90c60cdb0d08c2e1ea6f377b5ff14ce0d80aff8e
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 /* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030 struct line_header
1031 {
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072 };
1073
1074 /* When we construct a partial symbol table entry we only
1075 need this much information. */
1076 struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154 /* This data structure holds the information of an abbrev. */
1155 struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165 struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171 /* Size of abbrev_table.abbrev_hash_table. */
1172 #define ABBREV_HASH_SIZE 121
1173
1174 /* Top level data structure to contain an abbreviation table. */
1175
1176 struct abbrev_table
1177 {
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190 };
1191
1192 /* Attributes have a name and a value. */
1193 struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215 /* This data structure holds a complete die structure. */
1216 struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* Abbrev number */
1229 unsigned int abbrev;
1230
1231 /* Offset in .debug_info or .debug_types section. */
1232 sect_offset offset;
1233
1234 /* The dies in a compilation unit form an n-ary tree. PARENT
1235 points to this die's parent; CHILD points to the first child of
1236 this node; and all the children of a given node are chained
1237 together via their SIBLING fields. */
1238 struct die_info *child; /* Its first child, if any. */
1239 struct die_info *sibling; /* Its next sibling, if any. */
1240 struct die_info *parent; /* Its parent, if any. */
1241
1242 /* An array of attributes, with NUM_ATTRS elements. There may be
1243 zero, but it's not common and zero-sized arrays are not
1244 sufficiently portable C. */
1245 struct attribute attrs[1];
1246 };
1247
1248 /* Get at parts of an attribute structure. */
1249
1250 #define DW_STRING(attr) ((attr)->u.str)
1251 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1252 #define DW_UNSND(attr) ((attr)->u.unsnd)
1253 #define DW_BLOCK(attr) ((attr)->u.blk)
1254 #define DW_SND(attr) ((attr)->u.snd)
1255 #define DW_ADDR(attr) ((attr)->u.addr)
1256 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1257
1258 /* Blocks are a bunch of untyped bytes. */
1259 struct dwarf_block
1260 {
1261 size_t size;
1262
1263 /* Valid only if SIZE is not zero. */
1264 const gdb_byte *data;
1265 };
1266
1267 #ifndef ATTR_ALLOC_CHUNK
1268 #define ATTR_ALLOC_CHUNK 4
1269 #endif
1270
1271 /* Allocate fields for structs, unions and enums in this size. */
1272 #ifndef DW_FIELD_ALLOC_CHUNK
1273 #define DW_FIELD_ALLOC_CHUNK 4
1274 #endif
1275
1276 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1277 but this would require a corresponding change in unpack_field_as_long
1278 and friends. */
1279 static int bits_per_byte = 8;
1280
1281 /* The routines that read and process dies for a C struct or C++ class
1282 pass lists of data member fields and lists of member function fields
1283 in an instance of a field_info structure, as defined below. */
1284 struct field_info
1285 {
1286 /* List of data member and baseclasses fields. */
1287 struct nextfield
1288 {
1289 struct nextfield *next;
1290 int accessibility;
1291 int virtuality;
1292 struct field field;
1293 }
1294 *fields, *baseclasses;
1295
1296 /* Number of fields (including baseclasses). */
1297 int nfields;
1298
1299 /* Number of baseclasses. */
1300 int nbaseclasses;
1301
1302 /* Set if the accesibility of one of the fields is not public. */
1303 int non_public_fields;
1304
1305 /* Member function fields array, entries are allocated in the order they
1306 are encountered in the object file. */
1307 struct nextfnfield
1308 {
1309 struct nextfnfield *next;
1310 struct fn_field fnfield;
1311 }
1312 *fnfields;
1313
1314 /* Member function fieldlist array, contains name of possibly overloaded
1315 member function, number of overloaded member functions and a pointer
1316 to the head of the member function field chain. */
1317 struct fnfieldlist
1318 {
1319 const char *name;
1320 int length;
1321 struct nextfnfield *head;
1322 }
1323 *fnfieldlists;
1324
1325 /* Number of entries in the fnfieldlists array. */
1326 int nfnfields;
1327
1328 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1329 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1330 struct typedef_field_list
1331 {
1332 struct typedef_field field;
1333 struct typedef_field_list *next;
1334 }
1335 *typedef_field_list;
1336 unsigned typedef_field_list_count;
1337 };
1338
1339 /* One item on the queue of compilation units to read in full symbols
1340 for. */
1341 struct dwarf2_queue_item
1342 {
1343 struct dwarf2_per_cu_data *per_cu;
1344 enum language pretend_language;
1345 struct dwarf2_queue_item *next;
1346 };
1347
1348 /* The current queue. */
1349 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350
1351 /* Loaded secondary compilation units are kept in memory until they
1352 have not been referenced for the processing of this many
1353 compilation units. Set this to zero to disable caching. Cache
1354 sizes of up to at least twenty will improve startup time for
1355 typical inter-CU-reference binaries, at an obvious memory cost. */
1356 static int dwarf2_max_cache_age = 5;
1357 static void
1358 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360 {
1361 fprintf_filtered (file, _("The upper bound on the age of cached "
1362 "dwarf2 compilation units is %s.\n"),
1363 value);
1364 }
1365 \f
1366 /* local function prototypes */
1367
1368 static const char *get_section_name (const struct dwarf2_section_info *);
1369
1370 static const char *get_section_file_name (const struct dwarf2_section_info *);
1371
1372 static void dwarf2_locate_sections (bfd *, asection *, void *);
1373
1374 static void dwarf2_find_base_address (struct die_info *die,
1375 struct dwarf2_cu *cu);
1376
1377 static struct partial_symtab *create_partial_symtab
1378 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379
1380 static void dwarf2_build_psymtabs_hard (struct objfile *);
1381
1382 static void scan_partial_symbols (struct partial_die_info *,
1383 CORE_ADDR *, CORE_ADDR *,
1384 int, struct dwarf2_cu *);
1385
1386 static void add_partial_symbol (struct partial_die_info *,
1387 struct dwarf2_cu *);
1388
1389 static void add_partial_namespace (struct partial_die_info *pdi,
1390 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1391 int need_pc, struct dwarf2_cu *cu);
1392
1393 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1394 CORE_ADDR *highpc, int need_pc,
1395 struct dwarf2_cu *cu);
1396
1397 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_subprogram (struct partial_die_info *pdi,
1401 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1402 int need_pc, struct dwarf2_cu *cu);
1403
1404 static void dwarf2_read_symtab (struct partial_symtab *,
1405 struct objfile *);
1406
1407 static void psymtab_to_symtab_1 (struct partial_symtab *);
1408
1409 static struct abbrev_info *abbrev_table_lookup_abbrev
1410 (const struct abbrev_table *, unsigned int);
1411
1412 static struct abbrev_table *abbrev_table_read_table
1413 (struct dwarf2_section_info *, sect_offset);
1414
1415 static void abbrev_table_free (struct abbrev_table *);
1416
1417 static void abbrev_table_free_cleanup (void *);
1418
1419 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1420 struct dwarf2_section_info *);
1421
1422 static void dwarf2_free_abbrev_table (void *);
1423
1424 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1425
1426 static struct partial_die_info *load_partial_dies
1427 (const struct die_reader_specs *, const gdb_byte *, int);
1428
1429 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1430 struct partial_die_info *,
1431 struct abbrev_info *,
1432 unsigned int,
1433 const gdb_byte *);
1434
1435 static struct partial_die_info *find_partial_die (sect_offset, int,
1436 struct dwarf2_cu *);
1437
1438 static void fixup_partial_die (struct partial_die_info *,
1439 struct dwarf2_cu *);
1440
1441 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1442 struct attribute *, struct attr_abbrev *,
1443 const gdb_byte *);
1444
1445 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1446
1447 static int read_1_signed_byte (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1450
1451 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1452
1453 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1454
1455 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1456 unsigned int *);
1457
1458 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1459
1460 static LONGEST read_checked_initial_length_and_offset
1461 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1462 unsigned int *, unsigned int *);
1463
1464 static LONGEST read_offset (bfd *, const gdb_byte *,
1465 const struct comp_unit_head *,
1466 unsigned int *);
1467
1468 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1469
1470 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1471 sect_offset);
1472
1473 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1474
1475 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1476
1477 static const char *read_indirect_string (bfd *, const gdb_byte *,
1478 const struct comp_unit_head *,
1479 unsigned int *);
1480
1481 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1482
1483 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1486
1487 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1488 const gdb_byte *,
1489 unsigned int *);
1490
1491 static const char *read_str_index (const struct die_reader_specs *reader,
1492 struct dwarf2_cu *cu, ULONGEST str_index);
1493
1494 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1495
1496 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1497 struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1500 unsigned int);
1501
1502 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1503 struct dwarf2_cu *cu);
1504
1505 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1506
1507 static struct die_info *die_specification (struct die_info *die,
1508 struct dwarf2_cu **);
1509
1510 static void free_line_header (struct line_header *lh);
1511
1512 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1513 struct dwarf2_cu *cu);
1514
1515 static void dwarf_decode_lines (struct line_header *, const char *,
1516 struct dwarf2_cu *, struct partial_symtab *,
1517 int);
1518
1519 static void dwarf2_start_subfile (const char *, const char *, const char *);
1520
1521 static void dwarf2_start_symtab (struct dwarf2_cu *,
1522 const char *, const char *, CORE_ADDR);
1523
1524 static struct symbol *new_symbol (struct die_info *, struct type *,
1525 struct dwarf2_cu *);
1526
1527 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1528 struct dwarf2_cu *, struct symbol *);
1529
1530 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1531 struct dwarf2_cu *);
1532
1533 static void dwarf2_const_value_attr (const struct attribute *attr,
1534 struct type *type,
1535 const char *name,
1536 struct obstack *obstack,
1537 struct dwarf2_cu *cu, LONGEST *value,
1538 const gdb_byte **bytes,
1539 struct dwarf2_locexpr_baton **baton);
1540
1541 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1542
1543 static int need_gnat_info (struct dwarf2_cu *);
1544
1545 static struct type *die_descriptive_type (struct die_info *,
1546 struct dwarf2_cu *);
1547
1548 static void set_descriptive_type (struct type *, struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static struct type *die_containing_type (struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1558
1559 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1560
1561 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1562
1563 static char *typename_concat (struct obstack *obs, const char *prefix,
1564 const char *suffix, int physname,
1565 struct dwarf2_cu *cu);
1566
1567 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1574
1575 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1576
1577 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *, struct partial_symtab *);
1579
1580 static int dwarf2_get_pc_bounds (struct die_info *,
1581 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1582 struct partial_symtab *);
1583
1584 static void get_scope_pc_bounds (struct die_info *,
1585 CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *);
1587
1588 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1589 CORE_ADDR, struct dwarf2_cu *);
1590
1591 static void dwarf2_add_field (struct field_info *, struct die_info *,
1592 struct dwarf2_cu *);
1593
1594 static void dwarf2_attach_fields_to_type (struct field_info *,
1595 struct type *, struct dwarf2_cu *);
1596
1597 static void dwarf2_add_member_fn (struct field_info *,
1598 struct die_info *, struct type *,
1599 struct dwarf2_cu *);
1600
1601 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1602 struct type *,
1603 struct dwarf2_cu *);
1604
1605 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1608
1609 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1610
1611 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1612
1613 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614
1615 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1616
1617 static struct type *read_module_type (struct die_info *die,
1618 struct dwarf2_cu *cu);
1619
1620 static const char *namespace_name (struct die_info *die,
1621 int *is_anonymous, struct dwarf2_cu *);
1622
1623 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1626
1627 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1628 struct dwarf2_cu *);
1629
1630 static struct die_info *read_die_and_siblings_1
1631 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1632 struct die_info *);
1633
1634 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1635 const gdb_byte *info_ptr,
1636 const gdb_byte **new_info_ptr,
1637 struct die_info *parent);
1638
1639 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1640 struct die_info **, const gdb_byte *,
1641 int *, int);
1642
1643 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1644 struct die_info **, const gdb_byte *,
1645 int *);
1646
1647 static void process_die (struct die_info *, struct dwarf2_cu *);
1648
1649 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1650 struct obstack *);
1651
1652 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1653
1654 static const char *dwarf2_full_name (const char *name,
1655 struct die_info *die,
1656 struct dwarf2_cu *cu);
1657
1658 static const char *dwarf2_physname (const char *name, struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 static struct die_info *dwarf2_extension (struct die_info *die,
1662 struct dwarf2_cu **);
1663
1664 static const char *dwarf_tag_name (unsigned int);
1665
1666 static const char *dwarf_attr_name (unsigned int);
1667
1668 static const char *dwarf_form_name (unsigned int);
1669
1670 static char *dwarf_bool_name (unsigned int);
1671
1672 static const char *dwarf_type_encoding_name (unsigned int);
1673
1674 static struct die_info *sibling_die (struct die_info *);
1675
1676 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1677
1678 static void dump_die_for_error (struct die_info *);
1679
1680 static void dump_die_1 (struct ui_file *, int level, int max_level,
1681 struct die_info *);
1682
1683 /*static*/ void dump_die (struct die_info *, int max_level);
1684
1685 static void store_in_ref_table (struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1689
1690 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1691
1692 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1693 const struct attribute *,
1694 struct dwarf2_cu **);
1695
1696 static struct die_info *follow_die_ref (struct die_info *,
1697 const struct attribute *,
1698 struct dwarf2_cu **);
1699
1700 static struct die_info *follow_die_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1703
1704 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1705 struct dwarf2_cu *);
1706
1707 static struct type *get_DW_AT_signature_type (struct die_info *,
1708 const struct attribute *,
1709 struct dwarf2_cu *);
1710
1711 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1712
1713 static void read_signatured_type (struct signatured_type *);
1714
1715 static struct type_unit_group *get_type_unit_group
1716 (struct dwarf2_cu *, const struct attribute *);
1717
1718 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1719
1720 /* memory allocation interface */
1721
1722 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1723
1724 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1725
1726 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1727 const char *, int);
1728
1729 static int attr_form_is_block (const struct attribute *);
1730
1731 static int attr_form_is_section_offset (const struct attribute *);
1732
1733 static int attr_form_is_constant (const struct attribute *);
1734
1735 static int attr_form_is_ref (const struct attribute *);
1736
1737 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1738 struct dwarf2_loclist_baton *baton,
1739 const struct attribute *attr);
1740
1741 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1742 struct symbol *sym,
1743 struct dwarf2_cu *cu,
1744 int is_block);
1745
1746 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1747 const gdb_byte *info_ptr,
1748 struct abbrev_info *abbrev);
1749
1750 static void free_stack_comp_unit (void *);
1751
1752 static hashval_t partial_die_hash (const void *item);
1753
1754 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1755
1756 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1757 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1758
1759 static void init_one_comp_unit (struct dwarf2_cu *cu,
1760 struct dwarf2_per_cu_data *per_cu);
1761
1762 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1763 struct die_info *comp_unit_die,
1764 enum language pretend_language);
1765
1766 static void free_heap_comp_unit (void *);
1767
1768 static void free_cached_comp_units (void *);
1769
1770 static void age_cached_comp_units (void);
1771
1772 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1773
1774 static struct type *set_die_type (struct die_info *, struct type *,
1775 struct dwarf2_cu *);
1776
1777 static void create_all_comp_units (struct objfile *);
1778
1779 static int create_all_type_units (struct objfile *);
1780
1781 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1782 enum language);
1783
1784 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
1786
1787 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
1790 static void dwarf2_add_dependence (struct dwarf2_cu *,
1791 struct dwarf2_per_cu_data *);
1792
1793 static void dwarf2_mark (struct dwarf2_cu *);
1794
1795 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1796
1797 static struct type *get_die_type_at_offset (sect_offset,
1798 struct dwarf2_per_cu_data *);
1799
1800 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1801
1802 static void dwarf2_release_queue (void *dummy);
1803
1804 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1805 enum language pretend_language);
1806
1807 static void process_queue (void);
1808
1809 static void find_file_and_directory (struct die_info *die,
1810 struct dwarf2_cu *cu,
1811 const char **name, const char **comp_dir);
1812
1813 static char *file_full_name (int file, struct line_header *lh,
1814 const char *comp_dir);
1815
1816 static const gdb_byte *read_and_check_comp_unit_head
1817 (struct comp_unit_head *header,
1818 struct dwarf2_section_info *section,
1819 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1820 int is_debug_types_section);
1821
1822 static void init_cutu_and_read_dies
1823 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1824 int use_existing_cu, int keep,
1825 die_reader_func_ftype *die_reader_func, void *data);
1826
1827 static void init_cutu_and_read_dies_simple
1828 (struct dwarf2_per_cu_data *this_cu,
1829 die_reader_func_ftype *die_reader_func, void *data);
1830
1831 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1832
1833 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1834
1835 static struct dwo_unit *lookup_dwo_unit_in_dwp
1836 (struct dwp_file *dwp_file, const char *comp_dir,
1837 ULONGEST signature, int is_debug_types);
1838
1839 static struct dwp_file *get_dwp_file (void);
1840
1841 static struct dwo_unit *lookup_dwo_comp_unit
1842 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1843
1844 static struct dwo_unit *lookup_dwo_type_unit
1845 (struct signatured_type *, const char *, const char *);
1846
1847 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1848
1849 static void free_dwo_file_cleanup (void *);
1850
1851 static void process_cu_includes (void);
1852
1853 static void check_producer (struct dwarf2_cu *cu);
1854 \f
1855 /* Various complaints about symbol reading that don't abort the process. */
1856
1857 static void
1858 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _("statement list doesn't fit in .debug_line section"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_file_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line data without a file"));
1869 }
1870
1871 static void
1872 dwarf2_debug_line_missing_end_sequence_complaint (void)
1873 {
1874 complaint (&symfile_complaints,
1875 _(".debug_line section has line "
1876 "program sequence without an end"));
1877 }
1878
1879 static void
1880 dwarf2_complex_location_expr_complaint (void)
1881 {
1882 complaint (&symfile_complaints, _("location expression too complex"));
1883 }
1884
1885 static void
1886 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1887 int arg3)
1888 {
1889 complaint (&symfile_complaints,
1890 _("const value length mismatch for '%s', got %d, expected %d"),
1891 arg1, arg2, arg3);
1892 }
1893
1894 static void
1895 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1896 {
1897 complaint (&symfile_complaints,
1898 _("debug info runs off end of %s section"
1899 " [in module %s]"),
1900 get_section_name (section),
1901 get_section_file_name (section));
1902 }
1903
1904 static void
1905 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1906 {
1907 complaint (&symfile_complaints,
1908 _("macro debug info contains a "
1909 "malformed macro definition:\n`%s'"),
1910 arg1);
1911 }
1912
1913 static void
1914 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1915 {
1916 complaint (&symfile_complaints,
1917 _("invalid attribute class or form for '%s' in '%s'"),
1918 arg1, arg2);
1919 }
1920 \f
1921 #if WORDS_BIGENDIAN
1922
1923 /* Convert VALUE between big- and little-endian. */
1924 static offset_type
1925 byte_swap (offset_type value)
1926 {
1927 offset_type result;
1928
1929 result = (value & 0xff) << 24;
1930 result |= (value & 0xff00) << 8;
1931 result |= (value & 0xff0000) >> 8;
1932 result |= (value & 0xff000000) >> 24;
1933 return result;
1934 }
1935
1936 #define MAYBE_SWAP(V) byte_swap (V)
1937
1938 #else
1939 #define MAYBE_SWAP(V) (V)
1940 #endif /* WORDS_BIGENDIAN */
1941
1942 /* The suffix for an index file. */
1943 #define INDEX_SUFFIX ".gdb-index"
1944
1945 /* Try to locate the sections we need for DWARF 2 debugging
1946 information and return true if we have enough to do something.
1947 NAMES points to the dwarf2 section names, or is NULL if the standard
1948 ELF names are used. */
1949
1950 int
1951 dwarf2_has_info (struct objfile *objfile,
1952 const struct dwarf2_debug_sections *names)
1953 {
1954 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1955 if (!dwarf2_per_objfile)
1956 {
1957 /* Initialize per-objfile state. */
1958 struct dwarf2_per_objfile *data
1959 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1960
1961 memset (data, 0, sizeof (*data));
1962 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1963 dwarf2_per_objfile = data;
1964
1965 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1966 (void *) names);
1967 dwarf2_per_objfile->objfile = objfile;
1968 }
1969 return (!dwarf2_per_objfile->info.is_virtual
1970 && dwarf2_per_objfile->info.s.asection != NULL
1971 && !dwarf2_per_objfile->abbrev.is_virtual
1972 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1973 }
1974
1975 /* Return the containing section of virtual section SECTION. */
1976
1977 static struct dwarf2_section_info *
1978 get_containing_section (const struct dwarf2_section_info *section)
1979 {
1980 gdb_assert (section->is_virtual);
1981 return section->s.containing_section;
1982 }
1983
1984 /* Return the bfd owner of SECTION. */
1985
1986 static struct bfd *
1987 get_section_bfd_owner (const struct dwarf2_section_info *section)
1988 {
1989 if (section->is_virtual)
1990 {
1991 section = get_containing_section (section);
1992 gdb_assert (!section->is_virtual);
1993 }
1994 return section->s.asection->owner;
1995 }
1996
1997 /* Return the bfd section of SECTION.
1998 Returns NULL if the section is not present. */
1999
2000 static asection *
2001 get_section_bfd_section (const struct dwarf2_section_info *section)
2002 {
2003 if (section->is_virtual)
2004 {
2005 section = get_containing_section (section);
2006 gdb_assert (!section->is_virtual);
2007 }
2008 return section->s.asection;
2009 }
2010
2011 /* Return the name of SECTION. */
2012
2013 static const char *
2014 get_section_name (const struct dwarf2_section_info *section)
2015 {
2016 asection *sectp = get_section_bfd_section (section);
2017
2018 gdb_assert (sectp != NULL);
2019 return bfd_section_name (get_section_bfd_owner (section), sectp);
2020 }
2021
2022 /* Return the name of the file SECTION is in. */
2023
2024 static const char *
2025 get_section_file_name (const struct dwarf2_section_info *section)
2026 {
2027 bfd *abfd = get_section_bfd_owner (section);
2028
2029 return bfd_get_filename (abfd);
2030 }
2031
2032 /* Return the id of SECTION.
2033 Returns 0 if SECTION doesn't exist. */
2034
2035 static int
2036 get_section_id (const struct dwarf2_section_info *section)
2037 {
2038 asection *sectp = get_section_bfd_section (section);
2039
2040 if (sectp == NULL)
2041 return 0;
2042 return sectp->id;
2043 }
2044
2045 /* Return the flags of SECTION.
2046 SECTION (or containing section if this is a virtual section) must exist. */
2047
2048 static int
2049 get_section_flags (const struct dwarf2_section_info *section)
2050 {
2051 asection *sectp = get_section_bfd_section (section);
2052
2053 gdb_assert (sectp != NULL);
2054 return bfd_get_section_flags (sectp->owner, sectp);
2055 }
2056
2057 /* When loading sections, we look either for uncompressed section or for
2058 compressed section names. */
2059
2060 static int
2061 section_is_p (const char *section_name,
2062 const struct dwarf2_section_names *names)
2063 {
2064 if (names->normal != NULL
2065 && strcmp (section_name, names->normal) == 0)
2066 return 1;
2067 if (names->compressed != NULL
2068 && strcmp (section_name, names->compressed) == 0)
2069 return 1;
2070 return 0;
2071 }
2072
2073 /* This function is mapped across the sections and remembers the
2074 offset and size of each of the debugging sections we are interested
2075 in. */
2076
2077 static void
2078 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2079 {
2080 const struct dwarf2_debug_sections *names;
2081 flagword aflag = bfd_get_section_flags (abfd, sectp);
2082
2083 if (vnames == NULL)
2084 names = &dwarf2_elf_names;
2085 else
2086 names = (const struct dwarf2_debug_sections *) vnames;
2087
2088 if ((aflag & SEC_HAS_CONTENTS) == 0)
2089 {
2090 }
2091 else if (section_is_p (sectp->name, &names->info))
2092 {
2093 dwarf2_per_objfile->info.s.asection = sectp;
2094 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2095 }
2096 else if (section_is_p (sectp->name, &names->abbrev))
2097 {
2098 dwarf2_per_objfile->abbrev.s.asection = sectp;
2099 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2100 }
2101 else if (section_is_p (sectp->name, &names->line))
2102 {
2103 dwarf2_per_objfile->line.s.asection = sectp;
2104 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2105 }
2106 else if (section_is_p (sectp->name, &names->loc))
2107 {
2108 dwarf2_per_objfile->loc.s.asection = sectp;
2109 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2110 }
2111 else if (section_is_p (sectp->name, &names->macinfo))
2112 {
2113 dwarf2_per_objfile->macinfo.s.asection = sectp;
2114 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2115 }
2116 else if (section_is_p (sectp->name, &names->macro))
2117 {
2118 dwarf2_per_objfile->macro.s.asection = sectp;
2119 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2120 }
2121 else if (section_is_p (sectp->name, &names->str))
2122 {
2123 dwarf2_per_objfile->str.s.asection = sectp;
2124 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2125 }
2126 else if (section_is_p (sectp->name, &names->addr))
2127 {
2128 dwarf2_per_objfile->addr.s.asection = sectp;
2129 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2130 }
2131 else if (section_is_p (sectp->name, &names->frame))
2132 {
2133 dwarf2_per_objfile->frame.s.asection = sectp;
2134 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2135 }
2136 else if (section_is_p (sectp->name, &names->eh_frame))
2137 {
2138 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2139 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2140 }
2141 else if (section_is_p (sectp->name, &names->ranges))
2142 {
2143 dwarf2_per_objfile->ranges.s.asection = sectp;
2144 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2145 }
2146 else if (section_is_p (sectp->name, &names->types))
2147 {
2148 struct dwarf2_section_info type_section;
2149
2150 memset (&type_section, 0, sizeof (type_section));
2151 type_section.s.asection = sectp;
2152 type_section.size = bfd_get_section_size (sectp);
2153
2154 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2155 &type_section);
2156 }
2157 else if (section_is_p (sectp->name, &names->gdb_index))
2158 {
2159 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2160 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2161 }
2162
2163 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2164 && bfd_section_vma (abfd, sectp) == 0)
2165 dwarf2_per_objfile->has_section_at_zero = 1;
2166 }
2167
2168 /* A helper function that decides whether a section is empty,
2169 or not present. */
2170
2171 static int
2172 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2173 {
2174 if (section->is_virtual)
2175 return section->size == 0;
2176 return section->s.asection == NULL || section->size == 0;
2177 }
2178
2179 /* Read the contents of the section INFO.
2180 OBJFILE is the main object file, but not necessarily the file where
2181 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2182 of the DWO file.
2183 If the section is compressed, uncompress it before returning. */
2184
2185 static void
2186 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2187 {
2188 asection *sectp;
2189 bfd *abfd;
2190 gdb_byte *buf, *retbuf;
2191
2192 if (info->readin)
2193 return;
2194 info->buffer = NULL;
2195 info->readin = 1;
2196
2197 if (dwarf2_section_empty_p (info))
2198 return;
2199
2200 sectp = get_section_bfd_section (info);
2201
2202 /* If this is a virtual section we need to read in the real one first. */
2203 if (info->is_virtual)
2204 {
2205 struct dwarf2_section_info *containing_section =
2206 get_containing_section (info);
2207
2208 gdb_assert (sectp != NULL);
2209 if ((sectp->flags & SEC_RELOC) != 0)
2210 {
2211 error (_("Dwarf Error: DWP format V2 with relocations is not"
2212 " supported in section %s [in module %s]"),
2213 get_section_name (info), get_section_file_name (info));
2214 }
2215 dwarf2_read_section (objfile, containing_section);
2216 /* Other code should have already caught virtual sections that don't
2217 fit. */
2218 gdb_assert (info->virtual_offset + info->size
2219 <= containing_section->size);
2220 /* If the real section is empty or there was a problem reading the
2221 section we shouldn't get here. */
2222 gdb_assert (containing_section->buffer != NULL);
2223 info->buffer = containing_section->buffer + info->virtual_offset;
2224 return;
2225 }
2226
2227 /* If the section has relocations, we must read it ourselves.
2228 Otherwise we attach it to the BFD. */
2229 if ((sectp->flags & SEC_RELOC) == 0)
2230 {
2231 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2232 return;
2233 }
2234
2235 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2236 info->buffer = buf;
2237
2238 /* When debugging .o files, we may need to apply relocations; see
2239 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2240 We never compress sections in .o files, so we only need to
2241 try this when the section is not compressed. */
2242 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2243 if (retbuf != NULL)
2244 {
2245 info->buffer = retbuf;
2246 return;
2247 }
2248
2249 abfd = get_section_bfd_owner (info);
2250 gdb_assert (abfd != NULL);
2251
2252 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2253 || bfd_bread (buf, info->size, abfd) != info->size)
2254 {
2255 error (_("Dwarf Error: Can't read DWARF data"
2256 " in section %s [in module %s]"),
2257 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2258 }
2259 }
2260
2261 /* A helper function that returns the size of a section in a safe way.
2262 If you are positive that the section has been read before using the
2263 size, then it is safe to refer to the dwarf2_section_info object's
2264 "size" field directly. In other cases, you must call this
2265 function, because for compressed sections the size field is not set
2266 correctly until the section has been read. */
2267
2268 static bfd_size_type
2269 dwarf2_section_size (struct objfile *objfile,
2270 struct dwarf2_section_info *info)
2271 {
2272 if (!info->readin)
2273 dwarf2_read_section (objfile, info);
2274 return info->size;
2275 }
2276
2277 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2278 SECTION_NAME. */
2279
2280 void
2281 dwarf2_get_section_info (struct objfile *objfile,
2282 enum dwarf2_section_enum sect,
2283 asection **sectp, const gdb_byte **bufp,
2284 bfd_size_type *sizep)
2285 {
2286 struct dwarf2_per_objfile *data
2287 = objfile_data (objfile, dwarf2_objfile_data_key);
2288 struct dwarf2_section_info *info;
2289
2290 /* We may see an objfile without any DWARF, in which case we just
2291 return nothing. */
2292 if (data == NULL)
2293 {
2294 *sectp = NULL;
2295 *bufp = NULL;
2296 *sizep = 0;
2297 return;
2298 }
2299 switch (sect)
2300 {
2301 case DWARF2_DEBUG_FRAME:
2302 info = &data->frame;
2303 break;
2304 case DWARF2_EH_FRAME:
2305 info = &data->eh_frame;
2306 break;
2307 default:
2308 gdb_assert_not_reached ("unexpected section");
2309 }
2310
2311 dwarf2_read_section (objfile, info);
2312
2313 *sectp = get_section_bfd_section (info);
2314 *bufp = info->buffer;
2315 *sizep = info->size;
2316 }
2317
2318 /* A helper function to find the sections for a .dwz file. */
2319
2320 static void
2321 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2322 {
2323 struct dwz_file *dwz_file = arg;
2324
2325 /* Note that we only support the standard ELF names, because .dwz
2326 is ELF-only (at the time of writing). */
2327 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2328 {
2329 dwz_file->abbrev.s.asection = sectp;
2330 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2331 }
2332 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2333 {
2334 dwz_file->info.s.asection = sectp;
2335 dwz_file->info.size = bfd_get_section_size (sectp);
2336 }
2337 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2338 {
2339 dwz_file->str.s.asection = sectp;
2340 dwz_file->str.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2343 {
2344 dwz_file->line.s.asection = sectp;
2345 dwz_file->line.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2348 {
2349 dwz_file->macro.s.asection = sectp;
2350 dwz_file->macro.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2353 {
2354 dwz_file->gdb_index.s.asection = sectp;
2355 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2356 }
2357 }
2358
2359 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2360 there is no .gnu_debugaltlink section in the file. Error if there
2361 is such a section but the file cannot be found. */
2362
2363 static struct dwz_file *
2364 dwarf2_get_dwz_file (void)
2365 {
2366 bfd *dwz_bfd;
2367 char *data;
2368 struct cleanup *cleanup;
2369 const char *filename;
2370 struct dwz_file *result;
2371 bfd_size_type buildid_len_arg;
2372 size_t buildid_len;
2373 bfd_byte *buildid;
2374
2375 if (dwarf2_per_objfile->dwz_file != NULL)
2376 return dwarf2_per_objfile->dwz_file;
2377
2378 bfd_set_error (bfd_error_no_error);
2379 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2380 &buildid_len_arg, &buildid);
2381 if (data == NULL)
2382 {
2383 if (bfd_get_error () == bfd_error_no_error)
2384 return NULL;
2385 error (_("could not read '.gnu_debugaltlink' section: %s"),
2386 bfd_errmsg (bfd_get_error ()));
2387 }
2388 cleanup = make_cleanup (xfree, data);
2389 make_cleanup (xfree, buildid);
2390
2391 buildid_len = (size_t) buildid_len_arg;
2392
2393 filename = (const char *) data;
2394 if (!IS_ABSOLUTE_PATH (filename))
2395 {
2396 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2397 char *rel;
2398
2399 make_cleanup (xfree, abs);
2400 abs = ldirname (abs);
2401 make_cleanup (xfree, abs);
2402
2403 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2404 make_cleanup (xfree, rel);
2405 filename = rel;
2406 }
2407
2408 /* First try the file name given in the section. If that doesn't
2409 work, try to use the build-id instead. */
2410 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2411 if (dwz_bfd != NULL)
2412 {
2413 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2414 {
2415 gdb_bfd_unref (dwz_bfd);
2416 dwz_bfd = NULL;
2417 }
2418 }
2419
2420 if (dwz_bfd == NULL)
2421 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2422
2423 if (dwz_bfd == NULL)
2424 error (_("could not find '.gnu_debugaltlink' file for %s"),
2425 objfile_name (dwarf2_per_objfile->objfile));
2426
2427 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2428 struct dwz_file);
2429 result->dwz_bfd = dwz_bfd;
2430
2431 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2432
2433 do_cleanups (cleanup);
2434
2435 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2436 dwarf2_per_objfile->dwz_file = result;
2437 return result;
2438 }
2439 \f
2440 /* DWARF quick_symbols_functions support. */
2441
2442 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2443 unique line tables, so we maintain a separate table of all .debug_line
2444 derived entries to support the sharing.
2445 All the quick functions need is the list of file names. We discard the
2446 line_header when we're done and don't need to record it here. */
2447 struct quick_file_names
2448 {
2449 /* The data used to construct the hash key. */
2450 struct stmt_list_hash hash;
2451
2452 /* The number of entries in file_names, real_names. */
2453 unsigned int num_file_names;
2454
2455 /* The file names from the line table, after being run through
2456 file_full_name. */
2457 const char **file_names;
2458
2459 /* The file names from the line table after being run through
2460 gdb_realpath. These are computed lazily. */
2461 const char **real_names;
2462 };
2463
2464 /* When using the index (and thus not using psymtabs), each CU has an
2465 object of this type. This is used to hold information needed by
2466 the various "quick" methods. */
2467 struct dwarf2_per_cu_quick_data
2468 {
2469 /* The file table. This can be NULL if there was no file table
2470 or it's currently not read in.
2471 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2472 struct quick_file_names *file_names;
2473
2474 /* The corresponding symbol table. This is NULL if symbols for this
2475 CU have not yet been read. */
2476 struct symtab *symtab;
2477
2478 /* A temporary mark bit used when iterating over all CUs in
2479 expand_symtabs_matching. */
2480 unsigned int mark : 1;
2481
2482 /* True if we've tried to read the file table and found there isn't one.
2483 There will be no point in trying to read it again next time. */
2484 unsigned int no_file_data : 1;
2485 };
2486
2487 /* Utility hash function for a stmt_list_hash. */
2488
2489 static hashval_t
2490 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2491 {
2492 hashval_t v = 0;
2493
2494 if (stmt_list_hash->dwo_unit != NULL)
2495 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2496 v += stmt_list_hash->line_offset.sect_off;
2497 return v;
2498 }
2499
2500 /* Utility equality function for a stmt_list_hash. */
2501
2502 static int
2503 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2504 const struct stmt_list_hash *rhs)
2505 {
2506 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2507 return 0;
2508 if (lhs->dwo_unit != NULL
2509 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2510 return 0;
2511
2512 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2513 }
2514
2515 /* Hash function for a quick_file_names. */
2516
2517 static hashval_t
2518 hash_file_name_entry (const void *e)
2519 {
2520 const struct quick_file_names *file_data = e;
2521
2522 return hash_stmt_list_entry (&file_data->hash);
2523 }
2524
2525 /* Equality function for a quick_file_names. */
2526
2527 static int
2528 eq_file_name_entry (const void *a, const void *b)
2529 {
2530 const struct quick_file_names *ea = a;
2531 const struct quick_file_names *eb = b;
2532
2533 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2534 }
2535
2536 /* Delete function for a quick_file_names. */
2537
2538 static void
2539 delete_file_name_entry (void *e)
2540 {
2541 struct quick_file_names *file_data = e;
2542 int i;
2543
2544 for (i = 0; i < file_data->num_file_names; ++i)
2545 {
2546 xfree ((void*) file_data->file_names[i]);
2547 if (file_data->real_names)
2548 xfree ((void*) file_data->real_names[i]);
2549 }
2550
2551 /* The space for the struct itself lives on objfile_obstack,
2552 so we don't free it here. */
2553 }
2554
2555 /* Create a quick_file_names hash table. */
2556
2557 static htab_t
2558 create_quick_file_names_table (unsigned int nr_initial_entries)
2559 {
2560 return htab_create_alloc (nr_initial_entries,
2561 hash_file_name_entry, eq_file_name_entry,
2562 delete_file_name_entry, xcalloc, xfree);
2563 }
2564
2565 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2566 have to be created afterwards. You should call age_cached_comp_units after
2567 processing PER_CU->CU. dw2_setup must have been already called. */
2568
2569 static void
2570 load_cu (struct dwarf2_per_cu_data *per_cu)
2571 {
2572 if (per_cu->is_debug_types)
2573 load_full_type_unit (per_cu);
2574 else
2575 load_full_comp_unit (per_cu, language_minimal);
2576
2577 gdb_assert (per_cu->cu != NULL);
2578
2579 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2580 }
2581
2582 /* Read in the symbols for PER_CU. */
2583
2584 static void
2585 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2586 {
2587 struct cleanup *back_to;
2588
2589 /* Skip type_unit_groups, reading the type units they contain
2590 is handled elsewhere. */
2591 if (IS_TYPE_UNIT_GROUP (per_cu))
2592 return;
2593
2594 back_to = make_cleanup (dwarf2_release_queue, NULL);
2595
2596 if (dwarf2_per_objfile->using_index
2597 ? per_cu->v.quick->symtab == NULL
2598 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2599 {
2600 queue_comp_unit (per_cu, language_minimal);
2601 load_cu (per_cu);
2602
2603 /* If we just loaded a CU from a DWO, and we're working with an index
2604 that may badly handle TUs, load all the TUs in that DWO as well.
2605 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2606 if (!per_cu->is_debug_types
2607 && per_cu->cu->dwo_unit != NULL
2608 && dwarf2_per_objfile->index_table != NULL
2609 && dwarf2_per_objfile->index_table->version <= 7
2610 /* DWP files aren't supported yet. */
2611 && get_dwp_file () == NULL)
2612 queue_and_load_all_dwo_tus (per_cu);
2613 }
2614
2615 process_queue ();
2616
2617 /* Age the cache, releasing compilation units that have not
2618 been used recently. */
2619 age_cached_comp_units ();
2620
2621 do_cleanups (back_to);
2622 }
2623
2624 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2625 the objfile from which this CU came. Returns the resulting symbol
2626 table. */
2627
2628 static struct symtab *
2629 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2630 {
2631 gdb_assert (dwarf2_per_objfile->using_index);
2632 if (!per_cu->v.quick->symtab)
2633 {
2634 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2635 increment_reading_symtab ();
2636 dw2_do_instantiate_symtab (per_cu);
2637 process_cu_includes ();
2638 do_cleanups (back_to);
2639 }
2640 return per_cu->v.quick->symtab;
2641 }
2642
2643 /* Return the CU given its index.
2644
2645 This is intended for loops like:
2646
2647 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2648 + dwarf2_per_objfile->n_type_units); ++i)
2649 {
2650 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2651
2652 ...;
2653 }
2654 */
2655
2656 static struct dwarf2_per_cu_data *
2657 dw2_get_cu (int index)
2658 {
2659 if (index >= dwarf2_per_objfile->n_comp_units)
2660 {
2661 index -= dwarf2_per_objfile->n_comp_units;
2662 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2663 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2664 }
2665
2666 return dwarf2_per_objfile->all_comp_units[index];
2667 }
2668
2669 /* Return the primary CU given its index.
2670 The difference between this function and dw2_get_cu is in the handling
2671 of type units (TUs). Here we return the type_unit_group object.
2672
2673 This is intended for loops like:
2674
2675 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2676 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2677 {
2678 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2679
2680 ...;
2681 }
2682 */
2683
2684 static struct dwarf2_per_cu_data *
2685 dw2_get_primary_cu (int index)
2686 {
2687 if (index >= dwarf2_per_objfile->n_comp_units)
2688 {
2689 index -= dwarf2_per_objfile->n_comp_units;
2690 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2691 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2692 }
2693
2694 return dwarf2_per_objfile->all_comp_units[index];
2695 }
2696
2697 /* A helper for create_cus_from_index that handles a given list of
2698 CUs. */
2699
2700 static void
2701 create_cus_from_index_list (struct objfile *objfile,
2702 const gdb_byte *cu_list, offset_type n_elements,
2703 struct dwarf2_section_info *section,
2704 int is_dwz,
2705 int base_offset)
2706 {
2707 offset_type i;
2708
2709 for (i = 0; i < n_elements; i += 2)
2710 {
2711 struct dwarf2_per_cu_data *the_cu;
2712 ULONGEST offset, length;
2713
2714 gdb_static_assert (sizeof (ULONGEST) >= 8);
2715 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2716 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2717 cu_list += 2 * 8;
2718
2719 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2720 struct dwarf2_per_cu_data);
2721 the_cu->offset.sect_off = offset;
2722 the_cu->length = length;
2723 the_cu->objfile = objfile;
2724 the_cu->section = section;
2725 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2726 struct dwarf2_per_cu_quick_data);
2727 the_cu->is_dwz = is_dwz;
2728 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2729 }
2730 }
2731
2732 /* Read the CU list from the mapped index, and use it to create all
2733 the CU objects for this objfile. */
2734
2735 static void
2736 create_cus_from_index (struct objfile *objfile,
2737 const gdb_byte *cu_list, offset_type cu_list_elements,
2738 const gdb_byte *dwz_list, offset_type dwz_elements)
2739 {
2740 struct dwz_file *dwz;
2741
2742 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2743 dwarf2_per_objfile->all_comp_units
2744 = obstack_alloc (&objfile->objfile_obstack,
2745 dwarf2_per_objfile->n_comp_units
2746 * sizeof (struct dwarf2_per_cu_data *));
2747
2748 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2749 &dwarf2_per_objfile->info, 0, 0);
2750
2751 if (dwz_elements == 0)
2752 return;
2753
2754 dwz = dwarf2_get_dwz_file ();
2755 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2756 cu_list_elements / 2);
2757 }
2758
2759 /* Create the signatured type hash table from the index. */
2760
2761 static void
2762 create_signatured_type_table_from_index (struct objfile *objfile,
2763 struct dwarf2_section_info *section,
2764 const gdb_byte *bytes,
2765 offset_type elements)
2766 {
2767 offset_type i;
2768 htab_t sig_types_hash;
2769
2770 dwarf2_per_objfile->n_type_units = elements / 3;
2771 dwarf2_per_objfile->all_type_units
2772 = xmalloc (dwarf2_per_objfile->n_type_units
2773 * sizeof (struct signatured_type *));
2774
2775 sig_types_hash = allocate_signatured_type_table (objfile);
2776
2777 for (i = 0; i < elements; i += 3)
2778 {
2779 struct signatured_type *sig_type;
2780 ULONGEST offset, type_offset_in_tu, signature;
2781 void **slot;
2782
2783 gdb_static_assert (sizeof (ULONGEST) >= 8);
2784 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2785 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2786 BFD_ENDIAN_LITTLE);
2787 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2788 bytes += 3 * 8;
2789
2790 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2791 struct signatured_type);
2792 sig_type->signature = signature;
2793 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2794 sig_type->per_cu.is_debug_types = 1;
2795 sig_type->per_cu.section = section;
2796 sig_type->per_cu.offset.sect_off = offset;
2797 sig_type->per_cu.objfile = objfile;
2798 sig_type->per_cu.v.quick
2799 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2800 struct dwarf2_per_cu_quick_data);
2801
2802 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2803 *slot = sig_type;
2804
2805 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2806 }
2807
2808 dwarf2_per_objfile->signatured_types = sig_types_hash;
2809 }
2810
2811 /* Read the address map data from the mapped index, and use it to
2812 populate the objfile's psymtabs_addrmap. */
2813
2814 static void
2815 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2816 {
2817 const gdb_byte *iter, *end;
2818 struct obstack temp_obstack;
2819 struct addrmap *mutable_map;
2820 struct cleanup *cleanup;
2821 CORE_ADDR baseaddr;
2822
2823 obstack_init (&temp_obstack);
2824 cleanup = make_cleanup_obstack_free (&temp_obstack);
2825 mutable_map = addrmap_create_mutable (&temp_obstack);
2826
2827 iter = index->address_table;
2828 end = iter + index->address_table_size;
2829
2830 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2831
2832 while (iter < end)
2833 {
2834 ULONGEST hi, lo, cu_index;
2835 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2836 iter += 8;
2837 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2838 iter += 8;
2839 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2840 iter += 4;
2841
2842 if (lo > hi)
2843 {
2844 complaint (&symfile_complaints,
2845 _(".gdb_index address table has invalid range (%s - %s)"),
2846 hex_string (lo), hex_string (hi));
2847 continue;
2848 }
2849
2850 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2851 {
2852 complaint (&symfile_complaints,
2853 _(".gdb_index address table has invalid CU number %u"),
2854 (unsigned) cu_index);
2855 continue;
2856 }
2857
2858 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2859 dw2_get_cu (cu_index));
2860 }
2861
2862 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2863 &objfile->objfile_obstack);
2864 do_cleanups (cleanup);
2865 }
2866
2867 /* The hash function for strings in the mapped index. This is the same as
2868 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2869 implementation. This is necessary because the hash function is tied to the
2870 format of the mapped index file. The hash values do not have to match with
2871 SYMBOL_HASH_NEXT.
2872
2873 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2874
2875 static hashval_t
2876 mapped_index_string_hash (int index_version, const void *p)
2877 {
2878 const unsigned char *str = (const unsigned char *) p;
2879 hashval_t r = 0;
2880 unsigned char c;
2881
2882 while ((c = *str++) != 0)
2883 {
2884 if (index_version >= 5)
2885 c = tolower (c);
2886 r = r * 67 + c - 113;
2887 }
2888
2889 return r;
2890 }
2891
2892 /* Find a slot in the mapped index INDEX for the object named NAME.
2893 If NAME is found, set *VEC_OUT to point to the CU vector in the
2894 constant pool and return 1. If NAME cannot be found, return 0. */
2895
2896 static int
2897 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2898 offset_type **vec_out)
2899 {
2900 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2901 offset_type hash;
2902 offset_type slot, step;
2903 int (*cmp) (const char *, const char *);
2904
2905 if (current_language->la_language == language_cplus
2906 || current_language->la_language == language_java
2907 || current_language->la_language == language_fortran)
2908 {
2909 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2910 not contain any. */
2911 const char *paren = strchr (name, '(');
2912
2913 if (paren)
2914 {
2915 char *dup;
2916
2917 dup = xmalloc (paren - name + 1);
2918 memcpy (dup, name, paren - name);
2919 dup[paren - name] = 0;
2920
2921 make_cleanup (xfree, dup);
2922 name = dup;
2923 }
2924 }
2925
2926 /* Index version 4 did not support case insensitive searches. But the
2927 indices for case insensitive languages are built in lowercase, therefore
2928 simulate our NAME being searched is also lowercased. */
2929 hash = mapped_index_string_hash ((index->version == 4
2930 && case_sensitivity == case_sensitive_off
2931 ? 5 : index->version),
2932 name);
2933
2934 slot = hash & (index->symbol_table_slots - 1);
2935 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2936 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2937
2938 for (;;)
2939 {
2940 /* Convert a slot number to an offset into the table. */
2941 offset_type i = 2 * slot;
2942 const char *str;
2943 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2944 {
2945 do_cleanups (back_to);
2946 return 0;
2947 }
2948
2949 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2950 if (!cmp (name, str))
2951 {
2952 *vec_out = (offset_type *) (index->constant_pool
2953 + MAYBE_SWAP (index->symbol_table[i + 1]));
2954 do_cleanups (back_to);
2955 return 1;
2956 }
2957
2958 slot = (slot + step) & (index->symbol_table_slots - 1);
2959 }
2960 }
2961
2962 /* A helper function that reads the .gdb_index from SECTION and fills
2963 in MAP. FILENAME is the name of the file containing the section;
2964 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2965 ok to use deprecated sections.
2966
2967 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2968 out parameters that are filled in with information about the CU and
2969 TU lists in the section.
2970
2971 Returns 1 if all went well, 0 otherwise. */
2972
2973 static int
2974 read_index_from_section (struct objfile *objfile,
2975 const char *filename,
2976 int deprecated_ok,
2977 struct dwarf2_section_info *section,
2978 struct mapped_index *map,
2979 const gdb_byte **cu_list,
2980 offset_type *cu_list_elements,
2981 const gdb_byte **types_list,
2982 offset_type *types_list_elements)
2983 {
2984 const gdb_byte *addr;
2985 offset_type version;
2986 offset_type *metadata;
2987 int i;
2988
2989 if (dwarf2_section_empty_p (section))
2990 return 0;
2991
2992 /* Older elfutils strip versions could keep the section in the main
2993 executable while splitting it for the separate debug info file. */
2994 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
2995 return 0;
2996
2997 dwarf2_read_section (objfile, section);
2998
2999 addr = section->buffer;
3000 /* Version check. */
3001 version = MAYBE_SWAP (*(offset_type *) addr);
3002 /* Versions earlier than 3 emitted every copy of a psymbol. This
3003 causes the index to behave very poorly for certain requests. Version 3
3004 contained incomplete addrmap. So, it seems better to just ignore such
3005 indices. */
3006 if (version < 4)
3007 {
3008 static int warning_printed = 0;
3009 if (!warning_printed)
3010 {
3011 warning (_("Skipping obsolete .gdb_index section in %s."),
3012 filename);
3013 warning_printed = 1;
3014 }
3015 return 0;
3016 }
3017 /* Index version 4 uses a different hash function than index version
3018 5 and later.
3019
3020 Versions earlier than 6 did not emit psymbols for inlined
3021 functions. Using these files will cause GDB not to be able to
3022 set breakpoints on inlined functions by name, so we ignore these
3023 indices unless the user has done
3024 "set use-deprecated-index-sections on". */
3025 if (version < 6 && !deprecated_ok)
3026 {
3027 static int warning_printed = 0;
3028 if (!warning_printed)
3029 {
3030 warning (_("\
3031 Skipping deprecated .gdb_index section in %s.\n\
3032 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3033 to use the section anyway."),
3034 filename);
3035 warning_printed = 1;
3036 }
3037 return 0;
3038 }
3039 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3040 of the TU (for symbols coming from TUs),
3041 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3042 Plus gold-generated indices can have duplicate entries for global symbols,
3043 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3044 These are just performance bugs, and we can't distinguish gdb-generated
3045 indices from gold-generated ones, so issue no warning here. */
3046
3047 /* Indexes with higher version than the one supported by GDB may be no
3048 longer backward compatible. */
3049 if (version > 8)
3050 return 0;
3051
3052 map->version = version;
3053 map->total_size = section->size;
3054
3055 metadata = (offset_type *) (addr + sizeof (offset_type));
3056
3057 i = 0;
3058 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3059 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3060 / 8);
3061 ++i;
3062
3063 *types_list = addr + MAYBE_SWAP (metadata[i]);
3064 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3065 - MAYBE_SWAP (metadata[i]))
3066 / 8);
3067 ++i;
3068
3069 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3070 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3071 - MAYBE_SWAP (metadata[i]));
3072 ++i;
3073
3074 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3075 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3076 - MAYBE_SWAP (metadata[i]))
3077 / (2 * sizeof (offset_type)));
3078 ++i;
3079
3080 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3081
3082 return 1;
3083 }
3084
3085
3086 /* Read the index file. If everything went ok, initialize the "quick"
3087 elements of all the CUs and return 1. Otherwise, return 0. */
3088
3089 static int
3090 dwarf2_read_index (struct objfile *objfile)
3091 {
3092 struct mapped_index local_map, *map;
3093 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3094 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3095 struct dwz_file *dwz;
3096
3097 if (!read_index_from_section (objfile, objfile_name (objfile),
3098 use_deprecated_index_sections,
3099 &dwarf2_per_objfile->gdb_index, &local_map,
3100 &cu_list, &cu_list_elements,
3101 &types_list, &types_list_elements))
3102 return 0;
3103
3104 /* Don't use the index if it's empty. */
3105 if (local_map.symbol_table_slots == 0)
3106 return 0;
3107
3108 /* If there is a .dwz file, read it so we can get its CU list as
3109 well. */
3110 dwz = dwarf2_get_dwz_file ();
3111 if (dwz != NULL)
3112 {
3113 struct mapped_index dwz_map;
3114 const gdb_byte *dwz_types_ignore;
3115 offset_type dwz_types_elements_ignore;
3116
3117 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3118 1,
3119 &dwz->gdb_index, &dwz_map,
3120 &dwz_list, &dwz_list_elements,
3121 &dwz_types_ignore,
3122 &dwz_types_elements_ignore))
3123 {
3124 warning (_("could not read '.gdb_index' section from %s; skipping"),
3125 bfd_get_filename (dwz->dwz_bfd));
3126 return 0;
3127 }
3128 }
3129
3130 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3131 dwz_list_elements);
3132
3133 if (types_list_elements)
3134 {
3135 struct dwarf2_section_info *section;
3136
3137 /* We can only handle a single .debug_types when we have an
3138 index. */
3139 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3140 return 0;
3141
3142 section = VEC_index (dwarf2_section_info_def,
3143 dwarf2_per_objfile->types, 0);
3144
3145 create_signatured_type_table_from_index (objfile, section, types_list,
3146 types_list_elements);
3147 }
3148
3149 create_addrmap_from_index (objfile, &local_map);
3150
3151 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3152 *map = local_map;
3153
3154 dwarf2_per_objfile->index_table = map;
3155 dwarf2_per_objfile->using_index = 1;
3156 dwarf2_per_objfile->quick_file_names_table =
3157 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3158
3159 return 1;
3160 }
3161
3162 /* A helper for the "quick" functions which sets the global
3163 dwarf2_per_objfile according to OBJFILE. */
3164
3165 static void
3166 dw2_setup (struct objfile *objfile)
3167 {
3168 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3169 gdb_assert (dwarf2_per_objfile);
3170 }
3171
3172 /* die_reader_func for dw2_get_file_names. */
3173
3174 static void
3175 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3176 const gdb_byte *info_ptr,
3177 struct die_info *comp_unit_die,
3178 int has_children,
3179 void *data)
3180 {
3181 struct dwarf2_cu *cu = reader->cu;
3182 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3183 struct objfile *objfile = dwarf2_per_objfile->objfile;
3184 struct dwarf2_per_cu_data *lh_cu;
3185 struct line_header *lh;
3186 struct attribute *attr;
3187 int i;
3188 const char *name, *comp_dir;
3189 void **slot;
3190 struct quick_file_names *qfn;
3191 unsigned int line_offset;
3192
3193 gdb_assert (! this_cu->is_debug_types);
3194
3195 /* Our callers never want to match partial units -- instead they
3196 will match the enclosing full CU. */
3197 if (comp_unit_die->tag == DW_TAG_partial_unit)
3198 {
3199 this_cu->v.quick->no_file_data = 1;
3200 return;
3201 }
3202
3203 lh_cu = this_cu;
3204 lh = NULL;
3205 slot = NULL;
3206 line_offset = 0;
3207
3208 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3209 if (attr)
3210 {
3211 struct quick_file_names find_entry;
3212
3213 line_offset = DW_UNSND (attr);
3214
3215 /* We may have already read in this line header (TU line header sharing).
3216 If we have we're done. */
3217 find_entry.hash.dwo_unit = cu->dwo_unit;
3218 find_entry.hash.line_offset.sect_off = line_offset;
3219 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3220 &find_entry, INSERT);
3221 if (*slot != NULL)
3222 {
3223 lh_cu->v.quick->file_names = *slot;
3224 return;
3225 }
3226
3227 lh = dwarf_decode_line_header (line_offset, cu);
3228 }
3229 if (lh == NULL)
3230 {
3231 lh_cu->v.quick->no_file_data = 1;
3232 return;
3233 }
3234
3235 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3236 qfn->hash.dwo_unit = cu->dwo_unit;
3237 qfn->hash.line_offset.sect_off = line_offset;
3238 gdb_assert (slot != NULL);
3239 *slot = qfn;
3240
3241 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3242
3243 qfn->num_file_names = lh->num_file_names;
3244 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3245 lh->num_file_names * sizeof (char *));
3246 for (i = 0; i < lh->num_file_names; ++i)
3247 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3248 qfn->real_names = NULL;
3249
3250 free_line_header (lh);
3251
3252 lh_cu->v.quick->file_names = qfn;
3253 }
3254
3255 /* A helper for the "quick" functions which attempts to read the line
3256 table for THIS_CU. */
3257
3258 static struct quick_file_names *
3259 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3260 {
3261 /* This should never be called for TUs. */
3262 gdb_assert (! this_cu->is_debug_types);
3263 /* Nor type unit groups. */
3264 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3265
3266 if (this_cu->v.quick->file_names != NULL)
3267 return this_cu->v.quick->file_names;
3268 /* If we know there is no line data, no point in looking again. */
3269 if (this_cu->v.quick->no_file_data)
3270 return NULL;
3271
3272 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3273
3274 if (this_cu->v.quick->no_file_data)
3275 return NULL;
3276 return this_cu->v.quick->file_names;
3277 }
3278
3279 /* A helper for the "quick" functions which computes and caches the
3280 real path for a given file name from the line table. */
3281
3282 static const char *
3283 dw2_get_real_path (struct objfile *objfile,
3284 struct quick_file_names *qfn, int index)
3285 {
3286 if (qfn->real_names == NULL)
3287 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3288 qfn->num_file_names, char *);
3289
3290 if (qfn->real_names[index] == NULL)
3291 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3292
3293 return qfn->real_names[index];
3294 }
3295
3296 static struct symtab *
3297 dw2_find_last_source_symtab (struct objfile *objfile)
3298 {
3299 int index;
3300
3301 dw2_setup (objfile);
3302 index = dwarf2_per_objfile->n_comp_units - 1;
3303 return dw2_instantiate_symtab (dw2_get_cu (index));
3304 }
3305
3306 /* Traversal function for dw2_forget_cached_source_info. */
3307
3308 static int
3309 dw2_free_cached_file_names (void **slot, void *info)
3310 {
3311 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3312
3313 if (file_data->real_names)
3314 {
3315 int i;
3316
3317 for (i = 0; i < file_data->num_file_names; ++i)
3318 {
3319 xfree ((void*) file_data->real_names[i]);
3320 file_data->real_names[i] = NULL;
3321 }
3322 }
3323
3324 return 1;
3325 }
3326
3327 static void
3328 dw2_forget_cached_source_info (struct objfile *objfile)
3329 {
3330 dw2_setup (objfile);
3331
3332 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3333 dw2_free_cached_file_names, NULL);
3334 }
3335
3336 /* Helper function for dw2_map_symtabs_matching_filename that expands
3337 the symtabs and calls the iterator. */
3338
3339 static int
3340 dw2_map_expand_apply (struct objfile *objfile,
3341 struct dwarf2_per_cu_data *per_cu,
3342 const char *name, const char *real_path,
3343 int (*callback) (struct symtab *, void *),
3344 void *data)
3345 {
3346 struct symtab *last_made = objfile->symtabs;
3347
3348 /* Don't visit already-expanded CUs. */
3349 if (per_cu->v.quick->symtab)
3350 return 0;
3351
3352 /* This may expand more than one symtab, and we want to iterate over
3353 all of them. */
3354 dw2_instantiate_symtab (per_cu);
3355
3356 return iterate_over_some_symtabs (name, real_path, callback, data,
3357 objfile->symtabs, last_made);
3358 }
3359
3360 /* Implementation of the map_symtabs_matching_filename method. */
3361
3362 static int
3363 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3364 const char *real_path,
3365 int (*callback) (struct symtab *, void *),
3366 void *data)
3367 {
3368 int i;
3369 const char *name_basename = lbasename (name);
3370
3371 dw2_setup (objfile);
3372
3373 /* The rule is CUs specify all the files, including those used by
3374 any TU, so there's no need to scan TUs here. */
3375
3376 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3377 {
3378 int j;
3379 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3380 struct quick_file_names *file_data;
3381
3382 /* We only need to look at symtabs not already expanded. */
3383 if (per_cu->v.quick->symtab)
3384 continue;
3385
3386 file_data = dw2_get_file_names (per_cu);
3387 if (file_data == NULL)
3388 continue;
3389
3390 for (j = 0; j < file_data->num_file_names; ++j)
3391 {
3392 const char *this_name = file_data->file_names[j];
3393 const char *this_real_name;
3394
3395 if (compare_filenames_for_search (this_name, name))
3396 {
3397 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3398 callback, data))
3399 return 1;
3400 continue;
3401 }
3402
3403 /* Before we invoke realpath, which can get expensive when many
3404 files are involved, do a quick comparison of the basenames. */
3405 if (! basenames_may_differ
3406 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3407 continue;
3408
3409 this_real_name = dw2_get_real_path (objfile, file_data, j);
3410 if (compare_filenames_for_search (this_real_name, name))
3411 {
3412 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3413 callback, data))
3414 return 1;
3415 continue;
3416 }
3417
3418 if (real_path != NULL)
3419 {
3420 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3421 gdb_assert (IS_ABSOLUTE_PATH (name));
3422 if (this_real_name != NULL
3423 && FILENAME_CMP (real_path, this_real_name) == 0)
3424 {
3425 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3426 callback, data))
3427 return 1;
3428 continue;
3429 }
3430 }
3431 }
3432 }
3433
3434 return 0;
3435 }
3436
3437 /* Struct used to manage iterating over all CUs looking for a symbol. */
3438
3439 struct dw2_symtab_iterator
3440 {
3441 /* The internalized form of .gdb_index. */
3442 struct mapped_index *index;
3443 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3444 int want_specific_block;
3445 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3446 Unused if !WANT_SPECIFIC_BLOCK. */
3447 int block_index;
3448 /* The kind of symbol we're looking for. */
3449 domain_enum domain;
3450 /* The list of CUs from the index entry of the symbol,
3451 or NULL if not found. */
3452 offset_type *vec;
3453 /* The next element in VEC to look at. */
3454 int next;
3455 /* The number of elements in VEC, or zero if there is no match. */
3456 int length;
3457 /* Have we seen a global version of the symbol?
3458 If so we can ignore all further global instances.
3459 This is to work around gold/15646, inefficient gold-generated
3460 indices. */
3461 int global_seen;
3462 };
3463
3464 /* Initialize the index symtab iterator ITER.
3465 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3466 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3467
3468 static void
3469 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3470 struct mapped_index *index,
3471 int want_specific_block,
3472 int block_index,
3473 domain_enum domain,
3474 const char *name)
3475 {
3476 iter->index = index;
3477 iter->want_specific_block = want_specific_block;
3478 iter->block_index = block_index;
3479 iter->domain = domain;
3480 iter->next = 0;
3481 iter->global_seen = 0;
3482
3483 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3484 iter->length = MAYBE_SWAP (*iter->vec);
3485 else
3486 {
3487 iter->vec = NULL;
3488 iter->length = 0;
3489 }
3490 }
3491
3492 /* Return the next matching CU or NULL if there are no more. */
3493
3494 static struct dwarf2_per_cu_data *
3495 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3496 {
3497 for ( ; iter->next < iter->length; ++iter->next)
3498 {
3499 offset_type cu_index_and_attrs =
3500 MAYBE_SWAP (iter->vec[iter->next + 1]);
3501 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3502 struct dwarf2_per_cu_data *per_cu;
3503 int want_static = iter->block_index != GLOBAL_BLOCK;
3504 /* This value is only valid for index versions >= 7. */
3505 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3506 gdb_index_symbol_kind symbol_kind =
3507 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3508 /* Only check the symbol attributes if they're present.
3509 Indices prior to version 7 don't record them,
3510 and indices >= 7 may elide them for certain symbols
3511 (gold does this). */
3512 int attrs_valid =
3513 (iter->index->version >= 7
3514 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3515
3516 /* Don't crash on bad data. */
3517 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3518 + dwarf2_per_objfile->n_type_units))
3519 {
3520 complaint (&symfile_complaints,
3521 _(".gdb_index entry has bad CU index"
3522 " [in module %s]"),
3523 objfile_name (dwarf2_per_objfile->objfile));
3524 continue;
3525 }
3526
3527 per_cu = dw2_get_cu (cu_index);
3528
3529 /* Skip if already read in. */
3530 if (per_cu->v.quick->symtab)
3531 continue;
3532
3533 /* Check static vs global. */
3534 if (attrs_valid)
3535 {
3536 if (iter->want_specific_block
3537 && want_static != is_static)
3538 continue;
3539 /* Work around gold/15646. */
3540 if (!is_static && iter->global_seen)
3541 continue;
3542 if (!is_static)
3543 iter->global_seen = 1;
3544 }
3545
3546 /* Only check the symbol's kind if it has one. */
3547 if (attrs_valid)
3548 {
3549 switch (iter->domain)
3550 {
3551 case VAR_DOMAIN:
3552 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3553 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3554 /* Some types are also in VAR_DOMAIN. */
3555 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3556 continue;
3557 break;
3558 case STRUCT_DOMAIN:
3559 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3560 continue;
3561 break;
3562 case LABEL_DOMAIN:
3563 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3564 continue;
3565 break;
3566 default:
3567 break;
3568 }
3569 }
3570
3571 ++iter->next;
3572 return per_cu;
3573 }
3574
3575 return NULL;
3576 }
3577
3578 static struct symtab *
3579 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3580 const char *name, domain_enum domain)
3581 {
3582 struct symtab *stab_best = NULL;
3583 struct mapped_index *index;
3584
3585 dw2_setup (objfile);
3586
3587 index = dwarf2_per_objfile->index_table;
3588
3589 /* index is NULL if OBJF_READNOW. */
3590 if (index)
3591 {
3592 struct dw2_symtab_iterator iter;
3593 struct dwarf2_per_cu_data *per_cu;
3594
3595 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3596
3597 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3598 {
3599 struct symbol *sym = NULL;
3600 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3601
3602 /* Some caution must be observed with overloaded functions
3603 and methods, since the index will not contain any overload
3604 information (but NAME might contain it). */
3605 if (stab->primary)
3606 {
3607 struct blockvector *bv = BLOCKVECTOR (stab);
3608 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3609
3610 sym = lookup_block_symbol (block, name, domain);
3611 }
3612
3613 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3614 {
3615 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3616 return stab;
3617
3618 stab_best = stab;
3619 }
3620
3621 /* Keep looking through other CUs. */
3622 }
3623 }
3624
3625 return stab_best;
3626 }
3627
3628 static void
3629 dw2_print_stats (struct objfile *objfile)
3630 {
3631 int i, total, count;
3632
3633 dw2_setup (objfile);
3634 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3635 count = 0;
3636 for (i = 0; i < total; ++i)
3637 {
3638 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3639
3640 if (!per_cu->v.quick->symtab)
3641 ++count;
3642 }
3643 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3644 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3645 }
3646
3647 /* This dumps minimal information about the index.
3648 It is called via "mt print objfiles".
3649 One use is to verify .gdb_index has been loaded by the
3650 gdb.dwarf2/gdb-index.exp testcase. */
3651
3652 static void
3653 dw2_dump (struct objfile *objfile)
3654 {
3655 dw2_setup (objfile);
3656 gdb_assert (dwarf2_per_objfile->using_index);
3657 printf_filtered (".gdb_index:");
3658 if (dwarf2_per_objfile->index_table != NULL)
3659 {
3660 printf_filtered (" version %d\n",
3661 dwarf2_per_objfile->index_table->version);
3662 }
3663 else
3664 printf_filtered (" faked for \"readnow\"\n");
3665 printf_filtered ("\n");
3666 }
3667
3668 static void
3669 dw2_relocate (struct objfile *objfile,
3670 const struct section_offsets *new_offsets,
3671 const struct section_offsets *delta)
3672 {
3673 /* There's nothing to relocate here. */
3674 }
3675
3676 static void
3677 dw2_expand_symtabs_for_function (struct objfile *objfile,
3678 const char *func_name)
3679 {
3680 struct mapped_index *index;
3681
3682 dw2_setup (objfile);
3683
3684 index = dwarf2_per_objfile->index_table;
3685
3686 /* index is NULL if OBJF_READNOW. */
3687 if (index)
3688 {
3689 struct dw2_symtab_iterator iter;
3690 struct dwarf2_per_cu_data *per_cu;
3691
3692 /* Note: It doesn't matter what we pass for block_index here. */
3693 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3694 func_name);
3695
3696 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3697 dw2_instantiate_symtab (per_cu);
3698 }
3699 }
3700
3701 static void
3702 dw2_expand_all_symtabs (struct objfile *objfile)
3703 {
3704 int i;
3705
3706 dw2_setup (objfile);
3707
3708 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3709 + dwarf2_per_objfile->n_type_units); ++i)
3710 {
3711 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3712
3713 dw2_instantiate_symtab (per_cu);
3714 }
3715 }
3716
3717 static void
3718 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3719 const char *fullname)
3720 {
3721 int i;
3722
3723 dw2_setup (objfile);
3724
3725 /* We don't need to consider type units here.
3726 This is only called for examining code, e.g. expand_line_sal.
3727 There can be an order of magnitude (or more) more type units
3728 than comp units, and we avoid them if we can. */
3729
3730 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3731 {
3732 int j;
3733 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3734 struct quick_file_names *file_data;
3735
3736 /* We only need to look at symtabs not already expanded. */
3737 if (per_cu->v.quick->symtab)
3738 continue;
3739
3740 file_data = dw2_get_file_names (per_cu);
3741 if (file_data == NULL)
3742 continue;
3743
3744 for (j = 0; j < file_data->num_file_names; ++j)
3745 {
3746 const char *this_fullname = file_data->file_names[j];
3747
3748 if (filename_cmp (this_fullname, fullname) == 0)
3749 {
3750 dw2_instantiate_symtab (per_cu);
3751 break;
3752 }
3753 }
3754 }
3755 }
3756
3757 static void
3758 dw2_map_matching_symbols (struct objfile *objfile,
3759 const char * name, domain_enum namespace,
3760 int global,
3761 int (*callback) (struct block *,
3762 struct symbol *, void *),
3763 void *data, symbol_compare_ftype *match,
3764 symbol_compare_ftype *ordered_compare)
3765 {
3766 /* Currently unimplemented; used for Ada. The function can be called if the
3767 current language is Ada for a non-Ada objfile using GNU index. As Ada
3768 does not look for non-Ada symbols this function should just return. */
3769 }
3770
3771 static void
3772 dw2_expand_symtabs_matching
3773 (struct objfile *objfile,
3774 expand_symtabs_file_matcher_ftype *file_matcher,
3775 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3776 enum search_domain kind,
3777 void *data)
3778 {
3779 int i;
3780 offset_type iter;
3781 struct mapped_index *index;
3782
3783 dw2_setup (objfile);
3784
3785 /* index_table is NULL if OBJF_READNOW. */
3786 if (!dwarf2_per_objfile->index_table)
3787 return;
3788 index = dwarf2_per_objfile->index_table;
3789
3790 if (file_matcher != NULL)
3791 {
3792 struct cleanup *cleanup;
3793 htab_t visited_found, visited_not_found;
3794
3795 visited_found = htab_create_alloc (10,
3796 htab_hash_pointer, htab_eq_pointer,
3797 NULL, xcalloc, xfree);
3798 cleanup = make_cleanup_htab_delete (visited_found);
3799 visited_not_found = htab_create_alloc (10,
3800 htab_hash_pointer, htab_eq_pointer,
3801 NULL, xcalloc, xfree);
3802 make_cleanup_htab_delete (visited_not_found);
3803
3804 /* The rule is CUs specify all the files, including those used by
3805 any TU, so there's no need to scan TUs here. */
3806
3807 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3808 {
3809 int j;
3810 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3811 struct quick_file_names *file_data;
3812 void **slot;
3813
3814 per_cu->v.quick->mark = 0;
3815
3816 /* We only need to look at symtabs not already expanded. */
3817 if (per_cu->v.quick->symtab)
3818 continue;
3819
3820 file_data = dw2_get_file_names (per_cu);
3821 if (file_data == NULL)
3822 continue;
3823
3824 if (htab_find (visited_not_found, file_data) != NULL)
3825 continue;
3826 else if (htab_find (visited_found, file_data) != NULL)
3827 {
3828 per_cu->v.quick->mark = 1;
3829 continue;
3830 }
3831
3832 for (j = 0; j < file_data->num_file_names; ++j)
3833 {
3834 const char *this_real_name;
3835
3836 if (file_matcher (file_data->file_names[j], data, 0))
3837 {
3838 per_cu->v.quick->mark = 1;
3839 break;
3840 }
3841
3842 /* Before we invoke realpath, which can get expensive when many
3843 files are involved, do a quick comparison of the basenames. */
3844 if (!basenames_may_differ
3845 && !file_matcher (lbasename (file_data->file_names[j]),
3846 data, 1))
3847 continue;
3848
3849 this_real_name = dw2_get_real_path (objfile, file_data, j);
3850 if (file_matcher (this_real_name, data, 0))
3851 {
3852 per_cu->v.quick->mark = 1;
3853 break;
3854 }
3855 }
3856
3857 slot = htab_find_slot (per_cu->v.quick->mark
3858 ? visited_found
3859 : visited_not_found,
3860 file_data, INSERT);
3861 *slot = file_data;
3862 }
3863
3864 do_cleanups (cleanup);
3865 }
3866
3867 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3868 {
3869 offset_type idx = 2 * iter;
3870 const char *name;
3871 offset_type *vec, vec_len, vec_idx;
3872 int global_seen = 0;
3873
3874 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3875 continue;
3876
3877 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3878
3879 if (! (*symbol_matcher) (name, data))
3880 continue;
3881
3882 /* The name was matched, now expand corresponding CUs that were
3883 marked. */
3884 vec = (offset_type *) (index->constant_pool
3885 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3886 vec_len = MAYBE_SWAP (vec[0]);
3887 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3888 {
3889 struct dwarf2_per_cu_data *per_cu;
3890 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3891 /* This value is only valid for index versions >= 7. */
3892 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3893 gdb_index_symbol_kind symbol_kind =
3894 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3895 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3896 /* Only check the symbol attributes if they're present.
3897 Indices prior to version 7 don't record them,
3898 and indices >= 7 may elide them for certain symbols
3899 (gold does this). */
3900 int attrs_valid =
3901 (index->version >= 7
3902 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3903
3904 /* Work around gold/15646. */
3905 if (attrs_valid)
3906 {
3907 if (!is_static && global_seen)
3908 continue;
3909 if (!is_static)
3910 global_seen = 1;
3911 }
3912
3913 /* Only check the symbol's kind if it has one. */
3914 if (attrs_valid)
3915 {
3916 switch (kind)
3917 {
3918 case VARIABLES_DOMAIN:
3919 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3920 continue;
3921 break;
3922 case FUNCTIONS_DOMAIN:
3923 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3924 continue;
3925 break;
3926 case TYPES_DOMAIN:
3927 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3928 continue;
3929 break;
3930 default:
3931 break;
3932 }
3933 }
3934
3935 /* Don't crash on bad data. */
3936 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3937 + dwarf2_per_objfile->n_type_units))
3938 {
3939 complaint (&symfile_complaints,
3940 _(".gdb_index entry has bad CU index"
3941 " [in module %s]"), objfile_name (objfile));
3942 continue;
3943 }
3944
3945 per_cu = dw2_get_cu (cu_index);
3946 if (file_matcher == NULL || per_cu->v.quick->mark)
3947 dw2_instantiate_symtab (per_cu);
3948 }
3949 }
3950 }
3951
3952 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3953 symtab. */
3954
3955 static struct symtab *
3956 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3957 {
3958 int i;
3959
3960 if (BLOCKVECTOR (symtab) != NULL
3961 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3962 return symtab;
3963
3964 if (symtab->includes == NULL)
3965 return NULL;
3966
3967 for (i = 0; symtab->includes[i]; ++i)
3968 {
3969 struct symtab *s = symtab->includes[i];
3970
3971 s = recursively_find_pc_sect_symtab (s, pc);
3972 if (s != NULL)
3973 return s;
3974 }
3975
3976 return NULL;
3977 }
3978
3979 static struct symtab *
3980 dw2_find_pc_sect_symtab (struct objfile *objfile,
3981 struct minimal_symbol *msymbol,
3982 CORE_ADDR pc,
3983 struct obj_section *section,
3984 int warn_if_readin)
3985 {
3986 struct dwarf2_per_cu_data *data;
3987 struct symtab *result;
3988
3989 dw2_setup (objfile);
3990
3991 if (!objfile->psymtabs_addrmap)
3992 return NULL;
3993
3994 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3995 if (!data)
3996 return NULL;
3997
3998 if (warn_if_readin && data->v.quick->symtab)
3999 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4000 paddress (get_objfile_arch (objfile), pc));
4001
4002 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4003 gdb_assert (result != NULL);
4004 return result;
4005 }
4006
4007 static void
4008 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4009 void *data, int need_fullname)
4010 {
4011 int i;
4012 struct cleanup *cleanup;
4013 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4014 NULL, xcalloc, xfree);
4015
4016 cleanup = make_cleanup_htab_delete (visited);
4017 dw2_setup (objfile);
4018
4019 /* The rule is CUs specify all the files, including those used by
4020 any TU, so there's no need to scan TUs here.
4021 We can ignore file names coming from already-expanded CUs. */
4022
4023 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4024 {
4025 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4026
4027 if (per_cu->v.quick->symtab)
4028 {
4029 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4030 INSERT);
4031
4032 *slot = per_cu->v.quick->file_names;
4033 }
4034 }
4035
4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4037 {
4038 int j;
4039 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4040 struct quick_file_names *file_data;
4041 void **slot;
4042
4043 /* We only need to look at symtabs not already expanded. */
4044 if (per_cu->v.quick->symtab)
4045 continue;
4046
4047 file_data = dw2_get_file_names (per_cu);
4048 if (file_data == NULL)
4049 continue;
4050
4051 slot = htab_find_slot (visited, file_data, INSERT);
4052 if (*slot)
4053 {
4054 /* Already visited. */
4055 continue;
4056 }
4057 *slot = file_data;
4058
4059 for (j = 0; j < file_data->num_file_names; ++j)
4060 {
4061 const char *this_real_name;
4062
4063 if (need_fullname)
4064 this_real_name = dw2_get_real_path (objfile, file_data, j);
4065 else
4066 this_real_name = NULL;
4067 (*fun) (file_data->file_names[j], this_real_name, data);
4068 }
4069 }
4070
4071 do_cleanups (cleanup);
4072 }
4073
4074 static int
4075 dw2_has_symbols (struct objfile *objfile)
4076 {
4077 return 1;
4078 }
4079
4080 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4081 {
4082 dw2_has_symbols,
4083 dw2_find_last_source_symtab,
4084 dw2_forget_cached_source_info,
4085 dw2_map_symtabs_matching_filename,
4086 dw2_lookup_symbol,
4087 dw2_print_stats,
4088 dw2_dump,
4089 dw2_relocate,
4090 dw2_expand_symtabs_for_function,
4091 dw2_expand_all_symtabs,
4092 dw2_expand_symtabs_with_fullname,
4093 dw2_map_matching_symbols,
4094 dw2_expand_symtabs_matching,
4095 dw2_find_pc_sect_symtab,
4096 dw2_map_symbol_filenames
4097 };
4098
4099 /* Initialize for reading DWARF for this objfile. Return 0 if this
4100 file will use psymtabs, or 1 if using the GNU index. */
4101
4102 int
4103 dwarf2_initialize_objfile (struct objfile *objfile)
4104 {
4105 /* If we're about to read full symbols, don't bother with the
4106 indices. In this case we also don't care if some other debug
4107 format is making psymtabs, because they are all about to be
4108 expanded anyway. */
4109 if ((objfile->flags & OBJF_READNOW))
4110 {
4111 int i;
4112
4113 dwarf2_per_objfile->using_index = 1;
4114 create_all_comp_units (objfile);
4115 create_all_type_units (objfile);
4116 dwarf2_per_objfile->quick_file_names_table =
4117 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4118
4119 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4120 + dwarf2_per_objfile->n_type_units); ++i)
4121 {
4122 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4123
4124 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4125 struct dwarf2_per_cu_quick_data);
4126 }
4127
4128 /* Return 1 so that gdb sees the "quick" functions. However,
4129 these functions will be no-ops because we will have expanded
4130 all symtabs. */
4131 return 1;
4132 }
4133
4134 if (dwarf2_read_index (objfile))
4135 return 1;
4136
4137 return 0;
4138 }
4139
4140 \f
4141
4142 /* Build a partial symbol table. */
4143
4144 void
4145 dwarf2_build_psymtabs (struct objfile *objfile)
4146 {
4147 volatile struct gdb_exception except;
4148
4149 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4150 {
4151 init_psymbol_list (objfile, 1024);
4152 }
4153
4154 TRY_CATCH (except, RETURN_MASK_ERROR)
4155 {
4156 /* This isn't really ideal: all the data we allocate on the
4157 objfile's obstack is still uselessly kept around. However,
4158 freeing it seems unsafe. */
4159 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4160
4161 dwarf2_build_psymtabs_hard (objfile);
4162 discard_cleanups (cleanups);
4163 }
4164 if (except.reason < 0)
4165 exception_print (gdb_stderr, except);
4166 }
4167
4168 /* Return the total length of the CU described by HEADER. */
4169
4170 static unsigned int
4171 get_cu_length (const struct comp_unit_head *header)
4172 {
4173 return header->initial_length_size + header->length;
4174 }
4175
4176 /* Return TRUE if OFFSET is within CU_HEADER. */
4177
4178 static inline int
4179 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4180 {
4181 sect_offset bottom = { cu_header->offset.sect_off };
4182 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4183
4184 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4185 }
4186
4187 /* Find the base address of the compilation unit for range lists and
4188 location lists. It will normally be specified by DW_AT_low_pc.
4189 In DWARF-3 draft 4, the base address could be overridden by
4190 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4191 compilation units with discontinuous ranges. */
4192
4193 static void
4194 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4195 {
4196 struct attribute *attr;
4197
4198 cu->base_known = 0;
4199 cu->base_address = 0;
4200
4201 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4202 if (attr)
4203 {
4204 cu->base_address = DW_ADDR (attr);
4205 cu->base_known = 1;
4206 }
4207 else
4208 {
4209 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4210 if (attr)
4211 {
4212 cu->base_address = DW_ADDR (attr);
4213 cu->base_known = 1;
4214 }
4215 }
4216 }
4217
4218 /* Read in the comp unit header information from the debug_info at info_ptr.
4219 NOTE: This leaves members offset, first_die_offset to be filled in
4220 by the caller. */
4221
4222 static const gdb_byte *
4223 read_comp_unit_head (struct comp_unit_head *cu_header,
4224 const gdb_byte *info_ptr, bfd *abfd)
4225 {
4226 int signed_addr;
4227 unsigned int bytes_read;
4228
4229 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4230 cu_header->initial_length_size = bytes_read;
4231 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4232 info_ptr += bytes_read;
4233 cu_header->version = read_2_bytes (abfd, info_ptr);
4234 info_ptr += 2;
4235 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4236 &bytes_read);
4237 info_ptr += bytes_read;
4238 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4239 info_ptr += 1;
4240 signed_addr = bfd_get_sign_extend_vma (abfd);
4241 if (signed_addr < 0)
4242 internal_error (__FILE__, __LINE__,
4243 _("read_comp_unit_head: dwarf from non elf file"));
4244 cu_header->signed_addr_p = signed_addr;
4245
4246 return info_ptr;
4247 }
4248
4249 /* Helper function that returns the proper abbrev section for
4250 THIS_CU. */
4251
4252 static struct dwarf2_section_info *
4253 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4254 {
4255 struct dwarf2_section_info *abbrev;
4256
4257 if (this_cu->is_dwz)
4258 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4259 else
4260 abbrev = &dwarf2_per_objfile->abbrev;
4261
4262 return abbrev;
4263 }
4264
4265 /* Subroutine of read_and_check_comp_unit_head and
4266 read_and_check_type_unit_head to simplify them.
4267 Perform various error checking on the header. */
4268
4269 static void
4270 error_check_comp_unit_head (struct comp_unit_head *header,
4271 struct dwarf2_section_info *section,
4272 struct dwarf2_section_info *abbrev_section)
4273 {
4274 bfd *abfd = get_section_bfd_owner (section);
4275 const char *filename = get_section_file_name (section);
4276
4277 if (header->version != 2 && header->version != 3 && header->version != 4)
4278 error (_("Dwarf Error: wrong version in compilation unit header "
4279 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4280 filename);
4281
4282 if (header->abbrev_offset.sect_off
4283 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4284 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4285 "(offset 0x%lx + 6) [in module %s]"),
4286 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4287 filename);
4288
4289 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4290 avoid potential 32-bit overflow. */
4291 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4292 > section->size)
4293 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4294 "(offset 0x%lx + 0) [in module %s]"),
4295 (long) header->length, (long) header->offset.sect_off,
4296 filename);
4297 }
4298
4299 /* Read in a CU/TU header and perform some basic error checking.
4300 The contents of the header are stored in HEADER.
4301 The result is a pointer to the start of the first DIE. */
4302
4303 static const gdb_byte *
4304 read_and_check_comp_unit_head (struct comp_unit_head *header,
4305 struct dwarf2_section_info *section,
4306 struct dwarf2_section_info *abbrev_section,
4307 const gdb_byte *info_ptr,
4308 int is_debug_types_section)
4309 {
4310 const gdb_byte *beg_of_comp_unit = info_ptr;
4311 bfd *abfd = get_section_bfd_owner (section);
4312
4313 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4314
4315 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4316
4317 /* If we're reading a type unit, skip over the signature and
4318 type_offset fields. */
4319 if (is_debug_types_section)
4320 info_ptr += 8 /*signature*/ + header->offset_size;
4321
4322 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4323
4324 error_check_comp_unit_head (header, section, abbrev_section);
4325
4326 return info_ptr;
4327 }
4328
4329 /* Read in the types comp unit header information from .debug_types entry at
4330 types_ptr. The result is a pointer to one past the end of the header. */
4331
4332 static const gdb_byte *
4333 read_and_check_type_unit_head (struct comp_unit_head *header,
4334 struct dwarf2_section_info *section,
4335 struct dwarf2_section_info *abbrev_section,
4336 const gdb_byte *info_ptr,
4337 ULONGEST *signature,
4338 cu_offset *type_offset_in_tu)
4339 {
4340 const gdb_byte *beg_of_comp_unit = info_ptr;
4341 bfd *abfd = get_section_bfd_owner (section);
4342
4343 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4344
4345 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4346
4347 /* If we're reading a type unit, skip over the signature and
4348 type_offset fields. */
4349 if (signature != NULL)
4350 *signature = read_8_bytes (abfd, info_ptr);
4351 info_ptr += 8;
4352 if (type_offset_in_tu != NULL)
4353 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4354 header->offset_size);
4355 info_ptr += header->offset_size;
4356
4357 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4358
4359 error_check_comp_unit_head (header, section, abbrev_section);
4360
4361 return info_ptr;
4362 }
4363
4364 /* Fetch the abbreviation table offset from a comp or type unit header. */
4365
4366 static sect_offset
4367 read_abbrev_offset (struct dwarf2_section_info *section,
4368 sect_offset offset)
4369 {
4370 bfd *abfd = get_section_bfd_owner (section);
4371 const gdb_byte *info_ptr;
4372 unsigned int length, initial_length_size, offset_size;
4373 sect_offset abbrev_offset;
4374
4375 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4376 info_ptr = section->buffer + offset.sect_off;
4377 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4378 offset_size = initial_length_size == 4 ? 4 : 8;
4379 info_ptr += initial_length_size + 2 /*version*/;
4380 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4381 return abbrev_offset;
4382 }
4383
4384 /* Allocate a new partial symtab for file named NAME and mark this new
4385 partial symtab as being an include of PST. */
4386
4387 static void
4388 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4389 struct objfile *objfile)
4390 {
4391 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4392
4393 if (!IS_ABSOLUTE_PATH (subpst->filename))
4394 {
4395 /* It shares objfile->objfile_obstack. */
4396 subpst->dirname = pst->dirname;
4397 }
4398
4399 subpst->section_offsets = pst->section_offsets;
4400 subpst->textlow = 0;
4401 subpst->texthigh = 0;
4402
4403 subpst->dependencies = (struct partial_symtab **)
4404 obstack_alloc (&objfile->objfile_obstack,
4405 sizeof (struct partial_symtab *));
4406 subpst->dependencies[0] = pst;
4407 subpst->number_of_dependencies = 1;
4408
4409 subpst->globals_offset = 0;
4410 subpst->n_global_syms = 0;
4411 subpst->statics_offset = 0;
4412 subpst->n_static_syms = 0;
4413 subpst->symtab = NULL;
4414 subpst->read_symtab = pst->read_symtab;
4415 subpst->readin = 0;
4416
4417 /* No private part is necessary for include psymtabs. This property
4418 can be used to differentiate between such include psymtabs and
4419 the regular ones. */
4420 subpst->read_symtab_private = NULL;
4421 }
4422
4423 /* Read the Line Number Program data and extract the list of files
4424 included by the source file represented by PST. Build an include
4425 partial symtab for each of these included files. */
4426
4427 static void
4428 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4429 struct die_info *die,
4430 struct partial_symtab *pst)
4431 {
4432 struct line_header *lh = NULL;
4433 struct attribute *attr;
4434
4435 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4436 if (attr)
4437 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4438 if (lh == NULL)
4439 return; /* No linetable, so no includes. */
4440
4441 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4442 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4443
4444 free_line_header (lh);
4445 }
4446
4447 static hashval_t
4448 hash_signatured_type (const void *item)
4449 {
4450 const struct signatured_type *sig_type = item;
4451
4452 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4453 return sig_type->signature;
4454 }
4455
4456 static int
4457 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4458 {
4459 const struct signatured_type *lhs = item_lhs;
4460 const struct signatured_type *rhs = item_rhs;
4461
4462 return lhs->signature == rhs->signature;
4463 }
4464
4465 /* Allocate a hash table for signatured types. */
4466
4467 static htab_t
4468 allocate_signatured_type_table (struct objfile *objfile)
4469 {
4470 return htab_create_alloc_ex (41,
4471 hash_signatured_type,
4472 eq_signatured_type,
4473 NULL,
4474 &objfile->objfile_obstack,
4475 hashtab_obstack_allocate,
4476 dummy_obstack_deallocate);
4477 }
4478
4479 /* A helper function to add a signatured type CU to a table. */
4480
4481 static int
4482 add_signatured_type_cu_to_table (void **slot, void *datum)
4483 {
4484 struct signatured_type *sigt = *slot;
4485 struct signatured_type ***datap = datum;
4486
4487 **datap = sigt;
4488 ++*datap;
4489
4490 return 1;
4491 }
4492
4493 /* Create the hash table of all entries in the .debug_types
4494 (or .debug_types.dwo) section(s).
4495 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4496 otherwise it is NULL.
4497
4498 The result is a pointer to the hash table or NULL if there are no types.
4499
4500 Note: This function processes DWO files only, not DWP files. */
4501
4502 static htab_t
4503 create_debug_types_hash_table (struct dwo_file *dwo_file,
4504 VEC (dwarf2_section_info_def) *types)
4505 {
4506 struct objfile *objfile = dwarf2_per_objfile->objfile;
4507 htab_t types_htab = NULL;
4508 int ix;
4509 struct dwarf2_section_info *section;
4510 struct dwarf2_section_info *abbrev_section;
4511
4512 if (VEC_empty (dwarf2_section_info_def, types))
4513 return NULL;
4514
4515 abbrev_section = (dwo_file != NULL
4516 ? &dwo_file->sections.abbrev
4517 : &dwarf2_per_objfile->abbrev);
4518
4519 if (dwarf2_read_debug)
4520 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4521 dwo_file ? ".dwo" : "",
4522 get_section_file_name (abbrev_section));
4523
4524 for (ix = 0;
4525 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4526 ++ix)
4527 {
4528 bfd *abfd;
4529 const gdb_byte *info_ptr, *end_ptr;
4530
4531 dwarf2_read_section (objfile, section);
4532 info_ptr = section->buffer;
4533
4534 if (info_ptr == NULL)
4535 continue;
4536
4537 /* We can't set abfd until now because the section may be empty or
4538 not present, in which case the bfd is unknown. */
4539 abfd = get_section_bfd_owner (section);
4540
4541 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4542 because we don't need to read any dies: the signature is in the
4543 header. */
4544
4545 end_ptr = info_ptr + section->size;
4546 while (info_ptr < end_ptr)
4547 {
4548 sect_offset offset;
4549 cu_offset type_offset_in_tu;
4550 ULONGEST signature;
4551 struct signatured_type *sig_type;
4552 struct dwo_unit *dwo_tu;
4553 void **slot;
4554 const gdb_byte *ptr = info_ptr;
4555 struct comp_unit_head header;
4556 unsigned int length;
4557
4558 offset.sect_off = ptr - section->buffer;
4559
4560 /* We need to read the type's signature in order to build the hash
4561 table, but we don't need anything else just yet. */
4562
4563 ptr = read_and_check_type_unit_head (&header, section,
4564 abbrev_section, ptr,
4565 &signature, &type_offset_in_tu);
4566
4567 length = get_cu_length (&header);
4568
4569 /* Skip dummy type units. */
4570 if (ptr >= info_ptr + length
4571 || peek_abbrev_code (abfd, ptr) == 0)
4572 {
4573 info_ptr += length;
4574 continue;
4575 }
4576
4577 if (types_htab == NULL)
4578 {
4579 if (dwo_file)
4580 types_htab = allocate_dwo_unit_table (objfile);
4581 else
4582 types_htab = allocate_signatured_type_table (objfile);
4583 }
4584
4585 if (dwo_file)
4586 {
4587 sig_type = NULL;
4588 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4589 struct dwo_unit);
4590 dwo_tu->dwo_file = dwo_file;
4591 dwo_tu->signature = signature;
4592 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4593 dwo_tu->section = section;
4594 dwo_tu->offset = offset;
4595 dwo_tu->length = length;
4596 }
4597 else
4598 {
4599 /* N.B.: type_offset is not usable if this type uses a DWO file.
4600 The real type_offset is in the DWO file. */
4601 dwo_tu = NULL;
4602 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4603 struct signatured_type);
4604 sig_type->signature = signature;
4605 sig_type->type_offset_in_tu = type_offset_in_tu;
4606 sig_type->per_cu.objfile = objfile;
4607 sig_type->per_cu.is_debug_types = 1;
4608 sig_type->per_cu.section = section;
4609 sig_type->per_cu.offset = offset;
4610 sig_type->per_cu.length = length;
4611 }
4612
4613 slot = htab_find_slot (types_htab,
4614 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4615 INSERT);
4616 gdb_assert (slot != NULL);
4617 if (*slot != NULL)
4618 {
4619 sect_offset dup_offset;
4620
4621 if (dwo_file)
4622 {
4623 const struct dwo_unit *dup_tu = *slot;
4624
4625 dup_offset = dup_tu->offset;
4626 }
4627 else
4628 {
4629 const struct signatured_type *dup_tu = *slot;
4630
4631 dup_offset = dup_tu->per_cu.offset;
4632 }
4633
4634 complaint (&symfile_complaints,
4635 _("debug type entry at offset 0x%x is duplicate to"
4636 " the entry at offset 0x%x, signature %s"),
4637 offset.sect_off, dup_offset.sect_off,
4638 hex_string (signature));
4639 }
4640 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4641
4642 if (dwarf2_read_debug > 1)
4643 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4644 offset.sect_off,
4645 hex_string (signature));
4646
4647 info_ptr += length;
4648 }
4649 }
4650
4651 return types_htab;
4652 }
4653
4654 /* Create the hash table of all entries in the .debug_types section,
4655 and initialize all_type_units.
4656 The result is zero if there is an error (e.g. missing .debug_types section),
4657 otherwise non-zero. */
4658
4659 static int
4660 create_all_type_units (struct objfile *objfile)
4661 {
4662 htab_t types_htab;
4663 struct signatured_type **iter;
4664
4665 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4666 if (types_htab == NULL)
4667 {
4668 dwarf2_per_objfile->signatured_types = NULL;
4669 return 0;
4670 }
4671
4672 dwarf2_per_objfile->signatured_types = types_htab;
4673
4674 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4675 dwarf2_per_objfile->all_type_units
4676 = xmalloc (dwarf2_per_objfile->n_type_units
4677 * sizeof (struct signatured_type *));
4678 iter = &dwarf2_per_objfile->all_type_units[0];
4679 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4680 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4681 == dwarf2_per_objfile->n_type_units);
4682
4683 return 1;
4684 }
4685
4686 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4687 Fill in SIG_ENTRY with DWO_ENTRY. */
4688
4689 static void
4690 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4691 struct signatured_type *sig_entry,
4692 struct dwo_unit *dwo_entry)
4693 {
4694 /* Make sure we're not clobbering something we don't expect to. */
4695 gdb_assert (! sig_entry->per_cu.queued);
4696 gdb_assert (sig_entry->per_cu.cu == NULL);
4697 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4698 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4699 gdb_assert (sig_entry->signature == dwo_entry->signature);
4700 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4701 gdb_assert (sig_entry->type_unit_group == NULL);
4702 gdb_assert (sig_entry->dwo_unit == NULL);
4703
4704 sig_entry->per_cu.section = dwo_entry->section;
4705 sig_entry->per_cu.offset = dwo_entry->offset;
4706 sig_entry->per_cu.length = dwo_entry->length;
4707 sig_entry->per_cu.reading_dwo_directly = 1;
4708 sig_entry->per_cu.objfile = objfile;
4709 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4710 sig_entry->dwo_unit = dwo_entry;
4711 }
4712
4713 /* Subroutine of lookup_signatured_type.
4714 If we haven't read the TU yet, create the signatured_type data structure
4715 for a TU to be read in directly from a DWO file, bypassing the stub.
4716 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4717 using .gdb_index, then when reading a CU we want to stay in the DWO file
4718 containing that CU. Otherwise we could end up reading several other DWO
4719 files (due to comdat folding) to process the transitive closure of all the
4720 mentioned TUs, and that can be slow. The current DWO file will have every
4721 type signature that it needs.
4722 We only do this for .gdb_index because in the psymtab case we already have
4723 to read all the DWOs to build the type unit groups. */
4724
4725 static struct signatured_type *
4726 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4727 {
4728 struct objfile *objfile = dwarf2_per_objfile->objfile;
4729 struct dwo_file *dwo_file;
4730 struct dwo_unit find_dwo_entry, *dwo_entry;
4731 struct signatured_type find_sig_entry, *sig_entry;
4732
4733 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4734
4735 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4736 dwo_unit of the TU itself. */
4737 dwo_file = cu->dwo_unit->dwo_file;
4738
4739 /* We only ever need to read in one copy of a signatured type.
4740 Just use the global signatured_types array. If this is the first time
4741 we're reading this type, replace the recorded data from .gdb_index with
4742 this TU. */
4743
4744 if (dwarf2_per_objfile->signatured_types == NULL)
4745 return NULL;
4746 find_sig_entry.signature = sig;
4747 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4748 if (sig_entry == NULL)
4749 return NULL;
4750
4751 /* We can get here with the TU already read, *or* in the process of being
4752 read. Don't reassign it if that's the case. Also note that if the TU is
4753 already being read, it may not have come from a DWO, the program may be
4754 a mix of Fission-compiled code and non-Fission-compiled code. */
4755 /* Have we already tried to read this TU? */
4756 if (sig_entry->per_cu.tu_read)
4757 return sig_entry;
4758
4759 /* Ok, this is the first time we're reading this TU. */
4760 if (dwo_file->tus == NULL)
4761 return NULL;
4762 find_dwo_entry.signature = sig;
4763 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4764 if (dwo_entry == NULL)
4765 return NULL;
4766
4767 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4768 sig_entry->per_cu.tu_read = 1;
4769 return sig_entry;
4770 }
4771
4772 /* Subroutine of lookup_dwp_signatured_type.
4773 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4774
4775 static struct signatured_type *
4776 add_type_unit (ULONGEST sig)
4777 {
4778 struct objfile *objfile = dwarf2_per_objfile->objfile;
4779 int n_type_units = dwarf2_per_objfile->n_type_units;
4780 struct signatured_type *sig_type;
4781 void **slot;
4782
4783 ++n_type_units;
4784 dwarf2_per_objfile->all_type_units =
4785 xrealloc (dwarf2_per_objfile->all_type_units,
4786 n_type_units * sizeof (struct signatured_type *));
4787 dwarf2_per_objfile->n_type_units = n_type_units;
4788 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4789 struct signatured_type);
4790 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4791 sig_type->signature = sig;
4792 sig_type->per_cu.is_debug_types = 1;
4793 sig_type->per_cu.v.quick =
4794 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4795 struct dwarf2_per_cu_quick_data);
4796 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4797 sig_type, INSERT);
4798 gdb_assert (*slot == NULL);
4799 *slot = sig_type;
4800 /* The rest of sig_type must be filled in by the caller. */
4801 return sig_type;
4802 }
4803
4804 /* Subroutine of lookup_signatured_type.
4805 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4806 then try the DWP file.
4807 Normally this "can't happen", but if there's a bug in signature
4808 generation and/or the DWP file is built incorrectly, it can happen.
4809 Using the type directly from the DWP file means we don't have the stub
4810 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4811 not critical. [Eventually the stub may go away for type units anyway.] */
4812
4813 static struct signatured_type *
4814 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4815 {
4816 struct objfile *objfile = dwarf2_per_objfile->objfile;
4817 struct dwp_file *dwp_file = get_dwp_file ();
4818 struct dwo_unit *dwo_entry;
4819 struct signatured_type find_sig_entry, *sig_entry;
4820
4821 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4822 gdb_assert (dwp_file != NULL);
4823
4824 if (dwarf2_per_objfile->signatured_types != NULL)
4825 {
4826 find_sig_entry.signature = sig;
4827 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4828 &find_sig_entry);
4829 if (sig_entry != NULL)
4830 return sig_entry;
4831 }
4832
4833 /* This is the "shouldn't happen" case.
4834 Try the DWP file and hope for the best. */
4835 if (dwp_file->tus == NULL)
4836 return NULL;
4837 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4838 sig, 1 /* is_debug_types */);
4839 if (dwo_entry == NULL)
4840 return NULL;
4841
4842 sig_entry = add_type_unit (sig);
4843 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4844
4845 /* The caller will signal a complaint if we return NULL.
4846 Here we don't return NULL but we still want to complain. */
4847 complaint (&symfile_complaints,
4848 _("Bad type signature %s referenced by %s at 0x%x,"
4849 " coping by using copy in DWP [in module %s]"),
4850 hex_string (sig),
4851 cu->per_cu->is_debug_types ? "TU" : "CU",
4852 cu->per_cu->offset.sect_off,
4853 objfile_name (objfile));
4854
4855 return sig_entry;
4856 }
4857
4858 /* Lookup a signature based type for DW_FORM_ref_sig8.
4859 Returns NULL if signature SIG is not present in the table.
4860 It is up to the caller to complain about this. */
4861
4862 static struct signatured_type *
4863 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4864 {
4865 if (cu->dwo_unit
4866 && dwarf2_per_objfile->using_index)
4867 {
4868 /* We're in a DWO/DWP file, and we're using .gdb_index.
4869 These cases require special processing. */
4870 if (get_dwp_file () == NULL)
4871 return lookup_dwo_signatured_type (cu, sig);
4872 else
4873 return lookup_dwp_signatured_type (cu, sig);
4874 }
4875 else
4876 {
4877 struct signatured_type find_entry, *entry;
4878
4879 if (dwarf2_per_objfile->signatured_types == NULL)
4880 return NULL;
4881 find_entry.signature = sig;
4882 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4883 return entry;
4884 }
4885 }
4886 \f
4887 /* Low level DIE reading support. */
4888
4889 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4890
4891 static void
4892 init_cu_die_reader (struct die_reader_specs *reader,
4893 struct dwarf2_cu *cu,
4894 struct dwarf2_section_info *section,
4895 struct dwo_file *dwo_file)
4896 {
4897 gdb_assert (section->readin && section->buffer != NULL);
4898 reader->abfd = get_section_bfd_owner (section);
4899 reader->cu = cu;
4900 reader->dwo_file = dwo_file;
4901 reader->die_section = section;
4902 reader->buffer = section->buffer;
4903 reader->buffer_end = section->buffer + section->size;
4904 reader->comp_dir = NULL;
4905 }
4906
4907 /* Subroutine of init_cutu_and_read_dies to simplify it.
4908 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4909 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4910 already.
4911
4912 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4913 from it to the DIE in the DWO. If NULL we are skipping the stub.
4914 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4915 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4916 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4917 COMP_DIR must be non-NULL.
4918 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4919 are filled in with the info of the DIE from the DWO file.
4920 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4921 provided an abbrev table to use.
4922 The result is non-zero if a valid (non-dummy) DIE was found. */
4923
4924 static int
4925 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4926 struct dwo_unit *dwo_unit,
4927 int abbrev_table_provided,
4928 struct die_info *stub_comp_unit_die,
4929 const char *stub_comp_dir,
4930 struct die_reader_specs *result_reader,
4931 const gdb_byte **result_info_ptr,
4932 struct die_info **result_comp_unit_die,
4933 int *result_has_children)
4934 {
4935 struct objfile *objfile = dwarf2_per_objfile->objfile;
4936 struct dwarf2_cu *cu = this_cu->cu;
4937 struct dwarf2_section_info *section;
4938 bfd *abfd;
4939 const gdb_byte *begin_info_ptr, *info_ptr;
4940 const char *comp_dir_string;
4941 ULONGEST signature; /* Or dwo_id. */
4942 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4943 int i,num_extra_attrs;
4944 struct dwarf2_section_info *dwo_abbrev_section;
4945 struct attribute *attr;
4946 struct attribute comp_dir_attr;
4947 struct die_info *comp_unit_die;
4948
4949 /* Both can't be provided. */
4950 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4951
4952 /* These attributes aren't processed until later:
4953 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4954 However, the attribute is found in the stub which we won't have later.
4955 In order to not impose this complication on the rest of the code,
4956 we read them here and copy them to the DWO CU/TU die. */
4957
4958 stmt_list = NULL;
4959 low_pc = NULL;
4960 high_pc = NULL;
4961 ranges = NULL;
4962 comp_dir = NULL;
4963
4964 if (stub_comp_unit_die != NULL)
4965 {
4966 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4967 DWO file. */
4968 if (! this_cu->is_debug_types)
4969 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4970 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4971 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4972 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4973 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4974
4975 /* There should be a DW_AT_addr_base attribute here (if needed).
4976 We need the value before we can process DW_FORM_GNU_addr_index. */
4977 cu->addr_base = 0;
4978 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4979 if (attr)
4980 cu->addr_base = DW_UNSND (attr);
4981
4982 /* There should be a DW_AT_ranges_base attribute here (if needed).
4983 We need the value before we can process DW_AT_ranges. */
4984 cu->ranges_base = 0;
4985 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4986 if (attr)
4987 cu->ranges_base = DW_UNSND (attr);
4988 }
4989 else if (stub_comp_dir != NULL)
4990 {
4991 /* Reconstruct the comp_dir attribute to simplify the code below. */
4992 comp_dir = (struct attribute *)
4993 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4994 comp_dir->name = DW_AT_comp_dir;
4995 comp_dir->form = DW_FORM_string;
4996 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4997 DW_STRING (comp_dir) = stub_comp_dir;
4998 }
4999
5000 /* Set up for reading the DWO CU/TU. */
5001 cu->dwo_unit = dwo_unit;
5002 section = dwo_unit->section;
5003 dwarf2_read_section (objfile, section);
5004 abfd = get_section_bfd_owner (section);
5005 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5006 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5007 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5008
5009 if (this_cu->is_debug_types)
5010 {
5011 ULONGEST header_signature;
5012 cu_offset type_offset_in_tu;
5013 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5014
5015 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5016 dwo_abbrev_section,
5017 info_ptr,
5018 &header_signature,
5019 &type_offset_in_tu);
5020 /* This is not an assert because it can be caused by bad debug info. */
5021 if (sig_type->signature != header_signature)
5022 {
5023 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5024 " TU at offset 0x%x [in module %s]"),
5025 hex_string (sig_type->signature),
5026 hex_string (header_signature),
5027 dwo_unit->offset.sect_off,
5028 bfd_get_filename (abfd));
5029 }
5030 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5031 /* For DWOs coming from DWP files, we don't know the CU length
5032 nor the type's offset in the TU until now. */
5033 dwo_unit->length = get_cu_length (&cu->header);
5034 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5035
5036 /* Establish the type offset that can be used to lookup the type.
5037 For DWO files, we don't know it until now. */
5038 sig_type->type_offset_in_section.sect_off =
5039 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5040 }
5041 else
5042 {
5043 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5044 dwo_abbrev_section,
5045 info_ptr, 0);
5046 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5047 /* For DWOs coming from DWP files, we don't know the CU length
5048 until now. */
5049 dwo_unit->length = get_cu_length (&cu->header);
5050 }
5051
5052 /* Replace the CU's original abbrev table with the DWO's.
5053 Reminder: We can't read the abbrev table until we've read the header. */
5054 if (abbrev_table_provided)
5055 {
5056 /* Don't free the provided abbrev table, the caller of
5057 init_cutu_and_read_dies owns it. */
5058 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5059 /* Ensure the DWO abbrev table gets freed. */
5060 make_cleanup (dwarf2_free_abbrev_table, cu);
5061 }
5062 else
5063 {
5064 dwarf2_free_abbrev_table (cu);
5065 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5066 /* Leave any existing abbrev table cleanup as is. */
5067 }
5068
5069 /* Read in the die, but leave space to copy over the attributes
5070 from the stub. This has the benefit of simplifying the rest of
5071 the code - all the work to maintain the illusion of a single
5072 DW_TAG_{compile,type}_unit DIE is done here. */
5073 num_extra_attrs = ((stmt_list != NULL)
5074 + (low_pc != NULL)
5075 + (high_pc != NULL)
5076 + (ranges != NULL)
5077 + (comp_dir != NULL));
5078 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5079 result_has_children, num_extra_attrs);
5080
5081 /* Copy over the attributes from the stub to the DIE we just read in. */
5082 comp_unit_die = *result_comp_unit_die;
5083 i = comp_unit_die->num_attrs;
5084 if (stmt_list != NULL)
5085 comp_unit_die->attrs[i++] = *stmt_list;
5086 if (low_pc != NULL)
5087 comp_unit_die->attrs[i++] = *low_pc;
5088 if (high_pc != NULL)
5089 comp_unit_die->attrs[i++] = *high_pc;
5090 if (ranges != NULL)
5091 comp_unit_die->attrs[i++] = *ranges;
5092 if (comp_dir != NULL)
5093 comp_unit_die->attrs[i++] = *comp_dir;
5094 comp_unit_die->num_attrs += num_extra_attrs;
5095
5096 if (dwarf2_die_debug)
5097 {
5098 fprintf_unfiltered (gdb_stdlog,
5099 "Read die from %s@0x%x of %s:\n",
5100 get_section_name (section),
5101 (unsigned) (begin_info_ptr - section->buffer),
5102 bfd_get_filename (abfd));
5103 dump_die (comp_unit_die, dwarf2_die_debug);
5104 }
5105
5106 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5107 TUs by skipping the stub and going directly to the entry in the DWO file.
5108 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5109 to get it via circuitous means. Blech. */
5110 if (comp_dir != NULL)
5111 result_reader->comp_dir = DW_STRING (comp_dir);
5112
5113 /* Skip dummy compilation units. */
5114 if (info_ptr >= begin_info_ptr + dwo_unit->length
5115 || peek_abbrev_code (abfd, info_ptr) == 0)
5116 return 0;
5117
5118 *result_info_ptr = info_ptr;
5119 return 1;
5120 }
5121
5122 /* Subroutine of init_cutu_and_read_dies to simplify it.
5123 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5124 Returns NULL if the specified DWO unit cannot be found. */
5125
5126 static struct dwo_unit *
5127 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5128 struct die_info *comp_unit_die)
5129 {
5130 struct dwarf2_cu *cu = this_cu->cu;
5131 struct attribute *attr;
5132 ULONGEST signature;
5133 struct dwo_unit *dwo_unit;
5134 const char *comp_dir, *dwo_name;
5135
5136 gdb_assert (cu != NULL);
5137
5138 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5139 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5140 gdb_assert (attr != NULL);
5141 dwo_name = DW_STRING (attr);
5142 comp_dir = NULL;
5143 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5144 if (attr)
5145 comp_dir = DW_STRING (attr);
5146
5147 if (this_cu->is_debug_types)
5148 {
5149 struct signatured_type *sig_type;
5150
5151 /* Since this_cu is the first member of struct signatured_type,
5152 we can go from a pointer to one to a pointer to the other. */
5153 sig_type = (struct signatured_type *) this_cu;
5154 signature = sig_type->signature;
5155 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5156 }
5157 else
5158 {
5159 struct attribute *attr;
5160
5161 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5162 if (! attr)
5163 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5164 " [in module %s]"),
5165 dwo_name, objfile_name (this_cu->objfile));
5166 signature = DW_UNSND (attr);
5167 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5168 signature);
5169 }
5170
5171 return dwo_unit;
5172 }
5173
5174 /* Subroutine of init_cutu_and_read_dies to simplify it.
5175 Read a TU directly from a DWO file, bypassing the stub. */
5176
5177 static void
5178 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5179 die_reader_func_ftype *die_reader_func,
5180 void *data)
5181 {
5182 struct dwarf2_cu *cu;
5183 struct signatured_type *sig_type;
5184 struct cleanup *cleanups, *free_cu_cleanup;
5185 struct die_reader_specs reader;
5186 const gdb_byte *info_ptr;
5187 struct die_info *comp_unit_die;
5188 int has_children;
5189
5190 /* Verify we can do the following downcast, and that we have the
5191 data we need. */
5192 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5193 sig_type = (struct signatured_type *) this_cu;
5194 gdb_assert (sig_type->dwo_unit != NULL);
5195
5196 cleanups = make_cleanup (null_cleanup, NULL);
5197
5198 gdb_assert (this_cu->cu == NULL);
5199 cu = xmalloc (sizeof (*cu));
5200 init_one_comp_unit (cu, this_cu);
5201 /* If an error occurs while loading, release our storage. */
5202 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5203
5204 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5205 0 /* abbrev_table_provided */,
5206 NULL /* stub_comp_unit_die */,
5207 sig_type->dwo_unit->dwo_file->comp_dir,
5208 &reader, &info_ptr,
5209 &comp_unit_die, &has_children) == 0)
5210 {
5211 /* Dummy die. */
5212 do_cleanups (cleanups);
5213 return;
5214 }
5215
5216 /* All the "real" work is done here. */
5217 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5218
5219 /* This duplicates some code in init_cutu_and_read_dies,
5220 but the alternative is making the latter more complex.
5221 This function is only for the special case of using DWO files directly:
5222 no point in overly complicating the general case just to handle this. */
5223 if (keep)
5224 {
5225 /* We've successfully allocated this compilation unit. Let our
5226 caller clean it up when finished with it. */
5227 discard_cleanups (free_cu_cleanup);
5228
5229 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5230 So we have to manually free the abbrev table. */
5231 dwarf2_free_abbrev_table (cu);
5232
5233 /* Link this CU into read_in_chain. */
5234 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5235 dwarf2_per_objfile->read_in_chain = this_cu;
5236 }
5237 else
5238 do_cleanups (free_cu_cleanup);
5239
5240 do_cleanups (cleanups);
5241 }
5242
5243 /* Initialize a CU (or TU) and read its DIEs.
5244 If the CU defers to a DWO file, read the DWO file as well.
5245
5246 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5247 Otherwise the table specified in the comp unit header is read in and used.
5248 This is an optimization for when we already have the abbrev table.
5249
5250 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5251 Otherwise, a new CU is allocated with xmalloc.
5252
5253 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5254 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5255
5256 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5257 linker) then DIE_READER_FUNC will not get called. */
5258
5259 static void
5260 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5261 struct abbrev_table *abbrev_table,
5262 int use_existing_cu, int keep,
5263 die_reader_func_ftype *die_reader_func,
5264 void *data)
5265 {
5266 struct objfile *objfile = dwarf2_per_objfile->objfile;
5267 struct dwarf2_section_info *section = this_cu->section;
5268 bfd *abfd = get_section_bfd_owner (section);
5269 struct dwarf2_cu *cu;
5270 const gdb_byte *begin_info_ptr, *info_ptr;
5271 struct die_reader_specs reader;
5272 struct die_info *comp_unit_die;
5273 int has_children;
5274 struct attribute *attr;
5275 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5276 struct signatured_type *sig_type = NULL;
5277 struct dwarf2_section_info *abbrev_section;
5278 /* Non-zero if CU currently points to a DWO file and we need to
5279 reread it. When this happens we need to reread the skeleton die
5280 before we can reread the DWO file (this only applies to CUs, not TUs). */
5281 int rereading_dwo_cu = 0;
5282
5283 if (dwarf2_die_debug)
5284 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5285 this_cu->is_debug_types ? "type" : "comp",
5286 this_cu->offset.sect_off);
5287
5288 if (use_existing_cu)
5289 gdb_assert (keep);
5290
5291 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5292 file (instead of going through the stub), short-circuit all of this. */
5293 if (this_cu->reading_dwo_directly)
5294 {
5295 /* Narrow down the scope of possibilities to have to understand. */
5296 gdb_assert (this_cu->is_debug_types);
5297 gdb_assert (abbrev_table == NULL);
5298 gdb_assert (!use_existing_cu);
5299 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5300 return;
5301 }
5302
5303 cleanups = make_cleanup (null_cleanup, NULL);
5304
5305 /* This is cheap if the section is already read in. */
5306 dwarf2_read_section (objfile, section);
5307
5308 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5309
5310 abbrev_section = get_abbrev_section_for_cu (this_cu);
5311
5312 if (use_existing_cu && this_cu->cu != NULL)
5313 {
5314 cu = this_cu->cu;
5315
5316 /* If this CU is from a DWO file we need to start over, we need to
5317 refetch the attributes from the skeleton CU.
5318 This could be optimized by retrieving those attributes from when we
5319 were here the first time: the previous comp_unit_die was stored in
5320 comp_unit_obstack. But there's no data yet that we need this
5321 optimization. */
5322 if (cu->dwo_unit != NULL)
5323 rereading_dwo_cu = 1;
5324 }
5325 else
5326 {
5327 /* If !use_existing_cu, this_cu->cu must be NULL. */
5328 gdb_assert (this_cu->cu == NULL);
5329
5330 cu = xmalloc (sizeof (*cu));
5331 init_one_comp_unit (cu, this_cu);
5332
5333 /* If an error occurs while loading, release our storage. */
5334 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5335 }
5336
5337 /* Get the header. */
5338 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5339 {
5340 /* We already have the header, there's no need to read it in again. */
5341 info_ptr += cu->header.first_die_offset.cu_off;
5342 }
5343 else
5344 {
5345 if (this_cu->is_debug_types)
5346 {
5347 ULONGEST signature;
5348 cu_offset type_offset_in_tu;
5349
5350 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5351 abbrev_section, info_ptr,
5352 &signature,
5353 &type_offset_in_tu);
5354
5355 /* Since per_cu is the first member of struct signatured_type,
5356 we can go from a pointer to one to a pointer to the other. */
5357 sig_type = (struct signatured_type *) this_cu;
5358 gdb_assert (sig_type->signature == signature);
5359 gdb_assert (sig_type->type_offset_in_tu.cu_off
5360 == type_offset_in_tu.cu_off);
5361 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5362
5363 /* LENGTH has not been set yet for type units if we're
5364 using .gdb_index. */
5365 this_cu->length = get_cu_length (&cu->header);
5366
5367 /* Establish the type offset that can be used to lookup the type. */
5368 sig_type->type_offset_in_section.sect_off =
5369 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5370 }
5371 else
5372 {
5373 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5374 abbrev_section,
5375 info_ptr, 0);
5376
5377 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5378 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5379 }
5380 }
5381
5382 /* Skip dummy compilation units. */
5383 if (info_ptr >= begin_info_ptr + this_cu->length
5384 || peek_abbrev_code (abfd, info_ptr) == 0)
5385 {
5386 do_cleanups (cleanups);
5387 return;
5388 }
5389
5390 /* If we don't have them yet, read the abbrevs for this compilation unit.
5391 And if we need to read them now, make sure they're freed when we're
5392 done. Note that it's important that if the CU had an abbrev table
5393 on entry we don't free it when we're done: Somewhere up the call stack
5394 it may be in use. */
5395 if (abbrev_table != NULL)
5396 {
5397 gdb_assert (cu->abbrev_table == NULL);
5398 gdb_assert (cu->header.abbrev_offset.sect_off
5399 == abbrev_table->offset.sect_off);
5400 cu->abbrev_table = abbrev_table;
5401 }
5402 else if (cu->abbrev_table == NULL)
5403 {
5404 dwarf2_read_abbrevs (cu, abbrev_section);
5405 make_cleanup (dwarf2_free_abbrev_table, cu);
5406 }
5407 else if (rereading_dwo_cu)
5408 {
5409 dwarf2_free_abbrev_table (cu);
5410 dwarf2_read_abbrevs (cu, abbrev_section);
5411 }
5412
5413 /* Read the top level CU/TU die. */
5414 init_cu_die_reader (&reader, cu, section, NULL);
5415 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5416
5417 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5418 from the DWO file.
5419 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5420 DWO CU, that this test will fail (the attribute will not be present). */
5421 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5422 if (attr)
5423 {
5424 struct dwo_unit *dwo_unit;
5425 struct die_info *dwo_comp_unit_die;
5426
5427 if (has_children)
5428 {
5429 complaint (&symfile_complaints,
5430 _("compilation unit with DW_AT_GNU_dwo_name"
5431 " has children (offset 0x%x) [in module %s]"),
5432 this_cu->offset.sect_off, bfd_get_filename (abfd));
5433 }
5434 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5435 if (dwo_unit != NULL)
5436 {
5437 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5438 abbrev_table != NULL,
5439 comp_unit_die, NULL,
5440 &reader, &info_ptr,
5441 &dwo_comp_unit_die, &has_children) == 0)
5442 {
5443 /* Dummy die. */
5444 do_cleanups (cleanups);
5445 return;
5446 }
5447 comp_unit_die = dwo_comp_unit_die;
5448 }
5449 else
5450 {
5451 /* Yikes, we couldn't find the rest of the DIE, we only have
5452 the stub. A complaint has already been logged. There's
5453 not much more we can do except pass on the stub DIE to
5454 die_reader_func. We don't want to throw an error on bad
5455 debug info. */
5456 }
5457 }
5458
5459 /* All of the above is setup for this call. Yikes. */
5460 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5461
5462 /* Done, clean up. */
5463 if (free_cu_cleanup != NULL)
5464 {
5465 if (keep)
5466 {
5467 /* We've successfully allocated this compilation unit. Let our
5468 caller clean it up when finished with it. */
5469 discard_cleanups (free_cu_cleanup);
5470
5471 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5472 So we have to manually free the abbrev table. */
5473 dwarf2_free_abbrev_table (cu);
5474
5475 /* Link this CU into read_in_chain. */
5476 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5477 dwarf2_per_objfile->read_in_chain = this_cu;
5478 }
5479 else
5480 do_cleanups (free_cu_cleanup);
5481 }
5482
5483 do_cleanups (cleanups);
5484 }
5485
5486 /* Read CU/TU THIS_CU in section SECTION,
5487 but do not follow DW_AT_GNU_dwo_name if present.
5488 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5489 to have already done the lookup to find the DWO/DWP file).
5490
5491 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5492 THIS_CU->is_debug_types, but nothing else.
5493
5494 We fill in THIS_CU->length.
5495
5496 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5497 linker) then DIE_READER_FUNC will not get called.
5498
5499 THIS_CU->cu is always freed when done.
5500 This is done in order to not leave THIS_CU->cu in a state where we have
5501 to care whether it refers to the "main" CU or the DWO CU. */
5502
5503 static void
5504 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5505 struct dwarf2_section_info *abbrev_section,
5506 struct dwo_file *dwo_file,
5507 die_reader_func_ftype *die_reader_func,
5508 void *data)
5509 {
5510 struct objfile *objfile = dwarf2_per_objfile->objfile;
5511 struct dwarf2_section_info *section = this_cu->section;
5512 bfd *abfd = get_section_bfd_owner (section);
5513 struct dwarf2_cu cu;
5514 const gdb_byte *begin_info_ptr, *info_ptr;
5515 struct die_reader_specs reader;
5516 struct cleanup *cleanups;
5517 struct die_info *comp_unit_die;
5518 int has_children;
5519
5520 if (dwarf2_die_debug)
5521 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5522 this_cu->is_debug_types ? "type" : "comp",
5523 this_cu->offset.sect_off);
5524
5525 gdb_assert (this_cu->cu == NULL);
5526
5527 /* This is cheap if the section is already read in. */
5528 dwarf2_read_section (objfile, section);
5529
5530 init_one_comp_unit (&cu, this_cu);
5531
5532 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5533
5534 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5535 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5536 abbrev_section, info_ptr,
5537 this_cu->is_debug_types);
5538
5539 this_cu->length = get_cu_length (&cu.header);
5540
5541 /* Skip dummy compilation units. */
5542 if (info_ptr >= begin_info_ptr + this_cu->length
5543 || peek_abbrev_code (abfd, info_ptr) == 0)
5544 {
5545 do_cleanups (cleanups);
5546 return;
5547 }
5548
5549 dwarf2_read_abbrevs (&cu, abbrev_section);
5550 make_cleanup (dwarf2_free_abbrev_table, &cu);
5551
5552 init_cu_die_reader (&reader, &cu, section, dwo_file);
5553 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5554
5555 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5556
5557 do_cleanups (cleanups);
5558 }
5559
5560 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5561 does not lookup the specified DWO file.
5562 This cannot be used to read DWO files.
5563
5564 THIS_CU->cu is always freed when done.
5565 This is done in order to not leave THIS_CU->cu in a state where we have
5566 to care whether it refers to the "main" CU or the DWO CU.
5567 We can revisit this if the data shows there's a performance issue. */
5568
5569 static void
5570 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5571 die_reader_func_ftype *die_reader_func,
5572 void *data)
5573 {
5574 init_cutu_and_read_dies_no_follow (this_cu,
5575 get_abbrev_section_for_cu (this_cu),
5576 NULL,
5577 die_reader_func, data);
5578 }
5579 \f
5580 /* Type Unit Groups.
5581
5582 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5583 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5584 so that all types coming from the same compilation (.o file) are grouped
5585 together. A future step could be to put the types in the same symtab as
5586 the CU the types ultimately came from. */
5587
5588 static hashval_t
5589 hash_type_unit_group (const void *item)
5590 {
5591 const struct type_unit_group *tu_group = item;
5592
5593 return hash_stmt_list_entry (&tu_group->hash);
5594 }
5595
5596 static int
5597 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5598 {
5599 const struct type_unit_group *lhs = item_lhs;
5600 const struct type_unit_group *rhs = item_rhs;
5601
5602 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5603 }
5604
5605 /* Allocate a hash table for type unit groups. */
5606
5607 static htab_t
5608 allocate_type_unit_groups_table (void)
5609 {
5610 return htab_create_alloc_ex (3,
5611 hash_type_unit_group,
5612 eq_type_unit_group,
5613 NULL,
5614 &dwarf2_per_objfile->objfile->objfile_obstack,
5615 hashtab_obstack_allocate,
5616 dummy_obstack_deallocate);
5617 }
5618
5619 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5620 partial symtabs. We combine several TUs per psymtab to not let the size
5621 of any one psymtab grow too big. */
5622 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5623 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5624
5625 /* Helper routine for get_type_unit_group.
5626 Create the type_unit_group object used to hold one or more TUs. */
5627
5628 static struct type_unit_group *
5629 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5630 {
5631 struct objfile *objfile = dwarf2_per_objfile->objfile;
5632 struct dwarf2_per_cu_data *per_cu;
5633 struct type_unit_group *tu_group;
5634
5635 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5636 struct type_unit_group);
5637 per_cu = &tu_group->per_cu;
5638 per_cu->objfile = objfile;
5639
5640 if (dwarf2_per_objfile->using_index)
5641 {
5642 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5643 struct dwarf2_per_cu_quick_data);
5644 }
5645 else
5646 {
5647 unsigned int line_offset = line_offset_struct.sect_off;
5648 struct partial_symtab *pst;
5649 char *name;
5650
5651 /* Give the symtab a useful name for debug purposes. */
5652 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5653 name = xstrprintf ("<type_units_%d>",
5654 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5655 else
5656 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5657
5658 pst = create_partial_symtab (per_cu, name);
5659 pst->anonymous = 1;
5660
5661 xfree (name);
5662 }
5663
5664 tu_group->hash.dwo_unit = cu->dwo_unit;
5665 tu_group->hash.line_offset = line_offset_struct;
5666
5667 return tu_group;
5668 }
5669
5670 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5671 STMT_LIST is a DW_AT_stmt_list attribute. */
5672
5673 static struct type_unit_group *
5674 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5675 {
5676 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5677 struct type_unit_group *tu_group;
5678 void **slot;
5679 unsigned int line_offset;
5680 struct type_unit_group type_unit_group_for_lookup;
5681
5682 if (dwarf2_per_objfile->type_unit_groups == NULL)
5683 {
5684 dwarf2_per_objfile->type_unit_groups =
5685 allocate_type_unit_groups_table ();
5686 }
5687
5688 /* Do we need to create a new group, or can we use an existing one? */
5689
5690 if (stmt_list)
5691 {
5692 line_offset = DW_UNSND (stmt_list);
5693 ++tu_stats->nr_symtab_sharers;
5694 }
5695 else
5696 {
5697 /* Ugh, no stmt_list. Rare, but we have to handle it.
5698 We can do various things here like create one group per TU or
5699 spread them over multiple groups to split up the expansion work.
5700 To avoid worst case scenarios (too many groups or too large groups)
5701 we, umm, group them in bunches. */
5702 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5703 | (tu_stats->nr_stmt_less_type_units
5704 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5705 ++tu_stats->nr_stmt_less_type_units;
5706 }
5707
5708 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5709 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5710 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5711 &type_unit_group_for_lookup, INSERT);
5712 if (*slot != NULL)
5713 {
5714 tu_group = *slot;
5715 gdb_assert (tu_group != NULL);
5716 }
5717 else
5718 {
5719 sect_offset line_offset_struct;
5720
5721 line_offset_struct.sect_off = line_offset;
5722 tu_group = create_type_unit_group (cu, line_offset_struct);
5723 *slot = tu_group;
5724 ++tu_stats->nr_symtabs;
5725 }
5726
5727 return tu_group;
5728 }
5729
5730 /* Struct used to sort TUs by their abbreviation table offset. */
5731
5732 struct tu_abbrev_offset
5733 {
5734 struct signatured_type *sig_type;
5735 sect_offset abbrev_offset;
5736 };
5737
5738 /* Helper routine for build_type_unit_groups, passed to qsort. */
5739
5740 static int
5741 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5742 {
5743 const struct tu_abbrev_offset * const *a = ap;
5744 const struct tu_abbrev_offset * const *b = bp;
5745 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5746 unsigned int boff = (*b)->abbrev_offset.sect_off;
5747
5748 return (aoff > boff) - (aoff < boff);
5749 }
5750
5751 /* A helper function to add a type_unit_group to a table. */
5752
5753 static int
5754 add_type_unit_group_to_table (void **slot, void *datum)
5755 {
5756 struct type_unit_group *tu_group = *slot;
5757 struct type_unit_group ***datap = datum;
5758
5759 **datap = tu_group;
5760 ++*datap;
5761
5762 return 1;
5763 }
5764
5765 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5766 each one passing FUNC,DATA.
5767
5768 The efficiency is because we sort TUs by the abbrev table they use and
5769 only read each abbrev table once. In one program there are 200K TUs
5770 sharing 8K abbrev tables.
5771
5772 The main purpose of this function is to support building the
5773 dwarf2_per_objfile->type_unit_groups table.
5774 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5775 can collapse the search space by grouping them by stmt_list.
5776 The savings can be significant, in the same program from above the 200K TUs
5777 share 8K stmt_list tables.
5778
5779 FUNC is expected to call get_type_unit_group, which will create the
5780 struct type_unit_group if necessary and add it to
5781 dwarf2_per_objfile->type_unit_groups. */
5782
5783 static void
5784 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5785 {
5786 struct objfile *objfile = dwarf2_per_objfile->objfile;
5787 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5788 struct cleanup *cleanups;
5789 struct abbrev_table *abbrev_table;
5790 sect_offset abbrev_offset;
5791 struct tu_abbrev_offset *sorted_by_abbrev;
5792 struct type_unit_group **iter;
5793 int i;
5794
5795 /* It's up to the caller to not call us multiple times. */
5796 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5797
5798 if (dwarf2_per_objfile->n_type_units == 0)
5799 return;
5800
5801 /* TUs typically share abbrev tables, and there can be way more TUs than
5802 abbrev tables. Sort by abbrev table to reduce the number of times we
5803 read each abbrev table in.
5804 Alternatives are to punt or to maintain a cache of abbrev tables.
5805 This is simpler and efficient enough for now.
5806
5807 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5808 symtab to use). Typically TUs with the same abbrev offset have the same
5809 stmt_list value too so in practice this should work well.
5810
5811 The basic algorithm here is:
5812
5813 sort TUs by abbrev table
5814 for each TU with same abbrev table:
5815 read abbrev table if first user
5816 read TU top level DIE
5817 [IWBN if DWO skeletons had DW_AT_stmt_list]
5818 call FUNC */
5819
5820 if (dwarf2_read_debug)
5821 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5822
5823 /* Sort in a separate table to maintain the order of all_type_units
5824 for .gdb_index: TU indices directly index all_type_units. */
5825 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5826 dwarf2_per_objfile->n_type_units);
5827 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5828 {
5829 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5830
5831 sorted_by_abbrev[i].sig_type = sig_type;
5832 sorted_by_abbrev[i].abbrev_offset =
5833 read_abbrev_offset (sig_type->per_cu.section,
5834 sig_type->per_cu.offset);
5835 }
5836 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5837 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5838 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5839
5840 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5841 called any number of times, so we don't reset tu_stats here. */
5842
5843 abbrev_offset.sect_off = ~(unsigned) 0;
5844 abbrev_table = NULL;
5845 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5846
5847 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5848 {
5849 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5850
5851 /* Switch to the next abbrev table if necessary. */
5852 if (abbrev_table == NULL
5853 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5854 {
5855 if (abbrev_table != NULL)
5856 {
5857 abbrev_table_free (abbrev_table);
5858 /* Reset to NULL in case abbrev_table_read_table throws
5859 an error: abbrev_table_free_cleanup will get called. */
5860 abbrev_table = NULL;
5861 }
5862 abbrev_offset = tu->abbrev_offset;
5863 abbrev_table =
5864 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5865 abbrev_offset);
5866 ++tu_stats->nr_uniq_abbrev_tables;
5867 }
5868
5869 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5870 func, data);
5871 }
5872
5873 /* type_unit_groups can be NULL if there is an error in the debug info.
5874 Just create an empty table so the rest of gdb doesn't have to watch
5875 for this error case. */
5876 if (dwarf2_per_objfile->type_unit_groups == NULL)
5877 {
5878 dwarf2_per_objfile->type_unit_groups =
5879 allocate_type_unit_groups_table ();
5880 dwarf2_per_objfile->n_type_unit_groups = 0;
5881 }
5882
5883 /* Create a vector of pointers to primary type units to make it easy to
5884 iterate over them and CUs. See dw2_get_primary_cu. */
5885 dwarf2_per_objfile->n_type_unit_groups =
5886 htab_elements (dwarf2_per_objfile->type_unit_groups);
5887 dwarf2_per_objfile->all_type_unit_groups =
5888 obstack_alloc (&objfile->objfile_obstack,
5889 dwarf2_per_objfile->n_type_unit_groups
5890 * sizeof (struct type_unit_group *));
5891 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5892 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5893 add_type_unit_group_to_table, &iter);
5894 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5895 == dwarf2_per_objfile->n_type_unit_groups);
5896
5897 do_cleanups (cleanups);
5898
5899 if (dwarf2_read_debug)
5900 {
5901 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5902 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5903 dwarf2_per_objfile->n_type_units);
5904 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5905 tu_stats->nr_uniq_abbrev_tables);
5906 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5907 tu_stats->nr_symtabs);
5908 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5909 tu_stats->nr_symtab_sharers);
5910 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5911 tu_stats->nr_stmt_less_type_units);
5912 }
5913 }
5914 \f
5915 /* Partial symbol tables. */
5916
5917 /* Create a psymtab named NAME and assign it to PER_CU.
5918
5919 The caller must fill in the following details:
5920 dirname, textlow, texthigh. */
5921
5922 static struct partial_symtab *
5923 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5924 {
5925 struct objfile *objfile = per_cu->objfile;
5926 struct partial_symtab *pst;
5927
5928 pst = start_psymtab_common (objfile, objfile->section_offsets,
5929 name, 0,
5930 objfile->global_psymbols.next,
5931 objfile->static_psymbols.next);
5932
5933 pst->psymtabs_addrmap_supported = 1;
5934
5935 /* This is the glue that links PST into GDB's symbol API. */
5936 pst->read_symtab_private = per_cu;
5937 pst->read_symtab = dwarf2_read_symtab;
5938 per_cu->v.psymtab = pst;
5939
5940 return pst;
5941 }
5942
5943 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5944 type. */
5945
5946 struct process_psymtab_comp_unit_data
5947 {
5948 /* True if we are reading a DW_TAG_partial_unit. */
5949
5950 int want_partial_unit;
5951
5952 /* The "pretend" language that is used if the CU doesn't declare a
5953 language. */
5954
5955 enum language pretend_language;
5956 };
5957
5958 /* die_reader_func for process_psymtab_comp_unit. */
5959
5960 static void
5961 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5962 const gdb_byte *info_ptr,
5963 struct die_info *comp_unit_die,
5964 int has_children,
5965 void *data)
5966 {
5967 struct dwarf2_cu *cu = reader->cu;
5968 struct objfile *objfile = cu->objfile;
5969 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5970 struct attribute *attr;
5971 CORE_ADDR baseaddr;
5972 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5973 struct partial_symtab *pst;
5974 int has_pc_info;
5975 const char *filename;
5976 struct process_psymtab_comp_unit_data *info = data;
5977
5978 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5979 return;
5980
5981 gdb_assert (! per_cu->is_debug_types);
5982
5983 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5984
5985 cu->list_in_scope = &file_symbols;
5986
5987 /* Allocate a new partial symbol table structure. */
5988 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5989 if (attr == NULL || !DW_STRING (attr))
5990 filename = "";
5991 else
5992 filename = DW_STRING (attr);
5993
5994 pst = create_partial_symtab (per_cu, filename);
5995
5996 /* This must be done before calling dwarf2_build_include_psymtabs. */
5997 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5998 if (attr != NULL)
5999 pst->dirname = DW_STRING (attr);
6000
6001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6002
6003 dwarf2_find_base_address (comp_unit_die, cu);
6004
6005 /* Possibly set the default values of LOWPC and HIGHPC from
6006 `DW_AT_ranges'. */
6007 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6008 &best_highpc, cu, pst);
6009 if (has_pc_info == 1 && best_lowpc < best_highpc)
6010 /* Store the contiguous range if it is not empty; it can be empty for
6011 CUs with no code. */
6012 addrmap_set_empty (objfile->psymtabs_addrmap,
6013 best_lowpc + baseaddr,
6014 best_highpc + baseaddr - 1, pst);
6015
6016 /* Check if comp unit has_children.
6017 If so, read the rest of the partial symbols from this comp unit.
6018 If not, there's no more debug_info for this comp unit. */
6019 if (has_children)
6020 {
6021 struct partial_die_info *first_die;
6022 CORE_ADDR lowpc, highpc;
6023
6024 lowpc = ((CORE_ADDR) -1);
6025 highpc = ((CORE_ADDR) 0);
6026
6027 first_die = load_partial_dies (reader, info_ptr, 1);
6028
6029 scan_partial_symbols (first_die, &lowpc, &highpc,
6030 ! has_pc_info, cu);
6031
6032 /* If we didn't find a lowpc, set it to highpc to avoid
6033 complaints from `maint check'. */
6034 if (lowpc == ((CORE_ADDR) -1))
6035 lowpc = highpc;
6036
6037 /* If the compilation unit didn't have an explicit address range,
6038 then use the information extracted from its child dies. */
6039 if (! has_pc_info)
6040 {
6041 best_lowpc = lowpc;
6042 best_highpc = highpc;
6043 }
6044 }
6045 pst->textlow = best_lowpc + baseaddr;
6046 pst->texthigh = best_highpc + baseaddr;
6047
6048 pst->n_global_syms = objfile->global_psymbols.next -
6049 (objfile->global_psymbols.list + pst->globals_offset);
6050 pst->n_static_syms = objfile->static_psymbols.next -
6051 (objfile->static_psymbols.list + pst->statics_offset);
6052 sort_pst_symbols (objfile, pst);
6053
6054 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6055 {
6056 int i;
6057 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6058 struct dwarf2_per_cu_data *iter;
6059
6060 /* Fill in 'dependencies' here; we fill in 'users' in a
6061 post-pass. */
6062 pst->number_of_dependencies = len;
6063 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6064 len * sizeof (struct symtab *));
6065 for (i = 0;
6066 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6067 i, iter);
6068 ++i)
6069 pst->dependencies[i] = iter->v.psymtab;
6070
6071 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6072 }
6073
6074 /* Get the list of files included in the current compilation unit,
6075 and build a psymtab for each of them. */
6076 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6077
6078 if (dwarf2_read_debug)
6079 {
6080 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6081
6082 fprintf_unfiltered (gdb_stdlog,
6083 "Psymtab for %s unit @0x%x: %s - %s"
6084 ", %d global, %d static syms\n",
6085 per_cu->is_debug_types ? "type" : "comp",
6086 per_cu->offset.sect_off,
6087 paddress (gdbarch, pst->textlow),
6088 paddress (gdbarch, pst->texthigh),
6089 pst->n_global_syms, pst->n_static_syms);
6090 }
6091 }
6092
6093 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6094 Process compilation unit THIS_CU for a psymtab. */
6095
6096 static void
6097 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6098 int want_partial_unit,
6099 enum language pretend_language)
6100 {
6101 struct process_psymtab_comp_unit_data info;
6102
6103 /* If this compilation unit was already read in, free the
6104 cached copy in order to read it in again. This is
6105 necessary because we skipped some symbols when we first
6106 read in the compilation unit (see load_partial_dies).
6107 This problem could be avoided, but the benefit is unclear. */
6108 if (this_cu->cu != NULL)
6109 free_one_cached_comp_unit (this_cu);
6110
6111 gdb_assert (! this_cu->is_debug_types);
6112 info.want_partial_unit = want_partial_unit;
6113 info.pretend_language = pretend_language;
6114 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6115 process_psymtab_comp_unit_reader,
6116 &info);
6117
6118 /* Age out any secondary CUs. */
6119 age_cached_comp_units ();
6120 }
6121
6122 /* Reader function for build_type_psymtabs. */
6123
6124 static void
6125 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6126 const gdb_byte *info_ptr,
6127 struct die_info *type_unit_die,
6128 int has_children,
6129 void *data)
6130 {
6131 struct objfile *objfile = dwarf2_per_objfile->objfile;
6132 struct dwarf2_cu *cu = reader->cu;
6133 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6134 struct signatured_type *sig_type;
6135 struct type_unit_group *tu_group;
6136 struct attribute *attr;
6137 struct partial_die_info *first_die;
6138 CORE_ADDR lowpc, highpc;
6139 struct partial_symtab *pst;
6140
6141 gdb_assert (data == NULL);
6142 gdb_assert (per_cu->is_debug_types);
6143 sig_type = (struct signatured_type *) per_cu;
6144
6145 if (! has_children)
6146 return;
6147
6148 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6149 tu_group = get_type_unit_group (cu, attr);
6150
6151 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6152
6153 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6154 cu->list_in_scope = &file_symbols;
6155 pst = create_partial_symtab (per_cu, "");
6156 pst->anonymous = 1;
6157
6158 first_die = load_partial_dies (reader, info_ptr, 1);
6159
6160 lowpc = (CORE_ADDR) -1;
6161 highpc = (CORE_ADDR) 0;
6162 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6163
6164 pst->n_global_syms = objfile->global_psymbols.next -
6165 (objfile->global_psymbols.list + pst->globals_offset);
6166 pst->n_static_syms = objfile->static_psymbols.next -
6167 (objfile->static_psymbols.list + pst->statics_offset);
6168 sort_pst_symbols (objfile, pst);
6169 }
6170
6171 /* Traversal function for build_type_psymtabs. */
6172
6173 static int
6174 build_type_psymtab_dependencies (void **slot, void *info)
6175 {
6176 struct objfile *objfile = dwarf2_per_objfile->objfile;
6177 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6178 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6179 struct partial_symtab *pst = per_cu->v.psymtab;
6180 int len = VEC_length (sig_type_ptr, tu_group->tus);
6181 struct signatured_type *iter;
6182 int i;
6183
6184 gdb_assert (len > 0);
6185 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6186
6187 pst->number_of_dependencies = len;
6188 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6189 len * sizeof (struct psymtab *));
6190 for (i = 0;
6191 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6192 ++i)
6193 {
6194 gdb_assert (iter->per_cu.is_debug_types);
6195 pst->dependencies[i] = iter->per_cu.v.psymtab;
6196 iter->type_unit_group = tu_group;
6197 }
6198
6199 VEC_free (sig_type_ptr, tu_group->tus);
6200
6201 return 1;
6202 }
6203
6204 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6205 Build partial symbol tables for the .debug_types comp-units. */
6206
6207 static void
6208 build_type_psymtabs (struct objfile *objfile)
6209 {
6210 if (! create_all_type_units (objfile))
6211 return;
6212
6213 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6214
6215 /* Now that all TUs have been processed we can fill in the dependencies. */
6216 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6217 build_type_psymtab_dependencies, NULL);
6218 }
6219
6220 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6221
6222 static void
6223 psymtabs_addrmap_cleanup (void *o)
6224 {
6225 struct objfile *objfile = o;
6226
6227 objfile->psymtabs_addrmap = NULL;
6228 }
6229
6230 /* Compute the 'user' field for each psymtab in OBJFILE. */
6231
6232 static void
6233 set_partial_user (struct objfile *objfile)
6234 {
6235 int i;
6236
6237 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6238 {
6239 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6240 struct partial_symtab *pst = per_cu->v.psymtab;
6241 int j;
6242
6243 if (pst == NULL)
6244 continue;
6245
6246 for (j = 0; j < pst->number_of_dependencies; ++j)
6247 {
6248 /* Set the 'user' field only if it is not already set. */
6249 if (pst->dependencies[j]->user == NULL)
6250 pst->dependencies[j]->user = pst;
6251 }
6252 }
6253 }
6254
6255 /* Build the partial symbol table by doing a quick pass through the
6256 .debug_info and .debug_abbrev sections. */
6257
6258 static void
6259 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6260 {
6261 struct cleanup *back_to, *addrmap_cleanup;
6262 struct obstack temp_obstack;
6263 int i;
6264
6265 if (dwarf2_read_debug)
6266 {
6267 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6268 objfile_name (objfile));
6269 }
6270
6271 dwarf2_per_objfile->reading_partial_symbols = 1;
6272
6273 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6274
6275 /* Any cached compilation units will be linked by the per-objfile
6276 read_in_chain. Make sure to free them when we're done. */
6277 back_to = make_cleanup (free_cached_comp_units, NULL);
6278
6279 build_type_psymtabs (objfile);
6280
6281 create_all_comp_units (objfile);
6282
6283 /* Create a temporary address map on a temporary obstack. We later
6284 copy this to the final obstack. */
6285 obstack_init (&temp_obstack);
6286 make_cleanup_obstack_free (&temp_obstack);
6287 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6288 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6289
6290 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6291 {
6292 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6293
6294 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6295 }
6296
6297 set_partial_user (objfile);
6298
6299 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6300 &objfile->objfile_obstack);
6301 discard_cleanups (addrmap_cleanup);
6302
6303 do_cleanups (back_to);
6304
6305 if (dwarf2_read_debug)
6306 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6307 objfile_name (objfile));
6308 }
6309
6310 /* die_reader_func for load_partial_comp_unit. */
6311
6312 static void
6313 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6314 const gdb_byte *info_ptr,
6315 struct die_info *comp_unit_die,
6316 int has_children,
6317 void *data)
6318 {
6319 struct dwarf2_cu *cu = reader->cu;
6320
6321 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6322
6323 /* Check if comp unit has_children.
6324 If so, read the rest of the partial symbols from this comp unit.
6325 If not, there's no more debug_info for this comp unit. */
6326 if (has_children)
6327 load_partial_dies (reader, info_ptr, 0);
6328 }
6329
6330 /* Load the partial DIEs for a secondary CU into memory.
6331 This is also used when rereading a primary CU with load_all_dies. */
6332
6333 static void
6334 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6335 {
6336 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6337 load_partial_comp_unit_reader, NULL);
6338 }
6339
6340 static void
6341 read_comp_units_from_section (struct objfile *objfile,
6342 struct dwarf2_section_info *section,
6343 unsigned int is_dwz,
6344 int *n_allocated,
6345 int *n_comp_units,
6346 struct dwarf2_per_cu_data ***all_comp_units)
6347 {
6348 const gdb_byte *info_ptr;
6349 bfd *abfd = get_section_bfd_owner (section);
6350
6351 if (dwarf2_read_debug)
6352 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6353 get_section_name (section),
6354 get_section_file_name (section));
6355
6356 dwarf2_read_section (objfile, section);
6357
6358 info_ptr = section->buffer;
6359
6360 while (info_ptr < section->buffer + section->size)
6361 {
6362 unsigned int length, initial_length_size;
6363 struct dwarf2_per_cu_data *this_cu;
6364 sect_offset offset;
6365
6366 offset.sect_off = info_ptr - section->buffer;
6367
6368 /* Read just enough information to find out where the next
6369 compilation unit is. */
6370 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6371
6372 /* Save the compilation unit for later lookup. */
6373 this_cu = obstack_alloc (&objfile->objfile_obstack,
6374 sizeof (struct dwarf2_per_cu_data));
6375 memset (this_cu, 0, sizeof (*this_cu));
6376 this_cu->offset = offset;
6377 this_cu->length = length + initial_length_size;
6378 this_cu->is_dwz = is_dwz;
6379 this_cu->objfile = objfile;
6380 this_cu->section = section;
6381
6382 if (*n_comp_units == *n_allocated)
6383 {
6384 *n_allocated *= 2;
6385 *all_comp_units = xrealloc (*all_comp_units,
6386 *n_allocated
6387 * sizeof (struct dwarf2_per_cu_data *));
6388 }
6389 (*all_comp_units)[*n_comp_units] = this_cu;
6390 ++*n_comp_units;
6391
6392 info_ptr = info_ptr + this_cu->length;
6393 }
6394 }
6395
6396 /* Create a list of all compilation units in OBJFILE.
6397 This is only done for -readnow and building partial symtabs. */
6398
6399 static void
6400 create_all_comp_units (struct objfile *objfile)
6401 {
6402 int n_allocated;
6403 int n_comp_units;
6404 struct dwarf2_per_cu_data **all_comp_units;
6405 struct dwz_file *dwz;
6406
6407 n_comp_units = 0;
6408 n_allocated = 10;
6409 all_comp_units = xmalloc (n_allocated
6410 * sizeof (struct dwarf2_per_cu_data *));
6411
6412 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6413 &n_allocated, &n_comp_units, &all_comp_units);
6414
6415 dwz = dwarf2_get_dwz_file ();
6416 if (dwz != NULL)
6417 read_comp_units_from_section (objfile, &dwz->info, 1,
6418 &n_allocated, &n_comp_units,
6419 &all_comp_units);
6420
6421 dwarf2_per_objfile->all_comp_units
6422 = obstack_alloc (&objfile->objfile_obstack,
6423 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6424 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6425 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6426 xfree (all_comp_units);
6427 dwarf2_per_objfile->n_comp_units = n_comp_units;
6428 }
6429
6430 /* Process all loaded DIEs for compilation unit CU, starting at
6431 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6432 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6433 DW_AT_ranges). If NEED_PC is set, then this function will set
6434 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6435 and record the covered ranges in the addrmap. */
6436
6437 static void
6438 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6439 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6440 {
6441 struct partial_die_info *pdi;
6442
6443 /* Now, march along the PDI's, descending into ones which have
6444 interesting children but skipping the children of the other ones,
6445 until we reach the end of the compilation unit. */
6446
6447 pdi = first_die;
6448
6449 while (pdi != NULL)
6450 {
6451 fixup_partial_die (pdi, cu);
6452
6453 /* Anonymous namespaces or modules have no name but have interesting
6454 children, so we need to look at them. Ditto for anonymous
6455 enums. */
6456
6457 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6458 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6459 || pdi->tag == DW_TAG_imported_unit)
6460 {
6461 switch (pdi->tag)
6462 {
6463 case DW_TAG_subprogram:
6464 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6465 break;
6466 case DW_TAG_constant:
6467 case DW_TAG_variable:
6468 case DW_TAG_typedef:
6469 case DW_TAG_union_type:
6470 if (!pdi->is_declaration)
6471 {
6472 add_partial_symbol (pdi, cu);
6473 }
6474 break;
6475 case DW_TAG_class_type:
6476 case DW_TAG_interface_type:
6477 case DW_TAG_structure_type:
6478 if (!pdi->is_declaration)
6479 {
6480 add_partial_symbol (pdi, cu);
6481 }
6482 break;
6483 case DW_TAG_enumeration_type:
6484 if (!pdi->is_declaration)
6485 add_partial_enumeration (pdi, cu);
6486 break;
6487 case DW_TAG_base_type:
6488 case DW_TAG_subrange_type:
6489 /* File scope base type definitions are added to the partial
6490 symbol table. */
6491 add_partial_symbol (pdi, cu);
6492 break;
6493 case DW_TAG_namespace:
6494 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6495 break;
6496 case DW_TAG_module:
6497 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6498 break;
6499 case DW_TAG_imported_unit:
6500 {
6501 struct dwarf2_per_cu_data *per_cu;
6502
6503 /* For now we don't handle imported units in type units. */
6504 if (cu->per_cu->is_debug_types)
6505 {
6506 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6507 " supported in type units [in module %s]"),
6508 objfile_name (cu->objfile));
6509 }
6510
6511 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6512 pdi->is_dwz,
6513 cu->objfile);
6514
6515 /* Go read the partial unit, if needed. */
6516 if (per_cu->v.psymtab == NULL)
6517 process_psymtab_comp_unit (per_cu, 1, cu->language);
6518
6519 VEC_safe_push (dwarf2_per_cu_ptr,
6520 cu->per_cu->imported_symtabs, per_cu);
6521 }
6522 break;
6523 case DW_TAG_imported_declaration:
6524 add_partial_symbol (pdi, cu);
6525 break;
6526 default:
6527 break;
6528 }
6529 }
6530
6531 /* If the die has a sibling, skip to the sibling. */
6532
6533 pdi = pdi->die_sibling;
6534 }
6535 }
6536
6537 /* Functions used to compute the fully scoped name of a partial DIE.
6538
6539 Normally, this is simple. For C++, the parent DIE's fully scoped
6540 name is concatenated with "::" and the partial DIE's name. For
6541 Java, the same thing occurs except that "." is used instead of "::".
6542 Enumerators are an exception; they use the scope of their parent
6543 enumeration type, i.e. the name of the enumeration type is not
6544 prepended to the enumerator.
6545
6546 There are two complexities. One is DW_AT_specification; in this
6547 case "parent" means the parent of the target of the specification,
6548 instead of the direct parent of the DIE. The other is compilers
6549 which do not emit DW_TAG_namespace; in this case we try to guess
6550 the fully qualified name of structure types from their members'
6551 linkage names. This must be done using the DIE's children rather
6552 than the children of any DW_AT_specification target. We only need
6553 to do this for structures at the top level, i.e. if the target of
6554 any DW_AT_specification (if any; otherwise the DIE itself) does not
6555 have a parent. */
6556
6557 /* Compute the scope prefix associated with PDI's parent, in
6558 compilation unit CU. The result will be allocated on CU's
6559 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6560 field. NULL is returned if no prefix is necessary. */
6561 static const char *
6562 partial_die_parent_scope (struct partial_die_info *pdi,
6563 struct dwarf2_cu *cu)
6564 {
6565 const char *grandparent_scope;
6566 struct partial_die_info *parent, *real_pdi;
6567
6568 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6569 then this means the parent of the specification DIE. */
6570
6571 real_pdi = pdi;
6572 while (real_pdi->has_specification)
6573 real_pdi = find_partial_die (real_pdi->spec_offset,
6574 real_pdi->spec_is_dwz, cu);
6575
6576 parent = real_pdi->die_parent;
6577 if (parent == NULL)
6578 return NULL;
6579
6580 if (parent->scope_set)
6581 return parent->scope;
6582
6583 fixup_partial_die (parent, cu);
6584
6585 grandparent_scope = partial_die_parent_scope (parent, cu);
6586
6587 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6588 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6589 Work around this problem here. */
6590 if (cu->language == language_cplus
6591 && parent->tag == DW_TAG_namespace
6592 && strcmp (parent->name, "::") == 0
6593 && grandparent_scope == NULL)
6594 {
6595 parent->scope = NULL;
6596 parent->scope_set = 1;
6597 return NULL;
6598 }
6599
6600 if (pdi->tag == DW_TAG_enumerator)
6601 /* Enumerators should not get the name of the enumeration as a prefix. */
6602 parent->scope = grandparent_scope;
6603 else if (parent->tag == DW_TAG_namespace
6604 || parent->tag == DW_TAG_module
6605 || parent->tag == DW_TAG_structure_type
6606 || parent->tag == DW_TAG_class_type
6607 || parent->tag == DW_TAG_interface_type
6608 || parent->tag == DW_TAG_union_type
6609 || parent->tag == DW_TAG_enumeration_type)
6610 {
6611 if (grandparent_scope == NULL)
6612 parent->scope = parent->name;
6613 else
6614 parent->scope = typename_concat (&cu->comp_unit_obstack,
6615 grandparent_scope,
6616 parent->name, 0, cu);
6617 }
6618 else
6619 {
6620 /* FIXME drow/2004-04-01: What should we be doing with
6621 function-local names? For partial symbols, we should probably be
6622 ignoring them. */
6623 complaint (&symfile_complaints,
6624 _("unhandled containing DIE tag %d for DIE at %d"),
6625 parent->tag, pdi->offset.sect_off);
6626 parent->scope = grandparent_scope;
6627 }
6628
6629 parent->scope_set = 1;
6630 return parent->scope;
6631 }
6632
6633 /* Return the fully scoped name associated with PDI, from compilation unit
6634 CU. The result will be allocated with malloc. */
6635
6636 static char *
6637 partial_die_full_name (struct partial_die_info *pdi,
6638 struct dwarf2_cu *cu)
6639 {
6640 const char *parent_scope;
6641
6642 /* If this is a template instantiation, we can not work out the
6643 template arguments from partial DIEs. So, unfortunately, we have
6644 to go through the full DIEs. At least any work we do building
6645 types here will be reused if full symbols are loaded later. */
6646 if (pdi->has_template_arguments)
6647 {
6648 fixup_partial_die (pdi, cu);
6649
6650 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6651 {
6652 struct die_info *die;
6653 struct attribute attr;
6654 struct dwarf2_cu *ref_cu = cu;
6655
6656 /* DW_FORM_ref_addr is using section offset. */
6657 attr.name = 0;
6658 attr.form = DW_FORM_ref_addr;
6659 attr.u.unsnd = pdi->offset.sect_off;
6660 die = follow_die_ref (NULL, &attr, &ref_cu);
6661
6662 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6663 }
6664 }
6665
6666 parent_scope = partial_die_parent_scope (pdi, cu);
6667 if (parent_scope == NULL)
6668 return NULL;
6669 else
6670 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6671 }
6672
6673 static void
6674 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6675 {
6676 struct objfile *objfile = cu->objfile;
6677 CORE_ADDR addr = 0;
6678 const char *actual_name = NULL;
6679 CORE_ADDR baseaddr;
6680 char *built_actual_name;
6681
6682 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6683
6684 built_actual_name = partial_die_full_name (pdi, cu);
6685 if (built_actual_name != NULL)
6686 actual_name = built_actual_name;
6687
6688 if (actual_name == NULL)
6689 actual_name = pdi->name;
6690
6691 switch (pdi->tag)
6692 {
6693 case DW_TAG_subprogram:
6694 if (pdi->is_external || cu->language == language_ada)
6695 {
6696 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6697 of the global scope. But in Ada, we want to be able to access
6698 nested procedures globally. So all Ada subprograms are stored
6699 in the global scope. */
6700 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6701 mst_text, objfile); */
6702 add_psymbol_to_list (actual_name, strlen (actual_name),
6703 built_actual_name != NULL,
6704 VAR_DOMAIN, LOC_BLOCK,
6705 &objfile->global_psymbols,
6706 0, pdi->lowpc + baseaddr,
6707 cu->language, objfile);
6708 }
6709 else
6710 {
6711 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6712 mst_file_text, objfile); */
6713 add_psymbol_to_list (actual_name, strlen (actual_name),
6714 built_actual_name != NULL,
6715 VAR_DOMAIN, LOC_BLOCK,
6716 &objfile->static_psymbols,
6717 0, pdi->lowpc + baseaddr,
6718 cu->language, objfile);
6719 }
6720 break;
6721 case DW_TAG_constant:
6722 {
6723 struct psymbol_allocation_list *list;
6724
6725 if (pdi->is_external)
6726 list = &objfile->global_psymbols;
6727 else
6728 list = &objfile->static_psymbols;
6729 add_psymbol_to_list (actual_name, strlen (actual_name),
6730 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6731 list, 0, 0, cu->language, objfile);
6732 }
6733 break;
6734 case DW_TAG_variable:
6735 if (pdi->d.locdesc)
6736 addr = decode_locdesc (pdi->d.locdesc, cu);
6737
6738 if (pdi->d.locdesc
6739 && addr == 0
6740 && !dwarf2_per_objfile->has_section_at_zero)
6741 {
6742 /* A global or static variable may also have been stripped
6743 out by the linker if unused, in which case its address
6744 will be nullified; do not add such variables into partial
6745 symbol table then. */
6746 }
6747 else if (pdi->is_external)
6748 {
6749 /* Global Variable.
6750 Don't enter into the minimal symbol tables as there is
6751 a minimal symbol table entry from the ELF symbols already.
6752 Enter into partial symbol table if it has a location
6753 descriptor or a type.
6754 If the location descriptor is missing, new_symbol will create
6755 a LOC_UNRESOLVED symbol, the address of the variable will then
6756 be determined from the minimal symbol table whenever the variable
6757 is referenced.
6758 The address for the partial symbol table entry is not
6759 used by GDB, but it comes in handy for debugging partial symbol
6760 table building. */
6761
6762 if (pdi->d.locdesc || pdi->has_type)
6763 add_psymbol_to_list (actual_name, strlen (actual_name),
6764 built_actual_name != NULL,
6765 VAR_DOMAIN, LOC_STATIC,
6766 &objfile->global_psymbols,
6767 0, addr + baseaddr,
6768 cu->language, objfile);
6769 }
6770 else
6771 {
6772 /* Static Variable. Skip symbols without location descriptors. */
6773 if (pdi->d.locdesc == NULL)
6774 {
6775 xfree (built_actual_name);
6776 return;
6777 }
6778 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6779 mst_file_data, objfile); */
6780 add_psymbol_to_list (actual_name, strlen (actual_name),
6781 built_actual_name != NULL,
6782 VAR_DOMAIN, LOC_STATIC,
6783 &objfile->static_psymbols,
6784 0, addr + baseaddr,
6785 cu->language, objfile);
6786 }
6787 break;
6788 case DW_TAG_typedef:
6789 case DW_TAG_base_type:
6790 case DW_TAG_subrange_type:
6791 add_psymbol_to_list (actual_name, strlen (actual_name),
6792 built_actual_name != NULL,
6793 VAR_DOMAIN, LOC_TYPEDEF,
6794 &objfile->static_psymbols,
6795 0, (CORE_ADDR) 0, cu->language, objfile);
6796 break;
6797 case DW_TAG_imported_declaration:
6798 case DW_TAG_namespace:
6799 add_psymbol_to_list (actual_name, strlen (actual_name),
6800 built_actual_name != NULL,
6801 VAR_DOMAIN, LOC_TYPEDEF,
6802 &objfile->global_psymbols,
6803 0, (CORE_ADDR) 0, cu->language, objfile);
6804 break;
6805 case DW_TAG_module:
6806 add_psymbol_to_list (actual_name, strlen (actual_name),
6807 built_actual_name != NULL,
6808 MODULE_DOMAIN, LOC_TYPEDEF,
6809 &objfile->global_psymbols,
6810 0, (CORE_ADDR) 0, cu->language, objfile);
6811 break;
6812 case DW_TAG_class_type:
6813 case DW_TAG_interface_type:
6814 case DW_TAG_structure_type:
6815 case DW_TAG_union_type:
6816 case DW_TAG_enumeration_type:
6817 /* Skip external references. The DWARF standard says in the section
6818 about "Structure, Union, and Class Type Entries": "An incomplete
6819 structure, union or class type is represented by a structure,
6820 union or class entry that does not have a byte size attribute
6821 and that has a DW_AT_declaration attribute." */
6822 if (!pdi->has_byte_size && pdi->is_declaration)
6823 {
6824 xfree (built_actual_name);
6825 return;
6826 }
6827
6828 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6829 static vs. global. */
6830 add_psymbol_to_list (actual_name, strlen (actual_name),
6831 built_actual_name != NULL,
6832 STRUCT_DOMAIN, LOC_TYPEDEF,
6833 (cu->language == language_cplus
6834 || cu->language == language_java)
6835 ? &objfile->global_psymbols
6836 : &objfile->static_psymbols,
6837 0, (CORE_ADDR) 0, cu->language, objfile);
6838
6839 break;
6840 case DW_TAG_enumerator:
6841 add_psymbol_to_list (actual_name, strlen (actual_name),
6842 built_actual_name != NULL,
6843 VAR_DOMAIN, LOC_CONST,
6844 (cu->language == language_cplus
6845 || cu->language == language_java)
6846 ? &objfile->global_psymbols
6847 : &objfile->static_psymbols,
6848 0, (CORE_ADDR) 0, cu->language, objfile);
6849 break;
6850 default:
6851 break;
6852 }
6853
6854 xfree (built_actual_name);
6855 }
6856
6857 /* Read a partial die corresponding to a namespace; also, add a symbol
6858 corresponding to that namespace to the symbol table. NAMESPACE is
6859 the name of the enclosing namespace. */
6860
6861 static void
6862 add_partial_namespace (struct partial_die_info *pdi,
6863 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6864 int need_pc, struct dwarf2_cu *cu)
6865 {
6866 /* Add a symbol for the namespace. */
6867
6868 add_partial_symbol (pdi, cu);
6869
6870 /* Now scan partial symbols in that namespace. */
6871
6872 if (pdi->has_children)
6873 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6874 }
6875
6876 /* Read a partial die corresponding to a Fortran module. */
6877
6878 static void
6879 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6880 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6881 {
6882 /* Add a symbol for the namespace. */
6883
6884 add_partial_symbol (pdi, cu);
6885
6886 /* Now scan partial symbols in that module. */
6887
6888 if (pdi->has_children)
6889 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6890 }
6891
6892 /* Read a partial die corresponding to a subprogram and create a partial
6893 symbol for that subprogram. When the CU language allows it, this
6894 routine also defines a partial symbol for each nested subprogram
6895 that this subprogram contains.
6896
6897 DIE my also be a lexical block, in which case we simply search
6898 recursively for suprograms defined inside that lexical block.
6899 Again, this is only performed when the CU language allows this
6900 type of definitions. */
6901
6902 static void
6903 add_partial_subprogram (struct partial_die_info *pdi,
6904 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6905 int need_pc, struct dwarf2_cu *cu)
6906 {
6907 if (pdi->tag == DW_TAG_subprogram)
6908 {
6909 if (pdi->has_pc_info)
6910 {
6911 if (pdi->lowpc < *lowpc)
6912 *lowpc = pdi->lowpc;
6913 if (pdi->highpc > *highpc)
6914 *highpc = pdi->highpc;
6915 if (need_pc)
6916 {
6917 CORE_ADDR baseaddr;
6918 struct objfile *objfile = cu->objfile;
6919
6920 baseaddr = ANOFFSET (objfile->section_offsets,
6921 SECT_OFF_TEXT (objfile));
6922 addrmap_set_empty (objfile->psymtabs_addrmap,
6923 pdi->lowpc + baseaddr,
6924 pdi->highpc - 1 + baseaddr,
6925 cu->per_cu->v.psymtab);
6926 }
6927 }
6928
6929 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6930 {
6931 if (!pdi->is_declaration)
6932 /* Ignore subprogram DIEs that do not have a name, they are
6933 illegal. Do not emit a complaint at this point, we will
6934 do so when we convert this psymtab into a symtab. */
6935 if (pdi->name)
6936 add_partial_symbol (pdi, cu);
6937 }
6938 }
6939
6940 if (! pdi->has_children)
6941 return;
6942
6943 if (cu->language == language_ada)
6944 {
6945 pdi = pdi->die_child;
6946 while (pdi != NULL)
6947 {
6948 fixup_partial_die (pdi, cu);
6949 if (pdi->tag == DW_TAG_subprogram
6950 || pdi->tag == DW_TAG_lexical_block)
6951 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6952 pdi = pdi->die_sibling;
6953 }
6954 }
6955 }
6956
6957 /* Read a partial die corresponding to an enumeration type. */
6958
6959 static void
6960 add_partial_enumeration (struct partial_die_info *enum_pdi,
6961 struct dwarf2_cu *cu)
6962 {
6963 struct partial_die_info *pdi;
6964
6965 if (enum_pdi->name != NULL)
6966 add_partial_symbol (enum_pdi, cu);
6967
6968 pdi = enum_pdi->die_child;
6969 while (pdi)
6970 {
6971 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6972 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6973 else
6974 add_partial_symbol (pdi, cu);
6975 pdi = pdi->die_sibling;
6976 }
6977 }
6978
6979 /* Return the initial uleb128 in the die at INFO_PTR. */
6980
6981 static unsigned int
6982 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6983 {
6984 unsigned int bytes_read;
6985
6986 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6987 }
6988
6989 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6990 Return the corresponding abbrev, or NULL if the number is zero (indicating
6991 an empty DIE). In either case *BYTES_READ will be set to the length of
6992 the initial number. */
6993
6994 static struct abbrev_info *
6995 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6996 struct dwarf2_cu *cu)
6997 {
6998 bfd *abfd = cu->objfile->obfd;
6999 unsigned int abbrev_number;
7000 struct abbrev_info *abbrev;
7001
7002 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7003
7004 if (abbrev_number == 0)
7005 return NULL;
7006
7007 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7008 if (!abbrev)
7009 {
7010 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7011 abbrev_number, bfd_get_filename (abfd));
7012 }
7013
7014 return abbrev;
7015 }
7016
7017 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7018 Returns a pointer to the end of a series of DIEs, terminated by an empty
7019 DIE. Any children of the skipped DIEs will also be skipped. */
7020
7021 static const gdb_byte *
7022 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7023 {
7024 struct dwarf2_cu *cu = reader->cu;
7025 struct abbrev_info *abbrev;
7026 unsigned int bytes_read;
7027
7028 while (1)
7029 {
7030 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7031 if (abbrev == NULL)
7032 return info_ptr + bytes_read;
7033 else
7034 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7035 }
7036 }
7037
7038 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7039 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7040 abbrev corresponding to that skipped uleb128 should be passed in
7041 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7042 children. */
7043
7044 static const gdb_byte *
7045 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7046 struct abbrev_info *abbrev)
7047 {
7048 unsigned int bytes_read;
7049 struct attribute attr;
7050 bfd *abfd = reader->abfd;
7051 struct dwarf2_cu *cu = reader->cu;
7052 const gdb_byte *buffer = reader->buffer;
7053 const gdb_byte *buffer_end = reader->buffer_end;
7054 const gdb_byte *start_info_ptr = info_ptr;
7055 unsigned int form, i;
7056
7057 for (i = 0; i < abbrev->num_attrs; i++)
7058 {
7059 /* The only abbrev we care about is DW_AT_sibling. */
7060 if (abbrev->attrs[i].name == DW_AT_sibling)
7061 {
7062 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7063 if (attr.form == DW_FORM_ref_addr)
7064 complaint (&symfile_complaints,
7065 _("ignoring absolute DW_AT_sibling"));
7066 else
7067 {
7068 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7069 const gdb_byte *sibling_ptr = buffer + off;
7070
7071 if (sibling_ptr < info_ptr)
7072 complaint (&symfile_complaints,
7073 _("DW_AT_sibling points backwards"));
7074 else
7075 return sibling_ptr;
7076 }
7077 }
7078
7079 /* If it isn't DW_AT_sibling, skip this attribute. */
7080 form = abbrev->attrs[i].form;
7081 skip_attribute:
7082 switch (form)
7083 {
7084 case DW_FORM_ref_addr:
7085 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7086 and later it is offset sized. */
7087 if (cu->header.version == 2)
7088 info_ptr += cu->header.addr_size;
7089 else
7090 info_ptr += cu->header.offset_size;
7091 break;
7092 case DW_FORM_GNU_ref_alt:
7093 info_ptr += cu->header.offset_size;
7094 break;
7095 case DW_FORM_addr:
7096 info_ptr += cu->header.addr_size;
7097 break;
7098 case DW_FORM_data1:
7099 case DW_FORM_ref1:
7100 case DW_FORM_flag:
7101 info_ptr += 1;
7102 break;
7103 case DW_FORM_flag_present:
7104 break;
7105 case DW_FORM_data2:
7106 case DW_FORM_ref2:
7107 info_ptr += 2;
7108 break;
7109 case DW_FORM_data4:
7110 case DW_FORM_ref4:
7111 info_ptr += 4;
7112 break;
7113 case DW_FORM_data8:
7114 case DW_FORM_ref8:
7115 case DW_FORM_ref_sig8:
7116 info_ptr += 8;
7117 break;
7118 case DW_FORM_string:
7119 read_direct_string (abfd, info_ptr, &bytes_read);
7120 info_ptr += bytes_read;
7121 break;
7122 case DW_FORM_sec_offset:
7123 case DW_FORM_strp:
7124 case DW_FORM_GNU_strp_alt:
7125 info_ptr += cu->header.offset_size;
7126 break;
7127 case DW_FORM_exprloc:
7128 case DW_FORM_block:
7129 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7130 info_ptr += bytes_read;
7131 break;
7132 case DW_FORM_block1:
7133 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7134 break;
7135 case DW_FORM_block2:
7136 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7137 break;
7138 case DW_FORM_block4:
7139 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7140 break;
7141 case DW_FORM_sdata:
7142 case DW_FORM_udata:
7143 case DW_FORM_ref_udata:
7144 case DW_FORM_GNU_addr_index:
7145 case DW_FORM_GNU_str_index:
7146 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7147 break;
7148 case DW_FORM_indirect:
7149 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7150 info_ptr += bytes_read;
7151 /* We need to continue parsing from here, so just go back to
7152 the top. */
7153 goto skip_attribute;
7154
7155 default:
7156 error (_("Dwarf Error: Cannot handle %s "
7157 "in DWARF reader [in module %s]"),
7158 dwarf_form_name (form),
7159 bfd_get_filename (abfd));
7160 }
7161 }
7162
7163 if (abbrev->has_children)
7164 return skip_children (reader, info_ptr);
7165 else
7166 return info_ptr;
7167 }
7168
7169 /* Locate ORIG_PDI's sibling.
7170 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7171
7172 static const gdb_byte *
7173 locate_pdi_sibling (const struct die_reader_specs *reader,
7174 struct partial_die_info *orig_pdi,
7175 const gdb_byte *info_ptr)
7176 {
7177 /* Do we know the sibling already? */
7178
7179 if (orig_pdi->sibling)
7180 return orig_pdi->sibling;
7181
7182 /* Are there any children to deal with? */
7183
7184 if (!orig_pdi->has_children)
7185 return info_ptr;
7186
7187 /* Skip the children the long way. */
7188
7189 return skip_children (reader, info_ptr);
7190 }
7191
7192 /* Expand this partial symbol table into a full symbol table. SELF is
7193 not NULL. */
7194
7195 static void
7196 dwarf2_read_symtab (struct partial_symtab *self,
7197 struct objfile *objfile)
7198 {
7199 if (self->readin)
7200 {
7201 warning (_("bug: psymtab for %s is already read in."),
7202 self->filename);
7203 }
7204 else
7205 {
7206 if (info_verbose)
7207 {
7208 printf_filtered (_("Reading in symbols for %s..."),
7209 self->filename);
7210 gdb_flush (gdb_stdout);
7211 }
7212
7213 /* Restore our global data. */
7214 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7215
7216 /* If this psymtab is constructed from a debug-only objfile, the
7217 has_section_at_zero flag will not necessarily be correct. We
7218 can get the correct value for this flag by looking at the data
7219 associated with the (presumably stripped) associated objfile. */
7220 if (objfile->separate_debug_objfile_backlink)
7221 {
7222 struct dwarf2_per_objfile *dpo_backlink
7223 = objfile_data (objfile->separate_debug_objfile_backlink,
7224 dwarf2_objfile_data_key);
7225
7226 dwarf2_per_objfile->has_section_at_zero
7227 = dpo_backlink->has_section_at_zero;
7228 }
7229
7230 dwarf2_per_objfile->reading_partial_symbols = 0;
7231
7232 psymtab_to_symtab_1 (self);
7233
7234 /* Finish up the debug error message. */
7235 if (info_verbose)
7236 printf_filtered (_("done.\n"));
7237 }
7238
7239 process_cu_includes ();
7240 }
7241 \f
7242 /* Reading in full CUs. */
7243
7244 /* Add PER_CU to the queue. */
7245
7246 static void
7247 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7248 enum language pretend_language)
7249 {
7250 struct dwarf2_queue_item *item;
7251
7252 per_cu->queued = 1;
7253 item = xmalloc (sizeof (*item));
7254 item->per_cu = per_cu;
7255 item->pretend_language = pretend_language;
7256 item->next = NULL;
7257
7258 if (dwarf2_queue == NULL)
7259 dwarf2_queue = item;
7260 else
7261 dwarf2_queue_tail->next = item;
7262
7263 dwarf2_queue_tail = item;
7264 }
7265
7266 /* If PER_CU is not yet queued, add it to the queue.
7267 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7268 dependency.
7269 The result is non-zero if PER_CU was queued, otherwise the result is zero
7270 meaning either PER_CU is already queued or it is already loaded.
7271
7272 N.B. There is an invariant here that if a CU is queued then it is loaded.
7273 The caller is required to load PER_CU if we return non-zero. */
7274
7275 static int
7276 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7277 struct dwarf2_per_cu_data *per_cu,
7278 enum language pretend_language)
7279 {
7280 /* We may arrive here during partial symbol reading, if we need full
7281 DIEs to process an unusual case (e.g. template arguments). Do
7282 not queue PER_CU, just tell our caller to load its DIEs. */
7283 if (dwarf2_per_objfile->reading_partial_symbols)
7284 {
7285 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7286 return 1;
7287 return 0;
7288 }
7289
7290 /* Mark the dependence relation so that we don't flush PER_CU
7291 too early. */
7292 if (dependent_cu != NULL)
7293 dwarf2_add_dependence (dependent_cu, per_cu);
7294
7295 /* If it's already on the queue, we have nothing to do. */
7296 if (per_cu->queued)
7297 return 0;
7298
7299 /* If the compilation unit is already loaded, just mark it as
7300 used. */
7301 if (per_cu->cu != NULL)
7302 {
7303 per_cu->cu->last_used = 0;
7304 return 0;
7305 }
7306
7307 /* Add it to the queue. */
7308 queue_comp_unit (per_cu, pretend_language);
7309
7310 return 1;
7311 }
7312
7313 /* Process the queue. */
7314
7315 static void
7316 process_queue (void)
7317 {
7318 struct dwarf2_queue_item *item, *next_item;
7319
7320 if (dwarf2_read_debug)
7321 {
7322 fprintf_unfiltered (gdb_stdlog,
7323 "Expanding one or more symtabs of objfile %s ...\n",
7324 objfile_name (dwarf2_per_objfile->objfile));
7325 }
7326
7327 /* The queue starts out with one item, but following a DIE reference
7328 may load a new CU, adding it to the end of the queue. */
7329 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7330 {
7331 if (dwarf2_per_objfile->using_index
7332 ? !item->per_cu->v.quick->symtab
7333 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7334 {
7335 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7336 unsigned int debug_print_threshold;
7337 char buf[100];
7338
7339 if (per_cu->is_debug_types)
7340 {
7341 struct signatured_type *sig_type =
7342 (struct signatured_type *) per_cu;
7343
7344 sprintf (buf, "TU %s at offset 0x%x",
7345 hex_string (sig_type->signature),
7346 per_cu->offset.sect_off);
7347 /* There can be 100s of TUs.
7348 Only print them in verbose mode. */
7349 debug_print_threshold = 2;
7350 }
7351 else
7352 {
7353 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7354 debug_print_threshold = 1;
7355 }
7356
7357 if (dwarf2_read_debug >= debug_print_threshold)
7358 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7359
7360 if (per_cu->is_debug_types)
7361 process_full_type_unit (per_cu, item->pretend_language);
7362 else
7363 process_full_comp_unit (per_cu, item->pretend_language);
7364
7365 if (dwarf2_read_debug >= debug_print_threshold)
7366 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7367 }
7368
7369 item->per_cu->queued = 0;
7370 next_item = item->next;
7371 xfree (item);
7372 }
7373
7374 dwarf2_queue_tail = NULL;
7375
7376 if (dwarf2_read_debug)
7377 {
7378 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7379 objfile_name (dwarf2_per_objfile->objfile));
7380 }
7381 }
7382
7383 /* Free all allocated queue entries. This function only releases anything if
7384 an error was thrown; if the queue was processed then it would have been
7385 freed as we went along. */
7386
7387 static void
7388 dwarf2_release_queue (void *dummy)
7389 {
7390 struct dwarf2_queue_item *item, *last;
7391
7392 item = dwarf2_queue;
7393 while (item)
7394 {
7395 /* Anything still marked queued is likely to be in an
7396 inconsistent state, so discard it. */
7397 if (item->per_cu->queued)
7398 {
7399 if (item->per_cu->cu != NULL)
7400 free_one_cached_comp_unit (item->per_cu);
7401 item->per_cu->queued = 0;
7402 }
7403
7404 last = item;
7405 item = item->next;
7406 xfree (last);
7407 }
7408
7409 dwarf2_queue = dwarf2_queue_tail = NULL;
7410 }
7411
7412 /* Read in full symbols for PST, and anything it depends on. */
7413
7414 static void
7415 psymtab_to_symtab_1 (struct partial_symtab *pst)
7416 {
7417 struct dwarf2_per_cu_data *per_cu;
7418 int i;
7419
7420 if (pst->readin)
7421 return;
7422
7423 for (i = 0; i < pst->number_of_dependencies; i++)
7424 if (!pst->dependencies[i]->readin
7425 && pst->dependencies[i]->user == NULL)
7426 {
7427 /* Inform about additional files that need to be read in. */
7428 if (info_verbose)
7429 {
7430 /* FIXME: i18n: Need to make this a single string. */
7431 fputs_filtered (" ", gdb_stdout);
7432 wrap_here ("");
7433 fputs_filtered ("and ", gdb_stdout);
7434 wrap_here ("");
7435 printf_filtered ("%s...", pst->dependencies[i]->filename);
7436 wrap_here (""); /* Flush output. */
7437 gdb_flush (gdb_stdout);
7438 }
7439 psymtab_to_symtab_1 (pst->dependencies[i]);
7440 }
7441
7442 per_cu = pst->read_symtab_private;
7443
7444 if (per_cu == NULL)
7445 {
7446 /* It's an include file, no symbols to read for it.
7447 Everything is in the parent symtab. */
7448 pst->readin = 1;
7449 return;
7450 }
7451
7452 dw2_do_instantiate_symtab (per_cu);
7453 }
7454
7455 /* Trivial hash function for die_info: the hash value of a DIE
7456 is its offset in .debug_info for this objfile. */
7457
7458 static hashval_t
7459 die_hash (const void *item)
7460 {
7461 const struct die_info *die = item;
7462
7463 return die->offset.sect_off;
7464 }
7465
7466 /* Trivial comparison function for die_info structures: two DIEs
7467 are equal if they have the same offset. */
7468
7469 static int
7470 die_eq (const void *item_lhs, const void *item_rhs)
7471 {
7472 const struct die_info *die_lhs = item_lhs;
7473 const struct die_info *die_rhs = item_rhs;
7474
7475 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7476 }
7477
7478 /* die_reader_func for load_full_comp_unit.
7479 This is identical to read_signatured_type_reader,
7480 but is kept separate for now. */
7481
7482 static void
7483 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7484 const gdb_byte *info_ptr,
7485 struct die_info *comp_unit_die,
7486 int has_children,
7487 void *data)
7488 {
7489 struct dwarf2_cu *cu = reader->cu;
7490 enum language *language_ptr = data;
7491
7492 gdb_assert (cu->die_hash == NULL);
7493 cu->die_hash =
7494 htab_create_alloc_ex (cu->header.length / 12,
7495 die_hash,
7496 die_eq,
7497 NULL,
7498 &cu->comp_unit_obstack,
7499 hashtab_obstack_allocate,
7500 dummy_obstack_deallocate);
7501
7502 if (has_children)
7503 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7504 &info_ptr, comp_unit_die);
7505 cu->dies = comp_unit_die;
7506 /* comp_unit_die is not stored in die_hash, no need. */
7507
7508 /* We try not to read any attributes in this function, because not
7509 all CUs needed for references have been loaded yet, and symbol
7510 table processing isn't initialized. But we have to set the CU language,
7511 or we won't be able to build types correctly.
7512 Similarly, if we do not read the producer, we can not apply
7513 producer-specific interpretation. */
7514 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7515 }
7516
7517 /* Load the DIEs associated with PER_CU into memory. */
7518
7519 static void
7520 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7521 enum language pretend_language)
7522 {
7523 gdb_assert (! this_cu->is_debug_types);
7524
7525 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7526 load_full_comp_unit_reader, &pretend_language);
7527 }
7528
7529 /* Add a DIE to the delayed physname list. */
7530
7531 static void
7532 add_to_method_list (struct type *type, int fnfield_index, int index,
7533 const char *name, struct die_info *die,
7534 struct dwarf2_cu *cu)
7535 {
7536 struct delayed_method_info mi;
7537 mi.type = type;
7538 mi.fnfield_index = fnfield_index;
7539 mi.index = index;
7540 mi.name = name;
7541 mi.die = die;
7542 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7543 }
7544
7545 /* A cleanup for freeing the delayed method list. */
7546
7547 static void
7548 free_delayed_list (void *ptr)
7549 {
7550 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7551 if (cu->method_list != NULL)
7552 {
7553 VEC_free (delayed_method_info, cu->method_list);
7554 cu->method_list = NULL;
7555 }
7556 }
7557
7558 /* Compute the physnames of any methods on the CU's method list.
7559
7560 The computation of method physnames is delayed in order to avoid the
7561 (bad) condition that one of the method's formal parameters is of an as yet
7562 incomplete type. */
7563
7564 static void
7565 compute_delayed_physnames (struct dwarf2_cu *cu)
7566 {
7567 int i;
7568 struct delayed_method_info *mi;
7569 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7570 {
7571 const char *physname;
7572 struct fn_fieldlist *fn_flp
7573 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7574 physname = dwarf2_physname (mi->name, mi->die, cu);
7575 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7576 }
7577 }
7578
7579 /* Go objects should be embedded in a DW_TAG_module DIE,
7580 and it's not clear if/how imported objects will appear.
7581 To keep Go support simple until that's worked out,
7582 go back through what we've read and create something usable.
7583 We could do this while processing each DIE, and feels kinda cleaner,
7584 but that way is more invasive.
7585 This is to, for example, allow the user to type "p var" or "b main"
7586 without having to specify the package name, and allow lookups
7587 of module.object to work in contexts that use the expression
7588 parser. */
7589
7590 static void
7591 fixup_go_packaging (struct dwarf2_cu *cu)
7592 {
7593 char *package_name = NULL;
7594 struct pending *list;
7595 int i;
7596
7597 for (list = global_symbols; list != NULL; list = list->next)
7598 {
7599 for (i = 0; i < list->nsyms; ++i)
7600 {
7601 struct symbol *sym = list->symbol[i];
7602
7603 if (SYMBOL_LANGUAGE (sym) == language_go
7604 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7605 {
7606 char *this_package_name = go_symbol_package_name (sym);
7607
7608 if (this_package_name == NULL)
7609 continue;
7610 if (package_name == NULL)
7611 package_name = this_package_name;
7612 else
7613 {
7614 if (strcmp (package_name, this_package_name) != 0)
7615 complaint (&symfile_complaints,
7616 _("Symtab %s has objects from two different Go packages: %s and %s"),
7617 (SYMBOL_SYMTAB (sym)
7618 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7619 : objfile_name (cu->objfile)),
7620 this_package_name, package_name);
7621 xfree (this_package_name);
7622 }
7623 }
7624 }
7625 }
7626
7627 if (package_name != NULL)
7628 {
7629 struct objfile *objfile = cu->objfile;
7630 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7631 package_name,
7632 strlen (package_name));
7633 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7634 saved_package_name, objfile);
7635 struct symbol *sym;
7636
7637 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7638
7639 sym = allocate_symbol (objfile);
7640 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7641 SYMBOL_SET_NAMES (sym, saved_package_name,
7642 strlen (saved_package_name), 0, objfile);
7643 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7644 e.g., "main" finds the "main" module and not C's main(). */
7645 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7646 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7647 SYMBOL_TYPE (sym) = type;
7648
7649 add_symbol_to_list (sym, &global_symbols);
7650
7651 xfree (package_name);
7652 }
7653 }
7654
7655 /* Return the symtab for PER_CU. This works properly regardless of
7656 whether we're using the index or psymtabs. */
7657
7658 static struct symtab *
7659 get_symtab (struct dwarf2_per_cu_data *per_cu)
7660 {
7661 return (dwarf2_per_objfile->using_index
7662 ? per_cu->v.quick->symtab
7663 : per_cu->v.psymtab->symtab);
7664 }
7665
7666 /* A helper function for computing the list of all symbol tables
7667 included by PER_CU. */
7668
7669 static void
7670 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7671 htab_t all_children, htab_t all_type_symtabs,
7672 struct dwarf2_per_cu_data *per_cu,
7673 struct symtab *immediate_parent)
7674 {
7675 void **slot;
7676 int ix;
7677 struct symtab *symtab;
7678 struct dwarf2_per_cu_data *iter;
7679
7680 slot = htab_find_slot (all_children, per_cu, INSERT);
7681 if (*slot != NULL)
7682 {
7683 /* This inclusion and its children have been processed. */
7684 return;
7685 }
7686
7687 *slot = per_cu;
7688 /* Only add a CU if it has a symbol table. */
7689 symtab = get_symtab (per_cu);
7690 if (symtab != NULL)
7691 {
7692 /* If this is a type unit only add its symbol table if we haven't
7693 seen it yet (type unit per_cu's can share symtabs). */
7694 if (per_cu->is_debug_types)
7695 {
7696 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7697 if (*slot == NULL)
7698 {
7699 *slot = symtab;
7700 VEC_safe_push (symtab_ptr, *result, symtab);
7701 if (symtab->user == NULL)
7702 symtab->user = immediate_parent;
7703 }
7704 }
7705 else
7706 {
7707 VEC_safe_push (symtab_ptr, *result, symtab);
7708 if (symtab->user == NULL)
7709 symtab->user = immediate_parent;
7710 }
7711 }
7712
7713 for (ix = 0;
7714 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7715 ++ix)
7716 {
7717 recursively_compute_inclusions (result, all_children,
7718 all_type_symtabs, iter, symtab);
7719 }
7720 }
7721
7722 /* Compute the symtab 'includes' fields for the symtab related to
7723 PER_CU. */
7724
7725 static void
7726 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7727 {
7728 gdb_assert (! per_cu->is_debug_types);
7729
7730 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7731 {
7732 int ix, len;
7733 struct dwarf2_per_cu_data *per_cu_iter;
7734 struct symtab *symtab_iter;
7735 VEC (symtab_ptr) *result_symtabs = NULL;
7736 htab_t all_children, all_type_symtabs;
7737 struct symtab *symtab = get_symtab (per_cu);
7738
7739 /* If we don't have a symtab, we can just skip this case. */
7740 if (symtab == NULL)
7741 return;
7742
7743 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7744 NULL, xcalloc, xfree);
7745 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7746 NULL, xcalloc, xfree);
7747
7748 for (ix = 0;
7749 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7750 ix, per_cu_iter);
7751 ++ix)
7752 {
7753 recursively_compute_inclusions (&result_symtabs, all_children,
7754 all_type_symtabs, per_cu_iter,
7755 symtab);
7756 }
7757
7758 /* Now we have a transitive closure of all the included symtabs. */
7759 len = VEC_length (symtab_ptr, result_symtabs);
7760 symtab->includes
7761 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7762 (len + 1) * sizeof (struct symtab *));
7763 for (ix = 0;
7764 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7765 ++ix)
7766 symtab->includes[ix] = symtab_iter;
7767 symtab->includes[len] = NULL;
7768
7769 VEC_free (symtab_ptr, result_symtabs);
7770 htab_delete (all_children);
7771 htab_delete (all_type_symtabs);
7772 }
7773 }
7774
7775 /* Compute the 'includes' field for the symtabs of all the CUs we just
7776 read. */
7777
7778 static void
7779 process_cu_includes (void)
7780 {
7781 int ix;
7782 struct dwarf2_per_cu_data *iter;
7783
7784 for (ix = 0;
7785 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7786 ix, iter);
7787 ++ix)
7788 {
7789 if (! iter->is_debug_types)
7790 compute_symtab_includes (iter);
7791 }
7792
7793 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7794 }
7795
7796 /* Generate full symbol information for PER_CU, whose DIEs have
7797 already been loaded into memory. */
7798
7799 static void
7800 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7801 enum language pretend_language)
7802 {
7803 struct dwarf2_cu *cu = per_cu->cu;
7804 struct objfile *objfile = per_cu->objfile;
7805 CORE_ADDR lowpc, highpc;
7806 struct symtab *symtab;
7807 struct cleanup *back_to, *delayed_list_cleanup;
7808 CORE_ADDR baseaddr;
7809 struct block *static_block;
7810
7811 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7812
7813 buildsym_init ();
7814 back_to = make_cleanup (really_free_pendings, NULL);
7815 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7816
7817 cu->list_in_scope = &file_symbols;
7818
7819 cu->language = pretend_language;
7820 cu->language_defn = language_def (cu->language);
7821
7822 /* Do line number decoding in read_file_scope () */
7823 process_die (cu->dies, cu);
7824
7825 /* For now fudge the Go package. */
7826 if (cu->language == language_go)
7827 fixup_go_packaging (cu);
7828
7829 /* Now that we have processed all the DIEs in the CU, all the types
7830 should be complete, and it should now be safe to compute all of the
7831 physnames. */
7832 compute_delayed_physnames (cu);
7833 do_cleanups (delayed_list_cleanup);
7834
7835 /* Some compilers don't define a DW_AT_high_pc attribute for the
7836 compilation unit. If the DW_AT_high_pc is missing, synthesize
7837 it, by scanning the DIE's below the compilation unit. */
7838 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7839
7840 static_block
7841 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7842
7843 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7844 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7845 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7846 addrmap to help ensure it has an accurate map of pc values belonging to
7847 this comp unit. */
7848 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7849
7850 symtab = end_symtab_from_static_block (static_block, objfile,
7851 SECT_OFF_TEXT (objfile), 0);
7852
7853 if (symtab != NULL)
7854 {
7855 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7856
7857 /* Set symtab language to language from DW_AT_language. If the
7858 compilation is from a C file generated by language preprocessors, do
7859 not set the language if it was already deduced by start_subfile. */
7860 if (!(cu->language == language_c && symtab->language != language_c))
7861 symtab->language = cu->language;
7862
7863 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7864 produce DW_AT_location with location lists but it can be possibly
7865 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7866 there were bugs in prologue debug info, fixed later in GCC-4.5
7867 by "unwind info for epilogues" patch (which is not directly related).
7868
7869 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7870 needed, it would be wrong due to missing DW_AT_producer there.
7871
7872 Still one can confuse GDB by using non-standard GCC compilation
7873 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7874 */
7875 if (cu->has_loclist && gcc_4_minor >= 5)
7876 symtab->locations_valid = 1;
7877
7878 if (gcc_4_minor >= 5)
7879 symtab->epilogue_unwind_valid = 1;
7880
7881 symtab->call_site_htab = cu->call_site_htab;
7882 }
7883
7884 if (dwarf2_per_objfile->using_index)
7885 per_cu->v.quick->symtab = symtab;
7886 else
7887 {
7888 struct partial_symtab *pst = per_cu->v.psymtab;
7889 pst->symtab = symtab;
7890 pst->readin = 1;
7891 }
7892
7893 /* Push it for inclusion processing later. */
7894 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7895
7896 do_cleanups (back_to);
7897 }
7898
7899 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7900 already been loaded into memory. */
7901
7902 static void
7903 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7904 enum language pretend_language)
7905 {
7906 struct dwarf2_cu *cu = per_cu->cu;
7907 struct objfile *objfile = per_cu->objfile;
7908 struct symtab *symtab;
7909 struct cleanup *back_to, *delayed_list_cleanup;
7910 struct signatured_type *sig_type;
7911
7912 gdb_assert (per_cu->is_debug_types);
7913 sig_type = (struct signatured_type *) per_cu;
7914
7915 buildsym_init ();
7916 back_to = make_cleanup (really_free_pendings, NULL);
7917 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7918
7919 cu->list_in_scope = &file_symbols;
7920
7921 cu->language = pretend_language;
7922 cu->language_defn = language_def (cu->language);
7923
7924 /* The symbol tables are set up in read_type_unit_scope. */
7925 process_die (cu->dies, cu);
7926
7927 /* For now fudge the Go package. */
7928 if (cu->language == language_go)
7929 fixup_go_packaging (cu);
7930
7931 /* Now that we have processed all the DIEs in the CU, all the types
7932 should be complete, and it should now be safe to compute all of the
7933 physnames. */
7934 compute_delayed_physnames (cu);
7935 do_cleanups (delayed_list_cleanup);
7936
7937 /* TUs share symbol tables.
7938 If this is the first TU to use this symtab, complete the construction
7939 of it with end_expandable_symtab. Otherwise, complete the addition of
7940 this TU's symbols to the existing symtab. */
7941 if (sig_type->type_unit_group->primary_symtab == NULL)
7942 {
7943 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7944 sig_type->type_unit_group->primary_symtab = symtab;
7945
7946 if (symtab != NULL)
7947 {
7948 /* Set symtab language to language from DW_AT_language. If the
7949 compilation is from a C file generated by language preprocessors,
7950 do not set the language if it was already deduced by
7951 start_subfile. */
7952 if (!(cu->language == language_c && symtab->language != language_c))
7953 symtab->language = cu->language;
7954 }
7955 }
7956 else
7957 {
7958 augment_type_symtab (objfile,
7959 sig_type->type_unit_group->primary_symtab);
7960 symtab = sig_type->type_unit_group->primary_symtab;
7961 }
7962
7963 if (dwarf2_per_objfile->using_index)
7964 per_cu->v.quick->symtab = symtab;
7965 else
7966 {
7967 struct partial_symtab *pst = per_cu->v.psymtab;
7968 pst->symtab = symtab;
7969 pst->readin = 1;
7970 }
7971
7972 do_cleanups (back_to);
7973 }
7974
7975 /* Process an imported unit DIE. */
7976
7977 static void
7978 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7979 {
7980 struct attribute *attr;
7981
7982 /* For now we don't handle imported units in type units. */
7983 if (cu->per_cu->is_debug_types)
7984 {
7985 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7986 " supported in type units [in module %s]"),
7987 objfile_name (cu->objfile));
7988 }
7989
7990 attr = dwarf2_attr (die, DW_AT_import, cu);
7991 if (attr != NULL)
7992 {
7993 struct dwarf2_per_cu_data *per_cu;
7994 struct symtab *imported_symtab;
7995 sect_offset offset;
7996 int is_dwz;
7997
7998 offset = dwarf2_get_ref_die_offset (attr);
7999 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8000 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8001
8002 /* If necessary, add it to the queue and load its DIEs. */
8003 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8004 load_full_comp_unit (per_cu, cu->language);
8005
8006 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8007 per_cu);
8008 }
8009 }
8010
8011 /* Process a die and its children. */
8012
8013 static void
8014 process_die (struct die_info *die, struct dwarf2_cu *cu)
8015 {
8016 switch (die->tag)
8017 {
8018 case DW_TAG_padding:
8019 break;
8020 case DW_TAG_compile_unit:
8021 case DW_TAG_partial_unit:
8022 read_file_scope (die, cu);
8023 break;
8024 case DW_TAG_type_unit:
8025 read_type_unit_scope (die, cu);
8026 break;
8027 case DW_TAG_subprogram:
8028 case DW_TAG_inlined_subroutine:
8029 read_func_scope (die, cu);
8030 break;
8031 case DW_TAG_lexical_block:
8032 case DW_TAG_try_block:
8033 case DW_TAG_catch_block:
8034 read_lexical_block_scope (die, cu);
8035 break;
8036 case DW_TAG_GNU_call_site:
8037 read_call_site_scope (die, cu);
8038 break;
8039 case DW_TAG_class_type:
8040 case DW_TAG_interface_type:
8041 case DW_TAG_structure_type:
8042 case DW_TAG_union_type:
8043 process_structure_scope (die, cu);
8044 break;
8045 case DW_TAG_enumeration_type:
8046 process_enumeration_scope (die, cu);
8047 break;
8048
8049 /* These dies have a type, but processing them does not create
8050 a symbol or recurse to process the children. Therefore we can
8051 read them on-demand through read_type_die. */
8052 case DW_TAG_subroutine_type:
8053 case DW_TAG_set_type:
8054 case DW_TAG_array_type:
8055 case DW_TAG_pointer_type:
8056 case DW_TAG_ptr_to_member_type:
8057 case DW_TAG_reference_type:
8058 case DW_TAG_string_type:
8059 break;
8060
8061 case DW_TAG_base_type:
8062 case DW_TAG_subrange_type:
8063 case DW_TAG_typedef:
8064 /* Add a typedef symbol for the type definition, if it has a
8065 DW_AT_name. */
8066 new_symbol (die, read_type_die (die, cu), cu);
8067 break;
8068 case DW_TAG_common_block:
8069 read_common_block (die, cu);
8070 break;
8071 case DW_TAG_common_inclusion:
8072 break;
8073 case DW_TAG_namespace:
8074 cu->processing_has_namespace_info = 1;
8075 read_namespace (die, cu);
8076 break;
8077 case DW_TAG_module:
8078 cu->processing_has_namespace_info = 1;
8079 read_module (die, cu);
8080 break;
8081 case DW_TAG_imported_declaration:
8082 cu->processing_has_namespace_info = 1;
8083 if (read_namespace_alias (die, cu))
8084 break;
8085 /* The declaration is not a global namespace alias: fall through. */
8086 case DW_TAG_imported_module:
8087 cu->processing_has_namespace_info = 1;
8088 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8089 || cu->language != language_fortran))
8090 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8091 dwarf_tag_name (die->tag));
8092 read_import_statement (die, cu);
8093 break;
8094
8095 case DW_TAG_imported_unit:
8096 process_imported_unit_die (die, cu);
8097 break;
8098
8099 default:
8100 new_symbol (die, NULL, cu);
8101 break;
8102 }
8103 }
8104 \f
8105 /* DWARF name computation. */
8106
8107 /* A helper function for dwarf2_compute_name which determines whether DIE
8108 needs to have the name of the scope prepended to the name listed in the
8109 die. */
8110
8111 static int
8112 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8113 {
8114 struct attribute *attr;
8115
8116 switch (die->tag)
8117 {
8118 case DW_TAG_namespace:
8119 case DW_TAG_typedef:
8120 case DW_TAG_class_type:
8121 case DW_TAG_interface_type:
8122 case DW_TAG_structure_type:
8123 case DW_TAG_union_type:
8124 case DW_TAG_enumeration_type:
8125 case DW_TAG_enumerator:
8126 case DW_TAG_subprogram:
8127 case DW_TAG_member:
8128 case DW_TAG_imported_declaration:
8129 return 1;
8130
8131 case DW_TAG_variable:
8132 case DW_TAG_constant:
8133 /* We only need to prefix "globally" visible variables. These include
8134 any variable marked with DW_AT_external or any variable that
8135 lives in a namespace. [Variables in anonymous namespaces
8136 require prefixing, but they are not DW_AT_external.] */
8137
8138 if (dwarf2_attr (die, DW_AT_specification, cu))
8139 {
8140 struct dwarf2_cu *spec_cu = cu;
8141
8142 return die_needs_namespace (die_specification (die, &spec_cu),
8143 spec_cu);
8144 }
8145
8146 attr = dwarf2_attr (die, DW_AT_external, cu);
8147 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8148 && die->parent->tag != DW_TAG_module)
8149 return 0;
8150 /* A variable in a lexical block of some kind does not need a
8151 namespace, even though in C++ such variables may be external
8152 and have a mangled name. */
8153 if (die->parent->tag == DW_TAG_lexical_block
8154 || die->parent->tag == DW_TAG_try_block
8155 || die->parent->tag == DW_TAG_catch_block
8156 || die->parent->tag == DW_TAG_subprogram)
8157 return 0;
8158 return 1;
8159
8160 default:
8161 return 0;
8162 }
8163 }
8164
8165 /* Retrieve the last character from a mem_file. */
8166
8167 static void
8168 do_ui_file_peek_last (void *object, const char *buffer, long length)
8169 {
8170 char *last_char_p = (char *) object;
8171
8172 if (length > 0)
8173 *last_char_p = buffer[length - 1];
8174 }
8175
8176 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8177 compute the physname for the object, which include a method's:
8178 - formal parameters (C++/Java),
8179 - receiver type (Go),
8180 - return type (Java).
8181
8182 The term "physname" is a bit confusing.
8183 For C++, for example, it is the demangled name.
8184 For Go, for example, it's the mangled name.
8185
8186 For Ada, return the DIE's linkage name rather than the fully qualified
8187 name. PHYSNAME is ignored..
8188
8189 The result is allocated on the objfile_obstack and canonicalized. */
8190
8191 static const char *
8192 dwarf2_compute_name (const char *name,
8193 struct die_info *die, struct dwarf2_cu *cu,
8194 int physname)
8195 {
8196 struct objfile *objfile = cu->objfile;
8197
8198 if (name == NULL)
8199 name = dwarf2_name (die, cu);
8200
8201 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8202 compute it by typename_concat inside GDB. */
8203 if (cu->language == language_ada
8204 || (cu->language == language_fortran && physname))
8205 {
8206 /* For Ada unit, we prefer the linkage name over the name, as
8207 the former contains the exported name, which the user expects
8208 to be able to reference. Ideally, we want the user to be able
8209 to reference this entity using either natural or linkage name,
8210 but we haven't started looking at this enhancement yet. */
8211 struct attribute *attr;
8212
8213 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8214 if (attr == NULL)
8215 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8216 if (attr && DW_STRING (attr))
8217 return DW_STRING (attr);
8218 }
8219
8220 /* These are the only languages we know how to qualify names in. */
8221 if (name != NULL
8222 && (cu->language == language_cplus || cu->language == language_java
8223 || cu->language == language_fortran))
8224 {
8225 if (die_needs_namespace (die, cu))
8226 {
8227 long length;
8228 const char *prefix;
8229 struct ui_file *buf;
8230
8231 prefix = determine_prefix (die, cu);
8232 buf = mem_fileopen ();
8233 if (*prefix != '\0')
8234 {
8235 char *prefixed_name = typename_concat (NULL, prefix, name,
8236 physname, cu);
8237
8238 fputs_unfiltered (prefixed_name, buf);
8239 xfree (prefixed_name);
8240 }
8241 else
8242 fputs_unfiltered (name, buf);
8243
8244 /* Template parameters may be specified in the DIE's DW_AT_name, or
8245 as children with DW_TAG_template_type_param or
8246 DW_TAG_value_type_param. If the latter, add them to the name
8247 here. If the name already has template parameters, then
8248 skip this step; some versions of GCC emit both, and
8249 it is more efficient to use the pre-computed name.
8250
8251 Something to keep in mind about this process: it is very
8252 unlikely, or in some cases downright impossible, to produce
8253 something that will match the mangled name of a function.
8254 If the definition of the function has the same debug info,
8255 we should be able to match up with it anyway. But fallbacks
8256 using the minimal symbol, for instance to find a method
8257 implemented in a stripped copy of libstdc++, will not work.
8258 If we do not have debug info for the definition, we will have to
8259 match them up some other way.
8260
8261 When we do name matching there is a related problem with function
8262 templates; two instantiated function templates are allowed to
8263 differ only by their return types, which we do not add here. */
8264
8265 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8266 {
8267 struct attribute *attr;
8268 struct die_info *child;
8269 int first = 1;
8270
8271 die->building_fullname = 1;
8272
8273 for (child = die->child; child != NULL; child = child->sibling)
8274 {
8275 struct type *type;
8276 LONGEST value;
8277 const gdb_byte *bytes;
8278 struct dwarf2_locexpr_baton *baton;
8279 struct value *v;
8280
8281 if (child->tag != DW_TAG_template_type_param
8282 && child->tag != DW_TAG_template_value_param)
8283 continue;
8284
8285 if (first)
8286 {
8287 fputs_unfiltered ("<", buf);
8288 first = 0;
8289 }
8290 else
8291 fputs_unfiltered (", ", buf);
8292
8293 attr = dwarf2_attr (child, DW_AT_type, cu);
8294 if (attr == NULL)
8295 {
8296 complaint (&symfile_complaints,
8297 _("template parameter missing DW_AT_type"));
8298 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8299 continue;
8300 }
8301 type = die_type (child, cu);
8302
8303 if (child->tag == DW_TAG_template_type_param)
8304 {
8305 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8306 continue;
8307 }
8308
8309 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8310 if (attr == NULL)
8311 {
8312 complaint (&symfile_complaints,
8313 _("template parameter missing "
8314 "DW_AT_const_value"));
8315 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8316 continue;
8317 }
8318
8319 dwarf2_const_value_attr (attr, type, name,
8320 &cu->comp_unit_obstack, cu,
8321 &value, &bytes, &baton);
8322
8323 if (TYPE_NOSIGN (type))
8324 /* GDB prints characters as NUMBER 'CHAR'. If that's
8325 changed, this can use value_print instead. */
8326 c_printchar (value, type, buf);
8327 else
8328 {
8329 struct value_print_options opts;
8330
8331 if (baton != NULL)
8332 v = dwarf2_evaluate_loc_desc (type, NULL,
8333 baton->data,
8334 baton->size,
8335 baton->per_cu);
8336 else if (bytes != NULL)
8337 {
8338 v = allocate_value (type);
8339 memcpy (value_contents_writeable (v), bytes,
8340 TYPE_LENGTH (type));
8341 }
8342 else
8343 v = value_from_longest (type, value);
8344
8345 /* Specify decimal so that we do not depend on
8346 the radix. */
8347 get_formatted_print_options (&opts, 'd');
8348 opts.raw = 1;
8349 value_print (v, buf, &opts);
8350 release_value (v);
8351 value_free (v);
8352 }
8353 }
8354
8355 die->building_fullname = 0;
8356
8357 if (!first)
8358 {
8359 /* Close the argument list, with a space if necessary
8360 (nested templates). */
8361 char last_char = '\0';
8362 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8363 if (last_char == '>')
8364 fputs_unfiltered (" >", buf);
8365 else
8366 fputs_unfiltered (">", buf);
8367 }
8368 }
8369
8370 /* For Java and C++ methods, append formal parameter type
8371 information, if PHYSNAME. */
8372
8373 if (physname && die->tag == DW_TAG_subprogram
8374 && (cu->language == language_cplus
8375 || cu->language == language_java))
8376 {
8377 struct type *type = read_type_die (die, cu);
8378
8379 c_type_print_args (type, buf, 1, cu->language,
8380 &type_print_raw_options);
8381
8382 if (cu->language == language_java)
8383 {
8384 /* For java, we must append the return type to method
8385 names. */
8386 if (die->tag == DW_TAG_subprogram)
8387 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8388 0, 0, &type_print_raw_options);
8389 }
8390 else if (cu->language == language_cplus)
8391 {
8392 /* Assume that an artificial first parameter is
8393 "this", but do not crash if it is not. RealView
8394 marks unnamed (and thus unused) parameters as
8395 artificial; there is no way to differentiate
8396 the two cases. */
8397 if (TYPE_NFIELDS (type) > 0
8398 && TYPE_FIELD_ARTIFICIAL (type, 0)
8399 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8400 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8401 0))))
8402 fputs_unfiltered (" const", buf);
8403 }
8404 }
8405
8406 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8407 &length);
8408 ui_file_delete (buf);
8409
8410 if (cu->language == language_cplus)
8411 {
8412 const char *cname
8413 = dwarf2_canonicalize_name (name, cu,
8414 &objfile->objfile_obstack);
8415
8416 if (cname != NULL)
8417 name = cname;
8418 }
8419 }
8420 }
8421
8422 return name;
8423 }
8424
8425 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8426 If scope qualifiers are appropriate they will be added. The result
8427 will be allocated on the objfile_obstack, or NULL if the DIE does
8428 not have a name. NAME may either be from a previous call to
8429 dwarf2_name or NULL.
8430
8431 The output string will be canonicalized (if C++/Java). */
8432
8433 static const char *
8434 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8435 {
8436 return dwarf2_compute_name (name, die, cu, 0);
8437 }
8438
8439 /* Construct a physname for the given DIE in CU. NAME may either be
8440 from a previous call to dwarf2_name or NULL. The result will be
8441 allocated on the objfile_objstack or NULL if the DIE does not have a
8442 name.
8443
8444 The output string will be canonicalized (if C++/Java). */
8445
8446 static const char *
8447 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8448 {
8449 struct objfile *objfile = cu->objfile;
8450 struct attribute *attr;
8451 const char *retval, *mangled = NULL, *canon = NULL;
8452 struct cleanup *back_to;
8453 int need_copy = 1;
8454
8455 /* In this case dwarf2_compute_name is just a shortcut not building anything
8456 on its own. */
8457 if (!die_needs_namespace (die, cu))
8458 return dwarf2_compute_name (name, die, cu, 1);
8459
8460 back_to = make_cleanup (null_cleanup, NULL);
8461
8462 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8463 if (!attr)
8464 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8465
8466 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8467 has computed. */
8468 if (attr && DW_STRING (attr))
8469 {
8470 char *demangled;
8471
8472 mangled = DW_STRING (attr);
8473
8474 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8475 type. It is easier for GDB users to search for such functions as
8476 `name(params)' than `long name(params)'. In such case the minimal
8477 symbol names do not match the full symbol names but for template
8478 functions there is never a need to look up their definition from their
8479 declaration so the only disadvantage remains the minimal symbol
8480 variant `long name(params)' does not have the proper inferior type.
8481 */
8482
8483 if (cu->language == language_go)
8484 {
8485 /* This is a lie, but we already lie to the caller new_symbol_full.
8486 new_symbol_full assumes we return the mangled name.
8487 This just undoes that lie until things are cleaned up. */
8488 demangled = NULL;
8489 }
8490 else
8491 {
8492 demangled = gdb_demangle (mangled,
8493 (DMGL_PARAMS | DMGL_ANSI
8494 | (cu->language == language_java
8495 ? DMGL_JAVA | DMGL_RET_POSTFIX
8496 : DMGL_RET_DROP)));
8497 }
8498 if (demangled)
8499 {
8500 make_cleanup (xfree, demangled);
8501 canon = demangled;
8502 }
8503 else
8504 {
8505 canon = mangled;
8506 need_copy = 0;
8507 }
8508 }
8509
8510 if (canon == NULL || check_physname)
8511 {
8512 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8513
8514 if (canon != NULL && strcmp (physname, canon) != 0)
8515 {
8516 /* It may not mean a bug in GDB. The compiler could also
8517 compute DW_AT_linkage_name incorrectly. But in such case
8518 GDB would need to be bug-to-bug compatible. */
8519
8520 complaint (&symfile_complaints,
8521 _("Computed physname <%s> does not match demangled <%s> "
8522 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8523 physname, canon, mangled, die->offset.sect_off,
8524 objfile_name (objfile));
8525
8526 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8527 is available here - over computed PHYSNAME. It is safer
8528 against both buggy GDB and buggy compilers. */
8529
8530 retval = canon;
8531 }
8532 else
8533 {
8534 retval = physname;
8535 need_copy = 0;
8536 }
8537 }
8538 else
8539 retval = canon;
8540
8541 if (need_copy)
8542 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8543
8544 do_cleanups (back_to);
8545 return retval;
8546 }
8547
8548 /* Inspect DIE in CU for a namespace alias. If one exists, record
8549 a new symbol for it.
8550
8551 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8552
8553 static int
8554 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8555 {
8556 struct attribute *attr;
8557
8558 /* If the die does not have a name, this is not a namespace
8559 alias. */
8560 attr = dwarf2_attr (die, DW_AT_name, cu);
8561 if (attr != NULL)
8562 {
8563 int num;
8564 struct die_info *d = die;
8565 struct dwarf2_cu *imported_cu = cu;
8566
8567 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8568 keep inspecting DIEs until we hit the underlying import. */
8569 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8570 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8571 {
8572 attr = dwarf2_attr (d, DW_AT_import, cu);
8573 if (attr == NULL)
8574 break;
8575
8576 d = follow_die_ref (d, attr, &imported_cu);
8577 if (d->tag != DW_TAG_imported_declaration)
8578 break;
8579 }
8580
8581 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8582 {
8583 complaint (&symfile_complaints,
8584 _("DIE at 0x%x has too many recursively imported "
8585 "declarations"), d->offset.sect_off);
8586 return 0;
8587 }
8588
8589 if (attr != NULL)
8590 {
8591 struct type *type;
8592 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8593
8594 type = get_die_type_at_offset (offset, cu->per_cu);
8595 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8596 {
8597 /* This declaration is a global namespace alias. Add
8598 a symbol for it whose type is the aliased namespace. */
8599 new_symbol (die, type, cu);
8600 return 1;
8601 }
8602 }
8603 }
8604
8605 return 0;
8606 }
8607
8608 /* Read the import statement specified by the given die and record it. */
8609
8610 static void
8611 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8612 {
8613 struct objfile *objfile = cu->objfile;
8614 struct attribute *import_attr;
8615 struct die_info *imported_die, *child_die;
8616 struct dwarf2_cu *imported_cu;
8617 const char *imported_name;
8618 const char *imported_name_prefix;
8619 const char *canonical_name;
8620 const char *import_alias;
8621 const char *imported_declaration = NULL;
8622 const char *import_prefix;
8623 VEC (const_char_ptr) *excludes = NULL;
8624 struct cleanup *cleanups;
8625
8626 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8627 if (import_attr == NULL)
8628 {
8629 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8630 dwarf_tag_name (die->tag));
8631 return;
8632 }
8633
8634 imported_cu = cu;
8635 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8636 imported_name = dwarf2_name (imported_die, imported_cu);
8637 if (imported_name == NULL)
8638 {
8639 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8640
8641 The import in the following code:
8642 namespace A
8643 {
8644 typedef int B;
8645 }
8646
8647 int main ()
8648 {
8649 using A::B;
8650 B b;
8651 return b;
8652 }
8653
8654 ...
8655 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8656 <52> DW_AT_decl_file : 1
8657 <53> DW_AT_decl_line : 6
8658 <54> DW_AT_import : <0x75>
8659 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8660 <59> DW_AT_name : B
8661 <5b> DW_AT_decl_file : 1
8662 <5c> DW_AT_decl_line : 2
8663 <5d> DW_AT_type : <0x6e>
8664 ...
8665 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8666 <76> DW_AT_byte_size : 4
8667 <77> DW_AT_encoding : 5 (signed)
8668
8669 imports the wrong die ( 0x75 instead of 0x58 ).
8670 This case will be ignored until the gcc bug is fixed. */
8671 return;
8672 }
8673
8674 /* Figure out the local name after import. */
8675 import_alias = dwarf2_name (die, cu);
8676
8677 /* Figure out where the statement is being imported to. */
8678 import_prefix = determine_prefix (die, cu);
8679
8680 /* Figure out what the scope of the imported die is and prepend it
8681 to the name of the imported die. */
8682 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8683
8684 if (imported_die->tag != DW_TAG_namespace
8685 && imported_die->tag != DW_TAG_module)
8686 {
8687 imported_declaration = imported_name;
8688 canonical_name = imported_name_prefix;
8689 }
8690 else if (strlen (imported_name_prefix) > 0)
8691 canonical_name = obconcat (&objfile->objfile_obstack,
8692 imported_name_prefix, "::", imported_name,
8693 (char *) NULL);
8694 else
8695 canonical_name = imported_name;
8696
8697 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8698
8699 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8700 for (child_die = die->child; child_die && child_die->tag;
8701 child_die = sibling_die (child_die))
8702 {
8703 /* DWARF-4: A Fortran use statement with a “rename list” may be
8704 represented by an imported module entry with an import attribute
8705 referring to the module and owned entries corresponding to those
8706 entities that are renamed as part of being imported. */
8707
8708 if (child_die->tag != DW_TAG_imported_declaration)
8709 {
8710 complaint (&symfile_complaints,
8711 _("child DW_TAG_imported_declaration expected "
8712 "- DIE at 0x%x [in module %s]"),
8713 child_die->offset.sect_off, objfile_name (objfile));
8714 continue;
8715 }
8716
8717 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8718 if (import_attr == NULL)
8719 {
8720 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8721 dwarf_tag_name (child_die->tag));
8722 continue;
8723 }
8724
8725 imported_cu = cu;
8726 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8727 &imported_cu);
8728 imported_name = dwarf2_name (imported_die, imported_cu);
8729 if (imported_name == NULL)
8730 {
8731 complaint (&symfile_complaints,
8732 _("child DW_TAG_imported_declaration has unknown "
8733 "imported name - DIE at 0x%x [in module %s]"),
8734 child_die->offset.sect_off, objfile_name (objfile));
8735 continue;
8736 }
8737
8738 VEC_safe_push (const_char_ptr, excludes, imported_name);
8739
8740 process_die (child_die, cu);
8741 }
8742
8743 cp_add_using_directive (import_prefix,
8744 canonical_name,
8745 import_alias,
8746 imported_declaration,
8747 excludes,
8748 0,
8749 &objfile->objfile_obstack);
8750
8751 do_cleanups (cleanups);
8752 }
8753
8754 /* Cleanup function for handle_DW_AT_stmt_list. */
8755
8756 static void
8757 free_cu_line_header (void *arg)
8758 {
8759 struct dwarf2_cu *cu = arg;
8760
8761 free_line_header (cu->line_header);
8762 cu->line_header = NULL;
8763 }
8764
8765 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8766 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8767 this, it was first present in GCC release 4.3.0. */
8768
8769 static int
8770 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8771 {
8772 if (!cu->checked_producer)
8773 check_producer (cu);
8774
8775 return cu->producer_is_gcc_lt_4_3;
8776 }
8777
8778 static void
8779 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8780 const char **name, const char **comp_dir)
8781 {
8782 struct attribute *attr;
8783
8784 *name = NULL;
8785 *comp_dir = NULL;
8786
8787 /* Find the filename. Do not use dwarf2_name here, since the filename
8788 is not a source language identifier. */
8789 attr = dwarf2_attr (die, DW_AT_name, cu);
8790 if (attr)
8791 {
8792 *name = DW_STRING (attr);
8793 }
8794
8795 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8796 if (attr)
8797 *comp_dir = DW_STRING (attr);
8798 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8799 && IS_ABSOLUTE_PATH (*name))
8800 {
8801 char *d = ldirname (*name);
8802
8803 *comp_dir = d;
8804 if (d != NULL)
8805 make_cleanup (xfree, d);
8806 }
8807 if (*comp_dir != NULL)
8808 {
8809 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8810 directory, get rid of it. */
8811 char *cp = strchr (*comp_dir, ':');
8812
8813 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8814 *comp_dir = cp + 1;
8815 }
8816
8817 if (*name == NULL)
8818 *name = "<unknown>";
8819 }
8820
8821 /* Handle DW_AT_stmt_list for a compilation unit.
8822 DIE is the DW_TAG_compile_unit die for CU.
8823 COMP_DIR is the compilation directory.
8824 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8825
8826 static void
8827 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8828 const char *comp_dir) /* ARI: editCase function */
8829 {
8830 struct attribute *attr;
8831
8832 gdb_assert (! cu->per_cu->is_debug_types);
8833
8834 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8835 if (attr)
8836 {
8837 unsigned int line_offset = DW_UNSND (attr);
8838 struct line_header *line_header
8839 = dwarf_decode_line_header (line_offset, cu);
8840
8841 if (line_header)
8842 {
8843 cu->line_header = line_header;
8844 make_cleanup (free_cu_line_header, cu);
8845 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8846 }
8847 }
8848 }
8849
8850 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8851
8852 static void
8853 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8854 {
8855 struct objfile *objfile = dwarf2_per_objfile->objfile;
8856 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8857 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8858 CORE_ADDR highpc = ((CORE_ADDR) 0);
8859 struct attribute *attr;
8860 const char *name = NULL;
8861 const char *comp_dir = NULL;
8862 struct die_info *child_die;
8863 bfd *abfd = objfile->obfd;
8864 CORE_ADDR baseaddr;
8865
8866 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8867
8868 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8869
8870 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8871 from finish_block. */
8872 if (lowpc == ((CORE_ADDR) -1))
8873 lowpc = highpc;
8874 lowpc += baseaddr;
8875 highpc += baseaddr;
8876
8877 find_file_and_directory (die, cu, &name, &comp_dir);
8878
8879 prepare_one_comp_unit (cu, die, cu->language);
8880
8881 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8882 standardised yet. As a workaround for the language detection we fall
8883 back to the DW_AT_producer string. */
8884 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8885 cu->language = language_opencl;
8886
8887 /* Similar hack for Go. */
8888 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8889 set_cu_language (DW_LANG_Go, cu);
8890
8891 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8892
8893 /* Decode line number information if present. We do this before
8894 processing child DIEs, so that the line header table is available
8895 for DW_AT_decl_file. */
8896 handle_DW_AT_stmt_list (die, cu, comp_dir);
8897
8898 /* Process all dies in compilation unit. */
8899 if (die->child != NULL)
8900 {
8901 child_die = die->child;
8902 while (child_die && child_die->tag)
8903 {
8904 process_die (child_die, cu);
8905 child_die = sibling_die (child_die);
8906 }
8907 }
8908
8909 /* Decode macro information, if present. Dwarf 2 macro information
8910 refers to information in the line number info statement program
8911 header, so we can only read it if we've read the header
8912 successfully. */
8913 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8914 if (attr && cu->line_header)
8915 {
8916 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8917 complaint (&symfile_complaints,
8918 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8919
8920 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8921 }
8922 else
8923 {
8924 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8925 if (attr && cu->line_header)
8926 {
8927 unsigned int macro_offset = DW_UNSND (attr);
8928
8929 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8930 }
8931 }
8932
8933 do_cleanups (back_to);
8934 }
8935
8936 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8937 Create the set of symtabs used by this TU, or if this TU is sharing
8938 symtabs with another TU and the symtabs have already been created
8939 then restore those symtabs in the line header.
8940 We don't need the pc/line-number mapping for type units. */
8941
8942 static void
8943 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8944 {
8945 struct objfile *objfile = dwarf2_per_objfile->objfile;
8946 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8947 struct type_unit_group *tu_group;
8948 int first_time;
8949 struct line_header *lh;
8950 struct attribute *attr;
8951 unsigned int i, line_offset;
8952 struct signatured_type *sig_type;
8953
8954 gdb_assert (per_cu->is_debug_types);
8955 sig_type = (struct signatured_type *) per_cu;
8956
8957 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8958
8959 /* If we're using .gdb_index (includes -readnow) then
8960 per_cu->type_unit_group may not have been set up yet. */
8961 if (sig_type->type_unit_group == NULL)
8962 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8963 tu_group = sig_type->type_unit_group;
8964
8965 /* If we've already processed this stmt_list there's no real need to
8966 do it again, we could fake it and just recreate the part we need
8967 (file name,index -> symtab mapping). If data shows this optimization
8968 is useful we can do it then. */
8969 first_time = tu_group->primary_symtab == NULL;
8970
8971 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8972 debug info. */
8973 lh = NULL;
8974 if (attr != NULL)
8975 {
8976 line_offset = DW_UNSND (attr);
8977 lh = dwarf_decode_line_header (line_offset, cu);
8978 }
8979 if (lh == NULL)
8980 {
8981 if (first_time)
8982 dwarf2_start_symtab (cu, "", NULL, 0);
8983 else
8984 {
8985 gdb_assert (tu_group->symtabs == NULL);
8986 restart_symtab (0);
8987 }
8988 /* Note: The primary symtab will get allocated at the end. */
8989 return;
8990 }
8991
8992 cu->line_header = lh;
8993 make_cleanup (free_cu_line_header, cu);
8994
8995 if (first_time)
8996 {
8997 dwarf2_start_symtab (cu, "", NULL, 0);
8998
8999 tu_group->num_symtabs = lh->num_file_names;
9000 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9001
9002 for (i = 0; i < lh->num_file_names; ++i)
9003 {
9004 const char *dir = NULL;
9005 struct file_entry *fe = &lh->file_names[i];
9006
9007 if (fe->dir_index)
9008 dir = lh->include_dirs[fe->dir_index - 1];
9009 dwarf2_start_subfile (fe->name, dir, NULL);
9010
9011 /* Note: We don't have to watch for the main subfile here, type units
9012 don't have DW_AT_name. */
9013
9014 if (current_subfile->symtab == NULL)
9015 {
9016 /* NOTE: start_subfile will recognize when it's been passed
9017 a file it has already seen. So we can't assume there's a
9018 simple mapping from lh->file_names to subfiles,
9019 lh->file_names may contain dups. */
9020 current_subfile->symtab = allocate_symtab (current_subfile->name,
9021 objfile);
9022 }
9023
9024 fe->symtab = current_subfile->symtab;
9025 tu_group->symtabs[i] = fe->symtab;
9026 }
9027 }
9028 else
9029 {
9030 restart_symtab (0);
9031
9032 for (i = 0; i < lh->num_file_names; ++i)
9033 {
9034 struct file_entry *fe = &lh->file_names[i];
9035
9036 fe->symtab = tu_group->symtabs[i];
9037 }
9038 }
9039
9040 /* The main symtab is allocated last. Type units don't have DW_AT_name
9041 so they don't have a "real" (so to speak) symtab anyway.
9042 There is later code that will assign the main symtab to all symbols
9043 that don't have one. We need to handle the case of a symbol with a
9044 missing symtab (DW_AT_decl_file) anyway. */
9045 }
9046
9047 /* Process DW_TAG_type_unit.
9048 For TUs we want to skip the first top level sibling if it's not the
9049 actual type being defined by this TU. In this case the first top
9050 level sibling is there to provide context only. */
9051
9052 static void
9053 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9054 {
9055 struct die_info *child_die;
9056
9057 prepare_one_comp_unit (cu, die, language_minimal);
9058
9059 /* Initialize (or reinitialize) the machinery for building symtabs.
9060 We do this before processing child DIEs, so that the line header table
9061 is available for DW_AT_decl_file. */
9062 setup_type_unit_groups (die, cu);
9063
9064 if (die->child != NULL)
9065 {
9066 child_die = die->child;
9067 while (child_die && child_die->tag)
9068 {
9069 process_die (child_die, cu);
9070 child_die = sibling_die (child_die);
9071 }
9072 }
9073 }
9074 \f
9075 /* DWO/DWP files.
9076
9077 http://gcc.gnu.org/wiki/DebugFission
9078 http://gcc.gnu.org/wiki/DebugFissionDWP
9079
9080 To simplify handling of both DWO files ("object" files with the DWARF info)
9081 and DWP files (a file with the DWOs packaged up into one file), we treat
9082 DWP files as having a collection of virtual DWO files. */
9083
9084 static hashval_t
9085 hash_dwo_file (const void *item)
9086 {
9087 const struct dwo_file *dwo_file = item;
9088 hashval_t hash;
9089
9090 hash = htab_hash_string (dwo_file->dwo_name);
9091 if (dwo_file->comp_dir != NULL)
9092 hash += htab_hash_string (dwo_file->comp_dir);
9093 return hash;
9094 }
9095
9096 static int
9097 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9098 {
9099 const struct dwo_file *lhs = item_lhs;
9100 const struct dwo_file *rhs = item_rhs;
9101
9102 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9103 return 0;
9104 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9105 return lhs->comp_dir == rhs->comp_dir;
9106 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9107 }
9108
9109 /* Allocate a hash table for DWO files. */
9110
9111 static htab_t
9112 allocate_dwo_file_hash_table (void)
9113 {
9114 struct objfile *objfile = dwarf2_per_objfile->objfile;
9115
9116 return htab_create_alloc_ex (41,
9117 hash_dwo_file,
9118 eq_dwo_file,
9119 NULL,
9120 &objfile->objfile_obstack,
9121 hashtab_obstack_allocate,
9122 dummy_obstack_deallocate);
9123 }
9124
9125 /* Lookup DWO file DWO_NAME. */
9126
9127 static void **
9128 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9129 {
9130 struct dwo_file find_entry;
9131 void **slot;
9132
9133 if (dwarf2_per_objfile->dwo_files == NULL)
9134 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9135
9136 memset (&find_entry, 0, sizeof (find_entry));
9137 find_entry.dwo_name = dwo_name;
9138 find_entry.comp_dir = comp_dir;
9139 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9140
9141 return slot;
9142 }
9143
9144 static hashval_t
9145 hash_dwo_unit (const void *item)
9146 {
9147 const struct dwo_unit *dwo_unit = item;
9148
9149 /* This drops the top 32 bits of the id, but is ok for a hash. */
9150 return dwo_unit->signature;
9151 }
9152
9153 static int
9154 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9155 {
9156 const struct dwo_unit *lhs = item_lhs;
9157 const struct dwo_unit *rhs = item_rhs;
9158
9159 /* The signature is assumed to be unique within the DWO file.
9160 So while object file CU dwo_id's always have the value zero,
9161 that's OK, assuming each object file DWO file has only one CU,
9162 and that's the rule for now. */
9163 return lhs->signature == rhs->signature;
9164 }
9165
9166 /* Allocate a hash table for DWO CUs,TUs.
9167 There is one of these tables for each of CUs,TUs for each DWO file. */
9168
9169 static htab_t
9170 allocate_dwo_unit_table (struct objfile *objfile)
9171 {
9172 /* Start out with a pretty small number.
9173 Generally DWO files contain only one CU and maybe some TUs. */
9174 return htab_create_alloc_ex (3,
9175 hash_dwo_unit,
9176 eq_dwo_unit,
9177 NULL,
9178 &objfile->objfile_obstack,
9179 hashtab_obstack_allocate,
9180 dummy_obstack_deallocate);
9181 }
9182
9183 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9184
9185 struct create_dwo_cu_data
9186 {
9187 struct dwo_file *dwo_file;
9188 struct dwo_unit dwo_unit;
9189 };
9190
9191 /* die_reader_func for create_dwo_cu. */
9192
9193 static void
9194 create_dwo_cu_reader (const struct die_reader_specs *reader,
9195 const gdb_byte *info_ptr,
9196 struct die_info *comp_unit_die,
9197 int has_children,
9198 void *datap)
9199 {
9200 struct dwarf2_cu *cu = reader->cu;
9201 struct objfile *objfile = dwarf2_per_objfile->objfile;
9202 sect_offset offset = cu->per_cu->offset;
9203 struct dwarf2_section_info *section = cu->per_cu->section;
9204 struct create_dwo_cu_data *data = datap;
9205 struct dwo_file *dwo_file = data->dwo_file;
9206 struct dwo_unit *dwo_unit = &data->dwo_unit;
9207 struct attribute *attr;
9208
9209 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9210 if (attr == NULL)
9211 {
9212 complaint (&symfile_complaints,
9213 _("Dwarf Error: debug entry at offset 0x%x is missing"
9214 " its dwo_id [in module %s]"),
9215 offset.sect_off, dwo_file->dwo_name);
9216 return;
9217 }
9218
9219 dwo_unit->dwo_file = dwo_file;
9220 dwo_unit->signature = DW_UNSND (attr);
9221 dwo_unit->section = section;
9222 dwo_unit->offset = offset;
9223 dwo_unit->length = cu->per_cu->length;
9224
9225 if (dwarf2_read_debug)
9226 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9227 offset.sect_off, hex_string (dwo_unit->signature));
9228 }
9229
9230 /* Create the dwo_unit for the lone CU in DWO_FILE.
9231 Note: This function processes DWO files only, not DWP files. */
9232
9233 static struct dwo_unit *
9234 create_dwo_cu (struct dwo_file *dwo_file)
9235 {
9236 struct objfile *objfile = dwarf2_per_objfile->objfile;
9237 struct dwarf2_section_info *section = &dwo_file->sections.info;
9238 bfd *abfd;
9239 htab_t cu_htab;
9240 const gdb_byte *info_ptr, *end_ptr;
9241 struct create_dwo_cu_data create_dwo_cu_data;
9242 struct dwo_unit *dwo_unit;
9243
9244 dwarf2_read_section (objfile, section);
9245 info_ptr = section->buffer;
9246
9247 if (info_ptr == NULL)
9248 return NULL;
9249
9250 /* We can't set abfd until now because the section may be empty or
9251 not present, in which case section->asection will be NULL. */
9252 abfd = get_section_bfd_owner (section);
9253
9254 if (dwarf2_read_debug)
9255 {
9256 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9257 get_section_name (section),
9258 get_section_file_name (section));
9259 }
9260
9261 create_dwo_cu_data.dwo_file = dwo_file;
9262 dwo_unit = NULL;
9263
9264 end_ptr = info_ptr + section->size;
9265 while (info_ptr < end_ptr)
9266 {
9267 struct dwarf2_per_cu_data per_cu;
9268
9269 memset (&create_dwo_cu_data.dwo_unit, 0,
9270 sizeof (create_dwo_cu_data.dwo_unit));
9271 memset (&per_cu, 0, sizeof (per_cu));
9272 per_cu.objfile = objfile;
9273 per_cu.is_debug_types = 0;
9274 per_cu.offset.sect_off = info_ptr - section->buffer;
9275 per_cu.section = section;
9276
9277 init_cutu_and_read_dies_no_follow (&per_cu,
9278 &dwo_file->sections.abbrev,
9279 dwo_file,
9280 create_dwo_cu_reader,
9281 &create_dwo_cu_data);
9282
9283 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9284 {
9285 /* If we've already found one, complain. We only support one
9286 because having more than one requires hacking the dwo_name of
9287 each to match, which is highly unlikely to happen. */
9288 if (dwo_unit != NULL)
9289 {
9290 complaint (&symfile_complaints,
9291 _("Multiple CUs in DWO file %s [in module %s]"),
9292 dwo_file->dwo_name, objfile_name (objfile));
9293 break;
9294 }
9295
9296 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9297 *dwo_unit = create_dwo_cu_data.dwo_unit;
9298 }
9299
9300 info_ptr += per_cu.length;
9301 }
9302
9303 return dwo_unit;
9304 }
9305
9306 /* DWP file .debug_{cu,tu}_index section format:
9307 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9308
9309 DWP Version 1:
9310
9311 Both index sections have the same format, and serve to map a 64-bit
9312 signature to a set of section numbers. Each section begins with a header,
9313 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9314 indexes, and a pool of 32-bit section numbers. The index sections will be
9315 aligned at 8-byte boundaries in the file.
9316
9317 The index section header consists of:
9318
9319 V, 32 bit version number
9320 -, 32 bits unused
9321 N, 32 bit number of compilation units or type units in the index
9322 M, 32 bit number of slots in the hash table
9323
9324 Numbers are recorded using the byte order of the application binary.
9325
9326 The hash table begins at offset 16 in the section, and consists of an array
9327 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9328 order of the application binary). Unused slots in the hash table are 0.
9329 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9330
9331 The parallel table begins immediately after the hash table
9332 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9333 array of 32-bit indexes (using the byte order of the application binary),
9334 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9335 table contains a 32-bit index into the pool of section numbers. For unused
9336 hash table slots, the corresponding entry in the parallel table will be 0.
9337
9338 The pool of section numbers begins immediately following the hash table
9339 (at offset 16 + 12 * M from the beginning of the section). The pool of
9340 section numbers consists of an array of 32-bit words (using the byte order
9341 of the application binary). Each item in the array is indexed starting
9342 from 0. The hash table entry provides the index of the first section
9343 number in the set. Additional section numbers in the set follow, and the
9344 set is terminated by a 0 entry (section number 0 is not used in ELF).
9345
9346 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9347 section must be the first entry in the set, and the .debug_abbrev.dwo must
9348 be the second entry. Other members of the set may follow in any order.
9349
9350 ---
9351
9352 DWP Version 2:
9353
9354 DWP Version 2 combines all the .debug_info, etc. sections into one,
9355 and the entries in the index tables are now offsets into these sections.
9356 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9357 section.
9358
9359 Index Section Contents:
9360 Header
9361 Hash Table of Signatures dwp_hash_table.hash_table
9362 Parallel Table of Indices dwp_hash_table.unit_table
9363 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9364 Table of Section Sizes dwp_hash_table.v2.sizes
9365
9366 The index section header consists of:
9367
9368 V, 32 bit version number
9369 L, 32 bit number of columns in the table of section offsets
9370 N, 32 bit number of compilation units or type units in the index
9371 M, 32 bit number of slots in the hash table
9372
9373 Numbers are recorded using the byte order of the application binary.
9374
9375 The hash table has the same format as version 1.
9376 The parallel table of indices has the same format as version 1,
9377 except that the entries are origin-1 indices into the table of sections
9378 offsets and the table of section sizes.
9379
9380 The table of offsets begins immediately following the parallel table
9381 (at offset 16 + 12 * M from the beginning of the section). The table is
9382 a two-dimensional array of 32-bit words (using the byte order of the
9383 application binary), with L columns and N+1 rows, in row-major order.
9384 Each row in the array is indexed starting from 0. The first row provides
9385 a key to the remaining rows: each column in this row provides an identifier
9386 for a debug section, and the offsets in the same column of subsequent rows
9387 refer to that section. The section identifiers are:
9388
9389 DW_SECT_INFO 1 .debug_info.dwo
9390 DW_SECT_TYPES 2 .debug_types.dwo
9391 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9392 DW_SECT_LINE 4 .debug_line.dwo
9393 DW_SECT_LOC 5 .debug_loc.dwo
9394 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9395 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9396 DW_SECT_MACRO 8 .debug_macro.dwo
9397
9398 The offsets provided by the CU and TU index sections are the base offsets
9399 for the contributions made by each CU or TU to the corresponding section
9400 in the package file. Each CU and TU header contains an abbrev_offset
9401 field, used to find the abbreviations table for that CU or TU within the
9402 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9403 be interpreted as relative to the base offset given in the index section.
9404 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9405 should be interpreted as relative to the base offset for .debug_line.dwo,
9406 and offsets into other debug sections obtained from DWARF attributes should
9407 also be interpreted as relative to the corresponding base offset.
9408
9409 The table of sizes begins immediately following the table of offsets.
9410 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9411 with L columns and N rows, in row-major order. Each row in the array is
9412 indexed starting from 1 (row 0 is shared by the two tables).
9413
9414 ---
9415
9416 Hash table lookup is handled the same in version 1 and 2:
9417
9418 We assume that N and M will not exceed 2^32 - 1.
9419 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9420
9421 Given a 64-bit compilation unit signature or a type signature S, an entry
9422 in the hash table is located as follows:
9423
9424 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9425 the low-order k bits all set to 1.
9426
9427 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9428
9429 3) If the hash table entry at index H matches the signature, use that
9430 entry. If the hash table entry at index H is unused (all zeroes),
9431 terminate the search: the signature is not present in the table.
9432
9433 4) Let H = (H + H') modulo M. Repeat at Step 3.
9434
9435 Because M > N and H' and M are relatively prime, the search is guaranteed
9436 to stop at an unused slot or find the match. */
9437
9438 /* Create a hash table to map DWO IDs to their CU/TU entry in
9439 .debug_{info,types}.dwo in DWP_FILE.
9440 Returns NULL if there isn't one.
9441 Note: This function processes DWP files only, not DWO files. */
9442
9443 static struct dwp_hash_table *
9444 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9445 {
9446 struct objfile *objfile = dwarf2_per_objfile->objfile;
9447 bfd *dbfd = dwp_file->dbfd;
9448 const gdb_byte *index_ptr, *index_end;
9449 struct dwarf2_section_info *index;
9450 uint32_t version, nr_columns, nr_units, nr_slots;
9451 struct dwp_hash_table *htab;
9452
9453 if (is_debug_types)
9454 index = &dwp_file->sections.tu_index;
9455 else
9456 index = &dwp_file->sections.cu_index;
9457
9458 if (dwarf2_section_empty_p (index))
9459 return NULL;
9460 dwarf2_read_section (objfile, index);
9461
9462 index_ptr = index->buffer;
9463 index_end = index_ptr + index->size;
9464
9465 version = read_4_bytes (dbfd, index_ptr);
9466 index_ptr += 4;
9467 if (version == 2)
9468 nr_columns = read_4_bytes (dbfd, index_ptr);
9469 else
9470 nr_columns = 0;
9471 index_ptr += 4;
9472 nr_units = read_4_bytes (dbfd, index_ptr);
9473 index_ptr += 4;
9474 nr_slots = read_4_bytes (dbfd, index_ptr);
9475 index_ptr += 4;
9476
9477 if (version != 1 && version != 2)
9478 {
9479 error (_("Dwarf Error: unsupported DWP file version (%s)"
9480 " [in module %s]"),
9481 pulongest (version), dwp_file->name);
9482 }
9483 if (nr_slots != (nr_slots & -nr_slots))
9484 {
9485 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9486 " is not power of 2 [in module %s]"),
9487 pulongest (nr_slots), dwp_file->name);
9488 }
9489
9490 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9491 htab->version = version;
9492 htab->nr_columns = nr_columns;
9493 htab->nr_units = nr_units;
9494 htab->nr_slots = nr_slots;
9495 htab->hash_table = index_ptr;
9496 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9497
9498 /* Exit early if the table is empty. */
9499 if (nr_slots == 0 || nr_units == 0
9500 || (version == 2 && nr_columns == 0))
9501 {
9502 /* All must be zero. */
9503 if (nr_slots != 0 || nr_units != 0
9504 || (version == 2 && nr_columns != 0))
9505 {
9506 complaint (&symfile_complaints,
9507 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9508 " all zero [in modules %s]"),
9509 dwp_file->name);
9510 }
9511 return htab;
9512 }
9513
9514 if (version == 1)
9515 {
9516 htab->section_pool.v1.indices =
9517 htab->unit_table + sizeof (uint32_t) * nr_slots;
9518 /* It's harder to decide whether the section is too small in v1.
9519 V1 is deprecated anyway so we punt. */
9520 }
9521 else
9522 {
9523 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9524 int *ids = htab->section_pool.v2.section_ids;
9525 /* Reverse map for error checking. */
9526 int ids_seen[DW_SECT_MAX + 1];
9527 int i;
9528
9529 if (nr_columns < 2)
9530 {
9531 error (_("Dwarf Error: bad DWP hash table, too few columns"
9532 " in section table [in module %s]"),
9533 dwp_file->name);
9534 }
9535 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9536 {
9537 error (_("Dwarf Error: bad DWP hash table, too many columns"
9538 " in section table [in module %s]"),
9539 dwp_file->name);
9540 }
9541 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9542 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9543 for (i = 0; i < nr_columns; ++i)
9544 {
9545 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9546
9547 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9548 {
9549 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9550 " in section table [in module %s]"),
9551 id, dwp_file->name);
9552 }
9553 if (ids_seen[id] != -1)
9554 {
9555 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9556 " id %d in section table [in module %s]"),
9557 id, dwp_file->name);
9558 }
9559 ids_seen[id] = i;
9560 ids[i] = id;
9561 }
9562 /* Must have exactly one info or types section. */
9563 if (((ids_seen[DW_SECT_INFO] != -1)
9564 + (ids_seen[DW_SECT_TYPES] != -1))
9565 != 1)
9566 {
9567 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9568 " DWO info/types section [in module %s]"),
9569 dwp_file->name);
9570 }
9571 /* Must have an abbrev section. */
9572 if (ids_seen[DW_SECT_ABBREV] == -1)
9573 {
9574 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9575 " section [in module %s]"),
9576 dwp_file->name);
9577 }
9578 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9579 htab->section_pool.v2.sizes =
9580 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9581 * nr_units * nr_columns);
9582 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9583 * nr_units * nr_columns))
9584 > index_end)
9585 {
9586 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9587 " [in module %s]"),
9588 dwp_file->name);
9589 }
9590 }
9591
9592 return htab;
9593 }
9594
9595 /* Update SECTIONS with the data from SECTP.
9596
9597 This function is like the other "locate" section routines that are
9598 passed to bfd_map_over_sections, but in this context the sections to
9599 read comes from the DWP V1 hash table, not the full ELF section table.
9600
9601 The result is non-zero for success, or zero if an error was found. */
9602
9603 static int
9604 locate_v1_virtual_dwo_sections (asection *sectp,
9605 struct virtual_v1_dwo_sections *sections)
9606 {
9607 const struct dwop_section_names *names = &dwop_section_names;
9608
9609 if (section_is_p (sectp->name, &names->abbrev_dwo))
9610 {
9611 /* There can be only one. */
9612 if (sections->abbrev.s.asection != NULL)
9613 return 0;
9614 sections->abbrev.s.asection = sectp;
9615 sections->abbrev.size = bfd_get_section_size (sectp);
9616 }
9617 else if (section_is_p (sectp->name, &names->info_dwo)
9618 || section_is_p (sectp->name, &names->types_dwo))
9619 {
9620 /* There can be only one. */
9621 if (sections->info_or_types.s.asection != NULL)
9622 return 0;
9623 sections->info_or_types.s.asection = sectp;
9624 sections->info_or_types.size = bfd_get_section_size (sectp);
9625 }
9626 else if (section_is_p (sectp->name, &names->line_dwo))
9627 {
9628 /* There can be only one. */
9629 if (sections->line.s.asection != NULL)
9630 return 0;
9631 sections->line.s.asection = sectp;
9632 sections->line.size = bfd_get_section_size (sectp);
9633 }
9634 else if (section_is_p (sectp->name, &names->loc_dwo))
9635 {
9636 /* There can be only one. */
9637 if (sections->loc.s.asection != NULL)
9638 return 0;
9639 sections->loc.s.asection = sectp;
9640 sections->loc.size = bfd_get_section_size (sectp);
9641 }
9642 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9643 {
9644 /* There can be only one. */
9645 if (sections->macinfo.s.asection != NULL)
9646 return 0;
9647 sections->macinfo.s.asection = sectp;
9648 sections->macinfo.size = bfd_get_section_size (sectp);
9649 }
9650 else if (section_is_p (sectp->name, &names->macro_dwo))
9651 {
9652 /* There can be only one. */
9653 if (sections->macro.s.asection != NULL)
9654 return 0;
9655 sections->macro.s.asection = sectp;
9656 sections->macro.size = bfd_get_section_size (sectp);
9657 }
9658 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9659 {
9660 /* There can be only one. */
9661 if (sections->str_offsets.s.asection != NULL)
9662 return 0;
9663 sections->str_offsets.s.asection = sectp;
9664 sections->str_offsets.size = bfd_get_section_size (sectp);
9665 }
9666 else
9667 {
9668 /* No other kind of section is valid. */
9669 return 0;
9670 }
9671
9672 return 1;
9673 }
9674
9675 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9676 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9677 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9678 This is for DWP version 1 files. */
9679
9680 static struct dwo_unit *
9681 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9682 uint32_t unit_index,
9683 const char *comp_dir,
9684 ULONGEST signature, int is_debug_types)
9685 {
9686 struct objfile *objfile = dwarf2_per_objfile->objfile;
9687 const struct dwp_hash_table *dwp_htab =
9688 is_debug_types ? dwp_file->tus : dwp_file->cus;
9689 bfd *dbfd = dwp_file->dbfd;
9690 const char *kind = is_debug_types ? "TU" : "CU";
9691 struct dwo_file *dwo_file;
9692 struct dwo_unit *dwo_unit;
9693 struct virtual_v1_dwo_sections sections;
9694 void **dwo_file_slot;
9695 char *virtual_dwo_name;
9696 struct dwarf2_section_info *cutu;
9697 struct cleanup *cleanups;
9698 int i;
9699
9700 gdb_assert (dwp_file->version == 1);
9701
9702 if (dwarf2_read_debug)
9703 {
9704 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9705 kind,
9706 pulongest (unit_index), hex_string (signature),
9707 dwp_file->name);
9708 }
9709
9710 /* Fetch the sections of this DWO unit.
9711 Put a limit on the number of sections we look for so that bad data
9712 doesn't cause us to loop forever. */
9713
9714 #define MAX_NR_V1_DWO_SECTIONS \
9715 (1 /* .debug_info or .debug_types */ \
9716 + 1 /* .debug_abbrev */ \
9717 + 1 /* .debug_line */ \
9718 + 1 /* .debug_loc */ \
9719 + 1 /* .debug_str_offsets */ \
9720 + 1 /* .debug_macro or .debug_macinfo */ \
9721 + 1 /* trailing zero */)
9722
9723 memset (&sections, 0, sizeof (sections));
9724 cleanups = make_cleanup (null_cleanup, 0);
9725
9726 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9727 {
9728 asection *sectp;
9729 uint32_t section_nr =
9730 read_4_bytes (dbfd,
9731 dwp_htab->section_pool.v1.indices
9732 + (unit_index + i) * sizeof (uint32_t));
9733
9734 if (section_nr == 0)
9735 break;
9736 if (section_nr >= dwp_file->num_sections)
9737 {
9738 error (_("Dwarf Error: bad DWP hash table, section number too large"
9739 " [in module %s]"),
9740 dwp_file->name);
9741 }
9742
9743 sectp = dwp_file->elf_sections[section_nr];
9744 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9745 {
9746 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9747 " [in module %s]"),
9748 dwp_file->name);
9749 }
9750 }
9751
9752 if (i < 2
9753 || dwarf2_section_empty_p (&sections.info_or_types)
9754 || dwarf2_section_empty_p (&sections.abbrev))
9755 {
9756 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9757 " [in module %s]"),
9758 dwp_file->name);
9759 }
9760 if (i == MAX_NR_V1_DWO_SECTIONS)
9761 {
9762 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9763 " [in module %s]"),
9764 dwp_file->name);
9765 }
9766
9767 /* It's easier for the rest of the code if we fake a struct dwo_file and
9768 have dwo_unit "live" in that. At least for now.
9769
9770 The DWP file can be made up of a random collection of CUs and TUs.
9771 However, for each CU + set of TUs that came from the same original DWO
9772 file, we can combine them back into a virtual DWO file to save space
9773 (fewer struct dwo_file objects to allocate). Remember that for really
9774 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9775
9776 virtual_dwo_name =
9777 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9778 get_section_id (&sections.abbrev),
9779 get_section_id (&sections.line),
9780 get_section_id (&sections.loc),
9781 get_section_id (&sections.str_offsets));
9782 make_cleanup (xfree, virtual_dwo_name);
9783 /* Can we use an existing virtual DWO file? */
9784 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9785 /* Create one if necessary. */
9786 if (*dwo_file_slot == NULL)
9787 {
9788 if (dwarf2_read_debug)
9789 {
9790 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9791 virtual_dwo_name);
9792 }
9793 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9794 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9795 virtual_dwo_name,
9796 strlen (virtual_dwo_name));
9797 dwo_file->comp_dir = comp_dir;
9798 dwo_file->sections.abbrev = sections.abbrev;
9799 dwo_file->sections.line = sections.line;
9800 dwo_file->sections.loc = sections.loc;
9801 dwo_file->sections.macinfo = sections.macinfo;
9802 dwo_file->sections.macro = sections.macro;
9803 dwo_file->sections.str_offsets = sections.str_offsets;
9804 /* The "str" section is global to the entire DWP file. */
9805 dwo_file->sections.str = dwp_file->sections.str;
9806 /* The info or types section is assigned below to dwo_unit,
9807 there's no need to record it in dwo_file.
9808 Also, we can't simply record type sections in dwo_file because
9809 we record a pointer into the vector in dwo_unit. As we collect more
9810 types we'll grow the vector and eventually have to reallocate space
9811 for it, invalidating all copies of pointers into the previous
9812 contents. */
9813 *dwo_file_slot = dwo_file;
9814 }
9815 else
9816 {
9817 if (dwarf2_read_debug)
9818 {
9819 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9820 virtual_dwo_name);
9821 }
9822 dwo_file = *dwo_file_slot;
9823 }
9824 do_cleanups (cleanups);
9825
9826 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9827 dwo_unit->dwo_file = dwo_file;
9828 dwo_unit->signature = signature;
9829 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9830 sizeof (struct dwarf2_section_info));
9831 *dwo_unit->section = sections.info_or_types;
9832 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9833
9834 return dwo_unit;
9835 }
9836
9837 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9838 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9839 piece within that section used by a TU/CU, return a virtual section
9840 of just that piece. */
9841
9842 static struct dwarf2_section_info
9843 create_dwp_v2_section (struct dwarf2_section_info *section,
9844 bfd_size_type offset, bfd_size_type size)
9845 {
9846 struct dwarf2_section_info result;
9847 asection *sectp;
9848
9849 gdb_assert (section != NULL);
9850 gdb_assert (!section->is_virtual);
9851
9852 memset (&result, 0, sizeof (result));
9853 result.s.containing_section = section;
9854 result.is_virtual = 1;
9855
9856 if (size == 0)
9857 return result;
9858
9859 sectp = get_section_bfd_section (section);
9860
9861 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9862 bounds of the real section. This is a pretty-rare event, so just
9863 flag an error (easier) instead of a warning and trying to cope. */
9864 if (sectp == NULL
9865 || offset + size > bfd_get_section_size (sectp))
9866 {
9867 bfd *abfd = sectp->owner;
9868
9869 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9870 " in section %s [in module %s]"),
9871 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9872 objfile_name (dwarf2_per_objfile->objfile));
9873 }
9874
9875 result.virtual_offset = offset;
9876 result.size = size;
9877 return result;
9878 }
9879
9880 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9881 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9882 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9883 This is for DWP version 2 files. */
9884
9885 static struct dwo_unit *
9886 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9887 uint32_t unit_index,
9888 const char *comp_dir,
9889 ULONGEST signature, int is_debug_types)
9890 {
9891 struct objfile *objfile = dwarf2_per_objfile->objfile;
9892 const struct dwp_hash_table *dwp_htab =
9893 is_debug_types ? dwp_file->tus : dwp_file->cus;
9894 bfd *dbfd = dwp_file->dbfd;
9895 const char *kind = is_debug_types ? "TU" : "CU";
9896 struct dwo_file *dwo_file;
9897 struct dwo_unit *dwo_unit;
9898 struct virtual_v2_dwo_sections sections;
9899 void **dwo_file_slot;
9900 char *virtual_dwo_name;
9901 struct dwarf2_section_info *cutu;
9902 struct cleanup *cleanups;
9903 int i;
9904
9905 gdb_assert (dwp_file->version == 2);
9906
9907 if (dwarf2_read_debug)
9908 {
9909 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9910 kind,
9911 pulongest (unit_index), hex_string (signature),
9912 dwp_file->name);
9913 }
9914
9915 /* Fetch the section offsets of this DWO unit. */
9916
9917 memset (&sections, 0, sizeof (sections));
9918 cleanups = make_cleanup (null_cleanup, 0);
9919
9920 for (i = 0; i < dwp_htab->nr_columns; ++i)
9921 {
9922 uint32_t offset = read_4_bytes (dbfd,
9923 dwp_htab->section_pool.v2.offsets
9924 + (((unit_index - 1) * dwp_htab->nr_columns
9925 + i)
9926 * sizeof (uint32_t)));
9927 uint32_t size = read_4_bytes (dbfd,
9928 dwp_htab->section_pool.v2.sizes
9929 + (((unit_index - 1) * dwp_htab->nr_columns
9930 + i)
9931 * sizeof (uint32_t)));
9932
9933 switch (dwp_htab->section_pool.v2.section_ids[i])
9934 {
9935 case DW_SECT_INFO:
9936 case DW_SECT_TYPES:
9937 sections.info_or_types_offset = offset;
9938 sections.info_or_types_size = size;
9939 break;
9940 case DW_SECT_ABBREV:
9941 sections.abbrev_offset = offset;
9942 sections.abbrev_size = size;
9943 break;
9944 case DW_SECT_LINE:
9945 sections.line_offset = offset;
9946 sections.line_size = size;
9947 break;
9948 case DW_SECT_LOC:
9949 sections.loc_offset = offset;
9950 sections.loc_size = size;
9951 break;
9952 case DW_SECT_STR_OFFSETS:
9953 sections.str_offsets_offset = offset;
9954 sections.str_offsets_size = size;
9955 break;
9956 case DW_SECT_MACINFO:
9957 sections.macinfo_offset = offset;
9958 sections.macinfo_size = size;
9959 break;
9960 case DW_SECT_MACRO:
9961 sections.macro_offset = offset;
9962 sections.macro_size = size;
9963 break;
9964 }
9965 }
9966
9967 /* It's easier for the rest of the code if we fake a struct dwo_file and
9968 have dwo_unit "live" in that. At least for now.
9969
9970 The DWP file can be made up of a random collection of CUs and TUs.
9971 However, for each CU + set of TUs that came from the same original DWO
9972 file, we can combine them back into a virtual DWO file to save space
9973 (fewer struct dwo_file objects to allocate). Remember that for really
9974 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9975
9976 virtual_dwo_name =
9977 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
9978 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
9979 (long) (sections.line_size ? sections.line_offset : 0),
9980 (long) (sections.loc_size ? sections.loc_offset : 0),
9981 (long) (sections.str_offsets_size
9982 ? sections.str_offsets_offset : 0));
9983 make_cleanup (xfree, virtual_dwo_name);
9984 /* Can we use an existing virtual DWO file? */
9985 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9986 /* Create one if necessary. */
9987 if (*dwo_file_slot == NULL)
9988 {
9989 if (dwarf2_read_debug)
9990 {
9991 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9992 virtual_dwo_name);
9993 }
9994 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9995 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9996 virtual_dwo_name,
9997 strlen (virtual_dwo_name));
9998 dwo_file->comp_dir = comp_dir;
9999 dwo_file->sections.abbrev =
10000 create_dwp_v2_section (&dwp_file->sections.abbrev,
10001 sections.abbrev_offset, sections.abbrev_size);
10002 dwo_file->sections.line =
10003 create_dwp_v2_section (&dwp_file->sections.line,
10004 sections.line_offset, sections.line_size);
10005 dwo_file->sections.loc =
10006 create_dwp_v2_section (&dwp_file->sections.loc,
10007 sections.loc_offset, sections.loc_size);
10008 dwo_file->sections.macinfo =
10009 create_dwp_v2_section (&dwp_file->sections.macinfo,
10010 sections.macinfo_offset, sections.macinfo_size);
10011 dwo_file->sections.macro =
10012 create_dwp_v2_section (&dwp_file->sections.macro,
10013 sections.macro_offset, sections.macro_size);
10014 dwo_file->sections.str_offsets =
10015 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10016 sections.str_offsets_offset,
10017 sections.str_offsets_size);
10018 /* The "str" section is global to the entire DWP file. */
10019 dwo_file->sections.str = dwp_file->sections.str;
10020 /* The info or types section is assigned below to dwo_unit,
10021 there's no need to record it in dwo_file.
10022 Also, we can't simply record type sections in dwo_file because
10023 we record a pointer into the vector in dwo_unit. As we collect more
10024 types we'll grow the vector and eventually have to reallocate space
10025 for it, invalidating all copies of pointers into the previous
10026 contents. */
10027 *dwo_file_slot = dwo_file;
10028 }
10029 else
10030 {
10031 if (dwarf2_read_debug)
10032 {
10033 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10034 virtual_dwo_name);
10035 }
10036 dwo_file = *dwo_file_slot;
10037 }
10038 do_cleanups (cleanups);
10039
10040 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10041 dwo_unit->dwo_file = dwo_file;
10042 dwo_unit->signature = signature;
10043 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10044 sizeof (struct dwarf2_section_info));
10045 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10046 ? &dwp_file->sections.types
10047 : &dwp_file->sections.info,
10048 sections.info_or_types_offset,
10049 sections.info_or_types_size);
10050 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10051
10052 return dwo_unit;
10053 }
10054
10055 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10056 Returns NULL if the signature isn't found. */
10057
10058 static struct dwo_unit *
10059 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10060 ULONGEST signature, int is_debug_types)
10061 {
10062 const struct dwp_hash_table *dwp_htab =
10063 is_debug_types ? dwp_file->tus : dwp_file->cus;
10064 bfd *dbfd = dwp_file->dbfd;
10065 uint32_t mask = dwp_htab->nr_slots - 1;
10066 uint32_t hash = signature & mask;
10067 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10068 unsigned int i;
10069 void **slot;
10070 struct dwo_unit find_dwo_cu, *dwo_cu;
10071
10072 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10073 find_dwo_cu.signature = signature;
10074 slot = htab_find_slot (is_debug_types
10075 ? dwp_file->loaded_tus
10076 : dwp_file->loaded_cus,
10077 &find_dwo_cu, INSERT);
10078
10079 if (*slot != NULL)
10080 return *slot;
10081
10082 /* Use a for loop so that we don't loop forever on bad debug info. */
10083 for (i = 0; i < dwp_htab->nr_slots; ++i)
10084 {
10085 ULONGEST signature_in_table;
10086
10087 signature_in_table =
10088 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10089 if (signature_in_table == signature)
10090 {
10091 uint32_t unit_index =
10092 read_4_bytes (dbfd,
10093 dwp_htab->unit_table + hash * sizeof (uint32_t));
10094
10095 if (dwp_file->version == 1)
10096 {
10097 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10098 comp_dir, signature,
10099 is_debug_types);
10100 }
10101 else
10102 {
10103 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10104 comp_dir, signature,
10105 is_debug_types);
10106 }
10107 return *slot;
10108 }
10109 if (signature_in_table == 0)
10110 return NULL;
10111 hash = (hash + hash2) & mask;
10112 }
10113
10114 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10115 " [in module %s]"),
10116 dwp_file->name);
10117 }
10118
10119 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10120 Open the file specified by FILE_NAME and hand it off to BFD for
10121 preliminary analysis. Return a newly initialized bfd *, which
10122 includes a canonicalized copy of FILE_NAME.
10123 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10124 SEARCH_CWD is true if the current directory is to be searched.
10125 It will be searched before debug-file-directory.
10126 If successful, the file is added to the bfd include table of the
10127 objfile's bfd (see gdb_bfd_record_inclusion).
10128 If unable to find/open the file, return NULL.
10129 NOTE: This function is derived from symfile_bfd_open. */
10130
10131 static bfd *
10132 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10133 {
10134 bfd *sym_bfd;
10135 int desc, flags;
10136 char *absolute_name;
10137 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10138 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10139 to debug_file_directory. */
10140 char *search_path;
10141 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10142
10143 if (search_cwd)
10144 {
10145 if (*debug_file_directory != '\0')
10146 search_path = concat (".", dirname_separator_string,
10147 debug_file_directory, NULL);
10148 else
10149 search_path = xstrdup (".");
10150 }
10151 else
10152 search_path = xstrdup (debug_file_directory);
10153
10154 flags = OPF_RETURN_REALPATH;
10155 if (is_dwp)
10156 flags |= OPF_SEARCH_IN_PATH;
10157 desc = openp (search_path, flags, file_name,
10158 O_RDONLY | O_BINARY, &absolute_name);
10159 xfree (search_path);
10160 if (desc < 0)
10161 return NULL;
10162
10163 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10164 xfree (absolute_name);
10165 if (sym_bfd == NULL)
10166 return NULL;
10167 bfd_set_cacheable (sym_bfd, 1);
10168
10169 if (!bfd_check_format (sym_bfd, bfd_object))
10170 {
10171 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10172 return NULL;
10173 }
10174
10175 /* Success. Record the bfd as having been included by the objfile's bfd.
10176 This is important because things like demangled_names_hash lives in the
10177 objfile's per_bfd space and may have references to things like symbol
10178 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10179 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10180
10181 return sym_bfd;
10182 }
10183
10184 /* Try to open DWO file FILE_NAME.
10185 COMP_DIR is the DW_AT_comp_dir attribute.
10186 The result is the bfd handle of the file.
10187 If there is a problem finding or opening the file, return NULL.
10188 Upon success, the canonicalized path of the file is stored in the bfd,
10189 same as symfile_bfd_open. */
10190
10191 static bfd *
10192 open_dwo_file (const char *file_name, const char *comp_dir)
10193 {
10194 bfd *abfd;
10195
10196 if (IS_ABSOLUTE_PATH (file_name))
10197 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10198
10199 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10200
10201 if (comp_dir != NULL)
10202 {
10203 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10204
10205 /* NOTE: If comp_dir is a relative path, this will also try the
10206 search path, which seems useful. */
10207 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10208 xfree (path_to_try);
10209 if (abfd != NULL)
10210 return abfd;
10211 }
10212
10213 /* That didn't work, try debug-file-directory, which, despite its name,
10214 is a list of paths. */
10215
10216 if (*debug_file_directory == '\0')
10217 return NULL;
10218
10219 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10220 }
10221
10222 /* This function is mapped across the sections and remembers the offset and
10223 size of each of the DWO debugging sections we are interested in. */
10224
10225 static void
10226 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10227 {
10228 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10229 const struct dwop_section_names *names = &dwop_section_names;
10230
10231 if (section_is_p (sectp->name, &names->abbrev_dwo))
10232 {
10233 dwo_sections->abbrev.s.asection = sectp;
10234 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10235 }
10236 else if (section_is_p (sectp->name, &names->info_dwo))
10237 {
10238 dwo_sections->info.s.asection = sectp;
10239 dwo_sections->info.size = bfd_get_section_size (sectp);
10240 }
10241 else if (section_is_p (sectp->name, &names->line_dwo))
10242 {
10243 dwo_sections->line.s.asection = sectp;
10244 dwo_sections->line.size = bfd_get_section_size (sectp);
10245 }
10246 else if (section_is_p (sectp->name, &names->loc_dwo))
10247 {
10248 dwo_sections->loc.s.asection = sectp;
10249 dwo_sections->loc.size = bfd_get_section_size (sectp);
10250 }
10251 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10252 {
10253 dwo_sections->macinfo.s.asection = sectp;
10254 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10255 }
10256 else if (section_is_p (sectp->name, &names->macro_dwo))
10257 {
10258 dwo_sections->macro.s.asection = sectp;
10259 dwo_sections->macro.size = bfd_get_section_size (sectp);
10260 }
10261 else if (section_is_p (sectp->name, &names->str_dwo))
10262 {
10263 dwo_sections->str.s.asection = sectp;
10264 dwo_sections->str.size = bfd_get_section_size (sectp);
10265 }
10266 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10267 {
10268 dwo_sections->str_offsets.s.asection = sectp;
10269 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10270 }
10271 else if (section_is_p (sectp->name, &names->types_dwo))
10272 {
10273 struct dwarf2_section_info type_section;
10274
10275 memset (&type_section, 0, sizeof (type_section));
10276 type_section.s.asection = sectp;
10277 type_section.size = bfd_get_section_size (sectp);
10278 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10279 &type_section);
10280 }
10281 }
10282
10283 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10284 by PER_CU. This is for the non-DWP case.
10285 The result is NULL if DWO_NAME can't be found. */
10286
10287 static struct dwo_file *
10288 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10289 const char *dwo_name, const char *comp_dir)
10290 {
10291 struct objfile *objfile = dwarf2_per_objfile->objfile;
10292 struct dwo_file *dwo_file;
10293 bfd *dbfd;
10294 struct cleanup *cleanups;
10295
10296 dbfd = open_dwo_file (dwo_name, comp_dir);
10297 if (dbfd == NULL)
10298 {
10299 if (dwarf2_read_debug)
10300 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10301 return NULL;
10302 }
10303 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10304 dwo_file->dwo_name = dwo_name;
10305 dwo_file->comp_dir = comp_dir;
10306 dwo_file->dbfd = dbfd;
10307
10308 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10309
10310 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10311
10312 dwo_file->cu = create_dwo_cu (dwo_file);
10313
10314 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10315 dwo_file->sections.types);
10316
10317 discard_cleanups (cleanups);
10318
10319 if (dwarf2_read_debug)
10320 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10321
10322 return dwo_file;
10323 }
10324
10325 /* This function is mapped across the sections and remembers the offset and
10326 size of each of the DWP debugging sections common to version 1 and 2 that
10327 we are interested in. */
10328
10329 static void
10330 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10331 void *dwp_file_ptr)
10332 {
10333 struct dwp_file *dwp_file = dwp_file_ptr;
10334 const struct dwop_section_names *names = &dwop_section_names;
10335 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10336
10337 /* Record the ELF section number for later lookup: this is what the
10338 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10339 gdb_assert (elf_section_nr < dwp_file->num_sections);
10340 dwp_file->elf_sections[elf_section_nr] = sectp;
10341
10342 /* Look for specific sections that we need. */
10343 if (section_is_p (sectp->name, &names->str_dwo))
10344 {
10345 dwp_file->sections.str.s.asection = sectp;
10346 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10347 }
10348 else if (section_is_p (sectp->name, &names->cu_index))
10349 {
10350 dwp_file->sections.cu_index.s.asection = sectp;
10351 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10352 }
10353 else if (section_is_p (sectp->name, &names->tu_index))
10354 {
10355 dwp_file->sections.tu_index.s.asection = sectp;
10356 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10357 }
10358 }
10359
10360 /* This function is mapped across the sections and remembers the offset and
10361 size of each of the DWP version 2 debugging sections that we are interested
10362 in. This is split into a separate function because we don't know if we
10363 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10364
10365 static void
10366 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10367 {
10368 struct dwp_file *dwp_file = dwp_file_ptr;
10369 const struct dwop_section_names *names = &dwop_section_names;
10370 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10371
10372 /* Record the ELF section number for later lookup: this is what the
10373 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10374 gdb_assert (elf_section_nr < dwp_file->num_sections);
10375 dwp_file->elf_sections[elf_section_nr] = sectp;
10376
10377 /* Look for specific sections that we need. */
10378 if (section_is_p (sectp->name, &names->abbrev_dwo))
10379 {
10380 dwp_file->sections.abbrev.s.asection = sectp;
10381 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10382 }
10383 else if (section_is_p (sectp->name, &names->info_dwo))
10384 {
10385 dwp_file->sections.info.s.asection = sectp;
10386 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10387 }
10388 else if (section_is_p (sectp->name, &names->line_dwo))
10389 {
10390 dwp_file->sections.line.s.asection = sectp;
10391 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10392 }
10393 else if (section_is_p (sectp->name, &names->loc_dwo))
10394 {
10395 dwp_file->sections.loc.s.asection = sectp;
10396 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10397 }
10398 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10399 {
10400 dwp_file->sections.macinfo.s.asection = sectp;
10401 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10402 }
10403 else if (section_is_p (sectp->name, &names->macro_dwo))
10404 {
10405 dwp_file->sections.macro.s.asection = sectp;
10406 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10407 }
10408 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10409 {
10410 dwp_file->sections.str_offsets.s.asection = sectp;
10411 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10412 }
10413 else if (section_is_p (sectp->name, &names->types_dwo))
10414 {
10415 dwp_file->sections.types.s.asection = sectp;
10416 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10417 }
10418 }
10419
10420 /* Hash function for dwp_file loaded CUs/TUs. */
10421
10422 static hashval_t
10423 hash_dwp_loaded_cutus (const void *item)
10424 {
10425 const struct dwo_unit *dwo_unit = item;
10426
10427 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10428 return dwo_unit->signature;
10429 }
10430
10431 /* Equality function for dwp_file loaded CUs/TUs. */
10432
10433 static int
10434 eq_dwp_loaded_cutus (const void *a, const void *b)
10435 {
10436 const struct dwo_unit *dua = a;
10437 const struct dwo_unit *dub = b;
10438
10439 return dua->signature == dub->signature;
10440 }
10441
10442 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10443
10444 static htab_t
10445 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10446 {
10447 return htab_create_alloc_ex (3,
10448 hash_dwp_loaded_cutus,
10449 eq_dwp_loaded_cutus,
10450 NULL,
10451 &objfile->objfile_obstack,
10452 hashtab_obstack_allocate,
10453 dummy_obstack_deallocate);
10454 }
10455
10456 /* Try to open DWP file FILE_NAME.
10457 The result is the bfd handle of the file.
10458 If there is a problem finding or opening the file, return NULL.
10459 Upon success, the canonicalized path of the file is stored in the bfd,
10460 same as symfile_bfd_open. */
10461
10462 static bfd *
10463 open_dwp_file (const char *file_name)
10464 {
10465 bfd *abfd;
10466
10467 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10468 if (abfd != NULL)
10469 return abfd;
10470
10471 /* Work around upstream bug 15652.
10472 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10473 [Whether that's a "bug" is debatable, but it is getting in our way.]
10474 We have no real idea where the dwp file is, because gdb's realpath-ing
10475 of the executable's path may have discarded the needed info.
10476 [IWBN if the dwp file name was recorded in the executable, akin to
10477 .gnu_debuglink, but that doesn't exist yet.]
10478 Strip the directory from FILE_NAME and search again. */
10479 if (*debug_file_directory != '\0')
10480 {
10481 /* Don't implicitly search the current directory here.
10482 If the user wants to search "." to handle this case,
10483 it must be added to debug-file-directory. */
10484 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10485 0 /*search_cwd*/);
10486 }
10487
10488 return NULL;
10489 }
10490
10491 /* Initialize the use of the DWP file for the current objfile.
10492 By convention the name of the DWP file is ${objfile}.dwp.
10493 The result is NULL if it can't be found. */
10494
10495 static struct dwp_file *
10496 open_and_init_dwp_file (void)
10497 {
10498 struct objfile *objfile = dwarf2_per_objfile->objfile;
10499 struct dwp_file *dwp_file;
10500 char *dwp_name;
10501 bfd *dbfd;
10502 struct cleanup *cleanups;
10503
10504 /* Try to find first .dwp for the binary file before any symbolic links
10505 resolving. */
10506 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10507 cleanups = make_cleanup (xfree, dwp_name);
10508
10509 dbfd = open_dwp_file (dwp_name);
10510 if (dbfd == NULL
10511 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10512 {
10513 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10514 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10515 make_cleanup (xfree, dwp_name);
10516 dbfd = open_dwp_file (dwp_name);
10517 }
10518
10519 if (dbfd == NULL)
10520 {
10521 if (dwarf2_read_debug)
10522 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10523 do_cleanups (cleanups);
10524 return NULL;
10525 }
10526 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10527 dwp_file->name = bfd_get_filename (dbfd);
10528 dwp_file->dbfd = dbfd;
10529 do_cleanups (cleanups);
10530
10531 /* +1: section 0 is unused */
10532 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10533 dwp_file->elf_sections =
10534 OBSTACK_CALLOC (&objfile->objfile_obstack,
10535 dwp_file->num_sections, asection *);
10536
10537 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10538
10539 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10540
10541 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10542
10543 /* The DWP file version is stored in the hash table. Oh well. */
10544 if (dwp_file->cus->version != dwp_file->tus->version)
10545 {
10546 /* Technically speaking, we should try to limp along, but this is
10547 pretty bizarre. */
10548 error (_("Dwarf Error: DWP file CU version %d doesn't match"
10549 " TU version %d [in DWP file %s]"),
10550 dwp_file->cus->version, dwp_file->tus->version, dwp_name);
10551 }
10552 dwp_file->version = dwp_file->cus->version;
10553
10554 if (dwp_file->version == 2)
10555 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10556
10557 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10558 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10559
10560 if (dwarf2_read_debug)
10561 {
10562 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10563 fprintf_unfiltered (gdb_stdlog,
10564 " %s CUs, %s TUs\n",
10565 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10566 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10567 }
10568
10569 return dwp_file;
10570 }
10571
10572 /* Wrapper around open_and_init_dwp_file, only open it once. */
10573
10574 static struct dwp_file *
10575 get_dwp_file (void)
10576 {
10577 if (! dwarf2_per_objfile->dwp_checked)
10578 {
10579 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10580 dwarf2_per_objfile->dwp_checked = 1;
10581 }
10582 return dwarf2_per_objfile->dwp_file;
10583 }
10584
10585 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10586 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10587 or in the DWP file for the objfile, referenced by THIS_UNIT.
10588 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10589 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10590
10591 This is called, for example, when wanting to read a variable with a
10592 complex location. Therefore we don't want to do file i/o for every call.
10593 Therefore we don't want to look for a DWO file on every call.
10594 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10595 then we check if we've already seen DWO_NAME, and only THEN do we check
10596 for a DWO file.
10597
10598 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10599 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10600
10601 static struct dwo_unit *
10602 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10603 const char *dwo_name, const char *comp_dir,
10604 ULONGEST signature, int is_debug_types)
10605 {
10606 struct objfile *objfile = dwarf2_per_objfile->objfile;
10607 const char *kind = is_debug_types ? "TU" : "CU";
10608 void **dwo_file_slot;
10609 struct dwo_file *dwo_file;
10610 struct dwp_file *dwp_file;
10611
10612 /* First see if there's a DWP file.
10613 If we have a DWP file but didn't find the DWO inside it, don't
10614 look for the original DWO file. It makes gdb behave differently
10615 depending on whether one is debugging in the build tree. */
10616
10617 dwp_file = get_dwp_file ();
10618 if (dwp_file != NULL)
10619 {
10620 const struct dwp_hash_table *dwp_htab =
10621 is_debug_types ? dwp_file->tus : dwp_file->cus;
10622
10623 if (dwp_htab != NULL)
10624 {
10625 struct dwo_unit *dwo_cutu =
10626 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10627 signature, is_debug_types);
10628
10629 if (dwo_cutu != NULL)
10630 {
10631 if (dwarf2_read_debug)
10632 {
10633 fprintf_unfiltered (gdb_stdlog,
10634 "Virtual DWO %s %s found: @%s\n",
10635 kind, hex_string (signature),
10636 host_address_to_string (dwo_cutu));
10637 }
10638 return dwo_cutu;
10639 }
10640 }
10641 }
10642 else
10643 {
10644 /* No DWP file, look for the DWO file. */
10645
10646 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10647 if (*dwo_file_slot == NULL)
10648 {
10649 /* Read in the file and build a table of the CUs/TUs it contains. */
10650 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10651 }
10652 /* NOTE: This will be NULL if unable to open the file. */
10653 dwo_file = *dwo_file_slot;
10654
10655 if (dwo_file != NULL)
10656 {
10657 struct dwo_unit *dwo_cutu = NULL;
10658
10659 if (is_debug_types && dwo_file->tus)
10660 {
10661 struct dwo_unit find_dwo_cutu;
10662
10663 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10664 find_dwo_cutu.signature = signature;
10665 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10666 }
10667 else if (!is_debug_types && dwo_file->cu)
10668 {
10669 if (signature == dwo_file->cu->signature)
10670 dwo_cutu = dwo_file->cu;
10671 }
10672
10673 if (dwo_cutu != NULL)
10674 {
10675 if (dwarf2_read_debug)
10676 {
10677 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10678 kind, dwo_name, hex_string (signature),
10679 host_address_to_string (dwo_cutu));
10680 }
10681 return dwo_cutu;
10682 }
10683 }
10684 }
10685
10686 /* We didn't find it. This could mean a dwo_id mismatch, or
10687 someone deleted the DWO/DWP file, or the search path isn't set up
10688 correctly to find the file. */
10689
10690 if (dwarf2_read_debug)
10691 {
10692 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10693 kind, dwo_name, hex_string (signature));
10694 }
10695
10696 /* This is a warning and not a complaint because it can be caused by
10697 pilot error (e.g., user accidentally deleting the DWO). */
10698 {
10699 /* Print the name of the DWP file if we looked there, helps the user
10700 better diagnose the problem. */
10701 char *dwp_text = NULL;
10702 struct cleanup *cleanups;
10703
10704 if (dwp_file != NULL)
10705 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10706 cleanups = make_cleanup (xfree, dwp_text);
10707
10708 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10709 " [in module %s]"),
10710 kind, dwo_name, hex_string (signature),
10711 dwp_text != NULL ? dwp_text : "",
10712 this_unit->is_debug_types ? "TU" : "CU",
10713 this_unit->offset.sect_off, objfile_name (objfile));
10714
10715 do_cleanups (cleanups);
10716 }
10717 return NULL;
10718 }
10719
10720 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10721 See lookup_dwo_cutu_unit for details. */
10722
10723 static struct dwo_unit *
10724 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10725 const char *dwo_name, const char *comp_dir,
10726 ULONGEST signature)
10727 {
10728 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10729 }
10730
10731 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10732 See lookup_dwo_cutu_unit for details. */
10733
10734 static struct dwo_unit *
10735 lookup_dwo_type_unit (struct signatured_type *this_tu,
10736 const char *dwo_name, const char *comp_dir)
10737 {
10738 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10739 }
10740
10741 /* Traversal function for queue_and_load_all_dwo_tus. */
10742
10743 static int
10744 queue_and_load_dwo_tu (void **slot, void *info)
10745 {
10746 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10747 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10748 ULONGEST signature = dwo_unit->signature;
10749 struct signatured_type *sig_type =
10750 lookup_dwo_signatured_type (per_cu->cu, signature);
10751
10752 if (sig_type != NULL)
10753 {
10754 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10755
10756 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10757 a real dependency of PER_CU on SIG_TYPE. That is detected later
10758 while processing PER_CU. */
10759 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10760 load_full_type_unit (sig_cu);
10761 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10762 }
10763
10764 return 1;
10765 }
10766
10767 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10768 The DWO may have the only definition of the type, though it may not be
10769 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10770 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10771
10772 static void
10773 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10774 {
10775 struct dwo_unit *dwo_unit;
10776 struct dwo_file *dwo_file;
10777
10778 gdb_assert (!per_cu->is_debug_types);
10779 gdb_assert (get_dwp_file () == NULL);
10780 gdb_assert (per_cu->cu != NULL);
10781
10782 dwo_unit = per_cu->cu->dwo_unit;
10783 gdb_assert (dwo_unit != NULL);
10784
10785 dwo_file = dwo_unit->dwo_file;
10786 if (dwo_file->tus != NULL)
10787 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10788 }
10789
10790 /* Free all resources associated with DWO_FILE.
10791 Close the DWO file and munmap the sections.
10792 All memory should be on the objfile obstack. */
10793
10794 static void
10795 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10796 {
10797 int ix;
10798 struct dwarf2_section_info *section;
10799
10800 /* Note: dbfd is NULL for virtual DWO files. */
10801 gdb_bfd_unref (dwo_file->dbfd);
10802
10803 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10804 }
10805
10806 /* Wrapper for free_dwo_file for use in cleanups. */
10807
10808 static void
10809 free_dwo_file_cleanup (void *arg)
10810 {
10811 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10812 struct objfile *objfile = dwarf2_per_objfile->objfile;
10813
10814 free_dwo_file (dwo_file, objfile);
10815 }
10816
10817 /* Traversal function for free_dwo_files. */
10818
10819 static int
10820 free_dwo_file_from_slot (void **slot, void *info)
10821 {
10822 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10823 struct objfile *objfile = (struct objfile *) info;
10824
10825 free_dwo_file (dwo_file, objfile);
10826
10827 return 1;
10828 }
10829
10830 /* Free all resources associated with DWO_FILES. */
10831
10832 static void
10833 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10834 {
10835 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10836 }
10837 \f
10838 /* Read in various DIEs. */
10839
10840 /* qsort helper for inherit_abstract_dies. */
10841
10842 static int
10843 unsigned_int_compar (const void *ap, const void *bp)
10844 {
10845 unsigned int a = *(unsigned int *) ap;
10846 unsigned int b = *(unsigned int *) bp;
10847
10848 return (a > b) - (b > a);
10849 }
10850
10851 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10852 Inherit only the children of the DW_AT_abstract_origin DIE not being
10853 already referenced by DW_AT_abstract_origin from the children of the
10854 current DIE. */
10855
10856 static void
10857 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10858 {
10859 struct die_info *child_die;
10860 unsigned die_children_count;
10861 /* CU offsets which were referenced by children of the current DIE. */
10862 sect_offset *offsets;
10863 sect_offset *offsets_end, *offsetp;
10864 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10865 struct die_info *origin_die;
10866 /* Iterator of the ORIGIN_DIE children. */
10867 struct die_info *origin_child_die;
10868 struct cleanup *cleanups;
10869 struct attribute *attr;
10870 struct dwarf2_cu *origin_cu;
10871 struct pending **origin_previous_list_in_scope;
10872
10873 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10874 if (!attr)
10875 return;
10876
10877 /* Note that following die references may follow to a die in a
10878 different cu. */
10879
10880 origin_cu = cu;
10881 origin_die = follow_die_ref (die, attr, &origin_cu);
10882
10883 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10884 symbols in. */
10885 origin_previous_list_in_scope = origin_cu->list_in_scope;
10886 origin_cu->list_in_scope = cu->list_in_scope;
10887
10888 if (die->tag != origin_die->tag
10889 && !(die->tag == DW_TAG_inlined_subroutine
10890 && origin_die->tag == DW_TAG_subprogram))
10891 complaint (&symfile_complaints,
10892 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10893 die->offset.sect_off, origin_die->offset.sect_off);
10894
10895 child_die = die->child;
10896 die_children_count = 0;
10897 while (child_die && child_die->tag)
10898 {
10899 child_die = sibling_die (child_die);
10900 die_children_count++;
10901 }
10902 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10903 cleanups = make_cleanup (xfree, offsets);
10904
10905 offsets_end = offsets;
10906 child_die = die->child;
10907 while (child_die && child_die->tag)
10908 {
10909 /* For each CHILD_DIE, find the corresponding child of
10910 ORIGIN_DIE. If there is more than one layer of
10911 DW_AT_abstract_origin, follow them all; there shouldn't be,
10912 but GCC versions at least through 4.4 generate this (GCC PR
10913 40573). */
10914 struct die_info *child_origin_die = child_die;
10915 struct dwarf2_cu *child_origin_cu = cu;
10916
10917 while (1)
10918 {
10919 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10920 child_origin_cu);
10921 if (attr == NULL)
10922 break;
10923 child_origin_die = follow_die_ref (child_origin_die, attr,
10924 &child_origin_cu);
10925 }
10926
10927 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10928 counterpart may exist. */
10929 if (child_origin_die != child_die)
10930 {
10931 if (child_die->tag != child_origin_die->tag
10932 && !(child_die->tag == DW_TAG_inlined_subroutine
10933 && child_origin_die->tag == DW_TAG_subprogram))
10934 complaint (&symfile_complaints,
10935 _("Child DIE 0x%x and its abstract origin 0x%x have "
10936 "different tags"), child_die->offset.sect_off,
10937 child_origin_die->offset.sect_off);
10938 if (child_origin_die->parent != origin_die)
10939 complaint (&symfile_complaints,
10940 _("Child DIE 0x%x and its abstract origin 0x%x have "
10941 "different parents"), child_die->offset.sect_off,
10942 child_origin_die->offset.sect_off);
10943 else
10944 *offsets_end++ = child_origin_die->offset;
10945 }
10946 child_die = sibling_die (child_die);
10947 }
10948 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10949 unsigned_int_compar);
10950 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10951 if (offsetp[-1].sect_off == offsetp->sect_off)
10952 complaint (&symfile_complaints,
10953 _("Multiple children of DIE 0x%x refer "
10954 "to DIE 0x%x as their abstract origin"),
10955 die->offset.sect_off, offsetp->sect_off);
10956
10957 offsetp = offsets;
10958 origin_child_die = origin_die->child;
10959 while (origin_child_die && origin_child_die->tag)
10960 {
10961 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10962 while (offsetp < offsets_end
10963 && offsetp->sect_off < origin_child_die->offset.sect_off)
10964 offsetp++;
10965 if (offsetp >= offsets_end
10966 || offsetp->sect_off > origin_child_die->offset.sect_off)
10967 {
10968 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10969 process_die (origin_child_die, origin_cu);
10970 }
10971 origin_child_die = sibling_die (origin_child_die);
10972 }
10973 origin_cu->list_in_scope = origin_previous_list_in_scope;
10974
10975 do_cleanups (cleanups);
10976 }
10977
10978 static void
10979 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10980 {
10981 struct objfile *objfile = cu->objfile;
10982 struct context_stack *new;
10983 CORE_ADDR lowpc;
10984 CORE_ADDR highpc;
10985 struct die_info *child_die;
10986 struct attribute *attr, *call_line, *call_file;
10987 const char *name;
10988 CORE_ADDR baseaddr;
10989 struct block *block;
10990 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10991 VEC (symbolp) *template_args = NULL;
10992 struct template_symbol *templ_func = NULL;
10993
10994 if (inlined_func)
10995 {
10996 /* If we do not have call site information, we can't show the
10997 caller of this inlined function. That's too confusing, so
10998 only use the scope for local variables. */
10999 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11000 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11001 if (call_line == NULL || call_file == NULL)
11002 {
11003 read_lexical_block_scope (die, cu);
11004 return;
11005 }
11006 }
11007
11008 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11009
11010 name = dwarf2_name (die, cu);
11011
11012 /* Ignore functions with missing or empty names. These are actually
11013 illegal according to the DWARF standard. */
11014 if (name == NULL)
11015 {
11016 complaint (&symfile_complaints,
11017 _("missing name for subprogram DIE at %d"),
11018 die->offset.sect_off);
11019 return;
11020 }
11021
11022 /* Ignore functions with missing or invalid low and high pc attributes. */
11023 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11024 {
11025 attr = dwarf2_attr (die, DW_AT_external, cu);
11026 if (!attr || !DW_UNSND (attr))
11027 complaint (&symfile_complaints,
11028 _("cannot get low and high bounds "
11029 "for subprogram DIE at %d"),
11030 die->offset.sect_off);
11031 return;
11032 }
11033
11034 lowpc += baseaddr;
11035 highpc += baseaddr;
11036
11037 /* If we have any template arguments, then we must allocate a
11038 different sort of symbol. */
11039 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11040 {
11041 if (child_die->tag == DW_TAG_template_type_param
11042 || child_die->tag == DW_TAG_template_value_param)
11043 {
11044 templ_func = allocate_template_symbol (objfile);
11045 templ_func->base.is_cplus_template_function = 1;
11046 break;
11047 }
11048 }
11049
11050 new = push_context (0, lowpc);
11051 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11052 (struct symbol *) templ_func);
11053
11054 /* If there is a location expression for DW_AT_frame_base, record
11055 it. */
11056 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11057 if (attr)
11058 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11059
11060 cu->list_in_scope = &local_symbols;
11061
11062 if (die->child != NULL)
11063 {
11064 child_die = die->child;
11065 while (child_die && child_die->tag)
11066 {
11067 if (child_die->tag == DW_TAG_template_type_param
11068 || child_die->tag == DW_TAG_template_value_param)
11069 {
11070 struct symbol *arg = new_symbol (child_die, NULL, cu);
11071
11072 if (arg != NULL)
11073 VEC_safe_push (symbolp, template_args, arg);
11074 }
11075 else
11076 process_die (child_die, cu);
11077 child_die = sibling_die (child_die);
11078 }
11079 }
11080
11081 inherit_abstract_dies (die, cu);
11082
11083 /* If we have a DW_AT_specification, we might need to import using
11084 directives from the context of the specification DIE. See the
11085 comment in determine_prefix. */
11086 if (cu->language == language_cplus
11087 && dwarf2_attr (die, DW_AT_specification, cu))
11088 {
11089 struct dwarf2_cu *spec_cu = cu;
11090 struct die_info *spec_die = die_specification (die, &spec_cu);
11091
11092 while (spec_die)
11093 {
11094 child_die = spec_die->child;
11095 while (child_die && child_die->tag)
11096 {
11097 if (child_die->tag == DW_TAG_imported_module)
11098 process_die (child_die, spec_cu);
11099 child_die = sibling_die (child_die);
11100 }
11101
11102 /* In some cases, GCC generates specification DIEs that
11103 themselves contain DW_AT_specification attributes. */
11104 spec_die = die_specification (spec_die, &spec_cu);
11105 }
11106 }
11107
11108 new = pop_context ();
11109 /* Make a block for the local symbols within. */
11110 block = finish_block (new->name, &local_symbols, new->old_blocks,
11111 lowpc, highpc, objfile);
11112
11113 /* For C++, set the block's scope. */
11114 if ((cu->language == language_cplus || cu->language == language_fortran)
11115 && cu->processing_has_namespace_info)
11116 block_set_scope (block, determine_prefix (die, cu),
11117 &objfile->objfile_obstack);
11118
11119 /* If we have address ranges, record them. */
11120 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11121
11122 /* Attach template arguments to function. */
11123 if (! VEC_empty (symbolp, template_args))
11124 {
11125 gdb_assert (templ_func != NULL);
11126
11127 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11128 templ_func->template_arguments
11129 = obstack_alloc (&objfile->objfile_obstack,
11130 (templ_func->n_template_arguments
11131 * sizeof (struct symbol *)));
11132 memcpy (templ_func->template_arguments,
11133 VEC_address (symbolp, template_args),
11134 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11135 VEC_free (symbolp, template_args);
11136 }
11137
11138 /* In C++, we can have functions nested inside functions (e.g., when
11139 a function declares a class that has methods). This means that
11140 when we finish processing a function scope, we may need to go
11141 back to building a containing block's symbol lists. */
11142 local_symbols = new->locals;
11143 using_directives = new->using_directives;
11144
11145 /* If we've finished processing a top-level function, subsequent
11146 symbols go in the file symbol list. */
11147 if (outermost_context_p ())
11148 cu->list_in_scope = &file_symbols;
11149 }
11150
11151 /* Process all the DIES contained within a lexical block scope. Start
11152 a new scope, process the dies, and then close the scope. */
11153
11154 static void
11155 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11156 {
11157 struct objfile *objfile = cu->objfile;
11158 struct context_stack *new;
11159 CORE_ADDR lowpc, highpc;
11160 struct die_info *child_die;
11161 CORE_ADDR baseaddr;
11162
11163 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11164
11165 /* Ignore blocks with missing or invalid low and high pc attributes. */
11166 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11167 as multiple lexical blocks? Handling children in a sane way would
11168 be nasty. Might be easier to properly extend generic blocks to
11169 describe ranges. */
11170 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11171 return;
11172 lowpc += baseaddr;
11173 highpc += baseaddr;
11174
11175 push_context (0, lowpc);
11176 if (die->child != NULL)
11177 {
11178 child_die = die->child;
11179 while (child_die && child_die->tag)
11180 {
11181 process_die (child_die, cu);
11182 child_die = sibling_die (child_die);
11183 }
11184 }
11185 new = pop_context ();
11186
11187 if (local_symbols != NULL || using_directives != NULL)
11188 {
11189 struct block *block
11190 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11191 highpc, objfile);
11192
11193 /* Note that recording ranges after traversing children, as we
11194 do here, means that recording a parent's ranges entails
11195 walking across all its children's ranges as they appear in
11196 the address map, which is quadratic behavior.
11197
11198 It would be nicer to record the parent's ranges before
11199 traversing its children, simply overriding whatever you find
11200 there. But since we don't even decide whether to create a
11201 block until after we've traversed its children, that's hard
11202 to do. */
11203 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11204 }
11205 local_symbols = new->locals;
11206 using_directives = new->using_directives;
11207 }
11208
11209 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11210
11211 static void
11212 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11213 {
11214 struct objfile *objfile = cu->objfile;
11215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11216 CORE_ADDR pc, baseaddr;
11217 struct attribute *attr;
11218 struct call_site *call_site, call_site_local;
11219 void **slot;
11220 int nparams;
11221 struct die_info *child_die;
11222
11223 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11224
11225 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11226 if (!attr)
11227 {
11228 complaint (&symfile_complaints,
11229 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11230 "DIE 0x%x [in module %s]"),
11231 die->offset.sect_off, objfile_name (objfile));
11232 return;
11233 }
11234 pc = DW_ADDR (attr) + baseaddr;
11235
11236 if (cu->call_site_htab == NULL)
11237 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11238 NULL, &objfile->objfile_obstack,
11239 hashtab_obstack_allocate, NULL);
11240 call_site_local.pc = pc;
11241 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11242 if (*slot != NULL)
11243 {
11244 complaint (&symfile_complaints,
11245 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11246 "DIE 0x%x [in module %s]"),
11247 paddress (gdbarch, pc), die->offset.sect_off,
11248 objfile_name (objfile));
11249 return;
11250 }
11251
11252 /* Count parameters at the caller. */
11253
11254 nparams = 0;
11255 for (child_die = die->child; child_die && child_die->tag;
11256 child_die = sibling_die (child_die))
11257 {
11258 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11259 {
11260 complaint (&symfile_complaints,
11261 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11262 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11263 child_die->tag, child_die->offset.sect_off,
11264 objfile_name (objfile));
11265 continue;
11266 }
11267
11268 nparams++;
11269 }
11270
11271 call_site = obstack_alloc (&objfile->objfile_obstack,
11272 (sizeof (*call_site)
11273 + (sizeof (*call_site->parameter)
11274 * (nparams - 1))));
11275 *slot = call_site;
11276 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11277 call_site->pc = pc;
11278
11279 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11280 {
11281 struct die_info *func_die;
11282
11283 /* Skip also over DW_TAG_inlined_subroutine. */
11284 for (func_die = die->parent;
11285 func_die && func_die->tag != DW_TAG_subprogram
11286 && func_die->tag != DW_TAG_subroutine_type;
11287 func_die = func_die->parent);
11288
11289 /* DW_AT_GNU_all_call_sites is a superset
11290 of DW_AT_GNU_all_tail_call_sites. */
11291 if (func_die
11292 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11293 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11294 {
11295 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11296 not complete. But keep CALL_SITE for look ups via call_site_htab,
11297 both the initial caller containing the real return address PC and
11298 the final callee containing the current PC of a chain of tail
11299 calls do not need to have the tail call list complete. But any
11300 function candidate for a virtual tail call frame searched via
11301 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11302 determined unambiguously. */
11303 }
11304 else
11305 {
11306 struct type *func_type = NULL;
11307
11308 if (func_die)
11309 func_type = get_die_type (func_die, cu);
11310 if (func_type != NULL)
11311 {
11312 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11313
11314 /* Enlist this call site to the function. */
11315 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11316 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11317 }
11318 else
11319 complaint (&symfile_complaints,
11320 _("Cannot find function owning DW_TAG_GNU_call_site "
11321 "DIE 0x%x [in module %s]"),
11322 die->offset.sect_off, objfile_name (objfile));
11323 }
11324 }
11325
11326 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11327 if (attr == NULL)
11328 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11329 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11330 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11331 /* Keep NULL DWARF_BLOCK. */;
11332 else if (attr_form_is_block (attr))
11333 {
11334 struct dwarf2_locexpr_baton *dlbaton;
11335
11336 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11337 dlbaton->data = DW_BLOCK (attr)->data;
11338 dlbaton->size = DW_BLOCK (attr)->size;
11339 dlbaton->per_cu = cu->per_cu;
11340
11341 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11342 }
11343 else if (attr_form_is_ref (attr))
11344 {
11345 struct dwarf2_cu *target_cu = cu;
11346 struct die_info *target_die;
11347
11348 target_die = follow_die_ref (die, attr, &target_cu);
11349 gdb_assert (target_cu->objfile == objfile);
11350 if (die_is_declaration (target_die, target_cu))
11351 {
11352 const char *target_physname = NULL;
11353 struct attribute *target_attr;
11354
11355 /* Prefer the mangled name; otherwise compute the demangled one. */
11356 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11357 if (target_attr == NULL)
11358 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11359 target_cu);
11360 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11361 target_physname = DW_STRING (target_attr);
11362 else
11363 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11364 if (target_physname == NULL)
11365 complaint (&symfile_complaints,
11366 _("DW_AT_GNU_call_site_target target DIE has invalid "
11367 "physname, for referencing DIE 0x%x [in module %s]"),
11368 die->offset.sect_off, objfile_name (objfile));
11369 else
11370 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11371 }
11372 else
11373 {
11374 CORE_ADDR lowpc;
11375
11376 /* DW_AT_entry_pc should be preferred. */
11377 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11378 complaint (&symfile_complaints,
11379 _("DW_AT_GNU_call_site_target target DIE has invalid "
11380 "low pc, for referencing DIE 0x%x [in module %s]"),
11381 die->offset.sect_off, objfile_name (objfile));
11382 else
11383 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11384 }
11385 }
11386 else
11387 complaint (&symfile_complaints,
11388 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11389 "block nor reference, for DIE 0x%x [in module %s]"),
11390 die->offset.sect_off, objfile_name (objfile));
11391
11392 call_site->per_cu = cu->per_cu;
11393
11394 for (child_die = die->child;
11395 child_die && child_die->tag;
11396 child_die = sibling_die (child_die))
11397 {
11398 struct call_site_parameter *parameter;
11399 struct attribute *loc, *origin;
11400
11401 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11402 {
11403 /* Already printed the complaint above. */
11404 continue;
11405 }
11406
11407 gdb_assert (call_site->parameter_count < nparams);
11408 parameter = &call_site->parameter[call_site->parameter_count];
11409
11410 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11411 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11412 register is contained in DW_AT_GNU_call_site_value. */
11413
11414 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11415 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11416 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11417 {
11418 sect_offset offset;
11419
11420 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11421 offset = dwarf2_get_ref_die_offset (origin);
11422 if (!offset_in_cu_p (&cu->header, offset))
11423 {
11424 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11425 binding can be done only inside one CU. Such referenced DIE
11426 therefore cannot be even moved to DW_TAG_partial_unit. */
11427 complaint (&symfile_complaints,
11428 _("DW_AT_abstract_origin offset is not in CU for "
11429 "DW_TAG_GNU_call_site child DIE 0x%x "
11430 "[in module %s]"),
11431 child_die->offset.sect_off, objfile_name (objfile));
11432 continue;
11433 }
11434 parameter->u.param_offset.cu_off = (offset.sect_off
11435 - cu->header.offset.sect_off);
11436 }
11437 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11438 {
11439 complaint (&symfile_complaints,
11440 _("No DW_FORM_block* DW_AT_location for "
11441 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11442 child_die->offset.sect_off, objfile_name (objfile));
11443 continue;
11444 }
11445 else
11446 {
11447 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11448 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11449 if (parameter->u.dwarf_reg != -1)
11450 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11451 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11452 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11453 &parameter->u.fb_offset))
11454 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11455 else
11456 {
11457 complaint (&symfile_complaints,
11458 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11459 "for DW_FORM_block* DW_AT_location is supported for "
11460 "DW_TAG_GNU_call_site child DIE 0x%x "
11461 "[in module %s]"),
11462 child_die->offset.sect_off, objfile_name (objfile));
11463 continue;
11464 }
11465 }
11466
11467 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11468 if (!attr_form_is_block (attr))
11469 {
11470 complaint (&symfile_complaints,
11471 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11472 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11473 child_die->offset.sect_off, objfile_name (objfile));
11474 continue;
11475 }
11476 parameter->value = DW_BLOCK (attr)->data;
11477 parameter->value_size = DW_BLOCK (attr)->size;
11478
11479 /* Parameters are not pre-cleared by memset above. */
11480 parameter->data_value = NULL;
11481 parameter->data_value_size = 0;
11482 call_site->parameter_count++;
11483
11484 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11485 if (attr)
11486 {
11487 if (!attr_form_is_block (attr))
11488 complaint (&symfile_complaints,
11489 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11490 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11491 child_die->offset.sect_off, objfile_name (objfile));
11492 else
11493 {
11494 parameter->data_value = DW_BLOCK (attr)->data;
11495 parameter->data_value_size = DW_BLOCK (attr)->size;
11496 }
11497 }
11498 }
11499 }
11500
11501 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11502 Return 1 if the attributes are present and valid, otherwise, return 0.
11503 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11504
11505 static int
11506 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11507 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11508 struct partial_symtab *ranges_pst)
11509 {
11510 struct objfile *objfile = cu->objfile;
11511 struct comp_unit_head *cu_header = &cu->header;
11512 bfd *obfd = objfile->obfd;
11513 unsigned int addr_size = cu_header->addr_size;
11514 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11515 /* Base address selection entry. */
11516 CORE_ADDR base;
11517 int found_base;
11518 unsigned int dummy;
11519 const gdb_byte *buffer;
11520 CORE_ADDR marker;
11521 int low_set;
11522 CORE_ADDR low = 0;
11523 CORE_ADDR high = 0;
11524 CORE_ADDR baseaddr;
11525
11526 found_base = cu->base_known;
11527 base = cu->base_address;
11528
11529 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11530 if (offset >= dwarf2_per_objfile->ranges.size)
11531 {
11532 complaint (&symfile_complaints,
11533 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11534 offset);
11535 return 0;
11536 }
11537 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11538
11539 /* Read in the largest possible address. */
11540 marker = read_address (obfd, buffer, cu, &dummy);
11541 if ((marker & mask) == mask)
11542 {
11543 /* If we found the largest possible address, then
11544 read the base address. */
11545 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11546 buffer += 2 * addr_size;
11547 offset += 2 * addr_size;
11548 found_base = 1;
11549 }
11550
11551 low_set = 0;
11552
11553 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11554
11555 while (1)
11556 {
11557 CORE_ADDR range_beginning, range_end;
11558
11559 range_beginning = read_address (obfd, buffer, cu, &dummy);
11560 buffer += addr_size;
11561 range_end = read_address (obfd, buffer, cu, &dummy);
11562 buffer += addr_size;
11563 offset += 2 * addr_size;
11564
11565 /* An end of list marker is a pair of zero addresses. */
11566 if (range_beginning == 0 && range_end == 0)
11567 /* Found the end of list entry. */
11568 break;
11569
11570 /* Each base address selection entry is a pair of 2 values.
11571 The first is the largest possible address, the second is
11572 the base address. Check for a base address here. */
11573 if ((range_beginning & mask) == mask)
11574 {
11575 /* If we found the largest possible address, then
11576 read the base address. */
11577 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11578 found_base = 1;
11579 continue;
11580 }
11581
11582 if (!found_base)
11583 {
11584 /* We have no valid base address for the ranges
11585 data. */
11586 complaint (&symfile_complaints,
11587 _("Invalid .debug_ranges data (no base address)"));
11588 return 0;
11589 }
11590
11591 if (range_beginning > range_end)
11592 {
11593 /* Inverted range entries are invalid. */
11594 complaint (&symfile_complaints,
11595 _("Invalid .debug_ranges data (inverted range)"));
11596 return 0;
11597 }
11598
11599 /* Empty range entries have no effect. */
11600 if (range_beginning == range_end)
11601 continue;
11602
11603 range_beginning += base;
11604 range_end += base;
11605
11606 /* A not-uncommon case of bad debug info.
11607 Don't pollute the addrmap with bad data. */
11608 if (range_beginning + baseaddr == 0
11609 && !dwarf2_per_objfile->has_section_at_zero)
11610 {
11611 complaint (&symfile_complaints,
11612 _(".debug_ranges entry has start address of zero"
11613 " [in module %s]"), objfile_name (objfile));
11614 continue;
11615 }
11616
11617 if (ranges_pst != NULL)
11618 addrmap_set_empty (objfile->psymtabs_addrmap,
11619 range_beginning + baseaddr,
11620 range_end - 1 + baseaddr,
11621 ranges_pst);
11622
11623 /* FIXME: This is recording everything as a low-high
11624 segment of consecutive addresses. We should have a
11625 data structure for discontiguous block ranges
11626 instead. */
11627 if (! low_set)
11628 {
11629 low = range_beginning;
11630 high = range_end;
11631 low_set = 1;
11632 }
11633 else
11634 {
11635 if (range_beginning < low)
11636 low = range_beginning;
11637 if (range_end > high)
11638 high = range_end;
11639 }
11640 }
11641
11642 if (! low_set)
11643 /* If the first entry is an end-of-list marker, the range
11644 describes an empty scope, i.e. no instructions. */
11645 return 0;
11646
11647 if (low_return)
11648 *low_return = low;
11649 if (high_return)
11650 *high_return = high;
11651 return 1;
11652 }
11653
11654 /* Get low and high pc attributes from a die. Return 1 if the attributes
11655 are present and valid, otherwise, return 0. Return -1 if the range is
11656 discontinuous, i.e. derived from DW_AT_ranges information. */
11657
11658 static int
11659 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11660 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11661 struct partial_symtab *pst)
11662 {
11663 struct attribute *attr;
11664 struct attribute *attr_high;
11665 CORE_ADDR low = 0;
11666 CORE_ADDR high = 0;
11667 int ret = 0;
11668
11669 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11670 if (attr_high)
11671 {
11672 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11673 if (attr)
11674 {
11675 low = DW_ADDR (attr);
11676 if (attr_high->form == DW_FORM_addr
11677 || attr_high->form == DW_FORM_GNU_addr_index)
11678 high = DW_ADDR (attr_high);
11679 else
11680 high = low + DW_UNSND (attr_high);
11681 }
11682 else
11683 /* Found high w/o low attribute. */
11684 return 0;
11685
11686 /* Found consecutive range of addresses. */
11687 ret = 1;
11688 }
11689 else
11690 {
11691 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11692 if (attr != NULL)
11693 {
11694 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11695 We take advantage of the fact that DW_AT_ranges does not appear
11696 in DW_TAG_compile_unit of DWO files. */
11697 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11698 unsigned int ranges_offset = (DW_UNSND (attr)
11699 + (need_ranges_base
11700 ? cu->ranges_base
11701 : 0));
11702
11703 /* Value of the DW_AT_ranges attribute is the offset in the
11704 .debug_ranges section. */
11705 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11706 return 0;
11707 /* Found discontinuous range of addresses. */
11708 ret = -1;
11709 }
11710 }
11711
11712 /* read_partial_die has also the strict LOW < HIGH requirement. */
11713 if (high <= low)
11714 return 0;
11715
11716 /* When using the GNU linker, .gnu.linkonce. sections are used to
11717 eliminate duplicate copies of functions and vtables and such.
11718 The linker will arbitrarily choose one and discard the others.
11719 The AT_*_pc values for such functions refer to local labels in
11720 these sections. If the section from that file was discarded, the
11721 labels are not in the output, so the relocs get a value of 0.
11722 If this is a discarded function, mark the pc bounds as invalid,
11723 so that GDB will ignore it. */
11724 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11725 return 0;
11726
11727 *lowpc = low;
11728 if (highpc)
11729 *highpc = high;
11730 return ret;
11731 }
11732
11733 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11734 its low and high PC addresses. Do nothing if these addresses could not
11735 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11736 and HIGHPC to the high address if greater than HIGHPC. */
11737
11738 static void
11739 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11740 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11741 struct dwarf2_cu *cu)
11742 {
11743 CORE_ADDR low, high;
11744 struct die_info *child = die->child;
11745
11746 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11747 {
11748 *lowpc = min (*lowpc, low);
11749 *highpc = max (*highpc, high);
11750 }
11751
11752 /* If the language does not allow nested subprograms (either inside
11753 subprograms or lexical blocks), we're done. */
11754 if (cu->language != language_ada)
11755 return;
11756
11757 /* Check all the children of the given DIE. If it contains nested
11758 subprograms, then check their pc bounds. Likewise, we need to
11759 check lexical blocks as well, as they may also contain subprogram
11760 definitions. */
11761 while (child && child->tag)
11762 {
11763 if (child->tag == DW_TAG_subprogram
11764 || child->tag == DW_TAG_lexical_block)
11765 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11766 child = sibling_die (child);
11767 }
11768 }
11769
11770 /* Get the low and high pc's represented by the scope DIE, and store
11771 them in *LOWPC and *HIGHPC. If the correct values can't be
11772 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11773
11774 static void
11775 get_scope_pc_bounds (struct die_info *die,
11776 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11777 struct dwarf2_cu *cu)
11778 {
11779 CORE_ADDR best_low = (CORE_ADDR) -1;
11780 CORE_ADDR best_high = (CORE_ADDR) 0;
11781 CORE_ADDR current_low, current_high;
11782
11783 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11784 {
11785 best_low = current_low;
11786 best_high = current_high;
11787 }
11788 else
11789 {
11790 struct die_info *child = die->child;
11791
11792 while (child && child->tag)
11793 {
11794 switch (child->tag) {
11795 case DW_TAG_subprogram:
11796 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11797 break;
11798 case DW_TAG_namespace:
11799 case DW_TAG_module:
11800 /* FIXME: carlton/2004-01-16: Should we do this for
11801 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11802 that current GCC's always emit the DIEs corresponding
11803 to definitions of methods of classes as children of a
11804 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11805 the DIEs giving the declarations, which could be
11806 anywhere). But I don't see any reason why the
11807 standards says that they have to be there. */
11808 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11809
11810 if (current_low != ((CORE_ADDR) -1))
11811 {
11812 best_low = min (best_low, current_low);
11813 best_high = max (best_high, current_high);
11814 }
11815 break;
11816 default:
11817 /* Ignore. */
11818 break;
11819 }
11820
11821 child = sibling_die (child);
11822 }
11823 }
11824
11825 *lowpc = best_low;
11826 *highpc = best_high;
11827 }
11828
11829 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11830 in DIE. */
11831
11832 static void
11833 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11834 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11835 {
11836 struct objfile *objfile = cu->objfile;
11837 struct attribute *attr;
11838 struct attribute *attr_high;
11839
11840 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11841 if (attr_high)
11842 {
11843 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11844 if (attr)
11845 {
11846 CORE_ADDR low = DW_ADDR (attr);
11847 CORE_ADDR high;
11848 if (attr_high->form == DW_FORM_addr
11849 || attr_high->form == DW_FORM_GNU_addr_index)
11850 high = DW_ADDR (attr_high);
11851 else
11852 high = low + DW_UNSND (attr_high);
11853
11854 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11855 }
11856 }
11857
11858 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11859 if (attr)
11860 {
11861 bfd *obfd = objfile->obfd;
11862 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11863 We take advantage of the fact that DW_AT_ranges does not appear
11864 in DW_TAG_compile_unit of DWO files. */
11865 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11866
11867 /* The value of the DW_AT_ranges attribute is the offset of the
11868 address range list in the .debug_ranges section. */
11869 unsigned long offset = (DW_UNSND (attr)
11870 + (need_ranges_base ? cu->ranges_base : 0));
11871 const gdb_byte *buffer;
11872
11873 /* For some target architectures, but not others, the
11874 read_address function sign-extends the addresses it returns.
11875 To recognize base address selection entries, we need a
11876 mask. */
11877 unsigned int addr_size = cu->header.addr_size;
11878 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11879
11880 /* The base address, to which the next pair is relative. Note
11881 that this 'base' is a DWARF concept: most entries in a range
11882 list are relative, to reduce the number of relocs against the
11883 debugging information. This is separate from this function's
11884 'baseaddr' argument, which GDB uses to relocate debugging
11885 information from a shared library based on the address at
11886 which the library was loaded. */
11887 CORE_ADDR base = cu->base_address;
11888 int base_known = cu->base_known;
11889
11890 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11891 if (offset >= dwarf2_per_objfile->ranges.size)
11892 {
11893 complaint (&symfile_complaints,
11894 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11895 offset);
11896 return;
11897 }
11898 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11899
11900 for (;;)
11901 {
11902 unsigned int bytes_read;
11903 CORE_ADDR start, end;
11904
11905 start = read_address (obfd, buffer, cu, &bytes_read);
11906 buffer += bytes_read;
11907 end = read_address (obfd, buffer, cu, &bytes_read);
11908 buffer += bytes_read;
11909
11910 /* Did we find the end of the range list? */
11911 if (start == 0 && end == 0)
11912 break;
11913
11914 /* Did we find a base address selection entry? */
11915 else if ((start & base_select_mask) == base_select_mask)
11916 {
11917 base = end;
11918 base_known = 1;
11919 }
11920
11921 /* We found an ordinary address range. */
11922 else
11923 {
11924 if (!base_known)
11925 {
11926 complaint (&symfile_complaints,
11927 _("Invalid .debug_ranges data "
11928 "(no base address)"));
11929 return;
11930 }
11931
11932 if (start > end)
11933 {
11934 /* Inverted range entries are invalid. */
11935 complaint (&symfile_complaints,
11936 _("Invalid .debug_ranges data "
11937 "(inverted range)"));
11938 return;
11939 }
11940
11941 /* Empty range entries have no effect. */
11942 if (start == end)
11943 continue;
11944
11945 start += base + baseaddr;
11946 end += base + baseaddr;
11947
11948 /* A not-uncommon case of bad debug info.
11949 Don't pollute the addrmap with bad data. */
11950 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11951 {
11952 complaint (&symfile_complaints,
11953 _(".debug_ranges entry has start address of zero"
11954 " [in module %s]"), objfile_name (objfile));
11955 continue;
11956 }
11957
11958 record_block_range (block, start, end - 1);
11959 }
11960 }
11961 }
11962 }
11963
11964 /* Check whether the producer field indicates either of GCC < 4.6, or the
11965 Intel C/C++ compiler, and cache the result in CU. */
11966
11967 static void
11968 check_producer (struct dwarf2_cu *cu)
11969 {
11970 const char *cs;
11971 int major, minor, release;
11972
11973 if (cu->producer == NULL)
11974 {
11975 /* For unknown compilers expect their behavior is DWARF version
11976 compliant.
11977
11978 GCC started to support .debug_types sections by -gdwarf-4 since
11979 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11980 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11981 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11982 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11983 }
11984 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11985 {
11986 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11987
11988 cs = &cu->producer[strlen ("GNU ")];
11989 while (*cs && !isdigit (*cs))
11990 cs++;
11991 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11992 {
11993 /* Not recognized as GCC. */
11994 }
11995 else
11996 {
11997 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11998 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11999 }
12000 }
12001 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12002 cu->producer_is_icc = 1;
12003 else
12004 {
12005 /* For other non-GCC compilers, expect their behavior is DWARF version
12006 compliant. */
12007 }
12008
12009 cu->checked_producer = 1;
12010 }
12011
12012 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12013 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12014 during 4.6.0 experimental. */
12015
12016 static int
12017 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12018 {
12019 if (!cu->checked_producer)
12020 check_producer (cu);
12021
12022 return cu->producer_is_gxx_lt_4_6;
12023 }
12024
12025 /* Return the default accessibility type if it is not overriden by
12026 DW_AT_accessibility. */
12027
12028 static enum dwarf_access_attribute
12029 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12030 {
12031 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12032 {
12033 /* The default DWARF 2 accessibility for members is public, the default
12034 accessibility for inheritance is private. */
12035
12036 if (die->tag != DW_TAG_inheritance)
12037 return DW_ACCESS_public;
12038 else
12039 return DW_ACCESS_private;
12040 }
12041 else
12042 {
12043 /* DWARF 3+ defines the default accessibility a different way. The same
12044 rules apply now for DW_TAG_inheritance as for the members and it only
12045 depends on the container kind. */
12046
12047 if (die->parent->tag == DW_TAG_class_type)
12048 return DW_ACCESS_private;
12049 else
12050 return DW_ACCESS_public;
12051 }
12052 }
12053
12054 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12055 offset. If the attribute was not found return 0, otherwise return
12056 1. If it was found but could not properly be handled, set *OFFSET
12057 to 0. */
12058
12059 static int
12060 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12061 LONGEST *offset)
12062 {
12063 struct attribute *attr;
12064
12065 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12066 if (attr != NULL)
12067 {
12068 *offset = 0;
12069
12070 /* Note that we do not check for a section offset first here.
12071 This is because DW_AT_data_member_location is new in DWARF 4,
12072 so if we see it, we can assume that a constant form is really
12073 a constant and not a section offset. */
12074 if (attr_form_is_constant (attr))
12075 *offset = dwarf2_get_attr_constant_value (attr, 0);
12076 else if (attr_form_is_section_offset (attr))
12077 dwarf2_complex_location_expr_complaint ();
12078 else if (attr_form_is_block (attr))
12079 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12080 else
12081 dwarf2_complex_location_expr_complaint ();
12082
12083 return 1;
12084 }
12085
12086 return 0;
12087 }
12088
12089 /* Add an aggregate field to the field list. */
12090
12091 static void
12092 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12093 struct dwarf2_cu *cu)
12094 {
12095 struct objfile *objfile = cu->objfile;
12096 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12097 struct nextfield *new_field;
12098 struct attribute *attr;
12099 struct field *fp;
12100 const char *fieldname = "";
12101
12102 /* Allocate a new field list entry and link it in. */
12103 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12104 make_cleanup (xfree, new_field);
12105 memset (new_field, 0, sizeof (struct nextfield));
12106
12107 if (die->tag == DW_TAG_inheritance)
12108 {
12109 new_field->next = fip->baseclasses;
12110 fip->baseclasses = new_field;
12111 }
12112 else
12113 {
12114 new_field->next = fip->fields;
12115 fip->fields = new_field;
12116 }
12117 fip->nfields++;
12118
12119 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12120 if (attr)
12121 new_field->accessibility = DW_UNSND (attr);
12122 else
12123 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12124 if (new_field->accessibility != DW_ACCESS_public)
12125 fip->non_public_fields = 1;
12126
12127 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12128 if (attr)
12129 new_field->virtuality = DW_UNSND (attr);
12130 else
12131 new_field->virtuality = DW_VIRTUALITY_none;
12132
12133 fp = &new_field->field;
12134
12135 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12136 {
12137 LONGEST offset;
12138
12139 /* Data member other than a C++ static data member. */
12140
12141 /* Get type of field. */
12142 fp->type = die_type (die, cu);
12143
12144 SET_FIELD_BITPOS (*fp, 0);
12145
12146 /* Get bit size of field (zero if none). */
12147 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12148 if (attr)
12149 {
12150 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12151 }
12152 else
12153 {
12154 FIELD_BITSIZE (*fp) = 0;
12155 }
12156
12157 /* Get bit offset of field. */
12158 if (handle_data_member_location (die, cu, &offset))
12159 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12160 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12161 if (attr)
12162 {
12163 if (gdbarch_bits_big_endian (gdbarch))
12164 {
12165 /* For big endian bits, the DW_AT_bit_offset gives the
12166 additional bit offset from the MSB of the containing
12167 anonymous object to the MSB of the field. We don't
12168 have to do anything special since we don't need to
12169 know the size of the anonymous object. */
12170 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12171 }
12172 else
12173 {
12174 /* For little endian bits, compute the bit offset to the
12175 MSB of the anonymous object, subtract off the number of
12176 bits from the MSB of the field to the MSB of the
12177 object, and then subtract off the number of bits of
12178 the field itself. The result is the bit offset of
12179 the LSB of the field. */
12180 int anonymous_size;
12181 int bit_offset = DW_UNSND (attr);
12182
12183 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12184 if (attr)
12185 {
12186 /* The size of the anonymous object containing
12187 the bit field is explicit, so use the
12188 indicated size (in bytes). */
12189 anonymous_size = DW_UNSND (attr);
12190 }
12191 else
12192 {
12193 /* The size of the anonymous object containing
12194 the bit field must be inferred from the type
12195 attribute of the data member containing the
12196 bit field. */
12197 anonymous_size = TYPE_LENGTH (fp->type);
12198 }
12199 SET_FIELD_BITPOS (*fp,
12200 (FIELD_BITPOS (*fp)
12201 + anonymous_size * bits_per_byte
12202 - bit_offset - FIELD_BITSIZE (*fp)));
12203 }
12204 }
12205
12206 /* Get name of field. */
12207 fieldname = dwarf2_name (die, cu);
12208 if (fieldname == NULL)
12209 fieldname = "";
12210
12211 /* The name is already allocated along with this objfile, so we don't
12212 need to duplicate it for the type. */
12213 fp->name = fieldname;
12214
12215 /* Change accessibility for artificial fields (e.g. virtual table
12216 pointer or virtual base class pointer) to private. */
12217 if (dwarf2_attr (die, DW_AT_artificial, cu))
12218 {
12219 FIELD_ARTIFICIAL (*fp) = 1;
12220 new_field->accessibility = DW_ACCESS_private;
12221 fip->non_public_fields = 1;
12222 }
12223 }
12224 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12225 {
12226 /* C++ static member. */
12227
12228 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12229 is a declaration, but all versions of G++ as of this writing
12230 (so through at least 3.2.1) incorrectly generate
12231 DW_TAG_variable tags. */
12232
12233 const char *physname;
12234
12235 /* Get name of field. */
12236 fieldname = dwarf2_name (die, cu);
12237 if (fieldname == NULL)
12238 return;
12239
12240 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12241 if (attr
12242 /* Only create a symbol if this is an external value.
12243 new_symbol checks this and puts the value in the global symbol
12244 table, which we want. If it is not external, new_symbol
12245 will try to put the value in cu->list_in_scope which is wrong. */
12246 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12247 {
12248 /* A static const member, not much different than an enum as far as
12249 we're concerned, except that we can support more types. */
12250 new_symbol (die, NULL, cu);
12251 }
12252
12253 /* Get physical name. */
12254 physname = dwarf2_physname (fieldname, die, cu);
12255
12256 /* The name is already allocated along with this objfile, so we don't
12257 need to duplicate it for the type. */
12258 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12259 FIELD_TYPE (*fp) = die_type (die, cu);
12260 FIELD_NAME (*fp) = fieldname;
12261 }
12262 else if (die->tag == DW_TAG_inheritance)
12263 {
12264 LONGEST offset;
12265
12266 /* C++ base class field. */
12267 if (handle_data_member_location (die, cu, &offset))
12268 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12269 FIELD_BITSIZE (*fp) = 0;
12270 FIELD_TYPE (*fp) = die_type (die, cu);
12271 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12272 fip->nbaseclasses++;
12273 }
12274 }
12275
12276 /* Add a typedef defined in the scope of the FIP's class. */
12277
12278 static void
12279 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12280 struct dwarf2_cu *cu)
12281 {
12282 struct objfile *objfile = cu->objfile;
12283 struct typedef_field_list *new_field;
12284 struct attribute *attr;
12285 struct typedef_field *fp;
12286 char *fieldname = "";
12287
12288 /* Allocate a new field list entry and link it in. */
12289 new_field = xzalloc (sizeof (*new_field));
12290 make_cleanup (xfree, new_field);
12291
12292 gdb_assert (die->tag == DW_TAG_typedef);
12293
12294 fp = &new_field->field;
12295
12296 /* Get name of field. */
12297 fp->name = dwarf2_name (die, cu);
12298 if (fp->name == NULL)
12299 return;
12300
12301 fp->type = read_type_die (die, cu);
12302
12303 new_field->next = fip->typedef_field_list;
12304 fip->typedef_field_list = new_field;
12305 fip->typedef_field_list_count++;
12306 }
12307
12308 /* Create the vector of fields, and attach it to the type. */
12309
12310 static void
12311 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12312 struct dwarf2_cu *cu)
12313 {
12314 int nfields = fip->nfields;
12315
12316 /* Record the field count, allocate space for the array of fields,
12317 and create blank accessibility bitfields if necessary. */
12318 TYPE_NFIELDS (type) = nfields;
12319 TYPE_FIELDS (type) = (struct field *)
12320 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12321 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12322
12323 if (fip->non_public_fields && cu->language != language_ada)
12324 {
12325 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12326
12327 TYPE_FIELD_PRIVATE_BITS (type) =
12328 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12329 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12330
12331 TYPE_FIELD_PROTECTED_BITS (type) =
12332 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12333 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12334
12335 TYPE_FIELD_IGNORE_BITS (type) =
12336 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12337 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12338 }
12339
12340 /* If the type has baseclasses, allocate and clear a bit vector for
12341 TYPE_FIELD_VIRTUAL_BITS. */
12342 if (fip->nbaseclasses && cu->language != language_ada)
12343 {
12344 int num_bytes = B_BYTES (fip->nbaseclasses);
12345 unsigned char *pointer;
12346
12347 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12348 pointer = TYPE_ALLOC (type, num_bytes);
12349 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12350 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12351 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12352 }
12353
12354 /* Copy the saved-up fields into the field vector. Start from the head of
12355 the list, adding to the tail of the field array, so that they end up in
12356 the same order in the array in which they were added to the list. */
12357 while (nfields-- > 0)
12358 {
12359 struct nextfield *fieldp;
12360
12361 if (fip->fields)
12362 {
12363 fieldp = fip->fields;
12364 fip->fields = fieldp->next;
12365 }
12366 else
12367 {
12368 fieldp = fip->baseclasses;
12369 fip->baseclasses = fieldp->next;
12370 }
12371
12372 TYPE_FIELD (type, nfields) = fieldp->field;
12373 switch (fieldp->accessibility)
12374 {
12375 case DW_ACCESS_private:
12376 if (cu->language != language_ada)
12377 SET_TYPE_FIELD_PRIVATE (type, nfields);
12378 break;
12379
12380 case DW_ACCESS_protected:
12381 if (cu->language != language_ada)
12382 SET_TYPE_FIELD_PROTECTED (type, nfields);
12383 break;
12384
12385 case DW_ACCESS_public:
12386 break;
12387
12388 default:
12389 /* Unknown accessibility. Complain and treat it as public. */
12390 {
12391 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12392 fieldp->accessibility);
12393 }
12394 break;
12395 }
12396 if (nfields < fip->nbaseclasses)
12397 {
12398 switch (fieldp->virtuality)
12399 {
12400 case DW_VIRTUALITY_virtual:
12401 case DW_VIRTUALITY_pure_virtual:
12402 if (cu->language == language_ada)
12403 error (_("unexpected virtuality in component of Ada type"));
12404 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12405 break;
12406 }
12407 }
12408 }
12409 }
12410
12411 /* Return true if this member function is a constructor, false
12412 otherwise. */
12413
12414 static int
12415 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12416 {
12417 const char *fieldname;
12418 const char *typename;
12419 int len;
12420
12421 if (die->parent == NULL)
12422 return 0;
12423
12424 if (die->parent->tag != DW_TAG_structure_type
12425 && die->parent->tag != DW_TAG_union_type
12426 && die->parent->tag != DW_TAG_class_type)
12427 return 0;
12428
12429 fieldname = dwarf2_name (die, cu);
12430 typename = dwarf2_name (die->parent, cu);
12431 if (fieldname == NULL || typename == NULL)
12432 return 0;
12433
12434 len = strlen (fieldname);
12435 return (strncmp (fieldname, typename, len) == 0
12436 && (typename[len] == '\0' || typename[len] == '<'));
12437 }
12438
12439 /* Add a member function to the proper fieldlist. */
12440
12441 static void
12442 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12443 struct type *type, struct dwarf2_cu *cu)
12444 {
12445 struct objfile *objfile = cu->objfile;
12446 struct attribute *attr;
12447 struct fnfieldlist *flp;
12448 int i;
12449 struct fn_field *fnp;
12450 const char *fieldname;
12451 struct nextfnfield *new_fnfield;
12452 struct type *this_type;
12453 enum dwarf_access_attribute accessibility;
12454
12455 if (cu->language == language_ada)
12456 error (_("unexpected member function in Ada type"));
12457
12458 /* Get name of member function. */
12459 fieldname = dwarf2_name (die, cu);
12460 if (fieldname == NULL)
12461 return;
12462
12463 /* Look up member function name in fieldlist. */
12464 for (i = 0; i < fip->nfnfields; i++)
12465 {
12466 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12467 break;
12468 }
12469
12470 /* Create new list element if necessary. */
12471 if (i < fip->nfnfields)
12472 flp = &fip->fnfieldlists[i];
12473 else
12474 {
12475 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12476 {
12477 fip->fnfieldlists = (struct fnfieldlist *)
12478 xrealloc (fip->fnfieldlists,
12479 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12480 * sizeof (struct fnfieldlist));
12481 if (fip->nfnfields == 0)
12482 make_cleanup (free_current_contents, &fip->fnfieldlists);
12483 }
12484 flp = &fip->fnfieldlists[fip->nfnfields];
12485 flp->name = fieldname;
12486 flp->length = 0;
12487 flp->head = NULL;
12488 i = fip->nfnfields++;
12489 }
12490
12491 /* Create a new member function field and chain it to the field list
12492 entry. */
12493 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12494 make_cleanup (xfree, new_fnfield);
12495 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12496 new_fnfield->next = flp->head;
12497 flp->head = new_fnfield;
12498 flp->length++;
12499
12500 /* Fill in the member function field info. */
12501 fnp = &new_fnfield->fnfield;
12502
12503 /* Delay processing of the physname until later. */
12504 if (cu->language == language_cplus || cu->language == language_java)
12505 {
12506 add_to_method_list (type, i, flp->length - 1, fieldname,
12507 die, cu);
12508 }
12509 else
12510 {
12511 const char *physname = dwarf2_physname (fieldname, die, cu);
12512 fnp->physname = physname ? physname : "";
12513 }
12514
12515 fnp->type = alloc_type (objfile);
12516 this_type = read_type_die (die, cu);
12517 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12518 {
12519 int nparams = TYPE_NFIELDS (this_type);
12520
12521 /* TYPE is the domain of this method, and THIS_TYPE is the type
12522 of the method itself (TYPE_CODE_METHOD). */
12523 smash_to_method_type (fnp->type, type,
12524 TYPE_TARGET_TYPE (this_type),
12525 TYPE_FIELDS (this_type),
12526 TYPE_NFIELDS (this_type),
12527 TYPE_VARARGS (this_type));
12528
12529 /* Handle static member functions.
12530 Dwarf2 has no clean way to discern C++ static and non-static
12531 member functions. G++ helps GDB by marking the first
12532 parameter for non-static member functions (which is the this
12533 pointer) as artificial. We obtain this information from
12534 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12535 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12536 fnp->voffset = VOFFSET_STATIC;
12537 }
12538 else
12539 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12540 dwarf2_full_name (fieldname, die, cu));
12541
12542 /* Get fcontext from DW_AT_containing_type if present. */
12543 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12544 fnp->fcontext = die_containing_type (die, cu);
12545
12546 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12547 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12548
12549 /* Get accessibility. */
12550 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12551 if (attr)
12552 accessibility = DW_UNSND (attr);
12553 else
12554 accessibility = dwarf2_default_access_attribute (die, cu);
12555 switch (accessibility)
12556 {
12557 case DW_ACCESS_private:
12558 fnp->is_private = 1;
12559 break;
12560 case DW_ACCESS_protected:
12561 fnp->is_protected = 1;
12562 break;
12563 }
12564
12565 /* Check for artificial methods. */
12566 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12567 if (attr && DW_UNSND (attr) != 0)
12568 fnp->is_artificial = 1;
12569
12570 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12571
12572 /* Get index in virtual function table if it is a virtual member
12573 function. For older versions of GCC, this is an offset in the
12574 appropriate virtual table, as specified by DW_AT_containing_type.
12575 For everyone else, it is an expression to be evaluated relative
12576 to the object address. */
12577
12578 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12579 if (attr)
12580 {
12581 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12582 {
12583 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12584 {
12585 /* Old-style GCC. */
12586 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12587 }
12588 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12589 || (DW_BLOCK (attr)->size > 1
12590 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12591 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12592 {
12593 struct dwarf_block blk;
12594 int offset;
12595
12596 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12597 ? 1 : 2);
12598 blk.size = DW_BLOCK (attr)->size - offset;
12599 blk.data = DW_BLOCK (attr)->data + offset;
12600 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12601 if ((fnp->voffset % cu->header.addr_size) != 0)
12602 dwarf2_complex_location_expr_complaint ();
12603 else
12604 fnp->voffset /= cu->header.addr_size;
12605 fnp->voffset += 2;
12606 }
12607 else
12608 dwarf2_complex_location_expr_complaint ();
12609
12610 if (!fnp->fcontext)
12611 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12612 }
12613 else if (attr_form_is_section_offset (attr))
12614 {
12615 dwarf2_complex_location_expr_complaint ();
12616 }
12617 else
12618 {
12619 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12620 fieldname);
12621 }
12622 }
12623 else
12624 {
12625 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12626 if (attr && DW_UNSND (attr))
12627 {
12628 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12629 complaint (&symfile_complaints,
12630 _("Member function \"%s\" (offset %d) is virtual "
12631 "but the vtable offset is not specified"),
12632 fieldname, die->offset.sect_off);
12633 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12634 TYPE_CPLUS_DYNAMIC (type) = 1;
12635 }
12636 }
12637 }
12638
12639 /* Create the vector of member function fields, and attach it to the type. */
12640
12641 static void
12642 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12643 struct dwarf2_cu *cu)
12644 {
12645 struct fnfieldlist *flp;
12646 int i;
12647
12648 if (cu->language == language_ada)
12649 error (_("unexpected member functions in Ada type"));
12650
12651 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12652 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12653 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12654
12655 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12656 {
12657 struct nextfnfield *nfp = flp->head;
12658 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12659 int k;
12660
12661 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12662 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12663 fn_flp->fn_fields = (struct fn_field *)
12664 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12665 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12666 fn_flp->fn_fields[k] = nfp->fnfield;
12667 }
12668
12669 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12670 }
12671
12672 /* Returns non-zero if NAME is the name of a vtable member in CU's
12673 language, zero otherwise. */
12674 static int
12675 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12676 {
12677 static const char vptr[] = "_vptr";
12678 static const char vtable[] = "vtable";
12679
12680 /* Look for the C++ and Java forms of the vtable. */
12681 if ((cu->language == language_java
12682 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12683 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12684 && is_cplus_marker (name[sizeof (vptr) - 1])))
12685 return 1;
12686
12687 return 0;
12688 }
12689
12690 /* GCC outputs unnamed structures that are really pointers to member
12691 functions, with the ABI-specified layout. If TYPE describes
12692 such a structure, smash it into a member function type.
12693
12694 GCC shouldn't do this; it should just output pointer to member DIEs.
12695 This is GCC PR debug/28767. */
12696
12697 static void
12698 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12699 {
12700 struct type *pfn_type, *domain_type, *new_type;
12701
12702 /* Check for a structure with no name and two children. */
12703 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12704 return;
12705
12706 /* Check for __pfn and __delta members. */
12707 if (TYPE_FIELD_NAME (type, 0) == NULL
12708 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12709 || TYPE_FIELD_NAME (type, 1) == NULL
12710 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12711 return;
12712
12713 /* Find the type of the method. */
12714 pfn_type = TYPE_FIELD_TYPE (type, 0);
12715 if (pfn_type == NULL
12716 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12717 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12718 return;
12719
12720 /* Look for the "this" argument. */
12721 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12722 if (TYPE_NFIELDS (pfn_type) == 0
12723 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12724 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12725 return;
12726
12727 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12728 new_type = alloc_type (objfile);
12729 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12730 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12731 TYPE_VARARGS (pfn_type));
12732 smash_to_methodptr_type (type, new_type);
12733 }
12734
12735 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12736 (icc). */
12737
12738 static int
12739 producer_is_icc (struct dwarf2_cu *cu)
12740 {
12741 if (!cu->checked_producer)
12742 check_producer (cu);
12743
12744 return cu->producer_is_icc;
12745 }
12746
12747 /* Called when we find the DIE that starts a structure or union scope
12748 (definition) to create a type for the structure or union. Fill in
12749 the type's name and general properties; the members will not be
12750 processed until process_structure_scope.
12751
12752 NOTE: we need to call these functions regardless of whether or not the
12753 DIE has a DW_AT_name attribute, since it might be an anonymous
12754 structure or union. This gets the type entered into our set of
12755 user defined types.
12756
12757 However, if the structure is incomplete (an opaque struct/union)
12758 then suppress creating a symbol table entry for it since gdb only
12759 wants to find the one with the complete definition. Note that if
12760 it is complete, we just call new_symbol, which does it's own
12761 checking about whether the struct/union is anonymous or not (and
12762 suppresses creating a symbol table entry itself). */
12763
12764 static struct type *
12765 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12766 {
12767 struct objfile *objfile = cu->objfile;
12768 struct type *type;
12769 struct attribute *attr;
12770 const char *name;
12771
12772 /* If the definition of this type lives in .debug_types, read that type.
12773 Don't follow DW_AT_specification though, that will take us back up
12774 the chain and we want to go down. */
12775 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12776 if (attr)
12777 {
12778 type = get_DW_AT_signature_type (die, attr, cu);
12779
12780 /* The type's CU may not be the same as CU.
12781 Ensure TYPE is recorded with CU in die_type_hash. */
12782 return set_die_type (die, type, cu);
12783 }
12784
12785 type = alloc_type (objfile);
12786 INIT_CPLUS_SPECIFIC (type);
12787
12788 name = dwarf2_name (die, cu);
12789 if (name != NULL)
12790 {
12791 if (cu->language == language_cplus
12792 || cu->language == language_java)
12793 {
12794 const char *full_name = dwarf2_full_name (name, die, cu);
12795
12796 /* dwarf2_full_name might have already finished building the DIE's
12797 type. If so, there is no need to continue. */
12798 if (get_die_type (die, cu) != NULL)
12799 return get_die_type (die, cu);
12800
12801 TYPE_TAG_NAME (type) = full_name;
12802 if (die->tag == DW_TAG_structure_type
12803 || die->tag == DW_TAG_class_type)
12804 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12805 }
12806 else
12807 {
12808 /* The name is already allocated along with this objfile, so
12809 we don't need to duplicate it for the type. */
12810 TYPE_TAG_NAME (type) = name;
12811 if (die->tag == DW_TAG_class_type)
12812 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12813 }
12814 }
12815
12816 if (die->tag == DW_TAG_structure_type)
12817 {
12818 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12819 }
12820 else if (die->tag == DW_TAG_union_type)
12821 {
12822 TYPE_CODE (type) = TYPE_CODE_UNION;
12823 }
12824 else
12825 {
12826 TYPE_CODE (type) = TYPE_CODE_CLASS;
12827 }
12828
12829 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12830 TYPE_DECLARED_CLASS (type) = 1;
12831
12832 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12833 if (attr)
12834 {
12835 TYPE_LENGTH (type) = DW_UNSND (attr);
12836 }
12837 else
12838 {
12839 TYPE_LENGTH (type) = 0;
12840 }
12841
12842 if (producer_is_icc (cu))
12843 {
12844 /* ICC does not output the required DW_AT_declaration
12845 on incomplete types, but gives them a size of zero. */
12846 }
12847 else
12848 TYPE_STUB_SUPPORTED (type) = 1;
12849
12850 if (die_is_declaration (die, cu))
12851 TYPE_STUB (type) = 1;
12852 else if (attr == NULL && die->child == NULL
12853 && producer_is_realview (cu->producer))
12854 /* RealView does not output the required DW_AT_declaration
12855 on incomplete types. */
12856 TYPE_STUB (type) = 1;
12857
12858 /* We need to add the type field to the die immediately so we don't
12859 infinitely recurse when dealing with pointers to the structure
12860 type within the structure itself. */
12861 set_die_type (die, type, cu);
12862
12863 /* set_die_type should be already done. */
12864 set_descriptive_type (type, die, cu);
12865
12866 return type;
12867 }
12868
12869 /* Finish creating a structure or union type, including filling in
12870 its members and creating a symbol for it. */
12871
12872 static void
12873 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12874 {
12875 struct objfile *objfile = cu->objfile;
12876 struct die_info *child_die = die->child;
12877 struct type *type;
12878
12879 type = get_die_type (die, cu);
12880 if (type == NULL)
12881 type = read_structure_type (die, cu);
12882
12883 if (die->child != NULL && ! die_is_declaration (die, cu))
12884 {
12885 struct field_info fi;
12886 struct die_info *child_die;
12887 VEC (symbolp) *template_args = NULL;
12888 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12889
12890 memset (&fi, 0, sizeof (struct field_info));
12891
12892 child_die = die->child;
12893
12894 while (child_die && child_die->tag)
12895 {
12896 if (child_die->tag == DW_TAG_member
12897 || child_die->tag == DW_TAG_variable)
12898 {
12899 /* NOTE: carlton/2002-11-05: A C++ static data member
12900 should be a DW_TAG_member that is a declaration, but
12901 all versions of G++ as of this writing (so through at
12902 least 3.2.1) incorrectly generate DW_TAG_variable
12903 tags for them instead. */
12904 dwarf2_add_field (&fi, child_die, cu);
12905 }
12906 else if (child_die->tag == DW_TAG_subprogram)
12907 {
12908 /* C++ member function. */
12909 dwarf2_add_member_fn (&fi, child_die, type, cu);
12910 }
12911 else if (child_die->tag == DW_TAG_inheritance)
12912 {
12913 /* C++ base class field. */
12914 dwarf2_add_field (&fi, child_die, cu);
12915 }
12916 else if (child_die->tag == DW_TAG_typedef)
12917 dwarf2_add_typedef (&fi, child_die, cu);
12918 else if (child_die->tag == DW_TAG_template_type_param
12919 || child_die->tag == DW_TAG_template_value_param)
12920 {
12921 struct symbol *arg = new_symbol (child_die, NULL, cu);
12922
12923 if (arg != NULL)
12924 VEC_safe_push (symbolp, template_args, arg);
12925 }
12926
12927 child_die = sibling_die (child_die);
12928 }
12929
12930 /* Attach template arguments to type. */
12931 if (! VEC_empty (symbolp, template_args))
12932 {
12933 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12934 TYPE_N_TEMPLATE_ARGUMENTS (type)
12935 = VEC_length (symbolp, template_args);
12936 TYPE_TEMPLATE_ARGUMENTS (type)
12937 = obstack_alloc (&objfile->objfile_obstack,
12938 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12939 * sizeof (struct symbol *)));
12940 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12941 VEC_address (symbolp, template_args),
12942 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12943 * sizeof (struct symbol *)));
12944 VEC_free (symbolp, template_args);
12945 }
12946
12947 /* Attach fields and member functions to the type. */
12948 if (fi.nfields)
12949 dwarf2_attach_fields_to_type (&fi, type, cu);
12950 if (fi.nfnfields)
12951 {
12952 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12953
12954 /* Get the type which refers to the base class (possibly this
12955 class itself) which contains the vtable pointer for the current
12956 class from the DW_AT_containing_type attribute. This use of
12957 DW_AT_containing_type is a GNU extension. */
12958
12959 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12960 {
12961 struct type *t = die_containing_type (die, cu);
12962
12963 TYPE_VPTR_BASETYPE (type) = t;
12964 if (type == t)
12965 {
12966 int i;
12967
12968 /* Our own class provides vtbl ptr. */
12969 for (i = TYPE_NFIELDS (t) - 1;
12970 i >= TYPE_N_BASECLASSES (t);
12971 --i)
12972 {
12973 const char *fieldname = TYPE_FIELD_NAME (t, i);
12974
12975 if (is_vtable_name (fieldname, cu))
12976 {
12977 TYPE_VPTR_FIELDNO (type) = i;
12978 break;
12979 }
12980 }
12981
12982 /* Complain if virtual function table field not found. */
12983 if (i < TYPE_N_BASECLASSES (t))
12984 complaint (&symfile_complaints,
12985 _("virtual function table pointer "
12986 "not found when defining class '%s'"),
12987 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12988 "");
12989 }
12990 else
12991 {
12992 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12993 }
12994 }
12995 else if (cu->producer
12996 && strncmp (cu->producer,
12997 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12998 {
12999 /* The IBM XLC compiler does not provide direct indication
13000 of the containing type, but the vtable pointer is
13001 always named __vfp. */
13002
13003 int i;
13004
13005 for (i = TYPE_NFIELDS (type) - 1;
13006 i >= TYPE_N_BASECLASSES (type);
13007 --i)
13008 {
13009 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13010 {
13011 TYPE_VPTR_FIELDNO (type) = i;
13012 TYPE_VPTR_BASETYPE (type) = type;
13013 break;
13014 }
13015 }
13016 }
13017 }
13018
13019 /* Copy fi.typedef_field_list linked list elements content into the
13020 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13021 if (fi.typedef_field_list)
13022 {
13023 int i = fi.typedef_field_list_count;
13024
13025 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13026 TYPE_TYPEDEF_FIELD_ARRAY (type)
13027 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13028 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13029
13030 /* Reverse the list order to keep the debug info elements order. */
13031 while (--i >= 0)
13032 {
13033 struct typedef_field *dest, *src;
13034
13035 dest = &TYPE_TYPEDEF_FIELD (type, i);
13036 src = &fi.typedef_field_list->field;
13037 fi.typedef_field_list = fi.typedef_field_list->next;
13038 *dest = *src;
13039 }
13040 }
13041
13042 do_cleanups (back_to);
13043
13044 if (HAVE_CPLUS_STRUCT (type))
13045 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13046 }
13047
13048 quirk_gcc_member_function_pointer (type, objfile);
13049
13050 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13051 snapshots) has been known to create a die giving a declaration
13052 for a class that has, as a child, a die giving a definition for a
13053 nested class. So we have to process our children even if the
13054 current die is a declaration. Normally, of course, a declaration
13055 won't have any children at all. */
13056
13057 while (child_die != NULL && child_die->tag)
13058 {
13059 if (child_die->tag == DW_TAG_member
13060 || child_die->tag == DW_TAG_variable
13061 || child_die->tag == DW_TAG_inheritance
13062 || child_die->tag == DW_TAG_template_value_param
13063 || child_die->tag == DW_TAG_template_type_param)
13064 {
13065 /* Do nothing. */
13066 }
13067 else
13068 process_die (child_die, cu);
13069
13070 child_die = sibling_die (child_die);
13071 }
13072
13073 /* Do not consider external references. According to the DWARF standard,
13074 these DIEs are identified by the fact that they have no byte_size
13075 attribute, and a declaration attribute. */
13076 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13077 || !die_is_declaration (die, cu))
13078 new_symbol (die, type, cu);
13079 }
13080
13081 /* Given a DW_AT_enumeration_type die, set its type. We do not
13082 complete the type's fields yet, or create any symbols. */
13083
13084 static struct type *
13085 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13086 {
13087 struct objfile *objfile = cu->objfile;
13088 struct type *type;
13089 struct attribute *attr;
13090 const char *name;
13091
13092 /* If the definition of this type lives in .debug_types, read that type.
13093 Don't follow DW_AT_specification though, that will take us back up
13094 the chain and we want to go down. */
13095 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13096 if (attr)
13097 {
13098 type = get_DW_AT_signature_type (die, attr, cu);
13099
13100 /* The type's CU may not be the same as CU.
13101 Ensure TYPE is recorded with CU in die_type_hash. */
13102 return set_die_type (die, type, cu);
13103 }
13104
13105 type = alloc_type (objfile);
13106
13107 TYPE_CODE (type) = TYPE_CODE_ENUM;
13108 name = dwarf2_full_name (NULL, die, cu);
13109 if (name != NULL)
13110 TYPE_TAG_NAME (type) = name;
13111
13112 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13113 if (attr)
13114 {
13115 TYPE_LENGTH (type) = DW_UNSND (attr);
13116 }
13117 else
13118 {
13119 TYPE_LENGTH (type) = 0;
13120 }
13121
13122 /* The enumeration DIE can be incomplete. In Ada, any type can be
13123 declared as private in the package spec, and then defined only
13124 inside the package body. Such types are known as Taft Amendment
13125 Types. When another package uses such a type, an incomplete DIE
13126 may be generated by the compiler. */
13127 if (die_is_declaration (die, cu))
13128 TYPE_STUB (type) = 1;
13129
13130 return set_die_type (die, type, cu);
13131 }
13132
13133 /* Given a pointer to a die which begins an enumeration, process all
13134 the dies that define the members of the enumeration, and create the
13135 symbol for the enumeration type.
13136
13137 NOTE: We reverse the order of the element list. */
13138
13139 static void
13140 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13141 {
13142 struct type *this_type;
13143
13144 this_type = get_die_type (die, cu);
13145 if (this_type == NULL)
13146 this_type = read_enumeration_type (die, cu);
13147
13148 if (die->child != NULL)
13149 {
13150 struct die_info *child_die;
13151 struct symbol *sym;
13152 struct field *fields = NULL;
13153 int num_fields = 0;
13154 int unsigned_enum = 1;
13155 const char *name;
13156 int flag_enum = 1;
13157 ULONGEST mask = 0;
13158
13159 child_die = die->child;
13160 while (child_die && child_die->tag)
13161 {
13162 if (child_die->tag != DW_TAG_enumerator)
13163 {
13164 process_die (child_die, cu);
13165 }
13166 else
13167 {
13168 name = dwarf2_name (child_die, cu);
13169 if (name)
13170 {
13171 sym = new_symbol (child_die, this_type, cu);
13172 if (SYMBOL_VALUE (sym) < 0)
13173 {
13174 unsigned_enum = 0;
13175 flag_enum = 0;
13176 }
13177 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13178 flag_enum = 0;
13179 else
13180 mask |= SYMBOL_VALUE (sym);
13181
13182 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13183 {
13184 fields = (struct field *)
13185 xrealloc (fields,
13186 (num_fields + DW_FIELD_ALLOC_CHUNK)
13187 * sizeof (struct field));
13188 }
13189
13190 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13191 FIELD_TYPE (fields[num_fields]) = NULL;
13192 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13193 FIELD_BITSIZE (fields[num_fields]) = 0;
13194
13195 num_fields++;
13196 }
13197 }
13198
13199 child_die = sibling_die (child_die);
13200 }
13201
13202 if (num_fields)
13203 {
13204 TYPE_NFIELDS (this_type) = num_fields;
13205 TYPE_FIELDS (this_type) = (struct field *)
13206 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13207 memcpy (TYPE_FIELDS (this_type), fields,
13208 sizeof (struct field) * num_fields);
13209 xfree (fields);
13210 }
13211 if (unsigned_enum)
13212 TYPE_UNSIGNED (this_type) = 1;
13213 if (flag_enum)
13214 TYPE_FLAG_ENUM (this_type) = 1;
13215 }
13216
13217 /* If we are reading an enum from a .debug_types unit, and the enum
13218 is a declaration, and the enum is not the signatured type in the
13219 unit, then we do not want to add a symbol for it. Adding a
13220 symbol would in some cases obscure the true definition of the
13221 enum, giving users an incomplete type when the definition is
13222 actually available. Note that we do not want to do this for all
13223 enums which are just declarations, because C++0x allows forward
13224 enum declarations. */
13225 if (cu->per_cu->is_debug_types
13226 && die_is_declaration (die, cu))
13227 {
13228 struct signatured_type *sig_type;
13229
13230 sig_type = (struct signatured_type *) cu->per_cu;
13231 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13232 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13233 return;
13234 }
13235
13236 new_symbol (die, this_type, cu);
13237 }
13238
13239 /* Extract all information from a DW_TAG_array_type DIE and put it in
13240 the DIE's type field. For now, this only handles one dimensional
13241 arrays. */
13242
13243 static struct type *
13244 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13245 {
13246 struct objfile *objfile = cu->objfile;
13247 struct die_info *child_die;
13248 struct type *type;
13249 struct type *element_type, *range_type, *index_type;
13250 struct type **range_types = NULL;
13251 struct attribute *attr;
13252 int ndim = 0;
13253 struct cleanup *back_to;
13254 const char *name;
13255
13256 element_type = die_type (die, cu);
13257
13258 /* The die_type call above may have already set the type for this DIE. */
13259 type = get_die_type (die, cu);
13260 if (type)
13261 return type;
13262
13263 /* Irix 6.2 native cc creates array types without children for
13264 arrays with unspecified length. */
13265 if (die->child == NULL)
13266 {
13267 index_type = objfile_type (objfile)->builtin_int;
13268 range_type = create_range_type (NULL, index_type, 0, -1);
13269 type = create_array_type (NULL, element_type, range_type);
13270 return set_die_type (die, type, cu);
13271 }
13272
13273 back_to = make_cleanup (null_cleanup, NULL);
13274 child_die = die->child;
13275 while (child_die && child_die->tag)
13276 {
13277 if (child_die->tag == DW_TAG_subrange_type)
13278 {
13279 struct type *child_type = read_type_die (child_die, cu);
13280
13281 if (child_type != NULL)
13282 {
13283 /* The range type was succesfully read. Save it for the
13284 array type creation. */
13285 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13286 {
13287 range_types = (struct type **)
13288 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13289 * sizeof (struct type *));
13290 if (ndim == 0)
13291 make_cleanup (free_current_contents, &range_types);
13292 }
13293 range_types[ndim++] = child_type;
13294 }
13295 }
13296 child_die = sibling_die (child_die);
13297 }
13298
13299 /* Dwarf2 dimensions are output from left to right, create the
13300 necessary array types in backwards order. */
13301
13302 type = element_type;
13303
13304 if (read_array_order (die, cu) == DW_ORD_col_major)
13305 {
13306 int i = 0;
13307
13308 while (i < ndim)
13309 type = create_array_type (NULL, type, range_types[i++]);
13310 }
13311 else
13312 {
13313 while (ndim-- > 0)
13314 type = create_array_type (NULL, type, range_types[ndim]);
13315 }
13316
13317 /* Understand Dwarf2 support for vector types (like they occur on
13318 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13319 array type. This is not part of the Dwarf2/3 standard yet, but a
13320 custom vendor extension. The main difference between a regular
13321 array and the vector variant is that vectors are passed by value
13322 to functions. */
13323 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13324 if (attr)
13325 make_vector_type (type);
13326
13327 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13328 implementation may choose to implement triple vectors using this
13329 attribute. */
13330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13331 if (attr)
13332 {
13333 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13334 TYPE_LENGTH (type) = DW_UNSND (attr);
13335 else
13336 complaint (&symfile_complaints,
13337 _("DW_AT_byte_size for array type smaller "
13338 "than the total size of elements"));
13339 }
13340
13341 name = dwarf2_name (die, cu);
13342 if (name)
13343 TYPE_NAME (type) = name;
13344
13345 /* Install the type in the die. */
13346 set_die_type (die, type, cu);
13347
13348 /* set_die_type should be already done. */
13349 set_descriptive_type (type, die, cu);
13350
13351 do_cleanups (back_to);
13352
13353 return type;
13354 }
13355
13356 static enum dwarf_array_dim_ordering
13357 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13358 {
13359 struct attribute *attr;
13360
13361 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13362
13363 if (attr) return DW_SND (attr);
13364
13365 /* GNU F77 is a special case, as at 08/2004 array type info is the
13366 opposite order to the dwarf2 specification, but data is still
13367 laid out as per normal fortran.
13368
13369 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13370 version checking. */
13371
13372 if (cu->language == language_fortran
13373 && cu->producer && strstr (cu->producer, "GNU F77"))
13374 {
13375 return DW_ORD_row_major;
13376 }
13377
13378 switch (cu->language_defn->la_array_ordering)
13379 {
13380 case array_column_major:
13381 return DW_ORD_col_major;
13382 case array_row_major:
13383 default:
13384 return DW_ORD_row_major;
13385 };
13386 }
13387
13388 /* Extract all information from a DW_TAG_set_type DIE and put it in
13389 the DIE's type field. */
13390
13391 static struct type *
13392 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13393 {
13394 struct type *domain_type, *set_type;
13395 struct attribute *attr;
13396
13397 domain_type = die_type (die, cu);
13398
13399 /* The die_type call above may have already set the type for this DIE. */
13400 set_type = get_die_type (die, cu);
13401 if (set_type)
13402 return set_type;
13403
13404 set_type = create_set_type (NULL, domain_type);
13405
13406 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13407 if (attr)
13408 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13409
13410 return set_die_type (die, set_type, cu);
13411 }
13412
13413 /* A helper for read_common_block that creates a locexpr baton.
13414 SYM is the symbol which we are marking as computed.
13415 COMMON_DIE is the DIE for the common block.
13416 COMMON_LOC is the location expression attribute for the common
13417 block itself.
13418 MEMBER_LOC is the location expression attribute for the particular
13419 member of the common block that we are processing.
13420 CU is the CU from which the above come. */
13421
13422 static void
13423 mark_common_block_symbol_computed (struct symbol *sym,
13424 struct die_info *common_die,
13425 struct attribute *common_loc,
13426 struct attribute *member_loc,
13427 struct dwarf2_cu *cu)
13428 {
13429 struct objfile *objfile = dwarf2_per_objfile->objfile;
13430 struct dwarf2_locexpr_baton *baton;
13431 gdb_byte *ptr;
13432 unsigned int cu_off;
13433 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13434 LONGEST offset = 0;
13435
13436 gdb_assert (common_loc && member_loc);
13437 gdb_assert (attr_form_is_block (common_loc));
13438 gdb_assert (attr_form_is_block (member_loc)
13439 || attr_form_is_constant (member_loc));
13440
13441 baton = obstack_alloc (&objfile->objfile_obstack,
13442 sizeof (struct dwarf2_locexpr_baton));
13443 baton->per_cu = cu->per_cu;
13444 gdb_assert (baton->per_cu);
13445
13446 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13447
13448 if (attr_form_is_constant (member_loc))
13449 {
13450 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13451 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13452 }
13453 else
13454 baton->size += DW_BLOCK (member_loc)->size;
13455
13456 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13457 baton->data = ptr;
13458
13459 *ptr++ = DW_OP_call4;
13460 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13461 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13462 ptr += 4;
13463
13464 if (attr_form_is_constant (member_loc))
13465 {
13466 *ptr++ = DW_OP_addr;
13467 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13468 ptr += cu->header.addr_size;
13469 }
13470 else
13471 {
13472 /* We have to copy the data here, because DW_OP_call4 will only
13473 use a DW_AT_location attribute. */
13474 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13475 ptr += DW_BLOCK (member_loc)->size;
13476 }
13477
13478 *ptr++ = DW_OP_plus;
13479 gdb_assert (ptr - baton->data == baton->size);
13480
13481 SYMBOL_LOCATION_BATON (sym) = baton;
13482 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13483 }
13484
13485 /* Create appropriate locally-scoped variables for all the
13486 DW_TAG_common_block entries. Also create a struct common_block
13487 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13488 is used to sepate the common blocks name namespace from regular
13489 variable names. */
13490
13491 static void
13492 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13493 {
13494 struct attribute *attr;
13495
13496 attr = dwarf2_attr (die, DW_AT_location, cu);
13497 if (attr)
13498 {
13499 /* Support the .debug_loc offsets. */
13500 if (attr_form_is_block (attr))
13501 {
13502 /* Ok. */
13503 }
13504 else if (attr_form_is_section_offset (attr))
13505 {
13506 dwarf2_complex_location_expr_complaint ();
13507 attr = NULL;
13508 }
13509 else
13510 {
13511 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13512 "common block member");
13513 attr = NULL;
13514 }
13515 }
13516
13517 if (die->child != NULL)
13518 {
13519 struct objfile *objfile = cu->objfile;
13520 struct die_info *child_die;
13521 size_t n_entries = 0, size;
13522 struct common_block *common_block;
13523 struct symbol *sym;
13524
13525 for (child_die = die->child;
13526 child_die && child_die->tag;
13527 child_die = sibling_die (child_die))
13528 ++n_entries;
13529
13530 size = (sizeof (struct common_block)
13531 + (n_entries - 1) * sizeof (struct symbol *));
13532 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13533 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13534 common_block->n_entries = 0;
13535
13536 for (child_die = die->child;
13537 child_die && child_die->tag;
13538 child_die = sibling_die (child_die))
13539 {
13540 /* Create the symbol in the DW_TAG_common_block block in the current
13541 symbol scope. */
13542 sym = new_symbol (child_die, NULL, cu);
13543 if (sym != NULL)
13544 {
13545 struct attribute *member_loc;
13546
13547 common_block->contents[common_block->n_entries++] = sym;
13548
13549 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13550 cu);
13551 if (member_loc)
13552 {
13553 /* GDB has handled this for a long time, but it is
13554 not specified by DWARF. It seems to have been
13555 emitted by gfortran at least as recently as:
13556 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13557 complaint (&symfile_complaints,
13558 _("Variable in common block has "
13559 "DW_AT_data_member_location "
13560 "- DIE at 0x%x [in module %s]"),
13561 child_die->offset.sect_off,
13562 objfile_name (cu->objfile));
13563
13564 if (attr_form_is_section_offset (member_loc))
13565 dwarf2_complex_location_expr_complaint ();
13566 else if (attr_form_is_constant (member_loc)
13567 || attr_form_is_block (member_loc))
13568 {
13569 if (attr)
13570 mark_common_block_symbol_computed (sym, die, attr,
13571 member_loc, cu);
13572 }
13573 else
13574 dwarf2_complex_location_expr_complaint ();
13575 }
13576 }
13577 }
13578
13579 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13580 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13581 }
13582 }
13583
13584 /* Create a type for a C++ namespace. */
13585
13586 static struct type *
13587 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13588 {
13589 struct objfile *objfile = cu->objfile;
13590 const char *previous_prefix, *name;
13591 int is_anonymous;
13592 struct type *type;
13593
13594 /* For extensions, reuse the type of the original namespace. */
13595 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13596 {
13597 struct die_info *ext_die;
13598 struct dwarf2_cu *ext_cu = cu;
13599
13600 ext_die = dwarf2_extension (die, &ext_cu);
13601 type = read_type_die (ext_die, ext_cu);
13602
13603 /* EXT_CU may not be the same as CU.
13604 Ensure TYPE is recorded with CU in die_type_hash. */
13605 return set_die_type (die, type, cu);
13606 }
13607
13608 name = namespace_name (die, &is_anonymous, cu);
13609
13610 /* Now build the name of the current namespace. */
13611
13612 previous_prefix = determine_prefix (die, cu);
13613 if (previous_prefix[0] != '\0')
13614 name = typename_concat (&objfile->objfile_obstack,
13615 previous_prefix, name, 0, cu);
13616
13617 /* Create the type. */
13618 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13619 objfile);
13620 TYPE_NAME (type) = name;
13621 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13622
13623 return set_die_type (die, type, cu);
13624 }
13625
13626 /* Read a C++ namespace. */
13627
13628 static void
13629 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13630 {
13631 struct objfile *objfile = cu->objfile;
13632 int is_anonymous;
13633
13634 /* Add a symbol associated to this if we haven't seen the namespace
13635 before. Also, add a using directive if it's an anonymous
13636 namespace. */
13637
13638 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13639 {
13640 struct type *type;
13641
13642 type = read_type_die (die, cu);
13643 new_symbol (die, type, cu);
13644
13645 namespace_name (die, &is_anonymous, cu);
13646 if (is_anonymous)
13647 {
13648 const char *previous_prefix = determine_prefix (die, cu);
13649
13650 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13651 NULL, NULL, 0, &objfile->objfile_obstack);
13652 }
13653 }
13654
13655 if (die->child != NULL)
13656 {
13657 struct die_info *child_die = die->child;
13658
13659 while (child_die && child_die->tag)
13660 {
13661 process_die (child_die, cu);
13662 child_die = sibling_die (child_die);
13663 }
13664 }
13665 }
13666
13667 /* Read a Fortran module as type. This DIE can be only a declaration used for
13668 imported module. Still we need that type as local Fortran "use ... only"
13669 declaration imports depend on the created type in determine_prefix. */
13670
13671 static struct type *
13672 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13673 {
13674 struct objfile *objfile = cu->objfile;
13675 const char *module_name;
13676 struct type *type;
13677
13678 module_name = dwarf2_name (die, cu);
13679 if (!module_name)
13680 complaint (&symfile_complaints,
13681 _("DW_TAG_module has no name, offset 0x%x"),
13682 die->offset.sect_off);
13683 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13684
13685 /* determine_prefix uses TYPE_TAG_NAME. */
13686 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13687
13688 return set_die_type (die, type, cu);
13689 }
13690
13691 /* Read a Fortran module. */
13692
13693 static void
13694 read_module (struct die_info *die, struct dwarf2_cu *cu)
13695 {
13696 struct die_info *child_die = die->child;
13697 struct type *type;
13698
13699 type = read_type_die (die, cu);
13700 new_symbol (die, type, cu);
13701
13702 while (child_die && child_die->tag)
13703 {
13704 process_die (child_die, cu);
13705 child_die = sibling_die (child_die);
13706 }
13707 }
13708
13709 /* Return the name of the namespace represented by DIE. Set
13710 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13711 namespace. */
13712
13713 static const char *
13714 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13715 {
13716 struct die_info *current_die;
13717 const char *name = NULL;
13718
13719 /* Loop through the extensions until we find a name. */
13720
13721 for (current_die = die;
13722 current_die != NULL;
13723 current_die = dwarf2_extension (die, &cu))
13724 {
13725 name = dwarf2_name (current_die, cu);
13726 if (name != NULL)
13727 break;
13728 }
13729
13730 /* Is it an anonymous namespace? */
13731
13732 *is_anonymous = (name == NULL);
13733 if (*is_anonymous)
13734 name = CP_ANONYMOUS_NAMESPACE_STR;
13735
13736 return name;
13737 }
13738
13739 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13740 the user defined type vector. */
13741
13742 static struct type *
13743 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13744 {
13745 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13746 struct comp_unit_head *cu_header = &cu->header;
13747 struct type *type;
13748 struct attribute *attr_byte_size;
13749 struct attribute *attr_address_class;
13750 int byte_size, addr_class;
13751 struct type *target_type;
13752
13753 target_type = die_type (die, cu);
13754
13755 /* The die_type call above may have already set the type for this DIE. */
13756 type = get_die_type (die, cu);
13757 if (type)
13758 return type;
13759
13760 type = lookup_pointer_type (target_type);
13761
13762 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13763 if (attr_byte_size)
13764 byte_size = DW_UNSND (attr_byte_size);
13765 else
13766 byte_size = cu_header->addr_size;
13767
13768 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13769 if (attr_address_class)
13770 addr_class = DW_UNSND (attr_address_class);
13771 else
13772 addr_class = DW_ADDR_none;
13773
13774 /* If the pointer size or address class is different than the
13775 default, create a type variant marked as such and set the
13776 length accordingly. */
13777 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13778 {
13779 if (gdbarch_address_class_type_flags_p (gdbarch))
13780 {
13781 int type_flags;
13782
13783 type_flags = gdbarch_address_class_type_flags
13784 (gdbarch, byte_size, addr_class);
13785 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13786 == 0);
13787 type = make_type_with_address_space (type, type_flags);
13788 }
13789 else if (TYPE_LENGTH (type) != byte_size)
13790 {
13791 complaint (&symfile_complaints,
13792 _("invalid pointer size %d"), byte_size);
13793 }
13794 else
13795 {
13796 /* Should we also complain about unhandled address classes? */
13797 }
13798 }
13799
13800 TYPE_LENGTH (type) = byte_size;
13801 return set_die_type (die, type, cu);
13802 }
13803
13804 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13805 the user defined type vector. */
13806
13807 static struct type *
13808 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13809 {
13810 struct type *type;
13811 struct type *to_type;
13812 struct type *domain;
13813
13814 to_type = die_type (die, cu);
13815 domain = die_containing_type (die, cu);
13816
13817 /* The calls above may have already set the type for this DIE. */
13818 type = get_die_type (die, cu);
13819 if (type)
13820 return type;
13821
13822 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13823 type = lookup_methodptr_type (to_type);
13824 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13825 {
13826 struct type *new_type = alloc_type (cu->objfile);
13827
13828 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13829 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13830 TYPE_VARARGS (to_type));
13831 type = lookup_methodptr_type (new_type);
13832 }
13833 else
13834 type = lookup_memberptr_type (to_type, domain);
13835
13836 return set_die_type (die, type, cu);
13837 }
13838
13839 /* Extract all information from a DW_TAG_reference_type DIE and add to
13840 the user defined type vector. */
13841
13842 static struct type *
13843 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13844 {
13845 struct comp_unit_head *cu_header = &cu->header;
13846 struct type *type, *target_type;
13847 struct attribute *attr;
13848
13849 target_type = die_type (die, cu);
13850
13851 /* The die_type call above may have already set the type for this DIE. */
13852 type = get_die_type (die, cu);
13853 if (type)
13854 return type;
13855
13856 type = lookup_reference_type (target_type);
13857 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13858 if (attr)
13859 {
13860 TYPE_LENGTH (type) = DW_UNSND (attr);
13861 }
13862 else
13863 {
13864 TYPE_LENGTH (type) = cu_header->addr_size;
13865 }
13866 return set_die_type (die, type, cu);
13867 }
13868
13869 static struct type *
13870 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13871 {
13872 struct type *base_type, *cv_type;
13873
13874 base_type = die_type (die, cu);
13875
13876 /* The die_type call above may have already set the type for this DIE. */
13877 cv_type = get_die_type (die, cu);
13878 if (cv_type)
13879 return cv_type;
13880
13881 /* In case the const qualifier is applied to an array type, the element type
13882 is so qualified, not the array type (section 6.7.3 of C99). */
13883 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13884 {
13885 struct type *el_type, *inner_array;
13886
13887 base_type = copy_type (base_type);
13888 inner_array = base_type;
13889
13890 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13891 {
13892 TYPE_TARGET_TYPE (inner_array) =
13893 copy_type (TYPE_TARGET_TYPE (inner_array));
13894 inner_array = TYPE_TARGET_TYPE (inner_array);
13895 }
13896
13897 el_type = TYPE_TARGET_TYPE (inner_array);
13898 TYPE_TARGET_TYPE (inner_array) =
13899 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13900
13901 return set_die_type (die, base_type, cu);
13902 }
13903
13904 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13905 return set_die_type (die, cv_type, cu);
13906 }
13907
13908 static struct type *
13909 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13910 {
13911 struct type *base_type, *cv_type;
13912
13913 base_type = die_type (die, cu);
13914
13915 /* The die_type call above may have already set the type for this DIE. */
13916 cv_type = get_die_type (die, cu);
13917 if (cv_type)
13918 return cv_type;
13919
13920 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13921 return set_die_type (die, cv_type, cu);
13922 }
13923
13924 /* Handle DW_TAG_restrict_type. */
13925
13926 static struct type *
13927 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13928 {
13929 struct type *base_type, *cv_type;
13930
13931 base_type = die_type (die, cu);
13932
13933 /* The die_type call above may have already set the type for this DIE. */
13934 cv_type = get_die_type (die, cu);
13935 if (cv_type)
13936 return cv_type;
13937
13938 cv_type = make_restrict_type (base_type);
13939 return set_die_type (die, cv_type, cu);
13940 }
13941
13942 /* Extract all information from a DW_TAG_string_type DIE and add to
13943 the user defined type vector. It isn't really a user defined type,
13944 but it behaves like one, with other DIE's using an AT_user_def_type
13945 attribute to reference it. */
13946
13947 static struct type *
13948 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13949 {
13950 struct objfile *objfile = cu->objfile;
13951 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13952 struct type *type, *range_type, *index_type, *char_type;
13953 struct attribute *attr;
13954 unsigned int length;
13955
13956 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13957 if (attr)
13958 {
13959 length = DW_UNSND (attr);
13960 }
13961 else
13962 {
13963 /* Check for the DW_AT_byte_size attribute. */
13964 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13965 if (attr)
13966 {
13967 length = DW_UNSND (attr);
13968 }
13969 else
13970 {
13971 length = 1;
13972 }
13973 }
13974
13975 index_type = objfile_type (objfile)->builtin_int;
13976 range_type = create_range_type (NULL, index_type, 1, length);
13977 char_type = language_string_char_type (cu->language_defn, gdbarch);
13978 type = create_string_type (NULL, char_type, range_type);
13979
13980 return set_die_type (die, type, cu);
13981 }
13982
13983 /* Assuming that DIE corresponds to a function, returns nonzero
13984 if the function is prototyped. */
13985
13986 static int
13987 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13988 {
13989 struct attribute *attr;
13990
13991 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13992 if (attr && (DW_UNSND (attr) != 0))
13993 return 1;
13994
13995 /* The DWARF standard implies that the DW_AT_prototyped attribute
13996 is only meaninful for C, but the concept also extends to other
13997 languages that allow unprototyped functions (Eg: Objective C).
13998 For all other languages, assume that functions are always
13999 prototyped. */
14000 if (cu->language != language_c
14001 && cu->language != language_objc
14002 && cu->language != language_opencl)
14003 return 1;
14004
14005 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14006 prototyped and unprototyped functions; default to prototyped,
14007 since that is more common in modern code (and RealView warns
14008 about unprototyped functions). */
14009 if (producer_is_realview (cu->producer))
14010 return 1;
14011
14012 return 0;
14013 }
14014
14015 /* Handle DIES due to C code like:
14016
14017 struct foo
14018 {
14019 int (*funcp)(int a, long l);
14020 int b;
14021 };
14022
14023 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14024
14025 static struct type *
14026 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14027 {
14028 struct objfile *objfile = cu->objfile;
14029 struct type *type; /* Type that this function returns. */
14030 struct type *ftype; /* Function that returns above type. */
14031 struct attribute *attr;
14032
14033 type = die_type (die, cu);
14034
14035 /* The die_type call above may have already set the type for this DIE. */
14036 ftype = get_die_type (die, cu);
14037 if (ftype)
14038 return ftype;
14039
14040 ftype = lookup_function_type (type);
14041
14042 if (prototyped_function_p (die, cu))
14043 TYPE_PROTOTYPED (ftype) = 1;
14044
14045 /* Store the calling convention in the type if it's available in
14046 the subroutine die. Otherwise set the calling convention to
14047 the default value DW_CC_normal. */
14048 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14049 if (attr)
14050 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14051 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14052 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14053 else
14054 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14055
14056 /* We need to add the subroutine type to the die immediately so
14057 we don't infinitely recurse when dealing with parameters
14058 declared as the same subroutine type. */
14059 set_die_type (die, ftype, cu);
14060
14061 if (die->child != NULL)
14062 {
14063 struct type *void_type = objfile_type (objfile)->builtin_void;
14064 struct die_info *child_die;
14065 int nparams, iparams;
14066
14067 /* Count the number of parameters.
14068 FIXME: GDB currently ignores vararg functions, but knows about
14069 vararg member functions. */
14070 nparams = 0;
14071 child_die = die->child;
14072 while (child_die && child_die->tag)
14073 {
14074 if (child_die->tag == DW_TAG_formal_parameter)
14075 nparams++;
14076 else if (child_die->tag == DW_TAG_unspecified_parameters)
14077 TYPE_VARARGS (ftype) = 1;
14078 child_die = sibling_die (child_die);
14079 }
14080
14081 /* Allocate storage for parameters and fill them in. */
14082 TYPE_NFIELDS (ftype) = nparams;
14083 TYPE_FIELDS (ftype) = (struct field *)
14084 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14085
14086 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14087 even if we error out during the parameters reading below. */
14088 for (iparams = 0; iparams < nparams; iparams++)
14089 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14090
14091 iparams = 0;
14092 child_die = die->child;
14093 while (child_die && child_die->tag)
14094 {
14095 if (child_die->tag == DW_TAG_formal_parameter)
14096 {
14097 struct type *arg_type;
14098
14099 /* DWARF version 2 has no clean way to discern C++
14100 static and non-static member functions. G++ helps
14101 GDB by marking the first parameter for non-static
14102 member functions (which is the this pointer) as
14103 artificial. We pass this information to
14104 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14105
14106 DWARF version 3 added DW_AT_object_pointer, which GCC
14107 4.5 does not yet generate. */
14108 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14109 if (attr)
14110 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14111 else
14112 {
14113 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14114
14115 /* GCC/43521: In java, the formal parameter
14116 "this" is sometimes not marked with DW_AT_artificial. */
14117 if (cu->language == language_java)
14118 {
14119 const char *name = dwarf2_name (child_die, cu);
14120
14121 if (name && !strcmp (name, "this"))
14122 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14123 }
14124 }
14125 arg_type = die_type (child_die, cu);
14126
14127 /* RealView does not mark THIS as const, which the testsuite
14128 expects. GCC marks THIS as const in method definitions,
14129 but not in the class specifications (GCC PR 43053). */
14130 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14131 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14132 {
14133 int is_this = 0;
14134 struct dwarf2_cu *arg_cu = cu;
14135 const char *name = dwarf2_name (child_die, cu);
14136
14137 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14138 if (attr)
14139 {
14140 /* If the compiler emits this, use it. */
14141 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14142 is_this = 1;
14143 }
14144 else if (name && strcmp (name, "this") == 0)
14145 /* Function definitions will have the argument names. */
14146 is_this = 1;
14147 else if (name == NULL && iparams == 0)
14148 /* Declarations may not have the names, so like
14149 elsewhere in GDB, assume an artificial first
14150 argument is "this". */
14151 is_this = 1;
14152
14153 if (is_this)
14154 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14155 arg_type, 0);
14156 }
14157
14158 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14159 iparams++;
14160 }
14161 child_die = sibling_die (child_die);
14162 }
14163 }
14164
14165 return ftype;
14166 }
14167
14168 static struct type *
14169 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14170 {
14171 struct objfile *objfile = cu->objfile;
14172 const char *name = NULL;
14173 struct type *this_type, *target_type;
14174
14175 name = dwarf2_full_name (NULL, die, cu);
14176 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14177 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14178 TYPE_NAME (this_type) = name;
14179 set_die_type (die, this_type, cu);
14180 target_type = die_type (die, cu);
14181 if (target_type != this_type)
14182 TYPE_TARGET_TYPE (this_type) = target_type;
14183 else
14184 {
14185 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14186 spec and cause infinite loops in GDB. */
14187 complaint (&symfile_complaints,
14188 _("Self-referential DW_TAG_typedef "
14189 "- DIE at 0x%x [in module %s]"),
14190 die->offset.sect_off, objfile_name (objfile));
14191 TYPE_TARGET_TYPE (this_type) = NULL;
14192 }
14193 return this_type;
14194 }
14195
14196 /* Find a representation of a given base type and install
14197 it in the TYPE field of the die. */
14198
14199 static struct type *
14200 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14201 {
14202 struct objfile *objfile = cu->objfile;
14203 struct type *type;
14204 struct attribute *attr;
14205 int encoding = 0, size = 0;
14206 const char *name;
14207 enum type_code code = TYPE_CODE_INT;
14208 int type_flags = 0;
14209 struct type *target_type = NULL;
14210
14211 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14212 if (attr)
14213 {
14214 encoding = DW_UNSND (attr);
14215 }
14216 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14217 if (attr)
14218 {
14219 size = DW_UNSND (attr);
14220 }
14221 name = dwarf2_name (die, cu);
14222 if (!name)
14223 {
14224 complaint (&symfile_complaints,
14225 _("DW_AT_name missing from DW_TAG_base_type"));
14226 }
14227
14228 switch (encoding)
14229 {
14230 case DW_ATE_address:
14231 /* Turn DW_ATE_address into a void * pointer. */
14232 code = TYPE_CODE_PTR;
14233 type_flags |= TYPE_FLAG_UNSIGNED;
14234 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14235 break;
14236 case DW_ATE_boolean:
14237 code = TYPE_CODE_BOOL;
14238 type_flags |= TYPE_FLAG_UNSIGNED;
14239 break;
14240 case DW_ATE_complex_float:
14241 code = TYPE_CODE_COMPLEX;
14242 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14243 break;
14244 case DW_ATE_decimal_float:
14245 code = TYPE_CODE_DECFLOAT;
14246 break;
14247 case DW_ATE_float:
14248 code = TYPE_CODE_FLT;
14249 break;
14250 case DW_ATE_signed:
14251 break;
14252 case DW_ATE_unsigned:
14253 type_flags |= TYPE_FLAG_UNSIGNED;
14254 if (cu->language == language_fortran
14255 && name
14256 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14257 code = TYPE_CODE_CHAR;
14258 break;
14259 case DW_ATE_signed_char:
14260 if (cu->language == language_ada || cu->language == language_m2
14261 || cu->language == language_pascal
14262 || cu->language == language_fortran)
14263 code = TYPE_CODE_CHAR;
14264 break;
14265 case DW_ATE_unsigned_char:
14266 if (cu->language == language_ada || cu->language == language_m2
14267 || cu->language == language_pascal
14268 || cu->language == language_fortran)
14269 code = TYPE_CODE_CHAR;
14270 type_flags |= TYPE_FLAG_UNSIGNED;
14271 break;
14272 case DW_ATE_UTF:
14273 /* We just treat this as an integer and then recognize the
14274 type by name elsewhere. */
14275 break;
14276
14277 default:
14278 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14279 dwarf_type_encoding_name (encoding));
14280 break;
14281 }
14282
14283 type = init_type (code, size, type_flags, NULL, objfile);
14284 TYPE_NAME (type) = name;
14285 TYPE_TARGET_TYPE (type) = target_type;
14286
14287 if (name && strcmp (name, "char") == 0)
14288 TYPE_NOSIGN (type) = 1;
14289
14290 return set_die_type (die, type, cu);
14291 }
14292
14293 /* Read the given DW_AT_subrange DIE. */
14294
14295 static struct type *
14296 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14297 {
14298 struct type *base_type, *orig_base_type;
14299 struct type *range_type;
14300 struct attribute *attr;
14301 LONGEST low, high;
14302 int low_default_is_valid;
14303 const char *name;
14304 LONGEST negative_mask;
14305
14306 orig_base_type = die_type (die, cu);
14307 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14308 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14309 creating the range type, but we use the result of check_typedef
14310 when examining properties of the type. */
14311 base_type = check_typedef (orig_base_type);
14312
14313 /* The die_type call above may have already set the type for this DIE. */
14314 range_type = get_die_type (die, cu);
14315 if (range_type)
14316 return range_type;
14317
14318 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14319 omitting DW_AT_lower_bound. */
14320 switch (cu->language)
14321 {
14322 case language_c:
14323 case language_cplus:
14324 low = 0;
14325 low_default_is_valid = 1;
14326 break;
14327 case language_fortran:
14328 low = 1;
14329 low_default_is_valid = 1;
14330 break;
14331 case language_d:
14332 case language_java:
14333 case language_objc:
14334 low = 0;
14335 low_default_is_valid = (cu->header.version >= 4);
14336 break;
14337 case language_ada:
14338 case language_m2:
14339 case language_pascal:
14340 low = 1;
14341 low_default_is_valid = (cu->header.version >= 4);
14342 break;
14343 default:
14344 low = 0;
14345 low_default_is_valid = 0;
14346 break;
14347 }
14348
14349 /* FIXME: For variable sized arrays either of these could be
14350 a variable rather than a constant value. We'll allow it,
14351 but we don't know how to handle it. */
14352 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14353 if (attr)
14354 low = dwarf2_get_attr_constant_value (attr, low);
14355 else if (!low_default_is_valid)
14356 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14357 "- DIE at 0x%x [in module %s]"),
14358 die->offset.sect_off, objfile_name (cu->objfile));
14359
14360 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14361 if (attr)
14362 {
14363 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14364 {
14365 /* GCC encodes arrays with unspecified or dynamic length
14366 with a DW_FORM_block1 attribute or a reference attribute.
14367 FIXME: GDB does not yet know how to handle dynamic
14368 arrays properly, treat them as arrays with unspecified
14369 length for now.
14370
14371 FIXME: jimb/2003-09-22: GDB does not really know
14372 how to handle arrays of unspecified length
14373 either; we just represent them as zero-length
14374 arrays. Choose an appropriate upper bound given
14375 the lower bound we've computed above. */
14376 high = low - 1;
14377 }
14378 else
14379 high = dwarf2_get_attr_constant_value (attr, 1);
14380 }
14381 else
14382 {
14383 attr = dwarf2_attr (die, DW_AT_count, cu);
14384 if (attr)
14385 {
14386 int count = dwarf2_get_attr_constant_value (attr, 1);
14387 high = low + count - 1;
14388 }
14389 else
14390 {
14391 /* Unspecified array length. */
14392 high = low - 1;
14393 }
14394 }
14395
14396 /* Dwarf-2 specifications explicitly allows to create subrange types
14397 without specifying a base type.
14398 In that case, the base type must be set to the type of
14399 the lower bound, upper bound or count, in that order, if any of these
14400 three attributes references an object that has a type.
14401 If no base type is found, the Dwarf-2 specifications say that
14402 a signed integer type of size equal to the size of an address should
14403 be used.
14404 For the following C code: `extern char gdb_int [];'
14405 GCC produces an empty range DIE.
14406 FIXME: muller/2010-05-28: Possible references to object for low bound,
14407 high bound or count are not yet handled by this code. */
14408 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14409 {
14410 struct objfile *objfile = cu->objfile;
14411 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14412 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14413 struct type *int_type = objfile_type (objfile)->builtin_int;
14414
14415 /* Test "int", "long int", and "long long int" objfile types,
14416 and select the first one having a size above or equal to the
14417 architecture address size. */
14418 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14419 base_type = int_type;
14420 else
14421 {
14422 int_type = objfile_type (objfile)->builtin_long;
14423 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14424 base_type = int_type;
14425 else
14426 {
14427 int_type = objfile_type (objfile)->builtin_long_long;
14428 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14429 base_type = int_type;
14430 }
14431 }
14432 }
14433
14434 negative_mask =
14435 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14436 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14437 low |= negative_mask;
14438 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14439 high |= negative_mask;
14440
14441 range_type = create_range_type (NULL, orig_base_type, low, high);
14442
14443 /* Mark arrays with dynamic length at least as an array of unspecified
14444 length. GDB could check the boundary but before it gets implemented at
14445 least allow accessing the array elements. */
14446 if (attr && attr_form_is_block (attr))
14447 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14448
14449 /* Ada expects an empty array on no boundary attributes. */
14450 if (attr == NULL && cu->language != language_ada)
14451 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14452
14453 name = dwarf2_name (die, cu);
14454 if (name)
14455 TYPE_NAME (range_type) = name;
14456
14457 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14458 if (attr)
14459 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14460
14461 set_die_type (die, range_type, cu);
14462
14463 /* set_die_type should be already done. */
14464 set_descriptive_type (range_type, die, cu);
14465
14466 return range_type;
14467 }
14468
14469 static struct type *
14470 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14471 {
14472 struct type *type;
14473
14474 /* For now, we only support the C meaning of an unspecified type: void. */
14475
14476 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14477 TYPE_NAME (type) = dwarf2_name (die, cu);
14478
14479 return set_die_type (die, type, cu);
14480 }
14481
14482 /* Read a single die and all its descendents. Set the die's sibling
14483 field to NULL; set other fields in the die correctly, and set all
14484 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14485 location of the info_ptr after reading all of those dies. PARENT
14486 is the parent of the die in question. */
14487
14488 static struct die_info *
14489 read_die_and_children (const struct die_reader_specs *reader,
14490 const gdb_byte *info_ptr,
14491 const gdb_byte **new_info_ptr,
14492 struct die_info *parent)
14493 {
14494 struct die_info *die;
14495 const gdb_byte *cur_ptr;
14496 int has_children;
14497
14498 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14499 if (die == NULL)
14500 {
14501 *new_info_ptr = cur_ptr;
14502 return NULL;
14503 }
14504 store_in_ref_table (die, reader->cu);
14505
14506 if (has_children)
14507 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14508 else
14509 {
14510 die->child = NULL;
14511 *new_info_ptr = cur_ptr;
14512 }
14513
14514 die->sibling = NULL;
14515 die->parent = parent;
14516 return die;
14517 }
14518
14519 /* Read a die, all of its descendents, and all of its siblings; set
14520 all of the fields of all of the dies correctly. Arguments are as
14521 in read_die_and_children. */
14522
14523 static struct die_info *
14524 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14525 const gdb_byte *info_ptr,
14526 const gdb_byte **new_info_ptr,
14527 struct die_info *parent)
14528 {
14529 struct die_info *first_die, *last_sibling;
14530 const gdb_byte *cur_ptr;
14531
14532 cur_ptr = info_ptr;
14533 first_die = last_sibling = NULL;
14534
14535 while (1)
14536 {
14537 struct die_info *die
14538 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14539
14540 if (die == NULL)
14541 {
14542 *new_info_ptr = cur_ptr;
14543 return first_die;
14544 }
14545
14546 if (!first_die)
14547 first_die = die;
14548 else
14549 last_sibling->sibling = die;
14550
14551 last_sibling = die;
14552 }
14553 }
14554
14555 /* Read a die, all of its descendents, and all of its siblings; set
14556 all of the fields of all of the dies correctly. Arguments are as
14557 in read_die_and_children.
14558 This the main entry point for reading a DIE and all its children. */
14559
14560 static struct die_info *
14561 read_die_and_siblings (const struct die_reader_specs *reader,
14562 const gdb_byte *info_ptr,
14563 const gdb_byte **new_info_ptr,
14564 struct die_info *parent)
14565 {
14566 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14567 new_info_ptr, parent);
14568
14569 if (dwarf2_die_debug)
14570 {
14571 fprintf_unfiltered (gdb_stdlog,
14572 "Read die from %s@0x%x of %s:\n",
14573 get_section_name (reader->die_section),
14574 (unsigned) (info_ptr - reader->die_section->buffer),
14575 bfd_get_filename (reader->abfd));
14576 dump_die (die, dwarf2_die_debug);
14577 }
14578
14579 return die;
14580 }
14581
14582 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14583 attributes.
14584 The caller is responsible for filling in the extra attributes
14585 and updating (*DIEP)->num_attrs.
14586 Set DIEP to point to a newly allocated die with its information,
14587 except for its child, sibling, and parent fields.
14588 Set HAS_CHILDREN to tell whether the die has children or not. */
14589
14590 static const gdb_byte *
14591 read_full_die_1 (const struct die_reader_specs *reader,
14592 struct die_info **diep, const gdb_byte *info_ptr,
14593 int *has_children, int num_extra_attrs)
14594 {
14595 unsigned int abbrev_number, bytes_read, i;
14596 sect_offset offset;
14597 struct abbrev_info *abbrev;
14598 struct die_info *die;
14599 struct dwarf2_cu *cu = reader->cu;
14600 bfd *abfd = reader->abfd;
14601
14602 offset.sect_off = info_ptr - reader->buffer;
14603 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14604 info_ptr += bytes_read;
14605 if (!abbrev_number)
14606 {
14607 *diep = NULL;
14608 *has_children = 0;
14609 return info_ptr;
14610 }
14611
14612 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14613 if (!abbrev)
14614 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14615 abbrev_number,
14616 bfd_get_filename (abfd));
14617
14618 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14619 die->offset = offset;
14620 die->tag = abbrev->tag;
14621 die->abbrev = abbrev_number;
14622
14623 /* Make the result usable.
14624 The caller needs to update num_attrs after adding the extra
14625 attributes. */
14626 die->num_attrs = abbrev->num_attrs;
14627
14628 for (i = 0; i < abbrev->num_attrs; ++i)
14629 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14630 info_ptr);
14631
14632 *diep = die;
14633 *has_children = abbrev->has_children;
14634 return info_ptr;
14635 }
14636
14637 /* Read a die and all its attributes.
14638 Set DIEP to point to a newly allocated die with its information,
14639 except for its child, sibling, and parent fields.
14640 Set HAS_CHILDREN to tell whether the die has children or not. */
14641
14642 static const gdb_byte *
14643 read_full_die (const struct die_reader_specs *reader,
14644 struct die_info **diep, const gdb_byte *info_ptr,
14645 int *has_children)
14646 {
14647 const gdb_byte *result;
14648
14649 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14650
14651 if (dwarf2_die_debug)
14652 {
14653 fprintf_unfiltered (gdb_stdlog,
14654 "Read die from %s@0x%x of %s:\n",
14655 get_section_name (reader->die_section),
14656 (unsigned) (info_ptr - reader->die_section->buffer),
14657 bfd_get_filename (reader->abfd));
14658 dump_die (*diep, dwarf2_die_debug);
14659 }
14660
14661 return result;
14662 }
14663 \f
14664 /* Abbreviation tables.
14665
14666 In DWARF version 2, the description of the debugging information is
14667 stored in a separate .debug_abbrev section. Before we read any
14668 dies from a section we read in all abbreviations and install them
14669 in a hash table. */
14670
14671 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14672
14673 static struct abbrev_info *
14674 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14675 {
14676 struct abbrev_info *abbrev;
14677
14678 abbrev = (struct abbrev_info *)
14679 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14680 memset (abbrev, 0, sizeof (struct abbrev_info));
14681 return abbrev;
14682 }
14683
14684 /* Add an abbreviation to the table. */
14685
14686 static void
14687 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14688 unsigned int abbrev_number,
14689 struct abbrev_info *abbrev)
14690 {
14691 unsigned int hash_number;
14692
14693 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14694 abbrev->next = abbrev_table->abbrevs[hash_number];
14695 abbrev_table->abbrevs[hash_number] = abbrev;
14696 }
14697
14698 /* Look up an abbrev in the table.
14699 Returns NULL if the abbrev is not found. */
14700
14701 static struct abbrev_info *
14702 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14703 unsigned int abbrev_number)
14704 {
14705 unsigned int hash_number;
14706 struct abbrev_info *abbrev;
14707
14708 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14709 abbrev = abbrev_table->abbrevs[hash_number];
14710
14711 while (abbrev)
14712 {
14713 if (abbrev->number == abbrev_number)
14714 return abbrev;
14715 abbrev = abbrev->next;
14716 }
14717 return NULL;
14718 }
14719
14720 /* Read in an abbrev table. */
14721
14722 static struct abbrev_table *
14723 abbrev_table_read_table (struct dwarf2_section_info *section,
14724 sect_offset offset)
14725 {
14726 struct objfile *objfile = dwarf2_per_objfile->objfile;
14727 bfd *abfd = get_section_bfd_owner (section);
14728 struct abbrev_table *abbrev_table;
14729 const gdb_byte *abbrev_ptr;
14730 struct abbrev_info *cur_abbrev;
14731 unsigned int abbrev_number, bytes_read, abbrev_name;
14732 unsigned int abbrev_form;
14733 struct attr_abbrev *cur_attrs;
14734 unsigned int allocated_attrs;
14735
14736 abbrev_table = XNEW (struct abbrev_table);
14737 abbrev_table->offset = offset;
14738 obstack_init (&abbrev_table->abbrev_obstack);
14739 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14740 (ABBREV_HASH_SIZE
14741 * sizeof (struct abbrev_info *)));
14742 memset (abbrev_table->abbrevs, 0,
14743 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14744
14745 dwarf2_read_section (objfile, section);
14746 abbrev_ptr = section->buffer + offset.sect_off;
14747 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14748 abbrev_ptr += bytes_read;
14749
14750 allocated_attrs = ATTR_ALLOC_CHUNK;
14751 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14752
14753 /* Loop until we reach an abbrev number of 0. */
14754 while (abbrev_number)
14755 {
14756 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14757
14758 /* read in abbrev header */
14759 cur_abbrev->number = abbrev_number;
14760 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14761 abbrev_ptr += bytes_read;
14762 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14763 abbrev_ptr += 1;
14764
14765 /* now read in declarations */
14766 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14767 abbrev_ptr += bytes_read;
14768 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14769 abbrev_ptr += bytes_read;
14770 while (abbrev_name)
14771 {
14772 if (cur_abbrev->num_attrs == allocated_attrs)
14773 {
14774 allocated_attrs += ATTR_ALLOC_CHUNK;
14775 cur_attrs
14776 = xrealloc (cur_attrs, (allocated_attrs
14777 * sizeof (struct attr_abbrev)));
14778 }
14779
14780 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14781 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14782 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14783 abbrev_ptr += bytes_read;
14784 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14785 abbrev_ptr += bytes_read;
14786 }
14787
14788 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14789 (cur_abbrev->num_attrs
14790 * sizeof (struct attr_abbrev)));
14791 memcpy (cur_abbrev->attrs, cur_attrs,
14792 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14793
14794 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14795
14796 /* Get next abbreviation.
14797 Under Irix6 the abbreviations for a compilation unit are not
14798 always properly terminated with an abbrev number of 0.
14799 Exit loop if we encounter an abbreviation which we have
14800 already read (which means we are about to read the abbreviations
14801 for the next compile unit) or if the end of the abbreviation
14802 table is reached. */
14803 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14804 break;
14805 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14806 abbrev_ptr += bytes_read;
14807 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14808 break;
14809 }
14810
14811 xfree (cur_attrs);
14812 return abbrev_table;
14813 }
14814
14815 /* Free the resources held by ABBREV_TABLE. */
14816
14817 static void
14818 abbrev_table_free (struct abbrev_table *abbrev_table)
14819 {
14820 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14821 xfree (abbrev_table);
14822 }
14823
14824 /* Same as abbrev_table_free but as a cleanup.
14825 We pass in a pointer to the pointer to the table so that we can
14826 set the pointer to NULL when we're done. It also simplifies
14827 build_type_unit_groups. */
14828
14829 static void
14830 abbrev_table_free_cleanup (void *table_ptr)
14831 {
14832 struct abbrev_table **abbrev_table_ptr = table_ptr;
14833
14834 if (*abbrev_table_ptr != NULL)
14835 abbrev_table_free (*abbrev_table_ptr);
14836 *abbrev_table_ptr = NULL;
14837 }
14838
14839 /* Read the abbrev table for CU from ABBREV_SECTION. */
14840
14841 static void
14842 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14843 struct dwarf2_section_info *abbrev_section)
14844 {
14845 cu->abbrev_table =
14846 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14847 }
14848
14849 /* Release the memory used by the abbrev table for a compilation unit. */
14850
14851 static void
14852 dwarf2_free_abbrev_table (void *ptr_to_cu)
14853 {
14854 struct dwarf2_cu *cu = ptr_to_cu;
14855
14856 if (cu->abbrev_table != NULL)
14857 abbrev_table_free (cu->abbrev_table);
14858 /* Set this to NULL so that we SEGV if we try to read it later,
14859 and also because free_comp_unit verifies this is NULL. */
14860 cu->abbrev_table = NULL;
14861 }
14862 \f
14863 /* Returns nonzero if TAG represents a type that we might generate a partial
14864 symbol for. */
14865
14866 static int
14867 is_type_tag_for_partial (int tag)
14868 {
14869 switch (tag)
14870 {
14871 #if 0
14872 /* Some types that would be reasonable to generate partial symbols for,
14873 that we don't at present. */
14874 case DW_TAG_array_type:
14875 case DW_TAG_file_type:
14876 case DW_TAG_ptr_to_member_type:
14877 case DW_TAG_set_type:
14878 case DW_TAG_string_type:
14879 case DW_TAG_subroutine_type:
14880 #endif
14881 case DW_TAG_base_type:
14882 case DW_TAG_class_type:
14883 case DW_TAG_interface_type:
14884 case DW_TAG_enumeration_type:
14885 case DW_TAG_structure_type:
14886 case DW_TAG_subrange_type:
14887 case DW_TAG_typedef:
14888 case DW_TAG_union_type:
14889 return 1;
14890 default:
14891 return 0;
14892 }
14893 }
14894
14895 /* Load all DIEs that are interesting for partial symbols into memory. */
14896
14897 static struct partial_die_info *
14898 load_partial_dies (const struct die_reader_specs *reader,
14899 const gdb_byte *info_ptr, int building_psymtab)
14900 {
14901 struct dwarf2_cu *cu = reader->cu;
14902 struct objfile *objfile = cu->objfile;
14903 struct partial_die_info *part_die;
14904 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14905 struct abbrev_info *abbrev;
14906 unsigned int bytes_read;
14907 unsigned int load_all = 0;
14908 int nesting_level = 1;
14909
14910 parent_die = NULL;
14911 last_die = NULL;
14912
14913 gdb_assert (cu->per_cu != NULL);
14914 if (cu->per_cu->load_all_dies)
14915 load_all = 1;
14916
14917 cu->partial_dies
14918 = htab_create_alloc_ex (cu->header.length / 12,
14919 partial_die_hash,
14920 partial_die_eq,
14921 NULL,
14922 &cu->comp_unit_obstack,
14923 hashtab_obstack_allocate,
14924 dummy_obstack_deallocate);
14925
14926 part_die = obstack_alloc (&cu->comp_unit_obstack,
14927 sizeof (struct partial_die_info));
14928
14929 while (1)
14930 {
14931 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14932
14933 /* A NULL abbrev means the end of a series of children. */
14934 if (abbrev == NULL)
14935 {
14936 if (--nesting_level == 0)
14937 {
14938 /* PART_DIE was probably the last thing allocated on the
14939 comp_unit_obstack, so we could call obstack_free
14940 here. We don't do that because the waste is small,
14941 and will be cleaned up when we're done with this
14942 compilation unit. This way, we're also more robust
14943 against other users of the comp_unit_obstack. */
14944 return first_die;
14945 }
14946 info_ptr += bytes_read;
14947 last_die = parent_die;
14948 parent_die = parent_die->die_parent;
14949 continue;
14950 }
14951
14952 /* Check for template arguments. We never save these; if
14953 they're seen, we just mark the parent, and go on our way. */
14954 if (parent_die != NULL
14955 && cu->language == language_cplus
14956 && (abbrev->tag == DW_TAG_template_type_param
14957 || abbrev->tag == DW_TAG_template_value_param))
14958 {
14959 parent_die->has_template_arguments = 1;
14960
14961 if (!load_all)
14962 {
14963 /* We don't need a partial DIE for the template argument. */
14964 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14965 continue;
14966 }
14967 }
14968
14969 /* We only recurse into c++ subprograms looking for template arguments.
14970 Skip their other children. */
14971 if (!load_all
14972 && cu->language == language_cplus
14973 && parent_die != NULL
14974 && parent_die->tag == DW_TAG_subprogram)
14975 {
14976 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14977 continue;
14978 }
14979
14980 /* Check whether this DIE is interesting enough to save. Normally
14981 we would not be interested in members here, but there may be
14982 later variables referencing them via DW_AT_specification (for
14983 static members). */
14984 if (!load_all
14985 && !is_type_tag_for_partial (abbrev->tag)
14986 && abbrev->tag != DW_TAG_constant
14987 && abbrev->tag != DW_TAG_enumerator
14988 && abbrev->tag != DW_TAG_subprogram
14989 && abbrev->tag != DW_TAG_lexical_block
14990 && abbrev->tag != DW_TAG_variable
14991 && abbrev->tag != DW_TAG_namespace
14992 && abbrev->tag != DW_TAG_module
14993 && abbrev->tag != DW_TAG_member
14994 && abbrev->tag != DW_TAG_imported_unit
14995 && abbrev->tag != DW_TAG_imported_declaration)
14996 {
14997 /* Otherwise we skip to the next sibling, if any. */
14998 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14999 continue;
15000 }
15001
15002 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15003 info_ptr);
15004
15005 /* This two-pass algorithm for processing partial symbols has a
15006 high cost in cache pressure. Thus, handle some simple cases
15007 here which cover the majority of C partial symbols. DIEs
15008 which neither have specification tags in them, nor could have
15009 specification tags elsewhere pointing at them, can simply be
15010 processed and discarded.
15011
15012 This segment is also optional; scan_partial_symbols and
15013 add_partial_symbol will handle these DIEs if we chain
15014 them in normally. When compilers which do not emit large
15015 quantities of duplicate debug information are more common,
15016 this code can probably be removed. */
15017
15018 /* Any complete simple types at the top level (pretty much all
15019 of them, for a language without namespaces), can be processed
15020 directly. */
15021 if (parent_die == NULL
15022 && part_die->has_specification == 0
15023 && part_die->is_declaration == 0
15024 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15025 || part_die->tag == DW_TAG_base_type
15026 || part_die->tag == DW_TAG_subrange_type))
15027 {
15028 if (building_psymtab && part_die->name != NULL)
15029 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15030 VAR_DOMAIN, LOC_TYPEDEF,
15031 &objfile->static_psymbols,
15032 0, (CORE_ADDR) 0, cu->language, objfile);
15033 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15034 continue;
15035 }
15036
15037 /* The exception for DW_TAG_typedef with has_children above is
15038 a workaround of GCC PR debug/47510. In the case of this complaint
15039 type_name_no_tag_or_error will error on such types later.
15040
15041 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15042 it could not find the child DIEs referenced later, this is checked
15043 above. In correct DWARF DW_TAG_typedef should have no children. */
15044
15045 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15046 complaint (&symfile_complaints,
15047 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15048 "- DIE at 0x%x [in module %s]"),
15049 part_die->offset.sect_off, objfile_name (objfile));
15050
15051 /* If we're at the second level, and we're an enumerator, and
15052 our parent has no specification (meaning possibly lives in a
15053 namespace elsewhere), then we can add the partial symbol now
15054 instead of queueing it. */
15055 if (part_die->tag == DW_TAG_enumerator
15056 && parent_die != NULL
15057 && parent_die->die_parent == NULL
15058 && parent_die->tag == DW_TAG_enumeration_type
15059 && parent_die->has_specification == 0)
15060 {
15061 if (part_die->name == NULL)
15062 complaint (&symfile_complaints,
15063 _("malformed enumerator DIE ignored"));
15064 else if (building_psymtab)
15065 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15066 VAR_DOMAIN, LOC_CONST,
15067 (cu->language == language_cplus
15068 || cu->language == language_java)
15069 ? &objfile->global_psymbols
15070 : &objfile->static_psymbols,
15071 0, (CORE_ADDR) 0, cu->language, objfile);
15072
15073 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15074 continue;
15075 }
15076
15077 /* We'll save this DIE so link it in. */
15078 part_die->die_parent = parent_die;
15079 part_die->die_sibling = NULL;
15080 part_die->die_child = NULL;
15081
15082 if (last_die && last_die == parent_die)
15083 last_die->die_child = part_die;
15084 else if (last_die)
15085 last_die->die_sibling = part_die;
15086
15087 last_die = part_die;
15088
15089 if (first_die == NULL)
15090 first_die = part_die;
15091
15092 /* Maybe add the DIE to the hash table. Not all DIEs that we
15093 find interesting need to be in the hash table, because we
15094 also have the parent/sibling/child chains; only those that we
15095 might refer to by offset later during partial symbol reading.
15096
15097 For now this means things that might have be the target of a
15098 DW_AT_specification, DW_AT_abstract_origin, or
15099 DW_AT_extension. DW_AT_extension will refer only to
15100 namespaces; DW_AT_abstract_origin refers to functions (and
15101 many things under the function DIE, but we do not recurse
15102 into function DIEs during partial symbol reading) and
15103 possibly variables as well; DW_AT_specification refers to
15104 declarations. Declarations ought to have the DW_AT_declaration
15105 flag. It happens that GCC forgets to put it in sometimes, but
15106 only for functions, not for types.
15107
15108 Adding more things than necessary to the hash table is harmless
15109 except for the performance cost. Adding too few will result in
15110 wasted time in find_partial_die, when we reread the compilation
15111 unit with load_all_dies set. */
15112
15113 if (load_all
15114 || abbrev->tag == DW_TAG_constant
15115 || abbrev->tag == DW_TAG_subprogram
15116 || abbrev->tag == DW_TAG_variable
15117 || abbrev->tag == DW_TAG_namespace
15118 || part_die->is_declaration)
15119 {
15120 void **slot;
15121
15122 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15123 part_die->offset.sect_off, INSERT);
15124 *slot = part_die;
15125 }
15126
15127 part_die = obstack_alloc (&cu->comp_unit_obstack,
15128 sizeof (struct partial_die_info));
15129
15130 /* For some DIEs we want to follow their children (if any). For C
15131 we have no reason to follow the children of structures; for other
15132 languages we have to, so that we can get at method physnames
15133 to infer fully qualified class names, for DW_AT_specification,
15134 and for C++ template arguments. For C++, we also look one level
15135 inside functions to find template arguments (if the name of the
15136 function does not already contain the template arguments).
15137
15138 For Ada, we need to scan the children of subprograms and lexical
15139 blocks as well because Ada allows the definition of nested
15140 entities that could be interesting for the debugger, such as
15141 nested subprograms for instance. */
15142 if (last_die->has_children
15143 && (load_all
15144 || last_die->tag == DW_TAG_namespace
15145 || last_die->tag == DW_TAG_module
15146 || last_die->tag == DW_TAG_enumeration_type
15147 || (cu->language == language_cplus
15148 && last_die->tag == DW_TAG_subprogram
15149 && (last_die->name == NULL
15150 || strchr (last_die->name, '<') == NULL))
15151 || (cu->language != language_c
15152 && (last_die->tag == DW_TAG_class_type
15153 || last_die->tag == DW_TAG_interface_type
15154 || last_die->tag == DW_TAG_structure_type
15155 || last_die->tag == DW_TAG_union_type))
15156 || (cu->language == language_ada
15157 && (last_die->tag == DW_TAG_subprogram
15158 || last_die->tag == DW_TAG_lexical_block))))
15159 {
15160 nesting_level++;
15161 parent_die = last_die;
15162 continue;
15163 }
15164
15165 /* Otherwise we skip to the next sibling, if any. */
15166 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15167
15168 /* Back to the top, do it again. */
15169 }
15170 }
15171
15172 /* Read a minimal amount of information into the minimal die structure. */
15173
15174 static const gdb_byte *
15175 read_partial_die (const struct die_reader_specs *reader,
15176 struct partial_die_info *part_die,
15177 struct abbrev_info *abbrev, unsigned int abbrev_len,
15178 const gdb_byte *info_ptr)
15179 {
15180 struct dwarf2_cu *cu = reader->cu;
15181 struct objfile *objfile = cu->objfile;
15182 const gdb_byte *buffer = reader->buffer;
15183 unsigned int i;
15184 struct attribute attr;
15185 int has_low_pc_attr = 0;
15186 int has_high_pc_attr = 0;
15187 int high_pc_relative = 0;
15188
15189 memset (part_die, 0, sizeof (struct partial_die_info));
15190
15191 part_die->offset.sect_off = info_ptr - buffer;
15192
15193 info_ptr += abbrev_len;
15194
15195 if (abbrev == NULL)
15196 return info_ptr;
15197
15198 part_die->tag = abbrev->tag;
15199 part_die->has_children = abbrev->has_children;
15200
15201 for (i = 0; i < abbrev->num_attrs; ++i)
15202 {
15203 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15204
15205 /* Store the data if it is of an attribute we want to keep in a
15206 partial symbol table. */
15207 switch (attr.name)
15208 {
15209 case DW_AT_name:
15210 switch (part_die->tag)
15211 {
15212 case DW_TAG_compile_unit:
15213 case DW_TAG_partial_unit:
15214 case DW_TAG_type_unit:
15215 /* Compilation units have a DW_AT_name that is a filename, not
15216 a source language identifier. */
15217 case DW_TAG_enumeration_type:
15218 case DW_TAG_enumerator:
15219 /* These tags always have simple identifiers already; no need
15220 to canonicalize them. */
15221 part_die->name = DW_STRING (&attr);
15222 break;
15223 default:
15224 part_die->name
15225 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15226 &objfile->objfile_obstack);
15227 break;
15228 }
15229 break;
15230 case DW_AT_linkage_name:
15231 case DW_AT_MIPS_linkage_name:
15232 /* Note that both forms of linkage name might appear. We
15233 assume they will be the same, and we only store the last
15234 one we see. */
15235 if (cu->language == language_ada)
15236 part_die->name = DW_STRING (&attr);
15237 part_die->linkage_name = DW_STRING (&attr);
15238 break;
15239 case DW_AT_low_pc:
15240 has_low_pc_attr = 1;
15241 part_die->lowpc = DW_ADDR (&attr);
15242 break;
15243 case DW_AT_high_pc:
15244 has_high_pc_attr = 1;
15245 if (attr.form == DW_FORM_addr
15246 || attr.form == DW_FORM_GNU_addr_index)
15247 part_die->highpc = DW_ADDR (&attr);
15248 else
15249 {
15250 high_pc_relative = 1;
15251 part_die->highpc = DW_UNSND (&attr);
15252 }
15253 break;
15254 case DW_AT_location:
15255 /* Support the .debug_loc offsets. */
15256 if (attr_form_is_block (&attr))
15257 {
15258 part_die->d.locdesc = DW_BLOCK (&attr);
15259 }
15260 else if (attr_form_is_section_offset (&attr))
15261 {
15262 dwarf2_complex_location_expr_complaint ();
15263 }
15264 else
15265 {
15266 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15267 "partial symbol information");
15268 }
15269 break;
15270 case DW_AT_external:
15271 part_die->is_external = DW_UNSND (&attr);
15272 break;
15273 case DW_AT_declaration:
15274 part_die->is_declaration = DW_UNSND (&attr);
15275 break;
15276 case DW_AT_type:
15277 part_die->has_type = 1;
15278 break;
15279 case DW_AT_abstract_origin:
15280 case DW_AT_specification:
15281 case DW_AT_extension:
15282 part_die->has_specification = 1;
15283 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15284 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15285 || cu->per_cu->is_dwz);
15286 break;
15287 case DW_AT_sibling:
15288 /* Ignore absolute siblings, they might point outside of
15289 the current compile unit. */
15290 if (attr.form == DW_FORM_ref_addr)
15291 complaint (&symfile_complaints,
15292 _("ignoring absolute DW_AT_sibling"));
15293 else
15294 {
15295 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15296 const gdb_byte *sibling_ptr = buffer + off;
15297
15298 if (sibling_ptr < info_ptr)
15299 complaint (&symfile_complaints,
15300 _("DW_AT_sibling points backwards"));
15301 else
15302 part_die->sibling = sibling_ptr;
15303 }
15304 break;
15305 case DW_AT_byte_size:
15306 part_die->has_byte_size = 1;
15307 break;
15308 case DW_AT_calling_convention:
15309 /* DWARF doesn't provide a way to identify a program's source-level
15310 entry point. DW_AT_calling_convention attributes are only meant
15311 to describe functions' calling conventions.
15312
15313 However, because it's a necessary piece of information in
15314 Fortran, and because DW_CC_program is the only piece of debugging
15315 information whose definition refers to a 'main program' at all,
15316 several compilers have begun marking Fortran main programs with
15317 DW_CC_program --- even when those functions use the standard
15318 calling conventions.
15319
15320 So until DWARF specifies a way to provide this information and
15321 compilers pick up the new representation, we'll support this
15322 practice. */
15323 if (DW_UNSND (&attr) == DW_CC_program
15324 && cu->language == language_fortran)
15325 set_objfile_main_name (objfile, part_die->name, language_fortran);
15326 break;
15327 case DW_AT_inline:
15328 if (DW_UNSND (&attr) == DW_INL_inlined
15329 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15330 part_die->may_be_inlined = 1;
15331 break;
15332
15333 case DW_AT_import:
15334 if (part_die->tag == DW_TAG_imported_unit)
15335 {
15336 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15337 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15338 || cu->per_cu->is_dwz);
15339 }
15340 break;
15341
15342 default:
15343 break;
15344 }
15345 }
15346
15347 if (high_pc_relative)
15348 part_die->highpc += part_die->lowpc;
15349
15350 if (has_low_pc_attr && has_high_pc_attr)
15351 {
15352 /* When using the GNU linker, .gnu.linkonce. sections are used to
15353 eliminate duplicate copies of functions and vtables and such.
15354 The linker will arbitrarily choose one and discard the others.
15355 The AT_*_pc values for such functions refer to local labels in
15356 these sections. If the section from that file was discarded, the
15357 labels are not in the output, so the relocs get a value of 0.
15358 If this is a discarded function, mark the pc bounds as invalid,
15359 so that GDB will ignore it. */
15360 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15361 {
15362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15363
15364 complaint (&symfile_complaints,
15365 _("DW_AT_low_pc %s is zero "
15366 "for DIE at 0x%x [in module %s]"),
15367 paddress (gdbarch, part_die->lowpc),
15368 part_die->offset.sect_off, objfile_name (objfile));
15369 }
15370 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15371 else if (part_die->lowpc >= part_die->highpc)
15372 {
15373 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15374
15375 complaint (&symfile_complaints,
15376 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15377 "for DIE at 0x%x [in module %s]"),
15378 paddress (gdbarch, part_die->lowpc),
15379 paddress (gdbarch, part_die->highpc),
15380 part_die->offset.sect_off, objfile_name (objfile));
15381 }
15382 else
15383 part_die->has_pc_info = 1;
15384 }
15385
15386 return info_ptr;
15387 }
15388
15389 /* Find a cached partial DIE at OFFSET in CU. */
15390
15391 static struct partial_die_info *
15392 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15393 {
15394 struct partial_die_info *lookup_die = NULL;
15395 struct partial_die_info part_die;
15396
15397 part_die.offset = offset;
15398 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15399 offset.sect_off);
15400
15401 return lookup_die;
15402 }
15403
15404 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15405 except in the case of .debug_types DIEs which do not reference
15406 outside their CU (they do however referencing other types via
15407 DW_FORM_ref_sig8). */
15408
15409 static struct partial_die_info *
15410 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15411 {
15412 struct objfile *objfile = cu->objfile;
15413 struct dwarf2_per_cu_data *per_cu = NULL;
15414 struct partial_die_info *pd = NULL;
15415
15416 if (offset_in_dwz == cu->per_cu->is_dwz
15417 && offset_in_cu_p (&cu->header, offset))
15418 {
15419 pd = find_partial_die_in_comp_unit (offset, cu);
15420 if (pd != NULL)
15421 return pd;
15422 /* We missed recording what we needed.
15423 Load all dies and try again. */
15424 per_cu = cu->per_cu;
15425 }
15426 else
15427 {
15428 /* TUs don't reference other CUs/TUs (except via type signatures). */
15429 if (cu->per_cu->is_debug_types)
15430 {
15431 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15432 " external reference to offset 0x%lx [in module %s].\n"),
15433 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15434 bfd_get_filename (objfile->obfd));
15435 }
15436 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15437 objfile);
15438
15439 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15440 load_partial_comp_unit (per_cu);
15441
15442 per_cu->cu->last_used = 0;
15443 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15444 }
15445
15446 /* If we didn't find it, and not all dies have been loaded,
15447 load them all and try again. */
15448
15449 if (pd == NULL && per_cu->load_all_dies == 0)
15450 {
15451 per_cu->load_all_dies = 1;
15452
15453 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15454 THIS_CU->cu may already be in use. So we can't just free it and
15455 replace its DIEs with the ones we read in. Instead, we leave those
15456 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15457 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15458 set. */
15459 load_partial_comp_unit (per_cu);
15460
15461 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15462 }
15463
15464 if (pd == NULL)
15465 internal_error (__FILE__, __LINE__,
15466 _("could not find partial DIE 0x%x "
15467 "in cache [from module %s]\n"),
15468 offset.sect_off, bfd_get_filename (objfile->obfd));
15469 return pd;
15470 }
15471
15472 /* See if we can figure out if the class lives in a namespace. We do
15473 this by looking for a member function; its demangled name will
15474 contain namespace info, if there is any. */
15475
15476 static void
15477 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15478 struct dwarf2_cu *cu)
15479 {
15480 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15481 what template types look like, because the demangler
15482 frequently doesn't give the same name as the debug info. We
15483 could fix this by only using the demangled name to get the
15484 prefix (but see comment in read_structure_type). */
15485
15486 struct partial_die_info *real_pdi;
15487 struct partial_die_info *child_pdi;
15488
15489 /* If this DIE (this DIE's specification, if any) has a parent, then
15490 we should not do this. We'll prepend the parent's fully qualified
15491 name when we create the partial symbol. */
15492
15493 real_pdi = struct_pdi;
15494 while (real_pdi->has_specification)
15495 real_pdi = find_partial_die (real_pdi->spec_offset,
15496 real_pdi->spec_is_dwz, cu);
15497
15498 if (real_pdi->die_parent != NULL)
15499 return;
15500
15501 for (child_pdi = struct_pdi->die_child;
15502 child_pdi != NULL;
15503 child_pdi = child_pdi->die_sibling)
15504 {
15505 if (child_pdi->tag == DW_TAG_subprogram
15506 && child_pdi->linkage_name != NULL)
15507 {
15508 char *actual_class_name
15509 = language_class_name_from_physname (cu->language_defn,
15510 child_pdi->linkage_name);
15511 if (actual_class_name != NULL)
15512 {
15513 struct_pdi->name
15514 = obstack_copy0 (&cu->objfile->objfile_obstack,
15515 actual_class_name,
15516 strlen (actual_class_name));
15517 xfree (actual_class_name);
15518 }
15519 break;
15520 }
15521 }
15522 }
15523
15524 /* Adjust PART_DIE before generating a symbol for it. This function
15525 may set the is_external flag or change the DIE's name. */
15526
15527 static void
15528 fixup_partial_die (struct partial_die_info *part_die,
15529 struct dwarf2_cu *cu)
15530 {
15531 /* Once we've fixed up a die, there's no point in doing so again.
15532 This also avoids a memory leak if we were to call
15533 guess_partial_die_structure_name multiple times. */
15534 if (part_die->fixup_called)
15535 return;
15536
15537 /* If we found a reference attribute and the DIE has no name, try
15538 to find a name in the referred to DIE. */
15539
15540 if (part_die->name == NULL && part_die->has_specification)
15541 {
15542 struct partial_die_info *spec_die;
15543
15544 spec_die = find_partial_die (part_die->spec_offset,
15545 part_die->spec_is_dwz, cu);
15546
15547 fixup_partial_die (spec_die, cu);
15548
15549 if (spec_die->name)
15550 {
15551 part_die->name = spec_die->name;
15552
15553 /* Copy DW_AT_external attribute if it is set. */
15554 if (spec_die->is_external)
15555 part_die->is_external = spec_die->is_external;
15556 }
15557 }
15558
15559 /* Set default names for some unnamed DIEs. */
15560
15561 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15562 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15563
15564 /* If there is no parent die to provide a namespace, and there are
15565 children, see if we can determine the namespace from their linkage
15566 name. */
15567 if (cu->language == language_cplus
15568 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15569 && part_die->die_parent == NULL
15570 && part_die->has_children
15571 && (part_die->tag == DW_TAG_class_type
15572 || part_die->tag == DW_TAG_structure_type
15573 || part_die->tag == DW_TAG_union_type))
15574 guess_partial_die_structure_name (part_die, cu);
15575
15576 /* GCC might emit a nameless struct or union that has a linkage
15577 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15578 if (part_die->name == NULL
15579 && (part_die->tag == DW_TAG_class_type
15580 || part_die->tag == DW_TAG_interface_type
15581 || part_die->tag == DW_TAG_structure_type
15582 || part_die->tag == DW_TAG_union_type)
15583 && part_die->linkage_name != NULL)
15584 {
15585 char *demangled;
15586
15587 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15588 if (demangled)
15589 {
15590 const char *base;
15591
15592 /* Strip any leading namespaces/classes, keep only the base name.
15593 DW_AT_name for named DIEs does not contain the prefixes. */
15594 base = strrchr (demangled, ':');
15595 if (base && base > demangled && base[-1] == ':')
15596 base++;
15597 else
15598 base = demangled;
15599
15600 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15601 base, strlen (base));
15602 xfree (demangled);
15603 }
15604 }
15605
15606 part_die->fixup_called = 1;
15607 }
15608
15609 /* Read an attribute value described by an attribute form. */
15610
15611 static const gdb_byte *
15612 read_attribute_value (const struct die_reader_specs *reader,
15613 struct attribute *attr, unsigned form,
15614 const gdb_byte *info_ptr)
15615 {
15616 struct dwarf2_cu *cu = reader->cu;
15617 bfd *abfd = reader->abfd;
15618 struct comp_unit_head *cu_header = &cu->header;
15619 unsigned int bytes_read;
15620 struct dwarf_block *blk;
15621
15622 attr->form = form;
15623 switch (form)
15624 {
15625 case DW_FORM_ref_addr:
15626 if (cu->header.version == 2)
15627 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15628 else
15629 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15630 &cu->header, &bytes_read);
15631 info_ptr += bytes_read;
15632 break;
15633 case DW_FORM_GNU_ref_alt:
15634 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15635 info_ptr += bytes_read;
15636 break;
15637 case DW_FORM_addr:
15638 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15639 info_ptr += bytes_read;
15640 break;
15641 case DW_FORM_block2:
15642 blk = dwarf_alloc_block (cu);
15643 blk->size = read_2_bytes (abfd, info_ptr);
15644 info_ptr += 2;
15645 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15646 info_ptr += blk->size;
15647 DW_BLOCK (attr) = blk;
15648 break;
15649 case DW_FORM_block4:
15650 blk = dwarf_alloc_block (cu);
15651 blk->size = read_4_bytes (abfd, info_ptr);
15652 info_ptr += 4;
15653 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15654 info_ptr += blk->size;
15655 DW_BLOCK (attr) = blk;
15656 break;
15657 case DW_FORM_data2:
15658 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15659 info_ptr += 2;
15660 break;
15661 case DW_FORM_data4:
15662 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15663 info_ptr += 4;
15664 break;
15665 case DW_FORM_data8:
15666 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15667 info_ptr += 8;
15668 break;
15669 case DW_FORM_sec_offset:
15670 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15671 info_ptr += bytes_read;
15672 break;
15673 case DW_FORM_string:
15674 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15675 DW_STRING_IS_CANONICAL (attr) = 0;
15676 info_ptr += bytes_read;
15677 break;
15678 case DW_FORM_strp:
15679 if (!cu->per_cu->is_dwz)
15680 {
15681 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15682 &bytes_read);
15683 DW_STRING_IS_CANONICAL (attr) = 0;
15684 info_ptr += bytes_read;
15685 break;
15686 }
15687 /* FALLTHROUGH */
15688 case DW_FORM_GNU_strp_alt:
15689 {
15690 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15691 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15692 &bytes_read);
15693
15694 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15695 DW_STRING_IS_CANONICAL (attr) = 0;
15696 info_ptr += bytes_read;
15697 }
15698 break;
15699 case DW_FORM_exprloc:
15700 case DW_FORM_block:
15701 blk = dwarf_alloc_block (cu);
15702 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15703 info_ptr += bytes_read;
15704 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15705 info_ptr += blk->size;
15706 DW_BLOCK (attr) = blk;
15707 break;
15708 case DW_FORM_block1:
15709 blk = dwarf_alloc_block (cu);
15710 blk->size = read_1_byte (abfd, info_ptr);
15711 info_ptr += 1;
15712 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15713 info_ptr += blk->size;
15714 DW_BLOCK (attr) = blk;
15715 break;
15716 case DW_FORM_data1:
15717 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15718 info_ptr += 1;
15719 break;
15720 case DW_FORM_flag:
15721 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15722 info_ptr += 1;
15723 break;
15724 case DW_FORM_flag_present:
15725 DW_UNSND (attr) = 1;
15726 break;
15727 case DW_FORM_sdata:
15728 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15729 info_ptr += bytes_read;
15730 break;
15731 case DW_FORM_udata:
15732 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15733 info_ptr += bytes_read;
15734 break;
15735 case DW_FORM_ref1:
15736 DW_UNSND (attr) = (cu->header.offset.sect_off
15737 + read_1_byte (abfd, info_ptr));
15738 info_ptr += 1;
15739 break;
15740 case DW_FORM_ref2:
15741 DW_UNSND (attr) = (cu->header.offset.sect_off
15742 + read_2_bytes (abfd, info_ptr));
15743 info_ptr += 2;
15744 break;
15745 case DW_FORM_ref4:
15746 DW_UNSND (attr) = (cu->header.offset.sect_off
15747 + read_4_bytes (abfd, info_ptr));
15748 info_ptr += 4;
15749 break;
15750 case DW_FORM_ref8:
15751 DW_UNSND (attr) = (cu->header.offset.sect_off
15752 + read_8_bytes (abfd, info_ptr));
15753 info_ptr += 8;
15754 break;
15755 case DW_FORM_ref_sig8:
15756 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15757 info_ptr += 8;
15758 break;
15759 case DW_FORM_ref_udata:
15760 DW_UNSND (attr) = (cu->header.offset.sect_off
15761 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15762 info_ptr += bytes_read;
15763 break;
15764 case DW_FORM_indirect:
15765 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15766 info_ptr += bytes_read;
15767 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15768 break;
15769 case DW_FORM_GNU_addr_index:
15770 if (reader->dwo_file == NULL)
15771 {
15772 /* For now flag a hard error.
15773 Later we can turn this into a complaint. */
15774 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15775 dwarf_form_name (form),
15776 bfd_get_filename (abfd));
15777 }
15778 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15779 info_ptr += bytes_read;
15780 break;
15781 case DW_FORM_GNU_str_index:
15782 if (reader->dwo_file == NULL)
15783 {
15784 /* For now flag a hard error.
15785 Later we can turn this into a complaint if warranted. */
15786 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15787 dwarf_form_name (form),
15788 bfd_get_filename (abfd));
15789 }
15790 {
15791 ULONGEST str_index =
15792 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15793
15794 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15795 DW_STRING_IS_CANONICAL (attr) = 0;
15796 info_ptr += bytes_read;
15797 }
15798 break;
15799 default:
15800 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15801 dwarf_form_name (form),
15802 bfd_get_filename (abfd));
15803 }
15804
15805 /* Super hack. */
15806 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15807 attr->form = DW_FORM_GNU_ref_alt;
15808
15809 /* We have seen instances where the compiler tried to emit a byte
15810 size attribute of -1 which ended up being encoded as an unsigned
15811 0xffffffff. Although 0xffffffff is technically a valid size value,
15812 an object of this size seems pretty unlikely so we can relatively
15813 safely treat these cases as if the size attribute was invalid and
15814 treat them as zero by default. */
15815 if (attr->name == DW_AT_byte_size
15816 && form == DW_FORM_data4
15817 && DW_UNSND (attr) >= 0xffffffff)
15818 {
15819 complaint
15820 (&symfile_complaints,
15821 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15822 hex_string (DW_UNSND (attr)));
15823 DW_UNSND (attr) = 0;
15824 }
15825
15826 return info_ptr;
15827 }
15828
15829 /* Read an attribute described by an abbreviated attribute. */
15830
15831 static const gdb_byte *
15832 read_attribute (const struct die_reader_specs *reader,
15833 struct attribute *attr, struct attr_abbrev *abbrev,
15834 const gdb_byte *info_ptr)
15835 {
15836 attr->name = abbrev->name;
15837 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15838 }
15839
15840 /* Read dwarf information from a buffer. */
15841
15842 static unsigned int
15843 read_1_byte (bfd *abfd, const gdb_byte *buf)
15844 {
15845 return bfd_get_8 (abfd, buf);
15846 }
15847
15848 static int
15849 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15850 {
15851 return bfd_get_signed_8 (abfd, buf);
15852 }
15853
15854 static unsigned int
15855 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15856 {
15857 return bfd_get_16 (abfd, buf);
15858 }
15859
15860 static int
15861 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15862 {
15863 return bfd_get_signed_16 (abfd, buf);
15864 }
15865
15866 static unsigned int
15867 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15868 {
15869 return bfd_get_32 (abfd, buf);
15870 }
15871
15872 static int
15873 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15874 {
15875 return bfd_get_signed_32 (abfd, buf);
15876 }
15877
15878 static ULONGEST
15879 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15880 {
15881 return bfd_get_64 (abfd, buf);
15882 }
15883
15884 static CORE_ADDR
15885 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
15886 unsigned int *bytes_read)
15887 {
15888 struct comp_unit_head *cu_header = &cu->header;
15889 CORE_ADDR retval = 0;
15890
15891 if (cu_header->signed_addr_p)
15892 {
15893 switch (cu_header->addr_size)
15894 {
15895 case 2:
15896 retval = bfd_get_signed_16 (abfd, buf);
15897 break;
15898 case 4:
15899 retval = bfd_get_signed_32 (abfd, buf);
15900 break;
15901 case 8:
15902 retval = bfd_get_signed_64 (abfd, buf);
15903 break;
15904 default:
15905 internal_error (__FILE__, __LINE__,
15906 _("read_address: bad switch, signed [in module %s]"),
15907 bfd_get_filename (abfd));
15908 }
15909 }
15910 else
15911 {
15912 switch (cu_header->addr_size)
15913 {
15914 case 2:
15915 retval = bfd_get_16 (abfd, buf);
15916 break;
15917 case 4:
15918 retval = bfd_get_32 (abfd, buf);
15919 break;
15920 case 8:
15921 retval = bfd_get_64 (abfd, buf);
15922 break;
15923 default:
15924 internal_error (__FILE__, __LINE__,
15925 _("read_address: bad switch, "
15926 "unsigned [in module %s]"),
15927 bfd_get_filename (abfd));
15928 }
15929 }
15930
15931 *bytes_read = cu_header->addr_size;
15932 return retval;
15933 }
15934
15935 /* Read the initial length from a section. The (draft) DWARF 3
15936 specification allows the initial length to take up either 4 bytes
15937 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15938 bytes describe the length and all offsets will be 8 bytes in length
15939 instead of 4.
15940
15941 An older, non-standard 64-bit format is also handled by this
15942 function. The older format in question stores the initial length
15943 as an 8-byte quantity without an escape value. Lengths greater
15944 than 2^32 aren't very common which means that the initial 4 bytes
15945 is almost always zero. Since a length value of zero doesn't make
15946 sense for the 32-bit format, this initial zero can be considered to
15947 be an escape value which indicates the presence of the older 64-bit
15948 format. As written, the code can't detect (old format) lengths
15949 greater than 4GB. If it becomes necessary to handle lengths
15950 somewhat larger than 4GB, we could allow other small values (such
15951 as the non-sensical values of 1, 2, and 3) to also be used as
15952 escape values indicating the presence of the old format.
15953
15954 The value returned via bytes_read should be used to increment the
15955 relevant pointer after calling read_initial_length().
15956
15957 [ Note: read_initial_length() and read_offset() are based on the
15958 document entitled "DWARF Debugging Information Format", revision
15959 3, draft 8, dated November 19, 2001. This document was obtained
15960 from:
15961
15962 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15963
15964 This document is only a draft and is subject to change. (So beware.)
15965
15966 Details regarding the older, non-standard 64-bit format were
15967 determined empirically by examining 64-bit ELF files produced by
15968 the SGI toolchain on an IRIX 6.5 machine.
15969
15970 - Kevin, July 16, 2002
15971 ] */
15972
15973 static LONGEST
15974 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15975 {
15976 LONGEST length = bfd_get_32 (abfd, buf);
15977
15978 if (length == 0xffffffff)
15979 {
15980 length = bfd_get_64 (abfd, buf + 4);
15981 *bytes_read = 12;
15982 }
15983 else if (length == 0)
15984 {
15985 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15986 length = bfd_get_64 (abfd, buf);
15987 *bytes_read = 8;
15988 }
15989 else
15990 {
15991 *bytes_read = 4;
15992 }
15993
15994 return length;
15995 }
15996
15997 /* Cover function for read_initial_length.
15998 Returns the length of the object at BUF, and stores the size of the
15999 initial length in *BYTES_READ and stores the size that offsets will be in
16000 *OFFSET_SIZE.
16001 If the initial length size is not equivalent to that specified in
16002 CU_HEADER then issue a complaint.
16003 This is useful when reading non-comp-unit headers. */
16004
16005 static LONGEST
16006 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16007 const struct comp_unit_head *cu_header,
16008 unsigned int *bytes_read,
16009 unsigned int *offset_size)
16010 {
16011 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16012
16013 gdb_assert (cu_header->initial_length_size == 4
16014 || cu_header->initial_length_size == 8
16015 || cu_header->initial_length_size == 12);
16016
16017 if (cu_header->initial_length_size != *bytes_read)
16018 complaint (&symfile_complaints,
16019 _("intermixed 32-bit and 64-bit DWARF sections"));
16020
16021 *offset_size = (*bytes_read == 4) ? 4 : 8;
16022 return length;
16023 }
16024
16025 /* Read an offset from the data stream. The size of the offset is
16026 given by cu_header->offset_size. */
16027
16028 static LONGEST
16029 read_offset (bfd *abfd, const gdb_byte *buf,
16030 const struct comp_unit_head *cu_header,
16031 unsigned int *bytes_read)
16032 {
16033 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16034
16035 *bytes_read = cu_header->offset_size;
16036 return offset;
16037 }
16038
16039 /* Read an offset from the data stream. */
16040
16041 static LONGEST
16042 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16043 {
16044 LONGEST retval = 0;
16045
16046 switch (offset_size)
16047 {
16048 case 4:
16049 retval = bfd_get_32 (abfd, buf);
16050 break;
16051 case 8:
16052 retval = bfd_get_64 (abfd, buf);
16053 break;
16054 default:
16055 internal_error (__FILE__, __LINE__,
16056 _("read_offset_1: bad switch [in module %s]"),
16057 bfd_get_filename (abfd));
16058 }
16059
16060 return retval;
16061 }
16062
16063 static const gdb_byte *
16064 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16065 {
16066 /* If the size of a host char is 8 bits, we can return a pointer
16067 to the buffer, otherwise we have to copy the data to a buffer
16068 allocated on the temporary obstack. */
16069 gdb_assert (HOST_CHAR_BIT == 8);
16070 return buf;
16071 }
16072
16073 static const char *
16074 read_direct_string (bfd *abfd, const gdb_byte *buf,
16075 unsigned int *bytes_read_ptr)
16076 {
16077 /* If the size of a host char is 8 bits, we can return a pointer
16078 to the string, otherwise we have to copy the string to a buffer
16079 allocated on the temporary obstack. */
16080 gdb_assert (HOST_CHAR_BIT == 8);
16081 if (*buf == '\0')
16082 {
16083 *bytes_read_ptr = 1;
16084 return NULL;
16085 }
16086 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16087 return (const char *) buf;
16088 }
16089
16090 static const char *
16091 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16092 {
16093 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16094 if (dwarf2_per_objfile->str.buffer == NULL)
16095 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16096 bfd_get_filename (abfd));
16097 if (str_offset >= dwarf2_per_objfile->str.size)
16098 error (_("DW_FORM_strp pointing outside of "
16099 ".debug_str section [in module %s]"),
16100 bfd_get_filename (abfd));
16101 gdb_assert (HOST_CHAR_BIT == 8);
16102 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16103 return NULL;
16104 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16105 }
16106
16107 /* Read a string at offset STR_OFFSET in the .debug_str section from
16108 the .dwz file DWZ. Throw an error if the offset is too large. If
16109 the string consists of a single NUL byte, return NULL; otherwise
16110 return a pointer to the string. */
16111
16112 static const char *
16113 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16114 {
16115 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16116
16117 if (dwz->str.buffer == NULL)
16118 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16119 "section [in module %s]"),
16120 bfd_get_filename (dwz->dwz_bfd));
16121 if (str_offset >= dwz->str.size)
16122 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16123 ".debug_str section [in module %s]"),
16124 bfd_get_filename (dwz->dwz_bfd));
16125 gdb_assert (HOST_CHAR_BIT == 8);
16126 if (dwz->str.buffer[str_offset] == '\0')
16127 return NULL;
16128 return (const char *) (dwz->str.buffer + str_offset);
16129 }
16130
16131 static const char *
16132 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16133 const struct comp_unit_head *cu_header,
16134 unsigned int *bytes_read_ptr)
16135 {
16136 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16137
16138 return read_indirect_string_at_offset (abfd, str_offset);
16139 }
16140
16141 static ULONGEST
16142 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16143 unsigned int *bytes_read_ptr)
16144 {
16145 ULONGEST result;
16146 unsigned int num_read;
16147 int i, shift;
16148 unsigned char byte;
16149
16150 result = 0;
16151 shift = 0;
16152 num_read = 0;
16153 i = 0;
16154 while (1)
16155 {
16156 byte = bfd_get_8 (abfd, buf);
16157 buf++;
16158 num_read++;
16159 result |= ((ULONGEST) (byte & 127) << shift);
16160 if ((byte & 128) == 0)
16161 {
16162 break;
16163 }
16164 shift += 7;
16165 }
16166 *bytes_read_ptr = num_read;
16167 return result;
16168 }
16169
16170 static LONGEST
16171 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16172 unsigned int *bytes_read_ptr)
16173 {
16174 LONGEST result;
16175 int i, shift, num_read;
16176 unsigned char byte;
16177
16178 result = 0;
16179 shift = 0;
16180 num_read = 0;
16181 i = 0;
16182 while (1)
16183 {
16184 byte = bfd_get_8 (abfd, buf);
16185 buf++;
16186 num_read++;
16187 result |= ((LONGEST) (byte & 127) << shift);
16188 shift += 7;
16189 if ((byte & 128) == 0)
16190 {
16191 break;
16192 }
16193 }
16194 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16195 result |= -(((LONGEST) 1) << shift);
16196 *bytes_read_ptr = num_read;
16197 return result;
16198 }
16199
16200 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16201 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16202 ADDR_SIZE is the size of addresses from the CU header. */
16203
16204 static CORE_ADDR
16205 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16206 {
16207 struct objfile *objfile = dwarf2_per_objfile->objfile;
16208 bfd *abfd = objfile->obfd;
16209 const gdb_byte *info_ptr;
16210
16211 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16212 if (dwarf2_per_objfile->addr.buffer == NULL)
16213 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16214 objfile_name (objfile));
16215 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16216 error (_("DW_FORM_addr_index pointing outside of "
16217 ".debug_addr section [in module %s]"),
16218 objfile_name (objfile));
16219 info_ptr = (dwarf2_per_objfile->addr.buffer
16220 + addr_base + addr_index * addr_size);
16221 if (addr_size == 4)
16222 return bfd_get_32 (abfd, info_ptr);
16223 else
16224 return bfd_get_64 (abfd, info_ptr);
16225 }
16226
16227 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16228
16229 static CORE_ADDR
16230 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16231 {
16232 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16233 }
16234
16235 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16236
16237 static CORE_ADDR
16238 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16239 unsigned int *bytes_read)
16240 {
16241 bfd *abfd = cu->objfile->obfd;
16242 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16243
16244 return read_addr_index (cu, addr_index);
16245 }
16246
16247 /* Data structure to pass results from dwarf2_read_addr_index_reader
16248 back to dwarf2_read_addr_index. */
16249
16250 struct dwarf2_read_addr_index_data
16251 {
16252 ULONGEST addr_base;
16253 int addr_size;
16254 };
16255
16256 /* die_reader_func for dwarf2_read_addr_index. */
16257
16258 static void
16259 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16260 const gdb_byte *info_ptr,
16261 struct die_info *comp_unit_die,
16262 int has_children,
16263 void *data)
16264 {
16265 struct dwarf2_cu *cu = reader->cu;
16266 struct dwarf2_read_addr_index_data *aidata =
16267 (struct dwarf2_read_addr_index_data *) data;
16268
16269 aidata->addr_base = cu->addr_base;
16270 aidata->addr_size = cu->header.addr_size;
16271 }
16272
16273 /* Given an index in .debug_addr, fetch the value.
16274 NOTE: This can be called during dwarf expression evaluation,
16275 long after the debug information has been read, and thus per_cu->cu
16276 may no longer exist. */
16277
16278 CORE_ADDR
16279 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16280 unsigned int addr_index)
16281 {
16282 struct objfile *objfile = per_cu->objfile;
16283 struct dwarf2_cu *cu = per_cu->cu;
16284 ULONGEST addr_base;
16285 int addr_size;
16286
16287 /* This is intended to be called from outside this file. */
16288 dw2_setup (objfile);
16289
16290 /* We need addr_base and addr_size.
16291 If we don't have PER_CU->cu, we have to get it.
16292 Nasty, but the alternative is storing the needed info in PER_CU,
16293 which at this point doesn't seem justified: it's not clear how frequently
16294 it would get used and it would increase the size of every PER_CU.
16295 Entry points like dwarf2_per_cu_addr_size do a similar thing
16296 so we're not in uncharted territory here.
16297 Alas we need to be a bit more complicated as addr_base is contained
16298 in the DIE.
16299
16300 We don't need to read the entire CU(/TU).
16301 We just need the header and top level die.
16302
16303 IWBN to use the aging mechanism to let us lazily later discard the CU.
16304 For now we skip this optimization. */
16305
16306 if (cu != NULL)
16307 {
16308 addr_base = cu->addr_base;
16309 addr_size = cu->header.addr_size;
16310 }
16311 else
16312 {
16313 struct dwarf2_read_addr_index_data aidata;
16314
16315 /* Note: We can't use init_cutu_and_read_dies_simple here,
16316 we need addr_base. */
16317 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16318 dwarf2_read_addr_index_reader, &aidata);
16319 addr_base = aidata.addr_base;
16320 addr_size = aidata.addr_size;
16321 }
16322
16323 return read_addr_index_1 (addr_index, addr_base, addr_size);
16324 }
16325
16326 /* Given a DW_FORM_GNU_str_index, fetch the string.
16327 This is only used by the Fission support. */
16328
16329 static const char *
16330 read_str_index (const struct die_reader_specs *reader,
16331 struct dwarf2_cu *cu, ULONGEST str_index)
16332 {
16333 struct objfile *objfile = dwarf2_per_objfile->objfile;
16334 const char *dwo_name = objfile_name (objfile);
16335 bfd *abfd = objfile->obfd;
16336 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16337 struct dwarf2_section_info *str_offsets_section =
16338 &reader->dwo_file->sections.str_offsets;
16339 const gdb_byte *info_ptr;
16340 ULONGEST str_offset;
16341 static const char form_name[] = "DW_FORM_GNU_str_index";
16342
16343 dwarf2_read_section (objfile, str_section);
16344 dwarf2_read_section (objfile, str_offsets_section);
16345 if (str_section->buffer == NULL)
16346 error (_("%s used without .debug_str.dwo section"
16347 " in CU at offset 0x%lx [in module %s]"),
16348 form_name, (long) cu->header.offset.sect_off, dwo_name);
16349 if (str_offsets_section->buffer == NULL)
16350 error (_("%s used without .debug_str_offsets.dwo section"
16351 " in CU at offset 0x%lx [in module %s]"),
16352 form_name, (long) cu->header.offset.sect_off, dwo_name);
16353 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16354 error (_("%s pointing outside of .debug_str_offsets.dwo"
16355 " section in CU at offset 0x%lx [in module %s]"),
16356 form_name, (long) cu->header.offset.sect_off, dwo_name);
16357 info_ptr = (str_offsets_section->buffer
16358 + str_index * cu->header.offset_size);
16359 if (cu->header.offset_size == 4)
16360 str_offset = bfd_get_32 (abfd, info_ptr);
16361 else
16362 str_offset = bfd_get_64 (abfd, info_ptr);
16363 if (str_offset >= str_section->size)
16364 error (_("Offset from %s pointing outside of"
16365 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16366 form_name, (long) cu->header.offset.sect_off, dwo_name);
16367 return (const char *) (str_section->buffer + str_offset);
16368 }
16369
16370 /* Return the length of an LEB128 number in BUF. */
16371
16372 static int
16373 leb128_size (const gdb_byte *buf)
16374 {
16375 const gdb_byte *begin = buf;
16376 gdb_byte byte;
16377
16378 while (1)
16379 {
16380 byte = *buf++;
16381 if ((byte & 128) == 0)
16382 return buf - begin;
16383 }
16384 }
16385
16386 static void
16387 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16388 {
16389 switch (lang)
16390 {
16391 case DW_LANG_C89:
16392 case DW_LANG_C99:
16393 case DW_LANG_C:
16394 case DW_LANG_UPC:
16395 cu->language = language_c;
16396 break;
16397 case DW_LANG_C_plus_plus:
16398 cu->language = language_cplus;
16399 break;
16400 case DW_LANG_D:
16401 cu->language = language_d;
16402 break;
16403 case DW_LANG_Fortran77:
16404 case DW_LANG_Fortran90:
16405 case DW_LANG_Fortran95:
16406 cu->language = language_fortran;
16407 break;
16408 case DW_LANG_Go:
16409 cu->language = language_go;
16410 break;
16411 case DW_LANG_Mips_Assembler:
16412 cu->language = language_asm;
16413 break;
16414 case DW_LANG_Java:
16415 cu->language = language_java;
16416 break;
16417 case DW_LANG_Ada83:
16418 case DW_LANG_Ada95:
16419 cu->language = language_ada;
16420 break;
16421 case DW_LANG_Modula2:
16422 cu->language = language_m2;
16423 break;
16424 case DW_LANG_Pascal83:
16425 cu->language = language_pascal;
16426 break;
16427 case DW_LANG_ObjC:
16428 cu->language = language_objc;
16429 break;
16430 case DW_LANG_Cobol74:
16431 case DW_LANG_Cobol85:
16432 default:
16433 cu->language = language_minimal;
16434 break;
16435 }
16436 cu->language_defn = language_def (cu->language);
16437 }
16438
16439 /* Return the named attribute or NULL if not there. */
16440
16441 static struct attribute *
16442 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16443 {
16444 for (;;)
16445 {
16446 unsigned int i;
16447 struct attribute *spec = NULL;
16448
16449 for (i = 0; i < die->num_attrs; ++i)
16450 {
16451 if (die->attrs[i].name == name)
16452 return &die->attrs[i];
16453 if (die->attrs[i].name == DW_AT_specification
16454 || die->attrs[i].name == DW_AT_abstract_origin)
16455 spec = &die->attrs[i];
16456 }
16457
16458 if (!spec)
16459 break;
16460
16461 die = follow_die_ref (die, spec, &cu);
16462 }
16463
16464 return NULL;
16465 }
16466
16467 /* Return the named attribute or NULL if not there,
16468 but do not follow DW_AT_specification, etc.
16469 This is for use in contexts where we're reading .debug_types dies.
16470 Following DW_AT_specification, DW_AT_abstract_origin will take us
16471 back up the chain, and we want to go down. */
16472
16473 static struct attribute *
16474 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16475 {
16476 unsigned int i;
16477
16478 for (i = 0; i < die->num_attrs; ++i)
16479 if (die->attrs[i].name == name)
16480 return &die->attrs[i];
16481
16482 return NULL;
16483 }
16484
16485 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16486 and holds a non-zero value. This function should only be used for
16487 DW_FORM_flag or DW_FORM_flag_present attributes. */
16488
16489 static int
16490 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16491 {
16492 struct attribute *attr = dwarf2_attr (die, name, cu);
16493
16494 return (attr && DW_UNSND (attr));
16495 }
16496
16497 static int
16498 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16499 {
16500 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16501 which value is non-zero. However, we have to be careful with
16502 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16503 (via dwarf2_flag_true_p) follows this attribute. So we may
16504 end up accidently finding a declaration attribute that belongs
16505 to a different DIE referenced by the specification attribute,
16506 even though the given DIE does not have a declaration attribute. */
16507 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16508 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16509 }
16510
16511 /* Return the die giving the specification for DIE, if there is
16512 one. *SPEC_CU is the CU containing DIE on input, and the CU
16513 containing the return value on output. If there is no
16514 specification, but there is an abstract origin, that is
16515 returned. */
16516
16517 static struct die_info *
16518 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16519 {
16520 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16521 *spec_cu);
16522
16523 if (spec_attr == NULL)
16524 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16525
16526 if (spec_attr == NULL)
16527 return NULL;
16528 else
16529 return follow_die_ref (die, spec_attr, spec_cu);
16530 }
16531
16532 /* Free the line_header structure *LH, and any arrays and strings it
16533 refers to.
16534 NOTE: This is also used as a "cleanup" function. */
16535
16536 static void
16537 free_line_header (struct line_header *lh)
16538 {
16539 if (lh->standard_opcode_lengths)
16540 xfree (lh->standard_opcode_lengths);
16541
16542 /* Remember that all the lh->file_names[i].name pointers are
16543 pointers into debug_line_buffer, and don't need to be freed. */
16544 if (lh->file_names)
16545 xfree (lh->file_names);
16546
16547 /* Similarly for the include directory names. */
16548 if (lh->include_dirs)
16549 xfree (lh->include_dirs);
16550
16551 xfree (lh);
16552 }
16553
16554 /* Add an entry to LH's include directory table. */
16555
16556 static void
16557 add_include_dir (struct line_header *lh, const char *include_dir)
16558 {
16559 /* Grow the array if necessary. */
16560 if (lh->include_dirs_size == 0)
16561 {
16562 lh->include_dirs_size = 1; /* for testing */
16563 lh->include_dirs = xmalloc (lh->include_dirs_size
16564 * sizeof (*lh->include_dirs));
16565 }
16566 else if (lh->num_include_dirs >= lh->include_dirs_size)
16567 {
16568 lh->include_dirs_size *= 2;
16569 lh->include_dirs = xrealloc (lh->include_dirs,
16570 (lh->include_dirs_size
16571 * sizeof (*lh->include_dirs)));
16572 }
16573
16574 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16575 }
16576
16577 /* Add an entry to LH's file name table. */
16578
16579 static void
16580 add_file_name (struct line_header *lh,
16581 const char *name,
16582 unsigned int dir_index,
16583 unsigned int mod_time,
16584 unsigned int length)
16585 {
16586 struct file_entry *fe;
16587
16588 /* Grow the array if necessary. */
16589 if (lh->file_names_size == 0)
16590 {
16591 lh->file_names_size = 1; /* for testing */
16592 lh->file_names = xmalloc (lh->file_names_size
16593 * sizeof (*lh->file_names));
16594 }
16595 else if (lh->num_file_names >= lh->file_names_size)
16596 {
16597 lh->file_names_size *= 2;
16598 lh->file_names = xrealloc (lh->file_names,
16599 (lh->file_names_size
16600 * sizeof (*lh->file_names)));
16601 }
16602
16603 fe = &lh->file_names[lh->num_file_names++];
16604 fe->name = name;
16605 fe->dir_index = dir_index;
16606 fe->mod_time = mod_time;
16607 fe->length = length;
16608 fe->included_p = 0;
16609 fe->symtab = NULL;
16610 }
16611
16612 /* A convenience function to find the proper .debug_line section for a
16613 CU. */
16614
16615 static struct dwarf2_section_info *
16616 get_debug_line_section (struct dwarf2_cu *cu)
16617 {
16618 struct dwarf2_section_info *section;
16619
16620 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16621 DWO file. */
16622 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16623 section = &cu->dwo_unit->dwo_file->sections.line;
16624 else if (cu->per_cu->is_dwz)
16625 {
16626 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16627
16628 section = &dwz->line;
16629 }
16630 else
16631 section = &dwarf2_per_objfile->line;
16632
16633 return section;
16634 }
16635
16636 /* Read the statement program header starting at OFFSET in
16637 .debug_line, or .debug_line.dwo. Return a pointer
16638 to a struct line_header, allocated using xmalloc.
16639
16640 NOTE: the strings in the include directory and file name tables of
16641 the returned object point into the dwarf line section buffer,
16642 and must not be freed. */
16643
16644 static struct line_header *
16645 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16646 {
16647 struct cleanup *back_to;
16648 struct line_header *lh;
16649 const gdb_byte *line_ptr;
16650 unsigned int bytes_read, offset_size;
16651 int i;
16652 const char *cur_dir, *cur_file;
16653 struct dwarf2_section_info *section;
16654 bfd *abfd;
16655
16656 section = get_debug_line_section (cu);
16657 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16658 if (section->buffer == NULL)
16659 {
16660 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16661 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16662 else
16663 complaint (&symfile_complaints, _("missing .debug_line section"));
16664 return 0;
16665 }
16666
16667 /* We can't do this until we know the section is non-empty.
16668 Only then do we know we have such a section. */
16669 abfd = get_section_bfd_owner (section);
16670
16671 /* Make sure that at least there's room for the total_length field.
16672 That could be 12 bytes long, but we're just going to fudge that. */
16673 if (offset + 4 >= section->size)
16674 {
16675 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16676 return 0;
16677 }
16678
16679 lh = xmalloc (sizeof (*lh));
16680 memset (lh, 0, sizeof (*lh));
16681 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16682 (void *) lh);
16683
16684 line_ptr = section->buffer + offset;
16685
16686 /* Read in the header. */
16687 lh->total_length =
16688 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16689 &bytes_read, &offset_size);
16690 line_ptr += bytes_read;
16691 if (line_ptr + lh->total_length > (section->buffer + section->size))
16692 {
16693 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16694 do_cleanups (back_to);
16695 return 0;
16696 }
16697 lh->statement_program_end = line_ptr + lh->total_length;
16698 lh->version = read_2_bytes (abfd, line_ptr);
16699 line_ptr += 2;
16700 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16701 line_ptr += offset_size;
16702 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16703 line_ptr += 1;
16704 if (lh->version >= 4)
16705 {
16706 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16707 line_ptr += 1;
16708 }
16709 else
16710 lh->maximum_ops_per_instruction = 1;
16711
16712 if (lh->maximum_ops_per_instruction == 0)
16713 {
16714 lh->maximum_ops_per_instruction = 1;
16715 complaint (&symfile_complaints,
16716 _("invalid maximum_ops_per_instruction "
16717 "in `.debug_line' section"));
16718 }
16719
16720 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16721 line_ptr += 1;
16722 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16723 line_ptr += 1;
16724 lh->line_range = read_1_byte (abfd, line_ptr);
16725 line_ptr += 1;
16726 lh->opcode_base = read_1_byte (abfd, line_ptr);
16727 line_ptr += 1;
16728 lh->standard_opcode_lengths
16729 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16730
16731 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16732 for (i = 1; i < lh->opcode_base; ++i)
16733 {
16734 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16735 line_ptr += 1;
16736 }
16737
16738 /* Read directory table. */
16739 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16740 {
16741 line_ptr += bytes_read;
16742 add_include_dir (lh, cur_dir);
16743 }
16744 line_ptr += bytes_read;
16745
16746 /* Read file name table. */
16747 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16748 {
16749 unsigned int dir_index, mod_time, length;
16750
16751 line_ptr += bytes_read;
16752 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16753 line_ptr += bytes_read;
16754 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16755 line_ptr += bytes_read;
16756 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16757 line_ptr += bytes_read;
16758
16759 add_file_name (lh, cur_file, dir_index, mod_time, length);
16760 }
16761 line_ptr += bytes_read;
16762 lh->statement_program_start = line_ptr;
16763
16764 if (line_ptr > (section->buffer + section->size))
16765 complaint (&symfile_complaints,
16766 _("line number info header doesn't "
16767 "fit in `.debug_line' section"));
16768
16769 discard_cleanups (back_to);
16770 return lh;
16771 }
16772
16773 /* Subroutine of dwarf_decode_lines to simplify it.
16774 Return the file name of the psymtab for included file FILE_INDEX
16775 in line header LH of PST.
16776 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16777 If space for the result is malloc'd, it will be freed by a cleanup.
16778 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16779
16780 The function creates dangling cleanup registration. */
16781
16782 static const char *
16783 psymtab_include_file_name (const struct line_header *lh, int file_index,
16784 const struct partial_symtab *pst,
16785 const char *comp_dir)
16786 {
16787 const struct file_entry fe = lh->file_names [file_index];
16788 const char *include_name = fe.name;
16789 const char *include_name_to_compare = include_name;
16790 const char *dir_name = NULL;
16791 const char *pst_filename;
16792 char *copied_name = NULL;
16793 int file_is_pst;
16794
16795 if (fe.dir_index)
16796 dir_name = lh->include_dirs[fe.dir_index - 1];
16797
16798 if (!IS_ABSOLUTE_PATH (include_name)
16799 && (dir_name != NULL || comp_dir != NULL))
16800 {
16801 /* Avoid creating a duplicate psymtab for PST.
16802 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16803 Before we do the comparison, however, we need to account
16804 for DIR_NAME and COMP_DIR.
16805 First prepend dir_name (if non-NULL). If we still don't
16806 have an absolute path prepend comp_dir (if non-NULL).
16807 However, the directory we record in the include-file's
16808 psymtab does not contain COMP_DIR (to match the
16809 corresponding symtab(s)).
16810
16811 Example:
16812
16813 bash$ cd /tmp
16814 bash$ gcc -g ./hello.c
16815 include_name = "hello.c"
16816 dir_name = "."
16817 DW_AT_comp_dir = comp_dir = "/tmp"
16818 DW_AT_name = "./hello.c" */
16819
16820 if (dir_name != NULL)
16821 {
16822 char *tem = concat (dir_name, SLASH_STRING,
16823 include_name, (char *)NULL);
16824
16825 make_cleanup (xfree, tem);
16826 include_name = tem;
16827 include_name_to_compare = include_name;
16828 }
16829 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16830 {
16831 char *tem = concat (comp_dir, SLASH_STRING,
16832 include_name, (char *)NULL);
16833
16834 make_cleanup (xfree, tem);
16835 include_name_to_compare = tem;
16836 }
16837 }
16838
16839 pst_filename = pst->filename;
16840 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16841 {
16842 copied_name = concat (pst->dirname, SLASH_STRING,
16843 pst_filename, (char *)NULL);
16844 pst_filename = copied_name;
16845 }
16846
16847 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16848
16849 if (copied_name != NULL)
16850 xfree (copied_name);
16851
16852 if (file_is_pst)
16853 return NULL;
16854 return include_name;
16855 }
16856
16857 /* Ignore this record_line request. */
16858
16859 static void
16860 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16861 {
16862 return;
16863 }
16864
16865 /* Subroutine of dwarf_decode_lines to simplify it.
16866 Process the line number information in LH. */
16867
16868 static void
16869 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16870 struct dwarf2_cu *cu, struct partial_symtab *pst)
16871 {
16872 const gdb_byte *line_ptr, *extended_end;
16873 const gdb_byte *line_end;
16874 unsigned int bytes_read, extended_len;
16875 unsigned char op_code, extended_op, adj_opcode;
16876 CORE_ADDR baseaddr;
16877 struct objfile *objfile = cu->objfile;
16878 bfd *abfd = objfile->obfd;
16879 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16880 const int decode_for_pst_p = (pst != NULL);
16881 struct subfile *last_subfile = NULL;
16882 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16883 = record_line;
16884
16885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16886
16887 line_ptr = lh->statement_program_start;
16888 line_end = lh->statement_program_end;
16889
16890 /* Read the statement sequences until there's nothing left. */
16891 while (line_ptr < line_end)
16892 {
16893 /* state machine registers */
16894 CORE_ADDR address = 0;
16895 unsigned int file = 1;
16896 unsigned int line = 1;
16897 unsigned int column = 0;
16898 int is_stmt = lh->default_is_stmt;
16899 int basic_block = 0;
16900 int end_sequence = 0;
16901 CORE_ADDR addr;
16902 unsigned char op_index = 0;
16903
16904 if (!decode_for_pst_p && lh->num_file_names >= file)
16905 {
16906 /* Start a subfile for the current file of the state machine. */
16907 /* lh->include_dirs and lh->file_names are 0-based, but the
16908 directory and file name numbers in the statement program
16909 are 1-based. */
16910 struct file_entry *fe = &lh->file_names[file - 1];
16911 const char *dir = NULL;
16912
16913 if (fe->dir_index)
16914 dir = lh->include_dirs[fe->dir_index - 1];
16915
16916 dwarf2_start_subfile (fe->name, dir, comp_dir);
16917 }
16918
16919 /* Decode the table. */
16920 while (!end_sequence)
16921 {
16922 op_code = read_1_byte (abfd, line_ptr);
16923 line_ptr += 1;
16924 if (line_ptr > line_end)
16925 {
16926 dwarf2_debug_line_missing_end_sequence_complaint ();
16927 break;
16928 }
16929
16930 if (op_code >= lh->opcode_base)
16931 {
16932 /* Special operand. */
16933 adj_opcode = op_code - lh->opcode_base;
16934 address += (((op_index + (adj_opcode / lh->line_range))
16935 / lh->maximum_ops_per_instruction)
16936 * lh->minimum_instruction_length);
16937 op_index = ((op_index + (adj_opcode / lh->line_range))
16938 % lh->maximum_ops_per_instruction);
16939 line += lh->line_base + (adj_opcode % lh->line_range);
16940 if (lh->num_file_names < file || file == 0)
16941 dwarf2_debug_line_missing_file_complaint ();
16942 /* For now we ignore lines not starting on an
16943 instruction boundary. */
16944 else if (op_index == 0)
16945 {
16946 lh->file_names[file - 1].included_p = 1;
16947 if (!decode_for_pst_p && is_stmt)
16948 {
16949 if (last_subfile != current_subfile)
16950 {
16951 addr = gdbarch_addr_bits_remove (gdbarch, address);
16952 if (last_subfile)
16953 (*p_record_line) (last_subfile, 0, addr);
16954 last_subfile = current_subfile;
16955 }
16956 /* Append row to matrix using current values. */
16957 addr = gdbarch_addr_bits_remove (gdbarch, address);
16958 (*p_record_line) (current_subfile, line, addr);
16959 }
16960 }
16961 basic_block = 0;
16962 }
16963 else switch (op_code)
16964 {
16965 case DW_LNS_extended_op:
16966 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16967 &bytes_read);
16968 line_ptr += bytes_read;
16969 extended_end = line_ptr + extended_len;
16970 extended_op = read_1_byte (abfd, line_ptr);
16971 line_ptr += 1;
16972 switch (extended_op)
16973 {
16974 case DW_LNE_end_sequence:
16975 p_record_line = record_line;
16976 end_sequence = 1;
16977 break;
16978 case DW_LNE_set_address:
16979 address = read_address (abfd, line_ptr, cu, &bytes_read);
16980
16981 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16982 {
16983 /* This line table is for a function which has been
16984 GCd by the linker. Ignore it. PR gdb/12528 */
16985
16986 long line_offset
16987 = line_ptr - get_debug_line_section (cu)->buffer;
16988
16989 complaint (&symfile_complaints,
16990 _(".debug_line address at offset 0x%lx is 0 "
16991 "[in module %s]"),
16992 line_offset, objfile_name (objfile));
16993 p_record_line = noop_record_line;
16994 }
16995
16996 op_index = 0;
16997 line_ptr += bytes_read;
16998 address += baseaddr;
16999 break;
17000 case DW_LNE_define_file:
17001 {
17002 const char *cur_file;
17003 unsigned int dir_index, mod_time, length;
17004
17005 cur_file = read_direct_string (abfd, line_ptr,
17006 &bytes_read);
17007 line_ptr += bytes_read;
17008 dir_index =
17009 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17010 line_ptr += bytes_read;
17011 mod_time =
17012 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17013 line_ptr += bytes_read;
17014 length =
17015 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17016 line_ptr += bytes_read;
17017 add_file_name (lh, cur_file, dir_index, mod_time, length);
17018 }
17019 break;
17020 case DW_LNE_set_discriminator:
17021 /* The discriminator is not interesting to the debugger;
17022 just ignore it. */
17023 line_ptr = extended_end;
17024 break;
17025 default:
17026 complaint (&symfile_complaints,
17027 _("mangled .debug_line section"));
17028 return;
17029 }
17030 /* Make sure that we parsed the extended op correctly. If e.g.
17031 we expected a different address size than the producer used,
17032 we may have read the wrong number of bytes. */
17033 if (line_ptr != extended_end)
17034 {
17035 complaint (&symfile_complaints,
17036 _("mangled .debug_line section"));
17037 return;
17038 }
17039 break;
17040 case DW_LNS_copy:
17041 if (lh->num_file_names < file || file == 0)
17042 dwarf2_debug_line_missing_file_complaint ();
17043 else
17044 {
17045 lh->file_names[file - 1].included_p = 1;
17046 if (!decode_for_pst_p && is_stmt)
17047 {
17048 if (last_subfile != current_subfile)
17049 {
17050 addr = gdbarch_addr_bits_remove (gdbarch, address);
17051 if (last_subfile)
17052 (*p_record_line) (last_subfile, 0, addr);
17053 last_subfile = current_subfile;
17054 }
17055 addr = gdbarch_addr_bits_remove (gdbarch, address);
17056 (*p_record_line) (current_subfile, line, addr);
17057 }
17058 }
17059 basic_block = 0;
17060 break;
17061 case DW_LNS_advance_pc:
17062 {
17063 CORE_ADDR adjust
17064 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065
17066 address += (((op_index + adjust)
17067 / lh->maximum_ops_per_instruction)
17068 * lh->minimum_instruction_length);
17069 op_index = ((op_index + adjust)
17070 % lh->maximum_ops_per_instruction);
17071 line_ptr += bytes_read;
17072 }
17073 break;
17074 case DW_LNS_advance_line:
17075 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17076 line_ptr += bytes_read;
17077 break;
17078 case DW_LNS_set_file:
17079 {
17080 /* The arrays lh->include_dirs and lh->file_names are
17081 0-based, but the directory and file name numbers in
17082 the statement program are 1-based. */
17083 struct file_entry *fe;
17084 const char *dir = NULL;
17085
17086 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17087 line_ptr += bytes_read;
17088 if (lh->num_file_names < file || file == 0)
17089 dwarf2_debug_line_missing_file_complaint ();
17090 else
17091 {
17092 fe = &lh->file_names[file - 1];
17093 if (fe->dir_index)
17094 dir = lh->include_dirs[fe->dir_index - 1];
17095 if (!decode_for_pst_p)
17096 {
17097 last_subfile = current_subfile;
17098 dwarf2_start_subfile (fe->name, dir, comp_dir);
17099 }
17100 }
17101 }
17102 break;
17103 case DW_LNS_set_column:
17104 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17105 line_ptr += bytes_read;
17106 break;
17107 case DW_LNS_negate_stmt:
17108 is_stmt = (!is_stmt);
17109 break;
17110 case DW_LNS_set_basic_block:
17111 basic_block = 1;
17112 break;
17113 /* Add to the address register of the state machine the
17114 address increment value corresponding to special opcode
17115 255. I.e., this value is scaled by the minimum
17116 instruction length since special opcode 255 would have
17117 scaled the increment. */
17118 case DW_LNS_const_add_pc:
17119 {
17120 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17121
17122 address += (((op_index + adjust)
17123 / lh->maximum_ops_per_instruction)
17124 * lh->minimum_instruction_length);
17125 op_index = ((op_index + adjust)
17126 % lh->maximum_ops_per_instruction);
17127 }
17128 break;
17129 case DW_LNS_fixed_advance_pc:
17130 address += read_2_bytes (abfd, line_ptr);
17131 op_index = 0;
17132 line_ptr += 2;
17133 break;
17134 default:
17135 {
17136 /* Unknown standard opcode, ignore it. */
17137 int i;
17138
17139 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17140 {
17141 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17142 line_ptr += bytes_read;
17143 }
17144 }
17145 }
17146 }
17147 if (lh->num_file_names < file || file == 0)
17148 dwarf2_debug_line_missing_file_complaint ();
17149 else
17150 {
17151 lh->file_names[file - 1].included_p = 1;
17152 if (!decode_for_pst_p)
17153 {
17154 addr = gdbarch_addr_bits_remove (gdbarch, address);
17155 (*p_record_line) (current_subfile, 0, addr);
17156 }
17157 }
17158 }
17159 }
17160
17161 /* Decode the Line Number Program (LNP) for the given line_header
17162 structure and CU. The actual information extracted and the type
17163 of structures created from the LNP depends on the value of PST.
17164
17165 1. If PST is NULL, then this procedure uses the data from the program
17166 to create all necessary symbol tables, and their linetables.
17167
17168 2. If PST is not NULL, this procedure reads the program to determine
17169 the list of files included by the unit represented by PST, and
17170 builds all the associated partial symbol tables.
17171
17172 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17173 It is used for relative paths in the line table.
17174 NOTE: When processing partial symtabs (pst != NULL),
17175 comp_dir == pst->dirname.
17176
17177 NOTE: It is important that psymtabs have the same file name (via strcmp)
17178 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17179 symtab we don't use it in the name of the psymtabs we create.
17180 E.g. expand_line_sal requires this when finding psymtabs to expand.
17181 A good testcase for this is mb-inline.exp. */
17182
17183 static void
17184 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17185 struct dwarf2_cu *cu, struct partial_symtab *pst,
17186 int want_line_info)
17187 {
17188 struct objfile *objfile = cu->objfile;
17189 const int decode_for_pst_p = (pst != NULL);
17190 struct subfile *first_subfile = current_subfile;
17191
17192 if (want_line_info)
17193 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17194
17195 if (decode_for_pst_p)
17196 {
17197 int file_index;
17198
17199 /* Now that we're done scanning the Line Header Program, we can
17200 create the psymtab of each included file. */
17201 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17202 if (lh->file_names[file_index].included_p == 1)
17203 {
17204 const char *include_name =
17205 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17206 if (include_name != NULL)
17207 dwarf2_create_include_psymtab (include_name, pst, objfile);
17208 }
17209 }
17210 else
17211 {
17212 /* Make sure a symtab is created for every file, even files
17213 which contain only variables (i.e. no code with associated
17214 line numbers). */
17215 int i;
17216
17217 for (i = 0; i < lh->num_file_names; i++)
17218 {
17219 const char *dir = NULL;
17220 struct file_entry *fe;
17221
17222 fe = &lh->file_names[i];
17223 if (fe->dir_index)
17224 dir = lh->include_dirs[fe->dir_index - 1];
17225 dwarf2_start_subfile (fe->name, dir, comp_dir);
17226
17227 /* Skip the main file; we don't need it, and it must be
17228 allocated last, so that it will show up before the
17229 non-primary symtabs in the objfile's symtab list. */
17230 if (current_subfile == first_subfile)
17231 continue;
17232
17233 if (current_subfile->symtab == NULL)
17234 current_subfile->symtab = allocate_symtab (current_subfile->name,
17235 objfile);
17236 fe->symtab = current_subfile->symtab;
17237 }
17238 }
17239 }
17240
17241 /* Start a subfile for DWARF. FILENAME is the name of the file and
17242 DIRNAME the name of the source directory which contains FILENAME
17243 or NULL if not known. COMP_DIR is the compilation directory for the
17244 linetable's compilation unit or NULL if not known.
17245 This routine tries to keep line numbers from identical absolute and
17246 relative file names in a common subfile.
17247
17248 Using the `list' example from the GDB testsuite, which resides in
17249 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17250 of /srcdir/list0.c yields the following debugging information for list0.c:
17251
17252 DW_AT_name: /srcdir/list0.c
17253 DW_AT_comp_dir: /compdir
17254 files.files[0].name: list0.h
17255 files.files[0].dir: /srcdir
17256 files.files[1].name: list0.c
17257 files.files[1].dir: /srcdir
17258
17259 The line number information for list0.c has to end up in a single
17260 subfile, so that `break /srcdir/list0.c:1' works as expected.
17261 start_subfile will ensure that this happens provided that we pass the
17262 concatenation of files.files[1].dir and files.files[1].name as the
17263 subfile's name. */
17264
17265 static void
17266 dwarf2_start_subfile (const char *filename, const char *dirname,
17267 const char *comp_dir)
17268 {
17269 char *copy = NULL;
17270
17271 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17272 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17273 second argument to start_subfile. To be consistent, we do the
17274 same here. In order not to lose the line information directory,
17275 we concatenate it to the filename when it makes sense.
17276 Note that the Dwarf3 standard says (speaking of filenames in line
17277 information): ``The directory index is ignored for file names
17278 that represent full path names''. Thus ignoring dirname in the
17279 `else' branch below isn't an issue. */
17280
17281 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17282 {
17283 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17284 filename = copy;
17285 }
17286
17287 start_subfile (filename, comp_dir);
17288
17289 if (copy != NULL)
17290 xfree (copy);
17291 }
17292
17293 /* Start a symtab for DWARF.
17294 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17295
17296 static void
17297 dwarf2_start_symtab (struct dwarf2_cu *cu,
17298 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17299 {
17300 start_symtab (name, comp_dir, low_pc);
17301 record_debugformat ("DWARF 2");
17302 record_producer (cu->producer);
17303
17304 /* We assume that we're processing GCC output. */
17305 processing_gcc_compilation = 2;
17306
17307 cu->processing_has_namespace_info = 0;
17308 }
17309
17310 static void
17311 var_decode_location (struct attribute *attr, struct symbol *sym,
17312 struct dwarf2_cu *cu)
17313 {
17314 struct objfile *objfile = cu->objfile;
17315 struct comp_unit_head *cu_header = &cu->header;
17316
17317 /* NOTE drow/2003-01-30: There used to be a comment and some special
17318 code here to turn a symbol with DW_AT_external and a
17319 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17320 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17321 with some versions of binutils) where shared libraries could have
17322 relocations against symbols in their debug information - the
17323 minimal symbol would have the right address, but the debug info
17324 would not. It's no longer necessary, because we will explicitly
17325 apply relocations when we read in the debug information now. */
17326
17327 /* A DW_AT_location attribute with no contents indicates that a
17328 variable has been optimized away. */
17329 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17330 {
17331 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17332 return;
17333 }
17334
17335 /* Handle one degenerate form of location expression specially, to
17336 preserve GDB's previous behavior when section offsets are
17337 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17338 then mark this symbol as LOC_STATIC. */
17339
17340 if (attr_form_is_block (attr)
17341 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17342 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17343 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17344 && (DW_BLOCK (attr)->size
17345 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17346 {
17347 unsigned int dummy;
17348
17349 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17350 SYMBOL_VALUE_ADDRESS (sym) =
17351 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17352 else
17353 SYMBOL_VALUE_ADDRESS (sym) =
17354 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17355 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17356 fixup_symbol_section (sym, objfile);
17357 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17358 SYMBOL_SECTION (sym));
17359 return;
17360 }
17361
17362 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17363 expression evaluator, and use LOC_COMPUTED only when necessary
17364 (i.e. when the value of a register or memory location is
17365 referenced, or a thread-local block, etc.). Then again, it might
17366 not be worthwhile. I'm assuming that it isn't unless performance
17367 or memory numbers show me otherwise. */
17368
17369 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17370
17371 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17372 cu->has_loclist = 1;
17373 }
17374
17375 /* Given a pointer to a DWARF information entry, figure out if we need
17376 to make a symbol table entry for it, and if so, create a new entry
17377 and return a pointer to it.
17378 If TYPE is NULL, determine symbol type from the die, otherwise
17379 used the passed type.
17380 If SPACE is not NULL, use it to hold the new symbol. If it is
17381 NULL, allocate a new symbol on the objfile's obstack. */
17382
17383 static struct symbol *
17384 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17385 struct symbol *space)
17386 {
17387 struct objfile *objfile = cu->objfile;
17388 struct symbol *sym = NULL;
17389 const char *name;
17390 struct attribute *attr = NULL;
17391 struct attribute *attr2 = NULL;
17392 CORE_ADDR baseaddr;
17393 struct pending **list_to_add = NULL;
17394
17395 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17396
17397 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17398
17399 name = dwarf2_name (die, cu);
17400 if (name)
17401 {
17402 const char *linkagename;
17403 int suppress_add = 0;
17404
17405 if (space)
17406 sym = space;
17407 else
17408 sym = allocate_symbol (objfile);
17409 OBJSTAT (objfile, n_syms++);
17410
17411 /* Cache this symbol's name and the name's demangled form (if any). */
17412 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17413 linkagename = dwarf2_physname (name, die, cu);
17414 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17415
17416 /* Fortran does not have mangling standard and the mangling does differ
17417 between gfortran, iFort etc. */
17418 if (cu->language == language_fortran
17419 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17420 symbol_set_demangled_name (&(sym->ginfo),
17421 dwarf2_full_name (name, die, cu),
17422 NULL);
17423
17424 /* Default assumptions.
17425 Use the passed type or decode it from the die. */
17426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17428 if (type != NULL)
17429 SYMBOL_TYPE (sym) = type;
17430 else
17431 SYMBOL_TYPE (sym) = die_type (die, cu);
17432 attr = dwarf2_attr (die,
17433 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17434 cu);
17435 if (attr)
17436 {
17437 SYMBOL_LINE (sym) = DW_UNSND (attr);
17438 }
17439
17440 attr = dwarf2_attr (die,
17441 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17442 cu);
17443 if (attr)
17444 {
17445 int file_index = DW_UNSND (attr);
17446
17447 if (cu->line_header == NULL
17448 || file_index > cu->line_header->num_file_names)
17449 complaint (&symfile_complaints,
17450 _("file index out of range"));
17451 else if (file_index > 0)
17452 {
17453 struct file_entry *fe;
17454
17455 fe = &cu->line_header->file_names[file_index - 1];
17456 SYMBOL_SYMTAB (sym) = fe->symtab;
17457 }
17458 }
17459
17460 switch (die->tag)
17461 {
17462 case DW_TAG_label:
17463 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17464 if (attr)
17465 {
17466 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17467 }
17468 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17469 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17470 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17471 add_symbol_to_list (sym, cu->list_in_scope);
17472 break;
17473 case DW_TAG_subprogram:
17474 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17475 finish_block. */
17476 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17477 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17478 if ((attr2 && (DW_UNSND (attr2) != 0))
17479 || cu->language == language_ada)
17480 {
17481 /* Subprograms marked external are stored as a global symbol.
17482 Ada subprograms, whether marked external or not, are always
17483 stored as a global symbol, because we want to be able to
17484 access them globally. For instance, we want to be able
17485 to break on a nested subprogram without having to
17486 specify the context. */
17487 list_to_add = &global_symbols;
17488 }
17489 else
17490 {
17491 list_to_add = cu->list_in_scope;
17492 }
17493 break;
17494 case DW_TAG_inlined_subroutine:
17495 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17496 finish_block. */
17497 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17498 SYMBOL_INLINED (sym) = 1;
17499 list_to_add = cu->list_in_scope;
17500 break;
17501 case DW_TAG_template_value_param:
17502 suppress_add = 1;
17503 /* Fall through. */
17504 case DW_TAG_constant:
17505 case DW_TAG_variable:
17506 case DW_TAG_member:
17507 /* Compilation with minimal debug info may result in
17508 variables with missing type entries. Change the
17509 misleading `void' type to something sensible. */
17510 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17511 SYMBOL_TYPE (sym)
17512 = objfile_type (objfile)->nodebug_data_symbol;
17513
17514 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17515 /* In the case of DW_TAG_member, we should only be called for
17516 static const members. */
17517 if (die->tag == DW_TAG_member)
17518 {
17519 /* dwarf2_add_field uses die_is_declaration,
17520 so we do the same. */
17521 gdb_assert (die_is_declaration (die, cu));
17522 gdb_assert (attr);
17523 }
17524 if (attr)
17525 {
17526 dwarf2_const_value (attr, sym, cu);
17527 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17528 if (!suppress_add)
17529 {
17530 if (attr2 && (DW_UNSND (attr2) != 0))
17531 list_to_add = &global_symbols;
17532 else
17533 list_to_add = cu->list_in_scope;
17534 }
17535 break;
17536 }
17537 attr = dwarf2_attr (die, DW_AT_location, cu);
17538 if (attr)
17539 {
17540 var_decode_location (attr, sym, cu);
17541 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17542
17543 /* Fortran explicitly imports any global symbols to the local
17544 scope by DW_TAG_common_block. */
17545 if (cu->language == language_fortran && die->parent
17546 && die->parent->tag == DW_TAG_common_block)
17547 attr2 = NULL;
17548
17549 if (SYMBOL_CLASS (sym) == LOC_STATIC
17550 && SYMBOL_VALUE_ADDRESS (sym) == 0
17551 && !dwarf2_per_objfile->has_section_at_zero)
17552 {
17553 /* When a static variable is eliminated by the linker,
17554 the corresponding debug information is not stripped
17555 out, but the variable address is set to null;
17556 do not add such variables into symbol table. */
17557 }
17558 else if (attr2 && (DW_UNSND (attr2) != 0))
17559 {
17560 /* Workaround gfortran PR debug/40040 - it uses
17561 DW_AT_location for variables in -fPIC libraries which may
17562 get overriden by other libraries/executable and get
17563 a different address. Resolve it by the minimal symbol
17564 which may come from inferior's executable using copy
17565 relocation. Make this workaround only for gfortran as for
17566 other compilers GDB cannot guess the minimal symbol
17567 Fortran mangling kind. */
17568 if (cu->language == language_fortran && die->parent
17569 && die->parent->tag == DW_TAG_module
17570 && cu->producer
17571 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17572 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17573
17574 /* A variable with DW_AT_external is never static,
17575 but it may be block-scoped. */
17576 list_to_add = (cu->list_in_scope == &file_symbols
17577 ? &global_symbols : cu->list_in_scope);
17578 }
17579 else
17580 list_to_add = cu->list_in_scope;
17581 }
17582 else
17583 {
17584 /* We do not know the address of this symbol.
17585 If it is an external symbol and we have type information
17586 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17587 The address of the variable will then be determined from
17588 the minimal symbol table whenever the variable is
17589 referenced. */
17590 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17591
17592 /* Fortran explicitly imports any global symbols to the local
17593 scope by DW_TAG_common_block. */
17594 if (cu->language == language_fortran && die->parent
17595 && die->parent->tag == DW_TAG_common_block)
17596 {
17597 /* SYMBOL_CLASS doesn't matter here because
17598 read_common_block is going to reset it. */
17599 if (!suppress_add)
17600 list_to_add = cu->list_in_scope;
17601 }
17602 else if (attr2 && (DW_UNSND (attr2) != 0)
17603 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17604 {
17605 /* A variable with DW_AT_external is never static, but it
17606 may be block-scoped. */
17607 list_to_add = (cu->list_in_scope == &file_symbols
17608 ? &global_symbols : cu->list_in_scope);
17609
17610 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17611 }
17612 else if (!die_is_declaration (die, cu))
17613 {
17614 /* Use the default LOC_OPTIMIZED_OUT class. */
17615 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17616 if (!suppress_add)
17617 list_to_add = cu->list_in_scope;
17618 }
17619 }
17620 break;
17621 case DW_TAG_formal_parameter:
17622 /* If we are inside a function, mark this as an argument. If
17623 not, we might be looking at an argument to an inlined function
17624 when we do not have enough information to show inlined frames;
17625 pretend it's a local variable in that case so that the user can
17626 still see it. */
17627 if (context_stack_depth > 0
17628 && context_stack[context_stack_depth - 1].name != NULL)
17629 SYMBOL_IS_ARGUMENT (sym) = 1;
17630 attr = dwarf2_attr (die, DW_AT_location, cu);
17631 if (attr)
17632 {
17633 var_decode_location (attr, sym, cu);
17634 }
17635 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17636 if (attr)
17637 {
17638 dwarf2_const_value (attr, sym, cu);
17639 }
17640
17641 list_to_add = cu->list_in_scope;
17642 break;
17643 case DW_TAG_unspecified_parameters:
17644 /* From varargs functions; gdb doesn't seem to have any
17645 interest in this information, so just ignore it for now.
17646 (FIXME?) */
17647 break;
17648 case DW_TAG_template_type_param:
17649 suppress_add = 1;
17650 /* Fall through. */
17651 case DW_TAG_class_type:
17652 case DW_TAG_interface_type:
17653 case DW_TAG_structure_type:
17654 case DW_TAG_union_type:
17655 case DW_TAG_set_type:
17656 case DW_TAG_enumeration_type:
17657 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17658 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17659
17660 {
17661 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17662 really ever be static objects: otherwise, if you try
17663 to, say, break of a class's method and you're in a file
17664 which doesn't mention that class, it won't work unless
17665 the check for all static symbols in lookup_symbol_aux
17666 saves you. See the OtherFileClass tests in
17667 gdb.c++/namespace.exp. */
17668
17669 if (!suppress_add)
17670 {
17671 list_to_add = (cu->list_in_scope == &file_symbols
17672 && (cu->language == language_cplus
17673 || cu->language == language_java)
17674 ? &global_symbols : cu->list_in_scope);
17675
17676 /* The semantics of C++ state that "struct foo {
17677 ... }" also defines a typedef for "foo". A Java
17678 class declaration also defines a typedef for the
17679 class. */
17680 if (cu->language == language_cplus
17681 || cu->language == language_java
17682 || cu->language == language_ada)
17683 {
17684 /* The symbol's name is already allocated along
17685 with this objfile, so we don't need to
17686 duplicate it for the type. */
17687 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17688 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17689 }
17690 }
17691 }
17692 break;
17693 case DW_TAG_typedef:
17694 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17695 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17696 list_to_add = cu->list_in_scope;
17697 break;
17698 case DW_TAG_base_type:
17699 case DW_TAG_subrange_type:
17700 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17701 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17702 list_to_add = cu->list_in_scope;
17703 break;
17704 case DW_TAG_enumerator:
17705 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17706 if (attr)
17707 {
17708 dwarf2_const_value (attr, sym, cu);
17709 }
17710 {
17711 /* NOTE: carlton/2003-11-10: See comment above in the
17712 DW_TAG_class_type, etc. block. */
17713
17714 list_to_add = (cu->list_in_scope == &file_symbols
17715 && (cu->language == language_cplus
17716 || cu->language == language_java)
17717 ? &global_symbols : cu->list_in_scope);
17718 }
17719 break;
17720 case DW_TAG_imported_declaration:
17721 case DW_TAG_namespace:
17722 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17723 list_to_add = &global_symbols;
17724 break;
17725 case DW_TAG_module:
17726 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17727 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17728 list_to_add = &global_symbols;
17729 break;
17730 case DW_TAG_common_block:
17731 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17732 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17733 add_symbol_to_list (sym, cu->list_in_scope);
17734 break;
17735 default:
17736 /* Not a tag we recognize. Hopefully we aren't processing
17737 trash data, but since we must specifically ignore things
17738 we don't recognize, there is nothing else we should do at
17739 this point. */
17740 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17741 dwarf_tag_name (die->tag));
17742 break;
17743 }
17744
17745 if (suppress_add)
17746 {
17747 sym->hash_next = objfile->template_symbols;
17748 objfile->template_symbols = sym;
17749 list_to_add = NULL;
17750 }
17751
17752 if (list_to_add != NULL)
17753 add_symbol_to_list (sym, list_to_add);
17754
17755 /* For the benefit of old versions of GCC, check for anonymous
17756 namespaces based on the demangled name. */
17757 if (!cu->processing_has_namespace_info
17758 && cu->language == language_cplus)
17759 cp_scan_for_anonymous_namespaces (sym, objfile);
17760 }
17761 return (sym);
17762 }
17763
17764 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17765
17766 static struct symbol *
17767 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17768 {
17769 return new_symbol_full (die, type, cu, NULL);
17770 }
17771
17772 /* Given an attr with a DW_FORM_dataN value in host byte order,
17773 zero-extend it as appropriate for the symbol's type. The DWARF
17774 standard (v4) is not entirely clear about the meaning of using
17775 DW_FORM_dataN for a constant with a signed type, where the type is
17776 wider than the data. The conclusion of a discussion on the DWARF
17777 list was that this is unspecified. We choose to always zero-extend
17778 because that is the interpretation long in use by GCC. */
17779
17780 static gdb_byte *
17781 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17782 struct dwarf2_cu *cu, LONGEST *value, int bits)
17783 {
17784 struct objfile *objfile = cu->objfile;
17785 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17786 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17787 LONGEST l = DW_UNSND (attr);
17788
17789 if (bits < sizeof (*value) * 8)
17790 {
17791 l &= ((LONGEST) 1 << bits) - 1;
17792 *value = l;
17793 }
17794 else if (bits == sizeof (*value) * 8)
17795 *value = l;
17796 else
17797 {
17798 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17799 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17800 return bytes;
17801 }
17802
17803 return NULL;
17804 }
17805
17806 /* Read a constant value from an attribute. Either set *VALUE, or if
17807 the value does not fit in *VALUE, set *BYTES - either already
17808 allocated on the objfile obstack, or newly allocated on OBSTACK,
17809 or, set *BATON, if we translated the constant to a location
17810 expression. */
17811
17812 static void
17813 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17814 const char *name, struct obstack *obstack,
17815 struct dwarf2_cu *cu,
17816 LONGEST *value, const gdb_byte **bytes,
17817 struct dwarf2_locexpr_baton **baton)
17818 {
17819 struct objfile *objfile = cu->objfile;
17820 struct comp_unit_head *cu_header = &cu->header;
17821 struct dwarf_block *blk;
17822 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17823 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17824
17825 *value = 0;
17826 *bytes = NULL;
17827 *baton = NULL;
17828
17829 switch (attr->form)
17830 {
17831 case DW_FORM_addr:
17832 case DW_FORM_GNU_addr_index:
17833 {
17834 gdb_byte *data;
17835
17836 if (TYPE_LENGTH (type) != cu_header->addr_size)
17837 dwarf2_const_value_length_mismatch_complaint (name,
17838 cu_header->addr_size,
17839 TYPE_LENGTH (type));
17840 /* Symbols of this form are reasonably rare, so we just
17841 piggyback on the existing location code rather than writing
17842 a new implementation of symbol_computed_ops. */
17843 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17844 (*baton)->per_cu = cu->per_cu;
17845 gdb_assert ((*baton)->per_cu);
17846
17847 (*baton)->size = 2 + cu_header->addr_size;
17848 data = obstack_alloc (obstack, (*baton)->size);
17849 (*baton)->data = data;
17850
17851 data[0] = DW_OP_addr;
17852 store_unsigned_integer (&data[1], cu_header->addr_size,
17853 byte_order, DW_ADDR (attr));
17854 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17855 }
17856 break;
17857 case DW_FORM_string:
17858 case DW_FORM_strp:
17859 case DW_FORM_GNU_str_index:
17860 case DW_FORM_GNU_strp_alt:
17861 /* DW_STRING is already allocated on the objfile obstack, point
17862 directly to it. */
17863 *bytes = (const gdb_byte *) DW_STRING (attr);
17864 break;
17865 case DW_FORM_block1:
17866 case DW_FORM_block2:
17867 case DW_FORM_block4:
17868 case DW_FORM_block:
17869 case DW_FORM_exprloc:
17870 blk = DW_BLOCK (attr);
17871 if (TYPE_LENGTH (type) != blk->size)
17872 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17873 TYPE_LENGTH (type));
17874 *bytes = blk->data;
17875 break;
17876
17877 /* The DW_AT_const_value attributes are supposed to carry the
17878 symbol's value "represented as it would be on the target
17879 architecture." By the time we get here, it's already been
17880 converted to host endianness, so we just need to sign- or
17881 zero-extend it as appropriate. */
17882 case DW_FORM_data1:
17883 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17884 break;
17885 case DW_FORM_data2:
17886 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
17887 break;
17888 case DW_FORM_data4:
17889 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
17890 break;
17891 case DW_FORM_data8:
17892 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
17893 break;
17894
17895 case DW_FORM_sdata:
17896 *value = DW_SND (attr);
17897 break;
17898
17899 case DW_FORM_udata:
17900 *value = DW_UNSND (attr);
17901 break;
17902
17903 default:
17904 complaint (&symfile_complaints,
17905 _("unsupported const value attribute form: '%s'"),
17906 dwarf_form_name (attr->form));
17907 *value = 0;
17908 break;
17909 }
17910 }
17911
17912
17913 /* Copy constant value from an attribute to a symbol. */
17914
17915 static void
17916 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17917 struct dwarf2_cu *cu)
17918 {
17919 struct objfile *objfile = cu->objfile;
17920 struct comp_unit_head *cu_header = &cu->header;
17921 LONGEST value;
17922 const gdb_byte *bytes;
17923 struct dwarf2_locexpr_baton *baton;
17924
17925 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17926 SYMBOL_PRINT_NAME (sym),
17927 &objfile->objfile_obstack, cu,
17928 &value, &bytes, &baton);
17929
17930 if (baton != NULL)
17931 {
17932 SYMBOL_LOCATION_BATON (sym) = baton;
17933 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17934 }
17935 else if (bytes != NULL)
17936 {
17937 SYMBOL_VALUE_BYTES (sym) = bytes;
17938 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17939 }
17940 else
17941 {
17942 SYMBOL_VALUE (sym) = value;
17943 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17944 }
17945 }
17946
17947 /* Return the type of the die in question using its DW_AT_type attribute. */
17948
17949 static struct type *
17950 die_type (struct die_info *die, struct dwarf2_cu *cu)
17951 {
17952 struct attribute *type_attr;
17953
17954 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17955 if (!type_attr)
17956 {
17957 /* A missing DW_AT_type represents a void type. */
17958 return objfile_type (cu->objfile)->builtin_void;
17959 }
17960
17961 return lookup_die_type (die, type_attr, cu);
17962 }
17963
17964 /* True iff CU's producer generates GNAT Ada auxiliary information
17965 that allows to find parallel types through that information instead
17966 of having to do expensive parallel lookups by type name. */
17967
17968 static int
17969 need_gnat_info (struct dwarf2_cu *cu)
17970 {
17971 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17972 of GNAT produces this auxiliary information, without any indication
17973 that it is produced. Part of enhancing the FSF version of GNAT
17974 to produce that information will be to put in place an indicator
17975 that we can use in order to determine whether the descriptive type
17976 info is available or not. One suggestion that has been made is
17977 to use a new attribute, attached to the CU die. For now, assume
17978 that the descriptive type info is not available. */
17979 return 0;
17980 }
17981
17982 /* Return the auxiliary type of the die in question using its
17983 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17984 attribute is not present. */
17985
17986 static struct type *
17987 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17988 {
17989 struct attribute *type_attr;
17990
17991 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17992 if (!type_attr)
17993 return NULL;
17994
17995 return lookup_die_type (die, type_attr, cu);
17996 }
17997
17998 /* If DIE has a descriptive_type attribute, then set the TYPE's
17999 descriptive type accordingly. */
18000
18001 static void
18002 set_descriptive_type (struct type *type, struct die_info *die,
18003 struct dwarf2_cu *cu)
18004 {
18005 struct type *descriptive_type = die_descriptive_type (die, cu);
18006
18007 if (descriptive_type)
18008 {
18009 ALLOCATE_GNAT_AUX_TYPE (type);
18010 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18011 }
18012 }
18013
18014 /* Return the containing type of the die in question using its
18015 DW_AT_containing_type attribute. */
18016
18017 static struct type *
18018 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18019 {
18020 struct attribute *type_attr;
18021
18022 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18023 if (!type_attr)
18024 error (_("Dwarf Error: Problem turning containing type into gdb type "
18025 "[in module %s]"), objfile_name (cu->objfile));
18026
18027 return lookup_die_type (die, type_attr, cu);
18028 }
18029
18030 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18031
18032 static struct type *
18033 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18034 {
18035 struct objfile *objfile = dwarf2_per_objfile->objfile;
18036 char *message, *saved;
18037
18038 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18039 objfile_name (objfile),
18040 cu->header.offset.sect_off,
18041 die->offset.sect_off);
18042 saved = obstack_copy0 (&objfile->objfile_obstack,
18043 message, strlen (message));
18044 xfree (message);
18045
18046 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18047 }
18048
18049 /* Look up the type of DIE in CU using its type attribute ATTR.
18050 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18051 DW_AT_containing_type.
18052 If there is no type substitute an error marker. */
18053
18054 static struct type *
18055 lookup_die_type (struct die_info *die, const struct attribute *attr,
18056 struct dwarf2_cu *cu)
18057 {
18058 struct objfile *objfile = cu->objfile;
18059 struct type *this_type;
18060
18061 gdb_assert (attr->name == DW_AT_type
18062 || attr->name == DW_AT_GNAT_descriptive_type
18063 || attr->name == DW_AT_containing_type);
18064
18065 /* First see if we have it cached. */
18066
18067 if (attr->form == DW_FORM_GNU_ref_alt)
18068 {
18069 struct dwarf2_per_cu_data *per_cu;
18070 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18071
18072 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18073 this_type = get_die_type_at_offset (offset, per_cu);
18074 }
18075 else if (attr_form_is_ref (attr))
18076 {
18077 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18078
18079 this_type = get_die_type_at_offset (offset, cu->per_cu);
18080 }
18081 else if (attr->form == DW_FORM_ref_sig8)
18082 {
18083 ULONGEST signature = DW_SIGNATURE (attr);
18084
18085 return get_signatured_type (die, signature, cu);
18086 }
18087 else
18088 {
18089 complaint (&symfile_complaints,
18090 _("Dwarf Error: Bad type attribute %s in DIE"
18091 " at 0x%x [in module %s]"),
18092 dwarf_attr_name (attr->name), die->offset.sect_off,
18093 objfile_name (objfile));
18094 return build_error_marker_type (cu, die);
18095 }
18096
18097 /* If not cached we need to read it in. */
18098
18099 if (this_type == NULL)
18100 {
18101 struct die_info *type_die = NULL;
18102 struct dwarf2_cu *type_cu = cu;
18103
18104 if (attr_form_is_ref (attr))
18105 type_die = follow_die_ref (die, attr, &type_cu);
18106 if (type_die == NULL)
18107 return build_error_marker_type (cu, die);
18108 /* If we find the type now, it's probably because the type came
18109 from an inter-CU reference and the type's CU got expanded before
18110 ours. */
18111 this_type = read_type_die (type_die, type_cu);
18112 }
18113
18114 /* If we still don't have a type use an error marker. */
18115
18116 if (this_type == NULL)
18117 return build_error_marker_type (cu, die);
18118
18119 return this_type;
18120 }
18121
18122 /* Return the type in DIE, CU.
18123 Returns NULL for invalid types.
18124
18125 This first does a lookup in die_type_hash,
18126 and only reads the die in if necessary.
18127
18128 NOTE: This can be called when reading in partial or full symbols. */
18129
18130 static struct type *
18131 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18132 {
18133 struct type *this_type;
18134
18135 this_type = get_die_type (die, cu);
18136 if (this_type)
18137 return this_type;
18138
18139 return read_type_die_1 (die, cu);
18140 }
18141
18142 /* Read the type in DIE, CU.
18143 Returns NULL for invalid types. */
18144
18145 static struct type *
18146 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18147 {
18148 struct type *this_type = NULL;
18149
18150 switch (die->tag)
18151 {
18152 case DW_TAG_class_type:
18153 case DW_TAG_interface_type:
18154 case DW_TAG_structure_type:
18155 case DW_TAG_union_type:
18156 this_type = read_structure_type (die, cu);
18157 break;
18158 case DW_TAG_enumeration_type:
18159 this_type = read_enumeration_type (die, cu);
18160 break;
18161 case DW_TAG_subprogram:
18162 case DW_TAG_subroutine_type:
18163 case DW_TAG_inlined_subroutine:
18164 this_type = read_subroutine_type (die, cu);
18165 break;
18166 case DW_TAG_array_type:
18167 this_type = read_array_type (die, cu);
18168 break;
18169 case DW_TAG_set_type:
18170 this_type = read_set_type (die, cu);
18171 break;
18172 case DW_TAG_pointer_type:
18173 this_type = read_tag_pointer_type (die, cu);
18174 break;
18175 case DW_TAG_ptr_to_member_type:
18176 this_type = read_tag_ptr_to_member_type (die, cu);
18177 break;
18178 case DW_TAG_reference_type:
18179 this_type = read_tag_reference_type (die, cu);
18180 break;
18181 case DW_TAG_const_type:
18182 this_type = read_tag_const_type (die, cu);
18183 break;
18184 case DW_TAG_volatile_type:
18185 this_type = read_tag_volatile_type (die, cu);
18186 break;
18187 case DW_TAG_restrict_type:
18188 this_type = read_tag_restrict_type (die, cu);
18189 break;
18190 case DW_TAG_string_type:
18191 this_type = read_tag_string_type (die, cu);
18192 break;
18193 case DW_TAG_typedef:
18194 this_type = read_typedef (die, cu);
18195 break;
18196 case DW_TAG_subrange_type:
18197 this_type = read_subrange_type (die, cu);
18198 break;
18199 case DW_TAG_base_type:
18200 this_type = read_base_type (die, cu);
18201 break;
18202 case DW_TAG_unspecified_type:
18203 this_type = read_unspecified_type (die, cu);
18204 break;
18205 case DW_TAG_namespace:
18206 this_type = read_namespace_type (die, cu);
18207 break;
18208 case DW_TAG_module:
18209 this_type = read_module_type (die, cu);
18210 break;
18211 default:
18212 complaint (&symfile_complaints,
18213 _("unexpected tag in read_type_die: '%s'"),
18214 dwarf_tag_name (die->tag));
18215 break;
18216 }
18217
18218 return this_type;
18219 }
18220
18221 /* See if we can figure out if the class lives in a namespace. We do
18222 this by looking for a member function; its demangled name will
18223 contain namespace info, if there is any.
18224 Return the computed name or NULL.
18225 Space for the result is allocated on the objfile's obstack.
18226 This is the full-die version of guess_partial_die_structure_name.
18227 In this case we know DIE has no useful parent. */
18228
18229 static char *
18230 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18231 {
18232 struct die_info *spec_die;
18233 struct dwarf2_cu *spec_cu;
18234 struct die_info *child;
18235
18236 spec_cu = cu;
18237 spec_die = die_specification (die, &spec_cu);
18238 if (spec_die != NULL)
18239 {
18240 die = spec_die;
18241 cu = spec_cu;
18242 }
18243
18244 for (child = die->child;
18245 child != NULL;
18246 child = child->sibling)
18247 {
18248 if (child->tag == DW_TAG_subprogram)
18249 {
18250 struct attribute *attr;
18251
18252 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18253 if (attr == NULL)
18254 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18255 if (attr != NULL)
18256 {
18257 char *actual_name
18258 = language_class_name_from_physname (cu->language_defn,
18259 DW_STRING (attr));
18260 char *name = NULL;
18261
18262 if (actual_name != NULL)
18263 {
18264 const char *die_name = dwarf2_name (die, cu);
18265
18266 if (die_name != NULL
18267 && strcmp (die_name, actual_name) != 0)
18268 {
18269 /* Strip off the class name from the full name.
18270 We want the prefix. */
18271 int die_name_len = strlen (die_name);
18272 int actual_name_len = strlen (actual_name);
18273
18274 /* Test for '::' as a sanity check. */
18275 if (actual_name_len > die_name_len + 2
18276 && actual_name[actual_name_len
18277 - die_name_len - 1] == ':')
18278 name =
18279 obstack_copy0 (&cu->objfile->objfile_obstack,
18280 actual_name,
18281 actual_name_len - die_name_len - 2);
18282 }
18283 }
18284 xfree (actual_name);
18285 return name;
18286 }
18287 }
18288 }
18289
18290 return NULL;
18291 }
18292
18293 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18294 prefix part in such case. See
18295 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18296
18297 static char *
18298 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18299 {
18300 struct attribute *attr;
18301 char *base;
18302
18303 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18304 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18305 return NULL;
18306
18307 attr = dwarf2_attr (die, DW_AT_name, cu);
18308 if (attr != NULL && DW_STRING (attr) != NULL)
18309 return NULL;
18310
18311 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18312 if (attr == NULL)
18313 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18314 if (attr == NULL || DW_STRING (attr) == NULL)
18315 return NULL;
18316
18317 /* dwarf2_name had to be already called. */
18318 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18319
18320 /* Strip the base name, keep any leading namespaces/classes. */
18321 base = strrchr (DW_STRING (attr), ':');
18322 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18323 return "";
18324
18325 return obstack_copy0 (&cu->objfile->objfile_obstack,
18326 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18327 }
18328
18329 /* Return the name of the namespace/class that DIE is defined within,
18330 or "" if we can't tell. The caller should not xfree the result.
18331
18332 For example, if we're within the method foo() in the following
18333 code:
18334
18335 namespace N {
18336 class C {
18337 void foo () {
18338 }
18339 };
18340 }
18341
18342 then determine_prefix on foo's die will return "N::C". */
18343
18344 static const char *
18345 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18346 {
18347 struct die_info *parent, *spec_die;
18348 struct dwarf2_cu *spec_cu;
18349 struct type *parent_type;
18350 char *retval;
18351
18352 if (cu->language != language_cplus && cu->language != language_java
18353 && cu->language != language_fortran)
18354 return "";
18355
18356 retval = anonymous_struct_prefix (die, cu);
18357 if (retval)
18358 return retval;
18359
18360 /* We have to be careful in the presence of DW_AT_specification.
18361 For example, with GCC 3.4, given the code
18362
18363 namespace N {
18364 void foo() {
18365 // Definition of N::foo.
18366 }
18367 }
18368
18369 then we'll have a tree of DIEs like this:
18370
18371 1: DW_TAG_compile_unit
18372 2: DW_TAG_namespace // N
18373 3: DW_TAG_subprogram // declaration of N::foo
18374 4: DW_TAG_subprogram // definition of N::foo
18375 DW_AT_specification // refers to die #3
18376
18377 Thus, when processing die #4, we have to pretend that we're in
18378 the context of its DW_AT_specification, namely the contex of die
18379 #3. */
18380 spec_cu = cu;
18381 spec_die = die_specification (die, &spec_cu);
18382 if (spec_die == NULL)
18383 parent = die->parent;
18384 else
18385 {
18386 parent = spec_die->parent;
18387 cu = spec_cu;
18388 }
18389
18390 if (parent == NULL)
18391 return "";
18392 else if (parent->building_fullname)
18393 {
18394 const char *name;
18395 const char *parent_name;
18396
18397 /* It has been seen on RealView 2.2 built binaries,
18398 DW_TAG_template_type_param types actually _defined_ as
18399 children of the parent class:
18400
18401 enum E {};
18402 template class <class Enum> Class{};
18403 Class<enum E> class_e;
18404
18405 1: DW_TAG_class_type (Class)
18406 2: DW_TAG_enumeration_type (E)
18407 3: DW_TAG_enumerator (enum1:0)
18408 3: DW_TAG_enumerator (enum2:1)
18409 ...
18410 2: DW_TAG_template_type_param
18411 DW_AT_type DW_FORM_ref_udata (E)
18412
18413 Besides being broken debug info, it can put GDB into an
18414 infinite loop. Consider:
18415
18416 When we're building the full name for Class<E>, we'll start
18417 at Class, and go look over its template type parameters,
18418 finding E. We'll then try to build the full name of E, and
18419 reach here. We're now trying to build the full name of E,
18420 and look over the parent DIE for containing scope. In the
18421 broken case, if we followed the parent DIE of E, we'd again
18422 find Class, and once again go look at its template type
18423 arguments, etc., etc. Simply don't consider such parent die
18424 as source-level parent of this die (it can't be, the language
18425 doesn't allow it), and break the loop here. */
18426 name = dwarf2_name (die, cu);
18427 parent_name = dwarf2_name (parent, cu);
18428 complaint (&symfile_complaints,
18429 _("template param type '%s' defined within parent '%s'"),
18430 name ? name : "<unknown>",
18431 parent_name ? parent_name : "<unknown>");
18432 return "";
18433 }
18434 else
18435 switch (parent->tag)
18436 {
18437 case DW_TAG_namespace:
18438 parent_type = read_type_die (parent, cu);
18439 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18440 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18441 Work around this problem here. */
18442 if (cu->language == language_cplus
18443 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18444 return "";
18445 /* We give a name to even anonymous namespaces. */
18446 return TYPE_TAG_NAME (parent_type);
18447 case DW_TAG_class_type:
18448 case DW_TAG_interface_type:
18449 case DW_TAG_structure_type:
18450 case DW_TAG_union_type:
18451 case DW_TAG_module:
18452 parent_type = read_type_die (parent, cu);
18453 if (TYPE_TAG_NAME (parent_type) != NULL)
18454 return TYPE_TAG_NAME (parent_type);
18455 else
18456 /* An anonymous structure is only allowed non-static data
18457 members; no typedefs, no member functions, et cetera.
18458 So it does not need a prefix. */
18459 return "";
18460 case DW_TAG_compile_unit:
18461 case DW_TAG_partial_unit:
18462 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18463 if (cu->language == language_cplus
18464 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18465 && die->child != NULL
18466 && (die->tag == DW_TAG_class_type
18467 || die->tag == DW_TAG_structure_type
18468 || die->tag == DW_TAG_union_type))
18469 {
18470 char *name = guess_full_die_structure_name (die, cu);
18471 if (name != NULL)
18472 return name;
18473 }
18474 return "";
18475 default:
18476 return determine_prefix (parent, cu);
18477 }
18478 }
18479
18480 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18481 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18482 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18483 an obconcat, otherwise allocate storage for the result. The CU argument is
18484 used to determine the language and hence, the appropriate separator. */
18485
18486 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18487
18488 static char *
18489 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18490 int physname, struct dwarf2_cu *cu)
18491 {
18492 const char *lead = "";
18493 const char *sep;
18494
18495 if (suffix == NULL || suffix[0] == '\0'
18496 || prefix == NULL || prefix[0] == '\0')
18497 sep = "";
18498 else if (cu->language == language_java)
18499 sep = ".";
18500 else if (cu->language == language_fortran && physname)
18501 {
18502 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18503 DW_AT_MIPS_linkage_name is preferred and used instead. */
18504
18505 lead = "__";
18506 sep = "_MOD_";
18507 }
18508 else
18509 sep = "::";
18510
18511 if (prefix == NULL)
18512 prefix = "";
18513 if (suffix == NULL)
18514 suffix = "";
18515
18516 if (obs == NULL)
18517 {
18518 char *retval
18519 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18520
18521 strcpy (retval, lead);
18522 strcat (retval, prefix);
18523 strcat (retval, sep);
18524 strcat (retval, suffix);
18525 return retval;
18526 }
18527 else
18528 {
18529 /* We have an obstack. */
18530 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18531 }
18532 }
18533
18534 /* Return sibling of die, NULL if no sibling. */
18535
18536 static struct die_info *
18537 sibling_die (struct die_info *die)
18538 {
18539 return die->sibling;
18540 }
18541
18542 /* Get name of a die, return NULL if not found. */
18543
18544 static const char *
18545 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18546 struct obstack *obstack)
18547 {
18548 if (name && cu->language == language_cplus)
18549 {
18550 char *canon_name = cp_canonicalize_string (name);
18551
18552 if (canon_name != NULL)
18553 {
18554 if (strcmp (canon_name, name) != 0)
18555 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18556 xfree (canon_name);
18557 }
18558 }
18559
18560 return name;
18561 }
18562
18563 /* Get name of a die, return NULL if not found. */
18564
18565 static const char *
18566 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18567 {
18568 struct attribute *attr;
18569
18570 attr = dwarf2_attr (die, DW_AT_name, cu);
18571 if ((!attr || !DW_STRING (attr))
18572 && die->tag != DW_TAG_class_type
18573 && die->tag != DW_TAG_interface_type
18574 && die->tag != DW_TAG_structure_type
18575 && die->tag != DW_TAG_union_type)
18576 return NULL;
18577
18578 switch (die->tag)
18579 {
18580 case DW_TAG_compile_unit:
18581 case DW_TAG_partial_unit:
18582 /* Compilation units have a DW_AT_name that is a filename, not
18583 a source language identifier. */
18584 case DW_TAG_enumeration_type:
18585 case DW_TAG_enumerator:
18586 /* These tags always have simple identifiers already; no need
18587 to canonicalize them. */
18588 return DW_STRING (attr);
18589
18590 case DW_TAG_subprogram:
18591 /* Java constructors will all be named "<init>", so return
18592 the class name when we see this special case. */
18593 if (cu->language == language_java
18594 && DW_STRING (attr) != NULL
18595 && strcmp (DW_STRING (attr), "<init>") == 0)
18596 {
18597 struct dwarf2_cu *spec_cu = cu;
18598 struct die_info *spec_die;
18599
18600 /* GCJ will output '<init>' for Java constructor names.
18601 For this special case, return the name of the parent class. */
18602
18603 /* GCJ may output suprogram DIEs with AT_specification set.
18604 If so, use the name of the specified DIE. */
18605 spec_die = die_specification (die, &spec_cu);
18606 if (spec_die != NULL)
18607 return dwarf2_name (spec_die, spec_cu);
18608
18609 do
18610 {
18611 die = die->parent;
18612 if (die->tag == DW_TAG_class_type)
18613 return dwarf2_name (die, cu);
18614 }
18615 while (die->tag != DW_TAG_compile_unit
18616 && die->tag != DW_TAG_partial_unit);
18617 }
18618 break;
18619
18620 case DW_TAG_class_type:
18621 case DW_TAG_interface_type:
18622 case DW_TAG_structure_type:
18623 case DW_TAG_union_type:
18624 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18625 structures or unions. These were of the form "._%d" in GCC 4.1,
18626 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18627 and GCC 4.4. We work around this problem by ignoring these. */
18628 if (attr && DW_STRING (attr)
18629 && (strncmp (DW_STRING (attr), "._", 2) == 0
18630 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18631 return NULL;
18632
18633 /* GCC might emit a nameless typedef that has a linkage name. See
18634 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18635 if (!attr || DW_STRING (attr) == NULL)
18636 {
18637 char *demangled = NULL;
18638
18639 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18640 if (attr == NULL)
18641 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18642
18643 if (attr == NULL || DW_STRING (attr) == NULL)
18644 return NULL;
18645
18646 /* Avoid demangling DW_STRING (attr) the second time on a second
18647 call for the same DIE. */
18648 if (!DW_STRING_IS_CANONICAL (attr))
18649 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18650
18651 if (demangled)
18652 {
18653 char *base;
18654
18655 /* FIXME: we already did this for the partial symbol... */
18656 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18657 demangled, strlen (demangled));
18658 DW_STRING_IS_CANONICAL (attr) = 1;
18659 xfree (demangled);
18660
18661 /* Strip any leading namespaces/classes, keep only the base name.
18662 DW_AT_name for named DIEs does not contain the prefixes. */
18663 base = strrchr (DW_STRING (attr), ':');
18664 if (base && base > DW_STRING (attr) && base[-1] == ':')
18665 return &base[1];
18666 else
18667 return DW_STRING (attr);
18668 }
18669 }
18670 break;
18671
18672 default:
18673 break;
18674 }
18675
18676 if (!DW_STRING_IS_CANONICAL (attr))
18677 {
18678 DW_STRING (attr)
18679 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18680 &cu->objfile->objfile_obstack);
18681 DW_STRING_IS_CANONICAL (attr) = 1;
18682 }
18683 return DW_STRING (attr);
18684 }
18685
18686 /* Return the die that this die in an extension of, or NULL if there
18687 is none. *EXT_CU is the CU containing DIE on input, and the CU
18688 containing the return value on output. */
18689
18690 static struct die_info *
18691 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18692 {
18693 struct attribute *attr;
18694
18695 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18696 if (attr == NULL)
18697 return NULL;
18698
18699 return follow_die_ref (die, attr, ext_cu);
18700 }
18701
18702 /* Convert a DIE tag into its string name. */
18703
18704 static const char *
18705 dwarf_tag_name (unsigned tag)
18706 {
18707 const char *name = get_DW_TAG_name (tag);
18708
18709 if (name == NULL)
18710 return "DW_TAG_<unknown>";
18711
18712 return name;
18713 }
18714
18715 /* Convert a DWARF attribute code into its string name. */
18716
18717 static const char *
18718 dwarf_attr_name (unsigned attr)
18719 {
18720 const char *name;
18721
18722 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18723 if (attr == DW_AT_MIPS_fde)
18724 return "DW_AT_MIPS_fde";
18725 #else
18726 if (attr == DW_AT_HP_block_index)
18727 return "DW_AT_HP_block_index";
18728 #endif
18729
18730 name = get_DW_AT_name (attr);
18731
18732 if (name == NULL)
18733 return "DW_AT_<unknown>";
18734
18735 return name;
18736 }
18737
18738 /* Convert a DWARF value form code into its string name. */
18739
18740 static const char *
18741 dwarf_form_name (unsigned form)
18742 {
18743 const char *name = get_DW_FORM_name (form);
18744
18745 if (name == NULL)
18746 return "DW_FORM_<unknown>";
18747
18748 return name;
18749 }
18750
18751 static char *
18752 dwarf_bool_name (unsigned mybool)
18753 {
18754 if (mybool)
18755 return "TRUE";
18756 else
18757 return "FALSE";
18758 }
18759
18760 /* Convert a DWARF type code into its string name. */
18761
18762 static const char *
18763 dwarf_type_encoding_name (unsigned enc)
18764 {
18765 const char *name = get_DW_ATE_name (enc);
18766
18767 if (name == NULL)
18768 return "DW_ATE_<unknown>";
18769
18770 return name;
18771 }
18772
18773 static void
18774 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18775 {
18776 unsigned int i;
18777
18778 print_spaces (indent, f);
18779 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18780 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18781
18782 if (die->parent != NULL)
18783 {
18784 print_spaces (indent, f);
18785 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18786 die->parent->offset.sect_off);
18787 }
18788
18789 print_spaces (indent, f);
18790 fprintf_unfiltered (f, " has children: %s\n",
18791 dwarf_bool_name (die->child != NULL));
18792
18793 print_spaces (indent, f);
18794 fprintf_unfiltered (f, " attributes:\n");
18795
18796 for (i = 0; i < die->num_attrs; ++i)
18797 {
18798 print_spaces (indent, f);
18799 fprintf_unfiltered (f, " %s (%s) ",
18800 dwarf_attr_name (die->attrs[i].name),
18801 dwarf_form_name (die->attrs[i].form));
18802
18803 switch (die->attrs[i].form)
18804 {
18805 case DW_FORM_addr:
18806 case DW_FORM_GNU_addr_index:
18807 fprintf_unfiltered (f, "address: ");
18808 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18809 break;
18810 case DW_FORM_block2:
18811 case DW_FORM_block4:
18812 case DW_FORM_block:
18813 case DW_FORM_block1:
18814 fprintf_unfiltered (f, "block: size %s",
18815 pulongest (DW_BLOCK (&die->attrs[i])->size));
18816 break;
18817 case DW_FORM_exprloc:
18818 fprintf_unfiltered (f, "expression: size %s",
18819 pulongest (DW_BLOCK (&die->attrs[i])->size));
18820 break;
18821 case DW_FORM_ref_addr:
18822 fprintf_unfiltered (f, "ref address: ");
18823 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18824 break;
18825 case DW_FORM_GNU_ref_alt:
18826 fprintf_unfiltered (f, "alt ref address: ");
18827 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18828 break;
18829 case DW_FORM_ref1:
18830 case DW_FORM_ref2:
18831 case DW_FORM_ref4:
18832 case DW_FORM_ref8:
18833 case DW_FORM_ref_udata:
18834 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18835 (long) (DW_UNSND (&die->attrs[i])));
18836 break;
18837 case DW_FORM_data1:
18838 case DW_FORM_data2:
18839 case DW_FORM_data4:
18840 case DW_FORM_data8:
18841 case DW_FORM_udata:
18842 case DW_FORM_sdata:
18843 fprintf_unfiltered (f, "constant: %s",
18844 pulongest (DW_UNSND (&die->attrs[i])));
18845 break;
18846 case DW_FORM_sec_offset:
18847 fprintf_unfiltered (f, "section offset: %s",
18848 pulongest (DW_UNSND (&die->attrs[i])));
18849 break;
18850 case DW_FORM_ref_sig8:
18851 fprintf_unfiltered (f, "signature: %s",
18852 hex_string (DW_SIGNATURE (&die->attrs[i])));
18853 break;
18854 case DW_FORM_string:
18855 case DW_FORM_strp:
18856 case DW_FORM_GNU_str_index:
18857 case DW_FORM_GNU_strp_alt:
18858 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18859 DW_STRING (&die->attrs[i])
18860 ? DW_STRING (&die->attrs[i]) : "",
18861 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18862 break;
18863 case DW_FORM_flag:
18864 if (DW_UNSND (&die->attrs[i]))
18865 fprintf_unfiltered (f, "flag: TRUE");
18866 else
18867 fprintf_unfiltered (f, "flag: FALSE");
18868 break;
18869 case DW_FORM_flag_present:
18870 fprintf_unfiltered (f, "flag: TRUE");
18871 break;
18872 case DW_FORM_indirect:
18873 /* The reader will have reduced the indirect form to
18874 the "base form" so this form should not occur. */
18875 fprintf_unfiltered (f,
18876 "unexpected attribute form: DW_FORM_indirect");
18877 break;
18878 default:
18879 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18880 die->attrs[i].form);
18881 break;
18882 }
18883 fprintf_unfiltered (f, "\n");
18884 }
18885 }
18886
18887 static void
18888 dump_die_for_error (struct die_info *die)
18889 {
18890 dump_die_shallow (gdb_stderr, 0, die);
18891 }
18892
18893 static void
18894 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18895 {
18896 int indent = level * 4;
18897
18898 gdb_assert (die != NULL);
18899
18900 if (level >= max_level)
18901 return;
18902
18903 dump_die_shallow (f, indent, die);
18904
18905 if (die->child != NULL)
18906 {
18907 print_spaces (indent, f);
18908 fprintf_unfiltered (f, " Children:");
18909 if (level + 1 < max_level)
18910 {
18911 fprintf_unfiltered (f, "\n");
18912 dump_die_1 (f, level + 1, max_level, die->child);
18913 }
18914 else
18915 {
18916 fprintf_unfiltered (f,
18917 " [not printed, max nesting level reached]\n");
18918 }
18919 }
18920
18921 if (die->sibling != NULL && level > 0)
18922 {
18923 dump_die_1 (f, level, max_level, die->sibling);
18924 }
18925 }
18926
18927 /* This is called from the pdie macro in gdbinit.in.
18928 It's not static so gcc will keep a copy callable from gdb. */
18929
18930 void
18931 dump_die (struct die_info *die, int max_level)
18932 {
18933 dump_die_1 (gdb_stdlog, 0, max_level, die);
18934 }
18935
18936 static void
18937 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18938 {
18939 void **slot;
18940
18941 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18942 INSERT);
18943
18944 *slot = die;
18945 }
18946
18947 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18948 required kind. */
18949
18950 static sect_offset
18951 dwarf2_get_ref_die_offset (const struct attribute *attr)
18952 {
18953 sect_offset retval = { DW_UNSND (attr) };
18954
18955 if (attr_form_is_ref (attr))
18956 return retval;
18957
18958 retval.sect_off = 0;
18959 complaint (&symfile_complaints,
18960 _("unsupported die ref attribute form: '%s'"),
18961 dwarf_form_name (attr->form));
18962 return retval;
18963 }
18964
18965 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18966 * the value held by the attribute is not constant. */
18967
18968 static LONGEST
18969 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18970 {
18971 if (attr->form == DW_FORM_sdata)
18972 return DW_SND (attr);
18973 else if (attr->form == DW_FORM_udata
18974 || attr->form == DW_FORM_data1
18975 || attr->form == DW_FORM_data2
18976 || attr->form == DW_FORM_data4
18977 || attr->form == DW_FORM_data8)
18978 return DW_UNSND (attr);
18979 else
18980 {
18981 complaint (&symfile_complaints,
18982 _("Attribute value is not a constant (%s)"),
18983 dwarf_form_name (attr->form));
18984 return default_value;
18985 }
18986 }
18987
18988 /* Follow reference or signature attribute ATTR of SRC_DIE.
18989 On entry *REF_CU is the CU of SRC_DIE.
18990 On exit *REF_CU is the CU of the result. */
18991
18992 static struct die_info *
18993 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18994 struct dwarf2_cu **ref_cu)
18995 {
18996 struct die_info *die;
18997
18998 if (attr_form_is_ref (attr))
18999 die = follow_die_ref (src_die, attr, ref_cu);
19000 else if (attr->form == DW_FORM_ref_sig8)
19001 die = follow_die_sig (src_die, attr, ref_cu);
19002 else
19003 {
19004 dump_die_for_error (src_die);
19005 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19006 objfile_name ((*ref_cu)->objfile));
19007 }
19008
19009 return die;
19010 }
19011
19012 /* Follow reference OFFSET.
19013 On entry *REF_CU is the CU of the source die referencing OFFSET.
19014 On exit *REF_CU is the CU of the result.
19015 Returns NULL if OFFSET is invalid. */
19016
19017 static struct die_info *
19018 follow_die_offset (sect_offset offset, int offset_in_dwz,
19019 struct dwarf2_cu **ref_cu)
19020 {
19021 struct die_info temp_die;
19022 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19023
19024 gdb_assert (cu->per_cu != NULL);
19025
19026 target_cu = cu;
19027
19028 if (cu->per_cu->is_debug_types)
19029 {
19030 /* .debug_types CUs cannot reference anything outside their CU.
19031 If they need to, they have to reference a signatured type via
19032 DW_FORM_ref_sig8. */
19033 if (! offset_in_cu_p (&cu->header, offset))
19034 return NULL;
19035 }
19036 else if (offset_in_dwz != cu->per_cu->is_dwz
19037 || ! offset_in_cu_p (&cu->header, offset))
19038 {
19039 struct dwarf2_per_cu_data *per_cu;
19040
19041 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19042 cu->objfile);
19043
19044 /* If necessary, add it to the queue and load its DIEs. */
19045 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19046 load_full_comp_unit (per_cu, cu->language);
19047
19048 target_cu = per_cu->cu;
19049 }
19050 else if (cu->dies == NULL)
19051 {
19052 /* We're loading full DIEs during partial symbol reading. */
19053 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19054 load_full_comp_unit (cu->per_cu, language_minimal);
19055 }
19056
19057 *ref_cu = target_cu;
19058 temp_die.offset = offset;
19059 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19060 }
19061
19062 /* Follow reference attribute ATTR of SRC_DIE.
19063 On entry *REF_CU is the CU of SRC_DIE.
19064 On exit *REF_CU is the CU of the result. */
19065
19066 static struct die_info *
19067 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19068 struct dwarf2_cu **ref_cu)
19069 {
19070 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19071 struct dwarf2_cu *cu = *ref_cu;
19072 struct die_info *die;
19073
19074 die = follow_die_offset (offset,
19075 (attr->form == DW_FORM_GNU_ref_alt
19076 || cu->per_cu->is_dwz),
19077 ref_cu);
19078 if (!die)
19079 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19080 "at 0x%x [in module %s]"),
19081 offset.sect_off, src_die->offset.sect_off,
19082 objfile_name (cu->objfile));
19083
19084 return die;
19085 }
19086
19087 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19088 Returned value is intended for DW_OP_call*. Returned
19089 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19090
19091 struct dwarf2_locexpr_baton
19092 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19093 struct dwarf2_per_cu_data *per_cu,
19094 CORE_ADDR (*get_frame_pc) (void *baton),
19095 void *baton)
19096 {
19097 struct dwarf2_cu *cu;
19098 struct die_info *die;
19099 struct attribute *attr;
19100 struct dwarf2_locexpr_baton retval;
19101
19102 dw2_setup (per_cu->objfile);
19103
19104 if (per_cu->cu == NULL)
19105 load_cu (per_cu);
19106 cu = per_cu->cu;
19107
19108 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19109 if (!die)
19110 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19111 offset.sect_off, objfile_name (per_cu->objfile));
19112
19113 attr = dwarf2_attr (die, DW_AT_location, cu);
19114 if (!attr)
19115 {
19116 /* DWARF: "If there is no such attribute, then there is no effect.".
19117 DATA is ignored if SIZE is 0. */
19118
19119 retval.data = NULL;
19120 retval.size = 0;
19121 }
19122 else if (attr_form_is_section_offset (attr))
19123 {
19124 struct dwarf2_loclist_baton loclist_baton;
19125 CORE_ADDR pc = (*get_frame_pc) (baton);
19126 size_t size;
19127
19128 fill_in_loclist_baton (cu, &loclist_baton, attr);
19129
19130 retval.data = dwarf2_find_location_expression (&loclist_baton,
19131 &size, pc);
19132 retval.size = size;
19133 }
19134 else
19135 {
19136 if (!attr_form_is_block (attr))
19137 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19138 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19139 offset.sect_off, objfile_name (per_cu->objfile));
19140
19141 retval.data = DW_BLOCK (attr)->data;
19142 retval.size = DW_BLOCK (attr)->size;
19143 }
19144 retval.per_cu = cu->per_cu;
19145
19146 age_cached_comp_units ();
19147
19148 return retval;
19149 }
19150
19151 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19152 offset. */
19153
19154 struct dwarf2_locexpr_baton
19155 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19156 struct dwarf2_per_cu_data *per_cu,
19157 CORE_ADDR (*get_frame_pc) (void *baton),
19158 void *baton)
19159 {
19160 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19161
19162 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19163 }
19164
19165 /* Write a constant of a given type as target-ordered bytes into
19166 OBSTACK. */
19167
19168 static const gdb_byte *
19169 write_constant_as_bytes (struct obstack *obstack,
19170 enum bfd_endian byte_order,
19171 struct type *type,
19172 ULONGEST value,
19173 LONGEST *len)
19174 {
19175 gdb_byte *result;
19176
19177 *len = TYPE_LENGTH (type);
19178 result = obstack_alloc (obstack, *len);
19179 store_unsigned_integer (result, *len, byte_order, value);
19180
19181 return result;
19182 }
19183
19184 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19185 pointer to the constant bytes and set LEN to the length of the
19186 data. If memory is needed, allocate it on OBSTACK. If the DIE
19187 does not have a DW_AT_const_value, return NULL. */
19188
19189 const gdb_byte *
19190 dwarf2_fetch_constant_bytes (sect_offset offset,
19191 struct dwarf2_per_cu_data *per_cu,
19192 struct obstack *obstack,
19193 LONGEST *len)
19194 {
19195 struct dwarf2_cu *cu;
19196 struct die_info *die;
19197 struct attribute *attr;
19198 const gdb_byte *result = NULL;
19199 struct type *type;
19200 LONGEST value;
19201 enum bfd_endian byte_order;
19202
19203 dw2_setup (per_cu->objfile);
19204
19205 if (per_cu->cu == NULL)
19206 load_cu (per_cu);
19207 cu = per_cu->cu;
19208
19209 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19210 if (!die)
19211 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19212 offset.sect_off, objfile_name (per_cu->objfile));
19213
19214
19215 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19216 if (attr == NULL)
19217 return NULL;
19218
19219 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19220 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19221
19222 switch (attr->form)
19223 {
19224 case DW_FORM_addr:
19225 case DW_FORM_GNU_addr_index:
19226 {
19227 gdb_byte *tem;
19228
19229 *len = cu->header.addr_size;
19230 tem = obstack_alloc (obstack, *len);
19231 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19232 result = tem;
19233 }
19234 break;
19235 case DW_FORM_string:
19236 case DW_FORM_strp:
19237 case DW_FORM_GNU_str_index:
19238 case DW_FORM_GNU_strp_alt:
19239 /* DW_STRING is already allocated on the objfile obstack, point
19240 directly to it. */
19241 result = (const gdb_byte *) DW_STRING (attr);
19242 *len = strlen (DW_STRING (attr));
19243 break;
19244 case DW_FORM_block1:
19245 case DW_FORM_block2:
19246 case DW_FORM_block4:
19247 case DW_FORM_block:
19248 case DW_FORM_exprloc:
19249 result = DW_BLOCK (attr)->data;
19250 *len = DW_BLOCK (attr)->size;
19251 break;
19252
19253 /* The DW_AT_const_value attributes are supposed to carry the
19254 symbol's value "represented as it would be on the target
19255 architecture." By the time we get here, it's already been
19256 converted to host endianness, so we just need to sign- or
19257 zero-extend it as appropriate. */
19258 case DW_FORM_data1:
19259 type = die_type (die, cu);
19260 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19261 if (result == NULL)
19262 result = write_constant_as_bytes (obstack, byte_order,
19263 type, value, len);
19264 break;
19265 case DW_FORM_data2:
19266 type = die_type (die, cu);
19267 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19268 if (result == NULL)
19269 result = write_constant_as_bytes (obstack, byte_order,
19270 type, value, len);
19271 break;
19272 case DW_FORM_data4:
19273 type = die_type (die, cu);
19274 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19275 if (result == NULL)
19276 result = write_constant_as_bytes (obstack, byte_order,
19277 type, value, len);
19278 break;
19279 case DW_FORM_data8:
19280 type = die_type (die, cu);
19281 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19282 if (result == NULL)
19283 result = write_constant_as_bytes (obstack, byte_order,
19284 type, value, len);
19285 break;
19286
19287 case DW_FORM_sdata:
19288 type = die_type (die, cu);
19289 result = write_constant_as_bytes (obstack, byte_order,
19290 type, DW_SND (attr), len);
19291 break;
19292
19293 case DW_FORM_udata:
19294 type = die_type (die, cu);
19295 result = write_constant_as_bytes (obstack, byte_order,
19296 type, DW_UNSND (attr), len);
19297 break;
19298
19299 default:
19300 complaint (&symfile_complaints,
19301 _("unsupported const value attribute form: '%s'"),
19302 dwarf_form_name (attr->form));
19303 break;
19304 }
19305
19306 return result;
19307 }
19308
19309 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19310 PER_CU. */
19311
19312 struct type *
19313 dwarf2_get_die_type (cu_offset die_offset,
19314 struct dwarf2_per_cu_data *per_cu)
19315 {
19316 sect_offset die_offset_sect;
19317
19318 dw2_setup (per_cu->objfile);
19319
19320 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19321 return get_die_type_at_offset (die_offset_sect, per_cu);
19322 }
19323
19324 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19325 On entry *REF_CU is the CU of SRC_DIE.
19326 On exit *REF_CU is the CU of the result.
19327 Returns NULL if the referenced DIE isn't found. */
19328
19329 static struct die_info *
19330 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19331 struct dwarf2_cu **ref_cu)
19332 {
19333 struct objfile *objfile = (*ref_cu)->objfile;
19334 struct die_info temp_die;
19335 struct dwarf2_cu *sig_cu;
19336 struct die_info *die;
19337
19338 /* While it might be nice to assert sig_type->type == NULL here,
19339 we can get here for DW_AT_imported_declaration where we need
19340 the DIE not the type. */
19341
19342 /* If necessary, add it to the queue and load its DIEs. */
19343
19344 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19345 read_signatured_type (sig_type);
19346
19347 sig_cu = sig_type->per_cu.cu;
19348 gdb_assert (sig_cu != NULL);
19349 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19350 temp_die.offset = sig_type->type_offset_in_section;
19351 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19352 temp_die.offset.sect_off);
19353 if (die)
19354 {
19355 /* For .gdb_index version 7 keep track of included TUs.
19356 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19357 if (dwarf2_per_objfile->index_table != NULL
19358 && dwarf2_per_objfile->index_table->version <= 7)
19359 {
19360 VEC_safe_push (dwarf2_per_cu_ptr,
19361 (*ref_cu)->per_cu->imported_symtabs,
19362 sig_cu->per_cu);
19363 }
19364
19365 *ref_cu = sig_cu;
19366 return die;
19367 }
19368
19369 return NULL;
19370 }
19371
19372 /* Follow signatured type referenced by ATTR in SRC_DIE.
19373 On entry *REF_CU is the CU of SRC_DIE.
19374 On exit *REF_CU is the CU of the result.
19375 The result is the DIE of the type.
19376 If the referenced type cannot be found an error is thrown. */
19377
19378 static struct die_info *
19379 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19380 struct dwarf2_cu **ref_cu)
19381 {
19382 ULONGEST signature = DW_SIGNATURE (attr);
19383 struct signatured_type *sig_type;
19384 struct die_info *die;
19385
19386 gdb_assert (attr->form == DW_FORM_ref_sig8);
19387
19388 sig_type = lookup_signatured_type (*ref_cu, signature);
19389 /* sig_type will be NULL if the signatured type is missing from
19390 the debug info. */
19391 if (sig_type == NULL)
19392 {
19393 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19394 " from DIE at 0x%x [in module %s]"),
19395 hex_string (signature), src_die->offset.sect_off,
19396 objfile_name ((*ref_cu)->objfile));
19397 }
19398
19399 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19400 if (die == NULL)
19401 {
19402 dump_die_for_error (src_die);
19403 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19404 " from DIE at 0x%x [in module %s]"),
19405 hex_string (signature), src_die->offset.sect_off,
19406 objfile_name ((*ref_cu)->objfile));
19407 }
19408
19409 return die;
19410 }
19411
19412 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19413 reading in and processing the type unit if necessary. */
19414
19415 static struct type *
19416 get_signatured_type (struct die_info *die, ULONGEST signature,
19417 struct dwarf2_cu *cu)
19418 {
19419 struct signatured_type *sig_type;
19420 struct dwarf2_cu *type_cu;
19421 struct die_info *type_die;
19422 struct type *type;
19423
19424 sig_type = lookup_signatured_type (cu, signature);
19425 /* sig_type will be NULL if the signatured type is missing from
19426 the debug info. */
19427 if (sig_type == NULL)
19428 {
19429 complaint (&symfile_complaints,
19430 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19431 " from DIE at 0x%x [in module %s]"),
19432 hex_string (signature), die->offset.sect_off,
19433 objfile_name (dwarf2_per_objfile->objfile));
19434 return build_error_marker_type (cu, die);
19435 }
19436
19437 /* If we already know the type we're done. */
19438 if (sig_type->type != NULL)
19439 return sig_type->type;
19440
19441 type_cu = cu;
19442 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19443 if (type_die != NULL)
19444 {
19445 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19446 is created. This is important, for example, because for c++ classes
19447 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19448 type = read_type_die (type_die, type_cu);
19449 if (type == NULL)
19450 {
19451 complaint (&symfile_complaints,
19452 _("Dwarf Error: Cannot build signatured type %s"
19453 " referenced from DIE at 0x%x [in module %s]"),
19454 hex_string (signature), die->offset.sect_off,
19455 objfile_name (dwarf2_per_objfile->objfile));
19456 type = build_error_marker_type (cu, die);
19457 }
19458 }
19459 else
19460 {
19461 complaint (&symfile_complaints,
19462 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19463 " from DIE at 0x%x [in module %s]"),
19464 hex_string (signature), die->offset.sect_off,
19465 objfile_name (dwarf2_per_objfile->objfile));
19466 type = build_error_marker_type (cu, die);
19467 }
19468 sig_type->type = type;
19469
19470 return type;
19471 }
19472
19473 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19474 reading in and processing the type unit if necessary. */
19475
19476 static struct type *
19477 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19478 struct dwarf2_cu *cu) /* ARI: editCase function */
19479 {
19480 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19481 if (attr_form_is_ref (attr))
19482 {
19483 struct dwarf2_cu *type_cu = cu;
19484 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19485
19486 return read_type_die (type_die, type_cu);
19487 }
19488 else if (attr->form == DW_FORM_ref_sig8)
19489 {
19490 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19491 }
19492 else
19493 {
19494 complaint (&symfile_complaints,
19495 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19496 " at 0x%x [in module %s]"),
19497 dwarf_form_name (attr->form), die->offset.sect_off,
19498 objfile_name (dwarf2_per_objfile->objfile));
19499 return build_error_marker_type (cu, die);
19500 }
19501 }
19502
19503 /* Load the DIEs associated with type unit PER_CU into memory. */
19504
19505 static void
19506 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19507 {
19508 struct signatured_type *sig_type;
19509
19510 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19511 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19512
19513 /* We have the per_cu, but we need the signatured_type.
19514 Fortunately this is an easy translation. */
19515 gdb_assert (per_cu->is_debug_types);
19516 sig_type = (struct signatured_type *) per_cu;
19517
19518 gdb_assert (per_cu->cu == NULL);
19519
19520 read_signatured_type (sig_type);
19521
19522 gdb_assert (per_cu->cu != NULL);
19523 }
19524
19525 /* die_reader_func for read_signatured_type.
19526 This is identical to load_full_comp_unit_reader,
19527 but is kept separate for now. */
19528
19529 static void
19530 read_signatured_type_reader (const struct die_reader_specs *reader,
19531 const gdb_byte *info_ptr,
19532 struct die_info *comp_unit_die,
19533 int has_children,
19534 void *data)
19535 {
19536 struct dwarf2_cu *cu = reader->cu;
19537
19538 gdb_assert (cu->die_hash == NULL);
19539 cu->die_hash =
19540 htab_create_alloc_ex (cu->header.length / 12,
19541 die_hash,
19542 die_eq,
19543 NULL,
19544 &cu->comp_unit_obstack,
19545 hashtab_obstack_allocate,
19546 dummy_obstack_deallocate);
19547
19548 if (has_children)
19549 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19550 &info_ptr, comp_unit_die);
19551 cu->dies = comp_unit_die;
19552 /* comp_unit_die is not stored in die_hash, no need. */
19553
19554 /* We try not to read any attributes in this function, because not
19555 all CUs needed for references have been loaded yet, and symbol
19556 table processing isn't initialized. But we have to set the CU language,
19557 or we won't be able to build types correctly.
19558 Similarly, if we do not read the producer, we can not apply
19559 producer-specific interpretation. */
19560 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19561 }
19562
19563 /* Read in a signatured type and build its CU and DIEs.
19564 If the type is a stub for the real type in a DWO file,
19565 read in the real type from the DWO file as well. */
19566
19567 static void
19568 read_signatured_type (struct signatured_type *sig_type)
19569 {
19570 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19571
19572 gdb_assert (per_cu->is_debug_types);
19573 gdb_assert (per_cu->cu == NULL);
19574
19575 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19576 read_signatured_type_reader, NULL);
19577 sig_type->per_cu.tu_read = 1;
19578 }
19579
19580 /* Decode simple location descriptions.
19581 Given a pointer to a dwarf block that defines a location, compute
19582 the location and return the value.
19583
19584 NOTE drow/2003-11-18: This function is called in two situations
19585 now: for the address of static or global variables (partial symbols
19586 only) and for offsets into structures which are expected to be
19587 (more or less) constant. The partial symbol case should go away,
19588 and only the constant case should remain. That will let this
19589 function complain more accurately. A few special modes are allowed
19590 without complaint for global variables (for instance, global
19591 register values and thread-local values).
19592
19593 A location description containing no operations indicates that the
19594 object is optimized out. The return value is 0 for that case.
19595 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19596 callers will only want a very basic result and this can become a
19597 complaint.
19598
19599 Note that stack[0] is unused except as a default error return. */
19600
19601 static CORE_ADDR
19602 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19603 {
19604 struct objfile *objfile = cu->objfile;
19605 size_t i;
19606 size_t size = blk->size;
19607 const gdb_byte *data = blk->data;
19608 CORE_ADDR stack[64];
19609 int stacki;
19610 unsigned int bytes_read, unsnd;
19611 gdb_byte op;
19612
19613 i = 0;
19614 stacki = 0;
19615 stack[stacki] = 0;
19616 stack[++stacki] = 0;
19617
19618 while (i < size)
19619 {
19620 op = data[i++];
19621 switch (op)
19622 {
19623 case DW_OP_lit0:
19624 case DW_OP_lit1:
19625 case DW_OP_lit2:
19626 case DW_OP_lit3:
19627 case DW_OP_lit4:
19628 case DW_OP_lit5:
19629 case DW_OP_lit6:
19630 case DW_OP_lit7:
19631 case DW_OP_lit8:
19632 case DW_OP_lit9:
19633 case DW_OP_lit10:
19634 case DW_OP_lit11:
19635 case DW_OP_lit12:
19636 case DW_OP_lit13:
19637 case DW_OP_lit14:
19638 case DW_OP_lit15:
19639 case DW_OP_lit16:
19640 case DW_OP_lit17:
19641 case DW_OP_lit18:
19642 case DW_OP_lit19:
19643 case DW_OP_lit20:
19644 case DW_OP_lit21:
19645 case DW_OP_lit22:
19646 case DW_OP_lit23:
19647 case DW_OP_lit24:
19648 case DW_OP_lit25:
19649 case DW_OP_lit26:
19650 case DW_OP_lit27:
19651 case DW_OP_lit28:
19652 case DW_OP_lit29:
19653 case DW_OP_lit30:
19654 case DW_OP_lit31:
19655 stack[++stacki] = op - DW_OP_lit0;
19656 break;
19657
19658 case DW_OP_reg0:
19659 case DW_OP_reg1:
19660 case DW_OP_reg2:
19661 case DW_OP_reg3:
19662 case DW_OP_reg4:
19663 case DW_OP_reg5:
19664 case DW_OP_reg6:
19665 case DW_OP_reg7:
19666 case DW_OP_reg8:
19667 case DW_OP_reg9:
19668 case DW_OP_reg10:
19669 case DW_OP_reg11:
19670 case DW_OP_reg12:
19671 case DW_OP_reg13:
19672 case DW_OP_reg14:
19673 case DW_OP_reg15:
19674 case DW_OP_reg16:
19675 case DW_OP_reg17:
19676 case DW_OP_reg18:
19677 case DW_OP_reg19:
19678 case DW_OP_reg20:
19679 case DW_OP_reg21:
19680 case DW_OP_reg22:
19681 case DW_OP_reg23:
19682 case DW_OP_reg24:
19683 case DW_OP_reg25:
19684 case DW_OP_reg26:
19685 case DW_OP_reg27:
19686 case DW_OP_reg28:
19687 case DW_OP_reg29:
19688 case DW_OP_reg30:
19689 case DW_OP_reg31:
19690 stack[++stacki] = op - DW_OP_reg0;
19691 if (i < size)
19692 dwarf2_complex_location_expr_complaint ();
19693 break;
19694
19695 case DW_OP_regx:
19696 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19697 i += bytes_read;
19698 stack[++stacki] = unsnd;
19699 if (i < size)
19700 dwarf2_complex_location_expr_complaint ();
19701 break;
19702
19703 case DW_OP_addr:
19704 stack[++stacki] = read_address (objfile->obfd, &data[i],
19705 cu, &bytes_read);
19706 i += bytes_read;
19707 break;
19708
19709 case DW_OP_const1u:
19710 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19711 i += 1;
19712 break;
19713
19714 case DW_OP_const1s:
19715 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19716 i += 1;
19717 break;
19718
19719 case DW_OP_const2u:
19720 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19721 i += 2;
19722 break;
19723
19724 case DW_OP_const2s:
19725 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19726 i += 2;
19727 break;
19728
19729 case DW_OP_const4u:
19730 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19731 i += 4;
19732 break;
19733
19734 case DW_OP_const4s:
19735 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19736 i += 4;
19737 break;
19738
19739 case DW_OP_const8u:
19740 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19741 i += 8;
19742 break;
19743
19744 case DW_OP_constu:
19745 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19746 &bytes_read);
19747 i += bytes_read;
19748 break;
19749
19750 case DW_OP_consts:
19751 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19752 i += bytes_read;
19753 break;
19754
19755 case DW_OP_dup:
19756 stack[stacki + 1] = stack[stacki];
19757 stacki++;
19758 break;
19759
19760 case DW_OP_plus:
19761 stack[stacki - 1] += stack[stacki];
19762 stacki--;
19763 break;
19764
19765 case DW_OP_plus_uconst:
19766 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19767 &bytes_read);
19768 i += bytes_read;
19769 break;
19770
19771 case DW_OP_minus:
19772 stack[stacki - 1] -= stack[stacki];
19773 stacki--;
19774 break;
19775
19776 case DW_OP_deref:
19777 /* If we're not the last op, then we definitely can't encode
19778 this using GDB's address_class enum. This is valid for partial
19779 global symbols, although the variable's address will be bogus
19780 in the psymtab. */
19781 if (i < size)
19782 dwarf2_complex_location_expr_complaint ();
19783 break;
19784
19785 case DW_OP_GNU_push_tls_address:
19786 /* The top of the stack has the offset from the beginning
19787 of the thread control block at which the variable is located. */
19788 /* Nothing should follow this operator, so the top of stack would
19789 be returned. */
19790 /* This is valid for partial global symbols, but the variable's
19791 address will be bogus in the psymtab. Make it always at least
19792 non-zero to not look as a variable garbage collected by linker
19793 which have DW_OP_addr 0. */
19794 if (i < size)
19795 dwarf2_complex_location_expr_complaint ();
19796 stack[stacki]++;
19797 break;
19798
19799 case DW_OP_GNU_uninit:
19800 break;
19801
19802 case DW_OP_GNU_addr_index:
19803 case DW_OP_GNU_const_index:
19804 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19805 &bytes_read);
19806 i += bytes_read;
19807 break;
19808
19809 default:
19810 {
19811 const char *name = get_DW_OP_name (op);
19812
19813 if (name)
19814 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19815 name);
19816 else
19817 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19818 op);
19819 }
19820
19821 return (stack[stacki]);
19822 }
19823
19824 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19825 outside of the allocated space. Also enforce minimum>0. */
19826 if (stacki >= ARRAY_SIZE (stack) - 1)
19827 {
19828 complaint (&symfile_complaints,
19829 _("location description stack overflow"));
19830 return 0;
19831 }
19832
19833 if (stacki <= 0)
19834 {
19835 complaint (&symfile_complaints,
19836 _("location description stack underflow"));
19837 return 0;
19838 }
19839 }
19840 return (stack[stacki]);
19841 }
19842
19843 /* memory allocation interface */
19844
19845 static struct dwarf_block *
19846 dwarf_alloc_block (struct dwarf2_cu *cu)
19847 {
19848 struct dwarf_block *blk;
19849
19850 blk = (struct dwarf_block *)
19851 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19852 return (blk);
19853 }
19854
19855 static struct die_info *
19856 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19857 {
19858 struct die_info *die;
19859 size_t size = sizeof (struct die_info);
19860
19861 if (num_attrs > 1)
19862 size += (num_attrs - 1) * sizeof (struct attribute);
19863
19864 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19865 memset (die, 0, sizeof (struct die_info));
19866 return (die);
19867 }
19868
19869 \f
19870 /* Macro support. */
19871
19872 /* Return file name relative to the compilation directory of file number I in
19873 *LH's file name table. The result is allocated using xmalloc; the caller is
19874 responsible for freeing it. */
19875
19876 static char *
19877 file_file_name (int file, struct line_header *lh)
19878 {
19879 /* Is the file number a valid index into the line header's file name
19880 table? Remember that file numbers start with one, not zero. */
19881 if (1 <= file && file <= lh->num_file_names)
19882 {
19883 struct file_entry *fe = &lh->file_names[file - 1];
19884
19885 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
19886 return xstrdup (fe->name);
19887 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19888 fe->name, NULL);
19889 }
19890 else
19891 {
19892 /* The compiler produced a bogus file number. We can at least
19893 record the macro definitions made in the file, even if we
19894 won't be able to find the file by name. */
19895 char fake_name[80];
19896
19897 xsnprintf (fake_name, sizeof (fake_name),
19898 "<bad macro file number %d>", file);
19899
19900 complaint (&symfile_complaints,
19901 _("bad file number in macro information (%d)"),
19902 file);
19903
19904 return xstrdup (fake_name);
19905 }
19906 }
19907
19908 /* Return the full name of file number I in *LH's file name table.
19909 Use COMP_DIR as the name of the current directory of the
19910 compilation. The result is allocated using xmalloc; the caller is
19911 responsible for freeing it. */
19912 static char *
19913 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19914 {
19915 /* Is the file number a valid index into the line header's file name
19916 table? Remember that file numbers start with one, not zero. */
19917 if (1 <= file && file <= lh->num_file_names)
19918 {
19919 char *relative = file_file_name (file, lh);
19920
19921 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19922 return relative;
19923 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19924 }
19925 else
19926 return file_file_name (file, lh);
19927 }
19928
19929
19930 static struct macro_source_file *
19931 macro_start_file (int file, int line,
19932 struct macro_source_file *current_file,
19933 const char *comp_dir,
19934 struct line_header *lh, struct objfile *objfile)
19935 {
19936 /* File name relative to the compilation directory of this source file. */
19937 char *file_name = file_file_name (file, lh);
19938
19939 if (! current_file)
19940 {
19941 /* Note: We don't create a macro table for this compilation unit
19942 at all until we actually get a filename. */
19943 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19944
19945 /* If we have no current file, then this must be the start_file
19946 directive for the compilation unit's main source file. */
19947 current_file = macro_set_main (macro_table, file_name);
19948 macro_define_special (macro_table);
19949 }
19950 else
19951 current_file = macro_include (current_file, line, file_name);
19952
19953 xfree (file_name);
19954
19955 return current_file;
19956 }
19957
19958
19959 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19960 followed by a null byte. */
19961 static char *
19962 copy_string (const char *buf, int len)
19963 {
19964 char *s = xmalloc (len + 1);
19965
19966 memcpy (s, buf, len);
19967 s[len] = '\0';
19968 return s;
19969 }
19970
19971
19972 static const char *
19973 consume_improper_spaces (const char *p, const char *body)
19974 {
19975 if (*p == ' ')
19976 {
19977 complaint (&symfile_complaints,
19978 _("macro definition contains spaces "
19979 "in formal argument list:\n`%s'"),
19980 body);
19981
19982 while (*p == ' ')
19983 p++;
19984 }
19985
19986 return p;
19987 }
19988
19989
19990 static void
19991 parse_macro_definition (struct macro_source_file *file, int line,
19992 const char *body)
19993 {
19994 const char *p;
19995
19996 /* The body string takes one of two forms. For object-like macro
19997 definitions, it should be:
19998
19999 <macro name> " " <definition>
20000
20001 For function-like macro definitions, it should be:
20002
20003 <macro name> "() " <definition>
20004 or
20005 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20006
20007 Spaces may appear only where explicitly indicated, and in the
20008 <definition>.
20009
20010 The Dwarf 2 spec says that an object-like macro's name is always
20011 followed by a space, but versions of GCC around March 2002 omit
20012 the space when the macro's definition is the empty string.
20013
20014 The Dwarf 2 spec says that there should be no spaces between the
20015 formal arguments in a function-like macro's formal argument list,
20016 but versions of GCC around March 2002 include spaces after the
20017 commas. */
20018
20019
20020 /* Find the extent of the macro name. The macro name is terminated
20021 by either a space or null character (for an object-like macro) or
20022 an opening paren (for a function-like macro). */
20023 for (p = body; *p; p++)
20024 if (*p == ' ' || *p == '(')
20025 break;
20026
20027 if (*p == ' ' || *p == '\0')
20028 {
20029 /* It's an object-like macro. */
20030 int name_len = p - body;
20031 char *name = copy_string (body, name_len);
20032 const char *replacement;
20033
20034 if (*p == ' ')
20035 replacement = body + name_len + 1;
20036 else
20037 {
20038 dwarf2_macro_malformed_definition_complaint (body);
20039 replacement = body + name_len;
20040 }
20041
20042 macro_define_object (file, line, name, replacement);
20043
20044 xfree (name);
20045 }
20046 else if (*p == '(')
20047 {
20048 /* It's a function-like macro. */
20049 char *name = copy_string (body, p - body);
20050 int argc = 0;
20051 int argv_size = 1;
20052 char **argv = xmalloc (argv_size * sizeof (*argv));
20053
20054 p++;
20055
20056 p = consume_improper_spaces (p, body);
20057
20058 /* Parse the formal argument list. */
20059 while (*p && *p != ')')
20060 {
20061 /* Find the extent of the current argument name. */
20062 const char *arg_start = p;
20063
20064 while (*p && *p != ',' && *p != ')' && *p != ' ')
20065 p++;
20066
20067 if (! *p || p == arg_start)
20068 dwarf2_macro_malformed_definition_complaint (body);
20069 else
20070 {
20071 /* Make sure argv has room for the new argument. */
20072 if (argc >= argv_size)
20073 {
20074 argv_size *= 2;
20075 argv = xrealloc (argv, argv_size * sizeof (*argv));
20076 }
20077
20078 argv[argc++] = copy_string (arg_start, p - arg_start);
20079 }
20080
20081 p = consume_improper_spaces (p, body);
20082
20083 /* Consume the comma, if present. */
20084 if (*p == ',')
20085 {
20086 p++;
20087
20088 p = consume_improper_spaces (p, body);
20089 }
20090 }
20091
20092 if (*p == ')')
20093 {
20094 p++;
20095
20096 if (*p == ' ')
20097 /* Perfectly formed definition, no complaints. */
20098 macro_define_function (file, line, name,
20099 argc, (const char **) argv,
20100 p + 1);
20101 else if (*p == '\0')
20102 {
20103 /* Complain, but do define it. */
20104 dwarf2_macro_malformed_definition_complaint (body);
20105 macro_define_function (file, line, name,
20106 argc, (const char **) argv,
20107 p);
20108 }
20109 else
20110 /* Just complain. */
20111 dwarf2_macro_malformed_definition_complaint (body);
20112 }
20113 else
20114 /* Just complain. */
20115 dwarf2_macro_malformed_definition_complaint (body);
20116
20117 xfree (name);
20118 {
20119 int i;
20120
20121 for (i = 0; i < argc; i++)
20122 xfree (argv[i]);
20123 }
20124 xfree (argv);
20125 }
20126 else
20127 dwarf2_macro_malformed_definition_complaint (body);
20128 }
20129
20130 /* Skip some bytes from BYTES according to the form given in FORM.
20131 Returns the new pointer. */
20132
20133 static const gdb_byte *
20134 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20135 enum dwarf_form form,
20136 unsigned int offset_size,
20137 struct dwarf2_section_info *section)
20138 {
20139 unsigned int bytes_read;
20140
20141 switch (form)
20142 {
20143 case DW_FORM_data1:
20144 case DW_FORM_flag:
20145 ++bytes;
20146 break;
20147
20148 case DW_FORM_data2:
20149 bytes += 2;
20150 break;
20151
20152 case DW_FORM_data4:
20153 bytes += 4;
20154 break;
20155
20156 case DW_FORM_data8:
20157 bytes += 8;
20158 break;
20159
20160 case DW_FORM_string:
20161 read_direct_string (abfd, bytes, &bytes_read);
20162 bytes += bytes_read;
20163 break;
20164
20165 case DW_FORM_sec_offset:
20166 case DW_FORM_strp:
20167 case DW_FORM_GNU_strp_alt:
20168 bytes += offset_size;
20169 break;
20170
20171 case DW_FORM_block:
20172 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20173 bytes += bytes_read;
20174 break;
20175
20176 case DW_FORM_block1:
20177 bytes += 1 + read_1_byte (abfd, bytes);
20178 break;
20179 case DW_FORM_block2:
20180 bytes += 2 + read_2_bytes (abfd, bytes);
20181 break;
20182 case DW_FORM_block4:
20183 bytes += 4 + read_4_bytes (abfd, bytes);
20184 break;
20185
20186 case DW_FORM_sdata:
20187 case DW_FORM_udata:
20188 case DW_FORM_GNU_addr_index:
20189 case DW_FORM_GNU_str_index:
20190 bytes = gdb_skip_leb128 (bytes, buffer_end);
20191 if (bytes == NULL)
20192 {
20193 dwarf2_section_buffer_overflow_complaint (section);
20194 return NULL;
20195 }
20196 break;
20197
20198 default:
20199 {
20200 complain:
20201 complaint (&symfile_complaints,
20202 _("invalid form 0x%x in `%s'"),
20203 form, get_section_name (section));
20204 return NULL;
20205 }
20206 }
20207
20208 return bytes;
20209 }
20210
20211 /* A helper for dwarf_decode_macros that handles skipping an unknown
20212 opcode. Returns an updated pointer to the macro data buffer; or,
20213 on error, issues a complaint and returns NULL. */
20214
20215 static const gdb_byte *
20216 skip_unknown_opcode (unsigned int opcode,
20217 const gdb_byte **opcode_definitions,
20218 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20219 bfd *abfd,
20220 unsigned int offset_size,
20221 struct dwarf2_section_info *section)
20222 {
20223 unsigned int bytes_read, i;
20224 unsigned long arg;
20225 const gdb_byte *defn;
20226
20227 if (opcode_definitions[opcode] == NULL)
20228 {
20229 complaint (&symfile_complaints,
20230 _("unrecognized DW_MACFINO opcode 0x%x"),
20231 opcode);
20232 return NULL;
20233 }
20234
20235 defn = opcode_definitions[opcode];
20236 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20237 defn += bytes_read;
20238
20239 for (i = 0; i < arg; ++i)
20240 {
20241 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20242 section);
20243 if (mac_ptr == NULL)
20244 {
20245 /* skip_form_bytes already issued the complaint. */
20246 return NULL;
20247 }
20248 }
20249
20250 return mac_ptr;
20251 }
20252
20253 /* A helper function which parses the header of a macro section.
20254 If the macro section is the extended (for now called "GNU") type,
20255 then this updates *OFFSET_SIZE. Returns a pointer to just after
20256 the header, or issues a complaint and returns NULL on error. */
20257
20258 static const gdb_byte *
20259 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20260 bfd *abfd,
20261 const gdb_byte *mac_ptr,
20262 unsigned int *offset_size,
20263 int section_is_gnu)
20264 {
20265 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20266
20267 if (section_is_gnu)
20268 {
20269 unsigned int version, flags;
20270
20271 version = read_2_bytes (abfd, mac_ptr);
20272 if (version != 4)
20273 {
20274 complaint (&symfile_complaints,
20275 _("unrecognized version `%d' in .debug_macro section"),
20276 version);
20277 return NULL;
20278 }
20279 mac_ptr += 2;
20280
20281 flags = read_1_byte (abfd, mac_ptr);
20282 ++mac_ptr;
20283 *offset_size = (flags & 1) ? 8 : 4;
20284
20285 if ((flags & 2) != 0)
20286 /* We don't need the line table offset. */
20287 mac_ptr += *offset_size;
20288
20289 /* Vendor opcode descriptions. */
20290 if ((flags & 4) != 0)
20291 {
20292 unsigned int i, count;
20293
20294 count = read_1_byte (abfd, mac_ptr);
20295 ++mac_ptr;
20296 for (i = 0; i < count; ++i)
20297 {
20298 unsigned int opcode, bytes_read;
20299 unsigned long arg;
20300
20301 opcode = read_1_byte (abfd, mac_ptr);
20302 ++mac_ptr;
20303 opcode_definitions[opcode] = mac_ptr;
20304 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20305 mac_ptr += bytes_read;
20306 mac_ptr += arg;
20307 }
20308 }
20309 }
20310
20311 return mac_ptr;
20312 }
20313
20314 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20315 including DW_MACRO_GNU_transparent_include. */
20316
20317 static void
20318 dwarf_decode_macro_bytes (bfd *abfd,
20319 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20320 struct macro_source_file *current_file,
20321 struct line_header *lh, const char *comp_dir,
20322 struct dwarf2_section_info *section,
20323 int section_is_gnu, int section_is_dwz,
20324 unsigned int offset_size,
20325 struct objfile *objfile,
20326 htab_t include_hash)
20327 {
20328 enum dwarf_macro_record_type macinfo_type;
20329 int at_commandline;
20330 const gdb_byte *opcode_definitions[256];
20331
20332 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20333 &offset_size, section_is_gnu);
20334 if (mac_ptr == NULL)
20335 {
20336 /* We already issued a complaint. */
20337 return;
20338 }
20339
20340 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20341 GDB is still reading the definitions from command line. First
20342 DW_MACINFO_start_file will need to be ignored as it was already executed
20343 to create CURRENT_FILE for the main source holding also the command line
20344 definitions. On first met DW_MACINFO_start_file this flag is reset to
20345 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20346
20347 at_commandline = 1;
20348
20349 do
20350 {
20351 /* Do we at least have room for a macinfo type byte? */
20352 if (mac_ptr >= mac_end)
20353 {
20354 dwarf2_section_buffer_overflow_complaint (section);
20355 break;
20356 }
20357
20358 macinfo_type = read_1_byte (abfd, mac_ptr);
20359 mac_ptr++;
20360
20361 /* Note that we rely on the fact that the corresponding GNU and
20362 DWARF constants are the same. */
20363 switch (macinfo_type)
20364 {
20365 /* A zero macinfo type indicates the end of the macro
20366 information. */
20367 case 0:
20368 break;
20369
20370 case DW_MACRO_GNU_define:
20371 case DW_MACRO_GNU_undef:
20372 case DW_MACRO_GNU_define_indirect:
20373 case DW_MACRO_GNU_undef_indirect:
20374 case DW_MACRO_GNU_define_indirect_alt:
20375 case DW_MACRO_GNU_undef_indirect_alt:
20376 {
20377 unsigned int bytes_read;
20378 int line;
20379 const char *body;
20380 int is_define;
20381
20382 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20383 mac_ptr += bytes_read;
20384
20385 if (macinfo_type == DW_MACRO_GNU_define
20386 || macinfo_type == DW_MACRO_GNU_undef)
20387 {
20388 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20389 mac_ptr += bytes_read;
20390 }
20391 else
20392 {
20393 LONGEST str_offset;
20394
20395 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20396 mac_ptr += offset_size;
20397
20398 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20399 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20400 || section_is_dwz)
20401 {
20402 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20403
20404 body = read_indirect_string_from_dwz (dwz, str_offset);
20405 }
20406 else
20407 body = read_indirect_string_at_offset (abfd, str_offset);
20408 }
20409
20410 is_define = (macinfo_type == DW_MACRO_GNU_define
20411 || macinfo_type == DW_MACRO_GNU_define_indirect
20412 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20413 if (! current_file)
20414 {
20415 /* DWARF violation as no main source is present. */
20416 complaint (&symfile_complaints,
20417 _("debug info with no main source gives macro %s "
20418 "on line %d: %s"),
20419 is_define ? _("definition") : _("undefinition"),
20420 line, body);
20421 break;
20422 }
20423 if ((line == 0 && !at_commandline)
20424 || (line != 0 && at_commandline))
20425 complaint (&symfile_complaints,
20426 _("debug info gives %s macro %s with %s line %d: %s"),
20427 at_commandline ? _("command-line") : _("in-file"),
20428 is_define ? _("definition") : _("undefinition"),
20429 line == 0 ? _("zero") : _("non-zero"), line, body);
20430
20431 if (is_define)
20432 parse_macro_definition (current_file, line, body);
20433 else
20434 {
20435 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20436 || macinfo_type == DW_MACRO_GNU_undef_indirect
20437 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20438 macro_undef (current_file, line, body);
20439 }
20440 }
20441 break;
20442
20443 case DW_MACRO_GNU_start_file:
20444 {
20445 unsigned int bytes_read;
20446 int line, file;
20447
20448 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20449 mac_ptr += bytes_read;
20450 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20451 mac_ptr += bytes_read;
20452
20453 if ((line == 0 && !at_commandline)
20454 || (line != 0 && at_commandline))
20455 complaint (&symfile_complaints,
20456 _("debug info gives source %d included "
20457 "from %s at %s line %d"),
20458 file, at_commandline ? _("command-line") : _("file"),
20459 line == 0 ? _("zero") : _("non-zero"), line);
20460
20461 if (at_commandline)
20462 {
20463 /* This DW_MACRO_GNU_start_file was executed in the
20464 pass one. */
20465 at_commandline = 0;
20466 }
20467 else
20468 current_file = macro_start_file (file, line,
20469 current_file, comp_dir,
20470 lh, objfile);
20471 }
20472 break;
20473
20474 case DW_MACRO_GNU_end_file:
20475 if (! current_file)
20476 complaint (&symfile_complaints,
20477 _("macro debug info has an unmatched "
20478 "`close_file' directive"));
20479 else
20480 {
20481 current_file = current_file->included_by;
20482 if (! current_file)
20483 {
20484 enum dwarf_macro_record_type next_type;
20485
20486 /* GCC circa March 2002 doesn't produce the zero
20487 type byte marking the end of the compilation
20488 unit. Complain if it's not there, but exit no
20489 matter what. */
20490
20491 /* Do we at least have room for a macinfo type byte? */
20492 if (mac_ptr >= mac_end)
20493 {
20494 dwarf2_section_buffer_overflow_complaint (section);
20495 return;
20496 }
20497
20498 /* We don't increment mac_ptr here, so this is just
20499 a look-ahead. */
20500 next_type = read_1_byte (abfd, mac_ptr);
20501 if (next_type != 0)
20502 complaint (&symfile_complaints,
20503 _("no terminating 0-type entry for "
20504 "macros in `.debug_macinfo' section"));
20505
20506 return;
20507 }
20508 }
20509 break;
20510
20511 case DW_MACRO_GNU_transparent_include:
20512 case DW_MACRO_GNU_transparent_include_alt:
20513 {
20514 LONGEST offset;
20515 void **slot;
20516 bfd *include_bfd = abfd;
20517 struct dwarf2_section_info *include_section = section;
20518 struct dwarf2_section_info alt_section;
20519 const gdb_byte *include_mac_end = mac_end;
20520 int is_dwz = section_is_dwz;
20521 const gdb_byte *new_mac_ptr;
20522
20523 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20524 mac_ptr += offset_size;
20525
20526 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20527 {
20528 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20529
20530 dwarf2_read_section (dwarf2_per_objfile->objfile,
20531 &dwz->macro);
20532
20533 include_section = &dwz->macro;
20534 include_bfd = get_section_bfd_owner (include_section);
20535 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20536 is_dwz = 1;
20537 }
20538
20539 new_mac_ptr = include_section->buffer + offset;
20540 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20541
20542 if (*slot != NULL)
20543 {
20544 /* This has actually happened; see
20545 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20546 complaint (&symfile_complaints,
20547 _("recursive DW_MACRO_GNU_transparent_include in "
20548 ".debug_macro section"));
20549 }
20550 else
20551 {
20552 *slot = (void *) new_mac_ptr;
20553
20554 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20555 include_mac_end, current_file,
20556 lh, comp_dir,
20557 section, section_is_gnu, is_dwz,
20558 offset_size, objfile, include_hash);
20559
20560 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20561 }
20562 }
20563 break;
20564
20565 case DW_MACINFO_vendor_ext:
20566 if (!section_is_gnu)
20567 {
20568 unsigned int bytes_read;
20569 int constant;
20570
20571 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20572 mac_ptr += bytes_read;
20573 read_direct_string (abfd, mac_ptr, &bytes_read);
20574 mac_ptr += bytes_read;
20575
20576 /* We don't recognize any vendor extensions. */
20577 break;
20578 }
20579 /* FALLTHROUGH */
20580
20581 default:
20582 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20583 mac_ptr, mac_end, abfd, offset_size,
20584 section);
20585 if (mac_ptr == NULL)
20586 return;
20587 break;
20588 }
20589 } while (macinfo_type != 0);
20590 }
20591
20592 static void
20593 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20594 const char *comp_dir, int section_is_gnu)
20595 {
20596 struct objfile *objfile = dwarf2_per_objfile->objfile;
20597 struct line_header *lh = cu->line_header;
20598 bfd *abfd;
20599 const gdb_byte *mac_ptr, *mac_end;
20600 struct macro_source_file *current_file = 0;
20601 enum dwarf_macro_record_type macinfo_type;
20602 unsigned int offset_size = cu->header.offset_size;
20603 const gdb_byte *opcode_definitions[256];
20604 struct cleanup *cleanup;
20605 htab_t include_hash;
20606 void **slot;
20607 struct dwarf2_section_info *section;
20608 const char *section_name;
20609
20610 if (cu->dwo_unit != NULL)
20611 {
20612 if (section_is_gnu)
20613 {
20614 section = &cu->dwo_unit->dwo_file->sections.macro;
20615 section_name = ".debug_macro.dwo";
20616 }
20617 else
20618 {
20619 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20620 section_name = ".debug_macinfo.dwo";
20621 }
20622 }
20623 else
20624 {
20625 if (section_is_gnu)
20626 {
20627 section = &dwarf2_per_objfile->macro;
20628 section_name = ".debug_macro";
20629 }
20630 else
20631 {
20632 section = &dwarf2_per_objfile->macinfo;
20633 section_name = ".debug_macinfo";
20634 }
20635 }
20636
20637 dwarf2_read_section (objfile, section);
20638 if (section->buffer == NULL)
20639 {
20640 complaint (&symfile_complaints, _("missing %s section"), section_name);
20641 return;
20642 }
20643 abfd = get_section_bfd_owner (section);
20644
20645 /* First pass: Find the name of the base filename.
20646 This filename is needed in order to process all macros whose definition
20647 (or undefinition) comes from the command line. These macros are defined
20648 before the first DW_MACINFO_start_file entry, and yet still need to be
20649 associated to the base file.
20650
20651 To determine the base file name, we scan the macro definitions until we
20652 reach the first DW_MACINFO_start_file entry. We then initialize
20653 CURRENT_FILE accordingly so that any macro definition found before the
20654 first DW_MACINFO_start_file can still be associated to the base file. */
20655
20656 mac_ptr = section->buffer + offset;
20657 mac_end = section->buffer + section->size;
20658
20659 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20660 &offset_size, section_is_gnu);
20661 if (mac_ptr == NULL)
20662 {
20663 /* We already issued a complaint. */
20664 return;
20665 }
20666
20667 do
20668 {
20669 /* Do we at least have room for a macinfo type byte? */
20670 if (mac_ptr >= mac_end)
20671 {
20672 /* Complaint is printed during the second pass as GDB will probably
20673 stop the first pass earlier upon finding
20674 DW_MACINFO_start_file. */
20675 break;
20676 }
20677
20678 macinfo_type = read_1_byte (abfd, mac_ptr);
20679 mac_ptr++;
20680
20681 /* Note that we rely on the fact that the corresponding GNU and
20682 DWARF constants are the same. */
20683 switch (macinfo_type)
20684 {
20685 /* A zero macinfo type indicates the end of the macro
20686 information. */
20687 case 0:
20688 break;
20689
20690 case DW_MACRO_GNU_define:
20691 case DW_MACRO_GNU_undef:
20692 /* Only skip the data by MAC_PTR. */
20693 {
20694 unsigned int bytes_read;
20695
20696 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20697 mac_ptr += bytes_read;
20698 read_direct_string (abfd, mac_ptr, &bytes_read);
20699 mac_ptr += bytes_read;
20700 }
20701 break;
20702
20703 case DW_MACRO_GNU_start_file:
20704 {
20705 unsigned int bytes_read;
20706 int line, file;
20707
20708 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20709 mac_ptr += bytes_read;
20710 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20711 mac_ptr += bytes_read;
20712
20713 current_file = macro_start_file (file, line, current_file,
20714 comp_dir, lh, objfile);
20715 }
20716 break;
20717
20718 case DW_MACRO_GNU_end_file:
20719 /* No data to skip by MAC_PTR. */
20720 break;
20721
20722 case DW_MACRO_GNU_define_indirect:
20723 case DW_MACRO_GNU_undef_indirect:
20724 case DW_MACRO_GNU_define_indirect_alt:
20725 case DW_MACRO_GNU_undef_indirect_alt:
20726 {
20727 unsigned int bytes_read;
20728
20729 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20730 mac_ptr += bytes_read;
20731 mac_ptr += offset_size;
20732 }
20733 break;
20734
20735 case DW_MACRO_GNU_transparent_include:
20736 case DW_MACRO_GNU_transparent_include_alt:
20737 /* Note that, according to the spec, a transparent include
20738 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20739 skip this opcode. */
20740 mac_ptr += offset_size;
20741 break;
20742
20743 case DW_MACINFO_vendor_ext:
20744 /* Only skip the data by MAC_PTR. */
20745 if (!section_is_gnu)
20746 {
20747 unsigned int bytes_read;
20748
20749 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20750 mac_ptr += bytes_read;
20751 read_direct_string (abfd, mac_ptr, &bytes_read);
20752 mac_ptr += bytes_read;
20753 }
20754 /* FALLTHROUGH */
20755
20756 default:
20757 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20758 mac_ptr, mac_end, abfd, offset_size,
20759 section);
20760 if (mac_ptr == NULL)
20761 return;
20762 break;
20763 }
20764 } while (macinfo_type != 0 && current_file == NULL);
20765
20766 /* Second pass: Process all entries.
20767
20768 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20769 command-line macro definitions/undefinitions. This flag is unset when we
20770 reach the first DW_MACINFO_start_file entry. */
20771
20772 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20773 NULL, xcalloc, xfree);
20774 cleanup = make_cleanup_htab_delete (include_hash);
20775 mac_ptr = section->buffer + offset;
20776 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20777 *slot = (void *) mac_ptr;
20778 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20779 current_file, lh, comp_dir, section,
20780 section_is_gnu, 0,
20781 offset_size, objfile, include_hash);
20782 do_cleanups (cleanup);
20783 }
20784
20785 /* Check if the attribute's form is a DW_FORM_block*
20786 if so return true else false. */
20787
20788 static int
20789 attr_form_is_block (const struct attribute *attr)
20790 {
20791 return (attr == NULL ? 0 :
20792 attr->form == DW_FORM_block1
20793 || attr->form == DW_FORM_block2
20794 || attr->form == DW_FORM_block4
20795 || attr->form == DW_FORM_block
20796 || attr->form == DW_FORM_exprloc);
20797 }
20798
20799 /* Return non-zero if ATTR's value is a section offset --- classes
20800 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20801 You may use DW_UNSND (attr) to retrieve such offsets.
20802
20803 Section 7.5.4, "Attribute Encodings", explains that no attribute
20804 may have a value that belongs to more than one of these classes; it
20805 would be ambiguous if we did, because we use the same forms for all
20806 of them. */
20807
20808 static int
20809 attr_form_is_section_offset (const struct attribute *attr)
20810 {
20811 return (attr->form == DW_FORM_data4
20812 || attr->form == DW_FORM_data8
20813 || attr->form == DW_FORM_sec_offset);
20814 }
20815
20816 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20817 zero otherwise. When this function returns true, you can apply
20818 dwarf2_get_attr_constant_value to it.
20819
20820 However, note that for some attributes you must check
20821 attr_form_is_section_offset before using this test. DW_FORM_data4
20822 and DW_FORM_data8 are members of both the constant class, and of
20823 the classes that contain offsets into other debug sections
20824 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20825 that, if an attribute's can be either a constant or one of the
20826 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20827 taken as section offsets, not constants. */
20828
20829 static int
20830 attr_form_is_constant (const struct attribute *attr)
20831 {
20832 switch (attr->form)
20833 {
20834 case DW_FORM_sdata:
20835 case DW_FORM_udata:
20836 case DW_FORM_data1:
20837 case DW_FORM_data2:
20838 case DW_FORM_data4:
20839 case DW_FORM_data8:
20840 return 1;
20841 default:
20842 return 0;
20843 }
20844 }
20845
20846
20847 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20848 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20849
20850 static int
20851 attr_form_is_ref (const struct attribute *attr)
20852 {
20853 switch (attr->form)
20854 {
20855 case DW_FORM_ref_addr:
20856 case DW_FORM_ref1:
20857 case DW_FORM_ref2:
20858 case DW_FORM_ref4:
20859 case DW_FORM_ref8:
20860 case DW_FORM_ref_udata:
20861 case DW_FORM_GNU_ref_alt:
20862 return 1;
20863 default:
20864 return 0;
20865 }
20866 }
20867
20868 /* Return the .debug_loc section to use for CU.
20869 For DWO files use .debug_loc.dwo. */
20870
20871 static struct dwarf2_section_info *
20872 cu_debug_loc_section (struct dwarf2_cu *cu)
20873 {
20874 if (cu->dwo_unit)
20875 return &cu->dwo_unit->dwo_file->sections.loc;
20876 return &dwarf2_per_objfile->loc;
20877 }
20878
20879 /* A helper function that fills in a dwarf2_loclist_baton. */
20880
20881 static void
20882 fill_in_loclist_baton (struct dwarf2_cu *cu,
20883 struct dwarf2_loclist_baton *baton,
20884 const struct attribute *attr)
20885 {
20886 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20887
20888 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20889
20890 baton->per_cu = cu->per_cu;
20891 gdb_assert (baton->per_cu);
20892 /* We don't know how long the location list is, but make sure we
20893 don't run off the edge of the section. */
20894 baton->size = section->size - DW_UNSND (attr);
20895 baton->data = section->buffer + DW_UNSND (attr);
20896 baton->base_address = cu->base_address;
20897 baton->from_dwo = cu->dwo_unit != NULL;
20898 }
20899
20900 static void
20901 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
20902 struct dwarf2_cu *cu, int is_block)
20903 {
20904 struct objfile *objfile = dwarf2_per_objfile->objfile;
20905 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20906
20907 if (attr_form_is_section_offset (attr)
20908 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
20909 the section. If so, fall through to the complaint in the
20910 other branch. */
20911 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
20912 {
20913 struct dwarf2_loclist_baton *baton;
20914
20915 baton = obstack_alloc (&objfile->objfile_obstack,
20916 sizeof (struct dwarf2_loclist_baton));
20917
20918 fill_in_loclist_baton (cu, baton, attr);
20919
20920 if (cu->base_known == 0)
20921 complaint (&symfile_complaints,
20922 _("Location list used without "
20923 "specifying the CU base address."));
20924
20925 SYMBOL_ACLASS_INDEX (sym) = (is_block
20926 ? dwarf2_loclist_block_index
20927 : dwarf2_loclist_index);
20928 SYMBOL_LOCATION_BATON (sym) = baton;
20929 }
20930 else
20931 {
20932 struct dwarf2_locexpr_baton *baton;
20933
20934 baton = obstack_alloc (&objfile->objfile_obstack,
20935 sizeof (struct dwarf2_locexpr_baton));
20936 baton->per_cu = cu->per_cu;
20937 gdb_assert (baton->per_cu);
20938
20939 if (attr_form_is_block (attr))
20940 {
20941 /* Note that we're just copying the block's data pointer
20942 here, not the actual data. We're still pointing into the
20943 info_buffer for SYM's objfile; right now we never release
20944 that buffer, but when we do clean up properly this may
20945 need to change. */
20946 baton->size = DW_BLOCK (attr)->size;
20947 baton->data = DW_BLOCK (attr)->data;
20948 }
20949 else
20950 {
20951 dwarf2_invalid_attrib_class_complaint ("location description",
20952 SYMBOL_NATURAL_NAME (sym));
20953 baton->size = 0;
20954 }
20955
20956 SYMBOL_ACLASS_INDEX (sym) = (is_block
20957 ? dwarf2_locexpr_block_index
20958 : dwarf2_locexpr_index);
20959 SYMBOL_LOCATION_BATON (sym) = baton;
20960 }
20961 }
20962
20963 /* Return the OBJFILE associated with the compilation unit CU. If CU
20964 came from a separate debuginfo file, then the master objfile is
20965 returned. */
20966
20967 struct objfile *
20968 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20969 {
20970 struct objfile *objfile = per_cu->objfile;
20971
20972 /* Return the master objfile, so that we can report and look up the
20973 correct file containing this variable. */
20974 if (objfile->separate_debug_objfile_backlink)
20975 objfile = objfile->separate_debug_objfile_backlink;
20976
20977 return objfile;
20978 }
20979
20980 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20981 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20982 CU_HEADERP first. */
20983
20984 static const struct comp_unit_head *
20985 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20986 struct dwarf2_per_cu_data *per_cu)
20987 {
20988 const gdb_byte *info_ptr;
20989
20990 if (per_cu->cu)
20991 return &per_cu->cu->header;
20992
20993 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20994
20995 memset (cu_headerp, 0, sizeof (*cu_headerp));
20996 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20997
20998 return cu_headerp;
20999 }
21000
21001 /* Return the address size given in the compilation unit header for CU. */
21002
21003 int
21004 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21005 {
21006 struct comp_unit_head cu_header_local;
21007 const struct comp_unit_head *cu_headerp;
21008
21009 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21010
21011 return cu_headerp->addr_size;
21012 }
21013
21014 /* Return the offset size given in the compilation unit header for CU. */
21015
21016 int
21017 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21018 {
21019 struct comp_unit_head cu_header_local;
21020 const struct comp_unit_head *cu_headerp;
21021
21022 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21023
21024 return cu_headerp->offset_size;
21025 }
21026
21027 /* See its dwarf2loc.h declaration. */
21028
21029 int
21030 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21031 {
21032 struct comp_unit_head cu_header_local;
21033 const struct comp_unit_head *cu_headerp;
21034
21035 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21036
21037 if (cu_headerp->version == 2)
21038 return cu_headerp->addr_size;
21039 else
21040 return cu_headerp->offset_size;
21041 }
21042
21043 /* Return the text offset of the CU. The returned offset comes from
21044 this CU's objfile. If this objfile came from a separate debuginfo
21045 file, then the offset may be different from the corresponding
21046 offset in the parent objfile. */
21047
21048 CORE_ADDR
21049 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21050 {
21051 struct objfile *objfile = per_cu->objfile;
21052
21053 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21054 }
21055
21056 /* Locate the .debug_info compilation unit from CU's objfile which contains
21057 the DIE at OFFSET. Raises an error on failure. */
21058
21059 static struct dwarf2_per_cu_data *
21060 dwarf2_find_containing_comp_unit (sect_offset offset,
21061 unsigned int offset_in_dwz,
21062 struct objfile *objfile)
21063 {
21064 struct dwarf2_per_cu_data *this_cu;
21065 int low, high;
21066 const sect_offset *cu_off;
21067
21068 low = 0;
21069 high = dwarf2_per_objfile->n_comp_units - 1;
21070 while (high > low)
21071 {
21072 struct dwarf2_per_cu_data *mid_cu;
21073 int mid = low + (high - low) / 2;
21074
21075 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21076 cu_off = &mid_cu->offset;
21077 if (mid_cu->is_dwz > offset_in_dwz
21078 || (mid_cu->is_dwz == offset_in_dwz
21079 && cu_off->sect_off >= offset.sect_off))
21080 high = mid;
21081 else
21082 low = mid + 1;
21083 }
21084 gdb_assert (low == high);
21085 this_cu = dwarf2_per_objfile->all_comp_units[low];
21086 cu_off = &this_cu->offset;
21087 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21088 {
21089 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21090 error (_("Dwarf Error: could not find partial DIE containing "
21091 "offset 0x%lx [in module %s]"),
21092 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21093
21094 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21095 <= offset.sect_off);
21096 return dwarf2_per_objfile->all_comp_units[low-1];
21097 }
21098 else
21099 {
21100 this_cu = dwarf2_per_objfile->all_comp_units[low];
21101 if (low == dwarf2_per_objfile->n_comp_units - 1
21102 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21103 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21104 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21105 return this_cu;
21106 }
21107 }
21108
21109 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21110
21111 static void
21112 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21113 {
21114 memset (cu, 0, sizeof (*cu));
21115 per_cu->cu = cu;
21116 cu->per_cu = per_cu;
21117 cu->objfile = per_cu->objfile;
21118 obstack_init (&cu->comp_unit_obstack);
21119 }
21120
21121 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21122
21123 static void
21124 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21125 enum language pretend_language)
21126 {
21127 struct attribute *attr;
21128
21129 /* Set the language we're debugging. */
21130 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21131 if (attr)
21132 set_cu_language (DW_UNSND (attr), cu);
21133 else
21134 {
21135 cu->language = pretend_language;
21136 cu->language_defn = language_def (cu->language);
21137 }
21138
21139 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21140 if (attr)
21141 cu->producer = DW_STRING (attr);
21142 }
21143
21144 /* Release one cached compilation unit, CU. We unlink it from the tree
21145 of compilation units, but we don't remove it from the read_in_chain;
21146 the caller is responsible for that.
21147 NOTE: DATA is a void * because this function is also used as a
21148 cleanup routine. */
21149
21150 static void
21151 free_heap_comp_unit (void *data)
21152 {
21153 struct dwarf2_cu *cu = data;
21154
21155 gdb_assert (cu->per_cu != NULL);
21156 cu->per_cu->cu = NULL;
21157 cu->per_cu = NULL;
21158
21159 obstack_free (&cu->comp_unit_obstack, NULL);
21160
21161 xfree (cu);
21162 }
21163
21164 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21165 when we're finished with it. We can't free the pointer itself, but be
21166 sure to unlink it from the cache. Also release any associated storage. */
21167
21168 static void
21169 free_stack_comp_unit (void *data)
21170 {
21171 struct dwarf2_cu *cu = data;
21172
21173 gdb_assert (cu->per_cu != NULL);
21174 cu->per_cu->cu = NULL;
21175 cu->per_cu = NULL;
21176
21177 obstack_free (&cu->comp_unit_obstack, NULL);
21178 cu->partial_dies = NULL;
21179 }
21180
21181 /* Free all cached compilation units. */
21182
21183 static void
21184 free_cached_comp_units (void *data)
21185 {
21186 struct dwarf2_per_cu_data *per_cu, **last_chain;
21187
21188 per_cu = dwarf2_per_objfile->read_in_chain;
21189 last_chain = &dwarf2_per_objfile->read_in_chain;
21190 while (per_cu != NULL)
21191 {
21192 struct dwarf2_per_cu_data *next_cu;
21193
21194 next_cu = per_cu->cu->read_in_chain;
21195
21196 free_heap_comp_unit (per_cu->cu);
21197 *last_chain = next_cu;
21198
21199 per_cu = next_cu;
21200 }
21201 }
21202
21203 /* Increase the age counter on each cached compilation unit, and free
21204 any that are too old. */
21205
21206 static void
21207 age_cached_comp_units (void)
21208 {
21209 struct dwarf2_per_cu_data *per_cu, **last_chain;
21210
21211 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21212 per_cu = dwarf2_per_objfile->read_in_chain;
21213 while (per_cu != NULL)
21214 {
21215 per_cu->cu->last_used ++;
21216 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21217 dwarf2_mark (per_cu->cu);
21218 per_cu = per_cu->cu->read_in_chain;
21219 }
21220
21221 per_cu = dwarf2_per_objfile->read_in_chain;
21222 last_chain = &dwarf2_per_objfile->read_in_chain;
21223 while (per_cu != NULL)
21224 {
21225 struct dwarf2_per_cu_data *next_cu;
21226
21227 next_cu = per_cu->cu->read_in_chain;
21228
21229 if (!per_cu->cu->mark)
21230 {
21231 free_heap_comp_unit (per_cu->cu);
21232 *last_chain = next_cu;
21233 }
21234 else
21235 last_chain = &per_cu->cu->read_in_chain;
21236
21237 per_cu = next_cu;
21238 }
21239 }
21240
21241 /* Remove a single compilation unit from the cache. */
21242
21243 static void
21244 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21245 {
21246 struct dwarf2_per_cu_data *per_cu, **last_chain;
21247
21248 per_cu = dwarf2_per_objfile->read_in_chain;
21249 last_chain = &dwarf2_per_objfile->read_in_chain;
21250 while (per_cu != NULL)
21251 {
21252 struct dwarf2_per_cu_data *next_cu;
21253
21254 next_cu = per_cu->cu->read_in_chain;
21255
21256 if (per_cu == target_per_cu)
21257 {
21258 free_heap_comp_unit (per_cu->cu);
21259 per_cu->cu = NULL;
21260 *last_chain = next_cu;
21261 break;
21262 }
21263 else
21264 last_chain = &per_cu->cu->read_in_chain;
21265
21266 per_cu = next_cu;
21267 }
21268 }
21269
21270 /* Release all extra memory associated with OBJFILE. */
21271
21272 void
21273 dwarf2_free_objfile (struct objfile *objfile)
21274 {
21275 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21276
21277 if (dwarf2_per_objfile == NULL)
21278 return;
21279
21280 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21281 free_cached_comp_units (NULL);
21282
21283 if (dwarf2_per_objfile->quick_file_names_table)
21284 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21285
21286 /* Everything else should be on the objfile obstack. */
21287 }
21288
21289 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21290 We store these in a hash table separate from the DIEs, and preserve them
21291 when the DIEs are flushed out of cache.
21292
21293 The CU "per_cu" pointer is needed because offset alone is not enough to
21294 uniquely identify the type. A file may have multiple .debug_types sections,
21295 or the type may come from a DWO file. Furthermore, while it's more logical
21296 to use per_cu->section+offset, with Fission the section with the data is in
21297 the DWO file but we don't know that section at the point we need it.
21298 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21299 because we can enter the lookup routine, get_die_type_at_offset, from
21300 outside this file, and thus won't necessarily have PER_CU->cu.
21301 Fortunately, PER_CU is stable for the life of the objfile. */
21302
21303 struct dwarf2_per_cu_offset_and_type
21304 {
21305 const struct dwarf2_per_cu_data *per_cu;
21306 sect_offset offset;
21307 struct type *type;
21308 };
21309
21310 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21311
21312 static hashval_t
21313 per_cu_offset_and_type_hash (const void *item)
21314 {
21315 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21316
21317 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21318 }
21319
21320 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21321
21322 static int
21323 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21324 {
21325 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21326 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21327
21328 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21329 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21330 }
21331
21332 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21333 table if necessary. For convenience, return TYPE.
21334
21335 The DIEs reading must have careful ordering to:
21336 * Not cause infite loops trying to read in DIEs as a prerequisite for
21337 reading current DIE.
21338 * Not trying to dereference contents of still incompletely read in types
21339 while reading in other DIEs.
21340 * Enable referencing still incompletely read in types just by a pointer to
21341 the type without accessing its fields.
21342
21343 Therefore caller should follow these rules:
21344 * Try to fetch any prerequisite types we may need to build this DIE type
21345 before building the type and calling set_die_type.
21346 * After building type call set_die_type for current DIE as soon as
21347 possible before fetching more types to complete the current type.
21348 * Make the type as complete as possible before fetching more types. */
21349
21350 static struct type *
21351 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21352 {
21353 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21354 struct objfile *objfile = cu->objfile;
21355
21356 /* For Ada types, make sure that the gnat-specific data is always
21357 initialized (if not already set). There are a few types where
21358 we should not be doing so, because the type-specific area is
21359 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21360 where the type-specific area is used to store the floatformat).
21361 But this is not a problem, because the gnat-specific information
21362 is actually not needed for these types. */
21363 if (need_gnat_info (cu)
21364 && TYPE_CODE (type) != TYPE_CODE_FUNC
21365 && TYPE_CODE (type) != TYPE_CODE_FLT
21366 && !HAVE_GNAT_AUX_INFO (type))
21367 INIT_GNAT_SPECIFIC (type);
21368
21369 if (dwarf2_per_objfile->die_type_hash == NULL)
21370 {
21371 dwarf2_per_objfile->die_type_hash =
21372 htab_create_alloc_ex (127,
21373 per_cu_offset_and_type_hash,
21374 per_cu_offset_and_type_eq,
21375 NULL,
21376 &objfile->objfile_obstack,
21377 hashtab_obstack_allocate,
21378 dummy_obstack_deallocate);
21379 }
21380
21381 ofs.per_cu = cu->per_cu;
21382 ofs.offset = die->offset;
21383 ofs.type = type;
21384 slot = (struct dwarf2_per_cu_offset_and_type **)
21385 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21386 if (*slot)
21387 complaint (&symfile_complaints,
21388 _("A problem internal to GDB: DIE 0x%x has type already set"),
21389 die->offset.sect_off);
21390 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21391 **slot = ofs;
21392 return type;
21393 }
21394
21395 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21396 or return NULL if the die does not have a saved type. */
21397
21398 static struct type *
21399 get_die_type_at_offset (sect_offset offset,
21400 struct dwarf2_per_cu_data *per_cu)
21401 {
21402 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21403
21404 if (dwarf2_per_objfile->die_type_hash == NULL)
21405 return NULL;
21406
21407 ofs.per_cu = per_cu;
21408 ofs.offset = offset;
21409 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21410 if (slot)
21411 return slot->type;
21412 else
21413 return NULL;
21414 }
21415
21416 /* Look up the type for DIE in CU in die_type_hash,
21417 or return NULL if DIE does not have a saved type. */
21418
21419 static struct type *
21420 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21421 {
21422 return get_die_type_at_offset (die->offset, cu->per_cu);
21423 }
21424
21425 /* Add a dependence relationship from CU to REF_PER_CU. */
21426
21427 static void
21428 dwarf2_add_dependence (struct dwarf2_cu *cu,
21429 struct dwarf2_per_cu_data *ref_per_cu)
21430 {
21431 void **slot;
21432
21433 if (cu->dependencies == NULL)
21434 cu->dependencies
21435 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21436 NULL, &cu->comp_unit_obstack,
21437 hashtab_obstack_allocate,
21438 dummy_obstack_deallocate);
21439
21440 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21441 if (*slot == NULL)
21442 *slot = ref_per_cu;
21443 }
21444
21445 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21446 Set the mark field in every compilation unit in the
21447 cache that we must keep because we are keeping CU. */
21448
21449 static int
21450 dwarf2_mark_helper (void **slot, void *data)
21451 {
21452 struct dwarf2_per_cu_data *per_cu;
21453
21454 per_cu = (struct dwarf2_per_cu_data *) *slot;
21455
21456 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21457 reading of the chain. As such dependencies remain valid it is not much
21458 useful to track and undo them during QUIT cleanups. */
21459 if (per_cu->cu == NULL)
21460 return 1;
21461
21462 if (per_cu->cu->mark)
21463 return 1;
21464 per_cu->cu->mark = 1;
21465
21466 if (per_cu->cu->dependencies != NULL)
21467 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21468
21469 return 1;
21470 }
21471
21472 /* Set the mark field in CU and in every other compilation unit in the
21473 cache that we must keep because we are keeping CU. */
21474
21475 static void
21476 dwarf2_mark (struct dwarf2_cu *cu)
21477 {
21478 if (cu->mark)
21479 return;
21480 cu->mark = 1;
21481 if (cu->dependencies != NULL)
21482 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21483 }
21484
21485 static void
21486 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21487 {
21488 while (per_cu)
21489 {
21490 per_cu->cu->mark = 0;
21491 per_cu = per_cu->cu->read_in_chain;
21492 }
21493 }
21494
21495 /* Trivial hash function for partial_die_info: the hash value of a DIE
21496 is its offset in .debug_info for this objfile. */
21497
21498 static hashval_t
21499 partial_die_hash (const void *item)
21500 {
21501 const struct partial_die_info *part_die = item;
21502
21503 return part_die->offset.sect_off;
21504 }
21505
21506 /* Trivial comparison function for partial_die_info structures: two DIEs
21507 are equal if they have the same offset. */
21508
21509 static int
21510 partial_die_eq (const void *item_lhs, const void *item_rhs)
21511 {
21512 const struct partial_die_info *part_die_lhs = item_lhs;
21513 const struct partial_die_info *part_die_rhs = item_rhs;
21514
21515 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21516 }
21517
21518 static struct cmd_list_element *set_dwarf2_cmdlist;
21519 static struct cmd_list_element *show_dwarf2_cmdlist;
21520
21521 static void
21522 set_dwarf2_cmd (char *args, int from_tty)
21523 {
21524 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21525 }
21526
21527 static void
21528 show_dwarf2_cmd (char *args, int from_tty)
21529 {
21530 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21531 }
21532
21533 /* Free data associated with OBJFILE, if necessary. */
21534
21535 static void
21536 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21537 {
21538 struct dwarf2_per_objfile *data = d;
21539 int ix;
21540
21541 /* Make sure we don't accidentally use dwarf2_per_objfile while
21542 cleaning up. */
21543 dwarf2_per_objfile = NULL;
21544
21545 for (ix = 0; ix < data->n_comp_units; ++ix)
21546 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21547
21548 for (ix = 0; ix < data->n_type_units; ++ix)
21549 VEC_free (dwarf2_per_cu_ptr,
21550 data->all_type_units[ix]->per_cu.imported_symtabs);
21551 xfree (data->all_type_units);
21552
21553 VEC_free (dwarf2_section_info_def, data->types);
21554
21555 if (data->dwo_files)
21556 free_dwo_files (data->dwo_files, objfile);
21557 if (data->dwp_file)
21558 gdb_bfd_unref (data->dwp_file->dbfd);
21559
21560 if (data->dwz_file && data->dwz_file->dwz_bfd)
21561 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21562 }
21563
21564 \f
21565 /* The "save gdb-index" command. */
21566
21567 /* The contents of the hash table we create when building the string
21568 table. */
21569 struct strtab_entry
21570 {
21571 offset_type offset;
21572 const char *str;
21573 };
21574
21575 /* Hash function for a strtab_entry.
21576
21577 Function is used only during write_hash_table so no index format backward
21578 compatibility is needed. */
21579
21580 static hashval_t
21581 hash_strtab_entry (const void *e)
21582 {
21583 const struct strtab_entry *entry = e;
21584 return mapped_index_string_hash (INT_MAX, entry->str);
21585 }
21586
21587 /* Equality function for a strtab_entry. */
21588
21589 static int
21590 eq_strtab_entry (const void *a, const void *b)
21591 {
21592 const struct strtab_entry *ea = a;
21593 const struct strtab_entry *eb = b;
21594 return !strcmp (ea->str, eb->str);
21595 }
21596
21597 /* Create a strtab_entry hash table. */
21598
21599 static htab_t
21600 create_strtab (void)
21601 {
21602 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21603 xfree, xcalloc, xfree);
21604 }
21605
21606 /* Add a string to the constant pool. Return the string's offset in
21607 host order. */
21608
21609 static offset_type
21610 add_string (htab_t table, struct obstack *cpool, const char *str)
21611 {
21612 void **slot;
21613 struct strtab_entry entry;
21614 struct strtab_entry *result;
21615
21616 entry.str = str;
21617 slot = htab_find_slot (table, &entry, INSERT);
21618 if (*slot)
21619 result = *slot;
21620 else
21621 {
21622 result = XNEW (struct strtab_entry);
21623 result->offset = obstack_object_size (cpool);
21624 result->str = str;
21625 obstack_grow_str0 (cpool, str);
21626 *slot = result;
21627 }
21628 return result->offset;
21629 }
21630
21631 /* An entry in the symbol table. */
21632 struct symtab_index_entry
21633 {
21634 /* The name of the symbol. */
21635 const char *name;
21636 /* The offset of the name in the constant pool. */
21637 offset_type index_offset;
21638 /* A sorted vector of the indices of all the CUs that hold an object
21639 of this name. */
21640 VEC (offset_type) *cu_indices;
21641 };
21642
21643 /* The symbol table. This is a power-of-2-sized hash table. */
21644 struct mapped_symtab
21645 {
21646 offset_type n_elements;
21647 offset_type size;
21648 struct symtab_index_entry **data;
21649 };
21650
21651 /* Hash function for a symtab_index_entry. */
21652
21653 static hashval_t
21654 hash_symtab_entry (const void *e)
21655 {
21656 const struct symtab_index_entry *entry = e;
21657 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21658 sizeof (offset_type) * VEC_length (offset_type,
21659 entry->cu_indices),
21660 0);
21661 }
21662
21663 /* Equality function for a symtab_index_entry. */
21664
21665 static int
21666 eq_symtab_entry (const void *a, const void *b)
21667 {
21668 const struct symtab_index_entry *ea = a;
21669 const struct symtab_index_entry *eb = b;
21670 int len = VEC_length (offset_type, ea->cu_indices);
21671 if (len != VEC_length (offset_type, eb->cu_indices))
21672 return 0;
21673 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21674 VEC_address (offset_type, eb->cu_indices),
21675 sizeof (offset_type) * len);
21676 }
21677
21678 /* Destroy a symtab_index_entry. */
21679
21680 static void
21681 delete_symtab_entry (void *p)
21682 {
21683 struct symtab_index_entry *entry = p;
21684 VEC_free (offset_type, entry->cu_indices);
21685 xfree (entry);
21686 }
21687
21688 /* Create a hash table holding symtab_index_entry objects. */
21689
21690 static htab_t
21691 create_symbol_hash_table (void)
21692 {
21693 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21694 delete_symtab_entry, xcalloc, xfree);
21695 }
21696
21697 /* Create a new mapped symtab object. */
21698
21699 static struct mapped_symtab *
21700 create_mapped_symtab (void)
21701 {
21702 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21703 symtab->n_elements = 0;
21704 symtab->size = 1024;
21705 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21706 return symtab;
21707 }
21708
21709 /* Destroy a mapped_symtab. */
21710
21711 static void
21712 cleanup_mapped_symtab (void *p)
21713 {
21714 struct mapped_symtab *symtab = p;
21715 /* The contents of the array are freed when the other hash table is
21716 destroyed. */
21717 xfree (symtab->data);
21718 xfree (symtab);
21719 }
21720
21721 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21722 the slot.
21723
21724 Function is used only during write_hash_table so no index format backward
21725 compatibility is needed. */
21726
21727 static struct symtab_index_entry **
21728 find_slot (struct mapped_symtab *symtab, const char *name)
21729 {
21730 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21731
21732 index = hash & (symtab->size - 1);
21733 step = ((hash * 17) & (symtab->size - 1)) | 1;
21734
21735 for (;;)
21736 {
21737 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21738 return &symtab->data[index];
21739 index = (index + step) & (symtab->size - 1);
21740 }
21741 }
21742
21743 /* Expand SYMTAB's hash table. */
21744
21745 static void
21746 hash_expand (struct mapped_symtab *symtab)
21747 {
21748 offset_type old_size = symtab->size;
21749 offset_type i;
21750 struct symtab_index_entry **old_entries = symtab->data;
21751
21752 symtab->size *= 2;
21753 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21754
21755 for (i = 0; i < old_size; ++i)
21756 {
21757 if (old_entries[i])
21758 {
21759 struct symtab_index_entry **slot = find_slot (symtab,
21760 old_entries[i]->name);
21761 *slot = old_entries[i];
21762 }
21763 }
21764
21765 xfree (old_entries);
21766 }
21767
21768 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21769 CU_INDEX is the index of the CU in which the symbol appears.
21770 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21771
21772 static void
21773 add_index_entry (struct mapped_symtab *symtab, const char *name,
21774 int is_static, gdb_index_symbol_kind kind,
21775 offset_type cu_index)
21776 {
21777 struct symtab_index_entry **slot;
21778 offset_type cu_index_and_attrs;
21779
21780 ++symtab->n_elements;
21781 if (4 * symtab->n_elements / 3 >= symtab->size)
21782 hash_expand (symtab);
21783
21784 slot = find_slot (symtab, name);
21785 if (!*slot)
21786 {
21787 *slot = XNEW (struct symtab_index_entry);
21788 (*slot)->name = name;
21789 /* index_offset is set later. */
21790 (*slot)->cu_indices = NULL;
21791 }
21792
21793 cu_index_and_attrs = 0;
21794 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21795 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21796 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21797
21798 /* We don't want to record an index value twice as we want to avoid the
21799 duplication.
21800 We process all global symbols and then all static symbols
21801 (which would allow us to avoid the duplication by only having to check
21802 the last entry pushed), but a symbol could have multiple kinds in one CU.
21803 To keep things simple we don't worry about the duplication here and
21804 sort and uniqufy the list after we've processed all symbols. */
21805 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21806 }
21807
21808 /* qsort helper routine for uniquify_cu_indices. */
21809
21810 static int
21811 offset_type_compare (const void *ap, const void *bp)
21812 {
21813 offset_type a = *(offset_type *) ap;
21814 offset_type b = *(offset_type *) bp;
21815
21816 return (a > b) - (b > a);
21817 }
21818
21819 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21820
21821 static void
21822 uniquify_cu_indices (struct mapped_symtab *symtab)
21823 {
21824 int i;
21825
21826 for (i = 0; i < symtab->size; ++i)
21827 {
21828 struct symtab_index_entry *entry = symtab->data[i];
21829
21830 if (entry
21831 && entry->cu_indices != NULL)
21832 {
21833 unsigned int next_to_insert, next_to_check;
21834 offset_type last_value;
21835
21836 qsort (VEC_address (offset_type, entry->cu_indices),
21837 VEC_length (offset_type, entry->cu_indices),
21838 sizeof (offset_type), offset_type_compare);
21839
21840 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21841 next_to_insert = 1;
21842 for (next_to_check = 1;
21843 next_to_check < VEC_length (offset_type, entry->cu_indices);
21844 ++next_to_check)
21845 {
21846 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21847 != last_value)
21848 {
21849 last_value = VEC_index (offset_type, entry->cu_indices,
21850 next_to_check);
21851 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21852 last_value);
21853 ++next_to_insert;
21854 }
21855 }
21856 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21857 }
21858 }
21859 }
21860
21861 /* Add a vector of indices to the constant pool. */
21862
21863 static offset_type
21864 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21865 struct symtab_index_entry *entry)
21866 {
21867 void **slot;
21868
21869 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21870 if (!*slot)
21871 {
21872 offset_type len = VEC_length (offset_type, entry->cu_indices);
21873 offset_type val = MAYBE_SWAP (len);
21874 offset_type iter;
21875 int i;
21876
21877 *slot = entry;
21878 entry->index_offset = obstack_object_size (cpool);
21879
21880 obstack_grow (cpool, &val, sizeof (val));
21881 for (i = 0;
21882 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21883 ++i)
21884 {
21885 val = MAYBE_SWAP (iter);
21886 obstack_grow (cpool, &val, sizeof (val));
21887 }
21888 }
21889 else
21890 {
21891 struct symtab_index_entry *old_entry = *slot;
21892 entry->index_offset = old_entry->index_offset;
21893 entry = old_entry;
21894 }
21895 return entry->index_offset;
21896 }
21897
21898 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21899 constant pool entries going into the obstack CPOOL. */
21900
21901 static void
21902 write_hash_table (struct mapped_symtab *symtab,
21903 struct obstack *output, struct obstack *cpool)
21904 {
21905 offset_type i;
21906 htab_t symbol_hash_table;
21907 htab_t str_table;
21908
21909 symbol_hash_table = create_symbol_hash_table ();
21910 str_table = create_strtab ();
21911
21912 /* We add all the index vectors to the constant pool first, to
21913 ensure alignment is ok. */
21914 for (i = 0; i < symtab->size; ++i)
21915 {
21916 if (symtab->data[i])
21917 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21918 }
21919
21920 /* Now write out the hash table. */
21921 for (i = 0; i < symtab->size; ++i)
21922 {
21923 offset_type str_off, vec_off;
21924
21925 if (symtab->data[i])
21926 {
21927 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21928 vec_off = symtab->data[i]->index_offset;
21929 }
21930 else
21931 {
21932 /* While 0 is a valid constant pool index, it is not valid
21933 to have 0 for both offsets. */
21934 str_off = 0;
21935 vec_off = 0;
21936 }
21937
21938 str_off = MAYBE_SWAP (str_off);
21939 vec_off = MAYBE_SWAP (vec_off);
21940
21941 obstack_grow (output, &str_off, sizeof (str_off));
21942 obstack_grow (output, &vec_off, sizeof (vec_off));
21943 }
21944
21945 htab_delete (str_table);
21946 htab_delete (symbol_hash_table);
21947 }
21948
21949 /* Struct to map psymtab to CU index in the index file. */
21950 struct psymtab_cu_index_map
21951 {
21952 struct partial_symtab *psymtab;
21953 unsigned int cu_index;
21954 };
21955
21956 static hashval_t
21957 hash_psymtab_cu_index (const void *item)
21958 {
21959 const struct psymtab_cu_index_map *map = item;
21960
21961 return htab_hash_pointer (map->psymtab);
21962 }
21963
21964 static int
21965 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21966 {
21967 const struct psymtab_cu_index_map *lhs = item_lhs;
21968 const struct psymtab_cu_index_map *rhs = item_rhs;
21969
21970 return lhs->psymtab == rhs->psymtab;
21971 }
21972
21973 /* Helper struct for building the address table. */
21974 struct addrmap_index_data
21975 {
21976 struct objfile *objfile;
21977 struct obstack *addr_obstack;
21978 htab_t cu_index_htab;
21979
21980 /* Non-zero if the previous_* fields are valid.
21981 We can't write an entry until we see the next entry (since it is only then
21982 that we know the end of the entry). */
21983 int previous_valid;
21984 /* Index of the CU in the table of all CUs in the index file. */
21985 unsigned int previous_cu_index;
21986 /* Start address of the CU. */
21987 CORE_ADDR previous_cu_start;
21988 };
21989
21990 /* Write an address entry to OBSTACK. */
21991
21992 static void
21993 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21994 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21995 {
21996 offset_type cu_index_to_write;
21997 gdb_byte addr[8];
21998 CORE_ADDR baseaddr;
21999
22000 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22001
22002 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22003 obstack_grow (obstack, addr, 8);
22004 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22005 obstack_grow (obstack, addr, 8);
22006 cu_index_to_write = MAYBE_SWAP (cu_index);
22007 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22008 }
22009
22010 /* Worker function for traversing an addrmap to build the address table. */
22011
22012 static int
22013 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22014 {
22015 struct addrmap_index_data *data = datap;
22016 struct partial_symtab *pst = obj;
22017
22018 if (data->previous_valid)
22019 add_address_entry (data->objfile, data->addr_obstack,
22020 data->previous_cu_start, start_addr,
22021 data->previous_cu_index);
22022
22023 data->previous_cu_start = start_addr;
22024 if (pst != NULL)
22025 {
22026 struct psymtab_cu_index_map find_map, *map;
22027 find_map.psymtab = pst;
22028 map = htab_find (data->cu_index_htab, &find_map);
22029 gdb_assert (map != NULL);
22030 data->previous_cu_index = map->cu_index;
22031 data->previous_valid = 1;
22032 }
22033 else
22034 data->previous_valid = 0;
22035
22036 return 0;
22037 }
22038
22039 /* Write OBJFILE's address map to OBSTACK.
22040 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22041 in the index file. */
22042
22043 static void
22044 write_address_map (struct objfile *objfile, struct obstack *obstack,
22045 htab_t cu_index_htab)
22046 {
22047 struct addrmap_index_data addrmap_index_data;
22048
22049 /* When writing the address table, we have to cope with the fact that
22050 the addrmap iterator only provides the start of a region; we have to
22051 wait until the next invocation to get the start of the next region. */
22052
22053 addrmap_index_data.objfile = objfile;
22054 addrmap_index_data.addr_obstack = obstack;
22055 addrmap_index_data.cu_index_htab = cu_index_htab;
22056 addrmap_index_data.previous_valid = 0;
22057
22058 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22059 &addrmap_index_data);
22060
22061 /* It's highly unlikely the last entry (end address = 0xff...ff)
22062 is valid, but we should still handle it.
22063 The end address is recorded as the start of the next region, but that
22064 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22065 anyway. */
22066 if (addrmap_index_data.previous_valid)
22067 add_address_entry (objfile, obstack,
22068 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22069 addrmap_index_data.previous_cu_index);
22070 }
22071
22072 /* Return the symbol kind of PSYM. */
22073
22074 static gdb_index_symbol_kind
22075 symbol_kind (struct partial_symbol *psym)
22076 {
22077 domain_enum domain = PSYMBOL_DOMAIN (psym);
22078 enum address_class aclass = PSYMBOL_CLASS (psym);
22079
22080 switch (domain)
22081 {
22082 case VAR_DOMAIN:
22083 switch (aclass)
22084 {
22085 case LOC_BLOCK:
22086 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22087 case LOC_TYPEDEF:
22088 return GDB_INDEX_SYMBOL_KIND_TYPE;
22089 case LOC_COMPUTED:
22090 case LOC_CONST_BYTES:
22091 case LOC_OPTIMIZED_OUT:
22092 case LOC_STATIC:
22093 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22094 case LOC_CONST:
22095 /* Note: It's currently impossible to recognize psyms as enum values
22096 short of reading the type info. For now punt. */
22097 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22098 default:
22099 /* There are other LOC_FOO values that one might want to classify
22100 as variables, but dwarf2read.c doesn't currently use them. */
22101 return GDB_INDEX_SYMBOL_KIND_OTHER;
22102 }
22103 case STRUCT_DOMAIN:
22104 return GDB_INDEX_SYMBOL_KIND_TYPE;
22105 default:
22106 return GDB_INDEX_SYMBOL_KIND_OTHER;
22107 }
22108 }
22109
22110 /* Add a list of partial symbols to SYMTAB. */
22111
22112 static void
22113 write_psymbols (struct mapped_symtab *symtab,
22114 htab_t psyms_seen,
22115 struct partial_symbol **psymp,
22116 int count,
22117 offset_type cu_index,
22118 int is_static)
22119 {
22120 for (; count-- > 0; ++psymp)
22121 {
22122 struct partial_symbol *psym = *psymp;
22123 void **slot;
22124
22125 if (SYMBOL_LANGUAGE (psym) == language_ada)
22126 error (_("Ada is not currently supported by the index"));
22127
22128 /* Only add a given psymbol once. */
22129 slot = htab_find_slot (psyms_seen, psym, INSERT);
22130 if (!*slot)
22131 {
22132 gdb_index_symbol_kind kind = symbol_kind (psym);
22133
22134 *slot = psym;
22135 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22136 is_static, kind, cu_index);
22137 }
22138 }
22139 }
22140
22141 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22142 exception if there is an error. */
22143
22144 static void
22145 write_obstack (FILE *file, struct obstack *obstack)
22146 {
22147 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22148 file)
22149 != obstack_object_size (obstack))
22150 error (_("couldn't data write to file"));
22151 }
22152
22153 /* Unlink a file if the argument is not NULL. */
22154
22155 static void
22156 unlink_if_set (void *p)
22157 {
22158 char **filename = p;
22159 if (*filename)
22160 unlink (*filename);
22161 }
22162
22163 /* A helper struct used when iterating over debug_types. */
22164 struct signatured_type_index_data
22165 {
22166 struct objfile *objfile;
22167 struct mapped_symtab *symtab;
22168 struct obstack *types_list;
22169 htab_t psyms_seen;
22170 int cu_index;
22171 };
22172
22173 /* A helper function that writes a single signatured_type to an
22174 obstack. */
22175
22176 static int
22177 write_one_signatured_type (void **slot, void *d)
22178 {
22179 struct signatured_type_index_data *info = d;
22180 struct signatured_type *entry = (struct signatured_type *) *slot;
22181 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22182 gdb_byte val[8];
22183
22184 write_psymbols (info->symtab,
22185 info->psyms_seen,
22186 info->objfile->global_psymbols.list
22187 + psymtab->globals_offset,
22188 psymtab->n_global_syms, info->cu_index,
22189 0);
22190 write_psymbols (info->symtab,
22191 info->psyms_seen,
22192 info->objfile->static_psymbols.list
22193 + psymtab->statics_offset,
22194 psymtab->n_static_syms, info->cu_index,
22195 1);
22196
22197 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22198 entry->per_cu.offset.sect_off);
22199 obstack_grow (info->types_list, val, 8);
22200 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22201 entry->type_offset_in_tu.cu_off);
22202 obstack_grow (info->types_list, val, 8);
22203 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22204 obstack_grow (info->types_list, val, 8);
22205
22206 ++info->cu_index;
22207
22208 return 1;
22209 }
22210
22211 /* Recurse into all "included" dependencies and write their symbols as
22212 if they appeared in this psymtab. */
22213
22214 static void
22215 recursively_write_psymbols (struct objfile *objfile,
22216 struct partial_symtab *psymtab,
22217 struct mapped_symtab *symtab,
22218 htab_t psyms_seen,
22219 offset_type cu_index)
22220 {
22221 int i;
22222
22223 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22224 if (psymtab->dependencies[i]->user != NULL)
22225 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22226 symtab, psyms_seen, cu_index);
22227
22228 write_psymbols (symtab,
22229 psyms_seen,
22230 objfile->global_psymbols.list + psymtab->globals_offset,
22231 psymtab->n_global_syms, cu_index,
22232 0);
22233 write_psymbols (symtab,
22234 psyms_seen,
22235 objfile->static_psymbols.list + psymtab->statics_offset,
22236 psymtab->n_static_syms, cu_index,
22237 1);
22238 }
22239
22240 /* Create an index file for OBJFILE in the directory DIR. */
22241
22242 static void
22243 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22244 {
22245 struct cleanup *cleanup;
22246 char *filename, *cleanup_filename;
22247 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22248 struct obstack cu_list, types_cu_list;
22249 int i;
22250 FILE *out_file;
22251 struct mapped_symtab *symtab;
22252 offset_type val, size_of_contents, total_len;
22253 struct stat st;
22254 htab_t psyms_seen;
22255 htab_t cu_index_htab;
22256 struct psymtab_cu_index_map *psymtab_cu_index_map;
22257
22258 if (dwarf2_per_objfile->using_index)
22259 error (_("Cannot use an index to create the index"));
22260
22261 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22262 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22263
22264 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22265 return;
22266
22267 if (stat (objfile_name (objfile), &st) < 0)
22268 perror_with_name (objfile_name (objfile));
22269
22270 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22271 INDEX_SUFFIX, (char *) NULL);
22272 cleanup = make_cleanup (xfree, filename);
22273
22274 out_file = gdb_fopen_cloexec (filename, "wb");
22275 if (!out_file)
22276 error (_("Can't open `%s' for writing"), filename);
22277
22278 cleanup_filename = filename;
22279 make_cleanup (unlink_if_set, &cleanup_filename);
22280
22281 symtab = create_mapped_symtab ();
22282 make_cleanup (cleanup_mapped_symtab, symtab);
22283
22284 obstack_init (&addr_obstack);
22285 make_cleanup_obstack_free (&addr_obstack);
22286
22287 obstack_init (&cu_list);
22288 make_cleanup_obstack_free (&cu_list);
22289
22290 obstack_init (&types_cu_list);
22291 make_cleanup_obstack_free (&types_cu_list);
22292
22293 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22294 NULL, xcalloc, xfree);
22295 make_cleanup_htab_delete (psyms_seen);
22296
22297 /* While we're scanning CU's create a table that maps a psymtab pointer
22298 (which is what addrmap records) to its index (which is what is recorded
22299 in the index file). This will later be needed to write the address
22300 table. */
22301 cu_index_htab = htab_create_alloc (100,
22302 hash_psymtab_cu_index,
22303 eq_psymtab_cu_index,
22304 NULL, xcalloc, xfree);
22305 make_cleanup_htab_delete (cu_index_htab);
22306 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22307 xmalloc (sizeof (struct psymtab_cu_index_map)
22308 * dwarf2_per_objfile->n_comp_units);
22309 make_cleanup (xfree, psymtab_cu_index_map);
22310
22311 /* The CU list is already sorted, so we don't need to do additional
22312 work here. Also, the debug_types entries do not appear in
22313 all_comp_units, but only in their own hash table. */
22314 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22315 {
22316 struct dwarf2_per_cu_data *per_cu
22317 = dwarf2_per_objfile->all_comp_units[i];
22318 struct partial_symtab *psymtab = per_cu->v.psymtab;
22319 gdb_byte val[8];
22320 struct psymtab_cu_index_map *map;
22321 void **slot;
22322
22323 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22324 It may be referenced from a local scope but in such case it does not
22325 need to be present in .gdb_index. */
22326 if (psymtab == NULL)
22327 continue;
22328
22329 if (psymtab->user == NULL)
22330 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22331
22332 map = &psymtab_cu_index_map[i];
22333 map->psymtab = psymtab;
22334 map->cu_index = i;
22335 slot = htab_find_slot (cu_index_htab, map, INSERT);
22336 gdb_assert (slot != NULL);
22337 gdb_assert (*slot == NULL);
22338 *slot = map;
22339
22340 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22341 per_cu->offset.sect_off);
22342 obstack_grow (&cu_list, val, 8);
22343 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22344 obstack_grow (&cu_list, val, 8);
22345 }
22346
22347 /* Dump the address map. */
22348 write_address_map (objfile, &addr_obstack, cu_index_htab);
22349
22350 /* Write out the .debug_type entries, if any. */
22351 if (dwarf2_per_objfile->signatured_types)
22352 {
22353 struct signatured_type_index_data sig_data;
22354
22355 sig_data.objfile = objfile;
22356 sig_data.symtab = symtab;
22357 sig_data.types_list = &types_cu_list;
22358 sig_data.psyms_seen = psyms_seen;
22359 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22360 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22361 write_one_signatured_type, &sig_data);
22362 }
22363
22364 /* Now that we've processed all symbols we can shrink their cu_indices
22365 lists. */
22366 uniquify_cu_indices (symtab);
22367
22368 obstack_init (&constant_pool);
22369 make_cleanup_obstack_free (&constant_pool);
22370 obstack_init (&symtab_obstack);
22371 make_cleanup_obstack_free (&symtab_obstack);
22372 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22373
22374 obstack_init (&contents);
22375 make_cleanup_obstack_free (&contents);
22376 size_of_contents = 6 * sizeof (offset_type);
22377 total_len = size_of_contents;
22378
22379 /* The version number. */
22380 val = MAYBE_SWAP (8);
22381 obstack_grow (&contents, &val, sizeof (val));
22382
22383 /* The offset of the CU list from the start of the file. */
22384 val = MAYBE_SWAP (total_len);
22385 obstack_grow (&contents, &val, sizeof (val));
22386 total_len += obstack_object_size (&cu_list);
22387
22388 /* The offset of the types CU list from the start of the file. */
22389 val = MAYBE_SWAP (total_len);
22390 obstack_grow (&contents, &val, sizeof (val));
22391 total_len += obstack_object_size (&types_cu_list);
22392
22393 /* The offset of the address table from the start of the file. */
22394 val = MAYBE_SWAP (total_len);
22395 obstack_grow (&contents, &val, sizeof (val));
22396 total_len += obstack_object_size (&addr_obstack);
22397
22398 /* The offset of the symbol table from the start of the file. */
22399 val = MAYBE_SWAP (total_len);
22400 obstack_grow (&contents, &val, sizeof (val));
22401 total_len += obstack_object_size (&symtab_obstack);
22402
22403 /* The offset of the constant pool from the start of the file. */
22404 val = MAYBE_SWAP (total_len);
22405 obstack_grow (&contents, &val, sizeof (val));
22406 total_len += obstack_object_size (&constant_pool);
22407
22408 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22409
22410 write_obstack (out_file, &contents);
22411 write_obstack (out_file, &cu_list);
22412 write_obstack (out_file, &types_cu_list);
22413 write_obstack (out_file, &addr_obstack);
22414 write_obstack (out_file, &symtab_obstack);
22415 write_obstack (out_file, &constant_pool);
22416
22417 fclose (out_file);
22418
22419 /* We want to keep the file, so we set cleanup_filename to NULL
22420 here. See unlink_if_set. */
22421 cleanup_filename = NULL;
22422
22423 do_cleanups (cleanup);
22424 }
22425
22426 /* Implementation of the `save gdb-index' command.
22427
22428 Note that the file format used by this command is documented in the
22429 GDB manual. Any changes here must be documented there. */
22430
22431 static void
22432 save_gdb_index_command (char *arg, int from_tty)
22433 {
22434 struct objfile *objfile;
22435
22436 if (!arg || !*arg)
22437 error (_("usage: save gdb-index DIRECTORY"));
22438
22439 ALL_OBJFILES (objfile)
22440 {
22441 struct stat st;
22442
22443 /* If the objfile does not correspond to an actual file, skip it. */
22444 if (stat (objfile_name (objfile), &st) < 0)
22445 continue;
22446
22447 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22448 if (dwarf2_per_objfile)
22449 {
22450 volatile struct gdb_exception except;
22451
22452 TRY_CATCH (except, RETURN_MASK_ERROR)
22453 {
22454 write_psymtabs_to_index (objfile, arg);
22455 }
22456 if (except.reason < 0)
22457 exception_fprintf (gdb_stderr, except,
22458 _("Error while writing index for `%s': "),
22459 objfile_name (objfile));
22460 }
22461 }
22462 }
22463
22464 \f
22465
22466 int dwarf2_always_disassemble;
22467
22468 static void
22469 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22470 struct cmd_list_element *c, const char *value)
22471 {
22472 fprintf_filtered (file,
22473 _("Whether to always disassemble "
22474 "DWARF expressions is %s.\n"),
22475 value);
22476 }
22477
22478 static void
22479 show_check_physname (struct ui_file *file, int from_tty,
22480 struct cmd_list_element *c, const char *value)
22481 {
22482 fprintf_filtered (file,
22483 _("Whether to check \"physname\" is %s.\n"),
22484 value);
22485 }
22486
22487 void _initialize_dwarf2_read (void);
22488
22489 void
22490 _initialize_dwarf2_read (void)
22491 {
22492 struct cmd_list_element *c;
22493
22494 dwarf2_objfile_data_key
22495 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22496
22497 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22498 Set DWARF 2 specific variables.\n\
22499 Configure DWARF 2 variables such as the cache size"),
22500 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22501 0/*allow-unknown*/, &maintenance_set_cmdlist);
22502
22503 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22504 Show DWARF 2 specific variables\n\
22505 Show DWARF 2 variables such as the cache size"),
22506 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22507 0/*allow-unknown*/, &maintenance_show_cmdlist);
22508
22509 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22510 &dwarf2_max_cache_age, _("\
22511 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22512 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22513 A higher limit means that cached compilation units will be stored\n\
22514 in memory longer, and more total memory will be used. Zero disables\n\
22515 caching, which can slow down startup."),
22516 NULL,
22517 show_dwarf2_max_cache_age,
22518 &set_dwarf2_cmdlist,
22519 &show_dwarf2_cmdlist);
22520
22521 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22522 &dwarf2_always_disassemble, _("\
22523 Set whether `info address' always disassembles DWARF expressions."), _("\
22524 Show whether `info address' always disassembles DWARF expressions."), _("\
22525 When enabled, DWARF expressions are always printed in an assembly-like\n\
22526 syntax. When disabled, expressions will be printed in a more\n\
22527 conversational style, when possible."),
22528 NULL,
22529 show_dwarf2_always_disassemble,
22530 &set_dwarf2_cmdlist,
22531 &show_dwarf2_cmdlist);
22532
22533 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22534 Set debugging of the dwarf2 reader."), _("\
22535 Show debugging of the dwarf2 reader."), _("\
22536 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22537 reading and symtab expansion. A value of 1 (one) provides basic\n\
22538 information. A value greater than 1 provides more verbose information."),
22539 NULL,
22540 NULL,
22541 &setdebuglist, &showdebuglist);
22542
22543 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22544 Set debugging of the dwarf2 DIE reader."), _("\
22545 Show debugging of the dwarf2 DIE reader."), _("\
22546 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22547 The value is the maximum depth to print."),
22548 NULL,
22549 NULL,
22550 &setdebuglist, &showdebuglist);
22551
22552 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22553 Set cross-checking of \"physname\" code against demangler."), _("\
22554 Show cross-checking of \"physname\" code against demangler."), _("\
22555 When enabled, GDB's internal \"physname\" code is checked against\n\
22556 the demangler."),
22557 NULL, show_check_physname,
22558 &setdebuglist, &showdebuglist);
22559
22560 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22561 no_class, &use_deprecated_index_sections, _("\
22562 Set whether to use deprecated gdb_index sections."), _("\
22563 Show whether to use deprecated gdb_index sections."), _("\
22564 When enabled, deprecated .gdb_index sections are used anyway.\n\
22565 Normally they are ignored either because of a missing feature or\n\
22566 performance issue.\n\
22567 Warning: This option must be enabled before gdb reads the file."),
22568 NULL,
22569 NULL,
22570 &setlist, &showlist);
22571
22572 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22573 _("\
22574 Save a gdb-index file.\n\
22575 Usage: save gdb-index DIRECTORY"),
22576 &save_cmdlist);
22577 set_cmd_completer (c, filename_completer);
22578
22579 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22580 &dwarf2_locexpr_funcs);
22581 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22582 &dwarf2_loclist_funcs);
22583
22584 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22585 &dwarf2_block_frame_base_locexpr_funcs);
22586 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22587 &dwarf2_block_frame_base_loclist_funcs);
22588 }
This page took 0.510871 seconds and 4 git commands to generate.