 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17895 {
17896 struct objfile *objfile = dwarf2_per_objfile->objfile;
17897 char *message, *saved;
17898
17899 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17900 objfile_name (objfile),
17901 cu->header.offset.sect_off,
17902 die->offset.sect_off);
17903 saved = obstack_copy0 (&objfile->objfile_obstack,
17904 message, strlen (message));
17905 xfree (message);
17906
17907 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17908 }
17909
17910 /* Look up the type of DIE in CU using its type attribute ATTR.
17911 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17912 DW_AT_containing_type.
17913 If there is no type substitute an error marker. */
17914
17915 static struct type *
17916 lookup_die_type (struct die_info *die, const struct attribute *attr,
17917 struct dwarf2_cu *cu)
17918 {
17919 struct objfile *objfile = cu->objfile;
17920 struct type *this_type;
17921
17922 gdb_assert (attr->name == DW_AT_type
17923 || attr->name == DW_AT_GNAT_descriptive_type
17924 || attr->name == DW_AT_containing_type);
17925
17926 /* First see if we have it cached. */
17927
17928 if (attr->form == DW_FORM_GNU_ref_alt)
17929 {
17930 struct dwarf2_per_cu_data *per_cu;
17931 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17932
17933 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17934 this_type = get_die_type_at_offset (offset, per_cu);
17935 }
17936 else if (attr_form_is_ref (attr))
17937 {
17938 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17939
17940 this_type = get_die_type_at_offset (offset, cu->per_cu);
17941 }
17942 else if (attr->form == DW_FORM_ref_sig8)
17943 {
17944 ULONGEST signature = DW_SIGNATURE (attr);
17945
17946 return get_signatured_type (die, signature, cu);
17947 }
17948 else
17949 {
17950 complaint (&symfile_complaints,
17951 _("Dwarf Error: Bad type attribute %s in DIE"
17952 " at 0x%x [in module %s]"),
17953 dwarf_attr_name (attr->name), die->offset.sect_off,
17954 objfile_name (objfile));
17955 return build_error_marker_type (cu, die);
17956 }
17957
17958 /* If not cached we need to read it in. */
17959
17960 if (this_type == NULL)
17961 {
17962 struct die_info *type_die = NULL;
17963 struct dwarf2_cu *type_cu = cu;
17964
17965 if (attr_form_is_ref (attr))
17966 type_die = follow_die_ref (die, attr, &type_cu);
17967 if (type_die == NULL)
17968 return build_error_marker_type (cu, die);
17969 /* If we find the type now, it's probably because the type came
17970 from an inter-CU reference and the type's CU got expanded before
17971 ours. */
17972 this_type = read_type_die (type_die, type_cu);
17973 }
17974
17975 /* If we still don't have a type use an error marker. */
17976
17977 if (this_type == NULL)
17978 return build_error_marker_type (cu, die);
17979
17980 return this_type;
17981 }
17982
17983 /* Return the type in DIE, CU.
17984 Returns NULL for invalid types.
17985
17986 This first does a lookup in die_type_hash,
17987 and only reads the die in if necessary.
17988
17989 NOTE: This can be called when reading in partial or full symbols. */
17990
17991 static struct type *
17992 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17993 {
17994 struct type *this_type;
17995
17996 this_type = get_die_type (die, cu);
17997 if (this_type)
17998 return this_type;
17999
18000 return read_type_die_1 (die, cu);
18001 }
18002
18003 /* Read the type in DIE, CU.
18004 Returns NULL for invalid types. */
18005
18006 static struct type *
18007 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18008 {
18009 struct type *this_type = NULL;
18010
18011 switch (die->tag)
18012 {
18013 case DW_TAG_class_type:
18014 case DW_TAG_interface_type:
18015 case DW_TAG_structure_type:
18016 case DW_TAG_union_type:
18017 this_type = read_structure_type (die, cu);
18018 break;
18019 case DW_TAG_enumeration_type:
18020 this_type = read_enumeration_type (die, cu);
18021 break;
18022 case DW_TAG_subprogram:
18023 case DW_TAG_subroutine_type:
18024 case DW_TAG_inlined_subroutine:
18025 this_type = read_subroutine_type (die, cu);
18026 break;
18027 case DW_TAG_array_type:
18028 this_type = read_array_type (die, cu);
18029 break;
18030 case DW_TAG_set_type:
18031 this_type = read_set_type (die, cu);
18032 break;
18033 case DW_TAG_pointer_type:
18034 this_type = read_tag_pointer_type (die, cu);
18035 break;
18036 case DW_TAG_ptr_to_member_type:
18037 this_type = read_tag_ptr_to_member_type (die, cu);
18038 break;
18039 case DW_TAG_reference_type:
18040 this_type = read_tag_reference_type (die, cu);
18041 break;
18042 case DW_TAG_const_type:
18043 this_type = read_tag_const_type (die, cu);
18044 break;
18045 case DW_TAG_volatile_type:
18046 this_type = read_tag_volatile_type (die, cu);
18047 break;
18048 case DW_TAG_restrict_type:
18049 this_type = read_tag_restrict_type (die, cu);
18050 break;
18051 case DW_TAG_string_type:
18052 this_type = read_tag_string_type (die, cu);
18053 break;
18054 case DW_TAG_typedef:
18055 this_type = read_typedef (die, cu);
18056 break;
18057 case DW_TAG_subrange_type:
18058 this_type = read_subrange_type (die, cu);
18059 break;
18060 case DW_TAG_base_type:
18061 this_type = read_base_type (die, cu);
18062 break;
18063 case DW_TAG_unspecified_type:
18064 this_type = read_unspecified_type (die, cu);
18065 break;
18066 case DW_TAG_namespace:
18067 this_type = read_namespace_type (die, cu);
18068 break;
18069 case DW_TAG_module:
18070 this_type = read_module_type (die, cu);
18071 break;
18072 default:
18073 complaint (&symfile_complaints,
18074 _("unexpected tag in read_type_die: '%s'"),
18075 dwarf_tag_name (die->tag));
18076 break;
18077 }
18078
18079 return this_type;
18080 }
18081
18082 /* See if we can figure out if the class lives in a namespace. We do
18083 this by looking for a member function; its demangled name will
18084 contain namespace info, if there is any.
18085 Return the computed name or NULL.
18086 Space for the result is allocated on the objfile's obstack.
18087 This is the full-die version of guess_partial_die_structure_name.
18088 In this case we know DIE has no useful parent. */
18089
18090 static char *
18091 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18092 {
18093 struct die_info *spec_die;
18094 struct dwarf2_cu *spec_cu;
18095 struct die_info *child;
18096
18097 spec_cu = cu;
18098 spec_die = die_specification (die, &spec_cu);
18099 if (spec_die != NULL)
18100 {
18101 die = spec_die;
18102 cu = spec_cu;
18103 }
18104
18105 for (child = die->child;
18106 child != NULL;
18107 child = child->sibling)
18108 {
18109 if (child->tag == DW_TAG_subprogram)
18110 {
18111 struct attribute *attr;
18112
18113 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18114 if (attr == NULL)
18115 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18116 if (attr != NULL)
18117 {
18118 char *actual_name
18119 = language_class_name_from_physname (cu->language_defn,
18120 DW_STRING (attr));
18121 char *name = NULL;
18122
18123 if (actual_name != NULL)
18124 {
18125 const char *die_name = dwarf2_name (die, cu);
18126
18127 if (die_name != NULL
18128 && strcmp (die_name, actual_name) != 0)
18129 {
18130 /* Strip off the class name from the full name.
18131 We want the prefix. */
18132 int die_name_len = strlen (die_name);
18133 int actual_name_len = strlen (actual_name);
18134
18135 /* Test for '::' as a sanity check. */
18136 if (actual_name_len > die_name_len + 2
18137 && actual_name[actual_name_len
18138 - die_name_len - 1] == ':')
18139 name =
18140 obstack_copy0 (&cu->objfile->objfile_obstack,
18141 actual_name,
18142 actual_name_len - die_name_len - 2);
18143 }
18144 }
18145 xfree (actual_name);
18146 return name;
18147 }
18148 }
18149 }
18150
18151 return NULL;
18152 }
18153
18154 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18155 prefix part in such case. See
18156 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18157
18158 static char *
18159 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18160 {
18161 struct attribute *attr;
18162 char *base;
18163
18164 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18165 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18166 return NULL;
18167
18168 attr = dwarf2_attr (die, DW_AT_name, cu);
18169 if (attr != NULL && DW_STRING (attr) != NULL)
18170 return NULL;
18171
18172 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18173 if (attr == NULL)
18174 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18175 if (attr == NULL || DW_STRING (attr) == NULL)
18176 return NULL;
18177
18178 /* dwarf2_name had to be already called. */
18179 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18180
18181 /* Strip the base name, keep any leading namespaces/classes. */
18182 base = strrchr (DW_STRING (attr), ':');
18183 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18184 return "";
18185
18186 return obstack_copy0 (&cu->objfile->objfile_obstack,
18187 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18188 }
18189
18190 /* Return the name of the namespace/class that DIE is defined within,
18191 or "" if we can't tell. The caller should not xfree the result.
18192
18193 For example, if we're within the method foo() in the following
18194 code:
18195
18196 namespace N {
18197 class C {
18198 void foo () {
18199 }
18200 };
18201 }
18202
18203 then determine_prefix on foo's die will return "N::C". */
18204
18205 static const char *
18206 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18207 {
18208 struct die_info *parent, *spec_die;
18209 struct dwarf2_cu *spec_cu;
18210 struct type *parent_type;
18211 char *retval;
18212
18213 if (cu->language != language_cplus && cu->language != language_java
18214 && cu->language != language_fortran)
18215 return "";
18216
18217 retval = anonymous_struct_prefix (die, cu);
18218 if (retval)
18219 return retval;
18220
18221 /* We have to be careful in the presence of DW_AT_specification.
18222 For example, with GCC 3.4, given the code
18223
18224 namespace N {
18225 void foo() {
18226 // Definition of N::foo.
18227 }
18228 }
18229
18230 then we'll have a tree of DIEs like this:
18231
18232 1: DW_TAG_compile_unit
18233 2: DW_TAG_namespace // N
18234 3: DW_TAG_subprogram // declaration of N::foo
18235 4: DW_TAG_subprogram // definition of N::foo
18236 DW_AT_specification // refers to die #3
18237
18238 Thus, when processing die #4, we have to pretend that we're in
18239 the context of its DW_AT_specification, namely the contex of die
18240 #3. */
18241 spec_cu = cu;
18242 spec_die = die_specification (die, &spec_cu);
18243 if (spec_die == NULL)
18244 parent = die->parent;
18245 else
18246 {
18247 parent = spec_die->parent;
18248 cu = spec_cu;
18249 }
18250
18251 if (parent == NULL)
18252 return "";
18253 else if (parent->building_fullname)
18254 {
18255 const char *name;
18256 const char *parent_name;
18257
18258 /* It has been seen on RealView 2.2 built binaries,
18259 DW_TAG_template_type_param types actually _defined_ as
18260 children of the parent class:
18261
18262 enum E {};
18263 template class <class Enum> Class{};
18264 Class<enum E> class_e;
18265
18266 1: DW_TAG_class_type (Class)
18267 2: DW_TAG_enumeration_type (E)
18268 3: DW_TAG_enumerator (enum1:0)
18269 3: DW_TAG_enumerator (enum2:1)
18270 ...
18271 2: DW_TAG_template_type_param
18272 DW_AT_type DW_FORM_ref_udata (E)
18273
18274 Besides being broken debug info, it can put GDB into an
18275 infinite loop. Consider:
18276
18277 When we're building the full name for Class<E>, we'll start
18278 at Class, and go look over its template type parameters,
18279 finding E. We'll then try to build the full name of E, and
18280 reach here. We're now trying to build the full name of E,
18281 and look over the parent DIE for containing scope. In the
18282 broken case, if we followed the parent DIE of E, we'd again
18283 find Class, and once again go look at its template type
18284 arguments, etc., etc. Simply don't consider such parent die
18285 as source-level parent of this die (it can't be, the language
18286 doesn't allow it), and break the loop here. */
18287 name = dwarf2_name (die, cu);
18288 parent_name = dwarf2_name (parent, cu);
18289 complaint (&symfile_complaints,
18290 _("template param type '%s' defined within parent '%s'"),
18291 name ? name : "<unknown>",
18292 parent_name ? parent_name : "<unknown>");
18293 return "";
18294 }
18295 else
18296 switch (parent->tag)
18297 {
18298 case DW_TAG_namespace:
18299 parent_type = read_type_die (parent, cu);
18300 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18301 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18302 Work around this problem here. */
18303 if (cu->language == language_cplus
18304 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18305 return "";
18306 /* We give a name to even anonymous namespaces. */
18307 return TYPE_TAG_NAME (parent_type);
18308 case DW_TAG_class_type:
18309 case DW_TAG_interface_type:
18310 case DW_TAG_structure_type:
18311 case DW_TAG_union_type:
18312 case DW_TAG_module:
18313 parent_type = read_type_die (parent, cu);
18314 if (TYPE_TAG_NAME (parent_type) != NULL)
18315 return TYPE_TAG_NAME (parent_type);
18316 else
18317 /* An anonymous structure is only allowed non-static data
18318 members; no typedefs, no member functions, et cetera.
18319 So it does not need a prefix. */
18320 return "";
18321 case DW_TAG_compile_unit:
18322 case DW_TAG_partial_unit:
18323 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18324 if (cu->language == language_cplus
18325 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18326 && die->child != NULL
18327 && (die->tag == DW_TAG_class_type
18328 || die->tag == DW_TAG_structure_type
18329 || die->tag == DW_TAG_union_type))
18330 {
18331 char *name = guess_full_die_structure_name (die, cu);
18332 if (name != NULL)
18333 return name;
18334 }
18335 return "";
18336 default:
18337 return determine_prefix (parent, cu);
18338 }
18339 }
18340
18341 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18342 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18343 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18344 an obconcat, otherwise allocate storage for the result. The CU argument is
18345 used to determine the language and hence, the appropriate separator. */
18346
18347 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18348
18349 static char *
18350 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18351 int physname, struct dwarf2_cu *cu)
18352 {
18353 const char *lead = "";
18354 const char *sep;
18355
18356 if (suffix == NULL || suffix[0] == '\0'
18357 || prefix == NULL || prefix[0] == '\0')
18358 sep = "";
18359 else if (cu->language == language_java)
18360 sep = ".";
18361 else if (cu->language == language_fortran && physname)
18362 {
18363 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18364 DW_AT_MIPS_linkage_name is preferred and used instead. */
18365
18366 lead = "__";
18367 sep = "_MOD_";
18368 }
18369 else
18370 sep = "::";
18371
18372 if (prefix == NULL)
18373 prefix = "";
18374 if (suffix == NULL)
18375 suffix = "";
18376
18377 if (obs == NULL)
18378 {
18379 char *retval
18380 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18381
18382 strcpy (retval, lead);
18383 strcat (retval, prefix);
18384 strcat (retval, sep);
18385 strcat (retval, suffix);
18386 return retval;
18387 }
18388 else
18389 {
18390 /* We have an obstack. */
18391 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18392 }
18393 }
18394
18395 /* Return sibling of die, NULL if no sibling. */
18396
18397 static struct die_info *
18398 sibling_die (struct die_info *die)
18399 {
18400 return die->sibling;
18401 }
18402
18403 /* Get name of a die, return NULL if not found. */
18404
18405 static const char *
18406 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18407 struct obstack *obstack)
18408 {
18409 if (name && cu->language == language_cplus)
18410 {
18411 char *canon_name = cp_canonicalize_string (name);
18412
18413 if (canon_name != NULL)
18414 {
18415 if (strcmp (canon_name, name) != 0)
18416 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18417 xfree (canon_name);
18418 }
18419 }
18420
18421 return name;
18422 }
18423
18424 /* Get name of a die, return NULL if not found. */
18425
18426 static const char *
18427 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18428 {
18429 struct attribute *attr;
18430
18431 attr = dwarf2_attr (die, DW_AT_name, cu);
18432 if ((!attr || !DW_STRING (attr))
18433 && die->tag != DW_TAG_class_type
18434 && die->tag != DW_TAG_interface_type
18435 && die->tag != DW_TAG_structure_type
18436 && die->tag != DW_TAG_union_type)
18437 return NULL;
18438
18439 switch (die->tag)
18440 {
18441 case DW_TAG_compile_unit:
18442 case DW_TAG_partial_unit:
18443 /* Compilation units have a DW_AT_name that is a filename, not
18444 a source language identifier. */
18445 case DW_TAG_enumeration_type:
18446 case DW_TAG_enumerator:
18447 /* These tags always have simple identifiers already; no need
18448 to canonicalize them. */
18449 return DW_STRING (attr);
18450
18451 case DW_TAG_subprogram:
18452 /* Java constructors will all be named "<init>", so return
18453 the class name when we see this special case. */
18454 if (cu->language == language_java
18455 && DW_STRING (attr) != NULL
18456 && strcmp (DW_STRING (attr), "<init>") == 0)
18457 {
18458 struct dwarf2_cu *spec_cu = cu;
18459 struct die_info *spec_die;
18460
18461 /* GCJ will output '<init>' for Java constructor names.
18462 For this special case, return the name of the parent class. */
18463
18464 /* GCJ may output suprogram DIEs with AT_specification set.
18465 If so, use the name of the specified DIE. */
18466 spec_die = die_specification (die, &spec_cu);
18467 if (spec_die != NULL)
18468 return dwarf2_name (spec_die, spec_cu);
18469
18470 do
18471 {
18472 die = die->parent;
18473 if (die->tag == DW_TAG_class_type)
18474 return dwarf2_name (die, cu);
18475 }
18476 while (die->tag != DW_TAG_compile_unit
18477 && die->tag != DW_TAG_partial_unit);
18478 }
18479 break;
18480
18481 case DW_TAG_class_type:
18482 case DW_TAG_interface_type:
18483 case DW_TAG_structure_type:
18484 case DW_TAG_union_type:
18485 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18486 structures or unions. These were of the form "._%d" in GCC 4.1,
18487 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18488 and GCC 4.4. We work around this problem by ignoring these. */
18489 if (attr && DW_STRING (attr)
18490 && (strncmp (DW_STRING (attr), "._", 2) == 0
18491 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18492 return NULL;
18493
18494 /* GCC might emit a nameless typedef that has a linkage name. See
18495 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18496 if (!attr || DW_STRING (attr) == NULL)
18497 {
18498 char *demangled = NULL;
18499
18500 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18501 if (attr == NULL)
18502 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18503
18504 if (attr == NULL || DW_STRING (attr) == NULL)
18505 return NULL;
18506
18507 /* Avoid demangling DW_STRING (attr) the second time on a second
18508 call for the same DIE. */
18509 if (!DW_STRING_IS_CANONICAL (attr))
18510 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18511
18512 if (demangled)
18513 {
18514 char *base;
18515
18516 /* FIXME: we already did this for the partial symbol... */
18517 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18518 demangled, strlen (demangled));
18519 DW_STRING_IS_CANONICAL (attr) = 1;
18520 xfree (demangled);
18521
18522 /* Strip any leading namespaces/classes, keep only the base name.
18523 DW_AT_name for named DIEs does not contain the prefixes. */
18524 base = strrchr (DW_STRING (attr), ':');
18525 if (base && base > DW_STRING (attr) && base[-1] == ':')
18526 return &base[1];
18527 else
18528 return DW_STRING (attr);
18529 }
18530 }
18531 break;
18532
18533 default:
18534 break;
18535 }
18536
18537 if (!DW_STRING_IS_CANONICAL (attr))
18538 {
18539 DW_STRING (attr)
18540 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18541 &cu->objfile->objfile_obstack);
18542 DW_STRING_IS_CANONICAL (attr) = 1;
18543 }
18544 return DW_STRING (attr);
18545 }
18546
18547 /* Return the die that this die in an extension of, or NULL if there
18548 is none. *EXT_CU is the CU containing DIE on input, and the CU
18549 containing the return value on output. */
18550
18551 static struct die_info *
18552 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18553 {
18554 struct attribute *attr;
18555
18556 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18557 if (attr == NULL)
18558 return NULL;
18559
18560 return follow_die_ref (die, attr, ext_cu);
18561 }
18562
18563 /* Convert a DIE tag into its string name. */
18564
18565 static const char *
18566 dwarf_tag_name (unsigned tag)
18567 {
18568 const char *name = get_DW_TAG_name (tag);
18569
18570 if (name == NULL)
18571 return "DW_TAG_<unknown>";
18572
18573 return name;
18574 }
18575
18576 /* Convert a DWARF attribute code into its string name. */
18577
18578 static const char *
18579 dwarf_attr_name (unsigned attr)
18580 {
18581 const char *name;
18582
18583 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18584 if (attr == DW_AT_MIPS_fde)
18585 return "DW_AT_MIPS_fde";
18586 #else
18587 if (attr == DW_AT_HP_block_index)
18588 return "DW_AT_HP_block_index";
18589 #endif
18590
18591 name = get_DW_AT_name (attr);
18592
18593 if (name == NULL)
18594 return "DW_AT_<unknown>";
18595
18596 return name;
18597 }
18598
18599 /* Convert a DWARF value form code into its string name. */
18600
18601 static const char *
18602 dwarf_form_name (unsigned form)
18603 {
18604 const char *name = get_DW_FORM_name (form);
18605
18606 if (name == NULL)
18607 return "DW_FORM_<unknown>";
18608
18609 return name;
18610 }
18611
18612 static char *
18613 dwarf_bool_name (unsigned mybool)
18614 {
18615 if (mybool)
18616 return "TRUE";
18617 else
18618 return "FALSE";
18619 }
18620
18621 /* Convert a DWARF type code into its string name. */
18622
18623 static const char *
18624 dwarf_type_encoding_name (unsigned enc)
18625 {
18626 const char *name = get_DW_ATE_name (enc);
18627
18628 if (name == NULL)
18629 return "DW_ATE_<unknown>";
18630
18631 return name;
18632 }
18633
18634 static void
18635 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18636 {
18637 unsigned int i;
18638
18639 print_spaces (indent, f);
18640 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18641 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18642
18643 if (die->parent != NULL)
18644 {
18645 print_spaces (indent, f);
18646 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18647 die->parent->offset.sect_off);
18648 }
18649
18650 print_spaces (indent, f);
18651 fprintf_unfiltered (f, " has children: %s\n",
18652 dwarf_bool_name (die->child != NULL));
18653
18654 print_spaces (indent, f);
18655 fprintf_unfiltered (f, " attributes:\n");
18656
18657 for (i = 0; i < die->num_attrs; ++i)
18658 {
18659 print_spaces (indent, f);
18660 fprintf_unfiltered (f, " %s (%s) ",
18661 dwarf_attr_name (die->attrs[i].name),
18662 dwarf_form_name (die->attrs[i].form));
18663
18664 switch (die->attrs[i].form)
18665 {
18666 case DW_FORM_addr:
18667 case DW_FORM_GNU_addr_index:
18668 fprintf_unfiltered (f, "address: ");
18669 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18670 break;
18671 case DW_FORM_block2:
18672 case DW_FORM_block4:
18673 case DW_FORM_block:
18674 case DW_FORM_block1:
18675 fprintf_unfiltered (f, "block: size %s",
18676 pulongest (DW_BLOCK (&die->attrs[i])->size));
18677 break;
18678 case DW_FORM_exprloc:
18679 fprintf_unfiltered (f, "expression: size %s",
18680 pulongest (DW_BLOCK (&die->attrs[i])->size));
18681 break;
18682 case DW_FORM_ref_addr:
18683 fprintf_unfiltered (f, "ref address: ");
18684 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18685 break;
18686 case DW_FORM_GNU_ref_alt:
18687 fprintf_unfiltered (f, "alt ref address: ");
18688 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18689 break;
18690 case DW_FORM_ref1:
18691 case DW_FORM_ref2:
18692 case DW_FORM_ref4:
18693 case DW_FORM_ref8:
18694 case DW_FORM_ref_udata:
18695 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18696 (long) (DW_UNSND (&die->attrs[i])));
18697 break;
18698 case DW_FORM_data1:
18699 case DW_FORM_data2:
18700 case DW_FORM_data4:
18701 case DW_FORM_data8:
18702 case DW_FORM_udata:
18703 case DW_FORM_sdata:
18704 fprintf_unfiltered (f, "constant: %s",
18705 pulongest (DW_UNSND (&die->attrs[i])));
18706 break;
18707 case DW_FORM_sec_offset:
18708 fprintf_unfiltered (f, "section offset: %s",
18709 pulongest (DW_UNSND (&die->attrs[i])));
18710 break;
18711 case DW_FORM_ref_sig8:
18712 fprintf_unfiltered (f, "signature: %s",
18713 hex_string (DW_SIGNATURE (&die->attrs[i])));
18714 break;
18715 case DW_FORM_string:
18716 case DW_FORM_strp:
18717 case DW_FORM_GNU_str_index:
18718 case DW_FORM_GNU_strp_alt:
18719 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18720 DW_STRING (&die->attrs[i])
18721 ? DW_STRING (&die->attrs[i]) : "",
18722 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18723 break;
18724 case DW_FORM_flag:
18725 if (DW_UNSND (&die->attrs[i]))
18726 fprintf_unfiltered (f, "flag: TRUE");
18727 else
18728 fprintf_unfiltered (f, "flag: FALSE");
18729 break;
18730 case DW_FORM_flag_present:
18731 fprintf_unfiltered (f, "flag: TRUE");
18732 break;
18733 case DW_FORM_indirect:
18734 /* The reader will have reduced the indirect form to
18735 the "base form" so this form should not occur. */
18736 fprintf_unfiltered (f,
18737 "unexpected attribute form: DW_FORM_indirect");
18738 break;
18739 default:
18740 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18741 die->attrs[i].form);
18742 break;
18743 }
18744 fprintf_unfiltered (f, "\n");
18745 }
18746 }
18747
18748 static void
18749 dump_die_for_error (struct die_info *die)
18750 {
18751 dump_die_shallow (gdb_stderr, 0, die);
18752 }
18753
18754 static void
18755 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18756 {
18757 int indent = level * 4;
18758
18759 gdb_assert (die != NULL);
18760
18761 if (level >= max_level)
18762 return;
18763
18764 dump_die_shallow (f, indent, die);
18765
18766 if (die->child != NULL)
18767 {
18768 print_spaces (indent, f);
18769 fprintf_unfiltered (f, " Children:");
18770 if (level + 1 < max_level)
18771 {
18772 fprintf_unfiltered (f, "\n");
18773 dump_die_1 (f, level + 1, max_level, die->child);
18774 }
18775 else
18776 {
18777 fprintf_unfiltered (f,
18778 " [not printed, max nesting level reached]\n");
18779 }
18780 }
18781
18782 if (die->sibling != NULL && level > 0)
18783 {
18784 dump_die_1 (f, level, max_level, die->sibling);
18785 }
18786 }
18787
18788 /* This is called from the pdie macro in gdbinit.in.
18789 It's not static so gcc will keep a copy callable from gdb. */
18790
18791 void
18792 dump_die (struct die_info *die, int max_level)
18793 {
18794 dump_die_1 (gdb_stdlog, 0, max_level, die);
18795 }
18796
18797 static void
18798 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18799 {
18800 void **slot;
18801
18802 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18803 INSERT);
18804
18805 *slot = die;
18806 }
18807
18808 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18809 required kind. */
18810
18811 static sect_offset
18812 dwarf2_get_ref_die_offset (const struct attribute *attr)
18813 {
18814 sect_offset retval = { DW_UNSND (attr) };
18815
18816 if (attr_form_is_ref (attr))
18817 return retval;
18818
18819 retval.sect_off = 0;
18820 complaint (&symfile_complaints,
18821 _("unsupported die ref attribute form: '%s'"),
18822 dwarf_form_name (attr->form));
18823 return retval;
18824 }
18825
18826 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18827 * the value held by the attribute is not constant. */
18828
18829 static LONGEST
18830 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18831 {
18832 if (attr->form == DW_FORM_sdata)
18833 return DW_SND (attr);
18834 else if (attr->form == DW_FORM_udata
18835 || attr->form == DW_FORM_data1
18836 || attr->form == DW_FORM_data2
18837 || attr->form == DW_FORM_data4
18838 || attr->form == DW_FORM_data8)
18839 return DW_UNSND (attr);
18840 else
18841 {
18842 complaint (&symfile_complaints,
18843 _("Attribute value is not a constant (%s)"),
18844 dwarf_form_name (attr->form));
18845 return default_value;
18846 }
18847 }
18848
18849 /* Follow reference or signature attribute ATTR of SRC_DIE.
18850 On entry *REF_CU is the CU of SRC_DIE.
18851 On exit *REF_CU is the CU of the result. */
18852
18853 static struct die_info *
18854 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18855 struct dwarf2_cu **ref_cu)
18856 {
18857 struct die_info *die;
18858
18859 if (attr_form_is_ref (attr))
18860 die = follow_die_ref (src_die, attr, ref_cu);
18861 else if (attr->form == DW_FORM_ref_sig8)
18862 die = follow_die_sig (src_die, attr, ref_cu);
18863 else
18864 {
18865 dump_die_for_error (src_die);
18866 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18867 objfile_name ((*ref_cu)->objfile));
18868 }
18869
18870 return die;
18871 }
18872
18873 /* Follow reference OFFSET.
18874 On entry *REF_CU is the CU of the source die referencing OFFSET.
18875 On exit *REF_CU is the CU of the result.
18876 Returns NULL if OFFSET is invalid. */
18877
18878 static struct die_info *
18879 follow_die_offset (sect_offset offset, int offset_in_dwz,
18880 struct dwarf2_cu **ref_cu)
18881 {
18882 struct die_info temp_die;
18883 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18884
18885 gdb_assert (cu->per_cu != NULL);
18886
18887 target_cu = cu;
18888
18889 if (cu->per_cu->is_debug_types)
18890 {
18891 /* .debug_types CUs cannot reference anything outside their CU.
18892 If they need to, they have to reference a signatured type via
18893 DW_FORM_ref_sig8. */
18894 if (! offset_in_cu_p (&cu->header, offset))
18895 return NULL;
18896 }
18897 else if (offset_in_dwz != cu->per_cu->is_dwz
18898 || ! offset_in_cu_p (&cu->header, offset))
18899 {
18900 struct dwarf2_per_cu_data *per_cu;
18901
18902 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18903 cu->objfile);
18904
18905 /* If necessary, add it to the queue and load its DIEs. */
18906 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18907 load_full_comp_unit (per_cu, cu->language);
18908
18909 target_cu = per_cu->cu;
18910 }
18911 else if (cu->dies == NULL)
18912 {
18913 /* We're loading full DIEs during partial symbol reading. */
18914 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18915 load_full_comp_unit (cu->per_cu, language_minimal);
18916 }
18917
18918 *ref_cu = target_cu;
18919 temp_die.offset = offset;
18920 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18921 }
18922
18923 /* Follow reference attribute ATTR of SRC_DIE.
18924 On entry *REF_CU is the CU of SRC_DIE.
18925 On exit *REF_CU is the CU of the result. */
18926
18927 static struct die_info *
18928 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
18929 struct dwarf2_cu **ref_cu)
18930 {
18931 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18932 struct dwarf2_cu *cu = *ref_cu;
18933 struct die_info *die;
18934
18935 die = follow_die_offset (offset,
18936 (attr->form == DW_FORM_GNU_ref_alt
18937 || cu->per_cu->is_dwz),
18938 ref_cu);
18939 if (!die)
18940 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18941 "at 0x%x [in module %s]"),
18942 offset.sect_off, src_die->offset.sect_off,
18943 objfile_name (cu->objfile));
18944
18945 return die;
18946 }
18947
18948 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18949 Returned value is intended for DW_OP_call*. Returned
18950 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18951
18952 struct dwarf2_locexpr_baton
18953 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18954 struct dwarf2_per_cu_data *per_cu,
18955 CORE_ADDR (*get_frame_pc) (void *baton),
18956 void *baton)
18957 {
18958 struct dwarf2_cu *cu;
18959 struct die_info *die;
18960 struct attribute *attr;
18961 struct dwarf2_locexpr_baton retval;
18962
18963 dw2_setup (per_cu->objfile);
18964
18965 if (per_cu->cu == NULL)
18966 load_cu (per_cu);
18967 cu = per_cu->cu;
18968
18969 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18970 if (!die)
18971 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18972 offset.sect_off, objfile_name (per_cu->objfile));
18973
18974 attr = dwarf2_attr (die, DW_AT_location, cu);
18975 if (!attr)
18976 {
18977 /* DWARF: "If there is no such attribute, then there is no effect.".
18978 DATA is ignored if SIZE is 0. */
18979
18980 retval.data = NULL;
18981 retval.size = 0;
18982 }
18983 else if (attr_form_is_section_offset (attr))
18984 {
18985 struct dwarf2_loclist_baton loclist_baton;
18986 CORE_ADDR pc = (*get_frame_pc) (baton);
18987 size_t size;
18988
18989 fill_in_loclist_baton (cu, &loclist_baton, attr);
18990
18991 retval.data = dwarf2_find_location_expression (&loclist_baton,
18992 &size, pc);
18993 retval.size = size;
18994 }
18995 else
18996 {
18997 if (!attr_form_is_block (attr))
18998 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18999 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19000 offset.sect_off, objfile_name (per_cu->objfile));
19001
19002 retval.data = DW_BLOCK (attr)->data;
19003 retval.size = DW_BLOCK (attr)->size;
19004 }
19005 retval.per_cu = cu->per_cu;
19006
19007 age_cached_comp_units ();
19008
19009 return retval;
19010 }
19011
19012 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19013 offset. */
19014
19015 struct dwarf2_locexpr_baton
19016 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19017 struct dwarf2_per_cu_data *per_cu,
19018 CORE_ADDR (*get_frame_pc) (void *baton),
19019 void *baton)
19020 {
19021 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19022
19023 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19024 }
19025
19026 /* Write a constant of a given type as target-ordered bytes into
19027 OBSTACK. */
19028
19029 static const gdb_byte *
19030 write_constant_as_bytes (struct obstack *obstack,
19031 enum bfd_endian byte_order,
19032 struct type *type,
19033 ULONGEST value,
19034 LONGEST *len)
19035 {
19036 gdb_byte *result;
19037
19038 *len = TYPE_LENGTH (type);
19039 result = obstack_alloc (obstack, *len);
19040 store_unsigned_integer (result, *len, byte_order, value);
19041
19042 return result;
19043 }
19044
19045 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19046 pointer to the constant bytes and set LEN to the length of the
19047 data. If memory is needed, allocate it on OBSTACK. If the DIE
19048 does not have a DW_AT_const_value, return NULL. */
19049
19050 const gdb_byte *
19051 dwarf2_fetch_constant_bytes (sect_offset offset,
19052 struct dwarf2_per_cu_data *per_cu,
19053 struct obstack *obstack,
19054 LONGEST *len)
19055 {
19056 struct dwarf2_cu *cu;
19057 struct die_info *die;
19058 struct attribute *attr;
19059 const gdb_byte *result = NULL;
19060 struct type *type;
19061 LONGEST value;
19062 enum bfd_endian byte_order;
19063
19064 dw2_setup (per_cu->objfile);
19065
19066 if (per_cu->cu == NULL)
19067 load_cu (per_cu);
19068 cu = per_cu->cu;
19069
19070 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19071 if (!die)
19072 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19073 offset.sect_off, objfile_name (per_cu->objfile));
19074
19075
19076 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19077 if (attr == NULL)
19078 return NULL;
19079
19080 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19081 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19082
19083 switch (attr->form)
19084 {
19085 case DW_FORM_addr:
19086 case DW_FORM_GNU_addr_index:
19087 {
19088 gdb_byte *tem;
19089
19090 *len = cu->header.addr_size;
19091 tem = obstack_alloc (obstack, *len);
19092 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19093 result = tem;
19094 }
19095 break;
19096 case DW_FORM_string:
19097 case DW_FORM_strp:
19098 case DW_FORM_GNU_str_index:
19099 case DW_FORM_GNU_strp_alt:
19100 /* DW_STRING is already allocated on the objfile obstack, point
19101 directly to it. */
19102 result = (const gdb_byte *) DW_STRING (attr);
19103 *len = strlen (DW_STRING (attr));
19104 break;
19105 case DW_FORM_block1:
19106 case DW_FORM_block2:
19107 case DW_FORM_block4:
19108 case DW_FORM_block:
19109 case DW_FORM_exprloc:
19110 result = DW_BLOCK (attr)->data;
19111 *len = DW_BLOCK (attr)->size;
19112 break;
19113
19114 /* The DW_AT_const_value attributes are supposed to carry the
19115 symbol's value "represented as it would be on the target
19116 architecture." By the time we get here, it's already been
19117 converted to host endianness, so we just need to sign- or
19118 zero-extend it as appropriate. */
19119 case DW_FORM_data1:
19120 type = die_type (die, cu);
19121 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19122 if (result == NULL)
19123 result = write_constant_as_bytes (obstack, byte_order,
19124 type, value, len);
19125 break;
19126 case DW_FORM_data2:
19127 type = die_type (die, cu);
19128 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19129 if (result == NULL)
19130 result = write_constant_as_bytes (obstack, byte_order,
19131 type, value, len);
19132 break;
19133 case DW_FORM_data4:
19134 type = die_type (die, cu);
19135 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19136 if (result == NULL)
19137 result = write_constant_as_bytes (obstack, byte_order,
19138 type, value, len);
19139 break;
19140 case DW_FORM_data8:
19141 type = die_type (die, cu);
19142 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19143 if (result == NULL)
19144 result = write_constant_as_bytes (obstack, byte_order,
19145 type, value, len);
19146 break;
19147
19148 case DW_FORM_sdata:
19149 type = die_type (die, cu);
19150 result = write_constant_as_bytes (obstack, byte_order,
19151 type, DW_SND (attr), len);
19152 break;
19153
19154 case DW_FORM_udata:
19155 type = die_type (die, cu);
19156 result = write_constant_as_bytes (obstack, byte_order,
19157 type, DW_UNSND (attr), len);
19158 break;
19159
19160 default:
19161 complaint (&symfile_complaints,
19162 _("unsupported const value attribute form: '%s'"),
19163 dwarf_form_name (attr->form));
19164 break;
19165 }
19166
19167 return result;
19168 }
19169
19170 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19171 PER_CU. */
19172
19173 struct type *
19174 dwarf2_get_die_type (cu_offset die_offset,
19175 struct dwarf2_per_cu_data *per_cu)
19176 {
19177 sect_offset die_offset_sect;
19178
19179 dw2_setup (per_cu->objfile);
19180
19181 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19182 return get_die_type_at_offset (die_offset_sect, per_cu);
19183 }
19184
19185 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19186 On entry *REF_CU is the CU of SRC_DIE.
19187 On exit *REF_CU is the CU of the result.
19188 Returns NULL if the referenced DIE isn't found. */
19189
19190 static struct die_info *
19191 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19192 struct dwarf2_cu **ref_cu)
19193 {
19194 struct objfile *objfile = (*ref_cu)->objfile;
19195 struct die_info temp_die;
19196 struct dwarf2_cu *sig_cu;
19197 struct die_info *die;
19198
19199 /* While it might be nice to assert sig_type->type == NULL here,
19200 we can get here for DW_AT_imported_declaration where we need
19201 the DIE not the type. */
19202
19203 /* If necessary, add it to the queue and load its DIEs. */
19204
19205 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19206 read_signatured_type (sig_type);
19207
19208 sig_cu = sig_type->per_cu.cu;
19209 gdb_assert (sig_cu != NULL);
19210 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19211 temp_die.offset = sig_type->type_offset_in_section;
19212 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19213 temp_die.offset.sect_off);
19214 if (die)
19215 {
19216 /* For .gdb_index version 7 keep track of included TUs.
19217 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19218 if (dwarf2_per_objfile->index_table != NULL
19219 && dwarf2_per_objfile->index_table->version <= 7)
19220 {
19221 VEC_safe_push (dwarf2_per_cu_ptr,
19222 (*ref_cu)->per_cu->imported_symtabs,
19223 sig_cu->per_cu);
19224 }
19225
19226 *ref_cu = sig_cu;
19227 return die;
19228 }
19229
19230 return NULL;
19231 }
19232
19233 /* Follow signatured type referenced by ATTR in SRC_DIE.
19234 On entry *REF_CU is the CU of SRC_DIE.
19235 On exit *REF_CU is the CU of the result.
19236 The result is the DIE of the type.
19237 If the referenced type cannot be found an error is thrown. */
19238
19239 static struct die_info *
19240 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19241 struct dwarf2_cu **ref_cu)
19242 {
19243 ULONGEST signature = DW_SIGNATURE (attr);
19244 struct signatured_type *sig_type;
19245 struct die_info *die;
19246
19247 gdb_assert (attr->form == DW_FORM_ref_sig8);
19248
19249 sig_type = lookup_signatured_type (*ref_cu, signature);
19250 /* sig_type will be NULL if the signatured type is missing from
19251 the debug info. */
19252 if (sig_type == NULL)
19253 {
19254 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19255 " from DIE at 0x%x [in module %s]"),
19256 hex_string (signature), src_die->offset.sect_off,
19257 objfile_name ((*ref_cu)->objfile));
19258 }
19259
19260 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19261 if (die == NULL)
19262 {
19263 dump_die_for_error (src_die);
19264 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19265 " from DIE at 0x%x [in module %s]"),
19266 hex_string (signature), src_die->offset.sect_off,
19267 objfile_name ((*ref_cu)->objfile));
19268 }
19269
19270 return die;
19271 }
19272
19273 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19274 reading in and processing the type unit if necessary. */
19275
19276 static struct type *
19277 get_signatured_type (struct die_info *die, ULONGEST signature,
19278 struct dwarf2_cu *cu)
19279 {
19280 struct signatured_type *sig_type;
19281 struct dwarf2_cu *type_cu;
19282 struct die_info *type_die;
19283 struct type *type;
19284
19285 sig_type = lookup_signatured_type (cu, signature);
19286 /* sig_type will be NULL if the signatured type is missing from
19287 the debug info. */
19288 if (sig_type == NULL)
19289 {
19290 complaint (&symfile_complaints,
19291 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19292 " from DIE at 0x%x [in module %s]"),
19293 hex_string (signature), die->offset.sect_off,
19294 objfile_name (dwarf2_per_objfile->objfile));
19295 return build_error_marker_type (cu, die);
19296 }
19297
19298 /* If we already know the type we're done. */
19299 if (sig_type->type != NULL)
19300 return sig_type->type;
19301
19302 type_cu = cu;
19303 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19304 if (type_die != NULL)
19305 {
19306 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19307 is created. This is important, for example, because for c++ classes
19308 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19309 type = read_type_die (type_die, type_cu);
19310 if (type == NULL)
19311 {
19312 complaint (&symfile_complaints,
19313 _("Dwarf Error: Cannot build signatured type %s"
19314 " referenced from DIE at 0x%x [in module %s]"),
19315 hex_string (signature), die->offset.sect_off,
19316 objfile_name (dwarf2_per_objfile->objfile));
19317 type = build_error_marker_type (cu, die);
19318 }
19319 }
19320 else
19321 {
19322 complaint (&symfile_complaints,
19323 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19324 " from DIE at 0x%x [in module %s]"),
19325 hex_string (signature), die->offset.sect_off,
19326 objfile_name (dwarf2_per_objfile->objfile));
19327 type = build_error_marker_type (cu, die);
19328 }
19329 sig_type->type = type;
19330
19331 return type;
19332 }
19333
19334 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19335 reading in and processing the type unit if necessary. */
19336
19337 static struct type *
19338 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19339 struct dwarf2_cu *cu) /* ARI: editCase function */
19340 {
19341 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19342 if (attr_form_is_ref (attr))
19343 {
19344 struct dwarf2_cu *type_cu = cu;
19345 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19346
19347 return read_type_die (type_die, type_cu);
19348 }
19349 else if (attr->form == DW_FORM_ref_sig8)
19350 {
19351 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19352 }
19353 else
19354 {
19355 complaint (&symfile_complaints,
19356 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19357 " at 0x%x [in module %s]"),
19358 dwarf_form_name (attr->form), die->offset.sect_off,
19359 objfile_name (dwarf2_per_objfile->objfile));
19360 return build_error_marker_type (cu, die);
19361 }
19362 }
19363
19364 /* Load the DIEs associated with type unit PER_CU into memory. */
19365
19366 static void
19367 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19368 {
19369 struct signatured_type *sig_type;
19370
19371 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19372 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19373
19374 /* We have the per_cu, but we need the signatured_type.
19375 Fortunately this is an easy translation. */
19376 gdb_assert (per_cu->is_debug_types);
19377 sig_type = (struct signatured_type *) per_cu;
19378
19379 gdb_assert (per_cu->cu == NULL);
19380
19381 read_signatured_type (sig_type);
19382
19383 gdb_assert (per_cu->cu != NULL);
19384 }
19385
19386 /* die_reader_func for read_signatured_type.
19387 This is identical to load_full_comp_unit_reader,
19388 but is kept separate for now. */
19389
19390 static void
19391 read_signatured_type_reader (const struct die_reader_specs *reader,
19392 const gdb_byte *info_ptr,
19393 struct die_info *comp_unit_die,
19394 int has_children,
19395 void *data)
19396 {
19397 struct dwarf2_cu *cu = reader->cu;
19398
19399 gdb_assert (cu->die_hash == NULL);
19400 cu->die_hash =
19401 htab_create_alloc_ex (cu->header.length / 12,
19402 die_hash,
19403 die_eq,
19404 NULL,
19405 &cu->comp_unit_obstack,
19406 hashtab_obstack_allocate,
19407 dummy_obstack_deallocate);
19408
19409 if (has_children)
19410 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19411 &info_ptr, comp_unit_die);
19412 cu->dies = comp_unit_die;
19413 /* comp_unit_die is not stored in die_hash, no need. */
19414
19415 /* We try not to read any attributes in this function, because not
19416 all CUs needed for references have been loaded yet, and symbol
19417 table processing isn't initialized. But we have to set the CU language,
19418 or we won't be able to build types correctly.
19419 Similarly, if we do not read the producer, we can not apply
19420 producer-specific interpretation. */
19421 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19422 }
19423
19424 /* Read in a signatured type and build its CU and DIEs.
19425 If the type is a stub for the real type in a DWO file,
19426 read in the real type from the DWO file as well. */
19427
19428 static void
19429 read_signatured_type (struct signatured_type *sig_type)
19430 {
19431 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19432
19433 gdb_assert (per_cu->is_debug_types);
19434 gdb_assert (per_cu->cu == NULL);
19435
19436 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19437 read_signatured_type_reader, NULL);
19438 sig_type->per_cu.tu_read = 1;
19439 }
19440
19441 /* Decode simple location descriptions.
19442 Given a pointer to a dwarf block that defines a location, compute
19443 the location and return the value.
19444
19445 NOTE drow/2003-11-18: This function is called in two situations
19446 now: for the address of static or global variables (partial symbols
19447 only) and for offsets into structures which are expected to be
19448 (more or less) constant. The partial symbol case should go away,
19449 and only the constant case should remain. That will let this
19450 function complain more accurately. A few special modes are allowed
19451 without complaint for global variables (for instance, global
19452 register values and thread-local values).
19453
19454 A location description containing no operations indicates that the
19455 object is optimized out. The return value is 0 for that case.
19456 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19457 callers will only want a very basic result and this can become a
19458 complaint.
19459
19460 Note that stack[0] is unused except as a default error return. */
19461
19462 static CORE_ADDR
19463 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19464 {
19465 struct objfile *objfile = cu->objfile;
19466 size_t i;
19467 size_t size = blk->size;
19468 const gdb_byte *data = blk->data;
19469 CORE_ADDR stack[64];
19470 int stacki;
19471 unsigned int bytes_read, unsnd;
19472 gdb_byte op;
19473
19474 i = 0;
19475 stacki = 0;
19476 stack[stacki] = 0;
19477 stack[++stacki] = 0;
19478
19479 while (i < size)
19480 {
19481 op = data[i++];
19482 switch (op)
19483 {
19484 case DW_OP_lit0:
19485 case DW_OP_lit1:
19486 case DW_OP_lit2:
19487 case DW_OP_lit3:
19488 case DW_OP_lit4:
19489 case DW_OP_lit5:
19490 case DW_OP_lit6:
19491 case DW_OP_lit7:
19492 case DW_OP_lit8:
19493 case DW_OP_lit9:
19494 case DW_OP_lit10:
19495 case DW_OP_lit11:
19496 case DW_OP_lit12:
19497 case DW_OP_lit13:
19498 case DW_OP_lit14:
19499 case DW_OP_lit15:
19500 case DW_OP_lit16:
19501 case DW_OP_lit17:
19502 case DW_OP_lit18:
19503 case DW_OP_lit19:
19504 case DW_OP_lit20:
19505 case DW_OP_lit21:
19506 case DW_OP_lit22:
19507 case DW_OP_lit23:
19508 case DW_OP_lit24:
19509 case DW_OP_lit25:
19510 case DW_OP_lit26:
19511 case DW_OP_lit27:
19512 case DW_OP_lit28:
19513 case DW_OP_lit29:
19514 case DW_OP_lit30:
19515 case DW_OP_lit31:
19516 stack[++stacki] = op - DW_OP_lit0;
19517 break;
19518
19519 case DW_OP_reg0:
19520 case DW_OP_reg1:
19521 case DW_OP_reg2:
19522 case DW_OP_reg3:
19523 case DW_OP_reg4:
19524 case DW_OP_reg5:
19525 case DW_OP_reg6:
19526 case DW_OP_reg7:
19527 case DW_OP_reg8:
19528 case DW_OP_reg9:
19529 case DW_OP_reg10:
19530 case DW_OP_reg11:
19531 case DW_OP_reg12:
19532 case DW_OP_reg13:
19533 case DW_OP_reg14:
19534 case DW_OP_reg15:
19535 case DW_OP_reg16:
19536 case DW_OP_reg17:
19537 case DW_OP_reg18:
19538 case DW_OP_reg19:
19539 case DW_OP_reg20:
19540 case DW_OP_reg21:
19541 case DW_OP_reg22:
19542 case DW_OP_reg23:
19543 case DW_OP_reg24:
19544 case DW_OP_reg25:
19545 case DW_OP_reg26:
19546 case DW_OP_reg27:
19547 case DW_OP_reg28:
19548 case DW_OP_reg29:
19549 case DW_OP_reg30:
19550 case DW_OP_reg31:
19551 stack[++stacki] = op - DW_OP_reg0;
19552 if (i < size)
19553 dwarf2_complex_location_expr_complaint ();
19554 break;
19555
19556 case DW_OP_regx:
19557 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19558 i += bytes_read;
19559 stack[++stacki] = unsnd;
19560 if (i < size)
19561 dwarf2_complex_location_expr_complaint ();
19562 break;
19563
19564 case DW_OP_addr:
19565 stack[++stacki] = read_address (objfile->obfd, &data[i],
19566 cu, &bytes_read);
19567 i += bytes_read;
19568 break;
19569
19570 case DW_OP_const1u:
19571 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19572 i += 1;
19573 break;
19574
19575 case DW_OP_const1s:
19576 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19577 i += 1;
19578 break;
19579
19580 case DW_OP_const2u:
19581 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19582 i += 2;
19583 break;
19584
19585 case DW_OP_const2s:
19586 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19587 i += 2;
19588 break;
19589
19590 case DW_OP_const4u:
19591 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19592 i += 4;
19593 break;
19594
19595 case DW_OP_const4s:
19596 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19597 i += 4;
19598 break;
19599
19600 case DW_OP_const8u:
19601 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19602 i += 8;
19603 break;
19604
19605 case DW_OP_constu:
19606 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19607 &bytes_read);
19608 i += bytes_read;
19609 break;
19610
19611 case DW_OP_consts:
19612 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19613 i += bytes_read;
19614 break;
19615
19616 case DW_OP_dup:
19617 stack[stacki + 1] = stack[stacki];
19618 stacki++;
19619 break;
19620
19621 case DW_OP_plus:
19622 stack[stacki - 1] += stack[stacki];
19623 stacki--;
19624 break;
19625
19626 case DW_OP_plus_uconst:
19627 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19628 &bytes_read);
19629 i += bytes_read;
19630 break;
19631
19632 case DW_OP_minus:
19633 stack[stacki - 1] -= stack[stacki];
19634 stacki--;
19635 break;
19636
19637 case DW_OP_deref:
19638 /* If we're not the last op, then we definitely can't encode
19639 this using GDB's address_class enum. This is valid for partial
19640 global symbols, although the variable's address will be bogus
19641 in the psymtab. */
19642 if (i < size)
19643 dwarf2_complex_location_expr_complaint ();
19644 break;
19645
19646 case DW_OP_GNU_push_tls_address:
19647 /* The top of the stack has the offset from the beginning
19648 of the thread control block at which the variable is located. */
19649 /* Nothing should follow this operator, so the top of stack would
19650 be returned. */
19651 /* This is valid for partial global symbols, but the variable's
19652 address will be bogus in the psymtab. Make it always at least
19653 non-zero to not look as a variable garbage collected by linker
19654 which have DW_OP_addr 0. */
19655 if (i < size)
19656 dwarf2_complex_location_expr_complaint ();
19657 stack[stacki]++;
19658 break;
19659
19660 case DW_OP_GNU_uninit:
19661 break;
19662
19663 case DW_OP_GNU_addr_index:
19664 case DW_OP_GNU_const_index:
19665 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19666 &bytes_read);
19667 i += bytes_read;
19668 break;
19669
19670 default:
19671 {
19672 const char *name = get_DW_OP_name (op);
19673
19674 if (name)
19675 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19676 name);
19677 else
19678 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19679 op);
19680 }
19681
19682 return (stack[stacki]);
19683 }
19684
19685 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19686 outside of the allocated space. Also enforce minimum>0. */
19687 if (stacki >= ARRAY_SIZE (stack) - 1)
19688 {
19689 complaint (&symfile_complaints,
19690 _("location description stack overflow"));
19691 return 0;
19692 }
19693
19694 if (stacki <= 0)
19695 {
19696 complaint (&symfile_complaints,
19697 _("location description stack underflow"));
19698 return 0;
19699 }
19700 }
19701 return (stack[stacki]);
19702 }
19703
19704 /* memory allocation interface */
19705
19706 static struct dwarf_block *
19707 dwarf_alloc_block (struct dwarf2_cu *cu)
19708 {
19709 struct dwarf_block *blk;
19710
19711 blk = (struct dwarf_block *)
19712 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19713 return (blk);
19714 }
19715
19716 static struct die_info *
19717 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19718 {
19719 struct die_info *die;
19720 size_t size = sizeof (struct die_info);
19721
19722 if (num_attrs > 1)
19723 size += (num_attrs - 1) * sizeof (struct attribute);
19724
19725 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19726 memset (die, 0, sizeof (struct die_info));
19727 return (die);
19728 }
19729
19730 \f
19731 /* Macro support. */
19732
19733 /* Return file name relative to the compilation directory of file number I in
19734 *LH's file name table. The result is allocated using xmalloc; the caller is
19735 responsible for freeing it. */
19736
19737 static char *
19738 file_file_name (int file, struct line_header *lh)
19739 {
19740 /* Is the file number a valid index into the line header's file name
19741 table? Remember that file numbers start with one, not zero. */
19742 if (1 <= file && file <= lh->num_file_names)
19743 {
19744 struct file_entry *fe = &lh->file_names[file - 1];
19745
19746 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
19747 return xstrdup (fe->name);
19748 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19749 fe->name, NULL);
19750 }
19751 else
19752 {
19753 /* The compiler produced a bogus file number. We can at least
19754 record the macro definitions made in the file, even if we
19755 won't be able to find the file by name. */
19756 char fake_name[80];
19757
19758 xsnprintf (fake_name, sizeof (fake_name),
19759 "<bad macro file number %d>", file);
19760
19761 complaint (&symfile_complaints,
19762 _("bad file number in macro information (%d)"),
19763 file);
19764
19765 return xstrdup (fake_name);
19766 }
19767 }
19768
19769 /* Return the full name of file number I in *LH's file name table.
19770 Use COMP_DIR as the name of the current directory of the
19771 compilation. The result is allocated using xmalloc; the caller is
19772 responsible for freeing it. */
19773 static char *
19774 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19775 {
19776 /* Is the file number a valid index into the line header's file name
19777 table? Remember that file numbers start with one, not zero. */
19778 if (1 <= file && file <= lh->num_file_names)
19779 {
19780 char *relative = file_file_name (file, lh);
19781
19782 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19783 return relative;
19784 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19785 }
19786 else
19787 return file_file_name (file, lh);
19788 }
19789
19790
19791 static struct macro_source_file *
19792 macro_start_file (int file, int line,
19793 struct macro_source_file *current_file,
19794 const char *comp_dir,
19795 struct line_header *lh, struct objfile *objfile)
19796 {
19797 /* File name relative to the compilation directory of this source file. */
19798 char *file_name = file_file_name (file, lh);
19799
19800 if (! current_file)
19801 {
19802 /* Note: We don't create a macro table for this compilation unit
19803 at all until we actually get a filename. */
19804 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19805
19806 /* If we have no current file, then this must be the start_file
19807 directive for the compilation unit's main source file. */
19808 current_file = macro_set_main (macro_table, file_name);
19809 macro_define_special (macro_table);
19810 }
19811 else
19812 current_file = macro_include (current_file, line, file_name);
19813
19814 xfree (file_name);
19815
19816 return current_file;
19817 }
19818
19819
19820 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19821 followed by a null byte. */
19822 static char *
19823 copy_string (const char *buf, int len)
19824 {
19825 char *s = xmalloc (len + 1);
19826
19827 memcpy (s, buf, len);
19828 s[len] = '\0';
19829 return s;
19830 }
19831
19832
19833 static const char *
19834 consume_improper_spaces (const char *p, const char *body)
19835 {
19836 if (*p == ' ')
19837 {
19838 complaint (&symfile_complaints,
19839 _("macro definition contains spaces "
19840 "in formal argument list:\n`%s'"),
19841 body);
19842
19843 while (*p == ' ')
19844 p++;
19845 }
19846
19847 return p;
19848 }
19849
19850
19851 static void
19852 parse_macro_definition (struct macro_source_file *file, int line,
19853 const char *body)
19854 {
19855 const char *p;
19856
19857 /* The body string takes one of two forms. For object-like macro
19858 definitions, it should be:
19859
19860 <macro name> " " <definition>
19861
19862 For function-like macro definitions, it should be:
19863
19864 <macro name> "() " <definition>
19865 or
19866 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19867
19868 Spaces may appear only where explicitly indicated, and in the
19869 <definition>.
19870
19871 The Dwarf 2 spec says that an object-like macro's name is always
19872 followed by a space, but versions of GCC around March 2002 omit
19873 the space when the macro's definition is the empty string.
19874
19875 The Dwarf 2 spec says that there should be no spaces between the
19876 formal arguments in a function-like macro's formal argument list,
19877 but versions of GCC around March 2002 include spaces after the
19878 commas. */
19879
19880
19881 /* Find the extent of the macro name. The macro name is terminated
19882 by either a space or null character (for an object-like macro) or
19883 an opening paren (for a function-like macro). */
19884 for (p = body; *p; p++)
19885 if (*p == ' ' || *p == '(')
19886 break;
19887
19888 if (*p == ' ' || *p == '\0')
19889 {
19890 /* It's an object-like macro. */
19891 int name_len = p - body;
19892 char *name = copy_string (body, name_len);
19893 const char *replacement;
19894
19895 if (*p == ' ')
19896 replacement = body + name_len + 1;
19897 else
19898 {
19899 dwarf2_macro_malformed_definition_complaint (body);
19900 replacement = body + name_len;
19901 }
19902
19903 macro_define_object (file, line, name, replacement);
19904
19905 xfree (name);
19906 }
19907 else if (*p == '(')
19908 {
19909 /* It's a function-like macro. */
19910 char *name = copy_string (body, p - body);
19911 int argc = 0;
19912 int argv_size = 1;
19913 char **argv = xmalloc (argv_size * sizeof (*argv));
19914
19915 p++;
19916
19917 p = consume_improper_spaces (p, body);
19918
19919 /* Parse the formal argument list. */
19920 while (*p && *p != ')')
19921 {
19922 /* Find the extent of the current argument name. */
19923 const char *arg_start = p;
19924
19925 while (*p && *p != ',' && *p != ')' && *p != ' ')
19926 p++;
19927
19928 if (! *p || p == arg_start)
19929 dwarf2_macro_malformed_definition_complaint (body);
19930 else
19931 {
19932 /* Make sure argv has room for the new argument. */
19933 if (argc >= argv_size)
19934 {
19935 argv_size *= 2;
19936 argv = xrealloc (argv, argv_size * sizeof (*argv));
19937 }
19938
19939 argv[argc++] = copy_string (arg_start, p - arg_start);
19940 }
19941
19942 p = consume_improper_spaces (p, body);
19943
19944 /* Consume the comma, if present. */
19945 if (*p == ',')
19946 {
19947 p++;
19948
19949 p = consume_improper_spaces (p, body);
19950 }
19951 }
19952
19953 if (*p == ')')
19954 {
19955 p++;
19956
19957 if (*p == ' ')
19958 /* Perfectly formed definition, no complaints. */
19959 macro_define_function (file, line, name,
19960 argc, (const char **) argv,
19961 p + 1);
19962 else if (*p == '\0')
19963 {
19964 /* Complain, but do define it. */
19965 dwarf2_macro_malformed_definition_complaint (body);
19966 macro_define_function (file, line, name,
19967 argc, (const char **) argv,
19968 p);
19969 }
19970 else
19971 /* Just complain. */
19972 dwarf2_macro_malformed_definition_complaint (body);
19973 }
19974 else
19975 /* Just complain. */
19976 dwarf2_macro_malformed_definition_complaint (body);
19977
19978 xfree (name);
19979 {
19980 int i;
19981
19982 for (i = 0; i < argc; i++)
19983 xfree (argv[i]);
19984 }
19985 xfree (argv);
19986 }
19987 else
19988 dwarf2_macro_malformed_definition_complaint (body);
19989 }
19990
19991 /* Skip some bytes from BYTES according to the form given in FORM.
19992 Returns the new pointer. */
19993
19994 static const gdb_byte *
19995 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19996 enum dwarf_form form,
19997 unsigned int offset_size,
19998 struct dwarf2_section_info *section)
19999 {
20000 unsigned int bytes_read;
20001
20002 switch (form)
20003 {
20004 case DW_FORM_data1:
20005 case DW_FORM_flag:
20006 ++bytes;
20007 break;
20008
20009 case DW_FORM_data2:
20010 bytes += 2;
20011 break;
20012
20013 case DW_FORM_data4:
20014 bytes += 4;
20015 break;
20016
20017 case DW_FORM_data8:
20018 bytes += 8;
20019 break;
20020
20021 case DW_FORM_string:
20022 read_direct_string (abfd, bytes, &bytes_read);
20023 bytes += bytes_read;
20024 break;
20025
20026 case DW_FORM_sec_offset:
20027 case DW_FORM_strp:
20028 case DW_FORM_GNU_strp_alt:
20029 bytes += offset_size;
20030 break;
20031
20032 case DW_FORM_block:
20033 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20034 bytes += bytes_read;
20035 break;
20036
20037 case DW_FORM_block1:
20038 bytes += 1 + read_1_byte (abfd, bytes);
20039 break;
20040 case DW_FORM_block2:
20041 bytes += 2 + read_2_bytes (abfd, bytes);
20042 break;
20043 case DW_FORM_block4:
20044 bytes += 4 + read_4_bytes (abfd, bytes);
20045 break;
20046
20047 case DW_FORM_sdata:
20048 case DW_FORM_udata:
20049 case DW_FORM_GNU_addr_index:
20050 case DW_FORM_GNU_str_index:
20051 bytes = gdb_skip_leb128 (bytes, buffer_end);
20052 if (bytes == NULL)
20053 {
20054 dwarf2_section_buffer_overflow_complaint (section);
20055 return NULL;
20056 }
20057 break;
20058
20059 default:
20060 {
20061 complain:
20062 complaint (&symfile_complaints,
20063 _("invalid form 0x%x in `%s'"),
20064 form, get_section_name (section));
20065 return NULL;
20066 }
20067 }
20068
20069 return bytes;
20070 }
20071
20072 /* A helper for dwarf_decode_macros that handles skipping an unknown
20073 opcode. Returns an updated pointer to the macro data buffer; or,
20074 on error, issues a complaint and returns NULL. */
20075
20076 static const gdb_byte *
20077 skip_unknown_opcode (unsigned int opcode,
20078 const gdb_byte **opcode_definitions,
20079 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20080 bfd *abfd,
20081 unsigned int offset_size,
20082 struct dwarf2_section_info *section)
20083 {
20084 unsigned int bytes_read, i;
20085 unsigned long arg;
20086 const gdb_byte *defn;
20087
20088 if (opcode_definitions[opcode] == NULL)
20089 {
20090 complaint (&symfile_complaints,
20091 _("unrecognized DW_MACFINO opcode 0x%x"),
20092 opcode);
20093 return NULL;
20094 }
20095
20096 defn = opcode_definitions[opcode];
20097 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20098 defn += bytes_read;
20099
20100 for (i = 0; i < arg; ++i)
20101 {
20102 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20103 section);
20104 if (mac_ptr == NULL)
20105 {
20106 /* skip_form_bytes already issued the complaint. */
20107 return NULL;
20108 }
20109 }
20110
20111 return mac_ptr;
20112 }
20113
20114 /* A helper function which parses the header of a macro section.
20115 If the macro section is the extended (for now called "GNU") type,
20116 then this updates *OFFSET_SIZE. Returns a pointer to just after
20117 the header, or issues a complaint and returns NULL on error. */
20118
20119 static const gdb_byte *
20120 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20121 bfd *abfd,
20122 const gdb_byte *mac_ptr,
20123 unsigned int *offset_size,
20124 int section_is_gnu)
20125 {
20126 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20127
20128 if (section_is_gnu)
20129 {
20130 unsigned int version, flags;
20131
20132 version = read_2_bytes (abfd, mac_ptr);
20133 if (version != 4)
20134 {
20135 complaint (&symfile_complaints,
20136 _("unrecognized version `%d' in .debug_macro section"),
20137 version);
20138 return NULL;
20139 }
20140 mac_ptr += 2;
20141
20142 flags = read_1_byte (abfd, mac_ptr);
20143 ++mac_ptr;
20144 *offset_size = (flags & 1) ? 8 : 4;
20145
20146 if ((flags & 2) != 0)
20147 /* We don't need the line table offset. */
20148 mac_ptr += *offset_size;
20149
20150 /* Vendor opcode descriptions. */
20151 if ((flags & 4) != 0)
20152 {
20153 unsigned int i, count;
20154
20155 count = read_1_byte (abfd, mac_ptr);
20156 ++mac_ptr;
20157 for (i = 0; i < count; ++i)
20158 {
20159 unsigned int opcode, bytes_read;
20160 unsigned long arg;
20161
20162 opcode = read_1_byte (abfd, mac_ptr);
20163 ++mac_ptr;
20164 opcode_definitions[opcode] = mac_ptr;
20165 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20166 mac_ptr += bytes_read;
20167 mac_ptr += arg;
20168 }
20169 }
20170 }
20171
20172 return mac_ptr;
20173 }
20174
20175 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20176 including DW_MACRO_GNU_transparent_include. */
20177
20178 static void
20179 dwarf_decode_macro_bytes (bfd *abfd,
20180 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20181 struct macro_source_file *current_file,
20182 struct line_header *lh, const char *comp_dir,
20183 struct dwarf2_section_info *section,
20184 int section_is_gnu, int section_is_dwz,
20185 unsigned int offset_size,
20186 struct objfile *objfile,
20187 htab_t include_hash)
20188 {
20189 enum dwarf_macro_record_type macinfo_type;
20190 int at_commandline;
20191 const gdb_byte *opcode_definitions[256];
20192
20193 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20194 &offset_size, section_is_gnu);
20195 if (mac_ptr == NULL)
20196 {
20197 /* We already issued a complaint. */
20198 return;
20199 }
20200
20201 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20202 GDB is still reading the definitions from command line. First
20203 DW_MACINFO_start_file will need to be ignored as it was already executed
20204 to create CURRENT_FILE for the main source holding also the command line
20205 definitions. On first met DW_MACINFO_start_file this flag is reset to
20206 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20207
20208 at_commandline = 1;
20209
20210 do
20211 {
20212 /* Do we at least have room for a macinfo type byte? */
20213 if (mac_ptr >= mac_end)
20214 {
20215 dwarf2_section_buffer_overflow_complaint (section);
20216 break;
20217 }
20218
20219 macinfo_type = read_1_byte (abfd, mac_ptr);
20220 mac_ptr++;
20221
20222 /* Note that we rely on the fact that the corresponding GNU and
20223 DWARF constants are the same. */
20224 switch (macinfo_type)
20225 {
20226 /* A zero macinfo type indicates the end of the macro
20227 information. */
20228 case 0:
20229 break;
20230
20231 case DW_MACRO_GNU_define:
20232 case DW_MACRO_GNU_undef:
20233 case DW_MACRO_GNU_define_indirect:
20234 case DW_MACRO_GNU_undef_indirect:
20235 case DW_MACRO_GNU_define_indirect_alt:
20236 case DW_MACRO_GNU_undef_indirect_alt:
20237 {
20238 unsigned int bytes_read;
20239 int line;
20240 const char *body;
20241 int is_define;
20242
20243 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20244 mac_ptr += bytes_read;
20245
20246 if (macinfo_type == DW_MACRO_GNU_define
20247 || macinfo_type == DW_MACRO_GNU_undef)
20248 {
20249 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20250 mac_ptr += bytes_read;
20251 }
20252 else
20253 {
20254 LONGEST str_offset;
20255
20256 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20257 mac_ptr += offset_size;
20258
20259 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20260 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20261 || section_is_dwz)
20262 {
20263 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20264
20265 body = read_indirect_string_from_dwz (dwz, str_offset);
20266 }
20267 else
20268 body = read_indirect_string_at_offset (abfd, str_offset);
20269 }
20270
20271 is_define = (macinfo_type == DW_MACRO_GNU_define
20272 || macinfo_type == DW_MACRO_GNU_define_indirect
20273 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20274 if (! current_file)
20275 {
20276 /* DWARF violation as no main source is present. */
20277 complaint (&symfile_complaints,
20278 _("debug info with no main source gives macro %s "
20279 "on line %d: %s"),
20280 is_define ? _("definition") : _("undefinition"),
20281 line, body);
20282 break;
20283 }
20284 if ((line == 0 && !at_commandline)
20285 || (line != 0 && at_commandline))
20286 complaint (&symfile_complaints,
20287 _("debug info gives %s macro %s with %s line %d: %s"),
20288 at_commandline ? _("command-line") : _("in-file"),
20289 is_define ? _("definition") : _("undefinition"),
20290 line == 0 ? _("zero") : _("non-zero"), line, body);
20291
20292 if (is_define)
20293 parse_macro_definition (current_file, line, body);
20294 else
20295 {
20296 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20297 || macinfo_type == DW_MACRO_GNU_undef_indirect
20298 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20299 macro_undef (current_file, line, body);
20300 }
20301 }
20302 break;
20303
20304 case DW_MACRO_GNU_start_file:
20305 {
20306 unsigned int bytes_read;
20307 int line, file;
20308
20309 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20310 mac_ptr += bytes_read;
20311 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20312 mac_ptr += bytes_read;
20313
20314 if ((line == 0 && !at_commandline)
20315 || (line != 0 && at_commandline))
20316 complaint (&symfile_complaints,
20317 _("debug info gives source %d included "
20318 "from %s at %s line %d"),
20319 file, at_commandline ? _("command-line") : _("file"),
20320 line == 0 ? _("zero") : _("non-zero"), line);
20321
20322 if (at_commandline)
20323 {
20324 /* This DW_MACRO_GNU_start_file was executed in the
20325 pass one. */
20326 at_commandline = 0;
20327 }
20328 else
20329 current_file = macro_start_file (file, line,
20330 current_file, comp_dir,
20331 lh, objfile);
20332 }
20333 break;
20334
20335 case DW_MACRO_GNU_end_file:
20336 if (! current_file)
20337 complaint (&symfile_complaints,
20338 _("macro debug info has an unmatched "
20339 "`close_file' directive"));
20340 else
20341 {
20342 current_file = current_file->included_by;
20343 if (! current_file)
20344 {
20345 enum dwarf_macro_record_type next_type;
20346
20347 /* GCC circa March 2002 doesn't produce the zero
20348 type byte marking the end of the compilation
20349 unit. Complain if it's not there, but exit no
20350 matter what. */
20351
20352 /* Do we at least have room for a macinfo type byte? */
20353 if (mac_ptr >= mac_end)
20354 {
20355 dwarf2_section_buffer_overflow_complaint (section);
20356 return;
20357 }
20358
20359 /* We don't increment mac_ptr here, so this is just
20360 a look-ahead. */
20361 next_type = read_1_byte (abfd, mac_ptr);
20362 if (next_type != 0)
20363 complaint (&symfile_complaints,
20364 _("no terminating 0-type entry for "
20365 "macros in `.debug_macinfo' section"));
20366
20367 return;
20368 }
20369 }
20370 break;
20371
20372 case DW_MACRO_GNU_transparent_include:
20373 case DW_MACRO_GNU_transparent_include_alt:
20374 {
20375 LONGEST offset;
20376 void **slot;
20377 bfd *include_bfd = abfd;
20378 struct dwarf2_section_info *include_section = section;
20379 struct dwarf2_section_info alt_section;
20380 const gdb_byte *include_mac_end = mac_end;
20381 int is_dwz = section_is_dwz;
20382 const gdb_byte *new_mac_ptr;
20383
20384 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20385 mac_ptr += offset_size;
20386
20387 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20388 {
20389 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20390
20391 dwarf2_read_section (dwarf2_per_objfile->objfile,
20392 &dwz->macro);
20393
20394 include_section = &dwz->macro;
20395 include_bfd = get_section_bfd_owner (include_section);
20396 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20397 is_dwz = 1;
20398 }
20399
20400 new_mac_ptr = include_section->buffer + offset;
20401 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20402
20403 if (*slot != NULL)
20404 {
20405 /* This has actually happened; see
20406 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20407 complaint (&symfile_complaints,
20408 _("recursive DW_MACRO_GNU_transparent_include in "
20409 ".debug_macro section"));
20410 }
20411 else
20412 {
20413 *slot = (void *) new_mac_ptr;
20414
20415 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20416 include_mac_end, current_file,
20417 lh, comp_dir,
20418 section, section_is_gnu, is_dwz,
20419 offset_size, objfile, include_hash);
20420
20421 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20422 }
20423 }
20424 break;
20425
20426 case DW_MACINFO_vendor_ext:
20427 if (!section_is_gnu)
20428 {
20429 unsigned int bytes_read;
20430 int constant;
20431
20432 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20433 mac_ptr += bytes_read;
20434 read_direct_string (abfd, mac_ptr, &bytes_read);
20435 mac_ptr += bytes_read;
20436
20437 /* We don't recognize any vendor extensions. */
20438 break;
20439 }
20440 /* FALLTHROUGH */
20441
20442 default:
20443 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20444 mac_ptr, mac_end, abfd, offset_size,
20445 section);
20446 if (mac_ptr == NULL)
20447 return;
20448 break;
20449 }
20450 } while (macinfo_type != 0);
20451 }
20452
20453 static void
20454 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20455 const char *comp_dir, int section_is_gnu)
20456 {
20457 struct objfile *objfile = dwarf2_per_objfile->objfile;
20458 struct line_header *lh = cu->line_header;
20459 bfd *abfd;
20460 const gdb_byte *mac_ptr, *mac_end;
20461 struct macro_source_file *current_file = 0;
20462 enum dwarf_macro_record_type macinfo_type;
20463 unsigned int offset_size = cu->header.offset_size;
20464 const gdb_byte *opcode_definitions[256];
20465 struct cleanup *cleanup;
20466 htab_t include_hash;
20467 void **slot;
20468 struct dwarf2_section_info *section;
20469 const char *section_name;
20470
20471 if (cu->dwo_unit != NULL)
20472 {
20473 if (section_is_gnu)
20474 {
20475 section = &cu->dwo_unit->dwo_file->sections.macro;
20476 section_name = ".debug_macro.dwo";
20477 }
20478 else
20479 {
20480 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20481 section_name = ".debug_macinfo.dwo";
20482 }
20483 }
20484 else
20485 {
20486 if (section_is_gnu)
20487 {
20488 section = &dwarf2_per_objfile->macro;
20489 section_name = ".debug_macro";
20490 }
20491 else
20492 {
20493 section = &dwarf2_per_objfile->macinfo;
20494 section_name = ".debug_macinfo";
20495 }
20496 }
20497
20498 dwarf2_read_section (objfile, section);
20499 if (section->buffer == NULL)
20500 {
20501 complaint (&symfile_complaints, _("missing %s section"), section_name);
20502 return;
20503 }
20504 abfd = get_section_bfd_owner (section);
20505
20506 /* First pass: Find the name of the base filename.
20507 This filename is needed in order to process all macros whose definition
20508 (or undefinition) comes from the command line. These macros are defined
20509 before the first DW_MACINFO_start_file entry, and yet still need to be
20510 associated to the base file.
20511
20512 To determine the base file name, we scan the macro definitions until we
20513 reach the first DW_MACINFO_start_file entry. We then initialize
20514 CURRENT_FILE accordingly so that any macro definition found before the
20515 first DW_MACINFO_start_file can still be associated to the base file. */
20516
20517 mac_ptr = section->buffer + offset;
20518 mac_end = section->buffer + section->size;
20519
20520 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20521 &offset_size, section_is_gnu);
20522 if (mac_ptr == NULL)
20523 {
20524 /* We already issued a complaint. */
20525 return;
20526 }
20527
20528 do
20529 {
20530 /* Do we at least have room for a macinfo type byte? */
20531 if (mac_ptr >= mac_end)
20532 {
20533 /* Complaint is printed during the second pass as GDB will probably
20534 stop the first pass earlier upon finding
20535 DW_MACINFO_start_file. */
20536 break;
20537 }
20538
20539 macinfo_type = read_1_byte (abfd, mac_ptr);
20540 mac_ptr++;
20541
20542 /* Note that we rely on the fact that the corresponding GNU and
20543 DWARF constants are the same. */
20544 switch (macinfo_type)
20545 {
20546 /* A zero macinfo type indicates the end of the macro
20547 information. */
20548 case 0:
20549 break;
20550
20551 case DW_MACRO_GNU_define:
20552 case DW_MACRO_GNU_undef:
20553 /* Only skip the data by MAC_PTR. */
20554 {
20555 unsigned int bytes_read;
20556
20557 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20558 mac_ptr += bytes_read;
20559 read_direct_string (abfd, mac_ptr, &bytes_read);
20560 mac_ptr += bytes_read;
20561 }
20562 break;
20563
20564 case DW_MACRO_GNU_start_file:
20565 {
20566 unsigned int bytes_read;
20567 int line, file;
20568
20569 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20570 mac_ptr += bytes_read;
20571 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20572 mac_ptr += bytes_read;
20573
20574 current_file = macro_start_file (file, line, current_file,
20575 comp_dir, lh, objfile);
20576 }
20577 break;
20578
20579 case DW_MACRO_GNU_end_file:
20580 /* No data to skip by MAC_PTR. */
20581 break;
20582
20583 case DW_MACRO_GNU_define_indirect:
20584 case DW_MACRO_GNU_undef_indirect:
20585 case DW_MACRO_GNU_define_indirect_alt:
20586 case DW_MACRO_GNU_undef_indirect_alt:
20587 {
20588 unsigned int bytes_read;
20589
20590 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20591 mac_ptr += bytes_read;
20592 mac_ptr += offset_size;
20593 }
20594 break;
20595
20596 case DW_MACRO_GNU_transparent_include:
20597 case DW_MACRO_GNU_transparent_include_alt:
20598 /* Note that, according to the spec, a transparent include
20599 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20600 skip this opcode. */
20601 mac_ptr += offset_size;
20602 break;
20603
20604 case DW_MACINFO_vendor_ext:
20605 /* Only skip the data by MAC_PTR. */
20606 if (!section_is_gnu)
20607 {
20608 unsigned int bytes_read;
20609
20610 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20611 mac_ptr += bytes_read;
20612 read_direct_string (abfd, mac_ptr, &bytes_read);
20613 mac_ptr += bytes_read;
20614 }
20615 /* FALLTHROUGH */
20616
20617 default:
20618 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20619 mac_ptr, mac_end, abfd, offset_size,
20620 section);
20621 if (mac_ptr == NULL)
20622 return;
20623 break;
20624 }
20625 } while (macinfo_type != 0 && current_file == NULL);
20626
20627 /* Second pass: Process all entries.
20628
20629 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20630 command-line macro definitions/undefinitions. This flag is unset when we
20631 reach the first DW_MACINFO_start_file entry. */
20632
20633 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20634 NULL, xcalloc, xfree);
20635 cleanup = make_cleanup_htab_delete (include_hash);
20636 mac_ptr = section->buffer + offset;
20637 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20638 *slot = (void *) mac_ptr;
20639 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20640 current_file, lh, comp_dir, section,
20641 section_is_gnu, 0,
20642 offset_size, objfile, include_hash);
20643 do_cleanups (cleanup);
20644 }
20645
20646 /* Check if the attribute's form is a DW_FORM_block*
20647 if so return true else false. */
20648
20649 static int
20650 attr_form_is_block (const struct attribute *attr)
20651 {
20652 return (attr == NULL ? 0 :
20653 attr->form == DW_FORM_block1
20654 || attr->form == DW_FORM_block2
20655 || attr->form == DW_FORM_block4
20656 || attr->form == DW_FORM_block
20657 || attr->form == DW_FORM_exprloc);
20658 }
20659
20660 /* Return non-zero if ATTR's value is a section offset --- classes
20661 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20662 You may use DW_UNSND (attr) to retrieve such offsets.
20663
20664 Section 7.5.4, "Attribute Encodings", explains that no attribute
20665 may have a value that belongs to more than one of these classes; it
20666 would be ambiguous if we did, because we use the same forms for all
20667 of them. */
20668
20669 static int
20670 attr_form_is_section_offset (const struct attribute *attr)
20671 {
20672 return (attr->form == DW_FORM_data4
20673 || attr->form == DW_FORM_data8
20674 || attr->form == DW_FORM_sec_offset);
20675 }
20676
20677 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20678 zero otherwise. When this function returns true, you can apply
20679 dwarf2_get_attr_constant_value to it.
20680
20681 However, note that for some attributes you must check
20682 attr_form_is_section_offset before using this test. DW_FORM_data4
20683 and DW_FORM_data8 are members of both the constant class, and of
20684 the classes that contain offsets into other debug sections
20685 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20686 that, if an attribute's can be either a constant or one of the
20687 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20688 taken as section offsets, not constants. */
20689
20690 static int
20691 attr_form_is_constant (const struct attribute *attr)
20692 {
20693 switch (attr->form)
20694 {
20695 case DW_FORM_sdata:
20696 case DW_FORM_udata:
20697 case DW_FORM_data1:
20698 case DW_FORM_data2:
20699 case DW_FORM_data4:
20700 case DW_FORM_data8:
20701 return 1;
20702 default:
20703 return 0;
20704 }
20705 }
20706
20707
20708 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20709 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20710
20711 static int
20712 attr_form_is_ref (const struct attribute *attr)
20713 {
20714 switch (attr->form)
20715 {
20716 case DW_FORM_ref_addr:
20717 case DW_FORM_ref1:
20718 case DW_FORM_ref2:
20719 case DW_FORM_ref4:
20720 case DW_FORM_ref8:
20721 case DW_FORM_ref_udata:
20722 case DW_FORM_GNU_ref_alt:
20723 return 1;
20724 default:
20725 return 0;
20726 }
20727 }
20728
20729 /* Return the .debug_loc section to use for CU.
20730 For DWO files use .debug_loc.dwo. */
20731
20732 static struct dwarf2_section_info *
20733 cu_debug_loc_section (struct dwarf2_cu *cu)
20734 {
20735 if (cu->dwo_unit)
20736 return &cu->dwo_unit->dwo_file->sections.loc;
20737 return &dwarf2_per_objfile->loc;
20738 }
20739
20740 /* A helper function that fills in a dwarf2_loclist_baton. */
20741
20742 static void
20743 fill_in_loclist_baton (struct dwarf2_cu *cu,
20744 struct dwarf2_loclist_baton *baton,
20745 const struct attribute *attr)
20746 {
20747 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20748
20749 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20750
20751 baton->per_cu = cu->per_cu;
20752 gdb_assert (baton->per_cu);
20753 /* We don't know how long the location list is, but make sure we
20754 don't run off the edge of the section. */
20755 baton->size = section->size - DW_UNSND (attr);
20756 baton->data = section->buffer + DW_UNSND (attr);
20757 baton->base_address = cu->base_address;
20758 baton->from_dwo = cu->dwo_unit != NULL;
20759 }
20760
20761 static void
20762 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
20763 struct dwarf2_cu *cu, int is_block)
20764 {
20765 struct objfile *objfile = dwarf2_per_objfile->objfile;
20766 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20767
20768 if (attr_form_is_section_offset (attr)
20769 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
20770 the section. If so, fall through to the complaint in the
20771 other branch. */
20772 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
20773 {
20774 struct dwarf2_loclist_baton *baton;
20775
20776 baton = obstack_alloc (&objfile->objfile_obstack,
20777 sizeof (struct dwarf2_loclist_baton));
20778
20779 fill_in_loclist_baton (cu, baton, attr);
20780
20781 if (cu->base_known == 0)
20782 complaint (&symfile_complaints,
20783 _("Location list used without "
20784 "specifying the CU base address."));
20785
20786 SYMBOL_ACLASS_INDEX (sym) = (is_block
20787 ? dwarf2_loclist_block_index
20788 : dwarf2_loclist_index);
20789 SYMBOL_LOCATION_BATON (sym) = baton;
20790 }
20791 else
20792 {
20793 struct dwarf2_locexpr_baton *baton;
20794
20795 baton = obstack_alloc (&objfile->objfile_obstack,
20796 sizeof (struct dwarf2_locexpr_baton));
20797 baton->per_cu = cu->per_cu;
20798 gdb_assert (baton->per_cu);
20799
20800 if (attr_form_is_block (attr))
20801 {
20802 /* Note that we're just copying the block's data pointer
20803 here, not the actual data. We're still pointing into the
20804 info_buffer for SYM's objfile; right now we never release
20805 that buffer, but when we do clean up properly this may
20806 need to change. */
20807 baton->size = DW_BLOCK (attr)->size;
20808 baton->data = DW_BLOCK (attr)->data;
20809 }
20810 else
20811 {
20812 dwarf2_invalid_attrib_class_complaint ("location description",
20813 SYMBOL_NATURAL_NAME (sym));
20814 baton->size = 0;
20815 }
20816
20817 SYMBOL_ACLASS_INDEX (sym) = (is_block
20818 ? dwarf2_locexpr_block_index
20819 : dwarf2_locexpr_index);
20820 SYMBOL_LOCATION_BATON (sym) = baton;
20821 }
20822 }
20823
20824 /* Return the OBJFILE associated with the compilation unit CU. If CU
20825 came from a separate debuginfo file, then the master objfile is
20826 returned. */
20827
20828 struct objfile *
20829 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20830 {
20831 struct objfile *objfile = per_cu->objfile;
20832
20833 /* Return the master objfile, so that we can report and look up the
20834 correct file containing this variable. */
20835 if (objfile->separate_debug_objfile_backlink)
20836 objfile = objfile->separate_debug_objfile_backlink;
20837
20838 return objfile;
20839 }
20840
20841 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20842 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20843 CU_HEADERP first. */
20844
20845 static const struct comp_unit_head *
20846 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20847 struct dwarf2_per_cu_data *per_cu)
20848 {
20849 const gdb_byte *info_ptr;
20850
20851 if (per_cu->cu)
20852 return &per_cu->cu->header;
20853
20854 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20855
20856 memset (cu_headerp, 0, sizeof (*cu_headerp));
20857 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20858
20859 return cu_headerp;
20860 }
20861
20862 /* Return the address size given in the compilation unit header for CU. */
20863
20864 int
20865 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20866 {
20867 struct comp_unit_head cu_header_local;
20868 const struct comp_unit_head *cu_headerp;
20869
20870 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20871
20872 return cu_headerp->addr_size;
20873 }
20874
20875 /* Return the offset size given in the compilation unit header for CU. */
20876
20877 int
20878 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20879 {
20880 struct comp_unit_head cu_header_local;
20881 const struct comp_unit_head *cu_headerp;
20882
20883 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20884
20885 return cu_headerp->offset_size;
20886 }
20887
20888 /* See its dwarf2loc.h declaration. */
20889
20890 int
20891 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20892 {
20893 struct comp_unit_head cu_header_local;
20894 const struct comp_unit_head *cu_headerp;
20895
20896 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20897
20898 if (cu_headerp->version == 2)
20899 return cu_headerp->addr_size;
20900 else
20901 return cu_headerp->offset_size;
20902 }
20903
20904 /* Return the text offset of the CU. The returned offset comes from
20905 this CU's objfile. If this objfile came from a separate debuginfo
20906 file, then the offset may be different from the corresponding
20907 offset in the parent objfile. */
20908
20909 CORE_ADDR
20910 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20911 {
20912 struct objfile *objfile = per_cu->objfile;
20913
20914 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20915 }
20916
20917 /* Locate the .debug_info compilation unit from CU's objfile which contains
20918 the DIE at OFFSET. Raises an error on failure. */
20919
20920 static struct dwarf2_per_cu_data *
20921 dwarf2_find_containing_comp_unit (sect_offset offset,
20922 unsigned int offset_in_dwz,
20923 struct objfile *objfile)
20924 {
20925 struct dwarf2_per_cu_data *this_cu;
20926 int low, high;
20927 const sect_offset *cu_off;
20928
20929 low = 0;
20930 high = dwarf2_per_objfile->n_comp_units - 1;
20931 while (high > low)
20932 {
20933 struct dwarf2_per_cu_data *mid_cu;
20934 int mid = low + (high - low) / 2;
20935
20936 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20937 cu_off = &mid_cu->offset;
20938 if (mid_cu->is_dwz > offset_in_dwz
20939 || (mid_cu->is_dwz == offset_in_dwz
20940 && cu_off->sect_off >= offset.sect_off))
20941 high = mid;
20942 else
20943 low = mid + 1;
20944 }
20945 gdb_assert (low == high);
20946 this_cu = dwarf2_per_objfile->all_comp_units[low];
20947 cu_off = &this_cu->offset;
20948 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20949 {
20950 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20951 error (_("Dwarf Error: could not find partial DIE containing "
20952 "offset 0x%lx [in module %s]"),
20953 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20954
20955 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20956 <= offset.sect_off);
20957 return dwarf2_per_objfile->all_comp_units[low-1];
20958 }
20959 else
20960 {
20961 this_cu = dwarf2_per_objfile->all_comp_units[low];
20962 if (low == dwarf2_per_objfile->n_comp_units - 1
20963 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20964 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20965 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20966 return this_cu;
20967 }
20968 }
20969
20970 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20971
20972 static void
20973 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20974 {
20975 memset (cu, 0, sizeof (*cu));
20976 per_cu->cu = cu;
20977 cu->per_cu = per_cu;
20978 cu->objfile = per_cu->objfile;
20979 obstack_init (&cu->comp_unit_obstack);
20980 }
20981
20982 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20983
20984 static void
20985 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20986 enum language pretend_language)
20987 {
20988 struct attribute *attr;
20989
20990 /* Set the language we're debugging. */
20991 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20992 if (attr)
20993 set_cu_language (DW_UNSND (attr), cu);
20994 else
20995 {
20996 cu->language = pretend_language;
20997 cu->language_defn = language_def (cu->language);
20998 }
20999
21000 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21001 if (attr)
21002 cu->producer = DW_STRING (attr);
21003 }
21004
21005 /* Release one cached compilation unit, CU. We unlink it from the tree
21006 of compilation units, but we don't remove it from the read_in_chain;
21007 the caller is responsible for that.
21008 NOTE: DATA is a void * because this function is also used as a
21009 cleanup routine. */
21010
21011 static void
21012 free_heap_comp_unit (void *data)
21013 {
21014 struct dwarf2_cu *cu = data;
21015
21016 gdb_assert (cu->per_cu != NULL);
21017 cu->per_cu->cu = NULL;
21018 cu->per_cu = NULL;
21019
21020 obstack_free (&cu->comp_unit_obstack, NULL);
21021
21022 xfree (cu);
21023 }
21024
21025 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21026 when we're finished with it. We can't free the pointer itself, but be
21027 sure to unlink it from the cache. Also release any associated storage. */
21028
21029 static void
21030 free_stack_comp_unit (void *data)
21031 {
21032 struct dwarf2_cu *cu = data;
21033
21034 gdb_assert (cu->per_cu != NULL);
21035 cu->per_cu->cu = NULL;
21036 cu->per_cu = NULL;
21037
21038 obstack_free (&cu->comp_unit_obstack, NULL);
21039 cu->partial_dies = NULL;
21040 }
21041
21042 /* Free all cached compilation units. */
21043
21044 static void
21045 free_cached_comp_units (void *data)
21046 {
21047 struct dwarf2_per_cu_data *per_cu, **last_chain;
21048
21049 per_cu = dwarf2_per_objfile->read_in_chain;
21050 last_chain = &dwarf2_per_objfile->read_in_chain;
21051 while (per_cu != NULL)
21052 {
21053 struct dwarf2_per_cu_data *next_cu;
21054
21055 next_cu = per_cu->cu->read_in_chain;
21056
21057 free_heap_comp_unit (per_cu->cu);
21058 *last_chain = next_cu;
21059
21060 per_cu = next_cu;
21061 }
21062 }
21063
21064 /* Increase the age counter on each cached compilation unit, and free
21065 any that are too old. */
21066
21067 static void
21068 age_cached_comp_units (void)
21069 {
21070 struct dwarf2_per_cu_data *per_cu, **last_chain;
21071
21072 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21073 per_cu = dwarf2_per_objfile->read_in_chain;
21074 while (per_cu != NULL)
21075 {
21076 per_cu->cu->last_used ++;
21077 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21078 dwarf2_mark (per_cu->cu);
21079 per_cu = per_cu->cu->read_in_chain;
21080 }
21081
21082 per_cu = dwarf2_per_objfile->read_in_chain;
21083 last_chain = &dwarf2_per_objfile->read_in_chain;
21084 while (per_cu != NULL)
21085 {
21086 struct dwarf2_per_cu_data *next_cu;
21087
21088 next_cu = per_cu->cu->read_in_chain;
21089
21090 if (!per_cu->cu->mark)
21091 {
21092 free_heap_comp_unit (per_cu->cu);
21093 *last_chain = next_cu;
21094 }
21095 else
21096 last_chain = &per_cu->cu->read_in_chain;
21097
21098 per_cu = next_cu;
21099 }
21100 }
21101
21102 /* Remove a single compilation unit from the cache. */
21103
21104 static void
21105 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21106 {
21107 struct dwarf2_per_cu_data *per_cu, **last_chain;
21108
21109 per_cu = dwarf2_per_objfile->read_in_chain;
21110 last_chain = &dwarf2_per_objfile->read_in_chain;
21111 while (per_cu != NULL)
21112 {
21113 struct dwarf2_per_cu_data *next_cu;
21114
21115 next_cu = per_cu->cu->read_in_chain;
21116
21117 if (per_cu == target_per_cu)
21118 {
21119 free_heap_comp_unit (per_cu->cu);
21120 per_cu->cu = NULL;
21121 *last_chain = next_cu;
21122 break;
21123 }
21124 else
21125 last_chain = &per_cu->cu->read_in_chain;
21126
21127 per_cu = next_cu;
21128 }
21129 }
21130
21131 /* Release all extra memory associated with OBJFILE. */
21132
21133 void
21134 dwarf2_free_objfile (struct objfile *objfile)
21135 {
21136 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21137
21138 if (dwarf2_per_objfile == NULL)
21139 return;
21140
21141 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21142 free_cached_comp_units (NULL);
21143
21144 if (dwarf2_per_objfile->quick_file_names_table)
21145 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21146
21147 /* Everything else should be on the objfile obstack. */
21148 }
21149
21150 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21151 We store these in a hash table separate from the DIEs, and preserve them
21152 when the DIEs are flushed out of cache.
21153
21154 The CU "per_cu" pointer is needed because offset alone is not enough to
21155 uniquely identify the type. A file may have multiple .debug_types sections,
21156 or the type may come from a DWO file. Furthermore, while it's more logical
21157 to use per_cu->section+offset, with Fission the section with the data is in
21158 the DWO file but we don't know that section at the point we need it.
21159 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21160 because we can enter the lookup routine, get_die_type_at_offset, from
21161 outside this file, and thus won't necessarily have PER_CU->cu.
21162 Fortunately, PER_CU is stable for the life of the objfile. */
21163
21164 struct dwarf2_per_cu_offset_and_type
21165 {
21166 const struct dwarf2_per_cu_data *per_cu;
21167 sect_offset offset;
21168 struct type *type;
21169 };
21170
21171 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21172
21173 static hashval_t
21174 per_cu_offset_and_type_hash (const void *item)
21175 {
21176 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21177
21178 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21179 }
21180
21181 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21182
21183 static int
21184 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21185 {
21186 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21187 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21188
21189 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21190 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21191 }
21192
21193 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21194 table if necessary. For convenience, return TYPE.
21195
21196 The DIEs reading must have careful ordering to:
21197 * Not cause infite loops trying to read in DIEs as a prerequisite for
21198 reading current DIE.
21199 * Not trying to dereference contents of still incompletely read in types
21200 while reading in other DIEs.
21201 * Enable referencing still incompletely read in types just by a pointer to
21202 the type without accessing its fields.
21203
21204 Therefore caller should follow these rules:
21205 * Try to fetch any prerequisite types we may need to build this DIE type
21206 before building the type and calling set_die_type.
21207 * After building type call set_die_type for current DIE as soon as
21208 possible before fetching more types to complete the current type.
21209 * Make the type as complete as possible before fetching more types. */
21210
21211 static struct type *
21212 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21213 {
21214 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21215 struct objfile *objfile = cu->objfile;
21216
21217 /* For Ada types, make sure that the gnat-specific data is always
21218 initialized (if not already set). There are a few types where
21219 we should not be doing so, because the type-specific area is
21220 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21221 where the type-specific area is used to store the floatformat).
21222 But this is not a problem, because the gnat-specific information
21223 is actually not needed for these types. */
21224 if (need_gnat_info (cu)
21225 && TYPE_CODE (type) != TYPE_CODE_FUNC
21226 && TYPE_CODE (type) != TYPE_CODE_FLT
21227 && !HAVE_GNAT_AUX_INFO (type))
21228 INIT_GNAT_SPECIFIC (type);
21229
21230 if (dwarf2_per_objfile->die_type_hash == NULL)
21231 {
21232 dwarf2_per_objfile->die_type_hash =
21233 htab_create_alloc_ex (127,
21234 per_cu_offset_and_type_hash,
21235 per_cu_offset_and_type_eq,
21236 NULL,
21237 &objfile->objfile_obstack,
21238 hashtab_obstack_allocate,
21239 dummy_obstack_deallocate);
21240 }
21241
21242 ofs.per_cu = cu->per_cu;
21243 ofs.offset = die->offset;
21244 ofs.type = type;
21245 slot = (struct dwarf2_per_cu_offset_and_type **)
21246 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21247 if (*slot)
21248 complaint (&symfile_complaints,
21249 _("A problem internal to GDB: DIE 0x%x has type already set"),
21250 die->offset.sect_off);
21251 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21252 **slot = ofs;
21253 return type;
21254 }
21255
21256 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21257 or return NULL if the die does not have a saved type. */
21258
21259 static struct type *
21260 get_die_type_at_offset (sect_offset offset,
21261 struct dwarf2_per_cu_data *per_cu)
21262 {
21263 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21264
21265 if (dwarf2_per_objfile->die_type_hash == NULL)
21266 return NULL;
21267
21268 ofs.per_cu = per_cu;
21269 ofs.offset = offset;
21270 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21271 if (slot)
21272 return slot->type;
21273 else
21274 return NULL;
21275 }
21276
21277 /* Look up the type for DIE in CU in die_type_hash,
21278 or return NULL if DIE does not have a saved type. */
21279
21280 static struct type *
21281 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21282 {
21283 return get_die_type_at_offset (die->offset, cu->per_cu);
21284 }
21285
21286 /* Add a dependence relationship from CU to REF_PER_CU. */
21287
21288 static void
21289 dwarf2_add_dependence (struct dwarf2_cu *cu,
21290 struct dwarf2_per_cu_data *ref_per_cu)
21291 {
21292 void **slot;
21293
21294 if (cu->dependencies == NULL)
21295 cu->dependencies
21296 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21297 NULL, &cu->comp_unit_obstack,
21298 hashtab_obstack_allocate,
21299 dummy_obstack_deallocate);
21300
21301 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21302 if (*slot == NULL)
21303 *slot = ref_per_cu;
21304 }
21305
21306 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21307 Set the mark field in every compilation unit in the
21308 cache that we must keep because we are keeping CU. */
21309
21310 static int
21311 dwarf2_mark_helper (void **slot, void *data)
21312 {
21313 struct dwarf2_per_cu_data *per_cu;
21314
21315 per_cu = (struct dwarf2_per_cu_data *) *slot;
21316
21317 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21318 reading of the chain. As such dependencies remain valid it is not much
21319 useful to track and undo them during QUIT cleanups. */
21320 if (per_cu->cu == NULL)
21321 return 1;
21322
21323 if (per_cu->cu->mark)
21324 return 1;
21325 per_cu->cu->mark = 1;
21326
21327 if (per_cu->cu->dependencies != NULL)
21328 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21329
21330 return 1;
21331 }
21332
21333 /* Set the mark field in CU and in every other compilation unit in the
21334 cache that we must keep because we are keeping CU. */
21335
21336 static void
21337 dwarf2_mark (struct dwarf2_cu *cu)
21338 {
21339 if (cu->mark)
21340 return;
21341 cu->mark = 1;
21342 if (cu->dependencies != NULL)
21343 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21344 }
21345
21346 static void
21347 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21348 {
21349 while (per_cu)
21350 {
21351 per_cu->cu->mark = 0;
21352 per_cu = per_cu->cu->read_in_chain;
21353 }
21354 }
21355
21356 /* Trivial hash function for partial_die_info: the hash value of a DIE
21357 is its offset in .debug_info for this objfile. */
21358
21359 static hashval_t
21360 partial_die_hash (const void *item)
21361 {
21362 const struct partial_die_info *part_die = item;
21363
21364 return part_die->offset.sect_off;
21365 }
21366
21367 /* Trivial comparison function for partial_die_info structures: two DIEs
21368 are equal if they have the same offset. */
21369
21370 static int
21371 partial_die_eq (const void *item_lhs, const void *item_rhs)
21372 {
21373 const struct partial_die_info *part_die_lhs = item_lhs;
21374 const struct partial_die_info *part_die_rhs = item_rhs;
21375
21376 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21377 }
21378
21379 static struct cmd_list_element *set_dwarf2_cmdlist;
21380 static struct cmd_list_element *show_dwarf2_cmdlist;
21381
21382 static void
21383 set_dwarf2_cmd (char *args, int from_tty)
21384 {
21385 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21386 }
21387
21388 static void
21389 show_dwarf2_cmd (char *args, int from_tty)
21390 {
21391 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21392 }
21393
21394 /* Free data associated with OBJFILE, if necessary. */
21395
21396 static void
21397 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21398 {
21399 struct dwarf2_per_objfile *data = d;
21400 int ix;
21401
21402 /* Make sure we don't accidentally use dwarf2_per_objfile while
21403 cleaning up. */
21404 dwarf2_per_objfile = NULL;
21405
21406 for (ix = 0; ix < data->n_comp_units; ++ix)
21407 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21408
21409 for (ix = 0; ix < data->n_type_units; ++ix)
21410 VEC_free (dwarf2_per_cu_ptr,
21411 data->all_type_units[ix]->per_cu.imported_symtabs);
21412 xfree (data->all_type_units);
21413
21414 VEC_free (dwarf2_section_info_def, data->types);
21415
21416 if (data->dwo_files)
21417 free_dwo_files (data->dwo_files, objfile);
21418 if (data->dwp_file)
21419 gdb_bfd_unref (data->dwp_file->dbfd);
21420
21421 if (data->dwz_file && data->dwz_file->dwz_bfd)
21422 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21423 }
21424
21425 \f
21426 /* The "save gdb-index" command. */
21427
21428 /* The contents of the hash table we create when building the string
21429 table. */
21430 struct strtab_entry
21431 {
21432 offset_type offset;
21433 const char *str;
21434 };
21435
21436 /* Hash function for a strtab_entry.
21437
21438 Function is used only during write_hash_table so no index format backward
21439 compatibility is needed. */
21440
21441 static hashval_t
21442 hash_strtab_entry (const void *e)
21443 {
21444 const struct strtab_entry *entry = e;
21445 return mapped_index_string_hash (INT_MAX, entry->str);
21446 }
21447
21448 /* Equality function for a strtab_entry. */
21449
21450 static int
21451 eq_strtab_entry (const void *a, const void *b)
21452 {
21453 const struct strtab_entry *ea = a;
21454 const struct strtab_entry *eb = b;
21455 return !strcmp (ea->str, eb->str);
21456 }
21457
21458 /* Create a strtab_entry hash table. */
21459
21460 static htab_t
21461 create_strtab (void)
21462 {
21463 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21464 xfree, xcalloc, xfree);
21465 }
21466
21467 /* Add a string to the constant pool. Return the string's offset in
21468 host order. */
21469
21470 static offset_type
21471 add_string (htab_t table, struct obstack *cpool, const char *str)
21472 {
21473 void **slot;
21474 struct strtab_entry entry;
21475 struct strtab_entry *result;
21476
21477 entry.str = str;
21478 slot = htab_find_slot (table, &entry, INSERT);
21479 if (*slot)
21480 result = *slot;
21481 else
21482 {
21483 result = XNEW (struct strtab_entry);
21484 result->offset = obstack_object_size (cpool);
21485 result->str = str;
21486 obstack_grow_str0 (cpool, str);
21487 *slot = result;
21488 }
21489 return result->offset;
21490 }
21491
21492 /* An entry in the symbol table. */
21493 struct symtab_index_entry
21494 {
21495 /* The name of the symbol. */
21496 const char *name;
21497 /* The offset of the name in the constant pool. */
21498 offset_type index_offset;
21499 /* A sorted vector of the indices of all the CUs that hold an object
21500 of this name. */
21501 VEC (offset_type) *cu_indices;
21502 };
21503
21504 /* The symbol table. This is a power-of-2-sized hash table. */
21505 struct mapped_symtab
21506 {
21507 offset_type n_elements;
21508 offset_type size;
21509 struct symtab_index_entry **data;
21510 };
21511
21512 /* Hash function for a symtab_index_entry. */
21513
21514 static hashval_t
21515 hash_symtab_entry (const void *e)
21516 {
21517 const struct symtab_index_entry *entry = e;
21518 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21519 sizeof (offset_type) * VEC_length (offset_type,
21520 entry->cu_indices),
21521 0);
21522 }
21523
21524 /* Equality function for a symtab_index_entry. */
21525
21526 static int
21527 eq_symtab_entry (const void *a, const void *b)
21528 {
21529 const struct symtab_index_entry *ea = a;
21530 const struct symtab_index_entry *eb = b;
21531 int len = VEC_length (offset_type, ea->cu_indices);
21532 if (len != VEC_length (offset_type, eb->cu_indices))
21533 return 0;
21534 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21535 VEC_address (offset_type, eb->cu_indices),
21536 sizeof (offset_type) * len);
21537 }
21538
21539 /* Destroy a symtab_index_entry. */
21540
21541 static void
21542 delete_symtab_entry (void *p)
21543 {
21544 struct symtab_index_entry *entry = p;
21545 VEC_free (offset_type, entry->cu_indices);
21546 xfree (entry);
21547 }
21548
21549 /* Create a hash table holding symtab_index_entry objects. */
21550
21551 static htab_t
21552 create_symbol_hash_table (void)
21553 {
21554 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21555 delete_symtab_entry, xcalloc, xfree);
21556 }
21557
21558 /* Create a new mapped symtab object. */
21559
21560 static struct mapped_symtab *
21561 create_mapped_symtab (void)
21562 {
21563 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21564 symtab->n_elements = 0;
21565 symtab->size = 1024;
21566 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21567 return symtab;
21568 }
21569
21570 /* Destroy a mapped_symtab. */
21571
21572 static void
21573 cleanup_mapped_symtab (void *p)
21574 {
21575 struct mapped_symtab *symtab = p;
21576 /* The contents of the array are freed when the other hash table is
21577 destroyed. */
21578 xfree (symtab->data);
21579 xfree (symtab);
21580 }
21581
21582 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21583 the slot.
21584
21585 Function is used only during write_hash_table so no index format backward
21586 compatibility is needed. */
21587
21588 static struct symtab_index_entry **
21589 find_slot (struct mapped_symtab *symtab, const char *name)
21590 {
21591 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21592
21593 index = hash & (symtab->size - 1);
21594 step = ((hash * 17) & (symtab->size - 1)) | 1;
21595
21596 for (;;)
21597 {
21598 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21599 return &symtab->data[index];
21600 index = (index + step) & (symtab->size - 1);
21601 }
21602 }
21603
21604 /* Expand SYMTAB's hash table. */
21605
21606 static void
21607 hash_expand (struct mapped_symtab *symtab)
21608 {
21609 offset_type old_size = symtab->size;
21610 offset_type i;
21611 struct symtab_index_entry **old_entries = symtab->data;
21612
21613 symtab->size *= 2;
21614 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21615
21616 for (i = 0; i < old_size; ++i)
21617 {
21618 if (old_entries[i])
21619 {
21620 struct symtab_index_entry **slot = find_slot (symtab,
21621 old_entries[i]->name);
21622 *slot = old_entries[i];
21623 }
21624 }
21625
21626 xfree (old_entries);
21627 }
21628
21629 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21630 CU_INDEX is the index of the CU in which the symbol appears.
21631 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21632
21633 static void
21634 add_index_entry (struct mapped_symtab *symtab, const char *name,
21635 int is_static, gdb_index_symbol_kind kind,
21636 offset_type cu_index)
21637 {
21638 struct symtab_index_entry **slot;
21639 offset_type cu_index_and_attrs;
21640
21641 ++symtab->n_elements;
21642 if (4 * symtab->n_elements / 3 >= symtab->size)
21643 hash_expand (symtab);
21644
21645 slot = find_slot (symtab, name);
21646 if (!*slot)
21647 {
21648 *slot = XNEW (struct symtab_index_entry);
21649 (*slot)->name = name;
21650 /* index_offset is set later. */
21651 (*slot)->cu_indices = NULL;
21652 }
21653
21654 cu_index_and_attrs = 0;
21655 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21656 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21657 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21658
21659 /* We don't want to record an index value twice as we want to avoid the
21660 duplication.
21661 We process all global symbols and then all static symbols
21662 (which would allow us to avoid the duplication by only having to check
21663 the last entry pushed), but a symbol could have multiple kinds in one CU.
21664 To keep things simple we don't worry about the duplication here and
21665 sort and uniqufy the list after we've processed all symbols. */
21666 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21667 }
21668
21669 /* qsort helper routine for uniquify_cu_indices. */
21670
21671 static int
21672 offset_type_compare (const void *ap, const void *bp)
21673 {
21674 offset_type a = *(offset_type *) ap;
21675 offset_type b = *(offset_type *) bp;
21676
21677 return (a > b) - (b > a);
21678 }
21679
21680 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21681
21682 static void
21683 uniquify_cu_indices (struct mapped_symtab *symtab)
21684 {
21685 int i;
21686
21687 for (i = 0; i < symtab->size; ++i)
21688 {
21689 struct symtab_index_entry *entry = symtab->data[i];
21690
21691 if (entry
21692 && entry->cu_indices != NULL)
21693 {
21694 unsigned int next_to_insert, next_to_check;
21695 offset_type last_value;
21696
21697 qsort (VEC_address (offset_type, entry->cu_indices),
21698 VEC_length (offset_type, entry->cu_indices),
21699 sizeof (offset_type), offset_type_compare);
21700
21701 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21702 next_to_insert = 1;
21703 for (next_to_check = 1;
21704 next_to_check < VEC_length (offset_type, entry->cu_indices);
21705 ++next_to_check)
21706 {
21707 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21708 != last_value)
21709 {
21710 last_value = VEC_index (offset_type, entry->cu_indices,
21711 next_to_check);
21712 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21713 last_value);
21714 ++next_to_insert;
21715 }
21716 }
21717 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21718 }
21719 }
21720 }
21721
21722 /* Add a vector of indices to the constant pool. */
21723
21724 static offset_type
21725 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21726 struct symtab_index_entry *entry)
21727 {
21728 void **slot;
21729
21730 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21731 if (!*slot)
21732 {
21733 offset_type len = VEC_length (offset_type, entry->cu_indices);
21734 offset_type val = MAYBE_SWAP (len);
21735 offset_type iter;
21736 int i;
21737
21738 *slot = entry;
21739 entry->index_offset = obstack_object_size (cpool);
21740
21741 obstack_grow (cpool, &val, sizeof (val));
21742 for (i = 0;
21743 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21744 ++i)
21745 {
21746 val = MAYBE_SWAP (iter);
21747 obstack_grow (cpool, &val, sizeof (val));
21748 }
21749 }
21750 else
21751 {
21752 struct symtab_index_entry *old_entry = *slot;
21753 entry->index_offset = old_entry->index_offset;
21754 entry = old_entry;
21755 }
21756 return entry->index_offset;
21757 }
21758
21759 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21760 constant pool entries going into the obstack CPOOL. */
21761
21762 static void
21763 write_hash_table (struct mapped_symtab *symtab,
21764 struct obstack *output, struct obstack *cpool)
21765 {
21766 offset_type i;
21767 htab_t symbol_hash_table;
21768 htab_t str_table;
21769
21770 symbol_hash_table = create_symbol_hash_table ();
21771 str_table = create_strtab ();
21772
21773 /* We add all the index vectors to the constant pool first, to
21774 ensure alignment is ok. */
21775 for (i = 0; i < symtab->size; ++i)
21776 {
21777 if (symtab->data[i])
21778 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21779 }
21780
21781 /* Now write out the hash table. */
21782 for (i = 0; i < symtab->size; ++i)
21783 {
21784 offset_type str_off, vec_off;
21785
21786 if (symtab->data[i])
21787 {
21788 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21789 vec_off = symtab->data[i]->index_offset;
21790 }
21791 else
21792 {
21793 /* While 0 is a valid constant pool index, it is not valid
21794 to have 0 for both offsets. */
21795 str_off = 0;
21796 vec_off = 0;
21797 }
21798
21799 str_off = MAYBE_SWAP (str_off);
21800 vec_off = MAYBE_SWAP (vec_off);
21801
21802 obstack_grow (output, &str_off, sizeof (str_off));
21803 obstack_grow (output, &vec_off, sizeof (vec_off));
21804 }
21805
21806 htab_delete (str_table);
21807 htab_delete (symbol_hash_table);
21808 }
21809
21810 /* Struct to map psymtab to CU index in the index file. */
21811 struct psymtab_cu_index_map
21812 {
21813 struct partial_symtab *psymtab;
21814 unsigned int cu_index;
21815 };
21816
21817 static hashval_t
21818 hash_psymtab_cu_index (const void *item)
21819 {
21820 const struct psymtab_cu_index_map *map = item;
21821
21822 return htab_hash_pointer (map->psymtab);
21823 }
21824
21825 static int
21826 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21827 {
21828 const struct psymtab_cu_index_map *lhs = item_lhs;
21829 const struct psymtab_cu_index_map *rhs = item_rhs;
21830
21831 return lhs->psymtab == rhs->psymtab;
21832 }
21833
21834 /* Helper struct for building the address table. */
21835 struct addrmap_index_data
21836 {
21837 struct objfile *objfile;
21838 struct obstack *addr_obstack;
21839 htab_t cu_index_htab;
21840
21841 /* Non-zero if the previous_* fields are valid.
21842 We can't write an entry until we see the next entry (since it is only then
21843 that we know the end of the entry). */
21844 int previous_valid;
21845 /* Index of the CU in the table of all CUs in the index file. */
21846 unsigned int previous_cu_index;
21847 /* Start address of the CU. */
21848 CORE_ADDR previous_cu_start;
21849 };
21850
21851 /* Write an address entry to OBSTACK. */
21852
21853 static void
21854 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21855 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21856 {
21857 offset_type cu_index_to_write;
21858 gdb_byte addr[8];
21859 CORE_ADDR baseaddr;
21860
21861 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21862
21863 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21864 obstack_grow (obstack, addr, 8);
21865 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21866 obstack_grow (obstack, addr, 8);
21867 cu_index_to_write = MAYBE_SWAP (cu_index);
21868 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21869 }
21870
21871 /* Worker function for traversing an addrmap to build the address table. */
21872
21873 static int
21874 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21875 {
21876 struct addrmap_index_data *data = datap;
21877 struct partial_symtab *pst = obj;
21878
21879 if (data->previous_valid)
21880 add_address_entry (data->objfile, data->addr_obstack,
21881 data->previous_cu_start, start_addr,
21882 data->previous_cu_index);
21883
21884 data->previous_cu_start = start_addr;
21885 if (pst != NULL)
21886 {
21887 struct psymtab_cu_index_map find_map, *map;
21888 find_map.psymtab = pst;
21889 map = htab_find (data->cu_index_htab, &find_map);
21890 gdb_assert (map != NULL);
21891 data->previous_cu_index = map->cu_index;
21892 data->previous_valid = 1;
21893 }
21894 else
21895 data->previous_valid = 0;
21896
21897 return 0;
21898 }
21899
21900 /* Write OBJFILE's address map to OBSTACK.
21901 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21902 in the index file. */
21903
21904 static void
21905 write_address_map (struct objfile *objfile, struct obstack *obstack,
21906 htab_t cu_index_htab)
21907 {
21908 struct addrmap_index_data addrmap_index_data;
21909
21910 /* When writing the address table, we have to cope with the fact that
21911 the addrmap iterator only provides the start of a region; we have to
21912 wait until the next invocation to get the start of the next region. */
21913
21914 addrmap_index_data.objfile = objfile;
21915 addrmap_index_data.addr_obstack = obstack;
21916 addrmap_index_data.cu_index_htab = cu_index_htab;
21917 addrmap_index_data.previous_valid = 0;
21918
21919 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21920 &addrmap_index_data);
21921
21922 /* It's highly unlikely the last entry (end address = 0xff...ff)
21923 is valid, but we should still handle it.
21924 The end address is recorded as the start of the next region, but that
21925 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21926 anyway. */
21927 if (addrmap_index_data.previous_valid)
21928 add_address_entry (objfile, obstack,
21929 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21930 addrmap_index_data.previous_cu_index);
21931 }
21932
21933 /* Return the symbol kind of PSYM. */
21934
21935 static gdb_index_symbol_kind
21936 symbol_kind (struct partial_symbol *psym)
21937 {
21938 domain_enum domain = PSYMBOL_DOMAIN (psym);
21939 enum address_class aclass = PSYMBOL_CLASS (psym);
21940
21941 switch (domain)
21942 {
21943 case VAR_DOMAIN:
21944 switch (aclass)
21945 {
21946 case LOC_BLOCK:
21947 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21948 case LOC_TYPEDEF:
21949 return GDB_INDEX_SYMBOL_KIND_TYPE;
21950 case LOC_COMPUTED:
21951 case LOC_CONST_BYTES:
21952 case LOC_OPTIMIZED_OUT:
21953 case LOC_STATIC:
21954 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21955 case LOC_CONST:
21956 /* Note: It's currently impossible to recognize psyms as enum values
21957 short of reading the type info. For now punt. */
21958 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21959 default:
21960 /* There are other LOC_FOO values that one might want to classify
21961 as variables, but dwarf2read.c doesn't currently use them. */
21962 return GDB_INDEX_SYMBOL_KIND_OTHER;
21963 }
21964 case STRUCT_DOMAIN:
21965 return GDB_INDEX_SYMBOL_KIND_TYPE;
21966 default:
21967 return GDB_INDEX_SYMBOL_KIND_OTHER;
21968 }
21969 }
21970
21971 /* Add a list of partial symbols to SYMTAB. */
21972
21973 static void
21974 write_psymbols (struct mapped_symtab *symtab,
21975 htab_t psyms_seen,
21976 struct partial_symbol **psymp,
21977 int count,
21978 offset_type cu_index,
21979 int is_static)
21980 {
21981 for (; count-- > 0; ++psymp)
21982 {
21983 struct partial_symbol *psym = *psymp;
21984 void **slot;
21985
21986 if (SYMBOL_LANGUAGE (psym) == language_ada)
21987 error (_("Ada is not currently supported by the index"));
21988
21989 /* Only add a given psymbol once. */
21990 slot = htab_find_slot (psyms_seen, psym, INSERT);
21991 if (!*slot)
21992 {
21993 gdb_index_symbol_kind kind = symbol_kind (psym);
21994
21995 *slot = psym;
21996 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21997 is_static, kind, cu_index);
21998 }
21999 }
22000 }
22001
22002 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22003 exception if there is an error. */
22004
22005 static void
22006 write_obstack (FILE *file, struct obstack *obstack)
22007 {
22008 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22009 file)
22010 != obstack_object_size (obstack))
22011 error (_("couldn't data write to file"));
22012 }
22013
22014 /* Unlink a file if the argument is not NULL. */
22015
22016 static void
22017 unlink_if_set (void *p)
22018 {
22019 char **filename = p;
22020 if (*filename)
22021 unlink (*filename);
22022 }
22023
22024 /* A helper struct used when iterating over debug_types. */
22025 struct signatured_type_index_data
22026 {
22027 struct objfile *objfile;
22028 struct mapped_symtab *symtab;
22029 struct obstack *types_list;
22030 htab_t psyms_seen;
22031 int cu_index;
22032 };
22033
22034 /* A helper function that writes a single signatured_type to an
22035 obstack. */
22036
22037 static int
22038 write_one_signatured_type (void **slot, void *d)
22039 {
22040 struct signatured_type_index_data *info = d;
22041 struct signatured_type *entry = (struct signatured_type *) *slot;
22042 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22043 gdb_byte val[8];
22044
22045 write_psymbols (info->symtab,
22046 info->psyms_seen,
22047 info->objfile->global_psymbols.list
22048 + psymtab->globals_offset,
22049 psymtab->n_global_syms, info->cu_index,
22050 0);
22051 write_psymbols (info->symtab,
22052 info->psyms_seen,
22053 info->objfile->static_psymbols.list
22054 + psymtab->statics_offset,
22055 psymtab->n_static_syms, info->cu_index,
22056 1);
22057
22058 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22059 entry->per_cu.offset.sect_off);
22060 obstack_grow (info->types_list, val, 8);
22061 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22062 entry->type_offset_in_tu.cu_off);
22063 obstack_grow (info->types_list, val, 8);
22064 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22065 obstack_grow (info->types_list, val, 8);
22066
22067 ++info->cu_index;
22068
22069 return 1;
22070 }
22071
22072 /* Recurse into all "included" dependencies and write their symbols as
22073 if they appeared in this psymtab. */
22074
22075 static void
22076 recursively_write_psymbols (struct objfile *objfile,
22077 struct partial_symtab *psymtab,
22078 struct mapped_symtab *symtab,
22079 htab_t psyms_seen,
22080 offset_type cu_index)
22081 {
22082 int i;
22083
22084 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22085 if (psymtab->dependencies[i]->user != NULL)
22086 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22087 symtab, psyms_seen, cu_index);
22088
22089 write_psymbols (symtab,
22090 psyms_seen,
22091 objfile->global_psymbols.list + psymtab->globals_offset,
22092 psymtab->n_global_syms, cu_index,
22093 0);
22094 write_psymbols (symtab,
22095 psyms_seen,
22096 objfile->static_psymbols.list + psymtab->statics_offset,
22097 psymtab->n_static_syms, cu_index,
22098 1);
22099 }
22100
22101 /* Create an index file for OBJFILE in the directory DIR. */
22102
22103 static void
22104 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22105 {
22106 struct cleanup *cleanup;
22107 char *filename, *cleanup_filename;
22108 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22109 struct obstack cu_list, types_cu_list;
22110 int i;
22111 FILE *out_file;
22112 struct mapped_symtab *symtab;
22113 offset_type val, size_of_contents, total_len;
22114 struct stat st;
22115 htab_t psyms_seen;
22116 htab_t cu_index_htab;
22117 struct psymtab_cu_index_map *psymtab_cu_index_map;
22118
22119 if (dwarf2_per_objfile->using_index)
22120 error (_("Cannot use an index to create the index"));
22121
22122 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22123 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22124
22125 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22126 return;
22127
22128 if (stat (objfile_name (objfile), &st) < 0)
22129 perror_with_name (objfile_name (objfile));
22130
22131 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22132 INDEX_SUFFIX, (char *) NULL);
22133 cleanup = make_cleanup (xfree, filename);
22134
22135 out_file = gdb_fopen_cloexec (filename, "wb");
22136 if (!out_file)
22137 error (_("Can't open `%s' for writing"), filename);
22138
22139 cleanup_filename = filename;
22140 make_cleanup (unlink_if_set, &cleanup_filename);
22141
22142 symtab = create_mapped_symtab ();
22143 make_cleanup (cleanup_mapped_symtab, symtab);
22144
22145 obstack_init (&addr_obstack);
22146 make_cleanup_obstack_free (&addr_obstack);
22147
22148 obstack_init (&cu_list);
22149 make_cleanup_obstack_free (&cu_list);
22150
22151 obstack_init (&types_cu_list);
22152 make_cleanup_obstack_free (&types_cu_list);
22153
22154 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22155 NULL, xcalloc, xfree);
22156 make_cleanup_htab_delete (psyms_seen);
22157
22158 /* While we're scanning CU's create a table that maps a psymtab pointer
22159 (which is what addrmap records) to its index (which is what is recorded
22160 in the index file). This will later be needed to write the address
22161 table. */
22162 cu_index_htab = htab_create_alloc (100,
22163 hash_psymtab_cu_index,
22164 eq_psymtab_cu_index,
22165 NULL, xcalloc, xfree);
22166 make_cleanup_htab_delete (cu_index_htab);
22167 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22168 xmalloc (sizeof (struct psymtab_cu_index_map)
22169 * dwarf2_per_objfile->n_comp_units);
22170 make_cleanup (xfree, psymtab_cu_index_map);
22171
22172 /* The CU list is already sorted, so we don't need to do additional
22173 work here. Also, the debug_types entries do not appear in
22174 all_comp_units, but only in their own hash table. */
22175 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22176 {
22177 struct dwarf2_per_cu_data *per_cu
22178 = dwarf2_per_objfile->all_comp_units[i];
22179 struct partial_symtab *psymtab = per_cu->v.psymtab;
22180 gdb_byte val[8];
22181 struct psymtab_cu_index_map *map;
22182 void **slot;
22183
22184 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22185 It may be referenced from a local scope but in such case it does not
22186 need to be present in .gdb_index. */
22187 if (psymtab == NULL)
22188 continue;
22189
22190 if (psymtab->user == NULL)
22191 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22192
22193 map = &psymtab_cu_index_map[i];
22194 map->psymtab = psymtab;
22195 map->cu_index = i;
22196 slot = htab_find_slot (cu_index_htab, map, INSERT);
22197 gdb_assert (slot != NULL);
22198 gdb_assert (*slot == NULL);
22199 *slot = map;
22200
22201 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22202 per_cu->offset.sect_off);
22203 obstack_grow (&cu_list, val, 8);
22204 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22205 obstack_grow (&cu_list, val, 8);
22206 }
22207
22208 /* Dump the address map. */
22209 write_address_map (objfile, &addr_obstack, cu_index_htab);
22210
22211 /* Write out the .debug_type entries, if any. */
22212 if (dwarf2_per_objfile->signatured_types)
22213 {
22214 struct signatured_type_index_data sig_data;
22215
22216 sig_data.objfile = objfile;
22217 sig_data.symtab = symtab;
22218 sig_data.types_list = &types_cu_list;
22219 sig_data.psyms_seen = psyms_seen;
22220 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22221 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22222 write_one_signatured_type, &sig_data);
22223 }
22224
22225 /* Now that we've processed all symbols we can shrink their cu_indices
22226 lists. */
22227 uniquify_cu_indices (symtab);
22228
22229 obstack_init (&constant_pool);
22230 make_cleanup_obstack_free (&constant_pool);
22231 obstack_init (&symtab_obstack);
22232 make_cleanup_obstack_free (&symtab_obstack);
22233 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22234
22235 obstack_init (&contents);
22236 make_cleanup_obstack_free (&contents);
22237 size_of_contents = 6 * sizeof (offset_type);
22238 total_len = size_of_contents;
22239
22240 /* The version number. */
22241 val = MAYBE_SWAP (8);
22242 obstack_grow (&contents, &val, sizeof (val));
22243
22244 /* The offset of the CU list from the start of the file. */
22245 val = MAYBE_SWAP (total_len);
22246 obstack_grow (&contents, &val, sizeof (val));
22247 total_len += obstack_object_size (&cu_list);
22248
22249 /* The offset of the types CU list from the start of the file. */
22250 val = MAYBE_SWAP (total_len);
22251 obstack_grow (&contents, &val, sizeof (val));
22252 total_len += obstack_object_size (&types_cu_list);
22253
22254 /* The offset of the address table from the start of the file. */
22255 val = MAYBE_SWAP (total_len);
22256 obstack_grow (&contents, &val, sizeof (val));
22257 total_len += obstack_object_size (&addr_obstack);
22258
22259 /* The offset of the symbol table from the start of the file. */
22260 val = MAYBE_SWAP (total_len);
22261 obstack_grow (&contents, &val, sizeof (val));
22262 total_len += obstack_object_size (&symtab_obstack);
22263
22264 /* The offset of the constant pool from the start of the file. */
22265 val = MAYBE_SWAP (total_len);
22266 obstack_grow (&contents, &val, sizeof (val));
22267 total_len += obstack_object_size (&constant_pool);
22268
22269 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22270
22271 write_obstack (out_file, &contents);
22272 write_obstack (out_file, &cu_list);
22273 write_obstack (out_file, &types_cu_list);
22274 write_obstack (out_file, &addr_obstack);
22275 write_obstack (out_file, &symtab_obstack);
22276 write_obstack (out_file, &constant_pool);
22277
22278 fclose (out_file);
22279
22280 /* We want to keep the file, so we set cleanup_filename to NULL
22281 here. See unlink_if_set. */
22282 cleanup_filename = NULL;
22283
22284 do_cleanups (cleanup);
22285 }
22286
22287 /* Implementation of the `save gdb-index' command.
22288
22289 Note that the file format used by this command is documented in the
22290 GDB manual. Any changes here must be documented there. */
22291
22292 static void
22293 save_gdb_index_command (char *arg, int from_tty)
22294 {
22295 struct objfile *objfile;
22296
22297 if (!arg || !*arg)
22298 error (_("usage: save gdb-index DIRECTORY"));
22299
22300 ALL_OBJFILES (objfile)
22301 {
22302 struct stat st;
22303
22304 /* If the objfile does not correspond to an actual file, skip it. */
22305 if (stat (objfile_name (objfile), &st) < 0)
22306 continue;
22307
22308 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22309 if (dwarf2_per_objfile)
22310 {
22311 volatile struct gdb_exception except;
22312
22313 TRY_CATCH (except, RETURN_MASK_ERROR)
22314 {
22315 write_psymtabs_to_index (objfile, arg);
22316 }
22317 if (except.reason < 0)
22318 exception_fprintf (gdb_stderr, except,
22319 _("Error while writing index for `%s': "),
22320 objfile_name (objfile));
22321 }
22322 }
22323 }
22324
22325 \f
22326
22327 int dwarf2_always_disassemble;
22328
22329 static void
22330 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22331 struct cmd_list_element *c, const char *value)
22332 {
22333 fprintf_filtered (file,
22334 _("Whether to always disassemble "
22335 "DWARF expressions is %s.\n"),
22336 value);
22337 }
22338
22339 static void
22340 show_check_physname (struct ui_file *file, int from_tty,
22341 struct cmd_list_element *c, const char *value)
22342 {
22343 fprintf_filtered (file,
22344 _("Whether to check \"physname\" is %s.\n"),
22345 value);
22346 }
22347
22348 void _initialize_dwarf2_read (void);
22349
22350 void
22351 _initialize_dwarf2_read (void)
22352 {
22353 struct cmd_list_element *c;
22354
22355 dwarf2_objfile_data_key
22356 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22357
22358 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22359 Set DWARF 2 specific variables.\n\
22360 Configure DWARF 2 variables such as the cache size"),
22361 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22362 0/*allow-unknown*/, &maintenance_set_cmdlist);
22363
22364 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22365 Show DWARF 2 specific variables\n\
22366 Show DWARF 2 variables such as the cache size"),
22367 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22368 0/*allow-unknown*/, &maintenance_show_cmdlist);
22369
22370 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22371 &dwarf2_max_cache_age, _("\
22372 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22373 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22374 A higher limit means that cached compilation units will be stored\n\
22375 in memory longer, and more total memory will be used. Zero disables\n\
22376 caching, which can slow down startup."),
22377 NULL,
22378 show_dwarf2_max_cache_age,
22379 &set_dwarf2_cmdlist,
22380 &show_dwarf2_cmdlist);
22381
22382 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22383 &dwarf2_always_disassemble, _("\
22384 Set whether `info address' always disassembles DWARF expressions."), _("\
22385 Show whether `info address' always disassembles DWARF expressions."), _("\
22386 When enabled, DWARF expressions are always printed in an assembly-like\n\
22387 syntax. When disabled, expressions will be printed in a more\n\
22388 conversational style, when possible."),
22389 NULL,
22390 show_dwarf2_always_disassemble,
22391 &set_dwarf2_cmdlist,
22392 &show_dwarf2_cmdlist);
22393
22394 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22395 Set debugging of the dwarf2 reader."), _("\
22396 Show debugging of the dwarf2 reader."), _("\
22397 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22398 reading and symtab expansion. A value of 1 (one) provides basic\n\
22399 information. A value greater than 1 provides more verbose information."),
22400 NULL,
22401 NULL,
22402 &setdebuglist, &showdebuglist);
22403
22404 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22405 Set debugging of the dwarf2 DIE reader."), _("\
22406 Show debugging of the dwarf2 DIE reader."), _("\
22407 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22408 The value is the maximum depth to print."),
22409 NULL,
22410 NULL,
22411 &setdebuglist, &showdebuglist);
22412
22413 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22414 Set cross-checking of \"physname\" code against demangler."), _("\
22415 Show cross-checking of \"physname\" code against demangler."), _("\
22416 When enabled, GDB's internal \"physname\" code is checked against\n\
22417 the demangler."),
22418 NULL, show_check_physname,
22419 &setdebuglist, &showdebuglist);
22420
22421 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22422 no_class, &use_deprecated_index_sections, _("\
22423 Set whether to use deprecated gdb_index sections."), _("\
22424 Show whether to use deprecated gdb_index sections."), _("\
22425 When enabled, deprecated .gdb_index sections are used anyway.\n\
22426 Normally they are ignored either because of a missing feature or\n\
22427 performance issue.\n\
22428 Warning: This option must be enabled before gdb reads the file."),
22429 NULL,
22430 NULL,
22431 &setlist, &showlist);
22432
22433 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22434 _("\
22435 Save a gdb-index file.\n\
22436 Usage: save gdb-index DIRECTORY"),
22437 &save_cmdlist);
22438 set_cmd_completer (c, filename_completer);
22439
22440 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22441 &dwarf2_locexpr_funcs);
22442 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22443 &dwarf2_loclist_funcs);
22444
22445 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22446 &dwarf2_block_frame_base_locexpr_funcs);
22447 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22448 &dwarf2_block_frame_base_loclist_funcs);
22449 }
This page took 0.534231 seconds and 4 git commands to generate.