* rs6000-tdep.c (BL_MASK, BL_INSTRUCTION, BL_DISPLACEMENT_MASK):
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "objfiles.h"
33 #include "elf/dwarf2.h"
34 #include "buildsym.h"
35 #include "demangle.h"
36 #include "expression.h"
37 #include "filenames.h" /* for DOSish file names */
38 #include "macrotab.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "bcache.h"
42 #include "dwarf2expr.h"
43 #include "dwarf2loc.h"
44 #include "cp-support.h"
45 #include "hashtab.h"
46 #include "command.h"
47 #include "gdbcmd.h"
48 #include "addrmap.h"
49
50 #include <fcntl.h>
51 #include "gdb_string.h"
52 #include "gdb_assert.h"
53 #include <sys/types.h>
54 #ifdef HAVE_ZLIB_H
55 #include <zlib.h>
56 #endif
57
58 /* A note on memory usage for this file.
59
60 At the present time, this code reads the debug info sections into
61 the objfile's objfile_obstack. A definite improvement for startup
62 time, on platforms which do not emit relocations for debug
63 sections, would be to use mmap instead. The object's complete
64 debug information is loaded into memory, partly to simplify
65 absolute DIE references.
66
67 Whether using obstacks or mmap, the sections should remain loaded
68 until the objfile is released, and pointers into the section data
69 can be used for any other data associated to the objfile (symbol
70 names, type names, location expressions to name a few). */
71
72 #if 0
73 /* .debug_info header for a compilation unit
74 Because of alignment constraints, this structure has padding and cannot
75 be mapped directly onto the beginning of the .debug_info section. */
76 typedef struct comp_unit_header
77 {
78 unsigned int length; /* length of the .debug_info
79 contribution */
80 unsigned short version; /* version number -- 2 for DWARF
81 version 2 */
82 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
83 unsigned char addr_size; /* byte size of an address -- 4 */
84 }
85 _COMP_UNIT_HEADER;
86 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
87 #endif
88
89 /* .debug_pubnames header
90 Because of alignment constraints, this structure has padding and cannot
91 be mapped directly onto the beginning of the .debug_info section. */
92 typedef struct pubnames_header
93 {
94 unsigned int length; /* length of the .debug_pubnames
95 contribution */
96 unsigned char version; /* version number -- 2 for DWARF
97 version 2 */
98 unsigned int info_offset; /* offset into .debug_info section */
99 unsigned int info_size; /* byte size of .debug_info section
100 portion */
101 }
102 _PUBNAMES_HEADER;
103 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
104
105 /* .debug_pubnames header
106 Because of alignment constraints, this structure has padding and cannot
107 be mapped directly onto the beginning of the .debug_info section. */
108 typedef struct aranges_header
109 {
110 unsigned int length; /* byte len of the .debug_aranges
111 contribution */
112 unsigned short version; /* version number -- 2 for DWARF
113 version 2 */
114 unsigned int info_offset; /* offset into .debug_info section */
115 unsigned char addr_size; /* byte size of an address */
116 unsigned char seg_size; /* byte size of segment descriptor */
117 }
118 _ARANGES_HEADER;
119 #define _ACTUAL_ARANGES_HEADER_SIZE 12
120
121 /* .debug_line statement program prologue
122 Because of alignment constraints, this structure has padding and cannot
123 be mapped directly onto the beginning of the .debug_info section. */
124 typedef struct statement_prologue
125 {
126 unsigned int total_length; /* byte length of the statement
127 information */
128 unsigned short version; /* version number -- 2 for DWARF
129 version 2 */
130 unsigned int prologue_length; /* # bytes between prologue &
131 stmt program */
132 unsigned char minimum_instruction_length; /* byte size of
133 smallest instr */
134 unsigned char default_is_stmt; /* initial value of is_stmt
135 register */
136 char line_base;
137 unsigned char line_range;
138 unsigned char opcode_base; /* number assigned to first special
139 opcode */
140 unsigned char *standard_opcode_lengths;
141 }
142 _STATEMENT_PROLOGUE;
143
144 static const struct objfile_data *dwarf2_objfile_data_key;
145
146 struct dwarf2_per_objfile
147 {
148 /* Sizes of debugging sections. */
149 unsigned int info_size;
150 unsigned int abbrev_size;
151 unsigned int line_size;
152 unsigned int pubnames_size;
153 unsigned int aranges_size;
154 unsigned int loc_size;
155 unsigned int macinfo_size;
156 unsigned int str_size;
157 unsigned int ranges_size;
158 unsigned int frame_size;
159 unsigned int eh_frame_size;
160
161 /* Loaded data from the sections. */
162 gdb_byte *info_buffer;
163 gdb_byte *abbrev_buffer;
164 gdb_byte *line_buffer;
165 gdb_byte *str_buffer;
166 gdb_byte *macinfo_buffer;
167 gdb_byte *ranges_buffer;
168 gdb_byte *loc_buffer;
169
170 /* A list of all the compilation units. This is used to locate
171 the target compilation unit of a particular reference. */
172 struct dwarf2_per_cu_data **all_comp_units;
173
174 /* The number of compilation units in ALL_COMP_UNITS. */
175 int n_comp_units;
176
177 /* A chain of compilation units that are currently read in, so that
178 they can be freed later. */
179 struct dwarf2_per_cu_data *read_in_chain;
180
181 /* A flag indicating wether this objfile has a section loaded at a
182 VMA of 0. */
183 int has_section_at_zero;
184 };
185
186 static struct dwarf2_per_objfile *dwarf2_per_objfile;
187
188 static asection *dwarf_info_section;
189 static asection *dwarf_abbrev_section;
190 static asection *dwarf_line_section;
191 static asection *dwarf_pubnames_section;
192 static asection *dwarf_aranges_section;
193 static asection *dwarf_loc_section;
194 static asection *dwarf_macinfo_section;
195 static asection *dwarf_str_section;
196 static asection *dwarf_ranges_section;
197 asection *dwarf_frame_section;
198 asection *dwarf_eh_frame_section;
199
200 /* names of the debugging sections */
201
202 /* Note that if the debugging section has been compressed, it might
203 have a name like .zdebug_info. */
204
205 #define INFO_SECTION "debug_info"
206 #define ABBREV_SECTION "debug_abbrev"
207 #define LINE_SECTION "debug_line"
208 #define PUBNAMES_SECTION "debug_pubnames"
209 #define ARANGES_SECTION "debug_aranges"
210 #define LOC_SECTION "debug_loc"
211 #define MACINFO_SECTION "debug_macinfo"
212 #define STR_SECTION "debug_str"
213 #define RANGES_SECTION "debug_ranges"
214 #define FRAME_SECTION "debug_frame"
215 #define EH_FRAME_SECTION "eh_frame"
216
217 /* local data types */
218
219 /* We hold several abbreviation tables in memory at the same time. */
220 #ifndef ABBREV_HASH_SIZE
221 #define ABBREV_HASH_SIZE 121
222 #endif
223
224 /* The data in a compilation unit header, after target2host
225 translation, looks like this. */
226 struct comp_unit_head
227 {
228 unsigned long length;
229 short version;
230 unsigned int abbrev_offset;
231 unsigned char addr_size;
232 unsigned char signed_addr_p;
233
234 /* Size of file offsets; either 4 or 8. */
235 unsigned int offset_size;
236
237 /* Size of the length field; either 4 or 12. */
238 unsigned int initial_length_size;
239
240 /* Offset to the first byte of this compilation unit header in the
241 .debug_info section, for resolving relative reference dies. */
242 unsigned int offset;
243
244 /* Pointer to this compilation unit header in the .debug_info
245 section. */
246 gdb_byte *cu_head_ptr;
247
248 /* Pointer to the first die of this compilation unit. This will be
249 the first byte following the compilation unit header. */
250 gdb_byte *first_die_ptr;
251
252 /* Pointer to the next compilation unit header in the program. */
253 struct comp_unit_head *next;
254
255 /* Base address of this compilation unit. */
256 CORE_ADDR base_address;
257
258 /* Non-zero if base_address has been set. */
259 int base_known;
260 };
261
262 /* Fixed size for the DIE hash table. */
263 #ifndef REF_HASH_SIZE
264 #define REF_HASH_SIZE 1021
265 #endif
266
267 /* Internal state when decoding a particular compilation unit. */
268 struct dwarf2_cu
269 {
270 /* The objfile containing this compilation unit. */
271 struct objfile *objfile;
272
273 /* The header of the compilation unit.
274
275 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
276 should logically be moved to the dwarf2_cu structure. */
277 struct comp_unit_head header;
278
279 struct function_range *first_fn, *last_fn, *cached_fn;
280
281 /* The language we are debugging. */
282 enum language language;
283 const struct language_defn *language_defn;
284
285 const char *producer;
286
287 /* The generic symbol table building routines have separate lists for
288 file scope symbols and all all other scopes (local scopes). So
289 we need to select the right one to pass to add_symbol_to_list().
290 We do it by keeping a pointer to the correct list in list_in_scope.
291
292 FIXME: The original dwarf code just treated the file scope as the
293 first local scope, and all other local scopes as nested local
294 scopes, and worked fine. Check to see if we really need to
295 distinguish these in buildsym.c. */
296 struct pending **list_in_scope;
297
298 /* DWARF abbreviation table associated with this compilation unit. */
299 struct abbrev_info **dwarf2_abbrevs;
300
301 /* Storage for the abbrev table. */
302 struct obstack abbrev_obstack;
303
304 /* Hash table holding all the loaded partial DIEs. */
305 htab_t partial_dies;
306
307 /* `.debug_ranges' offset for this `DW_TAG_compile_unit' DIE. */
308 unsigned long ranges_offset;
309
310 /* Storage for things with the same lifetime as this read-in compilation
311 unit, including partial DIEs. */
312 struct obstack comp_unit_obstack;
313
314 /* When multiple dwarf2_cu structures are living in memory, this field
315 chains them all together, so that they can be released efficiently.
316 We will probably also want a generation counter so that most-recently-used
317 compilation units are cached... */
318 struct dwarf2_per_cu_data *read_in_chain;
319
320 /* Backchain to our per_cu entry if the tree has been built. */
321 struct dwarf2_per_cu_data *per_cu;
322
323 /* Pointer to the die -> type map. Although it is stored
324 permanently in per_cu, we copy it here to avoid double
325 indirection. */
326 htab_t type_hash;
327
328 /* How many compilation units ago was this CU last referenced? */
329 int last_used;
330
331 /* A hash table of die offsets for following references. */
332 struct die_info *die_ref_table[REF_HASH_SIZE];
333
334 /* Full DIEs if read in. */
335 struct die_info *dies;
336
337 /* A set of pointers to dwarf2_per_cu_data objects for compilation
338 units referenced by this one. Only set during full symbol processing;
339 partial symbol tables do not have dependencies. */
340 htab_t dependencies;
341
342 /* Header data from the line table, during full symbol processing. */
343 struct line_header *line_header;
344
345 /* Mark used when releasing cached dies. */
346 unsigned int mark : 1;
347
348 /* This flag will be set if this compilation unit might include
349 inter-compilation-unit references. */
350 unsigned int has_form_ref_addr : 1;
351
352 /* This flag will be set if this compilation unit includes any
353 DW_TAG_namespace DIEs. If we know that there are explicit
354 DIEs for namespaces, we don't need to try to infer them
355 from mangled names. */
356 unsigned int has_namespace_info : 1;
357
358 /* Field `ranges_offset' is filled in; flag as the value may be zero. */
359 unsigned int has_ranges_offset : 1;
360 };
361
362 /* Persistent data held for a compilation unit, even when not
363 processing it. We put a pointer to this structure in the
364 read_symtab_private field of the psymtab. If we encounter
365 inter-compilation-unit references, we also maintain a sorted
366 list of all compilation units. */
367
368 struct dwarf2_per_cu_data
369 {
370 /* The start offset and length of this compilation unit. 2**30-1
371 bytes should suffice to store the length of any compilation unit
372 - if it doesn't, GDB will fall over anyway. */
373 unsigned long offset;
374 unsigned long length : 30;
375
376 /* Flag indicating this compilation unit will be read in before
377 any of the current compilation units are processed. */
378 unsigned long queued : 1;
379
380 /* This flag will be set if we need to load absolutely all DIEs
381 for this compilation unit, instead of just the ones we think
382 are interesting. It gets set if we look for a DIE in the
383 hash table and don't find it. */
384 unsigned int load_all_dies : 1;
385
386 /* Set iff currently read in. */
387 struct dwarf2_cu *cu;
388
389 /* If full symbols for this CU have been read in, then this field
390 holds a map of DIE offsets to types. It isn't always possible
391 to reconstruct this information later, so we have to preserve
392 it. */
393 htab_t type_hash;
394
395 /* The partial symbol table associated with this compilation unit,
396 or NULL for partial units (which do not have an associated
397 symtab). */
398 struct partial_symtab *psymtab;
399 };
400
401 /* The line number information for a compilation unit (found in the
402 .debug_line section) begins with a "statement program header",
403 which contains the following information. */
404 struct line_header
405 {
406 unsigned int total_length;
407 unsigned short version;
408 unsigned int header_length;
409 unsigned char minimum_instruction_length;
410 unsigned char default_is_stmt;
411 int line_base;
412 unsigned char line_range;
413 unsigned char opcode_base;
414
415 /* standard_opcode_lengths[i] is the number of operands for the
416 standard opcode whose value is i. This means that
417 standard_opcode_lengths[0] is unused, and the last meaningful
418 element is standard_opcode_lengths[opcode_base - 1]. */
419 unsigned char *standard_opcode_lengths;
420
421 /* The include_directories table. NOTE! These strings are not
422 allocated with xmalloc; instead, they are pointers into
423 debug_line_buffer. If you try to free them, `free' will get
424 indigestion. */
425 unsigned int num_include_dirs, include_dirs_size;
426 char **include_dirs;
427
428 /* The file_names table. NOTE! These strings are not allocated
429 with xmalloc; instead, they are pointers into debug_line_buffer.
430 Don't try to free them directly. */
431 unsigned int num_file_names, file_names_size;
432 struct file_entry
433 {
434 char *name;
435 unsigned int dir_index;
436 unsigned int mod_time;
437 unsigned int length;
438 int included_p; /* Non-zero if referenced by the Line Number Program. */
439 struct symtab *symtab; /* The associated symbol table, if any. */
440 } *file_names;
441
442 /* The start and end of the statement program following this
443 header. These point into dwarf2_per_objfile->line_buffer. */
444 gdb_byte *statement_program_start, *statement_program_end;
445 };
446
447 /* When we construct a partial symbol table entry we only
448 need this much information. */
449 struct partial_die_info
450 {
451 /* Offset of this DIE. */
452 unsigned int offset;
453
454 /* DWARF-2 tag for this DIE. */
455 ENUM_BITFIELD(dwarf_tag) tag : 16;
456
457 /* Language code associated with this DIE. This is only used
458 for the compilation unit DIE. */
459 unsigned int language : 8;
460
461 /* Assorted flags describing the data found in this DIE. */
462 unsigned int has_children : 1;
463 unsigned int is_external : 1;
464 unsigned int is_declaration : 1;
465 unsigned int has_type : 1;
466 unsigned int has_specification : 1;
467 unsigned int has_stmt_list : 1;
468 unsigned int has_pc_info : 1;
469
470 /* Flag set if the SCOPE field of this structure has been
471 computed. */
472 unsigned int scope_set : 1;
473
474 /* Flag set if the DIE has a byte_size attribute. */
475 unsigned int has_byte_size : 1;
476
477 /* The name of this DIE. Normally the value of DW_AT_name, but
478 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
479 other fashion. */
480 char *name;
481 char *dirname;
482
483 /* The scope to prepend to our children. This is generally
484 allocated on the comp_unit_obstack, so will disappear
485 when this compilation unit leaves the cache. */
486 char *scope;
487
488 /* The location description associated with this DIE, if any. */
489 struct dwarf_block *locdesc;
490
491 /* If HAS_PC_INFO, the PC range associated with this DIE. */
492 CORE_ADDR lowpc;
493 CORE_ADDR highpc;
494
495 /* Pointer into the info_buffer pointing at the target of
496 DW_AT_sibling, if any. */
497 gdb_byte *sibling;
498
499 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
500 DW_AT_specification (or DW_AT_abstract_origin or
501 DW_AT_extension). */
502 unsigned int spec_offset;
503
504 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
505 unsigned int line_offset;
506
507 /* Pointers to this DIE's parent, first child, and next sibling,
508 if any. */
509 struct partial_die_info *die_parent, *die_child, *die_sibling;
510 };
511
512 /* This data structure holds the information of an abbrev. */
513 struct abbrev_info
514 {
515 unsigned int number; /* number identifying abbrev */
516 enum dwarf_tag tag; /* dwarf tag */
517 unsigned short has_children; /* boolean */
518 unsigned short num_attrs; /* number of attributes */
519 struct attr_abbrev *attrs; /* an array of attribute descriptions */
520 struct abbrev_info *next; /* next in chain */
521 };
522
523 struct attr_abbrev
524 {
525 enum dwarf_attribute name;
526 enum dwarf_form form;
527 };
528
529 /* This data structure holds a complete die structure. */
530 struct die_info
531 {
532 enum dwarf_tag tag; /* Tag indicating type of die */
533 unsigned int abbrev; /* Abbrev number */
534 unsigned int offset; /* Offset in .debug_info section */
535 unsigned int num_attrs; /* Number of attributes */
536 struct attribute *attrs; /* An array of attributes */
537 struct die_info *next_ref; /* Next die in ref hash table */
538
539 /* The dies in a compilation unit form an n-ary tree. PARENT
540 points to this die's parent; CHILD points to the first child of
541 this node; and all the children of a given node are chained
542 together via their SIBLING fields, terminated by a die whose
543 tag is zero. */
544 struct die_info *child; /* Its first child, if any. */
545 struct die_info *sibling; /* Its next sibling, if any. */
546 struct die_info *parent; /* Its parent, if any. */
547 };
548
549 /* Attributes have a name and a value */
550 struct attribute
551 {
552 enum dwarf_attribute name;
553 enum dwarf_form form;
554 union
555 {
556 char *str;
557 struct dwarf_block *blk;
558 unsigned long unsnd;
559 long int snd;
560 CORE_ADDR addr;
561 }
562 u;
563 };
564
565 struct function_range
566 {
567 const char *name;
568 CORE_ADDR lowpc, highpc;
569 int seen_line;
570 struct function_range *next;
571 };
572
573 /* Get at parts of an attribute structure */
574
575 #define DW_STRING(attr) ((attr)->u.str)
576 #define DW_UNSND(attr) ((attr)->u.unsnd)
577 #define DW_BLOCK(attr) ((attr)->u.blk)
578 #define DW_SND(attr) ((attr)->u.snd)
579 #define DW_ADDR(attr) ((attr)->u.addr)
580
581 /* Blocks are a bunch of untyped bytes. */
582 struct dwarf_block
583 {
584 unsigned int size;
585 gdb_byte *data;
586 };
587
588 #ifndef ATTR_ALLOC_CHUNK
589 #define ATTR_ALLOC_CHUNK 4
590 #endif
591
592 /* Allocate fields for structs, unions and enums in this size. */
593 #ifndef DW_FIELD_ALLOC_CHUNK
594 #define DW_FIELD_ALLOC_CHUNK 4
595 #endif
596
597 /* A zeroed version of a partial die for initialization purposes. */
598 static struct partial_die_info zeroed_partial_die;
599
600 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
601 but this would require a corresponding change in unpack_field_as_long
602 and friends. */
603 static int bits_per_byte = 8;
604
605 /* The routines that read and process dies for a C struct or C++ class
606 pass lists of data member fields and lists of member function fields
607 in an instance of a field_info structure, as defined below. */
608 struct field_info
609 {
610 /* List of data member and baseclasses fields. */
611 struct nextfield
612 {
613 struct nextfield *next;
614 int accessibility;
615 int virtuality;
616 struct field field;
617 }
618 *fields;
619
620 /* Number of fields. */
621 int nfields;
622
623 /* Number of baseclasses. */
624 int nbaseclasses;
625
626 /* Set if the accesibility of one of the fields is not public. */
627 int non_public_fields;
628
629 /* Member function fields array, entries are allocated in the order they
630 are encountered in the object file. */
631 struct nextfnfield
632 {
633 struct nextfnfield *next;
634 struct fn_field fnfield;
635 }
636 *fnfields;
637
638 /* Member function fieldlist array, contains name of possibly overloaded
639 member function, number of overloaded member functions and a pointer
640 to the head of the member function field chain. */
641 struct fnfieldlist
642 {
643 char *name;
644 int length;
645 struct nextfnfield *head;
646 }
647 *fnfieldlists;
648
649 /* Number of entries in the fnfieldlists array. */
650 int nfnfields;
651 };
652
653 /* One item on the queue of compilation units to read in full symbols
654 for. */
655 struct dwarf2_queue_item
656 {
657 struct dwarf2_per_cu_data *per_cu;
658 struct dwarf2_queue_item *next;
659 };
660
661 /* The current queue. */
662 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
663
664 /* Loaded secondary compilation units are kept in memory until they
665 have not been referenced for the processing of this many
666 compilation units. Set this to zero to disable caching. Cache
667 sizes of up to at least twenty will improve startup time for
668 typical inter-CU-reference binaries, at an obvious memory cost. */
669 static int dwarf2_max_cache_age = 5;
670 static void
671 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
672 struct cmd_list_element *c, const char *value)
673 {
674 fprintf_filtered (file, _("\
675 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
676 value);
677 }
678
679
680 /* Various complaints about symbol reading that don't abort the process */
681
682 static void
683 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
684 {
685 complaint (&symfile_complaints,
686 _("statement list doesn't fit in .debug_line section"));
687 }
688
689 static void
690 dwarf2_debug_line_missing_file_complaint (void)
691 {
692 complaint (&symfile_complaints,
693 _(".debug_line section has line data without a file"));
694 }
695
696 static void
697 dwarf2_complex_location_expr_complaint (void)
698 {
699 complaint (&symfile_complaints, _("location expression too complex"));
700 }
701
702 static void
703 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
704 int arg3)
705 {
706 complaint (&symfile_complaints,
707 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
708 arg2, arg3);
709 }
710
711 static void
712 dwarf2_macros_too_long_complaint (void)
713 {
714 complaint (&symfile_complaints,
715 _("macro info runs off end of `.debug_macinfo' section"));
716 }
717
718 static void
719 dwarf2_macro_malformed_definition_complaint (const char *arg1)
720 {
721 complaint (&symfile_complaints,
722 _("macro debug info contains a malformed macro definition:\n`%s'"),
723 arg1);
724 }
725
726 static void
727 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
728 {
729 complaint (&symfile_complaints,
730 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
731 }
732
733 /* local function prototypes */
734
735 static void dwarf2_locate_sections (bfd *, asection *, void *);
736
737 #if 0
738 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
739 #endif
740
741 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
742 struct objfile *);
743
744 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
745 struct partial_die_info *,
746 struct partial_symtab *);
747
748 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
749
750 static void scan_partial_symbols (struct partial_die_info *,
751 CORE_ADDR *, CORE_ADDR *,
752 struct dwarf2_cu *);
753
754 static void add_partial_symbol (struct partial_die_info *,
755 struct dwarf2_cu *);
756
757 static int pdi_needs_namespace (enum dwarf_tag tag);
758
759 static void add_partial_namespace (struct partial_die_info *pdi,
760 CORE_ADDR *lowpc, CORE_ADDR *highpc,
761 struct dwarf2_cu *cu);
762
763 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
764 struct dwarf2_cu *cu);
765
766 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
767 gdb_byte *info_ptr,
768 bfd *abfd,
769 struct dwarf2_cu *cu);
770
771 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
772
773 static void psymtab_to_symtab_1 (struct partial_symtab *);
774
775 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
776
777 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
778
779 static void dwarf2_free_abbrev_table (void *);
780
781 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
782 struct dwarf2_cu *);
783
784 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
785 struct dwarf2_cu *);
786
787 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
788 struct dwarf2_cu *);
789
790 static gdb_byte *read_partial_die (struct partial_die_info *,
791 struct abbrev_info *abbrev, unsigned int,
792 bfd *, gdb_byte *, struct dwarf2_cu *);
793
794 static struct partial_die_info *find_partial_die (unsigned long,
795 struct dwarf2_cu *);
796
797 static void fixup_partial_die (struct partial_die_info *,
798 struct dwarf2_cu *);
799
800 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
801 struct dwarf2_cu *, int *);
802
803 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
804 bfd *, gdb_byte *, struct dwarf2_cu *);
805
806 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
807 bfd *, gdb_byte *, struct dwarf2_cu *);
808
809 static unsigned int read_1_byte (bfd *, gdb_byte *);
810
811 static int read_1_signed_byte (bfd *, gdb_byte *);
812
813 static unsigned int read_2_bytes (bfd *, gdb_byte *);
814
815 static unsigned int read_4_bytes (bfd *, gdb_byte *);
816
817 static unsigned long read_8_bytes (bfd *, gdb_byte *);
818
819 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
820 unsigned int *);
821
822 static LONGEST read_initial_length (bfd *, gdb_byte *,
823 struct comp_unit_head *, unsigned int *);
824
825 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
826 unsigned int *);
827
828 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
829
830 static char *read_string (bfd *, gdb_byte *, unsigned int *);
831
832 static char *read_indirect_string (bfd *, gdb_byte *,
833 const struct comp_unit_head *,
834 unsigned int *);
835
836 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
837
838 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
839
840 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
841
842 static void set_cu_language (unsigned int, struct dwarf2_cu *);
843
844 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
845 struct dwarf2_cu *);
846
847 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
848 struct dwarf2_cu *cu);
849
850 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
851
852 static struct die_info *die_specification (struct die_info *die,
853 struct dwarf2_cu *);
854
855 static void free_line_header (struct line_header *lh);
856
857 static void add_file_name (struct line_header *, char *, unsigned int,
858 unsigned int, unsigned int);
859
860 static struct line_header *(dwarf_decode_line_header
861 (unsigned int offset,
862 bfd *abfd, struct dwarf2_cu *cu));
863
864 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
865 struct dwarf2_cu *, struct partial_symtab *);
866
867 static void dwarf2_start_subfile (char *, char *, char *);
868
869 static struct symbol *new_symbol (struct die_info *, struct type *,
870 struct dwarf2_cu *);
871
872 static void dwarf2_const_value (struct attribute *, struct symbol *,
873 struct dwarf2_cu *);
874
875 static void dwarf2_const_value_data (struct attribute *attr,
876 struct symbol *sym,
877 int bits);
878
879 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
880
881 static struct type *die_containing_type (struct die_info *,
882 struct dwarf2_cu *);
883
884 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
885
886 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
887
888 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
889
890 static char *typename_concat (struct obstack *,
891 const char *prefix,
892 const char *suffix,
893 struct dwarf2_cu *);
894
895 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
896
897 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
898
899 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
900
901 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
902 struct dwarf2_cu *, struct partial_symtab *);
903
904 static int dwarf2_get_pc_bounds (struct die_info *,
905 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
906
907 static void get_scope_pc_bounds (struct die_info *,
908 CORE_ADDR *, CORE_ADDR *,
909 struct dwarf2_cu *);
910
911 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
912 CORE_ADDR, struct dwarf2_cu *);
913
914 static void dwarf2_add_field (struct field_info *, struct die_info *,
915 struct dwarf2_cu *);
916
917 static void dwarf2_attach_fields_to_type (struct field_info *,
918 struct type *, struct dwarf2_cu *);
919
920 static void dwarf2_add_member_fn (struct field_info *,
921 struct die_info *, struct type *,
922 struct dwarf2_cu *);
923
924 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
925 struct type *, struct dwarf2_cu *);
926
927 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
928
929 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
930
931 static void read_common_block (struct die_info *, struct dwarf2_cu *);
932
933 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
934
935 static const char *namespace_name (struct die_info *die,
936 int *is_anonymous, struct dwarf2_cu *);
937
938 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
939
940 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
941
942 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
943 struct dwarf2_cu *);
944
945 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
946
947 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
948 struct dwarf2_cu *,
949 gdb_byte **new_info_ptr,
950 struct die_info *parent);
951
952 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
953 struct dwarf2_cu *,
954 gdb_byte **new_info_ptr,
955 struct die_info *parent);
956
957 static void free_die_list (struct die_info *);
958
959 static void process_die (struct die_info *, struct dwarf2_cu *);
960
961 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
962
963 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
964
965 static struct die_info *dwarf2_extension (struct die_info *die,
966 struct dwarf2_cu *);
967
968 static char *dwarf_tag_name (unsigned int);
969
970 static char *dwarf_attr_name (unsigned int);
971
972 static char *dwarf_form_name (unsigned int);
973
974 static char *dwarf_stack_op_name (unsigned int);
975
976 static char *dwarf_bool_name (unsigned int);
977
978 static char *dwarf_type_encoding_name (unsigned int);
979
980 #if 0
981 static char *dwarf_cfi_name (unsigned int);
982
983 struct die_info *copy_die (struct die_info *);
984 #endif
985
986 static struct die_info *sibling_die (struct die_info *);
987
988 static void dump_die (struct die_info *);
989
990 static void dump_die_list (struct die_info *);
991
992 static void store_in_ref_table (unsigned int, struct die_info *,
993 struct dwarf2_cu *);
994
995 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
996 struct dwarf2_cu *);
997
998 static int dwarf2_get_attr_constant_value (struct attribute *, int);
999
1000 static struct die_info *follow_die_ref (struct die_info *,
1001 struct attribute *,
1002 struct dwarf2_cu *);
1003
1004 /* memory allocation interface */
1005
1006 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1007
1008 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1009
1010 static struct die_info *dwarf_alloc_die (void);
1011
1012 static void initialize_cu_func_list (struct dwarf2_cu *);
1013
1014 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1015 struct dwarf2_cu *);
1016
1017 static void dwarf_decode_macros (struct line_header *, unsigned int,
1018 char *, bfd *, struct dwarf2_cu *);
1019
1020 static int attr_form_is_block (struct attribute *);
1021
1022 static int attr_form_is_section_offset (struct attribute *);
1023
1024 static int attr_form_is_constant (struct attribute *);
1025
1026 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1027 struct symbol *sym,
1028 struct dwarf2_cu *cu);
1029
1030 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1031 struct dwarf2_cu *cu);
1032
1033 static void free_stack_comp_unit (void *);
1034
1035 static hashval_t partial_die_hash (const void *item);
1036
1037 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1038
1039 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1040 (unsigned long offset, struct objfile *objfile);
1041
1042 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1043 (unsigned long offset, struct objfile *objfile);
1044
1045 static void free_one_comp_unit (void *);
1046
1047 static void free_cached_comp_units (void *);
1048
1049 static void age_cached_comp_units (void);
1050
1051 static void free_one_cached_comp_unit (void *);
1052
1053 static struct type *set_die_type (struct die_info *, struct type *,
1054 struct dwarf2_cu *);
1055
1056 static void create_all_comp_units (struct objfile *);
1057
1058 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1059 struct objfile *);
1060
1061 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1062
1063 static void dwarf2_add_dependence (struct dwarf2_cu *,
1064 struct dwarf2_per_cu_data *);
1065
1066 static void dwarf2_mark (struct dwarf2_cu *);
1067
1068 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1069
1070 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1071
1072 /* Try to locate the sections we need for DWARF 2 debugging
1073 information and return true if we have enough to do something. */
1074
1075 int
1076 dwarf2_has_info (struct objfile *objfile)
1077 {
1078 struct dwarf2_per_objfile *data;
1079
1080 /* Initialize per-objfile state. */
1081 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1082 memset (data, 0, sizeof (*data));
1083 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1084 dwarf2_per_objfile = data;
1085
1086 dwarf_info_section = 0;
1087 dwarf_abbrev_section = 0;
1088 dwarf_line_section = 0;
1089 dwarf_str_section = 0;
1090 dwarf_macinfo_section = 0;
1091 dwarf_frame_section = 0;
1092 dwarf_eh_frame_section = 0;
1093 dwarf_ranges_section = 0;
1094 dwarf_loc_section = 0;
1095
1096 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1097 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1098 }
1099
1100 /* When loading sections, we can either look for ".<name>", or for
1101 * ".z<name>", which indicates a compressed section. */
1102
1103 static int
1104 section_is_p (asection *sectp, const char *name)
1105 {
1106 return ((sectp->name[0] == '.'
1107 && strcmp (sectp->name + 1, name) == 0)
1108 || (sectp->name[0] == '.' && sectp->name[1] == 'z'
1109 && strcmp (sectp->name + 2, name) == 0));
1110 }
1111
1112 /* This function is mapped across the sections and remembers the
1113 offset and size of each of the debugging sections we are interested
1114 in. */
1115
1116 static void
1117 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1118 {
1119 if (section_is_p (sectp, INFO_SECTION))
1120 {
1121 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1122 dwarf_info_section = sectp;
1123 }
1124 else if (section_is_p (sectp, ABBREV_SECTION))
1125 {
1126 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1127 dwarf_abbrev_section = sectp;
1128 }
1129 else if (section_is_p (sectp, LINE_SECTION))
1130 {
1131 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1132 dwarf_line_section = sectp;
1133 }
1134 else if (section_is_p (sectp, PUBNAMES_SECTION))
1135 {
1136 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1137 dwarf_pubnames_section = sectp;
1138 }
1139 else if (section_is_p (sectp, ARANGES_SECTION))
1140 {
1141 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1142 dwarf_aranges_section = sectp;
1143 }
1144 else if (section_is_p (sectp, LOC_SECTION))
1145 {
1146 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1147 dwarf_loc_section = sectp;
1148 }
1149 else if (section_is_p (sectp, MACINFO_SECTION))
1150 {
1151 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1152 dwarf_macinfo_section = sectp;
1153 }
1154 else if (section_is_p (sectp, STR_SECTION))
1155 {
1156 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1157 dwarf_str_section = sectp;
1158 }
1159 else if (section_is_p (sectp, FRAME_SECTION))
1160 {
1161 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1162 dwarf_frame_section = sectp;
1163 }
1164 else if (section_is_p (sectp, EH_FRAME_SECTION))
1165 {
1166 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1167 if (aflag & SEC_HAS_CONTENTS)
1168 {
1169 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1170 dwarf_eh_frame_section = sectp;
1171 }
1172 }
1173 else if (section_is_p (sectp, RANGES_SECTION))
1174 {
1175 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1176 dwarf_ranges_section = sectp;
1177 }
1178
1179 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1180 && bfd_section_vma (abfd, sectp) == 0)
1181 dwarf2_per_objfile->has_section_at_zero = 1;
1182 }
1183
1184 /* This function is called after decompressing a section, so
1185 dwarf2_per_objfile can record its new, uncompressed size. */
1186
1187 static void
1188 dwarf2_resize_section (asection *sectp, bfd_size_type new_size)
1189 {
1190 if (section_is_p (sectp, INFO_SECTION))
1191 dwarf2_per_objfile->info_size = new_size;
1192 else if (section_is_p (sectp, ABBREV_SECTION))
1193 dwarf2_per_objfile->abbrev_size = new_size;
1194 else if (section_is_p (sectp, LINE_SECTION))
1195 dwarf2_per_objfile->line_size = new_size;
1196 else if (section_is_p (sectp, PUBNAMES_SECTION))
1197 dwarf2_per_objfile->pubnames_size = new_size;
1198 else if (section_is_p (sectp, ARANGES_SECTION))
1199 dwarf2_per_objfile->aranges_size = new_size;
1200 else if (section_is_p (sectp, LOC_SECTION))
1201 dwarf2_per_objfile->loc_size = new_size;
1202 else if (section_is_p (sectp, MACINFO_SECTION))
1203 dwarf2_per_objfile->macinfo_size = new_size;
1204 else if (section_is_p (sectp, STR_SECTION))
1205 dwarf2_per_objfile->str_size = new_size;
1206 else if (section_is_p (sectp, FRAME_SECTION))
1207 dwarf2_per_objfile->frame_size = new_size;
1208 else if (section_is_p (sectp, EH_FRAME_SECTION))
1209 dwarf2_per_objfile->eh_frame_size = new_size;
1210 else if (section_is_p (sectp, RANGES_SECTION))
1211 dwarf2_per_objfile->ranges_size = new_size;
1212 else
1213 internal_error (__FILE__, __LINE__,
1214 _("dwarf2_resize_section: missing section_is_p check: %s"),
1215 sectp->name);
1216 }
1217
1218 /* Build a partial symbol table. */
1219
1220 void
1221 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1222 {
1223 /* We definitely need the .debug_info and .debug_abbrev sections */
1224
1225 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1226 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1227
1228 if (dwarf_line_section)
1229 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1230 else
1231 dwarf2_per_objfile->line_buffer = NULL;
1232
1233 if (dwarf_str_section)
1234 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1235 else
1236 dwarf2_per_objfile->str_buffer = NULL;
1237
1238 if (dwarf_macinfo_section)
1239 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1240 dwarf_macinfo_section);
1241 else
1242 dwarf2_per_objfile->macinfo_buffer = NULL;
1243
1244 if (dwarf_ranges_section)
1245 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1246 else
1247 dwarf2_per_objfile->ranges_buffer = NULL;
1248
1249 if (dwarf_loc_section)
1250 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1251 else
1252 dwarf2_per_objfile->loc_buffer = NULL;
1253
1254 if (mainline
1255 || (objfile->global_psymbols.size == 0
1256 && objfile->static_psymbols.size == 0))
1257 {
1258 init_psymbol_list (objfile, 1024);
1259 }
1260
1261 #if 0
1262 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1263 {
1264 /* Things are significantly easier if we have .debug_aranges and
1265 .debug_pubnames sections */
1266
1267 dwarf2_build_psymtabs_easy (objfile, mainline);
1268 }
1269 else
1270 #endif
1271 /* only test this case for now */
1272 {
1273 /* In this case we have to work a bit harder */
1274 dwarf2_build_psymtabs_hard (objfile, mainline);
1275 }
1276 }
1277
1278 #if 0
1279 /* Build the partial symbol table from the information in the
1280 .debug_pubnames and .debug_aranges sections. */
1281
1282 static void
1283 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1284 {
1285 bfd *abfd = objfile->obfd;
1286 char *aranges_buffer, *pubnames_buffer;
1287 char *aranges_ptr, *pubnames_ptr;
1288 unsigned int entry_length, version, info_offset, info_size;
1289
1290 pubnames_buffer = dwarf2_read_section (objfile,
1291 dwarf_pubnames_section);
1292 pubnames_ptr = pubnames_buffer;
1293 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1294 {
1295 struct comp_unit_head cu_header;
1296 unsigned int bytes_read;
1297
1298 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1299 &bytes_read);
1300 pubnames_ptr += bytes_read;
1301 version = read_1_byte (abfd, pubnames_ptr);
1302 pubnames_ptr += 1;
1303 info_offset = read_4_bytes (abfd, pubnames_ptr);
1304 pubnames_ptr += 4;
1305 info_size = read_4_bytes (abfd, pubnames_ptr);
1306 pubnames_ptr += 4;
1307 }
1308
1309 aranges_buffer = dwarf2_read_section (objfile,
1310 dwarf_aranges_section);
1311
1312 }
1313 #endif
1314
1315 /* Read in the comp unit header information from the debug_info at
1316 info_ptr. */
1317
1318 static gdb_byte *
1319 read_comp_unit_head (struct comp_unit_head *cu_header,
1320 gdb_byte *info_ptr, bfd *abfd)
1321 {
1322 int signed_addr;
1323 unsigned int bytes_read;
1324 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1325 &bytes_read);
1326 info_ptr += bytes_read;
1327 cu_header->version = read_2_bytes (abfd, info_ptr);
1328 info_ptr += 2;
1329 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1330 &bytes_read);
1331 info_ptr += bytes_read;
1332 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1333 info_ptr += 1;
1334 signed_addr = bfd_get_sign_extend_vma (abfd);
1335 if (signed_addr < 0)
1336 internal_error (__FILE__, __LINE__,
1337 _("read_comp_unit_head: dwarf from non elf file"));
1338 cu_header->signed_addr_p = signed_addr;
1339 return info_ptr;
1340 }
1341
1342 static gdb_byte *
1343 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1344 bfd *abfd)
1345 {
1346 gdb_byte *beg_of_comp_unit = info_ptr;
1347
1348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1349
1350 if (header->version != 2 && header->version != 3)
1351 error (_("Dwarf Error: wrong version in compilation unit header "
1352 "(is %d, should be %d) [in module %s]"), header->version,
1353 2, bfd_get_filename (abfd));
1354
1355 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1356 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1357 "(offset 0x%lx + 6) [in module %s]"),
1358 (long) header->abbrev_offset,
1359 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1360 bfd_get_filename (abfd));
1361
1362 if (beg_of_comp_unit + header->length + header->initial_length_size
1363 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1364 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1365 "(offset 0x%lx + 0) [in module %s]"),
1366 (long) header->length,
1367 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1368 bfd_get_filename (abfd));
1369
1370 return info_ptr;
1371 }
1372
1373 /* Allocate a new partial symtab for file named NAME and mark this new
1374 partial symtab as being an include of PST. */
1375
1376 static void
1377 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1378 struct objfile *objfile)
1379 {
1380 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1381
1382 subpst->section_offsets = pst->section_offsets;
1383 subpst->textlow = 0;
1384 subpst->texthigh = 0;
1385
1386 subpst->dependencies = (struct partial_symtab **)
1387 obstack_alloc (&objfile->objfile_obstack,
1388 sizeof (struct partial_symtab *));
1389 subpst->dependencies[0] = pst;
1390 subpst->number_of_dependencies = 1;
1391
1392 subpst->globals_offset = 0;
1393 subpst->n_global_syms = 0;
1394 subpst->statics_offset = 0;
1395 subpst->n_static_syms = 0;
1396 subpst->symtab = NULL;
1397 subpst->read_symtab = pst->read_symtab;
1398 subpst->readin = 0;
1399
1400 /* No private part is necessary for include psymtabs. This property
1401 can be used to differentiate between such include psymtabs and
1402 the regular ones. */
1403 subpst->read_symtab_private = NULL;
1404 }
1405
1406 /* Read the Line Number Program data and extract the list of files
1407 included by the source file represented by PST. Build an include
1408 partial symtab for each of these included files.
1409
1410 This procedure assumes that there *is* a Line Number Program in
1411 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1412 before calling this procedure. */
1413
1414 static void
1415 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1416 struct partial_die_info *pdi,
1417 struct partial_symtab *pst)
1418 {
1419 struct objfile *objfile = cu->objfile;
1420 bfd *abfd = objfile->obfd;
1421 struct line_header *lh;
1422
1423 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1424 if (lh == NULL)
1425 return; /* No linetable, so no includes. */
1426
1427 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1428
1429 free_line_header (lh);
1430 }
1431
1432
1433 /* Build the partial symbol table by doing a quick pass through the
1434 .debug_info and .debug_abbrev sections. */
1435
1436 static void
1437 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1438 {
1439 /* Instead of reading this into a big buffer, we should probably use
1440 mmap() on architectures that support it. (FIXME) */
1441 bfd *abfd = objfile->obfd;
1442 gdb_byte *info_ptr;
1443 gdb_byte *beg_of_comp_unit;
1444 struct partial_die_info comp_unit_die;
1445 struct partial_symtab *pst;
1446 struct cleanup *back_to;
1447 CORE_ADDR lowpc, highpc, baseaddr;
1448
1449 info_ptr = dwarf2_per_objfile->info_buffer;
1450
1451 /* Any cached compilation units will be linked by the per-objfile
1452 read_in_chain. Make sure to free them when we're done. */
1453 back_to = make_cleanup (free_cached_comp_units, NULL);
1454
1455 create_all_comp_units (objfile);
1456
1457 objfile->psymtabs_addrmap = addrmap_create_mutable
1458 (&objfile->objfile_obstack);
1459
1460 /* Since the objects we're extracting from .debug_info vary in
1461 length, only the individual functions to extract them (like
1462 read_comp_unit_head and load_partial_die) can really know whether
1463 the buffer is large enough to hold another complete object.
1464
1465 At the moment, they don't actually check that. If .debug_info
1466 holds just one extra byte after the last compilation unit's dies,
1467 then read_comp_unit_head will happily read off the end of the
1468 buffer. read_partial_die is similarly casual. Those functions
1469 should be fixed.
1470
1471 For this loop condition, simply checking whether there's any data
1472 left at all should be sufficient. */
1473 while (info_ptr < (dwarf2_per_objfile->info_buffer
1474 + dwarf2_per_objfile->info_size))
1475 {
1476 struct cleanup *back_to_inner;
1477 struct dwarf2_cu cu;
1478 struct abbrev_info *abbrev;
1479 unsigned int bytes_read;
1480 struct dwarf2_per_cu_data *this_cu;
1481
1482 beg_of_comp_unit = info_ptr;
1483
1484 memset (&cu, 0, sizeof (cu));
1485
1486 obstack_init (&cu.comp_unit_obstack);
1487
1488 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1489
1490 cu.objfile = objfile;
1491 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1492
1493 /* Complete the cu_header */
1494 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1495 cu.header.first_die_ptr = info_ptr;
1496 cu.header.cu_head_ptr = beg_of_comp_unit;
1497
1498 cu.list_in_scope = &file_symbols;
1499
1500 /* Read the abbrevs for this compilation unit into a table */
1501 dwarf2_read_abbrevs (abfd, &cu);
1502 make_cleanup (dwarf2_free_abbrev_table, &cu);
1503
1504 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1505
1506 /* Read the compilation unit die */
1507 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1508 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1509 abfd, info_ptr, &cu);
1510
1511 if (comp_unit_die.tag == DW_TAG_partial_unit)
1512 {
1513 info_ptr = (beg_of_comp_unit + cu.header.length
1514 + cu.header.initial_length_size);
1515 do_cleanups (back_to_inner);
1516 continue;
1517 }
1518
1519 /* Set the language we're debugging */
1520 set_cu_language (comp_unit_die.language, &cu);
1521
1522 /* Allocate a new partial symbol table structure */
1523 pst = start_psymtab_common (objfile, objfile->section_offsets,
1524 comp_unit_die.name ? comp_unit_die.name : "",
1525 /* TEXTLOW and TEXTHIGH are set below. */
1526 0,
1527 objfile->global_psymbols.next,
1528 objfile->static_psymbols.next);
1529
1530 if (comp_unit_die.dirname)
1531 pst->dirname = xstrdup (comp_unit_die.dirname);
1532
1533 pst->read_symtab_private = (char *) this_cu;
1534
1535 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1536
1537 /* Store the function that reads in the rest of the symbol table */
1538 pst->read_symtab = dwarf2_psymtab_to_symtab;
1539
1540 /* If this compilation unit was already read in, free the
1541 cached copy in order to read it in again. This is
1542 necessary because we skipped some symbols when we first
1543 read in the compilation unit (see load_partial_dies).
1544 This problem could be avoided, but the benefit is
1545 unclear. */
1546 if (this_cu->cu != NULL)
1547 free_one_cached_comp_unit (this_cu->cu);
1548
1549 cu.per_cu = this_cu;
1550
1551 /* Note that this is a pointer to our stack frame, being
1552 added to a global data structure. It will be cleaned up
1553 in free_stack_comp_unit when we finish with this
1554 compilation unit. */
1555 this_cu->cu = &cu;
1556
1557 this_cu->psymtab = pst;
1558
1559 /* Possibly set the default values of LOWPC and HIGHPC from
1560 `DW_AT_ranges'. */
1561 if (cu.has_ranges_offset)
1562 {
1563 if (dwarf2_ranges_read (cu.ranges_offset, &comp_unit_die.lowpc,
1564 &comp_unit_die.highpc, &cu, pst))
1565 comp_unit_die.has_pc_info = 1;
1566 }
1567
1568 /* Check if comp unit has_children.
1569 If so, read the rest of the partial symbols from this comp unit.
1570 If not, there's no more debug_info for this comp unit. */
1571 if (comp_unit_die.has_children)
1572 {
1573 struct partial_die_info *first_die;
1574
1575 lowpc = ((CORE_ADDR) -1);
1576 highpc = ((CORE_ADDR) 0);
1577
1578 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1579
1580 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1581
1582 /* If we didn't find a lowpc, set it to highpc to avoid
1583 complaints from `maint check'. */
1584 if (lowpc == ((CORE_ADDR) -1))
1585 lowpc = highpc;
1586
1587 /* If the compilation unit didn't have an explicit address range,
1588 then use the information extracted from its child dies. */
1589 if (! comp_unit_die.has_pc_info)
1590 {
1591 comp_unit_die.lowpc = lowpc;
1592 comp_unit_die.highpc = highpc;
1593 }
1594 }
1595 pst->textlow = comp_unit_die.lowpc + baseaddr;
1596 pst->texthigh = comp_unit_die.highpc + baseaddr;
1597
1598 /* Store the contiguous range; `DW_AT_ranges' range is stored above. The
1599 range can be also empty for CUs with no code. */
1600 if (!cu.has_ranges_offset && pst->textlow < pst->texthigh)
1601 addrmap_set_empty (objfile->psymtabs_addrmap, pst->textlow,
1602 pst->texthigh - 1, pst);
1603
1604 pst->n_global_syms = objfile->global_psymbols.next -
1605 (objfile->global_psymbols.list + pst->globals_offset);
1606 pst->n_static_syms = objfile->static_psymbols.next -
1607 (objfile->static_psymbols.list + pst->statics_offset);
1608 sort_pst_symbols (pst);
1609
1610 /* If there is already a psymtab or symtab for a file of this
1611 name, remove it. (If there is a symtab, more drastic things
1612 also happen.) This happens in VxWorks. */
1613 free_named_symtabs (pst->filename);
1614
1615 info_ptr = beg_of_comp_unit + cu.header.length
1616 + cu.header.initial_length_size;
1617
1618 if (comp_unit_die.has_stmt_list)
1619 {
1620 /* Get the list of files included in the current compilation unit,
1621 and build a psymtab for each of them. */
1622 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1623 }
1624
1625 do_cleanups (back_to_inner);
1626 }
1627
1628 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
1629 &objfile->objfile_obstack);
1630
1631 do_cleanups (back_to);
1632 }
1633
1634 /* Load the DIEs for a secondary CU into memory. */
1635
1636 static void
1637 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1638 {
1639 bfd *abfd = objfile->obfd;
1640 gdb_byte *info_ptr, *beg_of_comp_unit;
1641 struct partial_die_info comp_unit_die;
1642 struct dwarf2_cu *cu;
1643 struct abbrev_info *abbrev;
1644 unsigned int bytes_read;
1645 struct cleanup *back_to;
1646
1647 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1648 beg_of_comp_unit = info_ptr;
1649
1650 cu = xmalloc (sizeof (struct dwarf2_cu));
1651 memset (cu, 0, sizeof (struct dwarf2_cu));
1652
1653 obstack_init (&cu->comp_unit_obstack);
1654
1655 cu->objfile = objfile;
1656 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1657
1658 /* Complete the cu_header. */
1659 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1660 cu->header.first_die_ptr = info_ptr;
1661 cu->header.cu_head_ptr = beg_of_comp_unit;
1662
1663 /* Read the abbrevs for this compilation unit into a table. */
1664 dwarf2_read_abbrevs (abfd, cu);
1665 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1666
1667 /* Read the compilation unit die. */
1668 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1669 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1670 abfd, info_ptr, cu);
1671
1672 /* Set the language we're debugging. */
1673 set_cu_language (comp_unit_die.language, cu);
1674
1675 /* Link this compilation unit into the compilation unit tree. */
1676 this_cu->cu = cu;
1677 cu->per_cu = this_cu;
1678 cu->type_hash = cu->per_cu->type_hash;
1679
1680 /* Check if comp unit has_children.
1681 If so, read the rest of the partial symbols from this comp unit.
1682 If not, there's no more debug_info for this comp unit. */
1683 if (comp_unit_die.has_children)
1684 load_partial_dies (abfd, info_ptr, 0, cu);
1685
1686 do_cleanups (back_to);
1687 }
1688
1689 /* Create a list of all compilation units in OBJFILE. We do this only
1690 if an inter-comp-unit reference is found; presumably if there is one,
1691 there will be many, and one will occur early in the .debug_info section.
1692 So there's no point in building this list incrementally. */
1693
1694 static void
1695 create_all_comp_units (struct objfile *objfile)
1696 {
1697 int n_allocated;
1698 int n_comp_units;
1699 struct dwarf2_per_cu_data **all_comp_units;
1700 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1701
1702 n_comp_units = 0;
1703 n_allocated = 10;
1704 all_comp_units = xmalloc (n_allocated
1705 * sizeof (struct dwarf2_per_cu_data *));
1706
1707 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1708 {
1709 struct comp_unit_head cu_header;
1710 gdb_byte *beg_of_comp_unit;
1711 struct dwarf2_per_cu_data *this_cu;
1712 unsigned long offset;
1713 unsigned int bytes_read;
1714
1715 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1716
1717 /* Read just enough information to find out where the next
1718 compilation unit is. */
1719 cu_header.initial_length_size = 0;
1720 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1721 &cu_header, &bytes_read);
1722
1723 /* Save the compilation unit for later lookup. */
1724 this_cu = obstack_alloc (&objfile->objfile_obstack,
1725 sizeof (struct dwarf2_per_cu_data));
1726 memset (this_cu, 0, sizeof (*this_cu));
1727 this_cu->offset = offset;
1728 this_cu->length = cu_header.length + cu_header.initial_length_size;
1729
1730 if (n_comp_units == n_allocated)
1731 {
1732 n_allocated *= 2;
1733 all_comp_units = xrealloc (all_comp_units,
1734 n_allocated
1735 * sizeof (struct dwarf2_per_cu_data *));
1736 }
1737 all_comp_units[n_comp_units++] = this_cu;
1738
1739 info_ptr = info_ptr + this_cu->length;
1740 }
1741
1742 dwarf2_per_objfile->all_comp_units
1743 = obstack_alloc (&objfile->objfile_obstack,
1744 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1745 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1746 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1747 xfree (all_comp_units);
1748 dwarf2_per_objfile->n_comp_units = n_comp_units;
1749 }
1750
1751 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1752 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1753 in CU. */
1754
1755 static void
1756 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1757 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1758 {
1759 struct objfile *objfile = cu->objfile;
1760 bfd *abfd = objfile->obfd;
1761 struct partial_die_info *pdi;
1762
1763 /* Now, march along the PDI's, descending into ones which have
1764 interesting children but skipping the children of the other ones,
1765 until we reach the end of the compilation unit. */
1766
1767 pdi = first_die;
1768
1769 while (pdi != NULL)
1770 {
1771 fixup_partial_die (pdi, cu);
1772
1773 /* Anonymous namespaces have no name but have interesting
1774 children, so we need to look at them. Ditto for anonymous
1775 enums. */
1776
1777 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1778 || pdi->tag == DW_TAG_enumeration_type)
1779 {
1780 switch (pdi->tag)
1781 {
1782 case DW_TAG_subprogram:
1783 if (pdi->has_pc_info)
1784 {
1785 if (pdi->lowpc < *lowpc)
1786 {
1787 *lowpc = pdi->lowpc;
1788 }
1789 if (pdi->highpc > *highpc)
1790 {
1791 *highpc = pdi->highpc;
1792 }
1793 if (!pdi->is_declaration)
1794 {
1795 add_partial_symbol (pdi, cu);
1796 }
1797 }
1798 break;
1799 case DW_TAG_variable:
1800 case DW_TAG_typedef:
1801 case DW_TAG_union_type:
1802 if (!pdi->is_declaration)
1803 {
1804 add_partial_symbol (pdi, cu);
1805 }
1806 break;
1807 case DW_TAG_class_type:
1808 case DW_TAG_interface_type:
1809 case DW_TAG_structure_type:
1810 if (!pdi->is_declaration)
1811 {
1812 add_partial_symbol (pdi, cu);
1813 }
1814 break;
1815 case DW_TAG_enumeration_type:
1816 if (!pdi->is_declaration)
1817 add_partial_enumeration (pdi, cu);
1818 break;
1819 case DW_TAG_base_type:
1820 case DW_TAG_subrange_type:
1821 /* File scope base type definitions are added to the partial
1822 symbol table. */
1823 add_partial_symbol (pdi, cu);
1824 break;
1825 case DW_TAG_namespace:
1826 add_partial_namespace (pdi, lowpc, highpc, cu);
1827 break;
1828 default:
1829 break;
1830 }
1831 }
1832
1833 /* If the die has a sibling, skip to the sibling. */
1834
1835 pdi = pdi->die_sibling;
1836 }
1837 }
1838
1839 /* Functions used to compute the fully scoped name of a partial DIE.
1840
1841 Normally, this is simple. For C++, the parent DIE's fully scoped
1842 name is concatenated with "::" and the partial DIE's name. For
1843 Java, the same thing occurs except that "." is used instead of "::".
1844 Enumerators are an exception; they use the scope of their parent
1845 enumeration type, i.e. the name of the enumeration type is not
1846 prepended to the enumerator.
1847
1848 There are two complexities. One is DW_AT_specification; in this
1849 case "parent" means the parent of the target of the specification,
1850 instead of the direct parent of the DIE. The other is compilers
1851 which do not emit DW_TAG_namespace; in this case we try to guess
1852 the fully qualified name of structure types from their members'
1853 linkage names. This must be done using the DIE's children rather
1854 than the children of any DW_AT_specification target. We only need
1855 to do this for structures at the top level, i.e. if the target of
1856 any DW_AT_specification (if any; otherwise the DIE itself) does not
1857 have a parent. */
1858
1859 /* Compute the scope prefix associated with PDI's parent, in
1860 compilation unit CU. The result will be allocated on CU's
1861 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1862 field. NULL is returned if no prefix is necessary. */
1863 static char *
1864 partial_die_parent_scope (struct partial_die_info *pdi,
1865 struct dwarf2_cu *cu)
1866 {
1867 char *grandparent_scope;
1868 struct partial_die_info *parent, *real_pdi;
1869
1870 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1871 then this means the parent of the specification DIE. */
1872
1873 real_pdi = pdi;
1874 while (real_pdi->has_specification)
1875 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1876
1877 parent = real_pdi->die_parent;
1878 if (parent == NULL)
1879 return NULL;
1880
1881 if (parent->scope_set)
1882 return parent->scope;
1883
1884 fixup_partial_die (parent, cu);
1885
1886 grandparent_scope = partial_die_parent_scope (parent, cu);
1887
1888 if (parent->tag == DW_TAG_namespace
1889 || parent->tag == DW_TAG_structure_type
1890 || parent->tag == DW_TAG_class_type
1891 || parent->tag == DW_TAG_interface_type
1892 || parent->tag == DW_TAG_union_type)
1893 {
1894 if (grandparent_scope == NULL)
1895 parent->scope = parent->name;
1896 else
1897 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1898 parent->name, cu);
1899 }
1900 else if (parent->tag == DW_TAG_enumeration_type)
1901 /* Enumerators should not get the name of the enumeration as a prefix. */
1902 parent->scope = grandparent_scope;
1903 else
1904 {
1905 /* FIXME drow/2004-04-01: What should we be doing with
1906 function-local names? For partial symbols, we should probably be
1907 ignoring them. */
1908 complaint (&symfile_complaints,
1909 _("unhandled containing DIE tag %d for DIE at %d"),
1910 parent->tag, pdi->offset);
1911 parent->scope = grandparent_scope;
1912 }
1913
1914 parent->scope_set = 1;
1915 return parent->scope;
1916 }
1917
1918 /* Return the fully scoped name associated with PDI, from compilation unit
1919 CU. The result will be allocated with malloc. */
1920 static char *
1921 partial_die_full_name (struct partial_die_info *pdi,
1922 struct dwarf2_cu *cu)
1923 {
1924 char *parent_scope;
1925
1926 parent_scope = partial_die_parent_scope (pdi, cu);
1927 if (parent_scope == NULL)
1928 return NULL;
1929 else
1930 return typename_concat (NULL, parent_scope, pdi->name, cu);
1931 }
1932
1933 static void
1934 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1935 {
1936 struct objfile *objfile = cu->objfile;
1937 CORE_ADDR addr = 0;
1938 char *actual_name = NULL;
1939 const char *my_prefix;
1940 const struct partial_symbol *psym = NULL;
1941 CORE_ADDR baseaddr;
1942 int built_actual_name = 0;
1943
1944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1945
1946 if (pdi_needs_namespace (pdi->tag))
1947 {
1948 actual_name = partial_die_full_name (pdi, cu);
1949 if (actual_name)
1950 built_actual_name = 1;
1951 }
1952
1953 if (actual_name == NULL)
1954 actual_name = pdi->name;
1955
1956 switch (pdi->tag)
1957 {
1958 case DW_TAG_subprogram:
1959 if (pdi->is_external || cu->language == language_ada)
1960 {
1961 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
1962 of the global scope. But in Ada, we want to be able to access
1963 nested procedures globally. So all Ada subprograms are stored
1964 in the global scope. */
1965 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1966 mst_text, objfile); */
1967 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1968 VAR_DOMAIN, LOC_BLOCK,
1969 &objfile->global_psymbols,
1970 0, pdi->lowpc + baseaddr,
1971 cu->language, objfile);
1972 }
1973 else
1974 {
1975 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1976 mst_file_text, objfile); */
1977 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1978 VAR_DOMAIN, LOC_BLOCK,
1979 &objfile->static_psymbols,
1980 0, pdi->lowpc + baseaddr,
1981 cu->language, objfile);
1982 }
1983 break;
1984 case DW_TAG_variable:
1985 if (pdi->is_external)
1986 {
1987 /* Global Variable.
1988 Don't enter into the minimal symbol tables as there is
1989 a minimal symbol table entry from the ELF symbols already.
1990 Enter into partial symbol table if it has a location
1991 descriptor or a type.
1992 If the location descriptor is missing, new_symbol will create
1993 a LOC_UNRESOLVED symbol, the address of the variable will then
1994 be determined from the minimal symbol table whenever the variable
1995 is referenced.
1996 The address for the partial symbol table entry is not
1997 used by GDB, but it comes in handy for debugging partial symbol
1998 table building. */
1999
2000 if (pdi->locdesc)
2001 addr = decode_locdesc (pdi->locdesc, cu);
2002 if (pdi->locdesc || pdi->has_type)
2003 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2004 VAR_DOMAIN, LOC_STATIC,
2005 &objfile->global_psymbols,
2006 0, addr + baseaddr,
2007 cu->language, objfile);
2008 }
2009 else
2010 {
2011 /* Static Variable. Skip symbols without location descriptors. */
2012 if (pdi->locdesc == NULL)
2013 {
2014 if (built_actual_name)
2015 xfree (actual_name);
2016 return;
2017 }
2018 addr = decode_locdesc (pdi->locdesc, cu);
2019 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
2020 mst_file_data, objfile); */
2021 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2022 VAR_DOMAIN, LOC_STATIC,
2023 &objfile->static_psymbols,
2024 0, addr + baseaddr,
2025 cu->language, objfile);
2026 }
2027 break;
2028 case DW_TAG_typedef:
2029 case DW_TAG_base_type:
2030 case DW_TAG_subrange_type:
2031 add_psymbol_to_list (actual_name, strlen (actual_name),
2032 VAR_DOMAIN, LOC_TYPEDEF,
2033 &objfile->static_psymbols,
2034 0, (CORE_ADDR) 0, cu->language, objfile);
2035 break;
2036 case DW_TAG_namespace:
2037 add_psymbol_to_list (actual_name, strlen (actual_name),
2038 VAR_DOMAIN, LOC_TYPEDEF,
2039 &objfile->global_psymbols,
2040 0, (CORE_ADDR) 0, cu->language, objfile);
2041 break;
2042 case DW_TAG_class_type:
2043 case DW_TAG_interface_type:
2044 case DW_TAG_structure_type:
2045 case DW_TAG_union_type:
2046 case DW_TAG_enumeration_type:
2047 /* Skip external references. The DWARF standard says in the section
2048 about "Structure, Union, and Class Type Entries": "An incomplete
2049 structure, union or class type is represented by a structure,
2050 union or class entry that does not have a byte size attribute
2051 and that has a DW_AT_declaration attribute." */
2052 if (!pdi->has_byte_size && pdi->is_declaration)
2053 {
2054 if (built_actual_name)
2055 xfree (actual_name);
2056 return;
2057 }
2058
2059 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2060 static vs. global. */
2061 add_psymbol_to_list (actual_name, strlen (actual_name),
2062 STRUCT_DOMAIN, LOC_TYPEDEF,
2063 (cu->language == language_cplus
2064 || cu->language == language_java)
2065 ? &objfile->global_psymbols
2066 : &objfile->static_psymbols,
2067 0, (CORE_ADDR) 0, cu->language, objfile);
2068
2069 break;
2070 case DW_TAG_enumerator:
2071 add_psymbol_to_list (actual_name, strlen (actual_name),
2072 VAR_DOMAIN, LOC_CONST,
2073 (cu->language == language_cplus
2074 || cu->language == language_java)
2075 ? &objfile->global_psymbols
2076 : &objfile->static_psymbols,
2077 0, (CORE_ADDR) 0, cu->language, objfile);
2078 break;
2079 default:
2080 break;
2081 }
2082
2083 /* Check to see if we should scan the name for possible namespace
2084 info. Only do this if this is C++, if we don't have namespace
2085 debugging info in the file, if the psym is of an appropriate type
2086 (otherwise we'll have psym == NULL), and if we actually had a
2087 mangled name to begin with. */
2088
2089 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2090 cases which do not set PSYM above? */
2091
2092 if (cu->language == language_cplus
2093 && cu->has_namespace_info == 0
2094 && psym != NULL
2095 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2096 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2097 objfile);
2098
2099 if (built_actual_name)
2100 xfree (actual_name);
2101 }
2102
2103 /* Determine whether a die of type TAG living in a C++ class or
2104 namespace needs to have the name of the scope prepended to the
2105 name listed in the die. */
2106
2107 static int
2108 pdi_needs_namespace (enum dwarf_tag tag)
2109 {
2110 switch (tag)
2111 {
2112 case DW_TAG_namespace:
2113 case DW_TAG_typedef:
2114 case DW_TAG_class_type:
2115 case DW_TAG_interface_type:
2116 case DW_TAG_structure_type:
2117 case DW_TAG_union_type:
2118 case DW_TAG_enumeration_type:
2119 case DW_TAG_enumerator:
2120 return 1;
2121 default:
2122 return 0;
2123 }
2124 }
2125
2126 /* Read a partial die corresponding to a namespace; also, add a symbol
2127 corresponding to that namespace to the symbol table. NAMESPACE is
2128 the name of the enclosing namespace. */
2129
2130 static void
2131 add_partial_namespace (struct partial_die_info *pdi,
2132 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2133 struct dwarf2_cu *cu)
2134 {
2135 struct objfile *objfile = cu->objfile;
2136
2137 /* Add a symbol for the namespace. */
2138
2139 add_partial_symbol (pdi, cu);
2140
2141 /* Now scan partial symbols in that namespace. */
2142
2143 if (pdi->has_children)
2144 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2145 }
2146
2147 /* See if we can figure out if the class lives in a namespace. We do
2148 this by looking for a member function; its demangled name will
2149 contain namespace info, if there is any. */
2150
2151 static void
2152 guess_structure_name (struct partial_die_info *struct_pdi,
2153 struct dwarf2_cu *cu)
2154 {
2155 if ((cu->language == language_cplus
2156 || cu->language == language_java)
2157 && cu->has_namespace_info == 0
2158 && struct_pdi->has_children)
2159 {
2160 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2161 what template types look like, because the demangler
2162 frequently doesn't give the same name as the debug info. We
2163 could fix this by only using the demangled name to get the
2164 prefix (but see comment in read_structure_type). */
2165
2166 struct partial_die_info *child_pdi = struct_pdi->die_child;
2167 struct partial_die_info *real_pdi;
2168
2169 /* If this DIE (this DIE's specification, if any) has a parent, then
2170 we should not do this. We'll prepend the parent's fully qualified
2171 name when we create the partial symbol. */
2172
2173 real_pdi = struct_pdi;
2174 while (real_pdi->has_specification)
2175 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2176
2177 if (real_pdi->die_parent != NULL)
2178 return;
2179
2180 while (child_pdi != NULL)
2181 {
2182 if (child_pdi->tag == DW_TAG_subprogram)
2183 {
2184 char *actual_class_name
2185 = language_class_name_from_physname (cu->language_defn,
2186 child_pdi->name);
2187 if (actual_class_name != NULL)
2188 {
2189 struct_pdi->name
2190 = obsavestring (actual_class_name,
2191 strlen (actual_class_name),
2192 &cu->comp_unit_obstack);
2193 xfree (actual_class_name);
2194 }
2195 break;
2196 }
2197
2198 child_pdi = child_pdi->die_sibling;
2199 }
2200 }
2201 }
2202
2203 /* Read a partial die corresponding to an enumeration type. */
2204
2205 static void
2206 add_partial_enumeration (struct partial_die_info *enum_pdi,
2207 struct dwarf2_cu *cu)
2208 {
2209 struct objfile *objfile = cu->objfile;
2210 bfd *abfd = objfile->obfd;
2211 struct partial_die_info *pdi;
2212
2213 if (enum_pdi->name != NULL)
2214 add_partial_symbol (enum_pdi, cu);
2215
2216 pdi = enum_pdi->die_child;
2217 while (pdi)
2218 {
2219 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2220 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2221 else
2222 add_partial_symbol (pdi, cu);
2223 pdi = pdi->die_sibling;
2224 }
2225 }
2226
2227 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2228 Return the corresponding abbrev, or NULL if the number is zero (indicating
2229 an empty DIE). In either case *BYTES_READ will be set to the length of
2230 the initial number. */
2231
2232 static struct abbrev_info *
2233 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2234 struct dwarf2_cu *cu)
2235 {
2236 bfd *abfd = cu->objfile->obfd;
2237 unsigned int abbrev_number;
2238 struct abbrev_info *abbrev;
2239
2240 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2241
2242 if (abbrev_number == 0)
2243 return NULL;
2244
2245 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2246 if (!abbrev)
2247 {
2248 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2249 bfd_get_filename (abfd));
2250 }
2251
2252 return abbrev;
2253 }
2254
2255 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2256 pointer to the end of a series of DIEs, terminated by an empty
2257 DIE. Any children of the skipped DIEs will also be skipped. */
2258
2259 static gdb_byte *
2260 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2261 {
2262 struct abbrev_info *abbrev;
2263 unsigned int bytes_read;
2264
2265 while (1)
2266 {
2267 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2268 if (abbrev == NULL)
2269 return info_ptr + bytes_read;
2270 else
2271 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2272 }
2273 }
2274
2275 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2276 should point just after the initial uleb128 of a DIE, and the
2277 abbrev corresponding to that skipped uleb128 should be passed in
2278 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2279 children. */
2280
2281 static gdb_byte *
2282 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2283 struct dwarf2_cu *cu)
2284 {
2285 unsigned int bytes_read;
2286 struct attribute attr;
2287 bfd *abfd = cu->objfile->obfd;
2288 unsigned int form, i;
2289
2290 for (i = 0; i < abbrev->num_attrs; i++)
2291 {
2292 /* The only abbrev we care about is DW_AT_sibling. */
2293 if (abbrev->attrs[i].name == DW_AT_sibling)
2294 {
2295 read_attribute (&attr, &abbrev->attrs[i],
2296 abfd, info_ptr, cu);
2297 if (attr.form == DW_FORM_ref_addr)
2298 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2299 else
2300 return dwarf2_per_objfile->info_buffer
2301 + dwarf2_get_ref_die_offset (&attr, cu);
2302 }
2303
2304 /* If it isn't DW_AT_sibling, skip this attribute. */
2305 form = abbrev->attrs[i].form;
2306 skip_attribute:
2307 switch (form)
2308 {
2309 case DW_FORM_addr:
2310 case DW_FORM_ref_addr:
2311 info_ptr += cu->header.addr_size;
2312 break;
2313 case DW_FORM_data1:
2314 case DW_FORM_ref1:
2315 case DW_FORM_flag:
2316 info_ptr += 1;
2317 break;
2318 case DW_FORM_data2:
2319 case DW_FORM_ref2:
2320 info_ptr += 2;
2321 break;
2322 case DW_FORM_data4:
2323 case DW_FORM_ref4:
2324 info_ptr += 4;
2325 break;
2326 case DW_FORM_data8:
2327 case DW_FORM_ref8:
2328 info_ptr += 8;
2329 break;
2330 case DW_FORM_string:
2331 read_string (abfd, info_ptr, &bytes_read);
2332 info_ptr += bytes_read;
2333 break;
2334 case DW_FORM_strp:
2335 info_ptr += cu->header.offset_size;
2336 break;
2337 case DW_FORM_block:
2338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2339 info_ptr += bytes_read;
2340 break;
2341 case DW_FORM_block1:
2342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2343 break;
2344 case DW_FORM_block2:
2345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2346 break;
2347 case DW_FORM_block4:
2348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2349 break;
2350 case DW_FORM_sdata:
2351 case DW_FORM_udata:
2352 case DW_FORM_ref_udata:
2353 info_ptr = skip_leb128 (abfd, info_ptr);
2354 break;
2355 case DW_FORM_indirect:
2356 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2357 info_ptr += bytes_read;
2358 /* We need to continue parsing from here, so just go back to
2359 the top. */
2360 goto skip_attribute;
2361
2362 default:
2363 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2364 dwarf_form_name (form),
2365 bfd_get_filename (abfd));
2366 }
2367 }
2368
2369 if (abbrev->has_children)
2370 return skip_children (info_ptr, cu);
2371 else
2372 return info_ptr;
2373 }
2374
2375 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2376 the next DIE after ORIG_PDI. */
2377
2378 static gdb_byte *
2379 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2380 bfd *abfd, struct dwarf2_cu *cu)
2381 {
2382 /* Do we know the sibling already? */
2383
2384 if (orig_pdi->sibling)
2385 return orig_pdi->sibling;
2386
2387 /* Are there any children to deal with? */
2388
2389 if (!orig_pdi->has_children)
2390 return info_ptr;
2391
2392 /* Skip the children the long way. */
2393
2394 return skip_children (info_ptr, cu);
2395 }
2396
2397 /* Expand this partial symbol table into a full symbol table. */
2398
2399 static void
2400 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2401 {
2402 /* FIXME: This is barely more than a stub. */
2403 if (pst != NULL)
2404 {
2405 if (pst->readin)
2406 {
2407 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2408 }
2409 else
2410 {
2411 if (info_verbose)
2412 {
2413 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2414 gdb_flush (gdb_stdout);
2415 }
2416
2417 /* Restore our global data. */
2418 dwarf2_per_objfile = objfile_data (pst->objfile,
2419 dwarf2_objfile_data_key);
2420
2421 psymtab_to_symtab_1 (pst);
2422
2423 /* Finish up the debug error message. */
2424 if (info_verbose)
2425 printf_filtered (_("done.\n"));
2426 }
2427 }
2428 }
2429
2430 /* Add PER_CU to the queue. */
2431
2432 static void
2433 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2434 {
2435 struct dwarf2_queue_item *item;
2436
2437 per_cu->queued = 1;
2438 item = xmalloc (sizeof (*item));
2439 item->per_cu = per_cu;
2440 item->next = NULL;
2441
2442 if (dwarf2_queue == NULL)
2443 dwarf2_queue = item;
2444 else
2445 dwarf2_queue_tail->next = item;
2446
2447 dwarf2_queue_tail = item;
2448 }
2449
2450 /* Process the queue. */
2451
2452 static void
2453 process_queue (struct objfile *objfile)
2454 {
2455 struct dwarf2_queue_item *item, *next_item;
2456
2457 /* Initially, there is just one item on the queue. Load its DIEs,
2458 and the DIEs of any other compilation units it requires,
2459 transitively. */
2460
2461 for (item = dwarf2_queue; item != NULL; item = item->next)
2462 {
2463 /* Read in this compilation unit. This may add new items to
2464 the end of the queue. */
2465 load_full_comp_unit (item->per_cu, objfile);
2466
2467 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2468 dwarf2_per_objfile->read_in_chain = item->per_cu;
2469 }
2470
2471 /* Now everything left on the queue needs to be read in. Process
2472 them, one at a time, removing from the queue as we finish. */
2473 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2474 {
2475 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2476 process_full_comp_unit (item->per_cu);
2477
2478 item->per_cu->queued = 0;
2479 next_item = item->next;
2480 xfree (item);
2481 }
2482
2483 dwarf2_queue_tail = NULL;
2484 }
2485
2486 /* Free all allocated queue entries. This function only releases anything if
2487 an error was thrown; if the queue was processed then it would have been
2488 freed as we went along. */
2489
2490 static void
2491 dwarf2_release_queue (void *dummy)
2492 {
2493 struct dwarf2_queue_item *item, *last;
2494
2495 item = dwarf2_queue;
2496 while (item)
2497 {
2498 /* Anything still marked queued is likely to be in an
2499 inconsistent state, so discard it. */
2500 if (item->per_cu->queued)
2501 {
2502 if (item->per_cu->cu != NULL)
2503 free_one_cached_comp_unit (item->per_cu->cu);
2504 item->per_cu->queued = 0;
2505 }
2506
2507 last = item;
2508 item = item->next;
2509 xfree (last);
2510 }
2511
2512 dwarf2_queue = dwarf2_queue_tail = NULL;
2513 }
2514
2515 /* Read in full symbols for PST, and anything it depends on. */
2516
2517 static void
2518 psymtab_to_symtab_1 (struct partial_symtab *pst)
2519 {
2520 struct dwarf2_per_cu_data *per_cu;
2521 struct cleanup *back_to;
2522 int i;
2523
2524 for (i = 0; i < pst->number_of_dependencies; i++)
2525 if (!pst->dependencies[i]->readin)
2526 {
2527 /* Inform about additional files that need to be read in. */
2528 if (info_verbose)
2529 {
2530 /* FIXME: i18n: Need to make this a single string. */
2531 fputs_filtered (" ", gdb_stdout);
2532 wrap_here ("");
2533 fputs_filtered ("and ", gdb_stdout);
2534 wrap_here ("");
2535 printf_filtered ("%s...", pst->dependencies[i]->filename);
2536 wrap_here (""); /* Flush output */
2537 gdb_flush (gdb_stdout);
2538 }
2539 psymtab_to_symtab_1 (pst->dependencies[i]);
2540 }
2541
2542 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2543
2544 if (per_cu == NULL)
2545 {
2546 /* It's an include file, no symbols to read for it.
2547 Everything is in the parent symtab. */
2548 pst->readin = 1;
2549 return;
2550 }
2551
2552 back_to = make_cleanup (dwarf2_release_queue, NULL);
2553
2554 queue_comp_unit (per_cu);
2555
2556 process_queue (pst->objfile);
2557
2558 /* Age the cache, releasing compilation units that have not
2559 been used recently. */
2560 age_cached_comp_units ();
2561
2562 do_cleanups (back_to);
2563 }
2564
2565 /* Load the DIEs associated with PST and PER_CU into memory. */
2566
2567 static struct dwarf2_cu *
2568 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2569 {
2570 bfd *abfd = objfile->obfd;
2571 struct dwarf2_cu *cu;
2572 unsigned long offset;
2573 gdb_byte *info_ptr;
2574 struct cleanup *back_to, *free_cu_cleanup;
2575 struct attribute *attr;
2576 CORE_ADDR baseaddr;
2577
2578 /* Set local variables from the partial symbol table info. */
2579 offset = per_cu->offset;
2580
2581 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2582
2583 cu = xmalloc (sizeof (struct dwarf2_cu));
2584 memset (cu, 0, sizeof (struct dwarf2_cu));
2585
2586 /* If an error occurs while loading, release our storage. */
2587 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2588
2589 cu->objfile = objfile;
2590
2591 /* read in the comp_unit header */
2592 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2593
2594 /* Read the abbrevs for this compilation unit */
2595 dwarf2_read_abbrevs (abfd, cu);
2596 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2597
2598 cu->header.offset = offset;
2599
2600 cu->per_cu = per_cu;
2601 per_cu->cu = cu;
2602 cu->type_hash = per_cu->type_hash;
2603
2604 /* We use this obstack for block values in dwarf_alloc_block. */
2605 obstack_init (&cu->comp_unit_obstack);
2606
2607 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2608
2609 /* We try not to read any attributes in this function, because not
2610 all objfiles needed for references have been loaded yet, and symbol
2611 table processing isn't initialized. But we have to set the CU language,
2612 or we won't be able to build types correctly. */
2613 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2614 if (attr)
2615 set_cu_language (DW_UNSND (attr), cu);
2616 else
2617 set_cu_language (language_minimal, cu);
2618
2619 do_cleanups (back_to);
2620
2621 /* We've successfully allocated this compilation unit. Let our caller
2622 clean it up when finished with it. */
2623 discard_cleanups (free_cu_cleanup);
2624
2625 return cu;
2626 }
2627
2628 /* Generate full symbol information for PST and CU, whose DIEs have
2629 already been loaded into memory. */
2630
2631 static void
2632 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2633 {
2634 struct partial_symtab *pst = per_cu->psymtab;
2635 struct dwarf2_cu *cu = per_cu->cu;
2636 struct objfile *objfile = pst->objfile;
2637 bfd *abfd = objfile->obfd;
2638 CORE_ADDR lowpc, highpc;
2639 struct symtab *symtab;
2640 struct cleanup *back_to;
2641 struct attribute *attr;
2642 CORE_ADDR baseaddr;
2643
2644 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2645
2646 /* We're in the global namespace. */
2647 processing_current_prefix = "";
2648
2649 buildsym_init ();
2650 back_to = make_cleanup (really_free_pendings, NULL);
2651
2652 cu->list_in_scope = &file_symbols;
2653
2654 /* Find the base address of the compilation unit for range lists and
2655 location lists. It will normally be specified by DW_AT_low_pc.
2656 In DWARF-3 draft 4, the base address could be overridden by
2657 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2658 compilation units with discontinuous ranges. */
2659
2660 cu->header.base_known = 0;
2661 cu->header.base_address = 0;
2662
2663 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2664 if (attr)
2665 {
2666 cu->header.base_address = DW_ADDR (attr);
2667 cu->header.base_known = 1;
2668 }
2669 else
2670 {
2671 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2672 if (attr)
2673 {
2674 cu->header.base_address = DW_ADDR (attr);
2675 cu->header.base_known = 1;
2676 }
2677 }
2678
2679 /* Do line number decoding in read_file_scope () */
2680 process_die (cu->dies, cu);
2681
2682 /* Some compilers don't define a DW_AT_high_pc attribute for the
2683 compilation unit. If the DW_AT_high_pc is missing, synthesize
2684 it, by scanning the DIE's below the compilation unit. */
2685 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2686
2687 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2688
2689 /* Set symtab language to language from DW_AT_language.
2690 If the compilation is from a C file generated by language preprocessors,
2691 do not set the language if it was already deduced by start_subfile. */
2692 if (symtab != NULL
2693 && !(cu->language == language_c && symtab->language != language_c))
2694 {
2695 symtab->language = cu->language;
2696 }
2697 pst->symtab = symtab;
2698 pst->readin = 1;
2699
2700 do_cleanups (back_to);
2701 }
2702
2703 /* Process a die and its children. */
2704
2705 static void
2706 process_die (struct die_info *die, struct dwarf2_cu *cu)
2707 {
2708 switch (die->tag)
2709 {
2710 case DW_TAG_padding:
2711 break;
2712 case DW_TAG_compile_unit:
2713 read_file_scope (die, cu);
2714 break;
2715 case DW_TAG_subprogram:
2716 read_func_scope (die, cu);
2717 break;
2718 case DW_TAG_inlined_subroutine:
2719 /* FIXME: These are ignored for now.
2720 They could be used to set breakpoints on all inlined instances
2721 of a function and make GDB `next' properly over inlined functions. */
2722 break;
2723 case DW_TAG_lexical_block:
2724 case DW_TAG_try_block:
2725 case DW_TAG_catch_block:
2726 read_lexical_block_scope (die, cu);
2727 break;
2728 case DW_TAG_class_type:
2729 case DW_TAG_interface_type:
2730 case DW_TAG_structure_type:
2731 case DW_TAG_union_type:
2732 process_structure_scope (die, cu);
2733 break;
2734 case DW_TAG_enumeration_type:
2735 process_enumeration_scope (die, cu);
2736 break;
2737
2738 /* These dies have a type, but processing them does not create
2739 a symbol or recurse to process the children. Therefore we can
2740 read them on-demand through read_type_die. */
2741 case DW_TAG_subroutine_type:
2742 case DW_TAG_set_type:
2743 case DW_TAG_array_type:
2744 case DW_TAG_pointer_type:
2745 case DW_TAG_ptr_to_member_type:
2746 case DW_TAG_reference_type:
2747 case DW_TAG_string_type:
2748 break;
2749
2750 case DW_TAG_base_type:
2751 case DW_TAG_subrange_type:
2752 /* Add a typedef symbol for the type definition, if it has a
2753 DW_AT_name. */
2754 new_symbol (die, read_type_die (die, cu), cu);
2755 break;
2756 case DW_TAG_common_block:
2757 read_common_block (die, cu);
2758 break;
2759 case DW_TAG_common_inclusion:
2760 break;
2761 case DW_TAG_namespace:
2762 processing_has_namespace_info = 1;
2763 read_namespace (die, cu);
2764 break;
2765 case DW_TAG_imported_declaration:
2766 case DW_TAG_imported_module:
2767 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2768 information contained in these. DW_TAG_imported_declaration
2769 dies shouldn't have children; DW_TAG_imported_module dies
2770 shouldn't in the C++ case, but conceivably could in the
2771 Fortran case, so we'll have to replace this gdb_assert if
2772 Fortran compilers start generating that info. */
2773 processing_has_namespace_info = 1;
2774 gdb_assert (die->child == NULL);
2775 break;
2776 default:
2777 new_symbol (die, NULL, cu);
2778 break;
2779 }
2780 }
2781
2782 static void
2783 initialize_cu_func_list (struct dwarf2_cu *cu)
2784 {
2785 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2786 }
2787
2788 static void
2789 free_cu_line_header (void *arg)
2790 {
2791 struct dwarf2_cu *cu = arg;
2792
2793 free_line_header (cu->line_header);
2794 cu->line_header = NULL;
2795 }
2796
2797 static void
2798 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2799 {
2800 struct objfile *objfile = cu->objfile;
2801 struct comp_unit_head *cu_header = &cu->header;
2802 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2803 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2804 CORE_ADDR highpc = ((CORE_ADDR) 0);
2805 struct attribute *attr;
2806 char *name = NULL;
2807 char *comp_dir = NULL;
2808 struct die_info *child_die;
2809 bfd *abfd = objfile->obfd;
2810 struct line_header *line_header = 0;
2811 CORE_ADDR baseaddr;
2812
2813 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2814
2815 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2816
2817 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2818 from finish_block. */
2819 if (lowpc == ((CORE_ADDR) -1))
2820 lowpc = highpc;
2821 lowpc += baseaddr;
2822 highpc += baseaddr;
2823
2824 /* Find the filename. Do not use dwarf2_name here, since the filename
2825 is not a source language identifier. */
2826 attr = dwarf2_attr (die, DW_AT_name, cu);
2827 if (attr)
2828 {
2829 name = DW_STRING (attr);
2830 }
2831
2832 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2833 if (attr)
2834 comp_dir = DW_STRING (attr);
2835 else if (name != NULL && IS_ABSOLUTE_PATH (name))
2836 {
2837 comp_dir = ldirname (name);
2838 if (comp_dir != NULL)
2839 make_cleanup (xfree, comp_dir);
2840 }
2841 if (comp_dir != NULL)
2842 {
2843 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2844 directory, get rid of it. */
2845 char *cp = strchr (comp_dir, ':');
2846
2847 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2848 comp_dir = cp + 1;
2849 }
2850
2851 if (name == NULL)
2852 name = "<unknown>";
2853
2854 attr = dwarf2_attr (die, DW_AT_language, cu);
2855 if (attr)
2856 {
2857 set_cu_language (DW_UNSND (attr), cu);
2858 }
2859
2860 attr = dwarf2_attr (die, DW_AT_producer, cu);
2861 if (attr)
2862 cu->producer = DW_STRING (attr);
2863
2864 /* We assume that we're processing GCC output. */
2865 processing_gcc_compilation = 2;
2866
2867 start_symtab (name, comp_dir, lowpc);
2868 record_debugformat ("DWARF 2");
2869 record_producer (cu->producer);
2870
2871 initialize_cu_func_list (cu);
2872
2873 /* Decode line number information if present. We do this before
2874 processing child DIEs, so that the line header table is available
2875 for DW_AT_decl_file. */
2876 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2877 if (attr)
2878 {
2879 unsigned int line_offset = DW_UNSND (attr);
2880 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2881 if (line_header)
2882 {
2883 cu->line_header = line_header;
2884 make_cleanup (free_cu_line_header, cu);
2885 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2886 }
2887 }
2888
2889 /* Process all dies in compilation unit. */
2890 if (die->child != NULL)
2891 {
2892 child_die = die->child;
2893 while (child_die && child_die->tag)
2894 {
2895 process_die (child_die, cu);
2896 child_die = sibling_die (child_die);
2897 }
2898 }
2899
2900 /* Decode macro information, if present. Dwarf 2 macro information
2901 refers to information in the line number info statement program
2902 header, so we can only read it if we've read the header
2903 successfully. */
2904 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2905 if (attr && line_header)
2906 {
2907 unsigned int macro_offset = DW_UNSND (attr);
2908 dwarf_decode_macros (line_header, macro_offset,
2909 comp_dir, abfd, cu);
2910 }
2911 do_cleanups (back_to);
2912 }
2913
2914 static void
2915 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2916 struct dwarf2_cu *cu)
2917 {
2918 struct function_range *thisfn;
2919
2920 thisfn = (struct function_range *)
2921 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2922 thisfn->name = name;
2923 thisfn->lowpc = lowpc;
2924 thisfn->highpc = highpc;
2925 thisfn->seen_line = 0;
2926 thisfn->next = NULL;
2927
2928 if (cu->last_fn == NULL)
2929 cu->first_fn = thisfn;
2930 else
2931 cu->last_fn->next = thisfn;
2932
2933 cu->last_fn = thisfn;
2934 }
2935
2936 static void
2937 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2938 {
2939 struct objfile *objfile = cu->objfile;
2940 struct context_stack *new;
2941 CORE_ADDR lowpc;
2942 CORE_ADDR highpc;
2943 struct die_info *child_die;
2944 struct attribute *attr;
2945 char *name;
2946 const char *previous_prefix = processing_current_prefix;
2947 struct cleanup *back_to = NULL;
2948 CORE_ADDR baseaddr;
2949 struct block *block;
2950
2951 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2952
2953 name = dwarf2_linkage_name (die, cu);
2954
2955 /* Ignore functions with missing or empty names and functions with
2956 missing or invalid low and high pc attributes. */
2957 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2958 return;
2959
2960 if (cu->language == language_cplus
2961 || cu->language == language_java)
2962 {
2963 struct die_info *spec_die = die_specification (die, cu);
2964
2965 /* NOTE: carlton/2004-01-23: We have to be careful in the
2966 presence of DW_AT_specification. For example, with GCC 3.4,
2967 given the code
2968
2969 namespace N {
2970 void foo() {
2971 // Definition of N::foo.
2972 }
2973 }
2974
2975 then we'll have a tree of DIEs like this:
2976
2977 1: DW_TAG_compile_unit
2978 2: DW_TAG_namespace // N
2979 3: DW_TAG_subprogram // declaration of N::foo
2980 4: DW_TAG_subprogram // definition of N::foo
2981 DW_AT_specification // refers to die #3
2982
2983 Thus, when processing die #4, we have to pretend that we're
2984 in the context of its DW_AT_specification, namely the contex
2985 of die #3. */
2986
2987 if (spec_die != NULL)
2988 {
2989 char *specification_prefix = determine_prefix (spec_die, cu);
2990 processing_current_prefix = specification_prefix;
2991 back_to = make_cleanup (xfree, specification_prefix);
2992 }
2993 }
2994
2995 lowpc += baseaddr;
2996 highpc += baseaddr;
2997
2998 /* Record the function range for dwarf_decode_lines. */
2999 add_to_cu_func_list (name, lowpc, highpc, cu);
3000
3001 new = push_context (0, lowpc);
3002 new->name = new_symbol (die, read_type_die (die, cu), cu);
3003
3004 /* If there is a location expression for DW_AT_frame_base, record
3005 it. */
3006 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
3007 if (attr)
3008 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3009 expression is being recorded directly in the function's symbol
3010 and not in a separate frame-base object. I guess this hack is
3011 to avoid adding some sort of frame-base adjunct/annex to the
3012 function's symbol :-(. The problem with doing this is that it
3013 results in a function symbol with a location expression that
3014 has nothing to do with the location of the function, ouch! The
3015 relationship should be: a function's symbol has-a frame base; a
3016 frame-base has-a location expression. */
3017 dwarf2_symbol_mark_computed (attr, new->name, cu);
3018
3019 cu->list_in_scope = &local_symbols;
3020
3021 if (die->child != NULL)
3022 {
3023 child_die = die->child;
3024 while (child_die && child_die->tag)
3025 {
3026 process_die (child_die, cu);
3027 child_die = sibling_die (child_die);
3028 }
3029 }
3030
3031 new = pop_context ();
3032 /* Make a block for the local symbols within. */
3033 block = finish_block (new->name, &local_symbols, new->old_blocks,
3034 lowpc, highpc, objfile);
3035
3036 /* If we have address ranges, record them. */
3037 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3038
3039 /* In C++, we can have functions nested inside functions (e.g., when
3040 a function declares a class that has methods). This means that
3041 when we finish processing a function scope, we may need to go
3042 back to building a containing block's symbol lists. */
3043 local_symbols = new->locals;
3044 param_symbols = new->params;
3045
3046 /* If we've finished processing a top-level function, subsequent
3047 symbols go in the file symbol list. */
3048 if (outermost_context_p ())
3049 cu->list_in_scope = &file_symbols;
3050
3051 processing_current_prefix = previous_prefix;
3052 if (back_to != NULL)
3053 do_cleanups (back_to);
3054 }
3055
3056 /* Process all the DIES contained within a lexical block scope. Start
3057 a new scope, process the dies, and then close the scope. */
3058
3059 static void
3060 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3061 {
3062 struct objfile *objfile = cu->objfile;
3063 struct context_stack *new;
3064 CORE_ADDR lowpc, highpc;
3065 struct die_info *child_die;
3066 CORE_ADDR baseaddr;
3067
3068 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3069
3070 /* Ignore blocks with missing or invalid low and high pc attributes. */
3071 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3072 as multiple lexical blocks? Handling children in a sane way would
3073 be nasty. Might be easier to properly extend generic blocks to
3074 describe ranges. */
3075 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3076 return;
3077 lowpc += baseaddr;
3078 highpc += baseaddr;
3079
3080 push_context (0, lowpc);
3081 if (die->child != NULL)
3082 {
3083 child_die = die->child;
3084 while (child_die && child_die->tag)
3085 {
3086 process_die (child_die, cu);
3087 child_die = sibling_die (child_die);
3088 }
3089 }
3090 new = pop_context ();
3091
3092 if (local_symbols != NULL)
3093 {
3094 struct block *block
3095 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3096 highpc, objfile);
3097
3098 /* Note that recording ranges after traversing children, as we
3099 do here, means that recording a parent's ranges entails
3100 walking across all its children's ranges as they appear in
3101 the address map, which is quadratic behavior.
3102
3103 It would be nicer to record the parent's ranges before
3104 traversing its children, simply overriding whatever you find
3105 there. But since we don't even decide whether to create a
3106 block until after we've traversed its children, that's hard
3107 to do. */
3108 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3109 }
3110 local_symbols = new->locals;
3111 }
3112
3113 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3114 Return 1 if the attributes are present and valid, otherwise, return 0.
3115 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
3116
3117 static int
3118 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3119 CORE_ADDR *high_return, struct dwarf2_cu *cu,
3120 struct partial_symtab *ranges_pst)
3121 {
3122 struct objfile *objfile = cu->objfile;
3123 struct comp_unit_head *cu_header = &cu->header;
3124 bfd *obfd = objfile->obfd;
3125 unsigned int addr_size = cu_header->addr_size;
3126 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3127 /* Base address selection entry. */
3128 CORE_ADDR base;
3129 int found_base;
3130 unsigned int dummy;
3131 gdb_byte *buffer;
3132 CORE_ADDR marker;
3133 int low_set;
3134 CORE_ADDR low = 0;
3135 CORE_ADDR high = 0;
3136 CORE_ADDR baseaddr;
3137
3138 found_base = cu_header->base_known;
3139 base = cu_header->base_address;
3140
3141 if (offset >= dwarf2_per_objfile->ranges_size)
3142 {
3143 complaint (&symfile_complaints,
3144 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3145 offset);
3146 return 0;
3147 }
3148 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3149
3150 /* Read in the largest possible address. */
3151 marker = read_address (obfd, buffer, cu, &dummy);
3152 if ((marker & mask) == mask)
3153 {
3154 /* If we found the largest possible address, then
3155 read the base address. */
3156 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3157 buffer += 2 * addr_size;
3158 offset += 2 * addr_size;
3159 found_base = 1;
3160 }
3161
3162 low_set = 0;
3163
3164 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3165
3166 while (1)
3167 {
3168 CORE_ADDR range_beginning, range_end;
3169
3170 range_beginning = read_address (obfd, buffer, cu, &dummy);
3171 buffer += addr_size;
3172 range_end = read_address (obfd, buffer, cu, &dummy);
3173 buffer += addr_size;
3174 offset += 2 * addr_size;
3175
3176 /* An end of list marker is a pair of zero addresses. */
3177 if (range_beginning == 0 && range_end == 0)
3178 /* Found the end of list entry. */
3179 break;
3180
3181 /* Each base address selection entry is a pair of 2 values.
3182 The first is the largest possible address, the second is
3183 the base address. Check for a base address here. */
3184 if ((range_beginning & mask) == mask)
3185 {
3186 /* If we found the largest possible address, then
3187 read the base address. */
3188 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3189 found_base = 1;
3190 continue;
3191 }
3192
3193 if (!found_base)
3194 {
3195 /* We have no valid base address for the ranges
3196 data. */
3197 complaint (&symfile_complaints,
3198 _("Invalid .debug_ranges data (no base address)"));
3199 return 0;
3200 }
3201
3202 range_beginning += base;
3203 range_end += base;
3204
3205 if (ranges_pst != NULL && range_beginning < range_end)
3206 addrmap_set_empty (objfile->psymtabs_addrmap,
3207 range_beginning + baseaddr, range_end - 1 + baseaddr,
3208 ranges_pst);
3209
3210 /* FIXME: This is recording everything as a low-high
3211 segment of consecutive addresses. We should have a
3212 data structure for discontiguous block ranges
3213 instead. */
3214 if (! low_set)
3215 {
3216 low = range_beginning;
3217 high = range_end;
3218 low_set = 1;
3219 }
3220 else
3221 {
3222 if (range_beginning < low)
3223 low = range_beginning;
3224 if (range_end > high)
3225 high = range_end;
3226 }
3227 }
3228
3229 if (! low_set)
3230 /* If the first entry is an end-of-list marker, the range
3231 describes an empty scope, i.e. no instructions. */
3232 return 0;
3233
3234 if (low_return)
3235 *low_return = low;
3236 if (high_return)
3237 *high_return = high;
3238 return 1;
3239 }
3240
3241 /* Get low and high pc attributes from a die. Return 1 if the attributes
3242 are present and valid, otherwise, return 0. Return -1 if the range is
3243 discontinuous, i.e. derived from DW_AT_ranges information. */
3244 static int
3245 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3246 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3247 {
3248 struct attribute *attr;
3249 CORE_ADDR low = 0;
3250 CORE_ADDR high = 0;
3251 int ret = 0;
3252
3253 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3254 if (attr)
3255 {
3256 high = DW_ADDR (attr);
3257 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3258 if (attr)
3259 low = DW_ADDR (attr);
3260 else
3261 /* Found high w/o low attribute. */
3262 return 0;
3263
3264 /* Found consecutive range of addresses. */
3265 ret = 1;
3266 }
3267 else
3268 {
3269 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3270 if (attr != NULL)
3271 {
3272 /* Value of the DW_AT_ranges attribute is the offset in the
3273 .debug_ranges section. */
3274 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, NULL))
3275 return 0;
3276 /* Found discontinuous range of addresses. */
3277 ret = -1;
3278 }
3279 }
3280
3281 if (high < low)
3282 return 0;
3283
3284 /* When using the GNU linker, .gnu.linkonce. sections are used to
3285 eliminate duplicate copies of functions and vtables and such.
3286 The linker will arbitrarily choose one and discard the others.
3287 The AT_*_pc values for such functions refer to local labels in
3288 these sections. If the section from that file was discarded, the
3289 labels are not in the output, so the relocs get a value of 0.
3290 If this is a discarded function, mark the pc bounds as invalid,
3291 so that GDB will ignore it. */
3292 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3293 return 0;
3294
3295 *lowpc = low;
3296 *highpc = high;
3297 return ret;
3298 }
3299
3300 /* Get the low and high pc's represented by the scope DIE, and store
3301 them in *LOWPC and *HIGHPC. If the correct values can't be
3302 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3303
3304 static void
3305 get_scope_pc_bounds (struct die_info *die,
3306 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3307 struct dwarf2_cu *cu)
3308 {
3309 CORE_ADDR best_low = (CORE_ADDR) -1;
3310 CORE_ADDR best_high = (CORE_ADDR) 0;
3311 CORE_ADDR current_low, current_high;
3312
3313 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3314 {
3315 best_low = current_low;
3316 best_high = current_high;
3317 }
3318 else
3319 {
3320 struct die_info *child = die->child;
3321
3322 while (child && child->tag)
3323 {
3324 switch (child->tag) {
3325 case DW_TAG_subprogram:
3326 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3327 {
3328 best_low = min (best_low, current_low);
3329 best_high = max (best_high, current_high);
3330 }
3331 break;
3332 case DW_TAG_namespace:
3333 /* FIXME: carlton/2004-01-16: Should we do this for
3334 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3335 that current GCC's always emit the DIEs corresponding
3336 to definitions of methods of classes as children of a
3337 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3338 the DIEs giving the declarations, which could be
3339 anywhere). But I don't see any reason why the
3340 standards says that they have to be there. */
3341 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3342
3343 if (current_low != ((CORE_ADDR) -1))
3344 {
3345 best_low = min (best_low, current_low);
3346 best_high = max (best_high, current_high);
3347 }
3348 break;
3349 default:
3350 /* Ignore. */
3351 break;
3352 }
3353
3354 child = sibling_die (child);
3355 }
3356 }
3357
3358 *lowpc = best_low;
3359 *highpc = best_high;
3360 }
3361
3362 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
3363 in DIE. */
3364 static void
3365 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
3366 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
3367 {
3368 struct attribute *attr;
3369
3370 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3371 if (attr)
3372 {
3373 CORE_ADDR high = DW_ADDR (attr);
3374 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3375 if (attr)
3376 {
3377 CORE_ADDR low = DW_ADDR (attr);
3378 record_block_range (block, baseaddr + low, baseaddr + high - 1);
3379 }
3380 }
3381
3382 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3383 if (attr)
3384 {
3385 bfd *obfd = cu->objfile->obfd;
3386
3387 /* The value of the DW_AT_ranges attribute is the offset of the
3388 address range list in the .debug_ranges section. */
3389 unsigned long offset = DW_UNSND (attr);
3390 gdb_byte *buffer = dwarf2_per_objfile->ranges_buffer + offset;
3391
3392 /* For some target architectures, but not others, the
3393 read_address function sign-extends the addresses it returns.
3394 To recognize base address selection entries, we need a
3395 mask. */
3396 unsigned int addr_size = cu->header.addr_size;
3397 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3398
3399 /* The base address, to which the next pair is relative. Note
3400 that this 'base' is a DWARF concept: most entries in a range
3401 list are relative, to reduce the number of relocs against the
3402 debugging information. This is separate from this function's
3403 'baseaddr' argument, which GDB uses to relocate debugging
3404 information from a shared library based on the address at
3405 which the library was loaded. */
3406 CORE_ADDR base = cu->header.base_address;
3407 int base_known = cu->header.base_known;
3408
3409 if (offset >= dwarf2_per_objfile->ranges_size)
3410 {
3411 complaint (&symfile_complaints,
3412 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
3413 offset);
3414 return;
3415 }
3416
3417 for (;;)
3418 {
3419 unsigned int bytes_read;
3420 CORE_ADDR start, end;
3421
3422 start = read_address (obfd, buffer, cu, &bytes_read);
3423 buffer += bytes_read;
3424 end = read_address (obfd, buffer, cu, &bytes_read);
3425 buffer += bytes_read;
3426
3427 /* Did we find the end of the range list? */
3428 if (start == 0 && end == 0)
3429 break;
3430
3431 /* Did we find a base address selection entry? */
3432 else if ((start & base_select_mask) == base_select_mask)
3433 {
3434 base = end;
3435 base_known = 1;
3436 }
3437
3438 /* We found an ordinary address range. */
3439 else
3440 {
3441 if (!base_known)
3442 {
3443 complaint (&symfile_complaints,
3444 _("Invalid .debug_ranges data (no base address)"));
3445 return;
3446 }
3447
3448 record_block_range (block,
3449 baseaddr + base + start,
3450 baseaddr + base + end - 1);
3451 }
3452 }
3453 }
3454 }
3455
3456 /* Add an aggregate field to the field list. */
3457
3458 static void
3459 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3460 struct dwarf2_cu *cu)
3461 {
3462 struct objfile *objfile = cu->objfile;
3463 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3464 struct nextfield *new_field;
3465 struct attribute *attr;
3466 struct field *fp;
3467 char *fieldname = "";
3468
3469 /* Allocate a new field list entry and link it in. */
3470 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3471 make_cleanup (xfree, new_field);
3472 memset (new_field, 0, sizeof (struct nextfield));
3473 new_field->next = fip->fields;
3474 fip->fields = new_field;
3475 fip->nfields++;
3476
3477 /* Handle accessibility and virtuality of field.
3478 The default accessibility for members is public, the default
3479 accessibility for inheritance is private. */
3480 if (die->tag != DW_TAG_inheritance)
3481 new_field->accessibility = DW_ACCESS_public;
3482 else
3483 new_field->accessibility = DW_ACCESS_private;
3484 new_field->virtuality = DW_VIRTUALITY_none;
3485
3486 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3487 if (attr)
3488 new_field->accessibility = DW_UNSND (attr);
3489 if (new_field->accessibility != DW_ACCESS_public)
3490 fip->non_public_fields = 1;
3491 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3492 if (attr)
3493 new_field->virtuality = DW_UNSND (attr);
3494
3495 fp = &new_field->field;
3496
3497 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3498 {
3499 /* Data member other than a C++ static data member. */
3500
3501 /* Get type of field. */
3502 fp->type = die_type (die, cu);
3503
3504 FIELD_STATIC_KIND (*fp) = 0;
3505
3506 /* Get bit size of field (zero if none). */
3507 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3508 if (attr)
3509 {
3510 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3511 }
3512 else
3513 {
3514 FIELD_BITSIZE (*fp) = 0;
3515 }
3516
3517 /* Get bit offset of field. */
3518 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3519 if (attr)
3520 {
3521 int byte_offset;
3522
3523 if (attr_form_is_section_offset (attr))
3524 {
3525 dwarf2_complex_location_expr_complaint ();
3526 byte_offset = 0;
3527 }
3528 else if (attr_form_is_constant (attr))
3529 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
3530 else
3531 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
3532
3533 FIELD_BITPOS (*fp) = byte_offset * bits_per_byte;
3534 }
3535 else
3536 FIELD_BITPOS (*fp) = 0;
3537 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3538 if (attr)
3539 {
3540 if (gdbarch_bits_big_endian (gdbarch))
3541 {
3542 /* For big endian bits, the DW_AT_bit_offset gives the
3543 additional bit offset from the MSB of the containing
3544 anonymous object to the MSB of the field. We don't
3545 have to do anything special since we don't need to
3546 know the size of the anonymous object. */
3547 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3548 }
3549 else
3550 {
3551 /* For little endian bits, compute the bit offset to the
3552 MSB of the anonymous object, subtract off the number of
3553 bits from the MSB of the field to the MSB of the
3554 object, and then subtract off the number of bits of
3555 the field itself. The result is the bit offset of
3556 the LSB of the field. */
3557 int anonymous_size;
3558 int bit_offset = DW_UNSND (attr);
3559
3560 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3561 if (attr)
3562 {
3563 /* The size of the anonymous object containing
3564 the bit field is explicit, so use the
3565 indicated size (in bytes). */
3566 anonymous_size = DW_UNSND (attr);
3567 }
3568 else
3569 {
3570 /* The size of the anonymous object containing
3571 the bit field must be inferred from the type
3572 attribute of the data member containing the
3573 bit field. */
3574 anonymous_size = TYPE_LENGTH (fp->type);
3575 }
3576 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3577 - bit_offset - FIELD_BITSIZE (*fp);
3578 }
3579 }
3580
3581 /* Get name of field. */
3582 fieldname = dwarf2_name (die, cu);
3583 if (fieldname == NULL)
3584 fieldname = "";
3585
3586 /* The name is already allocated along with this objfile, so we don't
3587 need to duplicate it for the type. */
3588 fp->name = fieldname;
3589
3590 /* Change accessibility for artificial fields (e.g. virtual table
3591 pointer or virtual base class pointer) to private. */
3592 if (dwarf2_attr (die, DW_AT_artificial, cu))
3593 {
3594 new_field->accessibility = DW_ACCESS_private;
3595 fip->non_public_fields = 1;
3596 }
3597 }
3598 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3599 {
3600 /* C++ static member. */
3601
3602 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3603 is a declaration, but all versions of G++ as of this writing
3604 (so through at least 3.2.1) incorrectly generate
3605 DW_TAG_variable tags. */
3606
3607 char *physname;
3608
3609 /* Get name of field. */
3610 fieldname = dwarf2_name (die, cu);
3611 if (fieldname == NULL)
3612 return;
3613
3614 /* Get physical name. */
3615 physname = dwarf2_linkage_name (die, cu);
3616
3617 /* The name is already allocated along with this objfile, so we don't
3618 need to duplicate it for the type. */
3619 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3620 FIELD_TYPE (*fp) = die_type (die, cu);
3621 FIELD_NAME (*fp) = fieldname;
3622 }
3623 else if (die->tag == DW_TAG_inheritance)
3624 {
3625 /* C++ base class field. */
3626 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3627 if (attr)
3628 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3629 * bits_per_byte);
3630 FIELD_BITSIZE (*fp) = 0;
3631 FIELD_STATIC_KIND (*fp) = 0;
3632 FIELD_TYPE (*fp) = die_type (die, cu);
3633 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3634 fip->nbaseclasses++;
3635 }
3636 }
3637
3638 /* Create the vector of fields, and attach it to the type. */
3639
3640 static void
3641 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3642 struct dwarf2_cu *cu)
3643 {
3644 int nfields = fip->nfields;
3645
3646 /* Record the field count, allocate space for the array of fields,
3647 and create blank accessibility bitfields if necessary. */
3648 TYPE_NFIELDS (type) = nfields;
3649 TYPE_FIELDS (type) = (struct field *)
3650 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3651 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3652
3653 if (fip->non_public_fields)
3654 {
3655 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3656
3657 TYPE_FIELD_PRIVATE_BITS (type) =
3658 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3659 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3660
3661 TYPE_FIELD_PROTECTED_BITS (type) =
3662 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3663 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3664
3665 TYPE_FIELD_IGNORE_BITS (type) =
3666 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3667 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3668 }
3669
3670 /* If the type has baseclasses, allocate and clear a bit vector for
3671 TYPE_FIELD_VIRTUAL_BITS. */
3672 if (fip->nbaseclasses)
3673 {
3674 int num_bytes = B_BYTES (fip->nbaseclasses);
3675 unsigned char *pointer;
3676
3677 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3678 pointer = TYPE_ALLOC (type, num_bytes);
3679 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3680 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3681 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3682 }
3683
3684 /* Copy the saved-up fields into the field vector. Start from the head
3685 of the list, adding to the tail of the field array, so that they end
3686 up in the same order in the array in which they were added to the list. */
3687 while (nfields-- > 0)
3688 {
3689 TYPE_FIELD (type, nfields) = fip->fields->field;
3690 switch (fip->fields->accessibility)
3691 {
3692 case DW_ACCESS_private:
3693 SET_TYPE_FIELD_PRIVATE (type, nfields);
3694 break;
3695
3696 case DW_ACCESS_protected:
3697 SET_TYPE_FIELD_PROTECTED (type, nfields);
3698 break;
3699
3700 case DW_ACCESS_public:
3701 break;
3702
3703 default:
3704 /* Unknown accessibility. Complain and treat it as public. */
3705 {
3706 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3707 fip->fields->accessibility);
3708 }
3709 break;
3710 }
3711 if (nfields < fip->nbaseclasses)
3712 {
3713 switch (fip->fields->virtuality)
3714 {
3715 case DW_VIRTUALITY_virtual:
3716 case DW_VIRTUALITY_pure_virtual:
3717 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3718 break;
3719 }
3720 }
3721 fip->fields = fip->fields->next;
3722 }
3723 }
3724
3725 /* Add a member function to the proper fieldlist. */
3726
3727 static void
3728 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3729 struct type *type, struct dwarf2_cu *cu)
3730 {
3731 struct objfile *objfile = cu->objfile;
3732 struct attribute *attr;
3733 struct fnfieldlist *flp;
3734 int i;
3735 struct fn_field *fnp;
3736 char *fieldname;
3737 char *physname;
3738 struct nextfnfield *new_fnfield;
3739 struct type *this_type;
3740
3741 /* Get name of member function. */
3742 fieldname = dwarf2_name (die, cu);
3743 if (fieldname == NULL)
3744 return;
3745
3746 /* Get the mangled name. */
3747 physname = dwarf2_linkage_name (die, cu);
3748
3749 /* Look up member function name in fieldlist. */
3750 for (i = 0; i < fip->nfnfields; i++)
3751 {
3752 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3753 break;
3754 }
3755
3756 /* Create new list element if necessary. */
3757 if (i < fip->nfnfields)
3758 flp = &fip->fnfieldlists[i];
3759 else
3760 {
3761 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3762 {
3763 fip->fnfieldlists = (struct fnfieldlist *)
3764 xrealloc (fip->fnfieldlists,
3765 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3766 * sizeof (struct fnfieldlist));
3767 if (fip->nfnfields == 0)
3768 make_cleanup (free_current_contents, &fip->fnfieldlists);
3769 }
3770 flp = &fip->fnfieldlists[fip->nfnfields];
3771 flp->name = fieldname;
3772 flp->length = 0;
3773 flp->head = NULL;
3774 fip->nfnfields++;
3775 }
3776
3777 /* Create a new member function field and chain it to the field list
3778 entry. */
3779 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3780 make_cleanup (xfree, new_fnfield);
3781 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3782 new_fnfield->next = flp->head;
3783 flp->head = new_fnfield;
3784 flp->length++;
3785
3786 /* Fill in the member function field info. */
3787 fnp = &new_fnfield->fnfield;
3788 /* The name is already allocated along with this objfile, so we don't
3789 need to duplicate it for the type. */
3790 fnp->physname = physname ? physname : "";
3791 fnp->type = alloc_type (objfile);
3792 this_type = read_type_die (die, cu);
3793 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
3794 {
3795 int nparams = TYPE_NFIELDS (this_type);
3796
3797 /* TYPE is the domain of this method, and THIS_TYPE is the type
3798 of the method itself (TYPE_CODE_METHOD). */
3799 smash_to_method_type (fnp->type, type,
3800 TYPE_TARGET_TYPE (this_type),
3801 TYPE_FIELDS (this_type),
3802 TYPE_NFIELDS (this_type),
3803 TYPE_VARARGS (this_type));
3804
3805 /* Handle static member functions.
3806 Dwarf2 has no clean way to discern C++ static and non-static
3807 member functions. G++ helps GDB by marking the first
3808 parameter for non-static member functions (which is the
3809 this pointer) as artificial. We obtain this information
3810 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3811 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
3812 fnp->voffset = VOFFSET_STATIC;
3813 }
3814 else
3815 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3816 physname);
3817
3818 /* Get fcontext from DW_AT_containing_type if present. */
3819 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3820 fnp->fcontext = die_containing_type (die, cu);
3821
3822 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3823 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3824
3825 /* Get accessibility. */
3826 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3827 if (attr)
3828 {
3829 switch (DW_UNSND (attr))
3830 {
3831 case DW_ACCESS_private:
3832 fnp->is_private = 1;
3833 break;
3834 case DW_ACCESS_protected:
3835 fnp->is_protected = 1;
3836 break;
3837 }
3838 }
3839
3840 /* Check for artificial methods. */
3841 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3842 if (attr && DW_UNSND (attr) != 0)
3843 fnp->is_artificial = 1;
3844
3845 /* Get index in virtual function table if it is a virtual member function. */
3846 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3847 if (attr)
3848 {
3849 /* Support the .debug_loc offsets */
3850 if (attr_form_is_block (attr))
3851 {
3852 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3853 }
3854 else if (attr_form_is_section_offset (attr))
3855 {
3856 dwarf2_complex_location_expr_complaint ();
3857 }
3858 else
3859 {
3860 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3861 fieldname);
3862 }
3863 }
3864 }
3865
3866 /* Create the vector of member function fields, and attach it to the type. */
3867
3868 static void
3869 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3870 struct dwarf2_cu *cu)
3871 {
3872 struct fnfieldlist *flp;
3873 int total_length = 0;
3874 int i;
3875
3876 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3877 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3878 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3879
3880 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3881 {
3882 struct nextfnfield *nfp = flp->head;
3883 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3884 int k;
3885
3886 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3887 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3888 fn_flp->fn_fields = (struct fn_field *)
3889 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3890 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3891 fn_flp->fn_fields[k] = nfp->fnfield;
3892
3893 total_length += flp->length;
3894 }
3895
3896 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3897 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3898 }
3899
3900 /* Returns non-zero if NAME is the name of a vtable member in CU's
3901 language, zero otherwise. */
3902 static int
3903 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3904 {
3905 static const char vptr[] = "_vptr";
3906 static const char vtable[] = "vtable";
3907
3908 /* Look for the C++ and Java forms of the vtable. */
3909 if ((cu->language == language_java
3910 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3911 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3912 && is_cplus_marker (name[sizeof (vptr) - 1])))
3913 return 1;
3914
3915 return 0;
3916 }
3917
3918 /* GCC outputs unnamed structures that are really pointers to member
3919 functions, with the ABI-specified layout. If DIE (from CU) describes
3920 such a structure, set its type, and return nonzero. Otherwise return
3921 zero.
3922
3923 GCC shouldn't do this; it should just output pointer to member DIEs.
3924 This is GCC PR debug/28767. */
3925
3926 static struct type *
3927 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3928 {
3929 struct objfile *objfile = cu->objfile;
3930 struct type *type;
3931 struct die_info *pfn_die, *delta_die;
3932 struct attribute *pfn_name, *delta_name;
3933 struct type *pfn_type, *domain_type;
3934
3935 /* Check for a structure with no name and two children. */
3936 if (die->tag != DW_TAG_structure_type
3937 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3938 || die->child == NULL
3939 || die->child->sibling == NULL
3940 || (die->child->sibling->sibling != NULL
3941 && die->child->sibling->sibling->tag != DW_TAG_padding))
3942 return NULL;
3943
3944 /* Check for __pfn and __delta members. */
3945 pfn_die = die->child;
3946 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3947 if (pfn_die->tag != DW_TAG_member
3948 || pfn_name == NULL
3949 || DW_STRING (pfn_name) == NULL
3950 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3951 return NULL;
3952
3953 delta_die = pfn_die->sibling;
3954 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3955 if (delta_die->tag != DW_TAG_member
3956 || delta_name == NULL
3957 || DW_STRING (delta_name) == NULL
3958 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3959 return NULL;
3960
3961 /* Find the type of the method. */
3962 pfn_type = die_type (pfn_die, cu);
3963 if (pfn_type == NULL
3964 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3965 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3966 return NULL;
3967
3968 /* Look for the "this" argument. */
3969 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3970 if (TYPE_NFIELDS (pfn_type) == 0
3971 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3972 return NULL;
3973
3974 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3975 type = alloc_type (objfile);
3976 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3977 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3978 TYPE_VARARGS (pfn_type));
3979 type = lookup_methodptr_type (type);
3980 return set_die_type (die, type, cu);
3981 }
3982
3983 /* Called when we find the DIE that starts a structure or union scope
3984 (definition) to process all dies that define the members of the
3985 structure or union.
3986
3987 NOTE: we need to call struct_type regardless of whether or not the
3988 DIE has an at_name attribute, since it might be an anonymous
3989 structure or union. This gets the type entered into our set of
3990 user defined types.
3991
3992 However, if the structure is incomplete (an opaque struct/union)
3993 then suppress creating a symbol table entry for it since gdb only
3994 wants to find the one with the complete definition. Note that if
3995 it is complete, we just call new_symbol, which does it's own
3996 checking about whether the struct/union is anonymous or not (and
3997 suppresses creating a symbol table entry itself). */
3998
3999 static struct type *
4000 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
4001 {
4002 struct objfile *objfile = cu->objfile;
4003 struct type *type;
4004 struct attribute *attr;
4005 const char *previous_prefix = processing_current_prefix;
4006 struct cleanup *back_to = NULL;
4007 char *name;
4008
4009 type = quirk_gcc_member_function_pointer (die, cu);
4010 if (type)
4011 return type;
4012
4013 type = alloc_type (objfile);
4014 INIT_CPLUS_SPECIFIC (type);
4015 name = dwarf2_name (die, cu);
4016 if (name != NULL)
4017 {
4018 if (cu->language == language_cplus
4019 || cu->language == language_java)
4020 {
4021 char *new_prefix = determine_class_name (die, cu);
4022 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
4023 strlen (new_prefix),
4024 &objfile->objfile_obstack);
4025 back_to = make_cleanup (xfree, new_prefix);
4026 processing_current_prefix = new_prefix;
4027 }
4028 else
4029 {
4030 /* The name is already allocated along with this objfile, so
4031 we don't need to duplicate it for the type. */
4032 TYPE_TAG_NAME (type) = name;
4033 }
4034 }
4035
4036 if (die->tag == DW_TAG_structure_type)
4037 {
4038 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4039 }
4040 else if (die->tag == DW_TAG_union_type)
4041 {
4042 TYPE_CODE (type) = TYPE_CODE_UNION;
4043 }
4044 else
4045 {
4046 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
4047 in gdbtypes.h. */
4048 TYPE_CODE (type) = TYPE_CODE_CLASS;
4049 }
4050
4051 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4052 if (attr)
4053 {
4054 TYPE_LENGTH (type) = DW_UNSND (attr);
4055 }
4056 else
4057 {
4058 TYPE_LENGTH (type) = 0;
4059 }
4060
4061 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
4062 if (die_is_declaration (die, cu))
4063 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4064
4065 /* We need to add the type field to the die immediately so we don't
4066 infinitely recurse when dealing with pointers to the structure
4067 type within the structure itself. */
4068 set_die_type (die, type, cu);
4069
4070 if (die->child != NULL && ! die_is_declaration (die, cu))
4071 {
4072 struct field_info fi;
4073 struct die_info *child_die;
4074 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
4075
4076 memset (&fi, 0, sizeof (struct field_info));
4077
4078 child_die = die->child;
4079
4080 while (child_die && child_die->tag)
4081 {
4082 if (child_die->tag == DW_TAG_member
4083 || child_die->tag == DW_TAG_variable)
4084 {
4085 /* NOTE: carlton/2002-11-05: A C++ static data member
4086 should be a DW_TAG_member that is a declaration, but
4087 all versions of G++ as of this writing (so through at
4088 least 3.2.1) incorrectly generate DW_TAG_variable
4089 tags for them instead. */
4090 dwarf2_add_field (&fi, child_die, cu);
4091 }
4092 else if (child_die->tag == DW_TAG_subprogram)
4093 {
4094 /* C++ member function. */
4095 dwarf2_add_member_fn (&fi, child_die, type, cu);
4096 }
4097 else if (child_die->tag == DW_TAG_inheritance)
4098 {
4099 /* C++ base class field. */
4100 dwarf2_add_field (&fi, child_die, cu);
4101 }
4102 child_die = sibling_die (child_die);
4103 }
4104
4105 /* Attach fields and member functions to the type. */
4106 if (fi.nfields)
4107 dwarf2_attach_fields_to_type (&fi, type, cu);
4108 if (fi.nfnfields)
4109 {
4110 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
4111
4112 /* Get the type which refers to the base class (possibly this
4113 class itself) which contains the vtable pointer for the current
4114 class from the DW_AT_containing_type attribute. */
4115
4116 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
4117 {
4118 struct type *t = die_containing_type (die, cu);
4119
4120 TYPE_VPTR_BASETYPE (type) = t;
4121 if (type == t)
4122 {
4123 int i;
4124
4125 /* Our own class provides vtbl ptr. */
4126 for (i = TYPE_NFIELDS (t) - 1;
4127 i >= TYPE_N_BASECLASSES (t);
4128 --i)
4129 {
4130 char *fieldname = TYPE_FIELD_NAME (t, i);
4131
4132 if (is_vtable_name (fieldname, cu))
4133 {
4134 TYPE_VPTR_FIELDNO (type) = i;
4135 break;
4136 }
4137 }
4138
4139 /* Complain if virtual function table field not found. */
4140 if (i < TYPE_N_BASECLASSES (t))
4141 complaint (&symfile_complaints,
4142 _("virtual function table pointer not found when defining class '%s'"),
4143 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
4144 "");
4145 }
4146 else
4147 {
4148 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4149 }
4150 }
4151 else if (cu->producer
4152 && strncmp (cu->producer,
4153 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
4154 {
4155 /* The IBM XLC compiler does not provide direct indication
4156 of the containing type, but the vtable pointer is
4157 always named __vfp. */
4158
4159 int i;
4160
4161 for (i = TYPE_NFIELDS (type) - 1;
4162 i >= TYPE_N_BASECLASSES (type);
4163 --i)
4164 {
4165 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4166 {
4167 TYPE_VPTR_FIELDNO (type) = i;
4168 TYPE_VPTR_BASETYPE (type) = type;
4169 break;
4170 }
4171 }
4172 }
4173 }
4174
4175 do_cleanups (back_to);
4176 }
4177
4178 processing_current_prefix = previous_prefix;
4179 if (back_to != NULL)
4180 do_cleanups (back_to);
4181
4182 return type;
4183 }
4184
4185 static void
4186 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4187 {
4188 struct objfile *objfile = cu->objfile;
4189 const char *previous_prefix = processing_current_prefix;
4190 struct die_info *child_die = die->child;
4191 struct type *this_type;
4192
4193 this_type = get_die_type (die, cu);
4194 if (this_type == NULL)
4195 this_type = read_structure_type (die, cu);
4196 if (TYPE_TAG_NAME (this_type) != NULL)
4197 processing_current_prefix = TYPE_TAG_NAME (this_type);
4198
4199 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4200 snapshots) has been known to create a die giving a declaration
4201 for a class that has, as a child, a die giving a definition for a
4202 nested class. So we have to process our children even if the
4203 current die is a declaration. Normally, of course, a declaration
4204 won't have any children at all. */
4205
4206 while (child_die != NULL && child_die->tag)
4207 {
4208 if (child_die->tag == DW_TAG_member
4209 || child_die->tag == DW_TAG_variable
4210 || child_die->tag == DW_TAG_inheritance)
4211 {
4212 /* Do nothing. */
4213 }
4214 else
4215 process_die (child_die, cu);
4216
4217 child_die = sibling_die (child_die);
4218 }
4219
4220 /* Do not consider external references. According to the DWARF standard,
4221 these DIEs are identified by the fact that they have no byte_size
4222 attribute, and a declaration attribute. */
4223 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4224 || !die_is_declaration (die, cu))
4225 new_symbol (die, this_type, cu);
4226
4227 processing_current_prefix = previous_prefix;
4228 }
4229
4230 /* Given a DW_AT_enumeration_type die, set its type. We do not
4231 complete the type's fields yet, or create any symbols. */
4232
4233 static struct type *
4234 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4235 {
4236 struct objfile *objfile = cu->objfile;
4237 struct type *type;
4238 struct attribute *attr;
4239 char *name;
4240
4241 type = alloc_type (objfile);
4242
4243 TYPE_CODE (type) = TYPE_CODE_ENUM;
4244 name = dwarf2_name (die, cu);
4245 if (name != NULL)
4246 {
4247 if (processing_has_namespace_info)
4248 {
4249 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4250 processing_current_prefix,
4251 name, cu);
4252 }
4253 else
4254 {
4255 /* The name is already allocated along with this objfile, so
4256 we don't need to duplicate it for the type. */
4257 TYPE_TAG_NAME (type) = name;
4258 }
4259 }
4260
4261 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4262 if (attr)
4263 {
4264 TYPE_LENGTH (type) = DW_UNSND (attr);
4265 }
4266 else
4267 {
4268 TYPE_LENGTH (type) = 0;
4269 }
4270
4271 /* The enumeration DIE can be incomplete. In Ada, any type can be
4272 declared as private in the package spec, and then defined only
4273 inside the package body. Such types are known as Taft Amendment
4274 Types. When another package uses such a type, an incomplete DIE
4275 may be generated by the compiler. */
4276 if (die_is_declaration (die, cu))
4277 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4278
4279 return set_die_type (die, type, cu);
4280 }
4281
4282 /* Determine the name of the type represented by DIE, which should be
4283 a named C++ or Java compound type. Return the name in question; the caller
4284 is responsible for xfree()'ing it. */
4285
4286 static char *
4287 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4288 {
4289 struct cleanup *back_to = NULL;
4290 struct die_info *spec_die = die_specification (die, cu);
4291 char *new_prefix = NULL;
4292
4293 /* If this is the definition of a class that is declared by another
4294 die, then processing_current_prefix may not be accurate; see
4295 read_func_scope for a similar example. */
4296 if (spec_die != NULL)
4297 {
4298 char *specification_prefix = determine_prefix (spec_die, cu);
4299 processing_current_prefix = specification_prefix;
4300 back_to = make_cleanup (xfree, specification_prefix);
4301 }
4302
4303 /* If we don't have namespace debug info, guess the name by trying
4304 to demangle the names of members, just like we did in
4305 guess_structure_name. */
4306 if (!processing_has_namespace_info)
4307 {
4308 struct die_info *child;
4309
4310 for (child = die->child;
4311 child != NULL && child->tag != 0;
4312 child = sibling_die (child))
4313 {
4314 if (child->tag == DW_TAG_subprogram)
4315 {
4316 new_prefix
4317 = language_class_name_from_physname (cu->language_defn,
4318 dwarf2_linkage_name
4319 (child, cu));
4320
4321 if (new_prefix != NULL)
4322 break;
4323 }
4324 }
4325 }
4326
4327 if (new_prefix == NULL)
4328 {
4329 const char *name = dwarf2_name (die, cu);
4330 new_prefix = typename_concat (NULL, processing_current_prefix,
4331 name ? name : "<<anonymous>>",
4332 cu);
4333 }
4334
4335 if (back_to != NULL)
4336 do_cleanups (back_to);
4337
4338 return new_prefix;
4339 }
4340
4341 /* Given a pointer to a die which begins an enumeration, process all
4342 the dies that define the members of the enumeration, and create the
4343 symbol for the enumeration type.
4344
4345 NOTE: We reverse the order of the element list. */
4346
4347 static void
4348 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4349 {
4350 struct objfile *objfile = cu->objfile;
4351 struct die_info *child_die;
4352 struct field *fields;
4353 struct symbol *sym;
4354 int num_fields;
4355 int unsigned_enum = 1;
4356 char *name;
4357 struct type *this_type;
4358
4359 num_fields = 0;
4360 fields = NULL;
4361 this_type = get_die_type (die, cu);
4362 if (this_type == NULL)
4363 this_type = read_enumeration_type (die, cu);
4364 if (die->child != NULL)
4365 {
4366 child_die = die->child;
4367 while (child_die && child_die->tag)
4368 {
4369 if (child_die->tag != DW_TAG_enumerator)
4370 {
4371 process_die (child_die, cu);
4372 }
4373 else
4374 {
4375 name = dwarf2_name (child_die, cu);
4376 if (name)
4377 {
4378 sym = new_symbol (child_die, this_type, cu);
4379 if (SYMBOL_VALUE (sym) < 0)
4380 unsigned_enum = 0;
4381
4382 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4383 {
4384 fields = (struct field *)
4385 xrealloc (fields,
4386 (num_fields + DW_FIELD_ALLOC_CHUNK)
4387 * sizeof (struct field));
4388 }
4389
4390 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4391 FIELD_TYPE (fields[num_fields]) = NULL;
4392 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4393 FIELD_BITSIZE (fields[num_fields]) = 0;
4394 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4395
4396 num_fields++;
4397 }
4398 }
4399
4400 child_die = sibling_die (child_die);
4401 }
4402
4403 if (num_fields)
4404 {
4405 TYPE_NFIELDS (this_type) = num_fields;
4406 TYPE_FIELDS (this_type) = (struct field *)
4407 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
4408 memcpy (TYPE_FIELDS (this_type), fields,
4409 sizeof (struct field) * num_fields);
4410 xfree (fields);
4411 }
4412 if (unsigned_enum)
4413 TYPE_FLAGS (this_type) |= TYPE_FLAG_UNSIGNED;
4414 }
4415
4416 new_symbol (die, this_type, cu);
4417 }
4418
4419 /* Extract all information from a DW_TAG_array_type DIE and put it in
4420 the DIE's type field. For now, this only handles one dimensional
4421 arrays. */
4422
4423 static struct type *
4424 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4425 {
4426 struct objfile *objfile = cu->objfile;
4427 struct die_info *child_die;
4428 struct type *type = NULL;
4429 struct type *element_type, *range_type, *index_type;
4430 struct type **range_types = NULL;
4431 struct attribute *attr;
4432 int ndim = 0;
4433 struct cleanup *back_to;
4434 char *name;
4435
4436 element_type = die_type (die, cu);
4437
4438 /* Irix 6.2 native cc creates array types without children for
4439 arrays with unspecified length. */
4440 if (die->child == NULL)
4441 {
4442 index_type = builtin_type_int32;
4443 range_type = create_range_type (NULL, index_type, 0, -1);
4444 type = create_array_type (NULL, element_type, range_type);
4445 return set_die_type (die, type, cu);
4446 }
4447
4448 back_to = make_cleanup (null_cleanup, NULL);
4449 child_die = die->child;
4450 while (child_die && child_die->tag)
4451 {
4452 if (child_die->tag == DW_TAG_subrange_type)
4453 {
4454 struct type *child_type = read_type_die (child_die, cu);
4455 if (child_type != NULL)
4456 {
4457 /* The range type was succesfully read. Save it for
4458 the array type creation. */
4459 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4460 {
4461 range_types = (struct type **)
4462 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4463 * sizeof (struct type *));
4464 if (ndim == 0)
4465 make_cleanup (free_current_contents, &range_types);
4466 }
4467 range_types[ndim++] = child_type;
4468 }
4469 }
4470 child_die = sibling_die (child_die);
4471 }
4472
4473 /* Dwarf2 dimensions are output from left to right, create the
4474 necessary array types in backwards order. */
4475
4476 type = element_type;
4477
4478 if (read_array_order (die, cu) == DW_ORD_col_major)
4479 {
4480 int i = 0;
4481 while (i < ndim)
4482 type = create_array_type (NULL, type, range_types[i++]);
4483 }
4484 else
4485 {
4486 while (ndim-- > 0)
4487 type = create_array_type (NULL, type, range_types[ndim]);
4488 }
4489
4490 /* Understand Dwarf2 support for vector types (like they occur on
4491 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4492 array type. This is not part of the Dwarf2/3 standard yet, but a
4493 custom vendor extension. The main difference between a regular
4494 array and the vector variant is that vectors are passed by value
4495 to functions. */
4496 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4497 if (attr)
4498 make_vector_type (type);
4499
4500 name = dwarf2_name (die, cu);
4501 if (name)
4502 TYPE_NAME (type) = name;
4503
4504 do_cleanups (back_to);
4505
4506 /* Install the type in the die. */
4507 return set_die_type (die, type, cu);
4508 }
4509
4510 static enum dwarf_array_dim_ordering
4511 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4512 {
4513 struct attribute *attr;
4514
4515 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4516
4517 if (attr) return DW_SND (attr);
4518
4519 /*
4520 GNU F77 is a special case, as at 08/2004 array type info is the
4521 opposite order to the dwarf2 specification, but data is still
4522 laid out as per normal fortran.
4523
4524 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4525 version checking.
4526 */
4527
4528 if (cu->language == language_fortran &&
4529 cu->producer && strstr (cu->producer, "GNU F77"))
4530 {
4531 return DW_ORD_row_major;
4532 }
4533
4534 switch (cu->language_defn->la_array_ordering)
4535 {
4536 case array_column_major:
4537 return DW_ORD_col_major;
4538 case array_row_major:
4539 default:
4540 return DW_ORD_row_major;
4541 };
4542 }
4543
4544 /* Extract all information from a DW_TAG_set_type DIE and put it in
4545 the DIE's type field. */
4546
4547 static struct type *
4548 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4549 {
4550 struct type *set_type = create_set_type (NULL, die_type (die, cu));
4551
4552 return set_die_type (die, set_type, cu);
4553 }
4554
4555 /* First cut: install each common block member as a global variable. */
4556
4557 static void
4558 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4559 {
4560 struct die_info *child_die;
4561 struct attribute *attr;
4562 struct symbol *sym;
4563 CORE_ADDR base = (CORE_ADDR) 0;
4564
4565 attr = dwarf2_attr (die, DW_AT_location, cu);
4566 if (attr)
4567 {
4568 /* Support the .debug_loc offsets */
4569 if (attr_form_is_block (attr))
4570 {
4571 base = decode_locdesc (DW_BLOCK (attr), cu);
4572 }
4573 else if (attr_form_is_section_offset (attr))
4574 {
4575 dwarf2_complex_location_expr_complaint ();
4576 }
4577 else
4578 {
4579 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4580 "common block member");
4581 }
4582 }
4583 if (die->child != NULL)
4584 {
4585 child_die = die->child;
4586 while (child_die && child_die->tag)
4587 {
4588 sym = new_symbol (child_die, NULL, cu);
4589 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4590 if (attr)
4591 {
4592 SYMBOL_VALUE_ADDRESS (sym) =
4593 base + decode_locdesc (DW_BLOCK (attr), cu);
4594 add_symbol_to_list (sym, &global_symbols);
4595 }
4596 child_die = sibling_die (child_die);
4597 }
4598 }
4599 }
4600
4601 /* Read a C++ namespace. */
4602
4603 static void
4604 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4605 {
4606 struct objfile *objfile = cu->objfile;
4607 const char *previous_prefix = processing_current_prefix;
4608 const char *name;
4609 int is_anonymous;
4610 struct die_info *current_die;
4611 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4612
4613 name = namespace_name (die, &is_anonymous, cu);
4614
4615 /* Now build the name of the current namespace. */
4616
4617 if (previous_prefix[0] == '\0')
4618 {
4619 processing_current_prefix = name;
4620 }
4621 else
4622 {
4623 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4624 make_cleanup (xfree, temp_name);
4625 processing_current_prefix = temp_name;
4626 }
4627
4628 /* Add a symbol associated to this if we haven't seen the namespace
4629 before. Also, add a using directive if it's an anonymous
4630 namespace. */
4631
4632 if (dwarf2_extension (die, cu) == NULL)
4633 {
4634 struct type *type;
4635
4636 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4637 this cast will hopefully become unnecessary. */
4638 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4639 (char *) processing_current_prefix,
4640 objfile);
4641 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4642
4643 new_symbol (die, type, cu);
4644 set_die_type (die, type, cu);
4645
4646 if (is_anonymous)
4647 cp_add_using_directive (processing_current_prefix,
4648 strlen (previous_prefix),
4649 strlen (processing_current_prefix));
4650 }
4651
4652 if (die->child != NULL)
4653 {
4654 struct die_info *child_die = die->child;
4655
4656 while (child_die && child_die->tag)
4657 {
4658 process_die (child_die, cu);
4659 child_die = sibling_die (child_die);
4660 }
4661 }
4662
4663 processing_current_prefix = previous_prefix;
4664 do_cleanups (back_to);
4665 }
4666
4667 /* Return the name of the namespace represented by DIE. Set
4668 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4669 namespace. */
4670
4671 static const char *
4672 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4673 {
4674 struct die_info *current_die;
4675 const char *name = NULL;
4676
4677 /* Loop through the extensions until we find a name. */
4678
4679 for (current_die = die;
4680 current_die != NULL;
4681 current_die = dwarf2_extension (die, cu))
4682 {
4683 name = dwarf2_name (current_die, cu);
4684 if (name != NULL)
4685 break;
4686 }
4687
4688 /* Is it an anonymous namespace? */
4689
4690 *is_anonymous = (name == NULL);
4691 if (*is_anonymous)
4692 name = "(anonymous namespace)";
4693
4694 return name;
4695 }
4696
4697 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4698 the user defined type vector. */
4699
4700 static struct type *
4701 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4702 {
4703 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
4704 struct comp_unit_head *cu_header = &cu->header;
4705 struct type *type;
4706 struct attribute *attr_byte_size;
4707 struct attribute *attr_address_class;
4708 int byte_size, addr_class;
4709
4710 type = lookup_pointer_type (die_type (die, cu));
4711
4712 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4713 if (attr_byte_size)
4714 byte_size = DW_UNSND (attr_byte_size);
4715 else
4716 byte_size = cu_header->addr_size;
4717
4718 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4719 if (attr_address_class)
4720 addr_class = DW_UNSND (attr_address_class);
4721 else
4722 addr_class = DW_ADDR_none;
4723
4724 /* If the pointer size or address class is different than the
4725 default, create a type variant marked as such and set the
4726 length accordingly. */
4727 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4728 {
4729 if (gdbarch_address_class_type_flags_p (gdbarch))
4730 {
4731 int type_flags;
4732
4733 type_flags = gdbarch_address_class_type_flags
4734 (gdbarch, byte_size, addr_class);
4735 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4736 type = make_type_with_address_space (type, type_flags);
4737 }
4738 else if (TYPE_LENGTH (type) != byte_size)
4739 {
4740 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4741 }
4742 else {
4743 /* Should we also complain about unhandled address classes? */
4744 }
4745 }
4746
4747 TYPE_LENGTH (type) = byte_size;
4748 return set_die_type (die, type, cu);
4749 }
4750
4751 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4752 the user defined type vector. */
4753
4754 static struct type *
4755 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4756 {
4757 struct objfile *objfile = cu->objfile;
4758 struct type *type;
4759 struct type *to_type;
4760 struct type *domain;
4761
4762 to_type = die_type (die, cu);
4763 domain = die_containing_type (die, cu);
4764
4765 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4766 type = lookup_methodptr_type (to_type);
4767 else
4768 type = lookup_memberptr_type (to_type, domain);
4769
4770 return set_die_type (die, type, cu);
4771 }
4772
4773 /* Extract all information from a DW_TAG_reference_type DIE and add to
4774 the user defined type vector. */
4775
4776 static struct type *
4777 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4778 {
4779 struct comp_unit_head *cu_header = &cu->header;
4780 struct type *type;
4781 struct attribute *attr;
4782
4783 type = lookup_reference_type (die_type (die, cu));
4784 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4785 if (attr)
4786 {
4787 TYPE_LENGTH (type) = DW_UNSND (attr);
4788 }
4789 else
4790 {
4791 TYPE_LENGTH (type) = cu_header->addr_size;
4792 }
4793 return set_die_type (die, type, cu);
4794 }
4795
4796 static struct type *
4797 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4798 {
4799 struct type *base_type, *cv_type;
4800
4801 base_type = die_type (die, cu);
4802 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
4803 return set_die_type (die, cv_type, cu);
4804 }
4805
4806 static struct type *
4807 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4808 {
4809 struct type *base_type, *cv_type;
4810
4811 base_type = die_type (die, cu);
4812 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
4813 return set_die_type (die, cv_type, cu);
4814 }
4815
4816 /* Extract all information from a DW_TAG_string_type DIE and add to
4817 the user defined type vector. It isn't really a user defined type,
4818 but it behaves like one, with other DIE's using an AT_user_def_type
4819 attribute to reference it. */
4820
4821 static struct type *
4822 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4823 {
4824 struct objfile *objfile = cu->objfile;
4825 struct type *type, *range_type, *index_type, *char_type;
4826 struct attribute *attr;
4827 unsigned int length;
4828
4829 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4830 if (attr)
4831 {
4832 length = DW_UNSND (attr);
4833 }
4834 else
4835 {
4836 /* check for the DW_AT_byte_size attribute */
4837 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4838 if (attr)
4839 {
4840 length = DW_UNSND (attr);
4841 }
4842 else
4843 {
4844 length = 1;
4845 }
4846 }
4847
4848 index_type = builtin_type_int32;
4849 range_type = create_range_type (NULL, index_type, 1, length);
4850 type = create_string_type (NULL, range_type);
4851
4852 return set_die_type (die, type, cu);
4853 }
4854
4855 /* Handle DIES due to C code like:
4856
4857 struct foo
4858 {
4859 int (*funcp)(int a, long l);
4860 int b;
4861 };
4862
4863 ('funcp' generates a DW_TAG_subroutine_type DIE)
4864 */
4865
4866 static struct type *
4867 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4868 {
4869 struct type *type; /* Type that this function returns */
4870 struct type *ftype; /* Function that returns above type */
4871 struct attribute *attr;
4872
4873 type = die_type (die, cu);
4874 ftype = make_function_type (type, (struct type **) 0);
4875
4876 /* All functions in C++, Pascal and Java have prototypes. */
4877 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4878 if ((attr && (DW_UNSND (attr) != 0))
4879 || cu->language == language_cplus
4880 || cu->language == language_java
4881 || cu->language == language_pascal)
4882 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4883
4884 /* Store the calling convention in the type if it's available in
4885 the subroutine die. Otherwise set the calling convention to
4886 the default value DW_CC_normal. */
4887 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
4888 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
4889
4890 if (die->child != NULL)
4891 {
4892 struct die_info *child_die;
4893 int nparams = 0;
4894 int iparams = 0;
4895
4896 /* Count the number of parameters.
4897 FIXME: GDB currently ignores vararg functions, but knows about
4898 vararg member functions. */
4899 child_die = die->child;
4900 while (child_die && child_die->tag)
4901 {
4902 if (child_die->tag == DW_TAG_formal_parameter)
4903 nparams++;
4904 else if (child_die->tag == DW_TAG_unspecified_parameters)
4905 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4906 child_die = sibling_die (child_die);
4907 }
4908
4909 /* Allocate storage for parameters and fill them in. */
4910 TYPE_NFIELDS (ftype) = nparams;
4911 TYPE_FIELDS (ftype) = (struct field *)
4912 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4913
4914 child_die = die->child;
4915 while (child_die && child_die->tag)
4916 {
4917 if (child_die->tag == DW_TAG_formal_parameter)
4918 {
4919 /* Dwarf2 has no clean way to discern C++ static and non-static
4920 member functions. G++ helps GDB by marking the first
4921 parameter for non-static member functions (which is the
4922 this pointer) as artificial. We pass this information
4923 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4924 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4925 if (attr)
4926 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4927 else
4928 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4929 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4930 iparams++;
4931 }
4932 child_die = sibling_die (child_die);
4933 }
4934 }
4935
4936 return set_die_type (die, ftype, cu);
4937 }
4938
4939 static struct type *
4940 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4941 {
4942 struct objfile *objfile = cu->objfile;
4943 struct attribute *attr;
4944 char *name = NULL;
4945 struct type *this_type;
4946
4947 name = dwarf2_name (die, cu);
4948 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
4949 TYPE_FLAG_TARGET_STUB, name, objfile);
4950 set_die_type (die, this_type, cu);
4951 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
4952 return this_type;
4953 }
4954
4955 /* Find a representation of a given base type and install
4956 it in the TYPE field of the die. */
4957
4958 static struct type *
4959 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4960 {
4961 struct objfile *objfile = cu->objfile;
4962 struct type *type;
4963 struct attribute *attr;
4964 int encoding = 0, size = 0;
4965 char *name;
4966 enum type_code code = TYPE_CODE_INT;
4967 int type_flags = 0;
4968 struct type *target_type = NULL;
4969
4970 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4971 if (attr)
4972 {
4973 encoding = DW_UNSND (attr);
4974 }
4975 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4976 if (attr)
4977 {
4978 size = DW_UNSND (attr);
4979 }
4980 name = dwarf2_name (die, cu);
4981 if (!name)
4982 {
4983 complaint (&symfile_complaints,
4984 _("DW_AT_name missing from DW_TAG_base_type"));
4985 }
4986
4987 switch (encoding)
4988 {
4989 case DW_ATE_address:
4990 /* Turn DW_ATE_address into a void * pointer. */
4991 code = TYPE_CODE_PTR;
4992 type_flags |= TYPE_FLAG_UNSIGNED;
4993 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4994 break;
4995 case DW_ATE_boolean:
4996 code = TYPE_CODE_BOOL;
4997 type_flags |= TYPE_FLAG_UNSIGNED;
4998 break;
4999 case DW_ATE_complex_float:
5000 code = TYPE_CODE_COMPLEX;
5001 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
5002 break;
5003 case DW_ATE_decimal_float:
5004 code = TYPE_CODE_DECFLOAT;
5005 break;
5006 case DW_ATE_float:
5007 code = TYPE_CODE_FLT;
5008 break;
5009 case DW_ATE_signed:
5010 break;
5011 case DW_ATE_unsigned:
5012 type_flags |= TYPE_FLAG_UNSIGNED;
5013 break;
5014 case DW_ATE_signed_char:
5015 if (cu->language == language_ada || cu->language == language_m2)
5016 code = TYPE_CODE_CHAR;
5017 break;
5018 case DW_ATE_unsigned_char:
5019 if (cu->language == language_ada || cu->language == language_m2)
5020 code = TYPE_CODE_CHAR;
5021 type_flags |= TYPE_FLAG_UNSIGNED;
5022 break;
5023 default:
5024 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
5025 dwarf_type_encoding_name (encoding));
5026 break;
5027 }
5028
5029 type = init_type (code, size, type_flags, name, objfile);
5030 TYPE_TARGET_TYPE (type) = target_type;
5031
5032 return set_die_type (die, type, cu);
5033 }
5034
5035 /* Read the given DW_AT_subrange DIE. */
5036
5037 static struct type *
5038 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
5039 {
5040 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
5041 struct type *base_type;
5042 struct type *range_type;
5043 struct attribute *attr;
5044 int low = 0;
5045 int high = -1;
5046 char *name;
5047
5048 base_type = die_type (die, cu);
5049 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
5050 {
5051 complaint (&symfile_complaints,
5052 _("DW_AT_type missing from DW_TAG_subrange_type"));
5053 base_type
5054 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8,
5055 0, NULL, cu->objfile);
5056 }
5057
5058 if (cu->language == language_fortran)
5059 {
5060 /* FORTRAN implies a lower bound of 1, if not given. */
5061 low = 1;
5062 }
5063
5064 /* FIXME: For variable sized arrays either of these could be
5065 a variable rather than a constant value. We'll allow it,
5066 but we don't know how to handle it. */
5067 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
5068 if (attr)
5069 low = dwarf2_get_attr_constant_value (attr, 0);
5070
5071 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
5072 if (attr)
5073 {
5074 if (attr->form == DW_FORM_block1)
5075 {
5076 /* GCC encodes arrays with unspecified or dynamic length
5077 with a DW_FORM_block1 attribute.
5078 FIXME: GDB does not yet know how to handle dynamic
5079 arrays properly, treat them as arrays with unspecified
5080 length for now.
5081
5082 FIXME: jimb/2003-09-22: GDB does not really know
5083 how to handle arrays of unspecified length
5084 either; we just represent them as zero-length
5085 arrays. Choose an appropriate upper bound given
5086 the lower bound we've computed above. */
5087 high = low - 1;
5088 }
5089 else
5090 high = dwarf2_get_attr_constant_value (attr, 1);
5091 }
5092
5093 range_type = create_range_type (NULL, base_type, low, high);
5094
5095 name = dwarf2_name (die, cu);
5096 if (name)
5097 TYPE_NAME (range_type) = name;
5098
5099 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5100 if (attr)
5101 TYPE_LENGTH (range_type) = DW_UNSND (attr);
5102
5103 return set_die_type (die, range_type, cu);
5104 }
5105
5106 static struct type *
5107 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
5108 {
5109 struct type *type;
5110
5111 /* For now, we only support the C meaning of an unspecified type: void. */
5112
5113 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
5114 cu->objfile);
5115
5116 return set_die_type (die, type, cu);
5117 }
5118
5119 /* Read a whole compilation unit into a linked list of dies. */
5120
5121 static struct die_info *
5122 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5123 {
5124 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5125 }
5126
5127 /* Read a single die and all its descendents. Set the die's sibling
5128 field to NULL; set other fields in the die correctly, and set all
5129 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5130 location of the info_ptr after reading all of those dies. PARENT
5131 is the parent of the die in question. */
5132
5133 static struct die_info *
5134 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5135 struct dwarf2_cu *cu,
5136 gdb_byte **new_info_ptr,
5137 struct die_info *parent)
5138 {
5139 struct die_info *die;
5140 gdb_byte *cur_ptr;
5141 int has_children;
5142
5143 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5144 store_in_ref_table (die->offset, die, cu);
5145
5146 if (has_children)
5147 {
5148 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5149 new_info_ptr, die);
5150 }
5151 else
5152 {
5153 die->child = NULL;
5154 *new_info_ptr = cur_ptr;
5155 }
5156
5157 die->sibling = NULL;
5158 die->parent = parent;
5159 return die;
5160 }
5161
5162 /* Read a die, all of its descendents, and all of its siblings; set
5163 all of the fields of all of the dies correctly. Arguments are as
5164 in read_die_and_children. */
5165
5166 static struct die_info *
5167 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5168 struct dwarf2_cu *cu,
5169 gdb_byte **new_info_ptr,
5170 struct die_info *parent)
5171 {
5172 struct die_info *first_die, *last_sibling;
5173 gdb_byte *cur_ptr;
5174
5175 cur_ptr = info_ptr;
5176 first_die = last_sibling = NULL;
5177
5178 while (1)
5179 {
5180 struct die_info *die
5181 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5182
5183 if (!first_die)
5184 {
5185 first_die = die;
5186 }
5187 else
5188 {
5189 last_sibling->sibling = die;
5190 }
5191
5192 if (die->tag == 0)
5193 {
5194 *new_info_ptr = cur_ptr;
5195 return first_die;
5196 }
5197 else
5198 {
5199 last_sibling = die;
5200 }
5201 }
5202 }
5203
5204 /* Free a linked list of dies. */
5205
5206 static void
5207 free_die_list (struct die_info *dies)
5208 {
5209 struct die_info *die, *next;
5210
5211 die = dies;
5212 while (die)
5213 {
5214 if (die->child != NULL)
5215 free_die_list (die->child);
5216 next = die->sibling;
5217 xfree (die->attrs);
5218 xfree (die);
5219 die = next;
5220 }
5221 }
5222
5223 /* Decompress a section that was compressed using zlib. Store the
5224 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
5225
5226 static void
5227 zlib_decompress_section (struct objfile *objfile, asection *sectp,
5228 gdb_byte **outbuf, bfd_size_type *outsize)
5229 {
5230 bfd *abfd = objfile->obfd;
5231 #ifndef HAVE_ZLIB_H
5232 error (_("Support for zlib-compressed DWARF data (from '%s') "
5233 "is disabled in this copy of GDB"),
5234 bfd_get_filename (abfd));
5235 #else
5236 bfd_size_type compressed_size = bfd_get_section_size (sectp);
5237 gdb_byte *compressed_buffer = xmalloc (compressed_size);
5238 bfd_size_type uncompressed_size;
5239 gdb_byte *uncompressed_buffer;
5240 z_stream strm;
5241 int rc;
5242 int header_size = 12;
5243
5244 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5245 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
5246 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5247 bfd_get_filename (abfd));
5248
5249 /* Read the zlib header. In this case, it should be "ZLIB" followed
5250 by the uncompressed section size, 8 bytes in big-endian order. */
5251 if (compressed_size < header_size
5252 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
5253 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
5254 bfd_get_filename (abfd));
5255 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
5256 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
5257 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
5258 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
5259 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
5260 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
5261 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
5262 uncompressed_size += compressed_buffer[11];
5263
5264 /* It is possible the section consists of several compressed
5265 buffers concatenated together, so we uncompress in a loop. */
5266 strm.zalloc = NULL;
5267 strm.zfree = NULL;
5268 strm.opaque = NULL;
5269 strm.avail_in = compressed_size - header_size;
5270 strm.next_in = (Bytef*) compressed_buffer + header_size;
5271 strm.avail_out = uncompressed_size;
5272 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
5273 uncompressed_size);
5274 rc = inflateInit (&strm);
5275 while (strm.avail_in > 0)
5276 {
5277 if (rc != Z_OK)
5278 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
5279 bfd_get_filename (abfd), rc);
5280 strm.next_out = ((Bytef*) uncompressed_buffer
5281 + (uncompressed_size - strm.avail_out));
5282 rc = inflate (&strm, Z_FINISH);
5283 if (rc != Z_STREAM_END)
5284 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
5285 bfd_get_filename (abfd), rc);
5286 rc = inflateReset (&strm);
5287 }
5288 rc = inflateEnd (&strm);
5289 if (rc != Z_OK
5290 || strm.avail_out != 0)
5291 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
5292 bfd_get_filename (abfd), rc);
5293
5294 xfree (compressed_buffer);
5295 *outbuf = uncompressed_buffer;
5296 *outsize = uncompressed_size;
5297 #endif
5298 }
5299
5300
5301 /* Read the contents of the section at OFFSET and of size SIZE from the
5302 object file specified by OBJFILE into the objfile_obstack and return it.
5303 If the section is compressed, uncompress it before returning. */
5304
5305 gdb_byte *
5306 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5307 {
5308 bfd *abfd = objfile->obfd;
5309 gdb_byte *buf, *retbuf;
5310 bfd_size_type size = bfd_get_section_size (sectp);
5311 unsigned char header[4];
5312
5313 if (size == 0)
5314 return NULL;
5315
5316 /* Check if the file has a 4-byte header indicating compression. */
5317 if (size > sizeof (header)
5318 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
5319 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
5320 {
5321 /* Upon decompression, update the buffer and its size. */
5322 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
5323 {
5324 zlib_decompress_section (objfile, sectp, &buf, &size);
5325 dwarf2_resize_section (sectp, size);
5326 return buf;
5327 }
5328 }
5329
5330 /* If we get here, we are a normal, not-compressed section. */
5331 buf = obstack_alloc (&objfile->objfile_obstack, size);
5332 /* When debugging .o files, we may need to apply relocations; see
5333 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
5334 We never compress sections in .o files, so we only need to
5335 try this when the section is not compressed. */
5336 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5337 if (retbuf != NULL)
5338 return retbuf;
5339
5340 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5341 || bfd_bread (buf, size, abfd) != size)
5342 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5343 bfd_get_filename (abfd));
5344
5345 return buf;
5346 }
5347
5348 /* In DWARF version 2, the description of the debugging information is
5349 stored in a separate .debug_abbrev section. Before we read any
5350 dies from a section we read in all abbreviations and install them
5351 in a hash table. This function also sets flags in CU describing
5352 the data found in the abbrev table. */
5353
5354 static void
5355 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5356 {
5357 struct comp_unit_head *cu_header = &cu->header;
5358 gdb_byte *abbrev_ptr;
5359 struct abbrev_info *cur_abbrev;
5360 unsigned int abbrev_number, bytes_read, abbrev_name;
5361 unsigned int abbrev_form, hash_number;
5362 struct attr_abbrev *cur_attrs;
5363 unsigned int allocated_attrs;
5364
5365 /* Initialize dwarf2 abbrevs */
5366 obstack_init (&cu->abbrev_obstack);
5367 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5368 (ABBREV_HASH_SIZE
5369 * sizeof (struct abbrev_info *)));
5370 memset (cu->dwarf2_abbrevs, 0,
5371 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5372
5373 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5374 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5375 abbrev_ptr += bytes_read;
5376
5377 allocated_attrs = ATTR_ALLOC_CHUNK;
5378 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5379
5380 /* loop until we reach an abbrev number of 0 */
5381 while (abbrev_number)
5382 {
5383 cur_abbrev = dwarf_alloc_abbrev (cu);
5384
5385 /* read in abbrev header */
5386 cur_abbrev->number = abbrev_number;
5387 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5388 abbrev_ptr += bytes_read;
5389 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5390 abbrev_ptr += 1;
5391
5392 if (cur_abbrev->tag == DW_TAG_namespace)
5393 cu->has_namespace_info = 1;
5394
5395 /* now read in declarations */
5396 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5397 abbrev_ptr += bytes_read;
5398 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5399 abbrev_ptr += bytes_read;
5400 while (abbrev_name)
5401 {
5402 if (cur_abbrev->num_attrs == allocated_attrs)
5403 {
5404 allocated_attrs += ATTR_ALLOC_CHUNK;
5405 cur_attrs
5406 = xrealloc (cur_attrs, (allocated_attrs
5407 * sizeof (struct attr_abbrev)));
5408 }
5409
5410 /* Record whether this compilation unit might have
5411 inter-compilation-unit references. If we don't know what form
5412 this attribute will have, then it might potentially be a
5413 DW_FORM_ref_addr, so we conservatively expect inter-CU
5414 references. */
5415
5416 if (abbrev_form == DW_FORM_ref_addr
5417 || abbrev_form == DW_FORM_indirect)
5418 cu->has_form_ref_addr = 1;
5419
5420 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5421 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5422 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5423 abbrev_ptr += bytes_read;
5424 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5425 abbrev_ptr += bytes_read;
5426 }
5427
5428 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5429 (cur_abbrev->num_attrs
5430 * sizeof (struct attr_abbrev)));
5431 memcpy (cur_abbrev->attrs, cur_attrs,
5432 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5433
5434 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5435 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5436 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5437
5438 /* Get next abbreviation.
5439 Under Irix6 the abbreviations for a compilation unit are not
5440 always properly terminated with an abbrev number of 0.
5441 Exit loop if we encounter an abbreviation which we have
5442 already read (which means we are about to read the abbreviations
5443 for the next compile unit) or if the end of the abbreviation
5444 table is reached. */
5445 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5446 >= dwarf2_per_objfile->abbrev_size)
5447 break;
5448 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5449 abbrev_ptr += bytes_read;
5450 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5451 break;
5452 }
5453
5454 xfree (cur_attrs);
5455 }
5456
5457 /* Release the memory used by the abbrev table for a compilation unit. */
5458
5459 static void
5460 dwarf2_free_abbrev_table (void *ptr_to_cu)
5461 {
5462 struct dwarf2_cu *cu = ptr_to_cu;
5463
5464 obstack_free (&cu->abbrev_obstack, NULL);
5465 cu->dwarf2_abbrevs = NULL;
5466 }
5467
5468 /* Lookup an abbrev_info structure in the abbrev hash table. */
5469
5470 static struct abbrev_info *
5471 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5472 {
5473 unsigned int hash_number;
5474 struct abbrev_info *abbrev;
5475
5476 hash_number = number % ABBREV_HASH_SIZE;
5477 abbrev = cu->dwarf2_abbrevs[hash_number];
5478
5479 while (abbrev)
5480 {
5481 if (abbrev->number == number)
5482 return abbrev;
5483 else
5484 abbrev = abbrev->next;
5485 }
5486 return NULL;
5487 }
5488
5489 /* Returns nonzero if TAG represents a type that we might generate a partial
5490 symbol for. */
5491
5492 static int
5493 is_type_tag_for_partial (int tag)
5494 {
5495 switch (tag)
5496 {
5497 #if 0
5498 /* Some types that would be reasonable to generate partial symbols for,
5499 that we don't at present. */
5500 case DW_TAG_array_type:
5501 case DW_TAG_file_type:
5502 case DW_TAG_ptr_to_member_type:
5503 case DW_TAG_set_type:
5504 case DW_TAG_string_type:
5505 case DW_TAG_subroutine_type:
5506 #endif
5507 case DW_TAG_base_type:
5508 case DW_TAG_class_type:
5509 case DW_TAG_interface_type:
5510 case DW_TAG_enumeration_type:
5511 case DW_TAG_structure_type:
5512 case DW_TAG_subrange_type:
5513 case DW_TAG_typedef:
5514 case DW_TAG_union_type:
5515 return 1;
5516 default:
5517 return 0;
5518 }
5519 }
5520
5521 /* Load all DIEs that are interesting for partial symbols into memory. */
5522
5523 static struct partial_die_info *
5524 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5525 struct dwarf2_cu *cu)
5526 {
5527 struct partial_die_info *part_die;
5528 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5529 struct abbrev_info *abbrev;
5530 unsigned int bytes_read;
5531 unsigned int load_all = 0;
5532
5533 int nesting_level = 1;
5534
5535 parent_die = NULL;
5536 last_die = NULL;
5537
5538 if (cu->per_cu && cu->per_cu->load_all_dies)
5539 load_all = 1;
5540
5541 cu->partial_dies
5542 = htab_create_alloc_ex (cu->header.length / 12,
5543 partial_die_hash,
5544 partial_die_eq,
5545 NULL,
5546 &cu->comp_unit_obstack,
5547 hashtab_obstack_allocate,
5548 dummy_obstack_deallocate);
5549
5550 part_die = obstack_alloc (&cu->comp_unit_obstack,
5551 sizeof (struct partial_die_info));
5552
5553 while (1)
5554 {
5555 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5556
5557 /* A NULL abbrev means the end of a series of children. */
5558 if (abbrev == NULL)
5559 {
5560 if (--nesting_level == 0)
5561 {
5562 /* PART_DIE was probably the last thing allocated on the
5563 comp_unit_obstack, so we could call obstack_free
5564 here. We don't do that because the waste is small,
5565 and will be cleaned up when we're done with this
5566 compilation unit. This way, we're also more robust
5567 against other users of the comp_unit_obstack. */
5568 return first_die;
5569 }
5570 info_ptr += bytes_read;
5571 last_die = parent_die;
5572 parent_die = parent_die->die_parent;
5573 continue;
5574 }
5575
5576 /* Check whether this DIE is interesting enough to save. Normally
5577 we would not be interested in members here, but there may be
5578 later variables referencing them via DW_AT_specification (for
5579 static members). */
5580 if (!load_all
5581 && !is_type_tag_for_partial (abbrev->tag)
5582 && abbrev->tag != DW_TAG_enumerator
5583 && abbrev->tag != DW_TAG_subprogram
5584 && abbrev->tag != DW_TAG_variable
5585 && abbrev->tag != DW_TAG_namespace
5586 && abbrev->tag != DW_TAG_member)
5587 {
5588 /* Otherwise we skip to the next sibling, if any. */
5589 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5590 continue;
5591 }
5592
5593 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5594 abfd, info_ptr, cu);
5595
5596 /* This two-pass algorithm for processing partial symbols has a
5597 high cost in cache pressure. Thus, handle some simple cases
5598 here which cover the majority of C partial symbols. DIEs
5599 which neither have specification tags in them, nor could have
5600 specification tags elsewhere pointing at them, can simply be
5601 processed and discarded.
5602
5603 This segment is also optional; scan_partial_symbols and
5604 add_partial_symbol will handle these DIEs if we chain
5605 them in normally. When compilers which do not emit large
5606 quantities of duplicate debug information are more common,
5607 this code can probably be removed. */
5608
5609 /* Any complete simple types at the top level (pretty much all
5610 of them, for a language without namespaces), can be processed
5611 directly. */
5612 if (parent_die == NULL
5613 && part_die->has_specification == 0
5614 && part_die->is_declaration == 0
5615 && (part_die->tag == DW_TAG_typedef
5616 || part_die->tag == DW_TAG_base_type
5617 || part_die->tag == DW_TAG_subrange_type))
5618 {
5619 if (building_psymtab && part_die->name != NULL)
5620 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5621 VAR_DOMAIN, LOC_TYPEDEF,
5622 &cu->objfile->static_psymbols,
5623 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5624 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5625 continue;
5626 }
5627
5628 /* If we're at the second level, and we're an enumerator, and
5629 our parent has no specification (meaning possibly lives in a
5630 namespace elsewhere), then we can add the partial symbol now
5631 instead of queueing it. */
5632 if (part_die->tag == DW_TAG_enumerator
5633 && parent_die != NULL
5634 && parent_die->die_parent == NULL
5635 && parent_die->tag == DW_TAG_enumeration_type
5636 && parent_die->has_specification == 0)
5637 {
5638 if (part_die->name == NULL)
5639 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5640 else if (building_psymtab)
5641 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5642 VAR_DOMAIN, LOC_CONST,
5643 (cu->language == language_cplus
5644 || cu->language == language_java)
5645 ? &cu->objfile->global_psymbols
5646 : &cu->objfile->static_psymbols,
5647 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5648
5649 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5650 continue;
5651 }
5652
5653 /* We'll save this DIE so link it in. */
5654 part_die->die_parent = parent_die;
5655 part_die->die_sibling = NULL;
5656 part_die->die_child = NULL;
5657
5658 if (last_die && last_die == parent_die)
5659 last_die->die_child = part_die;
5660 else if (last_die)
5661 last_die->die_sibling = part_die;
5662
5663 last_die = part_die;
5664
5665 if (first_die == NULL)
5666 first_die = part_die;
5667
5668 /* Maybe add the DIE to the hash table. Not all DIEs that we
5669 find interesting need to be in the hash table, because we
5670 also have the parent/sibling/child chains; only those that we
5671 might refer to by offset later during partial symbol reading.
5672
5673 For now this means things that might have be the target of a
5674 DW_AT_specification, DW_AT_abstract_origin, or
5675 DW_AT_extension. DW_AT_extension will refer only to
5676 namespaces; DW_AT_abstract_origin refers to functions (and
5677 many things under the function DIE, but we do not recurse
5678 into function DIEs during partial symbol reading) and
5679 possibly variables as well; DW_AT_specification refers to
5680 declarations. Declarations ought to have the DW_AT_declaration
5681 flag. It happens that GCC forgets to put it in sometimes, but
5682 only for functions, not for types.
5683
5684 Adding more things than necessary to the hash table is harmless
5685 except for the performance cost. Adding too few will result in
5686 wasted time in find_partial_die, when we reread the compilation
5687 unit with load_all_dies set. */
5688
5689 if (load_all
5690 || abbrev->tag == DW_TAG_subprogram
5691 || abbrev->tag == DW_TAG_variable
5692 || abbrev->tag == DW_TAG_namespace
5693 || part_die->is_declaration)
5694 {
5695 void **slot;
5696
5697 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5698 part_die->offset, INSERT);
5699 *slot = part_die;
5700 }
5701
5702 part_die = obstack_alloc (&cu->comp_unit_obstack,
5703 sizeof (struct partial_die_info));
5704
5705 /* For some DIEs we want to follow their children (if any). For C
5706 we have no reason to follow the children of structures; for other
5707 languages we have to, both so that we can get at method physnames
5708 to infer fully qualified class names, and for DW_AT_specification. */
5709 if (last_die->has_children
5710 && (load_all
5711 || last_die->tag == DW_TAG_namespace
5712 || last_die->tag == DW_TAG_enumeration_type
5713 || (cu->language != language_c
5714 && (last_die->tag == DW_TAG_class_type
5715 || last_die->tag == DW_TAG_interface_type
5716 || last_die->tag == DW_TAG_structure_type
5717 || last_die->tag == DW_TAG_union_type))))
5718 {
5719 nesting_level++;
5720 parent_die = last_die;
5721 continue;
5722 }
5723
5724 /* Otherwise we skip to the next sibling, if any. */
5725 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5726
5727 /* Back to the top, do it again. */
5728 }
5729 }
5730
5731 /* Read a minimal amount of information into the minimal die structure. */
5732
5733 static gdb_byte *
5734 read_partial_die (struct partial_die_info *part_die,
5735 struct abbrev_info *abbrev,
5736 unsigned int abbrev_len, bfd *abfd,
5737 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5738 {
5739 unsigned int bytes_read, i;
5740 struct attribute attr;
5741 int has_low_pc_attr = 0;
5742 int has_high_pc_attr = 0;
5743 CORE_ADDR base_address = 0;
5744 enum
5745 {
5746 base_address_none,
5747 base_address_low_pc,
5748 /* Overrides BASE_ADDRESS_LOW_PC. */
5749 base_address_entry_pc
5750 }
5751 base_address_type = base_address_none;
5752
5753 memset (part_die, 0, sizeof (struct partial_die_info));
5754
5755 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5756
5757 info_ptr += abbrev_len;
5758
5759 if (abbrev == NULL)
5760 return info_ptr;
5761
5762 part_die->tag = abbrev->tag;
5763 part_die->has_children = abbrev->has_children;
5764
5765 for (i = 0; i < abbrev->num_attrs; ++i)
5766 {
5767 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5768
5769 /* Store the data if it is of an attribute we want to keep in a
5770 partial symbol table. */
5771 switch (attr.name)
5772 {
5773 case DW_AT_name:
5774
5775 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5776 if (part_die->name == NULL)
5777 part_die->name = DW_STRING (&attr);
5778 break;
5779 case DW_AT_comp_dir:
5780 if (part_die->dirname == NULL)
5781 part_die->dirname = DW_STRING (&attr);
5782 break;
5783 case DW_AT_MIPS_linkage_name:
5784 part_die->name = DW_STRING (&attr);
5785 break;
5786 case DW_AT_low_pc:
5787 has_low_pc_attr = 1;
5788 part_die->lowpc = DW_ADDR (&attr);
5789 if (part_die->tag == DW_TAG_compile_unit
5790 && base_address_type < base_address_low_pc)
5791 {
5792 base_address = DW_ADDR (&attr);
5793 base_address_type = base_address_low_pc;
5794 }
5795 break;
5796 case DW_AT_high_pc:
5797 has_high_pc_attr = 1;
5798 part_die->highpc = DW_ADDR (&attr);
5799 break;
5800 case DW_AT_entry_pc:
5801 if (part_die->tag == DW_TAG_compile_unit
5802 && base_address_type < base_address_entry_pc)
5803 {
5804 base_address = DW_ADDR (&attr);
5805 base_address_type = base_address_entry_pc;
5806 }
5807 break;
5808 case DW_AT_ranges:
5809 if (part_die->tag == DW_TAG_compile_unit)
5810 {
5811 cu->ranges_offset = DW_UNSND (&attr);
5812 cu->has_ranges_offset = 1;
5813 }
5814 break;
5815 case DW_AT_location:
5816 /* Support the .debug_loc offsets */
5817 if (attr_form_is_block (&attr))
5818 {
5819 part_die->locdesc = DW_BLOCK (&attr);
5820 }
5821 else if (attr_form_is_section_offset (&attr))
5822 {
5823 dwarf2_complex_location_expr_complaint ();
5824 }
5825 else
5826 {
5827 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5828 "partial symbol information");
5829 }
5830 break;
5831 case DW_AT_language:
5832 part_die->language = DW_UNSND (&attr);
5833 break;
5834 case DW_AT_external:
5835 part_die->is_external = DW_UNSND (&attr);
5836 break;
5837 case DW_AT_declaration:
5838 part_die->is_declaration = DW_UNSND (&attr);
5839 break;
5840 case DW_AT_type:
5841 part_die->has_type = 1;
5842 break;
5843 case DW_AT_abstract_origin:
5844 case DW_AT_specification:
5845 case DW_AT_extension:
5846 part_die->has_specification = 1;
5847 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5848 break;
5849 case DW_AT_sibling:
5850 /* Ignore absolute siblings, they might point outside of
5851 the current compile unit. */
5852 if (attr.form == DW_FORM_ref_addr)
5853 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5854 else
5855 part_die->sibling = dwarf2_per_objfile->info_buffer
5856 + dwarf2_get_ref_die_offset (&attr, cu);
5857 break;
5858 case DW_AT_stmt_list:
5859 part_die->has_stmt_list = 1;
5860 part_die->line_offset = DW_UNSND (&attr);
5861 break;
5862 case DW_AT_byte_size:
5863 part_die->has_byte_size = 1;
5864 break;
5865 case DW_AT_calling_convention:
5866 /* DWARF doesn't provide a way to identify a program's source-level
5867 entry point. DW_AT_calling_convention attributes are only meant
5868 to describe functions' calling conventions.
5869
5870 However, because it's a necessary piece of information in
5871 Fortran, and because DW_CC_program is the only piece of debugging
5872 information whose definition refers to a 'main program' at all,
5873 several compilers have begun marking Fortran main programs with
5874 DW_CC_program --- even when those functions use the standard
5875 calling conventions.
5876
5877 So until DWARF specifies a way to provide this information and
5878 compilers pick up the new representation, we'll support this
5879 practice. */
5880 if (DW_UNSND (&attr) == DW_CC_program
5881 && cu->language == language_fortran)
5882 set_main_name (part_die->name);
5883 break;
5884 default:
5885 break;
5886 }
5887 }
5888
5889 /* When using the GNU linker, .gnu.linkonce. sections are used to
5890 eliminate duplicate copies of functions and vtables and such.
5891 The linker will arbitrarily choose one and discard the others.
5892 The AT_*_pc values for such functions refer to local labels in
5893 these sections. If the section from that file was discarded, the
5894 labels are not in the output, so the relocs get a value of 0.
5895 If this is a discarded function, mark the pc bounds as invalid,
5896 so that GDB will ignore it. */
5897 if (has_low_pc_attr && has_high_pc_attr
5898 && part_die->lowpc < part_die->highpc
5899 && (part_die->lowpc != 0
5900 || dwarf2_per_objfile->has_section_at_zero))
5901 part_die->has_pc_info = 1;
5902
5903 if (base_address_type != base_address_none && !cu->header.base_known)
5904 {
5905 gdb_assert (part_die->tag == DW_TAG_compile_unit);
5906 cu->header.base_known = 1;
5907 cu->header.base_address = base_address;
5908 }
5909
5910 return info_ptr;
5911 }
5912
5913 /* Find a cached partial DIE at OFFSET in CU. */
5914
5915 static struct partial_die_info *
5916 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5917 {
5918 struct partial_die_info *lookup_die = NULL;
5919 struct partial_die_info part_die;
5920
5921 part_die.offset = offset;
5922 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5923
5924 return lookup_die;
5925 }
5926
5927 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5928
5929 static struct partial_die_info *
5930 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5931 {
5932 struct dwarf2_per_cu_data *per_cu = NULL;
5933 struct partial_die_info *pd = NULL;
5934
5935 if (offset >= cu->header.offset
5936 && offset < cu->header.offset + cu->header.length)
5937 {
5938 pd = find_partial_die_in_comp_unit (offset, cu);
5939 if (pd != NULL)
5940 return pd;
5941 }
5942
5943 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5944
5945 if (per_cu->cu == NULL)
5946 {
5947 load_comp_unit (per_cu, cu->objfile);
5948 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5949 dwarf2_per_objfile->read_in_chain = per_cu;
5950 }
5951
5952 per_cu->cu->last_used = 0;
5953 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5954
5955 if (pd == NULL && per_cu->load_all_dies == 0)
5956 {
5957 struct cleanup *back_to;
5958 struct partial_die_info comp_unit_die;
5959 struct abbrev_info *abbrev;
5960 unsigned int bytes_read;
5961 char *info_ptr;
5962
5963 per_cu->load_all_dies = 1;
5964
5965 /* Re-read the DIEs. */
5966 back_to = make_cleanup (null_cleanup, 0);
5967 if (per_cu->cu->dwarf2_abbrevs == NULL)
5968 {
5969 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5970 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5971 }
5972 info_ptr = per_cu->cu->header.first_die_ptr;
5973 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5974 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5975 per_cu->cu->objfile->obfd, info_ptr,
5976 per_cu->cu);
5977 if (comp_unit_die.has_children)
5978 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5979 do_cleanups (back_to);
5980
5981 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5982 }
5983
5984 if (pd == NULL)
5985 internal_error (__FILE__, __LINE__,
5986 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5987 offset, bfd_get_filename (cu->objfile->obfd));
5988 return pd;
5989 }
5990
5991 /* Adjust PART_DIE before generating a symbol for it. This function
5992 may set the is_external flag or change the DIE's name. */
5993
5994 static void
5995 fixup_partial_die (struct partial_die_info *part_die,
5996 struct dwarf2_cu *cu)
5997 {
5998 /* If we found a reference attribute and the DIE has no name, try
5999 to find a name in the referred to DIE. */
6000
6001 if (part_die->name == NULL && part_die->has_specification)
6002 {
6003 struct partial_die_info *spec_die;
6004
6005 spec_die = find_partial_die (part_die->spec_offset, cu);
6006
6007 fixup_partial_die (spec_die, cu);
6008
6009 if (spec_die->name)
6010 {
6011 part_die->name = spec_die->name;
6012
6013 /* Copy DW_AT_external attribute if it is set. */
6014 if (spec_die->is_external)
6015 part_die->is_external = spec_die->is_external;
6016 }
6017 }
6018
6019 /* Set default names for some unnamed DIEs. */
6020 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
6021 || part_die->tag == DW_TAG_class_type))
6022 part_die->name = "(anonymous class)";
6023
6024 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
6025 part_die->name = "(anonymous namespace)";
6026
6027 if (part_die->tag == DW_TAG_structure_type
6028 || part_die->tag == DW_TAG_class_type
6029 || part_die->tag == DW_TAG_union_type)
6030 guess_structure_name (part_die, cu);
6031 }
6032
6033 /* Read the die from the .debug_info section buffer. Set DIEP to
6034 point to a newly allocated die with its information, except for its
6035 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6036 whether the die has children or not. */
6037
6038 static gdb_byte *
6039 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
6040 struct dwarf2_cu *cu, int *has_children)
6041 {
6042 unsigned int abbrev_number, bytes_read, i, offset;
6043 struct abbrev_info *abbrev;
6044 struct die_info *die;
6045
6046 offset = info_ptr - dwarf2_per_objfile->info_buffer;
6047 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6048 info_ptr += bytes_read;
6049 if (!abbrev_number)
6050 {
6051 die = dwarf_alloc_die ();
6052 die->tag = 0;
6053 die->abbrev = abbrev_number;
6054 *diep = die;
6055 *has_children = 0;
6056 return info_ptr;
6057 }
6058
6059 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6060 if (!abbrev)
6061 {
6062 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6063 abbrev_number,
6064 bfd_get_filename (abfd));
6065 }
6066 die = dwarf_alloc_die ();
6067 die->offset = offset;
6068 die->tag = abbrev->tag;
6069 die->abbrev = abbrev_number;
6070
6071 die->num_attrs = abbrev->num_attrs;
6072 die->attrs = (struct attribute *)
6073 xmalloc (die->num_attrs * sizeof (struct attribute));
6074
6075 for (i = 0; i < abbrev->num_attrs; ++i)
6076 {
6077 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6078 abfd, info_ptr, cu);
6079
6080 /* If this attribute is an absolute reference to a different
6081 compilation unit, make sure that compilation unit is loaded
6082 also. */
6083 if (die->attrs[i].form == DW_FORM_ref_addr
6084 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
6085 || (DW_ADDR (&die->attrs[i])
6086 >= cu->header.offset + cu->header.length)))
6087 {
6088 struct dwarf2_per_cu_data *per_cu;
6089 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
6090 cu->objfile);
6091
6092 /* Mark the dependence relation so that we don't flush PER_CU
6093 too early. */
6094 dwarf2_add_dependence (cu, per_cu);
6095
6096 /* If it's already on the queue, we have nothing to do. */
6097 if (per_cu->queued)
6098 continue;
6099
6100 /* If the compilation unit is already loaded, just mark it as
6101 used. */
6102 if (per_cu->cu != NULL)
6103 {
6104 per_cu->cu->last_used = 0;
6105 continue;
6106 }
6107
6108 /* Add it to the queue. */
6109 queue_comp_unit (per_cu);
6110 }
6111 }
6112
6113 *diep = die;
6114 *has_children = abbrev->has_children;
6115 return info_ptr;
6116 }
6117
6118 /* Read an attribute value described by an attribute form. */
6119
6120 static gdb_byte *
6121 read_attribute_value (struct attribute *attr, unsigned form,
6122 bfd *abfd, gdb_byte *info_ptr,
6123 struct dwarf2_cu *cu)
6124 {
6125 struct comp_unit_head *cu_header = &cu->header;
6126 unsigned int bytes_read;
6127 struct dwarf_block *blk;
6128
6129 attr->form = form;
6130 switch (form)
6131 {
6132 case DW_FORM_addr:
6133 case DW_FORM_ref_addr:
6134 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
6135 info_ptr += bytes_read;
6136 break;
6137 case DW_FORM_block2:
6138 blk = dwarf_alloc_block (cu);
6139 blk->size = read_2_bytes (abfd, info_ptr);
6140 info_ptr += 2;
6141 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6142 info_ptr += blk->size;
6143 DW_BLOCK (attr) = blk;
6144 break;
6145 case DW_FORM_block4:
6146 blk = dwarf_alloc_block (cu);
6147 blk->size = read_4_bytes (abfd, info_ptr);
6148 info_ptr += 4;
6149 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6150 info_ptr += blk->size;
6151 DW_BLOCK (attr) = blk;
6152 break;
6153 case DW_FORM_data2:
6154 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
6155 info_ptr += 2;
6156 break;
6157 case DW_FORM_data4:
6158 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
6159 info_ptr += 4;
6160 break;
6161 case DW_FORM_data8:
6162 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
6163 info_ptr += 8;
6164 break;
6165 case DW_FORM_string:
6166 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
6167 info_ptr += bytes_read;
6168 break;
6169 case DW_FORM_strp:
6170 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
6171 &bytes_read);
6172 info_ptr += bytes_read;
6173 break;
6174 case DW_FORM_block:
6175 blk = dwarf_alloc_block (cu);
6176 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6177 info_ptr += bytes_read;
6178 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6179 info_ptr += blk->size;
6180 DW_BLOCK (attr) = blk;
6181 break;
6182 case DW_FORM_block1:
6183 blk = dwarf_alloc_block (cu);
6184 blk->size = read_1_byte (abfd, info_ptr);
6185 info_ptr += 1;
6186 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6187 info_ptr += blk->size;
6188 DW_BLOCK (attr) = blk;
6189 break;
6190 case DW_FORM_data1:
6191 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6192 info_ptr += 1;
6193 break;
6194 case DW_FORM_flag:
6195 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6196 info_ptr += 1;
6197 break;
6198 case DW_FORM_sdata:
6199 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
6200 info_ptr += bytes_read;
6201 break;
6202 case DW_FORM_udata:
6203 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6204 info_ptr += bytes_read;
6205 break;
6206 case DW_FORM_ref1:
6207 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
6208 info_ptr += 1;
6209 break;
6210 case DW_FORM_ref2:
6211 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
6212 info_ptr += 2;
6213 break;
6214 case DW_FORM_ref4:
6215 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
6216 info_ptr += 4;
6217 break;
6218 case DW_FORM_ref8:
6219 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
6220 info_ptr += 8;
6221 break;
6222 case DW_FORM_ref_udata:
6223 DW_ADDR (attr) = (cu->header.offset
6224 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
6225 info_ptr += bytes_read;
6226 break;
6227 case DW_FORM_indirect:
6228 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6229 info_ptr += bytes_read;
6230 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
6231 break;
6232 default:
6233 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
6234 dwarf_form_name (form),
6235 bfd_get_filename (abfd));
6236 }
6237
6238 /* We have seen instances where the compiler tried to emit a byte
6239 size attribute of -1 which ended up being encoded as an unsigned
6240 0xffffffff. Although 0xffffffff is technically a valid size value,
6241 an object of this size seems pretty unlikely so we can relatively
6242 safely treat these cases as if the size attribute was invalid and
6243 treat them as zero by default. */
6244 if (attr->name == DW_AT_byte_size
6245 && form == DW_FORM_data4
6246 && DW_UNSND (attr) >= 0xffffffff)
6247 {
6248 complaint
6249 (&symfile_complaints,
6250 _("Suspicious DW_AT_byte_size value treated as zero instead of 0x%lx"),
6251 DW_UNSND (attr));
6252 DW_UNSND (attr) = 0;
6253 }
6254
6255 return info_ptr;
6256 }
6257
6258 /* Read an attribute described by an abbreviated attribute. */
6259
6260 static gdb_byte *
6261 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
6262 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
6263 {
6264 attr->name = abbrev->name;
6265 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
6266 }
6267
6268 /* read dwarf information from a buffer */
6269
6270 static unsigned int
6271 read_1_byte (bfd *abfd, gdb_byte *buf)
6272 {
6273 return bfd_get_8 (abfd, buf);
6274 }
6275
6276 static int
6277 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
6278 {
6279 return bfd_get_signed_8 (abfd, buf);
6280 }
6281
6282 static unsigned int
6283 read_2_bytes (bfd *abfd, gdb_byte *buf)
6284 {
6285 return bfd_get_16 (abfd, buf);
6286 }
6287
6288 static int
6289 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
6290 {
6291 return bfd_get_signed_16 (abfd, buf);
6292 }
6293
6294 static unsigned int
6295 read_4_bytes (bfd *abfd, gdb_byte *buf)
6296 {
6297 return bfd_get_32 (abfd, buf);
6298 }
6299
6300 static int
6301 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6302 {
6303 return bfd_get_signed_32 (abfd, buf);
6304 }
6305
6306 static unsigned long
6307 read_8_bytes (bfd *abfd, gdb_byte *buf)
6308 {
6309 return bfd_get_64 (abfd, buf);
6310 }
6311
6312 static CORE_ADDR
6313 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6314 unsigned int *bytes_read)
6315 {
6316 struct comp_unit_head *cu_header = &cu->header;
6317 CORE_ADDR retval = 0;
6318
6319 if (cu_header->signed_addr_p)
6320 {
6321 switch (cu_header->addr_size)
6322 {
6323 case 2:
6324 retval = bfd_get_signed_16 (abfd, buf);
6325 break;
6326 case 4:
6327 retval = bfd_get_signed_32 (abfd, buf);
6328 break;
6329 case 8:
6330 retval = bfd_get_signed_64 (abfd, buf);
6331 break;
6332 default:
6333 internal_error (__FILE__, __LINE__,
6334 _("read_address: bad switch, signed [in module %s]"),
6335 bfd_get_filename (abfd));
6336 }
6337 }
6338 else
6339 {
6340 switch (cu_header->addr_size)
6341 {
6342 case 2:
6343 retval = bfd_get_16 (abfd, buf);
6344 break;
6345 case 4:
6346 retval = bfd_get_32 (abfd, buf);
6347 break;
6348 case 8:
6349 retval = bfd_get_64 (abfd, buf);
6350 break;
6351 default:
6352 internal_error (__FILE__, __LINE__,
6353 _("read_address: bad switch, unsigned [in module %s]"),
6354 bfd_get_filename (abfd));
6355 }
6356 }
6357
6358 *bytes_read = cu_header->addr_size;
6359 return retval;
6360 }
6361
6362 /* Read the initial length from a section. The (draft) DWARF 3
6363 specification allows the initial length to take up either 4 bytes
6364 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6365 bytes describe the length and all offsets will be 8 bytes in length
6366 instead of 4.
6367
6368 An older, non-standard 64-bit format is also handled by this
6369 function. The older format in question stores the initial length
6370 as an 8-byte quantity without an escape value. Lengths greater
6371 than 2^32 aren't very common which means that the initial 4 bytes
6372 is almost always zero. Since a length value of zero doesn't make
6373 sense for the 32-bit format, this initial zero can be considered to
6374 be an escape value which indicates the presence of the older 64-bit
6375 format. As written, the code can't detect (old format) lengths
6376 greater than 4GB. If it becomes necessary to handle lengths
6377 somewhat larger than 4GB, we could allow other small values (such
6378 as the non-sensical values of 1, 2, and 3) to also be used as
6379 escape values indicating the presence of the old format.
6380
6381 The value returned via bytes_read should be used to increment the
6382 relevant pointer after calling read_initial_length().
6383
6384 As a side effect, this function sets the fields initial_length_size
6385 and offset_size in cu_header to the values appropriate for the
6386 length field. (The format of the initial length field determines
6387 the width of file offsets to be fetched later with read_offset().)
6388
6389 [ Note: read_initial_length() and read_offset() are based on the
6390 document entitled "DWARF Debugging Information Format", revision
6391 3, draft 8, dated November 19, 2001. This document was obtained
6392 from:
6393
6394 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6395
6396 This document is only a draft and is subject to change. (So beware.)
6397
6398 Details regarding the older, non-standard 64-bit format were
6399 determined empirically by examining 64-bit ELF files produced by
6400 the SGI toolchain on an IRIX 6.5 machine.
6401
6402 - Kevin, July 16, 2002
6403 ] */
6404
6405 static LONGEST
6406 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6407 unsigned int *bytes_read)
6408 {
6409 LONGEST length = bfd_get_32 (abfd, buf);
6410
6411 if (length == 0xffffffff)
6412 {
6413 length = bfd_get_64 (abfd, buf + 4);
6414 *bytes_read = 12;
6415 }
6416 else if (length == 0)
6417 {
6418 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6419 length = bfd_get_64 (abfd, buf);
6420 *bytes_read = 8;
6421 }
6422 else
6423 {
6424 *bytes_read = 4;
6425 }
6426
6427 if (cu_header)
6428 {
6429 gdb_assert (cu_header->initial_length_size == 0
6430 || cu_header->initial_length_size == 4
6431 || cu_header->initial_length_size == 8
6432 || cu_header->initial_length_size == 12);
6433
6434 if (cu_header->initial_length_size != 0
6435 && cu_header->initial_length_size != *bytes_read)
6436 complaint (&symfile_complaints,
6437 _("intermixed 32-bit and 64-bit DWARF sections"));
6438
6439 cu_header->initial_length_size = *bytes_read;
6440 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6441 }
6442
6443 return length;
6444 }
6445
6446 /* Read an offset from the data stream. The size of the offset is
6447 given by cu_header->offset_size. */
6448
6449 static LONGEST
6450 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6451 unsigned int *bytes_read)
6452 {
6453 LONGEST retval = 0;
6454
6455 switch (cu_header->offset_size)
6456 {
6457 case 4:
6458 retval = bfd_get_32 (abfd, buf);
6459 *bytes_read = 4;
6460 break;
6461 case 8:
6462 retval = bfd_get_64 (abfd, buf);
6463 *bytes_read = 8;
6464 break;
6465 default:
6466 internal_error (__FILE__, __LINE__,
6467 _("read_offset: bad switch [in module %s]"),
6468 bfd_get_filename (abfd));
6469 }
6470
6471 return retval;
6472 }
6473
6474 static gdb_byte *
6475 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6476 {
6477 /* If the size of a host char is 8 bits, we can return a pointer
6478 to the buffer, otherwise we have to copy the data to a buffer
6479 allocated on the temporary obstack. */
6480 gdb_assert (HOST_CHAR_BIT == 8);
6481 return buf;
6482 }
6483
6484 static char *
6485 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6486 {
6487 /* If the size of a host char is 8 bits, we can return a pointer
6488 to the string, otherwise we have to copy the string to a buffer
6489 allocated on the temporary obstack. */
6490 gdb_assert (HOST_CHAR_BIT == 8);
6491 if (*buf == '\0')
6492 {
6493 *bytes_read_ptr = 1;
6494 return NULL;
6495 }
6496 *bytes_read_ptr = strlen ((char *) buf) + 1;
6497 return (char *) buf;
6498 }
6499
6500 static char *
6501 read_indirect_string (bfd *abfd, gdb_byte *buf,
6502 const struct comp_unit_head *cu_header,
6503 unsigned int *bytes_read_ptr)
6504 {
6505 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6506 bytes_read_ptr);
6507
6508 if (dwarf2_per_objfile->str_buffer == NULL)
6509 {
6510 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6511 bfd_get_filename (abfd));
6512 return NULL;
6513 }
6514 if (str_offset >= dwarf2_per_objfile->str_size)
6515 {
6516 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6517 bfd_get_filename (abfd));
6518 return NULL;
6519 }
6520 gdb_assert (HOST_CHAR_BIT == 8);
6521 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6522 return NULL;
6523 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6524 }
6525
6526 static unsigned long
6527 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6528 {
6529 unsigned long result;
6530 unsigned int num_read;
6531 int i, shift;
6532 unsigned char byte;
6533
6534 result = 0;
6535 shift = 0;
6536 num_read = 0;
6537 i = 0;
6538 while (1)
6539 {
6540 byte = bfd_get_8 (abfd, buf);
6541 buf++;
6542 num_read++;
6543 result |= ((unsigned long)(byte & 127) << shift);
6544 if ((byte & 128) == 0)
6545 {
6546 break;
6547 }
6548 shift += 7;
6549 }
6550 *bytes_read_ptr = num_read;
6551 return result;
6552 }
6553
6554 static long
6555 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6556 {
6557 long result;
6558 int i, shift, num_read;
6559 unsigned char byte;
6560
6561 result = 0;
6562 shift = 0;
6563 num_read = 0;
6564 i = 0;
6565 while (1)
6566 {
6567 byte = bfd_get_8 (abfd, buf);
6568 buf++;
6569 num_read++;
6570 result |= ((long)(byte & 127) << shift);
6571 shift += 7;
6572 if ((byte & 128) == 0)
6573 {
6574 break;
6575 }
6576 }
6577 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6578 result |= -(((long)1) << shift);
6579 *bytes_read_ptr = num_read;
6580 return result;
6581 }
6582
6583 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6584
6585 static gdb_byte *
6586 skip_leb128 (bfd *abfd, gdb_byte *buf)
6587 {
6588 int byte;
6589
6590 while (1)
6591 {
6592 byte = bfd_get_8 (abfd, buf);
6593 buf++;
6594 if ((byte & 128) == 0)
6595 return buf;
6596 }
6597 }
6598
6599 static void
6600 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6601 {
6602 switch (lang)
6603 {
6604 case DW_LANG_C89:
6605 case DW_LANG_C:
6606 cu->language = language_c;
6607 break;
6608 case DW_LANG_C_plus_plus:
6609 cu->language = language_cplus;
6610 break;
6611 case DW_LANG_Fortran77:
6612 case DW_LANG_Fortran90:
6613 case DW_LANG_Fortran95:
6614 cu->language = language_fortran;
6615 break;
6616 case DW_LANG_Mips_Assembler:
6617 cu->language = language_asm;
6618 break;
6619 case DW_LANG_Java:
6620 cu->language = language_java;
6621 break;
6622 case DW_LANG_Ada83:
6623 case DW_LANG_Ada95:
6624 cu->language = language_ada;
6625 break;
6626 case DW_LANG_Modula2:
6627 cu->language = language_m2;
6628 break;
6629 case DW_LANG_Pascal83:
6630 cu->language = language_pascal;
6631 break;
6632 case DW_LANG_ObjC:
6633 cu->language = language_objc;
6634 break;
6635 case DW_LANG_Cobol74:
6636 case DW_LANG_Cobol85:
6637 default:
6638 cu->language = language_minimal;
6639 break;
6640 }
6641 cu->language_defn = language_def (cu->language);
6642 }
6643
6644 /* Return the named attribute or NULL if not there. */
6645
6646 static struct attribute *
6647 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6648 {
6649 unsigned int i;
6650 struct attribute *spec = NULL;
6651
6652 for (i = 0; i < die->num_attrs; ++i)
6653 {
6654 if (die->attrs[i].name == name)
6655 return &die->attrs[i];
6656 if (die->attrs[i].name == DW_AT_specification
6657 || die->attrs[i].name == DW_AT_abstract_origin)
6658 spec = &die->attrs[i];
6659 }
6660
6661 if (spec)
6662 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6663
6664 return NULL;
6665 }
6666
6667 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6668 and holds a non-zero value. This function should only be used for
6669 DW_FORM_flag attributes. */
6670
6671 static int
6672 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6673 {
6674 struct attribute *attr = dwarf2_attr (die, name, cu);
6675
6676 return (attr && DW_UNSND (attr));
6677 }
6678
6679 static int
6680 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6681 {
6682 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6683 which value is non-zero. However, we have to be careful with
6684 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6685 (via dwarf2_flag_true_p) follows this attribute. So we may
6686 end up accidently finding a declaration attribute that belongs
6687 to a different DIE referenced by the specification attribute,
6688 even though the given DIE does not have a declaration attribute. */
6689 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6690 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6691 }
6692
6693 /* Return the die giving the specification for DIE, if there is
6694 one. */
6695
6696 static struct die_info *
6697 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6698 {
6699 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6700
6701 if (spec_attr == NULL)
6702 return NULL;
6703 else
6704 return follow_die_ref (die, spec_attr, cu);
6705 }
6706
6707 /* Free the line_header structure *LH, and any arrays and strings it
6708 refers to. */
6709 static void
6710 free_line_header (struct line_header *lh)
6711 {
6712 if (lh->standard_opcode_lengths)
6713 xfree (lh->standard_opcode_lengths);
6714
6715 /* Remember that all the lh->file_names[i].name pointers are
6716 pointers into debug_line_buffer, and don't need to be freed. */
6717 if (lh->file_names)
6718 xfree (lh->file_names);
6719
6720 /* Similarly for the include directory names. */
6721 if (lh->include_dirs)
6722 xfree (lh->include_dirs);
6723
6724 xfree (lh);
6725 }
6726
6727
6728 /* Add an entry to LH's include directory table. */
6729 static void
6730 add_include_dir (struct line_header *lh, char *include_dir)
6731 {
6732 /* Grow the array if necessary. */
6733 if (lh->include_dirs_size == 0)
6734 {
6735 lh->include_dirs_size = 1; /* for testing */
6736 lh->include_dirs = xmalloc (lh->include_dirs_size
6737 * sizeof (*lh->include_dirs));
6738 }
6739 else if (lh->num_include_dirs >= lh->include_dirs_size)
6740 {
6741 lh->include_dirs_size *= 2;
6742 lh->include_dirs = xrealloc (lh->include_dirs,
6743 (lh->include_dirs_size
6744 * sizeof (*lh->include_dirs)));
6745 }
6746
6747 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6748 }
6749
6750
6751 /* Add an entry to LH's file name table. */
6752 static void
6753 add_file_name (struct line_header *lh,
6754 char *name,
6755 unsigned int dir_index,
6756 unsigned int mod_time,
6757 unsigned int length)
6758 {
6759 struct file_entry *fe;
6760
6761 /* Grow the array if necessary. */
6762 if (lh->file_names_size == 0)
6763 {
6764 lh->file_names_size = 1; /* for testing */
6765 lh->file_names = xmalloc (lh->file_names_size
6766 * sizeof (*lh->file_names));
6767 }
6768 else if (lh->num_file_names >= lh->file_names_size)
6769 {
6770 lh->file_names_size *= 2;
6771 lh->file_names = xrealloc (lh->file_names,
6772 (lh->file_names_size
6773 * sizeof (*lh->file_names)));
6774 }
6775
6776 fe = &lh->file_names[lh->num_file_names++];
6777 fe->name = name;
6778 fe->dir_index = dir_index;
6779 fe->mod_time = mod_time;
6780 fe->length = length;
6781 fe->included_p = 0;
6782 fe->symtab = NULL;
6783 }
6784
6785
6786 /* Read the statement program header starting at OFFSET in
6787 .debug_line, according to the endianness of ABFD. Return a pointer
6788 to a struct line_header, allocated using xmalloc.
6789
6790 NOTE: the strings in the include directory and file name tables of
6791 the returned object point into debug_line_buffer, and must not be
6792 freed. */
6793 static struct line_header *
6794 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6795 struct dwarf2_cu *cu)
6796 {
6797 struct cleanup *back_to;
6798 struct line_header *lh;
6799 gdb_byte *line_ptr;
6800 unsigned int bytes_read;
6801 int i;
6802 char *cur_dir, *cur_file;
6803
6804 if (dwarf2_per_objfile->line_buffer == NULL)
6805 {
6806 complaint (&symfile_complaints, _("missing .debug_line section"));
6807 return 0;
6808 }
6809
6810 /* Make sure that at least there's room for the total_length field.
6811 That could be 12 bytes long, but we're just going to fudge that. */
6812 if (offset + 4 >= dwarf2_per_objfile->line_size)
6813 {
6814 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6815 return 0;
6816 }
6817
6818 lh = xmalloc (sizeof (*lh));
6819 memset (lh, 0, sizeof (*lh));
6820 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6821 (void *) lh);
6822
6823 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6824
6825 /* Read in the header. */
6826 lh->total_length =
6827 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6828 line_ptr += bytes_read;
6829 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6830 + dwarf2_per_objfile->line_size))
6831 {
6832 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6833 return 0;
6834 }
6835 lh->statement_program_end = line_ptr + lh->total_length;
6836 lh->version = read_2_bytes (abfd, line_ptr);
6837 line_ptr += 2;
6838 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6839 line_ptr += bytes_read;
6840 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6841 line_ptr += 1;
6842 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6843 line_ptr += 1;
6844 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6845 line_ptr += 1;
6846 lh->line_range = read_1_byte (abfd, line_ptr);
6847 line_ptr += 1;
6848 lh->opcode_base = read_1_byte (abfd, line_ptr);
6849 line_ptr += 1;
6850 lh->standard_opcode_lengths
6851 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6852
6853 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6854 for (i = 1; i < lh->opcode_base; ++i)
6855 {
6856 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6857 line_ptr += 1;
6858 }
6859
6860 /* Read directory table. */
6861 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6862 {
6863 line_ptr += bytes_read;
6864 add_include_dir (lh, cur_dir);
6865 }
6866 line_ptr += bytes_read;
6867
6868 /* Read file name table. */
6869 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6870 {
6871 unsigned int dir_index, mod_time, length;
6872
6873 line_ptr += bytes_read;
6874 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6875 line_ptr += bytes_read;
6876 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6877 line_ptr += bytes_read;
6878 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6879 line_ptr += bytes_read;
6880
6881 add_file_name (lh, cur_file, dir_index, mod_time, length);
6882 }
6883 line_ptr += bytes_read;
6884 lh->statement_program_start = line_ptr;
6885
6886 if (line_ptr > (dwarf2_per_objfile->line_buffer
6887 + dwarf2_per_objfile->line_size))
6888 complaint (&symfile_complaints,
6889 _("line number info header doesn't fit in `.debug_line' section"));
6890
6891 discard_cleanups (back_to);
6892 return lh;
6893 }
6894
6895 /* This function exists to work around a bug in certain compilers
6896 (particularly GCC 2.95), in which the first line number marker of a
6897 function does not show up until after the prologue, right before
6898 the second line number marker. This function shifts ADDRESS down
6899 to the beginning of the function if necessary, and is called on
6900 addresses passed to record_line. */
6901
6902 static CORE_ADDR
6903 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6904 {
6905 struct function_range *fn;
6906
6907 /* Find the function_range containing address. */
6908 if (!cu->first_fn)
6909 return address;
6910
6911 if (!cu->cached_fn)
6912 cu->cached_fn = cu->first_fn;
6913
6914 fn = cu->cached_fn;
6915 while (fn)
6916 if (fn->lowpc <= address && fn->highpc > address)
6917 goto found;
6918 else
6919 fn = fn->next;
6920
6921 fn = cu->first_fn;
6922 while (fn && fn != cu->cached_fn)
6923 if (fn->lowpc <= address && fn->highpc > address)
6924 goto found;
6925 else
6926 fn = fn->next;
6927
6928 return address;
6929
6930 found:
6931 if (fn->seen_line)
6932 return address;
6933 if (address != fn->lowpc)
6934 complaint (&symfile_complaints,
6935 _("misplaced first line number at 0x%lx for '%s'"),
6936 (unsigned long) address, fn->name);
6937 fn->seen_line = 1;
6938 return fn->lowpc;
6939 }
6940
6941 /* Decode the Line Number Program (LNP) for the given line_header
6942 structure and CU. The actual information extracted and the type
6943 of structures created from the LNP depends on the value of PST.
6944
6945 1. If PST is NULL, then this procedure uses the data from the program
6946 to create all necessary symbol tables, and their linetables.
6947 The compilation directory of the file is passed in COMP_DIR,
6948 and must not be NULL.
6949
6950 2. If PST is not NULL, this procedure reads the program to determine
6951 the list of files included by the unit represented by PST, and
6952 builds all the associated partial symbol tables. In this case,
6953 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6954 is not used to compute the full name of the symtab, and therefore
6955 omitting it when building the partial symtab does not introduce
6956 the potential for inconsistency - a partial symtab and its associated
6957 symbtab having a different fullname -). */
6958
6959 static void
6960 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6961 struct dwarf2_cu *cu, struct partial_symtab *pst)
6962 {
6963 gdb_byte *line_ptr, *extended_end;
6964 gdb_byte *line_end;
6965 unsigned int bytes_read, extended_len;
6966 unsigned char op_code, extended_op, adj_opcode;
6967 CORE_ADDR baseaddr;
6968 struct objfile *objfile = cu->objfile;
6969 const int decode_for_pst_p = (pst != NULL);
6970 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6971
6972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6973
6974 line_ptr = lh->statement_program_start;
6975 line_end = lh->statement_program_end;
6976
6977 /* Read the statement sequences until there's nothing left. */
6978 while (line_ptr < line_end)
6979 {
6980 /* state machine registers */
6981 CORE_ADDR address = 0;
6982 unsigned int file = 1;
6983 unsigned int line = 1;
6984 unsigned int column = 0;
6985 int is_stmt = lh->default_is_stmt;
6986 int basic_block = 0;
6987 int end_sequence = 0;
6988
6989 if (!decode_for_pst_p && lh->num_file_names >= file)
6990 {
6991 /* Start a subfile for the current file of the state machine. */
6992 /* lh->include_dirs and lh->file_names are 0-based, but the
6993 directory and file name numbers in the statement program
6994 are 1-based. */
6995 struct file_entry *fe = &lh->file_names[file - 1];
6996 char *dir = NULL;
6997
6998 if (fe->dir_index)
6999 dir = lh->include_dirs[fe->dir_index - 1];
7000
7001 dwarf2_start_subfile (fe->name, dir, comp_dir);
7002 }
7003
7004 /* Decode the table. */
7005 while (!end_sequence)
7006 {
7007 op_code = read_1_byte (abfd, line_ptr);
7008 line_ptr += 1;
7009
7010 if (op_code >= lh->opcode_base)
7011 {
7012 /* Special operand. */
7013 adj_opcode = op_code - lh->opcode_base;
7014 address += (adj_opcode / lh->line_range)
7015 * lh->minimum_instruction_length;
7016 line += lh->line_base + (adj_opcode % lh->line_range);
7017 if (lh->num_file_names < file)
7018 dwarf2_debug_line_missing_file_complaint ();
7019 else
7020 {
7021 lh->file_names[file - 1].included_p = 1;
7022 if (!decode_for_pst_p)
7023 {
7024 if (last_subfile != current_subfile)
7025 {
7026 if (last_subfile)
7027 record_line (last_subfile, 0, address);
7028 last_subfile = current_subfile;
7029 }
7030 /* Append row to matrix using current values. */
7031 record_line (current_subfile, line,
7032 check_cu_functions (address, cu));
7033 }
7034 }
7035 basic_block = 1;
7036 }
7037 else switch (op_code)
7038 {
7039 case DW_LNS_extended_op:
7040 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7041 line_ptr += bytes_read;
7042 extended_end = line_ptr + extended_len;
7043 extended_op = read_1_byte (abfd, line_ptr);
7044 line_ptr += 1;
7045 switch (extended_op)
7046 {
7047 case DW_LNE_end_sequence:
7048 end_sequence = 1;
7049
7050 if (lh->num_file_names < file)
7051 dwarf2_debug_line_missing_file_complaint ();
7052 else
7053 {
7054 lh->file_names[file - 1].included_p = 1;
7055 if (!decode_for_pst_p)
7056 record_line (current_subfile, 0, address);
7057 }
7058 break;
7059 case DW_LNE_set_address:
7060 address = read_address (abfd, line_ptr, cu, &bytes_read);
7061 line_ptr += bytes_read;
7062 address += baseaddr;
7063 break;
7064 case DW_LNE_define_file:
7065 {
7066 char *cur_file;
7067 unsigned int dir_index, mod_time, length;
7068
7069 cur_file = read_string (abfd, line_ptr, &bytes_read);
7070 line_ptr += bytes_read;
7071 dir_index =
7072 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7073 line_ptr += bytes_read;
7074 mod_time =
7075 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7076 line_ptr += bytes_read;
7077 length =
7078 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7079 line_ptr += bytes_read;
7080 add_file_name (lh, cur_file, dir_index, mod_time, length);
7081 }
7082 break;
7083 default:
7084 complaint (&symfile_complaints,
7085 _("mangled .debug_line section"));
7086 return;
7087 }
7088 /* Make sure that we parsed the extended op correctly. If e.g.
7089 we expected a different address size than the producer used,
7090 we may have read the wrong number of bytes. */
7091 if (line_ptr != extended_end)
7092 {
7093 complaint (&symfile_complaints,
7094 _("mangled .debug_line section"));
7095 return;
7096 }
7097 break;
7098 case DW_LNS_copy:
7099 if (lh->num_file_names < file)
7100 dwarf2_debug_line_missing_file_complaint ();
7101 else
7102 {
7103 lh->file_names[file - 1].included_p = 1;
7104 if (!decode_for_pst_p)
7105 {
7106 if (last_subfile != current_subfile)
7107 {
7108 if (last_subfile)
7109 record_line (last_subfile, 0, address);
7110 last_subfile = current_subfile;
7111 }
7112 record_line (current_subfile, line,
7113 check_cu_functions (address, cu));
7114 }
7115 }
7116 basic_block = 0;
7117 break;
7118 case DW_LNS_advance_pc:
7119 address += lh->minimum_instruction_length
7120 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7121 line_ptr += bytes_read;
7122 break;
7123 case DW_LNS_advance_line:
7124 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
7125 line_ptr += bytes_read;
7126 break;
7127 case DW_LNS_set_file:
7128 {
7129 /* The arrays lh->include_dirs and lh->file_names are
7130 0-based, but the directory and file name numbers in
7131 the statement program are 1-based. */
7132 struct file_entry *fe;
7133 char *dir = NULL;
7134
7135 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7136 line_ptr += bytes_read;
7137 if (lh->num_file_names < file)
7138 dwarf2_debug_line_missing_file_complaint ();
7139 else
7140 {
7141 fe = &lh->file_names[file - 1];
7142 if (fe->dir_index)
7143 dir = lh->include_dirs[fe->dir_index - 1];
7144 if (!decode_for_pst_p)
7145 {
7146 last_subfile = current_subfile;
7147 dwarf2_start_subfile (fe->name, dir, comp_dir);
7148 }
7149 }
7150 }
7151 break;
7152 case DW_LNS_set_column:
7153 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7154 line_ptr += bytes_read;
7155 break;
7156 case DW_LNS_negate_stmt:
7157 is_stmt = (!is_stmt);
7158 break;
7159 case DW_LNS_set_basic_block:
7160 basic_block = 1;
7161 break;
7162 /* Add to the address register of the state machine the
7163 address increment value corresponding to special opcode
7164 255. I.e., this value is scaled by the minimum
7165 instruction length since special opcode 255 would have
7166 scaled the the increment. */
7167 case DW_LNS_const_add_pc:
7168 address += (lh->minimum_instruction_length
7169 * ((255 - lh->opcode_base) / lh->line_range));
7170 break;
7171 case DW_LNS_fixed_advance_pc:
7172 address += read_2_bytes (abfd, line_ptr);
7173 line_ptr += 2;
7174 break;
7175 default:
7176 {
7177 /* Unknown standard opcode, ignore it. */
7178 int i;
7179
7180 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
7181 {
7182 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7183 line_ptr += bytes_read;
7184 }
7185 }
7186 }
7187 }
7188 }
7189
7190 if (decode_for_pst_p)
7191 {
7192 int file_index;
7193
7194 /* Now that we're done scanning the Line Header Program, we can
7195 create the psymtab of each included file. */
7196 for (file_index = 0; file_index < lh->num_file_names; file_index++)
7197 if (lh->file_names[file_index].included_p == 1)
7198 {
7199 const struct file_entry fe = lh->file_names [file_index];
7200 char *include_name = fe.name;
7201 char *dir_name = NULL;
7202 char *pst_filename = pst->filename;
7203
7204 if (fe.dir_index)
7205 dir_name = lh->include_dirs[fe.dir_index - 1];
7206
7207 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
7208 {
7209 include_name = concat (dir_name, SLASH_STRING,
7210 include_name, (char *)NULL);
7211 make_cleanup (xfree, include_name);
7212 }
7213
7214 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
7215 {
7216 pst_filename = concat (pst->dirname, SLASH_STRING,
7217 pst_filename, (char *)NULL);
7218 make_cleanup (xfree, pst_filename);
7219 }
7220
7221 if (strcmp (include_name, pst_filename) != 0)
7222 dwarf2_create_include_psymtab (include_name, pst, objfile);
7223 }
7224 }
7225 else
7226 {
7227 /* Make sure a symtab is created for every file, even files
7228 which contain only variables (i.e. no code with associated
7229 line numbers). */
7230
7231 int i;
7232 struct file_entry *fe;
7233
7234 for (i = 0; i < lh->num_file_names; i++)
7235 {
7236 char *dir = NULL;
7237 fe = &lh->file_names[i];
7238 if (fe->dir_index)
7239 dir = lh->include_dirs[fe->dir_index - 1];
7240 dwarf2_start_subfile (fe->name, dir, comp_dir);
7241
7242 /* Skip the main file; we don't need it, and it must be
7243 allocated last, so that it will show up before the
7244 non-primary symtabs in the objfile's symtab list. */
7245 if (current_subfile == first_subfile)
7246 continue;
7247
7248 if (current_subfile->symtab == NULL)
7249 current_subfile->symtab = allocate_symtab (current_subfile->name,
7250 cu->objfile);
7251 fe->symtab = current_subfile->symtab;
7252 }
7253 }
7254 }
7255
7256 /* Start a subfile for DWARF. FILENAME is the name of the file and
7257 DIRNAME the name of the source directory which contains FILENAME
7258 or NULL if not known. COMP_DIR is the compilation directory for the
7259 linetable's compilation unit or NULL if not known.
7260 This routine tries to keep line numbers from identical absolute and
7261 relative file names in a common subfile.
7262
7263 Using the `list' example from the GDB testsuite, which resides in
7264 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
7265 of /srcdir/list0.c yields the following debugging information for list0.c:
7266
7267 DW_AT_name: /srcdir/list0.c
7268 DW_AT_comp_dir: /compdir
7269 files.files[0].name: list0.h
7270 files.files[0].dir: /srcdir
7271 files.files[1].name: list0.c
7272 files.files[1].dir: /srcdir
7273
7274 The line number information for list0.c has to end up in a single
7275 subfile, so that `break /srcdir/list0.c:1' works as expected.
7276 start_subfile will ensure that this happens provided that we pass the
7277 concatenation of files.files[1].dir and files.files[1].name as the
7278 subfile's name. */
7279
7280 static void
7281 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
7282 {
7283 char *fullname;
7284
7285 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
7286 `start_symtab' will always pass the contents of DW_AT_comp_dir as
7287 second argument to start_subfile. To be consistent, we do the
7288 same here. In order not to lose the line information directory,
7289 we concatenate it to the filename when it makes sense.
7290 Note that the Dwarf3 standard says (speaking of filenames in line
7291 information): ``The directory index is ignored for file names
7292 that represent full path names''. Thus ignoring dirname in the
7293 `else' branch below isn't an issue. */
7294
7295 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
7296 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7297 else
7298 fullname = filename;
7299
7300 start_subfile (fullname, comp_dir);
7301
7302 if (fullname != filename)
7303 xfree (fullname);
7304 }
7305
7306 static void
7307 var_decode_location (struct attribute *attr, struct symbol *sym,
7308 struct dwarf2_cu *cu)
7309 {
7310 struct objfile *objfile = cu->objfile;
7311 struct comp_unit_head *cu_header = &cu->header;
7312
7313 /* NOTE drow/2003-01-30: There used to be a comment and some special
7314 code here to turn a symbol with DW_AT_external and a
7315 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7316 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7317 with some versions of binutils) where shared libraries could have
7318 relocations against symbols in their debug information - the
7319 minimal symbol would have the right address, but the debug info
7320 would not. It's no longer necessary, because we will explicitly
7321 apply relocations when we read in the debug information now. */
7322
7323 /* A DW_AT_location attribute with no contents indicates that a
7324 variable has been optimized away. */
7325 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7326 {
7327 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7328 return;
7329 }
7330
7331 /* Handle one degenerate form of location expression specially, to
7332 preserve GDB's previous behavior when section offsets are
7333 specified. If this is just a DW_OP_addr then mark this symbol
7334 as LOC_STATIC. */
7335
7336 if (attr_form_is_block (attr)
7337 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7338 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7339 {
7340 unsigned int dummy;
7341
7342 SYMBOL_VALUE_ADDRESS (sym) =
7343 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7344 SYMBOL_CLASS (sym) = LOC_STATIC;
7345 fixup_symbol_section (sym, objfile);
7346 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7347 SYMBOL_SECTION (sym));
7348 return;
7349 }
7350
7351 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7352 expression evaluator, and use LOC_COMPUTED only when necessary
7353 (i.e. when the value of a register or memory location is
7354 referenced, or a thread-local block, etc.). Then again, it might
7355 not be worthwhile. I'm assuming that it isn't unless performance
7356 or memory numbers show me otherwise. */
7357
7358 dwarf2_symbol_mark_computed (attr, sym, cu);
7359 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7360 }
7361
7362 /* Given a pointer to a DWARF information entry, figure out if we need
7363 to make a symbol table entry for it, and if so, create a new entry
7364 and return a pointer to it.
7365 If TYPE is NULL, determine symbol type from the die, otherwise
7366 used the passed type. */
7367
7368 static struct symbol *
7369 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7370 {
7371 struct objfile *objfile = cu->objfile;
7372 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7373 struct symbol *sym = NULL;
7374 char *name;
7375 struct attribute *attr = NULL;
7376 struct attribute *attr2 = NULL;
7377 CORE_ADDR baseaddr;
7378
7379 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7380
7381 if (die->tag != DW_TAG_namespace)
7382 name = dwarf2_linkage_name (die, cu);
7383 else
7384 name = TYPE_NAME (type);
7385
7386 if (name)
7387 {
7388 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7389 sizeof (struct symbol));
7390 OBJSTAT (objfile, n_syms++);
7391 memset (sym, 0, sizeof (struct symbol));
7392
7393 /* Cache this symbol's name and the name's demangled form (if any). */
7394 SYMBOL_LANGUAGE (sym) = cu->language;
7395 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7396
7397 /* Default assumptions.
7398 Use the passed type or decode it from the die. */
7399 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7400 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7401 if (type != NULL)
7402 SYMBOL_TYPE (sym) = type;
7403 else
7404 SYMBOL_TYPE (sym) = die_type (die, cu);
7405 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7406 if (attr)
7407 {
7408 SYMBOL_LINE (sym) = DW_UNSND (attr);
7409 }
7410
7411 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7412 if (attr)
7413 {
7414 int file_index = DW_UNSND (attr);
7415 if (cu->line_header == NULL
7416 || file_index > cu->line_header->num_file_names)
7417 complaint (&symfile_complaints,
7418 _("file index out of range"));
7419 else if (file_index > 0)
7420 {
7421 struct file_entry *fe;
7422 fe = &cu->line_header->file_names[file_index - 1];
7423 SYMBOL_SYMTAB (sym) = fe->symtab;
7424 }
7425 }
7426
7427 switch (die->tag)
7428 {
7429 case DW_TAG_label:
7430 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7431 if (attr)
7432 {
7433 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7434 }
7435 SYMBOL_CLASS (sym) = LOC_LABEL;
7436 break;
7437 case DW_TAG_subprogram:
7438 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7439 finish_block. */
7440 SYMBOL_CLASS (sym) = LOC_BLOCK;
7441 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7442 if ((attr2 && (DW_UNSND (attr2) != 0))
7443 || cu->language == language_ada)
7444 {
7445 /* Subprograms marked external are stored as a global symbol.
7446 Ada subprograms, whether marked external or not, are always
7447 stored as a global symbol, because we want to be able to
7448 access them globally. For instance, we want to be able
7449 to break on a nested subprogram without having to
7450 specify the context. */
7451 add_symbol_to_list (sym, &global_symbols);
7452 }
7453 else
7454 {
7455 add_symbol_to_list (sym, cu->list_in_scope);
7456 }
7457 break;
7458 case DW_TAG_variable:
7459 /* Compilation with minimal debug info may result in variables
7460 with missing type entries. Change the misleading `void' type
7461 to something sensible. */
7462 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7463 SYMBOL_TYPE (sym)
7464 = builtin_type (gdbarch)->nodebug_data_symbol;
7465
7466 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7467 if (attr)
7468 {
7469 dwarf2_const_value (attr, sym, cu);
7470 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7471 if (attr2 && (DW_UNSND (attr2) != 0))
7472 add_symbol_to_list (sym, &global_symbols);
7473 else
7474 add_symbol_to_list (sym, cu->list_in_scope);
7475 break;
7476 }
7477 attr = dwarf2_attr (die, DW_AT_location, cu);
7478 if (attr)
7479 {
7480 var_decode_location (attr, sym, cu);
7481 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7482 if (attr2 && (DW_UNSND (attr2) != 0))
7483 add_symbol_to_list (sym, &global_symbols);
7484 else
7485 add_symbol_to_list (sym, cu->list_in_scope);
7486 }
7487 else
7488 {
7489 /* We do not know the address of this symbol.
7490 If it is an external symbol and we have type information
7491 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7492 The address of the variable will then be determined from
7493 the minimal symbol table whenever the variable is
7494 referenced. */
7495 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7496 if (attr2 && (DW_UNSND (attr2) != 0)
7497 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7498 {
7499 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7500 add_symbol_to_list (sym, &global_symbols);
7501 }
7502 }
7503 break;
7504 case DW_TAG_formal_parameter:
7505 SYMBOL_IS_ARGUMENT (sym) = 1;
7506 attr = dwarf2_attr (die, DW_AT_location, cu);
7507 if (attr)
7508 {
7509 var_decode_location (attr, sym, cu);
7510 }
7511 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7512 if (attr)
7513 {
7514 dwarf2_const_value (attr, sym, cu);
7515 }
7516 add_symbol_to_list (sym, cu->list_in_scope);
7517 break;
7518 case DW_TAG_unspecified_parameters:
7519 /* From varargs functions; gdb doesn't seem to have any
7520 interest in this information, so just ignore it for now.
7521 (FIXME?) */
7522 break;
7523 case DW_TAG_class_type:
7524 case DW_TAG_interface_type:
7525 case DW_TAG_structure_type:
7526 case DW_TAG_union_type:
7527 case DW_TAG_set_type:
7528 case DW_TAG_enumeration_type:
7529 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7530 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7531
7532 /* Make sure that the symbol includes appropriate enclosing
7533 classes/namespaces in its name. These are calculated in
7534 read_structure_type, and the correct name is saved in
7535 the type. */
7536
7537 if (cu->language == language_cplus
7538 || cu->language == language_java)
7539 {
7540 struct type *type = SYMBOL_TYPE (sym);
7541
7542 if (TYPE_TAG_NAME (type) != NULL)
7543 {
7544 /* FIXME: carlton/2003-11-10: Should this use
7545 SYMBOL_SET_NAMES instead? (The same problem also
7546 arises further down in this function.) */
7547 /* The type's name is already allocated along with
7548 this objfile, so we don't need to duplicate it
7549 for the symbol. */
7550 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7551 }
7552 }
7553
7554 {
7555 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7556 really ever be static objects: otherwise, if you try
7557 to, say, break of a class's method and you're in a file
7558 which doesn't mention that class, it won't work unless
7559 the check for all static symbols in lookup_symbol_aux
7560 saves you. See the OtherFileClass tests in
7561 gdb.c++/namespace.exp. */
7562
7563 struct pending **list_to_add;
7564
7565 list_to_add = (cu->list_in_scope == &file_symbols
7566 && (cu->language == language_cplus
7567 || cu->language == language_java)
7568 ? &global_symbols : cu->list_in_scope);
7569
7570 add_symbol_to_list (sym, list_to_add);
7571
7572 /* The semantics of C++ state that "struct foo { ... }" also
7573 defines a typedef for "foo". A Java class declaration also
7574 defines a typedef for the class. */
7575 if (cu->language == language_cplus
7576 || cu->language == language_java
7577 || cu->language == language_ada)
7578 {
7579 /* The symbol's name is already allocated along with
7580 this objfile, so we don't need to duplicate it for
7581 the type. */
7582 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7583 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7584 }
7585 }
7586 break;
7587 case DW_TAG_typedef:
7588 if (processing_has_namespace_info
7589 && processing_current_prefix[0] != '\0')
7590 {
7591 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7592 processing_current_prefix,
7593 name, cu);
7594 }
7595 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7596 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7597 add_symbol_to_list (sym, cu->list_in_scope);
7598 break;
7599 case DW_TAG_base_type:
7600 case DW_TAG_subrange_type:
7601 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7602 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7603 add_symbol_to_list (sym, cu->list_in_scope);
7604 break;
7605 case DW_TAG_enumerator:
7606 if (processing_has_namespace_info
7607 && processing_current_prefix[0] != '\0')
7608 {
7609 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7610 processing_current_prefix,
7611 name, cu);
7612 }
7613 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7614 if (attr)
7615 {
7616 dwarf2_const_value (attr, sym, cu);
7617 }
7618 {
7619 /* NOTE: carlton/2003-11-10: See comment above in the
7620 DW_TAG_class_type, etc. block. */
7621
7622 struct pending **list_to_add;
7623
7624 list_to_add = (cu->list_in_scope == &file_symbols
7625 && (cu->language == language_cplus
7626 || cu->language == language_java)
7627 ? &global_symbols : cu->list_in_scope);
7628
7629 add_symbol_to_list (sym, list_to_add);
7630 }
7631 break;
7632 case DW_TAG_namespace:
7633 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7634 add_symbol_to_list (sym, &global_symbols);
7635 break;
7636 default:
7637 /* Not a tag we recognize. Hopefully we aren't processing
7638 trash data, but since we must specifically ignore things
7639 we don't recognize, there is nothing else we should do at
7640 this point. */
7641 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7642 dwarf_tag_name (die->tag));
7643 break;
7644 }
7645 }
7646 return (sym);
7647 }
7648
7649 /* Copy constant value from an attribute to a symbol. */
7650
7651 static void
7652 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7653 struct dwarf2_cu *cu)
7654 {
7655 struct objfile *objfile = cu->objfile;
7656 struct comp_unit_head *cu_header = &cu->header;
7657 struct dwarf_block *blk;
7658
7659 switch (attr->form)
7660 {
7661 case DW_FORM_addr:
7662 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7663 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7664 cu_header->addr_size,
7665 TYPE_LENGTH (SYMBOL_TYPE
7666 (sym)));
7667 SYMBOL_VALUE_BYTES (sym) =
7668 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7669 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7670 it's body - store_unsigned_integer. */
7671 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7672 DW_ADDR (attr));
7673 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7674 break;
7675 case DW_FORM_strp:
7676 /* DW_STRING is already allocated on the obstack, point directly
7677 to it. */
7678 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
7679 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7680 break;
7681 case DW_FORM_block1:
7682 case DW_FORM_block2:
7683 case DW_FORM_block4:
7684 case DW_FORM_block:
7685 blk = DW_BLOCK (attr);
7686 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7687 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7688 blk->size,
7689 TYPE_LENGTH (SYMBOL_TYPE
7690 (sym)));
7691 SYMBOL_VALUE_BYTES (sym) =
7692 obstack_alloc (&objfile->objfile_obstack, blk->size);
7693 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7694 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7695 break;
7696
7697 /* The DW_AT_const_value attributes are supposed to carry the
7698 symbol's value "represented as it would be on the target
7699 architecture." By the time we get here, it's already been
7700 converted to host endianness, so we just need to sign- or
7701 zero-extend it as appropriate. */
7702 case DW_FORM_data1:
7703 dwarf2_const_value_data (attr, sym, 8);
7704 break;
7705 case DW_FORM_data2:
7706 dwarf2_const_value_data (attr, sym, 16);
7707 break;
7708 case DW_FORM_data4:
7709 dwarf2_const_value_data (attr, sym, 32);
7710 break;
7711 case DW_FORM_data8:
7712 dwarf2_const_value_data (attr, sym, 64);
7713 break;
7714
7715 case DW_FORM_sdata:
7716 SYMBOL_VALUE (sym) = DW_SND (attr);
7717 SYMBOL_CLASS (sym) = LOC_CONST;
7718 break;
7719
7720 case DW_FORM_udata:
7721 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7722 SYMBOL_CLASS (sym) = LOC_CONST;
7723 break;
7724
7725 default:
7726 complaint (&symfile_complaints,
7727 _("unsupported const value attribute form: '%s'"),
7728 dwarf_form_name (attr->form));
7729 SYMBOL_VALUE (sym) = 0;
7730 SYMBOL_CLASS (sym) = LOC_CONST;
7731 break;
7732 }
7733 }
7734
7735
7736 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7737 or zero-extend it as appropriate for the symbol's type. */
7738 static void
7739 dwarf2_const_value_data (struct attribute *attr,
7740 struct symbol *sym,
7741 int bits)
7742 {
7743 LONGEST l = DW_UNSND (attr);
7744
7745 if (bits < sizeof (l) * 8)
7746 {
7747 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7748 l &= ((LONGEST) 1 << bits) - 1;
7749 else
7750 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7751 }
7752
7753 SYMBOL_VALUE (sym) = l;
7754 SYMBOL_CLASS (sym) = LOC_CONST;
7755 }
7756
7757
7758 /* Return the type of the die in question using its DW_AT_type attribute. */
7759
7760 static struct type *
7761 die_type (struct die_info *die, struct dwarf2_cu *cu)
7762 {
7763 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7764 struct type *type;
7765 struct attribute *type_attr;
7766 struct die_info *type_die;
7767
7768 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7769 if (!type_attr)
7770 {
7771 /* A missing DW_AT_type represents a void type. */
7772 return builtin_type (gdbarch)->builtin_void;
7773 }
7774 else
7775 type_die = follow_die_ref (die, type_attr, cu);
7776
7777 type = tag_type_to_type (type_die, cu);
7778 if (!type)
7779 {
7780 dump_die (type_die);
7781 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7782 cu->objfile->name);
7783 }
7784 return type;
7785 }
7786
7787 /* Return the containing type of the die in question using its
7788 DW_AT_containing_type attribute. */
7789
7790 static struct type *
7791 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7792 {
7793 struct type *type = NULL;
7794 struct attribute *type_attr;
7795 struct die_info *type_die = NULL;
7796
7797 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7798 if (type_attr)
7799 {
7800 type_die = follow_die_ref (die, type_attr, cu);
7801 type = tag_type_to_type (type_die, cu);
7802 }
7803 if (!type)
7804 {
7805 if (type_die)
7806 dump_die (type_die);
7807 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7808 cu->objfile->name);
7809 }
7810 return type;
7811 }
7812
7813 static struct type *
7814 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7815 {
7816 struct type *this_type;
7817
7818 this_type = read_type_die (die, cu);
7819 if (!this_type)
7820 {
7821 dump_die (die);
7822 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7823 cu->objfile->name);
7824 }
7825 return this_type;
7826 }
7827
7828 static struct type *
7829 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7830 {
7831 char *prefix;
7832 const char *old_prefix;
7833 struct cleanup *back_to;
7834 struct type *this_type;
7835
7836 this_type = get_die_type (die, cu);
7837 if (this_type)
7838 return this_type;
7839
7840 prefix = determine_prefix (die, cu);
7841 old_prefix = processing_current_prefix;
7842 back_to = make_cleanup (xfree, prefix);
7843 processing_current_prefix = prefix;
7844
7845 switch (die->tag)
7846 {
7847 case DW_TAG_class_type:
7848 case DW_TAG_interface_type:
7849 case DW_TAG_structure_type:
7850 case DW_TAG_union_type:
7851 this_type = read_structure_type (die, cu);
7852 break;
7853 case DW_TAG_enumeration_type:
7854 this_type = read_enumeration_type (die, cu);
7855 break;
7856 case DW_TAG_subprogram:
7857 case DW_TAG_subroutine_type:
7858 this_type = read_subroutine_type (die, cu);
7859 break;
7860 case DW_TAG_array_type:
7861 this_type = read_array_type (die, cu);
7862 break;
7863 case DW_TAG_set_type:
7864 this_type = read_set_type (die, cu);
7865 break;
7866 case DW_TAG_pointer_type:
7867 this_type = read_tag_pointer_type (die, cu);
7868 break;
7869 case DW_TAG_ptr_to_member_type:
7870 this_type = read_tag_ptr_to_member_type (die, cu);
7871 break;
7872 case DW_TAG_reference_type:
7873 this_type = read_tag_reference_type (die, cu);
7874 break;
7875 case DW_TAG_const_type:
7876 this_type = read_tag_const_type (die, cu);
7877 break;
7878 case DW_TAG_volatile_type:
7879 this_type = read_tag_volatile_type (die, cu);
7880 break;
7881 case DW_TAG_string_type:
7882 this_type = read_tag_string_type (die, cu);
7883 break;
7884 case DW_TAG_typedef:
7885 this_type = read_typedef (die, cu);
7886 break;
7887 case DW_TAG_subrange_type:
7888 this_type = read_subrange_type (die, cu);
7889 break;
7890 case DW_TAG_base_type:
7891 this_type = read_base_type (die, cu);
7892 break;
7893 case DW_TAG_unspecified_type:
7894 this_type = read_unspecified_type (die, cu);
7895 break;
7896 default:
7897 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7898 dwarf_tag_name (die->tag));
7899 break;
7900 }
7901
7902 processing_current_prefix = old_prefix;
7903 do_cleanups (back_to);
7904 return this_type;
7905 }
7906
7907 /* Return the name of the namespace/class that DIE is defined within,
7908 or "" if we can't tell. The caller should xfree the result. */
7909
7910 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7911 therein) for an example of how to use this function to deal with
7912 DW_AT_specification. */
7913
7914 static char *
7915 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7916 {
7917 struct die_info *parent;
7918
7919 if (cu->language != language_cplus
7920 && cu->language != language_java)
7921 return NULL;
7922
7923 parent = die->parent;
7924
7925 if (parent == NULL)
7926 {
7927 return xstrdup ("");
7928 }
7929 else
7930 {
7931 switch (parent->tag) {
7932 case DW_TAG_namespace:
7933 {
7934 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7935 before doing this check? */
7936 struct type *parent_type = get_die_type (parent, cu);
7937 if (parent_type != NULL && TYPE_TAG_NAME (parent_type) != NULL)
7938 {
7939 return xstrdup (TYPE_TAG_NAME (parent_type));
7940 }
7941 else
7942 {
7943 int dummy;
7944 char *parent_prefix = determine_prefix (parent, cu);
7945 char *retval = typename_concat (NULL, parent_prefix,
7946 namespace_name (parent, &dummy,
7947 cu),
7948 cu);
7949 xfree (parent_prefix);
7950 return retval;
7951 }
7952 }
7953 break;
7954 case DW_TAG_class_type:
7955 case DW_TAG_interface_type:
7956 case DW_TAG_structure_type:
7957 {
7958 struct type *parent_type = get_die_type (parent, cu);
7959 if (parent_type != NULL && TYPE_TAG_NAME (parent_type) != NULL)
7960 {
7961 return xstrdup (TYPE_TAG_NAME (parent_type));
7962 }
7963 else
7964 {
7965 const char *old_prefix = processing_current_prefix;
7966 char *new_prefix = determine_prefix (parent, cu);
7967 char *retval;
7968
7969 processing_current_prefix = new_prefix;
7970 retval = determine_class_name (parent, cu);
7971 processing_current_prefix = old_prefix;
7972
7973 xfree (new_prefix);
7974 return retval;
7975 }
7976 }
7977 default:
7978 return determine_prefix (parent, cu);
7979 }
7980 }
7981 }
7982
7983 /* Return a newly-allocated string formed by concatenating PREFIX and
7984 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7985 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7986 perform an obconcat, otherwise allocate storage for the result. The CU argument
7987 is used to determine the language and hence, the appropriate separator. */
7988
7989 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7990
7991 static char *
7992 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7993 struct dwarf2_cu *cu)
7994 {
7995 char *sep;
7996
7997 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7998 sep = "";
7999 else if (cu->language == language_java)
8000 sep = ".";
8001 else
8002 sep = "::";
8003
8004 if (obs == NULL)
8005 {
8006 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
8007 retval[0] = '\0';
8008
8009 if (prefix)
8010 {
8011 strcpy (retval, prefix);
8012 strcat (retval, sep);
8013 }
8014 if (suffix)
8015 strcat (retval, suffix);
8016
8017 return retval;
8018 }
8019 else
8020 {
8021 /* We have an obstack. */
8022 return obconcat (obs, prefix, sep, suffix);
8023 }
8024 }
8025
8026 #if 0
8027 struct die_info *
8028 copy_die (struct die_info *old_die)
8029 {
8030 struct die_info *new_die;
8031 int i, num_attrs;
8032
8033 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
8034 memset (new_die, 0, sizeof (struct die_info));
8035
8036 new_die->tag = old_die->tag;
8037 new_die->has_children = old_die->has_children;
8038 new_die->abbrev = old_die->abbrev;
8039 new_die->offset = old_die->offset;
8040
8041 num_attrs = old_die->num_attrs;
8042 new_die->num_attrs = num_attrs;
8043 new_die->attrs = (struct attribute *)
8044 xmalloc (num_attrs * sizeof (struct attribute));
8045
8046 for (i = 0; i < old_die->num_attrs; ++i)
8047 {
8048 new_die->attrs[i].name = old_die->attrs[i].name;
8049 new_die->attrs[i].form = old_die->attrs[i].form;
8050 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
8051 }
8052
8053 new_die->next = NULL;
8054 return new_die;
8055 }
8056 #endif
8057
8058 /* Return sibling of die, NULL if no sibling. */
8059
8060 static struct die_info *
8061 sibling_die (struct die_info *die)
8062 {
8063 return die->sibling;
8064 }
8065
8066 /* Get linkage name of a die, return NULL if not found. */
8067
8068 static char *
8069 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8070 {
8071 struct attribute *attr;
8072
8073 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8074 if (attr && DW_STRING (attr))
8075 return DW_STRING (attr);
8076 attr = dwarf2_attr (die, DW_AT_name, cu);
8077 if (attr && DW_STRING (attr))
8078 return DW_STRING (attr);
8079 return NULL;
8080 }
8081
8082 /* Get name of a die, return NULL if not found. */
8083
8084 static char *
8085 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
8086 {
8087 struct attribute *attr;
8088
8089 attr = dwarf2_attr (die, DW_AT_name, cu);
8090 if (attr && DW_STRING (attr))
8091 return DW_STRING (attr);
8092 return NULL;
8093 }
8094
8095 /* Return the die that this die in an extension of, or NULL if there
8096 is none. */
8097
8098 static struct die_info *
8099 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
8100 {
8101 struct attribute *attr;
8102
8103 attr = dwarf2_attr (die, DW_AT_extension, cu);
8104 if (attr == NULL)
8105 return NULL;
8106
8107 return follow_die_ref (die, attr, cu);
8108 }
8109
8110 /* Convert a DIE tag into its string name. */
8111
8112 static char *
8113 dwarf_tag_name (unsigned tag)
8114 {
8115 switch (tag)
8116 {
8117 case DW_TAG_padding:
8118 return "DW_TAG_padding";
8119 case DW_TAG_array_type:
8120 return "DW_TAG_array_type";
8121 case DW_TAG_class_type:
8122 return "DW_TAG_class_type";
8123 case DW_TAG_entry_point:
8124 return "DW_TAG_entry_point";
8125 case DW_TAG_enumeration_type:
8126 return "DW_TAG_enumeration_type";
8127 case DW_TAG_formal_parameter:
8128 return "DW_TAG_formal_parameter";
8129 case DW_TAG_imported_declaration:
8130 return "DW_TAG_imported_declaration";
8131 case DW_TAG_label:
8132 return "DW_TAG_label";
8133 case DW_TAG_lexical_block:
8134 return "DW_TAG_lexical_block";
8135 case DW_TAG_member:
8136 return "DW_TAG_member";
8137 case DW_TAG_pointer_type:
8138 return "DW_TAG_pointer_type";
8139 case DW_TAG_reference_type:
8140 return "DW_TAG_reference_type";
8141 case DW_TAG_compile_unit:
8142 return "DW_TAG_compile_unit";
8143 case DW_TAG_string_type:
8144 return "DW_TAG_string_type";
8145 case DW_TAG_structure_type:
8146 return "DW_TAG_structure_type";
8147 case DW_TAG_subroutine_type:
8148 return "DW_TAG_subroutine_type";
8149 case DW_TAG_typedef:
8150 return "DW_TAG_typedef";
8151 case DW_TAG_union_type:
8152 return "DW_TAG_union_type";
8153 case DW_TAG_unspecified_parameters:
8154 return "DW_TAG_unspecified_parameters";
8155 case DW_TAG_variant:
8156 return "DW_TAG_variant";
8157 case DW_TAG_common_block:
8158 return "DW_TAG_common_block";
8159 case DW_TAG_common_inclusion:
8160 return "DW_TAG_common_inclusion";
8161 case DW_TAG_inheritance:
8162 return "DW_TAG_inheritance";
8163 case DW_TAG_inlined_subroutine:
8164 return "DW_TAG_inlined_subroutine";
8165 case DW_TAG_module:
8166 return "DW_TAG_module";
8167 case DW_TAG_ptr_to_member_type:
8168 return "DW_TAG_ptr_to_member_type";
8169 case DW_TAG_set_type:
8170 return "DW_TAG_set_type";
8171 case DW_TAG_subrange_type:
8172 return "DW_TAG_subrange_type";
8173 case DW_TAG_with_stmt:
8174 return "DW_TAG_with_stmt";
8175 case DW_TAG_access_declaration:
8176 return "DW_TAG_access_declaration";
8177 case DW_TAG_base_type:
8178 return "DW_TAG_base_type";
8179 case DW_TAG_catch_block:
8180 return "DW_TAG_catch_block";
8181 case DW_TAG_const_type:
8182 return "DW_TAG_const_type";
8183 case DW_TAG_constant:
8184 return "DW_TAG_constant";
8185 case DW_TAG_enumerator:
8186 return "DW_TAG_enumerator";
8187 case DW_TAG_file_type:
8188 return "DW_TAG_file_type";
8189 case DW_TAG_friend:
8190 return "DW_TAG_friend";
8191 case DW_TAG_namelist:
8192 return "DW_TAG_namelist";
8193 case DW_TAG_namelist_item:
8194 return "DW_TAG_namelist_item";
8195 case DW_TAG_packed_type:
8196 return "DW_TAG_packed_type";
8197 case DW_TAG_subprogram:
8198 return "DW_TAG_subprogram";
8199 case DW_TAG_template_type_param:
8200 return "DW_TAG_template_type_param";
8201 case DW_TAG_template_value_param:
8202 return "DW_TAG_template_value_param";
8203 case DW_TAG_thrown_type:
8204 return "DW_TAG_thrown_type";
8205 case DW_TAG_try_block:
8206 return "DW_TAG_try_block";
8207 case DW_TAG_variant_part:
8208 return "DW_TAG_variant_part";
8209 case DW_TAG_variable:
8210 return "DW_TAG_variable";
8211 case DW_TAG_volatile_type:
8212 return "DW_TAG_volatile_type";
8213 case DW_TAG_dwarf_procedure:
8214 return "DW_TAG_dwarf_procedure";
8215 case DW_TAG_restrict_type:
8216 return "DW_TAG_restrict_type";
8217 case DW_TAG_interface_type:
8218 return "DW_TAG_interface_type";
8219 case DW_TAG_namespace:
8220 return "DW_TAG_namespace";
8221 case DW_TAG_imported_module:
8222 return "DW_TAG_imported_module";
8223 case DW_TAG_unspecified_type:
8224 return "DW_TAG_unspecified_type";
8225 case DW_TAG_partial_unit:
8226 return "DW_TAG_partial_unit";
8227 case DW_TAG_imported_unit:
8228 return "DW_TAG_imported_unit";
8229 case DW_TAG_condition:
8230 return "DW_TAG_condition";
8231 case DW_TAG_shared_type:
8232 return "DW_TAG_shared_type";
8233 case DW_TAG_MIPS_loop:
8234 return "DW_TAG_MIPS_loop";
8235 case DW_TAG_HP_array_descriptor:
8236 return "DW_TAG_HP_array_descriptor";
8237 case DW_TAG_format_label:
8238 return "DW_TAG_format_label";
8239 case DW_TAG_function_template:
8240 return "DW_TAG_function_template";
8241 case DW_TAG_class_template:
8242 return "DW_TAG_class_template";
8243 case DW_TAG_GNU_BINCL:
8244 return "DW_TAG_GNU_BINCL";
8245 case DW_TAG_GNU_EINCL:
8246 return "DW_TAG_GNU_EINCL";
8247 case DW_TAG_upc_shared_type:
8248 return "DW_TAG_upc_shared_type";
8249 case DW_TAG_upc_strict_type:
8250 return "DW_TAG_upc_strict_type";
8251 case DW_TAG_upc_relaxed_type:
8252 return "DW_TAG_upc_relaxed_type";
8253 case DW_TAG_PGI_kanji_type:
8254 return "DW_TAG_PGI_kanji_type";
8255 case DW_TAG_PGI_interface_block:
8256 return "DW_TAG_PGI_interface_block";
8257 default:
8258 return "DW_TAG_<unknown>";
8259 }
8260 }
8261
8262 /* Convert a DWARF attribute code into its string name. */
8263
8264 static char *
8265 dwarf_attr_name (unsigned attr)
8266 {
8267 switch (attr)
8268 {
8269 case DW_AT_sibling:
8270 return "DW_AT_sibling";
8271 case DW_AT_location:
8272 return "DW_AT_location";
8273 case DW_AT_name:
8274 return "DW_AT_name";
8275 case DW_AT_ordering:
8276 return "DW_AT_ordering";
8277 case DW_AT_subscr_data:
8278 return "DW_AT_subscr_data";
8279 case DW_AT_byte_size:
8280 return "DW_AT_byte_size";
8281 case DW_AT_bit_offset:
8282 return "DW_AT_bit_offset";
8283 case DW_AT_bit_size:
8284 return "DW_AT_bit_size";
8285 case DW_AT_element_list:
8286 return "DW_AT_element_list";
8287 case DW_AT_stmt_list:
8288 return "DW_AT_stmt_list";
8289 case DW_AT_low_pc:
8290 return "DW_AT_low_pc";
8291 case DW_AT_high_pc:
8292 return "DW_AT_high_pc";
8293 case DW_AT_language:
8294 return "DW_AT_language";
8295 case DW_AT_member:
8296 return "DW_AT_member";
8297 case DW_AT_discr:
8298 return "DW_AT_discr";
8299 case DW_AT_discr_value:
8300 return "DW_AT_discr_value";
8301 case DW_AT_visibility:
8302 return "DW_AT_visibility";
8303 case DW_AT_import:
8304 return "DW_AT_import";
8305 case DW_AT_string_length:
8306 return "DW_AT_string_length";
8307 case DW_AT_common_reference:
8308 return "DW_AT_common_reference";
8309 case DW_AT_comp_dir:
8310 return "DW_AT_comp_dir";
8311 case DW_AT_const_value:
8312 return "DW_AT_const_value";
8313 case DW_AT_containing_type:
8314 return "DW_AT_containing_type";
8315 case DW_AT_default_value:
8316 return "DW_AT_default_value";
8317 case DW_AT_inline:
8318 return "DW_AT_inline";
8319 case DW_AT_is_optional:
8320 return "DW_AT_is_optional";
8321 case DW_AT_lower_bound:
8322 return "DW_AT_lower_bound";
8323 case DW_AT_producer:
8324 return "DW_AT_producer";
8325 case DW_AT_prototyped:
8326 return "DW_AT_prototyped";
8327 case DW_AT_return_addr:
8328 return "DW_AT_return_addr";
8329 case DW_AT_start_scope:
8330 return "DW_AT_start_scope";
8331 case DW_AT_bit_stride:
8332 return "DW_AT_bit_stride";
8333 case DW_AT_upper_bound:
8334 return "DW_AT_upper_bound";
8335 case DW_AT_abstract_origin:
8336 return "DW_AT_abstract_origin";
8337 case DW_AT_accessibility:
8338 return "DW_AT_accessibility";
8339 case DW_AT_address_class:
8340 return "DW_AT_address_class";
8341 case DW_AT_artificial:
8342 return "DW_AT_artificial";
8343 case DW_AT_base_types:
8344 return "DW_AT_base_types";
8345 case DW_AT_calling_convention:
8346 return "DW_AT_calling_convention";
8347 case DW_AT_count:
8348 return "DW_AT_count";
8349 case DW_AT_data_member_location:
8350 return "DW_AT_data_member_location";
8351 case DW_AT_decl_column:
8352 return "DW_AT_decl_column";
8353 case DW_AT_decl_file:
8354 return "DW_AT_decl_file";
8355 case DW_AT_decl_line:
8356 return "DW_AT_decl_line";
8357 case DW_AT_declaration:
8358 return "DW_AT_declaration";
8359 case DW_AT_discr_list:
8360 return "DW_AT_discr_list";
8361 case DW_AT_encoding:
8362 return "DW_AT_encoding";
8363 case DW_AT_external:
8364 return "DW_AT_external";
8365 case DW_AT_frame_base:
8366 return "DW_AT_frame_base";
8367 case DW_AT_friend:
8368 return "DW_AT_friend";
8369 case DW_AT_identifier_case:
8370 return "DW_AT_identifier_case";
8371 case DW_AT_macro_info:
8372 return "DW_AT_macro_info";
8373 case DW_AT_namelist_items:
8374 return "DW_AT_namelist_items";
8375 case DW_AT_priority:
8376 return "DW_AT_priority";
8377 case DW_AT_segment:
8378 return "DW_AT_segment";
8379 case DW_AT_specification:
8380 return "DW_AT_specification";
8381 case DW_AT_static_link:
8382 return "DW_AT_static_link";
8383 case DW_AT_type:
8384 return "DW_AT_type";
8385 case DW_AT_use_location:
8386 return "DW_AT_use_location";
8387 case DW_AT_variable_parameter:
8388 return "DW_AT_variable_parameter";
8389 case DW_AT_virtuality:
8390 return "DW_AT_virtuality";
8391 case DW_AT_vtable_elem_location:
8392 return "DW_AT_vtable_elem_location";
8393 /* DWARF 3 values. */
8394 case DW_AT_allocated:
8395 return "DW_AT_allocated";
8396 case DW_AT_associated:
8397 return "DW_AT_associated";
8398 case DW_AT_data_location:
8399 return "DW_AT_data_location";
8400 case DW_AT_byte_stride:
8401 return "DW_AT_byte_stride";
8402 case DW_AT_entry_pc:
8403 return "DW_AT_entry_pc";
8404 case DW_AT_use_UTF8:
8405 return "DW_AT_use_UTF8";
8406 case DW_AT_extension:
8407 return "DW_AT_extension";
8408 case DW_AT_ranges:
8409 return "DW_AT_ranges";
8410 case DW_AT_trampoline:
8411 return "DW_AT_trampoline";
8412 case DW_AT_call_column:
8413 return "DW_AT_call_column";
8414 case DW_AT_call_file:
8415 return "DW_AT_call_file";
8416 case DW_AT_call_line:
8417 return "DW_AT_call_line";
8418 case DW_AT_description:
8419 return "DW_AT_description";
8420 case DW_AT_binary_scale:
8421 return "DW_AT_binary_scale";
8422 case DW_AT_decimal_scale:
8423 return "DW_AT_decimal_scale";
8424 case DW_AT_small:
8425 return "DW_AT_small";
8426 case DW_AT_decimal_sign:
8427 return "DW_AT_decimal_sign";
8428 case DW_AT_digit_count:
8429 return "DW_AT_digit_count";
8430 case DW_AT_picture_string:
8431 return "DW_AT_picture_string";
8432 case DW_AT_mutable:
8433 return "DW_AT_mutable";
8434 case DW_AT_threads_scaled:
8435 return "DW_AT_threads_scaled";
8436 case DW_AT_explicit:
8437 return "DW_AT_explicit";
8438 case DW_AT_object_pointer:
8439 return "DW_AT_object_pointer";
8440 case DW_AT_endianity:
8441 return "DW_AT_endianity";
8442 case DW_AT_elemental:
8443 return "DW_AT_elemental";
8444 case DW_AT_pure:
8445 return "DW_AT_pure";
8446 case DW_AT_recursive:
8447 return "DW_AT_recursive";
8448 #ifdef MIPS
8449 /* SGI/MIPS extensions. */
8450 case DW_AT_MIPS_fde:
8451 return "DW_AT_MIPS_fde";
8452 case DW_AT_MIPS_loop_begin:
8453 return "DW_AT_MIPS_loop_begin";
8454 case DW_AT_MIPS_tail_loop_begin:
8455 return "DW_AT_MIPS_tail_loop_begin";
8456 case DW_AT_MIPS_epilog_begin:
8457 return "DW_AT_MIPS_epilog_begin";
8458 case DW_AT_MIPS_loop_unroll_factor:
8459 return "DW_AT_MIPS_loop_unroll_factor";
8460 case DW_AT_MIPS_software_pipeline_depth:
8461 return "DW_AT_MIPS_software_pipeline_depth";
8462 case DW_AT_MIPS_linkage_name:
8463 return "DW_AT_MIPS_linkage_name";
8464 case DW_AT_MIPS_stride:
8465 return "DW_AT_MIPS_stride";
8466 case DW_AT_MIPS_abstract_name:
8467 return "DW_AT_MIPS_abstract_name";
8468 case DW_AT_MIPS_clone_origin:
8469 return "DW_AT_MIPS_clone_origin";
8470 case DW_AT_MIPS_has_inlines:
8471 return "DW_AT_MIPS_has_inlines";
8472 #endif
8473 /* HP extensions. */
8474 case DW_AT_HP_block_index:
8475 return "DW_AT_HP_block_index";
8476 case DW_AT_HP_unmodifiable:
8477 return "DW_AT_HP_unmodifiable";
8478 case DW_AT_HP_actuals_stmt_list:
8479 return "DW_AT_HP_actuals_stmt_list";
8480 case DW_AT_HP_proc_per_section:
8481 return "DW_AT_HP_proc_per_section";
8482 case DW_AT_HP_raw_data_ptr:
8483 return "DW_AT_HP_raw_data_ptr";
8484 case DW_AT_HP_pass_by_reference:
8485 return "DW_AT_HP_pass_by_reference";
8486 case DW_AT_HP_opt_level:
8487 return "DW_AT_HP_opt_level";
8488 case DW_AT_HP_prof_version_id:
8489 return "DW_AT_HP_prof_version_id";
8490 case DW_AT_HP_opt_flags:
8491 return "DW_AT_HP_opt_flags";
8492 case DW_AT_HP_cold_region_low_pc:
8493 return "DW_AT_HP_cold_region_low_pc";
8494 case DW_AT_HP_cold_region_high_pc:
8495 return "DW_AT_HP_cold_region_high_pc";
8496 case DW_AT_HP_all_variables_modifiable:
8497 return "DW_AT_HP_all_variables_modifiable";
8498 case DW_AT_HP_linkage_name:
8499 return "DW_AT_HP_linkage_name";
8500 case DW_AT_HP_prof_flags:
8501 return "DW_AT_HP_prof_flags";
8502 /* GNU extensions. */
8503 case DW_AT_sf_names:
8504 return "DW_AT_sf_names";
8505 case DW_AT_src_info:
8506 return "DW_AT_src_info";
8507 case DW_AT_mac_info:
8508 return "DW_AT_mac_info";
8509 case DW_AT_src_coords:
8510 return "DW_AT_src_coords";
8511 case DW_AT_body_begin:
8512 return "DW_AT_body_begin";
8513 case DW_AT_body_end:
8514 return "DW_AT_body_end";
8515 case DW_AT_GNU_vector:
8516 return "DW_AT_GNU_vector";
8517 /* VMS extensions. */
8518 case DW_AT_VMS_rtnbeg_pd_address:
8519 return "DW_AT_VMS_rtnbeg_pd_address";
8520 /* UPC extension. */
8521 case DW_AT_upc_threads_scaled:
8522 return "DW_AT_upc_threads_scaled";
8523 /* PGI (STMicroelectronics) extensions. */
8524 case DW_AT_PGI_lbase:
8525 return "DW_AT_PGI_lbase";
8526 case DW_AT_PGI_soffset:
8527 return "DW_AT_PGI_soffset";
8528 case DW_AT_PGI_lstride:
8529 return "DW_AT_PGI_lstride";
8530 default:
8531 return "DW_AT_<unknown>";
8532 }
8533 }
8534
8535 /* Convert a DWARF value form code into its string name. */
8536
8537 static char *
8538 dwarf_form_name (unsigned form)
8539 {
8540 switch (form)
8541 {
8542 case DW_FORM_addr:
8543 return "DW_FORM_addr";
8544 case DW_FORM_block2:
8545 return "DW_FORM_block2";
8546 case DW_FORM_block4:
8547 return "DW_FORM_block4";
8548 case DW_FORM_data2:
8549 return "DW_FORM_data2";
8550 case DW_FORM_data4:
8551 return "DW_FORM_data4";
8552 case DW_FORM_data8:
8553 return "DW_FORM_data8";
8554 case DW_FORM_string:
8555 return "DW_FORM_string";
8556 case DW_FORM_block:
8557 return "DW_FORM_block";
8558 case DW_FORM_block1:
8559 return "DW_FORM_block1";
8560 case DW_FORM_data1:
8561 return "DW_FORM_data1";
8562 case DW_FORM_flag:
8563 return "DW_FORM_flag";
8564 case DW_FORM_sdata:
8565 return "DW_FORM_sdata";
8566 case DW_FORM_strp:
8567 return "DW_FORM_strp";
8568 case DW_FORM_udata:
8569 return "DW_FORM_udata";
8570 case DW_FORM_ref_addr:
8571 return "DW_FORM_ref_addr";
8572 case DW_FORM_ref1:
8573 return "DW_FORM_ref1";
8574 case DW_FORM_ref2:
8575 return "DW_FORM_ref2";
8576 case DW_FORM_ref4:
8577 return "DW_FORM_ref4";
8578 case DW_FORM_ref8:
8579 return "DW_FORM_ref8";
8580 case DW_FORM_ref_udata:
8581 return "DW_FORM_ref_udata";
8582 case DW_FORM_indirect:
8583 return "DW_FORM_indirect";
8584 default:
8585 return "DW_FORM_<unknown>";
8586 }
8587 }
8588
8589 /* Convert a DWARF stack opcode into its string name. */
8590
8591 static char *
8592 dwarf_stack_op_name (unsigned op)
8593 {
8594 switch (op)
8595 {
8596 case DW_OP_addr:
8597 return "DW_OP_addr";
8598 case DW_OP_deref:
8599 return "DW_OP_deref";
8600 case DW_OP_const1u:
8601 return "DW_OP_const1u";
8602 case DW_OP_const1s:
8603 return "DW_OP_const1s";
8604 case DW_OP_const2u:
8605 return "DW_OP_const2u";
8606 case DW_OP_const2s:
8607 return "DW_OP_const2s";
8608 case DW_OP_const4u:
8609 return "DW_OP_const4u";
8610 case DW_OP_const4s:
8611 return "DW_OP_const4s";
8612 case DW_OP_const8u:
8613 return "DW_OP_const8u";
8614 case DW_OP_const8s:
8615 return "DW_OP_const8s";
8616 case DW_OP_constu:
8617 return "DW_OP_constu";
8618 case DW_OP_consts:
8619 return "DW_OP_consts";
8620 case DW_OP_dup:
8621 return "DW_OP_dup";
8622 case DW_OP_drop:
8623 return "DW_OP_drop";
8624 case DW_OP_over:
8625 return "DW_OP_over";
8626 case DW_OP_pick:
8627 return "DW_OP_pick";
8628 case DW_OP_swap:
8629 return "DW_OP_swap";
8630 case DW_OP_rot:
8631 return "DW_OP_rot";
8632 case DW_OP_xderef:
8633 return "DW_OP_xderef";
8634 case DW_OP_abs:
8635 return "DW_OP_abs";
8636 case DW_OP_and:
8637 return "DW_OP_and";
8638 case DW_OP_div:
8639 return "DW_OP_div";
8640 case DW_OP_minus:
8641 return "DW_OP_minus";
8642 case DW_OP_mod:
8643 return "DW_OP_mod";
8644 case DW_OP_mul:
8645 return "DW_OP_mul";
8646 case DW_OP_neg:
8647 return "DW_OP_neg";
8648 case DW_OP_not:
8649 return "DW_OP_not";
8650 case DW_OP_or:
8651 return "DW_OP_or";
8652 case DW_OP_plus:
8653 return "DW_OP_plus";
8654 case DW_OP_plus_uconst:
8655 return "DW_OP_plus_uconst";
8656 case DW_OP_shl:
8657 return "DW_OP_shl";
8658 case DW_OP_shr:
8659 return "DW_OP_shr";
8660 case DW_OP_shra:
8661 return "DW_OP_shra";
8662 case DW_OP_xor:
8663 return "DW_OP_xor";
8664 case DW_OP_bra:
8665 return "DW_OP_bra";
8666 case DW_OP_eq:
8667 return "DW_OP_eq";
8668 case DW_OP_ge:
8669 return "DW_OP_ge";
8670 case DW_OP_gt:
8671 return "DW_OP_gt";
8672 case DW_OP_le:
8673 return "DW_OP_le";
8674 case DW_OP_lt:
8675 return "DW_OP_lt";
8676 case DW_OP_ne:
8677 return "DW_OP_ne";
8678 case DW_OP_skip:
8679 return "DW_OP_skip";
8680 case DW_OP_lit0:
8681 return "DW_OP_lit0";
8682 case DW_OP_lit1:
8683 return "DW_OP_lit1";
8684 case DW_OP_lit2:
8685 return "DW_OP_lit2";
8686 case DW_OP_lit3:
8687 return "DW_OP_lit3";
8688 case DW_OP_lit4:
8689 return "DW_OP_lit4";
8690 case DW_OP_lit5:
8691 return "DW_OP_lit5";
8692 case DW_OP_lit6:
8693 return "DW_OP_lit6";
8694 case DW_OP_lit7:
8695 return "DW_OP_lit7";
8696 case DW_OP_lit8:
8697 return "DW_OP_lit8";
8698 case DW_OP_lit9:
8699 return "DW_OP_lit9";
8700 case DW_OP_lit10:
8701 return "DW_OP_lit10";
8702 case DW_OP_lit11:
8703 return "DW_OP_lit11";
8704 case DW_OP_lit12:
8705 return "DW_OP_lit12";
8706 case DW_OP_lit13:
8707 return "DW_OP_lit13";
8708 case DW_OP_lit14:
8709 return "DW_OP_lit14";
8710 case DW_OP_lit15:
8711 return "DW_OP_lit15";
8712 case DW_OP_lit16:
8713 return "DW_OP_lit16";
8714 case DW_OP_lit17:
8715 return "DW_OP_lit17";
8716 case DW_OP_lit18:
8717 return "DW_OP_lit18";
8718 case DW_OP_lit19:
8719 return "DW_OP_lit19";
8720 case DW_OP_lit20:
8721 return "DW_OP_lit20";
8722 case DW_OP_lit21:
8723 return "DW_OP_lit21";
8724 case DW_OP_lit22:
8725 return "DW_OP_lit22";
8726 case DW_OP_lit23:
8727 return "DW_OP_lit23";
8728 case DW_OP_lit24:
8729 return "DW_OP_lit24";
8730 case DW_OP_lit25:
8731 return "DW_OP_lit25";
8732 case DW_OP_lit26:
8733 return "DW_OP_lit26";
8734 case DW_OP_lit27:
8735 return "DW_OP_lit27";
8736 case DW_OP_lit28:
8737 return "DW_OP_lit28";
8738 case DW_OP_lit29:
8739 return "DW_OP_lit29";
8740 case DW_OP_lit30:
8741 return "DW_OP_lit30";
8742 case DW_OP_lit31:
8743 return "DW_OP_lit31";
8744 case DW_OP_reg0:
8745 return "DW_OP_reg0";
8746 case DW_OP_reg1:
8747 return "DW_OP_reg1";
8748 case DW_OP_reg2:
8749 return "DW_OP_reg2";
8750 case DW_OP_reg3:
8751 return "DW_OP_reg3";
8752 case DW_OP_reg4:
8753 return "DW_OP_reg4";
8754 case DW_OP_reg5:
8755 return "DW_OP_reg5";
8756 case DW_OP_reg6:
8757 return "DW_OP_reg6";
8758 case DW_OP_reg7:
8759 return "DW_OP_reg7";
8760 case DW_OP_reg8:
8761 return "DW_OP_reg8";
8762 case DW_OP_reg9:
8763 return "DW_OP_reg9";
8764 case DW_OP_reg10:
8765 return "DW_OP_reg10";
8766 case DW_OP_reg11:
8767 return "DW_OP_reg11";
8768 case DW_OP_reg12:
8769 return "DW_OP_reg12";
8770 case DW_OP_reg13:
8771 return "DW_OP_reg13";
8772 case DW_OP_reg14:
8773 return "DW_OP_reg14";
8774 case DW_OP_reg15:
8775 return "DW_OP_reg15";
8776 case DW_OP_reg16:
8777 return "DW_OP_reg16";
8778 case DW_OP_reg17:
8779 return "DW_OP_reg17";
8780 case DW_OP_reg18:
8781 return "DW_OP_reg18";
8782 case DW_OP_reg19:
8783 return "DW_OP_reg19";
8784 case DW_OP_reg20:
8785 return "DW_OP_reg20";
8786 case DW_OP_reg21:
8787 return "DW_OP_reg21";
8788 case DW_OP_reg22:
8789 return "DW_OP_reg22";
8790 case DW_OP_reg23:
8791 return "DW_OP_reg23";
8792 case DW_OP_reg24:
8793 return "DW_OP_reg24";
8794 case DW_OP_reg25:
8795 return "DW_OP_reg25";
8796 case DW_OP_reg26:
8797 return "DW_OP_reg26";
8798 case DW_OP_reg27:
8799 return "DW_OP_reg27";
8800 case DW_OP_reg28:
8801 return "DW_OP_reg28";
8802 case DW_OP_reg29:
8803 return "DW_OP_reg29";
8804 case DW_OP_reg30:
8805 return "DW_OP_reg30";
8806 case DW_OP_reg31:
8807 return "DW_OP_reg31";
8808 case DW_OP_breg0:
8809 return "DW_OP_breg0";
8810 case DW_OP_breg1:
8811 return "DW_OP_breg1";
8812 case DW_OP_breg2:
8813 return "DW_OP_breg2";
8814 case DW_OP_breg3:
8815 return "DW_OP_breg3";
8816 case DW_OP_breg4:
8817 return "DW_OP_breg4";
8818 case DW_OP_breg5:
8819 return "DW_OP_breg5";
8820 case DW_OP_breg6:
8821 return "DW_OP_breg6";
8822 case DW_OP_breg7:
8823 return "DW_OP_breg7";
8824 case DW_OP_breg8:
8825 return "DW_OP_breg8";
8826 case DW_OP_breg9:
8827 return "DW_OP_breg9";
8828 case DW_OP_breg10:
8829 return "DW_OP_breg10";
8830 case DW_OP_breg11:
8831 return "DW_OP_breg11";
8832 case DW_OP_breg12:
8833 return "DW_OP_breg12";
8834 case DW_OP_breg13:
8835 return "DW_OP_breg13";
8836 case DW_OP_breg14:
8837 return "DW_OP_breg14";
8838 case DW_OP_breg15:
8839 return "DW_OP_breg15";
8840 case DW_OP_breg16:
8841 return "DW_OP_breg16";
8842 case DW_OP_breg17:
8843 return "DW_OP_breg17";
8844 case DW_OP_breg18:
8845 return "DW_OP_breg18";
8846 case DW_OP_breg19:
8847 return "DW_OP_breg19";
8848 case DW_OP_breg20:
8849 return "DW_OP_breg20";
8850 case DW_OP_breg21:
8851 return "DW_OP_breg21";
8852 case DW_OP_breg22:
8853 return "DW_OP_breg22";
8854 case DW_OP_breg23:
8855 return "DW_OP_breg23";
8856 case DW_OP_breg24:
8857 return "DW_OP_breg24";
8858 case DW_OP_breg25:
8859 return "DW_OP_breg25";
8860 case DW_OP_breg26:
8861 return "DW_OP_breg26";
8862 case DW_OP_breg27:
8863 return "DW_OP_breg27";
8864 case DW_OP_breg28:
8865 return "DW_OP_breg28";
8866 case DW_OP_breg29:
8867 return "DW_OP_breg29";
8868 case DW_OP_breg30:
8869 return "DW_OP_breg30";
8870 case DW_OP_breg31:
8871 return "DW_OP_breg31";
8872 case DW_OP_regx:
8873 return "DW_OP_regx";
8874 case DW_OP_fbreg:
8875 return "DW_OP_fbreg";
8876 case DW_OP_bregx:
8877 return "DW_OP_bregx";
8878 case DW_OP_piece:
8879 return "DW_OP_piece";
8880 case DW_OP_deref_size:
8881 return "DW_OP_deref_size";
8882 case DW_OP_xderef_size:
8883 return "DW_OP_xderef_size";
8884 case DW_OP_nop:
8885 return "DW_OP_nop";
8886 /* DWARF 3 extensions. */
8887 case DW_OP_push_object_address:
8888 return "DW_OP_push_object_address";
8889 case DW_OP_call2:
8890 return "DW_OP_call2";
8891 case DW_OP_call4:
8892 return "DW_OP_call4";
8893 case DW_OP_call_ref:
8894 return "DW_OP_call_ref";
8895 /* GNU extensions. */
8896 case DW_OP_form_tls_address:
8897 return "DW_OP_form_tls_address";
8898 case DW_OP_call_frame_cfa:
8899 return "DW_OP_call_frame_cfa";
8900 case DW_OP_bit_piece:
8901 return "DW_OP_bit_piece";
8902 case DW_OP_GNU_push_tls_address:
8903 return "DW_OP_GNU_push_tls_address";
8904 case DW_OP_GNU_uninit:
8905 return "DW_OP_GNU_uninit";
8906 /* HP extensions. */
8907 case DW_OP_HP_is_value:
8908 return "DW_OP_HP_is_value";
8909 case DW_OP_HP_fltconst4:
8910 return "DW_OP_HP_fltconst4";
8911 case DW_OP_HP_fltconst8:
8912 return "DW_OP_HP_fltconst8";
8913 case DW_OP_HP_mod_range:
8914 return "DW_OP_HP_mod_range";
8915 case DW_OP_HP_unmod_range:
8916 return "DW_OP_HP_unmod_range";
8917 case DW_OP_HP_tls:
8918 return "DW_OP_HP_tls";
8919 default:
8920 return "OP_<unknown>";
8921 }
8922 }
8923
8924 static char *
8925 dwarf_bool_name (unsigned mybool)
8926 {
8927 if (mybool)
8928 return "TRUE";
8929 else
8930 return "FALSE";
8931 }
8932
8933 /* Convert a DWARF type code into its string name. */
8934
8935 static char *
8936 dwarf_type_encoding_name (unsigned enc)
8937 {
8938 switch (enc)
8939 {
8940 case DW_ATE_void:
8941 return "DW_ATE_void";
8942 case DW_ATE_address:
8943 return "DW_ATE_address";
8944 case DW_ATE_boolean:
8945 return "DW_ATE_boolean";
8946 case DW_ATE_complex_float:
8947 return "DW_ATE_complex_float";
8948 case DW_ATE_float:
8949 return "DW_ATE_float";
8950 case DW_ATE_signed:
8951 return "DW_ATE_signed";
8952 case DW_ATE_signed_char:
8953 return "DW_ATE_signed_char";
8954 case DW_ATE_unsigned:
8955 return "DW_ATE_unsigned";
8956 case DW_ATE_unsigned_char:
8957 return "DW_ATE_unsigned_char";
8958 /* DWARF 3. */
8959 case DW_ATE_imaginary_float:
8960 return "DW_ATE_imaginary_float";
8961 case DW_ATE_packed_decimal:
8962 return "DW_ATE_packed_decimal";
8963 case DW_ATE_numeric_string:
8964 return "DW_ATE_numeric_string";
8965 case DW_ATE_edited:
8966 return "DW_ATE_edited";
8967 case DW_ATE_signed_fixed:
8968 return "DW_ATE_signed_fixed";
8969 case DW_ATE_unsigned_fixed:
8970 return "DW_ATE_unsigned_fixed";
8971 case DW_ATE_decimal_float:
8972 return "DW_ATE_decimal_float";
8973 /* HP extensions. */
8974 case DW_ATE_HP_float80:
8975 return "DW_ATE_HP_float80";
8976 case DW_ATE_HP_complex_float80:
8977 return "DW_ATE_HP_complex_float80";
8978 case DW_ATE_HP_float128:
8979 return "DW_ATE_HP_float128";
8980 case DW_ATE_HP_complex_float128:
8981 return "DW_ATE_HP_complex_float128";
8982 case DW_ATE_HP_floathpintel:
8983 return "DW_ATE_HP_floathpintel";
8984 case DW_ATE_HP_imaginary_float80:
8985 return "DW_ATE_HP_imaginary_float80";
8986 case DW_ATE_HP_imaginary_float128:
8987 return "DW_ATE_HP_imaginary_float128";
8988 default:
8989 return "DW_ATE_<unknown>";
8990 }
8991 }
8992
8993 /* Convert a DWARF call frame info operation to its string name. */
8994
8995 #if 0
8996 static char *
8997 dwarf_cfi_name (unsigned cfi_opc)
8998 {
8999 switch (cfi_opc)
9000 {
9001 case DW_CFA_advance_loc:
9002 return "DW_CFA_advance_loc";
9003 case DW_CFA_offset:
9004 return "DW_CFA_offset";
9005 case DW_CFA_restore:
9006 return "DW_CFA_restore";
9007 case DW_CFA_nop:
9008 return "DW_CFA_nop";
9009 case DW_CFA_set_loc:
9010 return "DW_CFA_set_loc";
9011 case DW_CFA_advance_loc1:
9012 return "DW_CFA_advance_loc1";
9013 case DW_CFA_advance_loc2:
9014 return "DW_CFA_advance_loc2";
9015 case DW_CFA_advance_loc4:
9016 return "DW_CFA_advance_loc4";
9017 case DW_CFA_offset_extended:
9018 return "DW_CFA_offset_extended";
9019 case DW_CFA_restore_extended:
9020 return "DW_CFA_restore_extended";
9021 case DW_CFA_undefined:
9022 return "DW_CFA_undefined";
9023 case DW_CFA_same_value:
9024 return "DW_CFA_same_value";
9025 case DW_CFA_register:
9026 return "DW_CFA_register";
9027 case DW_CFA_remember_state:
9028 return "DW_CFA_remember_state";
9029 case DW_CFA_restore_state:
9030 return "DW_CFA_restore_state";
9031 case DW_CFA_def_cfa:
9032 return "DW_CFA_def_cfa";
9033 case DW_CFA_def_cfa_register:
9034 return "DW_CFA_def_cfa_register";
9035 case DW_CFA_def_cfa_offset:
9036 return "DW_CFA_def_cfa_offset";
9037 /* DWARF 3. */
9038 case DW_CFA_def_cfa_expression:
9039 return "DW_CFA_def_cfa_expression";
9040 case DW_CFA_expression:
9041 return "DW_CFA_expression";
9042 case DW_CFA_offset_extended_sf:
9043 return "DW_CFA_offset_extended_sf";
9044 case DW_CFA_def_cfa_sf:
9045 return "DW_CFA_def_cfa_sf";
9046 case DW_CFA_def_cfa_offset_sf:
9047 return "DW_CFA_def_cfa_offset_sf";
9048 case DW_CFA_val_offset:
9049 return "DW_CFA_val_offset";
9050 case DW_CFA_val_offset_sf:
9051 return "DW_CFA_val_offset_sf";
9052 case DW_CFA_val_expression:
9053 return "DW_CFA_val_expression";
9054 /* SGI/MIPS specific. */
9055 case DW_CFA_MIPS_advance_loc8:
9056 return "DW_CFA_MIPS_advance_loc8";
9057 /* GNU extensions. */
9058 case DW_CFA_GNU_window_save:
9059 return "DW_CFA_GNU_window_save";
9060 case DW_CFA_GNU_args_size:
9061 return "DW_CFA_GNU_args_size";
9062 case DW_CFA_GNU_negative_offset_extended:
9063 return "DW_CFA_GNU_negative_offset_extended";
9064 default:
9065 return "DW_CFA_<unknown>";
9066 }
9067 }
9068 #endif
9069
9070 static void
9071 dump_die (struct die_info *die)
9072 {
9073 unsigned int i;
9074
9075 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
9076 dwarf_tag_name (die->tag), die->abbrev, die->offset);
9077 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
9078 dwarf_bool_name (die->child != NULL));
9079
9080 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
9081 for (i = 0; i < die->num_attrs; ++i)
9082 {
9083 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
9084 dwarf_attr_name (die->attrs[i].name),
9085 dwarf_form_name (die->attrs[i].form));
9086 switch (die->attrs[i].form)
9087 {
9088 case DW_FORM_ref_addr:
9089 case DW_FORM_addr:
9090 fprintf_unfiltered (gdb_stderr, "address: ");
9091 fputs_filtered (paddress (DW_ADDR (&die->attrs[i])), gdb_stderr);
9092 break;
9093 case DW_FORM_block2:
9094 case DW_FORM_block4:
9095 case DW_FORM_block:
9096 case DW_FORM_block1:
9097 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
9098 break;
9099 case DW_FORM_ref1:
9100 case DW_FORM_ref2:
9101 case DW_FORM_ref4:
9102 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
9103 (long) (DW_ADDR (&die->attrs[i])));
9104 break;
9105 case DW_FORM_data1:
9106 case DW_FORM_data2:
9107 case DW_FORM_data4:
9108 case DW_FORM_data8:
9109 case DW_FORM_udata:
9110 case DW_FORM_sdata:
9111 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
9112 break;
9113 case DW_FORM_string:
9114 case DW_FORM_strp:
9115 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
9116 DW_STRING (&die->attrs[i])
9117 ? DW_STRING (&die->attrs[i]) : "");
9118 break;
9119 case DW_FORM_flag:
9120 if (DW_UNSND (&die->attrs[i]))
9121 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
9122 else
9123 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
9124 break;
9125 case DW_FORM_indirect:
9126 /* the reader will have reduced the indirect form to
9127 the "base form" so this form should not occur */
9128 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
9129 break;
9130 default:
9131 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
9132 die->attrs[i].form);
9133 }
9134 fprintf_unfiltered (gdb_stderr, "\n");
9135 }
9136 }
9137
9138 static void
9139 dump_die_list (struct die_info *die)
9140 {
9141 while (die)
9142 {
9143 dump_die (die);
9144 if (die->child != NULL)
9145 dump_die_list (die->child);
9146 if (die->sibling != NULL)
9147 dump_die_list (die->sibling);
9148 }
9149 }
9150
9151 static void
9152 store_in_ref_table (unsigned int offset, struct die_info *die,
9153 struct dwarf2_cu *cu)
9154 {
9155 int h;
9156 struct die_info *old;
9157
9158 h = (offset % REF_HASH_SIZE);
9159 old = cu->die_ref_table[h];
9160 die->next_ref = old;
9161 cu->die_ref_table[h] = die;
9162 }
9163
9164 static unsigned int
9165 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
9166 {
9167 unsigned int result = 0;
9168
9169 switch (attr->form)
9170 {
9171 case DW_FORM_ref_addr:
9172 case DW_FORM_ref1:
9173 case DW_FORM_ref2:
9174 case DW_FORM_ref4:
9175 case DW_FORM_ref8:
9176 case DW_FORM_ref_udata:
9177 result = DW_ADDR (attr);
9178 break;
9179 default:
9180 complaint (&symfile_complaints,
9181 _("unsupported die ref attribute form: '%s'"),
9182 dwarf_form_name (attr->form));
9183 }
9184 return result;
9185 }
9186
9187 /* Return the constant value held by the given attribute. Return -1
9188 if the value held by the attribute is not constant. */
9189
9190 static int
9191 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
9192 {
9193 if (attr->form == DW_FORM_sdata)
9194 return DW_SND (attr);
9195 else if (attr->form == DW_FORM_udata
9196 || attr->form == DW_FORM_data1
9197 || attr->form == DW_FORM_data2
9198 || attr->form == DW_FORM_data4
9199 || attr->form == DW_FORM_data8)
9200 return DW_UNSND (attr);
9201 else
9202 {
9203 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
9204 dwarf_form_name (attr->form));
9205 return default_value;
9206 }
9207 }
9208
9209 static struct die_info *
9210 follow_die_ref (struct die_info *src_die, struct attribute *attr,
9211 struct dwarf2_cu *cu)
9212 {
9213 struct die_info *die;
9214 unsigned int offset;
9215 int h;
9216 struct die_info temp_die;
9217 struct dwarf2_cu *target_cu;
9218
9219 offset = dwarf2_get_ref_die_offset (attr, cu);
9220
9221 if (DW_ADDR (attr) < cu->header.offset
9222 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
9223 {
9224 struct dwarf2_per_cu_data *per_cu;
9225 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9226 cu->objfile);
9227 target_cu = per_cu->cu;
9228 }
9229 else
9230 target_cu = cu;
9231
9232 h = (offset % REF_HASH_SIZE);
9233 die = target_cu->die_ref_table[h];
9234 while (die)
9235 {
9236 if (die->offset == offset)
9237 return die;
9238 die = die->next_ref;
9239 }
9240
9241 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9242 "at 0x%lx [in module %s]"),
9243 (long) src_die->offset, (long) offset, cu->objfile->name);
9244
9245 return NULL;
9246 }
9247
9248 /* Decode simple location descriptions.
9249 Given a pointer to a dwarf block that defines a location, compute
9250 the location and return the value.
9251
9252 NOTE drow/2003-11-18: This function is called in two situations
9253 now: for the address of static or global variables (partial symbols
9254 only) and for offsets into structures which are expected to be
9255 (more or less) constant. The partial symbol case should go away,
9256 and only the constant case should remain. That will let this
9257 function complain more accurately. A few special modes are allowed
9258 without complaint for global variables (for instance, global
9259 register values and thread-local values).
9260
9261 A location description containing no operations indicates that the
9262 object is optimized out. The return value is 0 for that case.
9263 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9264 callers will only want a very basic result and this can become a
9265 complaint.
9266
9267 Note that stack[0] is unused except as a default error return.
9268 Note that stack overflow is not yet handled. */
9269
9270 static CORE_ADDR
9271 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9272 {
9273 struct objfile *objfile = cu->objfile;
9274 struct comp_unit_head *cu_header = &cu->header;
9275 int i;
9276 int size = blk->size;
9277 gdb_byte *data = blk->data;
9278 CORE_ADDR stack[64];
9279 int stacki;
9280 unsigned int bytes_read, unsnd;
9281 gdb_byte op;
9282
9283 i = 0;
9284 stacki = 0;
9285 stack[stacki] = 0;
9286
9287 while (i < size)
9288 {
9289 op = data[i++];
9290 switch (op)
9291 {
9292 case DW_OP_lit0:
9293 case DW_OP_lit1:
9294 case DW_OP_lit2:
9295 case DW_OP_lit3:
9296 case DW_OP_lit4:
9297 case DW_OP_lit5:
9298 case DW_OP_lit6:
9299 case DW_OP_lit7:
9300 case DW_OP_lit8:
9301 case DW_OP_lit9:
9302 case DW_OP_lit10:
9303 case DW_OP_lit11:
9304 case DW_OP_lit12:
9305 case DW_OP_lit13:
9306 case DW_OP_lit14:
9307 case DW_OP_lit15:
9308 case DW_OP_lit16:
9309 case DW_OP_lit17:
9310 case DW_OP_lit18:
9311 case DW_OP_lit19:
9312 case DW_OP_lit20:
9313 case DW_OP_lit21:
9314 case DW_OP_lit22:
9315 case DW_OP_lit23:
9316 case DW_OP_lit24:
9317 case DW_OP_lit25:
9318 case DW_OP_lit26:
9319 case DW_OP_lit27:
9320 case DW_OP_lit28:
9321 case DW_OP_lit29:
9322 case DW_OP_lit30:
9323 case DW_OP_lit31:
9324 stack[++stacki] = op - DW_OP_lit0;
9325 break;
9326
9327 case DW_OP_reg0:
9328 case DW_OP_reg1:
9329 case DW_OP_reg2:
9330 case DW_OP_reg3:
9331 case DW_OP_reg4:
9332 case DW_OP_reg5:
9333 case DW_OP_reg6:
9334 case DW_OP_reg7:
9335 case DW_OP_reg8:
9336 case DW_OP_reg9:
9337 case DW_OP_reg10:
9338 case DW_OP_reg11:
9339 case DW_OP_reg12:
9340 case DW_OP_reg13:
9341 case DW_OP_reg14:
9342 case DW_OP_reg15:
9343 case DW_OP_reg16:
9344 case DW_OP_reg17:
9345 case DW_OP_reg18:
9346 case DW_OP_reg19:
9347 case DW_OP_reg20:
9348 case DW_OP_reg21:
9349 case DW_OP_reg22:
9350 case DW_OP_reg23:
9351 case DW_OP_reg24:
9352 case DW_OP_reg25:
9353 case DW_OP_reg26:
9354 case DW_OP_reg27:
9355 case DW_OP_reg28:
9356 case DW_OP_reg29:
9357 case DW_OP_reg30:
9358 case DW_OP_reg31:
9359 stack[++stacki] = op - DW_OP_reg0;
9360 if (i < size)
9361 dwarf2_complex_location_expr_complaint ();
9362 break;
9363
9364 case DW_OP_regx:
9365 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9366 i += bytes_read;
9367 stack[++stacki] = unsnd;
9368 if (i < size)
9369 dwarf2_complex_location_expr_complaint ();
9370 break;
9371
9372 case DW_OP_addr:
9373 stack[++stacki] = read_address (objfile->obfd, &data[i],
9374 cu, &bytes_read);
9375 i += bytes_read;
9376 break;
9377
9378 case DW_OP_const1u:
9379 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9380 i += 1;
9381 break;
9382
9383 case DW_OP_const1s:
9384 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9385 i += 1;
9386 break;
9387
9388 case DW_OP_const2u:
9389 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9390 i += 2;
9391 break;
9392
9393 case DW_OP_const2s:
9394 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9395 i += 2;
9396 break;
9397
9398 case DW_OP_const4u:
9399 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9400 i += 4;
9401 break;
9402
9403 case DW_OP_const4s:
9404 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9405 i += 4;
9406 break;
9407
9408 case DW_OP_constu:
9409 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9410 &bytes_read);
9411 i += bytes_read;
9412 break;
9413
9414 case DW_OP_consts:
9415 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9416 i += bytes_read;
9417 break;
9418
9419 case DW_OP_dup:
9420 stack[stacki + 1] = stack[stacki];
9421 stacki++;
9422 break;
9423
9424 case DW_OP_plus:
9425 stack[stacki - 1] += stack[stacki];
9426 stacki--;
9427 break;
9428
9429 case DW_OP_plus_uconst:
9430 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9431 i += bytes_read;
9432 break;
9433
9434 case DW_OP_minus:
9435 stack[stacki - 1] -= stack[stacki];
9436 stacki--;
9437 break;
9438
9439 case DW_OP_deref:
9440 /* If we're not the last op, then we definitely can't encode
9441 this using GDB's address_class enum. This is valid for partial
9442 global symbols, although the variable's address will be bogus
9443 in the psymtab. */
9444 if (i < size)
9445 dwarf2_complex_location_expr_complaint ();
9446 break;
9447
9448 case DW_OP_GNU_push_tls_address:
9449 /* The top of the stack has the offset from the beginning
9450 of the thread control block at which the variable is located. */
9451 /* Nothing should follow this operator, so the top of stack would
9452 be returned. */
9453 /* This is valid for partial global symbols, but the variable's
9454 address will be bogus in the psymtab. */
9455 if (i < size)
9456 dwarf2_complex_location_expr_complaint ();
9457 break;
9458
9459 case DW_OP_GNU_uninit:
9460 break;
9461
9462 default:
9463 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9464 dwarf_stack_op_name (op));
9465 return (stack[stacki]);
9466 }
9467 }
9468 return (stack[stacki]);
9469 }
9470
9471 /* memory allocation interface */
9472
9473 static struct dwarf_block *
9474 dwarf_alloc_block (struct dwarf2_cu *cu)
9475 {
9476 struct dwarf_block *blk;
9477
9478 blk = (struct dwarf_block *)
9479 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9480 return (blk);
9481 }
9482
9483 static struct abbrev_info *
9484 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9485 {
9486 struct abbrev_info *abbrev;
9487
9488 abbrev = (struct abbrev_info *)
9489 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9490 memset (abbrev, 0, sizeof (struct abbrev_info));
9491 return (abbrev);
9492 }
9493
9494 static struct die_info *
9495 dwarf_alloc_die (void)
9496 {
9497 struct die_info *die;
9498
9499 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9500 memset (die, 0, sizeof (struct die_info));
9501 return (die);
9502 }
9503
9504 \f
9505 /* Macro support. */
9506
9507
9508 /* Return the full name of file number I in *LH's file name table.
9509 Use COMP_DIR as the name of the current directory of the
9510 compilation. The result is allocated using xmalloc; the caller is
9511 responsible for freeing it. */
9512 static char *
9513 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9514 {
9515 /* Is the file number a valid index into the line header's file name
9516 table? Remember that file numbers start with one, not zero. */
9517 if (1 <= file && file <= lh->num_file_names)
9518 {
9519 struct file_entry *fe = &lh->file_names[file - 1];
9520
9521 if (IS_ABSOLUTE_PATH (fe->name))
9522 return xstrdup (fe->name);
9523 else
9524 {
9525 const char *dir;
9526 int dir_len;
9527 char *full_name;
9528
9529 if (fe->dir_index)
9530 dir = lh->include_dirs[fe->dir_index - 1];
9531 else
9532 dir = comp_dir;
9533
9534 if (dir)
9535 {
9536 dir_len = strlen (dir);
9537 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9538 strcpy (full_name, dir);
9539 full_name[dir_len] = '/';
9540 strcpy (full_name + dir_len + 1, fe->name);
9541 return full_name;
9542 }
9543 else
9544 return xstrdup (fe->name);
9545 }
9546 }
9547 else
9548 {
9549 /* The compiler produced a bogus file number. We can at least
9550 record the macro definitions made in the file, even if we
9551 won't be able to find the file by name. */
9552 char fake_name[80];
9553 sprintf (fake_name, "<bad macro file number %d>", file);
9554
9555 complaint (&symfile_complaints,
9556 _("bad file number in macro information (%d)"),
9557 file);
9558
9559 return xstrdup (fake_name);
9560 }
9561 }
9562
9563
9564 static struct macro_source_file *
9565 macro_start_file (int file, int line,
9566 struct macro_source_file *current_file,
9567 const char *comp_dir,
9568 struct line_header *lh, struct objfile *objfile)
9569 {
9570 /* The full name of this source file. */
9571 char *full_name = file_full_name (file, lh, comp_dir);
9572
9573 /* We don't create a macro table for this compilation unit
9574 at all until we actually get a filename. */
9575 if (! pending_macros)
9576 pending_macros = new_macro_table (&objfile->objfile_obstack,
9577 objfile->macro_cache);
9578
9579 if (! current_file)
9580 /* If we have no current file, then this must be the start_file
9581 directive for the compilation unit's main source file. */
9582 current_file = macro_set_main (pending_macros, full_name);
9583 else
9584 current_file = macro_include (current_file, line, full_name);
9585
9586 xfree (full_name);
9587
9588 return current_file;
9589 }
9590
9591
9592 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9593 followed by a null byte. */
9594 static char *
9595 copy_string (const char *buf, int len)
9596 {
9597 char *s = xmalloc (len + 1);
9598 memcpy (s, buf, len);
9599 s[len] = '\0';
9600
9601 return s;
9602 }
9603
9604
9605 static const char *
9606 consume_improper_spaces (const char *p, const char *body)
9607 {
9608 if (*p == ' ')
9609 {
9610 complaint (&symfile_complaints,
9611 _("macro definition contains spaces in formal argument list:\n`%s'"),
9612 body);
9613
9614 while (*p == ' ')
9615 p++;
9616 }
9617
9618 return p;
9619 }
9620
9621
9622 static void
9623 parse_macro_definition (struct macro_source_file *file, int line,
9624 const char *body)
9625 {
9626 const char *p;
9627
9628 /* The body string takes one of two forms. For object-like macro
9629 definitions, it should be:
9630
9631 <macro name> " " <definition>
9632
9633 For function-like macro definitions, it should be:
9634
9635 <macro name> "() " <definition>
9636 or
9637 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9638
9639 Spaces may appear only where explicitly indicated, and in the
9640 <definition>.
9641
9642 The Dwarf 2 spec says that an object-like macro's name is always
9643 followed by a space, but versions of GCC around March 2002 omit
9644 the space when the macro's definition is the empty string.
9645
9646 The Dwarf 2 spec says that there should be no spaces between the
9647 formal arguments in a function-like macro's formal argument list,
9648 but versions of GCC around March 2002 include spaces after the
9649 commas. */
9650
9651
9652 /* Find the extent of the macro name. The macro name is terminated
9653 by either a space or null character (for an object-like macro) or
9654 an opening paren (for a function-like macro). */
9655 for (p = body; *p; p++)
9656 if (*p == ' ' || *p == '(')
9657 break;
9658
9659 if (*p == ' ' || *p == '\0')
9660 {
9661 /* It's an object-like macro. */
9662 int name_len = p - body;
9663 char *name = copy_string (body, name_len);
9664 const char *replacement;
9665
9666 if (*p == ' ')
9667 replacement = body + name_len + 1;
9668 else
9669 {
9670 dwarf2_macro_malformed_definition_complaint (body);
9671 replacement = body + name_len;
9672 }
9673
9674 macro_define_object (file, line, name, replacement);
9675
9676 xfree (name);
9677 }
9678 else if (*p == '(')
9679 {
9680 /* It's a function-like macro. */
9681 char *name = copy_string (body, p - body);
9682 int argc = 0;
9683 int argv_size = 1;
9684 char **argv = xmalloc (argv_size * sizeof (*argv));
9685
9686 p++;
9687
9688 p = consume_improper_spaces (p, body);
9689
9690 /* Parse the formal argument list. */
9691 while (*p && *p != ')')
9692 {
9693 /* Find the extent of the current argument name. */
9694 const char *arg_start = p;
9695
9696 while (*p && *p != ',' && *p != ')' && *p != ' ')
9697 p++;
9698
9699 if (! *p || p == arg_start)
9700 dwarf2_macro_malformed_definition_complaint (body);
9701 else
9702 {
9703 /* Make sure argv has room for the new argument. */
9704 if (argc >= argv_size)
9705 {
9706 argv_size *= 2;
9707 argv = xrealloc (argv, argv_size * sizeof (*argv));
9708 }
9709
9710 argv[argc++] = copy_string (arg_start, p - arg_start);
9711 }
9712
9713 p = consume_improper_spaces (p, body);
9714
9715 /* Consume the comma, if present. */
9716 if (*p == ',')
9717 {
9718 p++;
9719
9720 p = consume_improper_spaces (p, body);
9721 }
9722 }
9723
9724 if (*p == ')')
9725 {
9726 p++;
9727
9728 if (*p == ' ')
9729 /* Perfectly formed definition, no complaints. */
9730 macro_define_function (file, line, name,
9731 argc, (const char **) argv,
9732 p + 1);
9733 else if (*p == '\0')
9734 {
9735 /* Complain, but do define it. */
9736 dwarf2_macro_malformed_definition_complaint (body);
9737 macro_define_function (file, line, name,
9738 argc, (const char **) argv,
9739 p);
9740 }
9741 else
9742 /* Just complain. */
9743 dwarf2_macro_malformed_definition_complaint (body);
9744 }
9745 else
9746 /* Just complain. */
9747 dwarf2_macro_malformed_definition_complaint (body);
9748
9749 xfree (name);
9750 {
9751 int i;
9752
9753 for (i = 0; i < argc; i++)
9754 xfree (argv[i]);
9755 }
9756 xfree (argv);
9757 }
9758 else
9759 dwarf2_macro_malformed_definition_complaint (body);
9760 }
9761
9762
9763 static void
9764 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9765 char *comp_dir, bfd *abfd,
9766 struct dwarf2_cu *cu)
9767 {
9768 gdb_byte *mac_ptr, *mac_end;
9769 struct macro_source_file *current_file = 0;
9770
9771 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9772 {
9773 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9774 return;
9775 }
9776
9777 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9778 mac_end = dwarf2_per_objfile->macinfo_buffer
9779 + dwarf2_per_objfile->macinfo_size;
9780
9781 for (;;)
9782 {
9783 enum dwarf_macinfo_record_type macinfo_type;
9784
9785 /* Do we at least have room for a macinfo type byte? */
9786 if (mac_ptr >= mac_end)
9787 {
9788 dwarf2_macros_too_long_complaint ();
9789 return;
9790 }
9791
9792 macinfo_type = read_1_byte (abfd, mac_ptr);
9793 mac_ptr++;
9794
9795 switch (macinfo_type)
9796 {
9797 /* A zero macinfo type indicates the end of the macro
9798 information. */
9799 case 0:
9800 return;
9801
9802 case DW_MACINFO_define:
9803 case DW_MACINFO_undef:
9804 {
9805 unsigned int bytes_read;
9806 int line;
9807 char *body;
9808
9809 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9810 mac_ptr += bytes_read;
9811 body = read_string (abfd, mac_ptr, &bytes_read);
9812 mac_ptr += bytes_read;
9813
9814 if (! current_file)
9815 complaint (&symfile_complaints,
9816 _("debug info gives macro %s outside of any file: %s"),
9817 macinfo_type ==
9818 DW_MACINFO_define ? "definition" : macinfo_type ==
9819 DW_MACINFO_undef ? "undefinition" :
9820 "something-or-other", body);
9821 else
9822 {
9823 if (macinfo_type == DW_MACINFO_define)
9824 parse_macro_definition (current_file, line, body);
9825 else if (macinfo_type == DW_MACINFO_undef)
9826 macro_undef (current_file, line, body);
9827 }
9828 }
9829 break;
9830
9831 case DW_MACINFO_start_file:
9832 {
9833 unsigned int bytes_read;
9834 int line, file;
9835
9836 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9837 mac_ptr += bytes_read;
9838 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9839 mac_ptr += bytes_read;
9840
9841 current_file = macro_start_file (file, line,
9842 current_file, comp_dir,
9843 lh, cu->objfile);
9844 }
9845 break;
9846
9847 case DW_MACINFO_end_file:
9848 if (! current_file)
9849 complaint (&symfile_complaints,
9850 _("macro debug info has an unmatched `close_file' directive"));
9851 else
9852 {
9853 current_file = current_file->included_by;
9854 if (! current_file)
9855 {
9856 enum dwarf_macinfo_record_type next_type;
9857
9858 /* GCC circa March 2002 doesn't produce the zero
9859 type byte marking the end of the compilation
9860 unit. Complain if it's not there, but exit no
9861 matter what. */
9862
9863 /* Do we at least have room for a macinfo type byte? */
9864 if (mac_ptr >= mac_end)
9865 {
9866 dwarf2_macros_too_long_complaint ();
9867 return;
9868 }
9869
9870 /* We don't increment mac_ptr here, so this is just
9871 a look-ahead. */
9872 next_type = read_1_byte (abfd, mac_ptr);
9873 if (next_type != 0)
9874 complaint (&symfile_complaints,
9875 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9876
9877 return;
9878 }
9879 }
9880 break;
9881
9882 case DW_MACINFO_vendor_ext:
9883 {
9884 unsigned int bytes_read;
9885 int constant;
9886 char *string;
9887
9888 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9889 mac_ptr += bytes_read;
9890 string = read_string (abfd, mac_ptr, &bytes_read);
9891 mac_ptr += bytes_read;
9892
9893 /* We don't recognize any vendor extensions. */
9894 }
9895 break;
9896 }
9897 }
9898 }
9899
9900 /* Check if the attribute's form is a DW_FORM_block*
9901 if so return true else false. */
9902 static int
9903 attr_form_is_block (struct attribute *attr)
9904 {
9905 return (attr == NULL ? 0 :
9906 attr->form == DW_FORM_block1
9907 || attr->form == DW_FORM_block2
9908 || attr->form == DW_FORM_block4
9909 || attr->form == DW_FORM_block);
9910 }
9911
9912 /* Return non-zero if ATTR's value is a section offset --- classes
9913 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
9914 You may use DW_UNSND (attr) to retrieve such offsets.
9915
9916 Section 7.5.4, "Attribute Encodings", explains that no attribute
9917 may have a value that belongs to more than one of these classes; it
9918 would be ambiguous if we did, because we use the same forms for all
9919 of them. */
9920 static int
9921 attr_form_is_section_offset (struct attribute *attr)
9922 {
9923 return (attr->form == DW_FORM_data4
9924 || attr->form == DW_FORM_data8);
9925 }
9926
9927
9928 /* Return non-zero if ATTR's value falls in the 'constant' class, or
9929 zero otherwise. When this function returns true, you can apply
9930 dwarf2_get_attr_constant_value to it.
9931
9932 However, note that for some attributes you must check
9933 attr_form_is_section_offset before using this test. DW_FORM_data4
9934 and DW_FORM_data8 are members of both the constant class, and of
9935 the classes that contain offsets into other debug sections
9936 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
9937 that, if an attribute's can be either a constant or one of the
9938 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
9939 taken as section offsets, not constants. */
9940 static int
9941 attr_form_is_constant (struct attribute *attr)
9942 {
9943 switch (attr->form)
9944 {
9945 case DW_FORM_sdata:
9946 case DW_FORM_udata:
9947 case DW_FORM_data1:
9948 case DW_FORM_data2:
9949 case DW_FORM_data4:
9950 case DW_FORM_data8:
9951 return 1;
9952 default:
9953 return 0;
9954 }
9955 }
9956
9957 static void
9958 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9959 struct dwarf2_cu *cu)
9960 {
9961 if (attr_form_is_section_offset (attr)
9962 /* ".debug_loc" may not exist at all, or the offset may be outside
9963 the section. If so, fall through to the complaint in the
9964 other branch. */
9965 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9966 {
9967 struct dwarf2_loclist_baton *baton;
9968
9969 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9970 sizeof (struct dwarf2_loclist_baton));
9971 baton->per_cu = cu->per_cu;
9972 gdb_assert (baton->per_cu);
9973
9974 /* We don't know how long the location list is, but make sure we
9975 don't run off the edge of the section. */
9976 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9977 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9978 baton->base_address = cu->header.base_address;
9979 if (cu->header.base_known == 0)
9980 complaint (&symfile_complaints,
9981 _("Location list used without specifying the CU base address."));
9982
9983 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9984 SYMBOL_LOCATION_BATON (sym) = baton;
9985 }
9986 else
9987 {
9988 struct dwarf2_locexpr_baton *baton;
9989
9990 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9991 sizeof (struct dwarf2_locexpr_baton));
9992 baton->per_cu = cu->per_cu;
9993 gdb_assert (baton->per_cu);
9994
9995 if (attr_form_is_block (attr))
9996 {
9997 /* Note that we're just copying the block's data pointer
9998 here, not the actual data. We're still pointing into the
9999 info_buffer for SYM's objfile; right now we never release
10000 that buffer, but when we do clean up properly this may
10001 need to change. */
10002 baton->size = DW_BLOCK (attr)->size;
10003 baton->data = DW_BLOCK (attr)->data;
10004 }
10005 else
10006 {
10007 dwarf2_invalid_attrib_class_complaint ("location description",
10008 SYMBOL_NATURAL_NAME (sym));
10009 baton->size = 0;
10010 baton->data = NULL;
10011 }
10012
10013 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
10014 SYMBOL_LOCATION_BATON (sym) = baton;
10015 }
10016 }
10017
10018 /* Return the OBJFILE associated with the compilation unit CU. */
10019
10020 struct objfile *
10021 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
10022 {
10023 struct objfile *objfile = per_cu->psymtab->objfile;
10024
10025 /* Return the master objfile, so that we can report and look up the
10026 correct file containing this variable. */
10027 if (objfile->separate_debug_objfile_backlink)
10028 objfile = objfile->separate_debug_objfile_backlink;
10029
10030 return objfile;
10031 }
10032
10033 /* Return the address size given in the compilation unit header for CU. */
10034
10035 CORE_ADDR
10036 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
10037 {
10038 if (per_cu->cu)
10039 return per_cu->cu->header.addr_size;
10040 else
10041 {
10042 /* If the CU is not currently read in, we re-read its header. */
10043 struct objfile *objfile = per_cu->psymtab->objfile;
10044 struct dwarf2_per_objfile *per_objfile
10045 = objfile_data (objfile, dwarf2_objfile_data_key);
10046 gdb_byte *info_ptr = per_objfile->info_buffer + per_cu->offset;
10047
10048 struct comp_unit_head cu_header;
10049 memset (&cu_header, 0, sizeof cu_header);
10050 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
10051 return cu_header.addr_size;
10052 }
10053 }
10054
10055 /* Locate the compilation unit from CU's objfile which contains the
10056 DIE at OFFSET. Raises an error on failure. */
10057
10058 static struct dwarf2_per_cu_data *
10059 dwarf2_find_containing_comp_unit (unsigned long offset,
10060 struct objfile *objfile)
10061 {
10062 struct dwarf2_per_cu_data *this_cu;
10063 int low, high;
10064
10065 low = 0;
10066 high = dwarf2_per_objfile->n_comp_units - 1;
10067 while (high > low)
10068 {
10069 int mid = low + (high - low) / 2;
10070 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
10071 high = mid;
10072 else
10073 low = mid + 1;
10074 }
10075 gdb_assert (low == high);
10076 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
10077 {
10078 if (low == 0)
10079 error (_("Dwarf Error: could not find partial DIE containing "
10080 "offset 0x%lx [in module %s]"),
10081 (long) offset, bfd_get_filename (objfile->obfd));
10082
10083 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
10084 return dwarf2_per_objfile->all_comp_units[low-1];
10085 }
10086 else
10087 {
10088 this_cu = dwarf2_per_objfile->all_comp_units[low];
10089 if (low == dwarf2_per_objfile->n_comp_units - 1
10090 && offset >= this_cu->offset + this_cu->length)
10091 error (_("invalid dwarf2 offset %ld"), offset);
10092 gdb_assert (offset < this_cu->offset + this_cu->length);
10093 return this_cu;
10094 }
10095 }
10096
10097 /* Locate the compilation unit from OBJFILE which is located at exactly
10098 OFFSET. Raises an error on failure. */
10099
10100 static struct dwarf2_per_cu_data *
10101 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
10102 {
10103 struct dwarf2_per_cu_data *this_cu;
10104 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
10105 if (this_cu->offset != offset)
10106 error (_("no compilation unit with offset %ld."), offset);
10107 return this_cu;
10108 }
10109
10110 /* Release one cached compilation unit, CU. We unlink it from the tree
10111 of compilation units, but we don't remove it from the read_in_chain;
10112 the caller is responsible for that. */
10113
10114 static void
10115 free_one_comp_unit (void *data)
10116 {
10117 struct dwarf2_cu *cu = data;
10118
10119 if (cu->per_cu != NULL)
10120 cu->per_cu->cu = NULL;
10121 cu->per_cu = NULL;
10122
10123 obstack_free (&cu->comp_unit_obstack, NULL);
10124 if (cu->dies)
10125 free_die_list (cu->dies);
10126
10127 xfree (cu);
10128 }
10129
10130 /* This cleanup function is passed the address of a dwarf2_cu on the stack
10131 when we're finished with it. We can't free the pointer itself, but be
10132 sure to unlink it from the cache. Also release any associated storage
10133 and perform cache maintenance.
10134
10135 Only used during partial symbol parsing. */
10136
10137 static void
10138 free_stack_comp_unit (void *data)
10139 {
10140 struct dwarf2_cu *cu = data;
10141
10142 obstack_free (&cu->comp_unit_obstack, NULL);
10143 cu->partial_dies = NULL;
10144
10145 if (cu->per_cu != NULL)
10146 {
10147 /* This compilation unit is on the stack in our caller, so we
10148 should not xfree it. Just unlink it. */
10149 cu->per_cu->cu = NULL;
10150 cu->per_cu = NULL;
10151
10152 /* If we had a per-cu pointer, then we may have other compilation
10153 units loaded, so age them now. */
10154 age_cached_comp_units ();
10155 }
10156 }
10157
10158 /* Free all cached compilation units. */
10159
10160 static void
10161 free_cached_comp_units (void *data)
10162 {
10163 struct dwarf2_per_cu_data *per_cu, **last_chain;
10164
10165 per_cu = dwarf2_per_objfile->read_in_chain;
10166 last_chain = &dwarf2_per_objfile->read_in_chain;
10167 while (per_cu != NULL)
10168 {
10169 struct dwarf2_per_cu_data *next_cu;
10170
10171 next_cu = per_cu->cu->read_in_chain;
10172
10173 free_one_comp_unit (per_cu->cu);
10174 *last_chain = next_cu;
10175
10176 per_cu = next_cu;
10177 }
10178 }
10179
10180 /* Increase the age counter on each cached compilation unit, and free
10181 any that are too old. */
10182
10183 static void
10184 age_cached_comp_units (void)
10185 {
10186 struct dwarf2_per_cu_data *per_cu, **last_chain;
10187
10188 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
10189 per_cu = dwarf2_per_objfile->read_in_chain;
10190 while (per_cu != NULL)
10191 {
10192 per_cu->cu->last_used ++;
10193 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
10194 dwarf2_mark (per_cu->cu);
10195 per_cu = per_cu->cu->read_in_chain;
10196 }
10197
10198 per_cu = dwarf2_per_objfile->read_in_chain;
10199 last_chain = &dwarf2_per_objfile->read_in_chain;
10200 while (per_cu != NULL)
10201 {
10202 struct dwarf2_per_cu_data *next_cu;
10203
10204 next_cu = per_cu->cu->read_in_chain;
10205
10206 if (!per_cu->cu->mark)
10207 {
10208 free_one_comp_unit (per_cu->cu);
10209 *last_chain = next_cu;
10210 }
10211 else
10212 last_chain = &per_cu->cu->read_in_chain;
10213
10214 per_cu = next_cu;
10215 }
10216 }
10217
10218 /* Remove a single compilation unit from the cache. */
10219
10220 static void
10221 free_one_cached_comp_unit (void *target_cu)
10222 {
10223 struct dwarf2_per_cu_data *per_cu, **last_chain;
10224
10225 per_cu = dwarf2_per_objfile->read_in_chain;
10226 last_chain = &dwarf2_per_objfile->read_in_chain;
10227 while (per_cu != NULL)
10228 {
10229 struct dwarf2_per_cu_data *next_cu;
10230
10231 next_cu = per_cu->cu->read_in_chain;
10232
10233 if (per_cu->cu == target_cu)
10234 {
10235 free_one_comp_unit (per_cu->cu);
10236 *last_chain = next_cu;
10237 break;
10238 }
10239 else
10240 last_chain = &per_cu->cu->read_in_chain;
10241
10242 per_cu = next_cu;
10243 }
10244 }
10245
10246 /* Release all extra memory associated with OBJFILE. */
10247
10248 void
10249 dwarf2_free_objfile (struct objfile *objfile)
10250 {
10251 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10252
10253 if (dwarf2_per_objfile == NULL)
10254 return;
10255
10256 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
10257 free_cached_comp_units (NULL);
10258
10259 /* Everything else should be on the objfile obstack. */
10260 }
10261
10262 /* A pair of DIE offset and GDB type pointer. We store these
10263 in a hash table separate from the DIEs, and preserve them
10264 when the DIEs are flushed out of cache. */
10265
10266 struct dwarf2_offset_and_type
10267 {
10268 unsigned int offset;
10269 struct type *type;
10270 };
10271
10272 /* Hash function for a dwarf2_offset_and_type. */
10273
10274 static hashval_t
10275 offset_and_type_hash (const void *item)
10276 {
10277 const struct dwarf2_offset_and_type *ofs = item;
10278 return ofs->offset;
10279 }
10280
10281 /* Equality function for a dwarf2_offset_and_type. */
10282
10283 static int
10284 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10285 {
10286 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10287 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10288 return ofs_lhs->offset == ofs_rhs->offset;
10289 }
10290
10291 /* Set the type associated with DIE to TYPE. Save it in CU's hash
10292 table if necessary. For convenience, return TYPE. */
10293
10294 static struct type *
10295 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10296 {
10297 struct dwarf2_offset_and_type **slot, ofs;
10298
10299 if (cu->type_hash == NULL)
10300 {
10301 gdb_assert (cu->per_cu != NULL);
10302 cu->per_cu->type_hash
10303 = htab_create_alloc_ex (cu->header.length / 24,
10304 offset_and_type_hash,
10305 offset_and_type_eq,
10306 NULL,
10307 &cu->objfile->objfile_obstack,
10308 hashtab_obstack_allocate,
10309 dummy_obstack_deallocate);
10310 cu->type_hash = cu->per_cu->type_hash;
10311 }
10312
10313 ofs.offset = die->offset;
10314 ofs.type = type;
10315 slot = (struct dwarf2_offset_and_type **)
10316 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
10317 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10318 **slot = ofs;
10319 return type;
10320 }
10321
10322 /* Find the type for DIE in CU's type_hash, or return NULL if DIE does
10323 not have a saved type. */
10324
10325 static struct type *
10326 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
10327 {
10328 struct dwarf2_offset_and_type *slot, ofs;
10329 htab_t type_hash = cu->type_hash;
10330
10331 if (type_hash == NULL)
10332 return NULL;
10333
10334 ofs.offset = die->offset;
10335 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10336 if (slot)
10337 return slot->type;
10338 else
10339 return NULL;
10340 }
10341
10342 /* Set the mark field in CU and in every other compilation unit in the
10343 cache that we must keep because we are keeping CU. */
10344
10345 /* Add a dependence relationship from CU to REF_PER_CU. */
10346
10347 static void
10348 dwarf2_add_dependence (struct dwarf2_cu *cu,
10349 struct dwarf2_per_cu_data *ref_per_cu)
10350 {
10351 void **slot;
10352
10353 if (cu->dependencies == NULL)
10354 cu->dependencies
10355 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10356 NULL, &cu->comp_unit_obstack,
10357 hashtab_obstack_allocate,
10358 dummy_obstack_deallocate);
10359
10360 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10361 if (*slot == NULL)
10362 *slot = ref_per_cu;
10363 }
10364
10365 /* Set the mark field in CU and in every other compilation unit in the
10366 cache that we must keep because we are keeping CU. */
10367
10368 static int
10369 dwarf2_mark_helper (void **slot, void *data)
10370 {
10371 struct dwarf2_per_cu_data *per_cu;
10372
10373 per_cu = (struct dwarf2_per_cu_data *) *slot;
10374 if (per_cu->cu->mark)
10375 return 1;
10376 per_cu->cu->mark = 1;
10377
10378 if (per_cu->cu->dependencies != NULL)
10379 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10380
10381 return 1;
10382 }
10383
10384 static void
10385 dwarf2_mark (struct dwarf2_cu *cu)
10386 {
10387 if (cu->mark)
10388 return;
10389 cu->mark = 1;
10390 if (cu->dependencies != NULL)
10391 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10392 }
10393
10394 static void
10395 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10396 {
10397 while (per_cu)
10398 {
10399 per_cu->cu->mark = 0;
10400 per_cu = per_cu->cu->read_in_chain;
10401 }
10402 }
10403
10404 /* Trivial hash function for partial_die_info: the hash value of a DIE
10405 is its offset in .debug_info for this objfile. */
10406
10407 static hashval_t
10408 partial_die_hash (const void *item)
10409 {
10410 const struct partial_die_info *part_die = item;
10411 return part_die->offset;
10412 }
10413
10414 /* Trivial comparison function for partial_die_info structures: two DIEs
10415 are equal if they have the same offset. */
10416
10417 static int
10418 partial_die_eq (const void *item_lhs, const void *item_rhs)
10419 {
10420 const struct partial_die_info *part_die_lhs = item_lhs;
10421 const struct partial_die_info *part_die_rhs = item_rhs;
10422 return part_die_lhs->offset == part_die_rhs->offset;
10423 }
10424
10425 static struct cmd_list_element *set_dwarf2_cmdlist;
10426 static struct cmd_list_element *show_dwarf2_cmdlist;
10427
10428 static void
10429 set_dwarf2_cmd (char *args, int from_tty)
10430 {
10431 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10432 }
10433
10434 static void
10435 show_dwarf2_cmd (char *args, int from_tty)
10436 {
10437 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10438 }
10439
10440 void _initialize_dwarf2_read (void);
10441
10442 void
10443 _initialize_dwarf2_read (void)
10444 {
10445 dwarf2_objfile_data_key = register_objfile_data ();
10446
10447 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10448 Set DWARF 2 specific variables.\n\
10449 Configure DWARF 2 variables such as the cache size"),
10450 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10451 0/*allow-unknown*/, &maintenance_set_cmdlist);
10452
10453 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10454 Show DWARF 2 specific variables\n\
10455 Show DWARF 2 variables such as the cache size"),
10456 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10457 0/*allow-unknown*/, &maintenance_show_cmdlist);
10458
10459 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10460 &dwarf2_max_cache_age, _("\
10461 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10462 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10463 A higher limit means that cached compilation units will be stored\n\
10464 in memory longer, and more total memory will be used. Zero disables\n\
10465 caching, which can slow down startup."),
10466 NULL,
10467 show_dwarf2_max_cache_age,
10468 &set_dwarf2_cmdlist,
10469 &show_dwarf2_cmdlist);
10470 }
This page took 0.299919 seconds and 4 git commands to generate.