* ppc-tdep.h (ppc_num_srs): New enum constant.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004
4 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support in dwarfread.c
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or (at
18 your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 59 Temple Place - Suite 330,
28 Boston, MA 02111-1307, USA. */
29
30 #include "defs.h"
31 #include "bfd.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "elf/dwarf2.h"
36 #include "buildsym.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47 #include "hashtab.h"
48
49 #include <fcntl.h>
50 #include "gdb_string.h"
51 #include "gdb_assert.h"
52 #include <sys/types.h>
53
54 /* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
68 #ifndef DWARF2_REG_TO_REGNUM
69 #define DWARF2_REG_TO_REGNUM(REG) (REG)
70 #endif
71
72 #if 0
73 /* .debug_info header for a compilation unit
74 Because of alignment constraints, this structure has padding and cannot
75 be mapped directly onto the beginning of the .debug_info section. */
76 typedef struct comp_unit_header
77 {
78 unsigned int length; /* length of the .debug_info
79 contribution */
80 unsigned short version; /* version number -- 2 for DWARF
81 version 2 */
82 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
83 unsigned char addr_size; /* byte size of an address -- 4 */
84 }
85 _COMP_UNIT_HEADER;
86 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
87 #endif
88
89 /* .debug_pubnames header
90 Because of alignment constraints, this structure has padding and cannot
91 be mapped directly onto the beginning of the .debug_info section. */
92 typedef struct pubnames_header
93 {
94 unsigned int length; /* length of the .debug_pubnames
95 contribution */
96 unsigned char version; /* version number -- 2 for DWARF
97 version 2 */
98 unsigned int info_offset; /* offset into .debug_info section */
99 unsigned int info_size; /* byte size of .debug_info section
100 portion */
101 }
102 _PUBNAMES_HEADER;
103 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
104
105 /* .debug_pubnames header
106 Because of alignment constraints, this structure has padding and cannot
107 be mapped directly onto the beginning of the .debug_info section. */
108 typedef struct aranges_header
109 {
110 unsigned int length; /* byte len of the .debug_aranges
111 contribution */
112 unsigned short version; /* version number -- 2 for DWARF
113 version 2 */
114 unsigned int info_offset; /* offset into .debug_info section */
115 unsigned char addr_size; /* byte size of an address */
116 unsigned char seg_size; /* byte size of segment descriptor */
117 }
118 _ARANGES_HEADER;
119 #define _ACTUAL_ARANGES_HEADER_SIZE 12
120
121 /* .debug_line statement program prologue
122 Because of alignment constraints, this structure has padding and cannot
123 be mapped directly onto the beginning of the .debug_info section. */
124 typedef struct statement_prologue
125 {
126 unsigned int total_length; /* byte length of the statement
127 information */
128 unsigned short version; /* version number -- 2 for DWARF
129 version 2 */
130 unsigned int prologue_length; /* # bytes between prologue &
131 stmt program */
132 unsigned char minimum_instruction_length; /* byte size of
133 smallest instr */
134 unsigned char default_is_stmt; /* initial value of is_stmt
135 register */
136 char line_base;
137 unsigned char line_range;
138 unsigned char opcode_base; /* number assigned to first special
139 opcode */
140 unsigned char *standard_opcode_lengths;
141 }
142 _STATEMENT_PROLOGUE;
143
144 static const struct objfile_data *dwarf2_objfile_data_key;
145
146 struct dwarf2_per_objfile
147 {
148 /* Sizes of debugging sections. */
149 unsigned int info_size;
150 unsigned int abbrev_size;
151 unsigned int line_size;
152 unsigned int pubnames_size;
153 unsigned int aranges_size;
154 unsigned int loc_size;
155 unsigned int macinfo_size;
156 unsigned int str_size;
157 unsigned int ranges_size;
158 unsigned int frame_size;
159 unsigned int eh_frame_size;
160
161 /* Loaded data from the sections. */
162 char *info_buffer;
163 char *abbrev_buffer;
164 char *line_buffer;
165 char *str_buffer;
166 char *macinfo_buffer;
167 char *ranges_buffer;
168 char *loc_buffer;
169 };
170
171 static struct dwarf2_per_objfile *dwarf2_per_objfile;
172
173 static asection *dwarf_info_section;
174 static asection *dwarf_abbrev_section;
175 static asection *dwarf_line_section;
176 static asection *dwarf_pubnames_section;
177 static asection *dwarf_aranges_section;
178 static asection *dwarf_loc_section;
179 static asection *dwarf_macinfo_section;
180 static asection *dwarf_str_section;
181 static asection *dwarf_ranges_section;
182 asection *dwarf_frame_section;
183 asection *dwarf_eh_frame_section;
184
185 /* names of the debugging sections */
186
187 #define INFO_SECTION ".debug_info"
188 #define ABBREV_SECTION ".debug_abbrev"
189 #define LINE_SECTION ".debug_line"
190 #define PUBNAMES_SECTION ".debug_pubnames"
191 #define ARANGES_SECTION ".debug_aranges"
192 #define LOC_SECTION ".debug_loc"
193 #define MACINFO_SECTION ".debug_macinfo"
194 #define STR_SECTION ".debug_str"
195 #define RANGES_SECTION ".debug_ranges"
196 #define FRAME_SECTION ".debug_frame"
197 #define EH_FRAME_SECTION ".eh_frame"
198
199 /* local data types */
200
201 /* We hold several abbreviation tables in memory at the same time. */
202 #ifndef ABBREV_HASH_SIZE
203 #define ABBREV_HASH_SIZE 121
204 #endif
205
206 /* The data in a compilation unit header, after target2host
207 translation, looks like this. */
208 struct comp_unit_head
209 {
210 unsigned long length;
211 short version;
212 unsigned int abbrev_offset;
213 unsigned char addr_size;
214 unsigned char signed_addr_p;
215 unsigned int offset_size; /* size of file offsets; either 4 or 8 */
216 unsigned int initial_length_size; /* size of the length field; either
217 4 or 12 */
218
219 /* Offset to the first byte of this compilation unit header in the
220 * .debug_info section, for resolving relative reference dies. */
221
222 unsigned int offset;
223
224 /* Pointer to this compilation unit header in the .debug_info
225 * section */
226
227 char *cu_head_ptr;
228
229 /* Pointer to the first die of this compilatio unit. This will
230 * be the first byte following the compilation unit header. */
231
232 char *first_die_ptr;
233
234 /* Pointer to the next compilation unit header in the program. */
235
236 struct comp_unit_head *next;
237
238 /* Base address of this compilation unit. */
239
240 CORE_ADDR base_address;
241
242 /* Non-zero if base_address has been set. */
243
244 int base_known;
245 };
246
247 /* Internal state when decoding a particular compilation unit. */
248 struct dwarf2_cu
249 {
250 /* The objfile containing this compilation unit. */
251 struct objfile *objfile;
252
253 /* The header of the compilation unit.
254
255 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
256 should logically be moved to the dwarf2_cu structure. */
257 struct comp_unit_head header;
258
259 struct function_range *first_fn, *last_fn, *cached_fn;
260
261 /* The language we are debugging. */
262 enum language language;
263 const struct language_defn *language_defn;
264
265 /* The generic symbol table building routines have separate lists for
266 file scope symbols and all all other scopes (local scopes). So
267 we need to select the right one to pass to add_symbol_to_list().
268 We do it by keeping a pointer to the correct list in list_in_scope.
269
270 FIXME: The original dwarf code just treated the file scope as the
271 first local scope, and all other local scopes as nested local
272 scopes, and worked fine. Check to see if we really need to
273 distinguish these in buildsym.c. */
274 struct pending **list_in_scope;
275
276 /* Maintain an array of referenced fundamental types for the current
277 compilation unit being read. For DWARF version 1, we have to construct
278 the fundamental types on the fly, since no information about the
279 fundamental types is supplied. Each such fundamental type is created by
280 calling a language dependent routine to create the type, and then a
281 pointer to that type is then placed in the array at the index specified
282 by it's FT_<TYPENAME> value. The array has a fixed size set by the
283 FT_NUM_MEMBERS compile time constant, which is the number of predefined
284 fundamental types gdb knows how to construct. */
285 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
286
287 /* DWARF abbreviation table associated with this compilation unit. */
288 struct abbrev_info **dwarf2_abbrevs;
289
290 /* Storage for the abbrev table. */
291 struct obstack abbrev_obstack;
292
293 /* Hash table holding all the loaded partial DIEs. */
294 htab_t partial_dies;
295
296 /* Storage for things with the same lifetime as this read-in compilation
297 unit, including partial DIEs. */
298 struct obstack comp_unit_obstack;
299
300 /* This flag will be set if this compilation unit includes any
301 DW_TAG_namespace DIEs. If we know that there are explicit
302 DIEs for namespaces, we don't need to try to infer them
303 from mangled names. */
304 unsigned int has_namespace_info : 1;
305 };
306
307 /* The line number information for a compilation unit (found in the
308 .debug_line section) begins with a "statement program header",
309 which contains the following information. */
310 struct line_header
311 {
312 unsigned int total_length;
313 unsigned short version;
314 unsigned int header_length;
315 unsigned char minimum_instruction_length;
316 unsigned char default_is_stmt;
317 int line_base;
318 unsigned char line_range;
319 unsigned char opcode_base;
320
321 /* standard_opcode_lengths[i] is the number of operands for the
322 standard opcode whose value is i. This means that
323 standard_opcode_lengths[0] is unused, and the last meaningful
324 element is standard_opcode_lengths[opcode_base - 1]. */
325 unsigned char *standard_opcode_lengths;
326
327 /* The include_directories table. NOTE! These strings are not
328 allocated with xmalloc; instead, they are pointers into
329 debug_line_buffer. If you try to free them, `free' will get
330 indigestion. */
331 unsigned int num_include_dirs, include_dirs_size;
332 char **include_dirs;
333
334 /* The file_names table. NOTE! These strings are not allocated
335 with xmalloc; instead, they are pointers into debug_line_buffer.
336 Don't try to free them directly. */
337 unsigned int num_file_names, file_names_size;
338 struct file_entry
339 {
340 char *name;
341 unsigned int dir_index;
342 unsigned int mod_time;
343 unsigned int length;
344 int included_p; /* Non-zero if referenced by the Line Number Program. */
345 } *file_names;
346
347 /* The start and end of the statement program following this
348 header. These point into dwarf2_per_objfile->line_buffer. */
349 char *statement_program_start, *statement_program_end;
350 };
351
352 /* When we construct a partial symbol table entry we only
353 need this much information. */
354 struct partial_die_info
355 {
356 /* Offset of this DIE. */
357 unsigned int offset;
358
359 /* DWARF-2 tag for this DIE. */
360 ENUM_BITFIELD(dwarf_tag) tag : 16;
361
362 /* Language code associated with this DIE. This is only used
363 for the compilation unit DIE. */
364 unsigned int language : 8;
365
366 /* Assorted flags describing the data found in this DIE. */
367 unsigned int has_children : 1;
368 unsigned int is_external : 1;
369 unsigned int is_declaration : 1;
370 unsigned int has_type : 1;
371 unsigned int has_specification : 1;
372 unsigned int has_stmt_list : 1;
373 unsigned int has_pc_info : 1;
374
375 /* Flag set if the SCOPE field of this structure has been
376 computed. */
377 unsigned int scope_set : 1;
378
379 /* The name of this DIE. Normally the value of DW_AT_name, but
380 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
381 other fashion. */
382 char *name;
383 char *dirname;
384
385 /* The scope to prepend to our children. This is generally
386 allocated on the comp_unit_obstack, so will disappear
387 when this compilation unit leaves the cache. */
388 char *scope;
389
390 /* The location description associated with this DIE, if any. */
391 struct dwarf_block *locdesc;
392
393 /* If HAS_PC_INFO, the PC range associated with this DIE. */
394 CORE_ADDR lowpc;
395 CORE_ADDR highpc;
396
397 /* Pointer into the info_buffer pointing at the target of
398 DW_AT_sibling, if any. */
399 char *sibling;
400
401 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
402 DW_AT_specification (or DW_AT_abstract_origin or
403 DW_AT_extension). */
404 unsigned int spec_offset;
405
406 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
407 unsigned int line_offset;
408
409 /* Pointers to this DIE's parent, first child, and next sibling,
410 if any. */
411 struct partial_die_info *die_parent, *die_child, *die_sibling;
412 };
413
414 /* This data structure holds the information of an abbrev. */
415 struct abbrev_info
416 {
417 unsigned int number; /* number identifying abbrev */
418 enum dwarf_tag tag; /* dwarf tag */
419 unsigned short has_children; /* boolean */
420 unsigned short num_attrs; /* number of attributes */
421 struct attr_abbrev *attrs; /* an array of attribute descriptions */
422 struct abbrev_info *next; /* next in chain */
423 };
424
425 struct attr_abbrev
426 {
427 enum dwarf_attribute name;
428 enum dwarf_form form;
429 };
430
431 /* This data structure holds a complete die structure. */
432 struct die_info
433 {
434 enum dwarf_tag tag; /* Tag indicating type of die */
435 unsigned int abbrev; /* Abbrev number */
436 unsigned int offset; /* Offset in .debug_info section */
437 unsigned int num_attrs; /* Number of attributes */
438 struct attribute *attrs; /* An array of attributes */
439 struct die_info *next_ref; /* Next die in ref hash table */
440
441 /* The dies in a compilation unit form an n-ary tree. PARENT
442 points to this die's parent; CHILD points to the first child of
443 this node; and all the children of a given node are chained
444 together via their SIBLING fields, terminated by a die whose
445 tag is zero. */
446 struct die_info *child; /* Its first child, if any. */
447 struct die_info *sibling; /* Its next sibling, if any. */
448 struct die_info *parent; /* Its parent, if any. */
449
450 struct type *type; /* Cached type information */
451 };
452
453 /* Attributes have a name and a value */
454 struct attribute
455 {
456 enum dwarf_attribute name;
457 enum dwarf_form form;
458 union
459 {
460 char *str;
461 struct dwarf_block *blk;
462 unsigned long unsnd;
463 long int snd;
464 CORE_ADDR addr;
465 }
466 u;
467 };
468
469 struct function_range
470 {
471 const char *name;
472 CORE_ADDR lowpc, highpc;
473 int seen_line;
474 struct function_range *next;
475 };
476
477 /* Get at parts of an attribute structure */
478
479 #define DW_STRING(attr) ((attr)->u.str)
480 #define DW_UNSND(attr) ((attr)->u.unsnd)
481 #define DW_BLOCK(attr) ((attr)->u.blk)
482 #define DW_SND(attr) ((attr)->u.snd)
483 #define DW_ADDR(attr) ((attr)->u.addr)
484
485 /* Blocks are a bunch of untyped bytes. */
486 struct dwarf_block
487 {
488 unsigned int size;
489 char *data;
490 };
491
492 #ifndef ATTR_ALLOC_CHUNK
493 #define ATTR_ALLOC_CHUNK 4
494 #endif
495
496 /* A hash table of die offsets for following references. */
497 #ifndef REF_HASH_SIZE
498 #define REF_HASH_SIZE 1021
499 #endif
500
501 static struct die_info *die_ref_table[REF_HASH_SIZE];
502
503 /* Allocate fields for structs, unions and enums in this size. */
504 #ifndef DW_FIELD_ALLOC_CHUNK
505 #define DW_FIELD_ALLOC_CHUNK 4
506 #endif
507
508 /* A zeroed version of a partial die for initialization purposes. */
509 static struct partial_die_info zeroed_partial_die;
510
511 /* FIXME: decode_locdesc sets these variables to describe the location
512 to the caller. These ought to be a structure or something. If
513 none of the flags are set, the object lives at the address returned
514 by decode_locdesc. */
515
516 static int isreg; /* Object lives in register.
517 decode_locdesc's return value is
518 the register number. */
519
520 /* We put a pointer to this structure in the read_symtab_private field
521 of the psymtab. */
522
523 struct dwarf2_pinfo
524 {
525 /* Offset in .debug_info for this compilation unit. */
526
527 unsigned long dwarf_info_offset;
528 };
529
530 #define PST_PRIVATE(p) ((struct dwarf2_pinfo *)(p)->read_symtab_private)
531 #define DWARF_INFO_OFFSET(p) (PST_PRIVATE(p)->dwarf_info_offset)
532
533 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
534 but this would require a corresponding change in unpack_field_as_long
535 and friends. */
536 static int bits_per_byte = 8;
537
538 /* The routines that read and process dies for a C struct or C++ class
539 pass lists of data member fields and lists of member function fields
540 in an instance of a field_info structure, as defined below. */
541 struct field_info
542 {
543 /* List of data member and baseclasses fields. */
544 struct nextfield
545 {
546 struct nextfield *next;
547 int accessibility;
548 int virtuality;
549 struct field field;
550 }
551 *fields;
552
553 /* Number of fields. */
554 int nfields;
555
556 /* Number of baseclasses. */
557 int nbaseclasses;
558
559 /* Set if the accesibility of one of the fields is not public. */
560 int non_public_fields;
561
562 /* Member function fields array, entries are allocated in the order they
563 are encountered in the object file. */
564 struct nextfnfield
565 {
566 struct nextfnfield *next;
567 struct fn_field fnfield;
568 }
569 *fnfields;
570
571 /* Member function fieldlist array, contains name of possibly overloaded
572 member function, number of overloaded member functions and a pointer
573 to the head of the member function field chain. */
574 struct fnfieldlist
575 {
576 char *name;
577 int length;
578 struct nextfnfield *head;
579 }
580 *fnfieldlists;
581
582 /* Number of entries in the fnfieldlists array. */
583 int nfnfields;
584 };
585
586 /* Various complaints about symbol reading that don't abort the process */
587
588 static void
589 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
590 {
591 complaint (&symfile_complaints,
592 "statement list doesn't fit in .debug_line section");
593 }
594
595 static void
596 dwarf2_complex_location_expr_complaint (void)
597 {
598 complaint (&symfile_complaints, "location expression too complex");
599 }
600
601 static void
602 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
603 int arg3)
604 {
605 complaint (&symfile_complaints,
606 "const value length mismatch for '%s', got %d, expected %d", arg1,
607 arg2, arg3);
608 }
609
610 static void
611 dwarf2_macros_too_long_complaint (void)
612 {
613 complaint (&symfile_complaints,
614 "macro info runs off end of `.debug_macinfo' section");
615 }
616
617 static void
618 dwarf2_macro_malformed_definition_complaint (const char *arg1)
619 {
620 complaint (&symfile_complaints,
621 "macro debug info contains a malformed macro definition:\n`%s'",
622 arg1);
623 }
624
625 static void
626 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
627 {
628 complaint (&symfile_complaints,
629 "invalid attribute class or form for '%s' in '%s'", arg1, arg2);
630 }
631
632 /* local function prototypes */
633
634 static void dwarf2_locate_sections (bfd *, asection *, void *);
635
636 #if 0
637 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
638 #endif
639
640 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
641 struct objfile *);
642
643 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
644 struct partial_die_info *,
645 struct partial_symtab *);
646
647 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
648
649 static void scan_partial_symbols (struct partial_die_info *,
650 CORE_ADDR *, CORE_ADDR *,
651 struct dwarf2_cu *);
652
653 static void add_partial_symbol (struct partial_die_info *,
654 struct dwarf2_cu *);
655
656 static int pdi_needs_namespace (enum dwarf_tag tag);
657
658 static void add_partial_namespace (struct partial_die_info *pdi,
659 CORE_ADDR *lowpc, CORE_ADDR *highpc,
660 struct dwarf2_cu *cu);
661
662 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
663 struct dwarf2_cu *cu);
664
665 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
666 char *info_ptr,
667 bfd *abfd,
668 struct dwarf2_cu *cu);
669
670 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
671
672 static void psymtab_to_symtab_1 (struct partial_symtab *);
673
674 char *dwarf2_read_section (struct objfile *, asection *);
675
676 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
677
678 static void dwarf2_free_abbrev_table (void *);
679
680 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
681
682 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
683 struct dwarf2_cu *);
684
685 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
686 struct dwarf2_cu *);
687
688 static char *read_partial_die (struct partial_die_info *,
689 struct abbrev_info *abbrev, unsigned int,
690 bfd *, char *, struct dwarf2_cu *);
691
692 static struct partial_die_info *find_partial_die (unsigned long,
693 struct dwarf2_cu *,
694 struct dwarf2_cu **);
695
696 static void fixup_partial_die (struct partial_die_info *,
697 struct dwarf2_cu *);
698
699 static char *read_full_die (struct die_info **, bfd *, char *,
700 struct dwarf2_cu *, int *);
701
702 static char *read_attribute (struct attribute *, struct attr_abbrev *,
703 bfd *, char *, struct dwarf2_cu *);
704
705 static char *read_attribute_value (struct attribute *, unsigned,
706 bfd *, char *, struct dwarf2_cu *);
707
708 static unsigned int read_1_byte (bfd *, char *);
709
710 static int read_1_signed_byte (bfd *, char *);
711
712 static unsigned int read_2_bytes (bfd *, char *);
713
714 static unsigned int read_4_bytes (bfd *, char *);
715
716 static unsigned long read_8_bytes (bfd *, char *);
717
718 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
719 int *bytes_read);
720
721 static LONGEST read_initial_length (bfd *, char *,
722 struct comp_unit_head *, int *bytes_read);
723
724 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
725 int *bytes_read);
726
727 static char *read_n_bytes (bfd *, char *, unsigned int);
728
729 static char *read_string (bfd *, char *, unsigned int *);
730
731 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
732 unsigned int *);
733
734 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
735
736 static long read_signed_leb128 (bfd *, char *, unsigned int *);
737
738 static char *skip_leb128 (bfd *, char *);
739
740 static void set_cu_language (unsigned int, struct dwarf2_cu *);
741
742 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
743 struct dwarf2_cu *);
744
745 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
746 struct dwarf2_cu *cu);
747
748 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
749
750 static struct die_info *die_specification (struct die_info *die,
751 struct dwarf2_cu *);
752
753 static void free_line_header (struct line_header *lh);
754
755 static void add_file_name (struct line_header *, char *, unsigned int,
756 unsigned int, unsigned int);
757
758 static struct line_header *(dwarf_decode_line_header
759 (unsigned int offset,
760 bfd *abfd, struct dwarf2_cu *cu));
761
762 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
763 struct dwarf2_cu *, struct partial_symtab *);
764
765 static void dwarf2_start_subfile (char *, char *);
766
767 static struct symbol *new_symbol (struct die_info *, struct type *,
768 struct dwarf2_cu *);
769
770 static void dwarf2_const_value (struct attribute *, struct symbol *,
771 struct dwarf2_cu *);
772
773 static void dwarf2_const_value_data (struct attribute *attr,
774 struct symbol *sym,
775 int bits);
776
777 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
778
779 static struct type *die_containing_type (struct die_info *,
780 struct dwarf2_cu *);
781
782 #if 0
783 static struct type *type_at_offset (unsigned int, struct objfile *);
784 #endif
785
786 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
787
788 static void read_type_die (struct die_info *, struct dwarf2_cu *);
789
790 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
791
792 static char *typename_concat (const char *prefix, const char *suffix);
793
794 static void read_typedef (struct die_info *, struct dwarf2_cu *);
795
796 static void read_base_type (struct die_info *, struct dwarf2_cu *);
797
798 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
799
800 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
801
802 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
803
804 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
805
806 static int dwarf2_get_pc_bounds (struct die_info *,
807 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
808
809 static void get_scope_pc_bounds (struct die_info *,
810 CORE_ADDR *, CORE_ADDR *,
811 struct dwarf2_cu *);
812
813 static void dwarf2_add_field (struct field_info *, struct die_info *,
814 struct dwarf2_cu *);
815
816 static void dwarf2_attach_fields_to_type (struct field_info *,
817 struct type *, struct dwarf2_cu *);
818
819 static void dwarf2_add_member_fn (struct field_info *,
820 struct die_info *, struct type *,
821 struct dwarf2_cu *);
822
823 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
824 struct type *, struct dwarf2_cu *);
825
826 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
827
828 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
829
830 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
831
832 static void read_common_block (struct die_info *, struct dwarf2_cu *);
833
834 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
835
836 static const char *namespace_name (struct die_info *die,
837 int *is_anonymous, struct dwarf2_cu *);
838
839 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
840
841 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
842
843 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
844
845 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
846
847 static void read_array_type (struct die_info *, struct dwarf2_cu *);
848
849 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
850
851 static void read_tag_ptr_to_member_type (struct die_info *,
852 struct dwarf2_cu *);
853
854 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
855
856 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
857
858 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
859
860 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
861
862 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
863
864 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
865
866 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
867 struct dwarf2_cu *,
868 char **new_info_ptr,
869 struct die_info *parent);
870
871 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
872 struct dwarf2_cu *,
873 char **new_info_ptr,
874 struct die_info *parent);
875
876 static void free_die_list (struct die_info *);
877
878 static struct cleanup *make_cleanup_free_die_list (struct die_info *);
879
880 static void process_die (struct die_info *, struct dwarf2_cu *);
881
882 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
883
884 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
885
886 static struct die_info *dwarf2_extension (struct die_info *die,
887 struct dwarf2_cu *);
888
889 static char *dwarf_tag_name (unsigned int);
890
891 static char *dwarf_attr_name (unsigned int);
892
893 static char *dwarf_form_name (unsigned int);
894
895 static char *dwarf_stack_op_name (unsigned int);
896
897 static char *dwarf_bool_name (unsigned int);
898
899 static char *dwarf_type_encoding_name (unsigned int);
900
901 #if 0
902 static char *dwarf_cfi_name (unsigned int);
903
904 struct die_info *copy_die (struct die_info *);
905 #endif
906
907 static struct die_info *sibling_die (struct die_info *);
908
909 static void dump_die (struct die_info *);
910
911 static void dump_die_list (struct die_info *);
912
913 static void store_in_ref_table (unsigned int, struct die_info *);
914
915 static void dwarf2_empty_hash_tables (void);
916
917 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
918 struct dwarf2_cu *);
919
920 static int dwarf2_get_attr_constant_value (struct attribute *, int);
921
922 static struct die_info *follow_die_ref (unsigned int);
923
924 static struct type *dwarf2_fundamental_type (struct objfile *, int,
925 struct dwarf2_cu *);
926
927 /* memory allocation interface */
928
929 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
930
931 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
932
933 static struct die_info *dwarf_alloc_die (void);
934
935 static void initialize_cu_func_list (struct dwarf2_cu *);
936
937 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
938 struct dwarf2_cu *);
939
940 static void dwarf_decode_macros (struct line_header *, unsigned int,
941 char *, bfd *, struct dwarf2_cu *);
942
943 static int attr_form_is_block (struct attribute *);
944
945 static void
946 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
947 struct dwarf2_cu *cu);
948
949 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
950 struct dwarf2_cu *cu);
951
952 static void free_stack_comp_unit (void *);
953
954 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
955
956 static void dummy_obstack_deallocate (void *object, void *data);
957
958 static hashval_t partial_die_hash (const void *item);
959
960 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
961
962 /* Try to locate the sections we need for DWARF 2 debugging
963 information and return true if we have enough to do something. */
964
965 int
966 dwarf2_has_info (struct objfile *objfile)
967 {
968 struct dwarf2_per_objfile *data;
969
970 /* Initialize per-objfile state. */
971 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
972 memset (data, 0, sizeof (*data));
973 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
974 dwarf2_per_objfile = data;
975
976 dwarf_info_section = 0;
977 dwarf_abbrev_section = 0;
978 dwarf_line_section = 0;
979 dwarf_str_section = 0;
980 dwarf_macinfo_section = 0;
981 dwarf_frame_section = 0;
982 dwarf_eh_frame_section = 0;
983 dwarf_ranges_section = 0;
984 dwarf_loc_section = 0;
985
986 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
987 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
988 }
989
990 /* This function is mapped across the sections and remembers the
991 offset and size of each of the debugging sections we are interested
992 in. */
993
994 static void
995 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
996 {
997 if (strcmp (sectp->name, INFO_SECTION) == 0)
998 {
999 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1000 dwarf_info_section = sectp;
1001 }
1002 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1003 {
1004 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1005 dwarf_abbrev_section = sectp;
1006 }
1007 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1008 {
1009 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1010 dwarf_line_section = sectp;
1011 }
1012 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1013 {
1014 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1015 dwarf_pubnames_section = sectp;
1016 }
1017 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1018 {
1019 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1020 dwarf_aranges_section = sectp;
1021 }
1022 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1023 {
1024 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1025 dwarf_loc_section = sectp;
1026 }
1027 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1028 {
1029 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1030 dwarf_macinfo_section = sectp;
1031 }
1032 else if (strcmp (sectp->name, STR_SECTION) == 0)
1033 {
1034 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1035 dwarf_str_section = sectp;
1036 }
1037 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1038 {
1039 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1040 dwarf_frame_section = sectp;
1041 }
1042 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1043 {
1044 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1045 if (aflag & SEC_HAS_CONTENTS)
1046 {
1047 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1048 dwarf_eh_frame_section = sectp;
1049 }
1050 }
1051 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1052 {
1053 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1054 dwarf_ranges_section = sectp;
1055 }
1056 }
1057
1058 /* Build a partial symbol table. */
1059
1060 void
1061 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1062 {
1063 /* We definitely need the .debug_info and .debug_abbrev sections */
1064
1065 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1066 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1067
1068 if (dwarf_line_section)
1069 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1070 else
1071 dwarf2_per_objfile->line_buffer = NULL;
1072
1073 if (dwarf_str_section)
1074 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1075 else
1076 dwarf2_per_objfile->str_buffer = NULL;
1077
1078 if (dwarf_macinfo_section)
1079 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1080 dwarf_macinfo_section);
1081 else
1082 dwarf2_per_objfile->macinfo_buffer = NULL;
1083
1084 if (dwarf_ranges_section)
1085 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1086 else
1087 dwarf2_per_objfile->ranges_buffer = NULL;
1088
1089 if (dwarf_loc_section)
1090 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1091 else
1092 dwarf2_per_objfile->loc_buffer = NULL;
1093
1094 if (mainline
1095 || (objfile->global_psymbols.size == 0
1096 && objfile->static_psymbols.size == 0))
1097 {
1098 init_psymbol_list (objfile, 1024);
1099 }
1100
1101 #if 0
1102 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1103 {
1104 /* Things are significantly easier if we have .debug_aranges and
1105 .debug_pubnames sections */
1106
1107 dwarf2_build_psymtabs_easy (objfile, mainline);
1108 }
1109 else
1110 #endif
1111 /* only test this case for now */
1112 {
1113 /* In this case we have to work a bit harder */
1114 dwarf2_build_psymtabs_hard (objfile, mainline);
1115 }
1116 }
1117
1118 #if 0
1119 /* Build the partial symbol table from the information in the
1120 .debug_pubnames and .debug_aranges sections. */
1121
1122 static void
1123 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1124 {
1125 bfd *abfd = objfile->obfd;
1126 char *aranges_buffer, *pubnames_buffer;
1127 char *aranges_ptr, *pubnames_ptr;
1128 unsigned int entry_length, version, info_offset, info_size;
1129
1130 pubnames_buffer = dwarf2_read_section (objfile,
1131 dwarf_pubnames_section);
1132 pubnames_ptr = pubnames_buffer;
1133 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1134 {
1135 struct comp_unit_head cu_header;
1136 int bytes_read;
1137
1138 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1139 &bytes_read);
1140 pubnames_ptr += bytes_read;
1141 version = read_1_byte (abfd, pubnames_ptr);
1142 pubnames_ptr += 1;
1143 info_offset = read_4_bytes (abfd, pubnames_ptr);
1144 pubnames_ptr += 4;
1145 info_size = read_4_bytes (abfd, pubnames_ptr);
1146 pubnames_ptr += 4;
1147 }
1148
1149 aranges_buffer = dwarf2_read_section (objfile,
1150 dwarf_aranges_section);
1151
1152 }
1153 #endif
1154
1155 /* Read in the comp unit header information from the debug_info at
1156 info_ptr. */
1157
1158 static char *
1159 read_comp_unit_head (struct comp_unit_head *cu_header,
1160 char *info_ptr, bfd *abfd)
1161 {
1162 int signed_addr;
1163 int bytes_read;
1164 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1165 &bytes_read);
1166 info_ptr += bytes_read;
1167 cu_header->version = read_2_bytes (abfd, info_ptr);
1168 info_ptr += 2;
1169 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1170 &bytes_read);
1171 info_ptr += bytes_read;
1172 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1173 info_ptr += 1;
1174 signed_addr = bfd_get_sign_extend_vma (abfd);
1175 if (signed_addr < 0)
1176 internal_error (__FILE__, __LINE__,
1177 "read_comp_unit_head: dwarf from non elf file");
1178 cu_header->signed_addr_p = signed_addr;
1179 return info_ptr;
1180 }
1181
1182 static char *
1183 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1184 bfd *abfd)
1185 {
1186 char *beg_of_comp_unit = info_ptr;
1187
1188 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1189
1190 if (header->version != 2)
1191 error ("Dwarf Error: wrong version in compilation unit header "
1192 "(is %d, should be %d) [in module %s]", header->version,
1193 2, bfd_get_filename (abfd));
1194
1195 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1196 error ("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1197 "(offset 0x%lx + 6) [in module %s]",
1198 (long) header->abbrev_offset,
1199 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1200 bfd_get_filename (abfd));
1201
1202 if (beg_of_comp_unit + header->length + header->initial_length_size
1203 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1204 error ("Dwarf Error: bad length (0x%lx) in compilation unit header "
1205 "(offset 0x%lx + 0) [in module %s]",
1206 (long) header->length,
1207 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1208 bfd_get_filename (abfd));
1209
1210 return info_ptr;
1211 }
1212
1213 /* Allocate a new partial symtab for file named NAME and mark this new
1214 partial symtab as being an include of PST. */
1215
1216 static void
1217 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1218 struct objfile *objfile)
1219 {
1220 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1221
1222 subpst->section_offsets = pst->section_offsets;
1223 subpst->textlow = 0;
1224 subpst->texthigh = 0;
1225
1226 subpst->dependencies = (struct partial_symtab **)
1227 obstack_alloc (&objfile->objfile_obstack,
1228 sizeof (struct partial_symtab *));
1229 subpst->dependencies[0] = pst;
1230 subpst->number_of_dependencies = 1;
1231
1232 subpst->globals_offset = 0;
1233 subpst->n_global_syms = 0;
1234 subpst->statics_offset = 0;
1235 subpst->n_static_syms = 0;
1236 subpst->symtab = NULL;
1237 subpst->read_symtab = pst->read_symtab;
1238 subpst->readin = 0;
1239
1240 /* No private part is necessary for include psymtabs. This property
1241 can be used to differentiate between such include psymtabs and
1242 the regular ones. If it ever happens that a regular psymtab can
1243 legitimally have a NULL private part, then we'll have to add a
1244 dedicated field for that in the dwarf2_pinfo structure. */
1245 subpst->read_symtab_private = NULL;
1246 }
1247
1248 /* Read the Line Number Program data and extract the list of files
1249 included by the source file represented by PST. Build an include
1250 partial symtab for each of these included files.
1251
1252 This procedure assumes that there *is* a Line Number Program in
1253 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1254 before calling this procedure. */
1255
1256 static void
1257 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1258 struct partial_die_info *pdi,
1259 struct partial_symtab *pst)
1260 {
1261 struct objfile *objfile = cu->objfile;
1262 bfd *abfd = objfile->obfd;
1263 struct line_header *lh;
1264
1265 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1266 if (lh == NULL)
1267 return; /* No linetable, so no includes. */
1268
1269 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1270
1271 free_line_header (lh);
1272 }
1273
1274
1275 /* Build the partial symbol table by doing a quick pass through the
1276 .debug_info and .debug_abbrev sections. */
1277
1278 static void
1279 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1280 {
1281 /* Instead of reading this into a big buffer, we should probably use
1282 mmap() on architectures that support it. (FIXME) */
1283 bfd *abfd = objfile->obfd;
1284 char *info_ptr;
1285 char *beg_of_comp_unit;
1286 struct partial_die_info comp_unit_die;
1287 struct partial_symtab *pst;
1288 CORE_ADDR lowpc, highpc, baseaddr;
1289
1290 info_ptr = dwarf2_per_objfile->info_buffer;
1291
1292 /* Since the objects we're extracting from .debug_info vary in
1293 length, only the individual functions to extract them (like
1294 read_comp_unit_head and load_partial_die) can really know whether
1295 the buffer is large enough to hold another complete object.
1296
1297 At the moment, they don't actually check that. If .debug_info
1298 holds just one extra byte after the last compilation unit's dies,
1299 then read_comp_unit_head will happily read off the end of the
1300 buffer. read_partial_die is similarly casual. Those functions
1301 should be fixed.
1302
1303 For this loop condition, simply checking whether there's any data
1304 left at all should be sufficient. */
1305 while (info_ptr < (dwarf2_per_objfile->info_buffer
1306 + dwarf2_per_objfile->info_size))
1307 {
1308 struct cleanup *back_to_inner;
1309 struct dwarf2_cu cu;
1310 struct abbrev_info *abbrev;
1311 unsigned int bytes_read;
1312 struct dwarf2_per_cu_data *this_cu;
1313
1314 beg_of_comp_unit = info_ptr;
1315
1316 memset (&cu, 0, sizeof (cu));
1317
1318 obstack_init (&cu.comp_unit_obstack);
1319
1320 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1321
1322 cu.objfile = objfile;
1323 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1324
1325 /* Complete the cu_header */
1326 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1327 cu.header.first_die_ptr = info_ptr;
1328 cu.header.cu_head_ptr = beg_of_comp_unit;
1329
1330 cu.list_in_scope = &file_symbols;
1331
1332 cu.partial_dies = NULL;
1333
1334 /* Read the abbrevs for this compilation unit into a table */
1335 dwarf2_read_abbrevs (abfd, &cu);
1336 make_cleanup (dwarf2_free_abbrev_table, &cu);
1337
1338 /* Read the compilation unit die */
1339 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1340 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1341 abfd, info_ptr, &cu);
1342
1343 /* Set the language we're debugging */
1344 set_cu_language (comp_unit_die.language, &cu);
1345
1346 /* Allocate a new partial symbol table structure */
1347 pst = start_psymtab_common (objfile, objfile->section_offsets,
1348 comp_unit_die.name ? comp_unit_die.name : "",
1349 comp_unit_die.lowpc,
1350 objfile->global_psymbols.next,
1351 objfile->static_psymbols.next);
1352
1353 if (comp_unit_die.dirname)
1354 pst->dirname = xstrdup (comp_unit_die.dirname);
1355
1356 pst->read_symtab_private = (char *)
1357 obstack_alloc (&objfile->objfile_obstack, sizeof (struct dwarf2_pinfo));
1358 DWARF_INFO_OFFSET (pst) = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1359 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1360
1361 /* Store the function that reads in the rest of the symbol table */
1362 pst->read_symtab = dwarf2_psymtab_to_symtab;
1363
1364 /* Check if comp unit has_children.
1365 If so, read the rest of the partial symbols from this comp unit.
1366 If not, there's no more debug_info for this comp unit. */
1367 if (comp_unit_die.has_children)
1368 {
1369 struct partial_die_info *first_die;
1370
1371 lowpc = ((CORE_ADDR) -1);
1372 highpc = ((CORE_ADDR) 0);
1373
1374 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1375
1376 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1377
1378 /* If we didn't find a lowpc, set it to highpc to avoid
1379 complaints from `maint check'. */
1380 if (lowpc == ((CORE_ADDR) -1))
1381 lowpc = highpc;
1382
1383 /* If the compilation unit didn't have an explicit address range,
1384 then use the information extracted from its child dies. */
1385 if (! comp_unit_die.has_pc_info)
1386 {
1387 comp_unit_die.lowpc = lowpc;
1388 comp_unit_die.highpc = highpc;
1389 }
1390 }
1391 pst->textlow = comp_unit_die.lowpc + baseaddr;
1392 pst->texthigh = comp_unit_die.highpc + baseaddr;
1393
1394 pst->n_global_syms = objfile->global_psymbols.next -
1395 (objfile->global_psymbols.list + pst->globals_offset);
1396 pst->n_static_syms = objfile->static_psymbols.next -
1397 (objfile->static_psymbols.list + pst->statics_offset);
1398 sort_pst_symbols (pst);
1399
1400 /* If there is already a psymtab or symtab for a file of this
1401 name, remove it. (If there is a symtab, more drastic things
1402 also happen.) This happens in VxWorks. */
1403 free_named_symtabs (pst->filename);
1404
1405 if (comp_unit_die.has_stmt_list)
1406 {
1407 /* Get the list of files included in the current compilation unit,
1408 and build a psymtab for each of them. */
1409 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1410 }
1411
1412 info_ptr = beg_of_comp_unit + cu.header.length
1413 + cu.header.initial_length_size;
1414
1415 do_cleanups (back_to_inner);
1416 }
1417 }
1418
1419 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1420 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1421 in CU. */
1422
1423 static void
1424 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1425 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1426 {
1427 struct objfile *objfile = cu->objfile;
1428 bfd *abfd = objfile->obfd;
1429 struct partial_die_info *pdi;
1430
1431 /* Now, march along the PDI's, descending into ones which have
1432 interesting children but skipping the children of the other ones,
1433 until we reach the end of the compilation unit. */
1434
1435 pdi = first_die;
1436
1437 while (pdi != NULL)
1438 {
1439 fixup_partial_die (pdi, cu);
1440
1441 /* Anonymous namespaces have no name but have interesting
1442 children, so we need to look at them. Ditto for anonymous
1443 enums. */
1444
1445 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1446 || pdi->tag == DW_TAG_enumeration_type)
1447 {
1448 switch (pdi->tag)
1449 {
1450 case DW_TAG_subprogram:
1451 if (pdi->has_pc_info)
1452 {
1453 if (pdi->lowpc < *lowpc)
1454 {
1455 *lowpc = pdi->lowpc;
1456 }
1457 if (pdi->highpc > *highpc)
1458 {
1459 *highpc = pdi->highpc;
1460 }
1461 if (!pdi->is_declaration)
1462 {
1463 add_partial_symbol (pdi, cu);
1464 }
1465 }
1466 break;
1467 case DW_TAG_variable:
1468 case DW_TAG_typedef:
1469 case DW_TAG_union_type:
1470 if (!pdi->is_declaration)
1471 {
1472 add_partial_symbol (pdi, cu);
1473 }
1474 break;
1475 case DW_TAG_class_type:
1476 case DW_TAG_structure_type:
1477 if (!pdi->is_declaration)
1478 {
1479 add_partial_symbol (pdi, cu);
1480 }
1481 break;
1482 case DW_TAG_enumeration_type:
1483 if (!pdi->is_declaration)
1484 add_partial_enumeration (pdi, cu);
1485 break;
1486 case DW_TAG_base_type:
1487 case DW_TAG_subrange_type:
1488 /* File scope base type definitions are added to the partial
1489 symbol table. */
1490 add_partial_symbol (pdi, cu);
1491 break;
1492 case DW_TAG_namespace:
1493 add_partial_namespace (pdi, lowpc, highpc, cu);
1494 break;
1495 default:
1496 break;
1497 }
1498 }
1499
1500 /* If the die has a sibling, skip to the sibling. */
1501
1502 pdi = pdi->die_sibling;
1503 }
1504 }
1505
1506 /* Functions used to compute the fully scoped name of a partial DIE.
1507
1508 Normally, this is simple. For C++, the parent DIE's fully scoped
1509 name is concatenated with "::" and the partial DIE's name.
1510 Enumerators are an exception; they use the scope of their parent
1511 enumeration type, i.e. the name of the enumeration type is not
1512 prepended to the enumerator.
1513
1514 There are two complexities. One is DW_AT_specification; in this
1515 case "parent" means the parent of the target of the specification,
1516 instead of the direct parent of the DIE. The other is compilers
1517 which do not emit DW_TAG_namespace; in this case we try to guess
1518 the fully qualified name of structure types from their members'
1519 linkage names. This must be done using the DIE's children rather
1520 than the children of any DW_AT_specification target. We only need
1521 to do this for structures at the top level, i.e. if the target of
1522 any DW_AT_specification (if any; otherwise the DIE itself) does not
1523 have a parent. */
1524
1525 /* Compute the scope prefix associated with PDI's parent, in
1526 compilation unit CU. The result will be allocated on CU's
1527 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1528 field. NULL is returned if no prefix is necessary. */
1529 static char *
1530 partial_die_parent_scope (struct partial_die_info *pdi,
1531 struct dwarf2_cu *cu)
1532 {
1533 char *grandparent_scope;
1534 struct partial_die_info *parent, *real_pdi;
1535 struct dwarf2_cu *spec_cu;
1536
1537 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1538 then this means the parent of the specification DIE. */
1539
1540 real_pdi = pdi;
1541 spec_cu = cu;
1542 while (real_pdi->has_specification)
1543 real_pdi = find_partial_die (real_pdi->spec_offset, spec_cu, &spec_cu);
1544
1545 parent = real_pdi->die_parent;
1546 if (parent == NULL)
1547 return NULL;
1548
1549 if (parent->scope_set)
1550 return parent->scope;
1551
1552 fixup_partial_die (parent, cu);
1553
1554 grandparent_scope = partial_die_parent_scope (parent, spec_cu);
1555
1556 if (parent->tag == DW_TAG_namespace
1557 || parent->tag == DW_TAG_structure_type
1558 || parent->tag == DW_TAG_class_type
1559 || parent->tag == DW_TAG_union_type)
1560 {
1561 if (grandparent_scope == NULL)
1562 parent->scope = parent->name;
1563 else
1564 parent->scope = obconcat (&cu->comp_unit_obstack, grandparent_scope,
1565 "::", parent->name);
1566 }
1567 else if (parent->tag == DW_TAG_enumeration_type)
1568 /* Enumerators should not get the name of the enumeration as a prefix. */
1569 parent->scope = grandparent_scope;
1570 else
1571 {
1572 /* FIXME drow/2004-04-01: What should we be doing with
1573 function-local names? For partial symbols, we should probably be
1574 ignoring them. */
1575 complaint (&symfile_complaints,
1576 "unhandled containing DIE tag %d for DIE at %d",
1577 parent->tag, pdi->offset);
1578 parent->scope = grandparent_scope;
1579 }
1580
1581 parent->scope_set = 1;
1582 return parent->scope;
1583 }
1584
1585 /* Return the fully scoped name associated with PDI, from compilation unit
1586 CU. The result will be allocated with malloc. */
1587 static char *
1588 partial_die_full_name (struct partial_die_info *pdi,
1589 struct dwarf2_cu *cu)
1590 {
1591 char *parent_scope;
1592
1593 parent_scope = partial_die_parent_scope (pdi, cu);
1594 if (parent_scope == NULL)
1595 return NULL;
1596 else
1597 return concat (parent_scope, "::", pdi->name, NULL);
1598 }
1599
1600 static void
1601 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1602 {
1603 struct objfile *objfile = cu->objfile;
1604 CORE_ADDR addr = 0;
1605 char *actual_name;
1606 const char *my_prefix;
1607 const struct partial_symbol *psym = NULL;
1608 CORE_ADDR baseaddr;
1609 int built_actual_name = 0;
1610
1611 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1612
1613 actual_name = NULL;
1614
1615 if (pdi_needs_namespace (pdi->tag))
1616 {
1617 actual_name = partial_die_full_name (pdi, cu);
1618 if (actual_name)
1619 built_actual_name = 1;
1620 }
1621
1622 if (actual_name == NULL)
1623 actual_name = pdi->name;
1624
1625 switch (pdi->tag)
1626 {
1627 case DW_TAG_subprogram:
1628 if (pdi->is_external)
1629 {
1630 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1631 mst_text, objfile); */
1632 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1633 VAR_DOMAIN, LOC_BLOCK,
1634 &objfile->global_psymbols,
1635 0, pdi->lowpc + baseaddr,
1636 cu->language, objfile);
1637 }
1638 else
1639 {
1640 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1641 mst_file_text, objfile); */
1642 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1643 VAR_DOMAIN, LOC_BLOCK,
1644 &objfile->static_psymbols,
1645 0, pdi->lowpc + baseaddr,
1646 cu->language, objfile);
1647 }
1648 break;
1649 case DW_TAG_variable:
1650 if (pdi->is_external)
1651 {
1652 /* Global Variable.
1653 Don't enter into the minimal symbol tables as there is
1654 a minimal symbol table entry from the ELF symbols already.
1655 Enter into partial symbol table if it has a location
1656 descriptor or a type.
1657 If the location descriptor is missing, new_symbol will create
1658 a LOC_UNRESOLVED symbol, the address of the variable will then
1659 be determined from the minimal symbol table whenever the variable
1660 is referenced.
1661 The address for the partial symbol table entry is not
1662 used by GDB, but it comes in handy for debugging partial symbol
1663 table building. */
1664
1665 if (pdi->locdesc)
1666 addr = decode_locdesc (pdi->locdesc, cu);
1667 if (pdi->locdesc || pdi->has_type)
1668 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1669 VAR_DOMAIN, LOC_STATIC,
1670 &objfile->global_psymbols,
1671 0, addr + baseaddr,
1672 cu->language, objfile);
1673 }
1674 else
1675 {
1676 /* Static Variable. Skip symbols without location descriptors. */
1677 if (pdi->locdesc == NULL)
1678 return;
1679 addr = decode_locdesc (pdi->locdesc, cu);
1680 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1681 mst_file_data, objfile); */
1682 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1683 VAR_DOMAIN, LOC_STATIC,
1684 &objfile->static_psymbols,
1685 0, addr + baseaddr,
1686 cu->language, objfile);
1687 }
1688 break;
1689 case DW_TAG_typedef:
1690 case DW_TAG_base_type:
1691 case DW_TAG_subrange_type:
1692 add_psymbol_to_list (actual_name, strlen (actual_name),
1693 VAR_DOMAIN, LOC_TYPEDEF,
1694 &objfile->static_psymbols,
1695 0, (CORE_ADDR) 0, cu->language, objfile);
1696 break;
1697 case DW_TAG_namespace:
1698 add_psymbol_to_list (actual_name, strlen (actual_name),
1699 VAR_DOMAIN, LOC_TYPEDEF,
1700 &objfile->global_psymbols,
1701 0, (CORE_ADDR) 0, cu->language, objfile);
1702 break;
1703 case DW_TAG_class_type:
1704 case DW_TAG_structure_type:
1705 case DW_TAG_union_type:
1706 case DW_TAG_enumeration_type:
1707 /* Skip aggregate types without children, these are external
1708 references. */
1709 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1710 static vs. global. */
1711 if (pdi->has_children == 0)
1712 return;
1713 add_psymbol_to_list (actual_name, strlen (actual_name),
1714 STRUCT_DOMAIN, LOC_TYPEDEF,
1715 cu->language == language_cplus
1716 ? &objfile->global_psymbols
1717 : &objfile->static_psymbols,
1718 0, (CORE_ADDR) 0, cu->language, objfile);
1719
1720 if (cu->language == language_cplus)
1721 {
1722 /* For C++, these implicitly act as typedefs as well. */
1723 add_psymbol_to_list (actual_name, strlen (actual_name),
1724 VAR_DOMAIN, LOC_TYPEDEF,
1725 &objfile->global_psymbols,
1726 0, (CORE_ADDR) 0, cu->language, objfile);
1727 }
1728 break;
1729 case DW_TAG_enumerator:
1730 add_psymbol_to_list (actual_name, strlen (actual_name),
1731 VAR_DOMAIN, LOC_CONST,
1732 cu->language == language_cplus
1733 ? &objfile->global_psymbols
1734 : &objfile->static_psymbols,
1735 0, (CORE_ADDR) 0, cu->language, objfile);
1736 break;
1737 default:
1738 break;
1739 }
1740
1741 /* Check to see if we should scan the name for possible namespace
1742 info. Only do this if this is C++, if we don't have namespace
1743 debugging info in the file, if the psym is of an appropriate type
1744 (otherwise we'll have psym == NULL), and if we actually had a
1745 mangled name to begin with. */
1746
1747 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
1748 cases which do not set PSYM above? */
1749
1750 if (cu->language == language_cplus
1751 && cu->has_namespace_info == 0
1752 && psym != NULL
1753 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
1754 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
1755 objfile);
1756
1757 if (built_actual_name)
1758 xfree (actual_name);
1759 }
1760
1761 /* Determine whether a die of type TAG living in a C++ class or
1762 namespace needs to have the name of the scope prepended to the
1763 name listed in the die. */
1764
1765 static int
1766 pdi_needs_namespace (enum dwarf_tag tag)
1767 {
1768 switch (tag)
1769 {
1770 case DW_TAG_namespace:
1771 case DW_TAG_typedef:
1772 case DW_TAG_class_type:
1773 case DW_TAG_structure_type:
1774 case DW_TAG_union_type:
1775 case DW_TAG_enumeration_type:
1776 case DW_TAG_enumerator:
1777 return 1;
1778 default:
1779 return 0;
1780 }
1781 }
1782
1783 /* Read a partial die corresponding to a namespace; also, add a symbol
1784 corresponding to that namespace to the symbol table. NAMESPACE is
1785 the name of the enclosing namespace. */
1786
1787 static void
1788 add_partial_namespace (struct partial_die_info *pdi,
1789 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1790 struct dwarf2_cu *cu)
1791 {
1792 struct objfile *objfile = cu->objfile;
1793
1794 /* Add a symbol for the namespace. */
1795
1796 add_partial_symbol (pdi, cu);
1797
1798 /* Now scan partial symbols in that namespace. */
1799
1800 if (pdi->has_children)
1801 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
1802 }
1803
1804 /* See if we can figure out if the class lives in a namespace. We do
1805 this by looking for a member function; its demangled name will
1806 contain namespace info, if there is any. */
1807
1808 static void
1809 guess_structure_name (struct partial_die_info *struct_pdi,
1810 struct dwarf2_cu *cu)
1811 {
1812 if (cu->language == language_cplus
1813 && cu->has_namespace_info == 0
1814 && struct_pdi->has_children)
1815 {
1816 /* NOTE: carlton/2003-10-07: Getting the info this way changes
1817 what template types look like, because the demangler
1818 frequently doesn't give the same name as the debug info. We
1819 could fix this by only using the demangled name to get the
1820 prefix (but see comment in read_structure_type). */
1821
1822 struct partial_die_info *child_pdi = struct_pdi->die_child;
1823 struct partial_die_info *real_pdi;
1824 struct dwarf2_cu *spec_cu;
1825
1826 /* If this DIE (this DIE's specification, if any) has a parent, then
1827 we should not do this. We'll prepend the parent's fully qualified
1828 name when we create the partial symbol. */
1829
1830 real_pdi = struct_pdi;
1831 spec_cu = cu;
1832 while (real_pdi->has_specification)
1833 real_pdi = find_partial_die (real_pdi->spec_offset, spec_cu, &spec_cu);
1834
1835 if (real_pdi->die_parent != NULL)
1836 return;
1837
1838 while (child_pdi != NULL)
1839 {
1840 if (child_pdi->tag == DW_TAG_subprogram)
1841 {
1842 char *actual_class_name
1843 = language_class_name_from_physname (cu->language_defn,
1844 child_pdi->name);
1845 if (actual_class_name != NULL)
1846 {
1847 struct_pdi->name
1848 = obsavestring (actual_class_name,
1849 strlen (actual_class_name),
1850 &cu->comp_unit_obstack);
1851 xfree (actual_class_name);
1852 }
1853 break;
1854 }
1855
1856 child_pdi = child_pdi->die_sibling;
1857 }
1858 }
1859 }
1860
1861 /* Read a partial die corresponding to an enumeration type. */
1862
1863 static void
1864 add_partial_enumeration (struct partial_die_info *enum_pdi,
1865 struct dwarf2_cu *cu)
1866 {
1867 struct objfile *objfile = cu->objfile;
1868 bfd *abfd = objfile->obfd;
1869 struct partial_die_info *pdi;
1870
1871 if (enum_pdi->name != NULL)
1872 add_partial_symbol (enum_pdi, cu);
1873
1874 pdi = enum_pdi->die_child;
1875 while (pdi)
1876 {
1877 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
1878 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
1879 else
1880 add_partial_symbol (pdi, cu);
1881 pdi = pdi->die_sibling;
1882 }
1883 }
1884
1885 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
1886 Return the corresponding abbrev, or NULL if the number is zero (indicating
1887 an empty DIE). In either case *BYTES_READ will be set to the length of
1888 the initial number. */
1889
1890 static struct abbrev_info *
1891 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
1892 {
1893 bfd *abfd = cu->objfile->obfd;
1894 unsigned int abbrev_number;
1895 struct abbrev_info *abbrev;
1896
1897 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
1898
1899 if (abbrev_number == 0)
1900 return NULL;
1901
1902 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
1903 if (!abbrev)
1904 {
1905 error ("Dwarf Error: Could not find abbrev number %d [in module %s]", abbrev_number,
1906 bfd_get_filename (abfd));
1907 }
1908
1909 return abbrev;
1910 }
1911
1912 /* Scan the debug information for CU starting at INFO_PTR. Returns a
1913 pointer to the end of a series of DIEs, terminated by an empty
1914 DIE. Any children of the skipped DIEs will also be skipped. */
1915
1916 static char *
1917 skip_children (char *info_ptr, struct dwarf2_cu *cu)
1918 {
1919 struct abbrev_info *abbrev;
1920 unsigned int bytes_read;
1921
1922 while (1)
1923 {
1924 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1925 if (abbrev == NULL)
1926 return info_ptr + bytes_read;
1927 else
1928 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
1929 }
1930 }
1931
1932 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
1933 should point just after the initial uleb128 of a DIE, and the
1934 abbrev corresponding to that skipped uleb128 should be passed in
1935 ABBREV. Returns a pointer to this DIE's sibling, skipping any
1936 children. */
1937
1938 static char *
1939 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1940 struct dwarf2_cu *cu)
1941 {
1942 unsigned int bytes_read;
1943 struct attribute attr;
1944 bfd *abfd = cu->objfile->obfd;
1945 unsigned int form, i;
1946
1947 for (i = 0; i < abbrev->num_attrs; i++)
1948 {
1949 /* The only abbrev we care about is DW_AT_sibling. */
1950 if (abbrev->attrs[i].name == DW_AT_sibling)
1951 {
1952 read_attribute (&attr, &abbrev->attrs[i],
1953 abfd, info_ptr, cu);
1954 if (attr.form == DW_FORM_ref_addr)
1955 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
1956 else
1957 return dwarf2_per_objfile->info_buffer
1958 + dwarf2_get_ref_die_offset (&attr, cu);
1959 }
1960
1961 /* If it isn't DW_AT_sibling, skip this attribute. */
1962 form = abbrev->attrs[i].form;
1963 skip_attribute:
1964 switch (form)
1965 {
1966 case DW_FORM_addr:
1967 case DW_FORM_ref_addr:
1968 info_ptr += cu->header.addr_size;
1969 break;
1970 case DW_FORM_data1:
1971 case DW_FORM_ref1:
1972 case DW_FORM_flag:
1973 info_ptr += 1;
1974 break;
1975 case DW_FORM_data2:
1976 case DW_FORM_ref2:
1977 info_ptr += 2;
1978 break;
1979 case DW_FORM_data4:
1980 case DW_FORM_ref4:
1981 info_ptr += 4;
1982 break;
1983 case DW_FORM_data8:
1984 case DW_FORM_ref8:
1985 info_ptr += 8;
1986 break;
1987 case DW_FORM_string:
1988 read_string (abfd, info_ptr, &bytes_read);
1989 info_ptr += bytes_read;
1990 break;
1991 case DW_FORM_strp:
1992 info_ptr += cu->header.offset_size;
1993 break;
1994 case DW_FORM_block:
1995 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1996 info_ptr += bytes_read;
1997 break;
1998 case DW_FORM_block1:
1999 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2000 break;
2001 case DW_FORM_block2:
2002 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2003 break;
2004 case DW_FORM_block4:
2005 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2006 break;
2007 case DW_FORM_sdata:
2008 case DW_FORM_udata:
2009 case DW_FORM_ref_udata:
2010 info_ptr = skip_leb128 (abfd, info_ptr);
2011 break;
2012 case DW_FORM_indirect:
2013 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2014 info_ptr += bytes_read;
2015 /* We need to continue parsing from here, so just go back to
2016 the top. */
2017 goto skip_attribute;
2018
2019 default:
2020 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
2021 dwarf_form_name (form),
2022 bfd_get_filename (abfd));
2023 }
2024 }
2025
2026 if (abbrev->has_children)
2027 return skip_children (info_ptr, cu);
2028 else
2029 return info_ptr;
2030 }
2031
2032 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2033 the next DIE after ORIG_PDI. */
2034
2035 static char *
2036 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2037 bfd *abfd, struct dwarf2_cu *cu)
2038 {
2039 /* Do we know the sibling already? */
2040
2041 if (orig_pdi->sibling)
2042 return orig_pdi->sibling;
2043
2044 /* Are there any children to deal with? */
2045
2046 if (!orig_pdi->has_children)
2047 return info_ptr;
2048
2049 /* Skip the children the long way. */
2050
2051 return skip_children (info_ptr, cu);
2052 }
2053
2054 /* Expand this partial symbol table into a full symbol table. */
2055
2056 static void
2057 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2058 {
2059 /* FIXME: This is barely more than a stub. */
2060 if (pst != NULL)
2061 {
2062 if (pst->readin)
2063 {
2064 warning ("bug: psymtab for %s is already read in.", pst->filename);
2065 }
2066 else
2067 {
2068 if (info_verbose)
2069 {
2070 printf_filtered ("Reading in symbols for %s...", pst->filename);
2071 gdb_flush (gdb_stdout);
2072 }
2073
2074 psymtab_to_symtab_1 (pst);
2075
2076 /* Finish up the debug error message. */
2077 if (info_verbose)
2078 printf_filtered ("done.\n");
2079 }
2080 }
2081 }
2082
2083 static void
2084 psymtab_to_symtab_1 (struct partial_symtab *pst)
2085 {
2086 struct objfile *objfile = pst->objfile;
2087 bfd *abfd = objfile->obfd;
2088 struct dwarf2_cu cu;
2089 struct die_info *dies;
2090 unsigned long offset;
2091 CORE_ADDR lowpc, highpc;
2092 struct die_info *child_die;
2093 char *info_ptr;
2094 struct symtab *symtab;
2095 struct cleanup *back_to;
2096 struct attribute *attr;
2097 CORE_ADDR baseaddr;
2098 int i;
2099
2100 for (i = 0; i < pst->number_of_dependencies; i++)
2101 if (!pst->dependencies[i]->readin)
2102 {
2103 /* Inform about additional files that need to be read in. */
2104 if (info_verbose)
2105 {
2106 fputs_filtered (" ", gdb_stdout);
2107 wrap_here ("");
2108 fputs_filtered ("and ", gdb_stdout);
2109 wrap_here ("");
2110 printf_filtered ("%s...", pst->dependencies[i]->filename);
2111 wrap_here (""); /* Flush output */
2112 gdb_flush (gdb_stdout);
2113 }
2114 psymtab_to_symtab_1 (pst->dependencies[i]);
2115 }
2116
2117 if (pst->read_symtab_private == NULL)
2118 {
2119 /* It's an include file, no symbols to read for it.
2120 Everything is in the parent symtab. */
2121 pst->readin = 1;
2122 return;
2123 }
2124
2125 dwarf2_per_objfile = objfile_data (pst->objfile, dwarf2_objfile_data_key);
2126
2127 /* Set local variables from the partial symbol table info. */
2128 offset = DWARF_INFO_OFFSET (pst);
2129
2130 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2131 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2132
2133 /* We're in the global namespace. */
2134 processing_current_prefix = "";
2135
2136 obstack_init (&cu.comp_unit_obstack);
2137 back_to = make_cleanup (free_stack_comp_unit, &cu);
2138
2139 buildsym_init ();
2140 make_cleanup (really_free_pendings, NULL);
2141
2142 cu.objfile = objfile;
2143
2144 /* read in the comp_unit header */
2145 info_ptr = read_comp_unit_head (&cu.header, info_ptr, abfd);
2146
2147 /* Read the abbrevs for this compilation unit */
2148 dwarf2_read_abbrevs (abfd, &cu);
2149 make_cleanup (dwarf2_free_abbrev_table, &cu);
2150
2151 cu.header.offset = offset;
2152
2153 cu.list_in_scope = &file_symbols;
2154
2155 dies = read_comp_unit (info_ptr, abfd, &cu);
2156
2157 make_cleanup_free_die_list (dies);
2158
2159 /* Find the base address of the compilation unit for range lists and
2160 location lists. It will normally be specified by DW_AT_low_pc.
2161 In DWARF-3 draft 4, the base address could be overridden by
2162 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2163 compilation units with discontinuous ranges. */
2164
2165 cu.header.base_known = 0;
2166 cu.header.base_address = 0;
2167
2168 attr = dwarf2_attr (dies, DW_AT_entry_pc, &cu);
2169 if (attr)
2170 {
2171 cu.header.base_address = DW_ADDR (attr);
2172 cu.header.base_known = 1;
2173 }
2174 else
2175 {
2176 attr = dwarf2_attr (dies, DW_AT_low_pc, &cu);
2177 if (attr)
2178 {
2179 cu.header.base_address = DW_ADDR (attr);
2180 cu.header.base_known = 1;
2181 }
2182 }
2183
2184 /* Do line number decoding in read_file_scope () */
2185 process_die (dies, &cu);
2186
2187 /* Some compilers don't define a DW_AT_high_pc attribute for the
2188 compilation unit. If the DW_AT_high_pc is missing, synthesize
2189 it, by scanning the DIE's below the compilation unit. */
2190 get_scope_pc_bounds (dies, &lowpc, &highpc, &cu);
2191
2192 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2193
2194 /* Set symtab language to language from DW_AT_language.
2195 If the compilation is from a C file generated by language preprocessors,
2196 do not set the language if it was already deduced by start_subfile. */
2197 if (symtab != NULL
2198 && !(cu.language == language_c && symtab->language != language_c))
2199 {
2200 symtab->language = cu.language;
2201 }
2202 pst->symtab = symtab;
2203 pst->readin = 1;
2204
2205 do_cleanups (back_to);
2206 }
2207
2208 /* Process a die and its children. */
2209
2210 static void
2211 process_die (struct die_info *die, struct dwarf2_cu *cu)
2212 {
2213 switch (die->tag)
2214 {
2215 case DW_TAG_padding:
2216 break;
2217 case DW_TAG_compile_unit:
2218 read_file_scope (die, cu);
2219 break;
2220 case DW_TAG_subprogram:
2221 read_subroutine_type (die, cu);
2222 read_func_scope (die, cu);
2223 break;
2224 case DW_TAG_inlined_subroutine:
2225 /* FIXME: These are ignored for now.
2226 They could be used to set breakpoints on all inlined instances
2227 of a function and make GDB `next' properly over inlined functions. */
2228 break;
2229 case DW_TAG_lexical_block:
2230 case DW_TAG_try_block:
2231 case DW_TAG_catch_block:
2232 read_lexical_block_scope (die, cu);
2233 break;
2234 case DW_TAG_class_type:
2235 case DW_TAG_structure_type:
2236 case DW_TAG_union_type:
2237 read_structure_type (die, cu);
2238 process_structure_scope (die, cu);
2239 break;
2240 case DW_TAG_enumeration_type:
2241 read_enumeration_type (die, cu);
2242 process_enumeration_scope (die, cu);
2243 break;
2244
2245 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2246 a symbol or process any children. Therefore it doesn't do anything
2247 that won't be done on-demand by read_type_die. */
2248 case DW_TAG_subroutine_type:
2249 read_subroutine_type (die, cu);
2250 break;
2251 case DW_TAG_array_type:
2252 read_array_type (die, cu);
2253 break;
2254 case DW_TAG_pointer_type:
2255 read_tag_pointer_type (die, cu);
2256 break;
2257 case DW_TAG_ptr_to_member_type:
2258 read_tag_ptr_to_member_type (die, cu);
2259 break;
2260 case DW_TAG_reference_type:
2261 read_tag_reference_type (die, cu);
2262 break;
2263 case DW_TAG_string_type:
2264 read_tag_string_type (die, cu);
2265 break;
2266 /* END FIXME */
2267
2268 case DW_TAG_base_type:
2269 read_base_type (die, cu);
2270 /* Add a typedef symbol for the type definition, if it has a
2271 DW_AT_name. */
2272 new_symbol (die, die->type, cu);
2273 break;
2274 case DW_TAG_subrange_type:
2275 read_subrange_type (die, cu);
2276 /* Add a typedef symbol for the type definition, if it has a
2277 DW_AT_name. */
2278 new_symbol (die, die->type, cu);
2279 break;
2280 case DW_TAG_common_block:
2281 read_common_block (die, cu);
2282 break;
2283 case DW_TAG_common_inclusion:
2284 break;
2285 case DW_TAG_namespace:
2286 processing_has_namespace_info = 1;
2287 read_namespace (die, cu);
2288 break;
2289 case DW_TAG_imported_declaration:
2290 case DW_TAG_imported_module:
2291 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2292 information contained in these. DW_TAG_imported_declaration
2293 dies shouldn't have children; DW_TAG_imported_module dies
2294 shouldn't in the C++ case, but conceivably could in the
2295 Fortran case, so we'll have to replace this gdb_assert if
2296 Fortran compilers start generating that info. */
2297 processing_has_namespace_info = 1;
2298 gdb_assert (die->child == NULL);
2299 break;
2300 default:
2301 new_symbol (die, NULL, cu);
2302 break;
2303 }
2304 }
2305
2306 static void
2307 initialize_cu_func_list (struct dwarf2_cu *cu)
2308 {
2309 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2310 }
2311
2312 static void
2313 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2314 {
2315 struct objfile *objfile = cu->objfile;
2316 struct comp_unit_head *cu_header = &cu->header;
2317 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2318 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2319 CORE_ADDR highpc = ((CORE_ADDR) 0);
2320 struct attribute *attr;
2321 char *name = "<unknown>";
2322 char *comp_dir = NULL;
2323 struct die_info *child_die;
2324 bfd *abfd = objfile->obfd;
2325 struct line_header *line_header = 0;
2326 CORE_ADDR baseaddr;
2327
2328 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2329
2330 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2331
2332 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2333 from finish_block. */
2334 if (lowpc == ((CORE_ADDR) -1))
2335 lowpc = highpc;
2336 lowpc += baseaddr;
2337 highpc += baseaddr;
2338
2339 attr = dwarf2_attr (die, DW_AT_name, cu);
2340 if (attr)
2341 {
2342 name = DW_STRING (attr);
2343 }
2344 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2345 if (attr)
2346 {
2347 comp_dir = DW_STRING (attr);
2348 if (comp_dir)
2349 {
2350 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2351 directory, get rid of it. */
2352 char *cp = strchr (comp_dir, ':');
2353
2354 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2355 comp_dir = cp + 1;
2356 }
2357 }
2358
2359 attr = dwarf2_attr (die, DW_AT_language, cu);
2360 if (attr)
2361 {
2362 set_cu_language (DW_UNSND (attr), cu);
2363 }
2364
2365 /* We assume that we're processing GCC output. */
2366 processing_gcc_compilation = 2;
2367 #if 0
2368 /* FIXME:Do something here. */
2369 if (dip->at_producer != NULL)
2370 {
2371 handle_producer (dip->at_producer);
2372 }
2373 #endif
2374
2375 /* The compilation unit may be in a different language or objfile,
2376 zero out all remembered fundamental types. */
2377 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2378
2379 start_symtab (name, comp_dir, lowpc);
2380 record_debugformat ("DWARF 2");
2381
2382 initialize_cu_func_list (cu);
2383
2384 /* Process all dies in compilation unit. */
2385 if (die->child != NULL)
2386 {
2387 child_die = die->child;
2388 while (child_die && child_die->tag)
2389 {
2390 process_die (child_die, cu);
2391 child_die = sibling_die (child_die);
2392 }
2393 }
2394
2395 /* Decode line number information if present. */
2396 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2397 if (attr)
2398 {
2399 unsigned int line_offset = DW_UNSND (attr);
2400 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2401 if (line_header)
2402 {
2403 make_cleanup ((make_cleanup_ftype *) free_line_header,
2404 (void *) line_header);
2405 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2406 }
2407 }
2408
2409 /* Decode macro information, if present. Dwarf 2 macro information
2410 refers to information in the line number info statement program
2411 header, so we can only read it if we've read the header
2412 successfully. */
2413 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2414 if (attr && line_header)
2415 {
2416 unsigned int macro_offset = DW_UNSND (attr);
2417 dwarf_decode_macros (line_header, macro_offset,
2418 comp_dir, abfd, cu);
2419 }
2420 do_cleanups (back_to);
2421 }
2422
2423 static void
2424 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2425 struct dwarf2_cu *cu)
2426 {
2427 struct function_range *thisfn;
2428
2429 thisfn = (struct function_range *)
2430 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2431 thisfn->name = name;
2432 thisfn->lowpc = lowpc;
2433 thisfn->highpc = highpc;
2434 thisfn->seen_line = 0;
2435 thisfn->next = NULL;
2436
2437 if (cu->last_fn == NULL)
2438 cu->first_fn = thisfn;
2439 else
2440 cu->last_fn->next = thisfn;
2441
2442 cu->last_fn = thisfn;
2443 }
2444
2445 static void
2446 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2447 {
2448 struct objfile *objfile = cu->objfile;
2449 struct context_stack *new;
2450 CORE_ADDR lowpc;
2451 CORE_ADDR highpc;
2452 struct die_info *child_die;
2453 struct attribute *attr;
2454 char *name;
2455 const char *previous_prefix = processing_current_prefix;
2456 struct cleanup *back_to = NULL;
2457 CORE_ADDR baseaddr;
2458
2459 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2460
2461 name = dwarf2_linkage_name (die, cu);
2462
2463 /* Ignore functions with missing or empty names and functions with
2464 missing or invalid low and high pc attributes. */
2465 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2466 return;
2467
2468 if (cu->language == language_cplus)
2469 {
2470 struct die_info *spec_die = die_specification (die, cu);
2471
2472 /* NOTE: carlton/2004-01-23: We have to be careful in the
2473 presence of DW_AT_specification. For example, with GCC 3.4,
2474 given the code
2475
2476 namespace N {
2477 void foo() {
2478 // Definition of N::foo.
2479 }
2480 }
2481
2482 then we'll have a tree of DIEs like this:
2483
2484 1: DW_TAG_compile_unit
2485 2: DW_TAG_namespace // N
2486 3: DW_TAG_subprogram // declaration of N::foo
2487 4: DW_TAG_subprogram // definition of N::foo
2488 DW_AT_specification // refers to die #3
2489
2490 Thus, when processing die #4, we have to pretend that we're
2491 in the context of its DW_AT_specification, namely the contex
2492 of die #3. */
2493
2494 if (spec_die != NULL)
2495 {
2496 char *specification_prefix = determine_prefix (spec_die, cu);
2497 processing_current_prefix = specification_prefix;
2498 back_to = make_cleanup (xfree, specification_prefix);
2499 }
2500 }
2501
2502 lowpc += baseaddr;
2503 highpc += baseaddr;
2504
2505 /* Record the function range for dwarf_decode_lines. */
2506 add_to_cu_func_list (name, lowpc, highpc, cu);
2507
2508 new = push_context (0, lowpc);
2509 new->name = new_symbol (die, die->type, cu);
2510
2511 /* If there is a location expression for DW_AT_frame_base, record
2512 it. */
2513 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2514 if (attr)
2515 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2516 expression is being recorded directly in the function's symbol
2517 and not in a separate frame-base object. I guess this hack is
2518 to avoid adding some sort of frame-base adjunct/annex to the
2519 function's symbol :-(. The problem with doing this is that it
2520 results in a function symbol with a location expression that
2521 has nothing to do with the location of the function, ouch! The
2522 relationship should be: a function's symbol has-a frame base; a
2523 frame-base has-a location expression. */
2524 dwarf2_symbol_mark_computed (attr, new->name, cu);
2525
2526 cu->list_in_scope = &local_symbols;
2527
2528 if (die->child != NULL)
2529 {
2530 child_die = die->child;
2531 while (child_die && child_die->tag)
2532 {
2533 process_die (child_die, cu);
2534 child_die = sibling_die (child_die);
2535 }
2536 }
2537
2538 new = pop_context ();
2539 /* Make a block for the local symbols within. */
2540 finish_block (new->name, &local_symbols, new->old_blocks,
2541 lowpc, highpc, objfile);
2542
2543 /* In C++, we can have functions nested inside functions (e.g., when
2544 a function declares a class that has methods). This means that
2545 when we finish processing a function scope, we may need to go
2546 back to building a containing block's symbol lists. */
2547 local_symbols = new->locals;
2548 param_symbols = new->params;
2549
2550 /* If we've finished processing a top-level function, subsequent
2551 symbols go in the file symbol list. */
2552 if (outermost_context_p ())
2553 cu->list_in_scope = &file_symbols;
2554
2555 processing_current_prefix = previous_prefix;
2556 if (back_to != NULL)
2557 do_cleanups (back_to);
2558 }
2559
2560 /* Process all the DIES contained within a lexical block scope. Start
2561 a new scope, process the dies, and then close the scope. */
2562
2563 static void
2564 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2565 {
2566 struct objfile *objfile = cu->objfile;
2567 struct context_stack *new;
2568 CORE_ADDR lowpc, highpc;
2569 struct die_info *child_die;
2570 CORE_ADDR baseaddr;
2571
2572 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2573
2574 /* Ignore blocks with missing or invalid low and high pc attributes. */
2575 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2576 as multiple lexical blocks? Handling children in a sane way would
2577 be nasty. Might be easier to properly extend generic blocks to
2578 describe ranges. */
2579 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2580 return;
2581 lowpc += baseaddr;
2582 highpc += baseaddr;
2583
2584 push_context (0, lowpc);
2585 if (die->child != NULL)
2586 {
2587 child_die = die->child;
2588 while (child_die && child_die->tag)
2589 {
2590 process_die (child_die, cu);
2591 child_die = sibling_die (child_die);
2592 }
2593 }
2594 new = pop_context ();
2595
2596 if (local_symbols != NULL)
2597 {
2598 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
2599 highpc, objfile);
2600 }
2601 local_symbols = new->locals;
2602 }
2603
2604 /* Get low and high pc attributes from a die. Return 1 if the attributes
2605 are present and valid, otherwise, return 0. Return -1 if the range is
2606 discontinuous, i.e. derived from DW_AT_ranges information. */
2607 static int
2608 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
2609 CORE_ADDR *highpc, struct dwarf2_cu *cu)
2610 {
2611 struct objfile *objfile = cu->objfile;
2612 struct comp_unit_head *cu_header = &cu->header;
2613 struct attribute *attr;
2614 bfd *obfd = objfile->obfd;
2615 CORE_ADDR low = 0;
2616 CORE_ADDR high = 0;
2617 int ret = 0;
2618
2619 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
2620 if (attr)
2621 {
2622 high = DW_ADDR (attr);
2623 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
2624 if (attr)
2625 low = DW_ADDR (attr);
2626 else
2627 /* Found high w/o low attribute. */
2628 return 0;
2629
2630 /* Found consecutive range of addresses. */
2631 ret = 1;
2632 }
2633 else
2634 {
2635 attr = dwarf2_attr (die, DW_AT_ranges, cu);
2636 if (attr != NULL)
2637 {
2638 unsigned int addr_size = cu_header->addr_size;
2639 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
2640 /* Value of the DW_AT_ranges attribute is the offset in the
2641 .debug_ranges section. */
2642 unsigned int offset = DW_UNSND (attr);
2643 /* Base address selection entry. */
2644 CORE_ADDR base;
2645 int found_base;
2646 int dummy;
2647 char *buffer;
2648 CORE_ADDR marker;
2649 int low_set;
2650
2651 found_base = cu_header->base_known;
2652 base = cu_header->base_address;
2653
2654 if (offset >= dwarf2_per_objfile->ranges_size)
2655 {
2656 complaint (&symfile_complaints,
2657 "Offset %d out of bounds for DW_AT_ranges attribute",
2658 offset);
2659 return 0;
2660 }
2661 buffer = dwarf2_per_objfile->ranges_buffer + offset;
2662
2663 /* Read in the largest possible address. */
2664 marker = read_address (obfd, buffer, cu, &dummy);
2665 if ((marker & mask) == mask)
2666 {
2667 /* If we found the largest possible address, then
2668 read the base address. */
2669 base = read_address (obfd, buffer + addr_size, cu, &dummy);
2670 buffer += 2 * addr_size;
2671 offset += 2 * addr_size;
2672 found_base = 1;
2673 }
2674
2675 low_set = 0;
2676
2677 while (1)
2678 {
2679 CORE_ADDR range_beginning, range_end;
2680
2681 range_beginning = read_address (obfd, buffer, cu, &dummy);
2682 buffer += addr_size;
2683 range_end = read_address (obfd, buffer, cu, &dummy);
2684 buffer += addr_size;
2685 offset += 2 * addr_size;
2686
2687 /* An end of list marker is a pair of zero addresses. */
2688 if (range_beginning == 0 && range_end == 0)
2689 /* Found the end of list entry. */
2690 break;
2691
2692 /* Each base address selection entry is a pair of 2 values.
2693 The first is the largest possible address, the second is
2694 the base address. Check for a base address here. */
2695 if ((range_beginning & mask) == mask)
2696 {
2697 /* If we found the largest possible address, then
2698 read the base address. */
2699 base = read_address (obfd, buffer + addr_size, cu, &dummy);
2700 found_base = 1;
2701 continue;
2702 }
2703
2704 if (!found_base)
2705 {
2706 /* We have no valid base address for the ranges
2707 data. */
2708 complaint (&symfile_complaints,
2709 "Invalid .debug_ranges data (no base address)");
2710 return 0;
2711 }
2712
2713 range_beginning += base;
2714 range_end += base;
2715
2716 /* FIXME: This is recording everything as a low-high
2717 segment of consecutive addresses. We should have a
2718 data structure for discontiguous block ranges
2719 instead. */
2720 if (! low_set)
2721 {
2722 low = range_beginning;
2723 high = range_end;
2724 low_set = 1;
2725 }
2726 else
2727 {
2728 if (range_beginning < low)
2729 low = range_beginning;
2730 if (range_end > high)
2731 high = range_end;
2732 }
2733 }
2734
2735 if (! low_set)
2736 /* If the first entry is an end-of-list marker, the range
2737 describes an empty scope, i.e. no instructions. */
2738 return 0;
2739
2740 ret = -1;
2741 }
2742 }
2743
2744 if (high < low)
2745 return 0;
2746
2747 /* When using the GNU linker, .gnu.linkonce. sections are used to
2748 eliminate duplicate copies of functions and vtables and such.
2749 The linker will arbitrarily choose one and discard the others.
2750 The AT_*_pc values for such functions refer to local labels in
2751 these sections. If the section from that file was discarded, the
2752 labels are not in the output, so the relocs get a value of 0.
2753 If this is a discarded function, mark the pc bounds as invalid,
2754 so that GDB will ignore it. */
2755 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
2756 return 0;
2757
2758 *lowpc = low;
2759 *highpc = high;
2760 return ret;
2761 }
2762
2763 /* Get the low and high pc's represented by the scope DIE, and store
2764 them in *LOWPC and *HIGHPC. If the correct values can't be
2765 determined, set *LOWPC to -1 and *HIGHPC to 0. */
2766
2767 static void
2768 get_scope_pc_bounds (struct die_info *die,
2769 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2770 struct dwarf2_cu *cu)
2771 {
2772 CORE_ADDR best_low = (CORE_ADDR) -1;
2773 CORE_ADDR best_high = (CORE_ADDR) 0;
2774 CORE_ADDR current_low, current_high;
2775
2776 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
2777 {
2778 best_low = current_low;
2779 best_high = current_high;
2780 }
2781 else
2782 {
2783 struct die_info *child = die->child;
2784
2785 while (child && child->tag)
2786 {
2787 switch (child->tag) {
2788 case DW_TAG_subprogram:
2789 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
2790 {
2791 best_low = min (best_low, current_low);
2792 best_high = max (best_high, current_high);
2793 }
2794 break;
2795 case DW_TAG_namespace:
2796 /* FIXME: carlton/2004-01-16: Should we do this for
2797 DW_TAG_class_type/DW_TAG_structure_type, too? I think
2798 that current GCC's always emit the DIEs corresponding
2799 to definitions of methods of classes as children of a
2800 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
2801 the DIEs giving the declarations, which could be
2802 anywhere). But I don't see any reason why the
2803 standards says that they have to be there. */
2804 get_scope_pc_bounds (child, &current_low, &current_high, cu);
2805
2806 if (current_low != ((CORE_ADDR) -1))
2807 {
2808 best_low = min (best_low, current_low);
2809 best_high = max (best_high, current_high);
2810 }
2811 break;
2812 default:
2813 /* Ignore. */
2814 break;
2815 }
2816
2817 child = sibling_die (child);
2818 }
2819 }
2820
2821 *lowpc = best_low;
2822 *highpc = best_high;
2823 }
2824
2825 /* Add an aggregate field to the field list. */
2826
2827 static void
2828 dwarf2_add_field (struct field_info *fip, struct die_info *die,
2829 struct dwarf2_cu *cu)
2830 {
2831 struct objfile *objfile = cu->objfile;
2832 struct nextfield *new_field;
2833 struct attribute *attr;
2834 struct field *fp;
2835 char *fieldname = "";
2836
2837 /* Allocate a new field list entry and link it in. */
2838 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2839 make_cleanup (xfree, new_field);
2840 memset (new_field, 0, sizeof (struct nextfield));
2841 new_field->next = fip->fields;
2842 fip->fields = new_field;
2843 fip->nfields++;
2844
2845 /* Handle accessibility and virtuality of field.
2846 The default accessibility for members is public, the default
2847 accessibility for inheritance is private. */
2848 if (die->tag != DW_TAG_inheritance)
2849 new_field->accessibility = DW_ACCESS_public;
2850 else
2851 new_field->accessibility = DW_ACCESS_private;
2852 new_field->virtuality = DW_VIRTUALITY_none;
2853
2854 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
2855 if (attr)
2856 new_field->accessibility = DW_UNSND (attr);
2857 if (new_field->accessibility != DW_ACCESS_public)
2858 fip->non_public_fields = 1;
2859 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
2860 if (attr)
2861 new_field->virtuality = DW_UNSND (attr);
2862
2863 fp = &new_field->field;
2864
2865 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
2866 {
2867 /* Data member other than a C++ static data member. */
2868
2869 /* Get type of field. */
2870 fp->type = die_type (die, cu);
2871
2872 FIELD_STATIC_KIND (*fp) = 0;
2873
2874 /* Get bit size of field (zero if none). */
2875 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
2876 if (attr)
2877 {
2878 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
2879 }
2880 else
2881 {
2882 FIELD_BITSIZE (*fp) = 0;
2883 }
2884
2885 /* Get bit offset of field. */
2886 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
2887 if (attr)
2888 {
2889 FIELD_BITPOS (*fp) =
2890 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
2891 }
2892 else
2893 FIELD_BITPOS (*fp) = 0;
2894 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
2895 if (attr)
2896 {
2897 if (BITS_BIG_ENDIAN)
2898 {
2899 /* For big endian bits, the DW_AT_bit_offset gives the
2900 additional bit offset from the MSB of the containing
2901 anonymous object to the MSB of the field. We don't
2902 have to do anything special since we don't need to
2903 know the size of the anonymous object. */
2904 FIELD_BITPOS (*fp) += DW_UNSND (attr);
2905 }
2906 else
2907 {
2908 /* For little endian bits, compute the bit offset to the
2909 MSB of the anonymous object, subtract off the number of
2910 bits from the MSB of the field to the MSB of the
2911 object, and then subtract off the number of bits of
2912 the field itself. The result is the bit offset of
2913 the LSB of the field. */
2914 int anonymous_size;
2915 int bit_offset = DW_UNSND (attr);
2916
2917 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
2918 if (attr)
2919 {
2920 /* The size of the anonymous object containing
2921 the bit field is explicit, so use the
2922 indicated size (in bytes). */
2923 anonymous_size = DW_UNSND (attr);
2924 }
2925 else
2926 {
2927 /* The size of the anonymous object containing
2928 the bit field must be inferred from the type
2929 attribute of the data member containing the
2930 bit field. */
2931 anonymous_size = TYPE_LENGTH (fp->type);
2932 }
2933 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
2934 - bit_offset - FIELD_BITSIZE (*fp);
2935 }
2936 }
2937
2938 /* Get name of field. */
2939 attr = dwarf2_attr (die, DW_AT_name, cu);
2940 if (attr && DW_STRING (attr))
2941 fieldname = DW_STRING (attr);
2942
2943 /* The name is already allocated along with this objfile, so we don't
2944 need to duplicate it for the type. */
2945 fp->name = fieldname;
2946
2947 /* Change accessibility for artificial fields (e.g. virtual table
2948 pointer or virtual base class pointer) to private. */
2949 if (dwarf2_attr (die, DW_AT_artificial, cu))
2950 {
2951 new_field->accessibility = DW_ACCESS_private;
2952 fip->non_public_fields = 1;
2953 }
2954 }
2955 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
2956 {
2957 /* C++ static member. */
2958
2959 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
2960 is a declaration, but all versions of G++ as of this writing
2961 (so through at least 3.2.1) incorrectly generate
2962 DW_TAG_variable tags. */
2963
2964 char *physname;
2965
2966 /* Get name of field. */
2967 attr = dwarf2_attr (die, DW_AT_name, cu);
2968 if (attr && DW_STRING (attr))
2969 fieldname = DW_STRING (attr);
2970 else
2971 return;
2972
2973 /* Get physical name. */
2974 physname = dwarf2_linkage_name (die, cu);
2975
2976 /* The name is already allocated along with this objfile, so we don't
2977 need to duplicate it for the type. */
2978 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
2979 FIELD_TYPE (*fp) = die_type (die, cu);
2980 FIELD_NAME (*fp) = fieldname;
2981 }
2982 else if (die->tag == DW_TAG_inheritance)
2983 {
2984 /* C++ base class field. */
2985 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
2986 if (attr)
2987 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
2988 * bits_per_byte);
2989 FIELD_BITSIZE (*fp) = 0;
2990 FIELD_STATIC_KIND (*fp) = 0;
2991 FIELD_TYPE (*fp) = die_type (die, cu);
2992 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
2993 fip->nbaseclasses++;
2994 }
2995 }
2996
2997 /* Create the vector of fields, and attach it to the type. */
2998
2999 static void
3000 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3001 struct dwarf2_cu *cu)
3002 {
3003 int nfields = fip->nfields;
3004
3005 /* Record the field count, allocate space for the array of fields,
3006 and create blank accessibility bitfields if necessary. */
3007 TYPE_NFIELDS (type) = nfields;
3008 TYPE_FIELDS (type) = (struct field *)
3009 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3010 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3011
3012 if (fip->non_public_fields)
3013 {
3014 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3015
3016 TYPE_FIELD_PRIVATE_BITS (type) =
3017 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3018 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3019
3020 TYPE_FIELD_PROTECTED_BITS (type) =
3021 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3022 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3023
3024 TYPE_FIELD_IGNORE_BITS (type) =
3025 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3026 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3027 }
3028
3029 /* If the type has baseclasses, allocate and clear a bit vector for
3030 TYPE_FIELD_VIRTUAL_BITS. */
3031 if (fip->nbaseclasses)
3032 {
3033 int num_bytes = B_BYTES (fip->nbaseclasses);
3034 char *pointer;
3035
3036 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3037 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3038 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3039 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3040 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3041 }
3042
3043 /* Copy the saved-up fields into the field vector. Start from the head
3044 of the list, adding to the tail of the field array, so that they end
3045 up in the same order in the array in which they were added to the list. */
3046 while (nfields-- > 0)
3047 {
3048 TYPE_FIELD (type, nfields) = fip->fields->field;
3049 switch (fip->fields->accessibility)
3050 {
3051 case DW_ACCESS_private:
3052 SET_TYPE_FIELD_PRIVATE (type, nfields);
3053 break;
3054
3055 case DW_ACCESS_protected:
3056 SET_TYPE_FIELD_PROTECTED (type, nfields);
3057 break;
3058
3059 case DW_ACCESS_public:
3060 break;
3061
3062 default:
3063 /* Unknown accessibility. Complain and treat it as public. */
3064 {
3065 complaint (&symfile_complaints, "unsupported accessibility %d",
3066 fip->fields->accessibility);
3067 }
3068 break;
3069 }
3070 if (nfields < fip->nbaseclasses)
3071 {
3072 switch (fip->fields->virtuality)
3073 {
3074 case DW_VIRTUALITY_virtual:
3075 case DW_VIRTUALITY_pure_virtual:
3076 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3077 break;
3078 }
3079 }
3080 fip->fields = fip->fields->next;
3081 }
3082 }
3083
3084 /* Add a member function to the proper fieldlist. */
3085
3086 static void
3087 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3088 struct type *type, struct dwarf2_cu *cu)
3089 {
3090 struct objfile *objfile = cu->objfile;
3091 struct attribute *attr;
3092 struct fnfieldlist *flp;
3093 int i;
3094 struct fn_field *fnp;
3095 char *fieldname;
3096 char *physname;
3097 struct nextfnfield *new_fnfield;
3098
3099 /* Get name of member function. */
3100 attr = dwarf2_attr (die, DW_AT_name, cu);
3101 if (attr && DW_STRING (attr))
3102 fieldname = DW_STRING (attr);
3103 else
3104 return;
3105
3106 /* Get the mangled name. */
3107 physname = dwarf2_linkage_name (die, cu);
3108
3109 /* Look up member function name in fieldlist. */
3110 for (i = 0; i < fip->nfnfields; i++)
3111 {
3112 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3113 break;
3114 }
3115
3116 /* Create new list element if necessary. */
3117 if (i < fip->nfnfields)
3118 flp = &fip->fnfieldlists[i];
3119 else
3120 {
3121 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3122 {
3123 fip->fnfieldlists = (struct fnfieldlist *)
3124 xrealloc (fip->fnfieldlists,
3125 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3126 * sizeof (struct fnfieldlist));
3127 if (fip->nfnfields == 0)
3128 make_cleanup (free_current_contents, &fip->fnfieldlists);
3129 }
3130 flp = &fip->fnfieldlists[fip->nfnfields];
3131 flp->name = fieldname;
3132 flp->length = 0;
3133 flp->head = NULL;
3134 fip->nfnfields++;
3135 }
3136
3137 /* Create a new member function field and chain it to the field list
3138 entry. */
3139 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3140 make_cleanup (xfree, new_fnfield);
3141 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3142 new_fnfield->next = flp->head;
3143 flp->head = new_fnfield;
3144 flp->length++;
3145
3146 /* Fill in the member function field info. */
3147 fnp = &new_fnfield->fnfield;
3148 /* The name is already allocated along with this objfile, so we don't
3149 need to duplicate it for the type. */
3150 fnp->physname = physname ? physname : "";
3151 fnp->type = alloc_type (objfile);
3152 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3153 {
3154 int nparams = TYPE_NFIELDS (die->type);
3155
3156 /* TYPE is the domain of this method, and DIE->TYPE is the type
3157 of the method itself (TYPE_CODE_METHOD). */
3158 smash_to_method_type (fnp->type, type,
3159 TYPE_TARGET_TYPE (die->type),
3160 TYPE_FIELDS (die->type),
3161 TYPE_NFIELDS (die->type),
3162 TYPE_VARARGS (die->type));
3163
3164 /* Handle static member functions.
3165 Dwarf2 has no clean way to discern C++ static and non-static
3166 member functions. G++ helps GDB by marking the first
3167 parameter for non-static member functions (which is the
3168 this pointer) as artificial. We obtain this information
3169 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3170 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3171 fnp->voffset = VOFFSET_STATIC;
3172 }
3173 else
3174 complaint (&symfile_complaints, "member function type missing for '%s'",
3175 physname);
3176
3177 /* Get fcontext from DW_AT_containing_type if present. */
3178 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3179 fnp->fcontext = die_containing_type (die, cu);
3180
3181 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3182 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3183
3184 /* Get accessibility. */
3185 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3186 if (attr)
3187 {
3188 switch (DW_UNSND (attr))
3189 {
3190 case DW_ACCESS_private:
3191 fnp->is_private = 1;
3192 break;
3193 case DW_ACCESS_protected:
3194 fnp->is_protected = 1;
3195 break;
3196 }
3197 }
3198
3199 /* Check for artificial methods. */
3200 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3201 if (attr && DW_UNSND (attr) != 0)
3202 fnp->is_artificial = 1;
3203
3204 /* Get index in virtual function table if it is a virtual member function. */
3205 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3206 if (attr)
3207 {
3208 /* Support the .debug_loc offsets */
3209 if (attr_form_is_block (attr))
3210 {
3211 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3212 }
3213 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3214 {
3215 dwarf2_complex_location_expr_complaint ();
3216 }
3217 else
3218 {
3219 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3220 fieldname);
3221 }
3222 }
3223 }
3224
3225 /* Create the vector of member function fields, and attach it to the type. */
3226
3227 static void
3228 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3229 struct dwarf2_cu *cu)
3230 {
3231 struct fnfieldlist *flp;
3232 int total_length = 0;
3233 int i;
3234
3235 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3236 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3237 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3238
3239 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3240 {
3241 struct nextfnfield *nfp = flp->head;
3242 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3243 int k;
3244
3245 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3246 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3247 fn_flp->fn_fields = (struct fn_field *)
3248 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3249 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3250 fn_flp->fn_fields[k] = nfp->fnfield;
3251
3252 total_length += flp->length;
3253 }
3254
3255 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3256 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3257 }
3258
3259 /* Called when we find the DIE that starts a structure or union scope
3260 (definition) to process all dies that define the members of the
3261 structure or union.
3262
3263 NOTE: we need to call struct_type regardless of whether or not the
3264 DIE has an at_name attribute, since it might be an anonymous
3265 structure or union. This gets the type entered into our set of
3266 user defined types.
3267
3268 However, if the structure is incomplete (an opaque struct/union)
3269 then suppress creating a symbol table entry for it since gdb only
3270 wants to find the one with the complete definition. Note that if
3271 it is complete, we just call new_symbol, which does it's own
3272 checking about whether the struct/union is anonymous or not (and
3273 suppresses creating a symbol table entry itself). */
3274
3275 static void
3276 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3277 {
3278 struct objfile *objfile = cu->objfile;
3279 struct type *type;
3280 struct attribute *attr;
3281 const char *previous_prefix = processing_current_prefix;
3282 struct cleanup *back_to = NULL;
3283
3284 if (die->type)
3285 return;
3286
3287 type = alloc_type (objfile);
3288
3289 INIT_CPLUS_SPECIFIC (type);
3290 attr = dwarf2_attr (die, DW_AT_name, cu);
3291 if (attr && DW_STRING (attr))
3292 {
3293 if (cu->language == language_cplus)
3294 {
3295 char *new_prefix = determine_class_name (die, cu);
3296 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3297 strlen (new_prefix),
3298 &objfile->objfile_obstack);
3299 back_to = make_cleanup (xfree, new_prefix);
3300 processing_current_prefix = new_prefix;
3301 }
3302 else
3303 {
3304 /* The name is already allocated along with this objfile, so
3305 we don't need to duplicate it for the type. */
3306 TYPE_TAG_NAME (type) = DW_STRING (attr);
3307 }
3308 }
3309
3310 if (die->tag == DW_TAG_structure_type)
3311 {
3312 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3313 }
3314 else if (die->tag == DW_TAG_union_type)
3315 {
3316 TYPE_CODE (type) = TYPE_CODE_UNION;
3317 }
3318 else
3319 {
3320 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3321 in gdbtypes.h. */
3322 TYPE_CODE (type) = TYPE_CODE_CLASS;
3323 }
3324
3325 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3326 if (attr)
3327 {
3328 TYPE_LENGTH (type) = DW_UNSND (attr);
3329 }
3330 else
3331 {
3332 TYPE_LENGTH (type) = 0;
3333 }
3334
3335 if (die_is_declaration (die, cu))
3336 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3337
3338 /* We need to add the type field to the die immediately so we don't
3339 infinitely recurse when dealing with pointers to the structure
3340 type within the structure itself. */
3341 die->type = type;
3342
3343 if (die->child != NULL && ! die_is_declaration (die, cu))
3344 {
3345 struct field_info fi;
3346 struct die_info *child_die;
3347 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3348
3349 memset (&fi, 0, sizeof (struct field_info));
3350
3351 child_die = die->child;
3352
3353 while (child_die && child_die->tag)
3354 {
3355 if (child_die->tag == DW_TAG_member
3356 || child_die->tag == DW_TAG_variable)
3357 {
3358 /* NOTE: carlton/2002-11-05: A C++ static data member
3359 should be a DW_TAG_member that is a declaration, but
3360 all versions of G++ as of this writing (so through at
3361 least 3.2.1) incorrectly generate DW_TAG_variable
3362 tags for them instead. */
3363 dwarf2_add_field (&fi, child_die, cu);
3364 }
3365 else if (child_die->tag == DW_TAG_subprogram)
3366 {
3367 /* C++ member function. */
3368 read_type_die (child_die, cu);
3369 dwarf2_add_member_fn (&fi, child_die, type, cu);
3370 }
3371 else if (child_die->tag == DW_TAG_inheritance)
3372 {
3373 /* C++ base class field. */
3374 dwarf2_add_field (&fi, child_die, cu);
3375 }
3376 child_die = sibling_die (child_die);
3377 }
3378
3379 /* Attach fields and member functions to the type. */
3380 if (fi.nfields)
3381 dwarf2_attach_fields_to_type (&fi, type, cu);
3382 if (fi.nfnfields)
3383 {
3384 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3385
3386 /* Get the type which refers to the base class (possibly this
3387 class itself) which contains the vtable pointer for the current
3388 class from the DW_AT_containing_type attribute. */
3389
3390 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3391 {
3392 struct type *t = die_containing_type (die, cu);
3393
3394 TYPE_VPTR_BASETYPE (type) = t;
3395 if (type == t)
3396 {
3397 static const char vptr_name[] =
3398 {'_', 'v', 'p', 't', 'r', '\0'};
3399 int i;
3400
3401 /* Our own class provides vtbl ptr. */
3402 for (i = TYPE_NFIELDS (t) - 1;
3403 i >= TYPE_N_BASECLASSES (t);
3404 --i)
3405 {
3406 char *fieldname = TYPE_FIELD_NAME (t, i);
3407
3408 if ((strncmp (fieldname, vptr_name,
3409 strlen (vptr_name) - 1)
3410 == 0)
3411 && is_cplus_marker (fieldname[strlen (vptr_name)]))
3412 {
3413 TYPE_VPTR_FIELDNO (type) = i;
3414 break;
3415 }
3416 }
3417
3418 /* Complain if virtual function table field not found. */
3419 if (i < TYPE_N_BASECLASSES (t))
3420 complaint (&symfile_complaints,
3421 "virtual function table pointer not found when defining class '%s'",
3422 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3423 "");
3424 }
3425 else
3426 {
3427 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3428 }
3429 }
3430 }
3431
3432 do_cleanups (back_to);
3433 }
3434
3435 processing_current_prefix = previous_prefix;
3436 if (back_to != NULL)
3437 do_cleanups (back_to);
3438 }
3439
3440 static void
3441 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3442 {
3443 struct objfile *objfile = cu->objfile;
3444 const char *previous_prefix = processing_current_prefix;
3445 struct die_info *child_die = die->child;
3446
3447 if (TYPE_TAG_NAME (die->type) != NULL)
3448 processing_current_prefix = TYPE_TAG_NAME (die->type);
3449
3450 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3451 snapshots) has been known to create a die giving a declaration
3452 for a class that has, as a child, a die giving a definition for a
3453 nested class. So we have to process our children even if the
3454 current die is a declaration. Normally, of course, a declaration
3455 won't have any children at all. */
3456
3457 while (child_die != NULL && child_die->tag)
3458 {
3459 if (child_die->tag == DW_TAG_member
3460 || child_die->tag == DW_TAG_variable
3461 || child_die->tag == DW_TAG_inheritance)
3462 {
3463 /* Do nothing. */
3464 }
3465 else
3466 process_die (child_die, cu);
3467
3468 child_die = sibling_die (child_die);
3469 }
3470
3471 if (die->child != NULL && ! die_is_declaration (die, cu))
3472 new_symbol (die, die->type, cu);
3473
3474 processing_current_prefix = previous_prefix;
3475 }
3476
3477 /* Given a DW_AT_enumeration_type die, set its type. We do not
3478 complete the type's fields yet, or create any symbols. */
3479
3480 static void
3481 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3482 {
3483 struct objfile *objfile = cu->objfile;
3484 struct type *type;
3485 struct attribute *attr;
3486
3487 if (die->type)
3488 return;
3489
3490 type = alloc_type (objfile);
3491
3492 TYPE_CODE (type) = TYPE_CODE_ENUM;
3493 attr = dwarf2_attr (die, DW_AT_name, cu);
3494 if (attr && DW_STRING (attr))
3495 {
3496 char *name = DW_STRING (attr);
3497
3498 if (processing_has_namespace_info)
3499 {
3500 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
3501 processing_current_prefix,
3502 processing_current_prefix[0] == '\0'
3503 ? "" : "::",
3504 name);
3505 }
3506 else
3507 {
3508 /* The name is already allocated along with this objfile, so
3509 we don't need to duplicate it for the type. */
3510 TYPE_TAG_NAME (type) = name;
3511 }
3512 }
3513
3514 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3515 if (attr)
3516 {
3517 TYPE_LENGTH (type) = DW_UNSND (attr);
3518 }
3519 else
3520 {
3521 TYPE_LENGTH (type) = 0;
3522 }
3523
3524 die->type = type;
3525 }
3526
3527 /* Determine the name of the type represented by DIE, which should be
3528 a named C++ compound type. Return the name in question; the caller
3529 is responsible for xfree()'ing it. */
3530
3531 static char *
3532 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3533 {
3534 struct cleanup *back_to = NULL;
3535 struct die_info *spec_die = die_specification (die, cu);
3536 char *new_prefix = NULL;
3537
3538 /* If this is the definition of a class that is declared by another
3539 die, then processing_current_prefix may not be accurate; see
3540 read_func_scope for a similar example. */
3541 if (spec_die != NULL)
3542 {
3543 char *specification_prefix = determine_prefix (spec_die, cu);
3544 processing_current_prefix = specification_prefix;
3545 back_to = make_cleanup (xfree, specification_prefix);
3546 }
3547
3548 /* If we don't have namespace debug info, guess the name by trying
3549 to demangle the names of members, just like we did in
3550 guess_structure_name. */
3551 if (!processing_has_namespace_info)
3552 {
3553 struct die_info *child;
3554
3555 for (child = die->child;
3556 child != NULL && child->tag != 0;
3557 child = sibling_die (child))
3558 {
3559 if (child->tag == DW_TAG_subprogram)
3560 {
3561 new_prefix
3562 = language_class_name_from_physname (cu->language_defn,
3563 dwarf2_linkage_name
3564 (child, cu));
3565
3566 if (new_prefix != NULL)
3567 break;
3568 }
3569 }
3570 }
3571
3572 if (new_prefix == NULL)
3573 {
3574 const char *name = dwarf2_name (die, cu);
3575 new_prefix = typename_concat (processing_current_prefix,
3576 name ? name : "<<anonymous>>");
3577 }
3578
3579 if (back_to != NULL)
3580 do_cleanups (back_to);
3581
3582 return new_prefix;
3583 }
3584
3585 /* Given a pointer to a die which begins an enumeration, process all
3586 the dies that define the members of the enumeration, and create the
3587 symbol for the enumeration type.
3588
3589 NOTE: We reverse the order of the element list. */
3590
3591 static void
3592 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
3593 {
3594 struct objfile *objfile = cu->objfile;
3595 struct die_info *child_die;
3596 struct field *fields;
3597 struct attribute *attr;
3598 struct symbol *sym;
3599 int num_fields;
3600 int unsigned_enum = 1;
3601
3602 num_fields = 0;
3603 fields = NULL;
3604 if (die->child != NULL)
3605 {
3606 child_die = die->child;
3607 while (child_die && child_die->tag)
3608 {
3609 if (child_die->tag != DW_TAG_enumerator)
3610 {
3611 process_die (child_die, cu);
3612 }
3613 else
3614 {
3615 attr = dwarf2_attr (child_die, DW_AT_name, cu);
3616 if (attr)
3617 {
3618 sym = new_symbol (child_die, die->type, cu);
3619 if (SYMBOL_VALUE (sym) < 0)
3620 unsigned_enum = 0;
3621
3622 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
3623 {
3624 fields = (struct field *)
3625 xrealloc (fields,
3626 (num_fields + DW_FIELD_ALLOC_CHUNK)
3627 * sizeof (struct field));
3628 }
3629
3630 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
3631 FIELD_TYPE (fields[num_fields]) = NULL;
3632 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
3633 FIELD_BITSIZE (fields[num_fields]) = 0;
3634 FIELD_STATIC_KIND (fields[num_fields]) = 0;
3635
3636 num_fields++;
3637 }
3638 }
3639
3640 child_die = sibling_die (child_die);
3641 }
3642
3643 if (num_fields)
3644 {
3645 TYPE_NFIELDS (die->type) = num_fields;
3646 TYPE_FIELDS (die->type) = (struct field *)
3647 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
3648 memcpy (TYPE_FIELDS (die->type), fields,
3649 sizeof (struct field) * num_fields);
3650 xfree (fields);
3651 }
3652 if (unsigned_enum)
3653 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
3654 }
3655
3656 new_symbol (die, die->type, cu);
3657 }
3658
3659 /* Extract all information from a DW_TAG_array_type DIE and put it in
3660 the DIE's type field. For now, this only handles one dimensional
3661 arrays. */
3662
3663 static void
3664 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
3665 {
3666 struct objfile *objfile = cu->objfile;
3667 struct die_info *child_die;
3668 struct type *type = NULL;
3669 struct type *element_type, *range_type, *index_type;
3670 struct type **range_types = NULL;
3671 struct attribute *attr;
3672 int ndim = 0;
3673 struct cleanup *back_to;
3674
3675 /* Return if we've already decoded this type. */
3676 if (die->type)
3677 {
3678 return;
3679 }
3680
3681 element_type = die_type (die, cu);
3682
3683 /* Irix 6.2 native cc creates array types without children for
3684 arrays with unspecified length. */
3685 if (die->child == NULL)
3686 {
3687 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
3688 range_type = create_range_type (NULL, index_type, 0, -1);
3689 die->type = create_array_type (NULL, element_type, range_type);
3690 return;
3691 }
3692
3693 back_to = make_cleanup (null_cleanup, NULL);
3694 child_die = die->child;
3695 while (child_die && child_die->tag)
3696 {
3697 if (child_die->tag == DW_TAG_subrange_type)
3698 {
3699 read_subrange_type (child_die, cu);
3700
3701 if (child_die->type != NULL)
3702 {
3703 /* The range type was succesfully read. Save it for
3704 the array type creation. */
3705 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
3706 {
3707 range_types = (struct type **)
3708 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
3709 * sizeof (struct type *));
3710 if (ndim == 0)
3711 make_cleanup (free_current_contents, &range_types);
3712 }
3713 range_types[ndim++] = child_die->type;
3714 }
3715 }
3716 child_die = sibling_die (child_die);
3717 }
3718
3719 /* Dwarf2 dimensions are output from left to right, create the
3720 necessary array types in backwards order. */
3721 type = element_type;
3722 while (ndim-- > 0)
3723 type = create_array_type (NULL, type, range_types[ndim]);
3724
3725 /* Understand Dwarf2 support for vector types (like they occur on
3726 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
3727 array type. This is not part of the Dwarf2/3 standard yet, but a
3728 custom vendor extension. The main difference between a regular
3729 array and the vector variant is that vectors are passed by value
3730 to functions. */
3731 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
3732 if (attr)
3733 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
3734
3735 do_cleanups (back_to);
3736
3737 /* Install the type in the die. */
3738 die->type = type;
3739 }
3740
3741 /* First cut: install each common block member as a global variable. */
3742
3743 static void
3744 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
3745 {
3746 struct die_info *child_die;
3747 struct attribute *attr;
3748 struct symbol *sym;
3749 CORE_ADDR base = (CORE_ADDR) 0;
3750
3751 attr = dwarf2_attr (die, DW_AT_location, cu);
3752 if (attr)
3753 {
3754 /* Support the .debug_loc offsets */
3755 if (attr_form_is_block (attr))
3756 {
3757 base = decode_locdesc (DW_BLOCK (attr), cu);
3758 }
3759 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3760 {
3761 dwarf2_complex_location_expr_complaint ();
3762 }
3763 else
3764 {
3765 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
3766 "common block member");
3767 }
3768 }
3769 if (die->child != NULL)
3770 {
3771 child_die = die->child;
3772 while (child_die && child_die->tag)
3773 {
3774 sym = new_symbol (child_die, NULL, cu);
3775 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
3776 if (attr)
3777 {
3778 SYMBOL_VALUE_ADDRESS (sym) =
3779 base + decode_locdesc (DW_BLOCK (attr), cu);
3780 add_symbol_to_list (sym, &global_symbols);
3781 }
3782 child_die = sibling_die (child_die);
3783 }
3784 }
3785 }
3786
3787 /* Read a C++ namespace. */
3788
3789 static void
3790 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
3791 {
3792 struct objfile *objfile = cu->objfile;
3793 const char *previous_prefix = processing_current_prefix;
3794 const char *name;
3795 int is_anonymous;
3796 struct die_info *current_die;
3797
3798 name = namespace_name (die, &is_anonymous, cu);
3799
3800 /* Now build the name of the current namespace. */
3801
3802 if (previous_prefix[0] == '\0')
3803 {
3804 processing_current_prefix = name;
3805 }
3806 else
3807 {
3808 /* We need temp_name around because processing_current_prefix
3809 is a const char *. */
3810 char *temp_name = alloca (strlen (previous_prefix)
3811 + 2 + strlen(name) + 1);
3812 strcpy (temp_name, previous_prefix);
3813 strcat (temp_name, "::");
3814 strcat (temp_name, name);
3815
3816 processing_current_prefix = temp_name;
3817 }
3818
3819 /* Add a symbol associated to this if we haven't seen the namespace
3820 before. Also, add a using directive if it's an anonymous
3821 namespace. */
3822
3823 if (dwarf2_extension (die, cu) == NULL)
3824 {
3825 struct type *type;
3826
3827 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
3828 this cast will hopefully become unnecessary. */
3829 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
3830 (char *) processing_current_prefix,
3831 objfile);
3832 TYPE_TAG_NAME (type) = TYPE_NAME (type);
3833
3834 new_symbol (die, type, cu);
3835 die->type = type;
3836
3837 if (is_anonymous)
3838 cp_add_using_directive (processing_current_prefix,
3839 strlen (previous_prefix),
3840 strlen (processing_current_prefix));
3841 }
3842
3843 if (die->child != NULL)
3844 {
3845 struct die_info *child_die = die->child;
3846
3847 while (child_die && child_die->tag)
3848 {
3849 process_die (child_die, cu);
3850 child_die = sibling_die (child_die);
3851 }
3852 }
3853
3854 processing_current_prefix = previous_prefix;
3855 }
3856
3857 /* Return the name of the namespace represented by DIE. Set
3858 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
3859 namespace. */
3860
3861 static const char *
3862 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
3863 {
3864 struct die_info *current_die;
3865 const char *name = NULL;
3866
3867 /* Loop through the extensions until we find a name. */
3868
3869 for (current_die = die;
3870 current_die != NULL;
3871 current_die = dwarf2_extension (die, cu))
3872 {
3873 name = dwarf2_name (current_die, cu);
3874 if (name != NULL)
3875 break;
3876 }
3877
3878 /* Is it an anonymous namespace? */
3879
3880 *is_anonymous = (name == NULL);
3881 if (*is_anonymous)
3882 name = "(anonymous namespace)";
3883
3884 return name;
3885 }
3886
3887 /* Extract all information from a DW_TAG_pointer_type DIE and add to
3888 the user defined type vector. */
3889
3890 static void
3891 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
3892 {
3893 struct comp_unit_head *cu_header = &cu->header;
3894 struct type *type;
3895 struct attribute *attr_byte_size;
3896 struct attribute *attr_address_class;
3897 int byte_size, addr_class;
3898
3899 if (die->type)
3900 {
3901 return;
3902 }
3903
3904 type = lookup_pointer_type (die_type (die, cu));
3905
3906 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
3907 if (attr_byte_size)
3908 byte_size = DW_UNSND (attr_byte_size);
3909 else
3910 byte_size = cu_header->addr_size;
3911
3912 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
3913 if (attr_address_class)
3914 addr_class = DW_UNSND (attr_address_class);
3915 else
3916 addr_class = DW_ADDR_none;
3917
3918 /* If the pointer size or address class is different than the
3919 default, create a type variant marked as such and set the
3920 length accordingly. */
3921 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
3922 {
3923 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
3924 {
3925 int type_flags;
3926
3927 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
3928 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
3929 type = make_type_with_address_space (type, type_flags);
3930 }
3931 else if (TYPE_LENGTH (type) != byte_size)
3932 {
3933 complaint (&symfile_complaints, "invalid pointer size %d", byte_size);
3934 }
3935 else {
3936 /* Should we also complain about unhandled address classes? */
3937 }
3938 }
3939
3940 TYPE_LENGTH (type) = byte_size;
3941 die->type = type;
3942 }
3943
3944 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
3945 the user defined type vector. */
3946
3947 static void
3948 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
3949 {
3950 struct objfile *objfile = cu->objfile;
3951 struct type *type;
3952 struct type *to_type;
3953 struct type *domain;
3954
3955 if (die->type)
3956 {
3957 return;
3958 }
3959
3960 type = alloc_type (objfile);
3961 to_type = die_type (die, cu);
3962 domain = die_containing_type (die, cu);
3963 smash_to_member_type (type, domain, to_type);
3964
3965 die->type = type;
3966 }
3967
3968 /* Extract all information from a DW_TAG_reference_type DIE and add to
3969 the user defined type vector. */
3970
3971 static void
3972 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
3973 {
3974 struct comp_unit_head *cu_header = &cu->header;
3975 struct type *type;
3976 struct attribute *attr;
3977
3978 if (die->type)
3979 {
3980 return;
3981 }
3982
3983 type = lookup_reference_type (die_type (die, cu));
3984 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3985 if (attr)
3986 {
3987 TYPE_LENGTH (type) = DW_UNSND (attr);
3988 }
3989 else
3990 {
3991 TYPE_LENGTH (type) = cu_header->addr_size;
3992 }
3993 die->type = type;
3994 }
3995
3996 static void
3997 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
3998 {
3999 struct type *base_type;
4000
4001 if (die->type)
4002 {
4003 return;
4004 }
4005
4006 base_type = die_type (die, cu);
4007 die->type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
4008 }
4009
4010 static void
4011 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4012 {
4013 struct type *base_type;
4014
4015 if (die->type)
4016 {
4017 return;
4018 }
4019
4020 base_type = die_type (die, cu);
4021 die->type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
4022 }
4023
4024 /* Extract all information from a DW_TAG_string_type DIE and add to
4025 the user defined type vector. It isn't really a user defined type,
4026 but it behaves like one, with other DIE's using an AT_user_def_type
4027 attribute to reference it. */
4028
4029 static void
4030 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4031 {
4032 struct objfile *objfile = cu->objfile;
4033 struct type *type, *range_type, *index_type, *char_type;
4034 struct attribute *attr;
4035 unsigned int length;
4036
4037 if (die->type)
4038 {
4039 return;
4040 }
4041
4042 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4043 if (attr)
4044 {
4045 length = DW_UNSND (attr);
4046 }
4047 else
4048 {
4049 /* check for the DW_AT_byte_size attribute */
4050 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4051 if (attr)
4052 {
4053 length = DW_UNSND (attr);
4054 }
4055 else
4056 {
4057 length = 1;
4058 }
4059 }
4060 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4061 range_type = create_range_type (NULL, index_type, 1, length);
4062 if (cu->language == language_fortran)
4063 {
4064 /* Need to create a unique string type for bounds
4065 information */
4066 type = create_string_type (0, range_type);
4067 }
4068 else
4069 {
4070 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4071 type = create_string_type (char_type, range_type);
4072 }
4073 die->type = type;
4074 }
4075
4076 /* Handle DIES due to C code like:
4077
4078 struct foo
4079 {
4080 int (*funcp)(int a, long l);
4081 int b;
4082 };
4083
4084 ('funcp' generates a DW_TAG_subroutine_type DIE)
4085 */
4086
4087 static void
4088 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4089 {
4090 struct type *type; /* Type that this function returns */
4091 struct type *ftype; /* Function that returns above type */
4092 struct attribute *attr;
4093
4094 /* Decode the type that this subroutine returns */
4095 if (die->type)
4096 {
4097 return;
4098 }
4099 type = die_type (die, cu);
4100 ftype = lookup_function_type (type);
4101
4102 /* All functions in C++ have prototypes. */
4103 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4104 if ((attr && (DW_UNSND (attr) != 0))
4105 || cu->language == language_cplus)
4106 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4107
4108 if (die->child != NULL)
4109 {
4110 struct die_info *child_die;
4111 int nparams = 0;
4112 int iparams = 0;
4113
4114 /* Count the number of parameters.
4115 FIXME: GDB currently ignores vararg functions, but knows about
4116 vararg member functions. */
4117 child_die = die->child;
4118 while (child_die && child_die->tag)
4119 {
4120 if (child_die->tag == DW_TAG_formal_parameter)
4121 nparams++;
4122 else if (child_die->tag == DW_TAG_unspecified_parameters)
4123 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4124 child_die = sibling_die (child_die);
4125 }
4126
4127 /* Allocate storage for parameters and fill them in. */
4128 TYPE_NFIELDS (ftype) = nparams;
4129 TYPE_FIELDS (ftype) = (struct field *)
4130 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4131
4132 child_die = die->child;
4133 while (child_die && child_die->tag)
4134 {
4135 if (child_die->tag == DW_TAG_formal_parameter)
4136 {
4137 /* Dwarf2 has no clean way to discern C++ static and non-static
4138 member functions. G++ helps GDB by marking the first
4139 parameter for non-static member functions (which is the
4140 this pointer) as artificial. We pass this information
4141 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4142 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4143 if (attr)
4144 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4145 else
4146 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4147 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4148 iparams++;
4149 }
4150 child_die = sibling_die (child_die);
4151 }
4152 }
4153
4154 die->type = ftype;
4155 }
4156
4157 static void
4158 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4159 {
4160 struct objfile *objfile = cu->objfile;
4161 struct attribute *attr;
4162 char *name = NULL;
4163
4164 if (!die->type)
4165 {
4166 attr = dwarf2_attr (die, DW_AT_name, cu);
4167 if (attr && DW_STRING (attr))
4168 {
4169 name = DW_STRING (attr);
4170 }
4171 die->type = init_type (TYPE_CODE_TYPEDEF, 0, TYPE_FLAG_TARGET_STUB, name, objfile);
4172 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4173 }
4174 }
4175
4176 /* Find a representation of a given base type and install
4177 it in the TYPE field of the die. */
4178
4179 static void
4180 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4181 {
4182 struct objfile *objfile = cu->objfile;
4183 struct type *type;
4184 struct attribute *attr;
4185 int encoding = 0, size = 0;
4186
4187 /* If we've already decoded this die, this is a no-op. */
4188 if (die->type)
4189 {
4190 return;
4191 }
4192
4193 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4194 if (attr)
4195 {
4196 encoding = DW_UNSND (attr);
4197 }
4198 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4199 if (attr)
4200 {
4201 size = DW_UNSND (attr);
4202 }
4203 attr = dwarf2_attr (die, DW_AT_name, cu);
4204 if (attr && DW_STRING (attr))
4205 {
4206 enum type_code code = TYPE_CODE_INT;
4207 int type_flags = 0;
4208
4209 switch (encoding)
4210 {
4211 case DW_ATE_address:
4212 /* Turn DW_ATE_address into a void * pointer. */
4213 code = TYPE_CODE_PTR;
4214 type_flags |= TYPE_FLAG_UNSIGNED;
4215 break;
4216 case DW_ATE_boolean:
4217 code = TYPE_CODE_BOOL;
4218 type_flags |= TYPE_FLAG_UNSIGNED;
4219 break;
4220 case DW_ATE_complex_float:
4221 code = TYPE_CODE_COMPLEX;
4222 break;
4223 case DW_ATE_float:
4224 code = TYPE_CODE_FLT;
4225 break;
4226 case DW_ATE_signed:
4227 case DW_ATE_signed_char:
4228 break;
4229 case DW_ATE_unsigned:
4230 case DW_ATE_unsigned_char:
4231 type_flags |= TYPE_FLAG_UNSIGNED;
4232 break;
4233 default:
4234 complaint (&symfile_complaints, "unsupported DW_AT_encoding: '%s'",
4235 dwarf_type_encoding_name (encoding));
4236 break;
4237 }
4238 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4239 if (encoding == DW_ATE_address)
4240 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4241 cu);
4242 else if (encoding == DW_ATE_complex_float)
4243 {
4244 if (size == 32)
4245 TYPE_TARGET_TYPE (type)
4246 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4247 else if (size == 16)
4248 TYPE_TARGET_TYPE (type)
4249 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4250 else if (size == 8)
4251 TYPE_TARGET_TYPE (type)
4252 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4253 }
4254 }
4255 else
4256 {
4257 type = dwarf_base_type (encoding, size, cu);
4258 }
4259 die->type = type;
4260 }
4261
4262 /* Read the given DW_AT_subrange DIE. */
4263
4264 static void
4265 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4266 {
4267 struct type *base_type;
4268 struct type *range_type;
4269 struct attribute *attr;
4270 int low = 0;
4271 int high = -1;
4272
4273 /* If we have already decoded this die, then nothing more to do. */
4274 if (die->type)
4275 return;
4276
4277 base_type = die_type (die, cu);
4278 if (base_type == NULL)
4279 {
4280 complaint (&symfile_complaints,
4281 "DW_AT_type missing from DW_TAG_subrange_type");
4282 return;
4283 }
4284
4285 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4286 base_type = alloc_type (NULL);
4287
4288 if (cu->language == language_fortran)
4289 {
4290 /* FORTRAN implies a lower bound of 1, if not given. */
4291 low = 1;
4292 }
4293
4294 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4295 if (attr)
4296 low = dwarf2_get_attr_constant_value (attr, 0);
4297
4298 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4299 if (attr)
4300 {
4301 if (attr->form == DW_FORM_block1)
4302 {
4303 /* GCC encodes arrays with unspecified or dynamic length
4304 with a DW_FORM_block1 attribute.
4305 FIXME: GDB does not yet know how to handle dynamic
4306 arrays properly, treat them as arrays with unspecified
4307 length for now.
4308
4309 FIXME: jimb/2003-09-22: GDB does not really know
4310 how to handle arrays of unspecified length
4311 either; we just represent them as zero-length
4312 arrays. Choose an appropriate upper bound given
4313 the lower bound we've computed above. */
4314 high = low - 1;
4315 }
4316 else
4317 high = dwarf2_get_attr_constant_value (attr, 1);
4318 }
4319
4320 range_type = create_range_type (NULL, base_type, low, high);
4321
4322 attr = dwarf2_attr (die, DW_AT_name, cu);
4323 if (attr && DW_STRING (attr))
4324 TYPE_NAME (range_type) = DW_STRING (attr);
4325
4326 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4327 if (attr)
4328 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4329
4330 die->type = range_type;
4331 }
4332
4333
4334 /* Read a whole compilation unit into a linked list of dies. */
4335
4336 static struct die_info *
4337 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4338 {
4339 /* Reset die reference table; we are
4340 building new ones now. */
4341 dwarf2_empty_hash_tables ();
4342
4343 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4344 }
4345
4346 /* Read a single die and all its descendents. Set the die's sibling
4347 field to NULL; set other fields in the die correctly, and set all
4348 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4349 location of the info_ptr after reading all of those dies. PARENT
4350 is the parent of the die in question. */
4351
4352 static struct die_info *
4353 read_die_and_children (char *info_ptr, bfd *abfd,
4354 struct dwarf2_cu *cu,
4355 char **new_info_ptr,
4356 struct die_info *parent)
4357 {
4358 struct die_info *die;
4359 char *cur_ptr;
4360 int has_children;
4361
4362 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4363 store_in_ref_table (die->offset, die);
4364
4365 if (has_children)
4366 {
4367 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4368 new_info_ptr, die);
4369 }
4370 else
4371 {
4372 die->child = NULL;
4373 *new_info_ptr = cur_ptr;
4374 }
4375
4376 die->sibling = NULL;
4377 die->parent = parent;
4378 return die;
4379 }
4380
4381 /* Read a die, all of its descendents, and all of its siblings; set
4382 all of the fields of all of the dies correctly. Arguments are as
4383 in read_die_and_children. */
4384
4385 static struct die_info *
4386 read_die_and_siblings (char *info_ptr, bfd *abfd,
4387 struct dwarf2_cu *cu,
4388 char **new_info_ptr,
4389 struct die_info *parent)
4390 {
4391 struct die_info *first_die, *last_sibling;
4392 char *cur_ptr;
4393
4394 cur_ptr = info_ptr;
4395 first_die = last_sibling = NULL;
4396
4397 while (1)
4398 {
4399 struct die_info *die
4400 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4401
4402 if (!first_die)
4403 {
4404 first_die = die;
4405 }
4406 else
4407 {
4408 last_sibling->sibling = die;
4409 }
4410
4411 if (die->tag == 0)
4412 {
4413 *new_info_ptr = cur_ptr;
4414 return first_die;
4415 }
4416 else
4417 {
4418 last_sibling = die;
4419 }
4420 }
4421 }
4422
4423 /* Free a linked list of dies. */
4424
4425 static void
4426 free_die_list (struct die_info *dies)
4427 {
4428 struct die_info *die, *next;
4429
4430 die = dies;
4431 while (die)
4432 {
4433 if (die->child != NULL)
4434 free_die_list (die->child);
4435 next = die->sibling;
4436 xfree (die->attrs);
4437 xfree (die);
4438 die = next;
4439 }
4440 }
4441
4442 static void
4443 do_free_die_list_cleanup (void *dies)
4444 {
4445 free_die_list (dies);
4446 }
4447
4448 static struct cleanup *
4449 make_cleanup_free_die_list (struct die_info *dies)
4450 {
4451 return make_cleanup (do_free_die_list_cleanup, dies);
4452 }
4453
4454
4455 /* Read the contents of the section at OFFSET and of size SIZE from the
4456 object file specified by OBJFILE into the objfile_obstack and return it. */
4457
4458 char *
4459 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4460 {
4461 bfd *abfd = objfile->obfd;
4462 char *buf, *retbuf;
4463 bfd_size_type size = bfd_get_section_size (sectp);
4464
4465 if (size == 0)
4466 return NULL;
4467
4468 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4469 retbuf
4470 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4471 if (retbuf != NULL)
4472 return retbuf;
4473
4474 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4475 || bfd_bread (buf, size, abfd) != size)
4476 error ("Dwarf Error: Can't read DWARF data from '%s'",
4477 bfd_get_filename (abfd));
4478
4479 return buf;
4480 }
4481
4482 /* In DWARF version 2, the description of the debugging information is
4483 stored in a separate .debug_abbrev section. Before we read any
4484 dies from a section we read in all abbreviations and install them
4485 in a hash table. This function also sets flags in CU describing
4486 the data found in the abbrev table. */
4487
4488 static void
4489 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4490 {
4491 struct comp_unit_head *cu_header = &cu->header;
4492 char *abbrev_ptr;
4493 struct abbrev_info *cur_abbrev;
4494 unsigned int abbrev_number, bytes_read, abbrev_name;
4495 unsigned int abbrev_form, hash_number;
4496 struct attr_abbrev *cur_attrs;
4497 unsigned int allocated_attrs;
4498
4499 /* Initialize dwarf2 abbrevs */
4500 obstack_init (&cu->abbrev_obstack);
4501 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4502 (ABBREV_HASH_SIZE
4503 * sizeof (struct abbrev_info *)));
4504 memset (cu->dwarf2_abbrevs, 0,
4505 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4506
4507 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4508 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4509 abbrev_ptr += bytes_read;
4510
4511 allocated_attrs = ATTR_ALLOC_CHUNK;
4512 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4513
4514 /* loop until we reach an abbrev number of 0 */
4515 while (abbrev_number)
4516 {
4517 cur_abbrev = dwarf_alloc_abbrev (cu);
4518
4519 /* read in abbrev header */
4520 cur_abbrev->number = abbrev_number;
4521 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4522 abbrev_ptr += bytes_read;
4523 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4524 abbrev_ptr += 1;
4525
4526 if (cur_abbrev->tag == DW_TAG_namespace)
4527 cu->has_namespace_info = 1;
4528
4529 /* now read in declarations */
4530 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4531 abbrev_ptr += bytes_read;
4532 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4533 abbrev_ptr += bytes_read;
4534 while (abbrev_name)
4535 {
4536 if (cur_abbrev->num_attrs == allocated_attrs)
4537 {
4538 allocated_attrs += ATTR_ALLOC_CHUNK;
4539 cur_attrs
4540 = xrealloc (cur_attrs, (allocated_attrs
4541 * sizeof (struct attr_abbrev)));
4542 }
4543 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
4544 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
4545 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4546 abbrev_ptr += bytes_read;
4547 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4548 abbrev_ptr += bytes_read;
4549 }
4550
4551 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
4552 (cur_abbrev->num_attrs
4553 * sizeof (struct attr_abbrev)));
4554 memcpy (cur_abbrev->attrs, cur_attrs,
4555 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
4556
4557 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4558 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
4559 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
4560
4561 /* Get next abbreviation.
4562 Under Irix6 the abbreviations for a compilation unit are not
4563 always properly terminated with an abbrev number of 0.
4564 Exit loop if we encounter an abbreviation which we have
4565 already read (which means we are about to read the abbreviations
4566 for the next compile unit) or if the end of the abbreviation
4567 table is reached. */
4568 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
4569 >= dwarf2_per_objfile->abbrev_size)
4570 break;
4571 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4572 abbrev_ptr += bytes_read;
4573 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
4574 break;
4575 }
4576
4577 xfree (cur_attrs);
4578 }
4579
4580 /* Release the memory used by the abbrev table for a compilation unit. */
4581
4582 static void
4583 dwarf2_free_abbrev_table (void *ptr_to_cu)
4584 {
4585 struct dwarf2_cu *cu = ptr_to_cu;
4586
4587 obstack_free (&cu->abbrev_obstack, NULL);
4588 cu->dwarf2_abbrevs = NULL;
4589 }
4590
4591 /* Lookup an abbrev_info structure in the abbrev hash table. */
4592
4593 static struct abbrev_info *
4594 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
4595 {
4596 unsigned int hash_number;
4597 struct abbrev_info *abbrev;
4598
4599 hash_number = number % ABBREV_HASH_SIZE;
4600 abbrev = cu->dwarf2_abbrevs[hash_number];
4601
4602 while (abbrev)
4603 {
4604 if (abbrev->number == number)
4605 return abbrev;
4606 else
4607 abbrev = abbrev->next;
4608 }
4609 return NULL;
4610 }
4611
4612 /* Returns nonzero if TAG represents a type that we might generate a partial
4613 symbol for. */
4614
4615 static int
4616 is_type_tag_for_partial (int tag)
4617 {
4618 switch (tag)
4619 {
4620 #if 0
4621 /* Some types that would be reasonable to generate partial symbols for,
4622 that we don't at present. */
4623 case DW_TAG_array_type:
4624 case DW_TAG_file_type:
4625 case DW_TAG_ptr_to_member_type:
4626 case DW_TAG_set_type:
4627 case DW_TAG_string_type:
4628 case DW_TAG_subroutine_type:
4629 #endif
4630 case DW_TAG_base_type:
4631 case DW_TAG_class_type:
4632 case DW_TAG_enumeration_type:
4633 case DW_TAG_structure_type:
4634 case DW_TAG_subrange_type:
4635 case DW_TAG_typedef:
4636 case DW_TAG_union_type:
4637 return 1;
4638 default:
4639 return 0;
4640 }
4641 }
4642
4643 /* Load all DIEs that are interesting for partial symbols into memory. */
4644
4645 static struct partial_die_info *
4646 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
4647 struct dwarf2_cu *cu)
4648 {
4649 struct partial_die_info *part_die;
4650 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
4651 struct abbrev_info *abbrev;
4652 unsigned int bytes_read;
4653
4654 int nesting_level = 1;
4655
4656 parent_die = NULL;
4657 last_die = NULL;
4658
4659 cu->partial_dies
4660 = htab_create_alloc_ex (cu->header.length / 12,
4661 partial_die_hash,
4662 partial_die_eq,
4663 NULL,
4664 &cu->comp_unit_obstack,
4665 hashtab_obstack_allocate,
4666 dummy_obstack_deallocate);
4667
4668 part_die = obstack_alloc (&cu->comp_unit_obstack,
4669 sizeof (struct partial_die_info));
4670
4671 while (1)
4672 {
4673 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4674
4675 /* A NULL abbrev means the end of a series of children. */
4676 if (abbrev == NULL)
4677 {
4678 if (--nesting_level == 0)
4679 {
4680 /* PART_DIE was probably the last thing allocated on the
4681 comp_unit_obstack, so we could call obstack_free
4682 here. We don't do that because the waste is small,
4683 and will be cleaned up when we're done with this
4684 compilation unit. This way, we're also more robust
4685 against other users of the comp_unit_obstack. */
4686 return first_die;
4687 }
4688 info_ptr += bytes_read;
4689 last_die = parent_die;
4690 parent_die = parent_die->die_parent;
4691 continue;
4692 }
4693
4694 /* Check whether this DIE is interesting enough to save. */
4695 if (!is_type_tag_for_partial (abbrev->tag)
4696 && abbrev->tag != DW_TAG_enumerator
4697 && abbrev->tag != DW_TAG_subprogram
4698 && abbrev->tag != DW_TAG_variable
4699 && abbrev->tag != DW_TAG_namespace)
4700 {
4701 /* Otherwise we skip to the next sibling, if any. */
4702 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
4703 continue;
4704 }
4705
4706 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
4707 abfd, info_ptr, cu);
4708
4709 /* This two-pass algorithm for processing partial symbols has a
4710 high cost in cache pressure. Thus, handle some simple cases
4711 here which cover the majority of C partial symbols. DIEs
4712 which neither have specification tags in them, nor could have
4713 specification tags elsewhere pointing at them, can simply be
4714 processed and discarded.
4715
4716 This segment is also optional; scan_partial_symbols and
4717 add_partial_symbol will handle these DIEs if we chain
4718 them in normally. When compilers which do not emit large
4719 quantities of duplicate debug information are more common,
4720 this code can probably be removed. */
4721
4722 /* Any complete simple types at the top level (pretty much all
4723 of them, for a language without namespaces), can be processed
4724 directly. */
4725 if (parent_die == NULL
4726 && part_die->has_specification == 0
4727 && part_die->is_declaration == 0
4728 && (part_die->tag == DW_TAG_typedef
4729 || part_die->tag == DW_TAG_base_type
4730 || part_die->tag == DW_TAG_subrange_type))
4731 {
4732 if (building_psymtab && part_die->name != NULL)
4733 add_psymbol_to_list (part_die->name, strlen (part_die->name),
4734 VAR_DOMAIN, LOC_TYPEDEF,
4735 &cu->objfile->static_psymbols,
4736 0, (CORE_ADDR) 0, cu->language, cu->objfile);
4737 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
4738 continue;
4739 }
4740
4741 /* If we're at the second level, and we're an enumerator, and
4742 our parent has no specification (meaning possibly lives in a
4743 namespace elsewhere), then we can add the partial symbol now
4744 instead of queueing it. */
4745 if (part_die->tag == DW_TAG_enumerator
4746 && parent_die != NULL
4747 && parent_die->die_parent == NULL
4748 && parent_die->tag == DW_TAG_enumeration_type
4749 && parent_die->has_specification == 0)
4750 {
4751 if (part_die->name == NULL)
4752 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
4753 else if (building_psymtab)
4754 add_psymbol_to_list (part_die->name, strlen (part_die->name),
4755 VAR_DOMAIN, LOC_CONST,
4756 cu->language == language_cplus
4757 ? &cu->objfile->global_psymbols
4758 : &cu->objfile->static_psymbols,
4759 0, (CORE_ADDR) 0, cu->language, cu->objfile);
4760
4761 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
4762 continue;
4763 }
4764
4765 /* We'll save this DIE so link it in. */
4766 part_die->die_parent = parent_die;
4767 part_die->die_sibling = NULL;
4768 part_die->die_child = NULL;
4769
4770 if (last_die && last_die == parent_die)
4771 last_die->die_child = part_die;
4772 else if (last_die)
4773 last_die->die_sibling = part_die;
4774
4775 last_die = part_die;
4776
4777 if (first_die == NULL)
4778 first_die = part_die;
4779
4780 /* Maybe add the DIE to the hash table. Not all DIEs that we
4781 find interesting need to be in the hash table, because we
4782 also have the parent/sibling/child chains; only those that we
4783 might refer to by offset later during partial symbol reading.
4784
4785 For now this means things that might have be the target of a
4786 DW_AT_specification, DW_AT_abstract_origin, or
4787 DW_AT_extension. DW_AT_extension will refer only to
4788 namespaces; DW_AT_abstract_origin refers to functions (and
4789 many things under the function DIE, but we do not recurse
4790 into function DIEs during partial symbol reading) and
4791 possibly variables as well; DW_AT_specification refers to
4792 declarations. Declarations ought to have the DW_AT_declaration
4793 flag. It happens that GCC forgets to put it in sometimes, but
4794 only for functions, not for types.
4795
4796 Adding more things than necessary to the hash table is harmless
4797 except for the performance cost. Adding too few will result in
4798 internal errors in find_partial_die. */
4799
4800 if (abbrev->tag == DW_TAG_subprogram
4801 || abbrev->tag == DW_TAG_variable
4802 || abbrev->tag == DW_TAG_namespace
4803 || part_die->is_declaration)
4804 {
4805 void **slot;
4806
4807 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
4808 part_die->offset, INSERT);
4809 *slot = part_die;
4810 }
4811
4812 part_die = obstack_alloc (&cu->comp_unit_obstack,
4813 sizeof (struct partial_die_info));
4814
4815 /* For some DIEs we want to follow their children (if any). For C
4816 we have no reason to follow the children of structures; for other
4817 languages we have to, both so that we can get at method physnames
4818 to infer fully qualified class names, and for DW_AT_specification. */
4819 if (last_die->has_children
4820 && (last_die->tag == DW_TAG_namespace
4821 || last_die->tag == DW_TAG_enumeration_type
4822 || (cu->language != language_c
4823 && (last_die->tag == DW_TAG_class_type
4824 || last_die->tag == DW_TAG_structure_type
4825 || last_die->tag == DW_TAG_union_type))))
4826 {
4827 nesting_level++;
4828 parent_die = last_die;
4829 continue;
4830 }
4831
4832 /* Otherwise we skip to the next sibling, if any. */
4833 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
4834
4835 /* Back to the top, do it again. */
4836 }
4837 }
4838
4839 /* Read a minimal amount of information into the minimal die structure. */
4840
4841 static char *
4842 read_partial_die (struct partial_die_info *part_die,
4843 struct abbrev_info *abbrev,
4844 unsigned int abbrev_len, bfd *abfd,
4845 char *info_ptr, struct dwarf2_cu *cu)
4846 {
4847 unsigned int bytes_read, i;
4848 struct attribute attr;
4849 int has_low_pc_attr = 0;
4850 int has_high_pc_attr = 0;
4851
4852 memset (part_die, 0, sizeof (struct partial_die_info));
4853
4854 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
4855
4856 info_ptr += abbrev_len;
4857
4858 if (abbrev == NULL)
4859 return info_ptr;
4860
4861 part_die->tag = abbrev->tag;
4862 part_die->has_children = abbrev->has_children;
4863
4864 for (i = 0; i < abbrev->num_attrs; ++i)
4865 {
4866 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
4867
4868 /* Store the data if it is of an attribute we want to keep in a
4869 partial symbol table. */
4870 switch (attr.name)
4871 {
4872 case DW_AT_name:
4873
4874 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
4875 if (part_die->name == NULL)
4876 part_die->name = DW_STRING (&attr);
4877 break;
4878 case DW_AT_comp_dir:
4879 if (part_die->dirname == NULL)
4880 part_die->dirname = DW_STRING (&attr);
4881 break;
4882 case DW_AT_MIPS_linkage_name:
4883 part_die->name = DW_STRING (&attr);
4884 break;
4885 case DW_AT_low_pc:
4886 has_low_pc_attr = 1;
4887 part_die->lowpc = DW_ADDR (&attr);
4888 break;
4889 case DW_AT_high_pc:
4890 has_high_pc_attr = 1;
4891 part_die->highpc = DW_ADDR (&attr);
4892 break;
4893 case DW_AT_location:
4894 /* Support the .debug_loc offsets */
4895 if (attr_form_is_block (&attr))
4896 {
4897 part_die->locdesc = DW_BLOCK (&attr);
4898 }
4899 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
4900 {
4901 dwarf2_complex_location_expr_complaint ();
4902 }
4903 else
4904 {
4905 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4906 "partial symbol information");
4907 }
4908 break;
4909 case DW_AT_language:
4910 part_die->language = DW_UNSND (&attr);
4911 break;
4912 case DW_AT_external:
4913 part_die->is_external = DW_UNSND (&attr);
4914 break;
4915 case DW_AT_declaration:
4916 part_die->is_declaration = DW_UNSND (&attr);
4917 break;
4918 case DW_AT_type:
4919 part_die->has_type = 1;
4920 break;
4921 case DW_AT_abstract_origin:
4922 case DW_AT_specification:
4923 case DW_AT_extension:
4924 part_die->has_specification = 1;
4925 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
4926 break;
4927 case DW_AT_sibling:
4928 /* Ignore absolute siblings, they might point outside of
4929 the current compile unit. */
4930 if (attr.form == DW_FORM_ref_addr)
4931 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
4932 else
4933 part_die->sibling = dwarf2_per_objfile->info_buffer
4934 + dwarf2_get_ref_die_offset (&attr, cu);
4935 break;
4936 case DW_AT_stmt_list:
4937 part_die->has_stmt_list = 1;
4938 part_die->line_offset = DW_UNSND (&attr);
4939 break;
4940 default:
4941 break;
4942 }
4943 }
4944
4945 /* When using the GNU linker, .gnu.linkonce. sections are used to
4946 eliminate duplicate copies of functions and vtables and such.
4947 The linker will arbitrarily choose one and discard the others.
4948 The AT_*_pc values for such functions refer to local labels in
4949 these sections. If the section from that file was discarded, the
4950 labels are not in the output, so the relocs get a value of 0.
4951 If this is a discarded function, mark the pc bounds as invalid,
4952 so that GDB will ignore it. */
4953 if (has_low_pc_attr && has_high_pc_attr
4954 && part_die->lowpc < part_die->highpc
4955 && (part_die->lowpc != 0
4956 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
4957 part_die->has_pc_info = 1;
4958 return info_ptr;
4959 }
4960
4961 /* Find a cached partial DIE at OFFSET in CU. */
4962
4963 static struct partial_die_info *
4964 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
4965 {
4966 struct partial_die_info *lookup_die = NULL;
4967 struct partial_die_info part_die;
4968
4969 part_die.offset = offset;
4970 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
4971
4972 if (lookup_die == NULL)
4973 internal_error (__FILE__, __LINE__,
4974 "could not find partial DIE in cache\n");
4975
4976 return lookup_die;
4977 }
4978
4979 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
4980
4981 static struct partial_die_info *
4982 find_partial_die (unsigned long offset, struct dwarf2_cu *cu,
4983 struct dwarf2_cu **target_cu)
4984 {
4985 struct dwarf2_per_cu_data *per_cu;
4986
4987 if (offset >= cu->header.offset
4988 && offset < cu->header.offset + cu->header.length)
4989 {
4990 *target_cu = cu;
4991 return find_partial_die_in_comp_unit (offset, cu);
4992 }
4993
4994 internal_error (__FILE__, __LINE__,
4995 "unsupported inter-compilation-unit reference");
4996 }
4997
4998 /* Adjust PART_DIE before generating a symbol for it. This function
4999 may set the is_external flag or change the DIE's name. */
5000
5001 static void
5002 fixup_partial_die (struct partial_die_info *part_die,
5003 struct dwarf2_cu *cu)
5004 {
5005 /* If we found a reference attribute and the DIE has no name, try
5006 to find a name in the referred to DIE. */
5007
5008 if (part_die->name == NULL && part_die->has_specification)
5009 {
5010 struct partial_die_info *spec_die;
5011 struct dwarf2_cu *spec_cu;
5012
5013 spec_die = find_partial_die (part_die->spec_offset, cu, &spec_cu);
5014
5015 fixup_partial_die (spec_die, spec_cu);
5016
5017 if (spec_die->name)
5018 {
5019 part_die->name = spec_die->name;
5020
5021 /* Copy DW_AT_external attribute if it is set. */
5022 if (spec_die->is_external)
5023 part_die->is_external = spec_die->is_external;
5024 }
5025 }
5026
5027 /* Set default names for some unnamed DIEs. */
5028 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5029 || part_die->tag == DW_TAG_class_type))
5030 part_die->name = "(anonymous class)";
5031
5032 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5033 part_die->name = "(anonymous namespace)";
5034
5035 if (part_die->tag == DW_TAG_structure_type
5036 || part_die->tag == DW_TAG_class_type
5037 || part_die->tag == DW_TAG_union_type)
5038 guess_structure_name (part_die, cu);
5039 }
5040
5041 /* Read the die from the .debug_info section buffer. Set DIEP to
5042 point to a newly allocated die with its information, except for its
5043 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5044 whether the die has children or not. */
5045
5046 static char *
5047 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5048 struct dwarf2_cu *cu, int *has_children)
5049 {
5050 unsigned int abbrev_number, bytes_read, i, offset;
5051 struct abbrev_info *abbrev;
5052 struct die_info *die;
5053
5054 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5055 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5056 info_ptr += bytes_read;
5057 if (!abbrev_number)
5058 {
5059 die = dwarf_alloc_die ();
5060 die->tag = 0;
5061 die->abbrev = abbrev_number;
5062 die->type = NULL;
5063 *diep = die;
5064 *has_children = 0;
5065 return info_ptr;
5066 }
5067
5068 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5069 if (!abbrev)
5070 {
5071 error ("Dwarf Error: could not find abbrev number %d [in module %s]",
5072 abbrev_number,
5073 bfd_get_filename (abfd));
5074 }
5075 die = dwarf_alloc_die ();
5076 die->offset = offset;
5077 die->tag = abbrev->tag;
5078 die->abbrev = abbrev_number;
5079 die->type = NULL;
5080
5081 die->num_attrs = abbrev->num_attrs;
5082 die->attrs = (struct attribute *)
5083 xmalloc (die->num_attrs * sizeof (struct attribute));
5084
5085 for (i = 0; i < abbrev->num_attrs; ++i)
5086 {
5087 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5088 abfd, info_ptr, cu);
5089 }
5090
5091 *diep = die;
5092 *has_children = abbrev->has_children;
5093 return info_ptr;
5094 }
5095
5096 /* Read an attribute value described by an attribute form. */
5097
5098 static char *
5099 read_attribute_value (struct attribute *attr, unsigned form,
5100 bfd *abfd, char *info_ptr,
5101 struct dwarf2_cu *cu)
5102 {
5103 struct comp_unit_head *cu_header = &cu->header;
5104 unsigned int bytes_read;
5105 struct dwarf_block *blk;
5106
5107 attr->form = form;
5108 switch (form)
5109 {
5110 case DW_FORM_addr:
5111 case DW_FORM_ref_addr:
5112 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5113 info_ptr += bytes_read;
5114 break;
5115 case DW_FORM_block2:
5116 blk = dwarf_alloc_block (cu);
5117 blk->size = read_2_bytes (abfd, info_ptr);
5118 info_ptr += 2;
5119 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5120 info_ptr += blk->size;
5121 DW_BLOCK (attr) = blk;
5122 break;
5123 case DW_FORM_block4:
5124 blk = dwarf_alloc_block (cu);
5125 blk->size = read_4_bytes (abfd, info_ptr);
5126 info_ptr += 4;
5127 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5128 info_ptr += blk->size;
5129 DW_BLOCK (attr) = blk;
5130 break;
5131 case DW_FORM_data2:
5132 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5133 info_ptr += 2;
5134 break;
5135 case DW_FORM_data4:
5136 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5137 info_ptr += 4;
5138 break;
5139 case DW_FORM_data8:
5140 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5141 info_ptr += 8;
5142 break;
5143 case DW_FORM_string:
5144 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5145 info_ptr += bytes_read;
5146 break;
5147 case DW_FORM_strp:
5148 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5149 &bytes_read);
5150 info_ptr += bytes_read;
5151 break;
5152 case DW_FORM_block:
5153 blk = dwarf_alloc_block (cu);
5154 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5155 info_ptr += bytes_read;
5156 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5157 info_ptr += blk->size;
5158 DW_BLOCK (attr) = blk;
5159 break;
5160 case DW_FORM_block1:
5161 blk = dwarf_alloc_block (cu);
5162 blk->size = read_1_byte (abfd, info_ptr);
5163 info_ptr += 1;
5164 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5165 info_ptr += blk->size;
5166 DW_BLOCK (attr) = blk;
5167 break;
5168 case DW_FORM_data1:
5169 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5170 info_ptr += 1;
5171 break;
5172 case DW_FORM_flag:
5173 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5174 info_ptr += 1;
5175 break;
5176 case DW_FORM_sdata:
5177 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5178 info_ptr += bytes_read;
5179 break;
5180 case DW_FORM_udata:
5181 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5182 info_ptr += bytes_read;
5183 break;
5184 case DW_FORM_ref1:
5185 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5186 info_ptr += 1;
5187 break;
5188 case DW_FORM_ref2:
5189 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5190 info_ptr += 2;
5191 break;
5192 case DW_FORM_ref4:
5193 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5194 info_ptr += 4;
5195 break;
5196 case DW_FORM_ref8:
5197 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5198 info_ptr += 8;
5199 break;
5200 case DW_FORM_ref_udata:
5201 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5202 info_ptr += bytes_read;
5203 break;
5204 case DW_FORM_indirect:
5205 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5206 info_ptr += bytes_read;
5207 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5208 break;
5209 default:
5210 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
5211 dwarf_form_name (form),
5212 bfd_get_filename (abfd));
5213 }
5214 return info_ptr;
5215 }
5216
5217 /* Read an attribute described by an abbreviated attribute. */
5218
5219 static char *
5220 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5221 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5222 {
5223 attr->name = abbrev->name;
5224 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5225 }
5226
5227 /* read dwarf information from a buffer */
5228
5229 static unsigned int
5230 read_1_byte (bfd *abfd, char *buf)
5231 {
5232 return bfd_get_8 (abfd, (bfd_byte *) buf);
5233 }
5234
5235 static int
5236 read_1_signed_byte (bfd *abfd, char *buf)
5237 {
5238 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5239 }
5240
5241 static unsigned int
5242 read_2_bytes (bfd *abfd, char *buf)
5243 {
5244 return bfd_get_16 (abfd, (bfd_byte *) buf);
5245 }
5246
5247 static int
5248 read_2_signed_bytes (bfd *abfd, char *buf)
5249 {
5250 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5251 }
5252
5253 static unsigned int
5254 read_4_bytes (bfd *abfd, char *buf)
5255 {
5256 return bfd_get_32 (abfd, (bfd_byte *) buf);
5257 }
5258
5259 static int
5260 read_4_signed_bytes (bfd *abfd, char *buf)
5261 {
5262 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5263 }
5264
5265 static unsigned long
5266 read_8_bytes (bfd *abfd, char *buf)
5267 {
5268 return bfd_get_64 (abfd, (bfd_byte *) buf);
5269 }
5270
5271 static CORE_ADDR
5272 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5273 {
5274 struct comp_unit_head *cu_header = &cu->header;
5275 CORE_ADDR retval = 0;
5276
5277 if (cu_header->signed_addr_p)
5278 {
5279 switch (cu_header->addr_size)
5280 {
5281 case 2:
5282 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5283 break;
5284 case 4:
5285 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5286 break;
5287 case 8:
5288 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5289 break;
5290 default:
5291 internal_error (__FILE__, __LINE__,
5292 "read_address: bad switch, signed [in module %s]",
5293 bfd_get_filename (abfd));
5294 }
5295 }
5296 else
5297 {
5298 switch (cu_header->addr_size)
5299 {
5300 case 2:
5301 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5302 break;
5303 case 4:
5304 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5305 break;
5306 case 8:
5307 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5308 break;
5309 default:
5310 internal_error (__FILE__, __LINE__,
5311 "read_address: bad switch, unsigned [in module %s]",
5312 bfd_get_filename (abfd));
5313 }
5314 }
5315
5316 *bytes_read = cu_header->addr_size;
5317 return retval;
5318 }
5319
5320 /* Read the initial length from a section. The (draft) DWARF 3
5321 specification allows the initial length to take up either 4 bytes
5322 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5323 bytes describe the length and all offsets will be 8 bytes in length
5324 instead of 4.
5325
5326 An older, non-standard 64-bit format is also handled by this
5327 function. The older format in question stores the initial length
5328 as an 8-byte quantity without an escape value. Lengths greater
5329 than 2^32 aren't very common which means that the initial 4 bytes
5330 is almost always zero. Since a length value of zero doesn't make
5331 sense for the 32-bit format, this initial zero can be considered to
5332 be an escape value which indicates the presence of the older 64-bit
5333 format. As written, the code can't detect (old format) lengths
5334 greater than 4GB. If it becomes necessary to handle lengths somewhat
5335 larger than 4GB, we could allow other small values (such as the
5336 non-sensical values of 1, 2, and 3) to also be used as escape values
5337 indicating the presence of the old format.
5338
5339 The value returned via bytes_read should be used to increment
5340 the relevant pointer after calling read_initial_length().
5341
5342 As a side effect, this function sets the fields initial_length_size
5343 and offset_size in cu_header to the values appropriate for the
5344 length field. (The format of the initial length field determines
5345 the width of file offsets to be fetched later with fetch_offset().)
5346
5347 [ Note: read_initial_length() and read_offset() are based on the
5348 document entitled "DWARF Debugging Information Format", revision
5349 3, draft 8, dated November 19, 2001. This document was obtained
5350 from:
5351
5352 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5353
5354 This document is only a draft and is subject to change. (So beware.)
5355
5356 Details regarding the older, non-standard 64-bit format were
5357 determined empirically by examining 64-bit ELF files produced
5358 by the SGI toolchain on an IRIX 6.5 machine.
5359
5360 - Kevin, July 16, 2002
5361 ] */
5362
5363 static LONGEST
5364 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5365 int *bytes_read)
5366 {
5367 LONGEST retval = 0;
5368
5369 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5370
5371 if (retval == 0xffffffff)
5372 {
5373 retval = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5374 *bytes_read = 12;
5375 if (cu_header != NULL)
5376 {
5377 cu_header->initial_length_size = 12;
5378 cu_header->offset_size = 8;
5379 }
5380 }
5381 else if (retval == 0)
5382 {
5383 /* Handle (non-standard) 64-bit DWARF2 formats such as that used
5384 by IRIX. */
5385 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5386 *bytes_read = 8;
5387 if (cu_header != NULL)
5388 {
5389 cu_header->initial_length_size = 8;
5390 cu_header->offset_size = 8;
5391 }
5392 }
5393 else
5394 {
5395 *bytes_read = 4;
5396 if (cu_header != NULL)
5397 {
5398 cu_header->initial_length_size = 4;
5399 cu_header->offset_size = 4;
5400 }
5401 }
5402
5403 return retval;
5404 }
5405
5406 /* Read an offset from the data stream. The size of the offset is
5407 given by cu_header->offset_size. */
5408
5409 static LONGEST
5410 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5411 int *bytes_read)
5412 {
5413 LONGEST retval = 0;
5414
5415 switch (cu_header->offset_size)
5416 {
5417 case 4:
5418 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5419 *bytes_read = 4;
5420 break;
5421 case 8:
5422 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5423 *bytes_read = 8;
5424 break;
5425 default:
5426 internal_error (__FILE__, __LINE__,
5427 "read_offset: bad switch [in module %s]",
5428 bfd_get_filename (abfd));
5429 }
5430
5431 return retval;
5432 }
5433
5434 static char *
5435 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5436 {
5437 /* If the size of a host char is 8 bits, we can return a pointer
5438 to the buffer, otherwise we have to copy the data to a buffer
5439 allocated on the temporary obstack. */
5440 gdb_assert (HOST_CHAR_BIT == 8);
5441 return buf;
5442 }
5443
5444 static char *
5445 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5446 {
5447 /* If the size of a host char is 8 bits, we can return a pointer
5448 to the string, otherwise we have to copy the string to a buffer
5449 allocated on the temporary obstack. */
5450 gdb_assert (HOST_CHAR_BIT == 8);
5451 if (*buf == '\0')
5452 {
5453 *bytes_read_ptr = 1;
5454 return NULL;
5455 }
5456 *bytes_read_ptr = strlen (buf) + 1;
5457 return buf;
5458 }
5459
5460 static char *
5461 read_indirect_string (bfd *abfd, char *buf,
5462 const struct comp_unit_head *cu_header,
5463 unsigned int *bytes_read_ptr)
5464 {
5465 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5466 (int *) bytes_read_ptr);
5467
5468 if (dwarf2_per_objfile->str_buffer == NULL)
5469 {
5470 error ("DW_FORM_strp used without .debug_str section [in module %s]",
5471 bfd_get_filename (abfd));
5472 return NULL;
5473 }
5474 if (str_offset >= dwarf2_per_objfile->str_size)
5475 {
5476 error ("DW_FORM_strp pointing outside of .debug_str section [in module %s]",
5477 bfd_get_filename (abfd));
5478 return NULL;
5479 }
5480 gdb_assert (HOST_CHAR_BIT == 8);
5481 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5482 return NULL;
5483 return dwarf2_per_objfile->str_buffer + str_offset;
5484 }
5485
5486 static unsigned long
5487 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5488 {
5489 unsigned long result;
5490 unsigned int num_read;
5491 int i, shift;
5492 unsigned char byte;
5493
5494 result = 0;
5495 shift = 0;
5496 num_read = 0;
5497 i = 0;
5498 while (1)
5499 {
5500 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5501 buf++;
5502 num_read++;
5503 result |= ((unsigned long)(byte & 127) << shift);
5504 if ((byte & 128) == 0)
5505 {
5506 break;
5507 }
5508 shift += 7;
5509 }
5510 *bytes_read_ptr = num_read;
5511 return result;
5512 }
5513
5514 static long
5515 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5516 {
5517 long result;
5518 int i, shift, size, num_read;
5519 unsigned char byte;
5520
5521 result = 0;
5522 shift = 0;
5523 size = 32;
5524 num_read = 0;
5525 i = 0;
5526 while (1)
5527 {
5528 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5529 buf++;
5530 num_read++;
5531 result |= ((long)(byte & 127) << shift);
5532 shift += 7;
5533 if ((byte & 128) == 0)
5534 {
5535 break;
5536 }
5537 }
5538 if ((shift < size) && (byte & 0x40))
5539 {
5540 result |= -(1 << shift);
5541 }
5542 *bytes_read_ptr = num_read;
5543 return result;
5544 }
5545
5546 /* Return a pointer to just past the end of an LEB128 number in BUF. */
5547
5548 static char *
5549 skip_leb128 (bfd *abfd, char *buf)
5550 {
5551 int byte;
5552
5553 while (1)
5554 {
5555 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5556 buf++;
5557 if ((byte & 128) == 0)
5558 return buf;
5559 }
5560 }
5561
5562 static void
5563 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
5564 {
5565 switch (lang)
5566 {
5567 case DW_LANG_C89:
5568 case DW_LANG_C:
5569 cu->language = language_c;
5570 break;
5571 case DW_LANG_C_plus_plus:
5572 cu->language = language_cplus;
5573 break;
5574 case DW_LANG_Fortran77:
5575 case DW_LANG_Fortran90:
5576 case DW_LANG_Fortran95:
5577 cu->language = language_fortran;
5578 break;
5579 case DW_LANG_Mips_Assembler:
5580 cu->language = language_asm;
5581 break;
5582 case DW_LANG_Java:
5583 cu->language = language_java;
5584 break;
5585 case DW_LANG_Ada83:
5586 case DW_LANG_Ada95:
5587 case DW_LANG_Cobol74:
5588 case DW_LANG_Cobol85:
5589 case DW_LANG_Pascal83:
5590 case DW_LANG_Modula2:
5591 default:
5592 cu->language = language_minimal;
5593 break;
5594 }
5595 cu->language_defn = language_def (cu->language);
5596 }
5597
5598 /* Return the named attribute or NULL if not there. */
5599
5600 static struct attribute *
5601 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
5602 {
5603 unsigned int i;
5604 struct attribute *spec = NULL;
5605
5606 for (i = 0; i < die->num_attrs; ++i)
5607 {
5608 if (die->attrs[i].name == name)
5609 {
5610 return &die->attrs[i];
5611 }
5612 if (die->attrs[i].name == DW_AT_specification
5613 || die->attrs[i].name == DW_AT_abstract_origin)
5614 spec = &die->attrs[i];
5615 }
5616 if (spec)
5617 {
5618 struct die_info *ref_die =
5619 follow_die_ref (dwarf2_get_ref_die_offset (spec, cu));
5620
5621 if (ref_die)
5622 return dwarf2_attr (ref_die, name, cu);
5623 }
5624
5625 return NULL;
5626 }
5627
5628 /* Return non-zero iff the attribute NAME is defined for the given DIE,
5629 and holds a non-zero value. This function should only be used for
5630 DW_FORM_flag attributes. */
5631
5632 static int
5633 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
5634 {
5635 struct attribute *attr = dwarf2_attr (die, name, cu);
5636
5637 return (attr && DW_UNSND (attr));
5638 }
5639
5640 static int
5641 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
5642 {
5643 /* A DIE is a declaration if it has a DW_AT_declaration attribute
5644 which value is non-zero. However, we have to be careful with
5645 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
5646 (via dwarf2_flag_true_p) follows this attribute. So we may
5647 end up accidently finding a declaration attribute that belongs
5648 to a different DIE referenced by the specification attribute,
5649 even though the given DIE does not have a declaration attribute. */
5650 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
5651 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
5652 }
5653
5654 /* Return the die giving the specification for DIE, if there is
5655 one. */
5656
5657 static struct die_info *
5658 die_specification (struct die_info *die, struct dwarf2_cu *cu)
5659 {
5660 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
5661
5662 if (spec_attr == NULL)
5663 return NULL;
5664 else
5665 return follow_die_ref (dwarf2_get_ref_die_offset (spec_attr, cu));
5666 }
5667
5668 /* Free the line_header structure *LH, and any arrays and strings it
5669 refers to. */
5670 static void
5671 free_line_header (struct line_header *lh)
5672 {
5673 if (lh->standard_opcode_lengths)
5674 xfree (lh->standard_opcode_lengths);
5675
5676 /* Remember that all the lh->file_names[i].name pointers are
5677 pointers into debug_line_buffer, and don't need to be freed. */
5678 if (lh->file_names)
5679 xfree (lh->file_names);
5680
5681 /* Similarly for the include directory names. */
5682 if (lh->include_dirs)
5683 xfree (lh->include_dirs);
5684
5685 xfree (lh);
5686 }
5687
5688
5689 /* Add an entry to LH's include directory table. */
5690 static void
5691 add_include_dir (struct line_header *lh, char *include_dir)
5692 {
5693 /* Grow the array if necessary. */
5694 if (lh->include_dirs_size == 0)
5695 {
5696 lh->include_dirs_size = 1; /* for testing */
5697 lh->include_dirs = xmalloc (lh->include_dirs_size
5698 * sizeof (*lh->include_dirs));
5699 }
5700 else if (lh->num_include_dirs >= lh->include_dirs_size)
5701 {
5702 lh->include_dirs_size *= 2;
5703 lh->include_dirs = xrealloc (lh->include_dirs,
5704 (lh->include_dirs_size
5705 * sizeof (*lh->include_dirs)));
5706 }
5707
5708 lh->include_dirs[lh->num_include_dirs++] = include_dir;
5709 }
5710
5711
5712 /* Add an entry to LH's file name table. */
5713 static void
5714 add_file_name (struct line_header *lh,
5715 char *name,
5716 unsigned int dir_index,
5717 unsigned int mod_time,
5718 unsigned int length)
5719 {
5720 struct file_entry *fe;
5721
5722 /* Grow the array if necessary. */
5723 if (lh->file_names_size == 0)
5724 {
5725 lh->file_names_size = 1; /* for testing */
5726 lh->file_names = xmalloc (lh->file_names_size
5727 * sizeof (*lh->file_names));
5728 }
5729 else if (lh->num_file_names >= lh->file_names_size)
5730 {
5731 lh->file_names_size *= 2;
5732 lh->file_names = xrealloc (lh->file_names,
5733 (lh->file_names_size
5734 * sizeof (*lh->file_names)));
5735 }
5736
5737 fe = &lh->file_names[lh->num_file_names++];
5738 fe->name = name;
5739 fe->dir_index = dir_index;
5740 fe->mod_time = mod_time;
5741 fe->length = length;
5742 fe->included_p = 0;
5743 }
5744
5745
5746 /* Read the statement program header starting at OFFSET in
5747 .debug_line, according to the endianness of ABFD. Return a pointer
5748 to a struct line_header, allocated using xmalloc.
5749
5750 NOTE: the strings in the include directory and file name tables of
5751 the returned object point into debug_line_buffer, and must not be
5752 freed. */
5753 static struct line_header *
5754 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
5755 struct dwarf2_cu *cu)
5756 {
5757 struct cleanup *back_to;
5758 struct line_header *lh;
5759 char *line_ptr;
5760 int bytes_read;
5761 int i;
5762 char *cur_dir, *cur_file;
5763
5764 if (dwarf2_per_objfile->line_buffer == NULL)
5765 {
5766 complaint (&symfile_complaints, "missing .debug_line section");
5767 return 0;
5768 }
5769
5770 /* Make sure that at least there's room for the total_length field. That
5771 could be 12 bytes long, but we're just going to fudge that. */
5772 if (offset + 4 >= dwarf2_per_objfile->line_size)
5773 {
5774 dwarf2_statement_list_fits_in_line_number_section_complaint ();
5775 return 0;
5776 }
5777
5778 lh = xmalloc (sizeof (*lh));
5779 memset (lh, 0, sizeof (*lh));
5780 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
5781 (void *) lh);
5782
5783 line_ptr = dwarf2_per_objfile->line_buffer + offset;
5784
5785 /* read in the header */
5786 lh->total_length = read_initial_length (abfd, line_ptr, NULL, &bytes_read);
5787 line_ptr += bytes_read;
5788 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
5789 + dwarf2_per_objfile->line_size))
5790 {
5791 dwarf2_statement_list_fits_in_line_number_section_complaint ();
5792 return 0;
5793 }
5794 lh->statement_program_end = line_ptr + lh->total_length;
5795 lh->version = read_2_bytes (abfd, line_ptr);
5796 line_ptr += 2;
5797 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
5798 line_ptr += bytes_read;
5799 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
5800 line_ptr += 1;
5801 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
5802 line_ptr += 1;
5803 lh->line_base = read_1_signed_byte (abfd, line_ptr);
5804 line_ptr += 1;
5805 lh->line_range = read_1_byte (abfd, line_ptr);
5806 line_ptr += 1;
5807 lh->opcode_base = read_1_byte (abfd, line_ptr);
5808 line_ptr += 1;
5809 lh->standard_opcode_lengths
5810 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
5811
5812 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
5813 for (i = 1; i < lh->opcode_base; ++i)
5814 {
5815 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
5816 line_ptr += 1;
5817 }
5818
5819 /* Read directory table */
5820 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
5821 {
5822 line_ptr += bytes_read;
5823 add_include_dir (lh, cur_dir);
5824 }
5825 line_ptr += bytes_read;
5826
5827 /* Read file name table */
5828 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
5829 {
5830 unsigned int dir_index, mod_time, length;
5831
5832 line_ptr += bytes_read;
5833 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5834 line_ptr += bytes_read;
5835 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5836 line_ptr += bytes_read;
5837 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5838 line_ptr += bytes_read;
5839
5840 add_file_name (lh, cur_file, dir_index, mod_time, length);
5841 }
5842 line_ptr += bytes_read;
5843 lh->statement_program_start = line_ptr;
5844
5845 if (line_ptr > (dwarf2_per_objfile->line_buffer
5846 + dwarf2_per_objfile->line_size))
5847 complaint (&symfile_complaints,
5848 "line number info header doesn't fit in `.debug_line' section");
5849
5850 discard_cleanups (back_to);
5851 return lh;
5852 }
5853
5854 /* This function exists to work around a bug in certain compilers
5855 (particularly GCC 2.95), in which the first line number marker of a
5856 function does not show up until after the prologue, right before
5857 the second line number marker. This function shifts ADDRESS down
5858 to the beginning of the function if necessary, and is called on
5859 addresses passed to record_line. */
5860
5861 static CORE_ADDR
5862 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5863 {
5864 struct function_range *fn;
5865
5866 /* Find the function_range containing address. */
5867 if (!cu->first_fn)
5868 return address;
5869
5870 if (!cu->cached_fn)
5871 cu->cached_fn = cu->first_fn;
5872
5873 fn = cu->cached_fn;
5874 while (fn)
5875 if (fn->lowpc <= address && fn->highpc > address)
5876 goto found;
5877 else
5878 fn = fn->next;
5879
5880 fn = cu->first_fn;
5881 while (fn && fn != cu->cached_fn)
5882 if (fn->lowpc <= address && fn->highpc > address)
5883 goto found;
5884 else
5885 fn = fn->next;
5886
5887 return address;
5888
5889 found:
5890 if (fn->seen_line)
5891 return address;
5892 if (address != fn->lowpc)
5893 complaint (&symfile_complaints,
5894 "misplaced first line number at 0x%lx for '%s'",
5895 (unsigned long) address, fn->name);
5896 fn->seen_line = 1;
5897 return fn->lowpc;
5898 }
5899
5900 /* Decode the Line Number Program (LNP) for the given line_header
5901 structure and CU. The actual information extracted and the type
5902 of structures created from the LNP depends on the value of PST.
5903
5904 1. If PST is NULL, then this procedure uses the data from the program
5905 to create all necessary symbol tables, and their linetables.
5906 The compilation directory of the file is passed in COMP_DIR,
5907 and must not be NULL.
5908
5909 2. If PST is not NULL, this procedure reads the program to determine
5910 the list of files included by the unit represented by PST, and
5911 builds all the associated partial symbol tables. In this case,
5912 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
5913 is not used to compute the full name of the symtab, and therefore
5914 omitting it when building the partial symtab does not introduce
5915 the potential for inconsistency - a partial symtab and its associated
5916 symbtab having a different fullname -). */
5917
5918 static void
5919 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
5920 struct dwarf2_cu *cu, struct partial_symtab *pst)
5921 {
5922 char *line_ptr;
5923 char *line_end;
5924 unsigned int bytes_read;
5925 unsigned char op_code, extended_op, adj_opcode;
5926 CORE_ADDR baseaddr;
5927 struct objfile *objfile = cu->objfile;
5928 const int decode_for_pst_p = (pst != NULL);
5929
5930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5931
5932 line_ptr = lh->statement_program_start;
5933 line_end = lh->statement_program_end;
5934
5935 /* Read the statement sequences until there's nothing left. */
5936 while (line_ptr < line_end)
5937 {
5938 /* state machine registers */
5939 CORE_ADDR address = 0;
5940 unsigned int file = 1;
5941 unsigned int line = 1;
5942 unsigned int column = 0;
5943 int is_stmt = lh->default_is_stmt;
5944 int basic_block = 0;
5945 int end_sequence = 0;
5946
5947 if (!decode_for_pst_p && lh->num_file_names >= file)
5948 {
5949 /* Start a subfile for the current file of the state machine. */
5950 /* lh->include_dirs and lh->file_names are 0-based, but the
5951 directory and file name numbers in the statement program
5952 are 1-based. */
5953 struct file_entry *fe = &lh->file_names[file - 1];
5954 char *dir;
5955 if (fe->dir_index)
5956 dir = lh->include_dirs[fe->dir_index - 1];
5957 else
5958 dir = comp_dir;
5959 dwarf2_start_subfile (fe->name, dir);
5960 }
5961
5962 /* Decode the table. */
5963 while (!end_sequence)
5964 {
5965 op_code = read_1_byte (abfd, line_ptr);
5966 line_ptr += 1;
5967
5968 if (op_code >= lh->opcode_base)
5969 { /* Special operand. */
5970 adj_opcode = op_code - lh->opcode_base;
5971 address += (adj_opcode / lh->line_range)
5972 * lh->minimum_instruction_length;
5973 line += lh->line_base + (adj_opcode % lh->line_range);
5974 if (!decode_for_pst_p)
5975 {
5976 /* append row to matrix using current values */
5977 record_line (current_subfile, line,
5978 check_cu_functions (address, cu));
5979 }
5980 basic_block = 1;
5981 }
5982 else switch (op_code)
5983 {
5984 case DW_LNS_extended_op:
5985 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5986 line_ptr += bytes_read;
5987 extended_op = read_1_byte (abfd, line_ptr);
5988 line_ptr += 1;
5989 switch (extended_op)
5990 {
5991 case DW_LNE_end_sequence:
5992 end_sequence = 1;
5993 if (!decode_for_pst_p)
5994 record_line (current_subfile, 0, address);
5995 break;
5996 case DW_LNE_set_address:
5997 address = read_address (abfd, line_ptr, cu, &bytes_read);
5998 line_ptr += bytes_read;
5999 address += baseaddr;
6000 break;
6001 case DW_LNE_define_file:
6002 {
6003 char *cur_file;
6004 unsigned int dir_index, mod_time, length;
6005
6006 cur_file = read_string (abfd, line_ptr, &bytes_read);
6007 line_ptr += bytes_read;
6008 dir_index =
6009 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6010 line_ptr += bytes_read;
6011 mod_time =
6012 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6013 line_ptr += bytes_read;
6014 length =
6015 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6016 line_ptr += bytes_read;
6017 add_file_name (lh, cur_file, dir_index, mod_time, length);
6018 }
6019 break;
6020 default:
6021 complaint (&symfile_complaints,
6022 "mangled .debug_line section");
6023 return;
6024 }
6025 break;
6026 case DW_LNS_copy:
6027 if (!decode_for_pst_p)
6028 record_line (current_subfile, line,
6029 check_cu_functions (address, cu));
6030 basic_block = 0;
6031 break;
6032 case DW_LNS_advance_pc:
6033 address += lh->minimum_instruction_length
6034 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6035 line_ptr += bytes_read;
6036 break;
6037 case DW_LNS_advance_line:
6038 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6039 line_ptr += bytes_read;
6040 break;
6041 case DW_LNS_set_file:
6042 {
6043 /* lh->include_dirs and lh->file_names are 0-based,
6044 but the directory and file name numbers in the
6045 statement program are 1-based. */
6046 struct file_entry *fe;
6047 char *dir;
6048 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6049 line_ptr += bytes_read;
6050 fe = &lh->file_names[file - 1];
6051 fe->included_p = 1;
6052 if (fe->dir_index)
6053 dir = lh->include_dirs[fe->dir_index - 1];
6054 else
6055 dir = comp_dir;
6056 if (!decode_for_pst_p)
6057 dwarf2_start_subfile (fe->name, dir);
6058 }
6059 break;
6060 case DW_LNS_set_column:
6061 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6062 line_ptr += bytes_read;
6063 break;
6064 case DW_LNS_negate_stmt:
6065 is_stmt = (!is_stmt);
6066 break;
6067 case DW_LNS_set_basic_block:
6068 basic_block = 1;
6069 break;
6070 /* Add to the address register of the state machine the
6071 address increment value corresponding to special opcode
6072 255. Ie, this value is scaled by the minimum instruction
6073 length since special opcode 255 would have scaled the
6074 the increment. */
6075 case DW_LNS_const_add_pc:
6076 address += (lh->minimum_instruction_length
6077 * ((255 - lh->opcode_base) / lh->line_range));
6078 break;
6079 case DW_LNS_fixed_advance_pc:
6080 address += read_2_bytes (abfd, line_ptr);
6081 line_ptr += 2;
6082 break;
6083 default:
6084 { /* Unknown standard opcode, ignore it. */
6085 int i;
6086 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6087 {
6088 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6089 line_ptr += bytes_read;
6090 }
6091 }
6092 }
6093 }
6094 }
6095
6096 if (decode_for_pst_p)
6097 {
6098 int file_index;
6099
6100 /* Now that we're done scanning the Line Header Program, we can
6101 create the psymtab of each included file. */
6102 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6103 if (lh->file_names[file_index].included_p == 1)
6104 {
6105 char *include_name = lh->file_names [file_index].name;
6106
6107 if (strcmp (include_name, pst->filename) != 0)
6108 dwarf2_create_include_psymtab (include_name, pst, objfile);
6109 }
6110 }
6111 }
6112
6113 /* Start a subfile for DWARF. FILENAME is the name of the file and
6114 DIRNAME the name of the source directory which contains FILENAME
6115 or NULL if not known.
6116 This routine tries to keep line numbers from identical absolute and
6117 relative file names in a common subfile.
6118
6119 Using the `list' example from the GDB testsuite, which resides in
6120 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6121 of /srcdir/list0.c yields the following debugging information for list0.c:
6122
6123 DW_AT_name: /srcdir/list0.c
6124 DW_AT_comp_dir: /compdir
6125 files.files[0].name: list0.h
6126 files.files[0].dir: /srcdir
6127 files.files[1].name: list0.c
6128 files.files[1].dir: /srcdir
6129
6130 The line number information for list0.c has to end up in a single
6131 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6132
6133 static void
6134 dwarf2_start_subfile (char *filename, char *dirname)
6135 {
6136 /* If the filename isn't absolute, try to match an existing subfile
6137 with the full pathname. */
6138
6139 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6140 {
6141 struct subfile *subfile;
6142 char *fullname = concat (dirname, "/", filename, NULL);
6143
6144 for (subfile = subfiles; subfile; subfile = subfile->next)
6145 {
6146 if (FILENAME_CMP (subfile->name, fullname) == 0)
6147 {
6148 current_subfile = subfile;
6149 xfree (fullname);
6150 return;
6151 }
6152 }
6153 xfree (fullname);
6154 }
6155 start_subfile (filename, dirname);
6156 }
6157
6158 static void
6159 var_decode_location (struct attribute *attr, struct symbol *sym,
6160 struct dwarf2_cu *cu)
6161 {
6162 struct objfile *objfile = cu->objfile;
6163 struct comp_unit_head *cu_header = &cu->header;
6164
6165 /* NOTE drow/2003-01-30: There used to be a comment and some special
6166 code here to turn a symbol with DW_AT_external and a
6167 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6168 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6169 with some versions of binutils) where shared libraries could have
6170 relocations against symbols in their debug information - the
6171 minimal symbol would have the right address, but the debug info
6172 would not. It's no longer necessary, because we will explicitly
6173 apply relocations when we read in the debug information now. */
6174
6175 /* A DW_AT_location attribute with no contents indicates that a
6176 variable has been optimized away. */
6177 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6178 {
6179 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6180 return;
6181 }
6182
6183 /* Handle one degenerate form of location expression specially, to
6184 preserve GDB's previous behavior when section offsets are
6185 specified. If this is just a DW_OP_addr then mark this symbol
6186 as LOC_STATIC. */
6187
6188 if (attr_form_is_block (attr)
6189 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6190 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6191 {
6192 int dummy;
6193
6194 SYMBOL_VALUE_ADDRESS (sym) =
6195 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6196 fixup_symbol_section (sym, objfile);
6197 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6198 SYMBOL_SECTION (sym));
6199 SYMBOL_CLASS (sym) = LOC_STATIC;
6200 return;
6201 }
6202
6203 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6204 expression evaluator, and use LOC_COMPUTED only when necessary
6205 (i.e. when the value of a register or memory location is
6206 referenced, or a thread-local block, etc.). Then again, it might
6207 not be worthwhile. I'm assuming that it isn't unless performance
6208 or memory numbers show me otherwise. */
6209
6210 dwarf2_symbol_mark_computed (attr, sym, cu);
6211 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6212 }
6213
6214 /* Given a pointer to a DWARF information entry, figure out if we need
6215 to make a symbol table entry for it, and if so, create a new entry
6216 and return a pointer to it.
6217 If TYPE is NULL, determine symbol type from the die, otherwise
6218 used the passed type. */
6219
6220 static struct symbol *
6221 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6222 {
6223 struct objfile *objfile = cu->objfile;
6224 struct symbol *sym = NULL;
6225 char *name;
6226 struct attribute *attr = NULL;
6227 struct attribute *attr2 = NULL;
6228 CORE_ADDR baseaddr;
6229
6230 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6231
6232 if (die->tag != DW_TAG_namespace)
6233 name = dwarf2_linkage_name (die, cu);
6234 else
6235 name = TYPE_NAME (type);
6236
6237 if (name)
6238 {
6239 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6240 sizeof (struct symbol));
6241 OBJSTAT (objfile, n_syms++);
6242 memset (sym, 0, sizeof (struct symbol));
6243
6244 /* Cache this symbol's name and the name's demangled form (if any). */
6245 SYMBOL_LANGUAGE (sym) = cu->language;
6246 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6247
6248 /* Default assumptions.
6249 Use the passed type or decode it from the die. */
6250 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6251 SYMBOL_CLASS (sym) = LOC_STATIC;
6252 if (type != NULL)
6253 SYMBOL_TYPE (sym) = type;
6254 else
6255 SYMBOL_TYPE (sym) = die_type (die, cu);
6256 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6257 if (attr)
6258 {
6259 SYMBOL_LINE (sym) = DW_UNSND (attr);
6260 }
6261 switch (die->tag)
6262 {
6263 case DW_TAG_label:
6264 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6265 if (attr)
6266 {
6267 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6268 }
6269 SYMBOL_CLASS (sym) = LOC_LABEL;
6270 break;
6271 case DW_TAG_subprogram:
6272 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6273 finish_block. */
6274 SYMBOL_CLASS (sym) = LOC_BLOCK;
6275 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6276 if (attr2 && (DW_UNSND (attr2) != 0))
6277 {
6278 add_symbol_to_list (sym, &global_symbols);
6279 }
6280 else
6281 {
6282 add_symbol_to_list (sym, cu->list_in_scope);
6283 }
6284 break;
6285 case DW_TAG_variable:
6286 /* Compilation with minimal debug info may result in variables
6287 with missing type entries. Change the misleading `void' type
6288 to something sensible. */
6289 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6290 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6291 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6292 "<variable, no debug info>",
6293 objfile);
6294 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6295 if (attr)
6296 {
6297 dwarf2_const_value (attr, sym, cu);
6298 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6299 if (attr2 && (DW_UNSND (attr2) != 0))
6300 add_symbol_to_list (sym, &global_symbols);
6301 else
6302 add_symbol_to_list (sym, cu->list_in_scope);
6303 break;
6304 }
6305 attr = dwarf2_attr (die, DW_AT_location, cu);
6306 if (attr)
6307 {
6308 var_decode_location (attr, sym, cu);
6309 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6310 if (attr2 && (DW_UNSND (attr2) != 0))
6311 add_symbol_to_list (sym, &global_symbols);
6312 else
6313 add_symbol_to_list (sym, cu->list_in_scope);
6314 }
6315 else
6316 {
6317 /* We do not know the address of this symbol.
6318 If it is an external symbol and we have type information
6319 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6320 The address of the variable will then be determined from
6321 the minimal symbol table whenever the variable is
6322 referenced. */
6323 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6324 if (attr2 && (DW_UNSND (attr2) != 0)
6325 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6326 {
6327 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6328 add_symbol_to_list (sym, &global_symbols);
6329 }
6330 }
6331 break;
6332 case DW_TAG_formal_parameter:
6333 attr = dwarf2_attr (die, DW_AT_location, cu);
6334 if (attr)
6335 {
6336 var_decode_location (attr, sym, cu);
6337 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6338 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6339 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6340 }
6341 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6342 if (attr)
6343 {
6344 dwarf2_const_value (attr, sym, cu);
6345 }
6346 add_symbol_to_list (sym, cu->list_in_scope);
6347 break;
6348 case DW_TAG_unspecified_parameters:
6349 /* From varargs functions; gdb doesn't seem to have any
6350 interest in this information, so just ignore it for now.
6351 (FIXME?) */
6352 break;
6353 case DW_TAG_class_type:
6354 case DW_TAG_structure_type:
6355 case DW_TAG_union_type:
6356 case DW_TAG_enumeration_type:
6357 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6358 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6359
6360 /* Make sure that the symbol includes appropriate enclosing
6361 classes/namespaces in its name. These are calculated in
6362 read_structure_type, and the correct name is saved in
6363 the type. */
6364
6365 if (cu->language == language_cplus)
6366 {
6367 struct type *type = SYMBOL_TYPE (sym);
6368
6369 if (TYPE_TAG_NAME (type) != NULL)
6370 {
6371 /* FIXME: carlton/2003-11-10: Should this use
6372 SYMBOL_SET_NAMES instead? (The same problem also
6373 arises further down in this function.) */
6374 /* The type's name is already allocated along with
6375 this objfile, so we don't need to duplicate it
6376 for the symbol. */
6377 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6378 }
6379 }
6380
6381 {
6382 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
6383 really ever be static objects: otherwise, if you try
6384 to, say, break of a class's method and you're in a file
6385 which doesn't mention that class, it won't work unless
6386 the check for all static symbols in lookup_symbol_aux
6387 saves you. See the OtherFileClass tests in
6388 gdb.c++/namespace.exp. */
6389
6390 struct pending **list_to_add;
6391
6392 list_to_add = (cu->list_in_scope == &file_symbols
6393 && cu->language == language_cplus
6394 ? &global_symbols : cu->list_in_scope);
6395
6396 add_symbol_to_list (sym, list_to_add);
6397
6398 /* The semantics of C++ state that "struct foo { ... }" also
6399 defines a typedef for "foo". Synthesize a typedef symbol so
6400 that "ptype foo" works as expected. */
6401 if (cu->language == language_cplus)
6402 {
6403 struct symbol *typedef_sym = (struct symbol *)
6404 obstack_alloc (&objfile->objfile_obstack,
6405 sizeof (struct symbol));
6406 *typedef_sym = *sym;
6407 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6408 /* The symbol's name is already allocated along with
6409 this objfile, so we don't need to duplicate it for
6410 the type. */
6411 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6412 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NATURAL_NAME (sym);
6413 add_symbol_to_list (typedef_sym, list_to_add);
6414 }
6415 }
6416 break;
6417 case DW_TAG_typedef:
6418 if (processing_has_namespace_info
6419 && processing_current_prefix[0] != '\0')
6420 {
6421 SYMBOL_LINKAGE_NAME (sym) = obconcat (&objfile->objfile_obstack,
6422 processing_current_prefix,
6423 "::",
6424 name);
6425 }
6426 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6428 add_symbol_to_list (sym, cu->list_in_scope);
6429 break;
6430 case DW_TAG_base_type:
6431 case DW_TAG_subrange_type:
6432 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6433 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6434 add_symbol_to_list (sym, cu->list_in_scope);
6435 break;
6436 case DW_TAG_enumerator:
6437 if (processing_has_namespace_info
6438 && processing_current_prefix[0] != '\0')
6439 {
6440 SYMBOL_LINKAGE_NAME (sym) = obconcat (&objfile->objfile_obstack,
6441 processing_current_prefix,
6442 "::",
6443 name);
6444 }
6445 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6446 if (attr)
6447 {
6448 dwarf2_const_value (attr, sym, cu);
6449 }
6450 {
6451 /* NOTE: carlton/2003-11-10: See comment above in the
6452 DW_TAG_class_type, etc. block. */
6453
6454 struct pending **list_to_add;
6455
6456 list_to_add = (cu->list_in_scope == &file_symbols
6457 && cu->language == language_cplus
6458 ? &global_symbols : cu->list_in_scope);
6459
6460 add_symbol_to_list (sym, list_to_add);
6461 }
6462 break;
6463 case DW_TAG_namespace:
6464 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6465 add_symbol_to_list (sym, &global_symbols);
6466 break;
6467 default:
6468 /* Not a tag we recognize. Hopefully we aren't processing
6469 trash data, but since we must specifically ignore things
6470 we don't recognize, there is nothing else we should do at
6471 this point. */
6472 complaint (&symfile_complaints, "unsupported tag: '%s'",
6473 dwarf_tag_name (die->tag));
6474 break;
6475 }
6476 }
6477 return (sym);
6478 }
6479
6480 /* Copy constant value from an attribute to a symbol. */
6481
6482 static void
6483 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
6484 struct dwarf2_cu *cu)
6485 {
6486 struct objfile *objfile = cu->objfile;
6487 struct comp_unit_head *cu_header = &cu->header;
6488 struct dwarf_block *blk;
6489
6490 switch (attr->form)
6491 {
6492 case DW_FORM_addr:
6493 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
6494 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
6495 cu_header->addr_size,
6496 TYPE_LENGTH (SYMBOL_TYPE
6497 (sym)));
6498 SYMBOL_VALUE_BYTES (sym) = (char *)
6499 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
6500 /* NOTE: cagney/2003-05-09: In-lined store_address call with
6501 it's body - store_unsigned_integer. */
6502 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
6503 DW_ADDR (attr));
6504 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
6505 break;
6506 case DW_FORM_block1:
6507 case DW_FORM_block2:
6508 case DW_FORM_block4:
6509 case DW_FORM_block:
6510 blk = DW_BLOCK (attr);
6511 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
6512 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
6513 blk->size,
6514 TYPE_LENGTH (SYMBOL_TYPE
6515 (sym)));
6516 SYMBOL_VALUE_BYTES (sym) = (char *)
6517 obstack_alloc (&objfile->objfile_obstack, blk->size);
6518 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
6519 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
6520 break;
6521
6522 /* The DW_AT_const_value attributes are supposed to carry the
6523 symbol's value "represented as it would be on the target
6524 architecture." By the time we get here, it's already been
6525 converted to host endianness, so we just need to sign- or
6526 zero-extend it as appropriate. */
6527 case DW_FORM_data1:
6528 dwarf2_const_value_data (attr, sym, 8);
6529 break;
6530 case DW_FORM_data2:
6531 dwarf2_const_value_data (attr, sym, 16);
6532 break;
6533 case DW_FORM_data4:
6534 dwarf2_const_value_data (attr, sym, 32);
6535 break;
6536 case DW_FORM_data8:
6537 dwarf2_const_value_data (attr, sym, 64);
6538 break;
6539
6540 case DW_FORM_sdata:
6541 SYMBOL_VALUE (sym) = DW_SND (attr);
6542 SYMBOL_CLASS (sym) = LOC_CONST;
6543 break;
6544
6545 case DW_FORM_udata:
6546 SYMBOL_VALUE (sym) = DW_UNSND (attr);
6547 SYMBOL_CLASS (sym) = LOC_CONST;
6548 break;
6549
6550 default:
6551 complaint (&symfile_complaints,
6552 "unsupported const value attribute form: '%s'",
6553 dwarf_form_name (attr->form));
6554 SYMBOL_VALUE (sym) = 0;
6555 SYMBOL_CLASS (sym) = LOC_CONST;
6556 break;
6557 }
6558 }
6559
6560
6561 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
6562 or zero-extend it as appropriate for the symbol's type. */
6563 static void
6564 dwarf2_const_value_data (struct attribute *attr,
6565 struct symbol *sym,
6566 int bits)
6567 {
6568 LONGEST l = DW_UNSND (attr);
6569
6570 if (bits < sizeof (l) * 8)
6571 {
6572 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
6573 l &= ((LONGEST) 1 << bits) - 1;
6574 else
6575 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
6576 }
6577
6578 SYMBOL_VALUE (sym) = l;
6579 SYMBOL_CLASS (sym) = LOC_CONST;
6580 }
6581
6582
6583 /* Return the type of the die in question using its DW_AT_type attribute. */
6584
6585 static struct type *
6586 die_type (struct die_info *die, struct dwarf2_cu *cu)
6587 {
6588 struct type *type;
6589 struct attribute *type_attr;
6590 struct die_info *type_die;
6591 unsigned int ref;
6592
6593 type_attr = dwarf2_attr (die, DW_AT_type, cu);
6594 if (!type_attr)
6595 {
6596 /* A missing DW_AT_type represents a void type. */
6597 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
6598 }
6599 else
6600 {
6601 ref = dwarf2_get_ref_die_offset (type_attr, cu);
6602 type_die = follow_die_ref (ref);
6603 if (!type_die)
6604 {
6605 error ("Dwarf Error: Cannot find referent at offset %d [in module %s]",
6606 ref, cu->objfile->name);
6607 return NULL;
6608 }
6609 }
6610 type = tag_type_to_type (type_die, cu);
6611 if (!type)
6612 {
6613 dump_die (type_die);
6614 error ("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]",
6615 cu->objfile->name);
6616 }
6617 return type;
6618 }
6619
6620 /* Return the containing type of the die in question using its
6621 DW_AT_containing_type attribute. */
6622
6623 static struct type *
6624 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
6625 {
6626 struct type *type = NULL;
6627 struct attribute *type_attr;
6628 struct die_info *type_die = NULL;
6629 unsigned int ref;
6630
6631 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
6632 if (type_attr)
6633 {
6634 ref = dwarf2_get_ref_die_offset (type_attr, cu);
6635 type_die = follow_die_ref (ref);
6636 if (!type_die)
6637 {
6638 error ("Dwarf Error: Cannot find referent at offset %d [in module %s]", ref,
6639 cu->objfile->name);
6640 return NULL;
6641 }
6642 type = tag_type_to_type (type_die, cu);
6643 }
6644 if (!type)
6645 {
6646 if (type_die)
6647 dump_die (type_die);
6648 error ("Dwarf Error: Problem turning containing type into gdb type [in module %s]",
6649 cu->objfile->name);
6650 }
6651 return type;
6652 }
6653
6654 #if 0
6655 static struct type *
6656 type_at_offset (unsigned int offset, struct dwarf2_cu *cu)
6657 {
6658 struct die_info *die;
6659 struct type *type;
6660
6661 die = follow_die_ref (offset);
6662 if (!die)
6663 {
6664 error ("Dwarf Error: Cannot find type referent at offset %d.", offset);
6665 return NULL;
6666 }
6667 type = tag_type_to_type (die, cu);
6668 return type;
6669 }
6670 #endif
6671
6672 static struct type *
6673 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
6674 {
6675 if (die->type)
6676 {
6677 return die->type;
6678 }
6679 else
6680 {
6681 read_type_die (die, cu);
6682 if (!die->type)
6683 {
6684 dump_die (die);
6685 error ("Dwarf Error: Cannot find type of die [in module %s]",
6686 cu->objfile->name);
6687 }
6688 return die->type;
6689 }
6690 }
6691
6692 static void
6693 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
6694 {
6695 char *prefix = determine_prefix (die, cu);
6696 const char *old_prefix = processing_current_prefix;
6697 struct cleanup *back_to = make_cleanup (xfree, prefix);
6698 processing_current_prefix = prefix;
6699
6700 switch (die->tag)
6701 {
6702 case DW_TAG_class_type:
6703 case DW_TAG_structure_type:
6704 case DW_TAG_union_type:
6705 read_structure_type (die, cu);
6706 break;
6707 case DW_TAG_enumeration_type:
6708 read_enumeration_type (die, cu);
6709 break;
6710 case DW_TAG_subprogram:
6711 case DW_TAG_subroutine_type:
6712 read_subroutine_type (die, cu);
6713 break;
6714 case DW_TAG_array_type:
6715 read_array_type (die, cu);
6716 break;
6717 case DW_TAG_pointer_type:
6718 read_tag_pointer_type (die, cu);
6719 break;
6720 case DW_TAG_ptr_to_member_type:
6721 read_tag_ptr_to_member_type (die, cu);
6722 break;
6723 case DW_TAG_reference_type:
6724 read_tag_reference_type (die, cu);
6725 break;
6726 case DW_TAG_const_type:
6727 read_tag_const_type (die, cu);
6728 break;
6729 case DW_TAG_volatile_type:
6730 read_tag_volatile_type (die, cu);
6731 break;
6732 case DW_TAG_string_type:
6733 read_tag_string_type (die, cu);
6734 break;
6735 case DW_TAG_typedef:
6736 read_typedef (die, cu);
6737 break;
6738 case DW_TAG_subrange_type:
6739 read_subrange_type (die, cu);
6740 break;
6741 case DW_TAG_base_type:
6742 read_base_type (die, cu);
6743 break;
6744 default:
6745 complaint (&symfile_complaints, "unexepected tag in read_type_die: '%s'",
6746 dwarf_tag_name (die->tag));
6747 break;
6748 }
6749
6750 processing_current_prefix = old_prefix;
6751 do_cleanups (back_to);
6752 }
6753
6754 /* Return the name of the namespace/class that DIE is defined within,
6755 or "" if we can't tell. The caller should xfree the result. */
6756
6757 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
6758 therein) for an example of how to use this function to deal with
6759 DW_AT_specification. */
6760
6761 static char *
6762 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
6763 {
6764 struct die_info *parent;
6765
6766 if (cu->language != language_cplus)
6767 return NULL;
6768
6769 parent = die->parent;
6770
6771 if (parent == NULL)
6772 {
6773 return xstrdup ("");
6774 }
6775 else
6776 {
6777 switch (parent->tag) {
6778 case DW_TAG_namespace:
6779 {
6780 /* FIXME: carlton/2004-03-05: Should I follow extension dies
6781 before doing this check? */
6782 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
6783 {
6784 return xstrdup (TYPE_TAG_NAME (parent->type));
6785 }
6786 else
6787 {
6788 int dummy;
6789 char *parent_prefix = determine_prefix (parent, cu);
6790 char *retval = typename_concat (parent_prefix,
6791 namespace_name (parent, &dummy,
6792 cu));
6793 xfree (parent_prefix);
6794 return retval;
6795 }
6796 }
6797 break;
6798 case DW_TAG_class_type:
6799 case DW_TAG_structure_type:
6800 {
6801 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
6802 {
6803 return xstrdup (TYPE_TAG_NAME (parent->type));
6804 }
6805 else
6806 {
6807 const char *old_prefix = processing_current_prefix;
6808 char *new_prefix = determine_prefix (parent, cu);
6809 char *retval;
6810
6811 processing_current_prefix = new_prefix;
6812 retval = determine_class_name (parent, cu);
6813 processing_current_prefix = old_prefix;
6814
6815 xfree (new_prefix);
6816 return retval;
6817 }
6818 }
6819 default:
6820 return determine_prefix (parent, cu);
6821 }
6822 }
6823 }
6824
6825 /* Return a newly-allocated string formed by concatenating PREFIX,
6826 "::", and SUFFIX, except that if PREFIX is NULL or the empty
6827 string, just return a copy of SUFFIX. */
6828
6829 static char *
6830 typename_concat (const char *prefix, const char *suffix)
6831 {
6832 if (prefix == NULL || prefix[0] == '\0')
6833 return xstrdup (suffix);
6834 else
6835 {
6836 char *retval = xmalloc (strlen (prefix) + 2 + strlen (suffix) + 1);
6837
6838 strcpy (retval, prefix);
6839 strcat (retval, "::");
6840 strcat (retval, suffix);
6841
6842 return retval;
6843 }
6844 }
6845
6846 static struct type *
6847 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
6848 {
6849 struct objfile *objfile = cu->objfile;
6850
6851 /* FIXME - this should not produce a new (struct type *)
6852 every time. It should cache base types. */
6853 struct type *type;
6854 switch (encoding)
6855 {
6856 case DW_ATE_address:
6857 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
6858 return type;
6859 case DW_ATE_boolean:
6860 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
6861 return type;
6862 case DW_ATE_complex_float:
6863 if (size == 16)
6864 {
6865 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
6866 }
6867 else
6868 {
6869 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
6870 }
6871 return type;
6872 case DW_ATE_float:
6873 if (size == 8)
6874 {
6875 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
6876 }
6877 else
6878 {
6879 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
6880 }
6881 return type;
6882 case DW_ATE_signed:
6883 switch (size)
6884 {
6885 case 1:
6886 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
6887 break;
6888 case 2:
6889 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
6890 break;
6891 default:
6892 case 4:
6893 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
6894 break;
6895 }
6896 return type;
6897 case DW_ATE_signed_char:
6898 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
6899 return type;
6900 case DW_ATE_unsigned:
6901 switch (size)
6902 {
6903 case 1:
6904 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
6905 break;
6906 case 2:
6907 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
6908 break;
6909 default:
6910 case 4:
6911 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
6912 break;
6913 }
6914 return type;
6915 case DW_ATE_unsigned_char:
6916 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
6917 return type;
6918 default:
6919 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
6920 return type;
6921 }
6922 }
6923
6924 #if 0
6925 struct die_info *
6926 copy_die (struct die_info *old_die)
6927 {
6928 struct die_info *new_die;
6929 int i, num_attrs;
6930
6931 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
6932 memset (new_die, 0, sizeof (struct die_info));
6933
6934 new_die->tag = old_die->tag;
6935 new_die->has_children = old_die->has_children;
6936 new_die->abbrev = old_die->abbrev;
6937 new_die->offset = old_die->offset;
6938 new_die->type = NULL;
6939
6940 num_attrs = old_die->num_attrs;
6941 new_die->num_attrs = num_attrs;
6942 new_die->attrs = (struct attribute *)
6943 xmalloc (num_attrs * sizeof (struct attribute));
6944
6945 for (i = 0; i < old_die->num_attrs; ++i)
6946 {
6947 new_die->attrs[i].name = old_die->attrs[i].name;
6948 new_die->attrs[i].form = old_die->attrs[i].form;
6949 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
6950 }
6951
6952 new_die->next = NULL;
6953 return new_die;
6954 }
6955 #endif
6956
6957 /* Return sibling of die, NULL if no sibling. */
6958
6959 static struct die_info *
6960 sibling_die (struct die_info *die)
6961 {
6962 return die->sibling;
6963 }
6964
6965 /* Get linkage name of a die, return NULL if not found. */
6966
6967 static char *
6968 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
6969 {
6970 struct attribute *attr;
6971
6972 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
6973 if (attr && DW_STRING (attr))
6974 return DW_STRING (attr);
6975 attr = dwarf2_attr (die, DW_AT_name, cu);
6976 if (attr && DW_STRING (attr))
6977 return DW_STRING (attr);
6978 return NULL;
6979 }
6980
6981 /* Get name of a die, return NULL if not found. */
6982
6983 static char *
6984 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
6985 {
6986 struct attribute *attr;
6987
6988 attr = dwarf2_attr (die, DW_AT_name, cu);
6989 if (attr && DW_STRING (attr))
6990 return DW_STRING (attr);
6991 return NULL;
6992 }
6993
6994 /* Return the die that this die in an extension of, or NULL if there
6995 is none. */
6996
6997 static struct die_info *
6998 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
6999 {
7000 struct attribute *attr;
7001 struct die_info *extension_die;
7002 unsigned int ref;
7003
7004 attr = dwarf2_attr (die, DW_AT_extension, cu);
7005 if (attr == NULL)
7006 return NULL;
7007
7008 ref = dwarf2_get_ref_die_offset (attr, cu);
7009 extension_die = follow_die_ref (ref);
7010 if (!extension_die)
7011 {
7012 error ("Dwarf Error: Cannot find referent at offset %d.", ref);
7013 }
7014
7015 return extension_die;
7016 }
7017
7018 /* Convert a DIE tag into its string name. */
7019
7020 static char *
7021 dwarf_tag_name (unsigned tag)
7022 {
7023 switch (tag)
7024 {
7025 case DW_TAG_padding:
7026 return "DW_TAG_padding";
7027 case DW_TAG_array_type:
7028 return "DW_TAG_array_type";
7029 case DW_TAG_class_type:
7030 return "DW_TAG_class_type";
7031 case DW_TAG_entry_point:
7032 return "DW_TAG_entry_point";
7033 case DW_TAG_enumeration_type:
7034 return "DW_TAG_enumeration_type";
7035 case DW_TAG_formal_parameter:
7036 return "DW_TAG_formal_parameter";
7037 case DW_TAG_imported_declaration:
7038 return "DW_TAG_imported_declaration";
7039 case DW_TAG_label:
7040 return "DW_TAG_label";
7041 case DW_TAG_lexical_block:
7042 return "DW_TAG_lexical_block";
7043 case DW_TAG_member:
7044 return "DW_TAG_member";
7045 case DW_TAG_pointer_type:
7046 return "DW_TAG_pointer_type";
7047 case DW_TAG_reference_type:
7048 return "DW_TAG_reference_type";
7049 case DW_TAG_compile_unit:
7050 return "DW_TAG_compile_unit";
7051 case DW_TAG_string_type:
7052 return "DW_TAG_string_type";
7053 case DW_TAG_structure_type:
7054 return "DW_TAG_structure_type";
7055 case DW_TAG_subroutine_type:
7056 return "DW_TAG_subroutine_type";
7057 case DW_TAG_typedef:
7058 return "DW_TAG_typedef";
7059 case DW_TAG_union_type:
7060 return "DW_TAG_union_type";
7061 case DW_TAG_unspecified_parameters:
7062 return "DW_TAG_unspecified_parameters";
7063 case DW_TAG_variant:
7064 return "DW_TAG_variant";
7065 case DW_TAG_common_block:
7066 return "DW_TAG_common_block";
7067 case DW_TAG_common_inclusion:
7068 return "DW_TAG_common_inclusion";
7069 case DW_TAG_inheritance:
7070 return "DW_TAG_inheritance";
7071 case DW_TAG_inlined_subroutine:
7072 return "DW_TAG_inlined_subroutine";
7073 case DW_TAG_module:
7074 return "DW_TAG_module";
7075 case DW_TAG_ptr_to_member_type:
7076 return "DW_TAG_ptr_to_member_type";
7077 case DW_TAG_set_type:
7078 return "DW_TAG_set_type";
7079 case DW_TAG_subrange_type:
7080 return "DW_TAG_subrange_type";
7081 case DW_TAG_with_stmt:
7082 return "DW_TAG_with_stmt";
7083 case DW_TAG_access_declaration:
7084 return "DW_TAG_access_declaration";
7085 case DW_TAG_base_type:
7086 return "DW_TAG_base_type";
7087 case DW_TAG_catch_block:
7088 return "DW_TAG_catch_block";
7089 case DW_TAG_const_type:
7090 return "DW_TAG_const_type";
7091 case DW_TAG_constant:
7092 return "DW_TAG_constant";
7093 case DW_TAG_enumerator:
7094 return "DW_TAG_enumerator";
7095 case DW_TAG_file_type:
7096 return "DW_TAG_file_type";
7097 case DW_TAG_friend:
7098 return "DW_TAG_friend";
7099 case DW_TAG_namelist:
7100 return "DW_TAG_namelist";
7101 case DW_TAG_namelist_item:
7102 return "DW_TAG_namelist_item";
7103 case DW_TAG_packed_type:
7104 return "DW_TAG_packed_type";
7105 case DW_TAG_subprogram:
7106 return "DW_TAG_subprogram";
7107 case DW_TAG_template_type_param:
7108 return "DW_TAG_template_type_param";
7109 case DW_TAG_template_value_param:
7110 return "DW_TAG_template_value_param";
7111 case DW_TAG_thrown_type:
7112 return "DW_TAG_thrown_type";
7113 case DW_TAG_try_block:
7114 return "DW_TAG_try_block";
7115 case DW_TAG_variant_part:
7116 return "DW_TAG_variant_part";
7117 case DW_TAG_variable:
7118 return "DW_TAG_variable";
7119 case DW_TAG_volatile_type:
7120 return "DW_TAG_volatile_type";
7121 case DW_TAG_dwarf_procedure:
7122 return "DW_TAG_dwarf_procedure";
7123 case DW_TAG_restrict_type:
7124 return "DW_TAG_restrict_type";
7125 case DW_TAG_interface_type:
7126 return "DW_TAG_interface_type";
7127 case DW_TAG_namespace:
7128 return "DW_TAG_namespace";
7129 case DW_TAG_imported_module:
7130 return "DW_TAG_imported_module";
7131 case DW_TAG_unspecified_type:
7132 return "DW_TAG_unspecified_type";
7133 case DW_TAG_partial_unit:
7134 return "DW_TAG_partial_unit";
7135 case DW_TAG_imported_unit:
7136 return "DW_TAG_imported_unit";
7137 case DW_TAG_MIPS_loop:
7138 return "DW_TAG_MIPS_loop";
7139 case DW_TAG_format_label:
7140 return "DW_TAG_format_label";
7141 case DW_TAG_function_template:
7142 return "DW_TAG_function_template";
7143 case DW_TAG_class_template:
7144 return "DW_TAG_class_template";
7145 default:
7146 return "DW_TAG_<unknown>";
7147 }
7148 }
7149
7150 /* Convert a DWARF attribute code into its string name. */
7151
7152 static char *
7153 dwarf_attr_name (unsigned attr)
7154 {
7155 switch (attr)
7156 {
7157 case DW_AT_sibling:
7158 return "DW_AT_sibling";
7159 case DW_AT_location:
7160 return "DW_AT_location";
7161 case DW_AT_name:
7162 return "DW_AT_name";
7163 case DW_AT_ordering:
7164 return "DW_AT_ordering";
7165 case DW_AT_subscr_data:
7166 return "DW_AT_subscr_data";
7167 case DW_AT_byte_size:
7168 return "DW_AT_byte_size";
7169 case DW_AT_bit_offset:
7170 return "DW_AT_bit_offset";
7171 case DW_AT_bit_size:
7172 return "DW_AT_bit_size";
7173 case DW_AT_element_list:
7174 return "DW_AT_element_list";
7175 case DW_AT_stmt_list:
7176 return "DW_AT_stmt_list";
7177 case DW_AT_low_pc:
7178 return "DW_AT_low_pc";
7179 case DW_AT_high_pc:
7180 return "DW_AT_high_pc";
7181 case DW_AT_language:
7182 return "DW_AT_language";
7183 case DW_AT_member:
7184 return "DW_AT_member";
7185 case DW_AT_discr:
7186 return "DW_AT_discr";
7187 case DW_AT_discr_value:
7188 return "DW_AT_discr_value";
7189 case DW_AT_visibility:
7190 return "DW_AT_visibility";
7191 case DW_AT_import:
7192 return "DW_AT_import";
7193 case DW_AT_string_length:
7194 return "DW_AT_string_length";
7195 case DW_AT_common_reference:
7196 return "DW_AT_common_reference";
7197 case DW_AT_comp_dir:
7198 return "DW_AT_comp_dir";
7199 case DW_AT_const_value:
7200 return "DW_AT_const_value";
7201 case DW_AT_containing_type:
7202 return "DW_AT_containing_type";
7203 case DW_AT_default_value:
7204 return "DW_AT_default_value";
7205 case DW_AT_inline:
7206 return "DW_AT_inline";
7207 case DW_AT_is_optional:
7208 return "DW_AT_is_optional";
7209 case DW_AT_lower_bound:
7210 return "DW_AT_lower_bound";
7211 case DW_AT_producer:
7212 return "DW_AT_producer";
7213 case DW_AT_prototyped:
7214 return "DW_AT_prototyped";
7215 case DW_AT_return_addr:
7216 return "DW_AT_return_addr";
7217 case DW_AT_start_scope:
7218 return "DW_AT_start_scope";
7219 case DW_AT_stride_size:
7220 return "DW_AT_stride_size";
7221 case DW_AT_upper_bound:
7222 return "DW_AT_upper_bound";
7223 case DW_AT_abstract_origin:
7224 return "DW_AT_abstract_origin";
7225 case DW_AT_accessibility:
7226 return "DW_AT_accessibility";
7227 case DW_AT_address_class:
7228 return "DW_AT_address_class";
7229 case DW_AT_artificial:
7230 return "DW_AT_artificial";
7231 case DW_AT_base_types:
7232 return "DW_AT_base_types";
7233 case DW_AT_calling_convention:
7234 return "DW_AT_calling_convention";
7235 case DW_AT_count:
7236 return "DW_AT_count";
7237 case DW_AT_data_member_location:
7238 return "DW_AT_data_member_location";
7239 case DW_AT_decl_column:
7240 return "DW_AT_decl_column";
7241 case DW_AT_decl_file:
7242 return "DW_AT_decl_file";
7243 case DW_AT_decl_line:
7244 return "DW_AT_decl_line";
7245 case DW_AT_declaration:
7246 return "DW_AT_declaration";
7247 case DW_AT_discr_list:
7248 return "DW_AT_discr_list";
7249 case DW_AT_encoding:
7250 return "DW_AT_encoding";
7251 case DW_AT_external:
7252 return "DW_AT_external";
7253 case DW_AT_frame_base:
7254 return "DW_AT_frame_base";
7255 case DW_AT_friend:
7256 return "DW_AT_friend";
7257 case DW_AT_identifier_case:
7258 return "DW_AT_identifier_case";
7259 case DW_AT_macro_info:
7260 return "DW_AT_macro_info";
7261 case DW_AT_namelist_items:
7262 return "DW_AT_namelist_items";
7263 case DW_AT_priority:
7264 return "DW_AT_priority";
7265 case DW_AT_segment:
7266 return "DW_AT_segment";
7267 case DW_AT_specification:
7268 return "DW_AT_specification";
7269 case DW_AT_static_link:
7270 return "DW_AT_static_link";
7271 case DW_AT_type:
7272 return "DW_AT_type";
7273 case DW_AT_use_location:
7274 return "DW_AT_use_location";
7275 case DW_AT_variable_parameter:
7276 return "DW_AT_variable_parameter";
7277 case DW_AT_virtuality:
7278 return "DW_AT_virtuality";
7279 case DW_AT_vtable_elem_location:
7280 return "DW_AT_vtable_elem_location";
7281 case DW_AT_allocated:
7282 return "DW_AT_allocated";
7283 case DW_AT_associated:
7284 return "DW_AT_associated";
7285 case DW_AT_data_location:
7286 return "DW_AT_data_location";
7287 case DW_AT_stride:
7288 return "DW_AT_stride";
7289 case DW_AT_entry_pc:
7290 return "DW_AT_entry_pc";
7291 case DW_AT_use_UTF8:
7292 return "DW_AT_use_UTF8";
7293 case DW_AT_extension:
7294 return "DW_AT_extension";
7295 case DW_AT_ranges:
7296 return "DW_AT_ranges";
7297 case DW_AT_trampoline:
7298 return "DW_AT_trampoline";
7299 case DW_AT_call_column:
7300 return "DW_AT_call_column";
7301 case DW_AT_call_file:
7302 return "DW_AT_call_file";
7303 case DW_AT_call_line:
7304 return "DW_AT_call_line";
7305 #ifdef MIPS
7306 case DW_AT_MIPS_fde:
7307 return "DW_AT_MIPS_fde";
7308 case DW_AT_MIPS_loop_begin:
7309 return "DW_AT_MIPS_loop_begin";
7310 case DW_AT_MIPS_tail_loop_begin:
7311 return "DW_AT_MIPS_tail_loop_begin";
7312 case DW_AT_MIPS_epilog_begin:
7313 return "DW_AT_MIPS_epilog_begin";
7314 case DW_AT_MIPS_loop_unroll_factor:
7315 return "DW_AT_MIPS_loop_unroll_factor";
7316 case DW_AT_MIPS_software_pipeline_depth:
7317 return "DW_AT_MIPS_software_pipeline_depth";
7318 #endif
7319 case DW_AT_MIPS_linkage_name:
7320 return "DW_AT_MIPS_linkage_name";
7321
7322 case DW_AT_sf_names:
7323 return "DW_AT_sf_names";
7324 case DW_AT_src_info:
7325 return "DW_AT_src_info";
7326 case DW_AT_mac_info:
7327 return "DW_AT_mac_info";
7328 case DW_AT_src_coords:
7329 return "DW_AT_src_coords";
7330 case DW_AT_body_begin:
7331 return "DW_AT_body_begin";
7332 case DW_AT_body_end:
7333 return "DW_AT_body_end";
7334 case DW_AT_GNU_vector:
7335 return "DW_AT_GNU_vector";
7336 default:
7337 return "DW_AT_<unknown>";
7338 }
7339 }
7340
7341 /* Convert a DWARF value form code into its string name. */
7342
7343 static char *
7344 dwarf_form_name (unsigned form)
7345 {
7346 switch (form)
7347 {
7348 case DW_FORM_addr:
7349 return "DW_FORM_addr";
7350 case DW_FORM_block2:
7351 return "DW_FORM_block2";
7352 case DW_FORM_block4:
7353 return "DW_FORM_block4";
7354 case DW_FORM_data2:
7355 return "DW_FORM_data2";
7356 case DW_FORM_data4:
7357 return "DW_FORM_data4";
7358 case DW_FORM_data8:
7359 return "DW_FORM_data8";
7360 case DW_FORM_string:
7361 return "DW_FORM_string";
7362 case DW_FORM_block:
7363 return "DW_FORM_block";
7364 case DW_FORM_block1:
7365 return "DW_FORM_block1";
7366 case DW_FORM_data1:
7367 return "DW_FORM_data1";
7368 case DW_FORM_flag:
7369 return "DW_FORM_flag";
7370 case DW_FORM_sdata:
7371 return "DW_FORM_sdata";
7372 case DW_FORM_strp:
7373 return "DW_FORM_strp";
7374 case DW_FORM_udata:
7375 return "DW_FORM_udata";
7376 case DW_FORM_ref_addr:
7377 return "DW_FORM_ref_addr";
7378 case DW_FORM_ref1:
7379 return "DW_FORM_ref1";
7380 case DW_FORM_ref2:
7381 return "DW_FORM_ref2";
7382 case DW_FORM_ref4:
7383 return "DW_FORM_ref4";
7384 case DW_FORM_ref8:
7385 return "DW_FORM_ref8";
7386 case DW_FORM_ref_udata:
7387 return "DW_FORM_ref_udata";
7388 case DW_FORM_indirect:
7389 return "DW_FORM_indirect";
7390 default:
7391 return "DW_FORM_<unknown>";
7392 }
7393 }
7394
7395 /* Convert a DWARF stack opcode into its string name. */
7396
7397 static char *
7398 dwarf_stack_op_name (unsigned op)
7399 {
7400 switch (op)
7401 {
7402 case DW_OP_addr:
7403 return "DW_OP_addr";
7404 case DW_OP_deref:
7405 return "DW_OP_deref";
7406 case DW_OP_const1u:
7407 return "DW_OP_const1u";
7408 case DW_OP_const1s:
7409 return "DW_OP_const1s";
7410 case DW_OP_const2u:
7411 return "DW_OP_const2u";
7412 case DW_OP_const2s:
7413 return "DW_OP_const2s";
7414 case DW_OP_const4u:
7415 return "DW_OP_const4u";
7416 case DW_OP_const4s:
7417 return "DW_OP_const4s";
7418 case DW_OP_const8u:
7419 return "DW_OP_const8u";
7420 case DW_OP_const8s:
7421 return "DW_OP_const8s";
7422 case DW_OP_constu:
7423 return "DW_OP_constu";
7424 case DW_OP_consts:
7425 return "DW_OP_consts";
7426 case DW_OP_dup:
7427 return "DW_OP_dup";
7428 case DW_OP_drop:
7429 return "DW_OP_drop";
7430 case DW_OP_over:
7431 return "DW_OP_over";
7432 case DW_OP_pick:
7433 return "DW_OP_pick";
7434 case DW_OP_swap:
7435 return "DW_OP_swap";
7436 case DW_OP_rot:
7437 return "DW_OP_rot";
7438 case DW_OP_xderef:
7439 return "DW_OP_xderef";
7440 case DW_OP_abs:
7441 return "DW_OP_abs";
7442 case DW_OP_and:
7443 return "DW_OP_and";
7444 case DW_OP_div:
7445 return "DW_OP_div";
7446 case DW_OP_minus:
7447 return "DW_OP_minus";
7448 case DW_OP_mod:
7449 return "DW_OP_mod";
7450 case DW_OP_mul:
7451 return "DW_OP_mul";
7452 case DW_OP_neg:
7453 return "DW_OP_neg";
7454 case DW_OP_not:
7455 return "DW_OP_not";
7456 case DW_OP_or:
7457 return "DW_OP_or";
7458 case DW_OP_plus:
7459 return "DW_OP_plus";
7460 case DW_OP_plus_uconst:
7461 return "DW_OP_plus_uconst";
7462 case DW_OP_shl:
7463 return "DW_OP_shl";
7464 case DW_OP_shr:
7465 return "DW_OP_shr";
7466 case DW_OP_shra:
7467 return "DW_OP_shra";
7468 case DW_OP_xor:
7469 return "DW_OP_xor";
7470 case DW_OP_bra:
7471 return "DW_OP_bra";
7472 case DW_OP_eq:
7473 return "DW_OP_eq";
7474 case DW_OP_ge:
7475 return "DW_OP_ge";
7476 case DW_OP_gt:
7477 return "DW_OP_gt";
7478 case DW_OP_le:
7479 return "DW_OP_le";
7480 case DW_OP_lt:
7481 return "DW_OP_lt";
7482 case DW_OP_ne:
7483 return "DW_OP_ne";
7484 case DW_OP_skip:
7485 return "DW_OP_skip";
7486 case DW_OP_lit0:
7487 return "DW_OP_lit0";
7488 case DW_OP_lit1:
7489 return "DW_OP_lit1";
7490 case DW_OP_lit2:
7491 return "DW_OP_lit2";
7492 case DW_OP_lit3:
7493 return "DW_OP_lit3";
7494 case DW_OP_lit4:
7495 return "DW_OP_lit4";
7496 case DW_OP_lit5:
7497 return "DW_OP_lit5";
7498 case DW_OP_lit6:
7499 return "DW_OP_lit6";
7500 case DW_OP_lit7:
7501 return "DW_OP_lit7";
7502 case DW_OP_lit8:
7503 return "DW_OP_lit8";
7504 case DW_OP_lit9:
7505 return "DW_OP_lit9";
7506 case DW_OP_lit10:
7507 return "DW_OP_lit10";
7508 case DW_OP_lit11:
7509 return "DW_OP_lit11";
7510 case DW_OP_lit12:
7511 return "DW_OP_lit12";
7512 case DW_OP_lit13:
7513 return "DW_OP_lit13";
7514 case DW_OP_lit14:
7515 return "DW_OP_lit14";
7516 case DW_OP_lit15:
7517 return "DW_OP_lit15";
7518 case DW_OP_lit16:
7519 return "DW_OP_lit16";
7520 case DW_OP_lit17:
7521 return "DW_OP_lit17";
7522 case DW_OP_lit18:
7523 return "DW_OP_lit18";
7524 case DW_OP_lit19:
7525 return "DW_OP_lit19";
7526 case DW_OP_lit20:
7527 return "DW_OP_lit20";
7528 case DW_OP_lit21:
7529 return "DW_OP_lit21";
7530 case DW_OP_lit22:
7531 return "DW_OP_lit22";
7532 case DW_OP_lit23:
7533 return "DW_OP_lit23";
7534 case DW_OP_lit24:
7535 return "DW_OP_lit24";
7536 case DW_OP_lit25:
7537 return "DW_OP_lit25";
7538 case DW_OP_lit26:
7539 return "DW_OP_lit26";
7540 case DW_OP_lit27:
7541 return "DW_OP_lit27";
7542 case DW_OP_lit28:
7543 return "DW_OP_lit28";
7544 case DW_OP_lit29:
7545 return "DW_OP_lit29";
7546 case DW_OP_lit30:
7547 return "DW_OP_lit30";
7548 case DW_OP_lit31:
7549 return "DW_OP_lit31";
7550 case DW_OP_reg0:
7551 return "DW_OP_reg0";
7552 case DW_OP_reg1:
7553 return "DW_OP_reg1";
7554 case DW_OP_reg2:
7555 return "DW_OP_reg2";
7556 case DW_OP_reg3:
7557 return "DW_OP_reg3";
7558 case DW_OP_reg4:
7559 return "DW_OP_reg4";
7560 case DW_OP_reg5:
7561 return "DW_OP_reg5";
7562 case DW_OP_reg6:
7563 return "DW_OP_reg6";
7564 case DW_OP_reg7:
7565 return "DW_OP_reg7";
7566 case DW_OP_reg8:
7567 return "DW_OP_reg8";
7568 case DW_OP_reg9:
7569 return "DW_OP_reg9";
7570 case DW_OP_reg10:
7571 return "DW_OP_reg10";
7572 case DW_OP_reg11:
7573 return "DW_OP_reg11";
7574 case DW_OP_reg12:
7575 return "DW_OP_reg12";
7576 case DW_OP_reg13:
7577 return "DW_OP_reg13";
7578 case DW_OP_reg14:
7579 return "DW_OP_reg14";
7580 case DW_OP_reg15:
7581 return "DW_OP_reg15";
7582 case DW_OP_reg16:
7583 return "DW_OP_reg16";
7584 case DW_OP_reg17:
7585 return "DW_OP_reg17";
7586 case DW_OP_reg18:
7587 return "DW_OP_reg18";
7588 case DW_OP_reg19:
7589 return "DW_OP_reg19";
7590 case DW_OP_reg20:
7591 return "DW_OP_reg20";
7592 case DW_OP_reg21:
7593 return "DW_OP_reg21";
7594 case DW_OP_reg22:
7595 return "DW_OP_reg22";
7596 case DW_OP_reg23:
7597 return "DW_OP_reg23";
7598 case DW_OP_reg24:
7599 return "DW_OP_reg24";
7600 case DW_OP_reg25:
7601 return "DW_OP_reg25";
7602 case DW_OP_reg26:
7603 return "DW_OP_reg26";
7604 case DW_OP_reg27:
7605 return "DW_OP_reg27";
7606 case DW_OP_reg28:
7607 return "DW_OP_reg28";
7608 case DW_OP_reg29:
7609 return "DW_OP_reg29";
7610 case DW_OP_reg30:
7611 return "DW_OP_reg30";
7612 case DW_OP_reg31:
7613 return "DW_OP_reg31";
7614 case DW_OP_breg0:
7615 return "DW_OP_breg0";
7616 case DW_OP_breg1:
7617 return "DW_OP_breg1";
7618 case DW_OP_breg2:
7619 return "DW_OP_breg2";
7620 case DW_OP_breg3:
7621 return "DW_OP_breg3";
7622 case DW_OP_breg4:
7623 return "DW_OP_breg4";
7624 case DW_OP_breg5:
7625 return "DW_OP_breg5";
7626 case DW_OP_breg6:
7627 return "DW_OP_breg6";
7628 case DW_OP_breg7:
7629 return "DW_OP_breg7";
7630 case DW_OP_breg8:
7631 return "DW_OP_breg8";
7632 case DW_OP_breg9:
7633 return "DW_OP_breg9";
7634 case DW_OP_breg10:
7635 return "DW_OP_breg10";
7636 case DW_OP_breg11:
7637 return "DW_OP_breg11";
7638 case DW_OP_breg12:
7639 return "DW_OP_breg12";
7640 case DW_OP_breg13:
7641 return "DW_OP_breg13";
7642 case DW_OP_breg14:
7643 return "DW_OP_breg14";
7644 case DW_OP_breg15:
7645 return "DW_OP_breg15";
7646 case DW_OP_breg16:
7647 return "DW_OP_breg16";
7648 case DW_OP_breg17:
7649 return "DW_OP_breg17";
7650 case DW_OP_breg18:
7651 return "DW_OP_breg18";
7652 case DW_OP_breg19:
7653 return "DW_OP_breg19";
7654 case DW_OP_breg20:
7655 return "DW_OP_breg20";
7656 case DW_OP_breg21:
7657 return "DW_OP_breg21";
7658 case DW_OP_breg22:
7659 return "DW_OP_breg22";
7660 case DW_OP_breg23:
7661 return "DW_OP_breg23";
7662 case DW_OP_breg24:
7663 return "DW_OP_breg24";
7664 case DW_OP_breg25:
7665 return "DW_OP_breg25";
7666 case DW_OP_breg26:
7667 return "DW_OP_breg26";
7668 case DW_OP_breg27:
7669 return "DW_OP_breg27";
7670 case DW_OP_breg28:
7671 return "DW_OP_breg28";
7672 case DW_OP_breg29:
7673 return "DW_OP_breg29";
7674 case DW_OP_breg30:
7675 return "DW_OP_breg30";
7676 case DW_OP_breg31:
7677 return "DW_OP_breg31";
7678 case DW_OP_regx:
7679 return "DW_OP_regx";
7680 case DW_OP_fbreg:
7681 return "DW_OP_fbreg";
7682 case DW_OP_bregx:
7683 return "DW_OP_bregx";
7684 case DW_OP_piece:
7685 return "DW_OP_piece";
7686 case DW_OP_deref_size:
7687 return "DW_OP_deref_size";
7688 case DW_OP_xderef_size:
7689 return "DW_OP_xderef_size";
7690 case DW_OP_nop:
7691 return "DW_OP_nop";
7692 /* DWARF 3 extensions. */
7693 case DW_OP_push_object_address:
7694 return "DW_OP_push_object_address";
7695 case DW_OP_call2:
7696 return "DW_OP_call2";
7697 case DW_OP_call4:
7698 return "DW_OP_call4";
7699 case DW_OP_call_ref:
7700 return "DW_OP_call_ref";
7701 /* GNU extensions. */
7702 case DW_OP_GNU_push_tls_address:
7703 return "DW_OP_GNU_push_tls_address";
7704 default:
7705 return "OP_<unknown>";
7706 }
7707 }
7708
7709 static char *
7710 dwarf_bool_name (unsigned mybool)
7711 {
7712 if (mybool)
7713 return "TRUE";
7714 else
7715 return "FALSE";
7716 }
7717
7718 /* Convert a DWARF type code into its string name. */
7719
7720 static char *
7721 dwarf_type_encoding_name (unsigned enc)
7722 {
7723 switch (enc)
7724 {
7725 case DW_ATE_address:
7726 return "DW_ATE_address";
7727 case DW_ATE_boolean:
7728 return "DW_ATE_boolean";
7729 case DW_ATE_complex_float:
7730 return "DW_ATE_complex_float";
7731 case DW_ATE_float:
7732 return "DW_ATE_float";
7733 case DW_ATE_signed:
7734 return "DW_ATE_signed";
7735 case DW_ATE_signed_char:
7736 return "DW_ATE_signed_char";
7737 case DW_ATE_unsigned:
7738 return "DW_ATE_unsigned";
7739 case DW_ATE_unsigned_char:
7740 return "DW_ATE_unsigned_char";
7741 case DW_ATE_imaginary_float:
7742 return "DW_ATE_imaginary_float";
7743 default:
7744 return "DW_ATE_<unknown>";
7745 }
7746 }
7747
7748 /* Convert a DWARF call frame info operation to its string name. */
7749
7750 #if 0
7751 static char *
7752 dwarf_cfi_name (unsigned cfi_opc)
7753 {
7754 switch (cfi_opc)
7755 {
7756 case DW_CFA_advance_loc:
7757 return "DW_CFA_advance_loc";
7758 case DW_CFA_offset:
7759 return "DW_CFA_offset";
7760 case DW_CFA_restore:
7761 return "DW_CFA_restore";
7762 case DW_CFA_nop:
7763 return "DW_CFA_nop";
7764 case DW_CFA_set_loc:
7765 return "DW_CFA_set_loc";
7766 case DW_CFA_advance_loc1:
7767 return "DW_CFA_advance_loc1";
7768 case DW_CFA_advance_loc2:
7769 return "DW_CFA_advance_loc2";
7770 case DW_CFA_advance_loc4:
7771 return "DW_CFA_advance_loc4";
7772 case DW_CFA_offset_extended:
7773 return "DW_CFA_offset_extended";
7774 case DW_CFA_restore_extended:
7775 return "DW_CFA_restore_extended";
7776 case DW_CFA_undefined:
7777 return "DW_CFA_undefined";
7778 case DW_CFA_same_value:
7779 return "DW_CFA_same_value";
7780 case DW_CFA_register:
7781 return "DW_CFA_register";
7782 case DW_CFA_remember_state:
7783 return "DW_CFA_remember_state";
7784 case DW_CFA_restore_state:
7785 return "DW_CFA_restore_state";
7786 case DW_CFA_def_cfa:
7787 return "DW_CFA_def_cfa";
7788 case DW_CFA_def_cfa_register:
7789 return "DW_CFA_def_cfa_register";
7790 case DW_CFA_def_cfa_offset:
7791 return "DW_CFA_def_cfa_offset";
7792
7793 /* DWARF 3 */
7794 case DW_CFA_def_cfa_expression:
7795 return "DW_CFA_def_cfa_expression";
7796 case DW_CFA_expression:
7797 return "DW_CFA_expression";
7798 case DW_CFA_offset_extended_sf:
7799 return "DW_CFA_offset_extended_sf";
7800 case DW_CFA_def_cfa_sf:
7801 return "DW_CFA_def_cfa_sf";
7802 case DW_CFA_def_cfa_offset_sf:
7803 return "DW_CFA_def_cfa_offset_sf";
7804
7805 /* SGI/MIPS specific */
7806 case DW_CFA_MIPS_advance_loc8:
7807 return "DW_CFA_MIPS_advance_loc8";
7808
7809 /* GNU extensions */
7810 case DW_CFA_GNU_window_save:
7811 return "DW_CFA_GNU_window_save";
7812 case DW_CFA_GNU_args_size:
7813 return "DW_CFA_GNU_args_size";
7814 case DW_CFA_GNU_negative_offset_extended:
7815 return "DW_CFA_GNU_negative_offset_extended";
7816
7817 default:
7818 return "DW_CFA_<unknown>";
7819 }
7820 }
7821 #endif
7822
7823 static void
7824 dump_die (struct die_info *die)
7825 {
7826 unsigned int i;
7827
7828 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
7829 dwarf_tag_name (die->tag), die->abbrev, die->offset);
7830 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
7831 dwarf_bool_name (die->child != NULL));
7832
7833 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
7834 for (i = 0; i < die->num_attrs; ++i)
7835 {
7836 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
7837 dwarf_attr_name (die->attrs[i].name),
7838 dwarf_form_name (die->attrs[i].form));
7839 switch (die->attrs[i].form)
7840 {
7841 case DW_FORM_ref_addr:
7842 case DW_FORM_addr:
7843 fprintf_unfiltered (gdb_stderr, "address: ");
7844 print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
7845 break;
7846 case DW_FORM_block2:
7847 case DW_FORM_block4:
7848 case DW_FORM_block:
7849 case DW_FORM_block1:
7850 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
7851 break;
7852 case DW_FORM_data1:
7853 case DW_FORM_data2:
7854 case DW_FORM_data4:
7855 case DW_FORM_data8:
7856 case DW_FORM_ref1:
7857 case DW_FORM_ref2:
7858 case DW_FORM_ref4:
7859 case DW_FORM_udata:
7860 case DW_FORM_sdata:
7861 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
7862 break;
7863 case DW_FORM_string:
7864 case DW_FORM_strp:
7865 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
7866 DW_STRING (&die->attrs[i])
7867 ? DW_STRING (&die->attrs[i]) : "");
7868 break;
7869 case DW_FORM_flag:
7870 if (DW_UNSND (&die->attrs[i]))
7871 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
7872 else
7873 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
7874 break;
7875 case DW_FORM_indirect:
7876 /* the reader will have reduced the indirect form to
7877 the "base form" so this form should not occur */
7878 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
7879 break;
7880 default:
7881 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
7882 die->attrs[i].form);
7883 }
7884 fprintf_unfiltered (gdb_stderr, "\n");
7885 }
7886 }
7887
7888 static void
7889 dump_die_list (struct die_info *die)
7890 {
7891 while (die)
7892 {
7893 dump_die (die);
7894 if (die->child != NULL)
7895 dump_die_list (die->child);
7896 if (die->sibling != NULL)
7897 dump_die_list (die->sibling);
7898 }
7899 }
7900
7901 static void
7902 store_in_ref_table (unsigned int offset, struct die_info *die)
7903 {
7904 int h;
7905 struct die_info *old;
7906
7907 h = (offset % REF_HASH_SIZE);
7908 old = die_ref_table[h];
7909 die->next_ref = old;
7910 die_ref_table[h] = die;
7911 }
7912
7913
7914 static void
7915 dwarf2_empty_hash_tables (void)
7916 {
7917 memset (die_ref_table, 0, sizeof (die_ref_table));
7918 }
7919
7920 static unsigned int
7921 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
7922 {
7923 unsigned int result = 0;
7924
7925 switch (attr->form)
7926 {
7927 case DW_FORM_ref_addr:
7928 result = DW_ADDR (attr);
7929 break;
7930 case DW_FORM_ref1:
7931 case DW_FORM_ref2:
7932 case DW_FORM_ref4:
7933 case DW_FORM_ref8:
7934 case DW_FORM_ref_udata:
7935 result = cu->header.offset + DW_UNSND (attr);
7936 break;
7937 default:
7938 complaint (&symfile_complaints,
7939 "unsupported die ref attribute form: '%s'",
7940 dwarf_form_name (attr->form));
7941 }
7942 return result;
7943 }
7944
7945 /* Return the constant value held by the given attribute. Return -1
7946 if the value held by the attribute is not constant. */
7947
7948 static int
7949 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
7950 {
7951 if (attr->form == DW_FORM_sdata)
7952 return DW_SND (attr);
7953 else if (attr->form == DW_FORM_udata
7954 || attr->form == DW_FORM_data1
7955 || attr->form == DW_FORM_data2
7956 || attr->form == DW_FORM_data4
7957 || attr->form == DW_FORM_data8)
7958 return DW_UNSND (attr);
7959 else
7960 {
7961 complaint (&symfile_complaints, "Attribute value is not a constant (%s)",
7962 dwarf_form_name (attr->form));
7963 return default_value;
7964 }
7965 }
7966
7967 static struct die_info *
7968 follow_die_ref (unsigned int offset)
7969 {
7970 struct die_info *die;
7971 int h;
7972
7973 h = (offset % REF_HASH_SIZE);
7974 die = die_ref_table[h];
7975 while (die)
7976 {
7977 if (die->offset == offset)
7978 {
7979 return die;
7980 }
7981 die = die->next_ref;
7982 }
7983 return NULL;
7984 }
7985
7986 static struct type *
7987 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
7988 struct dwarf2_cu *cu)
7989 {
7990 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
7991 {
7992 error ("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]",
7993 typeid, objfile->name);
7994 }
7995
7996 /* Look for this particular type in the fundamental type vector. If
7997 one is not found, create and install one appropriate for the
7998 current language and the current target machine. */
7999
8000 if (cu->ftypes[typeid] == NULL)
8001 {
8002 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8003 }
8004
8005 return (cu->ftypes[typeid]);
8006 }
8007
8008 /* Decode simple location descriptions.
8009 Given a pointer to a dwarf block that defines a location, compute
8010 the location and return the value.
8011
8012 NOTE drow/2003-11-18: This function is called in two situations
8013 now: for the address of static or global variables (partial symbols
8014 only) and for offsets into structures which are expected to be
8015 (more or less) constant. The partial symbol case should go away,
8016 and only the constant case should remain. That will let this
8017 function complain more accurately. A few special modes are allowed
8018 without complaint for global variables (for instance, global
8019 register values and thread-local values).
8020
8021 A location description containing no operations indicates that the
8022 object is optimized out. The return value is 0 for that case.
8023 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8024 callers will only want a very basic result and this can become a
8025 complaint.
8026
8027 When the result is a register number, the global isreg flag is set,
8028 otherwise it is cleared.
8029
8030 Note that stack[0] is unused except as a default error return.
8031 Note that stack overflow is not yet handled. */
8032
8033 static CORE_ADDR
8034 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8035 {
8036 struct objfile *objfile = cu->objfile;
8037 struct comp_unit_head *cu_header = &cu->header;
8038 int i;
8039 int size = blk->size;
8040 char *data = blk->data;
8041 CORE_ADDR stack[64];
8042 int stacki;
8043 unsigned int bytes_read, unsnd;
8044 unsigned char op;
8045
8046 i = 0;
8047 stacki = 0;
8048 stack[stacki] = 0;
8049 isreg = 0;
8050
8051 while (i < size)
8052 {
8053 op = data[i++];
8054 switch (op)
8055 {
8056 case DW_OP_lit0:
8057 case DW_OP_lit1:
8058 case DW_OP_lit2:
8059 case DW_OP_lit3:
8060 case DW_OP_lit4:
8061 case DW_OP_lit5:
8062 case DW_OP_lit6:
8063 case DW_OP_lit7:
8064 case DW_OP_lit8:
8065 case DW_OP_lit9:
8066 case DW_OP_lit10:
8067 case DW_OP_lit11:
8068 case DW_OP_lit12:
8069 case DW_OP_lit13:
8070 case DW_OP_lit14:
8071 case DW_OP_lit15:
8072 case DW_OP_lit16:
8073 case DW_OP_lit17:
8074 case DW_OP_lit18:
8075 case DW_OP_lit19:
8076 case DW_OP_lit20:
8077 case DW_OP_lit21:
8078 case DW_OP_lit22:
8079 case DW_OP_lit23:
8080 case DW_OP_lit24:
8081 case DW_OP_lit25:
8082 case DW_OP_lit26:
8083 case DW_OP_lit27:
8084 case DW_OP_lit28:
8085 case DW_OP_lit29:
8086 case DW_OP_lit30:
8087 case DW_OP_lit31:
8088 stack[++stacki] = op - DW_OP_lit0;
8089 break;
8090
8091 case DW_OP_reg0:
8092 case DW_OP_reg1:
8093 case DW_OP_reg2:
8094 case DW_OP_reg3:
8095 case DW_OP_reg4:
8096 case DW_OP_reg5:
8097 case DW_OP_reg6:
8098 case DW_OP_reg7:
8099 case DW_OP_reg8:
8100 case DW_OP_reg9:
8101 case DW_OP_reg10:
8102 case DW_OP_reg11:
8103 case DW_OP_reg12:
8104 case DW_OP_reg13:
8105 case DW_OP_reg14:
8106 case DW_OP_reg15:
8107 case DW_OP_reg16:
8108 case DW_OP_reg17:
8109 case DW_OP_reg18:
8110 case DW_OP_reg19:
8111 case DW_OP_reg20:
8112 case DW_OP_reg21:
8113 case DW_OP_reg22:
8114 case DW_OP_reg23:
8115 case DW_OP_reg24:
8116 case DW_OP_reg25:
8117 case DW_OP_reg26:
8118 case DW_OP_reg27:
8119 case DW_OP_reg28:
8120 case DW_OP_reg29:
8121 case DW_OP_reg30:
8122 case DW_OP_reg31:
8123 isreg = 1;
8124 stack[++stacki] = op - DW_OP_reg0;
8125 if (i < size)
8126 dwarf2_complex_location_expr_complaint ();
8127 break;
8128
8129 case DW_OP_regx:
8130 isreg = 1;
8131 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8132 i += bytes_read;
8133 stack[++stacki] = unsnd;
8134 if (i < size)
8135 dwarf2_complex_location_expr_complaint ();
8136 break;
8137
8138 case DW_OP_addr:
8139 stack[++stacki] = read_address (objfile->obfd, &data[i],
8140 cu, &bytes_read);
8141 i += bytes_read;
8142 break;
8143
8144 case DW_OP_const1u:
8145 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8146 i += 1;
8147 break;
8148
8149 case DW_OP_const1s:
8150 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8151 i += 1;
8152 break;
8153
8154 case DW_OP_const2u:
8155 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8156 i += 2;
8157 break;
8158
8159 case DW_OP_const2s:
8160 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8161 i += 2;
8162 break;
8163
8164 case DW_OP_const4u:
8165 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8166 i += 4;
8167 break;
8168
8169 case DW_OP_const4s:
8170 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8171 i += 4;
8172 break;
8173
8174 case DW_OP_constu:
8175 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8176 &bytes_read);
8177 i += bytes_read;
8178 break;
8179
8180 case DW_OP_consts:
8181 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8182 i += bytes_read;
8183 break;
8184
8185 case DW_OP_dup:
8186 stack[stacki + 1] = stack[stacki];
8187 stacki++;
8188 break;
8189
8190 case DW_OP_plus:
8191 stack[stacki - 1] += stack[stacki];
8192 stacki--;
8193 break;
8194
8195 case DW_OP_plus_uconst:
8196 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8197 i += bytes_read;
8198 break;
8199
8200 case DW_OP_minus:
8201 stack[stacki - 1] -= stack[stacki];
8202 stacki--;
8203 break;
8204
8205 case DW_OP_deref:
8206 /* If we're not the last op, then we definitely can't encode
8207 this using GDB's address_class enum. This is valid for partial
8208 global symbols, although the variable's address will be bogus
8209 in the psymtab. */
8210 if (i < size)
8211 dwarf2_complex_location_expr_complaint ();
8212 break;
8213
8214 case DW_OP_GNU_push_tls_address:
8215 /* The top of the stack has the offset from the beginning
8216 of the thread control block at which the variable is located. */
8217 /* Nothing should follow this operator, so the top of stack would
8218 be returned. */
8219 /* This is valid for partial global symbols, but the variable's
8220 address will be bogus in the psymtab. */
8221 if (i < size)
8222 dwarf2_complex_location_expr_complaint ();
8223 break;
8224
8225 default:
8226 complaint (&symfile_complaints, "unsupported stack op: '%s'",
8227 dwarf_stack_op_name (op));
8228 return (stack[stacki]);
8229 }
8230 }
8231 return (stack[stacki]);
8232 }
8233
8234 /* memory allocation interface */
8235
8236 static struct dwarf_block *
8237 dwarf_alloc_block (struct dwarf2_cu *cu)
8238 {
8239 struct dwarf_block *blk;
8240
8241 blk = (struct dwarf_block *)
8242 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8243 return (blk);
8244 }
8245
8246 static struct abbrev_info *
8247 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8248 {
8249 struct abbrev_info *abbrev;
8250
8251 abbrev = (struct abbrev_info *)
8252 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8253 memset (abbrev, 0, sizeof (struct abbrev_info));
8254 return (abbrev);
8255 }
8256
8257 static struct die_info *
8258 dwarf_alloc_die (void)
8259 {
8260 struct die_info *die;
8261
8262 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8263 memset (die, 0, sizeof (struct die_info));
8264 return (die);
8265 }
8266
8267 \f
8268 /* Macro support. */
8269
8270
8271 /* Return the full name of file number I in *LH's file name table.
8272 Use COMP_DIR as the name of the current directory of the
8273 compilation. The result is allocated using xmalloc; the caller is
8274 responsible for freeing it. */
8275 static char *
8276 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8277 {
8278 struct file_entry *fe = &lh->file_names[file - 1];
8279
8280 if (IS_ABSOLUTE_PATH (fe->name))
8281 return xstrdup (fe->name);
8282 else
8283 {
8284 const char *dir;
8285 int dir_len;
8286 char *full_name;
8287
8288 if (fe->dir_index)
8289 dir = lh->include_dirs[fe->dir_index - 1];
8290 else
8291 dir = comp_dir;
8292
8293 if (dir)
8294 {
8295 dir_len = strlen (dir);
8296 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8297 strcpy (full_name, dir);
8298 full_name[dir_len] = '/';
8299 strcpy (full_name + dir_len + 1, fe->name);
8300 return full_name;
8301 }
8302 else
8303 return xstrdup (fe->name);
8304 }
8305 }
8306
8307
8308 static struct macro_source_file *
8309 macro_start_file (int file, int line,
8310 struct macro_source_file *current_file,
8311 const char *comp_dir,
8312 struct line_header *lh, struct objfile *objfile)
8313 {
8314 /* The full name of this source file. */
8315 char *full_name = file_full_name (file, lh, comp_dir);
8316
8317 /* We don't create a macro table for this compilation unit
8318 at all until we actually get a filename. */
8319 if (! pending_macros)
8320 pending_macros = new_macro_table (&objfile->objfile_obstack,
8321 objfile->macro_cache);
8322
8323 if (! current_file)
8324 /* If we have no current file, then this must be the start_file
8325 directive for the compilation unit's main source file. */
8326 current_file = macro_set_main (pending_macros, full_name);
8327 else
8328 current_file = macro_include (current_file, line, full_name);
8329
8330 xfree (full_name);
8331
8332 return current_file;
8333 }
8334
8335
8336 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8337 followed by a null byte. */
8338 static char *
8339 copy_string (const char *buf, int len)
8340 {
8341 char *s = xmalloc (len + 1);
8342 memcpy (s, buf, len);
8343 s[len] = '\0';
8344
8345 return s;
8346 }
8347
8348
8349 static const char *
8350 consume_improper_spaces (const char *p, const char *body)
8351 {
8352 if (*p == ' ')
8353 {
8354 complaint (&symfile_complaints,
8355 "macro definition contains spaces in formal argument list:\n`%s'",
8356 body);
8357
8358 while (*p == ' ')
8359 p++;
8360 }
8361
8362 return p;
8363 }
8364
8365
8366 static void
8367 parse_macro_definition (struct macro_source_file *file, int line,
8368 const char *body)
8369 {
8370 const char *p;
8371
8372 /* The body string takes one of two forms. For object-like macro
8373 definitions, it should be:
8374
8375 <macro name> " " <definition>
8376
8377 For function-like macro definitions, it should be:
8378
8379 <macro name> "() " <definition>
8380 or
8381 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8382
8383 Spaces may appear only where explicitly indicated, and in the
8384 <definition>.
8385
8386 The Dwarf 2 spec says that an object-like macro's name is always
8387 followed by a space, but versions of GCC around March 2002 omit
8388 the space when the macro's definition is the empty string.
8389
8390 The Dwarf 2 spec says that there should be no spaces between the
8391 formal arguments in a function-like macro's formal argument list,
8392 but versions of GCC around March 2002 include spaces after the
8393 commas. */
8394
8395
8396 /* Find the extent of the macro name. The macro name is terminated
8397 by either a space or null character (for an object-like macro) or
8398 an opening paren (for a function-like macro). */
8399 for (p = body; *p; p++)
8400 if (*p == ' ' || *p == '(')
8401 break;
8402
8403 if (*p == ' ' || *p == '\0')
8404 {
8405 /* It's an object-like macro. */
8406 int name_len = p - body;
8407 char *name = copy_string (body, name_len);
8408 const char *replacement;
8409
8410 if (*p == ' ')
8411 replacement = body + name_len + 1;
8412 else
8413 {
8414 dwarf2_macro_malformed_definition_complaint (body);
8415 replacement = body + name_len;
8416 }
8417
8418 macro_define_object (file, line, name, replacement);
8419
8420 xfree (name);
8421 }
8422 else if (*p == '(')
8423 {
8424 /* It's a function-like macro. */
8425 char *name = copy_string (body, p - body);
8426 int argc = 0;
8427 int argv_size = 1;
8428 char **argv = xmalloc (argv_size * sizeof (*argv));
8429
8430 p++;
8431
8432 p = consume_improper_spaces (p, body);
8433
8434 /* Parse the formal argument list. */
8435 while (*p && *p != ')')
8436 {
8437 /* Find the extent of the current argument name. */
8438 const char *arg_start = p;
8439
8440 while (*p && *p != ',' && *p != ')' && *p != ' ')
8441 p++;
8442
8443 if (! *p || p == arg_start)
8444 dwarf2_macro_malformed_definition_complaint (body);
8445 else
8446 {
8447 /* Make sure argv has room for the new argument. */
8448 if (argc >= argv_size)
8449 {
8450 argv_size *= 2;
8451 argv = xrealloc (argv, argv_size * sizeof (*argv));
8452 }
8453
8454 argv[argc++] = copy_string (arg_start, p - arg_start);
8455 }
8456
8457 p = consume_improper_spaces (p, body);
8458
8459 /* Consume the comma, if present. */
8460 if (*p == ',')
8461 {
8462 p++;
8463
8464 p = consume_improper_spaces (p, body);
8465 }
8466 }
8467
8468 if (*p == ')')
8469 {
8470 p++;
8471
8472 if (*p == ' ')
8473 /* Perfectly formed definition, no complaints. */
8474 macro_define_function (file, line, name,
8475 argc, (const char **) argv,
8476 p + 1);
8477 else if (*p == '\0')
8478 {
8479 /* Complain, but do define it. */
8480 dwarf2_macro_malformed_definition_complaint (body);
8481 macro_define_function (file, line, name,
8482 argc, (const char **) argv,
8483 p);
8484 }
8485 else
8486 /* Just complain. */
8487 dwarf2_macro_malformed_definition_complaint (body);
8488 }
8489 else
8490 /* Just complain. */
8491 dwarf2_macro_malformed_definition_complaint (body);
8492
8493 xfree (name);
8494 {
8495 int i;
8496
8497 for (i = 0; i < argc; i++)
8498 xfree (argv[i]);
8499 }
8500 xfree (argv);
8501 }
8502 else
8503 dwarf2_macro_malformed_definition_complaint (body);
8504 }
8505
8506
8507 static void
8508 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
8509 char *comp_dir, bfd *abfd,
8510 struct dwarf2_cu *cu)
8511 {
8512 char *mac_ptr, *mac_end;
8513 struct macro_source_file *current_file = 0;
8514
8515 if (dwarf2_per_objfile->macinfo_buffer == NULL)
8516 {
8517 complaint (&symfile_complaints, "missing .debug_macinfo section");
8518 return;
8519 }
8520
8521 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
8522 mac_end = dwarf2_per_objfile->macinfo_buffer
8523 + dwarf2_per_objfile->macinfo_size;
8524
8525 for (;;)
8526 {
8527 enum dwarf_macinfo_record_type macinfo_type;
8528
8529 /* Do we at least have room for a macinfo type byte? */
8530 if (mac_ptr >= mac_end)
8531 {
8532 dwarf2_macros_too_long_complaint ();
8533 return;
8534 }
8535
8536 macinfo_type = read_1_byte (abfd, mac_ptr);
8537 mac_ptr++;
8538
8539 switch (macinfo_type)
8540 {
8541 /* A zero macinfo type indicates the end of the macro
8542 information. */
8543 case 0:
8544 return;
8545
8546 case DW_MACINFO_define:
8547 case DW_MACINFO_undef:
8548 {
8549 int bytes_read;
8550 int line;
8551 char *body;
8552
8553 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8554 mac_ptr += bytes_read;
8555 body = read_string (abfd, mac_ptr, &bytes_read);
8556 mac_ptr += bytes_read;
8557
8558 if (! current_file)
8559 complaint (&symfile_complaints,
8560 "debug info gives macro %s outside of any file: %s",
8561 macinfo_type ==
8562 DW_MACINFO_define ? "definition" : macinfo_type ==
8563 DW_MACINFO_undef ? "undefinition" :
8564 "something-or-other", body);
8565 else
8566 {
8567 if (macinfo_type == DW_MACINFO_define)
8568 parse_macro_definition (current_file, line, body);
8569 else if (macinfo_type == DW_MACINFO_undef)
8570 macro_undef (current_file, line, body);
8571 }
8572 }
8573 break;
8574
8575 case DW_MACINFO_start_file:
8576 {
8577 int bytes_read;
8578 int line, file;
8579
8580 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8581 mac_ptr += bytes_read;
8582 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8583 mac_ptr += bytes_read;
8584
8585 current_file = macro_start_file (file, line,
8586 current_file, comp_dir,
8587 lh, cu->objfile);
8588 }
8589 break;
8590
8591 case DW_MACINFO_end_file:
8592 if (! current_file)
8593 complaint (&symfile_complaints,
8594 "macro debug info has an unmatched `close_file' directive");
8595 else
8596 {
8597 current_file = current_file->included_by;
8598 if (! current_file)
8599 {
8600 enum dwarf_macinfo_record_type next_type;
8601
8602 /* GCC circa March 2002 doesn't produce the zero
8603 type byte marking the end of the compilation
8604 unit. Complain if it's not there, but exit no
8605 matter what. */
8606
8607 /* Do we at least have room for a macinfo type byte? */
8608 if (mac_ptr >= mac_end)
8609 {
8610 dwarf2_macros_too_long_complaint ();
8611 return;
8612 }
8613
8614 /* We don't increment mac_ptr here, so this is just
8615 a look-ahead. */
8616 next_type = read_1_byte (abfd, mac_ptr);
8617 if (next_type != 0)
8618 complaint (&symfile_complaints,
8619 "no terminating 0-type entry for macros in `.debug_macinfo' section");
8620
8621 return;
8622 }
8623 }
8624 break;
8625
8626 case DW_MACINFO_vendor_ext:
8627 {
8628 int bytes_read;
8629 int constant;
8630 char *string;
8631
8632 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8633 mac_ptr += bytes_read;
8634 string = read_string (abfd, mac_ptr, &bytes_read);
8635 mac_ptr += bytes_read;
8636
8637 /* We don't recognize any vendor extensions. */
8638 }
8639 break;
8640 }
8641 }
8642 }
8643
8644 /* Check if the attribute's form is a DW_FORM_block*
8645 if so return true else false. */
8646 static int
8647 attr_form_is_block (struct attribute *attr)
8648 {
8649 return (attr == NULL ? 0 :
8650 attr->form == DW_FORM_block1
8651 || attr->form == DW_FORM_block2
8652 || attr->form == DW_FORM_block4
8653 || attr->form == DW_FORM_block);
8654 }
8655
8656 static void
8657 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
8658 struct dwarf2_cu *cu)
8659 {
8660 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
8661 {
8662 struct dwarf2_loclist_baton *baton;
8663
8664 baton = obstack_alloc (&cu->objfile->objfile_obstack,
8665 sizeof (struct dwarf2_loclist_baton));
8666 baton->objfile = cu->objfile;
8667
8668 /* We don't know how long the location list is, but make sure we
8669 don't run off the edge of the section. */
8670 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
8671 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
8672 baton->base_address = cu->header.base_address;
8673 if (cu->header.base_known == 0)
8674 complaint (&symfile_complaints,
8675 "Location list used without specifying the CU base address.");
8676
8677 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
8678 SYMBOL_LOCATION_BATON (sym) = baton;
8679 }
8680 else
8681 {
8682 struct dwarf2_locexpr_baton *baton;
8683
8684 baton = obstack_alloc (&cu->objfile->objfile_obstack,
8685 sizeof (struct dwarf2_locexpr_baton));
8686 baton->objfile = cu->objfile;
8687
8688 if (attr_form_is_block (attr))
8689 {
8690 /* Note that we're just copying the block's data pointer
8691 here, not the actual data. We're still pointing into the
8692 info_buffer for SYM's objfile; right now we never release
8693 that buffer, but when we do clean up properly this may
8694 need to change. */
8695 baton->size = DW_BLOCK (attr)->size;
8696 baton->data = DW_BLOCK (attr)->data;
8697 }
8698 else
8699 {
8700 dwarf2_invalid_attrib_class_complaint ("location description",
8701 SYMBOL_NATURAL_NAME (sym));
8702 baton->size = 0;
8703 baton->data = NULL;
8704 }
8705
8706 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
8707 SYMBOL_LOCATION_BATON (sym) = baton;
8708 }
8709 }
8710
8711 /* This cleanup function is passed the address of a dwarf2_cu on the stack
8712 when we're finished with it. We can't free the pointer itself, but
8713 release any associated storage.
8714
8715 Only used during partial symbol parsing. */
8716
8717 static void
8718 free_stack_comp_unit (void *data)
8719 {
8720 struct dwarf2_cu *cu = data;
8721
8722 obstack_free (&cu->comp_unit_obstack, NULL);
8723 cu->partial_dies = NULL;
8724 }
8725
8726 /* Allocation function for the libiberty hash table which uses an
8727 obstack. */
8728
8729 static void *
8730 hashtab_obstack_allocate (void *data, size_t size, size_t count)
8731 {
8732 unsigned int total = size * count;
8733 void *ptr = obstack_alloc ((struct obstack *) data, total);
8734 memset (ptr, 0, total);
8735 return ptr;
8736 }
8737
8738 /* Trivial deallocation function for the libiberty splay tree and hash
8739 table - don't deallocate anything. Rely on later deletion of the
8740 obstack. */
8741
8742 static void
8743 dummy_obstack_deallocate (void *object, void *data)
8744 {
8745 return;
8746 }
8747
8748 /* Trivial hash function for partial_die_info: the hash value of a DIE
8749 is its offset in .debug_info for this objfile. */
8750
8751 static hashval_t
8752 partial_die_hash (const void *item)
8753 {
8754 const struct partial_die_info *part_die = item;
8755 return part_die->offset;
8756 }
8757
8758 /* Trivial comparison function for partial_die_info structures: two DIEs
8759 are equal if they have the same offset. */
8760
8761 static int
8762 partial_die_eq (const void *item_lhs, const void *item_rhs)
8763 {
8764 const struct partial_die_info *part_die_lhs = item_lhs;
8765 const struct partial_die_info *part_die_rhs = item_rhs;
8766 return part_die_lhs->offset == part_die_rhs->offset;
8767 }
8768
8769 void _initialize_dwarf2_read (void);
8770
8771 void
8772 _initialize_dwarf2_read (void)
8773 {
8774 dwarf2_objfile_data_key = register_objfile_data ();
8775 }
This page took 0.212578 seconds and 4 git commands to generate.