837b1c1a9fc629c417918a44961dfaaa96be2904
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The number of elements allocated in all_type_units.
239 If there are skeleton-less TUs, we add them to all_type_units lazily. */
240 int n_allocated_type_units;
241
242 /* The .debug_types-related CUs (TUs).
243 This is stored in malloc space because we may realloc it. */
244 struct signatured_type **all_type_units;
245
246 /* Table of struct type_unit_group objects.
247 The hash key is the DW_AT_stmt_list value. */
248 htab_t type_unit_groups;
249
250 /* A table mapping .debug_types signatures to its signatured_type entry.
251 This is NULL if the .debug_types section hasn't been read in yet. */
252 htab_t signatured_types;
253
254 /* Type unit statistics, to see how well the scaling improvements
255 are doing. */
256 struct tu_stats
257 {
258 int nr_uniq_abbrev_tables;
259 int nr_symtabs;
260 int nr_symtab_sharers;
261 int nr_stmt_less_type_units;
262 int nr_all_type_units_reallocs;
263 } tu_stats;
264
265 /* A chain of compilation units that are currently read in, so that
266 they can be freed later. */
267 struct dwarf2_per_cu_data *read_in_chain;
268
269 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
270 This is NULL if the table hasn't been allocated yet. */
271 htab_t dwo_files;
272
273 /* Non-zero if we've check for whether there is a DWP file. */
274 int dwp_checked;
275
276 /* The DWP file if there is one, or NULL. */
277 struct dwp_file *dwp_file;
278
279 /* The shared '.dwz' file, if one exists. This is used when the
280 original data was compressed using 'dwz -m'. */
281 struct dwz_file *dwz_file;
282
283 /* A flag indicating wether this objfile has a section loaded at a
284 VMA of 0. */
285 int has_section_at_zero;
286
287 /* True if we are using the mapped index,
288 or we are faking it for OBJF_READNOW's sake. */
289 unsigned char using_index;
290
291 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
292 struct mapped_index *index_table;
293
294 /* When using index_table, this keeps track of all quick_file_names entries.
295 TUs typically share line table entries with a CU, so we maintain a
296 separate table of all line table entries to support the sharing.
297 Note that while there can be way more TUs than CUs, we've already
298 sorted all the TUs into "type unit groups", grouped by their
299 DW_AT_stmt_list value. Therefore the only sharing done here is with a
300 CU and its associated TU group if there is one. */
301 htab_t quick_file_names_table;
302
303 /* Set during partial symbol reading, to prevent queueing of full
304 symbols. */
305 int reading_partial_symbols;
306
307 /* Table mapping type DIEs to their struct type *.
308 This is NULL if not allocated yet.
309 The mapping is done via (CU/TU + DIE offset) -> type. */
310 htab_t die_type_hash;
311
312 /* The CUs we recently read. */
313 VEC (dwarf2_per_cu_ptr) *just_read_cus;
314 };
315
316 static struct dwarf2_per_objfile *dwarf2_per_objfile;
317
318 /* Default names of the debugging sections. */
319
320 /* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
322
323 static const struct dwarf2_debug_sections dwarf2_elf_names =
324 {
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
330 { ".debug_macro", ".zdebug_macro" },
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
334 { ".debug_addr", ".zdebug_addr" },
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
337 { ".gdb_index", ".zgdb_index" },
338 23
339 };
340
341 /* List of DWO/DWP sections. */
342
343 static const struct dwop_section_names
344 {
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
356 }
357 dwop_section_names =
358 {
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
370 };
371
372 /* local data types */
373
374 /* The data in a compilation unit header, after target2host
375 translation, looks like this. */
376 struct comp_unit_head
377 {
378 unsigned int length;
379 short version;
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
382 sect_offset abbrev_offset;
383
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
386
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
389
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
392 sect_offset offset;
393
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
396 cu_offset first_die_offset;
397 };
398
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
402 {
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417 };
418
419 typedef struct delayed_method_info delayed_method_info;
420 DEF_VEC_O (delayed_method_info);
421
422 /* Internal state when decoding a particular compilation unit. */
423 struct dwarf2_cu
424 {
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header;
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
433
434 /* Non-zero if base_address has been set. */
435 int base_known;
436
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
440
441 const char *producer;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
453
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
458
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
461 htab_t partial_dies;
462
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
466
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
472
473 /* Backlink to our per_cu entry. */
474 struct dwarf2_per_cu_data *per_cu;
475
476 /* How many compilation units ago was this CU last referenced? */
477 int last_used;
478
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
481 htab_t die_hash;
482
483 /* Full DIEs if read in. */
484 struct die_info *dies;
485
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
489 htab_t dependencies;
490
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
493
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
497
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
500
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
510 struct dwo_unit *dwo_unit;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the Fission stub CU/TU's DIE. */
515 ULONGEST addr_base;
516
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base;
528
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
531
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
536 unsigned int has_loclist : 1;
537
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
544 unsigned int producer_is_gcc_lt_4_3 : 1;
545 unsigned int producer_is_icc : 1;
546
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
550
551 unsigned int processing_has_namespace_info : 1;
552 };
553
554 /* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
556 read_symtab_private field of the psymtab. */
557
558 struct dwarf2_per_cu_data
559 {
560 /* The start offset and length of this compilation unit.
561 NOTE: Unlike comp_unit_head.length, this length includes
562 initial_length_size.
563 If the DIE refers to a DWO file, this is always of the original die,
564 not the DWO file. */
565 sect_offset offset;
566 unsigned int length;
567
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
570 unsigned int queued : 1;
571
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
577
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
580 this is non-zero. */
581 unsigned int is_debug_types : 1;
582
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
585
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
591
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
598 "midflight").
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
601
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
604 not the DWO file. */
605 struct dwarf2_section_info *section;
606
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
609 struct dwarf2_cu *cu;
610
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
614 struct objfile *objfile;
615
616 /* When using partial symbol tables, the 'psymtab' field is active.
617 Otherwise the 'quick' field is active. */
618 union
619 {
620 /* The partial symbol table associated with this compilation unit,
621 or NULL for unread partial units. */
622 struct partial_symtab *psymtab;
623
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
626 } v;
627
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
632
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
647 };
648
649 /* Entry in the signatured_types hash table. */
650
651 struct signatured_type
652 {
653 /* The "per_cu" object of this type.
654 This struct is used iff per_cu.is_debug_types.
655 N.B.: This is the first member so that it's easy to convert pointers
656 between them. */
657 struct dwarf2_per_cu_data per_cu;
658
659 /* The type's signature. */
660 ULONGEST signature;
661
662 /* Offset in the TU of the type's DIE, as read from the TU header.
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
665 cu_offset type_offset_in_tu;
666
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
673
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
677
678 /* The type.
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
681 struct type *type;
682
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
686 };
687
688 typedef struct signatured_type *sig_type_ptr;
689 DEF_VEC_P (sig_type_ptr);
690
691 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
693
694 struct stmt_list_hash
695 {
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
698
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
701 };
702
703 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
705
706 struct type_unit_group
707 {
708 /* dwarf2read.c's main "handle" on a TU symtab.
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
713 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
714 struct dwarf2_per_cu_data per_cu;
715
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
720
721 /* The primary symtab.
722 Type units in a group needn't all be defined in the same source file,
723 so we create an essentially anonymous symtab as the primary symtab. */
724 struct symtab *primary_symtab;
725
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
728
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
732
733 /* The symbol tables for this TU (obtained from the files listed in
734 DW_AT_stmt_list).
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
742 };
743
744 /* These sections are what may appear in a (real or virtual) DWO file. */
745
746 struct dwo_sections
747 {
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
757 VEC (dwarf2_section_info_def) *types;
758 };
759
760 /* CUs/TUs in DWP/DWO files. */
761
762 struct dwo_unit
763 {
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
766
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
770 ULONGEST signature;
771
772 /* The section this CU/TU lives in, in the DWO file. */
773 struct dwarf2_section_info *section;
774
775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
776 sect_offset offset;
777 unsigned int length;
778
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
781 };
782
783 /* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
786
787 enum dwp_v2_section_ids
788 {
789 DW_SECT_MIN = 1
790 };
791
792 /* Data for one DWO file.
793
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
802
803 struct dwo_file
804 {
805 /* The DW_AT_GNU_dwo_name attribute.
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
809 const char *dwo_name;
810
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
813
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 bfd *dbfd;
817
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
821 struct dwo_sections sections;
822
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 struct dwo_unit *cu;
829
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
832 htab_t tus;
833 };
834
835 /* These sections are what may appear in a DWP file. */
836
837 struct dwp_sections
838 {
839 /* These are used by both DWP version 1 and 2. */
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
843
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
860 };
861
862 /* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
864
865 struct virtual_v1_dwo_sections
866 {
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
874 That is recorded here, and copied to dwo_unit.section. */
875 struct dwarf2_section_info info_or_types;
876 };
877
878 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
882
883 struct virtual_v2_dwo_sections
884 {
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
887
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
890
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
893
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
896
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
899
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
902
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
907 };
908
909 /* Contents of DWP hash tables. */
910
911 struct dwp_hash_table
912 {
913 uint32_t version, nr_columns;
914 uint32_t nr_units, nr_slots;
915 const gdb_byte *hash_table, *unit_table;
916 union
917 {
918 struct
919 {
920 const gdb_byte *indices;
921 } v1;
922 struct
923 {
924 /* This is indexed by column number and gives the id of the section
925 in that column. */
926 #define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
936 } v2;
937 } section_pool;
938 };
939
940 /* Data for one DWP file. */
941
942 struct dwp_file
943 {
944 /* Name of the file. */
945 const char *name;
946
947 /* File format version. */
948 int version;
949
950 /* The bfd. */
951 bfd *dbfd;
952
953 /* Section info for this file. */
954 struct dwp_sections sections;
955
956 /* Table of CUs in the file. */
957 const struct dwp_hash_table *cus;
958
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
961
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 htab_t loaded_cus;
964 htab_t loaded_tus;
965
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
968 unsigned int num_sections;
969 asection **elf_sections;
970 };
971
972 /* This represents a '.dwz' file. */
973
974 struct dwz_file
975 {
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
982 struct dwarf2_section_info gdb_index;
983
984 /* The dwz's BFD. */
985 bfd *dwz_bfd;
986 };
987
988 /* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
991 struct exists to abstract away the constant parameters of die reading. */
992
993 struct die_reader_specs
994 {
995 /* The bfd of die_section. */
996 bfd* abfd;
997
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1000
1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1002 struct dwo_file *dwo_file;
1003
1004 /* The section the die comes from.
1005 This is either .debug_info or .debug_types, or the .dwo variants. */
1006 struct dwarf2_section_info *die_section;
1007
1008 /* die_section->buffer. */
1009 const gdb_byte *buffer;
1010
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
1013
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
1016 };
1017
1018 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1019 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1020 const gdb_byte *info_ptr,
1021 struct die_info *comp_unit_die,
1022 int has_children,
1023 void *data);
1024
1025 /* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1028 struct line_header
1029 {
1030 unsigned int total_length;
1031 unsigned short version;
1032 unsigned int header_length;
1033 unsigned char minimum_instruction_length;
1034 unsigned char maximum_ops_per_instruction;
1035 unsigned char default_is_stmt;
1036 int line_base;
1037 unsigned char line_range;
1038 unsigned char opcode_base;
1039
1040 /* standard_opcode_lengths[i] is the number of operands for the
1041 standard opcode whose value is i. This means that
1042 standard_opcode_lengths[0] is unused, and the last meaningful
1043 element is standard_opcode_lengths[opcode_base - 1]. */
1044 unsigned char *standard_opcode_lengths;
1045
1046 /* The include_directories table. NOTE! These strings are not
1047 allocated with xmalloc; instead, they are pointers into
1048 debug_line_buffer. If you try to free them, `free' will get
1049 indigestion. */
1050 unsigned int num_include_dirs, include_dirs_size;
1051 const char **include_dirs;
1052
1053 /* The file_names table. NOTE! These strings are not allocated
1054 with xmalloc; instead, they are pointers into debug_line_buffer.
1055 Don't try to free them directly. */
1056 unsigned int num_file_names, file_names_size;
1057 struct file_entry
1058 {
1059 const char *name;
1060 unsigned int dir_index;
1061 unsigned int mod_time;
1062 unsigned int length;
1063 int included_p; /* Non-zero if referenced by the Line Number Program. */
1064 struct symtab *symtab; /* The associated symbol table, if any. */
1065 } *file_names;
1066
1067 /* The start and end of the statement program following this
1068 header. These point into dwarf2_per_objfile->line_buffer. */
1069 const gdb_byte *statement_program_start, *statement_program_end;
1070 };
1071
1072 /* When we construct a partial symbol table entry we only
1073 need this much information. */
1074 struct partial_die_info
1075 {
1076 /* Offset of this DIE. */
1077 sect_offset offset;
1078
1079 /* DWARF-2 tag for this DIE. */
1080 ENUM_BITFIELD(dwarf_tag) tag : 16;
1081
1082 /* Assorted flags describing the data found in this DIE. */
1083 unsigned int has_children : 1;
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
1089 unsigned int may_be_inlined : 1;
1090
1091 /* Flag set if the SCOPE field of this structure has been
1092 computed. */
1093 unsigned int scope_set : 1;
1094
1095 /* Flag set if the DIE has a byte_size attribute. */
1096 unsigned int has_byte_size : 1;
1097
1098 /* Flag set if any of the DIE's children are template arguments. */
1099 unsigned int has_template_arguments : 1;
1100
1101 /* Flag set if fixup_partial_die has been called on this die. */
1102 unsigned int fixup_called : 1;
1103
1104 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1105 unsigned int is_dwz : 1;
1106
1107 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1108 unsigned int spec_is_dwz : 1;
1109
1110 /* The name of this DIE. Normally the value of DW_AT_name, but
1111 sometimes a default name for unnamed DIEs. */
1112 const char *name;
1113
1114 /* The linkage name, if present. */
1115 const char *linkage_name;
1116
1117 /* The scope to prepend to our children. This is generally
1118 allocated on the comp_unit_obstack, so will disappear
1119 when this compilation unit leaves the cache. */
1120 const char *scope;
1121
1122 /* Some data associated with the partial DIE. The tag determines
1123 which field is live. */
1124 union
1125 {
1126 /* The location description associated with this DIE, if any. */
1127 struct dwarf_block *locdesc;
1128 /* The offset of an import, for DW_TAG_imported_unit. */
1129 sect_offset offset;
1130 } d;
1131
1132 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1133 CORE_ADDR lowpc;
1134 CORE_ADDR highpc;
1135
1136 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1137 DW_AT_sibling, if any. */
1138 /* NOTE: This member isn't strictly necessary, read_partial_die could
1139 return DW_AT_sibling values to its caller load_partial_dies. */
1140 const gdb_byte *sibling;
1141
1142 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1143 DW_AT_specification (or DW_AT_abstract_origin or
1144 DW_AT_extension). */
1145 sect_offset spec_offset;
1146
1147 /* Pointers to this DIE's parent, first child, and next sibling,
1148 if any. */
1149 struct partial_die_info *die_parent, *die_child, *die_sibling;
1150 };
1151
1152 /* This data structure holds the information of an abbrev. */
1153 struct abbrev_info
1154 {
1155 unsigned int number; /* number identifying abbrev */
1156 enum dwarf_tag tag; /* dwarf tag */
1157 unsigned short has_children; /* boolean */
1158 unsigned short num_attrs; /* number of attributes */
1159 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1160 struct abbrev_info *next; /* next in chain */
1161 };
1162
1163 struct attr_abbrev
1164 {
1165 ENUM_BITFIELD(dwarf_attribute) name : 16;
1166 ENUM_BITFIELD(dwarf_form) form : 16;
1167 };
1168
1169 /* Size of abbrev_table.abbrev_hash_table. */
1170 #define ABBREV_HASH_SIZE 121
1171
1172 /* Top level data structure to contain an abbreviation table. */
1173
1174 struct abbrev_table
1175 {
1176 /* Where the abbrev table came from.
1177 This is used as a sanity check when the table is used. */
1178 sect_offset offset;
1179
1180 /* Storage for the abbrev table. */
1181 struct obstack abbrev_obstack;
1182
1183 /* Hash table of abbrevs.
1184 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1185 It could be statically allocated, but the previous code didn't so we
1186 don't either. */
1187 struct abbrev_info **abbrevs;
1188 };
1189
1190 /* Attributes have a name and a value. */
1191 struct attribute
1192 {
1193 ENUM_BITFIELD(dwarf_attribute) name : 16;
1194 ENUM_BITFIELD(dwarf_form) form : 15;
1195
1196 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1197 field should be in u.str (existing only for DW_STRING) but it is kept
1198 here for better struct attribute alignment. */
1199 unsigned int string_is_canonical : 1;
1200
1201 union
1202 {
1203 const char *str;
1204 struct dwarf_block *blk;
1205 ULONGEST unsnd;
1206 LONGEST snd;
1207 CORE_ADDR addr;
1208 ULONGEST signature;
1209 }
1210 u;
1211 };
1212
1213 /* This data structure holds a complete die structure. */
1214 struct die_info
1215 {
1216 /* DWARF-2 tag for this DIE. */
1217 ENUM_BITFIELD(dwarf_tag) tag : 16;
1218
1219 /* Number of attributes */
1220 unsigned char num_attrs;
1221
1222 /* True if we're presently building the full type name for the
1223 type derived from this DIE. */
1224 unsigned char building_fullname : 1;
1225
1226 /* True if this die is in process. PR 16581. */
1227 unsigned char in_process : 1;
1228
1229 /* Abbrev number */
1230 unsigned int abbrev;
1231
1232 /* Offset in .debug_info or .debug_types section. */
1233 sect_offset offset;
1234
1235 /* The dies in a compilation unit form an n-ary tree. PARENT
1236 points to this die's parent; CHILD points to the first child of
1237 this node; and all the children of a given node are chained
1238 together via their SIBLING fields. */
1239 struct die_info *child; /* Its first child, if any. */
1240 struct die_info *sibling; /* Its next sibling, if any. */
1241 struct die_info *parent; /* Its parent, if any. */
1242
1243 /* An array of attributes, with NUM_ATTRS elements. There may be
1244 zero, but it's not common and zero-sized arrays are not
1245 sufficiently portable C. */
1246 struct attribute attrs[1];
1247 };
1248
1249 /* Get at parts of an attribute structure. */
1250
1251 #define DW_STRING(attr) ((attr)->u.str)
1252 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1253 #define DW_UNSND(attr) ((attr)->u.unsnd)
1254 #define DW_BLOCK(attr) ((attr)->u.blk)
1255 #define DW_SND(attr) ((attr)->u.snd)
1256 #define DW_ADDR(attr) ((attr)->u.addr)
1257 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1258
1259 /* Blocks are a bunch of untyped bytes. */
1260 struct dwarf_block
1261 {
1262 size_t size;
1263
1264 /* Valid only if SIZE is not zero. */
1265 const gdb_byte *data;
1266 };
1267
1268 #ifndef ATTR_ALLOC_CHUNK
1269 #define ATTR_ALLOC_CHUNK 4
1270 #endif
1271
1272 /* Allocate fields for structs, unions and enums in this size. */
1273 #ifndef DW_FIELD_ALLOC_CHUNK
1274 #define DW_FIELD_ALLOC_CHUNK 4
1275 #endif
1276
1277 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1278 but this would require a corresponding change in unpack_field_as_long
1279 and friends. */
1280 static int bits_per_byte = 8;
1281
1282 /* The routines that read and process dies for a C struct or C++ class
1283 pass lists of data member fields and lists of member function fields
1284 in an instance of a field_info structure, as defined below. */
1285 struct field_info
1286 {
1287 /* List of data member and baseclasses fields. */
1288 struct nextfield
1289 {
1290 struct nextfield *next;
1291 int accessibility;
1292 int virtuality;
1293 struct field field;
1294 }
1295 *fields, *baseclasses;
1296
1297 /* Number of fields (including baseclasses). */
1298 int nfields;
1299
1300 /* Number of baseclasses. */
1301 int nbaseclasses;
1302
1303 /* Set if the accesibility of one of the fields is not public. */
1304 int non_public_fields;
1305
1306 /* Member function fields array, entries are allocated in the order they
1307 are encountered in the object file. */
1308 struct nextfnfield
1309 {
1310 struct nextfnfield *next;
1311 struct fn_field fnfield;
1312 }
1313 *fnfields;
1314
1315 /* Member function fieldlist array, contains name of possibly overloaded
1316 member function, number of overloaded member functions and a pointer
1317 to the head of the member function field chain. */
1318 struct fnfieldlist
1319 {
1320 const char *name;
1321 int length;
1322 struct nextfnfield *head;
1323 }
1324 *fnfieldlists;
1325
1326 /* Number of entries in the fnfieldlists array. */
1327 int nfnfields;
1328
1329 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1330 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1331 struct typedef_field_list
1332 {
1333 struct typedef_field field;
1334 struct typedef_field_list *next;
1335 }
1336 *typedef_field_list;
1337 unsigned typedef_field_list_count;
1338 };
1339
1340 /* One item on the queue of compilation units to read in full symbols
1341 for. */
1342 struct dwarf2_queue_item
1343 {
1344 struct dwarf2_per_cu_data *per_cu;
1345 enum language pretend_language;
1346 struct dwarf2_queue_item *next;
1347 };
1348
1349 /* The current queue. */
1350 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1351
1352 /* Loaded secondary compilation units are kept in memory until they
1353 have not been referenced for the processing of this many
1354 compilation units. Set this to zero to disable caching. Cache
1355 sizes of up to at least twenty will improve startup time for
1356 typical inter-CU-reference binaries, at an obvious memory cost. */
1357 static int dwarf2_max_cache_age = 5;
1358 static void
1359 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1361 {
1362 fprintf_filtered (file, _("The upper bound on the age of cached "
1363 "dwarf2 compilation units is %s.\n"),
1364 value);
1365 }
1366 \f
1367 /* local function prototypes */
1368
1369 static const char *get_section_name (const struct dwarf2_section_info *);
1370
1371 static const char *get_section_file_name (const struct dwarf2_section_info *);
1372
1373 static void dwarf2_locate_sections (bfd *, asection *, void *);
1374
1375 static void dwarf2_find_base_address (struct die_info *die,
1376 struct dwarf2_cu *cu);
1377
1378 static struct partial_symtab *create_partial_symtab
1379 (struct dwarf2_per_cu_data *per_cu, const char *name);
1380
1381 static void dwarf2_build_psymtabs_hard (struct objfile *);
1382
1383 static void scan_partial_symbols (struct partial_die_info *,
1384 CORE_ADDR *, CORE_ADDR *,
1385 int, struct dwarf2_cu *);
1386
1387 static void add_partial_symbol (struct partial_die_info *,
1388 struct dwarf2_cu *);
1389
1390 static void add_partial_namespace (struct partial_die_info *pdi,
1391 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1392 int need_pc, struct dwarf2_cu *cu);
1393
1394 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1395 CORE_ADDR *highpc, int need_pc,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1399 struct dwarf2_cu *cu);
1400
1401 static void add_partial_subprogram (struct partial_die_info *pdi,
1402 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1403 int need_pc, struct dwarf2_cu *cu);
1404
1405 static void dwarf2_read_symtab (struct partial_symtab *,
1406 struct objfile *);
1407
1408 static void psymtab_to_symtab_1 (struct partial_symtab *);
1409
1410 static struct abbrev_info *abbrev_table_lookup_abbrev
1411 (const struct abbrev_table *, unsigned int);
1412
1413 static struct abbrev_table *abbrev_table_read_table
1414 (struct dwarf2_section_info *, sect_offset);
1415
1416 static void abbrev_table_free (struct abbrev_table *);
1417
1418 static void abbrev_table_free_cleanup (void *);
1419
1420 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1421 struct dwarf2_section_info *);
1422
1423 static void dwarf2_free_abbrev_table (void *);
1424
1425 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1426
1427 static struct partial_die_info *load_partial_dies
1428 (const struct die_reader_specs *, const gdb_byte *, int);
1429
1430 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1431 struct partial_die_info *,
1432 struct abbrev_info *,
1433 unsigned int,
1434 const gdb_byte *);
1435
1436 static struct partial_die_info *find_partial_die (sect_offset, int,
1437 struct dwarf2_cu *);
1438
1439 static void fixup_partial_die (struct partial_die_info *,
1440 struct dwarf2_cu *);
1441
1442 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1443 struct attribute *, struct attr_abbrev *,
1444 const gdb_byte *);
1445
1446 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1447
1448 static int read_1_signed_byte (bfd *, const gdb_byte *);
1449
1450 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1451
1452 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1453
1454 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1455
1456 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1457 unsigned int *);
1458
1459 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1460
1461 static LONGEST read_checked_initial_length_and_offset
1462 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1463 unsigned int *, unsigned int *);
1464
1465 static LONGEST read_offset (bfd *, const gdb_byte *,
1466 const struct comp_unit_head *,
1467 unsigned int *);
1468
1469 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1470
1471 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1472 sect_offset);
1473
1474 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1475
1476 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1477
1478 static const char *read_indirect_string (bfd *, const gdb_byte *,
1479 const struct comp_unit_head *,
1480 unsigned int *);
1481
1482 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1483
1484 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1485
1486 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1487
1488 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1489 const gdb_byte *,
1490 unsigned int *);
1491
1492 static const char *read_str_index (const struct die_reader_specs *reader,
1493 ULONGEST str_index);
1494
1495 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1498 struct dwarf2_cu *);
1499
1500 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1501 unsigned int);
1502
1503 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1504 struct dwarf2_cu *cu);
1505
1506 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1507
1508 static struct die_info *die_specification (struct die_info *die,
1509 struct dwarf2_cu **);
1510
1511 static void free_line_header (struct line_header *lh);
1512
1513 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1514 struct dwarf2_cu *cu);
1515
1516 static void dwarf_decode_lines (struct line_header *, const char *,
1517 struct dwarf2_cu *, struct partial_symtab *,
1518 int);
1519
1520 static void dwarf2_start_subfile (const char *, const char *, const char *);
1521
1522 static void dwarf2_start_symtab (struct dwarf2_cu *,
1523 const char *, const char *, CORE_ADDR);
1524
1525 static struct symbol *new_symbol (struct die_info *, struct type *,
1526 struct dwarf2_cu *);
1527
1528 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1529 struct dwarf2_cu *, struct symbol *);
1530
1531 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1532 struct dwarf2_cu *);
1533
1534 static void dwarf2_const_value_attr (const struct attribute *attr,
1535 struct type *type,
1536 const char *name,
1537 struct obstack *obstack,
1538 struct dwarf2_cu *cu, LONGEST *value,
1539 const gdb_byte **bytes,
1540 struct dwarf2_locexpr_baton **baton);
1541
1542 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1543
1544 static int need_gnat_info (struct dwarf2_cu *);
1545
1546 static struct type *die_descriptive_type (struct die_info *,
1547 struct dwarf2_cu *);
1548
1549 static void set_descriptive_type (struct type *, struct die_info *,
1550 struct dwarf2_cu *);
1551
1552 static struct type *die_containing_type (struct die_info *,
1553 struct dwarf2_cu *);
1554
1555 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1556 struct dwarf2_cu *);
1557
1558 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1559
1560 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1561
1562 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1563
1564 static char *typename_concat (struct obstack *obs, const char *prefix,
1565 const char *suffix, int physname,
1566 struct dwarf2_cu *cu);
1567
1568 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1569
1570 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1575
1576 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1577
1578 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1579 struct dwarf2_cu *, struct partial_symtab *);
1580
1581 static int dwarf2_get_pc_bounds (struct die_info *,
1582 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1583 struct partial_symtab *);
1584
1585 static void get_scope_pc_bounds (struct die_info *,
1586 CORE_ADDR *, CORE_ADDR *,
1587 struct dwarf2_cu *);
1588
1589 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1590 CORE_ADDR, struct dwarf2_cu *);
1591
1592 static void dwarf2_add_field (struct field_info *, struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static void dwarf2_attach_fields_to_type (struct field_info *,
1596 struct type *, struct dwarf2_cu *);
1597
1598 static void dwarf2_add_member_fn (struct field_info *,
1599 struct die_info *, struct type *,
1600 struct dwarf2_cu *);
1601
1602 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1603 struct type *,
1604 struct dwarf2_cu *);
1605
1606 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1607
1608 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1611
1612 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1613
1614 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1615
1616 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static struct type *read_module_type (struct die_info *die,
1619 struct dwarf2_cu *cu);
1620
1621 static const char *namespace_name (struct die_info *die,
1622 int *is_anonymous, struct dwarf2_cu *);
1623
1624 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1625
1626 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1627
1628 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1629 struct dwarf2_cu *);
1630
1631 static struct die_info *read_die_and_siblings_1
1632 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1633 struct die_info *);
1634
1635 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1636 const gdb_byte *info_ptr,
1637 const gdb_byte **new_info_ptr,
1638 struct die_info *parent);
1639
1640 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1641 struct die_info **, const gdb_byte *,
1642 int *, int);
1643
1644 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1645 struct die_info **, const gdb_byte *,
1646 int *);
1647
1648 static void process_die (struct die_info *, struct dwarf2_cu *);
1649
1650 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1651 struct obstack *);
1652
1653 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1654
1655 static const char *dwarf2_full_name (const char *name,
1656 struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
1659 static const char *dwarf2_physname (const char *name, struct die_info *die,
1660 struct dwarf2_cu *cu);
1661
1662 static struct die_info *dwarf2_extension (struct die_info *die,
1663 struct dwarf2_cu **);
1664
1665 static const char *dwarf_tag_name (unsigned int);
1666
1667 static const char *dwarf_attr_name (unsigned int);
1668
1669 static const char *dwarf_form_name (unsigned int);
1670
1671 static char *dwarf_bool_name (unsigned int);
1672
1673 static const char *dwarf_type_encoding_name (unsigned int);
1674
1675 static struct die_info *sibling_die (struct die_info *);
1676
1677 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1678
1679 static void dump_die_for_error (struct die_info *);
1680
1681 static void dump_die_1 (struct ui_file *, int level, int max_level,
1682 struct die_info *);
1683
1684 /*static*/ void dump_die (struct die_info *, int max_level);
1685
1686 static void store_in_ref_table (struct die_info *,
1687 struct dwarf2_cu *);
1688
1689 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1690
1691 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1692
1693 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1694 const struct attribute *,
1695 struct dwarf2_cu **);
1696
1697 static struct die_info *follow_die_ref (struct die_info *,
1698 const struct attribute *,
1699 struct dwarf2_cu **);
1700
1701 static struct die_info *follow_die_sig (struct die_info *,
1702 const struct attribute *,
1703 struct dwarf2_cu **);
1704
1705 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1706 struct dwarf2_cu *);
1707
1708 static struct type *get_DW_AT_signature_type (struct die_info *,
1709 const struct attribute *,
1710 struct dwarf2_cu *);
1711
1712 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1713
1714 static void read_signatured_type (struct signatured_type *);
1715
1716 /* memory allocation interface */
1717
1718 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1719
1720 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1721
1722 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1723 const char *, int);
1724
1725 static int attr_form_is_block (const struct attribute *);
1726
1727 static int attr_form_is_section_offset (const struct attribute *);
1728
1729 static int attr_form_is_constant (const struct attribute *);
1730
1731 static int attr_form_is_ref (const struct attribute *);
1732
1733 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1734 struct dwarf2_loclist_baton *baton,
1735 const struct attribute *attr);
1736
1737 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1738 struct symbol *sym,
1739 struct dwarf2_cu *cu,
1740 int is_block);
1741
1742 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1743 const gdb_byte *info_ptr,
1744 struct abbrev_info *abbrev);
1745
1746 static void free_stack_comp_unit (void *);
1747
1748 static hashval_t partial_die_hash (const void *item);
1749
1750 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1751
1752 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1753 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1754
1755 static void init_one_comp_unit (struct dwarf2_cu *cu,
1756 struct dwarf2_per_cu_data *per_cu);
1757
1758 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1759 struct die_info *comp_unit_die,
1760 enum language pretend_language);
1761
1762 static void free_heap_comp_unit (void *);
1763
1764 static void free_cached_comp_units (void *);
1765
1766 static void age_cached_comp_units (void);
1767
1768 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1769
1770 static struct type *set_die_type (struct die_info *, struct type *,
1771 struct dwarf2_cu *);
1772
1773 static void create_all_comp_units (struct objfile *);
1774
1775 static int create_all_type_units (struct objfile *);
1776
1777 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1784 enum language);
1785
1786 static void dwarf2_add_dependence (struct dwarf2_cu *,
1787 struct dwarf2_per_cu_data *);
1788
1789 static void dwarf2_mark (struct dwarf2_cu *);
1790
1791 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type_at_offset (sect_offset,
1794 struct dwarf2_per_cu_data *);
1795
1796 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1797
1798 static void dwarf2_release_queue (void *dummy);
1799
1800 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1801 enum language pretend_language);
1802
1803 static void process_queue (void);
1804
1805 static void find_file_and_directory (struct die_info *die,
1806 struct dwarf2_cu *cu,
1807 const char **name, const char **comp_dir);
1808
1809 static char *file_full_name (int file, struct line_header *lh,
1810 const char *comp_dir);
1811
1812 static const gdb_byte *read_and_check_comp_unit_head
1813 (struct comp_unit_head *header,
1814 struct dwarf2_section_info *section,
1815 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1816 int is_debug_types_section);
1817
1818 static void init_cutu_and_read_dies
1819 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1820 int use_existing_cu, int keep,
1821 die_reader_func_ftype *die_reader_func, void *data);
1822
1823 static void init_cutu_and_read_dies_simple
1824 (struct dwarf2_per_cu_data *this_cu,
1825 die_reader_func_ftype *die_reader_func, void *data);
1826
1827 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1828
1829 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1830
1831 static struct dwo_unit *lookup_dwo_unit_in_dwp
1832 (struct dwp_file *dwp_file, const char *comp_dir,
1833 ULONGEST signature, int is_debug_types);
1834
1835 static struct dwp_file *get_dwp_file (void);
1836
1837 static struct dwo_unit *lookup_dwo_comp_unit
1838 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1839
1840 static struct dwo_unit *lookup_dwo_type_unit
1841 (struct signatured_type *, const char *, const char *);
1842
1843 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1844
1845 static void free_dwo_file_cleanup (void *);
1846
1847 static void process_cu_includes (void);
1848
1849 static void check_producer (struct dwarf2_cu *cu);
1850 \f
1851 /* Various complaints about symbol reading that don't abort the process. */
1852
1853 static void
1854 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1855 {
1856 complaint (&symfile_complaints,
1857 _("statement list doesn't fit in .debug_line section"));
1858 }
1859
1860 static void
1861 dwarf2_debug_line_missing_file_complaint (void)
1862 {
1863 complaint (&symfile_complaints,
1864 _(".debug_line section has line data without a file"));
1865 }
1866
1867 static void
1868 dwarf2_debug_line_missing_end_sequence_complaint (void)
1869 {
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line "
1872 "program sequence without an end"));
1873 }
1874
1875 static void
1876 dwarf2_complex_location_expr_complaint (void)
1877 {
1878 complaint (&symfile_complaints, _("location expression too complex"));
1879 }
1880
1881 static void
1882 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1883 int arg3)
1884 {
1885 complaint (&symfile_complaints,
1886 _("const value length mismatch for '%s', got %d, expected %d"),
1887 arg1, arg2, arg3);
1888 }
1889
1890 static void
1891 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1892 {
1893 complaint (&symfile_complaints,
1894 _("debug info runs off end of %s section"
1895 " [in module %s]"),
1896 get_section_name (section),
1897 get_section_file_name (section));
1898 }
1899
1900 static void
1901 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1902 {
1903 complaint (&symfile_complaints,
1904 _("macro debug info contains a "
1905 "malformed macro definition:\n`%s'"),
1906 arg1);
1907 }
1908
1909 static void
1910 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1911 {
1912 complaint (&symfile_complaints,
1913 _("invalid attribute class or form for '%s' in '%s'"),
1914 arg1, arg2);
1915 }
1916 \f
1917 #if WORDS_BIGENDIAN
1918
1919 /* Convert VALUE between big- and little-endian. */
1920 static offset_type
1921 byte_swap (offset_type value)
1922 {
1923 offset_type result;
1924
1925 result = (value & 0xff) << 24;
1926 result |= (value & 0xff00) << 8;
1927 result |= (value & 0xff0000) >> 8;
1928 result |= (value & 0xff000000) >> 24;
1929 return result;
1930 }
1931
1932 #define MAYBE_SWAP(V) byte_swap (V)
1933
1934 #else
1935 #define MAYBE_SWAP(V) (V)
1936 #endif /* WORDS_BIGENDIAN */
1937
1938 /* Read the given attribute value as an address, taking the attribute's
1939 form into account. */
1940
1941 static CORE_ADDR
1942 attr_value_as_address (struct attribute *attr)
1943 {
1944 CORE_ADDR addr;
1945
1946 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1947 {
1948 /* Aside from a few clearly defined exceptions, attributes that
1949 contain an address must always be in DW_FORM_addr form.
1950 Unfortunately, some compilers happen to be violating this
1951 requirement by encoding addresses using other forms, such
1952 as DW_FORM_data4 for example. For those broken compilers,
1953 we try to do our best, without any guarantee of success,
1954 to interpret the address correctly. It would also be nice
1955 to generate a complaint, but that would require us to maintain
1956 a list of legitimate cases where a non-address form is allowed,
1957 as well as update callers to pass in at least the CU's DWARF
1958 version. This is more overhead than what we're willing to
1959 expand for a pretty rare case. */
1960 addr = DW_UNSND (attr);
1961 }
1962 else
1963 addr = DW_ADDR (attr);
1964
1965 return addr;
1966 }
1967
1968 /* The suffix for an index file. */
1969 #define INDEX_SUFFIX ".gdb-index"
1970
1971 /* Try to locate the sections we need for DWARF 2 debugging
1972 information and return true if we have enough to do something.
1973 NAMES points to the dwarf2 section names, or is NULL if the standard
1974 ELF names are used. */
1975
1976 int
1977 dwarf2_has_info (struct objfile *objfile,
1978 const struct dwarf2_debug_sections *names)
1979 {
1980 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1981 if (!dwarf2_per_objfile)
1982 {
1983 /* Initialize per-objfile state. */
1984 struct dwarf2_per_objfile *data
1985 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1986
1987 memset (data, 0, sizeof (*data));
1988 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1989 dwarf2_per_objfile = data;
1990
1991 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1992 (void *) names);
1993 dwarf2_per_objfile->objfile = objfile;
1994 }
1995 return (!dwarf2_per_objfile->info.is_virtual
1996 && dwarf2_per_objfile->info.s.asection != NULL
1997 && !dwarf2_per_objfile->abbrev.is_virtual
1998 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1999 }
2000
2001 /* Return the containing section of virtual section SECTION. */
2002
2003 static struct dwarf2_section_info *
2004 get_containing_section (const struct dwarf2_section_info *section)
2005 {
2006 gdb_assert (section->is_virtual);
2007 return section->s.containing_section;
2008 }
2009
2010 /* Return the bfd owner of SECTION. */
2011
2012 static struct bfd *
2013 get_section_bfd_owner (const struct dwarf2_section_info *section)
2014 {
2015 if (section->is_virtual)
2016 {
2017 section = get_containing_section (section);
2018 gdb_assert (!section->is_virtual);
2019 }
2020 return section->s.asection->owner;
2021 }
2022
2023 /* Return the bfd section of SECTION.
2024 Returns NULL if the section is not present. */
2025
2026 static asection *
2027 get_section_bfd_section (const struct dwarf2_section_info *section)
2028 {
2029 if (section->is_virtual)
2030 {
2031 section = get_containing_section (section);
2032 gdb_assert (!section->is_virtual);
2033 }
2034 return section->s.asection;
2035 }
2036
2037 /* Return the name of SECTION. */
2038
2039 static const char *
2040 get_section_name (const struct dwarf2_section_info *section)
2041 {
2042 asection *sectp = get_section_bfd_section (section);
2043
2044 gdb_assert (sectp != NULL);
2045 return bfd_section_name (get_section_bfd_owner (section), sectp);
2046 }
2047
2048 /* Return the name of the file SECTION is in. */
2049
2050 static const char *
2051 get_section_file_name (const struct dwarf2_section_info *section)
2052 {
2053 bfd *abfd = get_section_bfd_owner (section);
2054
2055 return bfd_get_filename (abfd);
2056 }
2057
2058 /* Return the id of SECTION.
2059 Returns 0 if SECTION doesn't exist. */
2060
2061 static int
2062 get_section_id (const struct dwarf2_section_info *section)
2063 {
2064 asection *sectp = get_section_bfd_section (section);
2065
2066 if (sectp == NULL)
2067 return 0;
2068 return sectp->id;
2069 }
2070
2071 /* Return the flags of SECTION.
2072 SECTION (or containing section if this is a virtual section) must exist. */
2073
2074 static int
2075 get_section_flags (const struct dwarf2_section_info *section)
2076 {
2077 asection *sectp = get_section_bfd_section (section);
2078
2079 gdb_assert (sectp != NULL);
2080 return bfd_get_section_flags (sectp->owner, sectp);
2081 }
2082
2083 /* When loading sections, we look either for uncompressed section or for
2084 compressed section names. */
2085
2086 static int
2087 section_is_p (const char *section_name,
2088 const struct dwarf2_section_names *names)
2089 {
2090 if (names->normal != NULL
2091 && strcmp (section_name, names->normal) == 0)
2092 return 1;
2093 if (names->compressed != NULL
2094 && strcmp (section_name, names->compressed) == 0)
2095 return 1;
2096 return 0;
2097 }
2098
2099 /* This function is mapped across the sections and remembers the
2100 offset and size of each of the debugging sections we are interested
2101 in. */
2102
2103 static void
2104 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2105 {
2106 const struct dwarf2_debug_sections *names;
2107 flagword aflag = bfd_get_section_flags (abfd, sectp);
2108
2109 if (vnames == NULL)
2110 names = &dwarf2_elf_names;
2111 else
2112 names = (const struct dwarf2_debug_sections *) vnames;
2113
2114 if ((aflag & SEC_HAS_CONTENTS) == 0)
2115 {
2116 }
2117 else if (section_is_p (sectp->name, &names->info))
2118 {
2119 dwarf2_per_objfile->info.s.asection = sectp;
2120 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2121 }
2122 else if (section_is_p (sectp->name, &names->abbrev))
2123 {
2124 dwarf2_per_objfile->abbrev.s.asection = sectp;
2125 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2126 }
2127 else if (section_is_p (sectp->name, &names->line))
2128 {
2129 dwarf2_per_objfile->line.s.asection = sectp;
2130 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2131 }
2132 else if (section_is_p (sectp->name, &names->loc))
2133 {
2134 dwarf2_per_objfile->loc.s.asection = sectp;
2135 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2136 }
2137 else if (section_is_p (sectp->name, &names->macinfo))
2138 {
2139 dwarf2_per_objfile->macinfo.s.asection = sectp;
2140 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2141 }
2142 else if (section_is_p (sectp->name, &names->macro))
2143 {
2144 dwarf2_per_objfile->macro.s.asection = sectp;
2145 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2146 }
2147 else if (section_is_p (sectp->name, &names->str))
2148 {
2149 dwarf2_per_objfile->str.s.asection = sectp;
2150 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2151 }
2152 else if (section_is_p (sectp->name, &names->addr))
2153 {
2154 dwarf2_per_objfile->addr.s.asection = sectp;
2155 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2156 }
2157 else if (section_is_p (sectp->name, &names->frame))
2158 {
2159 dwarf2_per_objfile->frame.s.asection = sectp;
2160 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2161 }
2162 else if (section_is_p (sectp->name, &names->eh_frame))
2163 {
2164 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2165 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2166 }
2167 else if (section_is_p (sectp->name, &names->ranges))
2168 {
2169 dwarf2_per_objfile->ranges.s.asection = sectp;
2170 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2171 }
2172 else if (section_is_p (sectp->name, &names->types))
2173 {
2174 struct dwarf2_section_info type_section;
2175
2176 memset (&type_section, 0, sizeof (type_section));
2177 type_section.s.asection = sectp;
2178 type_section.size = bfd_get_section_size (sectp);
2179
2180 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2181 &type_section);
2182 }
2183 else if (section_is_p (sectp->name, &names->gdb_index))
2184 {
2185 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2186 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2187 }
2188
2189 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2190 && bfd_section_vma (abfd, sectp) == 0)
2191 dwarf2_per_objfile->has_section_at_zero = 1;
2192 }
2193
2194 /* A helper function that decides whether a section is empty,
2195 or not present. */
2196
2197 static int
2198 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2199 {
2200 if (section->is_virtual)
2201 return section->size == 0;
2202 return section->s.asection == NULL || section->size == 0;
2203 }
2204
2205 /* Read the contents of the section INFO.
2206 OBJFILE is the main object file, but not necessarily the file where
2207 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2208 of the DWO file.
2209 If the section is compressed, uncompress it before returning. */
2210
2211 static void
2212 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2213 {
2214 asection *sectp;
2215 bfd *abfd;
2216 gdb_byte *buf, *retbuf;
2217
2218 if (info->readin)
2219 return;
2220 info->buffer = NULL;
2221 info->readin = 1;
2222
2223 if (dwarf2_section_empty_p (info))
2224 return;
2225
2226 sectp = get_section_bfd_section (info);
2227
2228 /* If this is a virtual section we need to read in the real one first. */
2229 if (info->is_virtual)
2230 {
2231 struct dwarf2_section_info *containing_section =
2232 get_containing_section (info);
2233
2234 gdb_assert (sectp != NULL);
2235 if ((sectp->flags & SEC_RELOC) != 0)
2236 {
2237 error (_("Dwarf Error: DWP format V2 with relocations is not"
2238 " supported in section %s [in module %s]"),
2239 get_section_name (info), get_section_file_name (info));
2240 }
2241 dwarf2_read_section (objfile, containing_section);
2242 /* Other code should have already caught virtual sections that don't
2243 fit. */
2244 gdb_assert (info->virtual_offset + info->size
2245 <= containing_section->size);
2246 /* If the real section is empty or there was a problem reading the
2247 section we shouldn't get here. */
2248 gdb_assert (containing_section->buffer != NULL);
2249 info->buffer = containing_section->buffer + info->virtual_offset;
2250 return;
2251 }
2252
2253 /* If the section has relocations, we must read it ourselves.
2254 Otherwise we attach it to the BFD. */
2255 if ((sectp->flags & SEC_RELOC) == 0)
2256 {
2257 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2258 return;
2259 }
2260
2261 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2262 info->buffer = buf;
2263
2264 /* When debugging .o files, we may need to apply relocations; see
2265 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2266 We never compress sections in .o files, so we only need to
2267 try this when the section is not compressed. */
2268 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2269 if (retbuf != NULL)
2270 {
2271 info->buffer = retbuf;
2272 return;
2273 }
2274
2275 abfd = get_section_bfd_owner (info);
2276 gdb_assert (abfd != NULL);
2277
2278 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2279 || bfd_bread (buf, info->size, abfd) != info->size)
2280 {
2281 error (_("Dwarf Error: Can't read DWARF data"
2282 " in section %s [in module %s]"),
2283 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2284 }
2285 }
2286
2287 /* A helper function that returns the size of a section in a safe way.
2288 If you are positive that the section has been read before using the
2289 size, then it is safe to refer to the dwarf2_section_info object's
2290 "size" field directly. In other cases, you must call this
2291 function, because for compressed sections the size field is not set
2292 correctly until the section has been read. */
2293
2294 static bfd_size_type
2295 dwarf2_section_size (struct objfile *objfile,
2296 struct dwarf2_section_info *info)
2297 {
2298 if (!info->readin)
2299 dwarf2_read_section (objfile, info);
2300 return info->size;
2301 }
2302
2303 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2304 SECTION_NAME. */
2305
2306 void
2307 dwarf2_get_section_info (struct objfile *objfile,
2308 enum dwarf2_section_enum sect,
2309 asection **sectp, const gdb_byte **bufp,
2310 bfd_size_type *sizep)
2311 {
2312 struct dwarf2_per_objfile *data
2313 = objfile_data (objfile, dwarf2_objfile_data_key);
2314 struct dwarf2_section_info *info;
2315
2316 /* We may see an objfile without any DWARF, in which case we just
2317 return nothing. */
2318 if (data == NULL)
2319 {
2320 *sectp = NULL;
2321 *bufp = NULL;
2322 *sizep = 0;
2323 return;
2324 }
2325 switch (sect)
2326 {
2327 case DWARF2_DEBUG_FRAME:
2328 info = &data->frame;
2329 break;
2330 case DWARF2_EH_FRAME:
2331 info = &data->eh_frame;
2332 break;
2333 default:
2334 gdb_assert_not_reached ("unexpected section");
2335 }
2336
2337 dwarf2_read_section (objfile, info);
2338
2339 *sectp = get_section_bfd_section (info);
2340 *bufp = info->buffer;
2341 *sizep = info->size;
2342 }
2343
2344 /* A helper function to find the sections for a .dwz file. */
2345
2346 static void
2347 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2348 {
2349 struct dwz_file *dwz_file = arg;
2350
2351 /* Note that we only support the standard ELF names, because .dwz
2352 is ELF-only (at the time of writing). */
2353 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2354 {
2355 dwz_file->abbrev.s.asection = sectp;
2356 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2359 {
2360 dwz_file->info.s.asection = sectp;
2361 dwz_file->info.size = bfd_get_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2364 {
2365 dwz_file->str.s.asection = sectp;
2366 dwz_file->str.size = bfd_get_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2369 {
2370 dwz_file->line.s.asection = sectp;
2371 dwz_file->line.size = bfd_get_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2374 {
2375 dwz_file->macro.s.asection = sectp;
2376 dwz_file->macro.size = bfd_get_section_size (sectp);
2377 }
2378 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2379 {
2380 dwz_file->gdb_index.s.asection = sectp;
2381 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2382 }
2383 }
2384
2385 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2386 there is no .gnu_debugaltlink section in the file. Error if there
2387 is such a section but the file cannot be found. */
2388
2389 static struct dwz_file *
2390 dwarf2_get_dwz_file (void)
2391 {
2392 bfd *dwz_bfd;
2393 char *data;
2394 struct cleanup *cleanup;
2395 const char *filename;
2396 struct dwz_file *result;
2397 bfd_size_type buildid_len_arg;
2398 size_t buildid_len;
2399 bfd_byte *buildid;
2400
2401 if (dwarf2_per_objfile->dwz_file != NULL)
2402 return dwarf2_per_objfile->dwz_file;
2403
2404 bfd_set_error (bfd_error_no_error);
2405 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2406 &buildid_len_arg, &buildid);
2407 if (data == NULL)
2408 {
2409 if (bfd_get_error () == bfd_error_no_error)
2410 return NULL;
2411 error (_("could not read '.gnu_debugaltlink' section: %s"),
2412 bfd_errmsg (bfd_get_error ()));
2413 }
2414 cleanup = make_cleanup (xfree, data);
2415 make_cleanup (xfree, buildid);
2416
2417 buildid_len = (size_t) buildid_len_arg;
2418
2419 filename = (const char *) data;
2420 if (!IS_ABSOLUTE_PATH (filename))
2421 {
2422 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2423 char *rel;
2424
2425 make_cleanup (xfree, abs);
2426 abs = ldirname (abs);
2427 make_cleanup (xfree, abs);
2428
2429 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2430 make_cleanup (xfree, rel);
2431 filename = rel;
2432 }
2433
2434 /* First try the file name given in the section. If that doesn't
2435 work, try to use the build-id instead. */
2436 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2437 if (dwz_bfd != NULL)
2438 {
2439 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2440 {
2441 gdb_bfd_unref (dwz_bfd);
2442 dwz_bfd = NULL;
2443 }
2444 }
2445
2446 if (dwz_bfd == NULL)
2447 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2448
2449 if (dwz_bfd == NULL)
2450 error (_("could not find '.gnu_debugaltlink' file for %s"),
2451 objfile_name (dwarf2_per_objfile->objfile));
2452
2453 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2454 struct dwz_file);
2455 result->dwz_bfd = dwz_bfd;
2456
2457 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2458
2459 do_cleanups (cleanup);
2460
2461 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2462 dwarf2_per_objfile->dwz_file = result;
2463 return result;
2464 }
2465 \f
2466 /* DWARF quick_symbols_functions support. */
2467
2468 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2469 unique line tables, so we maintain a separate table of all .debug_line
2470 derived entries to support the sharing.
2471 All the quick functions need is the list of file names. We discard the
2472 line_header when we're done and don't need to record it here. */
2473 struct quick_file_names
2474 {
2475 /* The data used to construct the hash key. */
2476 struct stmt_list_hash hash;
2477
2478 /* The number of entries in file_names, real_names. */
2479 unsigned int num_file_names;
2480
2481 /* The file names from the line table, after being run through
2482 file_full_name. */
2483 const char **file_names;
2484
2485 /* The file names from the line table after being run through
2486 gdb_realpath. These are computed lazily. */
2487 const char **real_names;
2488 };
2489
2490 /* When using the index (and thus not using psymtabs), each CU has an
2491 object of this type. This is used to hold information needed by
2492 the various "quick" methods. */
2493 struct dwarf2_per_cu_quick_data
2494 {
2495 /* The file table. This can be NULL if there was no file table
2496 or it's currently not read in.
2497 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2498 struct quick_file_names *file_names;
2499
2500 /* The corresponding symbol table. This is NULL if symbols for this
2501 CU have not yet been read. */
2502 struct symtab *symtab;
2503
2504 /* A temporary mark bit used when iterating over all CUs in
2505 expand_symtabs_matching. */
2506 unsigned int mark : 1;
2507
2508 /* True if we've tried to read the file table and found there isn't one.
2509 There will be no point in trying to read it again next time. */
2510 unsigned int no_file_data : 1;
2511 };
2512
2513 /* Utility hash function for a stmt_list_hash. */
2514
2515 static hashval_t
2516 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2517 {
2518 hashval_t v = 0;
2519
2520 if (stmt_list_hash->dwo_unit != NULL)
2521 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2522 v += stmt_list_hash->line_offset.sect_off;
2523 return v;
2524 }
2525
2526 /* Utility equality function for a stmt_list_hash. */
2527
2528 static int
2529 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2530 const struct stmt_list_hash *rhs)
2531 {
2532 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2533 return 0;
2534 if (lhs->dwo_unit != NULL
2535 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2536 return 0;
2537
2538 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2539 }
2540
2541 /* Hash function for a quick_file_names. */
2542
2543 static hashval_t
2544 hash_file_name_entry (const void *e)
2545 {
2546 const struct quick_file_names *file_data = e;
2547
2548 return hash_stmt_list_entry (&file_data->hash);
2549 }
2550
2551 /* Equality function for a quick_file_names. */
2552
2553 static int
2554 eq_file_name_entry (const void *a, const void *b)
2555 {
2556 const struct quick_file_names *ea = a;
2557 const struct quick_file_names *eb = b;
2558
2559 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2560 }
2561
2562 /* Delete function for a quick_file_names. */
2563
2564 static void
2565 delete_file_name_entry (void *e)
2566 {
2567 struct quick_file_names *file_data = e;
2568 int i;
2569
2570 for (i = 0; i < file_data->num_file_names; ++i)
2571 {
2572 xfree ((void*) file_data->file_names[i]);
2573 if (file_data->real_names)
2574 xfree ((void*) file_data->real_names[i]);
2575 }
2576
2577 /* The space for the struct itself lives on objfile_obstack,
2578 so we don't free it here. */
2579 }
2580
2581 /* Create a quick_file_names hash table. */
2582
2583 static htab_t
2584 create_quick_file_names_table (unsigned int nr_initial_entries)
2585 {
2586 return htab_create_alloc (nr_initial_entries,
2587 hash_file_name_entry, eq_file_name_entry,
2588 delete_file_name_entry, xcalloc, xfree);
2589 }
2590
2591 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2592 have to be created afterwards. You should call age_cached_comp_units after
2593 processing PER_CU->CU. dw2_setup must have been already called. */
2594
2595 static void
2596 load_cu (struct dwarf2_per_cu_data *per_cu)
2597 {
2598 if (per_cu->is_debug_types)
2599 load_full_type_unit (per_cu);
2600 else
2601 load_full_comp_unit (per_cu, language_minimal);
2602
2603 gdb_assert (per_cu->cu != NULL);
2604
2605 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2606 }
2607
2608 /* Read in the symbols for PER_CU. */
2609
2610 static void
2611 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2612 {
2613 struct cleanup *back_to;
2614
2615 /* Skip type_unit_groups, reading the type units they contain
2616 is handled elsewhere. */
2617 if (IS_TYPE_UNIT_GROUP (per_cu))
2618 return;
2619
2620 back_to = make_cleanup (dwarf2_release_queue, NULL);
2621
2622 if (dwarf2_per_objfile->using_index
2623 ? per_cu->v.quick->symtab == NULL
2624 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2625 {
2626 queue_comp_unit (per_cu, language_minimal);
2627 load_cu (per_cu);
2628
2629 /* If we just loaded a CU from a DWO, and we're working with an index
2630 that may badly handle TUs, load all the TUs in that DWO as well.
2631 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2632 if (!per_cu->is_debug_types
2633 && per_cu->cu->dwo_unit != NULL
2634 && dwarf2_per_objfile->index_table != NULL
2635 && dwarf2_per_objfile->index_table->version <= 7
2636 /* DWP files aren't supported yet. */
2637 && get_dwp_file () == NULL)
2638 queue_and_load_all_dwo_tus (per_cu);
2639 }
2640
2641 process_queue ();
2642
2643 /* Age the cache, releasing compilation units that have not
2644 been used recently. */
2645 age_cached_comp_units ();
2646
2647 do_cleanups (back_to);
2648 }
2649
2650 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2651 the objfile from which this CU came. Returns the resulting symbol
2652 table. */
2653
2654 static struct symtab *
2655 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2656 {
2657 gdb_assert (dwarf2_per_objfile->using_index);
2658 if (!per_cu->v.quick->symtab)
2659 {
2660 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2661 increment_reading_symtab ();
2662 dw2_do_instantiate_symtab (per_cu);
2663 process_cu_includes ();
2664 do_cleanups (back_to);
2665 }
2666 return per_cu->v.quick->symtab;
2667 }
2668
2669 /* Return the CU/TU given its index.
2670
2671 This is intended for loops like:
2672
2673 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2674 + dwarf2_per_objfile->n_type_units); ++i)
2675 {
2676 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2677
2678 ...;
2679 }
2680 */
2681
2682 static struct dwarf2_per_cu_data *
2683 dw2_get_cutu (int index)
2684 {
2685 if (index >= dwarf2_per_objfile->n_comp_units)
2686 {
2687 index -= dwarf2_per_objfile->n_comp_units;
2688 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2689 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2690 }
2691
2692 return dwarf2_per_objfile->all_comp_units[index];
2693 }
2694
2695 /* Return the CU given its index.
2696 This differs from dw2_get_cutu in that it's for when you know INDEX
2697 refers to a CU. */
2698
2699 static struct dwarf2_per_cu_data *
2700 dw2_get_cu (int index)
2701 {
2702 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2703
2704 return dwarf2_per_objfile->all_comp_units[index];
2705 }
2706
2707 /* A helper for create_cus_from_index that handles a given list of
2708 CUs. */
2709
2710 static void
2711 create_cus_from_index_list (struct objfile *objfile,
2712 const gdb_byte *cu_list, offset_type n_elements,
2713 struct dwarf2_section_info *section,
2714 int is_dwz,
2715 int base_offset)
2716 {
2717 offset_type i;
2718
2719 for (i = 0; i < n_elements; i += 2)
2720 {
2721 struct dwarf2_per_cu_data *the_cu;
2722 ULONGEST offset, length;
2723
2724 gdb_static_assert (sizeof (ULONGEST) >= 8);
2725 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2726 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2727 cu_list += 2 * 8;
2728
2729 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2730 struct dwarf2_per_cu_data);
2731 the_cu->offset.sect_off = offset;
2732 the_cu->length = length;
2733 the_cu->objfile = objfile;
2734 the_cu->section = section;
2735 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2736 struct dwarf2_per_cu_quick_data);
2737 the_cu->is_dwz = is_dwz;
2738 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2739 }
2740 }
2741
2742 /* Read the CU list from the mapped index, and use it to create all
2743 the CU objects for this objfile. */
2744
2745 static void
2746 create_cus_from_index (struct objfile *objfile,
2747 const gdb_byte *cu_list, offset_type cu_list_elements,
2748 const gdb_byte *dwz_list, offset_type dwz_elements)
2749 {
2750 struct dwz_file *dwz;
2751
2752 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2753 dwarf2_per_objfile->all_comp_units
2754 = obstack_alloc (&objfile->objfile_obstack,
2755 dwarf2_per_objfile->n_comp_units
2756 * sizeof (struct dwarf2_per_cu_data *));
2757
2758 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2759 &dwarf2_per_objfile->info, 0, 0);
2760
2761 if (dwz_elements == 0)
2762 return;
2763
2764 dwz = dwarf2_get_dwz_file ();
2765 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2766 cu_list_elements / 2);
2767 }
2768
2769 /* Create the signatured type hash table from the index. */
2770
2771 static void
2772 create_signatured_type_table_from_index (struct objfile *objfile,
2773 struct dwarf2_section_info *section,
2774 const gdb_byte *bytes,
2775 offset_type elements)
2776 {
2777 offset_type i;
2778 htab_t sig_types_hash;
2779
2780 dwarf2_per_objfile->n_type_units
2781 = dwarf2_per_objfile->n_allocated_type_units
2782 = elements / 3;
2783 dwarf2_per_objfile->all_type_units
2784 = xmalloc (dwarf2_per_objfile->n_type_units
2785 * sizeof (struct signatured_type *));
2786
2787 sig_types_hash = allocate_signatured_type_table (objfile);
2788
2789 for (i = 0; i < elements; i += 3)
2790 {
2791 struct signatured_type *sig_type;
2792 ULONGEST offset, type_offset_in_tu, signature;
2793 void **slot;
2794
2795 gdb_static_assert (sizeof (ULONGEST) >= 8);
2796 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2797 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2798 BFD_ENDIAN_LITTLE);
2799 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2800 bytes += 3 * 8;
2801
2802 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2803 struct signatured_type);
2804 sig_type->signature = signature;
2805 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2806 sig_type->per_cu.is_debug_types = 1;
2807 sig_type->per_cu.section = section;
2808 sig_type->per_cu.offset.sect_off = offset;
2809 sig_type->per_cu.objfile = objfile;
2810 sig_type->per_cu.v.quick
2811 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2812 struct dwarf2_per_cu_quick_data);
2813
2814 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2815 *slot = sig_type;
2816
2817 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2818 }
2819
2820 dwarf2_per_objfile->signatured_types = sig_types_hash;
2821 }
2822
2823 /* Read the address map data from the mapped index, and use it to
2824 populate the objfile's psymtabs_addrmap. */
2825
2826 static void
2827 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2828 {
2829 const gdb_byte *iter, *end;
2830 struct obstack temp_obstack;
2831 struct addrmap *mutable_map;
2832 struct cleanup *cleanup;
2833 CORE_ADDR baseaddr;
2834
2835 obstack_init (&temp_obstack);
2836 cleanup = make_cleanup_obstack_free (&temp_obstack);
2837 mutable_map = addrmap_create_mutable (&temp_obstack);
2838
2839 iter = index->address_table;
2840 end = iter + index->address_table_size;
2841
2842 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2843
2844 while (iter < end)
2845 {
2846 ULONGEST hi, lo, cu_index;
2847 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 iter += 8;
2849 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2850 iter += 8;
2851 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2852 iter += 4;
2853
2854 if (lo > hi)
2855 {
2856 complaint (&symfile_complaints,
2857 _(".gdb_index address table has invalid range (%s - %s)"),
2858 hex_string (lo), hex_string (hi));
2859 continue;
2860 }
2861
2862 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2863 {
2864 complaint (&symfile_complaints,
2865 _(".gdb_index address table has invalid CU number %u"),
2866 (unsigned) cu_index);
2867 continue;
2868 }
2869
2870 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2871 dw2_get_cutu (cu_index));
2872 }
2873
2874 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2875 &objfile->objfile_obstack);
2876 do_cleanups (cleanup);
2877 }
2878
2879 /* The hash function for strings in the mapped index. This is the same as
2880 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2881 implementation. This is necessary because the hash function is tied to the
2882 format of the mapped index file. The hash values do not have to match with
2883 SYMBOL_HASH_NEXT.
2884
2885 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2886
2887 static hashval_t
2888 mapped_index_string_hash (int index_version, const void *p)
2889 {
2890 const unsigned char *str = (const unsigned char *) p;
2891 hashval_t r = 0;
2892 unsigned char c;
2893
2894 while ((c = *str++) != 0)
2895 {
2896 if (index_version >= 5)
2897 c = tolower (c);
2898 r = r * 67 + c - 113;
2899 }
2900
2901 return r;
2902 }
2903
2904 /* Find a slot in the mapped index INDEX for the object named NAME.
2905 If NAME is found, set *VEC_OUT to point to the CU vector in the
2906 constant pool and return 1. If NAME cannot be found, return 0. */
2907
2908 static int
2909 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2910 offset_type **vec_out)
2911 {
2912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2913 offset_type hash;
2914 offset_type slot, step;
2915 int (*cmp) (const char *, const char *);
2916
2917 if (current_language->la_language == language_cplus
2918 || current_language->la_language == language_java
2919 || current_language->la_language == language_fortran)
2920 {
2921 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2922 not contain any. */
2923 const char *paren = strchr (name, '(');
2924
2925 if (paren)
2926 {
2927 char *dup;
2928
2929 dup = xmalloc (paren - name + 1);
2930 memcpy (dup, name, paren - name);
2931 dup[paren - name] = 0;
2932
2933 make_cleanup (xfree, dup);
2934 name = dup;
2935 }
2936 }
2937
2938 /* Index version 4 did not support case insensitive searches. But the
2939 indices for case insensitive languages are built in lowercase, therefore
2940 simulate our NAME being searched is also lowercased. */
2941 hash = mapped_index_string_hash ((index->version == 4
2942 && case_sensitivity == case_sensitive_off
2943 ? 5 : index->version),
2944 name);
2945
2946 slot = hash & (index->symbol_table_slots - 1);
2947 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2948 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2949
2950 for (;;)
2951 {
2952 /* Convert a slot number to an offset into the table. */
2953 offset_type i = 2 * slot;
2954 const char *str;
2955 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2956 {
2957 do_cleanups (back_to);
2958 return 0;
2959 }
2960
2961 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2962 if (!cmp (name, str))
2963 {
2964 *vec_out = (offset_type *) (index->constant_pool
2965 + MAYBE_SWAP (index->symbol_table[i + 1]));
2966 do_cleanups (back_to);
2967 return 1;
2968 }
2969
2970 slot = (slot + step) & (index->symbol_table_slots - 1);
2971 }
2972 }
2973
2974 /* A helper function that reads the .gdb_index from SECTION and fills
2975 in MAP. FILENAME is the name of the file containing the section;
2976 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2977 ok to use deprecated sections.
2978
2979 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2980 out parameters that are filled in with information about the CU and
2981 TU lists in the section.
2982
2983 Returns 1 if all went well, 0 otherwise. */
2984
2985 static int
2986 read_index_from_section (struct objfile *objfile,
2987 const char *filename,
2988 int deprecated_ok,
2989 struct dwarf2_section_info *section,
2990 struct mapped_index *map,
2991 const gdb_byte **cu_list,
2992 offset_type *cu_list_elements,
2993 const gdb_byte **types_list,
2994 offset_type *types_list_elements)
2995 {
2996 const gdb_byte *addr;
2997 offset_type version;
2998 offset_type *metadata;
2999 int i;
3000
3001 if (dwarf2_section_empty_p (section))
3002 return 0;
3003
3004 /* Older elfutils strip versions could keep the section in the main
3005 executable while splitting it for the separate debug info file. */
3006 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3007 return 0;
3008
3009 dwarf2_read_section (objfile, section);
3010
3011 addr = section->buffer;
3012 /* Version check. */
3013 version = MAYBE_SWAP (*(offset_type *) addr);
3014 /* Versions earlier than 3 emitted every copy of a psymbol. This
3015 causes the index to behave very poorly for certain requests. Version 3
3016 contained incomplete addrmap. So, it seems better to just ignore such
3017 indices. */
3018 if (version < 4)
3019 {
3020 static int warning_printed = 0;
3021 if (!warning_printed)
3022 {
3023 warning (_("Skipping obsolete .gdb_index section in %s."),
3024 filename);
3025 warning_printed = 1;
3026 }
3027 return 0;
3028 }
3029 /* Index version 4 uses a different hash function than index version
3030 5 and later.
3031
3032 Versions earlier than 6 did not emit psymbols for inlined
3033 functions. Using these files will cause GDB not to be able to
3034 set breakpoints on inlined functions by name, so we ignore these
3035 indices unless the user has done
3036 "set use-deprecated-index-sections on". */
3037 if (version < 6 && !deprecated_ok)
3038 {
3039 static int warning_printed = 0;
3040 if (!warning_printed)
3041 {
3042 warning (_("\
3043 Skipping deprecated .gdb_index section in %s.\n\
3044 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3045 to use the section anyway."),
3046 filename);
3047 warning_printed = 1;
3048 }
3049 return 0;
3050 }
3051 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3052 of the TU (for symbols coming from TUs),
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3054 Plus gold-generated indices can have duplicate entries for global symbols,
3055 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3056 These are just performance bugs, and we can't distinguish gdb-generated
3057 indices from gold-generated ones, so issue no warning here. */
3058
3059 /* Indexes with higher version than the one supported by GDB may be no
3060 longer backward compatible. */
3061 if (version > 8)
3062 return 0;
3063
3064 map->version = version;
3065 map->total_size = section->size;
3066
3067 metadata = (offset_type *) (addr + sizeof (offset_type));
3068
3069 i = 0;
3070 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3071 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3072 / 8);
3073 ++i;
3074
3075 *types_list = addr + MAYBE_SWAP (metadata[i]);
3076 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3077 - MAYBE_SWAP (metadata[i]))
3078 / 8);
3079 ++i;
3080
3081 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3082 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3083 - MAYBE_SWAP (metadata[i]));
3084 ++i;
3085
3086 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3087 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3088 - MAYBE_SWAP (metadata[i]))
3089 / (2 * sizeof (offset_type)));
3090 ++i;
3091
3092 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3093
3094 return 1;
3095 }
3096
3097
3098 /* Read the index file. If everything went ok, initialize the "quick"
3099 elements of all the CUs and return 1. Otherwise, return 0. */
3100
3101 static int
3102 dwarf2_read_index (struct objfile *objfile)
3103 {
3104 struct mapped_index local_map, *map;
3105 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3106 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3107 struct dwz_file *dwz;
3108
3109 if (!read_index_from_section (objfile, objfile_name (objfile),
3110 use_deprecated_index_sections,
3111 &dwarf2_per_objfile->gdb_index, &local_map,
3112 &cu_list, &cu_list_elements,
3113 &types_list, &types_list_elements))
3114 return 0;
3115
3116 /* Don't use the index if it's empty. */
3117 if (local_map.symbol_table_slots == 0)
3118 return 0;
3119
3120 /* If there is a .dwz file, read it so we can get its CU list as
3121 well. */
3122 dwz = dwarf2_get_dwz_file ();
3123 if (dwz != NULL)
3124 {
3125 struct mapped_index dwz_map;
3126 const gdb_byte *dwz_types_ignore;
3127 offset_type dwz_types_elements_ignore;
3128
3129 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3130 1,
3131 &dwz->gdb_index, &dwz_map,
3132 &dwz_list, &dwz_list_elements,
3133 &dwz_types_ignore,
3134 &dwz_types_elements_ignore))
3135 {
3136 warning (_("could not read '.gdb_index' section from %s; skipping"),
3137 bfd_get_filename (dwz->dwz_bfd));
3138 return 0;
3139 }
3140 }
3141
3142 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3143 dwz_list_elements);
3144
3145 if (types_list_elements)
3146 {
3147 struct dwarf2_section_info *section;
3148
3149 /* We can only handle a single .debug_types when we have an
3150 index. */
3151 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3152 return 0;
3153
3154 section = VEC_index (dwarf2_section_info_def,
3155 dwarf2_per_objfile->types, 0);
3156
3157 create_signatured_type_table_from_index (objfile, section, types_list,
3158 types_list_elements);
3159 }
3160
3161 create_addrmap_from_index (objfile, &local_map);
3162
3163 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3164 *map = local_map;
3165
3166 dwarf2_per_objfile->index_table = map;
3167 dwarf2_per_objfile->using_index = 1;
3168 dwarf2_per_objfile->quick_file_names_table =
3169 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3170
3171 return 1;
3172 }
3173
3174 /* A helper for the "quick" functions which sets the global
3175 dwarf2_per_objfile according to OBJFILE. */
3176
3177 static void
3178 dw2_setup (struct objfile *objfile)
3179 {
3180 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3181 gdb_assert (dwarf2_per_objfile);
3182 }
3183
3184 /* die_reader_func for dw2_get_file_names. */
3185
3186 static void
3187 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3188 const gdb_byte *info_ptr,
3189 struct die_info *comp_unit_die,
3190 int has_children,
3191 void *data)
3192 {
3193 struct dwarf2_cu *cu = reader->cu;
3194 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3195 struct objfile *objfile = dwarf2_per_objfile->objfile;
3196 struct dwarf2_per_cu_data *lh_cu;
3197 struct line_header *lh;
3198 struct attribute *attr;
3199 int i;
3200 const char *name, *comp_dir;
3201 void **slot;
3202 struct quick_file_names *qfn;
3203 unsigned int line_offset;
3204
3205 gdb_assert (! this_cu->is_debug_types);
3206
3207 /* Our callers never want to match partial units -- instead they
3208 will match the enclosing full CU. */
3209 if (comp_unit_die->tag == DW_TAG_partial_unit)
3210 {
3211 this_cu->v.quick->no_file_data = 1;
3212 return;
3213 }
3214
3215 lh_cu = this_cu;
3216 lh = NULL;
3217 slot = NULL;
3218 line_offset = 0;
3219
3220 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3221 if (attr)
3222 {
3223 struct quick_file_names find_entry;
3224
3225 line_offset = DW_UNSND (attr);
3226
3227 /* We may have already read in this line header (TU line header sharing).
3228 If we have we're done. */
3229 find_entry.hash.dwo_unit = cu->dwo_unit;
3230 find_entry.hash.line_offset.sect_off = line_offset;
3231 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3232 &find_entry, INSERT);
3233 if (*slot != NULL)
3234 {
3235 lh_cu->v.quick->file_names = *slot;
3236 return;
3237 }
3238
3239 lh = dwarf_decode_line_header (line_offset, cu);
3240 }
3241 if (lh == NULL)
3242 {
3243 lh_cu->v.quick->no_file_data = 1;
3244 return;
3245 }
3246
3247 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3248 qfn->hash.dwo_unit = cu->dwo_unit;
3249 qfn->hash.line_offset.sect_off = line_offset;
3250 gdb_assert (slot != NULL);
3251 *slot = qfn;
3252
3253 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3254
3255 qfn->num_file_names = lh->num_file_names;
3256 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3257 lh->num_file_names * sizeof (char *));
3258 for (i = 0; i < lh->num_file_names; ++i)
3259 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3260 qfn->real_names = NULL;
3261
3262 free_line_header (lh);
3263
3264 lh_cu->v.quick->file_names = qfn;
3265 }
3266
3267 /* A helper for the "quick" functions which attempts to read the line
3268 table for THIS_CU. */
3269
3270 static struct quick_file_names *
3271 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3272 {
3273 /* This should never be called for TUs. */
3274 gdb_assert (! this_cu->is_debug_types);
3275 /* Nor type unit groups. */
3276 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3277
3278 if (this_cu->v.quick->file_names != NULL)
3279 return this_cu->v.quick->file_names;
3280 /* If we know there is no line data, no point in looking again. */
3281 if (this_cu->v.quick->no_file_data)
3282 return NULL;
3283
3284 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3285
3286 if (this_cu->v.quick->no_file_data)
3287 return NULL;
3288 return this_cu->v.quick->file_names;
3289 }
3290
3291 /* A helper for the "quick" functions which computes and caches the
3292 real path for a given file name from the line table. */
3293
3294 static const char *
3295 dw2_get_real_path (struct objfile *objfile,
3296 struct quick_file_names *qfn, int index)
3297 {
3298 if (qfn->real_names == NULL)
3299 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3300 qfn->num_file_names, const char *);
3301
3302 if (qfn->real_names[index] == NULL)
3303 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3304
3305 return qfn->real_names[index];
3306 }
3307
3308 static struct symtab *
3309 dw2_find_last_source_symtab (struct objfile *objfile)
3310 {
3311 int index;
3312
3313 dw2_setup (objfile);
3314 index = dwarf2_per_objfile->n_comp_units - 1;
3315 return dw2_instantiate_symtab (dw2_get_cutu (index));
3316 }
3317
3318 /* Traversal function for dw2_forget_cached_source_info. */
3319
3320 static int
3321 dw2_free_cached_file_names (void **slot, void *info)
3322 {
3323 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3324
3325 if (file_data->real_names)
3326 {
3327 int i;
3328
3329 for (i = 0; i < file_data->num_file_names; ++i)
3330 {
3331 xfree ((void*) file_data->real_names[i]);
3332 file_data->real_names[i] = NULL;
3333 }
3334 }
3335
3336 return 1;
3337 }
3338
3339 static void
3340 dw2_forget_cached_source_info (struct objfile *objfile)
3341 {
3342 dw2_setup (objfile);
3343
3344 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3345 dw2_free_cached_file_names, NULL);
3346 }
3347
3348 /* Helper function for dw2_map_symtabs_matching_filename that expands
3349 the symtabs and calls the iterator. */
3350
3351 static int
3352 dw2_map_expand_apply (struct objfile *objfile,
3353 struct dwarf2_per_cu_data *per_cu,
3354 const char *name, const char *real_path,
3355 int (*callback) (struct symtab *, void *),
3356 void *data)
3357 {
3358 struct symtab *last_made = objfile->symtabs;
3359
3360 /* Don't visit already-expanded CUs. */
3361 if (per_cu->v.quick->symtab)
3362 return 0;
3363
3364 /* This may expand more than one symtab, and we want to iterate over
3365 all of them. */
3366 dw2_instantiate_symtab (per_cu);
3367
3368 return iterate_over_some_symtabs (name, real_path, callback, data,
3369 objfile->symtabs, last_made);
3370 }
3371
3372 /* Implementation of the map_symtabs_matching_filename method. */
3373
3374 static int
3375 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3376 const char *real_path,
3377 int (*callback) (struct symtab *, void *),
3378 void *data)
3379 {
3380 int i;
3381 const char *name_basename = lbasename (name);
3382
3383 dw2_setup (objfile);
3384
3385 /* The rule is CUs specify all the files, including those used by
3386 any TU, so there's no need to scan TUs here. */
3387
3388 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3389 {
3390 int j;
3391 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3392 struct quick_file_names *file_data;
3393
3394 /* We only need to look at symtabs not already expanded. */
3395 if (per_cu->v.quick->symtab)
3396 continue;
3397
3398 file_data = dw2_get_file_names (per_cu);
3399 if (file_data == NULL)
3400 continue;
3401
3402 for (j = 0; j < file_data->num_file_names; ++j)
3403 {
3404 const char *this_name = file_data->file_names[j];
3405 const char *this_real_name;
3406
3407 if (compare_filenames_for_search (this_name, name))
3408 {
3409 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3410 callback, data))
3411 return 1;
3412 continue;
3413 }
3414
3415 /* Before we invoke realpath, which can get expensive when many
3416 files are involved, do a quick comparison of the basenames. */
3417 if (! basenames_may_differ
3418 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3419 continue;
3420
3421 this_real_name = dw2_get_real_path (objfile, file_data, j);
3422 if (compare_filenames_for_search (this_real_name, name))
3423 {
3424 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3425 callback, data))
3426 return 1;
3427 continue;
3428 }
3429
3430 if (real_path != NULL)
3431 {
3432 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3433 gdb_assert (IS_ABSOLUTE_PATH (name));
3434 if (this_real_name != NULL
3435 && FILENAME_CMP (real_path, this_real_name) == 0)
3436 {
3437 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3438 callback, data))
3439 return 1;
3440 continue;
3441 }
3442 }
3443 }
3444 }
3445
3446 return 0;
3447 }
3448
3449 /* Struct used to manage iterating over all CUs looking for a symbol. */
3450
3451 struct dw2_symtab_iterator
3452 {
3453 /* The internalized form of .gdb_index. */
3454 struct mapped_index *index;
3455 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3456 int want_specific_block;
3457 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3458 Unused if !WANT_SPECIFIC_BLOCK. */
3459 int block_index;
3460 /* The kind of symbol we're looking for. */
3461 domain_enum domain;
3462 /* The list of CUs from the index entry of the symbol,
3463 or NULL if not found. */
3464 offset_type *vec;
3465 /* The next element in VEC to look at. */
3466 int next;
3467 /* The number of elements in VEC, or zero if there is no match. */
3468 int length;
3469 /* Have we seen a global version of the symbol?
3470 If so we can ignore all further global instances.
3471 This is to work around gold/15646, inefficient gold-generated
3472 indices. */
3473 int global_seen;
3474 };
3475
3476 /* Initialize the index symtab iterator ITER.
3477 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3478 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3479
3480 static void
3481 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3482 struct mapped_index *index,
3483 int want_specific_block,
3484 int block_index,
3485 domain_enum domain,
3486 const char *name)
3487 {
3488 iter->index = index;
3489 iter->want_specific_block = want_specific_block;
3490 iter->block_index = block_index;
3491 iter->domain = domain;
3492 iter->next = 0;
3493 iter->global_seen = 0;
3494
3495 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3496 iter->length = MAYBE_SWAP (*iter->vec);
3497 else
3498 {
3499 iter->vec = NULL;
3500 iter->length = 0;
3501 }
3502 }
3503
3504 /* Return the next matching CU or NULL if there are no more. */
3505
3506 static struct dwarf2_per_cu_data *
3507 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3508 {
3509 for ( ; iter->next < iter->length; ++iter->next)
3510 {
3511 offset_type cu_index_and_attrs =
3512 MAYBE_SWAP (iter->vec[iter->next + 1]);
3513 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3514 struct dwarf2_per_cu_data *per_cu;
3515 int want_static = iter->block_index != GLOBAL_BLOCK;
3516 /* This value is only valid for index versions >= 7. */
3517 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3518 gdb_index_symbol_kind symbol_kind =
3519 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3520 /* Only check the symbol attributes if they're present.
3521 Indices prior to version 7 don't record them,
3522 and indices >= 7 may elide them for certain symbols
3523 (gold does this). */
3524 int attrs_valid =
3525 (iter->index->version >= 7
3526 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3527
3528 /* Don't crash on bad data. */
3529 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3530 + dwarf2_per_objfile->n_type_units))
3531 {
3532 complaint (&symfile_complaints,
3533 _(".gdb_index entry has bad CU index"
3534 " [in module %s]"),
3535 objfile_name (dwarf2_per_objfile->objfile));
3536 continue;
3537 }
3538
3539 per_cu = dw2_get_cutu (cu_index);
3540
3541 /* Skip if already read in. */
3542 if (per_cu->v.quick->symtab)
3543 continue;
3544
3545 /* Check static vs global. */
3546 if (attrs_valid)
3547 {
3548 if (iter->want_specific_block
3549 && want_static != is_static)
3550 continue;
3551 /* Work around gold/15646. */
3552 if (!is_static && iter->global_seen)
3553 continue;
3554 if (!is_static)
3555 iter->global_seen = 1;
3556 }
3557
3558 /* Only check the symbol's kind if it has one. */
3559 if (attrs_valid)
3560 {
3561 switch (iter->domain)
3562 {
3563 case VAR_DOMAIN:
3564 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3565 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3566 /* Some types are also in VAR_DOMAIN. */
3567 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3568 continue;
3569 break;
3570 case STRUCT_DOMAIN:
3571 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3572 continue;
3573 break;
3574 case LABEL_DOMAIN:
3575 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3576 continue;
3577 break;
3578 default:
3579 break;
3580 }
3581 }
3582
3583 ++iter->next;
3584 return per_cu;
3585 }
3586
3587 return NULL;
3588 }
3589
3590 static struct symtab *
3591 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3592 const char *name, domain_enum domain)
3593 {
3594 struct symtab *stab_best = NULL;
3595 struct mapped_index *index;
3596
3597 dw2_setup (objfile);
3598
3599 index = dwarf2_per_objfile->index_table;
3600
3601 /* index is NULL if OBJF_READNOW. */
3602 if (index)
3603 {
3604 struct dw2_symtab_iterator iter;
3605 struct dwarf2_per_cu_data *per_cu;
3606
3607 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3608
3609 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3610 {
3611 struct symbol *sym = NULL;
3612 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3613
3614 /* Some caution must be observed with overloaded functions
3615 and methods, since the index will not contain any overload
3616 information (but NAME might contain it). */
3617 if (stab->primary)
3618 {
3619 const struct blockvector *bv = BLOCKVECTOR (stab);
3620 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3621
3622 sym = lookup_block_symbol (block, name, domain);
3623 }
3624
3625 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3626 {
3627 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3628 return stab;
3629
3630 stab_best = stab;
3631 }
3632
3633 /* Keep looking through other CUs. */
3634 }
3635 }
3636
3637 return stab_best;
3638 }
3639
3640 static void
3641 dw2_print_stats (struct objfile *objfile)
3642 {
3643 int i, total, count;
3644
3645 dw2_setup (objfile);
3646 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3647 count = 0;
3648 for (i = 0; i < total; ++i)
3649 {
3650 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3651
3652 if (!per_cu->v.quick->symtab)
3653 ++count;
3654 }
3655 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3656 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3657 }
3658
3659 /* This dumps minimal information about the index.
3660 It is called via "mt print objfiles".
3661 One use is to verify .gdb_index has been loaded by the
3662 gdb.dwarf2/gdb-index.exp testcase. */
3663
3664 static void
3665 dw2_dump (struct objfile *objfile)
3666 {
3667 dw2_setup (objfile);
3668 gdb_assert (dwarf2_per_objfile->using_index);
3669 printf_filtered (".gdb_index:");
3670 if (dwarf2_per_objfile->index_table != NULL)
3671 {
3672 printf_filtered (" version %d\n",
3673 dwarf2_per_objfile->index_table->version);
3674 }
3675 else
3676 printf_filtered (" faked for \"readnow\"\n");
3677 printf_filtered ("\n");
3678 }
3679
3680 static void
3681 dw2_relocate (struct objfile *objfile,
3682 const struct section_offsets *new_offsets,
3683 const struct section_offsets *delta)
3684 {
3685 /* There's nothing to relocate here. */
3686 }
3687
3688 static void
3689 dw2_expand_symtabs_for_function (struct objfile *objfile,
3690 const char *func_name)
3691 {
3692 struct mapped_index *index;
3693
3694 dw2_setup (objfile);
3695
3696 index = dwarf2_per_objfile->index_table;
3697
3698 /* index is NULL if OBJF_READNOW. */
3699 if (index)
3700 {
3701 struct dw2_symtab_iterator iter;
3702 struct dwarf2_per_cu_data *per_cu;
3703
3704 /* Note: It doesn't matter what we pass for block_index here. */
3705 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3706 func_name);
3707
3708 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3709 dw2_instantiate_symtab (per_cu);
3710 }
3711 }
3712
3713 static void
3714 dw2_expand_all_symtabs (struct objfile *objfile)
3715 {
3716 int i;
3717
3718 dw2_setup (objfile);
3719
3720 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3721 + dwarf2_per_objfile->n_type_units); ++i)
3722 {
3723 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3724
3725 dw2_instantiate_symtab (per_cu);
3726 }
3727 }
3728
3729 static void
3730 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3731 const char *fullname)
3732 {
3733 int i;
3734
3735 dw2_setup (objfile);
3736
3737 /* We don't need to consider type units here.
3738 This is only called for examining code, e.g. expand_line_sal.
3739 There can be an order of magnitude (or more) more type units
3740 than comp units, and we avoid them if we can. */
3741
3742 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3743 {
3744 int j;
3745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3746 struct quick_file_names *file_data;
3747
3748 /* We only need to look at symtabs not already expanded. */
3749 if (per_cu->v.quick->symtab)
3750 continue;
3751
3752 file_data = dw2_get_file_names (per_cu);
3753 if (file_data == NULL)
3754 continue;
3755
3756 for (j = 0; j < file_data->num_file_names; ++j)
3757 {
3758 const char *this_fullname = file_data->file_names[j];
3759
3760 if (filename_cmp (this_fullname, fullname) == 0)
3761 {
3762 dw2_instantiate_symtab (per_cu);
3763 break;
3764 }
3765 }
3766 }
3767 }
3768
3769 static void
3770 dw2_map_matching_symbols (struct objfile *objfile,
3771 const char * name, domain_enum namespace,
3772 int global,
3773 int (*callback) (struct block *,
3774 struct symbol *, void *),
3775 void *data, symbol_compare_ftype *match,
3776 symbol_compare_ftype *ordered_compare)
3777 {
3778 /* Currently unimplemented; used for Ada. The function can be called if the
3779 current language is Ada for a non-Ada objfile using GNU index. As Ada
3780 does not look for non-Ada symbols this function should just return. */
3781 }
3782
3783 static void
3784 dw2_expand_symtabs_matching
3785 (struct objfile *objfile,
3786 expand_symtabs_file_matcher_ftype *file_matcher,
3787 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3788 enum search_domain kind,
3789 void *data)
3790 {
3791 int i;
3792 offset_type iter;
3793 struct mapped_index *index;
3794
3795 dw2_setup (objfile);
3796
3797 /* index_table is NULL if OBJF_READNOW. */
3798 if (!dwarf2_per_objfile->index_table)
3799 return;
3800 index = dwarf2_per_objfile->index_table;
3801
3802 if (file_matcher != NULL)
3803 {
3804 struct cleanup *cleanup;
3805 htab_t visited_found, visited_not_found;
3806
3807 visited_found = htab_create_alloc (10,
3808 htab_hash_pointer, htab_eq_pointer,
3809 NULL, xcalloc, xfree);
3810 cleanup = make_cleanup_htab_delete (visited_found);
3811 visited_not_found = htab_create_alloc (10,
3812 htab_hash_pointer, htab_eq_pointer,
3813 NULL, xcalloc, xfree);
3814 make_cleanup_htab_delete (visited_not_found);
3815
3816 /* The rule is CUs specify all the files, including those used by
3817 any TU, so there's no need to scan TUs here. */
3818
3819 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3820 {
3821 int j;
3822 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3823 struct quick_file_names *file_data;
3824 void **slot;
3825
3826 per_cu->v.quick->mark = 0;
3827
3828 /* We only need to look at symtabs not already expanded. */
3829 if (per_cu->v.quick->symtab)
3830 continue;
3831
3832 file_data = dw2_get_file_names (per_cu);
3833 if (file_data == NULL)
3834 continue;
3835
3836 if (htab_find (visited_not_found, file_data) != NULL)
3837 continue;
3838 else if (htab_find (visited_found, file_data) != NULL)
3839 {
3840 per_cu->v.quick->mark = 1;
3841 continue;
3842 }
3843
3844 for (j = 0; j < file_data->num_file_names; ++j)
3845 {
3846 const char *this_real_name;
3847
3848 if (file_matcher (file_data->file_names[j], data, 0))
3849 {
3850 per_cu->v.quick->mark = 1;
3851 break;
3852 }
3853
3854 /* Before we invoke realpath, which can get expensive when many
3855 files are involved, do a quick comparison of the basenames. */
3856 if (!basenames_may_differ
3857 && !file_matcher (lbasename (file_data->file_names[j]),
3858 data, 1))
3859 continue;
3860
3861 this_real_name = dw2_get_real_path (objfile, file_data, j);
3862 if (file_matcher (this_real_name, data, 0))
3863 {
3864 per_cu->v.quick->mark = 1;
3865 break;
3866 }
3867 }
3868
3869 slot = htab_find_slot (per_cu->v.quick->mark
3870 ? visited_found
3871 : visited_not_found,
3872 file_data, INSERT);
3873 *slot = file_data;
3874 }
3875
3876 do_cleanups (cleanup);
3877 }
3878
3879 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3880 {
3881 offset_type idx = 2 * iter;
3882 const char *name;
3883 offset_type *vec, vec_len, vec_idx;
3884 int global_seen = 0;
3885
3886 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3887 continue;
3888
3889 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3890
3891 if (! (*symbol_matcher) (name, data))
3892 continue;
3893
3894 /* The name was matched, now expand corresponding CUs that were
3895 marked. */
3896 vec = (offset_type *) (index->constant_pool
3897 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3898 vec_len = MAYBE_SWAP (vec[0]);
3899 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3900 {
3901 struct dwarf2_per_cu_data *per_cu;
3902 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3903 /* This value is only valid for index versions >= 7. */
3904 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3905 gdb_index_symbol_kind symbol_kind =
3906 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3907 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3908 /* Only check the symbol attributes if they're present.
3909 Indices prior to version 7 don't record them,
3910 and indices >= 7 may elide them for certain symbols
3911 (gold does this). */
3912 int attrs_valid =
3913 (index->version >= 7
3914 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3915
3916 /* Work around gold/15646. */
3917 if (attrs_valid)
3918 {
3919 if (!is_static && global_seen)
3920 continue;
3921 if (!is_static)
3922 global_seen = 1;
3923 }
3924
3925 /* Only check the symbol's kind if it has one. */
3926 if (attrs_valid)
3927 {
3928 switch (kind)
3929 {
3930 case VARIABLES_DOMAIN:
3931 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3932 continue;
3933 break;
3934 case FUNCTIONS_DOMAIN:
3935 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3936 continue;
3937 break;
3938 case TYPES_DOMAIN:
3939 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3940 continue;
3941 break;
3942 default:
3943 break;
3944 }
3945 }
3946
3947 /* Don't crash on bad data. */
3948 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3949 + dwarf2_per_objfile->n_type_units))
3950 {
3951 complaint (&symfile_complaints,
3952 _(".gdb_index entry has bad CU index"
3953 " [in module %s]"), objfile_name (objfile));
3954 continue;
3955 }
3956
3957 per_cu = dw2_get_cutu (cu_index);
3958 if (file_matcher == NULL || per_cu->v.quick->mark)
3959 dw2_instantiate_symtab (per_cu);
3960 }
3961 }
3962 }
3963
3964 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3965 symtab. */
3966
3967 static struct symtab *
3968 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3969 {
3970 int i;
3971
3972 if (BLOCKVECTOR (symtab) != NULL
3973 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3974 return symtab;
3975
3976 if (symtab->includes == NULL)
3977 return NULL;
3978
3979 for (i = 0; symtab->includes[i]; ++i)
3980 {
3981 struct symtab *s = symtab->includes[i];
3982
3983 s = recursively_find_pc_sect_symtab (s, pc);
3984 if (s != NULL)
3985 return s;
3986 }
3987
3988 return NULL;
3989 }
3990
3991 static struct symtab *
3992 dw2_find_pc_sect_symtab (struct objfile *objfile,
3993 struct bound_minimal_symbol msymbol,
3994 CORE_ADDR pc,
3995 struct obj_section *section,
3996 int warn_if_readin)
3997 {
3998 struct dwarf2_per_cu_data *data;
3999 struct symtab *result;
4000
4001 dw2_setup (objfile);
4002
4003 if (!objfile->psymtabs_addrmap)
4004 return NULL;
4005
4006 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4007 if (!data)
4008 return NULL;
4009
4010 if (warn_if_readin && data->v.quick->symtab)
4011 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4012 paddress (get_objfile_arch (objfile), pc));
4013
4014 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4015 gdb_assert (result != NULL);
4016 return result;
4017 }
4018
4019 static void
4020 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4021 void *data, int need_fullname)
4022 {
4023 int i;
4024 struct cleanup *cleanup;
4025 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4026 NULL, xcalloc, xfree);
4027
4028 cleanup = make_cleanup_htab_delete (visited);
4029 dw2_setup (objfile);
4030
4031 /* The rule is CUs specify all the files, including those used by
4032 any TU, so there's no need to scan TUs here.
4033 We can ignore file names coming from already-expanded CUs. */
4034
4035 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4036 {
4037 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4038
4039 if (per_cu->v.quick->symtab)
4040 {
4041 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4042 INSERT);
4043
4044 *slot = per_cu->v.quick->file_names;
4045 }
4046 }
4047
4048 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4049 {
4050 int j;
4051 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4052 struct quick_file_names *file_data;
4053 void **slot;
4054
4055 /* We only need to look at symtabs not already expanded. */
4056 if (per_cu->v.quick->symtab)
4057 continue;
4058
4059 file_data = dw2_get_file_names (per_cu);
4060 if (file_data == NULL)
4061 continue;
4062
4063 slot = htab_find_slot (visited, file_data, INSERT);
4064 if (*slot)
4065 {
4066 /* Already visited. */
4067 continue;
4068 }
4069 *slot = file_data;
4070
4071 for (j = 0; j < file_data->num_file_names; ++j)
4072 {
4073 const char *this_real_name;
4074
4075 if (need_fullname)
4076 this_real_name = dw2_get_real_path (objfile, file_data, j);
4077 else
4078 this_real_name = NULL;
4079 (*fun) (file_data->file_names[j], this_real_name, data);
4080 }
4081 }
4082
4083 do_cleanups (cleanup);
4084 }
4085
4086 static int
4087 dw2_has_symbols (struct objfile *objfile)
4088 {
4089 return 1;
4090 }
4091
4092 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4093 {
4094 dw2_has_symbols,
4095 dw2_find_last_source_symtab,
4096 dw2_forget_cached_source_info,
4097 dw2_map_symtabs_matching_filename,
4098 dw2_lookup_symbol,
4099 dw2_print_stats,
4100 dw2_dump,
4101 dw2_relocate,
4102 dw2_expand_symtabs_for_function,
4103 dw2_expand_all_symtabs,
4104 dw2_expand_symtabs_with_fullname,
4105 dw2_map_matching_symbols,
4106 dw2_expand_symtabs_matching,
4107 dw2_find_pc_sect_symtab,
4108 dw2_map_symbol_filenames
4109 };
4110
4111 /* Initialize for reading DWARF for this objfile. Return 0 if this
4112 file will use psymtabs, or 1 if using the GNU index. */
4113
4114 int
4115 dwarf2_initialize_objfile (struct objfile *objfile)
4116 {
4117 /* If we're about to read full symbols, don't bother with the
4118 indices. In this case we also don't care if some other debug
4119 format is making psymtabs, because they are all about to be
4120 expanded anyway. */
4121 if ((objfile->flags & OBJF_READNOW))
4122 {
4123 int i;
4124
4125 dwarf2_per_objfile->using_index = 1;
4126 create_all_comp_units (objfile);
4127 create_all_type_units (objfile);
4128 dwarf2_per_objfile->quick_file_names_table =
4129 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4130
4131 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4132 + dwarf2_per_objfile->n_type_units); ++i)
4133 {
4134 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4135
4136 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4137 struct dwarf2_per_cu_quick_data);
4138 }
4139
4140 /* Return 1 so that gdb sees the "quick" functions. However,
4141 these functions will be no-ops because we will have expanded
4142 all symtabs. */
4143 return 1;
4144 }
4145
4146 if (dwarf2_read_index (objfile))
4147 return 1;
4148
4149 return 0;
4150 }
4151
4152 \f
4153
4154 /* Build a partial symbol table. */
4155
4156 void
4157 dwarf2_build_psymtabs (struct objfile *objfile)
4158 {
4159 volatile struct gdb_exception except;
4160
4161 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4162 {
4163 init_psymbol_list (objfile, 1024);
4164 }
4165
4166 TRY_CATCH (except, RETURN_MASK_ERROR)
4167 {
4168 /* This isn't really ideal: all the data we allocate on the
4169 objfile's obstack is still uselessly kept around. However,
4170 freeing it seems unsafe. */
4171 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4172
4173 dwarf2_build_psymtabs_hard (objfile);
4174 discard_cleanups (cleanups);
4175 }
4176 if (except.reason < 0)
4177 exception_print (gdb_stderr, except);
4178 }
4179
4180 /* Return the total length of the CU described by HEADER. */
4181
4182 static unsigned int
4183 get_cu_length (const struct comp_unit_head *header)
4184 {
4185 return header->initial_length_size + header->length;
4186 }
4187
4188 /* Return TRUE if OFFSET is within CU_HEADER. */
4189
4190 static inline int
4191 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4192 {
4193 sect_offset bottom = { cu_header->offset.sect_off };
4194 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4195
4196 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4197 }
4198
4199 /* Find the base address of the compilation unit for range lists and
4200 location lists. It will normally be specified by DW_AT_low_pc.
4201 In DWARF-3 draft 4, the base address could be overridden by
4202 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4203 compilation units with discontinuous ranges. */
4204
4205 static void
4206 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4207 {
4208 struct attribute *attr;
4209
4210 cu->base_known = 0;
4211 cu->base_address = 0;
4212
4213 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4214 if (attr)
4215 {
4216 cu->base_address = attr_value_as_address (attr);
4217 cu->base_known = 1;
4218 }
4219 else
4220 {
4221 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4222 if (attr)
4223 {
4224 cu->base_address = attr_value_as_address (attr);
4225 cu->base_known = 1;
4226 }
4227 }
4228 }
4229
4230 /* Read in the comp unit header information from the debug_info at info_ptr.
4231 NOTE: This leaves members offset, first_die_offset to be filled in
4232 by the caller. */
4233
4234 static const gdb_byte *
4235 read_comp_unit_head (struct comp_unit_head *cu_header,
4236 const gdb_byte *info_ptr, bfd *abfd)
4237 {
4238 int signed_addr;
4239 unsigned int bytes_read;
4240
4241 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4242 cu_header->initial_length_size = bytes_read;
4243 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4244 info_ptr += bytes_read;
4245 cu_header->version = read_2_bytes (abfd, info_ptr);
4246 info_ptr += 2;
4247 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4248 &bytes_read);
4249 info_ptr += bytes_read;
4250 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4251 info_ptr += 1;
4252 signed_addr = bfd_get_sign_extend_vma (abfd);
4253 if (signed_addr < 0)
4254 internal_error (__FILE__, __LINE__,
4255 _("read_comp_unit_head: dwarf from non elf file"));
4256 cu_header->signed_addr_p = signed_addr;
4257
4258 return info_ptr;
4259 }
4260
4261 /* Helper function that returns the proper abbrev section for
4262 THIS_CU. */
4263
4264 static struct dwarf2_section_info *
4265 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4266 {
4267 struct dwarf2_section_info *abbrev;
4268
4269 if (this_cu->is_dwz)
4270 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4271 else
4272 abbrev = &dwarf2_per_objfile->abbrev;
4273
4274 return abbrev;
4275 }
4276
4277 /* Subroutine of read_and_check_comp_unit_head and
4278 read_and_check_type_unit_head to simplify them.
4279 Perform various error checking on the header. */
4280
4281 static void
4282 error_check_comp_unit_head (struct comp_unit_head *header,
4283 struct dwarf2_section_info *section,
4284 struct dwarf2_section_info *abbrev_section)
4285 {
4286 bfd *abfd = get_section_bfd_owner (section);
4287 const char *filename = get_section_file_name (section);
4288
4289 if (header->version != 2 && header->version != 3 && header->version != 4)
4290 error (_("Dwarf Error: wrong version in compilation unit header "
4291 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4292 filename);
4293
4294 if (header->abbrev_offset.sect_off
4295 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4296 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4297 "(offset 0x%lx + 6) [in module %s]"),
4298 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4299 filename);
4300
4301 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4302 avoid potential 32-bit overflow. */
4303 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4304 > section->size)
4305 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4306 "(offset 0x%lx + 0) [in module %s]"),
4307 (long) header->length, (long) header->offset.sect_off,
4308 filename);
4309 }
4310
4311 /* Read in a CU/TU header and perform some basic error checking.
4312 The contents of the header are stored in HEADER.
4313 The result is a pointer to the start of the first DIE. */
4314
4315 static const gdb_byte *
4316 read_and_check_comp_unit_head (struct comp_unit_head *header,
4317 struct dwarf2_section_info *section,
4318 struct dwarf2_section_info *abbrev_section,
4319 const gdb_byte *info_ptr,
4320 int is_debug_types_section)
4321 {
4322 const gdb_byte *beg_of_comp_unit = info_ptr;
4323 bfd *abfd = get_section_bfd_owner (section);
4324
4325 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4326
4327 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4328
4329 /* If we're reading a type unit, skip over the signature and
4330 type_offset fields. */
4331 if (is_debug_types_section)
4332 info_ptr += 8 /*signature*/ + header->offset_size;
4333
4334 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4335
4336 error_check_comp_unit_head (header, section, abbrev_section);
4337
4338 return info_ptr;
4339 }
4340
4341 /* Read in the types comp unit header information from .debug_types entry at
4342 types_ptr. The result is a pointer to one past the end of the header. */
4343
4344 static const gdb_byte *
4345 read_and_check_type_unit_head (struct comp_unit_head *header,
4346 struct dwarf2_section_info *section,
4347 struct dwarf2_section_info *abbrev_section,
4348 const gdb_byte *info_ptr,
4349 ULONGEST *signature,
4350 cu_offset *type_offset_in_tu)
4351 {
4352 const gdb_byte *beg_of_comp_unit = info_ptr;
4353 bfd *abfd = get_section_bfd_owner (section);
4354
4355 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4356
4357 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4358
4359 /* If we're reading a type unit, skip over the signature and
4360 type_offset fields. */
4361 if (signature != NULL)
4362 *signature = read_8_bytes (abfd, info_ptr);
4363 info_ptr += 8;
4364 if (type_offset_in_tu != NULL)
4365 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4366 header->offset_size);
4367 info_ptr += header->offset_size;
4368
4369 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4370
4371 error_check_comp_unit_head (header, section, abbrev_section);
4372
4373 return info_ptr;
4374 }
4375
4376 /* Fetch the abbreviation table offset from a comp or type unit header. */
4377
4378 static sect_offset
4379 read_abbrev_offset (struct dwarf2_section_info *section,
4380 sect_offset offset)
4381 {
4382 bfd *abfd = get_section_bfd_owner (section);
4383 const gdb_byte *info_ptr;
4384 unsigned int length, initial_length_size, offset_size;
4385 sect_offset abbrev_offset;
4386
4387 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4388 info_ptr = section->buffer + offset.sect_off;
4389 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4390 offset_size = initial_length_size == 4 ? 4 : 8;
4391 info_ptr += initial_length_size + 2 /*version*/;
4392 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4393 return abbrev_offset;
4394 }
4395
4396 /* Allocate a new partial symtab for file named NAME and mark this new
4397 partial symtab as being an include of PST. */
4398
4399 static void
4400 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4401 struct objfile *objfile)
4402 {
4403 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4404
4405 if (!IS_ABSOLUTE_PATH (subpst->filename))
4406 {
4407 /* It shares objfile->objfile_obstack. */
4408 subpst->dirname = pst->dirname;
4409 }
4410
4411 subpst->section_offsets = pst->section_offsets;
4412 subpst->textlow = 0;
4413 subpst->texthigh = 0;
4414
4415 subpst->dependencies = (struct partial_symtab **)
4416 obstack_alloc (&objfile->objfile_obstack,
4417 sizeof (struct partial_symtab *));
4418 subpst->dependencies[0] = pst;
4419 subpst->number_of_dependencies = 1;
4420
4421 subpst->globals_offset = 0;
4422 subpst->n_global_syms = 0;
4423 subpst->statics_offset = 0;
4424 subpst->n_static_syms = 0;
4425 subpst->symtab = NULL;
4426 subpst->read_symtab = pst->read_symtab;
4427 subpst->readin = 0;
4428
4429 /* No private part is necessary for include psymtabs. This property
4430 can be used to differentiate between such include psymtabs and
4431 the regular ones. */
4432 subpst->read_symtab_private = NULL;
4433 }
4434
4435 /* Read the Line Number Program data and extract the list of files
4436 included by the source file represented by PST. Build an include
4437 partial symtab for each of these included files. */
4438
4439 static void
4440 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4441 struct die_info *die,
4442 struct partial_symtab *pst)
4443 {
4444 struct line_header *lh = NULL;
4445 struct attribute *attr;
4446
4447 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4448 if (attr)
4449 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4450 if (lh == NULL)
4451 return; /* No linetable, so no includes. */
4452
4453 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4454 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4455
4456 free_line_header (lh);
4457 }
4458
4459 static hashval_t
4460 hash_signatured_type (const void *item)
4461 {
4462 const struct signatured_type *sig_type = item;
4463
4464 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4465 return sig_type->signature;
4466 }
4467
4468 static int
4469 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4470 {
4471 const struct signatured_type *lhs = item_lhs;
4472 const struct signatured_type *rhs = item_rhs;
4473
4474 return lhs->signature == rhs->signature;
4475 }
4476
4477 /* Allocate a hash table for signatured types. */
4478
4479 static htab_t
4480 allocate_signatured_type_table (struct objfile *objfile)
4481 {
4482 return htab_create_alloc_ex (41,
4483 hash_signatured_type,
4484 eq_signatured_type,
4485 NULL,
4486 &objfile->objfile_obstack,
4487 hashtab_obstack_allocate,
4488 dummy_obstack_deallocate);
4489 }
4490
4491 /* A helper function to add a signatured type CU to a table. */
4492
4493 static int
4494 add_signatured_type_cu_to_table (void **slot, void *datum)
4495 {
4496 struct signatured_type *sigt = *slot;
4497 struct signatured_type ***datap = datum;
4498
4499 **datap = sigt;
4500 ++*datap;
4501
4502 return 1;
4503 }
4504
4505 /* Create the hash table of all entries in the .debug_types
4506 (or .debug_types.dwo) section(s).
4507 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4508 otherwise it is NULL.
4509
4510 The result is a pointer to the hash table or NULL if there are no types.
4511
4512 Note: This function processes DWO files only, not DWP files. */
4513
4514 static htab_t
4515 create_debug_types_hash_table (struct dwo_file *dwo_file,
4516 VEC (dwarf2_section_info_def) *types)
4517 {
4518 struct objfile *objfile = dwarf2_per_objfile->objfile;
4519 htab_t types_htab = NULL;
4520 int ix;
4521 struct dwarf2_section_info *section;
4522 struct dwarf2_section_info *abbrev_section;
4523
4524 if (VEC_empty (dwarf2_section_info_def, types))
4525 return NULL;
4526
4527 abbrev_section = (dwo_file != NULL
4528 ? &dwo_file->sections.abbrev
4529 : &dwarf2_per_objfile->abbrev);
4530
4531 if (dwarf2_read_debug)
4532 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4533 dwo_file ? ".dwo" : "",
4534 get_section_file_name (abbrev_section));
4535
4536 for (ix = 0;
4537 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4538 ++ix)
4539 {
4540 bfd *abfd;
4541 const gdb_byte *info_ptr, *end_ptr;
4542
4543 dwarf2_read_section (objfile, section);
4544 info_ptr = section->buffer;
4545
4546 if (info_ptr == NULL)
4547 continue;
4548
4549 /* We can't set abfd until now because the section may be empty or
4550 not present, in which case the bfd is unknown. */
4551 abfd = get_section_bfd_owner (section);
4552
4553 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4554 because we don't need to read any dies: the signature is in the
4555 header. */
4556
4557 end_ptr = info_ptr + section->size;
4558 while (info_ptr < end_ptr)
4559 {
4560 sect_offset offset;
4561 cu_offset type_offset_in_tu;
4562 ULONGEST signature;
4563 struct signatured_type *sig_type;
4564 struct dwo_unit *dwo_tu;
4565 void **slot;
4566 const gdb_byte *ptr = info_ptr;
4567 struct comp_unit_head header;
4568 unsigned int length;
4569
4570 offset.sect_off = ptr - section->buffer;
4571
4572 /* We need to read the type's signature in order to build the hash
4573 table, but we don't need anything else just yet. */
4574
4575 ptr = read_and_check_type_unit_head (&header, section,
4576 abbrev_section, ptr,
4577 &signature, &type_offset_in_tu);
4578
4579 length = get_cu_length (&header);
4580
4581 /* Skip dummy type units. */
4582 if (ptr >= info_ptr + length
4583 || peek_abbrev_code (abfd, ptr) == 0)
4584 {
4585 info_ptr += length;
4586 continue;
4587 }
4588
4589 if (types_htab == NULL)
4590 {
4591 if (dwo_file)
4592 types_htab = allocate_dwo_unit_table (objfile);
4593 else
4594 types_htab = allocate_signatured_type_table (objfile);
4595 }
4596
4597 if (dwo_file)
4598 {
4599 sig_type = NULL;
4600 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4601 struct dwo_unit);
4602 dwo_tu->dwo_file = dwo_file;
4603 dwo_tu->signature = signature;
4604 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4605 dwo_tu->section = section;
4606 dwo_tu->offset = offset;
4607 dwo_tu->length = length;
4608 }
4609 else
4610 {
4611 /* N.B.: type_offset is not usable if this type uses a DWO file.
4612 The real type_offset is in the DWO file. */
4613 dwo_tu = NULL;
4614 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4615 struct signatured_type);
4616 sig_type->signature = signature;
4617 sig_type->type_offset_in_tu = type_offset_in_tu;
4618 sig_type->per_cu.objfile = objfile;
4619 sig_type->per_cu.is_debug_types = 1;
4620 sig_type->per_cu.section = section;
4621 sig_type->per_cu.offset = offset;
4622 sig_type->per_cu.length = length;
4623 }
4624
4625 slot = htab_find_slot (types_htab,
4626 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4627 INSERT);
4628 gdb_assert (slot != NULL);
4629 if (*slot != NULL)
4630 {
4631 sect_offset dup_offset;
4632
4633 if (dwo_file)
4634 {
4635 const struct dwo_unit *dup_tu = *slot;
4636
4637 dup_offset = dup_tu->offset;
4638 }
4639 else
4640 {
4641 const struct signatured_type *dup_tu = *slot;
4642
4643 dup_offset = dup_tu->per_cu.offset;
4644 }
4645
4646 complaint (&symfile_complaints,
4647 _("debug type entry at offset 0x%x is duplicate to"
4648 " the entry at offset 0x%x, signature %s"),
4649 offset.sect_off, dup_offset.sect_off,
4650 hex_string (signature));
4651 }
4652 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4653
4654 if (dwarf2_read_debug > 1)
4655 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4656 offset.sect_off,
4657 hex_string (signature));
4658
4659 info_ptr += length;
4660 }
4661 }
4662
4663 return types_htab;
4664 }
4665
4666 /* Create the hash table of all entries in the .debug_types section,
4667 and initialize all_type_units.
4668 The result is zero if there is an error (e.g. missing .debug_types section),
4669 otherwise non-zero. */
4670
4671 static int
4672 create_all_type_units (struct objfile *objfile)
4673 {
4674 htab_t types_htab;
4675 struct signatured_type **iter;
4676
4677 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4678 if (types_htab == NULL)
4679 {
4680 dwarf2_per_objfile->signatured_types = NULL;
4681 return 0;
4682 }
4683
4684 dwarf2_per_objfile->signatured_types = types_htab;
4685
4686 dwarf2_per_objfile->n_type_units
4687 = dwarf2_per_objfile->n_allocated_type_units
4688 = htab_elements (types_htab);
4689 dwarf2_per_objfile->all_type_units
4690 = xmalloc (dwarf2_per_objfile->n_type_units
4691 * sizeof (struct signatured_type *));
4692 iter = &dwarf2_per_objfile->all_type_units[0];
4693 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4694 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4695 == dwarf2_per_objfile->n_type_units);
4696
4697 return 1;
4698 }
4699
4700 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4701 If SLOT is non-NULL, it is the entry to use in the hash table.
4702 Otherwise we find one. */
4703
4704 static struct signatured_type *
4705 add_type_unit (ULONGEST sig, void **slot)
4706 {
4707 struct objfile *objfile = dwarf2_per_objfile->objfile;
4708 int n_type_units = dwarf2_per_objfile->n_type_units;
4709 struct signatured_type *sig_type;
4710
4711 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4712 ++n_type_units;
4713 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4714 {
4715 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4716 dwarf2_per_objfile->n_allocated_type_units = 1;
4717 dwarf2_per_objfile->n_allocated_type_units *= 2;
4718 dwarf2_per_objfile->all_type_units
4719 = xrealloc (dwarf2_per_objfile->all_type_units,
4720 dwarf2_per_objfile->n_allocated_type_units
4721 * sizeof (struct signatured_type *));
4722 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4723 }
4724 dwarf2_per_objfile->n_type_units = n_type_units;
4725
4726 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4727 struct signatured_type);
4728 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4729 sig_type->signature = sig;
4730 sig_type->per_cu.is_debug_types = 1;
4731 if (dwarf2_per_objfile->using_index)
4732 {
4733 sig_type->per_cu.v.quick =
4734 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4735 struct dwarf2_per_cu_quick_data);
4736 }
4737
4738 if (slot == NULL)
4739 {
4740 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4741 sig_type, INSERT);
4742 }
4743 gdb_assert (*slot == NULL);
4744 *slot = sig_type;
4745 /* The rest of sig_type must be filled in by the caller. */
4746 return sig_type;
4747 }
4748
4749 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4750 Fill in SIG_ENTRY with DWO_ENTRY. */
4751
4752 static void
4753 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4754 struct signatured_type *sig_entry,
4755 struct dwo_unit *dwo_entry)
4756 {
4757 /* Make sure we're not clobbering something we don't expect to. */
4758 gdb_assert (! sig_entry->per_cu.queued);
4759 gdb_assert (sig_entry->per_cu.cu == NULL);
4760 if (dwarf2_per_objfile->using_index)
4761 {
4762 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4763 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4764 }
4765 else
4766 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4767 gdb_assert (sig_entry->signature == dwo_entry->signature);
4768 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4769 gdb_assert (sig_entry->type_unit_group == NULL);
4770 gdb_assert (sig_entry->dwo_unit == NULL);
4771
4772 sig_entry->per_cu.section = dwo_entry->section;
4773 sig_entry->per_cu.offset = dwo_entry->offset;
4774 sig_entry->per_cu.length = dwo_entry->length;
4775 sig_entry->per_cu.reading_dwo_directly = 1;
4776 sig_entry->per_cu.objfile = objfile;
4777 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4778 sig_entry->dwo_unit = dwo_entry;
4779 }
4780
4781 /* Subroutine of lookup_signatured_type.
4782 If we haven't read the TU yet, create the signatured_type data structure
4783 for a TU to be read in directly from a DWO file, bypassing the stub.
4784 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4785 using .gdb_index, then when reading a CU we want to stay in the DWO file
4786 containing that CU. Otherwise we could end up reading several other DWO
4787 files (due to comdat folding) to process the transitive closure of all the
4788 mentioned TUs, and that can be slow. The current DWO file will have every
4789 type signature that it needs.
4790 We only do this for .gdb_index because in the psymtab case we already have
4791 to read all the DWOs to build the type unit groups. */
4792
4793 static struct signatured_type *
4794 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4795 {
4796 struct objfile *objfile = dwarf2_per_objfile->objfile;
4797 struct dwo_file *dwo_file;
4798 struct dwo_unit find_dwo_entry, *dwo_entry;
4799 struct signatured_type find_sig_entry, *sig_entry;
4800 void **slot;
4801
4802 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4803
4804 /* If TU skeletons have been removed then we may not have read in any
4805 TUs yet. */
4806 if (dwarf2_per_objfile->signatured_types == NULL)
4807 {
4808 dwarf2_per_objfile->signatured_types
4809 = allocate_signatured_type_table (objfile);
4810 }
4811
4812 /* We only ever need to read in one copy of a signatured type.
4813 Use the global signatured_types array to do our own comdat-folding
4814 of types. If this is the first time we're reading this TU, and
4815 the TU has an entry in .gdb_index, replace the recorded data from
4816 .gdb_index with this TU. */
4817
4818 find_sig_entry.signature = sig;
4819 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4820 &find_sig_entry, INSERT);
4821 sig_entry = *slot;
4822
4823 /* We can get here with the TU already read, *or* in the process of being
4824 read. Don't reassign the global entry to point to this DWO if that's
4825 the case. Also note that if the TU is already being read, it may not
4826 have come from a DWO, the program may be a mix of Fission-compiled
4827 code and non-Fission-compiled code. */
4828
4829 /* Have we already tried to read this TU?
4830 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4831 needn't exist in the global table yet). */
4832 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4833 return sig_entry;
4834
4835 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4836 dwo_unit of the TU itself. */
4837 dwo_file = cu->dwo_unit->dwo_file;
4838
4839 /* Ok, this is the first time we're reading this TU. */
4840 if (dwo_file->tus == NULL)
4841 return NULL;
4842 find_dwo_entry.signature = sig;
4843 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4844 if (dwo_entry == NULL)
4845 return NULL;
4846
4847 /* If the global table doesn't have an entry for this TU, add one. */
4848 if (sig_entry == NULL)
4849 sig_entry = add_type_unit (sig, slot);
4850
4851 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4852 sig_entry->per_cu.tu_read = 1;
4853 return sig_entry;
4854 }
4855
4856 /* Subroutine of lookup_signatured_type.
4857 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4858 then try the DWP file. If the TU stub (skeleton) has been removed then
4859 it won't be in .gdb_index. */
4860
4861 static struct signatured_type *
4862 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4863 {
4864 struct objfile *objfile = dwarf2_per_objfile->objfile;
4865 struct dwp_file *dwp_file = get_dwp_file ();
4866 struct dwo_unit *dwo_entry;
4867 struct signatured_type find_sig_entry, *sig_entry;
4868 void **slot;
4869
4870 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4871 gdb_assert (dwp_file != NULL);
4872
4873 /* If TU skeletons have been removed then we may not have read in any
4874 TUs yet. */
4875 if (dwarf2_per_objfile->signatured_types == NULL)
4876 {
4877 dwarf2_per_objfile->signatured_types
4878 = allocate_signatured_type_table (objfile);
4879 }
4880
4881 find_sig_entry.signature = sig;
4882 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4883 &find_sig_entry, INSERT);
4884 sig_entry = *slot;
4885
4886 /* Have we already tried to read this TU?
4887 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4888 needn't exist in the global table yet). */
4889 if (sig_entry != NULL)
4890 return sig_entry;
4891
4892 if (dwp_file->tus == NULL)
4893 return NULL;
4894 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4895 sig, 1 /* is_debug_types */);
4896 if (dwo_entry == NULL)
4897 return NULL;
4898
4899 sig_entry = add_type_unit (sig, slot);
4900 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4901
4902 return sig_entry;
4903 }
4904
4905 /* Lookup a signature based type for DW_FORM_ref_sig8.
4906 Returns NULL if signature SIG is not present in the table.
4907 It is up to the caller to complain about this. */
4908
4909 static struct signatured_type *
4910 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4911 {
4912 if (cu->dwo_unit
4913 && dwarf2_per_objfile->using_index)
4914 {
4915 /* We're in a DWO/DWP file, and we're using .gdb_index.
4916 These cases require special processing. */
4917 if (get_dwp_file () == NULL)
4918 return lookup_dwo_signatured_type (cu, sig);
4919 else
4920 return lookup_dwp_signatured_type (cu, sig);
4921 }
4922 else
4923 {
4924 struct signatured_type find_entry, *entry;
4925
4926 if (dwarf2_per_objfile->signatured_types == NULL)
4927 return NULL;
4928 find_entry.signature = sig;
4929 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4930 return entry;
4931 }
4932 }
4933 \f
4934 /* Low level DIE reading support. */
4935
4936 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4937
4938 static void
4939 init_cu_die_reader (struct die_reader_specs *reader,
4940 struct dwarf2_cu *cu,
4941 struct dwarf2_section_info *section,
4942 struct dwo_file *dwo_file)
4943 {
4944 gdb_assert (section->readin && section->buffer != NULL);
4945 reader->abfd = get_section_bfd_owner (section);
4946 reader->cu = cu;
4947 reader->dwo_file = dwo_file;
4948 reader->die_section = section;
4949 reader->buffer = section->buffer;
4950 reader->buffer_end = section->buffer + section->size;
4951 reader->comp_dir = NULL;
4952 }
4953
4954 /* Subroutine of init_cutu_and_read_dies to simplify it.
4955 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4956 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4957 already.
4958
4959 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4960 from it to the DIE in the DWO. If NULL we are skipping the stub.
4961 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4962 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4963 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4964 STUB_COMP_DIR may be non-NULL.
4965 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4966 are filled in with the info of the DIE from the DWO file.
4967 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4968 provided an abbrev table to use.
4969 The result is non-zero if a valid (non-dummy) DIE was found. */
4970
4971 static int
4972 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4973 struct dwo_unit *dwo_unit,
4974 int abbrev_table_provided,
4975 struct die_info *stub_comp_unit_die,
4976 const char *stub_comp_dir,
4977 struct die_reader_specs *result_reader,
4978 const gdb_byte **result_info_ptr,
4979 struct die_info **result_comp_unit_die,
4980 int *result_has_children)
4981 {
4982 struct objfile *objfile = dwarf2_per_objfile->objfile;
4983 struct dwarf2_cu *cu = this_cu->cu;
4984 struct dwarf2_section_info *section;
4985 bfd *abfd;
4986 const gdb_byte *begin_info_ptr, *info_ptr;
4987 ULONGEST signature; /* Or dwo_id. */
4988 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4989 int i,num_extra_attrs;
4990 struct dwarf2_section_info *dwo_abbrev_section;
4991 struct attribute *attr;
4992 struct die_info *comp_unit_die;
4993
4994 /* At most one of these may be provided. */
4995 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4996
4997 /* These attributes aren't processed until later:
4998 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4999 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5000 referenced later. However, these attributes are found in the stub
5001 which we won't have later. In order to not impose this complication
5002 on the rest of the code, we read them here and copy them to the
5003 DWO CU/TU die. */
5004
5005 stmt_list = NULL;
5006 low_pc = NULL;
5007 high_pc = NULL;
5008 ranges = NULL;
5009 comp_dir = NULL;
5010
5011 if (stub_comp_unit_die != NULL)
5012 {
5013 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5014 DWO file. */
5015 if (! this_cu->is_debug_types)
5016 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5017 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5018 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5019 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5020 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5021
5022 /* There should be a DW_AT_addr_base attribute here (if needed).
5023 We need the value before we can process DW_FORM_GNU_addr_index. */
5024 cu->addr_base = 0;
5025 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5026 if (attr)
5027 cu->addr_base = DW_UNSND (attr);
5028
5029 /* There should be a DW_AT_ranges_base attribute here (if needed).
5030 We need the value before we can process DW_AT_ranges. */
5031 cu->ranges_base = 0;
5032 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5033 if (attr)
5034 cu->ranges_base = DW_UNSND (attr);
5035 }
5036 else if (stub_comp_dir != NULL)
5037 {
5038 /* Reconstruct the comp_dir attribute to simplify the code below. */
5039 comp_dir = (struct attribute *)
5040 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5041 comp_dir->name = DW_AT_comp_dir;
5042 comp_dir->form = DW_FORM_string;
5043 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5044 DW_STRING (comp_dir) = stub_comp_dir;
5045 }
5046
5047 /* Set up for reading the DWO CU/TU. */
5048 cu->dwo_unit = dwo_unit;
5049 section = dwo_unit->section;
5050 dwarf2_read_section (objfile, section);
5051 abfd = get_section_bfd_owner (section);
5052 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5053 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5054 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5055
5056 if (this_cu->is_debug_types)
5057 {
5058 ULONGEST header_signature;
5059 cu_offset type_offset_in_tu;
5060 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5061
5062 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5063 dwo_abbrev_section,
5064 info_ptr,
5065 &header_signature,
5066 &type_offset_in_tu);
5067 /* This is not an assert because it can be caused by bad debug info. */
5068 if (sig_type->signature != header_signature)
5069 {
5070 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5071 " TU at offset 0x%x [in module %s]"),
5072 hex_string (sig_type->signature),
5073 hex_string (header_signature),
5074 dwo_unit->offset.sect_off,
5075 bfd_get_filename (abfd));
5076 }
5077 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5078 /* For DWOs coming from DWP files, we don't know the CU length
5079 nor the type's offset in the TU until now. */
5080 dwo_unit->length = get_cu_length (&cu->header);
5081 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5082
5083 /* Establish the type offset that can be used to lookup the type.
5084 For DWO files, we don't know it until now. */
5085 sig_type->type_offset_in_section.sect_off =
5086 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5087 }
5088 else
5089 {
5090 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5091 dwo_abbrev_section,
5092 info_ptr, 0);
5093 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5094 /* For DWOs coming from DWP files, we don't know the CU length
5095 until now. */
5096 dwo_unit->length = get_cu_length (&cu->header);
5097 }
5098
5099 /* Replace the CU's original abbrev table with the DWO's.
5100 Reminder: We can't read the abbrev table until we've read the header. */
5101 if (abbrev_table_provided)
5102 {
5103 /* Don't free the provided abbrev table, the caller of
5104 init_cutu_and_read_dies owns it. */
5105 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5106 /* Ensure the DWO abbrev table gets freed. */
5107 make_cleanup (dwarf2_free_abbrev_table, cu);
5108 }
5109 else
5110 {
5111 dwarf2_free_abbrev_table (cu);
5112 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5113 /* Leave any existing abbrev table cleanup as is. */
5114 }
5115
5116 /* Read in the die, but leave space to copy over the attributes
5117 from the stub. This has the benefit of simplifying the rest of
5118 the code - all the work to maintain the illusion of a single
5119 DW_TAG_{compile,type}_unit DIE is done here. */
5120 num_extra_attrs = ((stmt_list != NULL)
5121 + (low_pc != NULL)
5122 + (high_pc != NULL)
5123 + (ranges != NULL)
5124 + (comp_dir != NULL));
5125 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5126 result_has_children, num_extra_attrs);
5127
5128 /* Copy over the attributes from the stub to the DIE we just read in. */
5129 comp_unit_die = *result_comp_unit_die;
5130 i = comp_unit_die->num_attrs;
5131 if (stmt_list != NULL)
5132 comp_unit_die->attrs[i++] = *stmt_list;
5133 if (low_pc != NULL)
5134 comp_unit_die->attrs[i++] = *low_pc;
5135 if (high_pc != NULL)
5136 comp_unit_die->attrs[i++] = *high_pc;
5137 if (ranges != NULL)
5138 comp_unit_die->attrs[i++] = *ranges;
5139 if (comp_dir != NULL)
5140 comp_unit_die->attrs[i++] = *comp_dir;
5141 comp_unit_die->num_attrs += num_extra_attrs;
5142
5143 if (dwarf2_die_debug)
5144 {
5145 fprintf_unfiltered (gdb_stdlog,
5146 "Read die from %s@0x%x of %s:\n",
5147 get_section_name (section),
5148 (unsigned) (begin_info_ptr - section->buffer),
5149 bfd_get_filename (abfd));
5150 dump_die (comp_unit_die, dwarf2_die_debug);
5151 }
5152
5153 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5154 TUs by skipping the stub and going directly to the entry in the DWO file.
5155 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5156 to get it via circuitous means. Blech. */
5157 if (comp_dir != NULL)
5158 result_reader->comp_dir = DW_STRING (comp_dir);
5159
5160 /* Skip dummy compilation units. */
5161 if (info_ptr >= begin_info_ptr + dwo_unit->length
5162 || peek_abbrev_code (abfd, info_ptr) == 0)
5163 return 0;
5164
5165 *result_info_ptr = info_ptr;
5166 return 1;
5167 }
5168
5169 /* Subroutine of init_cutu_and_read_dies to simplify it.
5170 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5171 Returns NULL if the specified DWO unit cannot be found. */
5172
5173 static struct dwo_unit *
5174 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5175 struct die_info *comp_unit_die)
5176 {
5177 struct dwarf2_cu *cu = this_cu->cu;
5178 struct attribute *attr;
5179 ULONGEST signature;
5180 struct dwo_unit *dwo_unit;
5181 const char *comp_dir, *dwo_name;
5182
5183 gdb_assert (cu != NULL);
5184
5185 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5186 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5187 gdb_assert (attr != NULL);
5188 dwo_name = DW_STRING (attr);
5189 comp_dir = NULL;
5190 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5191 if (attr)
5192 comp_dir = DW_STRING (attr);
5193
5194 if (this_cu->is_debug_types)
5195 {
5196 struct signatured_type *sig_type;
5197
5198 /* Since this_cu is the first member of struct signatured_type,
5199 we can go from a pointer to one to a pointer to the other. */
5200 sig_type = (struct signatured_type *) this_cu;
5201 signature = sig_type->signature;
5202 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5203 }
5204 else
5205 {
5206 struct attribute *attr;
5207
5208 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5209 if (! attr)
5210 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5211 " [in module %s]"),
5212 dwo_name, objfile_name (this_cu->objfile));
5213 signature = DW_UNSND (attr);
5214 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5215 signature);
5216 }
5217
5218 return dwo_unit;
5219 }
5220
5221 /* Subroutine of init_cutu_and_read_dies to simplify it.
5222 See it for a description of the parameters.
5223 Read a TU directly from a DWO file, bypassing the stub.
5224
5225 Note: This function could be a little bit simpler if we shared cleanups
5226 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5227 to do, so we keep this function self-contained. Or we could move this
5228 into our caller, but it's complex enough already. */
5229
5230 static void
5231 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5232 int use_existing_cu, int keep,
5233 die_reader_func_ftype *die_reader_func,
5234 void *data)
5235 {
5236 struct dwarf2_cu *cu;
5237 struct signatured_type *sig_type;
5238 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5239 struct die_reader_specs reader;
5240 const gdb_byte *info_ptr;
5241 struct die_info *comp_unit_die;
5242 int has_children;
5243
5244 /* Verify we can do the following downcast, and that we have the
5245 data we need. */
5246 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5247 sig_type = (struct signatured_type *) this_cu;
5248 gdb_assert (sig_type->dwo_unit != NULL);
5249
5250 cleanups = make_cleanup (null_cleanup, NULL);
5251
5252 if (use_existing_cu && this_cu->cu != NULL)
5253 {
5254 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5255 cu = this_cu->cu;
5256 /* There's no need to do the rereading_dwo_cu handling that
5257 init_cutu_and_read_dies does since we don't read the stub. */
5258 }
5259 else
5260 {
5261 /* If !use_existing_cu, this_cu->cu must be NULL. */
5262 gdb_assert (this_cu->cu == NULL);
5263 cu = xmalloc (sizeof (*cu));
5264 init_one_comp_unit (cu, this_cu);
5265 /* If an error occurs while loading, release our storage. */
5266 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5267 }
5268
5269 /* A future optimization, if needed, would be to use an existing
5270 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5271 could share abbrev tables. */
5272
5273 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5274 0 /* abbrev_table_provided */,
5275 NULL /* stub_comp_unit_die */,
5276 sig_type->dwo_unit->dwo_file->comp_dir,
5277 &reader, &info_ptr,
5278 &comp_unit_die, &has_children) == 0)
5279 {
5280 /* Dummy die. */
5281 do_cleanups (cleanups);
5282 return;
5283 }
5284
5285 /* All the "real" work is done here. */
5286 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5287
5288 /* This duplicates the code in init_cutu_and_read_dies,
5289 but the alternative is making the latter more complex.
5290 This function is only for the special case of using DWO files directly:
5291 no point in overly complicating the general case just to handle this. */
5292 if (free_cu_cleanup != NULL)
5293 {
5294 if (keep)
5295 {
5296 /* We've successfully allocated this compilation unit. Let our
5297 caller clean it up when finished with it. */
5298 discard_cleanups (free_cu_cleanup);
5299
5300 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5301 So we have to manually free the abbrev table. */
5302 dwarf2_free_abbrev_table (cu);
5303
5304 /* Link this CU into read_in_chain. */
5305 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5306 dwarf2_per_objfile->read_in_chain = this_cu;
5307 }
5308 else
5309 do_cleanups (free_cu_cleanup);
5310 }
5311
5312 do_cleanups (cleanups);
5313 }
5314
5315 /* Initialize a CU (or TU) and read its DIEs.
5316 If the CU defers to a DWO file, read the DWO file as well.
5317
5318 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5319 Otherwise the table specified in the comp unit header is read in and used.
5320 This is an optimization for when we already have the abbrev table.
5321
5322 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5323 Otherwise, a new CU is allocated with xmalloc.
5324
5325 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5326 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5327
5328 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5329 linker) then DIE_READER_FUNC will not get called. */
5330
5331 static void
5332 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5333 struct abbrev_table *abbrev_table,
5334 int use_existing_cu, int keep,
5335 die_reader_func_ftype *die_reader_func,
5336 void *data)
5337 {
5338 struct objfile *objfile = dwarf2_per_objfile->objfile;
5339 struct dwarf2_section_info *section = this_cu->section;
5340 bfd *abfd = get_section_bfd_owner (section);
5341 struct dwarf2_cu *cu;
5342 const gdb_byte *begin_info_ptr, *info_ptr;
5343 struct die_reader_specs reader;
5344 struct die_info *comp_unit_die;
5345 int has_children;
5346 struct attribute *attr;
5347 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5348 struct signatured_type *sig_type = NULL;
5349 struct dwarf2_section_info *abbrev_section;
5350 /* Non-zero if CU currently points to a DWO file and we need to
5351 reread it. When this happens we need to reread the skeleton die
5352 before we can reread the DWO file (this only applies to CUs, not TUs). */
5353 int rereading_dwo_cu = 0;
5354
5355 if (dwarf2_die_debug)
5356 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5357 this_cu->is_debug_types ? "type" : "comp",
5358 this_cu->offset.sect_off);
5359
5360 if (use_existing_cu)
5361 gdb_assert (keep);
5362
5363 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5364 file (instead of going through the stub), short-circuit all of this. */
5365 if (this_cu->reading_dwo_directly)
5366 {
5367 /* Narrow down the scope of possibilities to have to understand. */
5368 gdb_assert (this_cu->is_debug_types);
5369 gdb_assert (abbrev_table == NULL);
5370 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5371 die_reader_func, data);
5372 return;
5373 }
5374
5375 cleanups = make_cleanup (null_cleanup, NULL);
5376
5377 /* This is cheap if the section is already read in. */
5378 dwarf2_read_section (objfile, section);
5379
5380 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5381
5382 abbrev_section = get_abbrev_section_for_cu (this_cu);
5383
5384 if (use_existing_cu && this_cu->cu != NULL)
5385 {
5386 cu = this_cu->cu;
5387 /* If this CU is from a DWO file we need to start over, we need to
5388 refetch the attributes from the skeleton CU.
5389 This could be optimized by retrieving those attributes from when we
5390 were here the first time: the previous comp_unit_die was stored in
5391 comp_unit_obstack. But there's no data yet that we need this
5392 optimization. */
5393 if (cu->dwo_unit != NULL)
5394 rereading_dwo_cu = 1;
5395 }
5396 else
5397 {
5398 /* If !use_existing_cu, this_cu->cu must be NULL. */
5399 gdb_assert (this_cu->cu == NULL);
5400 cu = xmalloc (sizeof (*cu));
5401 init_one_comp_unit (cu, this_cu);
5402 /* If an error occurs while loading, release our storage. */
5403 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5404 }
5405
5406 /* Get the header. */
5407 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5408 {
5409 /* We already have the header, there's no need to read it in again. */
5410 info_ptr += cu->header.first_die_offset.cu_off;
5411 }
5412 else
5413 {
5414 if (this_cu->is_debug_types)
5415 {
5416 ULONGEST signature;
5417 cu_offset type_offset_in_tu;
5418
5419 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5420 abbrev_section, info_ptr,
5421 &signature,
5422 &type_offset_in_tu);
5423
5424 /* Since per_cu is the first member of struct signatured_type,
5425 we can go from a pointer to one to a pointer to the other. */
5426 sig_type = (struct signatured_type *) this_cu;
5427 gdb_assert (sig_type->signature == signature);
5428 gdb_assert (sig_type->type_offset_in_tu.cu_off
5429 == type_offset_in_tu.cu_off);
5430 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5431
5432 /* LENGTH has not been set yet for type units if we're
5433 using .gdb_index. */
5434 this_cu->length = get_cu_length (&cu->header);
5435
5436 /* Establish the type offset that can be used to lookup the type. */
5437 sig_type->type_offset_in_section.sect_off =
5438 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5439 }
5440 else
5441 {
5442 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5443 abbrev_section,
5444 info_ptr, 0);
5445
5446 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5447 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5448 }
5449 }
5450
5451 /* Skip dummy compilation units. */
5452 if (info_ptr >= begin_info_ptr + this_cu->length
5453 || peek_abbrev_code (abfd, info_ptr) == 0)
5454 {
5455 do_cleanups (cleanups);
5456 return;
5457 }
5458
5459 /* If we don't have them yet, read the abbrevs for this compilation unit.
5460 And if we need to read them now, make sure they're freed when we're
5461 done. Note that it's important that if the CU had an abbrev table
5462 on entry we don't free it when we're done: Somewhere up the call stack
5463 it may be in use. */
5464 if (abbrev_table != NULL)
5465 {
5466 gdb_assert (cu->abbrev_table == NULL);
5467 gdb_assert (cu->header.abbrev_offset.sect_off
5468 == abbrev_table->offset.sect_off);
5469 cu->abbrev_table = abbrev_table;
5470 }
5471 else if (cu->abbrev_table == NULL)
5472 {
5473 dwarf2_read_abbrevs (cu, abbrev_section);
5474 make_cleanup (dwarf2_free_abbrev_table, cu);
5475 }
5476 else if (rereading_dwo_cu)
5477 {
5478 dwarf2_free_abbrev_table (cu);
5479 dwarf2_read_abbrevs (cu, abbrev_section);
5480 }
5481
5482 /* Read the top level CU/TU die. */
5483 init_cu_die_reader (&reader, cu, section, NULL);
5484 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5485
5486 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5487 from the DWO file.
5488 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5489 DWO CU, that this test will fail (the attribute will not be present). */
5490 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5491 if (attr)
5492 {
5493 struct dwo_unit *dwo_unit;
5494 struct die_info *dwo_comp_unit_die;
5495
5496 if (has_children)
5497 {
5498 complaint (&symfile_complaints,
5499 _("compilation unit with DW_AT_GNU_dwo_name"
5500 " has children (offset 0x%x) [in module %s]"),
5501 this_cu->offset.sect_off, bfd_get_filename (abfd));
5502 }
5503 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5504 if (dwo_unit != NULL)
5505 {
5506 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5507 abbrev_table != NULL,
5508 comp_unit_die, NULL,
5509 &reader, &info_ptr,
5510 &dwo_comp_unit_die, &has_children) == 0)
5511 {
5512 /* Dummy die. */
5513 do_cleanups (cleanups);
5514 return;
5515 }
5516 comp_unit_die = dwo_comp_unit_die;
5517 }
5518 else
5519 {
5520 /* Yikes, we couldn't find the rest of the DIE, we only have
5521 the stub. A complaint has already been logged. There's
5522 not much more we can do except pass on the stub DIE to
5523 die_reader_func. We don't want to throw an error on bad
5524 debug info. */
5525 }
5526 }
5527
5528 /* All of the above is setup for this call. Yikes. */
5529 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5530
5531 /* Done, clean up. */
5532 if (free_cu_cleanup != NULL)
5533 {
5534 if (keep)
5535 {
5536 /* We've successfully allocated this compilation unit. Let our
5537 caller clean it up when finished with it. */
5538 discard_cleanups (free_cu_cleanup);
5539
5540 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5541 So we have to manually free the abbrev table. */
5542 dwarf2_free_abbrev_table (cu);
5543
5544 /* Link this CU into read_in_chain. */
5545 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5546 dwarf2_per_objfile->read_in_chain = this_cu;
5547 }
5548 else
5549 do_cleanups (free_cu_cleanup);
5550 }
5551
5552 do_cleanups (cleanups);
5553 }
5554
5555 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5556 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5557 to have already done the lookup to find the DWO file).
5558
5559 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5560 THIS_CU->is_debug_types, but nothing else.
5561
5562 We fill in THIS_CU->length.
5563
5564 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5565 linker) then DIE_READER_FUNC will not get called.
5566
5567 THIS_CU->cu is always freed when done.
5568 This is done in order to not leave THIS_CU->cu in a state where we have
5569 to care whether it refers to the "main" CU or the DWO CU. */
5570
5571 static void
5572 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5573 struct dwo_file *dwo_file,
5574 die_reader_func_ftype *die_reader_func,
5575 void *data)
5576 {
5577 struct objfile *objfile = dwarf2_per_objfile->objfile;
5578 struct dwarf2_section_info *section = this_cu->section;
5579 bfd *abfd = get_section_bfd_owner (section);
5580 struct dwarf2_section_info *abbrev_section;
5581 struct dwarf2_cu cu;
5582 const gdb_byte *begin_info_ptr, *info_ptr;
5583 struct die_reader_specs reader;
5584 struct cleanup *cleanups;
5585 struct die_info *comp_unit_die;
5586 int has_children;
5587
5588 if (dwarf2_die_debug)
5589 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5590 this_cu->is_debug_types ? "type" : "comp",
5591 this_cu->offset.sect_off);
5592
5593 gdb_assert (this_cu->cu == NULL);
5594
5595 abbrev_section = (dwo_file != NULL
5596 ? &dwo_file->sections.abbrev
5597 : get_abbrev_section_for_cu (this_cu));
5598
5599 /* This is cheap if the section is already read in. */
5600 dwarf2_read_section (objfile, section);
5601
5602 init_one_comp_unit (&cu, this_cu);
5603
5604 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5605
5606 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5607 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5608 abbrev_section, info_ptr,
5609 this_cu->is_debug_types);
5610
5611 this_cu->length = get_cu_length (&cu.header);
5612
5613 /* Skip dummy compilation units. */
5614 if (info_ptr >= begin_info_ptr + this_cu->length
5615 || peek_abbrev_code (abfd, info_ptr) == 0)
5616 {
5617 do_cleanups (cleanups);
5618 return;
5619 }
5620
5621 dwarf2_read_abbrevs (&cu, abbrev_section);
5622 make_cleanup (dwarf2_free_abbrev_table, &cu);
5623
5624 init_cu_die_reader (&reader, &cu, section, dwo_file);
5625 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5626
5627 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5628
5629 do_cleanups (cleanups);
5630 }
5631
5632 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5633 does not lookup the specified DWO file.
5634 This cannot be used to read DWO files.
5635
5636 THIS_CU->cu is always freed when done.
5637 This is done in order to not leave THIS_CU->cu in a state where we have
5638 to care whether it refers to the "main" CU or the DWO CU.
5639 We can revisit this if the data shows there's a performance issue. */
5640
5641 static void
5642 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5643 die_reader_func_ftype *die_reader_func,
5644 void *data)
5645 {
5646 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5647 }
5648 \f
5649 /* Type Unit Groups.
5650
5651 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5652 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5653 so that all types coming from the same compilation (.o file) are grouped
5654 together. A future step could be to put the types in the same symtab as
5655 the CU the types ultimately came from. */
5656
5657 static hashval_t
5658 hash_type_unit_group (const void *item)
5659 {
5660 const struct type_unit_group *tu_group = item;
5661
5662 return hash_stmt_list_entry (&tu_group->hash);
5663 }
5664
5665 static int
5666 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5667 {
5668 const struct type_unit_group *lhs = item_lhs;
5669 const struct type_unit_group *rhs = item_rhs;
5670
5671 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5672 }
5673
5674 /* Allocate a hash table for type unit groups. */
5675
5676 static htab_t
5677 allocate_type_unit_groups_table (void)
5678 {
5679 return htab_create_alloc_ex (3,
5680 hash_type_unit_group,
5681 eq_type_unit_group,
5682 NULL,
5683 &dwarf2_per_objfile->objfile->objfile_obstack,
5684 hashtab_obstack_allocate,
5685 dummy_obstack_deallocate);
5686 }
5687
5688 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5689 partial symtabs. We combine several TUs per psymtab to not let the size
5690 of any one psymtab grow too big. */
5691 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5692 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5693
5694 /* Helper routine for get_type_unit_group.
5695 Create the type_unit_group object used to hold one or more TUs. */
5696
5697 static struct type_unit_group *
5698 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5699 {
5700 struct objfile *objfile = dwarf2_per_objfile->objfile;
5701 struct dwarf2_per_cu_data *per_cu;
5702 struct type_unit_group *tu_group;
5703
5704 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5705 struct type_unit_group);
5706 per_cu = &tu_group->per_cu;
5707 per_cu->objfile = objfile;
5708
5709 if (dwarf2_per_objfile->using_index)
5710 {
5711 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5712 struct dwarf2_per_cu_quick_data);
5713 }
5714 else
5715 {
5716 unsigned int line_offset = line_offset_struct.sect_off;
5717 struct partial_symtab *pst;
5718 char *name;
5719
5720 /* Give the symtab a useful name for debug purposes. */
5721 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5722 name = xstrprintf ("<type_units_%d>",
5723 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5724 else
5725 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5726
5727 pst = create_partial_symtab (per_cu, name);
5728 pst->anonymous = 1;
5729
5730 xfree (name);
5731 }
5732
5733 tu_group->hash.dwo_unit = cu->dwo_unit;
5734 tu_group->hash.line_offset = line_offset_struct;
5735
5736 return tu_group;
5737 }
5738
5739 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5740 STMT_LIST is a DW_AT_stmt_list attribute. */
5741
5742 static struct type_unit_group *
5743 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5744 {
5745 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5746 struct type_unit_group *tu_group;
5747 void **slot;
5748 unsigned int line_offset;
5749 struct type_unit_group type_unit_group_for_lookup;
5750
5751 if (dwarf2_per_objfile->type_unit_groups == NULL)
5752 {
5753 dwarf2_per_objfile->type_unit_groups =
5754 allocate_type_unit_groups_table ();
5755 }
5756
5757 /* Do we need to create a new group, or can we use an existing one? */
5758
5759 if (stmt_list)
5760 {
5761 line_offset = DW_UNSND (stmt_list);
5762 ++tu_stats->nr_symtab_sharers;
5763 }
5764 else
5765 {
5766 /* Ugh, no stmt_list. Rare, but we have to handle it.
5767 We can do various things here like create one group per TU or
5768 spread them over multiple groups to split up the expansion work.
5769 To avoid worst case scenarios (too many groups or too large groups)
5770 we, umm, group them in bunches. */
5771 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5772 | (tu_stats->nr_stmt_less_type_units
5773 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5774 ++tu_stats->nr_stmt_less_type_units;
5775 }
5776
5777 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5778 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5779 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5780 &type_unit_group_for_lookup, INSERT);
5781 if (*slot != NULL)
5782 {
5783 tu_group = *slot;
5784 gdb_assert (tu_group != NULL);
5785 }
5786 else
5787 {
5788 sect_offset line_offset_struct;
5789
5790 line_offset_struct.sect_off = line_offset;
5791 tu_group = create_type_unit_group (cu, line_offset_struct);
5792 *slot = tu_group;
5793 ++tu_stats->nr_symtabs;
5794 }
5795
5796 return tu_group;
5797 }
5798 \f
5799 /* Partial symbol tables. */
5800
5801 /* Create a psymtab named NAME and assign it to PER_CU.
5802
5803 The caller must fill in the following details:
5804 dirname, textlow, texthigh. */
5805
5806 static struct partial_symtab *
5807 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5808 {
5809 struct objfile *objfile = per_cu->objfile;
5810 struct partial_symtab *pst;
5811
5812 pst = start_psymtab_common (objfile, objfile->section_offsets,
5813 name, 0,
5814 objfile->global_psymbols.next,
5815 objfile->static_psymbols.next);
5816
5817 pst->psymtabs_addrmap_supported = 1;
5818
5819 /* This is the glue that links PST into GDB's symbol API. */
5820 pst->read_symtab_private = per_cu;
5821 pst->read_symtab = dwarf2_read_symtab;
5822 per_cu->v.psymtab = pst;
5823
5824 return pst;
5825 }
5826
5827 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5828 type. */
5829
5830 struct process_psymtab_comp_unit_data
5831 {
5832 /* True if we are reading a DW_TAG_partial_unit. */
5833
5834 int want_partial_unit;
5835
5836 /* The "pretend" language that is used if the CU doesn't declare a
5837 language. */
5838
5839 enum language pretend_language;
5840 };
5841
5842 /* die_reader_func for process_psymtab_comp_unit. */
5843
5844 static void
5845 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5846 const gdb_byte *info_ptr,
5847 struct die_info *comp_unit_die,
5848 int has_children,
5849 void *data)
5850 {
5851 struct dwarf2_cu *cu = reader->cu;
5852 struct objfile *objfile = cu->objfile;
5853 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5854 struct attribute *attr;
5855 CORE_ADDR baseaddr;
5856 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5857 struct partial_symtab *pst;
5858 int has_pc_info;
5859 const char *filename;
5860 struct process_psymtab_comp_unit_data *info = data;
5861
5862 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5863 return;
5864
5865 gdb_assert (! per_cu->is_debug_types);
5866
5867 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5868
5869 cu->list_in_scope = &file_symbols;
5870
5871 /* Allocate a new partial symbol table structure. */
5872 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5873 if (attr == NULL || !DW_STRING (attr))
5874 filename = "";
5875 else
5876 filename = DW_STRING (attr);
5877
5878 pst = create_partial_symtab (per_cu, filename);
5879
5880 /* This must be done before calling dwarf2_build_include_psymtabs. */
5881 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5882 if (attr != NULL)
5883 pst->dirname = DW_STRING (attr);
5884
5885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5886
5887 dwarf2_find_base_address (comp_unit_die, cu);
5888
5889 /* Possibly set the default values of LOWPC and HIGHPC from
5890 `DW_AT_ranges'. */
5891 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5892 &best_highpc, cu, pst);
5893 if (has_pc_info == 1 && best_lowpc < best_highpc)
5894 /* Store the contiguous range if it is not empty; it can be empty for
5895 CUs with no code. */
5896 addrmap_set_empty (objfile->psymtabs_addrmap,
5897 best_lowpc + baseaddr,
5898 best_highpc + baseaddr - 1, pst);
5899
5900 /* Check if comp unit has_children.
5901 If so, read the rest of the partial symbols from this comp unit.
5902 If not, there's no more debug_info for this comp unit. */
5903 if (has_children)
5904 {
5905 struct partial_die_info *first_die;
5906 CORE_ADDR lowpc, highpc;
5907
5908 lowpc = ((CORE_ADDR) -1);
5909 highpc = ((CORE_ADDR) 0);
5910
5911 first_die = load_partial_dies (reader, info_ptr, 1);
5912
5913 scan_partial_symbols (first_die, &lowpc, &highpc,
5914 ! has_pc_info, cu);
5915
5916 /* If we didn't find a lowpc, set it to highpc to avoid
5917 complaints from `maint check'. */
5918 if (lowpc == ((CORE_ADDR) -1))
5919 lowpc = highpc;
5920
5921 /* If the compilation unit didn't have an explicit address range,
5922 then use the information extracted from its child dies. */
5923 if (! has_pc_info)
5924 {
5925 best_lowpc = lowpc;
5926 best_highpc = highpc;
5927 }
5928 }
5929 pst->textlow = best_lowpc + baseaddr;
5930 pst->texthigh = best_highpc + baseaddr;
5931
5932 pst->n_global_syms = objfile->global_psymbols.next -
5933 (objfile->global_psymbols.list + pst->globals_offset);
5934 pst->n_static_syms = objfile->static_psymbols.next -
5935 (objfile->static_psymbols.list + pst->statics_offset);
5936 sort_pst_symbols (objfile, pst);
5937
5938 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5939 {
5940 int i;
5941 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5942 struct dwarf2_per_cu_data *iter;
5943
5944 /* Fill in 'dependencies' here; we fill in 'users' in a
5945 post-pass. */
5946 pst->number_of_dependencies = len;
5947 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5948 len * sizeof (struct symtab *));
5949 for (i = 0;
5950 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5951 i, iter);
5952 ++i)
5953 pst->dependencies[i] = iter->v.psymtab;
5954
5955 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5956 }
5957
5958 /* Get the list of files included in the current compilation unit,
5959 and build a psymtab for each of them. */
5960 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5961
5962 if (dwarf2_read_debug)
5963 {
5964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5965
5966 fprintf_unfiltered (gdb_stdlog,
5967 "Psymtab for %s unit @0x%x: %s - %s"
5968 ", %d global, %d static syms\n",
5969 per_cu->is_debug_types ? "type" : "comp",
5970 per_cu->offset.sect_off,
5971 paddress (gdbarch, pst->textlow),
5972 paddress (gdbarch, pst->texthigh),
5973 pst->n_global_syms, pst->n_static_syms);
5974 }
5975 }
5976
5977 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5978 Process compilation unit THIS_CU for a psymtab. */
5979
5980 static void
5981 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5982 int want_partial_unit,
5983 enum language pretend_language)
5984 {
5985 struct process_psymtab_comp_unit_data info;
5986
5987 /* If this compilation unit was already read in, free the
5988 cached copy in order to read it in again. This is
5989 necessary because we skipped some symbols when we first
5990 read in the compilation unit (see load_partial_dies).
5991 This problem could be avoided, but the benefit is unclear. */
5992 if (this_cu->cu != NULL)
5993 free_one_cached_comp_unit (this_cu);
5994
5995 gdb_assert (! this_cu->is_debug_types);
5996 info.want_partial_unit = want_partial_unit;
5997 info.pretend_language = pretend_language;
5998 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5999 process_psymtab_comp_unit_reader,
6000 &info);
6001
6002 /* Age out any secondary CUs. */
6003 age_cached_comp_units ();
6004 }
6005
6006 /* Reader function for build_type_psymtabs. */
6007
6008 static void
6009 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6010 const gdb_byte *info_ptr,
6011 struct die_info *type_unit_die,
6012 int has_children,
6013 void *data)
6014 {
6015 struct objfile *objfile = dwarf2_per_objfile->objfile;
6016 struct dwarf2_cu *cu = reader->cu;
6017 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6018 struct signatured_type *sig_type;
6019 struct type_unit_group *tu_group;
6020 struct attribute *attr;
6021 struct partial_die_info *first_die;
6022 CORE_ADDR lowpc, highpc;
6023 struct partial_symtab *pst;
6024
6025 gdb_assert (data == NULL);
6026 gdb_assert (per_cu->is_debug_types);
6027 sig_type = (struct signatured_type *) per_cu;
6028
6029 if (! has_children)
6030 return;
6031
6032 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6033 tu_group = get_type_unit_group (cu, attr);
6034
6035 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6036
6037 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6038 cu->list_in_scope = &file_symbols;
6039 pst = create_partial_symtab (per_cu, "");
6040 pst->anonymous = 1;
6041
6042 first_die = load_partial_dies (reader, info_ptr, 1);
6043
6044 lowpc = (CORE_ADDR) -1;
6045 highpc = (CORE_ADDR) 0;
6046 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6047
6048 pst->n_global_syms = objfile->global_psymbols.next -
6049 (objfile->global_psymbols.list + pst->globals_offset);
6050 pst->n_static_syms = objfile->static_psymbols.next -
6051 (objfile->static_psymbols.list + pst->statics_offset);
6052 sort_pst_symbols (objfile, pst);
6053 }
6054
6055 /* Struct used to sort TUs by their abbreviation table offset. */
6056
6057 struct tu_abbrev_offset
6058 {
6059 struct signatured_type *sig_type;
6060 sect_offset abbrev_offset;
6061 };
6062
6063 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6064
6065 static int
6066 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6067 {
6068 const struct tu_abbrev_offset * const *a = ap;
6069 const struct tu_abbrev_offset * const *b = bp;
6070 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6071 unsigned int boff = (*b)->abbrev_offset.sect_off;
6072
6073 return (aoff > boff) - (aoff < boff);
6074 }
6075
6076 /* Efficiently read all the type units.
6077 This does the bulk of the work for build_type_psymtabs.
6078
6079 The efficiency is because we sort TUs by the abbrev table they use and
6080 only read each abbrev table once. In one program there are 200K TUs
6081 sharing 8K abbrev tables.
6082
6083 The main purpose of this function is to support building the
6084 dwarf2_per_objfile->type_unit_groups table.
6085 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6086 can collapse the search space by grouping them by stmt_list.
6087 The savings can be significant, in the same program from above the 200K TUs
6088 share 8K stmt_list tables.
6089
6090 FUNC is expected to call get_type_unit_group, which will create the
6091 struct type_unit_group if necessary and add it to
6092 dwarf2_per_objfile->type_unit_groups. */
6093
6094 static void
6095 build_type_psymtabs_1 (void)
6096 {
6097 struct objfile *objfile = dwarf2_per_objfile->objfile;
6098 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6099 struct cleanup *cleanups;
6100 struct abbrev_table *abbrev_table;
6101 sect_offset abbrev_offset;
6102 struct tu_abbrev_offset *sorted_by_abbrev;
6103 struct type_unit_group **iter;
6104 int i;
6105
6106 /* It's up to the caller to not call us multiple times. */
6107 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6108
6109 if (dwarf2_per_objfile->n_type_units == 0)
6110 return;
6111
6112 /* TUs typically share abbrev tables, and there can be way more TUs than
6113 abbrev tables. Sort by abbrev table to reduce the number of times we
6114 read each abbrev table in.
6115 Alternatives are to punt or to maintain a cache of abbrev tables.
6116 This is simpler and efficient enough for now.
6117
6118 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6119 symtab to use). Typically TUs with the same abbrev offset have the same
6120 stmt_list value too so in practice this should work well.
6121
6122 The basic algorithm here is:
6123
6124 sort TUs by abbrev table
6125 for each TU with same abbrev table:
6126 read abbrev table if first user
6127 read TU top level DIE
6128 [IWBN if DWO skeletons had DW_AT_stmt_list]
6129 call FUNC */
6130
6131 if (dwarf2_read_debug)
6132 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6133
6134 /* Sort in a separate table to maintain the order of all_type_units
6135 for .gdb_index: TU indices directly index all_type_units. */
6136 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6137 dwarf2_per_objfile->n_type_units);
6138 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6139 {
6140 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6141
6142 sorted_by_abbrev[i].sig_type = sig_type;
6143 sorted_by_abbrev[i].abbrev_offset =
6144 read_abbrev_offset (sig_type->per_cu.section,
6145 sig_type->per_cu.offset);
6146 }
6147 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6148 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6149 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6150
6151 abbrev_offset.sect_off = ~(unsigned) 0;
6152 abbrev_table = NULL;
6153 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6154
6155 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6156 {
6157 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6158
6159 /* Switch to the next abbrev table if necessary. */
6160 if (abbrev_table == NULL
6161 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6162 {
6163 if (abbrev_table != NULL)
6164 {
6165 abbrev_table_free (abbrev_table);
6166 /* Reset to NULL in case abbrev_table_read_table throws
6167 an error: abbrev_table_free_cleanup will get called. */
6168 abbrev_table = NULL;
6169 }
6170 abbrev_offset = tu->abbrev_offset;
6171 abbrev_table =
6172 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6173 abbrev_offset);
6174 ++tu_stats->nr_uniq_abbrev_tables;
6175 }
6176
6177 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6178 build_type_psymtabs_reader, NULL);
6179 }
6180
6181 do_cleanups (cleanups);
6182 }
6183
6184 /* Print collected type unit statistics. */
6185
6186 static void
6187 print_tu_stats (void)
6188 {
6189 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6190
6191 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6192 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6193 dwarf2_per_objfile->n_type_units);
6194 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6195 tu_stats->nr_uniq_abbrev_tables);
6196 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6197 tu_stats->nr_symtabs);
6198 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6199 tu_stats->nr_symtab_sharers);
6200 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6201 tu_stats->nr_stmt_less_type_units);
6202 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6203 tu_stats->nr_all_type_units_reallocs);
6204 }
6205
6206 /* Traversal function for build_type_psymtabs. */
6207
6208 static int
6209 build_type_psymtab_dependencies (void **slot, void *info)
6210 {
6211 struct objfile *objfile = dwarf2_per_objfile->objfile;
6212 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6213 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6214 struct partial_symtab *pst = per_cu->v.psymtab;
6215 int len = VEC_length (sig_type_ptr, tu_group->tus);
6216 struct signatured_type *iter;
6217 int i;
6218
6219 gdb_assert (len > 0);
6220 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6221
6222 pst->number_of_dependencies = len;
6223 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6224 len * sizeof (struct psymtab *));
6225 for (i = 0;
6226 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6227 ++i)
6228 {
6229 gdb_assert (iter->per_cu.is_debug_types);
6230 pst->dependencies[i] = iter->per_cu.v.psymtab;
6231 iter->type_unit_group = tu_group;
6232 }
6233
6234 VEC_free (sig_type_ptr, tu_group->tus);
6235
6236 return 1;
6237 }
6238
6239 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6240 Build partial symbol tables for the .debug_types comp-units. */
6241
6242 static void
6243 build_type_psymtabs (struct objfile *objfile)
6244 {
6245 if (! create_all_type_units (objfile))
6246 return;
6247
6248 build_type_psymtabs_1 ();
6249 }
6250
6251 /* Traversal function for process_skeletonless_type_unit.
6252 Read a TU in a DWO file and build partial symbols for it. */
6253
6254 static int
6255 process_skeletonless_type_unit (void **slot, void *info)
6256 {
6257 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6258 struct objfile *objfile = info;
6259 struct signatured_type find_entry, *entry;
6260
6261 /* If this TU doesn't exist in the global table, add it and read it in. */
6262
6263 if (dwarf2_per_objfile->signatured_types == NULL)
6264 {
6265 dwarf2_per_objfile->signatured_types
6266 = allocate_signatured_type_table (objfile);
6267 }
6268
6269 find_entry.signature = dwo_unit->signature;
6270 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6271 INSERT);
6272 /* If we've already seen this type there's nothing to do. What's happening
6273 is we're doing our own version of comdat-folding here. */
6274 if (*slot != NULL)
6275 return 1;
6276
6277 /* This does the job that create_all_type_units would have done for
6278 this TU. */
6279 entry = add_type_unit (dwo_unit->signature, slot);
6280 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6281 *slot = entry;
6282
6283 /* This does the job that build_type_psymtabs_1 would have done. */
6284 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6285 build_type_psymtabs_reader, NULL);
6286
6287 return 1;
6288 }
6289
6290 /* Traversal function for process_skeletonless_type_units. */
6291
6292 static int
6293 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6294 {
6295 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6296
6297 if (dwo_file->tus != NULL)
6298 {
6299 htab_traverse_noresize (dwo_file->tus,
6300 process_skeletonless_type_unit, info);
6301 }
6302
6303 return 1;
6304 }
6305
6306 /* Scan all TUs of DWO files, verifying we've processed them.
6307 This is needed in case a TU was emitted without its skeleton.
6308 Note: This can't be done until we know what all the DWO files are. */
6309
6310 static void
6311 process_skeletonless_type_units (struct objfile *objfile)
6312 {
6313 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6314 if (get_dwp_file () == NULL
6315 && dwarf2_per_objfile->dwo_files != NULL)
6316 {
6317 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6318 process_dwo_file_for_skeletonless_type_units,
6319 objfile);
6320 }
6321 }
6322
6323 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6324
6325 static void
6326 psymtabs_addrmap_cleanup (void *o)
6327 {
6328 struct objfile *objfile = o;
6329
6330 objfile->psymtabs_addrmap = NULL;
6331 }
6332
6333 /* Compute the 'user' field for each psymtab in OBJFILE. */
6334
6335 static void
6336 set_partial_user (struct objfile *objfile)
6337 {
6338 int i;
6339
6340 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6341 {
6342 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6343 struct partial_symtab *pst = per_cu->v.psymtab;
6344 int j;
6345
6346 if (pst == NULL)
6347 continue;
6348
6349 for (j = 0; j < pst->number_of_dependencies; ++j)
6350 {
6351 /* Set the 'user' field only if it is not already set. */
6352 if (pst->dependencies[j]->user == NULL)
6353 pst->dependencies[j]->user = pst;
6354 }
6355 }
6356 }
6357
6358 /* Build the partial symbol table by doing a quick pass through the
6359 .debug_info and .debug_abbrev sections. */
6360
6361 static void
6362 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6363 {
6364 struct cleanup *back_to, *addrmap_cleanup;
6365 struct obstack temp_obstack;
6366 int i;
6367
6368 if (dwarf2_read_debug)
6369 {
6370 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6371 objfile_name (objfile));
6372 }
6373
6374 dwarf2_per_objfile->reading_partial_symbols = 1;
6375
6376 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6377
6378 /* Any cached compilation units will be linked by the per-objfile
6379 read_in_chain. Make sure to free them when we're done. */
6380 back_to = make_cleanup (free_cached_comp_units, NULL);
6381
6382 build_type_psymtabs (objfile);
6383
6384 create_all_comp_units (objfile);
6385
6386 /* Create a temporary address map on a temporary obstack. We later
6387 copy this to the final obstack. */
6388 obstack_init (&temp_obstack);
6389 make_cleanup_obstack_free (&temp_obstack);
6390 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6391 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6392
6393 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6394 {
6395 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6396
6397 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6398 }
6399
6400 /* This has to wait until we read the CUs, we need the list of DWOs. */
6401 process_skeletonless_type_units (objfile);
6402
6403 /* Now that all TUs have been processed we can fill in the dependencies. */
6404 if (dwarf2_per_objfile->type_unit_groups != NULL)
6405 {
6406 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6407 build_type_psymtab_dependencies, NULL);
6408 }
6409
6410 if (dwarf2_read_debug)
6411 print_tu_stats ();
6412
6413 set_partial_user (objfile);
6414
6415 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6416 &objfile->objfile_obstack);
6417 discard_cleanups (addrmap_cleanup);
6418
6419 do_cleanups (back_to);
6420
6421 if (dwarf2_read_debug)
6422 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6423 objfile_name (objfile));
6424 }
6425
6426 /* die_reader_func for load_partial_comp_unit. */
6427
6428 static void
6429 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6430 const gdb_byte *info_ptr,
6431 struct die_info *comp_unit_die,
6432 int has_children,
6433 void *data)
6434 {
6435 struct dwarf2_cu *cu = reader->cu;
6436
6437 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6438
6439 /* Check if comp unit has_children.
6440 If so, read the rest of the partial symbols from this comp unit.
6441 If not, there's no more debug_info for this comp unit. */
6442 if (has_children)
6443 load_partial_dies (reader, info_ptr, 0);
6444 }
6445
6446 /* Load the partial DIEs for a secondary CU into memory.
6447 This is also used when rereading a primary CU with load_all_dies. */
6448
6449 static void
6450 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6451 {
6452 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6453 load_partial_comp_unit_reader, NULL);
6454 }
6455
6456 static void
6457 read_comp_units_from_section (struct objfile *objfile,
6458 struct dwarf2_section_info *section,
6459 unsigned int is_dwz,
6460 int *n_allocated,
6461 int *n_comp_units,
6462 struct dwarf2_per_cu_data ***all_comp_units)
6463 {
6464 const gdb_byte *info_ptr;
6465 bfd *abfd = get_section_bfd_owner (section);
6466
6467 if (dwarf2_read_debug)
6468 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6469 get_section_name (section),
6470 get_section_file_name (section));
6471
6472 dwarf2_read_section (objfile, section);
6473
6474 info_ptr = section->buffer;
6475
6476 while (info_ptr < section->buffer + section->size)
6477 {
6478 unsigned int length, initial_length_size;
6479 struct dwarf2_per_cu_data *this_cu;
6480 sect_offset offset;
6481
6482 offset.sect_off = info_ptr - section->buffer;
6483
6484 /* Read just enough information to find out where the next
6485 compilation unit is. */
6486 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6487
6488 /* Save the compilation unit for later lookup. */
6489 this_cu = obstack_alloc (&objfile->objfile_obstack,
6490 sizeof (struct dwarf2_per_cu_data));
6491 memset (this_cu, 0, sizeof (*this_cu));
6492 this_cu->offset = offset;
6493 this_cu->length = length + initial_length_size;
6494 this_cu->is_dwz = is_dwz;
6495 this_cu->objfile = objfile;
6496 this_cu->section = section;
6497
6498 if (*n_comp_units == *n_allocated)
6499 {
6500 *n_allocated *= 2;
6501 *all_comp_units = xrealloc (*all_comp_units,
6502 *n_allocated
6503 * sizeof (struct dwarf2_per_cu_data *));
6504 }
6505 (*all_comp_units)[*n_comp_units] = this_cu;
6506 ++*n_comp_units;
6507
6508 info_ptr = info_ptr + this_cu->length;
6509 }
6510 }
6511
6512 /* Create a list of all compilation units in OBJFILE.
6513 This is only done for -readnow and building partial symtabs. */
6514
6515 static void
6516 create_all_comp_units (struct objfile *objfile)
6517 {
6518 int n_allocated;
6519 int n_comp_units;
6520 struct dwarf2_per_cu_data **all_comp_units;
6521 struct dwz_file *dwz;
6522
6523 n_comp_units = 0;
6524 n_allocated = 10;
6525 all_comp_units = xmalloc (n_allocated
6526 * sizeof (struct dwarf2_per_cu_data *));
6527
6528 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6529 &n_allocated, &n_comp_units, &all_comp_units);
6530
6531 dwz = dwarf2_get_dwz_file ();
6532 if (dwz != NULL)
6533 read_comp_units_from_section (objfile, &dwz->info, 1,
6534 &n_allocated, &n_comp_units,
6535 &all_comp_units);
6536
6537 dwarf2_per_objfile->all_comp_units
6538 = obstack_alloc (&objfile->objfile_obstack,
6539 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6540 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6541 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6542 xfree (all_comp_units);
6543 dwarf2_per_objfile->n_comp_units = n_comp_units;
6544 }
6545
6546 /* Process all loaded DIEs for compilation unit CU, starting at
6547 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6548 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6549 DW_AT_ranges). If NEED_PC is set, then this function will set
6550 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6551 and record the covered ranges in the addrmap. */
6552
6553 static void
6554 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6555 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6556 {
6557 struct partial_die_info *pdi;
6558
6559 /* Now, march along the PDI's, descending into ones which have
6560 interesting children but skipping the children of the other ones,
6561 until we reach the end of the compilation unit. */
6562
6563 pdi = first_die;
6564
6565 while (pdi != NULL)
6566 {
6567 fixup_partial_die (pdi, cu);
6568
6569 /* Anonymous namespaces or modules have no name but have interesting
6570 children, so we need to look at them. Ditto for anonymous
6571 enums. */
6572
6573 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6574 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6575 || pdi->tag == DW_TAG_imported_unit)
6576 {
6577 switch (pdi->tag)
6578 {
6579 case DW_TAG_subprogram:
6580 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6581 break;
6582 case DW_TAG_constant:
6583 case DW_TAG_variable:
6584 case DW_TAG_typedef:
6585 case DW_TAG_union_type:
6586 if (!pdi->is_declaration)
6587 {
6588 add_partial_symbol (pdi, cu);
6589 }
6590 break;
6591 case DW_TAG_class_type:
6592 case DW_TAG_interface_type:
6593 case DW_TAG_structure_type:
6594 if (!pdi->is_declaration)
6595 {
6596 add_partial_symbol (pdi, cu);
6597 }
6598 break;
6599 case DW_TAG_enumeration_type:
6600 if (!pdi->is_declaration)
6601 add_partial_enumeration (pdi, cu);
6602 break;
6603 case DW_TAG_base_type:
6604 case DW_TAG_subrange_type:
6605 /* File scope base type definitions are added to the partial
6606 symbol table. */
6607 add_partial_symbol (pdi, cu);
6608 break;
6609 case DW_TAG_namespace:
6610 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6611 break;
6612 case DW_TAG_module:
6613 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6614 break;
6615 case DW_TAG_imported_unit:
6616 {
6617 struct dwarf2_per_cu_data *per_cu;
6618
6619 /* For now we don't handle imported units in type units. */
6620 if (cu->per_cu->is_debug_types)
6621 {
6622 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6623 " supported in type units [in module %s]"),
6624 objfile_name (cu->objfile));
6625 }
6626
6627 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6628 pdi->is_dwz,
6629 cu->objfile);
6630
6631 /* Go read the partial unit, if needed. */
6632 if (per_cu->v.psymtab == NULL)
6633 process_psymtab_comp_unit (per_cu, 1, cu->language);
6634
6635 VEC_safe_push (dwarf2_per_cu_ptr,
6636 cu->per_cu->imported_symtabs, per_cu);
6637 }
6638 break;
6639 case DW_TAG_imported_declaration:
6640 add_partial_symbol (pdi, cu);
6641 break;
6642 default:
6643 break;
6644 }
6645 }
6646
6647 /* If the die has a sibling, skip to the sibling. */
6648
6649 pdi = pdi->die_sibling;
6650 }
6651 }
6652
6653 /* Functions used to compute the fully scoped name of a partial DIE.
6654
6655 Normally, this is simple. For C++, the parent DIE's fully scoped
6656 name is concatenated with "::" and the partial DIE's name. For
6657 Java, the same thing occurs except that "." is used instead of "::".
6658 Enumerators are an exception; they use the scope of their parent
6659 enumeration type, i.e. the name of the enumeration type is not
6660 prepended to the enumerator.
6661
6662 There are two complexities. One is DW_AT_specification; in this
6663 case "parent" means the parent of the target of the specification,
6664 instead of the direct parent of the DIE. The other is compilers
6665 which do not emit DW_TAG_namespace; in this case we try to guess
6666 the fully qualified name of structure types from their members'
6667 linkage names. This must be done using the DIE's children rather
6668 than the children of any DW_AT_specification target. We only need
6669 to do this for structures at the top level, i.e. if the target of
6670 any DW_AT_specification (if any; otherwise the DIE itself) does not
6671 have a parent. */
6672
6673 /* Compute the scope prefix associated with PDI's parent, in
6674 compilation unit CU. The result will be allocated on CU's
6675 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6676 field. NULL is returned if no prefix is necessary. */
6677 static const char *
6678 partial_die_parent_scope (struct partial_die_info *pdi,
6679 struct dwarf2_cu *cu)
6680 {
6681 const char *grandparent_scope;
6682 struct partial_die_info *parent, *real_pdi;
6683
6684 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6685 then this means the parent of the specification DIE. */
6686
6687 real_pdi = pdi;
6688 while (real_pdi->has_specification)
6689 real_pdi = find_partial_die (real_pdi->spec_offset,
6690 real_pdi->spec_is_dwz, cu);
6691
6692 parent = real_pdi->die_parent;
6693 if (parent == NULL)
6694 return NULL;
6695
6696 if (parent->scope_set)
6697 return parent->scope;
6698
6699 fixup_partial_die (parent, cu);
6700
6701 grandparent_scope = partial_die_parent_scope (parent, cu);
6702
6703 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6704 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6705 Work around this problem here. */
6706 if (cu->language == language_cplus
6707 && parent->tag == DW_TAG_namespace
6708 && strcmp (parent->name, "::") == 0
6709 && grandparent_scope == NULL)
6710 {
6711 parent->scope = NULL;
6712 parent->scope_set = 1;
6713 return NULL;
6714 }
6715
6716 if (pdi->tag == DW_TAG_enumerator)
6717 /* Enumerators should not get the name of the enumeration as a prefix. */
6718 parent->scope = grandparent_scope;
6719 else if (parent->tag == DW_TAG_namespace
6720 || parent->tag == DW_TAG_module
6721 || parent->tag == DW_TAG_structure_type
6722 || parent->tag == DW_TAG_class_type
6723 || parent->tag == DW_TAG_interface_type
6724 || parent->tag == DW_TAG_union_type
6725 || parent->tag == DW_TAG_enumeration_type)
6726 {
6727 if (grandparent_scope == NULL)
6728 parent->scope = parent->name;
6729 else
6730 parent->scope = typename_concat (&cu->comp_unit_obstack,
6731 grandparent_scope,
6732 parent->name, 0, cu);
6733 }
6734 else
6735 {
6736 /* FIXME drow/2004-04-01: What should we be doing with
6737 function-local names? For partial symbols, we should probably be
6738 ignoring them. */
6739 complaint (&symfile_complaints,
6740 _("unhandled containing DIE tag %d for DIE at %d"),
6741 parent->tag, pdi->offset.sect_off);
6742 parent->scope = grandparent_scope;
6743 }
6744
6745 parent->scope_set = 1;
6746 return parent->scope;
6747 }
6748
6749 /* Return the fully scoped name associated with PDI, from compilation unit
6750 CU. The result will be allocated with malloc. */
6751
6752 static char *
6753 partial_die_full_name (struct partial_die_info *pdi,
6754 struct dwarf2_cu *cu)
6755 {
6756 const char *parent_scope;
6757
6758 /* If this is a template instantiation, we can not work out the
6759 template arguments from partial DIEs. So, unfortunately, we have
6760 to go through the full DIEs. At least any work we do building
6761 types here will be reused if full symbols are loaded later. */
6762 if (pdi->has_template_arguments)
6763 {
6764 fixup_partial_die (pdi, cu);
6765
6766 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6767 {
6768 struct die_info *die;
6769 struct attribute attr;
6770 struct dwarf2_cu *ref_cu = cu;
6771
6772 /* DW_FORM_ref_addr is using section offset. */
6773 attr.name = 0;
6774 attr.form = DW_FORM_ref_addr;
6775 attr.u.unsnd = pdi->offset.sect_off;
6776 die = follow_die_ref (NULL, &attr, &ref_cu);
6777
6778 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6779 }
6780 }
6781
6782 parent_scope = partial_die_parent_scope (pdi, cu);
6783 if (parent_scope == NULL)
6784 return NULL;
6785 else
6786 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6787 }
6788
6789 static void
6790 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6791 {
6792 struct objfile *objfile = cu->objfile;
6793 CORE_ADDR addr = 0;
6794 const char *actual_name = NULL;
6795 CORE_ADDR baseaddr;
6796 char *built_actual_name;
6797
6798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6799
6800 built_actual_name = partial_die_full_name (pdi, cu);
6801 if (built_actual_name != NULL)
6802 actual_name = built_actual_name;
6803
6804 if (actual_name == NULL)
6805 actual_name = pdi->name;
6806
6807 switch (pdi->tag)
6808 {
6809 case DW_TAG_subprogram:
6810 if (pdi->is_external || cu->language == language_ada)
6811 {
6812 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6813 of the global scope. But in Ada, we want to be able to access
6814 nested procedures globally. So all Ada subprograms are stored
6815 in the global scope. */
6816 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6817 mst_text, objfile); */
6818 add_psymbol_to_list (actual_name, strlen (actual_name),
6819 built_actual_name != NULL,
6820 VAR_DOMAIN, LOC_BLOCK,
6821 &objfile->global_psymbols,
6822 0, pdi->lowpc + baseaddr,
6823 cu->language, objfile);
6824 }
6825 else
6826 {
6827 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6828 mst_file_text, objfile); */
6829 add_psymbol_to_list (actual_name, strlen (actual_name),
6830 built_actual_name != NULL,
6831 VAR_DOMAIN, LOC_BLOCK,
6832 &objfile->static_psymbols,
6833 0, pdi->lowpc + baseaddr,
6834 cu->language, objfile);
6835 }
6836 break;
6837 case DW_TAG_constant:
6838 {
6839 struct psymbol_allocation_list *list;
6840
6841 if (pdi->is_external)
6842 list = &objfile->global_psymbols;
6843 else
6844 list = &objfile->static_psymbols;
6845 add_psymbol_to_list (actual_name, strlen (actual_name),
6846 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6847 list, 0, 0, cu->language, objfile);
6848 }
6849 break;
6850 case DW_TAG_variable:
6851 if (pdi->d.locdesc)
6852 addr = decode_locdesc (pdi->d.locdesc, cu);
6853
6854 if (pdi->d.locdesc
6855 && addr == 0
6856 && !dwarf2_per_objfile->has_section_at_zero)
6857 {
6858 /* A global or static variable may also have been stripped
6859 out by the linker if unused, in which case its address
6860 will be nullified; do not add such variables into partial
6861 symbol table then. */
6862 }
6863 else if (pdi->is_external)
6864 {
6865 /* Global Variable.
6866 Don't enter into the minimal symbol tables as there is
6867 a minimal symbol table entry from the ELF symbols already.
6868 Enter into partial symbol table if it has a location
6869 descriptor or a type.
6870 If the location descriptor is missing, new_symbol will create
6871 a LOC_UNRESOLVED symbol, the address of the variable will then
6872 be determined from the minimal symbol table whenever the variable
6873 is referenced.
6874 The address for the partial symbol table entry is not
6875 used by GDB, but it comes in handy for debugging partial symbol
6876 table building. */
6877
6878 if (pdi->d.locdesc || pdi->has_type)
6879 add_psymbol_to_list (actual_name, strlen (actual_name),
6880 built_actual_name != NULL,
6881 VAR_DOMAIN, LOC_STATIC,
6882 &objfile->global_psymbols,
6883 0, addr + baseaddr,
6884 cu->language, objfile);
6885 }
6886 else
6887 {
6888 /* Static Variable. Skip symbols without location descriptors. */
6889 if (pdi->d.locdesc == NULL)
6890 {
6891 xfree (built_actual_name);
6892 return;
6893 }
6894 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6895 mst_file_data, objfile); */
6896 add_psymbol_to_list (actual_name, strlen (actual_name),
6897 built_actual_name != NULL,
6898 VAR_DOMAIN, LOC_STATIC,
6899 &objfile->static_psymbols,
6900 0, addr + baseaddr,
6901 cu->language, objfile);
6902 }
6903 break;
6904 case DW_TAG_typedef:
6905 case DW_TAG_base_type:
6906 case DW_TAG_subrange_type:
6907 add_psymbol_to_list (actual_name, strlen (actual_name),
6908 built_actual_name != NULL,
6909 VAR_DOMAIN, LOC_TYPEDEF,
6910 &objfile->static_psymbols,
6911 0, (CORE_ADDR) 0, cu->language, objfile);
6912 break;
6913 case DW_TAG_imported_declaration:
6914 case DW_TAG_namespace:
6915 add_psymbol_to_list (actual_name, strlen (actual_name),
6916 built_actual_name != NULL,
6917 VAR_DOMAIN, LOC_TYPEDEF,
6918 &objfile->global_psymbols,
6919 0, (CORE_ADDR) 0, cu->language, objfile);
6920 break;
6921 case DW_TAG_module:
6922 add_psymbol_to_list (actual_name, strlen (actual_name),
6923 built_actual_name != NULL,
6924 MODULE_DOMAIN, LOC_TYPEDEF,
6925 &objfile->global_psymbols,
6926 0, (CORE_ADDR) 0, cu->language, objfile);
6927 break;
6928 case DW_TAG_class_type:
6929 case DW_TAG_interface_type:
6930 case DW_TAG_structure_type:
6931 case DW_TAG_union_type:
6932 case DW_TAG_enumeration_type:
6933 /* Skip external references. The DWARF standard says in the section
6934 about "Structure, Union, and Class Type Entries": "An incomplete
6935 structure, union or class type is represented by a structure,
6936 union or class entry that does not have a byte size attribute
6937 and that has a DW_AT_declaration attribute." */
6938 if (!pdi->has_byte_size && pdi->is_declaration)
6939 {
6940 xfree (built_actual_name);
6941 return;
6942 }
6943
6944 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6945 static vs. global. */
6946 add_psymbol_to_list (actual_name, strlen (actual_name),
6947 built_actual_name != NULL,
6948 STRUCT_DOMAIN, LOC_TYPEDEF,
6949 (cu->language == language_cplus
6950 || cu->language == language_java)
6951 ? &objfile->global_psymbols
6952 : &objfile->static_psymbols,
6953 0, (CORE_ADDR) 0, cu->language, objfile);
6954
6955 break;
6956 case DW_TAG_enumerator:
6957 add_psymbol_to_list (actual_name, strlen (actual_name),
6958 built_actual_name != NULL,
6959 VAR_DOMAIN, LOC_CONST,
6960 (cu->language == language_cplus
6961 || cu->language == language_java)
6962 ? &objfile->global_psymbols
6963 : &objfile->static_psymbols,
6964 0, (CORE_ADDR) 0, cu->language, objfile);
6965 break;
6966 default:
6967 break;
6968 }
6969
6970 xfree (built_actual_name);
6971 }
6972
6973 /* Read a partial die corresponding to a namespace; also, add a symbol
6974 corresponding to that namespace to the symbol table. NAMESPACE is
6975 the name of the enclosing namespace. */
6976
6977 static void
6978 add_partial_namespace (struct partial_die_info *pdi,
6979 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6980 int need_pc, struct dwarf2_cu *cu)
6981 {
6982 /* Add a symbol for the namespace. */
6983
6984 add_partial_symbol (pdi, cu);
6985
6986 /* Now scan partial symbols in that namespace. */
6987
6988 if (pdi->has_children)
6989 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6990 }
6991
6992 /* Read a partial die corresponding to a Fortran module. */
6993
6994 static void
6995 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6996 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6997 {
6998 /* Add a symbol for the namespace. */
6999
7000 add_partial_symbol (pdi, cu);
7001
7002 /* Now scan partial symbols in that module. */
7003
7004 if (pdi->has_children)
7005 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
7006 }
7007
7008 /* Read a partial die corresponding to a subprogram and create a partial
7009 symbol for that subprogram. When the CU language allows it, this
7010 routine also defines a partial symbol for each nested subprogram
7011 that this subprogram contains.
7012
7013 DIE my also be a lexical block, in which case we simply search
7014 recursively for suprograms defined inside that lexical block.
7015 Again, this is only performed when the CU language allows this
7016 type of definitions. */
7017
7018 static void
7019 add_partial_subprogram (struct partial_die_info *pdi,
7020 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7021 int need_pc, struct dwarf2_cu *cu)
7022 {
7023 if (pdi->tag == DW_TAG_subprogram)
7024 {
7025 if (pdi->has_pc_info)
7026 {
7027 if (pdi->lowpc < *lowpc)
7028 *lowpc = pdi->lowpc;
7029 if (pdi->highpc > *highpc)
7030 *highpc = pdi->highpc;
7031 if (need_pc)
7032 {
7033 CORE_ADDR baseaddr;
7034 struct objfile *objfile = cu->objfile;
7035
7036 baseaddr = ANOFFSET (objfile->section_offsets,
7037 SECT_OFF_TEXT (objfile));
7038 addrmap_set_empty (objfile->psymtabs_addrmap,
7039 pdi->lowpc + baseaddr,
7040 pdi->highpc - 1 + baseaddr,
7041 cu->per_cu->v.psymtab);
7042 }
7043 }
7044
7045 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7046 {
7047 if (!pdi->is_declaration)
7048 /* Ignore subprogram DIEs that do not have a name, they are
7049 illegal. Do not emit a complaint at this point, we will
7050 do so when we convert this psymtab into a symtab. */
7051 if (pdi->name)
7052 add_partial_symbol (pdi, cu);
7053 }
7054 }
7055
7056 if (! pdi->has_children)
7057 return;
7058
7059 if (cu->language == language_ada)
7060 {
7061 pdi = pdi->die_child;
7062 while (pdi != NULL)
7063 {
7064 fixup_partial_die (pdi, cu);
7065 if (pdi->tag == DW_TAG_subprogram
7066 || pdi->tag == DW_TAG_lexical_block)
7067 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
7068 pdi = pdi->die_sibling;
7069 }
7070 }
7071 }
7072
7073 /* Read a partial die corresponding to an enumeration type. */
7074
7075 static void
7076 add_partial_enumeration (struct partial_die_info *enum_pdi,
7077 struct dwarf2_cu *cu)
7078 {
7079 struct partial_die_info *pdi;
7080
7081 if (enum_pdi->name != NULL)
7082 add_partial_symbol (enum_pdi, cu);
7083
7084 pdi = enum_pdi->die_child;
7085 while (pdi)
7086 {
7087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7088 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7089 else
7090 add_partial_symbol (pdi, cu);
7091 pdi = pdi->die_sibling;
7092 }
7093 }
7094
7095 /* Return the initial uleb128 in the die at INFO_PTR. */
7096
7097 static unsigned int
7098 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7099 {
7100 unsigned int bytes_read;
7101
7102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7103 }
7104
7105 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7106 Return the corresponding abbrev, or NULL if the number is zero (indicating
7107 an empty DIE). In either case *BYTES_READ will be set to the length of
7108 the initial number. */
7109
7110 static struct abbrev_info *
7111 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7112 struct dwarf2_cu *cu)
7113 {
7114 bfd *abfd = cu->objfile->obfd;
7115 unsigned int abbrev_number;
7116 struct abbrev_info *abbrev;
7117
7118 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7119
7120 if (abbrev_number == 0)
7121 return NULL;
7122
7123 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7124 if (!abbrev)
7125 {
7126 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7127 abbrev_number, bfd_get_filename (abfd));
7128 }
7129
7130 return abbrev;
7131 }
7132
7133 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7134 Returns a pointer to the end of a series of DIEs, terminated by an empty
7135 DIE. Any children of the skipped DIEs will also be skipped. */
7136
7137 static const gdb_byte *
7138 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7139 {
7140 struct dwarf2_cu *cu = reader->cu;
7141 struct abbrev_info *abbrev;
7142 unsigned int bytes_read;
7143
7144 while (1)
7145 {
7146 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7147 if (abbrev == NULL)
7148 return info_ptr + bytes_read;
7149 else
7150 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7151 }
7152 }
7153
7154 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7155 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7156 abbrev corresponding to that skipped uleb128 should be passed in
7157 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7158 children. */
7159
7160 static const gdb_byte *
7161 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7162 struct abbrev_info *abbrev)
7163 {
7164 unsigned int bytes_read;
7165 struct attribute attr;
7166 bfd *abfd = reader->abfd;
7167 struct dwarf2_cu *cu = reader->cu;
7168 const gdb_byte *buffer = reader->buffer;
7169 const gdb_byte *buffer_end = reader->buffer_end;
7170 const gdb_byte *start_info_ptr = info_ptr;
7171 unsigned int form, i;
7172
7173 for (i = 0; i < abbrev->num_attrs; i++)
7174 {
7175 /* The only abbrev we care about is DW_AT_sibling. */
7176 if (abbrev->attrs[i].name == DW_AT_sibling)
7177 {
7178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7179 if (attr.form == DW_FORM_ref_addr)
7180 complaint (&symfile_complaints,
7181 _("ignoring absolute DW_AT_sibling"));
7182 else
7183 {
7184 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7185 const gdb_byte *sibling_ptr = buffer + off;
7186
7187 if (sibling_ptr < info_ptr)
7188 complaint (&symfile_complaints,
7189 _("DW_AT_sibling points backwards"));
7190 else if (sibling_ptr > reader->buffer_end)
7191 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7192 else
7193 return sibling_ptr;
7194 }
7195 }
7196
7197 /* If it isn't DW_AT_sibling, skip this attribute. */
7198 form = abbrev->attrs[i].form;
7199 skip_attribute:
7200 switch (form)
7201 {
7202 case DW_FORM_ref_addr:
7203 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7204 and later it is offset sized. */
7205 if (cu->header.version == 2)
7206 info_ptr += cu->header.addr_size;
7207 else
7208 info_ptr += cu->header.offset_size;
7209 break;
7210 case DW_FORM_GNU_ref_alt:
7211 info_ptr += cu->header.offset_size;
7212 break;
7213 case DW_FORM_addr:
7214 info_ptr += cu->header.addr_size;
7215 break;
7216 case DW_FORM_data1:
7217 case DW_FORM_ref1:
7218 case DW_FORM_flag:
7219 info_ptr += 1;
7220 break;
7221 case DW_FORM_flag_present:
7222 break;
7223 case DW_FORM_data2:
7224 case DW_FORM_ref2:
7225 info_ptr += 2;
7226 break;
7227 case DW_FORM_data4:
7228 case DW_FORM_ref4:
7229 info_ptr += 4;
7230 break;
7231 case DW_FORM_data8:
7232 case DW_FORM_ref8:
7233 case DW_FORM_ref_sig8:
7234 info_ptr += 8;
7235 break;
7236 case DW_FORM_string:
7237 read_direct_string (abfd, info_ptr, &bytes_read);
7238 info_ptr += bytes_read;
7239 break;
7240 case DW_FORM_sec_offset:
7241 case DW_FORM_strp:
7242 case DW_FORM_GNU_strp_alt:
7243 info_ptr += cu->header.offset_size;
7244 break;
7245 case DW_FORM_exprloc:
7246 case DW_FORM_block:
7247 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7248 info_ptr += bytes_read;
7249 break;
7250 case DW_FORM_block1:
7251 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7252 break;
7253 case DW_FORM_block2:
7254 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7255 break;
7256 case DW_FORM_block4:
7257 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7258 break;
7259 case DW_FORM_sdata:
7260 case DW_FORM_udata:
7261 case DW_FORM_ref_udata:
7262 case DW_FORM_GNU_addr_index:
7263 case DW_FORM_GNU_str_index:
7264 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7265 break;
7266 case DW_FORM_indirect:
7267 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7268 info_ptr += bytes_read;
7269 /* We need to continue parsing from here, so just go back to
7270 the top. */
7271 goto skip_attribute;
7272
7273 default:
7274 error (_("Dwarf Error: Cannot handle %s "
7275 "in DWARF reader [in module %s]"),
7276 dwarf_form_name (form),
7277 bfd_get_filename (abfd));
7278 }
7279 }
7280
7281 if (abbrev->has_children)
7282 return skip_children (reader, info_ptr);
7283 else
7284 return info_ptr;
7285 }
7286
7287 /* Locate ORIG_PDI's sibling.
7288 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7289
7290 static const gdb_byte *
7291 locate_pdi_sibling (const struct die_reader_specs *reader,
7292 struct partial_die_info *orig_pdi,
7293 const gdb_byte *info_ptr)
7294 {
7295 /* Do we know the sibling already? */
7296
7297 if (orig_pdi->sibling)
7298 return orig_pdi->sibling;
7299
7300 /* Are there any children to deal with? */
7301
7302 if (!orig_pdi->has_children)
7303 return info_ptr;
7304
7305 /* Skip the children the long way. */
7306
7307 return skip_children (reader, info_ptr);
7308 }
7309
7310 /* Expand this partial symbol table into a full symbol table. SELF is
7311 not NULL. */
7312
7313 static void
7314 dwarf2_read_symtab (struct partial_symtab *self,
7315 struct objfile *objfile)
7316 {
7317 if (self->readin)
7318 {
7319 warning (_("bug: psymtab for %s is already read in."),
7320 self->filename);
7321 }
7322 else
7323 {
7324 if (info_verbose)
7325 {
7326 printf_filtered (_("Reading in symbols for %s..."),
7327 self->filename);
7328 gdb_flush (gdb_stdout);
7329 }
7330
7331 /* Restore our global data. */
7332 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7333
7334 /* If this psymtab is constructed from a debug-only objfile, the
7335 has_section_at_zero flag will not necessarily be correct. We
7336 can get the correct value for this flag by looking at the data
7337 associated with the (presumably stripped) associated objfile. */
7338 if (objfile->separate_debug_objfile_backlink)
7339 {
7340 struct dwarf2_per_objfile *dpo_backlink
7341 = objfile_data (objfile->separate_debug_objfile_backlink,
7342 dwarf2_objfile_data_key);
7343
7344 dwarf2_per_objfile->has_section_at_zero
7345 = dpo_backlink->has_section_at_zero;
7346 }
7347
7348 dwarf2_per_objfile->reading_partial_symbols = 0;
7349
7350 psymtab_to_symtab_1 (self);
7351
7352 /* Finish up the debug error message. */
7353 if (info_verbose)
7354 printf_filtered (_("done.\n"));
7355 }
7356
7357 process_cu_includes ();
7358 }
7359 \f
7360 /* Reading in full CUs. */
7361
7362 /* Add PER_CU to the queue. */
7363
7364 static void
7365 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7366 enum language pretend_language)
7367 {
7368 struct dwarf2_queue_item *item;
7369
7370 per_cu->queued = 1;
7371 item = xmalloc (sizeof (*item));
7372 item->per_cu = per_cu;
7373 item->pretend_language = pretend_language;
7374 item->next = NULL;
7375
7376 if (dwarf2_queue == NULL)
7377 dwarf2_queue = item;
7378 else
7379 dwarf2_queue_tail->next = item;
7380
7381 dwarf2_queue_tail = item;
7382 }
7383
7384 /* If PER_CU is not yet queued, add it to the queue.
7385 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7386 dependency.
7387 The result is non-zero if PER_CU was queued, otherwise the result is zero
7388 meaning either PER_CU is already queued or it is already loaded.
7389
7390 N.B. There is an invariant here that if a CU is queued then it is loaded.
7391 The caller is required to load PER_CU if we return non-zero. */
7392
7393 static int
7394 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7395 struct dwarf2_per_cu_data *per_cu,
7396 enum language pretend_language)
7397 {
7398 /* We may arrive here during partial symbol reading, if we need full
7399 DIEs to process an unusual case (e.g. template arguments). Do
7400 not queue PER_CU, just tell our caller to load its DIEs. */
7401 if (dwarf2_per_objfile->reading_partial_symbols)
7402 {
7403 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7404 return 1;
7405 return 0;
7406 }
7407
7408 /* Mark the dependence relation so that we don't flush PER_CU
7409 too early. */
7410 if (dependent_cu != NULL)
7411 dwarf2_add_dependence (dependent_cu, per_cu);
7412
7413 /* If it's already on the queue, we have nothing to do. */
7414 if (per_cu->queued)
7415 return 0;
7416
7417 /* If the compilation unit is already loaded, just mark it as
7418 used. */
7419 if (per_cu->cu != NULL)
7420 {
7421 per_cu->cu->last_used = 0;
7422 return 0;
7423 }
7424
7425 /* Add it to the queue. */
7426 queue_comp_unit (per_cu, pretend_language);
7427
7428 return 1;
7429 }
7430
7431 /* Process the queue. */
7432
7433 static void
7434 process_queue (void)
7435 {
7436 struct dwarf2_queue_item *item, *next_item;
7437
7438 if (dwarf2_read_debug)
7439 {
7440 fprintf_unfiltered (gdb_stdlog,
7441 "Expanding one or more symtabs of objfile %s ...\n",
7442 objfile_name (dwarf2_per_objfile->objfile));
7443 }
7444
7445 /* The queue starts out with one item, but following a DIE reference
7446 may load a new CU, adding it to the end of the queue. */
7447 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7448 {
7449 if (dwarf2_per_objfile->using_index
7450 ? !item->per_cu->v.quick->symtab
7451 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7452 {
7453 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7454 unsigned int debug_print_threshold;
7455 char buf[100];
7456
7457 if (per_cu->is_debug_types)
7458 {
7459 struct signatured_type *sig_type =
7460 (struct signatured_type *) per_cu;
7461
7462 sprintf (buf, "TU %s at offset 0x%x",
7463 hex_string (sig_type->signature),
7464 per_cu->offset.sect_off);
7465 /* There can be 100s of TUs.
7466 Only print them in verbose mode. */
7467 debug_print_threshold = 2;
7468 }
7469 else
7470 {
7471 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7472 debug_print_threshold = 1;
7473 }
7474
7475 if (dwarf2_read_debug >= debug_print_threshold)
7476 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7477
7478 if (per_cu->is_debug_types)
7479 process_full_type_unit (per_cu, item->pretend_language);
7480 else
7481 process_full_comp_unit (per_cu, item->pretend_language);
7482
7483 if (dwarf2_read_debug >= debug_print_threshold)
7484 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7485 }
7486
7487 item->per_cu->queued = 0;
7488 next_item = item->next;
7489 xfree (item);
7490 }
7491
7492 dwarf2_queue_tail = NULL;
7493
7494 if (dwarf2_read_debug)
7495 {
7496 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7497 objfile_name (dwarf2_per_objfile->objfile));
7498 }
7499 }
7500
7501 /* Free all allocated queue entries. This function only releases anything if
7502 an error was thrown; if the queue was processed then it would have been
7503 freed as we went along. */
7504
7505 static void
7506 dwarf2_release_queue (void *dummy)
7507 {
7508 struct dwarf2_queue_item *item, *last;
7509
7510 item = dwarf2_queue;
7511 while (item)
7512 {
7513 /* Anything still marked queued is likely to be in an
7514 inconsistent state, so discard it. */
7515 if (item->per_cu->queued)
7516 {
7517 if (item->per_cu->cu != NULL)
7518 free_one_cached_comp_unit (item->per_cu);
7519 item->per_cu->queued = 0;
7520 }
7521
7522 last = item;
7523 item = item->next;
7524 xfree (last);
7525 }
7526
7527 dwarf2_queue = dwarf2_queue_tail = NULL;
7528 }
7529
7530 /* Read in full symbols for PST, and anything it depends on. */
7531
7532 static void
7533 psymtab_to_symtab_1 (struct partial_symtab *pst)
7534 {
7535 struct dwarf2_per_cu_data *per_cu;
7536 int i;
7537
7538 if (pst->readin)
7539 return;
7540
7541 for (i = 0; i < pst->number_of_dependencies; i++)
7542 if (!pst->dependencies[i]->readin
7543 && pst->dependencies[i]->user == NULL)
7544 {
7545 /* Inform about additional files that need to be read in. */
7546 if (info_verbose)
7547 {
7548 /* FIXME: i18n: Need to make this a single string. */
7549 fputs_filtered (" ", gdb_stdout);
7550 wrap_here ("");
7551 fputs_filtered ("and ", gdb_stdout);
7552 wrap_here ("");
7553 printf_filtered ("%s...", pst->dependencies[i]->filename);
7554 wrap_here (""); /* Flush output. */
7555 gdb_flush (gdb_stdout);
7556 }
7557 psymtab_to_symtab_1 (pst->dependencies[i]);
7558 }
7559
7560 per_cu = pst->read_symtab_private;
7561
7562 if (per_cu == NULL)
7563 {
7564 /* It's an include file, no symbols to read for it.
7565 Everything is in the parent symtab. */
7566 pst->readin = 1;
7567 return;
7568 }
7569
7570 dw2_do_instantiate_symtab (per_cu);
7571 }
7572
7573 /* Trivial hash function for die_info: the hash value of a DIE
7574 is its offset in .debug_info for this objfile. */
7575
7576 static hashval_t
7577 die_hash (const void *item)
7578 {
7579 const struct die_info *die = item;
7580
7581 return die->offset.sect_off;
7582 }
7583
7584 /* Trivial comparison function for die_info structures: two DIEs
7585 are equal if they have the same offset. */
7586
7587 static int
7588 die_eq (const void *item_lhs, const void *item_rhs)
7589 {
7590 const struct die_info *die_lhs = item_lhs;
7591 const struct die_info *die_rhs = item_rhs;
7592
7593 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7594 }
7595
7596 /* die_reader_func for load_full_comp_unit.
7597 This is identical to read_signatured_type_reader,
7598 but is kept separate for now. */
7599
7600 static void
7601 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7602 const gdb_byte *info_ptr,
7603 struct die_info *comp_unit_die,
7604 int has_children,
7605 void *data)
7606 {
7607 struct dwarf2_cu *cu = reader->cu;
7608 enum language *language_ptr = data;
7609
7610 gdb_assert (cu->die_hash == NULL);
7611 cu->die_hash =
7612 htab_create_alloc_ex (cu->header.length / 12,
7613 die_hash,
7614 die_eq,
7615 NULL,
7616 &cu->comp_unit_obstack,
7617 hashtab_obstack_allocate,
7618 dummy_obstack_deallocate);
7619
7620 if (has_children)
7621 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7622 &info_ptr, comp_unit_die);
7623 cu->dies = comp_unit_die;
7624 /* comp_unit_die is not stored in die_hash, no need. */
7625
7626 /* We try not to read any attributes in this function, because not
7627 all CUs needed for references have been loaded yet, and symbol
7628 table processing isn't initialized. But we have to set the CU language,
7629 or we won't be able to build types correctly.
7630 Similarly, if we do not read the producer, we can not apply
7631 producer-specific interpretation. */
7632 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7633 }
7634
7635 /* Load the DIEs associated with PER_CU into memory. */
7636
7637 static void
7638 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7639 enum language pretend_language)
7640 {
7641 gdb_assert (! this_cu->is_debug_types);
7642
7643 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7644 load_full_comp_unit_reader, &pretend_language);
7645 }
7646
7647 /* Add a DIE to the delayed physname list. */
7648
7649 static void
7650 add_to_method_list (struct type *type, int fnfield_index, int index,
7651 const char *name, struct die_info *die,
7652 struct dwarf2_cu *cu)
7653 {
7654 struct delayed_method_info mi;
7655 mi.type = type;
7656 mi.fnfield_index = fnfield_index;
7657 mi.index = index;
7658 mi.name = name;
7659 mi.die = die;
7660 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7661 }
7662
7663 /* A cleanup for freeing the delayed method list. */
7664
7665 static void
7666 free_delayed_list (void *ptr)
7667 {
7668 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7669 if (cu->method_list != NULL)
7670 {
7671 VEC_free (delayed_method_info, cu->method_list);
7672 cu->method_list = NULL;
7673 }
7674 }
7675
7676 /* Compute the physnames of any methods on the CU's method list.
7677
7678 The computation of method physnames is delayed in order to avoid the
7679 (bad) condition that one of the method's formal parameters is of an as yet
7680 incomplete type. */
7681
7682 static void
7683 compute_delayed_physnames (struct dwarf2_cu *cu)
7684 {
7685 int i;
7686 struct delayed_method_info *mi;
7687 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7688 {
7689 const char *physname;
7690 struct fn_fieldlist *fn_flp
7691 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7692 physname = dwarf2_physname (mi->name, mi->die, cu);
7693 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7694 }
7695 }
7696
7697 /* Go objects should be embedded in a DW_TAG_module DIE,
7698 and it's not clear if/how imported objects will appear.
7699 To keep Go support simple until that's worked out,
7700 go back through what we've read and create something usable.
7701 We could do this while processing each DIE, and feels kinda cleaner,
7702 but that way is more invasive.
7703 This is to, for example, allow the user to type "p var" or "b main"
7704 without having to specify the package name, and allow lookups
7705 of module.object to work in contexts that use the expression
7706 parser. */
7707
7708 static void
7709 fixup_go_packaging (struct dwarf2_cu *cu)
7710 {
7711 char *package_name = NULL;
7712 struct pending *list;
7713 int i;
7714
7715 for (list = global_symbols; list != NULL; list = list->next)
7716 {
7717 for (i = 0; i < list->nsyms; ++i)
7718 {
7719 struct symbol *sym = list->symbol[i];
7720
7721 if (SYMBOL_LANGUAGE (sym) == language_go
7722 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7723 {
7724 char *this_package_name = go_symbol_package_name (sym);
7725
7726 if (this_package_name == NULL)
7727 continue;
7728 if (package_name == NULL)
7729 package_name = this_package_name;
7730 else
7731 {
7732 if (strcmp (package_name, this_package_name) != 0)
7733 complaint (&symfile_complaints,
7734 _("Symtab %s has objects from two different Go packages: %s and %s"),
7735 (SYMBOL_SYMTAB (sym)
7736 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7737 : objfile_name (cu->objfile)),
7738 this_package_name, package_name);
7739 xfree (this_package_name);
7740 }
7741 }
7742 }
7743 }
7744
7745 if (package_name != NULL)
7746 {
7747 struct objfile *objfile = cu->objfile;
7748 const char *saved_package_name
7749 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7750 package_name,
7751 strlen (package_name));
7752 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7753 saved_package_name, objfile);
7754 struct symbol *sym;
7755
7756 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7757
7758 sym = allocate_symbol (objfile);
7759 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7760 SYMBOL_SET_NAMES (sym, saved_package_name,
7761 strlen (saved_package_name), 0, objfile);
7762 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7763 e.g., "main" finds the "main" module and not C's main(). */
7764 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7765 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7766 SYMBOL_TYPE (sym) = type;
7767
7768 add_symbol_to_list (sym, &global_symbols);
7769
7770 xfree (package_name);
7771 }
7772 }
7773
7774 /* Return the symtab for PER_CU. This works properly regardless of
7775 whether we're using the index or psymtabs. */
7776
7777 static struct symtab *
7778 get_symtab (struct dwarf2_per_cu_data *per_cu)
7779 {
7780 return (dwarf2_per_objfile->using_index
7781 ? per_cu->v.quick->symtab
7782 : per_cu->v.psymtab->symtab);
7783 }
7784
7785 /* A helper function for computing the list of all symbol tables
7786 included by PER_CU. */
7787
7788 static void
7789 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7790 htab_t all_children, htab_t all_type_symtabs,
7791 struct dwarf2_per_cu_data *per_cu,
7792 struct symtab *immediate_parent)
7793 {
7794 void **slot;
7795 int ix;
7796 struct symtab *symtab;
7797 struct dwarf2_per_cu_data *iter;
7798
7799 slot = htab_find_slot (all_children, per_cu, INSERT);
7800 if (*slot != NULL)
7801 {
7802 /* This inclusion and its children have been processed. */
7803 return;
7804 }
7805
7806 *slot = per_cu;
7807 /* Only add a CU if it has a symbol table. */
7808 symtab = get_symtab (per_cu);
7809 if (symtab != NULL)
7810 {
7811 /* If this is a type unit only add its symbol table if we haven't
7812 seen it yet (type unit per_cu's can share symtabs). */
7813 if (per_cu->is_debug_types)
7814 {
7815 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7816 if (*slot == NULL)
7817 {
7818 *slot = symtab;
7819 VEC_safe_push (symtab_ptr, *result, symtab);
7820 if (symtab->user == NULL)
7821 symtab->user = immediate_parent;
7822 }
7823 }
7824 else
7825 {
7826 VEC_safe_push (symtab_ptr, *result, symtab);
7827 if (symtab->user == NULL)
7828 symtab->user = immediate_parent;
7829 }
7830 }
7831
7832 for (ix = 0;
7833 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7834 ++ix)
7835 {
7836 recursively_compute_inclusions (result, all_children,
7837 all_type_symtabs, iter, symtab);
7838 }
7839 }
7840
7841 /* Compute the symtab 'includes' fields for the symtab related to
7842 PER_CU. */
7843
7844 static void
7845 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7846 {
7847 gdb_assert (! per_cu->is_debug_types);
7848
7849 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7850 {
7851 int ix, len;
7852 struct dwarf2_per_cu_data *per_cu_iter;
7853 struct symtab *symtab_iter;
7854 VEC (symtab_ptr) *result_symtabs = NULL;
7855 htab_t all_children, all_type_symtabs;
7856 struct symtab *symtab = get_symtab (per_cu);
7857
7858 /* If we don't have a symtab, we can just skip this case. */
7859 if (symtab == NULL)
7860 return;
7861
7862 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7863 NULL, xcalloc, xfree);
7864 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7865 NULL, xcalloc, xfree);
7866
7867 for (ix = 0;
7868 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7869 ix, per_cu_iter);
7870 ++ix)
7871 {
7872 recursively_compute_inclusions (&result_symtabs, all_children,
7873 all_type_symtabs, per_cu_iter,
7874 symtab);
7875 }
7876
7877 /* Now we have a transitive closure of all the included symtabs. */
7878 len = VEC_length (symtab_ptr, result_symtabs);
7879 symtab->includes
7880 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7881 (len + 1) * sizeof (struct symtab *));
7882 for (ix = 0;
7883 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7884 ++ix)
7885 symtab->includes[ix] = symtab_iter;
7886 symtab->includes[len] = NULL;
7887
7888 VEC_free (symtab_ptr, result_symtabs);
7889 htab_delete (all_children);
7890 htab_delete (all_type_symtabs);
7891 }
7892 }
7893
7894 /* Compute the 'includes' field for the symtabs of all the CUs we just
7895 read. */
7896
7897 static void
7898 process_cu_includes (void)
7899 {
7900 int ix;
7901 struct dwarf2_per_cu_data *iter;
7902
7903 for (ix = 0;
7904 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7905 ix, iter);
7906 ++ix)
7907 {
7908 if (! iter->is_debug_types)
7909 compute_symtab_includes (iter);
7910 }
7911
7912 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7913 }
7914
7915 /* Generate full symbol information for PER_CU, whose DIEs have
7916 already been loaded into memory. */
7917
7918 static void
7919 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7920 enum language pretend_language)
7921 {
7922 struct dwarf2_cu *cu = per_cu->cu;
7923 struct objfile *objfile = per_cu->objfile;
7924 CORE_ADDR lowpc, highpc;
7925 struct symtab *symtab;
7926 struct cleanup *back_to, *delayed_list_cleanup;
7927 CORE_ADDR baseaddr;
7928 struct block *static_block;
7929
7930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7931
7932 buildsym_init ();
7933 back_to = make_cleanup (really_free_pendings, NULL);
7934 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7935
7936 cu->list_in_scope = &file_symbols;
7937
7938 cu->language = pretend_language;
7939 cu->language_defn = language_def (cu->language);
7940
7941 /* Do line number decoding in read_file_scope () */
7942 process_die (cu->dies, cu);
7943
7944 /* For now fudge the Go package. */
7945 if (cu->language == language_go)
7946 fixup_go_packaging (cu);
7947
7948 /* Now that we have processed all the DIEs in the CU, all the types
7949 should be complete, and it should now be safe to compute all of the
7950 physnames. */
7951 compute_delayed_physnames (cu);
7952 do_cleanups (delayed_list_cleanup);
7953
7954 /* Some compilers don't define a DW_AT_high_pc attribute for the
7955 compilation unit. If the DW_AT_high_pc is missing, synthesize
7956 it, by scanning the DIE's below the compilation unit. */
7957 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7958
7959 static_block
7960 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7961
7962 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7963 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7964 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7965 addrmap to help ensure it has an accurate map of pc values belonging to
7966 this comp unit. */
7967 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7968
7969 symtab = end_symtab_from_static_block (static_block, objfile,
7970 SECT_OFF_TEXT (objfile), 0);
7971
7972 if (symtab != NULL)
7973 {
7974 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7975
7976 /* Set symtab language to language from DW_AT_language. If the
7977 compilation is from a C file generated by language preprocessors, do
7978 not set the language if it was already deduced by start_subfile. */
7979 if (!(cu->language == language_c && symtab->language != language_c))
7980 symtab->language = cu->language;
7981
7982 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7983 produce DW_AT_location with location lists but it can be possibly
7984 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7985 there were bugs in prologue debug info, fixed later in GCC-4.5
7986 by "unwind info for epilogues" patch (which is not directly related).
7987
7988 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7989 needed, it would be wrong due to missing DW_AT_producer there.
7990
7991 Still one can confuse GDB by using non-standard GCC compilation
7992 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7993 */
7994 if (cu->has_loclist && gcc_4_minor >= 5)
7995 symtab->locations_valid = 1;
7996
7997 if (gcc_4_minor >= 5)
7998 symtab->epilogue_unwind_valid = 1;
7999
8000 symtab->call_site_htab = cu->call_site_htab;
8001 }
8002
8003 if (dwarf2_per_objfile->using_index)
8004 per_cu->v.quick->symtab = symtab;
8005 else
8006 {
8007 struct partial_symtab *pst = per_cu->v.psymtab;
8008 pst->symtab = symtab;
8009 pst->readin = 1;
8010 }
8011
8012 /* Push it for inclusion processing later. */
8013 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8014
8015 do_cleanups (back_to);
8016 }
8017
8018 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8019 already been loaded into memory. */
8020
8021 static void
8022 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8023 enum language pretend_language)
8024 {
8025 struct dwarf2_cu *cu = per_cu->cu;
8026 struct objfile *objfile = per_cu->objfile;
8027 struct symtab *symtab;
8028 struct cleanup *back_to, *delayed_list_cleanup;
8029 struct signatured_type *sig_type;
8030
8031 gdb_assert (per_cu->is_debug_types);
8032 sig_type = (struct signatured_type *) per_cu;
8033
8034 buildsym_init ();
8035 back_to = make_cleanup (really_free_pendings, NULL);
8036 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8037
8038 cu->list_in_scope = &file_symbols;
8039
8040 cu->language = pretend_language;
8041 cu->language_defn = language_def (cu->language);
8042
8043 /* The symbol tables are set up in read_type_unit_scope. */
8044 process_die (cu->dies, cu);
8045
8046 /* For now fudge the Go package. */
8047 if (cu->language == language_go)
8048 fixup_go_packaging (cu);
8049
8050 /* Now that we have processed all the DIEs in the CU, all the types
8051 should be complete, and it should now be safe to compute all of the
8052 physnames. */
8053 compute_delayed_physnames (cu);
8054 do_cleanups (delayed_list_cleanup);
8055
8056 /* TUs share symbol tables.
8057 If this is the first TU to use this symtab, complete the construction
8058 of it with end_expandable_symtab. Otherwise, complete the addition of
8059 this TU's symbols to the existing symtab. */
8060 if (sig_type->type_unit_group->primary_symtab == NULL)
8061 {
8062 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8063 sig_type->type_unit_group->primary_symtab = symtab;
8064
8065 if (symtab != NULL)
8066 {
8067 /* Set symtab language to language from DW_AT_language. If the
8068 compilation is from a C file generated by language preprocessors,
8069 do not set the language if it was already deduced by
8070 start_subfile. */
8071 if (!(cu->language == language_c && symtab->language != language_c))
8072 symtab->language = cu->language;
8073 }
8074 }
8075 else
8076 {
8077 augment_type_symtab (objfile,
8078 sig_type->type_unit_group->primary_symtab);
8079 symtab = sig_type->type_unit_group->primary_symtab;
8080 }
8081
8082 if (dwarf2_per_objfile->using_index)
8083 per_cu->v.quick->symtab = symtab;
8084 else
8085 {
8086 struct partial_symtab *pst = per_cu->v.psymtab;
8087 pst->symtab = symtab;
8088 pst->readin = 1;
8089 }
8090
8091 do_cleanups (back_to);
8092 }
8093
8094 /* Process an imported unit DIE. */
8095
8096 static void
8097 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8098 {
8099 struct attribute *attr;
8100
8101 /* For now we don't handle imported units in type units. */
8102 if (cu->per_cu->is_debug_types)
8103 {
8104 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8105 " supported in type units [in module %s]"),
8106 objfile_name (cu->objfile));
8107 }
8108
8109 attr = dwarf2_attr (die, DW_AT_import, cu);
8110 if (attr != NULL)
8111 {
8112 struct dwarf2_per_cu_data *per_cu;
8113 struct symtab *imported_symtab;
8114 sect_offset offset;
8115 int is_dwz;
8116
8117 offset = dwarf2_get_ref_die_offset (attr);
8118 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8119 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8120
8121 /* If necessary, add it to the queue and load its DIEs. */
8122 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8123 load_full_comp_unit (per_cu, cu->language);
8124
8125 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8126 per_cu);
8127 }
8128 }
8129
8130 /* Reset the in_process bit of a die. */
8131
8132 static void
8133 reset_die_in_process (void *arg)
8134 {
8135 struct die_info *die = arg;
8136
8137 die->in_process = 0;
8138 }
8139
8140 /* Process a die and its children. */
8141
8142 static void
8143 process_die (struct die_info *die, struct dwarf2_cu *cu)
8144 {
8145 struct cleanup *in_process;
8146
8147 /* We should only be processing those not already in process. */
8148 gdb_assert (!die->in_process);
8149
8150 die->in_process = 1;
8151 in_process = make_cleanup (reset_die_in_process,die);
8152
8153 switch (die->tag)
8154 {
8155 case DW_TAG_padding:
8156 break;
8157 case DW_TAG_compile_unit:
8158 case DW_TAG_partial_unit:
8159 read_file_scope (die, cu);
8160 break;
8161 case DW_TAG_type_unit:
8162 read_type_unit_scope (die, cu);
8163 break;
8164 case DW_TAG_subprogram:
8165 case DW_TAG_inlined_subroutine:
8166 read_func_scope (die, cu);
8167 break;
8168 case DW_TAG_lexical_block:
8169 case DW_TAG_try_block:
8170 case DW_TAG_catch_block:
8171 read_lexical_block_scope (die, cu);
8172 break;
8173 case DW_TAG_GNU_call_site:
8174 read_call_site_scope (die, cu);
8175 break;
8176 case DW_TAG_class_type:
8177 case DW_TAG_interface_type:
8178 case DW_TAG_structure_type:
8179 case DW_TAG_union_type:
8180 process_structure_scope (die, cu);
8181 break;
8182 case DW_TAG_enumeration_type:
8183 process_enumeration_scope (die, cu);
8184 break;
8185
8186 /* These dies have a type, but processing them does not create
8187 a symbol or recurse to process the children. Therefore we can
8188 read them on-demand through read_type_die. */
8189 case DW_TAG_subroutine_type:
8190 case DW_TAG_set_type:
8191 case DW_TAG_array_type:
8192 case DW_TAG_pointer_type:
8193 case DW_TAG_ptr_to_member_type:
8194 case DW_TAG_reference_type:
8195 case DW_TAG_string_type:
8196 break;
8197
8198 case DW_TAG_base_type:
8199 case DW_TAG_subrange_type:
8200 case DW_TAG_typedef:
8201 /* Add a typedef symbol for the type definition, if it has a
8202 DW_AT_name. */
8203 new_symbol (die, read_type_die (die, cu), cu);
8204 break;
8205 case DW_TAG_common_block:
8206 read_common_block (die, cu);
8207 break;
8208 case DW_TAG_common_inclusion:
8209 break;
8210 case DW_TAG_namespace:
8211 cu->processing_has_namespace_info = 1;
8212 read_namespace (die, cu);
8213 break;
8214 case DW_TAG_module:
8215 cu->processing_has_namespace_info = 1;
8216 read_module (die, cu);
8217 break;
8218 case DW_TAG_imported_declaration:
8219 cu->processing_has_namespace_info = 1;
8220 if (read_namespace_alias (die, cu))
8221 break;
8222 /* The declaration is not a global namespace alias: fall through. */
8223 case DW_TAG_imported_module:
8224 cu->processing_has_namespace_info = 1;
8225 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8226 || cu->language != language_fortran))
8227 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8228 dwarf_tag_name (die->tag));
8229 read_import_statement (die, cu);
8230 break;
8231
8232 case DW_TAG_imported_unit:
8233 process_imported_unit_die (die, cu);
8234 break;
8235
8236 default:
8237 new_symbol (die, NULL, cu);
8238 break;
8239 }
8240
8241 do_cleanups (in_process);
8242 }
8243 \f
8244 /* DWARF name computation. */
8245
8246 /* A helper function for dwarf2_compute_name which determines whether DIE
8247 needs to have the name of the scope prepended to the name listed in the
8248 die. */
8249
8250 static int
8251 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8252 {
8253 struct attribute *attr;
8254
8255 switch (die->tag)
8256 {
8257 case DW_TAG_namespace:
8258 case DW_TAG_typedef:
8259 case DW_TAG_class_type:
8260 case DW_TAG_interface_type:
8261 case DW_TAG_structure_type:
8262 case DW_TAG_union_type:
8263 case DW_TAG_enumeration_type:
8264 case DW_TAG_enumerator:
8265 case DW_TAG_subprogram:
8266 case DW_TAG_member:
8267 case DW_TAG_imported_declaration:
8268 return 1;
8269
8270 case DW_TAG_variable:
8271 case DW_TAG_constant:
8272 /* We only need to prefix "globally" visible variables. These include
8273 any variable marked with DW_AT_external or any variable that
8274 lives in a namespace. [Variables in anonymous namespaces
8275 require prefixing, but they are not DW_AT_external.] */
8276
8277 if (dwarf2_attr (die, DW_AT_specification, cu))
8278 {
8279 struct dwarf2_cu *spec_cu = cu;
8280
8281 return die_needs_namespace (die_specification (die, &spec_cu),
8282 spec_cu);
8283 }
8284
8285 attr = dwarf2_attr (die, DW_AT_external, cu);
8286 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8287 && die->parent->tag != DW_TAG_module)
8288 return 0;
8289 /* A variable in a lexical block of some kind does not need a
8290 namespace, even though in C++ such variables may be external
8291 and have a mangled name. */
8292 if (die->parent->tag == DW_TAG_lexical_block
8293 || die->parent->tag == DW_TAG_try_block
8294 || die->parent->tag == DW_TAG_catch_block
8295 || die->parent->tag == DW_TAG_subprogram)
8296 return 0;
8297 return 1;
8298
8299 default:
8300 return 0;
8301 }
8302 }
8303
8304 /* Retrieve the last character from a mem_file. */
8305
8306 static void
8307 do_ui_file_peek_last (void *object, const char *buffer, long length)
8308 {
8309 char *last_char_p = (char *) object;
8310
8311 if (length > 0)
8312 *last_char_p = buffer[length - 1];
8313 }
8314
8315 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8316 compute the physname for the object, which include a method's:
8317 - formal parameters (C++/Java),
8318 - receiver type (Go),
8319 - return type (Java).
8320
8321 The term "physname" is a bit confusing.
8322 For C++, for example, it is the demangled name.
8323 For Go, for example, it's the mangled name.
8324
8325 For Ada, return the DIE's linkage name rather than the fully qualified
8326 name. PHYSNAME is ignored..
8327
8328 The result is allocated on the objfile_obstack and canonicalized. */
8329
8330 static const char *
8331 dwarf2_compute_name (const char *name,
8332 struct die_info *die, struct dwarf2_cu *cu,
8333 int physname)
8334 {
8335 struct objfile *objfile = cu->objfile;
8336
8337 if (name == NULL)
8338 name = dwarf2_name (die, cu);
8339
8340 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8341 compute it by typename_concat inside GDB. */
8342 if (cu->language == language_ada
8343 || (cu->language == language_fortran && physname))
8344 {
8345 /* For Ada unit, we prefer the linkage name over the name, as
8346 the former contains the exported name, which the user expects
8347 to be able to reference. Ideally, we want the user to be able
8348 to reference this entity using either natural or linkage name,
8349 but we haven't started looking at this enhancement yet. */
8350 struct attribute *attr;
8351
8352 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8353 if (attr == NULL)
8354 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8355 if (attr && DW_STRING (attr))
8356 return DW_STRING (attr);
8357 }
8358
8359 /* These are the only languages we know how to qualify names in. */
8360 if (name != NULL
8361 && (cu->language == language_cplus || cu->language == language_java
8362 || cu->language == language_fortran))
8363 {
8364 if (die_needs_namespace (die, cu))
8365 {
8366 long length;
8367 const char *prefix;
8368 struct ui_file *buf;
8369 char *intermediate_name;
8370 const char *canonical_name = NULL;
8371
8372 prefix = determine_prefix (die, cu);
8373 buf = mem_fileopen ();
8374 if (*prefix != '\0')
8375 {
8376 char *prefixed_name = typename_concat (NULL, prefix, name,
8377 physname, cu);
8378
8379 fputs_unfiltered (prefixed_name, buf);
8380 xfree (prefixed_name);
8381 }
8382 else
8383 fputs_unfiltered (name, buf);
8384
8385 /* Template parameters may be specified in the DIE's DW_AT_name, or
8386 as children with DW_TAG_template_type_param or
8387 DW_TAG_value_type_param. If the latter, add them to the name
8388 here. If the name already has template parameters, then
8389 skip this step; some versions of GCC emit both, and
8390 it is more efficient to use the pre-computed name.
8391
8392 Something to keep in mind about this process: it is very
8393 unlikely, or in some cases downright impossible, to produce
8394 something that will match the mangled name of a function.
8395 If the definition of the function has the same debug info,
8396 we should be able to match up with it anyway. But fallbacks
8397 using the minimal symbol, for instance to find a method
8398 implemented in a stripped copy of libstdc++, will not work.
8399 If we do not have debug info for the definition, we will have to
8400 match them up some other way.
8401
8402 When we do name matching there is a related problem with function
8403 templates; two instantiated function templates are allowed to
8404 differ only by their return types, which we do not add here. */
8405
8406 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8407 {
8408 struct attribute *attr;
8409 struct die_info *child;
8410 int first = 1;
8411
8412 die->building_fullname = 1;
8413
8414 for (child = die->child; child != NULL; child = child->sibling)
8415 {
8416 struct type *type;
8417 LONGEST value;
8418 const gdb_byte *bytes;
8419 struct dwarf2_locexpr_baton *baton;
8420 struct value *v;
8421
8422 if (child->tag != DW_TAG_template_type_param
8423 && child->tag != DW_TAG_template_value_param)
8424 continue;
8425
8426 if (first)
8427 {
8428 fputs_unfiltered ("<", buf);
8429 first = 0;
8430 }
8431 else
8432 fputs_unfiltered (", ", buf);
8433
8434 attr = dwarf2_attr (child, DW_AT_type, cu);
8435 if (attr == NULL)
8436 {
8437 complaint (&symfile_complaints,
8438 _("template parameter missing DW_AT_type"));
8439 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8440 continue;
8441 }
8442 type = die_type (child, cu);
8443
8444 if (child->tag == DW_TAG_template_type_param)
8445 {
8446 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8447 continue;
8448 }
8449
8450 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8451 if (attr == NULL)
8452 {
8453 complaint (&symfile_complaints,
8454 _("template parameter missing "
8455 "DW_AT_const_value"));
8456 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8457 continue;
8458 }
8459
8460 dwarf2_const_value_attr (attr, type, name,
8461 &cu->comp_unit_obstack, cu,
8462 &value, &bytes, &baton);
8463
8464 if (TYPE_NOSIGN (type))
8465 /* GDB prints characters as NUMBER 'CHAR'. If that's
8466 changed, this can use value_print instead. */
8467 c_printchar (value, type, buf);
8468 else
8469 {
8470 struct value_print_options opts;
8471
8472 if (baton != NULL)
8473 v = dwarf2_evaluate_loc_desc (type, NULL,
8474 baton->data,
8475 baton->size,
8476 baton->per_cu);
8477 else if (bytes != NULL)
8478 {
8479 v = allocate_value (type);
8480 memcpy (value_contents_writeable (v), bytes,
8481 TYPE_LENGTH (type));
8482 }
8483 else
8484 v = value_from_longest (type, value);
8485
8486 /* Specify decimal so that we do not depend on
8487 the radix. */
8488 get_formatted_print_options (&opts, 'd');
8489 opts.raw = 1;
8490 value_print (v, buf, &opts);
8491 release_value (v);
8492 value_free (v);
8493 }
8494 }
8495
8496 die->building_fullname = 0;
8497
8498 if (!first)
8499 {
8500 /* Close the argument list, with a space if necessary
8501 (nested templates). */
8502 char last_char = '\0';
8503 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8504 if (last_char == '>')
8505 fputs_unfiltered (" >", buf);
8506 else
8507 fputs_unfiltered (">", buf);
8508 }
8509 }
8510
8511 /* For Java and C++ methods, append formal parameter type
8512 information, if PHYSNAME. */
8513
8514 if (physname && die->tag == DW_TAG_subprogram
8515 && (cu->language == language_cplus
8516 || cu->language == language_java))
8517 {
8518 struct type *type = read_type_die (die, cu);
8519
8520 c_type_print_args (type, buf, 1, cu->language,
8521 &type_print_raw_options);
8522
8523 if (cu->language == language_java)
8524 {
8525 /* For java, we must append the return type to method
8526 names. */
8527 if (die->tag == DW_TAG_subprogram)
8528 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8529 0, 0, &type_print_raw_options);
8530 }
8531 else if (cu->language == language_cplus)
8532 {
8533 /* Assume that an artificial first parameter is
8534 "this", but do not crash if it is not. RealView
8535 marks unnamed (and thus unused) parameters as
8536 artificial; there is no way to differentiate
8537 the two cases. */
8538 if (TYPE_NFIELDS (type) > 0
8539 && TYPE_FIELD_ARTIFICIAL (type, 0)
8540 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8541 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8542 0))))
8543 fputs_unfiltered (" const", buf);
8544 }
8545 }
8546
8547 intermediate_name = ui_file_xstrdup (buf, &length);
8548 ui_file_delete (buf);
8549
8550 if (cu->language == language_cplus)
8551 canonical_name
8552 = dwarf2_canonicalize_name (intermediate_name, cu,
8553 &objfile->per_bfd->storage_obstack);
8554
8555 /* If we only computed INTERMEDIATE_NAME, or if
8556 INTERMEDIATE_NAME is already canonical, then we need to
8557 copy it to the appropriate obstack. */
8558 if (canonical_name == NULL || canonical_name == intermediate_name)
8559 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8560 intermediate_name,
8561 strlen (intermediate_name));
8562 else
8563 name = canonical_name;
8564
8565 xfree (intermediate_name);
8566 }
8567 }
8568
8569 return name;
8570 }
8571
8572 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8573 If scope qualifiers are appropriate they will be added. The result
8574 will be allocated on the storage_obstack, or NULL if the DIE does
8575 not have a name. NAME may either be from a previous call to
8576 dwarf2_name or NULL.
8577
8578 The output string will be canonicalized (if C++/Java). */
8579
8580 static const char *
8581 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8582 {
8583 return dwarf2_compute_name (name, die, cu, 0);
8584 }
8585
8586 /* Construct a physname for the given DIE in CU. NAME may either be
8587 from a previous call to dwarf2_name or NULL. The result will be
8588 allocated on the objfile_objstack or NULL if the DIE does not have a
8589 name.
8590
8591 The output string will be canonicalized (if C++/Java). */
8592
8593 static const char *
8594 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8595 {
8596 struct objfile *objfile = cu->objfile;
8597 struct attribute *attr;
8598 const char *retval, *mangled = NULL, *canon = NULL;
8599 struct cleanup *back_to;
8600 int need_copy = 1;
8601
8602 /* In this case dwarf2_compute_name is just a shortcut not building anything
8603 on its own. */
8604 if (!die_needs_namespace (die, cu))
8605 return dwarf2_compute_name (name, die, cu, 1);
8606
8607 back_to = make_cleanup (null_cleanup, NULL);
8608
8609 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8610 if (!attr)
8611 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8612
8613 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8614 has computed. */
8615 if (attr && DW_STRING (attr))
8616 {
8617 char *demangled;
8618
8619 mangled = DW_STRING (attr);
8620
8621 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8622 type. It is easier for GDB users to search for such functions as
8623 `name(params)' than `long name(params)'. In such case the minimal
8624 symbol names do not match the full symbol names but for template
8625 functions there is never a need to look up their definition from their
8626 declaration so the only disadvantage remains the minimal symbol
8627 variant `long name(params)' does not have the proper inferior type.
8628 */
8629
8630 if (cu->language == language_go)
8631 {
8632 /* This is a lie, but we already lie to the caller new_symbol_full.
8633 new_symbol_full assumes we return the mangled name.
8634 This just undoes that lie until things are cleaned up. */
8635 demangled = NULL;
8636 }
8637 else
8638 {
8639 demangled = gdb_demangle (mangled,
8640 (DMGL_PARAMS | DMGL_ANSI
8641 | (cu->language == language_java
8642 ? DMGL_JAVA | DMGL_RET_POSTFIX
8643 : DMGL_RET_DROP)));
8644 }
8645 if (demangled)
8646 {
8647 make_cleanup (xfree, demangled);
8648 canon = demangled;
8649 }
8650 else
8651 {
8652 canon = mangled;
8653 need_copy = 0;
8654 }
8655 }
8656
8657 if (canon == NULL || check_physname)
8658 {
8659 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8660
8661 if (canon != NULL && strcmp (physname, canon) != 0)
8662 {
8663 /* It may not mean a bug in GDB. The compiler could also
8664 compute DW_AT_linkage_name incorrectly. But in such case
8665 GDB would need to be bug-to-bug compatible. */
8666
8667 complaint (&symfile_complaints,
8668 _("Computed physname <%s> does not match demangled <%s> "
8669 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8670 physname, canon, mangled, die->offset.sect_off,
8671 objfile_name (objfile));
8672
8673 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8674 is available here - over computed PHYSNAME. It is safer
8675 against both buggy GDB and buggy compilers. */
8676
8677 retval = canon;
8678 }
8679 else
8680 {
8681 retval = physname;
8682 need_copy = 0;
8683 }
8684 }
8685 else
8686 retval = canon;
8687
8688 if (need_copy)
8689 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8690 retval, strlen (retval));
8691
8692 do_cleanups (back_to);
8693 return retval;
8694 }
8695
8696 /* Inspect DIE in CU for a namespace alias. If one exists, record
8697 a new symbol for it.
8698
8699 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8700
8701 static int
8702 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8703 {
8704 struct attribute *attr;
8705
8706 /* If the die does not have a name, this is not a namespace
8707 alias. */
8708 attr = dwarf2_attr (die, DW_AT_name, cu);
8709 if (attr != NULL)
8710 {
8711 int num;
8712 struct die_info *d = die;
8713 struct dwarf2_cu *imported_cu = cu;
8714
8715 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8716 keep inspecting DIEs until we hit the underlying import. */
8717 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8718 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8719 {
8720 attr = dwarf2_attr (d, DW_AT_import, cu);
8721 if (attr == NULL)
8722 break;
8723
8724 d = follow_die_ref (d, attr, &imported_cu);
8725 if (d->tag != DW_TAG_imported_declaration)
8726 break;
8727 }
8728
8729 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8730 {
8731 complaint (&symfile_complaints,
8732 _("DIE at 0x%x has too many recursively imported "
8733 "declarations"), d->offset.sect_off);
8734 return 0;
8735 }
8736
8737 if (attr != NULL)
8738 {
8739 struct type *type;
8740 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8741
8742 type = get_die_type_at_offset (offset, cu->per_cu);
8743 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8744 {
8745 /* This declaration is a global namespace alias. Add
8746 a symbol for it whose type is the aliased namespace. */
8747 new_symbol (die, type, cu);
8748 return 1;
8749 }
8750 }
8751 }
8752
8753 return 0;
8754 }
8755
8756 /* Read the import statement specified by the given die and record it. */
8757
8758 static void
8759 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8760 {
8761 struct objfile *objfile = cu->objfile;
8762 struct attribute *import_attr;
8763 struct die_info *imported_die, *child_die;
8764 struct dwarf2_cu *imported_cu;
8765 const char *imported_name;
8766 const char *imported_name_prefix;
8767 const char *canonical_name;
8768 const char *import_alias;
8769 const char *imported_declaration = NULL;
8770 const char *import_prefix;
8771 VEC (const_char_ptr) *excludes = NULL;
8772 struct cleanup *cleanups;
8773
8774 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8775 if (import_attr == NULL)
8776 {
8777 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8778 dwarf_tag_name (die->tag));
8779 return;
8780 }
8781
8782 imported_cu = cu;
8783 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8784 imported_name = dwarf2_name (imported_die, imported_cu);
8785 if (imported_name == NULL)
8786 {
8787 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8788
8789 The import in the following code:
8790 namespace A
8791 {
8792 typedef int B;
8793 }
8794
8795 int main ()
8796 {
8797 using A::B;
8798 B b;
8799 return b;
8800 }
8801
8802 ...
8803 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8804 <52> DW_AT_decl_file : 1
8805 <53> DW_AT_decl_line : 6
8806 <54> DW_AT_import : <0x75>
8807 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8808 <59> DW_AT_name : B
8809 <5b> DW_AT_decl_file : 1
8810 <5c> DW_AT_decl_line : 2
8811 <5d> DW_AT_type : <0x6e>
8812 ...
8813 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8814 <76> DW_AT_byte_size : 4
8815 <77> DW_AT_encoding : 5 (signed)
8816
8817 imports the wrong die ( 0x75 instead of 0x58 ).
8818 This case will be ignored until the gcc bug is fixed. */
8819 return;
8820 }
8821
8822 /* Figure out the local name after import. */
8823 import_alias = dwarf2_name (die, cu);
8824
8825 /* Figure out where the statement is being imported to. */
8826 import_prefix = determine_prefix (die, cu);
8827
8828 /* Figure out what the scope of the imported die is and prepend it
8829 to the name of the imported die. */
8830 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8831
8832 if (imported_die->tag != DW_TAG_namespace
8833 && imported_die->tag != DW_TAG_module)
8834 {
8835 imported_declaration = imported_name;
8836 canonical_name = imported_name_prefix;
8837 }
8838 else if (strlen (imported_name_prefix) > 0)
8839 canonical_name = obconcat (&objfile->objfile_obstack,
8840 imported_name_prefix, "::", imported_name,
8841 (char *) NULL);
8842 else
8843 canonical_name = imported_name;
8844
8845 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8846
8847 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8848 for (child_die = die->child; child_die && child_die->tag;
8849 child_die = sibling_die (child_die))
8850 {
8851 /* DWARF-4: A Fortran use statement with a “rename list” may be
8852 represented by an imported module entry with an import attribute
8853 referring to the module and owned entries corresponding to those
8854 entities that are renamed as part of being imported. */
8855
8856 if (child_die->tag != DW_TAG_imported_declaration)
8857 {
8858 complaint (&symfile_complaints,
8859 _("child DW_TAG_imported_declaration expected "
8860 "- DIE at 0x%x [in module %s]"),
8861 child_die->offset.sect_off, objfile_name (objfile));
8862 continue;
8863 }
8864
8865 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8866 if (import_attr == NULL)
8867 {
8868 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8869 dwarf_tag_name (child_die->tag));
8870 continue;
8871 }
8872
8873 imported_cu = cu;
8874 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8875 &imported_cu);
8876 imported_name = dwarf2_name (imported_die, imported_cu);
8877 if (imported_name == NULL)
8878 {
8879 complaint (&symfile_complaints,
8880 _("child DW_TAG_imported_declaration has unknown "
8881 "imported name - DIE at 0x%x [in module %s]"),
8882 child_die->offset.sect_off, objfile_name (objfile));
8883 continue;
8884 }
8885
8886 VEC_safe_push (const_char_ptr, excludes, imported_name);
8887
8888 process_die (child_die, cu);
8889 }
8890
8891 cp_add_using_directive (import_prefix,
8892 canonical_name,
8893 import_alias,
8894 imported_declaration,
8895 excludes,
8896 0,
8897 &objfile->objfile_obstack);
8898
8899 do_cleanups (cleanups);
8900 }
8901
8902 /* Cleanup function for handle_DW_AT_stmt_list. */
8903
8904 static void
8905 free_cu_line_header (void *arg)
8906 {
8907 struct dwarf2_cu *cu = arg;
8908
8909 free_line_header (cu->line_header);
8910 cu->line_header = NULL;
8911 }
8912
8913 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8914 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8915 this, it was first present in GCC release 4.3.0. */
8916
8917 static int
8918 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8919 {
8920 if (!cu->checked_producer)
8921 check_producer (cu);
8922
8923 return cu->producer_is_gcc_lt_4_3;
8924 }
8925
8926 static void
8927 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8928 const char **name, const char **comp_dir)
8929 {
8930 struct attribute *attr;
8931
8932 *name = NULL;
8933 *comp_dir = NULL;
8934
8935 /* Find the filename. Do not use dwarf2_name here, since the filename
8936 is not a source language identifier. */
8937 attr = dwarf2_attr (die, DW_AT_name, cu);
8938 if (attr)
8939 {
8940 *name = DW_STRING (attr);
8941 }
8942
8943 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8944 if (attr)
8945 *comp_dir = DW_STRING (attr);
8946 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8947 && IS_ABSOLUTE_PATH (*name))
8948 {
8949 char *d = ldirname (*name);
8950
8951 *comp_dir = d;
8952 if (d != NULL)
8953 make_cleanup (xfree, d);
8954 }
8955 if (*comp_dir != NULL)
8956 {
8957 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8958 directory, get rid of it. */
8959 char *cp = strchr (*comp_dir, ':');
8960
8961 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8962 *comp_dir = cp + 1;
8963 }
8964
8965 if (*name == NULL)
8966 *name = "<unknown>";
8967 }
8968
8969 /* Handle DW_AT_stmt_list for a compilation unit.
8970 DIE is the DW_TAG_compile_unit die for CU.
8971 COMP_DIR is the compilation directory.
8972 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8973
8974 static void
8975 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8976 const char *comp_dir) /* ARI: editCase function */
8977 {
8978 struct attribute *attr;
8979
8980 gdb_assert (! cu->per_cu->is_debug_types);
8981
8982 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8983 if (attr)
8984 {
8985 unsigned int line_offset = DW_UNSND (attr);
8986 struct line_header *line_header
8987 = dwarf_decode_line_header (line_offset, cu);
8988
8989 if (line_header)
8990 {
8991 cu->line_header = line_header;
8992 make_cleanup (free_cu_line_header, cu);
8993 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8994 }
8995 }
8996 }
8997
8998 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8999
9000 static void
9001 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9002 {
9003 struct objfile *objfile = dwarf2_per_objfile->objfile;
9004 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9005 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9006 CORE_ADDR highpc = ((CORE_ADDR) 0);
9007 struct attribute *attr;
9008 const char *name = NULL;
9009 const char *comp_dir = NULL;
9010 struct die_info *child_die;
9011 bfd *abfd = objfile->obfd;
9012 CORE_ADDR baseaddr;
9013
9014 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9015
9016 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9017
9018 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9019 from finish_block. */
9020 if (lowpc == ((CORE_ADDR) -1))
9021 lowpc = highpc;
9022 lowpc += baseaddr;
9023 highpc += baseaddr;
9024
9025 find_file_and_directory (die, cu, &name, &comp_dir);
9026
9027 prepare_one_comp_unit (cu, die, cu->language);
9028
9029 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9030 standardised yet. As a workaround for the language detection we fall
9031 back to the DW_AT_producer string. */
9032 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9033 cu->language = language_opencl;
9034
9035 /* Similar hack for Go. */
9036 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9037 set_cu_language (DW_LANG_Go, cu);
9038
9039 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9040
9041 /* Decode line number information if present. We do this before
9042 processing child DIEs, so that the line header table is available
9043 for DW_AT_decl_file. */
9044 handle_DW_AT_stmt_list (die, cu, comp_dir);
9045
9046 /* Process all dies in compilation unit. */
9047 if (die->child != NULL)
9048 {
9049 child_die = die->child;
9050 while (child_die && child_die->tag)
9051 {
9052 process_die (child_die, cu);
9053 child_die = sibling_die (child_die);
9054 }
9055 }
9056
9057 /* Decode macro information, if present. Dwarf 2 macro information
9058 refers to information in the line number info statement program
9059 header, so we can only read it if we've read the header
9060 successfully. */
9061 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9062 if (attr && cu->line_header)
9063 {
9064 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9065 complaint (&symfile_complaints,
9066 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9067
9068 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9069 }
9070 else
9071 {
9072 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9073 if (attr && cu->line_header)
9074 {
9075 unsigned int macro_offset = DW_UNSND (attr);
9076
9077 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9078 }
9079 }
9080
9081 do_cleanups (back_to);
9082 }
9083
9084 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9085 Create the set of symtabs used by this TU, or if this TU is sharing
9086 symtabs with another TU and the symtabs have already been created
9087 then restore those symtabs in the line header.
9088 We don't need the pc/line-number mapping for type units. */
9089
9090 static void
9091 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9092 {
9093 struct objfile *objfile = dwarf2_per_objfile->objfile;
9094 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9095 struct type_unit_group *tu_group;
9096 int first_time;
9097 struct line_header *lh;
9098 struct attribute *attr;
9099 unsigned int i, line_offset;
9100 struct signatured_type *sig_type;
9101
9102 gdb_assert (per_cu->is_debug_types);
9103 sig_type = (struct signatured_type *) per_cu;
9104
9105 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9106
9107 /* If we're using .gdb_index (includes -readnow) then
9108 per_cu->type_unit_group may not have been set up yet. */
9109 if (sig_type->type_unit_group == NULL)
9110 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9111 tu_group = sig_type->type_unit_group;
9112
9113 /* If we've already processed this stmt_list there's no real need to
9114 do it again, we could fake it and just recreate the part we need
9115 (file name,index -> symtab mapping). If data shows this optimization
9116 is useful we can do it then. */
9117 first_time = tu_group->primary_symtab == NULL;
9118
9119 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9120 debug info. */
9121 lh = NULL;
9122 if (attr != NULL)
9123 {
9124 line_offset = DW_UNSND (attr);
9125 lh = dwarf_decode_line_header (line_offset, cu);
9126 }
9127 if (lh == NULL)
9128 {
9129 if (first_time)
9130 dwarf2_start_symtab (cu, "", NULL, 0);
9131 else
9132 {
9133 gdb_assert (tu_group->symtabs == NULL);
9134 restart_symtab (0);
9135 }
9136 /* Note: The primary symtab will get allocated at the end. */
9137 return;
9138 }
9139
9140 cu->line_header = lh;
9141 make_cleanup (free_cu_line_header, cu);
9142
9143 if (first_time)
9144 {
9145 dwarf2_start_symtab (cu, "", NULL, 0);
9146
9147 tu_group->num_symtabs = lh->num_file_names;
9148 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9149
9150 for (i = 0; i < lh->num_file_names; ++i)
9151 {
9152 const char *dir = NULL;
9153 struct file_entry *fe = &lh->file_names[i];
9154
9155 if (fe->dir_index)
9156 dir = lh->include_dirs[fe->dir_index - 1];
9157 dwarf2_start_subfile (fe->name, dir, NULL);
9158
9159 /* Note: We don't have to watch for the main subfile here, type units
9160 don't have DW_AT_name. */
9161
9162 if (current_subfile->symtab == NULL)
9163 {
9164 /* NOTE: start_subfile will recognize when it's been passed
9165 a file it has already seen. So we can't assume there's a
9166 simple mapping from lh->file_names to subfiles,
9167 lh->file_names may contain dups. */
9168 current_subfile->symtab = allocate_symtab (current_subfile->name,
9169 objfile);
9170 }
9171
9172 fe->symtab = current_subfile->symtab;
9173 tu_group->symtabs[i] = fe->symtab;
9174 }
9175 }
9176 else
9177 {
9178 restart_symtab (0);
9179
9180 for (i = 0; i < lh->num_file_names; ++i)
9181 {
9182 struct file_entry *fe = &lh->file_names[i];
9183
9184 fe->symtab = tu_group->symtabs[i];
9185 }
9186 }
9187
9188 /* The main symtab is allocated last. Type units don't have DW_AT_name
9189 so they don't have a "real" (so to speak) symtab anyway.
9190 There is later code that will assign the main symtab to all symbols
9191 that don't have one. We need to handle the case of a symbol with a
9192 missing symtab (DW_AT_decl_file) anyway. */
9193 }
9194
9195 /* Process DW_TAG_type_unit.
9196 For TUs we want to skip the first top level sibling if it's not the
9197 actual type being defined by this TU. In this case the first top
9198 level sibling is there to provide context only. */
9199
9200 static void
9201 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9202 {
9203 struct die_info *child_die;
9204
9205 prepare_one_comp_unit (cu, die, language_minimal);
9206
9207 /* Initialize (or reinitialize) the machinery for building symtabs.
9208 We do this before processing child DIEs, so that the line header table
9209 is available for DW_AT_decl_file. */
9210 setup_type_unit_groups (die, cu);
9211
9212 if (die->child != NULL)
9213 {
9214 child_die = die->child;
9215 while (child_die && child_die->tag)
9216 {
9217 process_die (child_die, cu);
9218 child_die = sibling_die (child_die);
9219 }
9220 }
9221 }
9222 \f
9223 /* DWO/DWP files.
9224
9225 http://gcc.gnu.org/wiki/DebugFission
9226 http://gcc.gnu.org/wiki/DebugFissionDWP
9227
9228 To simplify handling of both DWO files ("object" files with the DWARF info)
9229 and DWP files (a file with the DWOs packaged up into one file), we treat
9230 DWP files as having a collection of virtual DWO files. */
9231
9232 static hashval_t
9233 hash_dwo_file (const void *item)
9234 {
9235 const struct dwo_file *dwo_file = item;
9236 hashval_t hash;
9237
9238 hash = htab_hash_string (dwo_file->dwo_name);
9239 if (dwo_file->comp_dir != NULL)
9240 hash += htab_hash_string (dwo_file->comp_dir);
9241 return hash;
9242 }
9243
9244 static int
9245 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9246 {
9247 const struct dwo_file *lhs = item_lhs;
9248 const struct dwo_file *rhs = item_rhs;
9249
9250 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9251 return 0;
9252 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9253 return lhs->comp_dir == rhs->comp_dir;
9254 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9255 }
9256
9257 /* Allocate a hash table for DWO files. */
9258
9259 static htab_t
9260 allocate_dwo_file_hash_table (void)
9261 {
9262 struct objfile *objfile = dwarf2_per_objfile->objfile;
9263
9264 return htab_create_alloc_ex (41,
9265 hash_dwo_file,
9266 eq_dwo_file,
9267 NULL,
9268 &objfile->objfile_obstack,
9269 hashtab_obstack_allocate,
9270 dummy_obstack_deallocate);
9271 }
9272
9273 /* Lookup DWO file DWO_NAME. */
9274
9275 static void **
9276 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9277 {
9278 struct dwo_file find_entry;
9279 void **slot;
9280
9281 if (dwarf2_per_objfile->dwo_files == NULL)
9282 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9283
9284 memset (&find_entry, 0, sizeof (find_entry));
9285 find_entry.dwo_name = dwo_name;
9286 find_entry.comp_dir = comp_dir;
9287 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9288
9289 return slot;
9290 }
9291
9292 static hashval_t
9293 hash_dwo_unit (const void *item)
9294 {
9295 const struct dwo_unit *dwo_unit = item;
9296
9297 /* This drops the top 32 bits of the id, but is ok for a hash. */
9298 return dwo_unit->signature;
9299 }
9300
9301 static int
9302 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9303 {
9304 const struct dwo_unit *lhs = item_lhs;
9305 const struct dwo_unit *rhs = item_rhs;
9306
9307 /* The signature is assumed to be unique within the DWO file.
9308 So while object file CU dwo_id's always have the value zero,
9309 that's OK, assuming each object file DWO file has only one CU,
9310 and that's the rule for now. */
9311 return lhs->signature == rhs->signature;
9312 }
9313
9314 /* Allocate a hash table for DWO CUs,TUs.
9315 There is one of these tables for each of CUs,TUs for each DWO file. */
9316
9317 static htab_t
9318 allocate_dwo_unit_table (struct objfile *objfile)
9319 {
9320 /* Start out with a pretty small number.
9321 Generally DWO files contain only one CU and maybe some TUs. */
9322 return htab_create_alloc_ex (3,
9323 hash_dwo_unit,
9324 eq_dwo_unit,
9325 NULL,
9326 &objfile->objfile_obstack,
9327 hashtab_obstack_allocate,
9328 dummy_obstack_deallocate);
9329 }
9330
9331 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9332
9333 struct create_dwo_cu_data
9334 {
9335 struct dwo_file *dwo_file;
9336 struct dwo_unit dwo_unit;
9337 };
9338
9339 /* die_reader_func for create_dwo_cu. */
9340
9341 static void
9342 create_dwo_cu_reader (const struct die_reader_specs *reader,
9343 const gdb_byte *info_ptr,
9344 struct die_info *comp_unit_die,
9345 int has_children,
9346 void *datap)
9347 {
9348 struct dwarf2_cu *cu = reader->cu;
9349 struct objfile *objfile = dwarf2_per_objfile->objfile;
9350 sect_offset offset = cu->per_cu->offset;
9351 struct dwarf2_section_info *section = cu->per_cu->section;
9352 struct create_dwo_cu_data *data = datap;
9353 struct dwo_file *dwo_file = data->dwo_file;
9354 struct dwo_unit *dwo_unit = &data->dwo_unit;
9355 struct attribute *attr;
9356
9357 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9358 if (attr == NULL)
9359 {
9360 complaint (&symfile_complaints,
9361 _("Dwarf Error: debug entry at offset 0x%x is missing"
9362 " its dwo_id [in module %s]"),
9363 offset.sect_off, dwo_file->dwo_name);
9364 return;
9365 }
9366
9367 dwo_unit->dwo_file = dwo_file;
9368 dwo_unit->signature = DW_UNSND (attr);
9369 dwo_unit->section = section;
9370 dwo_unit->offset = offset;
9371 dwo_unit->length = cu->per_cu->length;
9372
9373 if (dwarf2_read_debug)
9374 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9375 offset.sect_off, hex_string (dwo_unit->signature));
9376 }
9377
9378 /* Create the dwo_unit for the lone CU in DWO_FILE.
9379 Note: This function processes DWO files only, not DWP files. */
9380
9381 static struct dwo_unit *
9382 create_dwo_cu (struct dwo_file *dwo_file)
9383 {
9384 struct objfile *objfile = dwarf2_per_objfile->objfile;
9385 struct dwarf2_section_info *section = &dwo_file->sections.info;
9386 bfd *abfd;
9387 htab_t cu_htab;
9388 const gdb_byte *info_ptr, *end_ptr;
9389 struct create_dwo_cu_data create_dwo_cu_data;
9390 struct dwo_unit *dwo_unit;
9391
9392 dwarf2_read_section (objfile, section);
9393 info_ptr = section->buffer;
9394
9395 if (info_ptr == NULL)
9396 return NULL;
9397
9398 /* We can't set abfd until now because the section may be empty or
9399 not present, in which case section->asection will be NULL. */
9400 abfd = get_section_bfd_owner (section);
9401
9402 if (dwarf2_read_debug)
9403 {
9404 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9405 get_section_name (section),
9406 get_section_file_name (section));
9407 }
9408
9409 create_dwo_cu_data.dwo_file = dwo_file;
9410 dwo_unit = NULL;
9411
9412 end_ptr = info_ptr + section->size;
9413 while (info_ptr < end_ptr)
9414 {
9415 struct dwarf2_per_cu_data per_cu;
9416
9417 memset (&create_dwo_cu_data.dwo_unit, 0,
9418 sizeof (create_dwo_cu_data.dwo_unit));
9419 memset (&per_cu, 0, sizeof (per_cu));
9420 per_cu.objfile = objfile;
9421 per_cu.is_debug_types = 0;
9422 per_cu.offset.sect_off = info_ptr - section->buffer;
9423 per_cu.section = section;
9424
9425 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9426 create_dwo_cu_reader,
9427 &create_dwo_cu_data);
9428
9429 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9430 {
9431 /* If we've already found one, complain. We only support one
9432 because having more than one requires hacking the dwo_name of
9433 each to match, which is highly unlikely to happen. */
9434 if (dwo_unit != NULL)
9435 {
9436 complaint (&symfile_complaints,
9437 _("Multiple CUs in DWO file %s [in module %s]"),
9438 dwo_file->dwo_name, objfile_name (objfile));
9439 break;
9440 }
9441
9442 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9443 *dwo_unit = create_dwo_cu_data.dwo_unit;
9444 }
9445
9446 info_ptr += per_cu.length;
9447 }
9448
9449 return dwo_unit;
9450 }
9451
9452 /* DWP file .debug_{cu,tu}_index section format:
9453 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9454
9455 DWP Version 1:
9456
9457 Both index sections have the same format, and serve to map a 64-bit
9458 signature to a set of section numbers. Each section begins with a header,
9459 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9460 indexes, and a pool of 32-bit section numbers. The index sections will be
9461 aligned at 8-byte boundaries in the file.
9462
9463 The index section header consists of:
9464
9465 V, 32 bit version number
9466 -, 32 bits unused
9467 N, 32 bit number of compilation units or type units in the index
9468 M, 32 bit number of slots in the hash table
9469
9470 Numbers are recorded using the byte order of the application binary.
9471
9472 The hash table begins at offset 16 in the section, and consists of an array
9473 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9474 order of the application binary). Unused slots in the hash table are 0.
9475 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9476
9477 The parallel table begins immediately after the hash table
9478 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9479 array of 32-bit indexes (using the byte order of the application binary),
9480 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9481 table contains a 32-bit index into the pool of section numbers. For unused
9482 hash table slots, the corresponding entry in the parallel table will be 0.
9483
9484 The pool of section numbers begins immediately following the hash table
9485 (at offset 16 + 12 * M from the beginning of the section). The pool of
9486 section numbers consists of an array of 32-bit words (using the byte order
9487 of the application binary). Each item in the array is indexed starting
9488 from 0. The hash table entry provides the index of the first section
9489 number in the set. Additional section numbers in the set follow, and the
9490 set is terminated by a 0 entry (section number 0 is not used in ELF).
9491
9492 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9493 section must be the first entry in the set, and the .debug_abbrev.dwo must
9494 be the second entry. Other members of the set may follow in any order.
9495
9496 ---
9497
9498 DWP Version 2:
9499
9500 DWP Version 2 combines all the .debug_info, etc. sections into one,
9501 and the entries in the index tables are now offsets into these sections.
9502 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9503 section.
9504
9505 Index Section Contents:
9506 Header
9507 Hash Table of Signatures dwp_hash_table.hash_table
9508 Parallel Table of Indices dwp_hash_table.unit_table
9509 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9510 Table of Section Sizes dwp_hash_table.v2.sizes
9511
9512 The index section header consists of:
9513
9514 V, 32 bit version number
9515 L, 32 bit number of columns in the table of section offsets
9516 N, 32 bit number of compilation units or type units in the index
9517 M, 32 bit number of slots in the hash table
9518
9519 Numbers are recorded using the byte order of the application binary.
9520
9521 The hash table has the same format as version 1.
9522 The parallel table of indices has the same format as version 1,
9523 except that the entries are origin-1 indices into the table of sections
9524 offsets and the table of section sizes.
9525
9526 The table of offsets begins immediately following the parallel table
9527 (at offset 16 + 12 * M from the beginning of the section). The table is
9528 a two-dimensional array of 32-bit words (using the byte order of the
9529 application binary), with L columns and N+1 rows, in row-major order.
9530 Each row in the array is indexed starting from 0. The first row provides
9531 a key to the remaining rows: each column in this row provides an identifier
9532 for a debug section, and the offsets in the same column of subsequent rows
9533 refer to that section. The section identifiers are:
9534
9535 DW_SECT_INFO 1 .debug_info.dwo
9536 DW_SECT_TYPES 2 .debug_types.dwo
9537 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9538 DW_SECT_LINE 4 .debug_line.dwo
9539 DW_SECT_LOC 5 .debug_loc.dwo
9540 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9541 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9542 DW_SECT_MACRO 8 .debug_macro.dwo
9543
9544 The offsets provided by the CU and TU index sections are the base offsets
9545 for the contributions made by each CU or TU to the corresponding section
9546 in the package file. Each CU and TU header contains an abbrev_offset
9547 field, used to find the abbreviations table for that CU or TU within the
9548 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9549 be interpreted as relative to the base offset given in the index section.
9550 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9551 should be interpreted as relative to the base offset for .debug_line.dwo,
9552 and offsets into other debug sections obtained from DWARF attributes should
9553 also be interpreted as relative to the corresponding base offset.
9554
9555 The table of sizes begins immediately following the table of offsets.
9556 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9557 with L columns and N rows, in row-major order. Each row in the array is
9558 indexed starting from 1 (row 0 is shared by the two tables).
9559
9560 ---
9561
9562 Hash table lookup is handled the same in version 1 and 2:
9563
9564 We assume that N and M will not exceed 2^32 - 1.
9565 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9566
9567 Given a 64-bit compilation unit signature or a type signature S, an entry
9568 in the hash table is located as follows:
9569
9570 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9571 the low-order k bits all set to 1.
9572
9573 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9574
9575 3) If the hash table entry at index H matches the signature, use that
9576 entry. If the hash table entry at index H is unused (all zeroes),
9577 terminate the search: the signature is not present in the table.
9578
9579 4) Let H = (H + H') modulo M. Repeat at Step 3.
9580
9581 Because M > N and H' and M are relatively prime, the search is guaranteed
9582 to stop at an unused slot or find the match. */
9583
9584 /* Create a hash table to map DWO IDs to their CU/TU entry in
9585 .debug_{info,types}.dwo in DWP_FILE.
9586 Returns NULL if there isn't one.
9587 Note: This function processes DWP files only, not DWO files. */
9588
9589 static struct dwp_hash_table *
9590 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9591 {
9592 struct objfile *objfile = dwarf2_per_objfile->objfile;
9593 bfd *dbfd = dwp_file->dbfd;
9594 const gdb_byte *index_ptr, *index_end;
9595 struct dwarf2_section_info *index;
9596 uint32_t version, nr_columns, nr_units, nr_slots;
9597 struct dwp_hash_table *htab;
9598
9599 if (is_debug_types)
9600 index = &dwp_file->sections.tu_index;
9601 else
9602 index = &dwp_file->sections.cu_index;
9603
9604 if (dwarf2_section_empty_p (index))
9605 return NULL;
9606 dwarf2_read_section (objfile, index);
9607
9608 index_ptr = index->buffer;
9609 index_end = index_ptr + index->size;
9610
9611 version = read_4_bytes (dbfd, index_ptr);
9612 index_ptr += 4;
9613 if (version == 2)
9614 nr_columns = read_4_bytes (dbfd, index_ptr);
9615 else
9616 nr_columns = 0;
9617 index_ptr += 4;
9618 nr_units = read_4_bytes (dbfd, index_ptr);
9619 index_ptr += 4;
9620 nr_slots = read_4_bytes (dbfd, index_ptr);
9621 index_ptr += 4;
9622
9623 if (version != 1 && version != 2)
9624 {
9625 error (_("Dwarf Error: unsupported DWP file version (%s)"
9626 " [in module %s]"),
9627 pulongest (version), dwp_file->name);
9628 }
9629 if (nr_slots != (nr_slots & -nr_slots))
9630 {
9631 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9632 " is not power of 2 [in module %s]"),
9633 pulongest (nr_slots), dwp_file->name);
9634 }
9635
9636 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9637 htab->version = version;
9638 htab->nr_columns = nr_columns;
9639 htab->nr_units = nr_units;
9640 htab->nr_slots = nr_slots;
9641 htab->hash_table = index_ptr;
9642 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9643
9644 /* Exit early if the table is empty. */
9645 if (nr_slots == 0 || nr_units == 0
9646 || (version == 2 && nr_columns == 0))
9647 {
9648 /* All must be zero. */
9649 if (nr_slots != 0 || nr_units != 0
9650 || (version == 2 && nr_columns != 0))
9651 {
9652 complaint (&symfile_complaints,
9653 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9654 " all zero [in modules %s]"),
9655 dwp_file->name);
9656 }
9657 return htab;
9658 }
9659
9660 if (version == 1)
9661 {
9662 htab->section_pool.v1.indices =
9663 htab->unit_table + sizeof (uint32_t) * nr_slots;
9664 /* It's harder to decide whether the section is too small in v1.
9665 V1 is deprecated anyway so we punt. */
9666 }
9667 else
9668 {
9669 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9670 int *ids = htab->section_pool.v2.section_ids;
9671 /* Reverse map for error checking. */
9672 int ids_seen[DW_SECT_MAX + 1];
9673 int i;
9674
9675 if (nr_columns < 2)
9676 {
9677 error (_("Dwarf Error: bad DWP hash table, too few columns"
9678 " in section table [in module %s]"),
9679 dwp_file->name);
9680 }
9681 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9682 {
9683 error (_("Dwarf Error: bad DWP hash table, too many columns"
9684 " in section table [in module %s]"),
9685 dwp_file->name);
9686 }
9687 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9688 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9689 for (i = 0; i < nr_columns; ++i)
9690 {
9691 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9692
9693 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9694 {
9695 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9696 " in section table [in module %s]"),
9697 id, dwp_file->name);
9698 }
9699 if (ids_seen[id] != -1)
9700 {
9701 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9702 " id %d in section table [in module %s]"),
9703 id, dwp_file->name);
9704 }
9705 ids_seen[id] = i;
9706 ids[i] = id;
9707 }
9708 /* Must have exactly one info or types section. */
9709 if (((ids_seen[DW_SECT_INFO] != -1)
9710 + (ids_seen[DW_SECT_TYPES] != -1))
9711 != 1)
9712 {
9713 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9714 " DWO info/types section [in module %s]"),
9715 dwp_file->name);
9716 }
9717 /* Must have an abbrev section. */
9718 if (ids_seen[DW_SECT_ABBREV] == -1)
9719 {
9720 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9721 " section [in module %s]"),
9722 dwp_file->name);
9723 }
9724 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9725 htab->section_pool.v2.sizes =
9726 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9727 * nr_units * nr_columns);
9728 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9729 * nr_units * nr_columns))
9730 > index_end)
9731 {
9732 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9733 " [in module %s]"),
9734 dwp_file->name);
9735 }
9736 }
9737
9738 return htab;
9739 }
9740
9741 /* Update SECTIONS with the data from SECTP.
9742
9743 This function is like the other "locate" section routines that are
9744 passed to bfd_map_over_sections, but in this context the sections to
9745 read comes from the DWP V1 hash table, not the full ELF section table.
9746
9747 The result is non-zero for success, or zero if an error was found. */
9748
9749 static int
9750 locate_v1_virtual_dwo_sections (asection *sectp,
9751 struct virtual_v1_dwo_sections *sections)
9752 {
9753 const struct dwop_section_names *names = &dwop_section_names;
9754
9755 if (section_is_p (sectp->name, &names->abbrev_dwo))
9756 {
9757 /* There can be only one. */
9758 if (sections->abbrev.s.asection != NULL)
9759 return 0;
9760 sections->abbrev.s.asection = sectp;
9761 sections->abbrev.size = bfd_get_section_size (sectp);
9762 }
9763 else if (section_is_p (sectp->name, &names->info_dwo)
9764 || section_is_p (sectp->name, &names->types_dwo))
9765 {
9766 /* There can be only one. */
9767 if (sections->info_or_types.s.asection != NULL)
9768 return 0;
9769 sections->info_or_types.s.asection = sectp;
9770 sections->info_or_types.size = bfd_get_section_size (sectp);
9771 }
9772 else if (section_is_p (sectp->name, &names->line_dwo))
9773 {
9774 /* There can be only one. */
9775 if (sections->line.s.asection != NULL)
9776 return 0;
9777 sections->line.s.asection = sectp;
9778 sections->line.size = bfd_get_section_size (sectp);
9779 }
9780 else if (section_is_p (sectp->name, &names->loc_dwo))
9781 {
9782 /* There can be only one. */
9783 if (sections->loc.s.asection != NULL)
9784 return 0;
9785 sections->loc.s.asection = sectp;
9786 sections->loc.size = bfd_get_section_size (sectp);
9787 }
9788 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9789 {
9790 /* There can be only one. */
9791 if (sections->macinfo.s.asection != NULL)
9792 return 0;
9793 sections->macinfo.s.asection = sectp;
9794 sections->macinfo.size = bfd_get_section_size (sectp);
9795 }
9796 else if (section_is_p (sectp->name, &names->macro_dwo))
9797 {
9798 /* There can be only one. */
9799 if (sections->macro.s.asection != NULL)
9800 return 0;
9801 sections->macro.s.asection = sectp;
9802 sections->macro.size = bfd_get_section_size (sectp);
9803 }
9804 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9805 {
9806 /* There can be only one. */
9807 if (sections->str_offsets.s.asection != NULL)
9808 return 0;
9809 sections->str_offsets.s.asection = sectp;
9810 sections->str_offsets.size = bfd_get_section_size (sectp);
9811 }
9812 else
9813 {
9814 /* No other kind of section is valid. */
9815 return 0;
9816 }
9817
9818 return 1;
9819 }
9820
9821 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9822 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9823 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9824 This is for DWP version 1 files. */
9825
9826 static struct dwo_unit *
9827 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9828 uint32_t unit_index,
9829 const char *comp_dir,
9830 ULONGEST signature, int is_debug_types)
9831 {
9832 struct objfile *objfile = dwarf2_per_objfile->objfile;
9833 const struct dwp_hash_table *dwp_htab =
9834 is_debug_types ? dwp_file->tus : dwp_file->cus;
9835 bfd *dbfd = dwp_file->dbfd;
9836 const char *kind = is_debug_types ? "TU" : "CU";
9837 struct dwo_file *dwo_file;
9838 struct dwo_unit *dwo_unit;
9839 struct virtual_v1_dwo_sections sections;
9840 void **dwo_file_slot;
9841 char *virtual_dwo_name;
9842 struct dwarf2_section_info *cutu;
9843 struct cleanup *cleanups;
9844 int i;
9845
9846 gdb_assert (dwp_file->version == 1);
9847
9848 if (dwarf2_read_debug)
9849 {
9850 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9851 kind,
9852 pulongest (unit_index), hex_string (signature),
9853 dwp_file->name);
9854 }
9855
9856 /* Fetch the sections of this DWO unit.
9857 Put a limit on the number of sections we look for so that bad data
9858 doesn't cause us to loop forever. */
9859
9860 #define MAX_NR_V1_DWO_SECTIONS \
9861 (1 /* .debug_info or .debug_types */ \
9862 + 1 /* .debug_abbrev */ \
9863 + 1 /* .debug_line */ \
9864 + 1 /* .debug_loc */ \
9865 + 1 /* .debug_str_offsets */ \
9866 + 1 /* .debug_macro or .debug_macinfo */ \
9867 + 1 /* trailing zero */)
9868
9869 memset (&sections, 0, sizeof (sections));
9870 cleanups = make_cleanup (null_cleanup, 0);
9871
9872 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9873 {
9874 asection *sectp;
9875 uint32_t section_nr =
9876 read_4_bytes (dbfd,
9877 dwp_htab->section_pool.v1.indices
9878 + (unit_index + i) * sizeof (uint32_t));
9879
9880 if (section_nr == 0)
9881 break;
9882 if (section_nr >= dwp_file->num_sections)
9883 {
9884 error (_("Dwarf Error: bad DWP hash table, section number too large"
9885 " [in module %s]"),
9886 dwp_file->name);
9887 }
9888
9889 sectp = dwp_file->elf_sections[section_nr];
9890 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9891 {
9892 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9893 " [in module %s]"),
9894 dwp_file->name);
9895 }
9896 }
9897
9898 if (i < 2
9899 || dwarf2_section_empty_p (&sections.info_or_types)
9900 || dwarf2_section_empty_p (&sections.abbrev))
9901 {
9902 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9903 " [in module %s]"),
9904 dwp_file->name);
9905 }
9906 if (i == MAX_NR_V1_DWO_SECTIONS)
9907 {
9908 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9909 " [in module %s]"),
9910 dwp_file->name);
9911 }
9912
9913 /* It's easier for the rest of the code if we fake a struct dwo_file and
9914 have dwo_unit "live" in that. At least for now.
9915
9916 The DWP file can be made up of a random collection of CUs and TUs.
9917 However, for each CU + set of TUs that came from the same original DWO
9918 file, we can combine them back into a virtual DWO file to save space
9919 (fewer struct dwo_file objects to allocate). Remember that for really
9920 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9921
9922 virtual_dwo_name =
9923 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9924 get_section_id (&sections.abbrev),
9925 get_section_id (&sections.line),
9926 get_section_id (&sections.loc),
9927 get_section_id (&sections.str_offsets));
9928 make_cleanup (xfree, virtual_dwo_name);
9929 /* Can we use an existing virtual DWO file? */
9930 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9931 /* Create one if necessary. */
9932 if (*dwo_file_slot == NULL)
9933 {
9934 if (dwarf2_read_debug)
9935 {
9936 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9937 virtual_dwo_name);
9938 }
9939 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9940 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9941 virtual_dwo_name,
9942 strlen (virtual_dwo_name));
9943 dwo_file->comp_dir = comp_dir;
9944 dwo_file->sections.abbrev = sections.abbrev;
9945 dwo_file->sections.line = sections.line;
9946 dwo_file->sections.loc = sections.loc;
9947 dwo_file->sections.macinfo = sections.macinfo;
9948 dwo_file->sections.macro = sections.macro;
9949 dwo_file->sections.str_offsets = sections.str_offsets;
9950 /* The "str" section is global to the entire DWP file. */
9951 dwo_file->sections.str = dwp_file->sections.str;
9952 /* The info or types section is assigned below to dwo_unit,
9953 there's no need to record it in dwo_file.
9954 Also, we can't simply record type sections in dwo_file because
9955 we record a pointer into the vector in dwo_unit. As we collect more
9956 types we'll grow the vector and eventually have to reallocate space
9957 for it, invalidating all copies of pointers into the previous
9958 contents. */
9959 *dwo_file_slot = dwo_file;
9960 }
9961 else
9962 {
9963 if (dwarf2_read_debug)
9964 {
9965 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9966 virtual_dwo_name);
9967 }
9968 dwo_file = *dwo_file_slot;
9969 }
9970 do_cleanups (cleanups);
9971
9972 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9973 dwo_unit->dwo_file = dwo_file;
9974 dwo_unit->signature = signature;
9975 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9976 sizeof (struct dwarf2_section_info));
9977 *dwo_unit->section = sections.info_or_types;
9978 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9979
9980 return dwo_unit;
9981 }
9982
9983 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9984 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9985 piece within that section used by a TU/CU, return a virtual section
9986 of just that piece. */
9987
9988 static struct dwarf2_section_info
9989 create_dwp_v2_section (struct dwarf2_section_info *section,
9990 bfd_size_type offset, bfd_size_type size)
9991 {
9992 struct dwarf2_section_info result;
9993 asection *sectp;
9994
9995 gdb_assert (section != NULL);
9996 gdb_assert (!section->is_virtual);
9997
9998 memset (&result, 0, sizeof (result));
9999 result.s.containing_section = section;
10000 result.is_virtual = 1;
10001
10002 if (size == 0)
10003 return result;
10004
10005 sectp = get_section_bfd_section (section);
10006
10007 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10008 bounds of the real section. This is a pretty-rare event, so just
10009 flag an error (easier) instead of a warning and trying to cope. */
10010 if (sectp == NULL
10011 || offset + size > bfd_get_section_size (sectp))
10012 {
10013 bfd *abfd = sectp->owner;
10014
10015 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10016 " in section %s [in module %s]"),
10017 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10018 objfile_name (dwarf2_per_objfile->objfile));
10019 }
10020
10021 result.virtual_offset = offset;
10022 result.size = size;
10023 return result;
10024 }
10025
10026 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10027 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10028 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10029 This is for DWP version 2 files. */
10030
10031 static struct dwo_unit *
10032 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10033 uint32_t unit_index,
10034 const char *comp_dir,
10035 ULONGEST signature, int is_debug_types)
10036 {
10037 struct objfile *objfile = dwarf2_per_objfile->objfile;
10038 const struct dwp_hash_table *dwp_htab =
10039 is_debug_types ? dwp_file->tus : dwp_file->cus;
10040 bfd *dbfd = dwp_file->dbfd;
10041 const char *kind = is_debug_types ? "TU" : "CU";
10042 struct dwo_file *dwo_file;
10043 struct dwo_unit *dwo_unit;
10044 struct virtual_v2_dwo_sections sections;
10045 void **dwo_file_slot;
10046 char *virtual_dwo_name;
10047 struct dwarf2_section_info *cutu;
10048 struct cleanup *cleanups;
10049 int i;
10050
10051 gdb_assert (dwp_file->version == 2);
10052
10053 if (dwarf2_read_debug)
10054 {
10055 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10056 kind,
10057 pulongest (unit_index), hex_string (signature),
10058 dwp_file->name);
10059 }
10060
10061 /* Fetch the section offsets of this DWO unit. */
10062
10063 memset (&sections, 0, sizeof (sections));
10064 cleanups = make_cleanup (null_cleanup, 0);
10065
10066 for (i = 0; i < dwp_htab->nr_columns; ++i)
10067 {
10068 uint32_t offset = read_4_bytes (dbfd,
10069 dwp_htab->section_pool.v2.offsets
10070 + (((unit_index - 1) * dwp_htab->nr_columns
10071 + i)
10072 * sizeof (uint32_t)));
10073 uint32_t size = read_4_bytes (dbfd,
10074 dwp_htab->section_pool.v2.sizes
10075 + (((unit_index - 1) * dwp_htab->nr_columns
10076 + i)
10077 * sizeof (uint32_t)));
10078
10079 switch (dwp_htab->section_pool.v2.section_ids[i])
10080 {
10081 case DW_SECT_INFO:
10082 case DW_SECT_TYPES:
10083 sections.info_or_types_offset = offset;
10084 sections.info_or_types_size = size;
10085 break;
10086 case DW_SECT_ABBREV:
10087 sections.abbrev_offset = offset;
10088 sections.abbrev_size = size;
10089 break;
10090 case DW_SECT_LINE:
10091 sections.line_offset = offset;
10092 sections.line_size = size;
10093 break;
10094 case DW_SECT_LOC:
10095 sections.loc_offset = offset;
10096 sections.loc_size = size;
10097 break;
10098 case DW_SECT_STR_OFFSETS:
10099 sections.str_offsets_offset = offset;
10100 sections.str_offsets_size = size;
10101 break;
10102 case DW_SECT_MACINFO:
10103 sections.macinfo_offset = offset;
10104 sections.macinfo_size = size;
10105 break;
10106 case DW_SECT_MACRO:
10107 sections.macro_offset = offset;
10108 sections.macro_size = size;
10109 break;
10110 }
10111 }
10112
10113 /* It's easier for the rest of the code if we fake a struct dwo_file and
10114 have dwo_unit "live" in that. At least for now.
10115
10116 The DWP file can be made up of a random collection of CUs and TUs.
10117 However, for each CU + set of TUs that came from the same original DWO
10118 file, we can combine them back into a virtual DWO file to save space
10119 (fewer struct dwo_file objects to allocate). Remember that for really
10120 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10121
10122 virtual_dwo_name =
10123 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10124 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10125 (long) (sections.line_size ? sections.line_offset : 0),
10126 (long) (sections.loc_size ? sections.loc_offset : 0),
10127 (long) (sections.str_offsets_size
10128 ? sections.str_offsets_offset : 0));
10129 make_cleanup (xfree, virtual_dwo_name);
10130 /* Can we use an existing virtual DWO file? */
10131 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10132 /* Create one if necessary. */
10133 if (*dwo_file_slot == NULL)
10134 {
10135 if (dwarf2_read_debug)
10136 {
10137 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10138 virtual_dwo_name);
10139 }
10140 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10141 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10142 virtual_dwo_name,
10143 strlen (virtual_dwo_name));
10144 dwo_file->comp_dir = comp_dir;
10145 dwo_file->sections.abbrev =
10146 create_dwp_v2_section (&dwp_file->sections.abbrev,
10147 sections.abbrev_offset, sections.abbrev_size);
10148 dwo_file->sections.line =
10149 create_dwp_v2_section (&dwp_file->sections.line,
10150 sections.line_offset, sections.line_size);
10151 dwo_file->sections.loc =
10152 create_dwp_v2_section (&dwp_file->sections.loc,
10153 sections.loc_offset, sections.loc_size);
10154 dwo_file->sections.macinfo =
10155 create_dwp_v2_section (&dwp_file->sections.macinfo,
10156 sections.macinfo_offset, sections.macinfo_size);
10157 dwo_file->sections.macro =
10158 create_dwp_v2_section (&dwp_file->sections.macro,
10159 sections.macro_offset, sections.macro_size);
10160 dwo_file->sections.str_offsets =
10161 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10162 sections.str_offsets_offset,
10163 sections.str_offsets_size);
10164 /* The "str" section is global to the entire DWP file. */
10165 dwo_file->sections.str = dwp_file->sections.str;
10166 /* The info or types section is assigned below to dwo_unit,
10167 there's no need to record it in dwo_file.
10168 Also, we can't simply record type sections in dwo_file because
10169 we record a pointer into the vector in dwo_unit. As we collect more
10170 types we'll grow the vector and eventually have to reallocate space
10171 for it, invalidating all copies of pointers into the previous
10172 contents. */
10173 *dwo_file_slot = dwo_file;
10174 }
10175 else
10176 {
10177 if (dwarf2_read_debug)
10178 {
10179 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10180 virtual_dwo_name);
10181 }
10182 dwo_file = *dwo_file_slot;
10183 }
10184 do_cleanups (cleanups);
10185
10186 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10187 dwo_unit->dwo_file = dwo_file;
10188 dwo_unit->signature = signature;
10189 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10190 sizeof (struct dwarf2_section_info));
10191 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10192 ? &dwp_file->sections.types
10193 : &dwp_file->sections.info,
10194 sections.info_or_types_offset,
10195 sections.info_or_types_size);
10196 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10197
10198 return dwo_unit;
10199 }
10200
10201 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10202 Returns NULL if the signature isn't found. */
10203
10204 static struct dwo_unit *
10205 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10206 ULONGEST signature, int is_debug_types)
10207 {
10208 const struct dwp_hash_table *dwp_htab =
10209 is_debug_types ? dwp_file->tus : dwp_file->cus;
10210 bfd *dbfd = dwp_file->dbfd;
10211 uint32_t mask = dwp_htab->nr_slots - 1;
10212 uint32_t hash = signature & mask;
10213 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10214 unsigned int i;
10215 void **slot;
10216 struct dwo_unit find_dwo_cu, *dwo_cu;
10217
10218 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10219 find_dwo_cu.signature = signature;
10220 slot = htab_find_slot (is_debug_types
10221 ? dwp_file->loaded_tus
10222 : dwp_file->loaded_cus,
10223 &find_dwo_cu, INSERT);
10224
10225 if (*slot != NULL)
10226 return *slot;
10227
10228 /* Use a for loop so that we don't loop forever on bad debug info. */
10229 for (i = 0; i < dwp_htab->nr_slots; ++i)
10230 {
10231 ULONGEST signature_in_table;
10232
10233 signature_in_table =
10234 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10235 if (signature_in_table == signature)
10236 {
10237 uint32_t unit_index =
10238 read_4_bytes (dbfd,
10239 dwp_htab->unit_table + hash * sizeof (uint32_t));
10240
10241 if (dwp_file->version == 1)
10242 {
10243 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10244 comp_dir, signature,
10245 is_debug_types);
10246 }
10247 else
10248 {
10249 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10250 comp_dir, signature,
10251 is_debug_types);
10252 }
10253 return *slot;
10254 }
10255 if (signature_in_table == 0)
10256 return NULL;
10257 hash = (hash + hash2) & mask;
10258 }
10259
10260 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10261 " [in module %s]"),
10262 dwp_file->name);
10263 }
10264
10265 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10266 Open the file specified by FILE_NAME and hand it off to BFD for
10267 preliminary analysis. Return a newly initialized bfd *, which
10268 includes a canonicalized copy of FILE_NAME.
10269 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10270 SEARCH_CWD is true if the current directory is to be searched.
10271 It will be searched before debug-file-directory.
10272 If successful, the file is added to the bfd include table of the
10273 objfile's bfd (see gdb_bfd_record_inclusion).
10274 If unable to find/open the file, return NULL.
10275 NOTE: This function is derived from symfile_bfd_open. */
10276
10277 static bfd *
10278 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10279 {
10280 bfd *sym_bfd;
10281 int desc, flags;
10282 char *absolute_name;
10283 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10284 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10285 to debug_file_directory. */
10286 char *search_path;
10287 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10288
10289 if (search_cwd)
10290 {
10291 if (*debug_file_directory != '\0')
10292 search_path = concat (".", dirname_separator_string,
10293 debug_file_directory, NULL);
10294 else
10295 search_path = xstrdup (".");
10296 }
10297 else
10298 search_path = xstrdup (debug_file_directory);
10299
10300 flags = OPF_RETURN_REALPATH;
10301 if (is_dwp)
10302 flags |= OPF_SEARCH_IN_PATH;
10303 desc = openp (search_path, flags, file_name,
10304 O_RDONLY | O_BINARY, &absolute_name);
10305 xfree (search_path);
10306 if (desc < 0)
10307 return NULL;
10308
10309 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10310 xfree (absolute_name);
10311 if (sym_bfd == NULL)
10312 return NULL;
10313 bfd_set_cacheable (sym_bfd, 1);
10314
10315 if (!bfd_check_format (sym_bfd, bfd_object))
10316 {
10317 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10318 return NULL;
10319 }
10320
10321 /* Success. Record the bfd as having been included by the objfile's bfd.
10322 This is important because things like demangled_names_hash lives in the
10323 objfile's per_bfd space and may have references to things like symbol
10324 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10325 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10326
10327 return sym_bfd;
10328 }
10329
10330 /* Try to open DWO file FILE_NAME.
10331 COMP_DIR is the DW_AT_comp_dir attribute.
10332 The result is the bfd handle of the file.
10333 If there is a problem finding or opening the file, return NULL.
10334 Upon success, the canonicalized path of the file is stored in the bfd,
10335 same as symfile_bfd_open. */
10336
10337 static bfd *
10338 open_dwo_file (const char *file_name, const char *comp_dir)
10339 {
10340 bfd *abfd;
10341
10342 if (IS_ABSOLUTE_PATH (file_name))
10343 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10344
10345 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10346
10347 if (comp_dir != NULL)
10348 {
10349 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10350
10351 /* NOTE: If comp_dir is a relative path, this will also try the
10352 search path, which seems useful. */
10353 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10354 xfree (path_to_try);
10355 if (abfd != NULL)
10356 return abfd;
10357 }
10358
10359 /* That didn't work, try debug-file-directory, which, despite its name,
10360 is a list of paths. */
10361
10362 if (*debug_file_directory == '\0')
10363 return NULL;
10364
10365 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10366 }
10367
10368 /* This function is mapped across the sections and remembers the offset and
10369 size of each of the DWO debugging sections we are interested in. */
10370
10371 static void
10372 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10373 {
10374 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10375 const struct dwop_section_names *names = &dwop_section_names;
10376
10377 if (section_is_p (sectp->name, &names->abbrev_dwo))
10378 {
10379 dwo_sections->abbrev.s.asection = sectp;
10380 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10381 }
10382 else if (section_is_p (sectp->name, &names->info_dwo))
10383 {
10384 dwo_sections->info.s.asection = sectp;
10385 dwo_sections->info.size = bfd_get_section_size (sectp);
10386 }
10387 else if (section_is_p (sectp->name, &names->line_dwo))
10388 {
10389 dwo_sections->line.s.asection = sectp;
10390 dwo_sections->line.size = bfd_get_section_size (sectp);
10391 }
10392 else if (section_is_p (sectp->name, &names->loc_dwo))
10393 {
10394 dwo_sections->loc.s.asection = sectp;
10395 dwo_sections->loc.size = bfd_get_section_size (sectp);
10396 }
10397 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10398 {
10399 dwo_sections->macinfo.s.asection = sectp;
10400 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10401 }
10402 else if (section_is_p (sectp->name, &names->macro_dwo))
10403 {
10404 dwo_sections->macro.s.asection = sectp;
10405 dwo_sections->macro.size = bfd_get_section_size (sectp);
10406 }
10407 else if (section_is_p (sectp->name, &names->str_dwo))
10408 {
10409 dwo_sections->str.s.asection = sectp;
10410 dwo_sections->str.size = bfd_get_section_size (sectp);
10411 }
10412 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10413 {
10414 dwo_sections->str_offsets.s.asection = sectp;
10415 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10416 }
10417 else if (section_is_p (sectp->name, &names->types_dwo))
10418 {
10419 struct dwarf2_section_info type_section;
10420
10421 memset (&type_section, 0, sizeof (type_section));
10422 type_section.s.asection = sectp;
10423 type_section.size = bfd_get_section_size (sectp);
10424 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10425 &type_section);
10426 }
10427 }
10428
10429 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10430 by PER_CU. This is for the non-DWP case.
10431 The result is NULL if DWO_NAME can't be found. */
10432
10433 static struct dwo_file *
10434 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10435 const char *dwo_name, const char *comp_dir)
10436 {
10437 struct objfile *objfile = dwarf2_per_objfile->objfile;
10438 struct dwo_file *dwo_file;
10439 bfd *dbfd;
10440 struct cleanup *cleanups;
10441
10442 dbfd = open_dwo_file (dwo_name, comp_dir);
10443 if (dbfd == NULL)
10444 {
10445 if (dwarf2_read_debug)
10446 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10447 return NULL;
10448 }
10449 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10450 dwo_file->dwo_name = dwo_name;
10451 dwo_file->comp_dir = comp_dir;
10452 dwo_file->dbfd = dbfd;
10453
10454 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10455
10456 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10457
10458 dwo_file->cu = create_dwo_cu (dwo_file);
10459
10460 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10461 dwo_file->sections.types);
10462
10463 discard_cleanups (cleanups);
10464
10465 if (dwarf2_read_debug)
10466 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10467
10468 return dwo_file;
10469 }
10470
10471 /* This function is mapped across the sections and remembers the offset and
10472 size of each of the DWP debugging sections common to version 1 and 2 that
10473 we are interested in. */
10474
10475 static void
10476 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10477 void *dwp_file_ptr)
10478 {
10479 struct dwp_file *dwp_file = dwp_file_ptr;
10480 const struct dwop_section_names *names = &dwop_section_names;
10481 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10482
10483 /* Record the ELF section number for later lookup: this is what the
10484 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10485 gdb_assert (elf_section_nr < dwp_file->num_sections);
10486 dwp_file->elf_sections[elf_section_nr] = sectp;
10487
10488 /* Look for specific sections that we need. */
10489 if (section_is_p (sectp->name, &names->str_dwo))
10490 {
10491 dwp_file->sections.str.s.asection = sectp;
10492 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10493 }
10494 else if (section_is_p (sectp->name, &names->cu_index))
10495 {
10496 dwp_file->sections.cu_index.s.asection = sectp;
10497 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10498 }
10499 else if (section_is_p (sectp->name, &names->tu_index))
10500 {
10501 dwp_file->sections.tu_index.s.asection = sectp;
10502 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10503 }
10504 }
10505
10506 /* This function is mapped across the sections and remembers the offset and
10507 size of each of the DWP version 2 debugging sections that we are interested
10508 in. This is split into a separate function because we don't know if we
10509 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10510
10511 static void
10512 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10513 {
10514 struct dwp_file *dwp_file = dwp_file_ptr;
10515 const struct dwop_section_names *names = &dwop_section_names;
10516 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10517
10518 /* Record the ELF section number for later lookup: this is what the
10519 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10520 gdb_assert (elf_section_nr < dwp_file->num_sections);
10521 dwp_file->elf_sections[elf_section_nr] = sectp;
10522
10523 /* Look for specific sections that we need. */
10524 if (section_is_p (sectp->name, &names->abbrev_dwo))
10525 {
10526 dwp_file->sections.abbrev.s.asection = sectp;
10527 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10528 }
10529 else if (section_is_p (sectp->name, &names->info_dwo))
10530 {
10531 dwp_file->sections.info.s.asection = sectp;
10532 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10533 }
10534 else if (section_is_p (sectp->name, &names->line_dwo))
10535 {
10536 dwp_file->sections.line.s.asection = sectp;
10537 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10538 }
10539 else if (section_is_p (sectp->name, &names->loc_dwo))
10540 {
10541 dwp_file->sections.loc.s.asection = sectp;
10542 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10543 }
10544 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10545 {
10546 dwp_file->sections.macinfo.s.asection = sectp;
10547 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10548 }
10549 else if (section_is_p (sectp->name, &names->macro_dwo))
10550 {
10551 dwp_file->sections.macro.s.asection = sectp;
10552 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10553 }
10554 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10555 {
10556 dwp_file->sections.str_offsets.s.asection = sectp;
10557 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10558 }
10559 else if (section_is_p (sectp->name, &names->types_dwo))
10560 {
10561 dwp_file->sections.types.s.asection = sectp;
10562 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10563 }
10564 }
10565
10566 /* Hash function for dwp_file loaded CUs/TUs. */
10567
10568 static hashval_t
10569 hash_dwp_loaded_cutus (const void *item)
10570 {
10571 const struct dwo_unit *dwo_unit = item;
10572
10573 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10574 return dwo_unit->signature;
10575 }
10576
10577 /* Equality function for dwp_file loaded CUs/TUs. */
10578
10579 static int
10580 eq_dwp_loaded_cutus (const void *a, const void *b)
10581 {
10582 const struct dwo_unit *dua = a;
10583 const struct dwo_unit *dub = b;
10584
10585 return dua->signature == dub->signature;
10586 }
10587
10588 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10589
10590 static htab_t
10591 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10592 {
10593 return htab_create_alloc_ex (3,
10594 hash_dwp_loaded_cutus,
10595 eq_dwp_loaded_cutus,
10596 NULL,
10597 &objfile->objfile_obstack,
10598 hashtab_obstack_allocate,
10599 dummy_obstack_deallocate);
10600 }
10601
10602 /* Try to open DWP file FILE_NAME.
10603 The result is the bfd handle of the file.
10604 If there is a problem finding or opening the file, return NULL.
10605 Upon success, the canonicalized path of the file is stored in the bfd,
10606 same as symfile_bfd_open. */
10607
10608 static bfd *
10609 open_dwp_file (const char *file_name)
10610 {
10611 bfd *abfd;
10612
10613 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10614 if (abfd != NULL)
10615 return abfd;
10616
10617 /* Work around upstream bug 15652.
10618 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10619 [Whether that's a "bug" is debatable, but it is getting in our way.]
10620 We have no real idea where the dwp file is, because gdb's realpath-ing
10621 of the executable's path may have discarded the needed info.
10622 [IWBN if the dwp file name was recorded in the executable, akin to
10623 .gnu_debuglink, but that doesn't exist yet.]
10624 Strip the directory from FILE_NAME and search again. */
10625 if (*debug_file_directory != '\0')
10626 {
10627 /* Don't implicitly search the current directory here.
10628 If the user wants to search "." to handle this case,
10629 it must be added to debug-file-directory. */
10630 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10631 0 /*search_cwd*/);
10632 }
10633
10634 return NULL;
10635 }
10636
10637 /* Initialize the use of the DWP file for the current objfile.
10638 By convention the name of the DWP file is ${objfile}.dwp.
10639 The result is NULL if it can't be found. */
10640
10641 static struct dwp_file *
10642 open_and_init_dwp_file (void)
10643 {
10644 struct objfile *objfile = dwarf2_per_objfile->objfile;
10645 struct dwp_file *dwp_file;
10646 char *dwp_name;
10647 bfd *dbfd;
10648 struct cleanup *cleanups;
10649
10650 /* Try to find first .dwp for the binary file before any symbolic links
10651 resolving. */
10652 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10653 cleanups = make_cleanup (xfree, dwp_name);
10654
10655 dbfd = open_dwp_file (dwp_name);
10656 if (dbfd == NULL
10657 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10658 {
10659 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10660 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10661 make_cleanup (xfree, dwp_name);
10662 dbfd = open_dwp_file (dwp_name);
10663 }
10664
10665 if (dbfd == NULL)
10666 {
10667 if (dwarf2_read_debug)
10668 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10669 do_cleanups (cleanups);
10670 return NULL;
10671 }
10672 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10673 dwp_file->name = bfd_get_filename (dbfd);
10674 dwp_file->dbfd = dbfd;
10675 do_cleanups (cleanups);
10676
10677 /* +1: section 0 is unused */
10678 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10679 dwp_file->elf_sections =
10680 OBSTACK_CALLOC (&objfile->objfile_obstack,
10681 dwp_file->num_sections, asection *);
10682
10683 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10684
10685 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10686
10687 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10688
10689 /* The DWP file version is stored in the hash table. Oh well. */
10690 if (dwp_file->cus->version != dwp_file->tus->version)
10691 {
10692 /* Technically speaking, we should try to limp along, but this is
10693 pretty bizarre. We use pulongest here because that's the established
10694 portability solution (e.g, we cannot use %u for uint32_t). */
10695 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10696 " TU version %s [in DWP file %s]"),
10697 pulongest (dwp_file->cus->version),
10698 pulongest (dwp_file->tus->version), dwp_name);
10699 }
10700 dwp_file->version = dwp_file->cus->version;
10701
10702 if (dwp_file->version == 2)
10703 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10704
10705 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10706 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10707
10708 if (dwarf2_read_debug)
10709 {
10710 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10711 fprintf_unfiltered (gdb_stdlog,
10712 " %s CUs, %s TUs\n",
10713 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10714 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10715 }
10716
10717 return dwp_file;
10718 }
10719
10720 /* Wrapper around open_and_init_dwp_file, only open it once. */
10721
10722 static struct dwp_file *
10723 get_dwp_file (void)
10724 {
10725 if (! dwarf2_per_objfile->dwp_checked)
10726 {
10727 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10728 dwarf2_per_objfile->dwp_checked = 1;
10729 }
10730 return dwarf2_per_objfile->dwp_file;
10731 }
10732
10733 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10734 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10735 or in the DWP file for the objfile, referenced by THIS_UNIT.
10736 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10737 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10738
10739 This is called, for example, when wanting to read a variable with a
10740 complex location. Therefore we don't want to do file i/o for every call.
10741 Therefore we don't want to look for a DWO file on every call.
10742 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10743 then we check if we've already seen DWO_NAME, and only THEN do we check
10744 for a DWO file.
10745
10746 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10747 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10748
10749 static struct dwo_unit *
10750 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10751 const char *dwo_name, const char *comp_dir,
10752 ULONGEST signature, int is_debug_types)
10753 {
10754 struct objfile *objfile = dwarf2_per_objfile->objfile;
10755 const char *kind = is_debug_types ? "TU" : "CU";
10756 void **dwo_file_slot;
10757 struct dwo_file *dwo_file;
10758 struct dwp_file *dwp_file;
10759
10760 /* First see if there's a DWP file.
10761 If we have a DWP file but didn't find the DWO inside it, don't
10762 look for the original DWO file. It makes gdb behave differently
10763 depending on whether one is debugging in the build tree. */
10764
10765 dwp_file = get_dwp_file ();
10766 if (dwp_file != NULL)
10767 {
10768 const struct dwp_hash_table *dwp_htab =
10769 is_debug_types ? dwp_file->tus : dwp_file->cus;
10770
10771 if (dwp_htab != NULL)
10772 {
10773 struct dwo_unit *dwo_cutu =
10774 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10775 signature, is_debug_types);
10776
10777 if (dwo_cutu != NULL)
10778 {
10779 if (dwarf2_read_debug)
10780 {
10781 fprintf_unfiltered (gdb_stdlog,
10782 "Virtual DWO %s %s found: @%s\n",
10783 kind, hex_string (signature),
10784 host_address_to_string (dwo_cutu));
10785 }
10786 return dwo_cutu;
10787 }
10788 }
10789 }
10790 else
10791 {
10792 /* No DWP file, look for the DWO file. */
10793
10794 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10795 if (*dwo_file_slot == NULL)
10796 {
10797 /* Read in the file and build a table of the CUs/TUs it contains. */
10798 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10799 }
10800 /* NOTE: This will be NULL if unable to open the file. */
10801 dwo_file = *dwo_file_slot;
10802
10803 if (dwo_file != NULL)
10804 {
10805 struct dwo_unit *dwo_cutu = NULL;
10806
10807 if (is_debug_types && dwo_file->tus)
10808 {
10809 struct dwo_unit find_dwo_cutu;
10810
10811 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10812 find_dwo_cutu.signature = signature;
10813 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10814 }
10815 else if (!is_debug_types && dwo_file->cu)
10816 {
10817 if (signature == dwo_file->cu->signature)
10818 dwo_cutu = dwo_file->cu;
10819 }
10820
10821 if (dwo_cutu != NULL)
10822 {
10823 if (dwarf2_read_debug)
10824 {
10825 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10826 kind, dwo_name, hex_string (signature),
10827 host_address_to_string (dwo_cutu));
10828 }
10829 return dwo_cutu;
10830 }
10831 }
10832 }
10833
10834 /* We didn't find it. This could mean a dwo_id mismatch, or
10835 someone deleted the DWO/DWP file, or the search path isn't set up
10836 correctly to find the file. */
10837
10838 if (dwarf2_read_debug)
10839 {
10840 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10841 kind, dwo_name, hex_string (signature));
10842 }
10843
10844 /* This is a warning and not a complaint because it can be caused by
10845 pilot error (e.g., user accidentally deleting the DWO). */
10846 {
10847 /* Print the name of the DWP file if we looked there, helps the user
10848 better diagnose the problem. */
10849 char *dwp_text = NULL;
10850 struct cleanup *cleanups;
10851
10852 if (dwp_file != NULL)
10853 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10854 cleanups = make_cleanup (xfree, dwp_text);
10855
10856 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10857 " [in module %s]"),
10858 kind, dwo_name, hex_string (signature),
10859 dwp_text != NULL ? dwp_text : "",
10860 this_unit->is_debug_types ? "TU" : "CU",
10861 this_unit->offset.sect_off, objfile_name (objfile));
10862
10863 do_cleanups (cleanups);
10864 }
10865 return NULL;
10866 }
10867
10868 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10869 See lookup_dwo_cutu_unit for details. */
10870
10871 static struct dwo_unit *
10872 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10873 const char *dwo_name, const char *comp_dir,
10874 ULONGEST signature)
10875 {
10876 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10877 }
10878
10879 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10880 See lookup_dwo_cutu_unit for details. */
10881
10882 static struct dwo_unit *
10883 lookup_dwo_type_unit (struct signatured_type *this_tu,
10884 const char *dwo_name, const char *comp_dir)
10885 {
10886 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10887 }
10888
10889 /* Traversal function for queue_and_load_all_dwo_tus. */
10890
10891 static int
10892 queue_and_load_dwo_tu (void **slot, void *info)
10893 {
10894 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10895 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10896 ULONGEST signature = dwo_unit->signature;
10897 struct signatured_type *sig_type =
10898 lookup_dwo_signatured_type (per_cu->cu, signature);
10899
10900 if (sig_type != NULL)
10901 {
10902 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10903
10904 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10905 a real dependency of PER_CU on SIG_TYPE. That is detected later
10906 while processing PER_CU. */
10907 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10908 load_full_type_unit (sig_cu);
10909 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10910 }
10911
10912 return 1;
10913 }
10914
10915 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10916 The DWO may have the only definition of the type, though it may not be
10917 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10918 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10919
10920 static void
10921 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10922 {
10923 struct dwo_unit *dwo_unit;
10924 struct dwo_file *dwo_file;
10925
10926 gdb_assert (!per_cu->is_debug_types);
10927 gdb_assert (get_dwp_file () == NULL);
10928 gdb_assert (per_cu->cu != NULL);
10929
10930 dwo_unit = per_cu->cu->dwo_unit;
10931 gdb_assert (dwo_unit != NULL);
10932
10933 dwo_file = dwo_unit->dwo_file;
10934 if (dwo_file->tus != NULL)
10935 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10936 }
10937
10938 /* Free all resources associated with DWO_FILE.
10939 Close the DWO file and munmap the sections.
10940 All memory should be on the objfile obstack. */
10941
10942 static void
10943 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10944 {
10945 int ix;
10946 struct dwarf2_section_info *section;
10947
10948 /* Note: dbfd is NULL for virtual DWO files. */
10949 gdb_bfd_unref (dwo_file->dbfd);
10950
10951 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10952 }
10953
10954 /* Wrapper for free_dwo_file for use in cleanups. */
10955
10956 static void
10957 free_dwo_file_cleanup (void *arg)
10958 {
10959 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10960 struct objfile *objfile = dwarf2_per_objfile->objfile;
10961
10962 free_dwo_file (dwo_file, objfile);
10963 }
10964
10965 /* Traversal function for free_dwo_files. */
10966
10967 static int
10968 free_dwo_file_from_slot (void **slot, void *info)
10969 {
10970 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10971 struct objfile *objfile = (struct objfile *) info;
10972
10973 free_dwo_file (dwo_file, objfile);
10974
10975 return 1;
10976 }
10977
10978 /* Free all resources associated with DWO_FILES. */
10979
10980 static void
10981 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10982 {
10983 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10984 }
10985 \f
10986 /* Read in various DIEs. */
10987
10988 /* qsort helper for inherit_abstract_dies. */
10989
10990 static int
10991 unsigned_int_compar (const void *ap, const void *bp)
10992 {
10993 unsigned int a = *(unsigned int *) ap;
10994 unsigned int b = *(unsigned int *) bp;
10995
10996 return (a > b) - (b > a);
10997 }
10998
10999 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11000 Inherit only the children of the DW_AT_abstract_origin DIE not being
11001 already referenced by DW_AT_abstract_origin from the children of the
11002 current DIE. */
11003
11004 static void
11005 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11006 {
11007 struct die_info *child_die;
11008 unsigned die_children_count;
11009 /* CU offsets which were referenced by children of the current DIE. */
11010 sect_offset *offsets;
11011 sect_offset *offsets_end, *offsetp;
11012 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11013 struct die_info *origin_die;
11014 /* Iterator of the ORIGIN_DIE children. */
11015 struct die_info *origin_child_die;
11016 struct cleanup *cleanups;
11017 struct attribute *attr;
11018 struct dwarf2_cu *origin_cu;
11019 struct pending **origin_previous_list_in_scope;
11020
11021 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11022 if (!attr)
11023 return;
11024
11025 /* Note that following die references may follow to a die in a
11026 different cu. */
11027
11028 origin_cu = cu;
11029 origin_die = follow_die_ref (die, attr, &origin_cu);
11030
11031 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11032 symbols in. */
11033 origin_previous_list_in_scope = origin_cu->list_in_scope;
11034 origin_cu->list_in_scope = cu->list_in_scope;
11035
11036 if (die->tag != origin_die->tag
11037 && !(die->tag == DW_TAG_inlined_subroutine
11038 && origin_die->tag == DW_TAG_subprogram))
11039 complaint (&symfile_complaints,
11040 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11041 die->offset.sect_off, origin_die->offset.sect_off);
11042
11043 child_die = die->child;
11044 die_children_count = 0;
11045 while (child_die && child_die->tag)
11046 {
11047 child_die = sibling_die (child_die);
11048 die_children_count++;
11049 }
11050 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11051 cleanups = make_cleanup (xfree, offsets);
11052
11053 offsets_end = offsets;
11054 child_die = die->child;
11055 while (child_die && child_die->tag)
11056 {
11057 /* For each CHILD_DIE, find the corresponding child of
11058 ORIGIN_DIE. If there is more than one layer of
11059 DW_AT_abstract_origin, follow them all; there shouldn't be,
11060 but GCC versions at least through 4.4 generate this (GCC PR
11061 40573). */
11062 struct die_info *child_origin_die = child_die;
11063 struct dwarf2_cu *child_origin_cu = cu;
11064
11065 while (1)
11066 {
11067 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11068 child_origin_cu);
11069 if (attr == NULL)
11070 break;
11071 child_origin_die = follow_die_ref (child_origin_die, attr,
11072 &child_origin_cu);
11073 }
11074
11075 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11076 counterpart may exist. */
11077 if (child_origin_die != child_die)
11078 {
11079 if (child_die->tag != child_origin_die->tag
11080 && !(child_die->tag == DW_TAG_inlined_subroutine
11081 && child_origin_die->tag == DW_TAG_subprogram))
11082 complaint (&symfile_complaints,
11083 _("Child DIE 0x%x and its abstract origin 0x%x have "
11084 "different tags"), child_die->offset.sect_off,
11085 child_origin_die->offset.sect_off);
11086 if (child_origin_die->parent != origin_die)
11087 complaint (&symfile_complaints,
11088 _("Child DIE 0x%x and its abstract origin 0x%x have "
11089 "different parents"), child_die->offset.sect_off,
11090 child_origin_die->offset.sect_off);
11091 else
11092 *offsets_end++ = child_origin_die->offset;
11093 }
11094 child_die = sibling_die (child_die);
11095 }
11096 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11097 unsigned_int_compar);
11098 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11099 if (offsetp[-1].sect_off == offsetp->sect_off)
11100 complaint (&symfile_complaints,
11101 _("Multiple children of DIE 0x%x refer "
11102 "to DIE 0x%x as their abstract origin"),
11103 die->offset.sect_off, offsetp->sect_off);
11104
11105 offsetp = offsets;
11106 origin_child_die = origin_die->child;
11107 while (origin_child_die && origin_child_die->tag)
11108 {
11109 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11110 while (offsetp < offsets_end
11111 && offsetp->sect_off < origin_child_die->offset.sect_off)
11112 offsetp++;
11113 if (offsetp >= offsets_end
11114 || offsetp->sect_off > origin_child_die->offset.sect_off)
11115 {
11116 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11117 Check whether we're already processing ORIGIN_CHILD_DIE.
11118 This can happen with mutually referenced abstract_origins.
11119 PR 16581. */
11120 if (!origin_child_die->in_process)
11121 process_die (origin_child_die, origin_cu);
11122 }
11123 origin_child_die = sibling_die (origin_child_die);
11124 }
11125 origin_cu->list_in_scope = origin_previous_list_in_scope;
11126
11127 do_cleanups (cleanups);
11128 }
11129
11130 static void
11131 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11132 {
11133 struct objfile *objfile = cu->objfile;
11134 struct context_stack *new;
11135 CORE_ADDR lowpc;
11136 CORE_ADDR highpc;
11137 struct die_info *child_die;
11138 struct attribute *attr, *call_line, *call_file;
11139 const char *name;
11140 CORE_ADDR baseaddr;
11141 struct block *block;
11142 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11143 VEC (symbolp) *template_args = NULL;
11144 struct template_symbol *templ_func = NULL;
11145
11146 if (inlined_func)
11147 {
11148 /* If we do not have call site information, we can't show the
11149 caller of this inlined function. That's too confusing, so
11150 only use the scope for local variables. */
11151 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11152 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11153 if (call_line == NULL || call_file == NULL)
11154 {
11155 read_lexical_block_scope (die, cu);
11156 return;
11157 }
11158 }
11159
11160 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11161
11162 name = dwarf2_name (die, cu);
11163
11164 /* Ignore functions with missing or empty names. These are actually
11165 illegal according to the DWARF standard. */
11166 if (name == NULL)
11167 {
11168 complaint (&symfile_complaints,
11169 _("missing name for subprogram DIE at %d"),
11170 die->offset.sect_off);
11171 return;
11172 }
11173
11174 /* Ignore functions with missing or invalid low and high pc attributes. */
11175 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11176 {
11177 attr = dwarf2_attr (die, DW_AT_external, cu);
11178 if (!attr || !DW_UNSND (attr))
11179 complaint (&symfile_complaints,
11180 _("cannot get low and high bounds "
11181 "for subprogram DIE at %d"),
11182 die->offset.sect_off);
11183 return;
11184 }
11185
11186 lowpc += baseaddr;
11187 highpc += baseaddr;
11188
11189 /* If we have any template arguments, then we must allocate a
11190 different sort of symbol. */
11191 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11192 {
11193 if (child_die->tag == DW_TAG_template_type_param
11194 || child_die->tag == DW_TAG_template_value_param)
11195 {
11196 templ_func = allocate_template_symbol (objfile);
11197 templ_func->base.is_cplus_template_function = 1;
11198 break;
11199 }
11200 }
11201
11202 new = push_context (0, lowpc);
11203 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11204 (struct symbol *) templ_func);
11205
11206 /* If there is a location expression for DW_AT_frame_base, record
11207 it. */
11208 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11209 if (attr)
11210 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11211
11212 cu->list_in_scope = &local_symbols;
11213
11214 if (die->child != NULL)
11215 {
11216 child_die = die->child;
11217 while (child_die && child_die->tag)
11218 {
11219 if (child_die->tag == DW_TAG_template_type_param
11220 || child_die->tag == DW_TAG_template_value_param)
11221 {
11222 struct symbol *arg = new_symbol (child_die, NULL, cu);
11223
11224 if (arg != NULL)
11225 VEC_safe_push (symbolp, template_args, arg);
11226 }
11227 else
11228 process_die (child_die, cu);
11229 child_die = sibling_die (child_die);
11230 }
11231 }
11232
11233 inherit_abstract_dies (die, cu);
11234
11235 /* If we have a DW_AT_specification, we might need to import using
11236 directives from the context of the specification DIE. See the
11237 comment in determine_prefix. */
11238 if (cu->language == language_cplus
11239 && dwarf2_attr (die, DW_AT_specification, cu))
11240 {
11241 struct dwarf2_cu *spec_cu = cu;
11242 struct die_info *spec_die = die_specification (die, &spec_cu);
11243
11244 while (spec_die)
11245 {
11246 child_die = spec_die->child;
11247 while (child_die && child_die->tag)
11248 {
11249 if (child_die->tag == DW_TAG_imported_module)
11250 process_die (child_die, spec_cu);
11251 child_die = sibling_die (child_die);
11252 }
11253
11254 /* In some cases, GCC generates specification DIEs that
11255 themselves contain DW_AT_specification attributes. */
11256 spec_die = die_specification (spec_die, &spec_cu);
11257 }
11258 }
11259
11260 new = pop_context ();
11261 /* Make a block for the local symbols within. */
11262 block = finish_block (new->name, &local_symbols, new->old_blocks,
11263 lowpc, highpc, objfile);
11264
11265 /* For C++, set the block's scope. */
11266 if ((cu->language == language_cplus || cu->language == language_fortran)
11267 && cu->processing_has_namespace_info)
11268 block_set_scope (block, determine_prefix (die, cu),
11269 &objfile->objfile_obstack);
11270
11271 /* If we have address ranges, record them. */
11272 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11273
11274 /* Attach template arguments to function. */
11275 if (! VEC_empty (symbolp, template_args))
11276 {
11277 gdb_assert (templ_func != NULL);
11278
11279 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11280 templ_func->template_arguments
11281 = obstack_alloc (&objfile->objfile_obstack,
11282 (templ_func->n_template_arguments
11283 * sizeof (struct symbol *)));
11284 memcpy (templ_func->template_arguments,
11285 VEC_address (symbolp, template_args),
11286 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11287 VEC_free (symbolp, template_args);
11288 }
11289
11290 /* In C++, we can have functions nested inside functions (e.g., when
11291 a function declares a class that has methods). This means that
11292 when we finish processing a function scope, we may need to go
11293 back to building a containing block's symbol lists. */
11294 local_symbols = new->locals;
11295 using_directives = new->using_directives;
11296
11297 /* If we've finished processing a top-level function, subsequent
11298 symbols go in the file symbol list. */
11299 if (outermost_context_p ())
11300 cu->list_in_scope = &file_symbols;
11301 }
11302
11303 /* Process all the DIES contained within a lexical block scope. Start
11304 a new scope, process the dies, and then close the scope. */
11305
11306 static void
11307 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11308 {
11309 struct objfile *objfile = cu->objfile;
11310 struct context_stack *new;
11311 CORE_ADDR lowpc, highpc;
11312 struct die_info *child_die;
11313 CORE_ADDR baseaddr;
11314
11315 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11316
11317 /* Ignore blocks with missing or invalid low and high pc attributes. */
11318 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11319 as multiple lexical blocks? Handling children in a sane way would
11320 be nasty. Might be easier to properly extend generic blocks to
11321 describe ranges. */
11322 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11323 return;
11324 lowpc += baseaddr;
11325 highpc += baseaddr;
11326
11327 push_context (0, lowpc);
11328 if (die->child != NULL)
11329 {
11330 child_die = die->child;
11331 while (child_die && child_die->tag)
11332 {
11333 process_die (child_die, cu);
11334 child_die = sibling_die (child_die);
11335 }
11336 }
11337 new = pop_context ();
11338
11339 if (local_symbols != NULL || using_directives != NULL)
11340 {
11341 struct block *block
11342 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11343 highpc, objfile);
11344
11345 /* Note that recording ranges after traversing children, as we
11346 do here, means that recording a parent's ranges entails
11347 walking across all its children's ranges as they appear in
11348 the address map, which is quadratic behavior.
11349
11350 It would be nicer to record the parent's ranges before
11351 traversing its children, simply overriding whatever you find
11352 there. But since we don't even decide whether to create a
11353 block until after we've traversed its children, that's hard
11354 to do. */
11355 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11356 }
11357 local_symbols = new->locals;
11358 using_directives = new->using_directives;
11359 }
11360
11361 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11362
11363 static void
11364 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11365 {
11366 struct objfile *objfile = cu->objfile;
11367 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11368 CORE_ADDR pc, baseaddr;
11369 struct attribute *attr;
11370 struct call_site *call_site, call_site_local;
11371 void **slot;
11372 int nparams;
11373 struct die_info *child_die;
11374
11375 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11376
11377 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11378 if (!attr)
11379 {
11380 complaint (&symfile_complaints,
11381 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11382 "DIE 0x%x [in module %s]"),
11383 die->offset.sect_off, objfile_name (objfile));
11384 return;
11385 }
11386 pc = attr_value_as_address (attr) + baseaddr;
11387
11388 if (cu->call_site_htab == NULL)
11389 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11390 NULL, &objfile->objfile_obstack,
11391 hashtab_obstack_allocate, NULL);
11392 call_site_local.pc = pc;
11393 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11394 if (*slot != NULL)
11395 {
11396 complaint (&symfile_complaints,
11397 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11398 "DIE 0x%x [in module %s]"),
11399 paddress (gdbarch, pc), die->offset.sect_off,
11400 objfile_name (objfile));
11401 return;
11402 }
11403
11404 /* Count parameters at the caller. */
11405
11406 nparams = 0;
11407 for (child_die = die->child; child_die && child_die->tag;
11408 child_die = sibling_die (child_die))
11409 {
11410 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11411 {
11412 complaint (&symfile_complaints,
11413 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11414 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11415 child_die->tag, child_die->offset.sect_off,
11416 objfile_name (objfile));
11417 continue;
11418 }
11419
11420 nparams++;
11421 }
11422
11423 call_site = obstack_alloc (&objfile->objfile_obstack,
11424 (sizeof (*call_site)
11425 + (sizeof (*call_site->parameter)
11426 * (nparams - 1))));
11427 *slot = call_site;
11428 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11429 call_site->pc = pc;
11430
11431 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11432 {
11433 struct die_info *func_die;
11434
11435 /* Skip also over DW_TAG_inlined_subroutine. */
11436 for (func_die = die->parent;
11437 func_die && func_die->tag != DW_TAG_subprogram
11438 && func_die->tag != DW_TAG_subroutine_type;
11439 func_die = func_die->parent);
11440
11441 /* DW_AT_GNU_all_call_sites is a superset
11442 of DW_AT_GNU_all_tail_call_sites. */
11443 if (func_die
11444 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11445 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11446 {
11447 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11448 not complete. But keep CALL_SITE for look ups via call_site_htab,
11449 both the initial caller containing the real return address PC and
11450 the final callee containing the current PC of a chain of tail
11451 calls do not need to have the tail call list complete. But any
11452 function candidate for a virtual tail call frame searched via
11453 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11454 determined unambiguously. */
11455 }
11456 else
11457 {
11458 struct type *func_type = NULL;
11459
11460 if (func_die)
11461 func_type = get_die_type (func_die, cu);
11462 if (func_type != NULL)
11463 {
11464 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11465
11466 /* Enlist this call site to the function. */
11467 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11468 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11469 }
11470 else
11471 complaint (&symfile_complaints,
11472 _("Cannot find function owning DW_TAG_GNU_call_site "
11473 "DIE 0x%x [in module %s]"),
11474 die->offset.sect_off, objfile_name (objfile));
11475 }
11476 }
11477
11478 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11479 if (attr == NULL)
11480 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11481 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11482 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11483 /* Keep NULL DWARF_BLOCK. */;
11484 else if (attr_form_is_block (attr))
11485 {
11486 struct dwarf2_locexpr_baton *dlbaton;
11487
11488 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11489 dlbaton->data = DW_BLOCK (attr)->data;
11490 dlbaton->size = DW_BLOCK (attr)->size;
11491 dlbaton->per_cu = cu->per_cu;
11492
11493 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11494 }
11495 else if (attr_form_is_ref (attr))
11496 {
11497 struct dwarf2_cu *target_cu = cu;
11498 struct die_info *target_die;
11499
11500 target_die = follow_die_ref (die, attr, &target_cu);
11501 gdb_assert (target_cu->objfile == objfile);
11502 if (die_is_declaration (target_die, target_cu))
11503 {
11504 const char *target_physname = NULL;
11505 struct attribute *target_attr;
11506
11507 /* Prefer the mangled name; otherwise compute the demangled one. */
11508 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11509 if (target_attr == NULL)
11510 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11511 target_cu);
11512 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11513 target_physname = DW_STRING (target_attr);
11514 else
11515 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11516 if (target_physname == NULL)
11517 complaint (&symfile_complaints,
11518 _("DW_AT_GNU_call_site_target target DIE has invalid "
11519 "physname, for referencing DIE 0x%x [in module %s]"),
11520 die->offset.sect_off, objfile_name (objfile));
11521 else
11522 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11523 }
11524 else
11525 {
11526 CORE_ADDR lowpc;
11527
11528 /* DW_AT_entry_pc should be preferred. */
11529 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11530 complaint (&symfile_complaints,
11531 _("DW_AT_GNU_call_site_target target DIE has invalid "
11532 "low pc, for referencing DIE 0x%x [in module %s]"),
11533 die->offset.sect_off, objfile_name (objfile));
11534 else
11535 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11536 }
11537 }
11538 else
11539 complaint (&symfile_complaints,
11540 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11541 "block nor reference, for DIE 0x%x [in module %s]"),
11542 die->offset.sect_off, objfile_name (objfile));
11543
11544 call_site->per_cu = cu->per_cu;
11545
11546 for (child_die = die->child;
11547 child_die && child_die->tag;
11548 child_die = sibling_die (child_die))
11549 {
11550 struct call_site_parameter *parameter;
11551 struct attribute *loc, *origin;
11552
11553 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11554 {
11555 /* Already printed the complaint above. */
11556 continue;
11557 }
11558
11559 gdb_assert (call_site->parameter_count < nparams);
11560 parameter = &call_site->parameter[call_site->parameter_count];
11561
11562 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11563 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11564 register is contained in DW_AT_GNU_call_site_value. */
11565
11566 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11567 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11568 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11569 {
11570 sect_offset offset;
11571
11572 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11573 offset = dwarf2_get_ref_die_offset (origin);
11574 if (!offset_in_cu_p (&cu->header, offset))
11575 {
11576 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11577 binding can be done only inside one CU. Such referenced DIE
11578 therefore cannot be even moved to DW_TAG_partial_unit. */
11579 complaint (&symfile_complaints,
11580 _("DW_AT_abstract_origin offset is not in CU for "
11581 "DW_TAG_GNU_call_site child DIE 0x%x "
11582 "[in module %s]"),
11583 child_die->offset.sect_off, objfile_name (objfile));
11584 continue;
11585 }
11586 parameter->u.param_offset.cu_off = (offset.sect_off
11587 - cu->header.offset.sect_off);
11588 }
11589 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11590 {
11591 complaint (&symfile_complaints,
11592 _("No DW_FORM_block* DW_AT_location for "
11593 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11594 child_die->offset.sect_off, objfile_name (objfile));
11595 continue;
11596 }
11597 else
11598 {
11599 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11600 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11601 if (parameter->u.dwarf_reg != -1)
11602 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11603 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11604 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11605 &parameter->u.fb_offset))
11606 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11607 else
11608 {
11609 complaint (&symfile_complaints,
11610 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11611 "for DW_FORM_block* DW_AT_location is supported for "
11612 "DW_TAG_GNU_call_site child DIE 0x%x "
11613 "[in module %s]"),
11614 child_die->offset.sect_off, objfile_name (objfile));
11615 continue;
11616 }
11617 }
11618
11619 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11620 if (!attr_form_is_block (attr))
11621 {
11622 complaint (&symfile_complaints,
11623 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11624 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11625 child_die->offset.sect_off, objfile_name (objfile));
11626 continue;
11627 }
11628 parameter->value = DW_BLOCK (attr)->data;
11629 parameter->value_size = DW_BLOCK (attr)->size;
11630
11631 /* Parameters are not pre-cleared by memset above. */
11632 parameter->data_value = NULL;
11633 parameter->data_value_size = 0;
11634 call_site->parameter_count++;
11635
11636 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11637 if (attr)
11638 {
11639 if (!attr_form_is_block (attr))
11640 complaint (&symfile_complaints,
11641 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11642 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11643 child_die->offset.sect_off, objfile_name (objfile));
11644 else
11645 {
11646 parameter->data_value = DW_BLOCK (attr)->data;
11647 parameter->data_value_size = DW_BLOCK (attr)->size;
11648 }
11649 }
11650 }
11651 }
11652
11653 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11654 Return 1 if the attributes are present and valid, otherwise, return 0.
11655 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11656
11657 static int
11658 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11659 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11660 struct partial_symtab *ranges_pst)
11661 {
11662 struct objfile *objfile = cu->objfile;
11663 struct comp_unit_head *cu_header = &cu->header;
11664 bfd *obfd = objfile->obfd;
11665 unsigned int addr_size = cu_header->addr_size;
11666 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11667 /* Base address selection entry. */
11668 CORE_ADDR base;
11669 int found_base;
11670 unsigned int dummy;
11671 const gdb_byte *buffer;
11672 CORE_ADDR marker;
11673 int low_set;
11674 CORE_ADDR low = 0;
11675 CORE_ADDR high = 0;
11676 CORE_ADDR baseaddr;
11677
11678 found_base = cu->base_known;
11679 base = cu->base_address;
11680
11681 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11682 if (offset >= dwarf2_per_objfile->ranges.size)
11683 {
11684 complaint (&symfile_complaints,
11685 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11686 offset);
11687 return 0;
11688 }
11689 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11690
11691 /* Read in the largest possible address. */
11692 marker = read_address (obfd, buffer, cu, &dummy);
11693 if ((marker & mask) == mask)
11694 {
11695 /* If we found the largest possible address, then
11696 read the base address. */
11697 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11698 buffer += 2 * addr_size;
11699 offset += 2 * addr_size;
11700 found_base = 1;
11701 }
11702
11703 low_set = 0;
11704
11705 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11706
11707 while (1)
11708 {
11709 CORE_ADDR range_beginning, range_end;
11710
11711 range_beginning = read_address (obfd, buffer, cu, &dummy);
11712 buffer += addr_size;
11713 range_end = read_address (obfd, buffer, cu, &dummy);
11714 buffer += addr_size;
11715 offset += 2 * addr_size;
11716
11717 /* An end of list marker is a pair of zero addresses. */
11718 if (range_beginning == 0 && range_end == 0)
11719 /* Found the end of list entry. */
11720 break;
11721
11722 /* Each base address selection entry is a pair of 2 values.
11723 The first is the largest possible address, the second is
11724 the base address. Check for a base address here. */
11725 if ((range_beginning & mask) == mask)
11726 {
11727 /* If we found the largest possible address, then
11728 read the base address. */
11729 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11730 found_base = 1;
11731 continue;
11732 }
11733
11734 if (!found_base)
11735 {
11736 /* We have no valid base address for the ranges
11737 data. */
11738 complaint (&symfile_complaints,
11739 _("Invalid .debug_ranges data (no base address)"));
11740 return 0;
11741 }
11742
11743 if (range_beginning > range_end)
11744 {
11745 /* Inverted range entries are invalid. */
11746 complaint (&symfile_complaints,
11747 _("Invalid .debug_ranges data (inverted range)"));
11748 return 0;
11749 }
11750
11751 /* Empty range entries have no effect. */
11752 if (range_beginning == range_end)
11753 continue;
11754
11755 range_beginning += base;
11756 range_end += base;
11757
11758 /* A not-uncommon case of bad debug info.
11759 Don't pollute the addrmap with bad data. */
11760 if (range_beginning + baseaddr == 0
11761 && !dwarf2_per_objfile->has_section_at_zero)
11762 {
11763 complaint (&symfile_complaints,
11764 _(".debug_ranges entry has start address of zero"
11765 " [in module %s]"), objfile_name (objfile));
11766 continue;
11767 }
11768
11769 if (ranges_pst != NULL)
11770 addrmap_set_empty (objfile->psymtabs_addrmap,
11771 range_beginning + baseaddr,
11772 range_end - 1 + baseaddr,
11773 ranges_pst);
11774
11775 /* FIXME: This is recording everything as a low-high
11776 segment of consecutive addresses. We should have a
11777 data structure for discontiguous block ranges
11778 instead. */
11779 if (! low_set)
11780 {
11781 low = range_beginning;
11782 high = range_end;
11783 low_set = 1;
11784 }
11785 else
11786 {
11787 if (range_beginning < low)
11788 low = range_beginning;
11789 if (range_end > high)
11790 high = range_end;
11791 }
11792 }
11793
11794 if (! low_set)
11795 /* If the first entry is an end-of-list marker, the range
11796 describes an empty scope, i.e. no instructions. */
11797 return 0;
11798
11799 if (low_return)
11800 *low_return = low;
11801 if (high_return)
11802 *high_return = high;
11803 return 1;
11804 }
11805
11806 /* Get low and high pc attributes from a die. Return 1 if the attributes
11807 are present and valid, otherwise, return 0. Return -1 if the range is
11808 discontinuous, i.e. derived from DW_AT_ranges information. */
11809
11810 static int
11811 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11812 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11813 struct partial_symtab *pst)
11814 {
11815 struct attribute *attr;
11816 struct attribute *attr_high;
11817 CORE_ADDR low = 0;
11818 CORE_ADDR high = 0;
11819 int ret = 0;
11820
11821 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11822 if (attr_high)
11823 {
11824 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11825 if (attr)
11826 {
11827 low = attr_value_as_address (attr);
11828 high = attr_value_as_address (attr_high);
11829 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11830 high += low;
11831 }
11832 else
11833 /* Found high w/o low attribute. */
11834 return 0;
11835
11836 /* Found consecutive range of addresses. */
11837 ret = 1;
11838 }
11839 else
11840 {
11841 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11842 if (attr != NULL)
11843 {
11844 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11845 We take advantage of the fact that DW_AT_ranges does not appear
11846 in DW_TAG_compile_unit of DWO files. */
11847 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11848 unsigned int ranges_offset = (DW_UNSND (attr)
11849 + (need_ranges_base
11850 ? cu->ranges_base
11851 : 0));
11852
11853 /* Value of the DW_AT_ranges attribute is the offset in the
11854 .debug_ranges section. */
11855 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11856 return 0;
11857 /* Found discontinuous range of addresses. */
11858 ret = -1;
11859 }
11860 }
11861
11862 /* read_partial_die has also the strict LOW < HIGH requirement. */
11863 if (high <= low)
11864 return 0;
11865
11866 /* When using the GNU linker, .gnu.linkonce. sections are used to
11867 eliminate duplicate copies of functions and vtables and such.
11868 The linker will arbitrarily choose one and discard the others.
11869 The AT_*_pc values for such functions refer to local labels in
11870 these sections. If the section from that file was discarded, the
11871 labels are not in the output, so the relocs get a value of 0.
11872 If this is a discarded function, mark the pc bounds as invalid,
11873 so that GDB will ignore it. */
11874 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11875 return 0;
11876
11877 *lowpc = low;
11878 if (highpc)
11879 *highpc = high;
11880 return ret;
11881 }
11882
11883 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11884 its low and high PC addresses. Do nothing if these addresses could not
11885 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11886 and HIGHPC to the high address if greater than HIGHPC. */
11887
11888 static void
11889 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11890 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11891 struct dwarf2_cu *cu)
11892 {
11893 CORE_ADDR low, high;
11894 struct die_info *child = die->child;
11895
11896 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11897 {
11898 *lowpc = min (*lowpc, low);
11899 *highpc = max (*highpc, high);
11900 }
11901
11902 /* If the language does not allow nested subprograms (either inside
11903 subprograms or lexical blocks), we're done. */
11904 if (cu->language != language_ada)
11905 return;
11906
11907 /* Check all the children of the given DIE. If it contains nested
11908 subprograms, then check their pc bounds. Likewise, we need to
11909 check lexical blocks as well, as they may also contain subprogram
11910 definitions. */
11911 while (child && child->tag)
11912 {
11913 if (child->tag == DW_TAG_subprogram
11914 || child->tag == DW_TAG_lexical_block)
11915 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11916 child = sibling_die (child);
11917 }
11918 }
11919
11920 /* Get the low and high pc's represented by the scope DIE, and store
11921 them in *LOWPC and *HIGHPC. If the correct values can't be
11922 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11923
11924 static void
11925 get_scope_pc_bounds (struct die_info *die,
11926 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11927 struct dwarf2_cu *cu)
11928 {
11929 CORE_ADDR best_low = (CORE_ADDR) -1;
11930 CORE_ADDR best_high = (CORE_ADDR) 0;
11931 CORE_ADDR current_low, current_high;
11932
11933 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11934 {
11935 best_low = current_low;
11936 best_high = current_high;
11937 }
11938 else
11939 {
11940 struct die_info *child = die->child;
11941
11942 while (child && child->tag)
11943 {
11944 switch (child->tag) {
11945 case DW_TAG_subprogram:
11946 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11947 break;
11948 case DW_TAG_namespace:
11949 case DW_TAG_module:
11950 /* FIXME: carlton/2004-01-16: Should we do this for
11951 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11952 that current GCC's always emit the DIEs corresponding
11953 to definitions of methods of classes as children of a
11954 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11955 the DIEs giving the declarations, which could be
11956 anywhere). But I don't see any reason why the
11957 standards says that they have to be there. */
11958 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11959
11960 if (current_low != ((CORE_ADDR) -1))
11961 {
11962 best_low = min (best_low, current_low);
11963 best_high = max (best_high, current_high);
11964 }
11965 break;
11966 default:
11967 /* Ignore. */
11968 break;
11969 }
11970
11971 child = sibling_die (child);
11972 }
11973 }
11974
11975 *lowpc = best_low;
11976 *highpc = best_high;
11977 }
11978
11979 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11980 in DIE. */
11981
11982 static void
11983 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11984 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11985 {
11986 struct objfile *objfile = cu->objfile;
11987 struct attribute *attr;
11988 struct attribute *attr_high;
11989
11990 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11991 if (attr_high)
11992 {
11993 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11994 if (attr)
11995 {
11996 CORE_ADDR low = attr_value_as_address (attr);
11997 CORE_ADDR high = attr_value_as_address (attr_high);
11998
11999 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12000 high += low;
12001
12002 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12003 }
12004 }
12005
12006 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12007 if (attr)
12008 {
12009 bfd *obfd = objfile->obfd;
12010 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12011 We take advantage of the fact that DW_AT_ranges does not appear
12012 in DW_TAG_compile_unit of DWO files. */
12013 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12014
12015 /* The value of the DW_AT_ranges attribute is the offset of the
12016 address range list in the .debug_ranges section. */
12017 unsigned long offset = (DW_UNSND (attr)
12018 + (need_ranges_base ? cu->ranges_base : 0));
12019 const gdb_byte *buffer;
12020
12021 /* For some target architectures, but not others, the
12022 read_address function sign-extends the addresses it returns.
12023 To recognize base address selection entries, we need a
12024 mask. */
12025 unsigned int addr_size = cu->header.addr_size;
12026 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12027
12028 /* The base address, to which the next pair is relative. Note
12029 that this 'base' is a DWARF concept: most entries in a range
12030 list are relative, to reduce the number of relocs against the
12031 debugging information. This is separate from this function's
12032 'baseaddr' argument, which GDB uses to relocate debugging
12033 information from a shared library based on the address at
12034 which the library was loaded. */
12035 CORE_ADDR base = cu->base_address;
12036 int base_known = cu->base_known;
12037
12038 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12039 if (offset >= dwarf2_per_objfile->ranges.size)
12040 {
12041 complaint (&symfile_complaints,
12042 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12043 offset);
12044 return;
12045 }
12046 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12047
12048 for (;;)
12049 {
12050 unsigned int bytes_read;
12051 CORE_ADDR start, end;
12052
12053 start = read_address (obfd, buffer, cu, &bytes_read);
12054 buffer += bytes_read;
12055 end = read_address (obfd, buffer, cu, &bytes_read);
12056 buffer += bytes_read;
12057
12058 /* Did we find the end of the range list? */
12059 if (start == 0 && end == 0)
12060 break;
12061
12062 /* Did we find a base address selection entry? */
12063 else if ((start & base_select_mask) == base_select_mask)
12064 {
12065 base = end;
12066 base_known = 1;
12067 }
12068
12069 /* We found an ordinary address range. */
12070 else
12071 {
12072 if (!base_known)
12073 {
12074 complaint (&symfile_complaints,
12075 _("Invalid .debug_ranges data "
12076 "(no base address)"));
12077 return;
12078 }
12079
12080 if (start > end)
12081 {
12082 /* Inverted range entries are invalid. */
12083 complaint (&symfile_complaints,
12084 _("Invalid .debug_ranges data "
12085 "(inverted range)"));
12086 return;
12087 }
12088
12089 /* Empty range entries have no effect. */
12090 if (start == end)
12091 continue;
12092
12093 start += base + baseaddr;
12094 end += base + baseaddr;
12095
12096 /* A not-uncommon case of bad debug info.
12097 Don't pollute the addrmap with bad data. */
12098 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12099 {
12100 complaint (&symfile_complaints,
12101 _(".debug_ranges entry has start address of zero"
12102 " [in module %s]"), objfile_name (objfile));
12103 continue;
12104 }
12105
12106 record_block_range (block, start, end - 1);
12107 }
12108 }
12109 }
12110 }
12111
12112 /* Check whether the producer field indicates either of GCC < 4.6, or the
12113 Intel C/C++ compiler, and cache the result in CU. */
12114
12115 static void
12116 check_producer (struct dwarf2_cu *cu)
12117 {
12118 const char *cs;
12119 int major, minor, release;
12120
12121 if (cu->producer == NULL)
12122 {
12123 /* For unknown compilers expect their behavior is DWARF version
12124 compliant.
12125
12126 GCC started to support .debug_types sections by -gdwarf-4 since
12127 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12128 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12129 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12130 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12131 }
12132 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12133 {
12134 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12135
12136 cs = &cu->producer[strlen ("GNU ")];
12137 while (*cs && !isdigit (*cs))
12138 cs++;
12139 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12140 {
12141 /* Not recognized as GCC. */
12142 }
12143 else
12144 {
12145 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12146 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12147 }
12148 }
12149 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12150 cu->producer_is_icc = 1;
12151 else
12152 {
12153 /* For other non-GCC compilers, expect their behavior is DWARF version
12154 compliant. */
12155 }
12156
12157 cu->checked_producer = 1;
12158 }
12159
12160 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12161 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12162 during 4.6.0 experimental. */
12163
12164 static int
12165 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12166 {
12167 if (!cu->checked_producer)
12168 check_producer (cu);
12169
12170 return cu->producer_is_gxx_lt_4_6;
12171 }
12172
12173 /* Return the default accessibility type if it is not overriden by
12174 DW_AT_accessibility. */
12175
12176 static enum dwarf_access_attribute
12177 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12178 {
12179 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12180 {
12181 /* The default DWARF 2 accessibility for members is public, the default
12182 accessibility for inheritance is private. */
12183
12184 if (die->tag != DW_TAG_inheritance)
12185 return DW_ACCESS_public;
12186 else
12187 return DW_ACCESS_private;
12188 }
12189 else
12190 {
12191 /* DWARF 3+ defines the default accessibility a different way. The same
12192 rules apply now for DW_TAG_inheritance as for the members and it only
12193 depends on the container kind. */
12194
12195 if (die->parent->tag == DW_TAG_class_type)
12196 return DW_ACCESS_private;
12197 else
12198 return DW_ACCESS_public;
12199 }
12200 }
12201
12202 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12203 offset. If the attribute was not found return 0, otherwise return
12204 1. If it was found but could not properly be handled, set *OFFSET
12205 to 0. */
12206
12207 static int
12208 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12209 LONGEST *offset)
12210 {
12211 struct attribute *attr;
12212
12213 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12214 if (attr != NULL)
12215 {
12216 *offset = 0;
12217
12218 /* Note that we do not check for a section offset first here.
12219 This is because DW_AT_data_member_location is new in DWARF 4,
12220 so if we see it, we can assume that a constant form is really
12221 a constant and not a section offset. */
12222 if (attr_form_is_constant (attr))
12223 *offset = dwarf2_get_attr_constant_value (attr, 0);
12224 else if (attr_form_is_section_offset (attr))
12225 dwarf2_complex_location_expr_complaint ();
12226 else if (attr_form_is_block (attr))
12227 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12228 else
12229 dwarf2_complex_location_expr_complaint ();
12230
12231 return 1;
12232 }
12233
12234 return 0;
12235 }
12236
12237 /* Add an aggregate field to the field list. */
12238
12239 static void
12240 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12241 struct dwarf2_cu *cu)
12242 {
12243 struct objfile *objfile = cu->objfile;
12244 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12245 struct nextfield *new_field;
12246 struct attribute *attr;
12247 struct field *fp;
12248 const char *fieldname = "";
12249
12250 /* Allocate a new field list entry and link it in. */
12251 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12252 make_cleanup (xfree, new_field);
12253 memset (new_field, 0, sizeof (struct nextfield));
12254
12255 if (die->tag == DW_TAG_inheritance)
12256 {
12257 new_field->next = fip->baseclasses;
12258 fip->baseclasses = new_field;
12259 }
12260 else
12261 {
12262 new_field->next = fip->fields;
12263 fip->fields = new_field;
12264 }
12265 fip->nfields++;
12266
12267 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12268 if (attr)
12269 new_field->accessibility = DW_UNSND (attr);
12270 else
12271 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12272 if (new_field->accessibility != DW_ACCESS_public)
12273 fip->non_public_fields = 1;
12274
12275 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12276 if (attr)
12277 new_field->virtuality = DW_UNSND (attr);
12278 else
12279 new_field->virtuality = DW_VIRTUALITY_none;
12280
12281 fp = &new_field->field;
12282
12283 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12284 {
12285 LONGEST offset;
12286
12287 /* Data member other than a C++ static data member. */
12288
12289 /* Get type of field. */
12290 fp->type = die_type (die, cu);
12291
12292 SET_FIELD_BITPOS (*fp, 0);
12293
12294 /* Get bit size of field (zero if none). */
12295 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12296 if (attr)
12297 {
12298 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12299 }
12300 else
12301 {
12302 FIELD_BITSIZE (*fp) = 0;
12303 }
12304
12305 /* Get bit offset of field. */
12306 if (handle_data_member_location (die, cu, &offset))
12307 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12308 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12309 if (attr)
12310 {
12311 if (gdbarch_bits_big_endian (gdbarch))
12312 {
12313 /* For big endian bits, the DW_AT_bit_offset gives the
12314 additional bit offset from the MSB of the containing
12315 anonymous object to the MSB of the field. We don't
12316 have to do anything special since we don't need to
12317 know the size of the anonymous object. */
12318 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12319 }
12320 else
12321 {
12322 /* For little endian bits, compute the bit offset to the
12323 MSB of the anonymous object, subtract off the number of
12324 bits from the MSB of the field to the MSB of the
12325 object, and then subtract off the number of bits of
12326 the field itself. The result is the bit offset of
12327 the LSB of the field. */
12328 int anonymous_size;
12329 int bit_offset = DW_UNSND (attr);
12330
12331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12332 if (attr)
12333 {
12334 /* The size of the anonymous object containing
12335 the bit field is explicit, so use the
12336 indicated size (in bytes). */
12337 anonymous_size = DW_UNSND (attr);
12338 }
12339 else
12340 {
12341 /* The size of the anonymous object containing
12342 the bit field must be inferred from the type
12343 attribute of the data member containing the
12344 bit field. */
12345 anonymous_size = TYPE_LENGTH (fp->type);
12346 }
12347 SET_FIELD_BITPOS (*fp,
12348 (FIELD_BITPOS (*fp)
12349 + anonymous_size * bits_per_byte
12350 - bit_offset - FIELD_BITSIZE (*fp)));
12351 }
12352 }
12353
12354 /* Get name of field. */
12355 fieldname = dwarf2_name (die, cu);
12356 if (fieldname == NULL)
12357 fieldname = "";
12358
12359 /* The name is already allocated along with this objfile, so we don't
12360 need to duplicate it for the type. */
12361 fp->name = fieldname;
12362
12363 /* Change accessibility for artificial fields (e.g. virtual table
12364 pointer or virtual base class pointer) to private. */
12365 if (dwarf2_attr (die, DW_AT_artificial, cu))
12366 {
12367 FIELD_ARTIFICIAL (*fp) = 1;
12368 new_field->accessibility = DW_ACCESS_private;
12369 fip->non_public_fields = 1;
12370 }
12371 }
12372 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12373 {
12374 /* C++ static member. */
12375
12376 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12377 is a declaration, but all versions of G++ as of this writing
12378 (so through at least 3.2.1) incorrectly generate
12379 DW_TAG_variable tags. */
12380
12381 const char *physname;
12382
12383 /* Get name of field. */
12384 fieldname = dwarf2_name (die, cu);
12385 if (fieldname == NULL)
12386 return;
12387
12388 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12389 if (attr
12390 /* Only create a symbol if this is an external value.
12391 new_symbol checks this and puts the value in the global symbol
12392 table, which we want. If it is not external, new_symbol
12393 will try to put the value in cu->list_in_scope which is wrong. */
12394 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12395 {
12396 /* A static const member, not much different than an enum as far as
12397 we're concerned, except that we can support more types. */
12398 new_symbol (die, NULL, cu);
12399 }
12400
12401 /* Get physical name. */
12402 physname = dwarf2_physname (fieldname, die, cu);
12403
12404 /* The name is already allocated along with this objfile, so we don't
12405 need to duplicate it for the type. */
12406 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12407 FIELD_TYPE (*fp) = die_type (die, cu);
12408 FIELD_NAME (*fp) = fieldname;
12409 }
12410 else if (die->tag == DW_TAG_inheritance)
12411 {
12412 LONGEST offset;
12413
12414 /* C++ base class field. */
12415 if (handle_data_member_location (die, cu, &offset))
12416 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12417 FIELD_BITSIZE (*fp) = 0;
12418 FIELD_TYPE (*fp) = die_type (die, cu);
12419 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12420 fip->nbaseclasses++;
12421 }
12422 }
12423
12424 /* Add a typedef defined in the scope of the FIP's class. */
12425
12426 static void
12427 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12428 struct dwarf2_cu *cu)
12429 {
12430 struct objfile *objfile = cu->objfile;
12431 struct typedef_field_list *new_field;
12432 struct attribute *attr;
12433 struct typedef_field *fp;
12434 char *fieldname = "";
12435
12436 /* Allocate a new field list entry and link it in. */
12437 new_field = xzalloc (sizeof (*new_field));
12438 make_cleanup (xfree, new_field);
12439
12440 gdb_assert (die->tag == DW_TAG_typedef);
12441
12442 fp = &new_field->field;
12443
12444 /* Get name of field. */
12445 fp->name = dwarf2_name (die, cu);
12446 if (fp->name == NULL)
12447 return;
12448
12449 fp->type = read_type_die (die, cu);
12450
12451 new_field->next = fip->typedef_field_list;
12452 fip->typedef_field_list = new_field;
12453 fip->typedef_field_list_count++;
12454 }
12455
12456 /* Create the vector of fields, and attach it to the type. */
12457
12458 static void
12459 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12460 struct dwarf2_cu *cu)
12461 {
12462 int nfields = fip->nfields;
12463
12464 /* Record the field count, allocate space for the array of fields,
12465 and create blank accessibility bitfields if necessary. */
12466 TYPE_NFIELDS (type) = nfields;
12467 TYPE_FIELDS (type) = (struct field *)
12468 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12469 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12470
12471 if (fip->non_public_fields && cu->language != language_ada)
12472 {
12473 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12474
12475 TYPE_FIELD_PRIVATE_BITS (type) =
12476 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12477 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12478
12479 TYPE_FIELD_PROTECTED_BITS (type) =
12480 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12481 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12482
12483 TYPE_FIELD_IGNORE_BITS (type) =
12484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12485 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12486 }
12487
12488 /* If the type has baseclasses, allocate and clear a bit vector for
12489 TYPE_FIELD_VIRTUAL_BITS. */
12490 if (fip->nbaseclasses && cu->language != language_ada)
12491 {
12492 int num_bytes = B_BYTES (fip->nbaseclasses);
12493 unsigned char *pointer;
12494
12495 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12496 pointer = TYPE_ALLOC (type, num_bytes);
12497 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12498 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12499 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12500 }
12501
12502 /* Copy the saved-up fields into the field vector. Start from the head of
12503 the list, adding to the tail of the field array, so that they end up in
12504 the same order in the array in which they were added to the list. */
12505 while (nfields-- > 0)
12506 {
12507 struct nextfield *fieldp;
12508
12509 if (fip->fields)
12510 {
12511 fieldp = fip->fields;
12512 fip->fields = fieldp->next;
12513 }
12514 else
12515 {
12516 fieldp = fip->baseclasses;
12517 fip->baseclasses = fieldp->next;
12518 }
12519
12520 TYPE_FIELD (type, nfields) = fieldp->field;
12521 switch (fieldp->accessibility)
12522 {
12523 case DW_ACCESS_private:
12524 if (cu->language != language_ada)
12525 SET_TYPE_FIELD_PRIVATE (type, nfields);
12526 break;
12527
12528 case DW_ACCESS_protected:
12529 if (cu->language != language_ada)
12530 SET_TYPE_FIELD_PROTECTED (type, nfields);
12531 break;
12532
12533 case DW_ACCESS_public:
12534 break;
12535
12536 default:
12537 /* Unknown accessibility. Complain and treat it as public. */
12538 {
12539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12540 fieldp->accessibility);
12541 }
12542 break;
12543 }
12544 if (nfields < fip->nbaseclasses)
12545 {
12546 switch (fieldp->virtuality)
12547 {
12548 case DW_VIRTUALITY_virtual:
12549 case DW_VIRTUALITY_pure_virtual:
12550 if (cu->language == language_ada)
12551 error (_("unexpected virtuality in component of Ada type"));
12552 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12553 break;
12554 }
12555 }
12556 }
12557 }
12558
12559 /* Return true if this member function is a constructor, false
12560 otherwise. */
12561
12562 static int
12563 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12564 {
12565 const char *fieldname;
12566 const char *typename;
12567 int len;
12568
12569 if (die->parent == NULL)
12570 return 0;
12571
12572 if (die->parent->tag != DW_TAG_structure_type
12573 && die->parent->tag != DW_TAG_union_type
12574 && die->parent->tag != DW_TAG_class_type)
12575 return 0;
12576
12577 fieldname = dwarf2_name (die, cu);
12578 typename = dwarf2_name (die->parent, cu);
12579 if (fieldname == NULL || typename == NULL)
12580 return 0;
12581
12582 len = strlen (fieldname);
12583 return (strncmp (fieldname, typename, len) == 0
12584 && (typename[len] == '\0' || typename[len] == '<'));
12585 }
12586
12587 /* Add a member function to the proper fieldlist. */
12588
12589 static void
12590 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12591 struct type *type, struct dwarf2_cu *cu)
12592 {
12593 struct objfile *objfile = cu->objfile;
12594 struct attribute *attr;
12595 struct fnfieldlist *flp;
12596 int i;
12597 struct fn_field *fnp;
12598 const char *fieldname;
12599 struct nextfnfield *new_fnfield;
12600 struct type *this_type;
12601 enum dwarf_access_attribute accessibility;
12602
12603 if (cu->language == language_ada)
12604 error (_("unexpected member function in Ada type"));
12605
12606 /* Get name of member function. */
12607 fieldname = dwarf2_name (die, cu);
12608 if (fieldname == NULL)
12609 return;
12610
12611 /* Look up member function name in fieldlist. */
12612 for (i = 0; i < fip->nfnfields; i++)
12613 {
12614 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12615 break;
12616 }
12617
12618 /* Create new list element if necessary. */
12619 if (i < fip->nfnfields)
12620 flp = &fip->fnfieldlists[i];
12621 else
12622 {
12623 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12624 {
12625 fip->fnfieldlists = (struct fnfieldlist *)
12626 xrealloc (fip->fnfieldlists,
12627 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12628 * sizeof (struct fnfieldlist));
12629 if (fip->nfnfields == 0)
12630 make_cleanup (free_current_contents, &fip->fnfieldlists);
12631 }
12632 flp = &fip->fnfieldlists[fip->nfnfields];
12633 flp->name = fieldname;
12634 flp->length = 0;
12635 flp->head = NULL;
12636 i = fip->nfnfields++;
12637 }
12638
12639 /* Create a new member function field and chain it to the field list
12640 entry. */
12641 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12642 make_cleanup (xfree, new_fnfield);
12643 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12644 new_fnfield->next = flp->head;
12645 flp->head = new_fnfield;
12646 flp->length++;
12647
12648 /* Fill in the member function field info. */
12649 fnp = &new_fnfield->fnfield;
12650
12651 /* Delay processing of the physname until later. */
12652 if (cu->language == language_cplus || cu->language == language_java)
12653 {
12654 add_to_method_list (type, i, flp->length - 1, fieldname,
12655 die, cu);
12656 }
12657 else
12658 {
12659 const char *physname = dwarf2_physname (fieldname, die, cu);
12660 fnp->physname = physname ? physname : "";
12661 }
12662
12663 fnp->type = alloc_type (objfile);
12664 this_type = read_type_die (die, cu);
12665 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12666 {
12667 int nparams = TYPE_NFIELDS (this_type);
12668
12669 /* TYPE is the domain of this method, and THIS_TYPE is the type
12670 of the method itself (TYPE_CODE_METHOD). */
12671 smash_to_method_type (fnp->type, type,
12672 TYPE_TARGET_TYPE (this_type),
12673 TYPE_FIELDS (this_type),
12674 TYPE_NFIELDS (this_type),
12675 TYPE_VARARGS (this_type));
12676
12677 /* Handle static member functions.
12678 Dwarf2 has no clean way to discern C++ static and non-static
12679 member functions. G++ helps GDB by marking the first
12680 parameter for non-static member functions (which is the this
12681 pointer) as artificial. We obtain this information from
12682 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12683 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12684 fnp->voffset = VOFFSET_STATIC;
12685 }
12686 else
12687 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12688 dwarf2_full_name (fieldname, die, cu));
12689
12690 /* Get fcontext from DW_AT_containing_type if present. */
12691 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12692 fnp->fcontext = die_containing_type (die, cu);
12693
12694 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12695 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12696
12697 /* Get accessibility. */
12698 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12699 if (attr)
12700 accessibility = DW_UNSND (attr);
12701 else
12702 accessibility = dwarf2_default_access_attribute (die, cu);
12703 switch (accessibility)
12704 {
12705 case DW_ACCESS_private:
12706 fnp->is_private = 1;
12707 break;
12708 case DW_ACCESS_protected:
12709 fnp->is_protected = 1;
12710 break;
12711 }
12712
12713 /* Check for artificial methods. */
12714 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12715 if (attr && DW_UNSND (attr) != 0)
12716 fnp->is_artificial = 1;
12717
12718 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12719
12720 /* Get index in virtual function table if it is a virtual member
12721 function. For older versions of GCC, this is an offset in the
12722 appropriate virtual table, as specified by DW_AT_containing_type.
12723 For everyone else, it is an expression to be evaluated relative
12724 to the object address. */
12725
12726 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12727 if (attr)
12728 {
12729 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12730 {
12731 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12732 {
12733 /* Old-style GCC. */
12734 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12735 }
12736 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12737 || (DW_BLOCK (attr)->size > 1
12738 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12739 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12740 {
12741 struct dwarf_block blk;
12742 int offset;
12743
12744 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12745 ? 1 : 2);
12746 blk.size = DW_BLOCK (attr)->size - offset;
12747 blk.data = DW_BLOCK (attr)->data + offset;
12748 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12749 if ((fnp->voffset % cu->header.addr_size) != 0)
12750 dwarf2_complex_location_expr_complaint ();
12751 else
12752 fnp->voffset /= cu->header.addr_size;
12753 fnp->voffset += 2;
12754 }
12755 else
12756 dwarf2_complex_location_expr_complaint ();
12757
12758 if (!fnp->fcontext)
12759 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12760 }
12761 else if (attr_form_is_section_offset (attr))
12762 {
12763 dwarf2_complex_location_expr_complaint ();
12764 }
12765 else
12766 {
12767 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12768 fieldname);
12769 }
12770 }
12771 else
12772 {
12773 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12774 if (attr && DW_UNSND (attr))
12775 {
12776 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12777 complaint (&symfile_complaints,
12778 _("Member function \"%s\" (offset %d) is virtual "
12779 "but the vtable offset is not specified"),
12780 fieldname, die->offset.sect_off);
12781 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12782 TYPE_CPLUS_DYNAMIC (type) = 1;
12783 }
12784 }
12785 }
12786
12787 /* Create the vector of member function fields, and attach it to the type. */
12788
12789 static void
12790 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12791 struct dwarf2_cu *cu)
12792 {
12793 struct fnfieldlist *flp;
12794 int i;
12795
12796 if (cu->language == language_ada)
12797 error (_("unexpected member functions in Ada type"));
12798
12799 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12800 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12801 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12802
12803 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12804 {
12805 struct nextfnfield *nfp = flp->head;
12806 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12807 int k;
12808
12809 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12810 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12811 fn_flp->fn_fields = (struct fn_field *)
12812 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12813 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12814 fn_flp->fn_fields[k] = nfp->fnfield;
12815 }
12816
12817 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12818 }
12819
12820 /* Returns non-zero if NAME is the name of a vtable member in CU's
12821 language, zero otherwise. */
12822 static int
12823 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12824 {
12825 static const char vptr[] = "_vptr";
12826 static const char vtable[] = "vtable";
12827
12828 /* Look for the C++ and Java forms of the vtable. */
12829 if ((cu->language == language_java
12830 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12831 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12832 && is_cplus_marker (name[sizeof (vptr) - 1])))
12833 return 1;
12834
12835 return 0;
12836 }
12837
12838 /* GCC outputs unnamed structures that are really pointers to member
12839 functions, with the ABI-specified layout. If TYPE describes
12840 such a structure, smash it into a member function type.
12841
12842 GCC shouldn't do this; it should just output pointer to member DIEs.
12843 This is GCC PR debug/28767. */
12844
12845 static void
12846 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12847 {
12848 struct type *pfn_type, *domain_type, *new_type;
12849
12850 /* Check for a structure with no name and two children. */
12851 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12852 return;
12853
12854 /* Check for __pfn and __delta members. */
12855 if (TYPE_FIELD_NAME (type, 0) == NULL
12856 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12857 || TYPE_FIELD_NAME (type, 1) == NULL
12858 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12859 return;
12860
12861 /* Find the type of the method. */
12862 pfn_type = TYPE_FIELD_TYPE (type, 0);
12863 if (pfn_type == NULL
12864 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12865 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12866 return;
12867
12868 /* Look for the "this" argument. */
12869 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12870 if (TYPE_NFIELDS (pfn_type) == 0
12871 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12872 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12873 return;
12874
12875 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12876 new_type = alloc_type (objfile);
12877 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12878 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12879 TYPE_VARARGS (pfn_type));
12880 smash_to_methodptr_type (type, new_type);
12881 }
12882
12883 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12884 (icc). */
12885
12886 static int
12887 producer_is_icc (struct dwarf2_cu *cu)
12888 {
12889 if (!cu->checked_producer)
12890 check_producer (cu);
12891
12892 return cu->producer_is_icc;
12893 }
12894
12895 /* Called when we find the DIE that starts a structure or union scope
12896 (definition) to create a type for the structure or union. Fill in
12897 the type's name and general properties; the members will not be
12898 processed until process_structure_scope. A symbol table entry for
12899 the type will also not be done until process_structure_scope (assuming
12900 the type has a name).
12901
12902 NOTE: we need to call these functions regardless of whether or not the
12903 DIE has a DW_AT_name attribute, since it might be an anonymous
12904 structure or union. This gets the type entered into our set of
12905 user defined types. */
12906
12907 static struct type *
12908 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12909 {
12910 struct objfile *objfile = cu->objfile;
12911 struct type *type;
12912 struct attribute *attr;
12913 const char *name;
12914
12915 /* If the definition of this type lives in .debug_types, read that type.
12916 Don't follow DW_AT_specification though, that will take us back up
12917 the chain and we want to go down. */
12918 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12919 if (attr)
12920 {
12921 type = get_DW_AT_signature_type (die, attr, cu);
12922
12923 /* The type's CU may not be the same as CU.
12924 Ensure TYPE is recorded with CU in die_type_hash. */
12925 return set_die_type (die, type, cu);
12926 }
12927
12928 type = alloc_type (objfile);
12929 INIT_CPLUS_SPECIFIC (type);
12930
12931 name = dwarf2_name (die, cu);
12932 if (name != NULL)
12933 {
12934 if (cu->language == language_cplus
12935 || cu->language == language_java)
12936 {
12937 const char *full_name = dwarf2_full_name (name, die, cu);
12938
12939 /* dwarf2_full_name might have already finished building the DIE's
12940 type. If so, there is no need to continue. */
12941 if (get_die_type (die, cu) != NULL)
12942 return get_die_type (die, cu);
12943
12944 TYPE_TAG_NAME (type) = full_name;
12945 if (die->tag == DW_TAG_structure_type
12946 || die->tag == DW_TAG_class_type)
12947 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12948 }
12949 else
12950 {
12951 /* The name is already allocated along with this objfile, so
12952 we don't need to duplicate it for the type. */
12953 TYPE_TAG_NAME (type) = name;
12954 if (die->tag == DW_TAG_class_type)
12955 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12956 }
12957 }
12958
12959 if (die->tag == DW_TAG_structure_type)
12960 {
12961 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12962 }
12963 else if (die->tag == DW_TAG_union_type)
12964 {
12965 TYPE_CODE (type) = TYPE_CODE_UNION;
12966 }
12967 else
12968 {
12969 TYPE_CODE (type) = TYPE_CODE_CLASS;
12970 }
12971
12972 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12973 TYPE_DECLARED_CLASS (type) = 1;
12974
12975 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12976 if (attr)
12977 {
12978 TYPE_LENGTH (type) = DW_UNSND (attr);
12979 }
12980 else
12981 {
12982 TYPE_LENGTH (type) = 0;
12983 }
12984
12985 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12986 {
12987 /* ICC does not output the required DW_AT_declaration
12988 on incomplete types, but gives them a size of zero. */
12989 TYPE_STUB (type) = 1;
12990 }
12991 else
12992 TYPE_STUB_SUPPORTED (type) = 1;
12993
12994 if (die_is_declaration (die, cu))
12995 TYPE_STUB (type) = 1;
12996 else if (attr == NULL && die->child == NULL
12997 && producer_is_realview (cu->producer))
12998 /* RealView does not output the required DW_AT_declaration
12999 on incomplete types. */
13000 TYPE_STUB (type) = 1;
13001
13002 /* We need to add the type field to the die immediately so we don't
13003 infinitely recurse when dealing with pointers to the structure
13004 type within the structure itself. */
13005 set_die_type (die, type, cu);
13006
13007 /* set_die_type should be already done. */
13008 set_descriptive_type (type, die, cu);
13009
13010 return type;
13011 }
13012
13013 /* Finish creating a structure or union type, including filling in
13014 its members and creating a symbol for it. */
13015
13016 static void
13017 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13018 {
13019 struct objfile *objfile = cu->objfile;
13020 struct die_info *child_die = die->child;
13021 struct type *type;
13022
13023 type = get_die_type (die, cu);
13024 if (type == NULL)
13025 type = read_structure_type (die, cu);
13026
13027 if (die->child != NULL && ! die_is_declaration (die, cu))
13028 {
13029 struct field_info fi;
13030 struct die_info *child_die;
13031 VEC (symbolp) *template_args = NULL;
13032 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13033
13034 memset (&fi, 0, sizeof (struct field_info));
13035
13036 child_die = die->child;
13037
13038 while (child_die && child_die->tag)
13039 {
13040 if (child_die->tag == DW_TAG_member
13041 || child_die->tag == DW_TAG_variable)
13042 {
13043 /* NOTE: carlton/2002-11-05: A C++ static data member
13044 should be a DW_TAG_member that is a declaration, but
13045 all versions of G++ as of this writing (so through at
13046 least 3.2.1) incorrectly generate DW_TAG_variable
13047 tags for them instead. */
13048 dwarf2_add_field (&fi, child_die, cu);
13049 }
13050 else if (child_die->tag == DW_TAG_subprogram)
13051 {
13052 /* C++ member function. */
13053 dwarf2_add_member_fn (&fi, child_die, type, cu);
13054 }
13055 else if (child_die->tag == DW_TAG_inheritance)
13056 {
13057 /* C++ base class field. */
13058 dwarf2_add_field (&fi, child_die, cu);
13059 }
13060 else if (child_die->tag == DW_TAG_typedef)
13061 dwarf2_add_typedef (&fi, child_die, cu);
13062 else if (child_die->tag == DW_TAG_template_type_param
13063 || child_die->tag == DW_TAG_template_value_param)
13064 {
13065 struct symbol *arg = new_symbol (child_die, NULL, cu);
13066
13067 if (arg != NULL)
13068 VEC_safe_push (symbolp, template_args, arg);
13069 }
13070
13071 child_die = sibling_die (child_die);
13072 }
13073
13074 /* Attach template arguments to type. */
13075 if (! VEC_empty (symbolp, template_args))
13076 {
13077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13078 TYPE_N_TEMPLATE_ARGUMENTS (type)
13079 = VEC_length (symbolp, template_args);
13080 TYPE_TEMPLATE_ARGUMENTS (type)
13081 = obstack_alloc (&objfile->objfile_obstack,
13082 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13083 * sizeof (struct symbol *)));
13084 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13085 VEC_address (symbolp, template_args),
13086 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13087 * sizeof (struct symbol *)));
13088 VEC_free (symbolp, template_args);
13089 }
13090
13091 /* Attach fields and member functions to the type. */
13092 if (fi.nfields)
13093 dwarf2_attach_fields_to_type (&fi, type, cu);
13094 if (fi.nfnfields)
13095 {
13096 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13097
13098 /* Get the type which refers to the base class (possibly this
13099 class itself) which contains the vtable pointer for the current
13100 class from the DW_AT_containing_type attribute. This use of
13101 DW_AT_containing_type is a GNU extension. */
13102
13103 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13104 {
13105 struct type *t = die_containing_type (die, cu);
13106
13107 TYPE_VPTR_BASETYPE (type) = t;
13108 if (type == t)
13109 {
13110 int i;
13111
13112 /* Our own class provides vtbl ptr. */
13113 for (i = TYPE_NFIELDS (t) - 1;
13114 i >= TYPE_N_BASECLASSES (t);
13115 --i)
13116 {
13117 const char *fieldname = TYPE_FIELD_NAME (t, i);
13118
13119 if (is_vtable_name (fieldname, cu))
13120 {
13121 TYPE_VPTR_FIELDNO (type) = i;
13122 break;
13123 }
13124 }
13125
13126 /* Complain if virtual function table field not found. */
13127 if (i < TYPE_N_BASECLASSES (t))
13128 complaint (&symfile_complaints,
13129 _("virtual function table pointer "
13130 "not found when defining class '%s'"),
13131 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13132 "");
13133 }
13134 else
13135 {
13136 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13137 }
13138 }
13139 else if (cu->producer
13140 && strncmp (cu->producer,
13141 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13142 {
13143 /* The IBM XLC compiler does not provide direct indication
13144 of the containing type, but the vtable pointer is
13145 always named __vfp. */
13146
13147 int i;
13148
13149 for (i = TYPE_NFIELDS (type) - 1;
13150 i >= TYPE_N_BASECLASSES (type);
13151 --i)
13152 {
13153 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13154 {
13155 TYPE_VPTR_FIELDNO (type) = i;
13156 TYPE_VPTR_BASETYPE (type) = type;
13157 break;
13158 }
13159 }
13160 }
13161 }
13162
13163 /* Copy fi.typedef_field_list linked list elements content into the
13164 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13165 if (fi.typedef_field_list)
13166 {
13167 int i = fi.typedef_field_list_count;
13168
13169 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13170 TYPE_TYPEDEF_FIELD_ARRAY (type)
13171 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13172 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13173
13174 /* Reverse the list order to keep the debug info elements order. */
13175 while (--i >= 0)
13176 {
13177 struct typedef_field *dest, *src;
13178
13179 dest = &TYPE_TYPEDEF_FIELD (type, i);
13180 src = &fi.typedef_field_list->field;
13181 fi.typedef_field_list = fi.typedef_field_list->next;
13182 *dest = *src;
13183 }
13184 }
13185
13186 do_cleanups (back_to);
13187
13188 if (HAVE_CPLUS_STRUCT (type))
13189 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13190 }
13191
13192 quirk_gcc_member_function_pointer (type, objfile);
13193
13194 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13195 snapshots) has been known to create a die giving a declaration
13196 for a class that has, as a child, a die giving a definition for a
13197 nested class. So we have to process our children even if the
13198 current die is a declaration. Normally, of course, a declaration
13199 won't have any children at all. */
13200
13201 while (child_die != NULL && child_die->tag)
13202 {
13203 if (child_die->tag == DW_TAG_member
13204 || child_die->tag == DW_TAG_variable
13205 || child_die->tag == DW_TAG_inheritance
13206 || child_die->tag == DW_TAG_template_value_param
13207 || child_die->tag == DW_TAG_template_type_param)
13208 {
13209 /* Do nothing. */
13210 }
13211 else
13212 process_die (child_die, cu);
13213
13214 child_die = sibling_die (child_die);
13215 }
13216
13217 /* Do not consider external references. According to the DWARF standard,
13218 these DIEs are identified by the fact that they have no byte_size
13219 attribute, and a declaration attribute. */
13220 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13221 || !die_is_declaration (die, cu))
13222 new_symbol (die, type, cu);
13223 }
13224
13225 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13226 update TYPE using some information only available in DIE's children. */
13227
13228 static void
13229 update_enumeration_type_from_children (struct die_info *die,
13230 struct type *type,
13231 struct dwarf2_cu *cu)
13232 {
13233 struct obstack obstack;
13234 struct die_info *child_die = die->child;
13235 int unsigned_enum = 1;
13236 int flag_enum = 1;
13237 ULONGEST mask = 0;
13238 struct cleanup *old_chain;
13239
13240 obstack_init (&obstack);
13241 old_chain = make_cleanup_obstack_free (&obstack);
13242
13243 while (child_die != NULL && child_die->tag)
13244 {
13245 struct attribute *attr;
13246 LONGEST value;
13247 const gdb_byte *bytes;
13248 struct dwarf2_locexpr_baton *baton;
13249 const char *name;
13250 if (child_die->tag != DW_TAG_enumerator)
13251 continue;
13252
13253 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13254 if (attr == NULL)
13255 continue;
13256
13257 name = dwarf2_name (child_die, cu);
13258 if (name == NULL)
13259 name = "<anonymous enumerator>";
13260
13261 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13262 &value, &bytes, &baton);
13263 if (value < 0)
13264 {
13265 unsigned_enum = 0;
13266 flag_enum = 0;
13267 }
13268 else if ((mask & value) != 0)
13269 flag_enum = 0;
13270 else
13271 mask |= value;
13272
13273 /* If we already know that the enum type is neither unsigned, nor
13274 a flag type, no need to look at the rest of the enumerates. */
13275 if (!unsigned_enum && !flag_enum)
13276 break;
13277 child_die = sibling_die (child_die);
13278 }
13279
13280 if (unsigned_enum)
13281 TYPE_UNSIGNED (type) = 1;
13282 if (flag_enum)
13283 TYPE_FLAG_ENUM (type) = 1;
13284
13285 do_cleanups (old_chain);
13286 }
13287
13288 /* Given a DW_AT_enumeration_type die, set its type. We do not
13289 complete the type's fields yet, or create any symbols. */
13290
13291 static struct type *
13292 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13293 {
13294 struct objfile *objfile = cu->objfile;
13295 struct type *type;
13296 struct attribute *attr;
13297 const char *name;
13298
13299 /* If the definition of this type lives in .debug_types, read that type.
13300 Don't follow DW_AT_specification though, that will take us back up
13301 the chain and we want to go down. */
13302 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13303 if (attr)
13304 {
13305 type = get_DW_AT_signature_type (die, attr, cu);
13306
13307 /* The type's CU may not be the same as CU.
13308 Ensure TYPE is recorded with CU in die_type_hash. */
13309 return set_die_type (die, type, cu);
13310 }
13311
13312 type = alloc_type (objfile);
13313
13314 TYPE_CODE (type) = TYPE_CODE_ENUM;
13315 name = dwarf2_full_name (NULL, die, cu);
13316 if (name != NULL)
13317 TYPE_TAG_NAME (type) = name;
13318
13319 attr = dwarf2_attr (die, DW_AT_type, cu);
13320 if (attr != NULL)
13321 {
13322 struct type *underlying_type = die_type (die, cu);
13323
13324 TYPE_TARGET_TYPE (type) = underlying_type;
13325 }
13326
13327 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13328 if (attr)
13329 {
13330 TYPE_LENGTH (type) = DW_UNSND (attr);
13331 }
13332 else
13333 {
13334 TYPE_LENGTH (type) = 0;
13335 }
13336
13337 /* The enumeration DIE can be incomplete. In Ada, any type can be
13338 declared as private in the package spec, and then defined only
13339 inside the package body. Such types are known as Taft Amendment
13340 Types. When another package uses such a type, an incomplete DIE
13341 may be generated by the compiler. */
13342 if (die_is_declaration (die, cu))
13343 TYPE_STUB (type) = 1;
13344
13345 /* Finish the creation of this type by using the enum's children.
13346 We must call this even when the underlying type has been provided
13347 so that we can determine if we're looking at a "flag" enum. */
13348 update_enumeration_type_from_children (die, type, cu);
13349
13350 /* If this type has an underlying type that is not a stub, then we
13351 may use its attributes. We always use the "unsigned" attribute
13352 in this situation, because ordinarily we guess whether the type
13353 is unsigned -- but the guess can be wrong and the underlying type
13354 can tell us the reality. However, we defer to a local size
13355 attribute if one exists, because this lets the compiler override
13356 the underlying type if needed. */
13357 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13358 {
13359 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13360 if (TYPE_LENGTH (type) == 0)
13361 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13362 }
13363
13364 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13365
13366 return set_die_type (die, type, cu);
13367 }
13368
13369 /* Given a pointer to a die which begins an enumeration, process all
13370 the dies that define the members of the enumeration, and create the
13371 symbol for the enumeration type.
13372
13373 NOTE: We reverse the order of the element list. */
13374
13375 static void
13376 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13377 {
13378 struct type *this_type;
13379
13380 this_type = get_die_type (die, cu);
13381 if (this_type == NULL)
13382 this_type = read_enumeration_type (die, cu);
13383
13384 if (die->child != NULL)
13385 {
13386 struct die_info *child_die;
13387 struct symbol *sym;
13388 struct field *fields = NULL;
13389 int num_fields = 0;
13390 const char *name;
13391
13392 child_die = die->child;
13393 while (child_die && child_die->tag)
13394 {
13395 if (child_die->tag != DW_TAG_enumerator)
13396 {
13397 process_die (child_die, cu);
13398 }
13399 else
13400 {
13401 name = dwarf2_name (child_die, cu);
13402 if (name)
13403 {
13404 sym = new_symbol (child_die, this_type, cu);
13405
13406 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13407 {
13408 fields = (struct field *)
13409 xrealloc (fields,
13410 (num_fields + DW_FIELD_ALLOC_CHUNK)
13411 * sizeof (struct field));
13412 }
13413
13414 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13415 FIELD_TYPE (fields[num_fields]) = NULL;
13416 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13417 FIELD_BITSIZE (fields[num_fields]) = 0;
13418
13419 num_fields++;
13420 }
13421 }
13422
13423 child_die = sibling_die (child_die);
13424 }
13425
13426 if (num_fields)
13427 {
13428 TYPE_NFIELDS (this_type) = num_fields;
13429 TYPE_FIELDS (this_type) = (struct field *)
13430 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13431 memcpy (TYPE_FIELDS (this_type), fields,
13432 sizeof (struct field) * num_fields);
13433 xfree (fields);
13434 }
13435 }
13436
13437 /* If we are reading an enum from a .debug_types unit, and the enum
13438 is a declaration, and the enum is not the signatured type in the
13439 unit, then we do not want to add a symbol for it. Adding a
13440 symbol would in some cases obscure the true definition of the
13441 enum, giving users an incomplete type when the definition is
13442 actually available. Note that we do not want to do this for all
13443 enums which are just declarations, because C++0x allows forward
13444 enum declarations. */
13445 if (cu->per_cu->is_debug_types
13446 && die_is_declaration (die, cu))
13447 {
13448 struct signatured_type *sig_type;
13449
13450 sig_type = (struct signatured_type *) cu->per_cu;
13451 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13452 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13453 return;
13454 }
13455
13456 new_symbol (die, this_type, cu);
13457 }
13458
13459 /* Extract all information from a DW_TAG_array_type DIE and put it in
13460 the DIE's type field. For now, this only handles one dimensional
13461 arrays. */
13462
13463 static struct type *
13464 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13465 {
13466 struct objfile *objfile = cu->objfile;
13467 struct die_info *child_die;
13468 struct type *type;
13469 struct type *element_type, *range_type, *index_type;
13470 struct type **range_types = NULL;
13471 struct attribute *attr;
13472 int ndim = 0;
13473 struct cleanup *back_to;
13474 const char *name;
13475 unsigned int bit_stride = 0;
13476
13477 element_type = die_type (die, cu);
13478
13479 /* The die_type call above may have already set the type for this DIE. */
13480 type = get_die_type (die, cu);
13481 if (type)
13482 return type;
13483
13484 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13485 if (attr != NULL)
13486 bit_stride = DW_UNSND (attr) * 8;
13487
13488 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13489 if (attr != NULL)
13490 bit_stride = DW_UNSND (attr);
13491
13492 /* Irix 6.2 native cc creates array types without children for
13493 arrays with unspecified length. */
13494 if (die->child == NULL)
13495 {
13496 index_type = objfile_type (objfile)->builtin_int;
13497 range_type = create_static_range_type (NULL, index_type, 0, -1);
13498 type = create_array_type_with_stride (NULL, element_type, range_type,
13499 bit_stride);
13500 return set_die_type (die, type, cu);
13501 }
13502
13503 back_to = make_cleanup (null_cleanup, NULL);
13504 child_die = die->child;
13505 while (child_die && child_die->tag)
13506 {
13507 if (child_die->tag == DW_TAG_subrange_type)
13508 {
13509 struct type *child_type = read_type_die (child_die, cu);
13510
13511 if (child_type != NULL)
13512 {
13513 /* The range type was succesfully read. Save it for the
13514 array type creation. */
13515 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13516 {
13517 range_types = (struct type **)
13518 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13519 * sizeof (struct type *));
13520 if (ndim == 0)
13521 make_cleanup (free_current_contents, &range_types);
13522 }
13523 range_types[ndim++] = child_type;
13524 }
13525 }
13526 child_die = sibling_die (child_die);
13527 }
13528
13529 /* Dwarf2 dimensions are output from left to right, create the
13530 necessary array types in backwards order. */
13531
13532 type = element_type;
13533
13534 if (read_array_order (die, cu) == DW_ORD_col_major)
13535 {
13536 int i = 0;
13537
13538 while (i < ndim)
13539 type = create_array_type_with_stride (NULL, type, range_types[i++],
13540 bit_stride);
13541 }
13542 else
13543 {
13544 while (ndim-- > 0)
13545 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13546 bit_stride);
13547 }
13548
13549 /* Understand Dwarf2 support for vector types (like they occur on
13550 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13551 array type. This is not part of the Dwarf2/3 standard yet, but a
13552 custom vendor extension. The main difference between a regular
13553 array and the vector variant is that vectors are passed by value
13554 to functions. */
13555 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13556 if (attr)
13557 make_vector_type (type);
13558
13559 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13560 implementation may choose to implement triple vectors using this
13561 attribute. */
13562 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13563 if (attr)
13564 {
13565 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13566 TYPE_LENGTH (type) = DW_UNSND (attr);
13567 else
13568 complaint (&symfile_complaints,
13569 _("DW_AT_byte_size for array type smaller "
13570 "than the total size of elements"));
13571 }
13572
13573 name = dwarf2_name (die, cu);
13574 if (name)
13575 TYPE_NAME (type) = name;
13576
13577 /* Install the type in the die. */
13578 set_die_type (die, type, cu);
13579
13580 /* set_die_type should be already done. */
13581 set_descriptive_type (type, die, cu);
13582
13583 do_cleanups (back_to);
13584
13585 return type;
13586 }
13587
13588 static enum dwarf_array_dim_ordering
13589 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13590 {
13591 struct attribute *attr;
13592
13593 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13594
13595 if (attr) return DW_SND (attr);
13596
13597 /* GNU F77 is a special case, as at 08/2004 array type info is the
13598 opposite order to the dwarf2 specification, but data is still
13599 laid out as per normal fortran.
13600
13601 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13602 version checking. */
13603
13604 if (cu->language == language_fortran
13605 && cu->producer && strstr (cu->producer, "GNU F77"))
13606 {
13607 return DW_ORD_row_major;
13608 }
13609
13610 switch (cu->language_defn->la_array_ordering)
13611 {
13612 case array_column_major:
13613 return DW_ORD_col_major;
13614 case array_row_major:
13615 default:
13616 return DW_ORD_row_major;
13617 };
13618 }
13619
13620 /* Extract all information from a DW_TAG_set_type DIE and put it in
13621 the DIE's type field. */
13622
13623 static struct type *
13624 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13625 {
13626 struct type *domain_type, *set_type;
13627 struct attribute *attr;
13628
13629 domain_type = die_type (die, cu);
13630
13631 /* The die_type call above may have already set the type for this DIE. */
13632 set_type = get_die_type (die, cu);
13633 if (set_type)
13634 return set_type;
13635
13636 set_type = create_set_type (NULL, domain_type);
13637
13638 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13639 if (attr)
13640 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13641
13642 return set_die_type (die, set_type, cu);
13643 }
13644
13645 /* A helper for read_common_block that creates a locexpr baton.
13646 SYM is the symbol which we are marking as computed.
13647 COMMON_DIE is the DIE for the common block.
13648 COMMON_LOC is the location expression attribute for the common
13649 block itself.
13650 MEMBER_LOC is the location expression attribute for the particular
13651 member of the common block that we are processing.
13652 CU is the CU from which the above come. */
13653
13654 static void
13655 mark_common_block_symbol_computed (struct symbol *sym,
13656 struct die_info *common_die,
13657 struct attribute *common_loc,
13658 struct attribute *member_loc,
13659 struct dwarf2_cu *cu)
13660 {
13661 struct objfile *objfile = dwarf2_per_objfile->objfile;
13662 struct dwarf2_locexpr_baton *baton;
13663 gdb_byte *ptr;
13664 unsigned int cu_off;
13665 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13666 LONGEST offset = 0;
13667
13668 gdb_assert (common_loc && member_loc);
13669 gdb_assert (attr_form_is_block (common_loc));
13670 gdb_assert (attr_form_is_block (member_loc)
13671 || attr_form_is_constant (member_loc));
13672
13673 baton = obstack_alloc (&objfile->objfile_obstack,
13674 sizeof (struct dwarf2_locexpr_baton));
13675 baton->per_cu = cu->per_cu;
13676 gdb_assert (baton->per_cu);
13677
13678 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13679
13680 if (attr_form_is_constant (member_loc))
13681 {
13682 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13683 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13684 }
13685 else
13686 baton->size += DW_BLOCK (member_loc)->size;
13687
13688 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13689 baton->data = ptr;
13690
13691 *ptr++ = DW_OP_call4;
13692 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13693 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13694 ptr += 4;
13695
13696 if (attr_form_is_constant (member_loc))
13697 {
13698 *ptr++ = DW_OP_addr;
13699 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13700 ptr += cu->header.addr_size;
13701 }
13702 else
13703 {
13704 /* We have to copy the data here, because DW_OP_call4 will only
13705 use a DW_AT_location attribute. */
13706 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13707 ptr += DW_BLOCK (member_loc)->size;
13708 }
13709
13710 *ptr++ = DW_OP_plus;
13711 gdb_assert (ptr - baton->data == baton->size);
13712
13713 SYMBOL_LOCATION_BATON (sym) = baton;
13714 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13715 }
13716
13717 /* Create appropriate locally-scoped variables for all the
13718 DW_TAG_common_block entries. Also create a struct common_block
13719 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13720 is used to sepate the common blocks name namespace from regular
13721 variable names. */
13722
13723 static void
13724 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13725 {
13726 struct attribute *attr;
13727
13728 attr = dwarf2_attr (die, DW_AT_location, cu);
13729 if (attr)
13730 {
13731 /* Support the .debug_loc offsets. */
13732 if (attr_form_is_block (attr))
13733 {
13734 /* Ok. */
13735 }
13736 else if (attr_form_is_section_offset (attr))
13737 {
13738 dwarf2_complex_location_expr_complaint ();
13739 attr = NULL;
13740 }
13741 else
13742 {
13743 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13744 "common block member");
13745 attr = NULL;
13746 }
13747 }
13748
13749 if (die->child != NULL)
13750 {
13751 struct objfile *objfile = cu->objfile;
13752 struct die_info *child_die;
13753 size_t n_entries = 0, size;
13754 struct common_block *common_block;
13755 struct symbol *sym;
13756
13757 for (child_die = die->child;
13758 child_die && child_die->tag;
13759 child_die = sibling_die (child_die))
13760 ++n_entries;
13761
13762 size = (sizeof (struct common_block)
13763 + (n_entries - 1) * sizeof (struct symbol *));
13764 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13765 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13766 common_block->n_entries = 0;
13767
13768 for (child_die = die->child;
13769 child_die && child_die->tag;
13770 child_die = sibling_die (child_die))
13771 {
13772 /* Create the symbol in the DW_TAG_common_block block in the current
13773 symbol scope. */
13774 sym = new_symbol (child_die, NULL, cu);
13775 if (sym != NULL)
13776 {
13777 struct attribute *member_loc;
13778
13779 common_block->contents[common_block->n_entries++] = sym;
13780
13781 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13782 cu);
13783 if (member_loc)
13784 {
13785 /* GDB has handled this for a long time, but it is
13786 not specified by DWARF. It seems to have been
13787 emitted by gfortran at least as recently as:
13788 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13789 complaint (&symfile_complaints,
13790 _("Variable in common block has "
13791 "DW_AT_data_member_location "
13792 "- DIE at 0x%x [in module %s]"),
13793 child_die->offset.sect_off,
13794 objfile_name (cu->objfile));
13795
13796 if (attr_form_is_section_offset (member_loc))
13797 dwarf2_complex_location_expr_complaint ();
13798 else if (attr_form_is_constant (member_loc)
13799 || attr_form_is_block (member_loc))
13800 {
13801 if (attr)
13802 mark_common_block_symbol_computed (sym, die, attr,
13803 member_loc, cu);
13804 }
13805 else
13806 dwarf2_complex_location_expr_complaint ();
13807 }
13808 }
13809 }
13810
13811 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13812 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13813 }
13814 }
13815
13816 /* Create a type for a C++ namespace. */
13817
13818 static struct type *
13819 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13820 {
13821 struct objfile *objfile = cu->objfile;
13822 const char *previous_prefix, *name;
13823 int is_anonymous;
13824 struct type *type;
13825
13826 /* For extensions, reuse the type of the original namespace. */
13827 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13828 {
13829 struct die_info *ext_die;
13830 struct dwarf2_cu *ext_cu = cu;
13831
13832 ext_die = dwarf2_extension (die, &ext_cu);
13833 type = read_type_die (ext_die, ext_cu);
13834
13835 /* EXT_CU may not be the same as CU.
13836 Ensure TYPE is recorded with CU in die_type_hash. */
13837 return set_die_type (die, type, cu);
13838 }
13839
13840 name = namespace_name (die, &is_anonymous, cu);
13841
13842 /* Now build the name of the current namespace. */
13843
13844 previous_prefix = determine_prefix (die, cu);
13845 if (previous_prefix[0] != '\0')
13846 name = typename_concat (&objfile->objfile_obstack,
13847 previous_prefix, name, 0, cu);
13848
13849 /* Create the type. */
13850 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13851 objfile);
13852 TYPE_NAME (type) = name;
13853 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13854
13855 return set_die_type (die, type, cu);
13856 }
13857
13858 /* Read a C++ namespace. */
13859
13860 static void
13861 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13862 {
13863 struct objfile *objfile = cu->objfile;
13864 int is_anonymous;
13865
13866 /* Add a symbol associated to this if we haven't seen the namespace
13867 before. Also, add a using directive if it's an anonymous
13868 namespace. */
13869
13870 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13871 {
13872 struct type *type;
13873
13874 type = read_type_die (die, cu);
13875 new_symbol (die, type, cu);
13876
13877 namespace_name (die, &is_anonymous, cu);
13878 if (is_anonymous)
13879 {
13880 const char *previous_prefix = determine_prefix (die, cu);
13881
13882 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13883 NULL, NULL, 0, &objfile->objfile_obstack);
13884 }
13885 }
13886
13887 if (die->child != NULL)
13888 {
13889 struct die_info *child_die = die->child;
13890
13891 while (child_die && child_die->tag)
13892 {
13893 process_die (child_die, cu);
13894 child_die = sibling_die (child_die);
13895 }
13896 }
13897 }
13898
13899 /* Read a Fortran module as type. This DIE can be only a declaration used for
13900 imported module. Still we need that type as local Fortran "use ... only"
13901 declaration imports depend on the created type in determine_prefix. */
13902
13903 static struct type *
13904 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13905 {
13906 struct objfile *objfile = cu->objfile;
13907 const char *module_name;
13908 struct type *type;
13909
13910 module_name = dwarf2_name (die, cu);
13911 if (!module_name)
13912 complaint (&symfile_complaints,
13913 _("DW_TAG_module has no name, offset 0x%x"),
13914 die->offset.sect_off);
13915 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13916
13917 /* determine_prefix uses TYPE_TAG_NAME. */
13918 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13919
13920 return set_die_type (die, type, cu);
13921 }
13922
13923 /* Read a Fortran module. */
13924
13925 static void
13926 read_module (struct die_info *die, struct dwarf2_cu *cu)
13927 {
13928 struct die_info *child_die = die->child;
13929 struct type *type;
13930
13931 type = read_type_die (die, cu);
13932 new_symbol (die, type, cu);
13933
13934 while (child_die && child_die->tag)
13935 {
13936 process_die (child_die, cu);
13937 child_die = sibling_die (child_die);
13938 }
13939 }
13940
13941 /* Return the name of the namespace represented by DIE. Set
13942 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13943 namespace. */
13944
13945 static const char *
13946 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13947 {
13948 struct die_info *current_die;
13949 const char *name = NULL;
13950
13951 /* Loop through the extensions until we find a name. */
13952
13953 for (current_die = die;
13954 current_die != NULL;
13955 current_die = dwarf2_extension (die, &cu))
13956 {
13957 name = dwarf2_name (current_die, cu);
13958 if (name != NULL)
13959 break;
13960 }
13961
13962 /* Is it an anonymous namespace? */
13963
13964 *is_anonymous = (name == NULL);
13965 if (*is_anonymous)
13966 name = CP_ANONYMOUS_NAMESPACE_STR;
13967
13968 return name;
13969 }
13970
13971 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13972 the user defined type vector. */
13973
13974 static struct type *
13975 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13976 {
13977 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13978 struct comp_unit_head *cu_header = &cu->header;
13979 struct type *type;
13980 struct attribute *attr_byte_size;
13981 struct attribute *attr_address_class;
13982 int byte_size, addr_class;
13983 struct type *target_type;
13984
13985 target_type = die_type (die, cu);
13986
13987 /* The die_type call above may have already set the type for this DIE. */
13988 type = get_die_type (die, cu);
13989 if (type)
13990 return type;
13991
13992 type = lookup_pointer_type (target_type);
13993
13994 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13995 if (attr_byte_size)
13996 byte_size = DW_UNSND (attr_byte_size);
13997 else
13998 byte_size = cu_header->addr_size;
13999
14000 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14001 if (attr_address_class)
14002 addr_class = DW_UNSND (attr_address_class);
14003 else
14004 addr_class = DW_ADDR_none;
14005
14006 /* If the pointer size or address class is different than the
14007 default, create a type variant marked as such and set the
14008 length accordingly. */
14009 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14010 {
14011 if (gdbarch_address_class_type_flags_p (gdbarch))
14012 {
14013 int type_flags;
14014
14015 type_flags = gdbarch_address_class_type_flags
14016 (gdbarch, byte_size, addr_class);
14017 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14018 == 0);
14019 type = make_type_with_address_space (type, type_flags);
14020 }
14021 else if (TYPE_LENGTH (type) != byte_size)
14022 {
14023 complaint (&symfile_complaints,
14024 _("invalid pointer size %d"), byte_size);
14025 }
14026 else
14027 {
14028 /* Should we also complain about unhandled address classes? */
14029 }
14030 }
14031
14032 TYPE_LENGTH (type) = byte_size;
14033 return set_die_type (die, type, cu);
14034 }
14035
14036 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14037 the user defined type vector. */
14038
14039 static struct type *
14040 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14041 {
14042 struct type *type;
14043 struct type *to_type;
14044 struct type *domain;
14045
14046 to_type = die_type (die, cu);
14047 domain = die_containing_type (die, cu);
14048
14049 /* The calls above may have already set the type for this DIE. */
14050 type = get_die_type (die, cu);
14051 if (type)
14052 return type;
14053
14054 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14055 type = lookup_methodptr_type (to_type);
14056 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14057 {
14058 struct type *new_type = alloc_type (cu->objfile);
14059
14060 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14061 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14062 TYPE_VARARGS (to_type));
14063 type = lookup_methodptr_type (new_type);
14064 }
14065 else
14066 type = lookup_memberptr_type (to_type, domain);
14067
14068 return set_die_type (die, type, cu);
14069 }
14070
14071 /* Extract all information from a DW_TAG_reference_type DIE and add to
14072 the user defined type vector. */
14073
14074 static struct type *
14075 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14076 {
14077 struct comp_unit_head *cu_header = &cu->header;
14078 struct type *type, *target_type;
14079 struct attribute *attr;
14080
14081 target_type = die_type (die, cu);
14082
14083 /* The die_type call above may have already set the type for this DIE. */
14084 type = get_die_type (die, cu);
14085 if (type)
14086 return type;
14087
14088 type = lookup_reference_type (target_type);
14089 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14090 if (attr)
14091 {
14092 TYPE_LENGTH (type) = DW_UNSND (attr);
14093 }
14094 else
14095 {
14096 TYPE_LENGTH (type) = cu_header->addr_size;
14097 }
14098 return set_die_type (die, type, cu);
14099 }
14100
14101 /* Add the given cv-qualifiers to the element type of the array. GCC
14102 outputs DWARF type qualifiers that apply to an array, not the
14103 element type. But GDB relies on the array element type to carry
14104 the cv-qualifiers. This mimics section 6.7.3 of the C99
14105 specification. */
14106
14107 static struct type *
14108 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14109 struct type *base_type, int cnst, int voltl)
14110 {
14111 struct type *el_type, *inner_array;
14112
14113 base_type = copy_type (base_type);
14114 inner_array = base_type;
14115
14116 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14117 {
14118 TYPE_TARGET_TYPE (inner_array) =
14119 copy_type (TYPE_TARGET_TYPE (inner_array));
14120 inner_array = TYPE_TARGET_TYPE (inner_array);
14121 }
14122
14123 el_type = TYPE_TARGET_TYPE (inner_array);
14124 cnst |= TYPE_CONST (el_type);
14125 voltl |= TYPE_VOLATILE (el_type);
14126 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14127
14128 return set_die_type (die, base_type, cu);
14129 }
14130
14131 static struct type *
14132 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14133 {
14134 struct type *base_type, *cv_type;
14135
14136 base_type = die_type (die, cu);
14137
14138 /* The die_type call above may have already set the type for this DIE. */
14139 cv_type = get_die_type (die, cu);
14140 if (cv_type)
14141 return cv_type;
14142
14143 /* In case the const qualifier is applied to an array type, the element type
14144 is so qualified, not the array type (section 6.7.3 of C99). */
14145 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14146 return add_array_cv_type (die, cu, base_type, 1, 0);
14147
14148 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14149 return set_die_type (die, cv_type, cu);
14150 }
14151
14152 static struct type *
14153 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14154 {
14155 struct type *base_type, *cv_type;
14156
14157 base_type = die_type (die, cu);
14158
14159 /* The die_type call above may have already set the type for this DIE. */
14160 cv_type = get_die_type (die, cu);
14161 if (cv_type)
14162 return cv_type;
14163
14164 /* In case the volatile qualifier is applied to an array type, the
14165 element type is so qualified, not the array type (section 6.7.3
14166 of C99). */
14167 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14168 return add_array_cv_type (die, cu, base_type, 0, 1);
14169
14170 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14171 return set_die_type (die, cv_type, cu);
14172 }
14173
14174 /* Handle DW_TAG_restrict_type. */
14175
14176 static struct type *
14177 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14178 {
14179 struct type *base_type, *cv_type;
14180
14181 base_type = die_type (die, cu);
14182
14183 /* The die_type call above may have already set the type for this DIE. */
14184 cv_type = get_die_type (die, cu);
14185 if (cv_type)
14186 return cv_type;
14187
14188 cv_type = make_restrict_type (base_type);
14189 return set_die_type (die, cv_type, cu);
14190 }
14191
14192 /* Extract all information from a DW_TAG_string_type DIE and add to
14193 the user defined type vector. It isn't really a user defined type,
14194 but it behaves like one, with other DIE's using an AT_user_def_type
14195 attribute to reference it. */
14196
14197 static struct type *
14198 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14199 {
14200 struct objfile *objfile = cu->objfile;
14201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14202 struct type *type, *range_type, *index_type, *char_type;
14203 struct attribute *attr;
14204 unsigned int length;
14205
14206 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14207 if (attr)
14208 {
14209 length = DW_UNSND (attr);
14210 }
14211 else
14212 {
14213 /* Check for the DW_AT_byte_size attribute. */
14214 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14215 if (attr)
14216 {
14217 length = DW_UNSND (attr);
14218 }
14219 else
14220 {
14221 length = 1;
14222 }
14223 }
14224
14225 index_type = objfile_type (objfile)->builtin_int;
14226 range_type = create_static_range_type (NULL, index_type, 1, length);
14227 char_type = language_string_char_type (cu->language_defn, gdbarch);
14228 type = create_string_type (NULL, char_type, range_type);
14229
14230 return set_die_type (die, type, cu);
14231 }
14232
14233 /* Assuming that DIE corresponds to a function, returns nonzero
14234 if the function is prototyped. */
14235
14236 static int
14237 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14238 {
14239 struct attribute *attr;
14240
14241 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14242 if (attr && (DW_UNSND (attr) != 0))
14243 return 1;
14244
14245 /* The DWARF standard implies that the DW_AT_prototyped attribute
14246 is only meaninful for C, but the concept also extends to other
14247 languages that allow unprototyped functions (Eg: Objective C).
14248 For all other languages, assume that functions are always
14249 prototyped. */
14250 if (cu->language != language_c
14251 && cu->language != language_objc
14252 && cu->language != language_opencl)
14253 return 1;
14254
14255 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14256 prototyped and unprototyped functions; default to prototyped,
14257 since that is more common in modern code (and RealView warns
14258 about unprototyped functions). */
14259 if (producer_is_realview (cu->producer))
14260 return 1;
14261
14262 return 0;
14263 }
14264
14265 /* Handle DIES due to C code like:
14266
14267 struct foo
14268 {
14269 int (*funcp)(int a, long l);
14270 int b;
14271 };
14272
14273 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14274
14275 static struct type *
14276 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14277 {
14278 struct objfile *objfile = cu->objfile;
14279 struct type *type; /* Type that this function returns. */
14280 struct type *ftype; /* Function that returns above type. */
14281 struct attribute *attr;
14282
14283 type = die_type (die, cu);
14284
14285 /* The die_type call above may have already set the type for this DIE. */
14286 ftype = get_die_type (die, cu);
14287 if (ftype)
14288 return ftype;
14289
14290 ftype = lookup_function_type (type);
14291
14292 if (prototyped_function_p (die, cu))
14293 TYPE_PROTOTYPED (ftype) = 1;
14294
14295 /* Store the calling convention in the type if it's available in
14296 the subroutine die. Otherwise set the calling convention to
14297 the default value DW_CC_normal. */
14298 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14299 if (attr)
14300 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14301 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14302 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14303 else
14304 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14305
14306 /* We need to add the subroutine type to the die immediately so
14307 we don't infinitely recurse when dealing with parameters
14308 declared as the same subroutine type. */
14309 set_die_type (die, ftype, cu);
14310
14311 if (die->child != NULL)
14312 {
14313 struct type *void_type = objfile_type (objfile)->builtin_void;
14314 struct die_info *child_die;
14315 int nparams, iparams;
14316
14317 /* Count the number of parameters.
14318 FIXME: GDB currently ignores vararg functions, but knows about
14319 vararg member functions. */
14320 nparams = 0;
14321 child_die = die->child;
14322 while (child_die && child_die->tag)
14323 {
14324 if (child_die->tag == DW_TAG_formal_parameter)
14325 nparams++;
14326 else if (child_die->tag == DW_TAG_unspecified_parameters)
14327 TYPE_VARARGS (ftype) = 1;
14328 child_die = sibling_die (child_die);
14329 }
14330
14331 /* Allocate storage for parameters and fill them in. */
14332 TYPE_NFIELDS (ftype) = nparams;
14333 TYPE_FIELDS (ftype) = (struct field *)
14334 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14335
14336 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14337 even if we error out during the parameters reading below. */
14338 for (iparams = 0; iparams < nparams; iparams++)
14339 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14340
14341 iparams = 0;
14342 child_die = die->child;
14343 while (child_die && child_die->tag)
14344 {
14345 if (child_die->tag == DW_TAG_formal_parameter)
14346 {
14347 struct type *arg_type;
14348
14349 /* DWARF version 2 has no clean way to discern C++
14350 static and non-static member functions. G++ helps
14351 GDB by marking the first parameter for non-static
14352 member functions (which is the this pointer) as
14353 artificial. We pass this information to
14354 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14355
14356 DWARF version 3 added DW_AT_object_pointer, which GCC
14357 4.5 does not yet generate. */
14358 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14359 if (attr)
14360 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14361 else
14362 {
14363 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14364
14365 /* GCC/43521: In java, the formal parameter
14366 "this" is sometimes not marked with DW_AT_artificial. */
14367 if (cu->language == language_java)
14368 {
14369 const char *name = dwarf2_name (child_die, cu);
14370
14371 if (name && !strcmp (name, "this"))
14372 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14373 }
14374 }
14375 arg_type = die_type (child_die, cu);
14376
14377 /* RealView does not mark THIS as const, which the testsuite
14378 expects. GCC marks THIS as const in method definitions,
14379 but not in the class specifications (GCC PR 43053). */
14380 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14381 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14382 {
14383 int is_this = 0;
14384 struct dwarf2_cu *arg_cu = cu;
14385 const char *name = dwarf2_name (child_die, cu);
14386
14387 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14388 if (attr)
14389 {
14390 /* If the compiler emits this, use it. */
14391 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14392 is_this = 1;
14393 }
14394 else if (name && strcmp (name, "this") == 0)
14395 /* Function definitions will have the argument names. */
14396 is_this = 1;
14397 else if (name == NULL && iparams == 0)
14398 /* Declarations may not have the names, so like
14399 elsewhere in GDB, assume an artificial first
14400 argument is "this". */
14401 is_this = 1;
14402
14403 if (is_this)
14404 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14405 arg_type, 0);
14406 }
14407
14408 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14409 iparams++;
14410 }
14411 child_die = sibling_die (child_die);
14412 }
14413 }
14414
14415 return ftype;
14416 }
14417
14418 static struct type *
14419 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14420 {
14421 struct objfile *objfile = cu->objfile;
14422 const char *name = NULL;
14423 struct type *this_type, *target_type;
14424
14425 name = dwarf2_full_name (NULL, die, cu);
14426 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14427 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14428 TYPE_NAME (this_type) = name;
14429 set_die_type (die, this_type, cu);
14430 target_type = die_type (die, cu);
14431 if (target_type != this_type)
14432 TYPE_TARGET_TYPE (this_type) = target_type;
14433 else
14434 {
14435 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14436 spec and cause infinite loops in GDB. */
14437 complaint (&symfile_complaints,
14438 _("Self-referential DW_TAG_typedef "
14439 "- DIE at 0x%x [in module %s]"),
14440 die->offset.sect_off, objfile_name (objfile));
14441 TYPE_TARGET_TYPE (this_type) = NULL;
14442 }
14443 return this_type;
14444 }
14445
14446 /* Find a representation of a given base type and install
14447 it in the TYPE field of the die. */
14448
14449 static struct type *
14450 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14451 {
14452 struct objfile *objfile = cu->objfile;
14453 struct type *type;
14454 struct attribute *attr;
14455 int encoding = 0, size = 0;
14456 const char *name;
14457 enum type_code code = TYPE_CODE_INT;
14458 int type_flags = 0;
14459 struct type *target_type = NULL;
14460
14461 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14462 if (attr)
14463 {
14464 encoding = DW_UNSND (attr);
14465 }
14466 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14467 if (attr)
14468 {
14469 size = DW_UNSND (attr);
14470 }
14471 name = dwarf2_name (die, cu);
14472 if (!name)
14473 {
14474 complaint (&symfile_complaints,
14475 _("DW_AT_name missing from DW_TAG_base_type"));
14476 }
14477
14478 switch (encoding)
14479 {
14480 case DW_ATE_address:
14481 /* Turn DW_ATE_address into a void * pointer. */
14482 code = TYPE_CODE_PTR;
14483 type_flags |= TYPE_FLAG_UNSIGNED;
14484 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14485 break;
14486 case DW_ATE_boolean:
14487 code = TYPE_CODE_BOOL;
14488 type_flags |= TYPE_FLAG_UNSIGNED;
14489 break;
14490 case DW_ATE_complex_float:
14491 code = TYPE_CODE_COMPLEX;
14492 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14493 break;
14494 case DW_ATE_decimal_float:
14495 code = TYPE_CODE_DECFLOAT;
14496 break;
14497 case DW_ATE_float:
14498 code = TYPE_CODE_FLT;
14499 break;
14500 case DW_ATE_signed:
14501 break;
14502 case DW_ATE_unsigned:
14503 type_flags |= TYPE_FLAG_UNSIGNED;
14504 if (cu->language == language_fortran
14505 && name
14506 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14507 code = TYPE_CODE_CHAR;
14508 break;
14509 case DW_ATE_signed_char:
14510 if (cu->language == language_ada || cu->language == language_m2
14511 || cu->language == language_pascal
14512 || cu->language == language_fortran)
14513 code = TYPE_CODE_CHAR;
14514 break;
14515 case DW_ATE_unsigned_char:
14516 if (cu->language == language_ada || cu->language == language_m2
14517 || cu->language == language_pascal
14518 || cu->language == language_fortran)
14519 code = TYPE_CODE_CHAR;
14520 type_flags |= TYPE_FLAG_UNSIGNED;
14521 break;
14522 case DW_ATE_UTF:
14523 /* We just treat this as an integer and then recognize the
14524 type by name elsewhere. */
14525 break;
14526
14527 default:
14528 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14529 dwarf_type_encoding_name (encoding));
14530 break;
14531 }
14532
14533 type = init_type (code, size, type_flags, NULL, objfile);
14534 TYPE_NAME (type) = name;
14535 TYPE_TARGET_TYPE (type) = target_type;
14536
14537 if (name && strcmp (name, "char") == 0)
14538 TYPE_NOSIGN (type) = 1;
14539
14540 return set_die_type (die, type, cu);
14541 }
14542
14543 /* Parse dwarf attribute if it's a block, reference or constant and put the
14544 resulting value of the attribute into struct bound_prop.
14545 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14546
14547 static int
14548 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14549 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14550 {
14551 struct dwarf2_property_baton *baton;
14552 struct obstack *obstack = &cu->objfile->objfile_obstack;
14553
14554 if (attr == NULL || prop == NULL)
14555 return 0;
14556
14557 if (attr_form_is_block (attr))
14558 {
14559 baton = obstack_alloc (obstack, sizeof (*baton));
14560 baton->referenced_type = NULL;
14561 baton->locexpr.per_cu = cu->per_cu;
14562 baton->locexpr.size = DW_BLOCK (attr)->size;
14563 baton->locexpr.data = DW_BLOCK (attr)->data;
14564 prop->data.baton = baton;
14565 prop->kind = PROP_LOCEXPR;
14566 gdb_assert (prop->data.baton != NULL);
14567 }
14568 else if (attr_form_is_ref (attr))
14569 {
14570 struct dwarf2_cu *target_cu = cu;
14571 struct die_info *target_die;
14572 struct attribute *target_attr;
14573
14574 target_die = follow_die_ref (die, attr, &target_cu);
14575 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14576 if (target_attr == NULL)
14577 return 0;
14578
14579 if (attr_form_is_section_offset (target_attr))
14580 {
14581 baton = obstack_alloc (obstack, sizeof (*baton));
14582 baton->referenced_type = die_type (target_die, target_cu);
14583 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14584 prop->data.baton = baton;
14585 prop->kind = PROP_LOCLIST;
14586 gdb_assert (prop->data.baton != NULL);
14587 }
14588 else if (attr_form_is_block (target_attr))
14589 {
14590 baton = obstack_alloc (obstack, sizeof (*baton));
14591 baton->referenced_type = die_type (target_die, target_cu);
14592 baton->locexpr.per_cu = cu->per_cu;
14593 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14594 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14595 prop->data.baton = baton;
14596 prop->kind = PROP_LOCEXPR;
14597 gdb_assert (prop->data.baton != NULL);
14598 }
14599 else
14600 {
14601 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14602 "dynamic property");
14603 return 0;
14604 }
14605 }
14606 else if (attr_form_is_constant (attr))
14607 {
14608 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14609 prop->kind = PROP_CONST;
14610 }
14611 else
14612 {
14613 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14614 dwarf2_name (die, cu));
14615 return 0;
14616 }
14617
14618 return 1;
14619 }
14620
14621 /* Read the given DW_AT_subrange DIE. */
14622
14623 static struct type *
14624 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14625 {
14626 struct type *base_type, *orig_base_type;
14627 struct type *range_type;
14628 struct attribute *attr;
14629 struct dynamic_prop low, high;
14630 int low_default_is_valid;
14631 int high_bound_is_count = 0;
14632 const char *name;
14633 LONGEST negative_mask;
14634
14635 orig_base_type = die_type (die, cu);
14636 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14637 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14638 creating the range type, but we use the result of check_typedef
14639 when examining properties of the type. */
14640 base_type = check_typedef (orig_base_type);
14641
14642 /* The die_type call above may have already set the type for this DIE. */
14643 range_type = get_die_type (die, cu);
14644 if (range_type)
14645 return range_type;
14646
14647 low.kind = PROP_CONST;
14648 high.kind = PROP_CONST;
14649 high.data.const_val = 0;
14650
14651 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14652 omitting DW_AT_lower_bound. */
14653 switch (cu->language)
14654 {
14655 case language_c:
14656 case language_cplus:
14657 low.data.const_val = 0;
14658 low_default_is_valid = 1;
14659 break;
14660 case language_fortran:
14661 low.data.const_val = 1;
14662 low_default_is_valid = 1;
14663 break;
14664 case language_d:
14665 case language_java:
14666 case language_objc:
14667 low.data.const_val = 0;
14668 low_default_is_valid = (cu->header.version >= 4);
14669 break;
14670 case language_ada:
14671 case language_m2:
14672 case language_pascal:
14673 low.data.const_val = 1;
14674 low_default_is_valid = (cu->header.version >= 4);
14675 break;
14676 default:
14677 low.data.const_val = 0;
14678 low_default_is_valid = 0;
14679 break;
14680 }
14681
14682 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14683 if (attr)
14684 attr_to_dynamic_prop (attr, die, cu, &low);
14685 else if (!low_default_is_valid)
14686 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14687 "- DIE at 0x%x [in module %s]"),
14688 die->offset.sect_off, objfile_name (cu->objfile));
14689
14690 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14691 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14692 {
14693 attr = dwarf2_attr (die, DW_AT_count, cu);
14694 if (attr_to_dynamic_prop (attr, die, cu, &high))
14695 {
14696 /* If bounds are constant do the final calculation here. */
14697 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14698 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14699 else
14700 high_bound_is_count = 1;
14701 }
14702 }
14703
14704 /* Dwarf-2 specifications explicitly allows to create subrange types
14705 without specifying a base type.
14706 In that case, the base type must be set to the type of
14707 the lower bound, upper bound or count, in that order, if any of these
14708 three attributes references an object that has a type.
14709 If no base type is found, the Dwarf-2 specifications say that
14710 a signed integer type of size equal to the size of an address should
14711 be used.
14712 For the following C code: `extern char gdb_int [];'
14713 GCC produces an empty range DIE.
14714 FIXME: muller/2010-05-28: Possible references to object for low bound,
14715 high bound or count are not yet handled by this code. */
14716 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14717 {
14718 struct objfile *objfile = cu->objfile;
14719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14720 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14721 struct type *int_type = objfile_type (objfile)->builtin_int;
14722
14723 /* Test "int", "long int", and "long long int" objfile types,
14724 and select the first one having a size above or equal to the
14725 architecture address size. */
14726 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14727 base_type = int_type;
14728 else
14729 {
14730 int_type = objfile_type (objfile)->builtin_long;
14731 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14732 base_type = int_type;
14733 else
14734 {
14735 int_type = objfile_type (objfile)->builtin_long_long;
14736 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14737 base_type = int_type;
14738 }
14739 }
14740 }
14741
14742 /* Normally, the DWARF producers are expected to use a signed
14743 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14744 But this is unfortunately not always the case, as witnessed
14745 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14746 is used instead. To work around that ambiguity, we treat
14747 the bounds as signed, and thus sign-extend their values, when
14748 the base type is signed. */
14749 negative_mask =
14750 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14751 if (low.kind == PROP_CONST
14752 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14753 low.data.const_val |= negative_mask;
14754 if (high.kind == PROP_CONST
14755 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14756 high.data.const_val |= negative_mask;
14757
14758 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14759
14760 if (high_bound_is_count)
14761 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14762
14763 /* Ada expects an empty array on no boundary attributes. */
14764 if (attr == NULL && cu->language != language_ada)
14765 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14766
14767 name = dwarf2_name (die, cu);
14768 if (name)
14769 TYPE_NAME (range_type) = name;
14770
14771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14772 if (attr)
14773 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14774
14775 set_die_type (die, range_type, cu);
14776
14777 /* set_die_type should be already done. */
14778 set_descriptive_type (range_type, die, cu);
14779
14780 return range_type;
14781 }
14782
14783 static struct type *
14784 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14785 {
14786 struct type *type;
14787
14788 /* For now, we only support the C meaning of an unspecified type: void. */
14789
14790 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14791 TYPE_NAME (type) = dwarf2_name (die, cu);
14792
14793 return set_die_type (die, type, cu);
14794 }
14795
14796 /* Read a single die and all its descendents. Set the die's sibling
14797 field to NULL; set other fields in the die correctly, and set all
14798 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14799 location of the info_ptr after reading all of those dies. PARENT
14800 is the parent of the die in question. */
14801
14802 static struct die_info *
14803 read_die_and_children (const struct die_reader_specs *reader,
14804 const gdb_byte *info_ptr,
14805 const gdb_byte **new_info_ptr,
14806 struct die_info *parent)
14807 {
14808 struct die_info *die;
14809 const gdb_byte *cur_ptr;
14810 int has_children;
14811
14812 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14813 if (die == NULL)
14814 {
14815 *new_info_ptr = cur_ptr;
14816 return NULL;
14817 }
14818 store_in_ref_table (die, reader->cu);
14819
14820 if (has_children)
14821 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14822 else
14823 {
14824 die->child = NULL;
14825 *new_info_ptr = cur_ptr;
14826 }
14827
14828 die->sibling = NULL;
14829 die->parent = parent;
14830 return die;
14831 }
14832
14833 /* Read a die, all of its descendents, and all of its siblings; set
14834 all of the fields of all of the dies correctly. Arguments are as
14835 in read_die_and_children. */
14836
14837 static struct die_info *
14838 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14839 const gdb_byte *info_ptr,
14840 const gdb_byte **new_info_ptr,
14841 struct die_info *parent)
14842 {
14843 struct die_info *first_die, *last_sibling;
14844 const gdb_byte *cur_ptr;
14845
14846 cur_ptr = info_ptr;
14847 first_die = last_sibling = NULL;
14848
14849 while (1)
14850 {
14851 struct die_info *die
14852 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14853
14854 if (die == NULL)
14855 {
14856 *new_info_ptr = cur_ptr;
14857 return first_die;
14858 }
14859
14860 if (!first_die)
14861 first_die = die;
14862 else
14863 last_sibling->sibling = die;
14864
14865 last_sibling = die;
14866 }
14867 }
14868
14869 /* Read a die, all of its descendents, and all of its siblings; set
14870 all of the fields of all of the dies correctly. Arguments are as
14871 in read_die_and_children.
14872 This the main entry point for reading a DIE and all its children. */
14873
14874 static struct die_info *
14875 read_die_and_siblings (const struct die_reader_specs *reader,
14876 const gdb_byte *info_ptr,
14877 const gdb_byte **new_info_ptr,
14878 struct die_info *parent)
14879 {
14880 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14881 new_info_ptr, parent);
14882
14883 if (dwarf2_die_debug)
14884 {
14885 fprintf_unfiltered (gdb_stdlog,
14886 "Read die from %s@0x%x of %s:\n",
14887 get_section_name (reader->die_section),
14888 (unsigned) (info_ptr - reader->die_section->buffer),
14889 bfd_get_filename (reader->abfd));
14890 dump_die (die, dwarf2_die_debug);
14891 }
14892
14893 return die;
14894 }
14895
14896 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14897 attributes.
14898 The caller is responsible for filling in the extra attributes
14899 and updating (*DIEP)->num_attrs.
14900 Set DIEP to point to a newly allocated die with its information,
14901 except for its child, sibling, and parent fields.
14902 Set HAS_CHILDREN to tell whether the die has children or not. */
14903
14904 static const gdb_byte *
14905 read_full_die_1 (const struct die_reader_specs *reader,
14906 struct die_info **diep, const gdb_byte *info_ptr,
14907 int *has_children, int num_extra_attrs)
14908 {
14909 unsigned int abbrev_number, bytes_read, i;
14910 sect_offset offset;
14911 struct abbrev_info *abbrev;
14912 struct die_info *die;
14913 struct dwarf2_cu *cu = reader->cu;
14914 bfd *abfd = reader->abfd;
14915
14916 offset.sect_off = info_ptr - reader->buffer;
14917 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14918 info_ptr += bytes_read;
14919 if (!abbrev_number)
14920 {
14921 *diep = NULL;
14922 *has_children = 0;
14923 return info_ptr;
14924 }
14925
14926 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14927 if (!abbrev)
14928 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14929 abbrev_number,
14930 bfd_get_filename (abfd));
14931
14932 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14933 die->offset = offset;
14934 die->tag = abbrev->tag;
14935 die->abbrev = abbrev_number;
14936
14937 /* Make the result usable.
14938 The caller needs to update num_attrs after adding the extra
14939 attributes. */
14940 die->num_attrs = abbrev->num_attrs;
14941
14942 for (i = 0; i < abbrev->num_attrs; ++i)
14943 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14944 info_ptr);
14945
14946 *diep = die;
14947 *has_children = abbrev->has_children;
14948 return info_ptr;
14949 }
14950
14951 /* Read a die and all its attributes.
14952 Set DIEP to point to a newly allocated die with its information,
14953 except for its child, sibling, and parent fields.
14954 Set HAS_CHILDREN to tell whether the die has children or not. */
14955
14956 static const gdb_byte *
14957 read_full_die (const struct die_reader_specs *reader,
14958 struct die_info **diep, const gdb_byte *info_ptr,
14959 int *has_children)
14960 {
14961 const gdb_byte *result;
14962
14963 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14964
14965 if (dwarf2_die_debug)
14966 {
14967 fprintf_unfiltered (gdb_stdlog,
14968 "Read die from %s@0x%x of %s:\n",
14969 get_section_name (reader->die_section),
14970 (unsigned) (info_ptr - reader->die_section->buffer),
14971 bfd_get_filename (reader->abfd));
14972 dump_die (*diep, dwarf2_die_debug);
14973 }
14974
14975 return result;
14976 }
14977 \f
14978 /* Abbreviation tables.
14979
14980 In DWARF version 2, the description of the debugging information is
14981 stored in a separate .debug_abbrev section. Before we read any
14982 dies from a section we read in all abbreviations and install them
14983 in a hash table. */
14984
14985 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14986
14987 static struct abbrev_info *
14988 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14989 {
14990 struct abbrev_info *abbrev;
14991
14992 abbrev = (struct abbrev_info *)
14993 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14994 memset (abbrev, 0, sizeof (struct abbrev_info));
14995 return abbrev;
14996 }
14997
14998 /* Add an abbreviation to the table. */
14999
15000 static void
15001 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15002 unsigned int abbrev_number,
15003 struct abbrev_info *abbrev)
15004 {
15005 unsigned int hash_number;
15006
15007 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15008 abbrev->next = abbrev_table->abbrevs[hash_number];
15009 abbrev_table->abbrevs[hash_number] = abbrev;
15010 }
15011
15012 /* Look up an abbrev in the table.
15013 Returns NULL if the abbrev is not found. */
15014
15015 static struct abbrev_info *
15016 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15017 unsigned int abbrev_number)
15018 {
15019 unsigned int hash_number;
15020 struct abbrev_info *abbrev;
15021
15022 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15023 abbrev = abbrev_table->abbrevs[hash_number];
15024
15025 while (abbrev)
15026 {
15027 if (abbrev->number == abbrev_number)
15028 return abbrev;
15029 abbrev = abbrev->next;
15030 }
15031 return NULL;
15032 }
15033
15034 /* Read in an abbrev table. */
15035
15036 static struct abbrev_table *
15037 abbrev_table_read_table (struct dwarf2_section_info *section,
15038 sect_offset offset)
15039 {
15040 struct objfile *objfile = dwarf2_per_objfile->objfile;
15041 bfd *abfd = get_section_bfd_owner (section);
15042 struct abbrev_table *abbrev_table;
15043 const gdb_byte *abbrev_ptr;
15044 struct abbrev_info *cur_abbrev;
15045 unsigned int abbrev_number, bytes_read, abbrev_name;
15046 unsigned int abbrev_form;
15047 struct attr_abbrev *cur_attrs;
15048 unsigned int allocated_attrs;
15049
15050 abbrev_table = XNEW (struct abbrev_table);
15051 abbrev_table->offset = offset;
15052 obstack_init (&abbrev_table->abbrev_obstack);
15053 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15054 (ABBREV_HASH_SIZE
15055 * sizeof (struct abbrev_info *)));
15056 memset (abbrev_table->abbrevs, 0,
15057 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15058
15059 dwarf2_read_section (objfile, section);
15060 abbrev_ptr = section->buffer + offset.sect_off;
15061 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15062 abbrev_ptr += bytes_read;
15063
15064 allocated_attrs = ATTR_ALLOC_CHUNK;
15065 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15066
15067 /* Loop until we reach an abbrev number of 0. */
15068 while (abbrev_number)
15069 {
15070 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15071
15072 /* read in abbrev header */
15073 cur_abbrev->number = abbrev_number;
15074 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15075 abbrev_ptr += bytes_read;
15076 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15077 abbrev_ptr += 1;
15078
15079 /* now read in declarations */
15080 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15083 abbrev_ptr += bytes_read;
15084 while (abbrev_name)
15085 {
15086 if (cur_abbrev->num_attrs == allocated_attrs)
15087 {
15088 allocated_attrs += ATTR_ALLOC_CHUNK;
15089 cur_attrs
15090 = xrealloc (cur_attrs, (allocated_attrs
15091 * sizeof (struct attr_abbrev)));
15092 }
15093
15094 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15095 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15096 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15097 abbrev_ptr += bytes_read;
15098 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15099 abbrev_ptr += bytes_read;
15100 }
15101
15102 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15103 (cur_abbrev->num_attrs
15104 * sizeof (struct attr_abbrev)));
15105 memcpy (cur_abbrev->attrs, cur_attrs,
15106 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15107
15108 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15109
15110 /* Get next abbreviation.
15111 Under Irix6 the abbreviations for a compilation unit are not
15112 always properly terminated with an abbrev number of 0.
15113 Exit loop if we encounter an abbreviation which we have
15114 already read (which means we are about to read the abbreviations
15115 for the next compile unit) or if the end of the abbreviation
15116 table is reached. */
15117 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15118 break;
15119 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15120 abbrev_ptr += bytes_read;
15121 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15122 break;
15123 }
15124
15125 xfree (cur_attrs);
15126 return abbrev_table;
15127 }
15128
15129 /* Free the resources held by ABBREV_TABLE. */
15130
15131 static void
15132 abbrev_table_free (struct abbrev_table *abbrev_table)
15133 {
15134 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15135 xfree (abbrev_table);
15136 }
15137
15138 /* Same as abbrev_table_free but as a cleanup.
15139 We pass in a pointer to the pointer to the table so that we can
15140 set the pointer to NULL when we're done. It also simplifies
15141 build_type_psymtabs_1. */
15142
15143 static void
15144 abbrev_table_free_cleanup (void *table_ptr)
15145 {
15146 struct abbrev_table **abbrev_table_ptr = table_ptr;
15147
15148 if (*abbrev_table_ptr != NULL)
15149 abbrev_table_free (*abbrev_table_ptr);
15150 *abbrev_table_ptr = NULL;
15151 }
15152
15153 /* Read the abbrev table for CU from ABBREV_SECTION. */
15154
15155 static void
15156 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15157 struct dwarf2_section_info *abbrev_section)
15158 {
15159 cu->abbrev_table =
15160 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15161 }
15162
15163 /* Release the memory used by the abbrev table for a compilation unit. */
15164
15165 static void
15166 dwarf2_free_abbrev_table (void *ptr_to_cu)
15167 {
15168 struct dwarf2_cu *cu = ptr_to_cu;
15169
15170 if (cu->abbrev_table != NULL)
15171 abbrev_table_free (cu->abbrev_table);
15172 /* Set this to NULL so that we SEGV if we try to read it later,
15173 and also because free_comp_unit verifies this is NULL. */
15174 cu->abbrev_table = NULL;
15175 }
15176 \f
15177 /* Returns nonzero if TAG represents a type that we might generate a partial
15178 symbol for. */
15179
15180 static int
15181 is_type_tag_for_partial (int tag)
15182 {
15183 switch (tag)
15184 {
15185 #if 0
15186 /* Some types that would be reasonable to generate partial symbols for,
15187 that we don't at present. */
15188 case DW_TAG_array_type:
15189 case DW_TAG_file_type:
15190 case DW_TAG_ptr_to_member_type:
15191 case DW_TAG_set_type:
15192 case DW_TAG_string_type:
15193 case DW_TAG_subroutine_type:
15194 #endif
15195 case DW_TAG_base_type:
15196 case DW_TAG_class_type:
15197 case DW_TAG_interface_type:
15198 case DW_TAG_enumeration_type:
15199 case DW_TAG_structure_type:
15200 case DW_TAG_subrange_type:
15201 case DW_TAG_typedef:
15202 case DW_TAG_union_type:
15203 return 1;
15204 default:
15205 return 0;
15206 }
15207 }
15208
15209 /* Load all DIEs that are interesting for partial symbols into memory. */
15210
15211 static struct partial_die_info *
15212 load_partial_dies (const struct die_reader_specs *reader,
15213 const gdb_byte *info_ptr, int building_psymtab)
15214 {
15215 struct dwarf2_cu *cu = reader->cu;
15216 struct objfile *objfile = cu->objfile;
15217 struct partial_die_info *part_die;
15218 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15219 struct abbrev_info *abbrev;
15220 unsigned int bytes_read;
15221 unsigned int load_all = 0;
15222 int nesting_level = 1;
15223
15224 parent_die = NULL;
15225 last_die = NULL;
15226
15227 gdb_assert (cu->per_cu != NULL);
15228 if (cu->per_cu->load_all_dies)
15229 load_all = 1;
15230
15231 cu->partial_dies
15232 = htab_create_alloc_ex (cu->header.length / 12,
15233 partial_die_hash,
15234 partial_die_eq,
15235 NULL,
15236 &cu->comp_unit_obstack,
15237 hashtab_obstack_allocate,
15238 dummy_obstack_deallocate);
15239
15240 part_die = obstack_alloc (&cu->comp_unit_obstack,
15241 sizeof (struct partial_die_info));
15242
15243 while (1)
15244 {
15245 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15246
15247 /* A NULL abbrev means the end of a series of children. */
15248 if (abbrev == NULL)
15249 {
15250 if (--nesting_level == 0)
15251 {
15252 /* PART_DIE was probably the last thing allocated on the
15253 comp_unit_obstack, so we could call obstack_free
15254 here. We don't do that because the waste is small,
15255 and will be cleaned up when we're done with this
15256 compilation unit. This way, we're also more robust
15257 against other users of the comp_unit_obstack. */
15258 return first_die;
15259 }
15260 info_ptr += bytes_read;
15261 last_die = parent_die;
15262 parent_die = parent_die->die_parent;
15263 continue;
15264 }
15265
15266 /* Check for template arguments. We never save these; if
15267 they're seen, we just mark the parent, and go on our way. */
15268 if (parent_die != NULL
15269 && cu->language == language_cplus
15270 && (abbrev->tag == DW_TAG_template_type_param
15271 || abbrev->tag == DW_TAG_template_value_param))
15272 {
15273 parent_die->has_template_arguments = 1;
15274
15275 if (!load_all)
15276 {
15277 /* We don't need a partial DIE for the template argument. */
15278 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15279 continue;
15280 }
15281 }
15282
15283 /* We only recurse into c++ subprograms looking for template arguments.
15284 Skip their other children. */
15285 if (!load_all
15286 && cu->language == language_cplus
15287 && parent_die != NULL
15288 && parent_die->tag == DW_TAG_subprogram)
15289 {
15290 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15291 continue;
15292 }
15293
15294 /* Check whether this DIE is interesting enough to save. Normally
15295 we would not be interested in members here, but there may be
15296 later variables referencing them via DW_AT_specification (for
15297 static members). */
15298 if (!load_all
15299 && !is_type_tag_for_partial (abbrev->tag)
15300 && abbrev->tag != DW_TAG_constant
15301 && abbrev->tag != DW_TAG_enumerator
15302 && abbrev->tag != DW_TAG_subprogram
15303 && abbrev->tag != DW_TAG_lexical_block
15304 && abbrev->tag != DW_TAG_variable
15305 && abbrev->tag != DW_TAG_namespace
15306 && abbrev->tag != DW_TAG_module
15307 && abbrev->tag != DW_TAG_member
15308 && abbrev->tag != DW_TAG_imported_unit
15309 && abbrev->tag != DW_TAG_imported_declaration)
15310 {
15311 /* Otherwise we skip to the next sibling, if any. */
15312 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15313 continue;
15314 }
15315
15316 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15317 info_ptr);
15318
15319 /* This two-pass algorithm for processing partial symbols has a
15320 high cost in cache pressure. Thus, handle some simple cases
15321 here which cover the majority of C partial symbols. DIEs
15322 which neither have specification tags in them, nor could have
15323 specification tags elsewhere pointing at them, can simply be
15324 processed and discarded.
15325
15326 This segment is also optional; scan_partial_symbols and
15327 add_partial_symbol will handle these DIEs if we chain
15328 them in normally. When compilers which do not emit large
15329 quantities of duplicate debug information are more common,
15330 this code can probably be removed. */
15331
15332 /* Any complete simple types at the top level (pretty much all
15333 of them, for a language without namespaces), can be processed
15334 directly. */
15335 if (parent_die == NULL
15336 && part_die->has_specification == 0
15337 && part_die->is_declaration == 0
15338 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15339 || part_die->tag == DW_TAG_base_type
15340 || part_die->tag == DW_TAG_subrange_type))
15341 {
15342 if (building_psymtab && part_die->name != NULL)
15343 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15344 VAR_DOMAIN, LOC_TYPEDEF,
15345 &objfile->static_psymbols,
15346 0, (CORE_ADDR) 0, cu->language, objfile);
15347 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15348 continue;
15349 }
15350
15351 /* The exception for DW_TAG_typedef with has_children above is
15352 a workaround of GCC PR debug/47510. In the case of this complaint
15353 type_name_no_tag_or_error will error on such types later.
15354
15355 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15356 it could not find the child DIEs referenced later, this is checked
15357 above. In correct DWARF DW_TAG_typedef should have no children. */
15358
15359 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15360 complaint (&symfile_complaints,
15361 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15362 "- DIE at 0x%x [in module %s]"),
15363 part_die->offset.sect_off, objfile_name (objfile));
15364
15365 /* If we're at the second level, and we're an enumerator, and
15366 our parent has no specification (meaning possibly lives in a
15367 namespace elsewhere), then we can add the partial symbol now
15368 instead of queueing it. */
15369 if (part_die->tag == DW_TAG_enumerator
15370 && parent_die != NULL
15371 && parent_die->die_parent == NULL
15372 && parent_die->tag == DW_TAG_enumeration_type
15373 && parent_die->has_specification == 0)
15374 {
15375 if (part_die->name == NULL)
15376 complaint (&symfile_complaints,
15377 _("malformed enumerator DIE ignored"));
15378 else if (building_psymtab)
15379 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15380 VAR_DOMAIN, LOC_CONST,
15381 (cu->language == language_cplus
15382 || cu->language == language_java)
15383 ? &objfile->global_psymbols
15384 : &objfile->static_psymbols,
15385 0, (CORE_ADDR) 0, cu->language, objfile);
15386
15387 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15388 continue;
15389 }
15390
15391 /* We'll save this DIE so link it in. */
15392 part_die->die_parent = parent_die;
15393 part_die->die_sibling = NULL;
15394 part_die->die_child = NULL;
15395
15396 if (last_die && last_die == parent_die)
15397 last_die->die_child = part_die;
15398 else if (last_die)
15399 last_die->die_sibling = part_die;
15400
15401 last_die = part_die;
15402
15403 if (first_die == NULL)
15404 first_die = part_die;
15405
15406 /* Maybe add the DIE to the hash table. Not all DIEs that we
15407 find interesting need to be in the hash table, because we
15408 also have the parent/sibling/child chains; only those that we
15409 might refer to by offset later during partial symbol reading.
15410
15411 For now this means things that might have be the target of a
15412 DW_AT_specification, DW_AT_abstract_origin, or
15413 DW_AT_extension. DW_AT_extension will refer only to
15414 namespaces; DW_AT_abstract_origin refers to functions (and
15415 many things under the function DIE, but we do not recurse
15416 into function DIEs during partial symbol reading) and
15417 possibly variables as well; DW_AT_specification refers to
15418 declarations. Declarations ought to have the DW_AT_declaration
15419 flag. It happens that GCC forgets to put it in sometimes, but
15420 only for functions, not for types.
15421
15422 Adding more things than necessary to the hash table is harmless
15423 except for the performance cost. Adding too few will result in
15424 wasted time in find_partial_die, when we reread the compilation
15425 unit with load_all_dies set. */
15426
15427 if (load_all
15428 || abbrev->tag == DW_TAG_constant
15429 || abbrev->tag == DW_TAG_subprogram
15430 || abbrev->tag == DW_TAG_variable
15431 || abbrev->tag == DW_TAG_namespace
15432 || part_die->is_declaration)
15433 {
15434 void **slot;
15435
15436 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15437 part_die->offset.sect_off, INSERT);
15438 *slot = part_die;
15439 }
15440
15441 part_die = obstack_alloc (&cu->comp_unit_obstack,
15442 sizeof (struct partial_die_info));
15443
15444 /* For some DIEs we want to follow their children (if any). For C
15445 we have no reason to follow the children of structures; for other
15446 languages we have to, so that we can get at method physnames
15447 to infer fully qualified class names, for DW_AT_specification,
15448 and for C++ template arguments. For C++, we also look one level
15449 inside functions to find template arguments (if the name of the
15450 function does not already contain the template arguments).
15451
15452 For Ada, we need to scan the children of subprograms and lexical
15453 blocks as well because Ada allows the definition of nested
15454 entities that could be interesting for the debugger, such as
15455 nested subprograms for instance. */
15456 if (last_die->has_children
15457 && (load_all
15458 || last_die->tag == DW_TAG_namespace
15459 || last_die->tag == DW_TAG_module
15460 || last_die->tag == DW_TAG_enumeration_type
15461 || (cu->language == language_cplus
15462 && last_die->tag == DW_TAG_subprogram
15463 && (last_die->name == NULL
15464 || strchr (last_die->name, '<') == NULL))
15465 || (cu->language != language_c
15466 && (last_die->tag == DW_TAG_class_type
15467 || last_die->tag == DW_TAG_interface_type
15468 || last_die->tag == DW_TAG_structure_type
15469 || last_die->tag == DW_TAG_union_type))
15470 || (cu->language == language_ada
15471 && (last_die->tag == DW_TAG_subprogram
15472 || last_die->tag == DW_TAG_lexical_block))))
15473 {
15474 nesting_level++;
15475 parent_die = last_die;
15476 continue;
15477 }
15478
15479 /* Otherwise we skip to the next sibling, if any. */
15480 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15481
15482 /* Back to the top, do it again. */
15483 }
15484 }
15485
15486 /* Read a minimal amount of information into the minimal die structure. */
15487
15488 static const gdb_byte *
15489 read_partial_die (const struct die_reader_specs *reader,
15490 struct partial_die_info *part_die,
15491 struct abbrev_info *abbrev, unsigned int abbrev_len,
15492 const gdb_byte *info_ptr)
15493 {
15494 struct dwarf2_cu *cu = reader->cu;
15495 struct objfile *objfile = cu->objfile;
15496 const gdb_byte *buffer = reader->buffer;
15497 unsigned int i;
15498 struct attribute attr;
15499 int has_low_pc_attr = 0;
15500 int has_high_pc_attr = 0;
15501 int high_pc_relative = 0;
15502
15503 memset (part_die, 0, sizeof (struct partial_die_info));
15504
15505 part_die->offset.sect_off = info_ptr - buffer;
15506
15507 info_ptr += abbrev_len;
15508
15509 if (abbrev == NULL)
15510 return info_ptr;
15511
15512 part_die->tag = abbrev->tag;
15513 part_die->has_children = abbrev->has_children;
15514
15515 for (i = 0; i < abbrev->num_attrs; ++i)
15516 {
15517 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15518
15519 /* Store the data if it is of an attribute we want to keep in a
15520 partial symbol table. */
15521 switch (attr.name)
15522 {
15523 case DW_AT_name:
15524 switch (part_die->tag)
15525 {
15526 case DW_TAG_compile_unit:
15527 case DW_TAG_partial_unit:
15528 case DW_TAG_type_unit:
15529 /* Compilation units have a DW_AT_name that is a filename, not
15530 a source language identifier. */
15531 case DW_TAG_enumeration_type:
15532 case DW_TAG_enumerator:
15533 /* These tags always have simple identifiers already; no need
15534 to canonicalize them. */
15535 part_die->name = DW_STRING (&attr);
15536 break;
15537 default:
15538 part_die->name
15539 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15540 &objfile->per_bfd->storage_obstack);
15541 break;
15542 }
15543 break;
15544 case DW_AT_linkage_name:
15545 case DW_AT_MIPS_linkage_name:
15546 /* Note that both forms of linkage name might appear. We
15547 assume they will be the same, and we only store the last
15548 one we see. */
15549 if (cu->language == language_ada)
15550 part_die->name = DW_STRING (&attr);
15551 part_die->linkage_name = DW_STRING (&attr);
15552 break;
15553 case DW_AT_low_pc:
15554 has_low_pc_attr = 1;
15555 part_die->lowpc = attr_value_as_address (&attr);
15556 break;
15557 case DW_AT_high_pc:
15558 has_high_pc_attr = 1;
15559 part_die->highpc = attr_value_as_address (&attr);
15560 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15561 high_pc_relative = 1;
15562 break;
15563 case DW_AT_location:
15564 /* Support the .debug_loc offsets. */
15565 if (attr_form_is_block (&attr))
15566 {
15567 part_die->d.locdesc = DW_BLOCK (&attr);
15568 }
15569 else if (attr_form_is_section_offset (&attr))
15570 {
15571 dwarf2_complex_location_expr_complaint ();
15572 }
15573 else
15574 {
15575 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15576 "partial symbol information");
15577 }
15578 break;
15579 case DW_AT_external:
15580 part_die->is_external = DW_UNSND (&attr);
15581 break;
15582 case DW_AT_declaration:
15583 part_die->is_declaration = DW_UNSND (&attr);
15584 break;
15585 case DW_AT_type:
15586 part_die->has_type = 1;
15587 break;
15588 case DW_AT_abstract_origin:
15589 case DW_AT_specification:
15590 case DW_AT_extension:
15591 part_die->has_specification = 1;
15592 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15593 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15594 || cu->per_cu->is_dwz);
15595 break;
15596 case DW_AT_sibling:
15597 /* Ignore absolute siblings, they might point outside of
15598 the current compile unit. */
15599 if (attr.form == DW_FORM_ref_addr)
15600 complaint (&symfile_complaints,
15601 _("ignoring absolute DW_AT_sibling"));
15602 else
15603 {
15604 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15605 const gdb_byte *sibling_ptr = buffer + off;
15606
15607 if (sibling_ptr < info_ptr)
15608 complaint (&symfile_complaints,
15609 _("DW_AT_sibling points backwards"));
15610 else if (sibling_ptr > reader->buffer_end)
15611 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15612 else
15613 part_die->sibling = sibling_ptr;
15614 }
15615 break;
15616 case DW_AT_byte_size:
15617 part_die->has_byte_size = 1;
15618 break;
15619 case DW_AT_calling_convention:
15620 /* DWARF doesn't provide a way to identify a program's source-level
15621 entry point. DW_AT_calling_convention attributes are only meant
15622 to describe functions' calling conventions.
15623
15624 However, because it's a necessary piece of information in
15625 Fortran, and because DW_CC_program is the only piece of debugging
15626 information whose definition refers to a 'main program' at all,
15627 several compilers have begun marking Fortran main programs with
15628 DW_CC_program --- even when those functions use the standard
15629 calling conventions.
15630
15631 So until DWARF specifies a way to provide this information and
15632 compilers pick up the new representation, we'll support this
15633 practice. */
15634 if (DW_UNSND (&attr) == DW_CC_program
15635 && cu->language == language_fortran)
15636 set_objfile_main_name (objfile, part_die->name, language_fortran);
15637 break;
15638 case DW_AT_inline:
15639 if (DW_UNSND (&attr) == DW_INL_inlined
15640 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15641 part_die->may_be_inlined = 1;
15642 break;
15643
15644 case DW_AT_import:
15645 if (part_die->tag == DW_TAG_imported_unit)
15646 {
15647 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15648 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15649 || cu->per_cu->is_dwz);
15650 }
15651 break;
15652
15653 default:
15654 break;
15655 }
15656 }
15657
15658 if (high_pc_relative)
15659 part_die->highpc += part_die->lowpc;
15660
15661 if (has_low_pc_attr && has_high_pc_attr)
15662 {
15663 /* When using the GNU linker, .gnu.linkonce. sections are used to
15664 eliminate duplicate copies of functions and vtables and such.
15665 The linker will arbitrarily choose one and discard the others.
15666 The AT_*_pc values for such functions refer to local labels in
15667 these sections. If the section from that file was discarded, the
15668 labels are not in the output, so the relocs get a value of 0.
15669 If this is a discarded function, mark the pc bounds as invalid,
15670 so that GDB will ignore it. */
15671 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15672 {
15673 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15674
15675 complaint (&symfile_complaints,
15676 _("DW_AT_low_pc %s is zero "
15677 "for DIE at 0x%x [in module %s]"),
15678 paddress (gdbarch, part_die->lowpc),
15679 part_die->offset.sect_off, objfile_name (objfile));
15680 }
15681 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15682 else if (part_die->lowpc >= part_die->highpc)
15683 {
15684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15685
15686 complaint (&symfile_complaints,
15687 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15688 "for DIE at 0x%x [in module %s]"),
15689 paddress (gdbarch, part_die->lowpc),
15690 paddress (gdbarch, part_die->highpc),
15691 part_die->offset.sect_off, objfile_name (objfile));
15692 }
15693 else
15694 part_die->has_pc_info = 1;
15695 }
15696
15697 return info_ptr;
15698 }
15699
15700 /* Find a cached partial DIE at OFFSET in CU. */
15701
15702 static struct partial_die_info *
15703 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15704 {
15705 struct partial_die_info *lookup_die = NULL;
15706 struct partial_die_info part_die;
15707
15708 part_die.offset = offset;
15709 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15710 offset.sect_off);
15711
15712 return lookup_die;
15713 }
15714
15715 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15716 except in the case of .debug_types DIEs which do not reference
15717 outside their CU (they do however referencing other types via
15718 DW_FORM_ref_sig8). */
15719
15720 static struct partial_die_info *
15721 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15722 {
15723 struct objfile *objfile = cu->objfile;
15724 struct dwarf2_per_cu_data *per_cu = NULL;
15725 struct partial_die_info *pd = NULL;
15726
15727 if (offset_in_dwz == cu->per_cu->is_dwz
15728 && offset_in_cu_p (&cu->header, offset))
15729 {
15730 pd = find_partial_die_in_comp_unit (offset, cu);
15731 if (pd != NULL)
15732 return pd;
15733 /* We missed recording what we needed.
15734 Load all dies and try again. */
15735 per_cu = cu->per_cu;
15736 }
15737 else
15738 {
15739 /* TUs don't reference other CUs/TUs (except via type signatures). */
15740 if (cu->per_cu->is_debug_types)
15741 {
15742 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15743 " external reference to offset 0x%lx [in module %s].\n"),
15744 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15745 bfd_get_filename (objfile->obfd));
15746 }
15747 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15748 objfile);
15749
15750 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15751 load_partial_comp_unit (per_cu);
15752
15753 per_cu->cu->last_used = 0;
15754 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15755 }
15756
15757 /* If we didn't find it, and not all dies have been loaded,
15758 load them all and try again. */
15759
15760 if (pd == NULL && per_cu->load_all_dies == 0)
15761 {
15762 per_cu->load_all_dies = 1;
15763
15764 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15765 THIS_CU->cu may already be in use. So we can't just free it and
15766 replace its DIEs with the ones we read in. Instead, we leave those
15767 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15768 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15769 set. */
15770 load_partial_comp_unit (per_cu);
15771
15772 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15773 }
15774
15775 if (pd == NULL)
15776 internal_error (__FILE__, __LINE__,
15777 _("could not find partial DIE 0x%x "
15778 "in cache [from module %s]\n"),
15779 offset.sect_off, bfd_get_filename (objfile->obfd));
15780 return pd;
15781 }
15782
15783 /* See if we can figure out if the class lives in a namespace. We do
15784 this by looking for a member function; its demangled name will
15785 contain namespace info, if there is any. */
15786
15787 static void
15788 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15789 struct dwarf2_cu *cu)
15790 {
15791 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15792 what template types look like, because the demangler
15793 frequently doesn't give the same name as the debug info. We
15794 could fix this by only using the demangled name to get the
15795 prefix (but see comment in read_structure_type). */
15796
15797 struct partial_die_info *real_pdi;
15798 struct partial_die_info *child_pdi;
15799
15800 /* If this DIE (this DIE's specification, if any) has a parent, then
15801 we should not do this. We'll prepend the parent's fully qualified
15802 name when we create the partial symbol. */
15803
15804 real_pdi = struct_pdi;
15805 while (real_pdi->has_specification)
15806 real_pdi = find_partial_die (real_pdi->spec_offset,
15807 real_pdi->spec_is_dwz, cu);
15808
15809 if (real_pdi->die_parent != NULL)
15810 return;
15811
15812 for (child_pdi = struct_pdi->die_child;
15813 child_pdi != NULL;
15814 child_pdi = child_pdi->die_sibling)
15815 {
15816 if (child_pdi->tag == DW_TAG_subprogram
15817 && child_pdi->linkage_name != NULL)
15818 {
15819 char *actual_class_name
15820 = language_class_name_from_physname (cu->language_defn,
15821 child_pdi->linkage_name);
15822 if (actual_class_name != NULL)
15823 {
15824 struct_pdi->name
15825 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15826 actual_class_name,
15827 strlen (actual_class_name));
15828 xfree (actual_class_name);
15829 }
15830 break;
15831 }
15832 }
15833 }
15834
15835 /* Adjust PART_DIE before generating a symbol for it. This function
15836 may set the is_external flag or change the DIE's name. */
15837
15838 static void
15839 fixup_partial_die (struct partial_die_info *part_die,
15840 struct dwarf2_cu *cu)
15841 {
15842 /* Once we've fixed up a die, there's no point in doing so again.
15843 This also avoids a memory leak if we were to call
15844 guess_partial_die_structure_name multiple times. */
15845 if (part_die->fixup_called)
15846 return;
15847
15848 /* If we found a reference attribute and the DIE has no name, try
15849 to find a name in the referred to DIE. */
15850
15851 if (part_die->name == NULL && part_die->has_specification)
15852 {
15853 struct partial_die_info *spec_die;
15854
15855 spec_die = find_partial_die (part_die->spec_offset,
15856 part_die->spec_is_dwz, cu);
15857
15858 fixup_partial_die (spec_die, cu);
15859
15860 if (spec_die->name)
15861 {
15862 part_die->name = spec_die->name;
15863
15864 /* Copy DW_AT_external attribute if it is set. */
15865 if (spec_die->is_external)
15866 part_die->is_external = spec_die->is_external;
15867 }
15868 }
15869
15870 /* Set default names for some unnamed DIEs. */
15871
15872 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15873 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15874
15875 /* If there is no parent die to provide a namespace, and there are
15876 children, see if we can determine the namespace from their linkage
15877 name. */
15878 if (cu->language == language_cplus
15879 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15880 && part_die->die_parent == NULL
15881 && part_die->has_children
15882 && (part_die->tag == DW_TAG_class_type
15883 || part_die->tag == DW_TAG_structure_type
15884 || part_die->tag == DW_TAG_union_type))
15885 guess_partial_die_structure_name (part_die, cu);
15886
15887 /* GCC might emit a nameless struct or union that has a linkage
15888 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15889 if (part_die->name == NULL
15890 && (part_die->tag == DW_TAG_class_type
15891 || part_die->tag == DW_TAG_interface_type
15892 || part_die->tag == DW_TAG_structure_type
15893 || part_die->tag == DW_TAG_union_type)
15894 && part_die->linkage_name != NULL)
15895 {
15896 char *demangled;
15897
15898 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15899 if (demangled)
15900 {
15901 const char *base;
15902
15903 /* Strip any leading namespaces/classes, keep only the base name.
15904 DW_AT_name for named DIEs does not contain the prefixes. */
15905 base = strrchr (demangled, ':');
15906 if (base && base > demangled && base[-1] == ':')
15907 base++;
15908 else
15909 base = demangled;
15910
15911 part_die->name
15912 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15913 base, strlen (base));
15914 xfree (demangled);
15915 }
15916 }
15917
15918 part_die->fixup_called = 1;
15919 }
15920
15921 /* Read an attribute value described by an attribute form. */
15922
15923 static const gdb_byte *
15924 read_attribute_value (const struct die_reader_specs *reader,
15925 struct attribute *attr, unsigned form,
15926 const gdb_byte *info_ptr)
15927 {
15928 struct dwarf2_cu *cu = reader->cu;
15929 bfd *abfd = reader->abfd;
15930 struct comp_unit_head *cu_header = &cu->header;
15931 unsigned int bytes_read;
15932 struct dwarf_block *blk;
15933
15934 attr->form = form;
15935 switch (form)
15936 {
15937 case DW_FORM_ref_addr:
15938 if (cu->header.version == 2)
15939 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15940 else
15941 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15942 &cu->header, &bytes_read);
15943 info_ptr += bytes_read;
15944 break;
15945 case DW_FORM_GNU_ref_alt:
15946 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15947 info_ptr += bytes_read;
15948 break;
15949 case DW_FORM_addr:
15950 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15951 info_ptr += bytes_read;
15952 break;
15953 case DW_FORM_block2:
15954 blk = dwarf_alloc_block (cu);
15955 blk->size = read_2_bytes (abfd, info_ptr);
15956 info_ptr += 2;
15957 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15958 info_ptr += blk->size;
15959 DW_BLOCK (attr) = blk;
15960 break;
15961 case DW_FORM_block4:
15962 blk = dwarf_alloc_block (cu);
15963 blk->size = read_4_bytes (abfd, info_ptr);
15964 info_ptr += 4;
15965 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15966 info_ptr += blk->size;
15967 DW_BLOCK (attr) = blk;
15968 break;
15969 case DW_FORM_data2:
15970 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15971 info_ptr += 2;
15972 break;
15973 case DW_FORM_data4:
15974 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15975 info_ptr += 4;
15976 break;
15977 case DW_FORM_data8:
15978 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15979 info_ptr += 8;
15980 break;
15981 case DW_FORM_sec_offset:
15982 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15983 info_ptr += bytes_read;
15984 break;
15985 case DW_FORM_string:
15986 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15987 DW_STRING_IS_CANONICAL (attr) = 0;
15988 info_ptr += bytes_read;
15989 break;
15990 case DW_FORM_strp:
15991 if (!cu->per_cu->is_dwz)
15992 {
15993 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15994 &bytes_read);
15995 DW_STRING_IS_CANONICAL (attr) = 0;
15996 info_ptr += bytes_read;
15997 break;
15998 }
15999 /* FALLTHROUGH */
16000 case DW_FORM_GNU_strp_alt:
16001 {
16002 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16003 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16004 &bytes_read);
16005
16006 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16007 DW_STRING_IS_CANONICAL (attr) = 0;
16008 info_ptr += bytes_read;
16009 }
16010 break;
16011 case DW_FORM_exprloc:
16012 case DW_FORM_block:
16013 blk = dwarf_alloc_block (cu);
16014 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16015 info_ptr += bytes_read;
16016 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16017 info_ptr += blk->size;
16018 DW_BLOCK (attr) = blk;
16019 break;
16020 case DW_FORM_block1:
16021 blk = dwarf_alloc_block (cu);
16022 blk->size = read_1_byte (abfd, info_ptr);
16023 info_ptr += 1;
16024 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16025 info_ptr += blk->size;
16026 DW_BLOCK (attr) = blk;
16027 break;
16028 case DW_FORM_data1:
16029 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16030 info_ptr += 1;
16031 break;
16032 case DW_FORM_flag:
16033 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16034 info_ptr += 1;
16035 break;
16036 case DW_FORM_flag_present:
16037 DW_UNSND (attr) = 1;
16038 break;
16039 case DW_FORM_sdata:
16040 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16041 info_ptr += bytes_read;
16042 break;
16043 case DW_FORM_udata:
16044 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16045 info_ptr += bytes_read;
16046 break;
16047 case DW_FORM_ref1:
16048 DW_UNSND (attr) = (cu->header.offset.sect_off
16049 + read_1_byte (abfd, info_ptr));
16050 info_ptr += 1;
16051 break;
16052 case DW_FORM_ref2:
16053 DW_UNSND (attr) = (cu->header.offset.sect_off
16054 + read_2_bytes (abfd, info_ptr));
16055 info_ptr += 2;
16056 break;
16057 case DW_FORM_ref4:
16058 DW_UNSND (attr) = (cu->header.offset.sect_off
16059 + read_4_bytes (abfd, info_ptr));
16060 info_ptr += 4;
16061 break;
16062 case DW_FORM_ref8:
16063 DW_UNSND (attr) = (cu->header.offset.sect_off
16064 + read_8_bytes (abfd, info_ptr));
16065 info_ptr += 8;
16066 break;
16067 case DW_FORM_ref_sig8:
16068 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16069 info_ptr += 8;
16070 break;
16071 case DW_FORM_ref_udata:
16072 DW_UNSND (attr) = (cu->header.offset.sect_off
16073 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16074 info_ptr += bytes_read;
16075 break;
16076 case DW_FORM_indirect:
16077 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16078 info_ptr += bytes_read;
16079 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16080 break;
16081 case DW_FORM_GNU_addr_index:
16082 if (reader->dwo_file == NULL)
16083 {
16084 /* For now flag a hard error.
16085 Later we can turn this into a complaint. */
16086 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16087 dwarf_form_name (form),
16088 bfd_get_filename (abfd));
16089 }
16090 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16091 info_ptr += bytes_read;
16092 break;
16093 case DW_FORM_GNU_str_index:
16094 if (reader->dwo_file == NULL)
16095 {
16096 /* For now flag a hard error.
16097 Later we can turn this into a complaint if warranted. */
16098 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16099 dwarf_form_name (form),
16100 bfd_get_filename (abfd));
16101 }
16102 {
16103 ULONGEST str_index =
16104 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16105
16106 DW_STRING (attr) = read_str_index (reader, str_index);
16107 DW_STRING_IS_CANONICAL (attr) = 0;
16108 info_ptr += bytes_read;
16109 }
16110 break;
16111 default:
16112 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16113 dwarf_form_name (form),
16114 bfd_get_filename (abfd));
16115 }
16116
16117 /* Super hack. */
16118 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16119 attr->form = DW_FORM_GNU_ref_alt;
16120
16121 /* We have seen instances where the compiler tried to emit a byte
16122 size attribute of -1 which ended up being encoded as an unsigned
16123 0xffffffff. Although 0xffffffff is technically a valid size value,
16124 an object of this size seems pretty unlikely so we can relatively
16125 safely treat these cases as if the size attribute was invalid and
16126 treat them as zero by default. */
16127 if (attr->name == DW_AT_byte_size
16128 && form == DW_FORM_data4
16129 && DW_UNSND (attr) >= 0xffffffff)
16130 {
16131 complaint
16132 (&symfile_complaints,
16133 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16134 hex_string (DW_UNSND (attr)));
16135 DW_UNSND (attr) = 0;
16136 }
16137
16138 return info_ptr;
16139 }
16140
16141 /* Read an attribute described by an abbreviated attribute. */
16142
16143 static const gdb_byte *
16144 read_attribute (const struct die_reader_specs *reader,
16145 struct attribute *attr, struct attr_abbrev *abbrev,
16146 const gdb_byte *info_ptr)
16147 {
16148 attr->name = abbrev->name;
16149 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16150 }
16151
16152 /* Read dwarf information from a buffer. */
16153
16154 static unsigned int
16155 read_1_byte (bfd *abfd, const gdb_byte *buf)
16156 {
16157 return bfd_get_8 (abfd, buf);
16158 }
16159
16160 static int
16161 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16162 {
16163 return bfd_get_signed_8 (abfd, buf);
16164 }
16165
16166 static unsigned int
16167 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16168 {
16169 return bfd_get_16 (abfd, buf);
16170 }
16171
16172 static int
16173 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16174 {
16175 return bfd_get_signed_16 (abfd, buf);
16176 }
16177
16178 static unsigned int
16179 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16180 {
16181 return bfd_get_32 (abfd, buf);
16182 }
16183
16184 static int
16185 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16186 {
16187 return bfd_get_signed_32 (abfd, buf);
16188 }
16189
16190 static ULONGEST
16191 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16192 {
16193 return bfd_get_64 (abfd, buf);
16194 }
16195
16196 static CORE_ADDR
16197 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16198 unsigned int *bytes_read)
16199 {
16200 struct comp_unit_head *cu_header = &cu->header;
16201 CORE_ADDR retval = 0;
16202
16203 if (cu_header->signed_addr_p)
16204 {
16205 switch (cu_header->addr_size)
16206 {
16207 case 2:
16208 retval = bfd_get_signed_16 (abfd, buf);
16209 break;
16210 case 4:
16211 retval = bfd_get_signed_32 (abfd, buf);
16212 break;
16213 case 8:
16214 retval = bfd_get_signed_64 (abfd, buf);
16215 break;
16216 default:
16217 internal_error (__FILE__, __LINE__,
16218 _("read_address: bad switch, signed [in module %s]"),
16219 bfd_get_filename (abfd));
16220 }
16221 }
16222 else
16223 {
16224 switch (cu_header->addr_size)
16225 {
16226 case 2:
16227 retval = bfd_get_16 (abfd, buf);
16228 break;
16229 case 4:
16230 retval = bfd_get_32 (abfd, buf);
16231 break;
16232 case 8:
16233 retval = bfd_get_64 (abfd, buf);
16234 break;
16235 default:
16236 internal_error (__FILE__, __LINE__,
16237 _("read_address: bad switch, "
16238 "unsigned [in module %s]"),
16239 bfd_get_filename (abfd));
16240 }
16241 }
16242
16243 *bytes_read = cu_header->addr_size;
16244 return retval;
16245 }
16246
16247 /* Read the initial length from a section. The (draft) DWARF 3
16248 specification allows the initial length to take up either 4 bytes
16249 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16250 bytes describe the length and all offsets will be 8 bytes in length
16251 instead of 4.
16252
16253 An older, non-standard 64-bit format is also handled by this
16254 function. The older format in question stores the initial length
16255 as an 8-byte quantity without an escape value. Lengths greater
16256 than 2^32 aren't very common which means that the initial 4 bytes
16257 is almost always zero. Since a length value of zero doesn't make
16258 sense for the 32-bit format, this initial zero can be considered to
16259 be an escape value which indicates the presence of the older 64-bit
16260 format. As written, the code can't detect (old format) lengths
16261 greater than 4GB. If it becomes necessary to handle lengths
16262 somewhat larger than 4GB, we could allow other small values (such
16263 as the non-sensical values of 1, 2, and 3) to also be used as
16264 escape values indicating the presence of the old format.
16265
16266 The value returned via bytes_read should be used to increment the
16267 relevant pointer after calling read_initial_length().
16268
16269 [ Note: read_initial_length() and read_offset() are based on the
16270 document entitled "DWARF Debugging Information Format", revision
16271 3, draft 8, dated November 19, 2001. This document was obtained
16272 from:
16273
16274 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16275
16276 This document is only a draft and is subject to change. (So beware.)
16277
16278 Details regarding the older, non-standard 64-bit format were
16279 determined empirically by examining 64-bit ELF files produced by
16280 the SGI toolchain on an IRIX 6.5 machine.
16281
16282 - Kevin, July 16, 2002
16283 ] */
16284
16285 static LONGEST
16286 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16287 {
16288 LONGEST length = bfd_get_32 (abfd, buf);
16289
16290 if (length == 0xffffffff)
16291 {
16292 length = bfd_get_64 (abfd, buf + 4);
16293 *bytes_read = 12;
16294 }
16295 else if (length == 0)
16296 {
16297 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16298 length = bfd_get_64 (abfd, buf);
16299 *bytes_read = 8;
16300 }
16301 else
16302 {
16303 *bytes_read = 4;
16304 }
16305
16306 return length;
16307 }
16308
16309 /* Cover function for read_initial_length.
16310 Returns the length of the object at BUF, and stores the size of the
16311 initial length in *BYTES_READ and stores the size that offsets will be in
16312 *OFFSET_SIZE.
16313 If the initial length size is not equivalent to that specified in
16314 CU_HEADER then issue a complaint.
16315 This is useful when reading non-comp-unit headers. */
16316
16317 static LONGEST
16318 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16319 const struct comp_unit_head *cu_header,
16320 unsigned int *bytes_read,
16321 unsigned int *offset_size)
16322 {
16323 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16324
16325 gdb_assert (cu_header->initial_length_size == 4
16326 || cu_header->initial_length_size == 8
16327 || cu_header->initial_length_size == 12);
16328
16329 if (cu_header->initial_length_size != *bytes_read)
16330 complaint (&symfile_complaints,
16331 _("intermixed 32-bit and 64-bit DWARF sections"));
16332
16333 *offset_size = (*bytes_read == 4) ? 4 : 8;
16334 return length;
16335 }
16336
16337 /* Read an offset from the data stream. The size of the offset is
16338 given by cu_header->offset_size. */
16339
16340 static LONGEST
16341 read_offset (bfd *abfd, const gdb_byte *buf,
16342 const struct comp_unit_head *cu_header,
16343 unsigned int *bytes_read)
16344 {
16345 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16346
16347 *bytes_read = cu_header->offset_size;
16348 return offset;
16349 }
16350
16351 /* Read an offset from the data stream. */
16352
16353 static LONGEST
16354 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16355 {
16356 LONGEST retval = 0;
16357
16358 switch (offset_size)
16359 {
16360 case 4:
16361 retval = bfd_get_32 (abfd, buf);
16362 break;
16363 case 8:
16364 retval = bfd_get_64 (abfd, buf);
16365 break;
16366 default:
16367 internal_error (__FILE__, __LINE__,
16368 _("read_offset_1: bad switch [in module %s]"),
16369 bfd_get_filename (abfd));
16370 }
16371
16372 return retval;
16373 }
16374
16375 static const gdb_byte *
16376 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16377 {
16378 /* If the size of a host char is 8 bits, we can return a pointer
16379 to the buffer, otherwise we have to copy the data to a buffer
16380 allocated on the temporary obstack. */
16381 gdb_assert (HOST_CHAR_BIT == 8);
16382 return buf;
16383 }
16384
16385 static const char *
16386 read_direct_string (bfd *abfd, const gdb_byte *buf,
16387 unsigned int *bytes_read_ptr)
16388 {
16389 /* If the size of a host char is 8 bits, we can return a pointer
16390 to the string, otherwise we have to copy the string to a buffer
16391 allocated on the temporary obstack. */
16392 gdb_assert (HOST_CHAR_BIT == 8);
16393 if (*buf == '\0')
16394 {
16395 *bytes_read_ptr = 1;
16396 return NULL;
16397 }
16398 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16399 return (const char *) buf;
16400 }
16401
16402 static const char *
16403 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16404 {
16405 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16406 if (dwarf2_per_objfile->str.buffer == NULL)
16407 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16408 bfd_get_filename (abfd));
16409 if (str_offset >= dwarf2_per_objfile->str.size)
16410 error (_("DW_FORM_strp pointing outside of "
16411 ".debug_str section [in module %s]"),
16412 bfd_get_filename (abfd));
16413 gdb_assert (HOST_CHAR_BIT == 8);
16414 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16415 return NULL;
16416 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16417 }
16418
16419 /* Read a string at offset STR_OFFSET in the .debug_str section from
16420 the .dwz file DWZ. Throw an error if the offset is too large. If
16421 the string consists of a single NUL byte, return NULL; otherwise
16422 return a pointer to the string. */
16423
16424 static const char *
16425 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16426 {
16427 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16428
16429 if (dwz->str.buffer == NULL)
16430 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16431 "section [in module %s]"),
16432 bfd_get_filename (dwz->dwz_bfd));
16433 if (str_offset >= dwz->str.size)
16434 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16435 ".debug_str section [in module %s]"),
16436 bfd_get_filename (dwz->dwz_bfd));
16437 gdb_assert (HOST_CHAR_BIT == 8);
16438 if (dwz->str.buffer[str_offset] == '\0')
16439 return NULL;
16440 return (const char *) (dwz->str.buffer + str_offset);
16441 }
16442
16443 static const char *
16444 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16445 const struct comp_unit_head *cu_header,
16446 unsigned int *bytes_read_ptr)
16447 {
16448 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16449
16450 return read_indirect_string_at_offset (abfd, str_offset);
16451 }
16452
16453 static ULONGEST
16454 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16455 unsigned int *bytes_read_ptr)
16456 {
16457 ULONGEST result;
16458 unsigned int num_read;
16459 int i, shift;
16460 unsigned char byte;
16461
16462 result = 0;
16463 shift = 0;
16464 num_read = 0;
16465 i = 0;
16466 while (1)
16467 {
16468 byte = bfd_get_8 (abfd, buf);
16469 buf++;
16470 num_read++;
16471 result |= ((ULONGEST) (byte & 127) << shift);
16472 if ((byte & 128) == 0)
16473 {
16474 break;
16475 }
16476 shift += 7;
16477 }
16478 *bytes_read_ptr = num_read;
16479 return result;
16480 }
16481
16482 static LONGEST
16483 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16484 unsigned int *bytes_read_ptr)
16485 {
16486 LONGEST result;
16487 int i, shift, num_read;
16488 unsigned char byte;
16489
16490 result = 0;
16491 shift = 0;
16492 num_read = 0;
16493 i = 0;
16494 while (1)
16495 {
16496 byte = bfd_get_8 (abfd, buf);
16497 buf++;
16498 num_read++;
16499 result |= ((LONGEST) (byte & 127) << shift);
16500 shift += 7;
16501 if ((byte & 128) == 0)
16502 {
16503 break;
16504 }
16505 }
16506 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16507 result |= -(((LONGEST) 1) << shift);
16508 *bytes_read_ptr = num_read;
16509 return result;
16510 }
16511
16512 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16513 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16514 ADDR_SIZE is the size of addresses from the CU header. */
16515
16516 static CORE_ADDR
16517 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16518 {
16519 struct objfile *objfile = dwarf2_per_objfile->objfile;
16520 bfd *abfd = objfile->obfd;
16521 const gdb_byte *info_ptr;
16522
16523 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16524 if (dwarf2_per_objfile->addr.buffer == NULL)
16525 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16526 objfile_name (objfile));
16527 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16528 error (_("DW_FORM_addr_index pointing outside of "
16529 ".debug_addr section [in module %s]"),
16530 objfile_name (objfile));
16531 info_ptr = (dwarf2_per_objfile->addr.buffer
16532 + addr_base + addr_index * addr_size);
16533 if (addr_size == 4)
16534 return bfd_get_32 (abfd, info_ptr);
16535 else
16536 return bfd_get_64 (abfd, info_ptr);
16537 }
16538
16539 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16540
16541 static CORE_ADDR
16542 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16543 {
16544 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16545 }
16546
16547 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16548
16549 static CORE_ADDR
16550 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16551 unsigned int *bytes_read)
16552 {
16553 bfd *abfd = cu->objfile->obfd;
16554 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16555
16556 return read_addr_index (cu, addr_index);
16557 }
16558
16559 /* Data structure to pass results from dwarf2_read_addr_index_reader
16560 back to dwarf2_read_addr_index. */
16561
16562 struct dwarf2_read_addr_index_data
16563 {
16564 ULONGEST addr_base;
16565 int addr_size;
16566 };
16567
16568 /* die_reader_func for dwarf2_read_addr_index. */
16569
16570 static void
16571 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16572 const gdb_byte *info_ptr,
16573 struct die_info *comp_unit_die,
16574 int has_children,
16575 void *data)
16576 {
16577 struct dwarf2_cu *cu = reader->cu;
16578 struct dwarf2_read_addr_index_data *aidata =
16579 (struct dwarf2_read_addr_index_data *) data;
16580
16581 aidata->addr_base = cu->addr_base;
16582 aidata->addr_size = cu->header.addr_size;
16583 }
16584
16585 /* Given an index in .debug_addr, fetch the value.
16586 NOTE: This can be called during dwarf expression evaluation,
16587 long after the debug information has been read, and thus per_cu->cu
16588 may no longer exist. */
16589
16590 CORE_ADDR
16591 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16592 unsigned int addr_index)
16593 {
16594 struct objfile *objfile = per_cu->objfile;
16595 struct dwarf2_cu *cu = per_cu->cu;
16596 ULONGEST addr_base;
16597 int addr_size;
16598
16599 /* This is intended to be called from outside this file. */
16600 dw2_setup (objfile);
16601
16602 /* We need addr_base and addr_size.
16603 If we don't have PER_CU->cu, we have to get it.
16604 Nasty, but the alternative is storing the needed info in PER_CU,
16605 which at this point doesn't seem justified: it's not clear how frequently
16606 it would get used and it would increase the size of every PER_CU.
16607 Entry points like dwarf2_per_cu_addr_size do a similar thing
16608 so we're not in uncharted territory here.
16609 Alas we need to be a bit more complicated as addr_base is contained
16610 in the DIE.
16611
16612 We don't need to read the entire CU(/TU).
16613 We just need the header and top level die.
16614
16615 IWBN to use the aging mechanism to let us lazily later discard the CU.
16616 For now we skip this optimization. */
16617
16618 if (cu != NULL)
16619 {
16620 addr_base = cu->addr_base;
16621 addr_size = cu->header.addr_size;
16622 }
16623 else
16624 {
16625 struct dwarf2_read_addr_index_data aidata;
16626
16627 /* Note: We can't use init_cutu_and_read_dies_simple here,
16628 we need addr_base. */
16629 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16630 dwarf2_read_addr_index_reader, &aidata);
16631 addr_base = aidata.addr_base;
16632 addr_size = aidata.addr_size;
16633 }
16634
16635 return read_addr_index_1 (addr_index, addr_base, addr_size);
16636 }
16637
16638 /* Given a DW_FORM_GNU_str_index, fetch the string.
16639 This is only used by the Fission support. */
16640
16641 static const char *
16642 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16643 {
16644 struct objfile *objfile = dwarf2_per_objfile->objfile;
16645 const char *objf_name = objfile_name (objfile);
16646 bfd *abfd = objfile->obfd;
16647 struct dwarf2_cu *cu = reader->cu;
16648 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16649 struct dwarf2_section_info *str_offsets_section =
16650 &reader->dwo_file->sections.str_offsets;
16651 const gdb_byte *info_ptr;
16652 ULONGEST str_offset;
16653 static const char form_name[] = "DW_FORM_GNU_str_index";
16654
16655 dwarf2_read_section (objfile, str_section);
16656 dwarf2_read_section (objfile, str_offsets_section);
16657 if (str_section->buffer == NULL)
16658 error (_("%s used without .debug_str.dwo section"
16659 " in CU at offset 0x%lx [in module %s]"),
16660 form_name, (long) cu->header.offset.sect_off, objf_name);
16661 if (str_offsets_section->buffer == NULL)
16662 error (_("%s used without .debug_str_offsets.dwo section"
16663 " in CU at offset 0x%lx [in module %s]"),
16664 form_name, (long) cu->header.offset.sect_off, objf_name);
16665 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16666 error (_("%s pointing outside of .debug_str_offsets.dwo"
16667 " section in CU at offset 0x%lx [in module %s]"),
16668 form_name, (long) cu->header.offset.sect_off, objf_name);
16669 info_ptr = (str_offsets_section->buffer
16670 + str_index * cu->header.offset_size);
16671 if (cu->header.offset_size == 4)
16672 str_offset = bfd_get_32 (abfd, info_ptr);
16673 else
16674 str_offset = bfd_get_64 (abfd, info_ptr);
16675 if (str_offset >= str_section->size)
16676 error (_("Offset from %s pointing outside of"
16677 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16678 form_name, (long) cu->header.offset.sect_off, objf_name);
16679 return (const char *) (str_section->buffer + str_offset);
16680 }
16681
16682 /* Return the length of an LEB128 number in BUF. */
16683
16684 static int
16685 leb128_size (const gdb_byte *buf)
16686 {
16687 const gdb_byte *begin = buf;
16688 gdb_byte byte;
16689
16690 while (1)
16691 {
16692 byte = *buf++;
16693 if ((byte & 128) == 0)
16694 return buf - begin;
16695 }
16696 }
16697
16698 static void
16699 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16700 {
16701 switch (lang)
16702 {
16703 case DW_LANG_C89:
16704 case DW_LANG_C99:
16705 case DW_LANG_C:
16706 case DW_LANG_UPC:
16707 cu->language = language_c;
16708 break;
16709 case DW_LANG_C_plus_plus:
16710 cu->language = language_cplus;
16711 break;
16712 case DW_LANG_D:
16713 cu->language = language_d;
16714 break;
16715 case DW_LANG_Fortran77:
16716 case DW_LANG_Fortran90:
16717 case DW_LANG_Fortran95:
16718 cu->language = language_fortran;
16719 break;
16720 case DW_LANG_Go:
16721 cu->language = language_go;
16722 break;
16723 case DW_LANG_Mips_Assembler:
16724 cu->language = language_asm;
16725 break;
16726 case DW_LANG_Java:
16727 cu->language = language_java;
16728 break;
16729 case DW_LANG_Ada83:
16730 case DW_LANG_Ada95:
16731 cu->language = language_ada;
16732 break;
16733 case DW_LANG_Modula2:
16734 cu->language = language_m2;
16735 break;
16736 case DW_LANG_Pascal83:
16737 cu->language = language_pascal;
16738 break;
16739 case DW_LANG_ObjC:
16740 cu->language = language_objc;
16741 break;
16742 case DW_LANG_Cobol74:
16743 case DW_LANG_Cobol85:
16744 default:
16745 cu->language = language_minimal;
16746 break;
16747 }
16748 cu->language_defn = language_def (cu->language);
16749 }
16750
16751 /* Return the named attribute or NULL if not there. */
16752
16753 static struct attribute *
16754 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16755 {
16756 for (;;)
16757 {
16758 unsigned int i;
16759 struct attribute *spec = NULL;
16760
16761 for (i = 0; i < die->num_attrs; ++i)
16762 {
16763 if (die->attrs[i].name == name)
16764 return &die->attrs[i];
16765 if (die->attrs[i].name == DW_AT_specification
16766 || die->attrs[i].name == DW_AT_abstract_origin)
16767 spec = &die->attrs[i];
16768 }
16769
16770 if (!spec)
16771 break;
16772
16773 die = follow_die_ref (die, spec, &cu);
16774 }
16775
16776 return NULL;
16777 }
16778
16779 /* Return the named attribute or NULL if not there,
16780 but do not follow DW_AT_specification, etc.
16781 This is for use in contexts where we're reading .debug_types dies.
16782 Following DW_AT_specification, DW_AT_abstract_origin will take us
16783 back up the chain, and we want to go down. */
16784
16785 static struct attribute *
16786 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16787 {
16788 unsigned int i;
16789
16790 for (i = 0; i < die->num_attrs; ++i)
16791 if (die->attrs[i].name == name)
16792 return &die->attrs[i];
16793
16794 return NULL;
16795 }
16796
16797 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16798 and holds a non-zero value. This function should only be used for
16799 DW_FORM_flag or DW_FORM_flag_present attributes. */
16800
16801 static int
16802 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16803 {
16804 struct attribute *attr = dwarf2_attr (die, name, cu);
16805
16806 return (attr && DW_UNSND (attr));
16807 }
16808
16809 static int
16810 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16811 {
16812 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16813 which value is non-zero. However, we have to be careful with
16814 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16815 (via dwarf2_flag_true_p) follows this attribute. So we may
16816 end up accidently finding a declaration attribute that belongs
16817 to a different DIE referenced by the specification attribute,
16818 even though the given DIE does not have a declaration attribute. */
16819 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16820 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16821 }
16822
16823 /* Return the die giving the specification for DIE, if there is
16824 one. *SPEC_CU is the CU containing DIE on input, and the CU
16825 containing the return value on output. If there is no
16826 specification, but there is an abstract origin, that is
16827 returned. */
16828
16829 static struct die_info *
16830 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16831 {
16832 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16833 *spec_cu);
16834
16835 if (spec_attr == NULL)
16836 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16837
16838 if (spec_attr == NULL)
16839 return NULL;
16840 else
16841 return follow_die_ref (die, spec_attr, spec_cu);
16842 }
16843
16844 /* Free the line_header structure *LH, and any arrays and strings it
16845 refers to.
16846 NOTE: This is also used as a "cleanup" function. */
16847
16848 static void
16849 free_line_header (struct line_header *lh)
16850 {
16851 if (lh->standard_opcode_lengths)
16852 xfree (lh->standard_opcode_lengths);
16853
16854 /* Remember that all the lh->file_names[i].name pointers are
16855 pointers into debug_line_buffer, and don't need to be freed. */
16856 if (lh->file_names)
16857 xfree (lh->file_names);
16858
16859 /* Similarly for the include directory names. */
16860 if (lh->include_dirs)
16861 xfree (lh->include_dirs);
16862
16863 xfree (lh);
16864 }
16865
16866 /* Add an entry to LH's include directory table. */
16867
16868 static void
16869 add_include_dir (struct line_header *lh, const char *include_dir)
16870 {
16871 /* Grow the array if necessary. */
16872 if (lh->include_dirs_size == 0)
16873 {
16874 lh->include_dirs_size = 1; /* for testing */
16875 lh->include_dirs = xmalloc (lh->include_dirs_size
16876 * sizeof (*lh->include_dirs));
16877 }
16878 else if (lh->num_include_dirs >= lh->include_dirs_size)
16879 {
16880 lh->include_dirs_size *= 2;
16881 lh->include_dirs = xrealloc (lh->include_dirs,
16882 (lh->include_dirs_size
16883 * sizeof (*lh->include_dirs)));
16884 }
16885
16886 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16887 }
16888
16889 /* Add an entry to LH's file name table. */
16890
16891 static void
16892 add_file_name (struct line_header *lh,
16893 const char *name,
16894 unsigned int dir_index,
16895 unsigned int mod_time,
16896 unsigned int length)
16897 {
16898 struct file_entry *fe;
16899
16900 /* Grow the array if necessary. */
16901 if (lh->file_names_size == 0)
16902 {
16903 lh->file_names_size = 1; /* for testing */
16904 lh->file_names = xmalloc (lh->file_names_size
16905 * sizeof (*lh->file_names));
16906 }
16907 else if (lh->num_file_names >= lh->file_names_size)
16908 {
16909 lh->file_names_size *= 2;
16910 lh->file_names = xrealloc (lh->file_names,
16911 (lh->file_names_size
16912 * sizeof (*lh->file_names)));
16913 }
16914
16915 fe = &lh->file_names[lh->num_file_names++];
16916 fe->name = name;
16917 fe->dir_index = dir_index;
16918 fe->mod_time = mod_time;
16919 fe->length = length;
16920 fe->included_p = 0;
16921 fe->symtab = NULL;
16922 }
16923
16924 /* A convenience function to find the proper .debug_line section for a
16925 CU. */
16926
16927 static struct dwarf2_section_info *
16928 get_debug_line_section (struct dwarf2_cu *cu)
16929 {
16930 struct dwarf2_section_info *section;
16931
16932 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16933 DWO file. */
16934 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16935 section = &cu->dwo_unit->dwo_file->sections.line;
16936 else if (cu->per_cu->is_dwz)
16937 {
16938 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16939
16940 section = &dwz->line;
16941 }
16942 else
16943 section = &dwarf2_per_objfile->line;
16944
16945 return section;
16946 }
16947
16948 /* Read the statement program header starting at OFFSET in
16949 .debug_line, or .debug_line.dwo. Return a pointer
16950 to a struct line_header, allocated using xmalloc.
16951
16952 NOTE: the strings in the include directory and file name tables of
16953 the returned object point into the dwarf line section buffer,
16954 and must not be freed. */
16955
16956 static struct line_header *
16957 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16958 {
16959 struct cleanup *back_to;
16960 struct line_header *lh;
16961 const gdb_byte *line_ptr;
16962 unsigned int bytes_read, offset_size;
16963 int i;
16964 const char *cur_dir, *cur_file;
16965 struct dwarf2_section_info *section;
16966 bfd *abfd;
16967
16968 section = get_debug_line_section (cu);
16969 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16970 if (section->buffer == NULL)
16971 {
16972 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16973 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16974 else
16975 complaint (&symfile_complaints, _("missing .debug_line section"));
16976 return 0;
16977 }
16978
16979 /* We can't do this until we know the section is non-empty.
16980 Only then do we know we have such a section. */
16981 abfd = get_section_bfd_owner (section);
16982
16983 /* Make sure that at least there's room for the total_length field.
16984 That could be 12 bytes long, but we're just going to fudge that. */
16985 if (offset + 4 >= section->size)
16986 {
16987 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16988 return 0;
16989 }
16990
16991 lh = xmalloc (sizeof (*lh));
16992 memset (lh, 0, sizeof (*lh));
16993 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16994 (void *) lh);
16995
16996 line_ptr = section->buffer + offset;
16997
16998 /* Read in the header. */
16999 lh->total_length =
17000 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17001 &bytes_read, &offset_size);
17002 line_ptr += bytes_read;
17003 if (line_ptr + lh->total_length > (section->buffer + section->size))
17004 {
17005 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17006 do_cleanups (back_to);
17007 return 0;
17008 }
17009 lh->statement_program_end = line_ptr + lh->total_length;
17010 lh->version = read_2_bytes (abfd, line_ptr);
17011 line_ptr += 2;
17012 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17013 line_ptr += offset_size;
17014 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17015 line_ptr += 1;
17016 if (lh->version >= 4)
17017 {
17018 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17019 line_ptr += 1;
17020 }
17021 else
17022 lh->maximum_ops_per_instruction = 1;
17023
17024 if (lh->maximum_ops_per_instruction == 0)
17025 {
17026 lh->maximum_ops_per_instruction = 1;
17027 complaint (&symfile_complaints,
17028 _("invalid maximum_ops_per_instruction "
17029 "in `.debug_line' section"));
17030 }
17031
17032 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17033 line_ptr += 1;
17034 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17035 line_ptr += 1;
17036 lh->line_range = read_1_byte (abfd, line_ptr);
17037 line_ptr += 1;
17038 lh->opcode_base = read_1_byte (abfd, line_ptr);
17039 line_ptr += 1;
17040 lh->standard_opcode_lengths
17041 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17042
17043 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17044 for (i = 1; i < lh->opcode_base; ++i)
17045 {
17046 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17047 line_ptr += 1;
17048 }
17049
17050 /* Read directory table. */
17051 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17052 {
17053 line_ptr += bytes_read;
17054 add_include_dir (lh, cur_dir);
17055 }
17056 line_ptr += bytes_read;
17057
17058 /* Read file name table. */
17059 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17060 {
17061 unsigned int dir_index, mod_time, length;
17062
17063 line_ptr += bytes_read;
17064 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065 line_ptr += bytes_read;
17066 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067 line_ptr += bytes_read;
17068 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17069 line_ptr += bytes_read;
17070
17071 add_file_name (lh, cur_file, dir_index, mod_time, length);
17072 }
17073 line_ptr += bytes_read;
17074 lh->statement_program_start = line_ptr;
17075
17076 if (line_ptr > (section->buffer + section->size))
17077 complaint (&symfile_complaints,
17078 _("line number info header doesn't "
17079 "fit in `.debug_line' section"));
17080
17081 discard_cleanups (back_to);
17082 return lh;
17083 }
17084
17085 /* Subroutine of dwarf_decode_lines to simplify it.
17086 Return the file name of the psymtab for included file FILE_INDEX
17087 in line header LH of PST.
17088 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17089 If space for the result is malloc'd, it will be freed by a cleanup.
17090 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17091
17092 The function creates dangling cleanup registration. */
17093
17094 static const char *
17095 psymtab_include_file_name (const struct line_header *lh, int file_index,
17096 const struct partial_symtab *pst,
17097 const char *comp_dir)
17098 {
17099 const struct file_entry fe = lh->file_names [file_index];
17100 const char *include_name = fe.name;
17101 const char *include_name_to_compare = include_name;
17102 const char *dir_name = NULL;
17103 const char *pst_filename;
17104 char *copied_name = NULL;
17105 int file_is_pst;
17106
17107 if (fe.dir_index)
17108 dir_name = lh->include_dirs[fe.dir_index - 1];
17109
17110 if (!IS_ABSOLUTE_PATH (include_name)
17111 && (dir_name != NULL || comp_dir != NULL))
17112 {
17113 /* Avoid creating a duplicate psymtab for PST.
17114 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17115 Before we do the comparison, however, we need to account
17116 for DIR_NAME and COMP_DIR.
17117 First prepend dir_name (if non-NULL). If we still don't
17118 have an absolute path prepend comp_dir (if non-NULL).
17119 However, the directory we record in the include-file's
17120 psymtab does not contain COMP_DIR (to match the
17121 corresponding symtab(s)).
17122
17123 Example:
17124
17125 bash$ cd /tmp
17126 bash$ gcc -g ./hello.c
17127 include_name = "hello.c"
17128 dir_name = "."
17129 DW_AT_comp_dir = comp_dir = "/tmp"
17130 DW_AT_name = "./hello.c" */
17131
17132 if (dir_name != NULL)
17133 {
17134 char *tem = concat (dir_name, SLASH_STRING,
17135 include_name, (char *)NULL);
17136
17137 make_cleanup (xfree, tem);
17138 include_name = tem;
17139 include_name_to_compare = include_name;
17140 }
17141 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17142 {
17143 char *tem = concat (comp_dir, SLASH_STRING,
17144 include_name, (char *)NULL);
17145
17146 make_cleanup (xfree, tem);
17147 include_name_to_compare = tem;
17148 }
17149 }
17150
17151 pst_filename = pst->filename;
17152 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17153 {
17154 copied_name = concat (pst->dirname, SLASH_STRING,
17155 pst_filename, (char *)NULL);
17156 pst_filename = copied_name;
17157 }
17158
17159 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17160
17161 if (copied_name != NULL)
17162 xfree (copied_name);
17163
17164 if (file_is_pst)
17165 return NULL;
17166 return include_name;
17167 }
17168
17169 /* Ignore this record_line request. */
17170
17171 static void
17172 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17173 {
17174 return;
17175 }
17176
17177 /* Subroutine of dwarf_decode_lines to simplify it.
17178 Process the line number information in LH. */
17179
17180 static void
17181 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17182 struct dwarf2_cu *cu, struct partial_symtab *pst)
17183 {
17184 const gdb_byte *line_ptr, *extended_end;
17185 const gdb_byte *line_end;
17186 unsigned int bytes_read, extended_len;
17187 unsigned char op_code, extended_op, adj_opcode;
17188 CORE_ADDR baseaddr;
17189 struct objfile *objfile = cu->objfile;
17190 bfd *abfd = objfile->obfd;
17191 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17192 const int decode_for_pst_p = (pst != NULL);
17193 struct subfile *last_subfile = NULL;
17194 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17195 = record_line;
17196
17197 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17198
17199 line_ptr = lh->statement_program_start;
17200 line_end = lh->statement_program_end;
17201
17202 /* Read the statement sequences until there's nothing left. */
17203 while (line_ptr < line_end)
17204 {
17205 /* state machine registers */
17206 CORE_ADDR address = 0;
17207 unsigned int file = 1;
17208 unsigned int line = 1;
17209 unsigned int column = 0;
17210 int is_stmt = lh->default_is_stmt;
17211 int basic_block = 0;
17212 int end_sequence = 0;
17213 CORE_ADDR addr;
17214 unsigned char op_index = 0;
17215
17216 if (!decode_for_pst_p && lh->num_file_names >= file)
17217 {
17218 /* Start a subfile for the current file of the state machine. */
17219 /* lh->include_dirs and lh->file_names are 0-based, but the
17220 directory and file name numbers in the statement program
17221 are 1-based. */
17222 struct file_entry *fe = &lh->file_names[file - 1];
17223 const char *dir = NULL;
17224
17225 if (fe->dir_index)
17226 dir = lh->include_dirs[fe->dir_index - 1];
17227
17228 dwarf2_start_subfile (fe->name, dir, comp_dir);
17229 }
17230
17231 /* Decode the table. */
17232 while (!end_sequence)
17233 {
17234 op_code = read_1_byte (abfd, line_ptr);
17235 line_ptr += 1;
17236 if (line_ptr > line_end)
17237 {
17238 dwarf2_debug_line_missing_end_sequence_complaint ();
17239 break;
17240 }
17241
17242 if (op_code >= lh->opcode_base)
17243 {
17244 /* Special opcode. */
17245
17246 adj_opcode = op_code - lh->opcode_base;
17247 address += (((op_index + (adj_opcode / lh->line_range))
17248 / lh->maximum_ops_per_instruction)
17249 * lh->minimum_instruction_length);
17250 op_index = ((op_index + (adj_opcode / lh->line_range))
17251 % lh->maximum_ops_per_instruction);
17252 line += lh->line_base + (adj_opcode % lh->line_range);
17253 if (lh->num_file_names < file || file == 0)
17254 dwarf2_debug_line_missing_file_complaint ();
17255 /* For now we ignore lines not starting on an
17256 instruction boundary. */
17257 else if (op_index == 0)
17258 {
17259 lh->file_names[file - 1].included_p = 1;
17260 if (!decode_for_pst_p && is_stmt)
17261 {
17262 if (last_subfile != current_subfile)
17263 {
17264 addr = gdbarch_addr_bits_remove (gdbarch, address);
17265 if (last_subfile)
17266 (*p_record_line) (last_subfile, 0, addr);
17267 last_subfile = current_subfile;
17268 }
17269 /* Append row to matrix using current values. */
17270 addr = gdbarch_addr_bits_remove (gdbarch, address);
17271 (*p_record_line) (current_subfile, line, addr);
17272 }
17273 }
17274 basic_block = 0;
17275 }
17276 else switch (op_code)
17277 {
17278 case DW_LNS_extended_op:
17279 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17280 &bytes_read);
17281 line_ptr += bytes_read;
17282 extended_end = line_ptr + extended_len;
17283 extended_op = read_1_byte (abfd, line_ptr);
17284 line_ptr += 1;
17285 switch (extended_op)
17286 {
17287 case DW_LNE_end_sequence:
17288 p_record_line = record_line;
17289 end_sequence = 1;
17290 break;
17291 case DW_LNE_set_address:
17292 address = read_address (abfd, line_ptr, cu, &bytes_read);
17293
17294 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17295 {
17296 /* This line table is for a function which has been
17297 GCd by the linker. Ignore it. PR gdb/12528 */
17298
17299 long line_offset
17300 = line_ptr - get_debug_line_section (cu)->buffer;
17301
17302 complaint (&symfile_complaints,
17303 _(".debug_line address at offset 0x%lx is 0 "
17304 "[in module %s]"),
17305 line_offset, objfile_name (objfile));
17306 p_record_line = noop_record_line;
17307 }
17308
17309 op_index = 0;
17310 line_ptr += bytes_read;
17311 address += baseaddr;
17312 break;
17313 case DW_LNE_define_file:
17314 {
17315 const char *cur_file;
17316 unsigned int dir_index, mod_time, length;
17317
17318 cur_file = read_direct_string (abfd, line_ptr,
17319 &bytes_read);
17320 line_ptr += bytes_read;
17321 dir_index =
17322 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17323 line_ptr += bytes_read;
17324 mod_time =
17325 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17326 line_ptr += bytes_read;
17327 length =
17328 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17329 line_ptr += bytes_read;
17330 add_file_name (lh, cur_file, dir_index, mod_time, length);
17331 }
17332 break;
17333 case DW_LNE_set_discriminator:
17334 /* The discriminator is not interesting to the debugger;
17335 just ignore it. */
17336 line_ptr = extended_end;
17337 break;
17338 default:
17339 complaint (&symfile_complaints,
17340 _("mangled .debug_line section"));
17341 return;
17342 }
17343 /* Make sure that we parsed the extended op correctly. If e.g.
17344 we expected a different address size than the producer used,
17345 we may have read the wrong number of bytes. */
17346 if (line_ptr != extended_end)
17347 {
17348 complaint (&symfile_complaints,
17349 _("mangled .debug_line section"));
17350 return;
17351 }
17352 break;
17353 case DW_LNS_copy:
17354 if (lh->num_file_names < file || file == 0)
17355 dwarf2_debug_line_missing_file_complaint ();
17356 else
17357 {
17358 lh->file_names[file - 1].included_p = 1;
17359 if (!decode_for_pst_p && is_stmt)
17360 {
17361 if (last_subfile != current_subfile)
17362 {
17363 addr = gdbarch_addr_bits_remove (gdbarch, address);
17364 if (last_subfile)
17365 (*p_record_line) (last_subfile, 0, addr);
17366 last_subfile = current_subfile;
17367 }
17368 addr = gdbarch_addr_bits_remove (gdbarch, address);
17369 (*p_record_line) (current_subfile, line, addr);
17370 }
17371 }
17372 basic_block = 0;
17373 break;
17374 case DW_LNS_advance_pc:
17375 {
17376 CORE_ADDR adjust
17377 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17378
17379 address += (((op_index + adjust)
17380 / lh->maximum_ops_per_instruction)
17381 * lh->minimum_instruction_length);
17382 op_index = ((op_index + adjust)
17383 % lh->maximum_ops_per_instruction);
17384 line_ptr += bytes_read;
17385 }
17386 break;
17387 case DW_LNS_advance_line:
17388 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17389 line_ptr += bytes_read;
17390 break;
17391 case DW_LNS_set_file:
17392 {
17393 /* The arrays lh->include_dirs and lh->file_names are
17394 0-based, but the directory and file name numbers in
17395 the statement program are 1-based. */
17396 struct file_entry *fe;
17397 const char *dir = NULL;
17398
17399 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17400 line_ptr += bytes_read;
17401 if (lh->num_file_names < file || file == 0)
17402 dwarf2_debug_line_missing_file_complaint ();
17403 else
17404 {
17405 fe = &lh->file_names[file - 1];
17406 if (fe->dir_index)
17407 dir = lh->include_dirs[fe->dir_index - 1];
17408 if (!decode_for_pst_p)
17409 {
17410 last_subfile = current_subfile;
17411 dwarf2_start_subfile (fe->name, dir, comp_dir);
17412 }
17413 }
17414 }
17415 break;
17416 case DW_LNS_set_column:
17417 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17418 line_ptr += bytes_read;
17419 break;
17420 case DW_LNS_negate_stmt:
17421 is_stmt = (!is_stmt);
17422 break;
17423 case DW_LNS_set_basic_block:
17424 basic_block = 1;
17425 break;
17426 /* Add to the address register of the state machine the
17427 address increment value corresponding to special opcode
17428 255. I.e., this value is scaled by the minimum
17429 instruction length since special opcode 255 would have
17430 scaled the increment. */
17431 case DW_LNS_const_add_pc:
17432 {
17433 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17434
17435 address += (((op_index + adjust)
17436 / lh->maximum_ops_per_instruction)
17437 * lh->minimum_instruction_length);
17438 op_index = ((op_index + adjust)
17439 % lh->maximum_ops_per_instruction);
17440 }
17441 break;
17442 case DW_LNS_fixed_advance_pc:
17443 address += read_2_bytes (abfd, line_ptr);
17444 op_index = 0;
17445 line_ptr += 2;
17446 break;
17447 default:
17448 {
17449 /* Unknown standard opcode, ignore it. */
17450 int i;
17451
17452 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17453 {
17454 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17455 line_ptr += bytes_read;
17456 }
17457 }
17458 }
17459 }
17460 if (lh->num_file_names < file || file == 0)
17461 dwarf2_debug_line_missing_file_complaint ();
17462 else
17463 {
17464 lh->file_names[file - 1].included_p = 1;
17465 if (!decode_for_pst_p)
17466 {
17467 addr = gdbarch_addr_bits_remove (gdbarch, address);
17468 (*p_record_line) (current_subfile, 0, addr);
17469 }
17470 }
17471 }
17472 }
17473
17474 /* Decode the Line Number Program (LNP) for the given line_header
17475 structure and CU. The actual information extracted and the type
17476 of structures created from the LNP depends on the value of PST.
17477
17478 1. If PST is NULL, then this procedure uses the data from the program
17479 to create all necessary symbol tables, and their linetables.
17480
17481 2. If PST is not NULL, this procedure reads the program to determine
17482 the list of files included by the unit represented by PST, and
17483 builds all the associated partial symbol tables.
17484
17485 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17486 It is used for relative paths in the line table.
17487 NOTE: When processing partial symtabs (pst != NULL),
17488 comp_dir == pst->dirname.
17489
17490 NOTE: It is important that psymtabs have the same file name (via strcmp)
17491 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17492 symtab we don't use it in the name of the psymtabs we create.
17493 E.g. expand_line_sal requires this when finding psymtabs to expand.
17494 A good testcase for this is mb-inline.exp. */
17495
17496 static void
17497 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17498 struct dwarf2_cu *cu, struct partial_symtab *pst,
17499 int want_line_info)
17500 {
17501 struct objfile *objfile = cu->objfile;
17502 const int decode_for_pst_p = (pst != NULL);
17503 struct subfile *first_subfile = current_subfile;
17504
17505 if (want_line_info)
17506 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17507
17508 if (decode_for_pst_p)
17509 {
17510 int file_index;
17511
17512 /* Now that we're done scanning the Line Header Program, we can
17513 create the psymtab of each included file. */
17514 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17515 if (lh->file_names[file_index].included_p == 1)
17516 {
17517 const char *include_name =
17518 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17519 if (include_name != NULL)
17520 dwarf2_create_include_psymtab (include_name, pst, objfile);
17521 }
17522 }
17523 else
17524 {
17525 /* Make sure a symtab is created for every file, even files
17526 which contain only variables (i.e. no code with associated
17527 line numbers). */
17528 int i;
17529
17530 for (i = 0; i < lh->num_file_names; i++)
17531 {
17532 const char *dir = NULL;
17533 struct file_entry *fe;
17534
17535 fe = &lh->file_names[i];
17536 if (fe->dir_index)
17537 dir = lh->include_dirs[fe->dir_index - 1];
17538 dwarf2_start_subfile (fe->name, dir, comp_dir);
17539
17540 /* Skip the main file; we don't need it, and it must be
17541 allocated last, so that it will show up before the
17542 non-primary symtabs in the objfile's symtab list. */
17543 if (current_subfile == first_subfile)
17544 continue;
17545
17546 if (current_subfile->symtab == NULL)
17547 current_subfile->symtab = allocate_symtab (current_subfile->name,
17548 objfile);
17549 fe->symtab = current_subfile->symtab;
17550 }
17551 }
17552 }
17553
17554 /* Start a subfile for DWARF. FILENAME is the name of the file and
17555 DIRNAME the name of the source directory which contains FILENAME
17556 or NULL if not known. COMP_DIR is the compilation directory for the
17557 linetable's compilation unit or NULL if not known.
17558 This routine tries to keep line numbers from identical absolute and
17559 relative file names in a common subfile.
17560
17561 Using the `list' example from the GDB testsuite, which resides in
17562 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17563 of /srcdir/list0.c yields the following debugging information for list0.c:
17564
17565 DW_AT_name: /srcdir/list0.c
17566 DW_AT_comp_dir: /compdir
17567 files.files[0].name: list0.h
17568 files.files[0].dir: /srcdir
17569 files.files[1].name: list0.c
17570 files.files[1].dir: /srcdir
17571
17572 The line number information for list0.c has to end up in a single
17573 subfile, so that `break /srcdir/list0.c:1' works as expected.
17574 start_subfile will ensure that this happens provided that we pass the
17575 concatenation of files.files[1].dir and files.files[1].name as the
17576 subfile's name. */
17577
17578 static void
17579 dwarf2_start_subfile (const char *filename, const char *dirname,
17580 const char *comp_dir)
17581 {
17582 char *copy = NULL;
17583
17584 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17585 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17586 second argument to start_subfile. To be consistent, we do the
17587 same here. In order not to lose the line information directory,
17588 we concatenate it to the filename when it makes sense.
17589 Note that the Dwarf3 standard says (speaking of filenames in line
17590 information): ``The directory index is ignored for file names
17591 that represent full path names''. Thus ignoring dirname in the
17592 `else' branch below isn't an issue. */
17593
17594 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17595 {
17596 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17597 filename = copy;
17598 }
17599
17600 start_subfile (filename, comp_dir);
17601
17602 if (copy != NULL)
17603 xfree (copy);
17604 }
17605
17606 /* Start a symtab for DWARF.
17607 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17608
17609 static void
17610 dwarf2_start_symtab (struct dwarf2_cu *cu,
17611 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17612 {
17613 start_symtab (name, comp_dir, low_pc);
17614 record_debugformat ("DWARF 2");
17615 record_producer (cu->producer);
17616
17617 /* We assume that we're processing GCC output. */
17618 processing_gcc_compilation = 2;
17619
17620 cu->processing_has_namespace_info = 0;
17621 }
17622
17623 static void
17624 var_decode_location (struct attribute *attr, struct symbol *sym,
17625 struct dwarf2_cu *cu)
17626 {
17627 struct objfile *objfile = cu->objfile;
17628 struct comp_unit_head *cu_header = &cu->header;
17629
17630 /* NOTE drow/2003-01-30: There used to be a comment and some special
17631 code here to turn a symbol with DW_AT_external and a
17632 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17633 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17634 with some versions of binutils) where shared libraries could have
17635 relocations against symbols in their debug information - the
17636 minimal symbol would have the right address, but the debug info
17637 would not. It's no longer necessary, because we will explicitly
17638 apply relocations when we read in the debug information now. */
17639
17640 /* A DW_AT_location attribute with no contents indicates that a
17641 variable has been optimized away. */
17642 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17643 {
17644 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17645 return;
17646 }
17647
17648 /* Handle one degenerate form of location expression specially, to
17649 preserve GDB's previous behavior when section offsets are
17650 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17651 then mark this symbol as LOC_STATIC. */
17652
17653 if (attr_form_is_block (attr)
17654 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17655 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17656 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17657 && (DW_BLOCK (attr)->size
17658 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17659 {
17660 unsigned int dummy;
17661
17662 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17663 SYMBOL_VALUE_ADDRESS (sym) =
17664 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17665 else
17666 SYMBOL_VALUE_ADDRESS (sym) =
17667 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17668 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17669 fixup_symbol_section (sym, objfile);
17670 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17671 SYMBOL_SECTION (sym));
17672 return;
17673 }
17674
17675 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17676 expression evaluator, and use LOC_COMPUTED only when necessary
17677 (i.e. when the value of a register or memory location is
17678 referenced, or a thread-local block, etc.). Then again, it might
17679 not be worthwhile. I'm assuming that it isn't unless performance
17680 or memory numbers show me otherwise. */
17681
17682 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17683
17684 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17685 cu->has_loclist = 1;
17686 }
17687
17688 /* Given a pointer to a DWARF information entry, figure out if we need
17689 to make a symbol table entry for it, and if so, create a new entry
17690 and return a pointer to it.
17691 If TYPE is NULL, determine symbol type from the die, otherwise
17692 used the passed type.
17693 If SPACE is not NULL, use it to hold the new symbol. If it is
17694 NULL, allocate a new symbol on the objfile's obstack. */
17695
17696 static struct symbol *
17697 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17698 struct symbol *space)
17699 {
17700 struct objfile *objfile = cu->objfile;
17701 struct symbol *sym = NULL;
17702 const char *name;
17703 struct attribute *attr = NULL;
17704 struct attribute *attr2 = NULL;
17705 CORE_ADDR baseaddr;
17706 struct pending **list_to_add = NULL;
17707
17708 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17709
17710 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17711
17712 name = dwarf2_name (die, cu);
17713 if (name)
17714 {
17715 const char *linkagename;
17716 int suppress_add = 0;
17717
17718 if (space)
17719 sym = space;
17720 else
17721 sym = allocate_symbol (objfile);
17722 OBJSTAT (objfile, n_syms++);
17723
17724 /* Cache this symbol's name and the name's demangled form (if any). */
17725 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17726 linkagename = dwarf2_physname (name, die, cu);
17727 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17728
17729 /* Fortran does not have mangling standard and the mangling does differ
17730 between gfortran, iFort etc. */
17731 if (cu->language == language_fortran
17732 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17733 symbol_set_demangled_name (&(sym->ginfo),
17734 dwarf2_full_name (name, die, cu),
17735 NULL);
17736
17737 /* Default assumptions.
17738 Use the passed type or decode it from the die. */
17739 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17740 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17741 if (type != NULL)
17742 SYMBOL_TYPE (sym) = type;
17743 else
17744 SYMBOL_TYPE (sym) = die_type (die, cu);
17745 attr = dwarf2_attr (die,
17746 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17747 cu);
17748 if (attr)
17749 {
17750 SYMBOL_LINE (sym) = DW_UNSND (attr);
17751 }
17752
17753 attr = dwarf2_attr (die,
17754 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17755 cu);
17756 if (attr)
17757 {
17758 int file_index = DW_UNSND (attr);
17759
17760 if (cu->line_header == NULL
17761 || file_index > cu->line_header->num_file_names)
17762 complaint (&symfile_complaints,
17763 _("file index out of range"));
17764 else if (file_index > 0)
17765 {
17766 struct file_entry *fe;
17767
17768 fe = &cu->line_header->file_names[file_index - 1];
17769 SYMBOL_SYMTAB (sym) = fe->symtab;
17770 }
17771 }
17772
17773 switch (die->tag)
17774 {
17775 case DW_TAG_label:
17776 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17777 if (attr)
17778 SYMBOL_VALUE_ADDRESS (sym)
17779 = attr_value_as_address (attr) + baseaddr;
17780 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17781 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17782 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17783 add_symbol_to_list (sym, cu->list_in_scope);
17784 break;
17785 case DW_TAG_subprogram:
17786 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17787 finish_block. */
17788 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17789 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17790 if ((attr2 && (DW_UNSND (attr2) != 0))
17791 || cu->language == language_ada)
17792 {
17793 /* Subprograms marked external are stored as a global symbol.
17794 Ada subprograms, whether marked external or not, are always
17795 stored as a global symbol, because we want to be able to
17796 access them globally. For instance, we want to be able
17797 to break on a nested subprogram without having to
17798 specify the context. */
17799 list_to_add = &global_symbols;
17800 }
17801 else
17802 {
17803 list_to_add = cu->list_in_scope;
17804 }
17805 break;
17806 case DW_TAG_inlined_subroutine:
17807 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17808 finish_block. */
17809 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17810 SYMBOL_INLINED (sym) = 1;
17811 list_to_add = cu->list_in_scope;
17812 break;
17813 case DW_TAG_template_value_param:
17814 suppress_add = 1;
17815 /* Fall through. */
17816 case DW_TAG_constant:
17817 case DW_TAG_variable:
17818 case DW_TAG_member:
17819 /* Compilation with minimal debug info may result in
17820 variables with missing type entries. Change the
17821 misleading `void' type to something sensible. */
17822 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17823 SYMBOL_TYPE (sym)
17824 = objfile_type (objfile)->nodebug_data_symbol;
17825
17826 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17827 /* In the case of DW_TAG_member, we should only be called for
17828 static const members. */
17829 if (die->tag == DW_TAG_member)
17830 {
17831 /* dwarf2_add_field uses die_is_declaration,
17832 so we do the same. */
17833 gdb_assert (die_is_declaration (die, cu));
17834 gdb_assert (attr);
17835 }
17836 if (attr)
17837 {
17838 dwarf2_const_value (attr, sym, cu);
17839 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17840 if (!suppress_add)
17841 {
17842 if (attr2 && (DW_UNSND (attr2) != 0))
17843 list_to_add = &global_symbols;
17844 else
17845 list_to_add = cu->list_in_scope;
17846 }
17847 break;
17848 }
17849 attr = dwarf2_attr (die, DW_AT_location, cu);
17850 if (attr)
17851 {
17852 var_decode_location (attr, sym, cu);
17853 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17854
17855 /* Fortran explicitly imports any global symbols to the local
17856 scope by DW_TAG_common_block. */
17857 if (cu->language == language_fortran && die->parent
17858 && die->parent->tag == DW_TAG_common_block)
17859 attr2 = NULL;
17860
17861 if (SYMBOL_CLASS (sym) == LOC_STATIC
17862 && SYMBOL_VALUE_ADDRESS (sym) == 0
17863 && !dwarf2_per_objfile->has_section_at_zero)
17864 {
17865 /* When a static variable is eliminated by the linker,
17866 the corresponding debug information is not stripped
17867 out, but the variable address is set to null;
17868 do not add such variables into symbol table. */
17869 }
17870 else if (attr2 && (DW_UNSND (attr2) != 0))
17871 {
17872 /* Workaround gfortran PR debug/40040 - it uses
17873 DW_AT_location for variables in -fPIC libraries which may
17874 get overriden by other libraries/executable and get
17875 a different address. Resolve it by the minimal symbol
17876 which may come from inferior's executable using copy
17877 relocation. Make this workaround only for gfortran as for
17878 other compilers GDB cannot guess the minimal symbol
17879 Fortran mangling kind. */
17880 if (cu->language == language_fortran && die->parent
17881 && die->parent->tag == DW_TAG_module
17882 && cu->producer
17883 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17884 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17885
17886 /* A variable with DW_AT_external is never static,
17887 but it may be block-scoped. */
17888 list_to_add = (cu->list_in_scope == &file_symbols
17889 ? &global_symbols : cu->list_in_scope);
17890 }
17891 else
17892 list_to_add = cu->list_in_scope;
17893 }
17894 else
17895 {
17896 /* We do not know the address of this symbol.
17897 If it is an external symbol and we have type information
17898 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17899 The address of the variable will then be determined from
17900 the minimal symbol table whenever the variable is
17901 referenced. */
17902 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17903
17904 /* Fortran explicitly imports any global symbols to the local
17905 scope by DW_TAG_common_block. */
17906 if (cu->language == language_fortran && die->parent
17907 && die->parent->tag == DW_TAG_common_block)
17908 {
17909 /* SYMBOL_CLASS doesn't matter here because
17910 read_common_block is going to reset it. */
17911 if (!suppress_add)
17912 list_to_add = cu->list_in_scope;
17913 }
17914 else if (attr2 && (DW_UNSND (attr2) != 0)
17915 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17916 {
17917 /* A variable with DW_AT_external is never static, but it
17918 may be block-scoped. */
17919 list_to_add = (cu->list_in_scope == &file_symbols
17920 ? &global_symbols : cu->list_in_scope);
17921
17922 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17923 }
17924 else if (!die_is_declaration (die, cu))
17925 {
17926 /* Use the default LOC_OPTIMIZED_OUT class. */
17927 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17928 if (!suppress_add)
17929 list_to_add = cu->list_in_scope;
17930 }
17931 }
17932 break;
17933 case DW_TAG_formal_parameter:
17934 /* If we are inside a function, mark this as an argument. If
17935 not, we might be looking at an argument to an inlined function
17936 when we do not have enough information to show inlined frames;
17937 pretend it's a local variable in that case so that the user can
17938 still see it. */
17939 if (context_stack_depth > 0
17940 && context_stack[context_stack_depth - 1].name != NULL)
17941 SYMBOL_IS_ARGUMENT (sym) = 1;
17942 attr = dwarf2_attr (die, DW_AT_location, cu);
17943 if (attr)
17944 {
17945 var_decode_location (attr, sym, cu);
17946 }
17947 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17948 if (attr)
17949 {
17950 dwarf2_const_value (attr, sym, cu);
17951 }
17952
17953 list_to_add = cu->list_in_scope;
17954 break;
17955 case DW_TAG_unspecified_parameters:
17956 /* From varargs functions; gdb doesn't seem to have any
17957 interest in this information, so just ignore it for now.
17958 (FIXME?) */
17959 break;
17960 case DW_TAG_template_type_param:
17961 suppress_add = 1;
17962 /* Fall through. */
17963 case DW_TAG_class_type:
17964 case DW_TAG_interface_type:
17965 case DW_TAG_structure_type:
17966 case DW_TAG_union_type:
17967 case DW_TAG_set_type:
17968 case DW_TAG_enumeration_type:
17969 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17970 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17971
17972 {
17973 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17974 really ever be static objects: otherwise, if you try
17975 to, say, break of a class's method and you're in a file
17976 which doesn't mention that class, it won't work unless
17977 the check for all static symbols in lookup_symbol_aux
17978 saves you. See the OtherFileClass tests in
17979 gdb.c++/namespace.exp. */
17980
17981 if (!suppress_add)
17982 {
17983 list_to_add = (cu->list_in_scope == &file_symbols
17984 && (cu->language == language_cplus
17985 || cu->language == language_java)
17986 ? &global_symbols : cu->list_in_scope);
17987
17988 /* The semantics of C++ state that "struct foo {
17989 ... }" also defines a typedef for "foo". A Java
17990 class declaration also defines a typedef for the
17991 class. */
17992 if (cu->language == language_cplus
17993 || cu->language == language_java
17994 || cu->language == language_ada)
17995 {
17996 /* The symbol's name is already allocated along
17997 with this objfile, so we don't need to
17998 duplicate it for the type. */
17999 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18000 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18001 }
18002 }
18003 }
18004 break;
18005 case DW_TAG_typedef:
18006 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18007 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18008 list_to_add = cu->list_in_scope;
18009 break;
18010 case DW_TAG_base_type:
18011 case DW_TAG_subrange_type:
18012 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18013 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18014 list_to_add = cu->list_in_scope;
18015 break;
18016 case DW_TAG_enumerator:
18017 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18018 if (attr)
18019 {
18020 dwarf2_const_value (attr, sym, cu);
18021 }
18022 {
18023 /* NOTE: carlton/2003-11-10: See comment above in the
18024 DW_TAG_class_type, etc. block. */
18025
18026 list_to_add = (cu->list_in_scope == &file_symbols
18027 && (cu->language == language_cplus
18028 || cu->language == language_java)
18029 ? &global_symbols : cu->list_in_scope);
18030 }
18031 break;
18032 case DW_TAG_imported_declaration:
18033 case DW_TAG_namespace:
18034 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18035 list_to_add = &global_symbols;
18036 break;
18037 case DW_TAG_module:
18038 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18039 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18040 list_to_add = &global_symbols;
18041 break;
18042 case DW_TAG_common_block:
18043 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18044 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18045 add_symbol_to_list (sym, cu->list_in_scope);
18046 break;
18047 default:
18048 /* Not a tag we recognize. Hopefully we aren't processing
18049 trash data, but since we must specifically ignore things
18050 we don't recognize, there is nothing else we should do at
18051 this point. */
18052 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18053 dwarf_tag_name (die->tag));
18054 break;
18055 }
18056
18057 if (suppress_add)
18058 {
18059 sym->hash_next = objfile->template_symbols;
18060 objfile->template_symbols = sym;
18061 list_to_add = NULL;
18062 }
18063
18064 if (list_to_add != NULL)
18065 add_symbol_to_list (sym, list_to_add);
18066
18067 /* For the benefit of old versions of GCC, check for anonymous
18068 namespaces based on the demangled name. */
18069 if (!cu->processing_has_namespace_info
18070 && cu->language == language_cplus)
18071 cp_scan_for_anonymous_namespaces (sym, objfile);
18072 }
18073 return (sym);
18074 }
18075
18076 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18077
18078 static struct symbol *
18079 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18080 {
18081 return new_symbol_full (die, type, cu, NULL);
18082 }
18083
18084 /* Given an attr with a DW_FORM_dataN value in host byte order,
18085 zero-extend it as appropriate for the symbol's type. The DWARF
18086 standard (v4) is not entirely clear about the meaning of using
18087 DW_FORM_dataN for a constant with a signed type, where the type is
18088 wider than the data. The conclusion of a discussion on the DWARF
18089 list was that this is unspecified. We choose to always zero-extend
18090 because that is the interpretation long in use by GCC. */
18091
18092 static gdb_byte *
18093 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18094 struct dwarf2_cu *cu, LONGEST *value, int bits)
18095 {
18096 struct objfile *objfile = cu->objfile;
18097 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18098 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18099 LONGEST l = DW_UNSND (attr);
18100
18101 if (bits < sizeof (*value) * 8)
18102 {
18103 l &= ((LONGEST) 1 << bits) - 1;
18104 *value = l;
18105 }
18106 else if (bits == sizeof (*value) * 8)
18107 *value = l;
18108 else
18109 {
18110 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18111 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18112 return bytes;
18113 }
18114
18115 return NULL;
18116 }
18117
18118 /* Read a constant value from an attribute. Either set *VALUE, or if
18119 the value does not fit in *VALUE, set *BYTES - either already
18120 allocated on the objfile obstack, or newly allocated on OBSTACK,
18121 or, set *BATON, if we translated the constant to a location
18122 expression. */
18123
18124 static void
18125 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18126 const char *name, struct obstack *obstack,
18127 struct dwarf2_cu *cu,
18128 LONGEST *value, const gdb_byte **bytes,
18129 struct dwarf2_locexpr_baton **baton)
18130 {
18131 struct objfile *objfile = cu->objfile;
18132 struct comp_unit_head *cu_header = &cu->header;
18133 struct dwarf_block *blk;
18134 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18135 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18136
18137 *value = 0;
18138 *bytes = NULL;
18139 *baton = NULL;
18140
18141 switch (attr->form)
18142 {
18143 case DW_FORM_addr:
18144 case DW_FORM_GNU_addr_index:
18145 {
18146 gdb_byte *data;
18147
18148 if (TYPE_LENGTH (type) != cu_header->addr_size)
18149 dwarf2_const_value_length_mismatch_complaint (name,
18150 cu_header->addr_size,
18151 TYPE_LENGTH (type));
18152 /* Symbols of this form are reasonably rare, so we just
18153 piggyback on the existing location code rather than writing
18154 a new implementation of symbol_computed_ops. */
18155 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18156 (*baton)->per_cu = cu->per_cu;
18157 gdb_assert ((*baton)->per_cu);
18158
18159 (*baton)->size = 2 + cu_header->addr_size;
18160 data = obstack_alloc (obstack, (*baton)->size);
18161 (*baton)->data = data;
18162
18163 data[0] = DW_OP_addr;
18164 store_unsigned_integer (&data[1], cu_header->addr_size,
18165 byte_order, DW_ADDR (attr));
18166 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18167 }
18168 break;
18169 case DW_FORM_string:
18170 case DW_FORM_strp:
18171 case DW_FORM_GNU_str_index:
18172 case DW_FORM_GNU_strp_alt:
18173 /* DW_STRING is already allocated on the objfile obstack, point
18174 directly to it. */
18175 *bytes = (const gdb_byte *) DW_STRING (attr);
18176 break;
18177 case DW_FORM_block1:
18178 case DW_FORM_block2:
18179 case DW_FORM_block4:
18180 case DW_FORM_block:
18181 case DW_FORM_exprloc:
18182 blk = DW_BLOCK (attr);
18183 if (TYPE_LENGTH (type) != blk->size)
18184 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18185 TYPE_LENGTH (type));
18186 *bytes = blk->data;
18187 break;
18188
18189 /* The DW_AT_const_value attributes are supposed to carry the
18190 symbol's value "represented as it would be on the target
18191 architecture." By the time we get here, it's already been
18192 converted to host endianness, so we just need to sign- or
18193 zero-extend it as appropriate. */
18194 case DW_FORM_data1:
18195 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18196 break;
18197 case DW_FORM_data2:
18198 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18199 break;
18200 case DW_FORM_data4:
18201 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18202 break;
18203 case DW_FORM_data8:
18204 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18205 break;
18206
18207 case DW_FORM_sdata:
18208 *value = DW_SND (attr);
18209 break;
18210
18211 case DW_FORM_udata:
18212 *value = DW_UNSND (attr);
18213 break;
18214
18215 default:
18216 complaint (&symfile_complaints,
18217 _("unsupported const value attribute form: '%s'"),
18218 dwarf_form_name (attr->form));
18219 *value = 0;
18220 break;
18221 }
18222 }
18223
18224
18225 /* Copy constant value from an attribute to a symbol. */
18226
18227 static void
18228 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18229 struct dwarf2_cu *cu)
18230 {
18231 struct objfile *objfile = cu->objfile;
18232 struct comp_unit_head *cu_header = &cu->header;
18233 LONGEST value;
18234 const gdb_byte *bytes;
18235 struct dwarf2_locexpr_baton *baton;
18236
18237 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18238 SYMBOL_PRINT_NAME (sym),
18239 &objfile->objfile_obstack, cu,
18240 &value, &bytes, &baton);
18241
18242 if (baton != NULL)
18243 {
18244 SYMBOL_LOCATION_BATON (sym) = baton;
18245 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18246 }
18247 else if (bytes != NULL)
18248 {
18249 SYMBOL_VALUE_BYTES (sym) = bytes;
18250 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18251 }
18252 else
18253 {
18254 SYMBOL_VALUE (sym) = value;
18255 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18256 }
18257 }
18258
18259 /* Return the type of the die in question using its DW_AT_type attribute. */
18260
18261 static struct type *
18262 die_type (struct die_info *die, struct dwarf2_cu *cu)
18263 {
18264 struct attribute *type_attr;
18265
18266 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18267 if (!type_attr)
18268 {
18269 /* A missing DW_AT_type represents a void type. */
18270 return objfile_type (cu->objfile)->builtin_void;
18271 }
18272
18273 return lookup_die_type (die, type_attr, cu);
18274 }
18275
18276 /* True iff CU's producer generates GNAT Ada auxiliary information
18277 that allows to find parallel types through that information instead
18278 of having to do expensive parallel lookups by type name. */
18279
18280 static int
18281 need_gnat_info (struct dwarf2_cu *cu)
18282 {
18283 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18284 of GNAT produces this auxiliary information, without any indication
18285 that it is produced. Part of enhancing the FSF version of GNAT
18286 to produce that information will be to put in place an indicator
18287 that we can use in order to determine whether the descriptive type
18288 info is available or not. One suggestion that has been made is
18289 to use a new attribute, attached to the CU die. For now, assume
18290 that the descriptive type info is not available. */
18291 return 0;
18292 }
18293
18294 /* Return the auxiliary type of the die in question using its
18295 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18296 attribute is not present. */
18297
18298 static struct type *
18299 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18300 {
18301 struct attribute *type_attr;
18302
18303 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18304 if (!type_attr)
18305 return NULL;
18306
18307 return lookup_die_type (die, type_attr, cu);
18308 }
18309
18310 /* If DIE has a descriptive_type attribute, then set the TYPE's
18311 descriptive type accordingly. */
18312
18313 static void
18314 set_descriptive_type (struct type *type, struct die_info *die,
18315 struct dwarf2_cu *cu)
18316 {
18317 struct type *descriptive_type = die_descriptive_type (die, cu);
18318
18319 if (descriptive_type)
18320 {
18321 ALLOCATE_GNAT_AUX_TYPE (type);
18322 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18323 }
18324 }
18325
18326 /* Return the containing type of the die in question using its
18327 DW_AT_containing_type attribute. */
18328
18329 static struct type *
18330 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18331 {
18332 struct attribute *type_attr;
18333
18334 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18335 if (!type_attr)
18336 error (_("Dwarf Error: Problem turning containing type into gdb type "
18337 "[in module %s]"), objfile_name (cu->objfile));
18338
18339 return lookup_die_type (die, type_attr, cu);
18340 }
18341
18342 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18343
18344 static struct type *
18345 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18346 {
18347 struct objfile *objfile = dwarf2_per_objfile->objfile;
18348 char *message, *saved;
18349
18350 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18351 objfile_name (objfile),
18352 cu->header.offset.sect_off,
18353 die->offset.sect_off);
18354 saved = obstack_copy0 (&objfile->objfile_obstack,
18355 message, strlen (message));
18356 xfree (message);
18357
18358 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18359 }
18360
18361 /* Look up the type of DIE in CU using its type attribute ATTR.
18362 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18363 DW_AT_containing_type.
18364 If there is no type substitute an error marker. */
18365
18366 static struct type *
18367 lookup_die_type (struct die_info *die, const struct attribute *attr,
18368 struct dwarf2_cu *cu)
18369 {
18370 struct objfile *objfile = cu->objfile;
18371 struct type *this_type;
18372
18373 gdb_assert (attr->name == DW_AT_type
18374 || attr->name == DW_AT_GNAT_descriptive_type
18375 || attr->name == DW_AT_containing_type);
18376
18377 /* First see if we have it cached. */
18378
18379 if (attr->form == DW_FORM_GNU_ref_alt)
18380 {
18381 struct dwarf2_per_cu_data *per_cu;
18382 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18383
18384 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18385 this_type = get_die_type_at_offset (offset, per_cu);
18386 }
18387 else if (attr_form_is_ref (attr))
18388 {
18389 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18390
18391 this_type = get_die_type_at_offset (offset, cu->per_cu);
18392 }
18393 else if (attr->form == DW_FORM_ref_sig8)
18394 {
18395 ULONGEST signature = DW_SIGNATURE (attr);
18396
18397 return get_signatured_type (die, signature, cu);
18398 }
18399 else
18400 {
18401 complaint (&symfile_complaints,
18402 _("Dwarf Error: Bad type attribute %s in DIE"
18403 " at 0x%x [in module %s]"),
18404 dwarf_attr_name (attr->name), die->offset.sect_off,
18405 objfile_name (objfile));
18406 return build_error_marker_type (cu, die);
18407 }
18408
18409 /* If not cached we need to read it in. */
18410
18411 if (this_type == NULL)
18412 {
18413 struct die_info *type_die = NULL;
18414 struct dwarf2_cu *type_cu = cu;
18415
18416 if (attr_form_is_ref (attr))
18417 type_die = follow_die_ref (die, attr, &type_cu);
18418 if (type_die == NULL)
18419 return build_error_marker_type (cu, die);
18420 /* If we find the type now, it's probably because the type came
18421 from an inter-CU reference and the type's CU got expanded before
18422 ours. */
18423 this_type = read_type_die (type_die, type_cu);
18424 }
18425
18426 /* If we still don't have a type use an error marker. */
18427
18428 if (this_type == NULL)
18429 return build_error_marker_type (cu, die);
18430
18431 return this_type;
18432 }
18433
18434 /* Return the type in DIE, CU.
18435 Returns NULL for invalid types.
18436
18437 This first does a lookup in die_type_hash,
18438 and only reads the die in if necessary.
18439
18440 NOTE: This can be called when reading in partial or full symbols. */
18441
18442 static struct type *
18443 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18444 {
18445 struct type *this_type;
18446
18447 this_type = get_die_type (die, cu);
18448 if (this_type)
18449 return this_type;
18450
18451 return read_type_die_1 (die, cu);
18452 }
18453
18454 /* Read the type in DIE, CU.
18455 Returns NULL for invalid types. */
18456
18457 static struct type *
18458 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18459 {
18460 struct type *this_type = NULL;
18461
18462 switch (die->tag)
18463 {
18464 case DW_TAG_class_type:
18465 case DW_TAG_interface_type:
18466 case DW_TAG_structure_type:
18467 case DW_TAG_union_type:
18468 this_type = read_structure_type (die, cu);
18469 break;
18470 case DW_TAG_enumeration_type:
18471 this_type = read_enumeration_type (die, cu);
18472 break;
18473 case DW_TAG_subprogram:
18474 case DW_TAG_subroutine_type:
18475 case DW_TAG_inlined_subroutine:
18476 this_type = read_subroutine_type (die, cu);
18477 break;
18478 case DW_TAG_array_type:
18479 this_type = read_array_type (die, cu);
18480 break;
18481 case DW_TAG_set_type:
18482 this_type = read_set_type (die, cu);
18483 break;
18484 case DW_TAG_pointer_type:
18485 this_type = read_tag_pointer_type (die, cu);
18486 break;
18487 case DW_TAG_ptr_to_member_type:
18488 this_type = read_tag_ptr_to_member_type (die, cu);
18489 break;
18490 case DW_TAG_reference_type:
18491 this_type = read_tag_reference_type (die, cu);
18492 break;
18493 case DW_TAG_const_type:
18494 this_type = read_tag_const_type (die, cu);
18495 break;
18496 case DW_TAG_volatile_type:
18497 this_type = read_tag_volatile_type (die, cu);
18498 break;
18499 case DW_TAG_restrict_type:
18500 this_type = read_tag_restrict_type (die, cu);
18501 break;
18502 case DW_TAG_string_type:
18503 this_type = read_tag_string_type (die, cu);
18504 break;
18505 case DW_TAG_typedef:
18506 this_type = read_typedef (die, cu);
18507 break;
18508 case DW_TAG_subrange_type:
18509 this_type = read_subrange_type (die, cu);
18510 break;
18511 case DW_TAG_base_type:
18512 this_type = read_base_type (die, cu);
18513 break;
18514 case DW_TAG_unspecified_type:
18515 this_type = read_unspecified_type (die, cu);
18516 break;
18517 case DW_TAG_namespace:
18518 this_type = read_namespace_type (die, cu);
18519 break;
18520 case DW_TAG_module:
18521 this_type = read_module_type (die, cu);
18522 break;
18523 default:
18524 complaint (&symfile_complaints,
18525 _("unexpected tag in read_type_die: '%s'"),
18526 dwarf_tag_name (die->tag));
18527 break;
18528 }
18529
18530 return this_type;
18531 }
18532
18533 /* See if we can figure out if the class lives in a namespace. We do
18534 this by looking for a member function; its demangled name will
18535 contain namespace info, if there is any.
18536 Return the computed name or NULL.
18537 Space for the result is allocated on the objfile's obstack.
18538 This is the full-die version of guess_partial_die_structure_name.
18539 In this case we know DIE has no useful parent. */
18540
18541 static char *
18542 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18543 {
18544 struct die_info *spec_die;
18545 struct dwarf2_cu *spec_cu;
18546 struct die_info *child;
18547
18548 spec_cu = cu;
18549 spec_die = die_specification (die, &spec_cu);
18550 if (spec_die != NULL)
18551 {
18552 die = spec_die;
18553 cu = spec_cu;
18554 }
18555
18556 for (child = die->child;
18557 child != NULL;
18558 child = child->sibling)
18559 {
18560 if (child->tag == DW_TAG_subprogram)
18561 {
18562 struct attribute *attr;
18563
18564 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18565 if (attr == NULL)
18566 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18567 if (attr != NULL)
18568 {
18569 char *actual_name
18570 = language_class_name_from_physname (cu->language_defn,
18571 DW_STRING (attr));
18572 char *name = NULL;
18573
18574 if (actual_name != NULL)
18575 {
18576 const char *die_name = dwarf2_name (die, cu);
18577
18578 if (die_name != NULL
18579 && strcmp (die_name, actual_name) != 0)
18580 {
18581 /* Strip off the class name from the full name.
18582 We want the prefix. */
18583 int die_name_len = strlen (die_name);
18584 int actual_name_len = strlen (actual_name);
18585
18586 /* Test for '::' as a sanity check. */
18587 if (actual_name_len > die_name_len + 2
18588 && actual_name[actual_name_len
18589 - die_name_len - 1] == ':')
18590 name =
18591 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18592 actual_name,
18593 actual_name_len - die_name_len - 2);
18594 }
18595 }
18596 xfree (actual_name);
18597 return name;
18598 }
18599 }
18600 }
18601
18602 return NULL;
18603 }
18604
18605 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18606 prefix part in such case. See
18607 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18608
18609 static char *
18610 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18611 {
18612 struct attribute *attr;
18613 char *base;
18614
18615 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18616 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18617 return NULL;
18618
18619 attr = dwarf2_attr (die, DW_AT_name, cu);
18620 if (attr != NULL && DW_STRING (attr) != NULL)
18621 return NULL;
18622
18623 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18624 if (attr == NULL)
18625 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18626 if (attr == NULL || DW_STRING (attr) == NULL)
18627 return NULL;
18628
18629 /* dwarf2_name had to be already called. */
18630 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18631
18632 /* Strip the base name, keep any leading namespaces/classes. */
18633 base = strrchr (DW_STRING (attr), ':');
18634 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18635 return "";
18636
18637 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18638 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18639 }
18640
18641 /* Return the name of the namespace/class that DIE is defined within,
18642 or "" if we can't tell. The caller should not xfree the result.
18643
18644 For example, if we're within the method foo() in the following
18645 code:
18646
18647 namespace N {
18648 class C {
18649 void foo () {
18650 }
18651 };
18652 }
18653
18654 then determine_prefix on foo's die will return "N::C". */
18655
18656 static const char *
18657 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18658 {
18659 struct die_info *parent, *spec_die;
18660 struct dwarf2_cu *spec_cu;
18661 struct type *parent_type;
18662 char *retval;
18663
18664 if (cu->language != language_cplus && cu->language != language_java
18665 && cu->language != language_fortran)
18666 return "";
18667
18668 retval = anonymous_struct_prefix (die, cu);
18669 if (retval)
18670 return retval;
18671
18672 /* We have to be careful in the presence of DW_AT_specification.
18673 For example, with GCC 3.4, given the code
18674
18675 namespace N {
18676 void foo() {
18677 // Definition of N::foo.
18678 }
18679 }
18680
18681 then we'll have a tree of DIEs like this:
18682
18683 1: DW_TAG_compile_unit
18684 2: DW_TAG_namespace // N
18685 3: DW_TAG_subprogram // declaration of N::foo
18686 4: DW_TAG_subprogram // definition of N::foo
18687 DW_AT_specification // refers to die #3
18688
18689 Thus, when processing die #4, we have to pretend that we're in
18690 the context of its DW_AT_specification, namely the contex of die
18691 #3. */
18692 spec_cu = cu;
18693 spec_die = die_specification (die, &spec_cu);
18694 if (spec_die == NULL)
18695 parent = die->parent;
18696 else
18697 {
18698 parent = spec_die->parent;
18699 cu = spec_cu;
18700 }
18701
18702 if (parent == NULL)
18703 return "";
18704 else if (parent->building_fullname)
18705 {
18706 const char *name;
18707 const char *parent_name;
18708
18709 /* It has been seen on RealView 2.2 built binaries,
18710 DW_TAG_template_type_param types actually _defined_ as
18711 children of the parent class:
18712
18713 enum E {};
18714 template class <class Enum> Class{};
18715 Class<enum E> class_e;
18716
18717 1: DW_TAG_class_type (Class)
18718 2: DW_TAG_enumeration_type (E)
18719 3: DW_TAG_enumerator (enum1:0)
18720 3: DW_TAG_enumerator (enum2:1)
18721 ...
18722 2: DW_TAG_template_type_param
18723 DW_AT_type DW_FORM_ref_udata (E)
18724
18725 Besides being broken debug info, it can put GDB into an
18726 infinite loop. Consider:
18727
18728 When we're building the full name for Class<E>, we'll start
18729 at Class, and go look over its template type parameters,
18730 finding E. We'll then try to build the full name of E, and
18731 reach here. We're now trying to build the full name of E,
18732 and look over the parent DIE for containing scope. In the
18733 broken case, if we followed the parent DIE of E, we'd again
18734 find Class, and once again go look at its template type
18735 arguments, etc., etc. Simply don't consider such parent die
18736 as source-level parent of this die (it can't be, the language
18737 doesn't allow it), and break the loop here. */
18738 name = dwarf2_name (die, cu);
18739 parent_name = dwarf2_name (parent, cu);
18740 complaint (&symfile_complaints,
18741 _("template param type '%s' defined within parent '%s'"),
18742 name ? name : "<unknown>",
18743 parent_name ? parent_name : "<unknown>");
18744 return "";
18745 }
18746 else
18747 switch (parent->tag)
18748 {
18749 case DW_TAG_namespace:
18750 parent_type = read_type_die (parent, cu);
18751 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18752 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18753 Work around this problem here. */
18754 if (cu->language == language_cplus
18755 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18756 return "";
18757 /* We give a name to even anonymous namespaces. */
18758 return TYPE_TAG_NAME (parent_type);
18759 case DW_TAG_class_type:
18760 case DW_TAG_interface_type:
18761 case DW_TAG_structure_type:
18762 case DW_TAG_union_type:
18763 case DW_TAG_module:
18764 parent_type = read_type_die (parent, cu);
18765 if (TYPE_TAG_NAME (parent_type) != NULL)
18766 return TYPE_TAG_NAME (parent_type);
18767 else
18768 /* An anonymous structure is only allowed non-static data
18769 members; no typedefs, no member functions, et cetera.
18770 So it does not need a prefix. */
18771 return "";
18772 case DW_TAG_compile_unit:
18773 case DW_TAG_partial_unit:
18774 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18775 if (cu->language == language_cplus
18776 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18777 && die->child != NULL
18778 && (die->tag == DW_TAG_class_type
18779 || die->tag == DW_TAG_structure_type
18780 || die->tag == DW_TAG_union_type))
18781 {
18782 char *name = guess_full_die_structure_name (die, cu);
18783 if (name != NULL)
18784 return name;
18785 }
18786 return "";
18787 case DW_TAG_enumeration_type:
18788 parent_type = read_type_die (parent, cu);
18789 if (TYPE_DECLARED_CLASS (parent_type))
18790 {
18791 if (TYPE_TAG_NAME (parent_type) != NULL)
18792 return TYPE_TAG_NAME (parent_type);
18793 return "";
18794 }
18795 /* Fall through. */
18796 default:
18797 return determine_prefix (parent, cu);
18798 }
18799 }
18800
18801 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18802 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18803 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18804 an obconcat, otherwise allocate storage for the result. The CU argument is
18805 used to determine the language and hence, the appropriate separator. */
18806
18807 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18808
18809 static char *
18810 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18811 int physname, struct dwarf2_cu *cu)
18812 {
18813 const char *lead = "";
18814 const char *sep;
18815
18816 if (suffix == NULL || suffix[0] == '\0'
18817 || prefix == NULL || prefix[0] == '\0')
18818 sep = "";
18819 else if (cu->language == language_java)
18820 sep = ".";
18821 else if (cu->language == language_fortran && physname)
18822 {
18823 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18824 DW_AT_MIPS_linkage_name is preferred and used instead. */
18825
18826 lead = "__";
18827 sep = "_MOD_";
18828 }
18829 else
18830 sep = "::";
18831
18832 if (prefix == NULL)
18833 prefix = "";
18834 if (suffix == NULL)
18835 suffix = "";
18836
18837 if (obs == NULL)
18838 {
18839 char *retval
18840 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18841
18842 strcpy (retval, lead);
18843 strcat (retval, prefix);
18844 strcat (retval, sep);
18845 strcat (retval, suffix);
18846 return retval;
18847 }
18848 else
18849 {
18850 /* We have an obstack. */
18851 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18852 }
18853 }
18854
18855 /* Return sibling of die, NULL if no sibling. */
18856
18857 static struct die_info *
18858 sibling_die (struct die_info *die)
18859 {
18860 return die->sibling;
18861 }
18862
18863 /* Get name of a die, return NULL if not found. */
18864
18865 static const char *
18866 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18867 struct obstack *obstack)
18868 {
18869 if (name && cu->language == language_cplus)
18870 {
18871 char *canon_name = cp_canonicalize_string (name);
18872
18873 if (canon_name != NULL)
18874 {
18875 if (strcmp (canon_name, name) != 0)
18876 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18877 xfree (canon_name);
18878 }
18879 }
18880
18881 return name;
18882 }
18883
18884 /* Get name of a die, return NULL if not found. */
18885
18886 static const char *
18887 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18888 {
18889 struct attribute *attr;
18890
18891 attr = dwarf2_attr (die, DW_AT_name, cu);
18892 if ((!attr || !DW_STRING (attr))
18893 && die->tag != DW_TAG_class_type
18894 && die->tag != DW_TAG_interface_type
18895 && die->tag != DW_TAG_structure_type
18896 && die->tag != DW_TAG_union_type)
18897 return NULL;
18898
18899 switch (die->tag)
18900 {
18901 case DW_TAG_compile_unit:
18902 case DW_TAG_partial_unit:
18903 /* Compilation units have a DW_AT_name that is a filename, not
18904 a source language identifier. */
18905 case DW_TAG_enumeration_type:
18906 case DW_TAG_enumerator:
18907 /* These tags always have simple identifiers already; no need
18908 to canonicalize them. */
18909 return DW_STRING (attr);
18910
18911 case DW_TAG_subprogram:
18912 /* Java constructors will all be named "<init>", so return
18913 the class name when we see this special case. */
18914 if (cu->language == language_java
18915 && DW_STRING (attr) != NULL
18916 && strcmp (DW_STRING (attr), "<init>") == 0)
18917 {
18918 struct dwarf2_cu *spec_cu = cu;
18919 struct die_info *spec_die;
18920
18921 /* GCJ will output '<init>' for Java constructor names.
18922 For this special case, return the name of the parent class. */
18923
18924 /* GCJ may output suprogram DIEs with AT_specification set.
18925 If so, use the name of the specified DIE. */
18926 spec_die = die_specification (die, &spec_cu);
18927 if (spec_die != NULL)
18928 return dwarf2_name (spec_die, spec_cu);
18929
18930 do
18931 {
18932 die = die->parent;
18933 if (die->tag == DW_TAG_class_type)
18934 return dwarf2_name (die, cu);
18935 }
18936 while (die->tag != DW_TAG_compile_unit
18937 && die->tag != DW_TAG_partial_unit);
18938 }
18939 break;
18940
18941 case DW_TAG_class_type:
18942 case DW_TAG_interface_type:
18943 case DW_TAG_structure_type:
18944 case DW_TAG_union_type:
18945 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18946 structures or unions. These were of the form "._%d" in GCC 4.1,
18947 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18948 and GCC 4.4. We work around this problem by ignoring these. */
18949 if (attr && DW_STRING (attr)
18950 && (strncmp (DW_STRING (attr), "._", 2) == 0
18951 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18952 return NULL;
18953
18954 /* GCC might emit a nameless typedef that has a linkage name. See
18955 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18956 if (!attr || DW_STRING (attr) == NULL)
18957 {
18958 char *demangled = NULL;
18959
18960 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18961 if (attr == NULL)
18962 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18963
18964 if (attr == NULL || DW_STRING (attr) == NULL)
18965 return NULL;
18966
18967 /* Avoid demangling DW_STRING (attr) the second time on a second
18968 call for the same DIE. */
18969 if (!DW_STRING_IS_CANONICAL (attr))
18970 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18971
18972 if (demangled)
18973 {
18974 char *base;
18975
18976 /* FIXME: we already did this for the partial symbol... */
18977 DW_STRING (attr)
18978 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18979 demangled, strlen (demangled));
18980 DW_STRING_IS_CANONICAL (attr) = 1;
18981 xfree (demangled);
18982
18983 /* Strip any leading namespaces/classes, keep only the base name.
18984 DW_AT_name for named DIEs does not contain the prefixes. */
18985 base = strrchr (DW_STRING (attr), ':');
18986 if (base && base > DW_STRING (attr) && base[-1] == ':')
18987 return &base[1];
18988 else
18989 return DW_STRING (attr);
18990 }
18991 }
18992 break;
18993
18994 default:
18995 break;
18996 }
18997
18998 if (!DW_STRING_IS_CANONICAL (attr))
18999 {
19000 DW_STRING (attr)
19001 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19002 &cu->objfile->per_bfd->storage_obstack);
19003 DW_STRING_IS_CANONICAL (attr) = 1;
19004 }
19005 return DW_STRING (attr);
19006 }
19007
19008 /* Return the die that this die in an extension of, or NULL if there
19009 is none. *EXT_CU is the CU containing DIE on input, and the CU
19010 containing the return value on output. */
19011
19012 static struct die_info *
19013 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19014 {
19015 struct attribute *attr;
19016
19017 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19018 if (attr == NULL)
19019 return NULL;
19020
19021 return follow_die_ref (die, attr, ext_cu);
19022 }
19023
19024 /* Convert a DIE tag into its string name. */
19025
19026 static const char *
19027 dwarf_tag_name (unsigned tag)
19028 {
19029 const char *name = get_DW_TAG_name (tag);
19030
19031 if (name == NULL)
19032 return "DW_TAG_<unknown>";
19033
19034 return name;
19035 }
19036
19037 /* Convert a DWARF attribute code into its string name. */
19038
19039 static const char *
19040 dwarf_attr_name (unsigned attr)
19041 {
19042 const char *name;
19043
19044 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19045 if (attr == DW_AT_MIPS_fde)
19046 return "DW_AT_MIPS_fde";
19047 #else
19048 if (attr == DW_AT_HP_block_index)
19049 return "DW_AT_HP_block_index";
19050 #endif
19051
19052 name = get_DW_AT_name (attr);
19053
19054 if (name == NULL)
19055 return "DW_AT_<unknown>";
19056
19057 return name;
19058 }
19059
19060 /* Convert a DWARF value form code into its string name. */
19061
19062 static const char *
19063 dwarf_form_name (unsigned form)
19064 {
19065 const char *name = get_DW_FORM_name (form);
19066
19067 if (name == NULL)
19068 return "DW_FORM_<unknown>";
19069
19070 return name;
19071 }
19072
19073 static char *
19074 dwarf_bool_name (unsigned mybool)
19075 {
19076 if (mybool)
19077 return "TRUE";
19078 else
19079 return "FALSE";
19080 }
19081
19082 /* Convert a DWARF type code into its string name. */
19083
19084 static const char *
19085 dwarf_type_encoding_name (unsigned enc)
19086 {
19087 const char *name = get_DW_ATE_name (enc);
19088
19089 if (name == NULL)
19090 return "DW_ATE_<unknown>";
19091
19092 return name;
19093 }
19094
19095 static void
19096 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19097 {
19098 unsigned int i;
19099
19100 print_spaces (indent, f);
19101 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19102 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19103
19104 if (die->parent != NULL)
19105 {
19106 print_spaces (indent, f);
19107 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19108 die->parent->offset.sect_off);
19109 }
19110
19111 print_spaces (indent, f);
19112 fprintf_unfiltered (f, " has children: %s\n",
19113 dwarf_bool_name (die->child != NULL));
19114
19115 print_spaces (indent, f);
19116 fprintf_unfiltered (f, " attributes:\n");
19117
19118 for (i = 0; i < die->num_attrs; ++i)
19119 {
19120 print_spaces (indent, f);
19121 fprintf_unfiltered (f, " %s (%s) ",
19122 dwarf_attr_name (die->attrs[i].name),
19123 dwarf_form_name (die->attrs[i].form));
19124
19125 switch (die->attrs[i].form)
19126 {
19127 case DW_FORM_addr:
19128 case DW_FORM_GNU_addr_index:
19129 fprintf_unfiltered (f, "address: ");
19130 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19131 break;
19132 case DW_FORM_block2:
19133 case DW_FORM_block4:
19134 case DW_FORM_block:
19135 case DW_FORM_block1:
19136 fprintf_unfiltered (f, "block: size %s",
19137 pulongest (DW_BLOCK (&die->attrs[i])->size));
19138 break;
19139 case DW_FORM_exprloc:
19140 fprintf_unfiltered (f, "expression: size %s",
19141 pulongest (DW_BLOCK (&die->attrs[i])->size));
19142 break;
19143 case DW_FORM_ref_addr:
19144 fprintf_unfiltered (f, "ref address: ");
19145 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19146 break;
19147 case DW_FORM_GNU_ref_alt:
19148 fprintf_unfiltered (f, "alt ref address: ");
19149 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19150 break;
19151 case DW_FORM_ref1:
19152 case DW_FORM_ref2:
19153 case DW_FORM_ref4:
19154 case DW_FORM_ref8:
19155 case DW_FORM_ref_udata:
19156 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19157 (long) (DW_UNSND (&die->attrs[i])));
19158 break;
19159 case DW_FORM_data1:
19160 case DW_FORM_data2:
19161 case DW_FORM_data4:
19162 case DW_FORM_data8:
19163 case DW_FORM_udata:
19164 case DW_FORM_sdata:
19165 fprintf_unfiltered (f, "constant: %s",
19166 pulongest (DW_UNSND (&die->attrs[i])));
19167 break;
19168 case DW_FORM_sec_offset:
19169 fprintf_unfiltered (f, "section offset: %s",
19170 pulongest (DW_UNSND (&die->attrs[i])));
19171 break;
19172 case DW_FORM_ref_sig8:
19173 fprintf_unfiltered (f, "signature: %s",
19174 hex_string (DW_SIGNATURE (&die->attrs[i])));
19175 break;
19176 case DW_FORM_string:
19177 case DW_FORM_strp:
19178 case DW_FORM_GNU_str_index:
19179 case DW_FORM_GNU_strp_alt:
19180 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19181 DW_STRING (&die->attrs[i])
19182 ? DW_STRING (&die->attrs[i]) : "",
19183 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19184 break;
19185 case DW_FORM_flag:
19186 if (DW_UNSND (&die->attrs[i]))
19187 fprintf_unfiltered (f, "flag: TRUE");
19188 else
19189 fprintf_unfiltered (f, "flag: FALSE");
19190 break;
19191 case DW_FORM_flag_present:
19192 fprintf_unfiltered (f, "flag: TRUE");
19193 break;
19194 case DW_FORM_indirect:
19195 /* The reader will have reduced the indirect form to
19196 the "base form" so this form should not occur. */
19197 fprintf_unfiltered (f,
19198 "unexpected attribute form: DW_FORM_indirect");
19199 break;
19200 default:
19201 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19202 die->attrs[i].form);
19203 break;
19204 }
19205 fprintf_unfiltered (f, "\n");
19206 }
19207 }
19208
19209 static void
19210 dump_die_for_error (struct die_info *die)
19211 {
19212 dump_die_shallow (gdb_stderr, 0, die);
19213 }
19214
19215 static void
19216 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19217 {
19218 int indent = level * 4;
19219
19220 gdb_assert (die != NULL);
19221
19222 if (level >= max_level)
19223 return;
19224
19225 dump_die_shallow (f, indent, die);
19226
19227 if (die->child != NULL)
19228 {
19229 print_spaces (indent, f);
19230 fprintf_unfiltered (f, " Children:");
19231 if (level + 1 < max_level)
19232 {
19233 fprintf_unfiltered (f, "\n");
19234 dump_die_1 (f, level + 1, max_level, die->child);
19235 }
19236 else
19237 {
19238 fprintf_unfiltered (f,
19239 " [not printed, max nesting level reached]\n");
19240 }
19241 }
19242
19243 if (die->sibling != NULL && level > 0)
19244 {
19245 dump_die_1 (f, level, max_level, die->sibling);
19246 }
19247 }
19248
19249 /* This is called from the pdie macro in gdbinit.in.
19250 It's not static so gcc will keep a copy callable from gdb. */
19251
19252 void
19253 dump_die (struct die_info *die, int max_level)
19254 {
19255 dump_die_1 (gdb_stdlog, 0, max_level, die);
19256 }
19257
19258 static void
19259 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19260 {
19261 void **slot;
19262
19263 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19264 INSERT);
19265
19266 *slot = die;
19267 }
19268
19269 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19270 required kind. */
19271
19272 static sect_offset
19273 dwarf2_get_ref_die_offset (const struct attribute *attr)
19274 {
19275 sect_offset retval = { DW_UNSND (attr) };
19276
19277 if (attr_form_is_ref (attr))
19278 return retval;
19279
19280 retval.sect_off = 0;
19281 complaint (&symfile_complaints,
19282 _("unsupported die ref attribute form: '%s'"),
19283 dwarf_form_name (attr->form));
19284 return retval;
19285 }
19286
19287 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19288 * the value held by the attribute is not constant. */
19289
19290 static LONGEST
19291 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19292 {
19293 if (attr->form == DW_FORM_sdata)
19294 return DW_SND (attr);
19295 else if (attr->form == DW_FORM_udata
19296 || attr->form == DW_FORM_data1
19297 || attr->form == DW_FORM_data2
19298 || attr->form == DW_FORM_data4
19299 || attr->form == DW_FORM_data8)
19300 return DW_UNSND (attr);
19301 else
19302 {
19303 complaint (&symfile_complaints,
19304 _("Attribute value is not a constant (%s)"),
19305 dwarf_form_name (attr->form));
19306 return default_value;
19307 }
19308 }
19309
19310 /* Follow reference or signature attribute ATTR of SRC_DIE.
19311 On entry *REF_CU is the CU of SRC_DIE.
19312 On exit *REF_CU is the CU of the result. */
19313
19314 static struct die_info *
19315 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19316 struct dwarf2_cu **ref_cu)
19317 {
19318 struct die_info *die;
19319
19320 if (attr_form_is_ref (attr))
19321 die = follow_die_ref (src_die, attr, ref_cu);
19322 else if (attr->form == DW_FORM_ref_sig8)
19323 die = follow_die_sig (src_die, attr, ref_cu);
19324 else
19325 {
19326 dump_die_for_error (src_die);
19327 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19328 objfile_name ((*ref_cu)->objfile));
19329 }
19330
19331 return die;
19332 }
19333
19334 /* Follow reference OFFSET.
19335 On entry *REF_CU is the CU of the source die referencing OFFSET.
19336 On exit *REF_CU is the CU of the result.
19337 Returns NULL if OFFSET is invalid. */
19338
19339 static struct die_info *
19340 follow_die_offset (sect_offset offset, int offset_in_dwz,
19341 struct dwarf2_cu **ref_cu)
19342 {
19343 struct die_info temp_die;
19344 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19345
19346 gdb_assert (cu->per_cu != NULL);
19347
19348 target_cu = cu;
19349
19350 if (cu->per_cu->is_debug_types)
19351 {
19352 /* .debug_types CUs cannot reference anything outside their CU.
19353 If they need to, they have to reference a signatured type via
19354 DW_FORM_ref_sig8. */
19355 if (! offset_in_cu_p (&cu->header, offset))
19356 return NULL;
19357 }
19358 else if (offset_in_dwz != cu->per_cu->is_dwz
19359 || ! offset_in_cu_p (&cu->header, offset))
19360 {
19361 struct dwarf2_per_cu_data *per_cu;
19362
19363 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19364 cu->objfile);
19365
19366 /* If necessary, add it to the queue and load its DIEs. */
19367 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19368 load_full_comp_unit (per_cu, cu->language);
19369
19370 target_cu = per_cu->cu;
19371 }
19372 else if (cu->dies == NULL)
19373 {
19374 /* We're loading full DIEs during partial symbol reading. */
19375 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19376 load_full_comp_unit (cu->per_cu, language_minimal);
19377 }
19378
19379 *ref_cu = target_cu;
19380 temp_die.offset = offset;
19381 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19382 }
19383
19384 /* Follow reference attribute ATTR of SRC_DIE.
19385 On entry *REF_CU is the CU of SRC_DIE.
19386 On exit *REF_CU is the CU of the result. */
19387
19388 static struct die_info *
19389 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19390 struct dwarf2_cu **ref_cu)
19391 {
19392 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19393 struct dwarf2_cu *cu = *ref_cu;
19394 struct die_info *die;
19395
19396 die = follow_die_offset (offset,
19397 (attr->form == DW_FORM_GNU_ref_alt
19398 || cu->per_cu->is_dwz),
19399 ref_cu);
19400 if (!die)
19401 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19402 "at 0x%x [in module %s]"),
19403 offset.sect_off, src_die->offset.sect_off,
19404 objfile_name (cu->objfile));
19405
19406 return die;
19407 }
19408
19409 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19410 Returned value is intended for DW_OP_call*. Returned
19411 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19412
19413 struct dwarf2_locexpr_baton
19414 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19415 struct dwarf2_per_cu_data *per_cu,
19416 CORE_ADDR (*get_frame_pc) (void *baton),
19417 void *baton)
19418 {
19419 struct dwarf2_cu *cu;
19420 struct die_info *die;
19421 struct attribute *attr;
19422 struct dwarf2_locexpr_baton retval;
19423
19424 dw2_setup (per_cu->objfile);
19425
19426 if (per_cu->cu == NULL)
19427 load_cu (per_cu);
19428 cu = per_cu->cu;
19429
19430 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19431 if (!die)
19432 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19433 offset.sect_off, objfile_name (per_cu->objfile));
19434
19435 attr = dwarf2_attr (die, DW_AT_location, cu);
19436 if (!attr)
19437 {
19438 /* DWARF: "If there is no such attribute, then there is no effect.".
19439 DATA is ignored if SIZE is 0. */
19440
19441 retval.data = NULL;
19442 retval.size = 0;
19443 }
19444 else if (attr_form_is_section_offset (attr))
19445 {
19446 struct dwarf2_loclist_baton loclist_baton;
19447 CORE_ADDR pc = (*get_frame_pc) (baton);
19448 size_t size;
19449
19450 fill_in_loclist_baton (cu, &loclist_baton, attr);
19451
19452 retval.data = dwarf2_find_location_expression (&loclist_baton,
19453 &size, pc);
19454 retval.size = size;
19455 }
19456 else
19457 {
19458 if (!attr_form_is_block (attr))
19459 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19460 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19461 offset.sect_off, objfile_name (per_cu->objfile));
19462
19463 retval.data = DW_BLOCK (attr)->data;
19464 retval.size = DW_BLOCK (attr)->size;
19465 }
19466 retval.per_cu = cu->per_cu;
19467
19468 age_cached_comp_units ();
19469
19470 return retval;
19471 }
19472
19473 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19474 offset. */
19475
19476 struct dwarf2_locexpr_baton
19477 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19478 struct dwarf2_per_cu_data *per_cu,
19479 CORE_ADDR (*get_frame_pc) (void *baton),
19480 void *baton)
19481 {
19482 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19483
19484 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19485 }
19486
19487 /* Write a constant of a given type as target-ordered bytes into
19488 OBSTACK. */
19489
19490 static const gdb_byte *
19491 write_constant_as_bytes (struct obstack *obstack,
19492 enum bfd_endian byte_order,
19493 struct type *type,
19494 ULONGEST value,
19495 LONGEST *len)
19496 {
19497 gdb_byte *result;
19498
19499 *len = TYPE_LENGTH (type);
19500 result = obstack_alloc (obstack, *len);
19501 store_unsigned_integer (result, *len, byte_order, value);
19502
19503 return result;
19504 }
19505
19506 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19507 pointer to the constant bytes and set LEN to the length of the
19508 data. If memory is needed, allocate it on OBSTACK. If the DIE
19509 does not have a DW_AT_const_value, return NULL. */
19510
19511 const gdb_byte *
19512 dwarf2_fetch_constant_bytes (sect_offset offset,
19513 struct dwarf2_per_cu_data *per_cu,
19514 struct obstack *obstack,
19515 LONGEST *len)
19516 {
19517 struct dwarf2_cu *cu;
19518 struct die_info *die;
19519 struct attribute *attr;
19520 const gdb_byte *result = NULL;
19521 struct type *type;
19522 LONGEST value;
19523 enum bfd_endian byte_order;
19524
19525 dw2_setup (per_cu->objfile);
19526
19527 if (per_cu->cu == NULL)
19528 load_cu (per_cu);
19529 cu = per_cu->cu;
19530
19531 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19532 if (!die)
19533 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19534 offset.sect_off, objfile_name (per_cu->objfile));
19535
19536
19537 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19538 if (attr == NULL)
19539 return NULL;
19540
19541 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19542 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19543
19544 switch (attr->form)
19545 {
19546 case DW_FORM_addr:
19547 case DW_FORM_GNU_addr_index:
19548 {
19549 gdb_byte *tem;
19550
19551 *len = cu->header.addr_size;
19552 tem = obstack_alloc (obstack, *len);
19553 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19554 result = tem;
19555 }
19556 break;
19557 case DW_FORM_string:
19558 case DW_FORM_strp:
19559 case DW_FORM_GNU_str_index:
19560 case DW_FORM_GNU_strp_alt:
19561 /* DW_STRING is already allocated on the objfile obstack, point
19562 directly to it. */
19563 result = (const gdb_byte *) DW_STRING (attr);
19564 *len = strlen (DW_STRING (attr));
19565 break;
19566 case DW_FORM_block1:
19567 case DW_FORM_block2:
19568 case DW_FORM_block4:
19569 case DW_FORM_block:
19570 case DW_FORM_exprloc:
19571 result = DW_BLOCK (attr)->data;
19572 *len = DW_BLOCK (attr)->size;
19573 break;
19574
19575 /* The DW_AT_const_value attributes are supposed to carry the
19576 symbol's value "represented as it would be on the target
19577 architecture." By the time we get here, it's already been
19578 converted to host endianness, so we just need to sign- or
19579 zero-extend it as appropriate. */
19580 case DW_FORM_data1:
19581 type = die_type (die, cu);
19582 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19583 if (result == NULL)
19584 result = write_constant_as_bytes (obstack, byte_order,
19585 type, value, len);
19586 break;
19587 case DW_FORM_data2:
19588 type = die_type (die, cu);
19589 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19590 if (result == NULL)
19591 result = write_constant_as_bytes (obstack, byte_order,
19592 type, value, len);
19593 break;
19594 case DW_FORM_data4:
19595 type = die_type (die, cu);
19596 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19597 if (result == NULL)
19598 result = write_constant_as_bytes (obstack, byte_order,
19599 type, value, len);
19600 break;
19601 case DW_FORM_data8:
19602 type = die_type (die, cu);
19603 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19604 if (result == NULL)
19605 result = write_constant_as_bytes (obstack, byte_order,
19606 type, value, len);
19607 break;
19608
19609 case DW_FORM_sdata:
19610 type = die_type (die, cu);
19611 result = write_constant_as_bytes (obstack, byte_order,
19612 type, DW_SND (attr), len);
19613 break;
19614
19615 case DW_FORM_udata:
19616 type = die_type (die, cu);
19617 result = write_constant_as_bytes (obstack, byte_order,
19618 type, DW_UNSND (attr), len);
19619 break;
19620
19621 default:
19622 complaint (&symfile_complaints,
19623 _("unsupported const value attribute form: '%s'"),
19624 dwarf_form_name (attr->form));
19625 break;
19626 }
19627
19628 return result;
19629 }
19630
19631 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19632 PER_CU. */
19633
19634 struct type *
19635 dwarf2_get_die_type (cu_offset die_offset,
19636 struct dwarf2_per_cu_data *per_cu)
19637 {
19638 sect_offset die_offset_sect;
19639
19640 dw2_setup (per_cu->objfile);
19641
19642 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19643 return get_die_type_at_offset (die_offset_sect, per_cu);
19644 }
19645
19646 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19647 On entry *REF_CU is the CU of SRC_DIE.
19648 On exit *REF_CU is the CU of the result.
19649 Returns NULL if the referenced DIE isn't found. */
19650
19651 static struct die_info *
19652 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19653 struct dwarf2_cu **ref_cu)
19654 {
19655 struct objfile *objfile = (*ref_cu)->objfile;
19656 struct die_info temp_die;
19657 struct dwarf2_cu *sig_cu;
19658 struct die_info *die;
19659
19660 /* While it might be nice to assert sig_type->type == NULL here,
19661 we can get here for DW_AT_imported_declaration where we need
19662 the DIE not the type. */
19663
19664 /* If necessary, add it to the queue and load its DIEs. */
19665
19666 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19667 read_signatured_type (sig_type);
19668
19669 sig_cu = sig_type->per_cu.cu;
19670 gdb_assert (sig_cu != NULL);
19671 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19672 temp_die.offset = sig_type->type_offset_in_section;
19673 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19674 temp_die.offset.sect_off);
19675 if (die)
19676 {
19677 /* For .gdb_index version 7 keep track of included TUs.
19678 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19679 if (dwarf2_per_objfile->index_table != NULL
19680 && dwarf2_per_objfile->index_table->version <= 7)
19681 {
19682 VEC_safe_push (dwarf2_per_cu_ptr,
19683 (*ref_cu)->per_cu->imported_symtabs,
19684 sig_cu->per_cu);
19685 }
19686
19687 *ref_cu = sig_cu;
19688 return die;
19689 }
19690
19691 return NULL;
19692 }
19693
19694 /* Follow signatured type referenced by ATTR in SRC_DIE.
19695 On entry *REF_CU is the CU of SRC_DIE.
19696 On exit *REF_CU is the CU of the result.
19697 The result is the DIE of the type.
19698 If the referenced type cannot be found an error is thrown. */
19699
19700 static struct die_info *
19701 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19702 struct dwarf2_cu **ref_cu)
19703 {
19704 ULONGEST signature = DW_SIGNATURE (attr);
19705 struct signatured_type *sig_type;
19706 struct die_info *die;
19707
19708 gdb_assert (attr->form == DW_FORM_ref_sig8);
19709
19710 sig_type = lookup_signatured_type (*ref_cu, signature);
19711 /* sig_type will be NULL if the signatured type is missing from
19712 the debug info. */
19713 if (sig_type == NULL)
19714 {
19715 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19716 " from DIE at 0x%x [in module %s]"),
19717 hex_string (signature), src_die->offset.sect_off,
19718 objfile_name ((*ref_cu)->objfile));
19719 }
19720
19721 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19722 if (die == NULL)
19723 {
19724 dump_die_for_error (src_die);
19725 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19726 " from DIE at 0x%x [in module %s]"),
19727 hex_string (signature), src_die->offset.sect_off,
19728 objfile_name ((*ref_cu)->objfile));
19729 }
19730
19731 return die;
19732 }
19733
19734 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19735 reading in and processing the type unit if necessary. */
19736
19737 static struct type *
19738 get_signatured_type (struct die_info *die, ULONGEST signature,
19739 struct dwarf2_cu *cu)
19740 {
19741 struct signatured_type *sig_type;
19742 struct dwarf2_cu *type_cu;
19743 struct die_info *type_die;
19744 struct type *type;
19745
19746 sig_type = lookup_signatured_type (cu, signature);
19747 /* sig_type will be NULL if the signatured type is missing from
19748 the debug info. */
19749 if (sig_type == NULL)
19750 {
19751 complaint (&symfile_complaints,
19752 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19753 " from DIE at 0x%x [in module %s]"),
19754 hex_string (signature), die->offset.sect_off,
19755 objfile_name (dwarf2_per_objfile->objfile));
19756 return build_error_marker_type (cu, die);
19757 }
19758
19759 /* If we already know the type we're done. */
19760 if (sig_type->type != NULL)
19761 return sig_type->type;
19762
19763 type_cu = cu;
19764 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19765 if (type_die != NULL)
19766 {
19767 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19768 is created. This is important, for example, because for c++ classes
19769 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19770 type = read_type_die (type_die, type_cu);
19771 if (type == NULL)
19772 {
19773 complaint (&symfile_complaints,
19774 _("Dwarf Error: Cannot build signatured type %s"
19775 " referenced from DIE at 0x%x [in module %s]"),
19776 hex_string (signature), die->offset.sect_off,
19777 objfile_name (dwarf2_per_objfile->objfile));
19778 type = build_error_marker_type (cu, die);
19779 }
19780 }
19781 else
19782 {
19783 complaint (&symfile_complaints,
19784 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19785 " from DIE at 0x%x [in module %s]"),
19786 hex_string (signature), die->offset.sect_off,
19787 objfile_name (dwarf2_per_objfile->objfile));
19788 type = build_error_marker_type (cu, die);
19789 }
19790 sig_type->type = type;
19791
19792 return type;
19793 }
19794
19795 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19796 reading in and processing the type unit if necessary. */
19797
19798 static struct type *
19799 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19800 struct dwarf2_cu *cu) /* ARI: editCase function */
19801 {
19802 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19803 if (attr_form_is_ref (attr))
19804 {
19805 struct dwarf2_cu *type_cu = cu;
19806 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19807
19808 return read_type_die (type_die, type_cu);
19809 }
19810 else if (attr->form == DW_FORM_ref_sig8)
19811 {
19812 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19813 }
19814 else
19815 {
19816 complaint (&symfile_complaints,
19817 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19818 " at 0x%x [in module %s]"),
19819 dwarf_form_name (attr->form), die->offset.sect_off,
19820 objfile_name (dwarf2_per_objfile->objfile));
19821 return build_error_marker_type (cu, die);
19822 }
19823 }
19824
19825 /* Load the DIEs associated with type unit PER_CU into memory. */
19826
19827 static void
19828 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19829 {
19830 struct signatured_type *sig_type;
19831
19832 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19833 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19834
19835 /* We have the per_cu, but we need the signatured_type.
19836 Fortunately this is an easy translation. */
19837 gdb_assert (per_cu->is_debug_types);
19838 sig_type = (struct signatured_type *) per_cu;
19839
19840 gdb_assert (per_cu->cu == NULL);
19841
19842 read_signatured_type (sig_type);
19843
19844 gdb_assert (per_cu->cu != NULL);
19845 }
19846
19847 /* die_reader_func for read_signatured_type.
19848 This is identical to load_full_comp_unit_reader,
19849 but is kept separate for now. */
19850
19851 static void
19852 read_signatured_type_reader (const struct die_reader_specs *reader,
19853 const gdb_byte *info_ptr,
19854 struct die_info *comp_unit_die,
19855 int has_children,
19856 void *data)
19857 {
19858 struct dwarf2_cu *cu = reader->cu;
19859
19860 gdb_assert (cu->die_hash == NULL);
19861 cu->die_hash =
19862 htab_create_alloc_ex (cu->header.length / 12,
19863 die_hash,
19864 die_eq,
19865 NULL,
19866 &cu->comp_unit_obstack,
19867 hashtab_obstack_allocate,
19868 dummy_obstack_deallocate);
19869
19870 if (has_children)
19871 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19872 &info_ptr, comp_unit_die);
19873 cu->dies = comp_unit_die;
19874 /* comp_unit_die is not stored in die_hash, no need. */
19875
19876 /* We try not to read any attributes in this function, because not
19877 all CUs needed for references have been loaded yet, and symbol
19878 table processing isn't initialized. But we have to set the CU language,
19879 or we won't be able to build types correctly.
19880 Similarly, if we do not read the producer, we can not apply
19881 producer-specific interpretation. */
19882 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19883 }
19884
19885 /* Read in a signatured type and build its CU and DIEs.
19886 If the type is a stub for the real type in a DWO file,
19887 read in the real type from the DWO file as well. */
19888
19889 static void
19890 read_signatured_type (struct signatured_type *sig_type)
19891 {
19892 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19893
19894 gdb_assert (per_cu->is_debug_types);
19895 gdb_assert (per_cu->cu == NULL);
19896
19897 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19898 read_signatured_type_reader, NULL);
19899 sig_type->per_cu.tu_read = 1;
19900 }
19901
19902 /* Decode simple location descriptions.
19903 Given a pointer to a dwarf block that defines a location, compute
19904 the location and return the value.
19905
19906 NOTE drow/2003-11-18: This function is called in two situations
19907 now: for the address of static or global variables (partial symbols
19908 only) and for offsets into structures which are expected to be
19909 (more or less) constant. The partial symbol case should go away,
19910 and only the constant case should remain. That will let this
19911 function complain more accurately. A few special modes are allowed
19912 without complaint for global variables (for instance, global
19913 register values and thread-local values).
19914
19915 A location description containing no operations indicates that the
19916 object is optimized out. The return value is 0 for that case.
19917 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19918 callers will only want a very basic result and this can become a
19919 complaint.
19920
19921 Note that stack[0] is unused except as a default error return. */
19922
19923 static CORE_ADDR
19924 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19925 {
19926 struct objfile *objfile = cu->objfile;
19927 size_t i;
19928 size_t size = blk->size;
19929 const gdb_byte *data = blk->data;
19930 CORE_ADDR stack[64];
19931 int stacki;
19932 unsigned int bytes_read, unsnd;
19933 gdb_byte op;
19934
19935 i = 0;
19936 stacki = 0;
19937 stack[stacki] = 0;
19938 stack[++stacki] = 0;
19939
19940 while (i < size)
19941 {
19942 op = data[i++];
19943 switch (op)
19944 {
19945 case DW_OP_lit0:
19946 case DW_OP_lit1:
19947 case DW_OP_lit2:
19948 case DW_OP_lit3:
19949 case DW_OP_lit4:
19950 case DW_OP_lit5:
19951 case DW_OP_lit6:
19952 case DW_OP_lit7:
19953 case DW_OP_lit8:
19954 case DW_OP_lit9:
19955 case DW_OP_lit10:
19956 case DW_OP_lit11:
19957 case DW_OP_lit12:
19958 case DW_OP_lit13:
19959 case DW_OP_lit14:
19960 case DW_OP_lit15:
19961 case DW_OP_lit16:
19962 case DW_OP_lit17:
19963 case DW_OP_lit18:
19964 case DW_OP_lit19:
19965 case DW_OP_lit20:
19966 case DW_OP_lit21:
19967 case DW_OP_lit22:
19968 case DW_OP_lit23:
19969 case DW_OP_lit24:
19970 case DW_OP_lit25:
19971 case DW_OP_lit26:
19972 case DW_OP_lit27:
19973 case DW_OP_lit28:
19974 case DW_OP_lit29:
19975 case DW_OP_lit30:
19976 case DW_OP_lit31:
19977 stack[++stacki] = op - DW_OP_lit0;
19978 break;
19979
19980 case DW_OP_reg0:
19981 case DW_OP_reg1:
19982 case DW_OP_reg2:
19983 case DW_OP_reg3:
19984 case DW_OP_reg4:
19985 case DW_OP_reg5:
19986 case DW_OP_reg6:
19987 case DW_OP_reg7:
19988 case DW_OP_reg8:
19989 case DW_OP_reg9:
19990 case DW_OP_reg10:
19991 case DW_OP_reg11:
19992 case DW_OP_reg12:
19993 case DW_OP_reg13:
19994 case DW_OP_reg14:
19995 case DW_OP_reg15:
19996 case DW_OP_reg16:
19997 case DW_OP_reg17:
19998 case DW_OP_reg18:
19999 case DW_OP_reg19:
20000 case DW_OP_reg20:
20001 case DW_OP_reg21:
20002 case DW_OP_reg22:
20003 case DW_OP_reg23:
20004 case DW_OP_reg24:
20005 case DW_OP_reg25:
20006 case DW_OP_reg26:
20007 case DW_OP_reg27:
20008 case DW_OP_reg28:
20009 case DW_OP_reg29:
20010 case DW_OP_reg30:
20011 case DW_OP_reg31:
20012 stack[++stacki] = op - DW_OP_reg0;
20013 if (i < size)
20014 dwarf2_complex_location_expr_complaint ();
20015 break;
20016
20017 case DW_OP_regx:
20018 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20019 i += bytes_read;
20020 stack[++stacki] = unsnd;
20021 if (i < size)
20022 dwarf2_complex_location_expr_complaint ();
20023 break;
20024
20025 case DW_OP_addr:
20026 stack[++stacki] = read_address (objfile->obfd, &data[i],
20027 cu, &bytes_read);
20028 i += bytes_read;
20029 break;
20030
20031 case DW_OP_const1u:
20032 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20033 i += 1;
20034 break;
20035
20036 case DW_OP_const1s:
20037 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20038 i += 1;
20039 break;
20040
20041 case DW_OP_const2u:
20042 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20043 i += 2;
20044 break;
20045
20046 case DW_OP_const2s:
20047 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20048 i += 2;
20049 break;
20050
20051 case DW_OP_const4u:
20052 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20053 i += 4;
20054 break;
20055
20056 case DW_OP_const4s:
20057 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20058 i += 4;
20059 break;
20060
20061 case DW_OP_const8u:
20062 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20063 i += 8;
20064 break;
20065
20066 case DW_OP_constu:
20067 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20068 &bytes_read);
20069 i += bytes_read;
20070 break;
20071
20072 case DW_OP_consts:
20073 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20074 i += bytes_read;
20075 break;
20076
20077 case DW_OP_dup:
20078 stack[stacki + 1] = stack[stacki];
20079 stacki++;
20080 break;
20081
20082 case DW_OP_plus:
20083 stack[stacki - 1] += stack[stacki];
20084 stacki--;
20085 break;
20086
20087 case DW_OP_plus_uconst:
20088 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20089 &bytes_read);
20090 i += bytes_read;
20091 break;
20092
20093 case DW_OP_minus:
20094 stack[stacki - 1] -= stack[stacki];
20095 stacki--;
20096 break;
20097
20098 case DW_OP_deref:
20099 /* If we're not the last op, then we definitely can't encode
20100 this using GDB's address_class enum. This is valid for partial
20101 global symbols, although the variable's address will be bogus
20102 in the psymtab. */
20103 if (i < size)
20104 dwarf2_complex_location_expr_complaint ();
20105 break;
20106
20107 case DW_OP_GNU_push_tls_address:
20108 /* The top of the stack has the offset from the beginning
20109 of the thread control block at which the variable is located. */
20110 /* Nothing should follow this operator, so the top of stack would
20111 be returned. */
20112 /* This is valid for partial global symbols, but the variable's
20113 address will be bogus in the psymtab. Make it always at least
20114 non-zero to not look as a variable garbage collected by linker
20115 which have DW_OP_addr 0. */
20116 if (i < size)
20117 dwarf2_complex_location_expr_complaint ();
20118 stack[stacki]++;
20119 break;
20120
20121 case DW_OP_GNU_uninit:
20122 break;
20123
20124 case DW_OP_GNU_addr_index:
20125 case DW_OP_GNU_const_index:
20126 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20127 &bytes_read);
20128 i += bytes_read;
20129 break;
20130
20131 default:
20132 {
20133 const char *name = get_DW_OP_name (op);
20134
20135 if (name)
20136 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20137 name);
20138 else
20139 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20140 op);
20141 }
20142
20143 return (stack[stacki]);
20144 }
20145
20146 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20147 outside of the allocated space. Also enforce minimum>0. */
20148 if (stacki >= ARRAY_SIZE (stack) - 1)
20149 {
20150 complaint (&symfile_complaints,
20151 _("location description stack overflow"));
20152 return 0;
20153 }
20154
20155 if (stacki <= 0)
20156 {
20157 complaint (&symfile_complaints,
20158 _("location description stack underflow"));
20159 return 0;
20160 }
20161 }
20162 return (stack[stacki]);
20163 }
20164
20165 /* memory allocation interface */
20166
20167 static struct dwarf_block *
20168 dwarf_alloc_block (struct dwarf2_cu *cu)
20169 {
20170 struct dwarf_block *blk;
20171
20172 blk = (struct dwarf_block *)
20173 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20174 return (blk);
20175 }
20176
20177 static struct die_info *
20178 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20179 {
20180 struct die_info *die;
20181 size_t size = sizeof (struct die_info);
20182
20183 if (num_attrs > 1)
20184 size += (num_attrs - 1) * sizeof (struct attribute);
20185
20186 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20187 memset (die, 0, sizeof (struct die_info));
20188 return (die);
20189 }
20190
20191 \f
20192 /* Macro support. */
20193
20194 /* Return file name relative to the compilation directory of file number I in
20195 *LH's file name table. The result is allocated using xmalloc; the caller is
20196 responsible for freeing it. */
20197
20198 static char *
20199 file_file_name (int file, struct line_header *lh)
20200 {
20201 /* Is the file number a valid index into the line header's file name
20202 table? Remember that file numbers start with one, not zero. */
20203 if (1 <= file && file <= lh->num_file_names)
20204 {
20205 struct file_entry *fe = &lh->file_names[file - 1];
20206
20207 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20208 return xstrdup (fe->name);
20209 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20210 fe->name, NULL);
20211 }
20212 else
20213 {
20214 /* The compiler produced a bogus file number. We can at least
20215 record the macro definitions made in the file, even if we
20216 won't be able to find the file by name. */
20217 char fake_name[80];
20218
20219 xsnprintf (fake_name, sizeof (fake_name),
20220 "<bad macro file number %d>", file);
20221
20222 complaint (&symfile_complaints,
20223 _("bad file number in macro information (%d)"),
20224 file);
20225
20226 return xstrdup (fake_name);
20227 }
20228 }
20229
20230 /* Return the full name of file number I in *LH's file name table.
20231 Use COMP_DIR as the name of the current directory of the
20232 compilation. The result is allocated using xmalloc; the caller is
20233 responsible for freeing it. */
20234 static char *
20235 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20236 {
20237 /* Is the file number a valid index into the line header's file name
20238 table? Remember that file numbers start with one, not zero. */
20239 if (1 <= file && file <= lh->num_file_names)
20240 {
20241 char *relative = file_file_name (file, lh);
20242
20243 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20244 return relative;
20245 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20246 }
20247 else
20248 return file_file_name (file, lh);
20249 }
20250
20251
20252 static struct macro_source_file *
20253 macro_start_file (int file, int line,
20254 struct macro_source_file *current_file,
20255 const char *comp_dir,
20256 struct line_header *lh, struct objfile *objfile)
20257 {
20258 /* File name relative to the compilation directory of this source file. */
20259 char *file_name = file_file_name (file, lh);
20260
20261 if (! current_file)
20262 {
20263 /* Note: We don't create a macro table for this compilation unit
20264 at all until we actually get a filename. */
20265 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20266
20267 /* If we have no current file, then this must be the start_file
20268 directive for the compilation unit's main source file. */
20269 current_file = macro_set_main (macro_table, file_name);
20270 macro_define_special (macro_table);
20271 }
20272 else
20273 current_file = macro_include (current_file, line, file_name);
20274
20275 xfree (file_name);
20276
20277 return current_file;
20278 }
20279
20280
20281 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20282 followed by a null byte. */
20283 static char *
20284 copy_string (const char *buf, int len)
20285 {
20286 char *s = xmalloc (len + 1);
20287
20288 memcpy (s, buf, len);
20289 s[len] = '\0';
20290 return s;
20291 }
20292
20293
20294 static const char *
20295 consume_improper_spaces (const char *p, const char *body)
20296 {
20297 if (*p == ' ')
20298 {
20299 complaint (&symfile_complaints,
20300 _("macro definition contains spaces "
20301 "in formal argument list:\n`%s'"),
20302 body);
20303
20304 while (*p == ' ')
20305 p++;
20306 }
20307
20308 return p;
20309 }
20310
20311
20312 static void
20313 parse_macro_definition (struct macro_source_file *file, int line,
20314 const char *body)
20315 {
20316 const char *p;
20317
20318 /* The body string takes one of two forms. For object-like macro
20319 definitions, it should be:
20320
20321 <macro name> " " <definition>
20322
20323 For function-like macro definitions, it should be:
20324
20325 <macro name> "() " <definition>
20326 or
20327 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20328
20329 Spaces may appear only where explicitly indicated, and in the
20330 <definition>.
20331
20332 The Dwarf 2 spec says that an object-like macro's name is always
20333 followed by a space, but versions of GCC around March 2002 omit
20334 the space when the macro's definition is the empty string.
20335
20336 The Dwarf 2 spec says that there should be no spaces between the
20337 formal arguments in a function-like macro's formal argument list,
20338 but versions of GCC around March 2002 include spaces after the
20339 commas. */
20340
20341
20342 /* Find the extent of the macro name. The macro name is terminated
20343 by either a space or null character (for an object-like macro) or
20344 an opening paren (for a function-like macro). */
20345 for (p = body; *p; p++)
20346 if (*p == ' ' || *p == '(')
20347 break;
20348
20349 if (*p == ' ' || *p == '\0')
20350 {
20351 /* It's an object-like macro. */
20352 int name_len = p - body;
20353 char *name = copy_string (body, name_len);
20354 const char *replacement;
20355
20356 if (*p == ' ')
20357 replacement = body + name_len + 1;
20358 else
20359 {
20360 dwarf2_macro_malformed_definition_complaint (body);
20361 replacement = body + name_len;
20362 }
20363
20364 macro_define_object (file, line, name, replacement);
20365
20366 xfree (name);
20367 }
20368 else if (*p == '(')
20369 {
20370 /* It's a function-like macro. */
20371 char *name = copy_string (body, p - body);
20372 int argc = 0;
20373 int argv_size = 1;
20374 char **argv = xmalloc (argv_size * sizeof (*argv));
20375
20376 p++;
20377
20378 p = consume_improper_spaces (p, body);
20379
20380 /* Parse the formal argument list. */
20381 while (*p && *p != ')')
20382 {
20383 /* Find the extent of the current argument name. */
20384 const char *arg_start = p;
20385
20386 while (*p && *p != ',' && *p != ')' && *p != ' ')
20387 p++;
20388
20389 if (! *p || p == arg_start)
20390 dwarf2_macro_malformed_definition_complaint (body);
20391 else
20392 {
20393 /* Make sure argv has room for the new argument. */
20394 if (argc >= argv_size)
20395 {
20396 argv_size *= 2;
20397 argv = xrealloc (argv, argv_size * sizeof (*argv));
20398 }
20399
20400 argv[argc++] = copy_string (arg_start, p - arg_start);
20401 }
20402
20403 p = consume_improper_spaces (p, body);
20404
20405 /* Consume the comma, if present. */
20406 if (*p == ',')
20407 {
20408 p++;
20409
20410 p = consume_improper_spaces (p, body);
20411 }
20412 }
20413
20414 if (*p == ')')
20415 {
20416 p++;
20417
20418 if (*p == ' ')
20419 /* Perfectly formed definition, no complaints. */
20420 macro_define_function (file, line, name,
20421 argc, (const char **) argv,
20422 p + 1);
20423 else if (*p == '\0')
20424 {
20425 /* Complain, but do define it. */
20426 dwarf2_macro_malformed_definition_complaint (body);
20427 macro_define_function (file, line, name,
20428 argc, (const char **) argv,
20429 p);
20430 }
20431 else
20432 /* Just complain. */
20433 dwarf2_macro_malformed_definition_complaint (body);
20434 }
20435 else
20436 /* Just complain. */
20437 dwarf2_macro_malformed_definition_complaint (body);
20438
20439 xfree (name);
20440 {
20441 int i;
20442
20443 for (i = 0; i < argc; i++)
20444 xfree (argv[i]);
20445 }
20446 xfree (argv);
20447 }
20448 else
20449 dwarf2_macro_malformed_definition_complaint (body);
20450 }
20451
20452 /* Skip some bytes from BYTES according to the form given in FORM.
20453 Returns the new pointer. */
20454
20455 static const gdb_byte *
20456 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20457 enum dwarf_form form,
20458 unsigned int offset_size,
20459 struct dwarf2_section_info *section)
20460 {
20461 unsigned int bytes_read;
20462
20463 switch (form)
20464 {
20465 case DW_FORM_data1:
20466 case DW_FORM_flag:
20467 ++bytes;
20468 break;
20469
20470 case DW_FORM_data2:
20471 bytes += 2;
20472 break;
20473
20474 case DW_FORM_data4:
20475 bytes += 4;
20476 break;
20477
20478 case DW_FORM_data8:
20479 bytes += 8;
20480 break;
20481
20482 case DW_FORM_string:
20483 read_direct_string (abfd, bytes, &bytes_read);
20484 bytes += bytes_read;
20485 break;
20486
20487 case DW_FORM_sec_offset:
20488 case DW_FORM_strp:
20489 case DW_FORM_GNU_strp_alt:
20490 bytes += offset_size;
20491 break;
20492
20493 case DW_FORM_block:
20494 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20495 bytes += bytes_read;
20496 break;
20497
20498 case DW_FORM_block1:
20499 bytes += 1 + read_1_byte (abfd, bytes);
20500 break;
20501 case DW_FORM_block2:
20502 bytes += 2 + read_2_bytes (abfd, bytes);
20503 break;
20504 case DW_FORM_block4:
20505 bytes += 4 + read_4_bytes (abfd, bytes);
20506 break;
20507
20508 case DW_FORM_sdata:
20509 case DW_FORM_udata:
20510 case DW_FORM_GNU_addr_index:
20511 case DW_FORM_GNU_str_index:
20512 bytes = gdb_skip_leb128 (bytes, buffer_end);
20513 if (bytes == NULL)
20514 {
20515 dwarf2_section_buffer_overflow_complaint (section);
20516 return NULL;
20517 }
20518 break;
20519
20520 default:
20521 {
20522 complain:
20523 complaint (&symfile_complaints,
20524 _("invalid form 0x%x in `%s'"),
20525 form, get_section_name (section));
20526 return NULL;
20527 }
20528 }
20529
20530 return bytes;
20531 }
20532
20533 /* A helper for dwarf_decode_macros that handles skipping an unknown
20534 opcode. Returns an updated pointer to the macro data buffer; or,
20535 on error, issues a complaint and returns NULL. */
20536
20537 static const gdb_byte *
20538 skip_unknown_opcode (unsigned int opcode,
20539 const gdb_byte **opcode_definitions,
20540 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20541 bfd *abfd,
20542 unsigned int offset_size,
20543 struct dwarf2_section_info *section)
20544 {
20545 unsigned int bytes_read, i;
20546 unsigned long arg;
20547 const gdb_byte *defn;
20548
20549 if (opcode_definitions[opcode] == NULL)
20550 {
20551 complaint (&symfile_complaints,
20552 _("unrecognized DW_MACFINO opcode 0x%x"),
20553 opcode);
20554 return NULL;
20555 }
20556
20557 defn = opcode_definitions[opcode];
20558 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20559 defn += bytes_read;
20560
20561 for (i = 0; i < arg; ++i)
20562 {
20563 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20564 section);
20565 if (mac_ptr == NULL)
20566 {
20567 /* skip_form_bytes already issued the complaint. */
20568 return NULL;
20569 }
20570 }
20571
20572 return mac_ptr;
20573 }
20574
20575 /* A helper function which parses the header of a macro section.
20576 If the macro section is the extended (for now called "GNU") type,
20577 then this updates *OFFSET_SIZE. Returns a pointer to just after
20578 the header, or issues a complaint and returns NULL on error. */
20579
20580 static const gdb_byte *
20581 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20582 bfd *abfd,
20583 const gdb_byte *mac_ptr,
20584 unsigned int *offset_size,
20585 int section_is_gnu)
20586 {
20587 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20588
20589 if (section_is_gnu)
20590 {
20591 unsigned int version, flags;
20592
20593 version = read_2_bytes (abfd, mac_ptr);
20594 if (version != 4)
20595 {
20596 complaint (&symfile_complaints,
20597 _("unrecognized version `%d' in .debug_macro section"),
20598 version);
20599 return NULL;
20600 }
20601 mac_ptr += 2;
20602
20603 flags = read_1_byte (abfd, mac_ptr);
20604 ++mac_ptr;
20605 *offset_size = (flags & 1) ? 8 : 4;
20606
20607 if ((flags & 2) != 0)
20608 /* We don't need the line table offset. */
20609 mac_ptr += *offset_size;
20610
20611 /* Vendor opcode descriptions. */
20612 if ((flags & 4) != 0)
20613 {
20614 unsigned int i, count;
20615
20616 count = read_1_byte (abfd, mac_ptr);
20617 ++mac_ptr;
20618 for (i = 0; i < count; ++i)
20619 {
20620 unsigned int opcode, bytes_read;
20621 unsigned long arg;
20622
20623 opcode = read_1_byte (abfd, mac_ptr);
20624 ++mac_ptr;
20625 opcode_definitions[opcode] = mac_ptr;
20626 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20627 mac_ptr += bytes_read;
20628 mac_ptr += arg;
20629 }
20630 }
20631 }
20632
20633 return mac_ptr;
20634 }
20635
20636 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20637 including DW_MACRO_GNU_transparent_include. */
20638
20639 static void
20640 dwarf_decode_macro_bytes (bfd *abfd,
20641 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20642 struct macro_source_file *current_file,
20643 struct line_header *lh, const char *comp_dir,
20644 struct dwarf2_section_info *section,
20645 int section_is_gnu, int section_is_dwz,
20646 unsigned int offset_size,
20647 struct objfile *objfile,
20648 htab_t include_hash)
20649 {
20650 enum dwarf_macro_record_type macinfo_type;
20651 int at_commandline;
20652 const gdb_byte *opcode_definitions[256];
20653
20654 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20655 &offset_size, section_is_gnu);
20656 if (mac_ptr == NULL)
20657 {
20658 /* We already issued a complaint. */
20659 return;
20660 }
20661
20662 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20663 GDB is still reading the definitions from command line. First
20664 DW_MACINFO_start_file will need to be ignored as it was already executed
20665 to create CURRENT_FILE for the main source holding also the command line
20666 definitions. On first met DW_MACINFO_start_file this flag is reset to
20667 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20668
20669 at_commandline = 1;
20670
20671 do
20672 {
20673 /* Do we at least have room for a macinfo type byte? */
20674 if (mac_ptr >= mac_end)
20675 {
20676 dwarf2_section_buffer_overflow_complaint (section);
20677 break;
20678 }
20679
20680 macinfo_type = read_1_byte (abfd, mac_ptr);
20681 mac_ptr++;
20682
20683 /* Note that we rely on the fact that the corresponding GNU and
20684 DWARF constants are the same. */
20685 switch (macinfo_type)
20686 {
20687 /* A zero macinfo type indicates the end of the macro
20688 information. */
20689 case 0:
20690 break;
20691
20692 case DW_MACRO_GNU_define:
20693 case DW_MACRO_GNU_undef:
20694 case DW_MACRO_GNU_define_indirect:
20695 case DW_MACRO_GNU_undef_indirect:
20696 case DW_MACRO_GNU_define_indirect_alt:
20697 case DW_MACRO_GNU_undef_indirect_alt:
20698 {
20699 unsigned int bytes_read;
20700 int line;
20701 const char *body;
20702 int is_define;
20703
20704 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20705 mac_ptr += bytes_read;
20706
20707 if (macinfo_type == DW_MACRO_GNU_define
20708 || macinfo_type == DW_MACRO_GNU_undef)
20709 {
20710 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20711 mac_ptr += bytes_read;
20712 }
20713 else
20714 {
20715 LONGEST str_offset;
20716
20717 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20718 mac_ptr += offset_size;
20719
20720 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20721 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20722 || section_is_dwz)
20723 {
20724 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20725
20726 body = read_indirect_string_from_dwz (dwz, str_offset);
20727 }
20728 else
20729 body = read_indirect_string_at_offset (abfd, str_offset);
20730 }
20731
20732 is_define = (macinfo_type == DW_MACRO_GNU_define
20733 || macinfo_type == DW_MACRO_GNU_define_indirect
20734 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20735 if (! current_file)
20736 {
20737 /* DWARF violation as no main source is present. */
20738 complaint (&symfile_complaints,
20739 _("debug info with no main source gives macro %s "
20740 "on line %d: %s"),
20741 is_define ? _("definition") : _("undefinition"),
20742 line, body);
20743 break;
20744 }
20745 if ((line == 0 && !at_commandline)
20746 || (line != 0 && at_commandline))
20747 complaint (&symfile_complaints,
20748 _("debug info gives %s macro %s with %s line %d: %s"),
20749 at_commandline ? _("command-line") : _("in-file"),
20750 is_define ? _("definition") : _("undefinition"),
20751 line == 0 ? _("zero") : _("non-zero"), line, body);
20752
20753 if (is_define)
20754 parse_macro_definition (current_file, line, body);
20755 else
20756 {
20757 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20758 || macinfo_type == DW_MACRO_GNU_undef_indirect
20759 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20760 macro_undef (current_file, line, body);
20761 }
20762 }
20763 break;
20764
20765 case DW_MACRO_GNU_start_file:
20766 {
20767 unsigned int bytes_read;
20768 int line, file;
20769
20770 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20771 mac_ptr += bytes_read;
20772 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20773 mac_ptr += bytes_read;
20774
20775 if ((line == 0 && !at_commandline)
20776 || (line != 0 && at_commandline))
20777 complaint (&symfile_complaints,
20778 _("debug info gives source %d included "
20779 "from %s at %s line %d"),
20780 file, at_commandline ? _("command-line") : _("file"),
20781 line == 0 ? _("zero") : _("non-zero"), line);
20782
20783 if (at_commandline)
20784 {
20785 /* This DW_MACRO_GNU_start_file was executed in the
20786 pass one. */
20787 at_commandline = 0;
20788 }
20789 else
20790 current_file = macro_start_file (file, line,
20791 current_file, comp_dir,
20792 lh, objfile);
20793 }
20794 break;
20795
20796 case DW_MACRO_GNU_end_file:
20797 if (! current_file)
20798 complaint (&symfile_complaints,
20799 _("macro debug info has an unmatched "
20800 "`close_file' directive"));
20801 else
20802 {
20803 current_file = current_file->included_by;
20804 if (! current_file)
20805 {
20806 enum dwarf_macro_record_type next_type;
20807
20808 /* GCC circa March 2002 doesn't produce the zero
20809 type byte marking the end of the compilation
20810 unit. Complain if it's not there, but exit no
20811 matter what. */
20812
20813 /* Do we at least have room for a macinfo type byte? */
20814 if (mac_ptr >= mac_end)
20815 {
20816 dwarf2_section_buffer_overflow_complaint (section);
20817 return;
20818 }
20819
20820 /* We don't increment mac_ptr here, so this is just
20821 a look-ahead. */
20822 next_type = read_1_byte (abfd, mac_ptr);
20823 if (next_type != 0)
20824 complaint (&symfile_complaints,
20825 _("no terminating 0-type entry for "
20826 "macros in `.debug_macinfo' section"));
20827
20828 return;
20829 }
20830 }
20831 break;
20832
20833 case DW_MACRO_GNU_transparent_include:
20834 case DW_MACRO_GNU_transparent_include_alt:
20835 {
20836 LONGEST offset;
20837 void **slot;
20838 bfd *include_bfd = abfd;
20839 struct dwarf2_section_info *include_section = section;
20840 struct dwarf2_section_info alt_section;
20841 const gdb_byte *include_mac_end = mac_end;
20842 int is_dwz = section_is_dwz;
20843 const gdb_byte *new_mac_ptr;
20844
20845 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20846 mac_ptr += offset_size;
20847
20848 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20849 {
20850 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20851
20852 dwarf2_read_section (dwarf2_per_objfile->objfile,
20853 &dwz->macro);
20854
20855 include_section = &dwz->macro;
20856 include_bfd = get_section_bfd_owner (include_section);
20857 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20858 is_dwz = 1;
20859 }
20860
20861 new_mac_ptr = include_section->buffer + offset;
20862 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20863
20864 if (*slot != NULL)
20865 {
20866 /* This has actually happened; see
20867 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20868 complaint (&symfile_complaints,
20869 _("recursive DW_MACRO_GNU_transparent_include in "
20870 ".debug_macro section"));
20871 }
20872 else
20873 {
20874 *slot = (void *) new_mac_ptr;
20875
20876 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20877 include_mac_end, current_file,
20878 lh, comp_dir,
20879 section, section_is_gnu, is_dwz,
20880 offset_size, objfile, include_hash);
20881
20882 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20883 }
20884 }
20885 break;
20886
20887 case DW_MACINFO_vendor_ext:
20888 if (!section_is_gnu)
20889 {
20890 unsigned int bytes_read;
20891 int constant;
20892
20893 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20894 mac_ptr += bytes_read;
20895 read_direct_string (abfd, mac_ptr, &bytes_read);
20896 mac_ptr += bytes_read;
20897
20898 /* We don't recognize any vendor extensions. */
20899 break;
20900 }
20901 /* FALLTHROUGH */
20902
20903 default:
20904 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20905 mac_ptr, mac_end, abfd, offset_size,
20906 section);
20907 if (mac_ptr == NULL)
20908 return;
20909 break;
20910 }
20911 } while (macinfo_type != 0);
20912 }
20913
20914 static void
20915 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20916 const char *comp_dir, int section_is_gnu)
20917 {
20918 struct objfile *objfile = dwarf2_per_objfile->objfile;
20919 struct line_header *lh = cu->line_header;
20920 bfd *abfd;
20921 const gdb_byte *mac_ptr, *mac_end;
20922 struct macro_source_file *current_file = 0;
20923 enum dwarf_macro_record_type macinfo_type;
20924 unsigned int offset_size = cu->header.offset_size;
20925 const gdb_byte *opcode_definitions[256];
20926 struct cleanup *cleanup;
20927 htab_t include_hash;
20928 void **slot;
20929 struct dwarf2_section_info *section;
20930 const char *section_name;
20931
20932 if (cu->dwo_unit != NULL)
20933 {
20934 if (section_is_gnu)
20935 {
20936 section = &cu->dwo_unit->dwo_file->sections.macro;
20937 section_name = ".debug_macro.dwo";
20938 }
20939 else
20940 {
20941 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20942 section_name = ".debug_macinfo.dwo";
20943 }
20944 }
20945 else
20946 {
20947 if (section_is_gnu)
20948 {
20949 section = &dwarf2_per_objfile->macro;
20950 section_name = ".debug_macro";
20951 }
20952 else
20953 {
20954 section = &dwarf2_per_objfile->macinfo;
20955 section_name = ".debug_macinfo";
20956 }
20957 }
20958
20959 dwarf2_read_section (objfile, section);
20960 if (section->buffer == NULL)
20961 {
20962 complaint (&symfile_complaints, _("missing %s section"), section_name);
20963 return;
20964 }
20965 abfd = get_section_bfd_owner (section);
20966
20967 /* First pass: Find the name of the base filename.
20968 This filename is needed in order to process all macros whose definition
20969 (or undefinition) comes from the command line. These macros are defined
20970 before the first DW_MACINFO_start_file entry, and yet still need to be
20971 associated to the base file.
20972
20973 To determine the base file name, we scan the macro definitions until we
20974 reach the first DW_MACINFO_start_file entry. We then initialize
20975 CURRENT_FILE accordingly so that any macro definition found before the
20976 first DW_MACINFO_start_file can still be associated to the base file. */
20977
20978 mac_ptr = section->buffer + offset;
20979 mac_end = section->buffer + section->size;
20980
20981 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20982 &offset_size, section_is_gnu);
20983 if (mac_ptr == NULL)
20984 {
20985 /* We already issued a complaint. */
20986 return;
20987 }
20988
20989 do
20990 {
20991 /* Do we at least have room for a macinfo type byte? */
20992 if (mac_ptr >= mac_end)
20993 {
20994 /* Complaint is printed during the second pass as GDB will probably
20995 stop the first pass earlier upon finding
20996 DW_MACINFO_start_file. */
20997 break;
20998 }
20999
21000 macinfo_type = read_1_byte (abfd, mac_ptr);
21001 mac_ptr++;
21002
21003 /* Note that we rely on the fact that the corresponding GNU and
21004 DWARF constants are the same. */
21005 switch (macinfo_type)
21006 {
21007 /* A zero macinfo type indicates the end of the macro
21008 information. */
21009 case 0:
21010 break;
21011
21012 case DW_MACRO_GNU_define:
21013 case DW_MACRO_GNU_undef:
21014 /* Only skip the data by MAC_PTR. */
21015 {
21016 unsigned int bytes_read;
21017
21018 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21019 mac_ptr += bytes_read;
21020 read_direct_string (abfd, mac_ptr, &bytes_read);
21021 mac_ptr += bytes_read;
21022 }
21023 break;
21024
21025 case DW_MACRO_GNU_start_file:
21026 {
21027 unsigned int bytes_read;
21028 int line, file;
21029
21030 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21031 mac_ptr += bytes_read;
21032 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21033 mac_ptr += bytes_read;
21034
21035 current_file = macro_start_file (file, line, current_file,
21036 comp_dir, lh, objfile);
21037 }
21038 break;
21039
21040 case DW_MACRO_GNU_end_file:
21041 /* No data to skip by MAC_PTR. */
21042 break;
21043
21044 case DW_MACRO_GNU_define_indirect:
21045 case DW_MACRO_GNU_undef_indirect:
21046 case DW_MACRO_GNU_define_indirect_alt:
21047 case DW_MACRO_GNU_undef_indirect_alt:
21048 {
21049 unsigned int bytes_read;
21050
21051 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21052 mac_ptr += bytes_read;
21053 mac_ptr += offset_size;
21054 }
21055 break;
21056
21057 case DW_MACRO_GNU_transparent_include:
21058 case DW_MACRO_GNU_transparent_include_alt:
21059 /* Note that, according to the spec, a transparent include
21060 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21061 skip this opcode. */
21062 mac_ptr += offset_size;
21063 break;
21064
21065 case DW_MACINFO_vendor_ext:
21066 /* Only skip the data by MAC_PTR. */
21067 if (!section_is_gnu)
21068 {
21069 unsigned int bytes_read;
21070
21071 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21072 mac_ptr += bytes_read;
21073 read_direct_string (abfd, mac_ptr, &bytes_read);
21074 mac_ptr += bytes_read;
21075 }
21076 /* FALLTHROUGH */
21077
21078 default:
21079 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21080 mac_ptr, mac_end, abfd, offset_size,
21081 section);
21082 if (mac_ptr == NULL)
21083 return;
21084 break;
21085 }
21086 } while (macinfo_type != 0 && current_file == NULL);
21087
21088 /* Second pass: Process all entries.
21089
21090 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21091 command-line macro definitions/undefinitions. This flag is unset when we
21092 reach the first DW_MACINFO_start_file entry. */
21093
21094 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21095 NULL, xcalloc, xfree);
21096 cleanup = make_cleanup_htab_delete (include_hash);
21097 mac_ptr = section->buffer + offset;
21098 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21099 *slot = (void *) mac_ptr;
21100 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21101 current_file, lh, comp_dir, section,
21102 section_is_gnu, 0,
21103 offset_size, objfile, include_hash);
21104 do_cleanups (cleanup);
21105 }
21106
21107 /* Check if the attribute's form is a DW_FORM_block*
21108 if so return true else false. */
21109
21110 static int
21111 attr_form_is_block (const struct attribute *attr)
21112 {
21113 return (attr == NULL ? 0 :
21114 attr->form == DW_FORM_block1
21115 || attr->form == DW_FORM_block2
21116 || attr->form == DW_FORM_block4
21117 || attr->form == DW_FORM_block
21118 || attr->form == DW_FORM_exprloc);
21119 }
21120
21121 /* Return non-zero if ATTR's value is a section offset --- classes
21122 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21123 You may use DW_UNSND (attr) to retrieve such offsets.
21124
21125 Section 7.5.4, "Attribute Encodings", explains that no attribute
21126 may have a value that belongs to more than one of these classes; it
21127 would be ambiguous if we did, because we use the same forms for all
21128 of them. */
21129
21130 static int
21131 attr_form_is_section_offset (const struct attribute *attr)
21132 {
21133 return (attr->form == DW_FORM_data4
21134 || attr->form == DW_FORM_data8
21135 || attr->form == DW_FORM_sec_offset);
21136 }
21137
21138 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21139 zero otherwise. When this function returns true, you can apply
21140 dwarf2_get_attr_constant_value to it.
21141
21142 However, note that for some attributes you must check
21143 attr_form_is_section_offset before using this test. DW_FORM_data4
21144 and DW_FORM_data8 are members of both the constant class, and of
21145 the classes that contain offsets into other debug sections
21146 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21147 that, if an attribute's can be either a constant or one of the
21148 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21149 taken as section offsets, not constants. */
21150
21151 static int
21152 attr_form_is_constant (const struct attribute *attr)
21153 {
21154 switch (attr->form)
21155 {
21156 case DW_FORM_sdata:
21157 case DW_FORM_udata:
21158 case DW_FORM_data1:
21159 case DW_FORM_data2:
21160 case DW_FORM_data4:
21161 case DW_FORM_data8:
21162 return 1;
21163 default:
21164 return 0;
21165 }
21166 }
21167
21168
21169 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21170 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21171
21172 static int
21173 attr_form_is_ref (const struct attribute *attr)
21174 {
21175 switch (attr->form)
21176 {
21177 case DW_FORM_ref_addr:
21178 case DW_FORM_ref1:
21179 case DW_FORM_ref2:
21180 case DW_FORM_ref4:
21181 case DW_FORM_ref8:
21182 case DW_FORM_ref_udata:
21183 case DW_FORM_GNU_ref_alt:
21184 return 1;
21185 default:
21186 return 0;
21187 }
21188 }
21189
21190 /* Return the .debug_loc section to use for CU.
21191 For DWO files use .debug_loc.dwo. */
21192
21193 static struct dwarf2_section_info *
21194 cu_debug_loc_section (struct dwarf2_cu *cu)
21195 {
21196 if (cu->dwo_unit)
21197 return &cu->dwo_unit->dwo_file->sections.loc;
21198 return &dwarf2_per_objfile->loc;
21199 }
21200
21201 /* A helper function that fills in a dwarf2_loclist_baton. */
21202
21203 static void
21204 fill_in_loclist_baton (struct dwarf2_cu *cu,
21205 struct dwarf2_loclist_baton *baton,
21206 const struct attribute *attr)
21207 {
21208 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21209
21210 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21211
21212 baton->per_cu = cu->per_cu;
21213 gdb_assert (baton->per_cu);
21214 /* We don't know how long the location list is, but make sure we
21215 don't run off the edge of the section. */
21216 baton->size = section->size - DW_UNSND (attr);
21217 baton->data = section->buffer + DW_UNSND (attr);
21218 baton->base_address = cu->base_address;
21219 baton->from_dwo = cu->dwo_unit != NULL;
21220 }
21221
21222 static void
21223 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21224 struct dwarf2_cu *cu, int is_block)
21225 {
21226 struct objfile *objfile = dwarf2_per_objfile->objfile;
21227 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21228
21229 if (attr_form_is_section_offset (attr)
21230 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21231 the section. If so, fall through to the complaint in the
21232 other branch. */
21233 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21234 {
21235 struct dwarf2_loclist_baton *baton;
21236
21237 baton = obstack_alloc (&objfile->objfile_obstack,
21238 sizeof (struct dwarf2_loclist_baton));
21239
21240 fill_in_loclist_baton (cu, baton, attr);
21241
21242 if (cu->base_known == 0)
21243 complaint (&symfile_complaints,
21244 _("Location list used without "
21245 "specifying the CU base address."));
21246
21247 SYMBOL_ACLASS_INDEX (sym) = (is_block
21248 ? dwarf2_loclist_block_index
21249 : dwarf2_loclist_index);
21250 SYMBOL_LOCATION_BATON (sym) = baton;
21251 }
21252 else
21253 {
21254 struct dwarf2_locexpr_baton *baton;
21255
21256 baton = obstack_alloc (&objfile->objfile_obstack,
21257 sizeof (struct dwarf2_locexpr_baton));
21258 baton->per_cu = cu->per_cu;
21259 gdb_assert (baton->per_cu);
21260
21261 if (attr_form_is_block (attr))
21262 {
21263 /* Note that we're just copying the block's data pointer
21264 here, not the actual data. We're still pointing into the
21265 info_buffer for SYM's objfile; right now we never release
21266 that buffer, but when we do clean up properly this may
21267 need to change. */
21268 baton->size = DW_BLOCK (attr)->size;
21269 baton->data = DW_BLOCK (attr)->data;
21270 }
21271 else
21272 {
21273 dwarf2_invalid_attrib_class_complaint ("location description",
21274 SYMBOL_NATURAL_NAME (sym));
21275 baton->size = 0;
21276 }
21277
21278 SYMBOL_ACLASS_INDEX (sym) = (is_block
21279 ? dwarf2_locexpr_block_index
21280 : dwarf2_locexpr_index);
21281 SYMBOL_LOCATION_BATON (sym) = baton;
21282 }
21283 }
21284
21285 /* Return the OBJFILE associated with the compilation unit CU. If CU
21286 came from a separate debuginfo file, then the master objfile is
21287 returned. */
21288
21289 struct objfile *
21290 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21291 {
21292 struct objfile *objfile = per_cu->objfile;
21293
21294 /* Return the master objfile, so that we can report and look up the
21295 correct file containing this variable. */
21296 if (objfile->separate_debug_objfile_backlink)
21297 objfile = objfile->separate_debug_objfile_backlink;
21298
21299 return objfile;
21300 }
21301
21302 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21303 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21304 CU_HEADERP first. */
21305
21306 static const struct comp_unit_head *
21307 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21308 struct dwarf2_per_cu_data *per_cu)
21309 {
21310 const gdb_byte *info_ptr;
21311
21312 if (per_cu->cu)
21313 return &per_cu->cu->header;
21314
21315 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21316
21317 memset (cu_headerp, 0, sizeof (*cu_headerp));
21318 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21319
21320 return cu_headerp;
21321 }
21322
21323 /* Return the address size given in the compilation unit header for CU. */
21324
21325 int
21326 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21327 {
21328 struct comp_unit_head cu_header_local;
21329 const struct comp_unit_head *cu_headerp;
21330
21331 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21332
21333 return cu_headerp->addr_size;
21334 }
21335
21336 /* Return the offset size given in the compilation unit header for CU. */
21337
21338 int
21339 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21340 {
21341 struct comp_unit_head cu_header_local;
21342 const struct comp_unit_head *cu_headerp;
21343
21344 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21345
21346 return cu_headerp->offset_size;
21347 }
21348
21349 /* See its dwarf2loc.h declaration. */
21350
21351 int
21352 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21353 {
21354 struct comp_unit_head cu_header_local;
21355 const struct comp_unit_head *cu_headerp;
21356
21357 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21358
21359 if (cu_headerp->version == 2)
21360 return cu_headerp->addr_size;
21361 else
21362 return cu_headerp->offset_size;
21363 }
21364
21365 /* Return the text offset of the CU. The returned offset comes from
21366 this CU's objfile. If this objfile came from a separate debuginfo
21367 file, then the offset may be different from the corresponding
21368 offset in the parent objfile. */
21369
21370 CORE_ADDR
21371 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21372 {
21373 struct objfile *objfile = per_cu->objfile;
21374
21375 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21376 }
21377
21378 /* Locate the .debug_info compilation unit from CU's objfile which contains
21379 the DIE at OFFSET. Raises an error on failure. */
21380
21381 static struct dwarf2_per_cu_data *
21382 dwarf2_find_containing_comp_unit (sect_offset offset,
21383 unsigned int offset_in_dwz,
21384 struct objfile *objfile)
21385 {
21386 struct dwarf2_per_cu_data *this_cu;
21387 int low, high;
21388 const sect_offset *cu_off;
21389
21390 low = 0;
21391 high = dwarf2_per_objfile->n_comp_units - 1;
21392 while (high > low)
21393 {
21394 struct dwarf2_per_cu_data *mid_cu;
21395 int mid = low + (high - low) / 2;
21396
21397 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21398 cu_off = &mid_cu->offset;
21399 if (mid_cu->is_dwz > offset_in_dwz
21400 || (mid_cu->is_dwz == offset_in_dwz
21401 && cu_off->sect_off >= offset.sect_off))
21402 high = mid;
21403 else
21404 low = mid + 1;
21405 }
21406 gdb_assert (low == high);
21407 this_cu = dwarf2_per_objfile->all_comp_units[low];
21408 cu_off = &this_cu->offset;
21409 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21410 {
21411 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21412 error (_("Dwarf Error: could not find partial DIE containing "
21413 "offset 0x%lx [in module %s]"),
21414 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21415
21416 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21417 <= offset.sect_off);
21418 return dwarf2_per_objfile->all_comp_units[low-1];
21419 }
21420 else
21421 {
21422 this_cu = dwarf2_per_objfile->all_comp_units[low];
21423 if (low == dwarf2_per_objfile->n_comp_units - 1
21424 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21425 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21426 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21427 return this_cu;
21428 }
21429 }
21430
21431 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21432
21433 static void
21434 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21435 {
21436 memset (cu, 0, sizeof (*cu));
21437 per_cu->cu = cu;
21438 cu->per_cu = per_cu;
21439 cu->objfile = per_cu->objfile;
21440 obstack_init (&cu->comp_unit_obstack);
21441 }
21442
21443 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21444
21445 static void
21446 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21447 enum language pretend_language)
21448 {
21449 struct attribute *attr;
21450
21451 /* Set the language we're debugging. */
21452 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21453 if (attr)
21454 set_cu_language (DW_UNSND (attr), cu);
21455 else
21456 {
21457 cu->language = pretend_language;
21458 cu->language_defn = language_def (cu->language);
21459 }
21460
21461 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21462 if (attr)
21463 cu->producer = DW_STRING (attr);
21464 }
21465
21466 /* Release one cached compilation unit, CU. We unlink it from the tree
21467 of compilation units, but we don't remove it from the read_in_chain;
21468 the caller is responsible for that.
21469 NOTE: DATA is a void * because this function is also used as a
21470 cleanup routine. */
21471
21472 static void
21473 free_heap_comp_unit (void *data)
21474 {
21475 struct dwarf2_cu *cu = data;
21476
21477 gdb_assert (cu->per_cu != NULL);
21478 cu->per_cu->cu = NULL;
21479 cu->per_cu = NULL;
21480
21481 obstack_free (&cu->comp_unit_obstack, NULL);
21482
21483 xfree (cu);
21484 }
21485
21486 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21487 when we're finished with it. We can't free the pointer itself, but be
21488 sure to unlink it from the cache. Also release any associated storage. */
21489
21490 static void
21491 free_stack_comp_unit (void *data)
21492 {
21493 struct dwarf2_cu *cu = data;
21494
21495 gdb_assert (cu->per_cu != NULL);
21496 cu->per_cu->cu = NULL;
21497 cu->per_cu = NULL;
21498
21499 obstack_free (&cu->comp_unit_obstack, NULL);
21500 cu->partial_dies = NULL;
21501 }
21502
21503 /* Free all cached compilation units. */
21504
21505 static void
21506 free_cached_comp_units (void *data)
21507 {
21508 struct dwarf2_per_cu_data *per_cu, **last_chain;
21509
21510 per_cu = dwarf2_per_objfile->read_in_chain;
21511 last_chain = &dwarf2_per_objfile->read_in_chain;
21512 while (per_cu != NULL)
21513 {
21514 struct dwarf2_per_cu_data *next_cu;
21515
21516 next_cu = per_cu->cu->read_in_chain;
21517
21518 free_heap_comp_unit (per_cu->cu);
21519 *last_chain = next_cu;
21520
21521 per_cu = next_cu;
21522 }
21523 }
21524
21525 /* Increase the age counter on each cached compilation unit, and free
21526 any that are too old. */
21527
21528 static void
21529 age_cached_comp_units (void)
21530 {
21531 struct dwarf2_per_cu_data *per_cu, **last_chain;
21532
21533 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21534 per_cu = dwarf2_per_objfile->read_in_chain;
21535 while (per_cu != NULL)
21536 {
21537 per_cu->cu->last_used ++;
21538 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21539 dwarf2_mark (per_cu->cu);
21540 per_cu = per_cu->cu->read_in_chain;
21541 }
21542
21543 per_cu = dwarf2_per_objfile->read_in_chain;
21544 last_chain = &dwarf2_per_objfile->read_in_chain;
21545 while (per_cu != NULL)
21546 {
21547 struct dwarf2_per_cu_data *next_cu;
21548
21549 next_cu = per_cu->cu->read_in_chain;
21550
21551 if (!per_cu->cu->mark)
21552 {
21553 free_heap_comp_unit (per_cu->cu);
21554 *last_chain = next_cu;
21555 }
21556 else
21557 last_chain = &per_cu->cu->read_in_chain;
21558
21559 per_cu = next_cu;
21560 }
21561 }
21562
21563 /* Remove a single compilation unit from the cache. */
21564
21565 static void
21566 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21567 {
21568 struct dwarf2_per_cu_data *per_cu, **last_chain;
21569
21570 per_cu = dwarf2_per_objfile->read_in_chain;
21571 last_chain = &dwarf2_per_objfile->read_in_chain;
21572 while (per_cu != NULL)
21573 {
21574 struct dwarf2_per_cu_data *next_cu;
21575
21576 next_cu = per_cu->cu->read_in_chain;
21577
21578 if (per_cu == target_per_cu)
21579 {
21580 free_heap_comp_unit (per_cu->cu);
21581 per_cu->cu = NULL;
21582 *last_chain = next_cu;
21583 break;
21584 }
21585 else
21586 last_chain = &per_cu->cu->read_in_chain;
21587
21588 per_cu = next_cu;
21589 }
21590 }
21591
21592 /* Release all extra memory associated with OBJFILE. */
21593
21594 void
21595 dwarf2_free_objfile (struct objfile *objfile)
21596 {
21597 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21598
21599 if (dwarf2_per_objfile == NULL)
21600 return;
21601
21602 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21603 free_cached_comp_units (NULL);
21604
21605 if (dwarf2_per_objfile->quick_file_names_table)
21606 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21607
21608 /* Everything else should be on the objfile obstack. */
21609 }
21610
21611 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21612 We store these in a hash table separate from the DIEs, and preserve them
21613 when the DIEs are flushed out of cache.
21614
21615 The CU "per_cu" pointer is needed because offset alone is not enough to
21616 uniquely identify the type. A file may have multiple .debug_types sections,
21617 or the type may come from a DWO file. Furthermore, while it's more logical
21618 to use per_cu->section+offset, with Fission the section with the data is in
21619 the DWO file but we don't know that section at the point we need it.
21620 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21621 because we can enter the lookup routine, get_die_type_at_offset, from
21622 outside this file, and thus won't necessarily have PER_CU->cu.
21623 Fortunately, PER_CU is stable for the life of the objfile. */
21624
21625 struct dwarf2_per_cu_offset_and_type
21626 {
21627 const struct dwarf2_per_cu_data *per_cu;
21628 sect_offset offset;
21629 struct type *type;
21630 };
21631
21632 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21633
21634 static hashval_t
21635 per_cu_offset_and_type_hash (const void *item)
21636 {
21637 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21638
21639 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21640 }
21641
21642 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21643
21644 static int
21645 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21646 {
21647 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21648 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21649
21650 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21651 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21652 }
21653
21654 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21655 table if necessary. For convenience, return TYPE.
21656
21657 The DIEs reading must have careful ordering to:
21658 * Not cause infite loops trying to read in DIEs as a prerequisite for
21659 reading current DIE.
21660 * Not trying to dereference contents of still incompletely read in types
21661 while reading in other DIEs.
21662 * Enable referencing still incompletely read in types just by a pointer to
21663 the type without accessing its fields.
21664
21665 Therefore caller should follow these rules:
21666 * Try to fetch any prerequisite types we may need to build this DIE type
21667 before building the type and calling set_die_type.
21668 * After building type call set_die_type for current DIE as soon as
21669 possible before fetching more types to complete the current type.
21670 * Make the type as complete as possible before fetching more types. */
21671
21672 static struct type *
21673 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21674 {
21675 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21676 struct objfile *objfile = cu->objfile;
21677
21678 /* For Ada types, make sure that the gnat-specific data is always
21679 initialized (if not already set). There are a few types where
21680 we should not be doing so, because the type-specific area is
21681 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21682 where the type-specific area is used to store the floatformat).
21683 But this is not a problem, because the gnat-specific information
21684 is actually not needed for these types. */
21685 if (need_gnat_info (cu)
21686 && TYPE_CODE (type) != TYPE_CODE_FUNC
21687 && TYPE_CODE (type) != TYPE_CODE_FLT
21688 && !HAVE_GNAT_AUX_INFO (type))
21689 INIT_GNAT_SPECIFIC (type);
21690
21691 if (dwarf2_per_objfile->die_type_hash == NULL)
21692 {
21693 dwarf2_per_objfile->die_type_hash =
21694 htab_create_alloc_ex (127,
21695 per_cu_offset_and_type_hash,
21696 per_cu_offset_and_type_eq,
21697 NULL,
21698 &objfile->objfile_obstack,
21699 hashtab_obstack_allocate,
21700 dummy_obstack_deallocate);
21701 }
21702
21703 ofs.per_cu = cu->per_cu;
21704 ofs.offset = die->offset;
21705 ofs.type = type;
21706 slot = (struct dwarf2_per_cu_offset_and_type **)
21707 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21708 if (*slot)
21709 complaint (&symfile_complaints,
21710 _("A problem internal to GDB: DIE 0x%x has type already set"),
21711 die->offset.sect_off);
21712 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21713 **slot = ofs;
21714 return type;
21715 }
21716
21717 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21718 or return NULL if the die does not have a saved type. */
21719
21720 static struct type *
21721 get_die_type_at_offset (sect_offset offset,
21722 struct dwarf2_per_cu_data *per_cu)
21723 {
21724 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21725
21726 if (dwarf2_per_objfile->die_type_hash == NULL)
21727 return NULL;
21728
21729 ofs.per_cu = per_cu;
21730 ofs.offset = offset;
21731 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21732 if (slot)
21733 return slot->type;
21734 else
21735 return NULL;
21736 }
21737
21738 /* Look up the type for DIE in CU in die_type_hash,
21739 or return NULL if DIE does not have a saved type. */
21740
21741 static struct type *
21742 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21743 {
21744 return get_die_type_at_offset (die->offset, cu->per_cu);
21745 }
21746
21747 /* Add a dependence relationship from CU to REF_PER_CU. */
21748
21749 static void
21750 dwarf2_add_dependence (struct dwarf2_cu *cu,
21751 struct dwarf2_per_cu_data *ref_per_cu)
21752 {
21753 void **slot;
21754
21755 if (cu->dependencies == NULL)
21756 cu->dependencies
21757 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21758 NULL, &cu->comp_unit_obstack,
21759 hashtab_obstack_allocate,
21760 dummy_obstack_deallocate);
21761
21762 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21763 if (*slot == NULL)
21764 *slot = ref_per_cu;
21765 }
21766
21767 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21768 Set the mark field in every compilation unit in the
21769 cache that we must keep because we are keeping CU. */
21770
21771 static int
21772 dwarf2_mark_helper (void **slot, void *data)
21773 {
21774 struct dwarf2_per_cu_data *per_cu;
21775
21776 per_cu = (struct dwarf2_per_cu_data *) *slot;
21777
21778 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21779 reading of the chain. As such dependencies remain valid it is not much
21780 useful to track and undo them during QUIT cleanups. */
21781 if (per_cu->cu == NULL)
21782 return 1;
21783
21784 if (per_cu->cu->mark)
21785 return 1;
21786 per_cu->cu->mark = 1;
21787
21788 if (per_cu->cu->dependencies != NULL)
21789 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21790
21791 return 1;
21792 }
21793
21794 /* Set the mark field in CU and in every other compilation unit in the
21795 cache that we must keep because we are keeping CU. */
21796
21797 static void
21798 dwarf2_mark (struct dwarf2_cu *cu)
21799 {
21800 if (cu->mark)
21801 return;
21802 cu->mark = 1;
21803 if (cu->dependencies != NULL)
21804 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21805 }
21806
21807 static void
21808 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21809 {
21810 while (per_cu)
21811 {
21812 per_cu->cu->mark = 0;
21813 per_cu = per_cu->cu->read_in_chain;
21814 }
21815 }
21816
21817 /* Trivial hash function for partial_die_info: the hash value of a DIE
21818 is its offset in .debug_info for this objfile. */
21819
21820 static hashval_t
21821 partial_die_hash (const void *item)
21822 {
21823 const struct partial_die_info *part_die = item;
21824
21825 return part_die->offset.sect_off;
21826 }
21827
21828 /* Trivial comparison function for partial_die_info structures: two DIEs
21829 are equal if they have the same offset. */
21830
21831 static int
21832 partial_die_eq (const void *item_lhs, const void *item_rhs)
21833 {
21834 const struct partial_die_info *part_die_lhs = item_lhs;
21835 const struct partial_die_info *part_die_rhs = item_rhs;
21836
21837 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21838 }
21839
21840 static struct cmd_list_element *set_dwarf2_cmdlist;
21841 static struct cmd_list_element *show_dwarf2_cmdlist;
21842
21843 static void
21844 set_dwarf2_cmd (char *args, int from_tty)
21845 {
21846 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21847 gdb_stdout);
21848 }
21849
21850 static void
21851 show_dwarf2_cmd (char *args, int from_tty)
21852 {
21853 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21854 }
21855
21856 /* Free data associated with OBJFILE, if necessary. */
21857
21858 static void
21859 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21860 {
21861 struct dwarf2_per_objfile *data = d;
21862 int ix;
21863
21864 /* Make sure we don't accidentally use dwarf2_per_objfile while
21865 cleaning up. */
21866 dwarf2_per_objfile = NULL;
21867
21868 for (ix = 0; ix < data->n_comp_units; ++ix)
21869 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21870
21871 for (ix = 0; ix < data->n_type_units; ++ix)
21872 VEC_free (dwarf2_per_cu_ptr,
21873 data->all_type_units[ix]->per_cu.imported_symtabs);
21874 xfree (data->all_type_units);
21875
21876 VEC_free (dwarf2_section_info_def, data->types);
21877
21878 if (data->dwo_files)
21879 free_dwo_files (data->dwo_files, objfile);
21880 if (data->dwp_file)
21881 gdb_bfd_unref (data->dwp_file->dbfd);
21882
21883 if (data->dwz_file && data->dwz_file->dwz_bfd)
21884 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21885 }
21886
21887 \f
21888 /* The "save gdb-index" command. */
21889
21890 /* The contents of the hash table we create when building the string
21891 table. */
21892 struct strtab_entry
21893 {
21894 offset_type offset;
21895 const char *str;
21896 };
21897
21898 /* Hash function for a strtab_entry.
21899
21900 Function is used only during write_hash_table so no index format backward
21901 compatibility is needed. */
21902
21903 static hashval_t
21904 hash_strtab_entry (const void *e)
21905 {
21906 const struct strtab_entry *entry = e;
21907 return mapped_index_string_hash (INT_MAX, entry->str);
21908 }
21909
21910 /* Equality function for a strtab_entry. */
21911
21912 static int
21913 eq_strtab_entry (const void *a, const void *b)
21914 {
21915 const struct strtab_entry *ea = a;
21916 const struct strtab_entry *eb = b;
21917 return !strcmp (ea->str, eb->str);
21918 }
21919
21920 /* Create a strtab_entry hash table. */
21921
21922 static htab_t
21923 create_strtab (void)
21924 {
21925 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21926 xfree, xcalloc, xfree);
21927 }
21928
21929 /* Add a string to the constant pool. Return the string's offset in
21930 host order. */
21931
21932 static offset_type
21933 add_string (htab_t table, struct obstack *cpool, const char *str)
21934 {
21935 void **slot;
21936 struct strtab_entry entry;
21937 struct strtab_entry *result;
21938
21939 entry.str = str;
21940 slot = htab_find_slot (table, &entry, INSERT);
21941 if (*slot)
21942 result = *slot;
21943 else
21944 {
21945 result = XNEW (struct strtab_entry);
21946 result->offset = obstack_object_size (cpool);
21947 result->str = str;
21948 obstack_grow_str0 (cpool, str);
21949 *slot = result;
21950 }
21951 return result->offset;
21952 }
21953
21954 /* An entry in the symbol table. */
21955 struct symtab_index_entry
21956 {
21957 /* The name of the symbol. */
21958 const char *name;
21959 /* The offset of the name in the constant pool. */
21960 offset_type index_offset;
21961 /* A sorted vector of the indices of all the CUs that hold an object
21962 of this name. */
21963 VEC (offset_type) *cu_indices;
21964 };
21965
21966 /* The symbol table. This is a power-of-2-sized hash table. */
21967 struct mapped_symtab
21968 {
21969 offset_type n_elements;
21970 offset_type size;
21971 struct symtab_index_entry **data;
21972 };
21973
21974 /* Hash function for a symtab_index_entry. */
21975
21976 static hashval_t
21977 hash_symtab_entry (const void *e)
21978 {
21979 const struct symtab_index_entry *entry = e;
21980 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21981 sizeof (offset_type) * VEC_length (offset_type,
21982 entry->cu_indices),
21983 0);
21984 }
21985
21986 /* Equality function for a symtab_index_entry. */
21987
21988 static int
21989 eq_symtab_entry (const void *a, const void *b)
21990 {
21991 const struct symtab_index_entry *ea = a;
21992 const struct symtab_index_entry *eb = b;
21993 int len = VEC_length (offset_type, ea->cu_indices);
21994 if (len != VEC_length (offset_type, eb->cu_indices))
21995 return 0;
21996 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21997 VEC_address (offset_type, eb->cu_indices),
21998 sizeof (offset_type) * len);
21999 }
22000
22001 /* Destroy a symtab_index_entry. */
22002
22003 static void
22004 delete_symtab_entry (void *p)
22005 {
22006 struct symtab_index_entry *entry = p;
22007 VEC_free (offset_type, entry->cu_indices);
22008 xfree (entry);
22009 }
22010
22011 /* Create a hash table holding symtab_index_entry objects. */
22012
22013 static htab_t
22014 create_symbol_hash_table (void)
22015 {
22016 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22017 delete_symtab_entry, xcalloc, xfree);
22018 }
22019
22020 /* Create a new mapped symtab object. */
22021
22022 static struct mapped_symtab *
22023 create_mapped_symtab (void)
22024 {
22025 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22026 symtab->n_elements = 0;
22027 symtab->size = 1024;
22028 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22029 return symtab;
22030 }
22031
22032 /* Destroy a mapped_symtab. */
22033
22034 static void
22035 cleanup_mapped_symtab (void *p)
22036 {
22037 struct mapped_symtab *symtab = p;
22038 /* The contents of the array are freed when the other hash table is
22039 destroyed. */
22040 xfree (symtab->data);
22041 xfree (symtab);
22042 }
22043
22044 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22045 the slot.
22046
22047 Function is used only during write_hash_table so no index format backward
22048 compatibility is needed. */
22049
22050 static struct symtab_index_entry **
22051 find_slot (struct mapped_symtab *symtab, const char *name)
22052 {
22053 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22054
22055 index = hash & (symtab->size - 1);
22056 step = ((hash * 17) & (symtab->size - 1)) | 1;
22057
22058 for (;;)
22059 {
22060 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22061 return &symtab->data[index];
22062 index = (index + step) & (symtab->size - 1);
22063 }
22064 }
22065
22066 /* Expand SYMTAB's hash table. */
22067
22068 static void
22069 hash_expand (struct mapped_symtab *symtab)
22070 {
22071 offset_type old_size = symtab->size;
22072 offset_type i;
22073 struct symtab_index_entry **old_entries = symtab->data;
22074
22075 symtab->size *= 2;
22076 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22077
22078 for (i = 0; i < old_size; ++i)
22079 {
22080 if (old_entries[i])
22081 {
22082 struct symtab_index_entry **slot = find_slot (symtab,
22083 old_entries[i]->name);
22084 *slot = old_entries[i];
22085 }
22086 }
22087
22088 xfree (old_entries);
22089 }
22090
22091 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22092 CU_INDEX is the index of the CU in which the symbol appears.
22093 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22094
22095 static void
22096 add_index_entry (struct mapped_symtab *symtab, const char *name,
22097 int is_static, gdb_index_symbol_kind kind,
22098 offset_type cu_index)
22099 {
22100 struct symtab_index_entry **slot;
22101 offset_type cu_index_and_attrs;
22102
22103 ++symtab->n_elements;
22104 if (4 * symtab->n_elements / 3 >= symtab->size)
22105 hash_expand (symtab);
22106
22107 slot = find_slot (symtab, name);
22108 if (!*slot)
22109 {
22110 *slot = XNEW (struct symtab_index_entry);
22111 (*slot)->name = name;
22112 /* index_offset is set later. */
22113 (*slot)->cu_indices = NULL;
22114 }
22115
22116 cu_index_and_attrs = 0;
22117 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22118 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22119 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22120
22121 /* We don't want to record an index value twice as we want to avoid the
22122 duplication.
22123 We process all global symbols and then all static symbols
22124 (which would allow us to avoid the duplication by only having to check
22125 the last entry pushed), but a symbol could have multiple kinds in one CU.
22126 To keep things simple we don't worry about the duplication here and
22127 sort and uniqufy the list after we've processed all symbols. */
22128 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22129 }
22130
22131 /* qsort helper routine for uniquify_cu_indices. */
22132
22133 static int
22134 offset_type_compare (const void *ap, const void *bp)
22135 {
22136 offset_type a = *(offset_type *) ap;
22137 offset_type b = *(offset_type *) bp;
22138
22139 return (a > b) - (b > a);
22140 }
22141
22142 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22143
22144 static void
22145 uniquify_cu_indices (struct mapped_symtab *symtab)
22146 {
22147 int i;
22148
22149 for (i = 0; i < symtab->size; ++i)
22150 {
22151 struct symtab_index_entry *entry = symtab->data[i];
22152
22153 if (entry
22154 && entry->cu_indices != NULL)
22155 {
22156 unsigned int next_to_insert, next_to_check;
22157 offset_type last_value;
22158
22159 qsort (VEC_address (offset_type, entry->cu_indices),
22160 VEC_length (offset_type, entry->cu_indices),
22161 sizeof (offset_type), offset_type_compare);
22162
22163 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22164 next_to_insert = 1;
22165 for (next_to_check = 1;
22166 next_to_check < VEC_length (offset_type, entry->cu_indices);
22167 ++next_to_check)
22168 {
22169 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22170 != last_value)
22171 {
22172 last_value = VEC_index (offset_type, entry->cu_indices,
22173 next_to_check);
22174 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22175 last_value);
22176 ++next_to_insert;
22177 }
22178 }
22179 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22180 }
22181 }
22182 }
22183
22184 /* Add a vector of indices to the constant pool. */
22185
22186 static offset_type
22187 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22188 struct symtab_index_entry *entry)
22189 {
22190 void **slot;
22191
22192 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22193 if (!*slot)
22194 {
22195 offset_type len = VEC_length (offset_type, entry->cu_indices);
22196 offset_type val = MAYBE_SWAP (len);
22197 offset_type iter;
22198 int i;
22199
22200 *slot = entry;
22201 entry->index_offset = obstack_object_size (cpool);
22202
22203 obstack_grow (cpool, &val, sizeof (val));
22204 for (i = 0;
22205 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22206 ++i)
22207 {
22208 val = MAYBE_SWAP (iter);
22209 obstack_grow (cpool, &val, sizeof (val));
22210 }
22211 }
22212 else
22213 {
22214 struct symtab_index_entry *old_entry = *slot;
22215 entry->index_offset = old_entry->index_offset;
22216 entry = old_entry;
22217 }
22218 return entry->index_offset;
22219 }
22220
22221 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22222 constant pool entries going into the obstack CPOOL. */
22223
22224 static void
22225 write_hash_table (struct mapped_symtab *symtab,
22226 struct obstack *output, struct obstack *cpool)
22227 {
22228 offset_type i;
22229 htab_t symbol_hash_table;
22230 htab_t str_table;
22231
22232 symbol_hash_table = create_symbol_hash_table ();
22233 str_table = create_strtab ();
22234
22235 /* We add all the index vectors to the constant pool first, to
22236 ensure alignment is ok. */
22237 for (i = 0; i < symtab->size; ++i)
22238 {
22239 if (symtab->data[i])
22240 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22241 }
22242
22243 /* Now write out the hash table. */
22244 for (i = 0; i < symtab->size; ++i)
22245 {
22246 offset_type str_off, vec_off;
22247
22248 if (symtab->data[i])
22249 {
22250 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22251 vec_off = symtab->data[i]->index_offset;
22252 }
22253 else
22254 {
22255 /* While 0 is a valid constant pool index, it is not valid
22256 to have 0 for both offsets. */
22257 str_off = 0;
22258 vec_off = 0;
22259 }
22260
22261 str_off = MAYBE_SWAP (str_off);
22262 vec_off = MAYBE_SWAP (vec_off);
22263
22264 obstack_grow (output, &str_off, sizeof (str_off));
22265 obstack_grow (output, &vec_off, sizeof (vec_off));
22266 }
22267
22268 htab_delete (str_table);
22269 htab_delete (symbol_hash_table);
22270 }
22271
22272 /* Struct to map psymtab to CU index in the index file. */
22273 struct psymtab_cu_index_map
22274 {
22275 struct partial_symtab *psymtab;
22276 unsigned int cu_index;
22277 };
22278
22279 static hashval_t
22280 hash_psymtab_cu_index (const void *item)
22281 {
22282 const struct psymtab_cu_index_map *map = item;
22283
22284 return htab_hash_pointer (map->psymtab);
22285 }
22286
22287 static int
22288 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22289 {
22290 const struct psymtab_cu_index_map *lhs = item_lhs;
22291 const struct psymtab_cu_index_map *rhs = item_rhs;
22292
22293 return lhs->psymtab == rhs->psymtab;
22294 }
22295
22296 /* Helper struct for building the address table. */
22297 struct addrmap_index_data
22298 {
22299 struct objfile *objfile;
22300 struct obstack *addr_obstack;
22301 htab_t cu_index_htab;
22302
22303 /* Non-zero if the previous_* fields are valid.
22304 We can't write an entry until we see the next entry (since it is only then
22305 that we know the end of the entry). */
22306 int previous_valid;
22307 /* Index of the CU in the table of all CUs in the index file. */
22308 unsigned int previous_cu_index;
22309 /* Start address of the CU. */
22310 CORE_ADDR previous_cu_start;
22311 };
22312
22313 /* Write an address entry to OBSTACK. */
22314
22315 static void
22316 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22317 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22318 {
22319 offset_type cu_index_to_write;
22320 gdb_byte addr[8];
22321 CORE_ADDR baseaddr;
22322
22323 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22324
22325 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22326 obstack_grow (obstack, addr, 8);
22327 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22328 obstack_grow (obstack, addr, 8);
22329 cu_index_to_write = MAYBE_SWAP (cu_index);
22330 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22331 }
22332
22333 /* Worker function for traversing an addrmap to build the address table. */
22334
22335 static int
22336 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22337 {
22338 struct addrmap_index_data *data = datap;
22339 struct partial_symtab *pst = obj;
22340
22341 if (data->previous_valid)
22342 add_address_entry (data->objfile, data->addr_obstack,
22343 data->previous_cu_start, start_addr,
22344 data->previous_cu_index);
22345
22346 data->previous_cu_start = start_addr;
22347 if (pst != NULL)
22348 {
22349 struct psymtab_cu_index_map find_map, *map;
22350 find_map.psymtab = pst;
22351 map = htab_find (data->cu_index_htab, &find_map);
22352 gdb_assert (map != NULL);
22353 data->previous_cu_index = map->cu_index;
22354 data->previous_valid = 1;
22355 }
22356 else
22357 data->previous_valid = 0;
22358
22359 return 0;
22360 }
22361
22362 /* Write OBJFILE's address map to OBSTACK.
22363 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22364 in the index file. */
22365
22366 static void
22367 write_address_map (struct objfile *objfile, struct obstack *obstack,
22368 htab_t cu_index_htab)
22369 {
22370 struct addrmap_index_data addrmap_index_data;
22371
22372 /* When writing the address table, we have to cope with the fact that
22373 the addrmap iterator only provides the start of a region; we have to
22374 wait until the next invocation to get the start of the next region. */
22375
22376 addrmap_index_data.objfile = objfile;
22377 addrmap_index_data.addr_obstack = obstack;
22378 addrmap_index_data.cu_index_htab = cu_index_htab;
22379 addrmap_index_data.previous_valid = 0;
22380
22381 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22382 &addrmap_index_data);
22383
22384 /* It's highly unlikely the last entry (end address = 0xff...ff)
22385 is valid, but we should still handle it.
22386 The end address is recorded as the start of the next region, but that
22387 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22388 anyway. */
22389 if (addrmap_index_data.previous_valid)
22390 add_address_entry (objfile, obstack,
22391 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22392 addrmap_index_data.previous_cu_index);
22393 }
22394
22395 /* Return the symbol kind of PSYM. */
22396
22397 static gdb_index_symbol_kind
22398 symbol_kind (struct partial_symbol *psym)
22399 {
22400 domain_enum domain = PSYMBOL_DOMAIN (psym);
22401 enum address_class aclass = PSYMBOL_CLASS (psym);
22402
22403 switch (domain)
22404 {
22405 case VAR_DOMAIN:
22406 switch (aclass)
22407 {
22408 case LOC_BLOCK:
22409 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22410 case LOC_TYPEDEF:
22411 return GDB_INDEX_SYMBOL_KIND_TYPE;
22412 case LOC_COMPUTED:
22413 case LOC_CONST_BYTES:
22414 case LOC_OPTIMIZED_OUT:
22415 case LOC_STATIC:
22416 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22417 case LOC_CONST:
22418 /* Note: It's currently impossible to recognize psyms as enum values
22419 short of reading the type info. For now punt. */
22420 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22421 default:
22422 /* There are other LOC_FOO values that one might want to classify
22423 as variables, but dwarf2read.c doesn't currently use them. */
22424 return GDB_INDEX_SYMBOL_KIND_OTHER;
22425 }
22426 case STRUCT_DOMAIN:
22427 return GDB_INDEX_SYMBOL_KIND_TYPE;
22428 default:
22429 return GDB_INDEX_SYMBOL_KIND_OTHER;
22430 }
22431 }
22432
22433 /* Add a list of partial symbols to SYMTAB. */
22434
22435 static void
22436 write_psymbols (struct mapped_symtab *symtab,
22437 htab_t psyms_seen,
22438 struct partial_symbol **psymp,
22439 int count,
22440 offset_type cu_index,
22441 int is_static)
22442 {
22443 for (; count-- > 0; ++psymp)
22444 {
22445 struct partial_symbol *psym = *psymp;
22446 void **slot;
22447
22448 if (SYMBOL_LANGUAGE (psym) == language_ada)
22449 error (_("Ada is not currently supported by the index"));
22450
22451 /* Only add a given psymbol once. */
22452 slot = htab_find_slot (psyms_seen, psym, INSERT);
22453 if (!*slot)
22454 {
22455 gdb_index_symbol_kind kind = symbol_kind (psym);
22456
22457 *slot = psym;
22458 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22459 is_static, kind, cu_index);
22460 }
22461 }
22462 }
22463
22464 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22465 exception if there is an error. */
22466
22467 static void
22468 write_obstack (FILE *file, struct obstack *obstack)
22469 {
22470 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22471 file)
22472 != obstack_object_size (obstack))
22473 error (_("couldn't data write to file"));
22474 }
22475
22476 /* Unlink a file if the argument is not NULL. */
22477
22478 static void
22479 unlink_if_set (void *p)
22480 {
22481 char **filename = p;
22482 if (*filename)
22483 unlink (*filename);
22484 }
22485
22486 /* A helper struct used when iterating over debug_types. */
22487 struct signatured_type_index_data
22488 {
22489 struct objfile *objfile;
22490 struct mapped_symtab *symtab;
22491 struct obstack *types_list;
22492 htab_t psyms_seen;
22493 int cu_index;
22494 };
22495
22496 /* A helper function that writes a single signatured_type to an
22497 obstack. */
22498
22499 static int
22500 write_one_signatured_type (void **slot, void *d)
22501 {
22502 struct signatured_type_index_data *info = d;
22503 struct signatured_type *entry = (struct signatured_type *) *slot;
22504 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22505 gdb_byte val[8];
22506
22507 write_psymbols (info->symtab,
22508 info->psyms_seen,
22509 info->objfile->global_psymbols.list
22510 + psymtab->globals_offset,
22511 psymtab->n_global_syms, info->cu_index,
22512 0);
22513 write_psymbols (info->symtab,
22514 info->psyms_seen,
22515 info->objfile->static_psymbols.list
22516 + psymtab->statics_offset,
22517 psymtab->n_static_syms, info->cu_index,
22518 1);
22519
22520 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22521 entry->per_cu.offset.sect_off);
22522 obstack_grow (info->types_list, val, 8);
22523 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22524 entry->type_offset_in_tu.cu_off);
22525 obstack_grow (info->types_list, val, 8);
22526 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22527 obstack_grow (info->types_list, val, 8);
22528
22529 ++info->cu_index;
22530
22531 return 1;
22532 }
22533
22534 /* Recurse into all "included" dependencies and write their symbols as
22535 if they appeared in this psymtab. */
22536
22537 static void
22538 recursively_write_psymbols (struct objfile *objfile,
22539 struct partial_symtab *psymtab,
22540 struct mapped_symtab *symtab,
22541 htab_t psyms_seen,
22542 offset_type cu_index)
22543 {
22544 int i;
22545
22546 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22547 if (psymtab->dependencies[i]->user != NULL)
22548 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22549 symtab, psyms_seen, cu_index);
22550
22551 write_psymbols (symtab,
22552 psyms_seen,
22553 objfile->global_psymbols.list + psymtab->globals_offset,
22554 psymtab->n_global_syms, cu_index,
22555 0);
22556 write_psymbols (symtab,
22557 psyms_seen,
22558 objfile->static_psymbols.list + psymtab->statics_offset,
22559 psymtab->n_static_syms, cu_index,
22560 1);
22561 }
22562
22563 /* Create an index file for OBJFILE in the directory DIR. */
22564
22565 static void
22566 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22567 {
22568 struct cleanup *cleanup;
22569 char *filename, *cleanup_filename;
22570 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22571 struct obstack cu_list, types_cu_list;
22572 int i;
22573 FILE *out_file;
22574 struct mapped_symtab *symtab;
22575 offset_type val, size_of_contents, total_len;
22576 struct stat st;
22577 htab_t psyms_seen;
22578 htab_t cu_index_htab;
22579 struct psymtab_cu_index_map *psymtab_cu_index_map;
22580
22581 if (dwarf2_per_objfile->using_index)
22582 error (_("Cannot use an index to create the index"));
22583
22584 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22585 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22586
22587 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22588 return;
22589
22590 if (stat (objfile_name (objfile), &st) < 0)
22591 perror_with_name (objfile_name (objfile));
22592
22593 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22594 INDEX_SUFFIX, (char *) NULL);
22595 cleanup = make_cleanup (xfree, filename);
22596
22597 out_file = gdb_fopen_cloexec (filename, "wb");
22598 if (!out_file)
22599 error (_("Can't open `%s' for writing"), filename);
22600
22601 cleanup_filename = filename;
22602 make_cleanup (unlink_if_set, &cleanup_filename);
22603
22604 symtab = create_mapped_symtab ();
22605 make_cleanup (cleanup_mapped_symtab, symtab);
22606
22607 obstack_init (&addr_obstack);
22608 make_cleanup_obstack_free (&addr_obstack);
22609
22610 obstack_init (&cu_list);
22611 make_cleanup_obstack_free (&cu_list);
22612
22613 obstack_init (&types_cu_list);
22614 make_cleanup_obstack_free (&types_cu_list);
22615
22616 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22617 NULL, xcalloc, xfree);
22618 make_cleanup_htab_delete (psyms_seen);
22619
22620 /* While we're scanning CU's create a table that maps a psymtab pointer
22621 (which is what addrmap records) to its index (which is what is recorded
22622 in the index file). This will later be needed to write the address
22623 table. */
22624 cu_index_htab = htab_create_alloc (100,
22625 hash_psymtab_cu_index,
22626 eq_psymtab_cu_index,
22627 NULL, xcalloc, xfree);
22628 make_cleanup_htab_delete (cu_index_htab);
22629 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22630 xmalloc (sizeof (struct psymtab_cu_index_map)
22631 * dwarf2_per_objfile->n_comp_units);
22632 make_cleanup (xfree, psymtab_cu_index_map);
22633
22634 /* The CU list is already sorted, so we don't need to do additional
22635 work here. Also, the debug_types entries do not appear in
22636 all_comp_units, but only in their own hash table. */
22637 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22638 {
22639 struct dwarf2_per_cu_data *per_cu
22640 = dwarf2_per_objfile->all_comp_units[i];
22641 struct partial_symtab *psymtab = per_cu->v.psymtab;
22642 gdb_byte val[8];
22643 struct psymtab_cu_index_map *map;
22644 void **slot;
22645
22646 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22647 It may be referenced from a local scope but in such case it does not
22648 need to be present in .gdb_index. */
22649 if (psymtab == NULL)
22650 continue;
22651
22652 if (psymtab->user == NULL)
22653 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22654
22655 map = &psymtab_cu_index_map[i];
22656 map->psymtab = psymtab;
22657 map->cu_index = i;
22658 slot = htab_find_slot (cu_index_htab, map, INSERT);
22659 gdb_assert (slot != NULL);
22660 gdb_assert (*slot == NULL);
22661 *slot = map;
22662
22663 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22664 per_cu->offset.sect_off);
22665 obstack_grow (&cu_list, val, 8);
22666 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22667 obstack_grow (&cu_list, val, 8);
22668 }
22669
22670 /* Dump the address map. */
22671 write_address_map (objfile, &addr_obstack, cu_index_htab);
22672
22673 /* Write out the .debug_type entries, if any. */
22674 if (dwarf2_per_objfile->signatured_types)
22675 {
22676 struct signatured_type_index_data sig_data;
22677
22678 sig_data.objfile = objfile;
22679 sig_data.symtab = symtab;
22680 sig_data.types_list = &types_cu_list;
22681 sig_data.psyms_seen = psyms_seen;
22682 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22683 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22684 write_one_signatured_type, &sig_data);
22685 }
22686
22687 /* Now that we've processed all symbols we can shrink their cu_indices
22688 lists. */
22689 uniquify_cu_indices (symtab);
22690
22691 obstack_init (&constant_pool);
22692 make_cleanup_obstack_free (&constant_pool);
22693 obstack_init (&symtab_obstack);
22694 make_cleanup_obstack_free (&symtab_obstack);
22695 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22696
22697 obstack_init (&contents);
22698 make_cleanup_obstack_free (&contents);
22699 size_of_contents = 6 * sizeof (offset_type);
22700 total_len = size_of_contents;
22701
22702 /* The version number. */
22703 val = MAYBE_SWAP (8);
22704 obstack_grow (&contents, &val, sizeof (val));
22705
22706 /* The offset of the CU list from the start of the file. */
22707 val = MAYBE_SWAP (total_len);
22708 obstack_grow (&contents, &val, sizeof (val));
22709 total_len += obstack_object_size (&cu_list);
22710
22711 /* The offset of the types CU list from the start of the file. */
22712 val = MAYBE_SWAP (total_len);
22713 obstack_grow (&contents, &val, sizeof (val));
22714 total_len += obstack_object_size (&types_cu_list);
22715
22716 /* The offset of the address table from the start of the file. */
22717 val = MAYBE_SWAP (total_len);
22718 obstack_grow (&contents, &val, sizeof (val));
22719 total_len += obstack_object_size (&addr_obstack);
22720
22721 /* The offset of the symbol table from the start of the file. */
22722 val = MAYBE_SWAP (total_len);
22723 obstack_grow (&contents, &val, sizeof (val));
22724 total_len += obstack_object_size (&symtab_obstack);
22725
22726 /* The offset of the constant pool from the start of the file. */
22727 val = MAYBE_SWAP (total_len);
22728 obstack_grow (&contents, &val, sizeof (val));
22729 total_len += obstack_object_size (&constant_pool);
22730
22731 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22732
22733 write_obstack (out_file, &contents);
22734 write_obstack (out_file, &cu_list);
22735 write_obstack (out_file, &types_cu_list);
22736 write_obstack (out_file, &addr_obstack);
22737 write_obstack (out_file, &symtab_obstack);
22738 write_obstack (out_file, &constant_pool);
22739
22740 fclose (out_file);
22741
22742 /* We want to keep the file, so we set cleanup_filename to NULL
22743 here. See unlink_if_set. */
22744 cleanup_filename = NULL;
22745
22746 do_cleanups (cleanup);
22747 }
22748
22749 /* Implementation of the `save gdb-index' command.
22750
22751 Note that the file format used by this command is documented in the
22752 GDB manual. Any changes here must be documented there. */
22753
22754 static void
22755 save_gdb_index_command (char *arg, int from_tty)
22756 {
22757 struct objfile *objfile;
22758
22759 if (!arg || !*arg)
22760 error (_("usage: save gdb-index DIRECTORY"));
22761
22762 ALL_OBJFILES (objfile)
22763 {
22764 struct stat st;
22765
22766 /* If the objfile does not correspond to an actual file, skip it. */
22767 if (stat (objfile_name (objfile), &st) < 0)
22768 continue;
22769
22770 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22771 if (dwarf2_per_objfile)
22772 {
22773 volatile struct gdb_exception except;
22774
22775 TRY_CATCH (except, RETURN_MASK_ERROR)
22776 {
22777 write_psymtabs_to_index (objfile, arg);
22778 }
22779 if (except.reason < 0)
22780 exception_fprintf (gdb_stderr, except,
22781 _("Error while writing index for `%s': "),
22782 objfile_name (objfile));
22783 }
22784 }
22785 }
22786
22787 \f
22788
22789 int dwarf2_always_disassemble;
22790
22791 static void
22792 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22793 struct cmd_list_element *c, const char *value)
22794 {
22795 fprintf_filtered (file,
22796 _("Whether to always disassemble "
22797 "DWARF expressions is %s.\n"),
22798 value);
22799 }
22800
22801 static void
22802 show_check_physname (struct ui_file *file, int from_tty,
22803 struct cmd_list_element *c, const char *value)
22804 {
22805 fprintf_filtered (file,
22806 _("Whether to check \"physname\" is %s.\n"),
22807 value);
22808 }
22809
22810 void _initialize_dwarf2_read (void);
22811
22812 void
22813 _initialize_dwarf2_read (void)
22814 {
22815 struct cmd_list_element *c;
22816
22817 dwarf2_objfile_data_key
22818 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22819
22820 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22821 Set DWARF 2 specific variables.\n\
22822 Configure DWARF 2 variables such as the cache size"),
22823 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22824 0/*allow-unknown*/, &maintenance_set_cmdlist);
22825
22826 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22827 Show DWARF 2 specific variables\n\
22828 Show DWARF 2 variables such as the cache size"),
22829 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22830 0/*allow-unknown*/, &maintenance_show_cmdlist);
22831
22832 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22833 &dwarf2_max_cache_age, _("\
22834 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22835 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22836 A higher limit means that cached compilation units will be stored\n\
22837 in memory longer, and more total memory will be used. Zero disables\n\
22838 caching, which can slow down startup."),
22839 NULL,
22840 show_dwarf2_max_cache_age,
22841 &set_dwarf2_cmdlist,
22842 &show_dwarf2_cmdlist);
22843
22844 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22845 &dwarf2_always_disassemble, _("\
22846 Set whether `info address' always disassembles DWARF expressions."), _("\
22847 Show whether `info address' always disassembles DWARF expressions."), _("\
22848 When enabled, DWARF expressions are always printed in an assembly-like\n\
22849 syntax. When disabled, expressions will be printed in a more\n\
22850 conversational style, when possible."),
22851 NULL,
22852 show_dwarf2_always_disassemble,
22853 &set_dwarf2_cmdlist,
22854 &show_dwarf2_cmdlist);
22855
22856 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22857 Set debugging of the dwarf2 reader."), _("\
22858 Show debugging of the dwarf2 reader."), _("\
22859 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22860 reading and symtab expansion. A value of 1 (one) provides basic\n\
22861 information. A value greater than 1 provides more verbose information."),
22862 NULL,
22863 NULL,
22864 &setdebuglist, &showdebuglist);
22865
22866 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22867 Set debugging of the dwarf2 DIE reader."), _("\
22868 Show debugging of the dwarf2 DIE reader."), _("\
22869 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22870 The value is the maximum depth to print."),
22871 NULL,
22872 NULL,
22873 &setdebuglist, &showdebuglist);
22874
22875 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22876 Set cross-checking of \"physname\" code against demangler."), _("\
22877 Show cross-checking of \"physname\" code against demangler."), _("\
22878 When enabled, GDB's internal \"physname\" code is checked against\n\
22879 the demangler."),
22880 NULL, show_check_physname,
22881 &setdebuglist, &showdebuglist);
22882
22883 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22884 no_class, &use_deprecated_index_sections, _("\
22885 Set whether to use deprecated gdb_index sections."), _("\
22886 Show whether to use deprecated gdb_index sections."), _("\
22887 When enabled, deprecated .gdb_index sections are used anyway.\n\
22888 Normally they are ignored either because of a missing feature or\n\
22889 performance issue.\n\
22890 Warning: This option must be enabled before gdb reads the file."),
22891 NULL,
22892 NULL,
22893 &setlist, &showlist);
22894
22895 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22896 _("\
22897 Save a gdb-index file.\n\
22898 Usage: save gdb-index DIRECTORY"),
22899 &save_cmdlist);
22900 set_cmd_completer (c, filename_completer);
22901
22902 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22903 &dwarf2_locexpr_funcs);
22904 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22905 &dwarf2_loclist_funcs);
22906
22907 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22908 &dwarf2_block_frame_base_locexpr_funcs);
22909 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22910 &dwarf2_block_frame_base_loclist_funcs);
22911 }
This page took 0.646324 seconds and 4 git commands to generate.