9762d985072715f4bc7a949aa979561bff79c3a2
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311 };
312
313 static struct dwarf2_per_objfile *dwarf2_per_objfile;
314
315 /* Default names of the debugging sections. */
316
317 /* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
320 static const struct dwarf2_debug_sections dwarf2_elf_names =
321 {
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
331 { ".debug_addr", ".zdebug_addr" },
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
334 { ".gdb_index", ".zgdb_index" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
353 }
354 dwop_section_names =
355 {
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
367 };
368
369 /* local data types */
370
371 /* The data in a compilation unit header, after target2host
372 translation, looks like this. */
373 struct comp_unit_head
374 {
375 unsigned int length;
376 short version;
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
379 sect_offset abbrev_offset;
380
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
383
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
386
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
389 sect_offset offset;
390
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
393 cu_offset first_die_offset;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 typedef struct delayed_method_info delayed_method_info;
417 DEF_VEC_O (delayed_method_info);
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
425 /* The header of the compilation unit. */
426 struct comp_unit_head header;
427
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
438 const char *producer;
439
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
455
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
470 /* Backlink to our per_cu entry. */
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
478 htab_t die_hash;
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
511 Note this value comes from the Fission stub CU/TU's DIE. */
512 ULONGEST addr_base;
513
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base;
525
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
533 unsigned int has_loclist : 1;
534
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
541 unsigned int producer_is_gcc_lt_4_3 : 1;
542 unsigned int producer_is_icc : 1;
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
549 };
550
551 /* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
553 read_symtab_private field of the psymtab. */
554
555 struct dwarf2_per_cu_data
556 {
557 /* The start offset and length of this compilation unit.
558 NOTE: Unlike comp_unit_head.length, this length includes
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
562 sect_offset offset;
563 unsigned int length;
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
567 unsigned int queued : 1;
568
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
578 unsigned int is_debug_types : 1;
579
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
602 struct dwarf2_section_info *section;
603
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
606 struct dwarf2_cu *cu;
607
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
611 struct objfile *objfile;
612
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
618 or NULL for unread partial units. */
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
624
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
644 };
645
646 /* Entry in the signatured_types hash table. */
647
648 struct signatured_type
649 {
650 /* The "per_cu" object of this type.
651 This struct is used iff per_cu.is_debug_types.
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
656 /* The type's signature. */
657 ULONGEST signature;
658
659 /* Offset in the TU of the type's DIE, as read from the TU header.
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
683 };
684
685 typedef struct signatured_type *sig_type_ptr;
686 DEF_VEC_P (sig_type_ptr);
687
688 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691 struct stmt_list_hash
692 {
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698 };
699
700 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703 struct type_unit_group
704 {
705 /* dwarf2read.c's main "handle" on a TU symtab.
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
710 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
711 struct dwarf2_per_cu_data per_cu;
712
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
717
718 /* The primary symtab.
719 Type units in a group needn't all be defined in the same source file,
720 so we create an essentially anonymous symtab as the primary symtab. */
721 struct symtab *primary_symtab;
722
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739 };
740
741 /* These sections are what may appear in a (real or virtual) DWO file. */
742
743 struct dwo_sections
744 {
745 struct dwarf2_section_info abbrev;
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
754 VEC (dwarf2_section_info_def) *types;
755 };
756
757 /* CUs/TUs in DWP/DWO files. */
758
759 struct dwo_unit
760 {
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
770 struct dwarf2_section_info *section;
771
772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778 };
779
780 /* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784 enum dwp_v2_section_ids
785 {
786 DW_SECT_MIN = 1
787 };
788
789 /* Data for one DWO file.
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
799
800 struct dwo_file
801 {
802 /* The DW_AT_GNU_dwo_name attribute.
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
810
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
814
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
818 struct dwo_sections sections;
819
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830 };
831
832 /* These sections are what may appear in a DWP file. */
833
834 struct dwp_sections
835 {
836 /* These are used by both DWP version 1 and 2. */
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
857 };
858
859 /* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
861
862 struct virtual_v1_dwo_sections
863 {
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
871 That is recorded here, and copied to dwo_unit.section. */
872 struct dwarf2_section_info info_or_types;
873 };
874
875 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880 struct virtual_v2_dwo_sections
881 {
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904 };
905
906 /* Contents of DWP hash tables. */
907
908 struct dwp_hash_table
909 {
910 uint32_t version, nr_columns;
911 uint32_t nr_units, nr_slots;
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923 #define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
935 };
936
937 /* Data for one DWP file. */
938
939 struct dwp_file
940 {
941 /* Name of the file. */
942 const char *name;
943
944 /* File format version. */
945 int version;
946
947 /* The bfd. */
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
953 /* Table of CUs in the file. */
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
962
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
965 unsigned int num_sections;
966 asection **elf_sections;
967 };
968
969 /* This represents a '.dwz' file. */
970
971 struct dwz_file
972 {
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
979 struct dwarf2_section_info gdb_index;
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983 };
984
985 /* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
988 struct exists to abstract away the constant parameters of die reading. */
989
990 struct die_reader_specs
991 {
992 /* The bfd of die_section. */
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
999 struct dwo_file *dwo_file;
1000
1001 /* The section the die comes from.
1002 This is either .debug_info or .debug_types, or the .dwo variants. */
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
1006 const gdb_byte *buffer;
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
1013 };
1014
1015 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1016 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1017 const gdb_byte *info_ptr,
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
1022 /* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025 struct line_header
1026 {
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
1031 unsigned char maximum_ops_per_instruction;
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
1048 const char **include_dirs;
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
1061 struct symtab *symtab; /* The associated symbol table, if any. */
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
1065 header. These point into dwarf2_per_objfile->line_buffer. */
1066 const gdb_byte *statement_program_start, *statement_program_end;
1067 };
1068
1069 /* When we construct a partial symbol table entry we only
1070 need this much information. */
1071 struct partial_die_info
1072 {
1073 /* Offset of this DIE. */
1074 sect_offset offset;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
1086 unsigned int may_be_inlined : 1;
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
1107 /* The name of this DIE. Normally the value of DW_AT_name, but
1108 sometimes a default name for unnamed DIEs. */
1109 const char *name;
1110
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
1117 const char *scope;
1118
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
1132
1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1134 DW_AT_sibling, if any. */
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
1137 const gdb_byte *sibling;
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
1142 sect_offset spec_offset;
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
1147 };
1148
1149 /* This data structure holds the information of an abbrev. */
1150 struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160 struct attr_abbrev
1161 {
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
1164 };
1165
1166 /* Size of abbrev_table.abbrev_hash_table. */
1167 #define ABBREV_HASH_SIZE 121
1168
1169 /* Top level data structure to contain an abbreviation table. */
1170
1171 struct abbrev_table
1172 {
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185 };
1186
1187 /* Attributes have a name and a value. */
1188 struct attribute
1189 {
1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
1198 union
1199 {
1200 const char *str;
1201 struct dwarf_block *blk;
1202 ULONGEST unsnd;
1203 LONGEST snd;
1204 CORE_ADDR addr;
1205 ULONGEST signature;
1206 }
1207 u;
1208 };
1209
1210 /* This data structure holds a complete die structure. */
1211 struct die_info
1212 {
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
1222
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
1229 /* Offset in .debug_info or .debug_types section. */
1230 sect_offset offset;
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
1235 together via their SIBLING fields. */
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
1239
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
1244 };
1245
1246 /* Get at parts of an attribute structure. */
1247
1248 #define DW_STRING(attr) ((attr)->u.str)
1249 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1250 #define DW_UNSND(attr) ((attr)->u.unsnd)
1251 #define DW_BLOCK(attr) ((attr)->u.blk)
1252 #define DW_SND(attr) ((attr)->u.snd)
1253 #define DW_ADDR(attr) ((attr)->u.addr)
1254 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1255
1256 /* Blocks are a bunch of untyped bytes. */
1257 struct dwarf_block
1258 {
1259 size_t size;
1260
1261 /* Valid only if SIZE is not zero. */
1262 const gdb_byte *data;
1263 };
1264
1265 #ifndef ATTR_ALLOC_CHUNK
1266 #define ATTR_ALLOC_CHUNK 4
1267 #endif
1268
1269 /* Allocate fields for structs, unions and enums in this size. */
1270 #ifndef DW_FIELD_ALLOC_CHUNK
1271 #define DW_FIELD_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277 static int bits_per_byte = 8;
1278
1279 /* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282 struct field_info
1283 {
1284 /* List of data member and baseclasses fields. */
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
1292 *fields, *baseclasses;
1293
1294 /* Number of fields (including baseclasses). */
1295 int nfields;
1296
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
1299
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
1302
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
1311
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
1317 const char *name;
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
1322
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
1335 };
1336
1337 /* One item on the queue of compilation units to read in full symbols
1338 for. */
1339 struct dwarf2_queue_item
1340 {
1341 struct dwarf2_per_cu_data *per_cu;
1342 enum language pretend_language;
1343 struct dwarf2_queue_item *next;
1344 };
1345
1346 /* The current queue. */
1347 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
1349 /* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354 static int dwarf2_max_cache_age = 5;
1355 static void
1356 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
1361 value);
1362 }
1363 \f
1364 /* local function prototypes */
1365
1366 static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368 static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
1370 static void dwarf2_locate_sections (bfd *, asection *, void *);
1371
1372 static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
1378 static void dwarf2_build_psymtabs_hard (struct objfile *);
1379
1380 static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 int, struct dwarf2_cu *);
1383
1384 static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
1386
1387 static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1389 int set_addrmap, struct dwarf2_cu *cu);
1390
1391 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1392 CORE_ADDR *highpc, int set_addrmap,
1393 struct dwarf2_cu *cu);
1394
1395 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1400 int need_pc, struct dwarf2_cu *cu);
1401
1402 static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
1404
1405 static void psymtab_to_symtab_1 (struct partial_symtab *);
1406
1407 static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410 static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413 static void abbrev_table_free (struct abbrev_table *);
1414
1415 static void abbrev_table_free_cleanup (void *);
1416
1417 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
1419
1420 static void dwarf2_free_abbrev_table (void *);
1421
1422 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1423
1424 static struct partial_die_info *load_partial_dies
1425 (const struct die_reader_specs *, const gdb_byte *, int);
1426
1427 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
1432
1433 static struct partial_die_info *find_partial_die (sect_offset, int,
1434 struct dwarf2_cu *);
1435
1436 static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
1439 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
1442
1443 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1444
1445 static int read_1_signed_byte (bfd *, const gdb_byte *);
1446
1447 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1450
1451 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1452
1453 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1454 unsigned int *);
1455
1456 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1457
1458 static LONGEST read_checked_initial_length_and_offset
1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1460 unsigned int *, unsigned int *);
1461
1462 static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
1464 unsigned int *);
1465
1466 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1467
1468 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
1471 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1472
1473 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
1478
1479 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1480
1481 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
1487 unsigned int *);
1488
1489 static const char *read_str_index (const struct die_reader_specs *reader,
1490 ULONGEST str_index);
1491
1492 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1493
1494 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1498 unsigned int);
1499
1500 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
1503 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1504
1505 static struct die_info *die_specification (struct die_info *die,
1506 struct dwarf2_cu **);
1507
1508 static void free_line_header (struct line_header *lh);
1509
1510 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
1512
1513 static void dwarf_decode_lines (struct line_header *, const char *,
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
1516
1517 static void dwarf2_start_subfile (const char *, const char *, const char *);
1518
1519 static void dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *, CORE_ADDR);
1521
1522 static struct symbol *new_symbol (struct die_info *, struct type *,
1523 struct dwarf2_cu *);
1524
1525 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1526 struct dwarf2_cu *, struct symbol *);
1527
1528 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1529 struct dwarf2_cu *);
1530
1531 static void dwarf2_const_value_attr (const struct attribute *attr,
1532 struct type *type,
1533 const char *name,
1534 struct obstack *obstack,
1535 struct dwarf2_cu *cu, LONGEST *value,
1536 const gdb_byte **bytes,
1537 struct dwarf2_locexpr_baton **baton);
1538
1539 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1540
1541 static int need_gnat_info (struct dwarf2_cu *);
1542
1543 static struct type *die_descriptive_type (struct die_info *,
1544 struct dwarf2_cu *);
1545
1546 static void set_descriptive_type (struct type *, struct die_info *,
1547 struct dwarf2_cu *);
1548
1549 static struct type *die_containing_type (struct die_info *,
1550 struct dwarf2_cu *);
1551
1552 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1553 struct dwarf2_cu *);
1554
1555 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1556
1557 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1558
1559 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1560
1561 static char *typename_concat (struct obstack *obs, const char *prefix,
1562 const char *suffix, int physname,
1563 struct dwarf2_cu *cu);
1564
1565 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1566
1567 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1574
1575 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1576 struct dwarf2_cu *, struct partial_symtab *);
1577
1578 static int dwarf2_get_pc_bounds (struct die_info *,
1579 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1580 struct partial_symtab *);
1581
1582 static void get_scope_pc_bounds (struct die_info *,
1583 CORE_ADDR *, CORE_ADDR *,
1584 struct dwarf2_cu *);
1585
1586 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1587 CORE_ADDR, struct dwarf2_cu *);
1588
1589 static void dwarf2_add_field (struct field_info *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static void dwarf2_attach_fields_to_type (struct field_info *,
1593 struct type *, struct dwarf2_cu *);
1594
1595 static void dwarf2_add_member_fn (struct field_info *,
1596 struct die_info *, struct type *,
1597 struct dwarf2_cu *);
1598
1599 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1600 struct type *,
1601 struct dwarf2_cu *);
1602
1603 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1604
1605 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1608
1609 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1610
1611 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1612
1613 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1614
1615 static struct type *read_module_type (struct die_info *die,
1616 struct dwarf2_cu *cu);
1617
1618 static const char *namespace_name (struct die_info *die,
1619 int *is_anonymous, struct dwarf2_cu *);
1620
1621 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1624
1625 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1626 struct dwarf2_cu *);
1627
1628 static struct die_info *read_die_and_siblings_1
1629 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1630 struct die_info *);
1631
1632 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1633 const gdb_byte *info_ptr,
1634 const gdb_byte **new_info_ptr,
1635 struct die_info *parent);
1636
1637 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1638 struct die_info **, const gdb_byte *,
1639 int *, int);
1640
1641 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1642 struct die_info **, const gdb_byte *,
1643 int *);
1644
1645 static void process_die (struct die_info *, struct dwarf2_cu *);
1646
1647 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1648 struct obstack *);
1649
1650 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_full_name (const char *name,
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1655
1656 static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
1659 static struct die_info *dwarf2_extension (struct die_info *die,
1660 struct dwarf2_cu **);
1661
1662 static const char *dwarf_tag_name (unsigned int);
1663
1664 static const char *dwarf_attr_name (unsigned int);
1665
1666 static const char *dwarf_form_name (unsigned int);
1667
1668 static char *dwarf_bool_name (unsigned int);
1669
1670 static const char *dwarf_type_encoding_name (unsigned int);
1671
1672 static struct die_info *sibling_die (struct die_info *);
1673
1674 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1675
1676 static void dump_die_for_error (struct die_info *);
1677
1678 static void dump_die_1 (struct ui_file *, int level, int max_level,
1679 struct die_info *);
1680
1681 /*static*/ void dump_die (struct die_info *, int max_level);
1682
1683 static void store_in_ref_table (struct die_info *,
1684 struct dwarf2_cu *);
1685
1686 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1687
1688 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1689
1690 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1691 const struct attribute *,
1692 struct dwarf2_cu **);
1693
1694 static struct die_info *follow_die_ref (struct die_info *,
1695 const struct attribute *,
1696 struct dwarf2_cu **);
1697
1698 static struct die_info *follow_die_sig (struct die_info *,
1699 const struct attribute *,
1700 struct dwarf2_cu **);
1701
1702 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1703 struct dwarf2_cu *);
1704
1705 static struct type *get_DW_AT_signature_type (struct die_info *,
1706 const struct attribute *,
1707 struct dwarf2_cu *);
1708
1709 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1710
1711 static void read_signatured_type (struct signatured_type *);
1712
1713 /* memory allocation interface */
1714
1715 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1716
1717 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1718
1719 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1720 const char *, int);
1721
1722 static int attr_form_is_block (const struct attribute *);
1723
1724 static int attr_form_is_section_offset (const struct attribute *);
1725
1726 static int attr_form_is_constant (const struct attribute *);
1727
1728 static int attr_form_is_ref (const struct attribute *);
1729
1730 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
1732 const struct attribute *attr);
1733
1734 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1735 struct symbol *sym,
1736 struct dwarf2_cu *cu,
1737 int is_block);
1738
1739 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
1742
1743 static void free_stack_comp_unit (void *);
1744
1745 static hashval_t partial_die_hash (const void *item);
1746
1747 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
1749 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1751
1752 static void init_one_comp_unit (struct dwarf2_cu *cu,
1753 struct dwarf2_per_cu_data *per_cu);
1754
1755 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
1758
1759 static void free_heap_comp_unit (void *);
1760
1761 static void free_cached_comp_units (void *);
1762
1763 static void age_cached_comp_units (void);
1764
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1766
1767 static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1769
1770 static void create_all_comp_units (struct objfile *);
1771
1772 static int create_all_type_units (struct objfile *);
1773
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
1776
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
1786 static void dwarf2_mark (struct dwarf2_cu *);
1787
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
1790 static struct type *get_die_type_at_offset (sect_offset,
1791 struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static void dwarf2_release_queue (void *dummy);
1796
1797 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
1800 static void process_queue (void);
1801
1802 static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
1804 const char **name, const char **comp_dir);
1805
1806 static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
1809 static const gdb_byte *read_and_check_comp_unit_head
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1813 int is_debug_types_section);
1814
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
1823
1824 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1825
1826 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
1828 static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
1831
1832 static struct dwp_file *get_dwp_file (void);
1833
1834 static struct dwo_unit *lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1836
1837 static struct dwo_unit *lookup_dwo_type_unit
1838 (struct signatured_type *, const char *, const char *);
1839
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
1842 static void free_dwo_file_cleanup (void *);
1843
1844 static void process_cu_includes (void);
1845
1846 static void check_producer (struct dwarf2_cu *cu);
1847 \f
1848 /* Various complaints about symbol reading that don't abort the process. */
1849
1850 static void
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852 {
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855 }
1856
1857 static void
1858 dwarf2_debug_line_missing_file_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870 }
1871
1872 static void
1873 dwarf2_complex_location_expr_complaint (void)
1874 {
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876 }
1877
1878 static void
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881 {
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885 }
1886
1887 static void
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889 {
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
1893 get_section_name (section),
1894 get_section_file_name (section));
1895 }
1896
1897 static void
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899 {
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904 }
1905
1906 static void
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908 {
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912 }
1913 \f
1914 #if WORDS_BIGENDIAN
1915
1916 /* Convert VALUE between big- and little-endian. */
1917 static offset_type
1918 byte_swap (offset_type value)
1919 {
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927 }
1928
1929 #define MAYBE_SWAP(V) byte_swap (V)
1930
1931 #else
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1934
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938 static CORE_ADDR
1939 attr_value_as_address (struct attribute *attr)
1940 {
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963 }
1964
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1967
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1972
1973 int
1974 dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
1976 {
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1983
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
1987
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996 }
1997
1998 /* Return the containing section of virtual section SECTION. */
1999
2000 static struct dwarf2_section_info *
2001 get_containing_section (const struct dwarf2_section_info *section)
2002 {
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
2005 }
2006
2007 /* Return the bfd owner of SECTION. */
2008
2009 static struct bfd *
2010 get_section_bfd_owner (const struct dwarf2_section_info *section)
2011 {
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
2018 }
2019
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023 static asection *
2024 get_section_bfd_section (const struct dwarf2_section_info *section)
2025 {
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
2032 }
2033
2034 /* Return the name of SECTION. */
2035
2036 static const char *
2037 get_section_name (const struct dwarf2_section_info *section)
2038 {
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043 }
2044
2045 /* Return the name of the file SECTION is in. */
2046
2047 static const char *
2048 get_section_file_name (const struct dwarf2_section_info *section)
2049 {
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053 }
2054
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058 static int
2059 get_section_id (const struct dwarf2_section_info *section)
2060 {
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066 }
2067
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2070
2071 static int
2072 get_section_flags (const struct dwarf2_section_info *section)
2073 {
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078 }
2079
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2082
2083 static int
2084 section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
2086 {
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
2094 }
2095
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100 static void
2101 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2102 {
2103 const struct dwarf2_debug_sections *names;
2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
2115 {
2116 dwarf2_per_objfile->info.s.asection = sectp;
2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->abbrev))
2120 {
2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->line))
2125 {
2126 dwarf2_per_objfile->line.s.asection = sectp;
2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->loc))
2130 {
2131 dwarf2_per_objfile->loc.s.asection = sectp;
2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->macinfo))
2135 {
2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
2141 dwarf2_per_objfile->macro.s.asection = sectp;
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->str))
2145 {
2146 dwarf2_per_objfile->str.s.asection = sectp;
2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
2151 dwarf2_per_objfile->addr.s.asection = sectp;
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->frame))
2155 {
2156 dwarf2_per_objfile->frame.s.asection = sectp;
2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->eh_frame))
2160 {
2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->ranges))
2165 {
2166 dwarf2_per_objfile->ranges.s.asection = sectp;
2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->types))
2170 {
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
2174 type_section.s.asection = sectp;
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
2179 }
2180 else if (section_is_p (sectp->name, &names->gdb_index))
2181 {
2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
2185
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
2189 }
2190
2191 /* A helper function that decides whether a section is empty,
2192 or not present. */
2193
2194 static int
2195 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2196 {
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
2200 }
2201
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
2206 If the section is compressed, uncompress it before returning. */
2207
2208 static void
2209 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2210 {
2211 asection *sectp;
2212 bfd *abfd;
2213 gdb_byte *buf, *retbuf;
2214
2215 if (info->readin)
2216 return;
2217 info->buffer = NULL;
2218 info->readin = 1;
2219
2220 if (dwarf2_section_empty_p (info))
2221 return;
2222
2223 sectp = get_section_bfd_section (info);
2224
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
2253 {
2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2255 return;
2256 }
2257
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294 {
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298 }
2299
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2301 SECTION_NAME. */
2302
2303 void
2304 dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
2306 asection **sectp, const gdb_byte **bufp,
2307 bfd_size_type *sizep)
2308 {
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
2333
2334 dwarf2_read_section (objfile, info);
2335
2336 *sectp = get_section_bfd_section (info);
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339 }
2340
2341 /* A helper function to find the sections for a .dwz file. */
2342
2343 static void
2344 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345 {
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
2352 dwz_file->abbrev.s.asection = sectp;
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
2357 dwz_file->info.s.asection = sectp;
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
2362 dwz_file->str.s.asection = sectp;
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
2367 dwz_file->line.s.asection = sectp;
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
2372 dwz_file->macro.s.asection = sectp;
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
2377 dwz_file->gdb_index.s.asection = sectp;
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
2380 }
2381
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2385
2386 static struct dwz_file *
2387 dwarf2_get_dwz_file (void)
2388 {
2389 bfd *dwz_bfd;
2390 char *data;
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
2394 bfd_size_type buildid_len_arg;
2395 size_t buildid_len;
2396 bfd_byte *buildid;
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2403 &buildid_len_arg, &buildid);
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
2411 cleanup = make_cleanup (xfree, data);
2412 make_cleanup (xfree, buildid);
2413
2414 buildid_len = (size_t) buildid_len_arg;
2415
2416 filename = (const char *) data;
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2434 if (dwz_bfd != NULL)
2435 {
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
2441 }
2442
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2459 dwarf2_per_objfile->dwz_file = result;
2460 return result;
2461 }
2462 \f
2463 /* DWARF quick_symbols_functions support. */
2464
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2471 {
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485 };
2486
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2491 {
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct symtab *symtab;
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508 };
2509
2510 /* Utility hash function for a stmt_list_hash. */
2511
2512 static hashval_t
2513 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514 {
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521 }
2522
2523 /* Utility equality function for a stmt_list_hash. */
2524
2525 static int
2526 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528 {
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536 }
2537
2538 /* Hash function for a quick_file_names. */
2539
2540 static hashval_t
2541 hash_file_name_entry (const void *e)
2542 {
2543 const struct quick_file_names *file_data = e;
2544
2545 return hash_stmt_list_entry (&file_data->hash);
2546 }
2547
2548 /* Equality function for a quick_file_names. */
2549
2550 static int
2551 eq_file_name_entry (const void *a, const void *b)
2552 {
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2557 }
2558
2559 /* Delete function for a quick_file_names. */
2560
2561 static void
2562 delete_file_name_entry (void *e)
2563 {
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576 }
2577
2578 /* Create a quick_file_names hash table. */
2579
2580 static htab_t
2581 create_quick_file_names_table (unsigned int nr_initial_entries)
2582 {
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586 }
2587
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592 static void
2593 load_cu (struct dwarf2_per_cu_data *per_cu)
2594 {
2595 if (per_cu->is_debug_types)
2596 load_full_type_unit (per_cu);
2597 else
2598 load_full_comp_unit (per_cu, language_minimal);
2599
2600 gdb_assert (per_cu->cu != NULL);
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2603 }
2604
2605 /* Read in the symbols for PER_CU. */
2606
2607 static void
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2609 {
2610 struct cleanup *back_to;
2611
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
2636 }
2637
2638 process_queue ();
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645 }
2646
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2650
2651 static struct symtab *
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2653 {
2654 gdb_assert (dwarf2_per_objfile->using_index);
2655 if (!per_cu->v.quick->symtab)
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu);
2660 process_cu_includes ();
2661 do_cleanups (back_to);
2662 }
2663 return per_cu->v.quick->symtab;
2664 }
2665
2666 /* Return the CU/TU given its index.
2667
2668 This is intended for loops like:
2669
2670 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2671 + dwarf2_per_objfile->n_type_units); ++i)
2672 {
2673 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2674
2675 ...;
2676 }
2677 */
2678
2679 static struct dwarf2_per_cu_data *
2680 dw2_get_cutu (int index)
2681 {
2682 if (index >= dwarf2_per_objfile->n_comp_units)
2683 {
2684 index -= dwarf2_per_objfile->n_comp_units;
2685 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2686 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2687 }
2688
2689 return dwarf2_per_objfile->all_comp_units[index];
2690 }
2691
2692 /* Return the CU given its index.
2693 This differs from dw2_get_cutu in that it's for when you know INDEX
2694 refers to a CU. */
2695
2696 static struct dwarf2_per_cu_data *
2697 dw2_get_cu (int index)
2698 {
2699 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2700
2701 return dwarf2_per_objfile->all_comp_units[index];
2702 }
2703
2704 /* A helper for create_cus_from_index that handles a given list of
2705 CUs. */
2706
2707 static void
2708 create_cus_from_index_list (struct objfile *objfile,
2709 const gdb_byte *cu_list, offset_type n_elements,
2710 struct dwarf2_section_info *section,
2711 int is_dwz,
2712 int base_offset)
2713 {
2714 offset_type i;
2715
2716 for (i = 0; i < n_elements; i += 2)
2717 {
2718 struct dwarf2_per_cu_data *the_cu;
2719 ULONGEST offset, length;
2720
2721 gdb_static_assert (sizeof (ULONGEST) >= 8);
2722 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2723 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2724 cu_list += 2 * 8;
2725
2726 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2727 struct dwarf2_per_cu_data);
2728 the_cu->offset.sect_off = offset;
2729 the_cu->length = length;
2730 the_cu->objfile = objfile;
2731 the_cu->section = section;
2732 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2733 struct dwarf2_per_cu_quick_data);
2734 the_cu->is_dwz = is_dwz;
2735 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2736 }
2737 }
2738
2739 /* Read the CU list from the mapped index, and use it to create all
2740 the CU objects for this objfile. */
2741
2742 static void
2743 create_cus_from_index (struct objfile *objfile,
2744 const gdb_byte *cu_list, offset_type cu_list_elements,
2745 const gdb_byte *dwz_list, offset_type dwz_elements)
2746 {
2747 struct dwz_file *dwz;
2748
2749 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2750 dwarf2_per_objfile->all_comp_units
2751 = obstack_alloc (&objfile->objfile_obstack,
2752 dwarf2_per_objfile->n_comp_units
2753 * sizeof (struct dwarf2_per_cu_data *));
2754
2755 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2756 &dwarf2_per_objfile->info, 0, 0);
2757
2758 if (dwz_elements == 0)
2759 return;
2760
2761 dwz = dwarf2_get_dwz_file ();
2762 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2763 cu_list_elements / 2);
2764 }
2765
2766 /* Create the signatured type hash table from the index. */
2767
2768 static void
2769 create_signatured_type_table_from_index (struct objfile *objfile,
2770 struct dwarf2_section_info *section,
2771 const gdb_byte *bytes,
2772 offset_type elements)
2773 {
2774 offset_type i;
2775 htab_t sig_types_hash;
2776
2777 dwarf2_per_objfile->n_type_units
2778 = dwarf2_per_objfile->n_allocated_type_units
2779 = elements / 3;
2780 dwarf2_per_objfile->all_type_units
2781 = xmalloc (dwarf2_per_objfile->n_type_units
2782 * sizeof (struct signatured_type *));
2783
2784 sig_types_hash = allocate_signatured_type_table (objfile);
2785
2786 for (i = 0; i < elements; i += 3)
2787 {
2788 struct signatured_type *sig_type;
2789 ULONGEST offset, type_offset_in_tu, signature;
2790 void **slot;
2791
2792 gdb_static_assert (sizeof (ULONGEST) >= 8);
2793 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2794 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2795 BFD_ENDIAN_LITTLE);
2796 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2797 bytes += 3 * 8;
2798
2799 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2800 struct signatured_type);
2801 sig_type->signature = signature;
2802 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2803 sig_type->per_cu.is_debug_types = 1;
2804 sig_type->per_cu.section = section;
2805 sig_type->per_cu.offset.sect_off = offset;
2806 sig_type->per_cu.objfile = objfile;
2807 sig_type->per_cu.v.quick
2808 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2809 struct dwarf2_per_cu_quick_data);
2810
2811 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2812 *slot = sig_type;
2813
2814 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2815 }
2816
2817 dwarf2_per_objfile->signatured_types = sig_types_hash;
2818 }
2819
2820 /* Read the address map data from the mapped index, and use it to
2821 populate the objfile's psymtabs_addrmap. */
2822
2823 static void
2824 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2825 {
2826 const gdb_byte *iter, *end;
2827 struct obstack temp_obstack;
2828 struct addrmap *mutable_map;
2829 struct cleanup *cleanup;
2830 CORE_ADDR baseaddr;
2831
2832 obstack_init (&temp_obstack);
2833 cleanup = make_cleanup_obstack_free (&temp_obstack);
2834 mutable_map = addrmap_create_mutable (&temp_obstack);
2835
2836 iter = index->address_table;
2837 end = iter + index->address_table_size;
2838
2839 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2840
2841 while (iter < end)
2842 {
2843 ULONGEST hi, lo, cu_index;
2844 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2845 iter += 8;
2846 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2847 iter += 8;
2848 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2849 iter += 4;
2850
2851 if (lo > hi)
2852 {
2853 complaint (&symfile_complaints,
2854 _(".gdb_index address table has invalid range (%s - %s)"),
2855 hex_string (lo), hex_string (hi));
2856 continue;
2857 }
2858
2859 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2860 {
2861 complaint (&symfile_complaints,
2862 _(".gdb_index address table has invalid CU number %u"),
2863 (unsigned) cu_index);
2864 continue;
2865 }
2866
2867 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2868 dw2_get_cutu (cu_index));
2869 }
2870
2871 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2872 &objfile->objfile_obstack);
2873 do_cleanups (cleanup);
2874 }
2875
2876 /* The hash function for strings in the mapped index. This is the same as
2877 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2878 implementation. This is necessary because the hash function is tied to the
2879 format of the mapped index file. The hash values do not have to match with
2880 SYMBOL_HASH_NEXT.
2881
2882 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2883
2884 static hashval_t
2885 mapped_index_string_hash (int index_version, const void *p)
2886 {
2887 const unsigned char *str = (const unsigned char *) p;
2888 hashval_t r = 0;
2889 unsigned char c;
2890
2891 while ((c = *str++) != 0)
2892 {
2893 if (index_version >= 5)
2894 c = tolower (c);
2895 r = r * 67 + c - 113;
2896 }
2897
2898 return r;
2899 }
2900
2901 /* Find a slot in the mapped index INDEX for the object named NAME.
2902 If NAME is found, set *VEC_OUT to point to the CU vector in the
2903 constant pool and return 1. If NAME cannot be found, return 0. */
2904
2905 static int
2906 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2907 offset_type **vec_out)
2908 {
2909 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2910 offset_type hash;
2911 offset_type slot, step;
2912 int (*cmp) (const char *, const char *);
2913
2914 if (current_language->la_language == language_cplus
2915 || current_language->la_language == language_java
2916 || current_language->la_language == language_fortran)
2917 {
2918 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2919 not contain any. */
2920 const char *paren = NULL;
2921
2922 /* Need to handle "(anonymous namespace)". */
2923 if (*name != '(')
2924 paren = strchr (name, '(');
2925
2926 if (paren)
2927 {
2928 char *dup;
2929
2930 dup = xmalloc (paren - name + 1);
2931 memcpy (dup, name, paren - name);
2932 dup[paren - name] = 0;
2933
2934 make_cleanup (xfree, dup);
2935 name = dup;
2936 }
2937 }
2938
2939 /* Index version 4 did not support case insensitive searches. But the
2940 indices for case insensitive languages are built in lowercase, therefore
2941 simulate our NAME being searched is also lowercased. */
2942 hash = mapped_index_string_hash ((index->version == 4
2943 && case_sensitivity == case_sensitive_off
2944 ? 5 : index->version),
2945 name);
2946
2947 slot = hash & (index->symbol_table_slots - 1);
2948 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2949 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2950
2951 for (;;)
2952 {
2953 /* Convert a slot number to an offset into the table. */
2954 offset_type i = 2 * slot;
2955 const char *str;
2956 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2957 {
2958 do_cleanups (back_to);
2959 return 0;
2960 }
2961
2962 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2963 if (!cmp (name, str))
2964 {
2965 *vec_out = (offset_type *) (index->constant_pool
2966 + MAYBE_SWAP (index->symbol_table[i + 1]));
2967 do_cleanups (back_to);
2968 return 1;
2969 }
2970
2971 slot = (slot + step) & (index->symbol_table_slots - 1);
2972 }
2973 }
2974
2975 /* A helper function that reads the .gdb_index from SECTION and fills
2976 in MAP. FILENAME is the name of the file containing the section;
2977 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2978 ok to use deprecated sections.
2979
2980 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2981 out parameters that are filled in with information about the CU and
2982 TU lists in the section.
2983
2984 Returns 1 if all went well, 0 otherwise. */
2985
2986 static int
2987 read_index_from_section (struct objfile *objfile,
2988 const char *filename,
2989 int deprecated_ok,
2990 struct dwarf2_section_info *section,
2991 struct mapped_index *map,
2992 const gdb_byte **cu_list,
2993 offset_type *cu_list_elements,
2994 const gdb_byte **types_list,
2995 offset_type *types_list_elements)
2996 {
2997 const gdb_byte *addr;
2998 offset_type version;
2999 offset_type *metadata;
3000 int i;
3001
3002 if (dwarf2_section_empty_p (section))
3003 return 0;
3004
3005 /* Older elfutils strip versions could keep the section in the main
3006 executable while splitting it for the separate debug info file. */
3007 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3008 return 0;
3009
3010 dwarf2_read_section (objfile, section);
3011
3012 addr = section->buffer;
3013 /* Version check. */
3014 version = MAYBE_SWAP (*(offset_type *) addr);
3015 /* Versions earlier than 3 emitted every copy of a psymbol. This
3016 causes the index to behave very poorly for certain requests. Version 3
3017 contained incomplete addrmap. So, it seems better to just ignore such
3018 indices. */
3019 if (version < 4)
3020 {
3021 static int warning_printed = 0;
3022 if (!warning_printed)
3023 {
3024 warning (_("Skipping obsolete .gdb_index section in %s."),
3025 filename);
3026 warning_printed = 1;
3027 }
3028 return 0;
3029 }
3030 /* Index version 4 uses a different hash function than index version
3031 5 and later.
3032
3033 Versions earlier than 6 did not emit psymbols for inlined
3034 functions. Using these files will cause GDB not to be able to
3035 set breakpoints on inlined functions by name, so we ignore these
3036 indices unless the user has done
3037 "set use-deprecated-index-sections on". */
3038 if (version < 6 && !deprecated_ok)
3039 {
3040 static int warning_printed = 0;
3041 if (!warning_printed)
3042 {
3043 warning (_("\
3044 Skipping deprecated .gdb_index section in %s.\n\
3045 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3046 to use the section anyway."),
3047 filename);
3048 warning_printed = 1;
3049 }
3050 return 0;
3051 }
3052 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3053 of the TU (for symbols coming from TUs),
3054 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3055 Plus gold-generated indices can have duplicate entries for global symbols,
3056 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3057 These are just performance bugs, and we can't distinguish gdb-generated
3058 indices from gold-generated ones, so issue no warning here. */
3059
3060 /* Indexes with higher version than the one supported by GDB may be no
3061 longer backward compatible. */
3062 if (version > 8)
3063 return 0;
3064
3065 map->version = version;
3066 map->total_size = section->size;
3067
3068 metadata = (offset_type *) (addr + sizeof (offset_type));
3069
3070 i = 0;
3071 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3072 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3073 / 8);
3074 ++i;
3075
3076 *types_list = addr + MAYBE_SWAP (metadata[i]);
3077 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3078 - MAYBE_SWAP (metadata[i]))
3079 / 8);
3080 ++i;
3081
3082 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3083 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3084 - MAYBE_SWAP (metadata[i]));
3085 ++i;
3086
3087 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3088 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3089 - MAYBE_SWAP (metadata[i]))
3090 / (2 * sizeof (offset_type)));
3091 ++i;
3092
3093 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3094
3095 return 1;
3096 }
3097
3098
3099 /* Read the index file. If everything went ok, initialize the "quick"
3100 elements of all the CUs and return 1. Otherwise, return 0. */
3101
3102 static int
3103 dwarf2_read_index (struct objfile *objfile)
3104 {
3105 struct mapped_index local_map, *map;
3106 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3107 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3108 struct dwz_file *dwz;
3109
3110 if (!read_index_from_section (objfile, objfile_name (objfile),
3111 use_deprecated_index_sections,
3112 &dwarf2_per_objfile->gdb_index, &local_map,
3113 &cu_list, &cu_list_elements,
3114 &types_list, &types_list_elements))
3115 return 0;
3116
3117 /* Don't use the index if it's empty. */
3118 if (local_map.symbol_table_slots == 0)
3119 return 0;
3120
3121 /* If there is a .dwz file, read it so we can get its CU list as
3122 well. */
3123 dwz = dwarf2_get_dwz_file ();
3124 if (dwz != NULL)
3125 {
3126 struct mapped_index dwz_map;
3127 const gdb_byte *dwz_types_ignore;
3128 offset_type dwz_types_elements_ignore;
3129
3130 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3131 1,
3132 &dwz->gdb_index, &dwz_map,
3133 &dwz_list, &dwz_list_elements,
3134 &dwz_types_ignore,
3135 &dwz_types_elements_ignore))
3136 {
3137 warning (_("could not read '.gdb_index' section from %s; skipping"),
3138 bfd_get_filename (dwz->dwz_bfd));
3139 return 0;
3140 }
3141 }
3142
3143 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3144 dwz_list_elements);
3145
3146 if (types_list_elements)
3147 {
3148 struct dwarf2_section_info *section;
3149
3150 /* We can only handle a single .debug_types when we have an
3151 index. */
3152 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3153 return 0;
3154
3155 section = VEC_index (dwarf2_section_info_def,
3156 dwarf2_per_objfile->types, 0);
3157
3158 create_signatured_type_table_from_index (objfile, section, types_list,
3159 types_list_elements);
3160 }
3161
3162 create_addrmap_from_index (objfile, &local_map);
3163
3164 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3165 *map = local_map;
3166
3167 dwarf2_per_objfile->index_table = map;
3168 dwarf2_per_objfile->using_index = 1;
3169 dwarf2_per_objfile->quick_file_names_table =
3170 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3171
3172 return 1;
3173 }
3174
3175 /* A helper for the "quick" functions which sets the global
3176 dwarf2_per_objfile according to OBJFILE. */
3177
3178 static void
3179 dw2_setup (struct objfile *objfile)
3180 {
3181 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3182 gdb_assert (dwarf2_per_objfile);
3183 }
3184
3185 /* die_reader_func for dw2_get_file_names. */
3186
3187 static void
3188 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3189 const gdb_byte *info_ptr,
3190 struct die_info *comp_unit_die,
3191 int has_children,
3192 void *data)
3193 {
3194 struct dwarf2_cu *cu = reader->cu;
3195 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3196 struct objfile *objfile = dwarf2_per_objfile->objfile;
3197 struct dwarf2_per_cu_data *lh_cu;
3198 struct line_header *lh;
3199 struct attribute *attr;
3200 int i;
3201 const char *name, *comp_dir;
3202 void **slot;
3203 struct quick_file_names *qfn;
3204 unsigned int line_offset;
3205
3206 gdb_assert (! this_cu->is_debug_types);
3207
3208 /* Our callers never want to match partial units -- instead they
3209 will match the enclosing full CU. */
3210 if (comp_unit_die->tag == DW_TAG_partial_unit)
3211 {
3212 this_cu->v.quick->no_file_data = 1;
3213 return;
3214 }
3215
3216 lh_cu = this_cu;
3217 lh = NULL;
3218 slot = NULL;
3219 line_offset = 0;
3220
3221 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3222 if (attr)
3223 {
3224 struct quick_file_names find_entry;
3225
3226 line_offset = DW_UNSND (attr);
3227
3228 /* We may have already read in this line header (TU line header sharing).
3229 If we have we're done. */
3230 find_entry.hash.dwo_unit = cu->dwo_unit;
3231 find_entry.hash.line_offset.sect_off = line_offset;
3232 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3233 &find_entry, INSERT);
3234 if (*slot != NULL)
3235 {
3236 lh_cu->v.quick->file_names = *slot;
3237 return;
3238 }
3239
3240 lh = dwarf_decode_line_header (line_offset, cu);
3241 }
3242 if (lh == NULL)
3243 {
3244 lh_cu->v.quick->no_file_data = 1;
3245 return;
3246 }
3247
3248 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3249 qfn->hash.dwo_unit = cu->dwo_unit;
3250 qfn->hash.line_offset.sect_off = line_offset;
3251 gdb_assert (slot != NULL);
3252 *slot = qfn;
3253
3254 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3255
3256 qfn->num_file_names = lh->num_file_names;
3257 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3258 lh->num_file_names * sizeof (char *));
3259 for (i = 0; i < lh->num_file_names; ++i)
3260 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3261 qfn->real_names = NULL;
3262
3263 free_line_header (lh);
3264
3265 lh_cu->v.quick->file_names = qfn;
3266 }
3267
3268 /* A helper for the "quick" functions which attempts to read the line
3269 table for THIS_CU. */
3270
3271 static struct quick_file_names *
3272 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3273 {
3274 /* This should never be called for TUs. */
3275 gdb_assert (! this_cu->is_debug_types);
3276 /* Nor type unit groups. */
3277 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3278
3279 if (this_cu->v.quick->file_names != NULL)
3280 return this_cu->v.quick->file_names;
3281 /* If we know there is no line data, no point in looking again. */
3282 if (this_cu->v.quick->no_file_data)
3283 return NULL;
3284
3285 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3286
3287 if (this_cu->v.quick->no_file_data)
3288 return NULL;
3289 return this_cu->v.quick->file_names;
3290 }
3291
3292 /* A helper for the "quick" functions which computes and caches the
3293 real path for a given file name from the line table. */
3294
3295 static const char *
3296 dw2_get_real_path (struct objfile *objfile,
3297 struct quick_file_names *qfn, int index)
3298 {
3299 if (qfn->real_names == NULL)
3300 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3301 qfn->num_file_names, const char *);
3302
3303 if (qfn->real_names[index] == NULL)
3304 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3305
3306 return qfn->real_names[index];
3307 }
3308
3309 static struct symtab *
3310 dw2_find_last_source_symtab (struct objfile *objfile)
3311 {
3312 int index;
3313
3314 dw2_setup (objfile);
3315 index = dwarf2_per_objfile->n_comp_units - 1;
3316 return dw2_instantiate_symtab (dw2_get_cutu (index));
3317 }
3318
3319 /* Traversal function for dw2_forget_cached_source_info. */
3320
3321 static int
3322 dw2_free_cached_file_names (void **slot, void *info)
3323 {
3324 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3325
3326 if (file_data->real_names)
3327 {
3328 int i;
3329
3330 for (i = 0; i < file_data->num_file_names; ++i)
3331 {
3332 xfree ((void*) file_data->real_names[i]);
3333 file_data->real_names[i] = NULL;
3334 }
3335 }
3336
3337 return 1;
3338 }
3339
3340 static void
3341 dw2_forget_cached_source_info (struct objfile *objfile)
3342 {
3343 dw2_setup (objfile);
3344
3345 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3346 dw2_free_cached_file_names, NULL);
3347 }
3348
3349 /* Helper function for dw2_map_symtabs_matching_filename that expands
3350 the symtabs and calls the iterator. */
3351
3352 static int
3353 dw2_map_expand_apply (struct objfile *objfile,
3354 struct dwarf2_per_cu_data *per_cu,
3355 const char *name, const char *real_path,
3356 int (*callback) (struct symtab *, void *),
3357 void *data)
3358 {
3359 struct symtab *last_made = objfile->symtabs;
3360
3361 /* Don't visit already-expanded CUs. */
3362 if (per_cu->v.quick->symtab)
3363 return 0;
3364
3365 /* This may expand more than one symtab, and we want to iterate over
3366 all of them. */
3367 dw2_instantiate_symtab (per_cu);
3368
3369 return iterate_over_some_symtabs (name, real_path, callback, data,
3370 objfile->symtabs, last_made);
3371 }
3372
3373 /* Implementation of the map_symtabs_matching_filename method. */
3374
3375 static int
3376 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3377 const char *real_path,
3378 int (*callback) (struct symtab *, void *),
3379 void *data)
3380 {
3381 int i;
3382 const char *name_basename = lbasename (name);
3383
3384 dw2_setup (objfile);
3385
3386 /* The rule is CUs specify all the files, including those used by
3387 any TU, so there's no need to scan TUs here. */
3388
3389 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3390 {
3391 int j;
3392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3393 struct quick_file_names *file_data;
3394
3395 /* We only need to look at symtabs not already expanded. */
3396 if (per_cu->v.quick->symtab)
3397 continue;
3398
3399 file_data = dw2_get_file_names (per_cu);
3400 if (file_data == NULL)
3401 continue;
3402
3403 for (j = 0; j < file_data->num_file_names; ++j)
3404 {
3405 const char *this_name = file_data->file_names[j];
3406 const char *this_real_name;
3407
3408 if (compare_filenames_for_search (this_name, name))
3409 {
3410 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3411 callback, data))
3412 return 1;
3413 continue;
3414 }
3415
3416 /* Before we invoke realpath, which can get expensive when many
3417 files are involved, do a quick comparison of the basenames. */
3418 if (! basenames_may_differ
3419 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3420 continue;
3421
3422 this_real_name = dw2_get_real_path (objfile, file_data, j);
3423 if (compare_filenames_for_search (this_real_name, name))
3424 {
3425 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3426 callback, data))
3427 return 1;
3428 continue;
3429 }
3430
3431 if (real_path != NULL)
3432 {
3433 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3434 gdb_assert (IS_ABSOLUTE_PATH (name));
3435 if (this_real_name != NULL
3436 && FILENAME_CMP (real_path, this_real_name) == 0)
3437 {
3438 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3439 callback, data))
3440 return 1;
3441 continue;
3442 }
3443 }
3444 }
3445 }
3446
3447 return 0;
3448 }
3449
3450 /* Struct used to manage iterating over all CUs looking for a symbol. */
3451
3452 struct dw2_symtab_iterator
3453 {
3454 /* The internalized form of .gdb_index. */
3455 struct mapped_index *index;
3456 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3457 int want_specific_block;
3458 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3459 Unused if !WANT_SPECIFIC_BLOCK. */
3460 int block_index;
3461 /* The kind of symbol we're looking for. */
3462 domain_enum domain;
3463 /* The list of CUs from the index entry of the symbol,
3464 or NULL if not found. */
3465 offset_type *vec;
3466 /* The next element in VEC to look at. */
3467 int next;
3468 /* The number of elements in VEC, or zero if there is no match. */
3469 int length;
3470 /* Have we seen a global version of the symbol?
3471 If so we can ignore all further global instances.
3472 This is to work around gold/15646, inefficient gold-generated
3473 indices. */
3474 int global_seen;
3475 };
3476
3477 /* Initialize the index symtab iterator ITER.
3478 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3479 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3480
3481 static void
3482 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3483 struct mapped_index *index,
3484 int want_specific_block,
3485 int block_index,
3486 domain_enum domain,
3487 const char *name)
3488 {
3489 iter->index = index;
3490 iter->want_specific_block = want_specific_block;
3491 iter->block_index = block_index;
3492 iter->domain = domain;
3493 iter->next = 0;
3494 iter->global_seen = 0;
3495
3496 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3497 iter->length = MAYBE_SWAP (*iter->vec);
3498 else
3499 {
3500 iter->vec = NULL;
3501 iter->length = 0;
3502 }
3503 }
3504
3505 /* Return the next matching CU or NULL if there are no more. */
3506
3507 static struct dwarf2_per_cu_data *
3508 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3509 {
3510 for ( ; iter->next < iter->length; ++iter->next)
3511 {
3512 offset_type cu_index_and_attrs =
3513 MAYBE_SWAP (iter->vec[iter->next + 1]);
3514 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3515 struct dwarf2_per_cu_data *per_cu;
3516 int want_static = iter->block_index != GLOBAL_BLOCK;
3517 /* This value is only valid for index versions >= 7. */
3518 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3519 gdb_index_symbol_kind symbol_kind =
3520 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3521 /* Only check the symbol attributes if they're present.
3522 Indices prior to version 7 don't record them,
3523 and indices >= 7 may elide them for certain symbols
3524 (gold does this). */
3525 int attrs_valid =
3526 (iter->index->version >= 7
3527 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3528
3529 /* Don't crash on bad data. */
3530 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3531 + dwarf2_per_objfile->n_type_units))
3532 {
3533 complaint (&symfile_complaints,
3534 _(".gdb_index entry has bad CU index"
3535 " [in module %s]"),
3536 objfile_name (dwarf2_per_objfile->objfile));
3537 continue;
3538 }
3539
3540 per_cu = dw2_get_cutu (cu_index);
3541
3542 /* Skip if already read in. */
3543 if (per_cu->v.quick->symtab)
3544 continue;
3545
3546 /* Check static vs global. */
3547 if (attrs_valid)
3548 {
3549 if (iter->want_specific_block
3550 && want_static != is_static)
3551 continue;
3552 /* Work around gold/15646. */
3553 if (!is_static && iter->global_seen)
3554 continue;
3555 if (!is_static)
3556 iter->global_seen = 1;
3557 }
3558
3559 /* Only check the symbol's kind if it has one. */
3560 if (attrs_valid)
3561 {
3562 switch (iter->domain)
3563 {
3564 case VAR_DOMAIN:
3565 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3566 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3567 /* Some types are also in VAR_DOMAIN. */
3568 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3569 continue;
3570 break;
3571 case STRUCT_DOMAIN:
3572 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3573 continue;
3574 break;
3575 case LABEL_DOMAIN:
3576 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3577 continue;
3578 break;
3579 default:
3580 break;
3581 }
3582 }
3583
3584 ++iter->next;
3585 return per_cu;
3586 }
3587
3588 return NULL;
3589 }
3590
3591 static struct symtab *
3592 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3593 const char *name, domain_enum domain)
3594 {
3595 struct symtab *stab_best = NULL;
3596 struct mapped_index *index;
3597
3598 dw2_setup (objfile);
3599
3600 index = dwarf2_per_objfile->index_table;
3601
3602 /* index is NULL if OBJF_READNOW. */
3603 if (index)
3604 {
3605 struct dw2_symtab_iterator iter;
3606 struct dwarf2_per_cu_data *per_cu;
3607
3608 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3609
3610 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3611 {
3612 struct symbol *sym = NULL;
3613 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3614
3615 /* Some caution must be observed with overloaded functions
3616 and methods, since the index will not contain any overload
3617 information (but NAME might contain it). */
3618 if (stab->primary)
3619 {
3620 const struct blockvector *bv = BLOCKVECTOR (stab);
3621 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3622
3623 sym = block_lookup_symbol (block, name, domain);
3624 }
3625
3626 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3627 {
3628 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3629 return stab;
3630
3631 stab_best = stab;
3632 }
3633
3634 /* Keep looking through other CUs. */
3635 }
3636 }
3637
3638 return stab_best;
3639 }
3640
3641 static void
3642 dw2_print_stats (struct objfile *objfile)
3643 {
3644 int i, total, count;
3645
3646 dw2_setup (objfile);
3647 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3648 count = 0;
3649 for (i = 0; i < total; ++i)
3650 {
3651 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3652
3653 if (!per_cu->v.quick->symtab)
3654 ++count;
3655 }
3656 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3657 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3658 }
3659
3660 /* This dumps minimal information about the index.
3661 It is called via "mt print objfiles".
3662 One use is to verify .gdb_index has been loaded by the
3663 gdb.dwarf2/gdb-index.exp testcase. */
3664
3665 static void
3666 dw2_dump (struct objfile *objfile)
3667 {
3668 dw2_setup (objfile);
3669 gdb_assert (dwarf2_per_objfile->using_index);
3670 printf_filtered (".gdb_index:");
3671 if (dwarf2_per_objfile->index_table != NULL)
3672 {
3673 printf_filtered (" version %d\n",
3674 dwarf2_per_objfile->index_table->version);
3675 }
3676 else
3677 printf_filtered (" faked for \"readnow\"\n");
3678 printf_filtered ("\n");
3679 }
3680
3681 static void
3682 dw2_relocate (struct objfile *objfile,
3683 const struct section_offsets *new_offsets,
3684 const struct section_offsets *delta)
3685 {
3686 /* There's nothing to relocate here. */
3687 }
3688
3689 static void
3690 dw2_expand_symtabs_for_function (struct objfile *objfile,
3691 const char *func_name)
3692 {
3693 struct mapped_index *index;
3694
3695 dw2_setup (objfile);
3696
3697 index = dwarf2_per_objfile->index_table;
3698
3699 /* index is NULL if OBJF_READNOW. */
3700 if (index)
3701 {
3702 struct dw2_symtab_iterator iter;
3703 struct dwarf2_per_cu_data *per_cu;
3704
3705 /* Note: It doesn't matter what we pass for block_index here. */
3706 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3707 func_name);
3708
3709 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3710 dw2_instantiate_symtab (per_cu);
3711 }
3712 }
3713
3714 static void
3715 dw2_expand_all_symtabs (struct objfile *objfile)
3716 {
3717 int i;
3718
3719 dw2_setup (objfile);
3720
3721 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3722 + dwarf2_per_objfile->n_type_units); ++i)
3723 {
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3725
3726 dw2_instantiate_symtab (per_cu);
3727 }
3728 }
3729
3730 static void
3731 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3732 const char *fullname)
3733 {
3734 int i;
3735
3736 dw2_setup (objfile);
3737
3738 /* We don't need to consider type units here.
3739 This is only called for examining code, e.g. expand_line_sal.
3740 There can be an order of magnitude (or more) more type units
3741 than comp units, and we avoid them if we can. */
3742
3743 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3744 {
3745 int j;
3746 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3747 struct quick_file_names *file_data;
3748
3749 /* We only need to look at symtabs not already expanded. */
3750 if (per_cu->v.quick->symtab)
3751 continue;
3752
3753 file_data = dw2_get_file_names (per_cu);
3754 if (file_data == NULL)
3755 continue;
3756
3757 for (j = 0; j < file_data->num_file_names; ++j)
3758 {
3759 const char *this_fullname = file_data->file_names[j];
3760
3761 if (filename_cmp (this_fullname, fullname) == 0)
3762 {
3763 dw2_instantiate_symtab (per_cu);
3764 break;
3765 }
3766 }
3767 }
3768 }
3769
3770 static void
3771 dw2_map_matching_symbols (struct objfile *objfile,
3772 const char * name, domain_enum namespace,
3773 int global,
3774 int (*callback) (struct block *,
3775 struct symbol *, void *),
3776 void *data, symbol_compare_ftype *match,
3777 symbol_compare_ftype *ordered_compare)
3778 {
3779 /* Currently unimplemented; used for Ada. The function can be called if the
3780 current language is Ada for a non-Ada objfile using GNU index. As Ada
3781 does not look for non-Ada symbols this function should just return. */
3782 }
3783
3784 static void
3785 dw2_expand_symtabs_matching
3786 (struct objfile *objfile,
3787 expand_symtabs_file_matcher_ftype *file_matcher,
3788 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3789 enum search_domain kind,
3790 void *data)
3791 {
3792 int i;
3793 offset_type iter;
3794 struct mapped_index *index;
3795
3796 dw2_setup (objfile);
3797
3798 /* index_table is NULL if OBJF_READNOW. */
3799 if (!dwarf2_per_objfile->index_table)
3800 return;
3801 index = dwarf2_per_objfile->index_table;
3802
3803 if (file_matcher != NULL)
3804 {
3805 struct cleanup *cleanup;
3806 htab_t visited_found, visited_not_found;
3807
3808 visited_found = htab_create_alloc (10,
3809 htab_hash_pointer, htab_eq_pointer,
3810 NULL, xcalloc, xfree);
3811 cleanup = make_cleanup_htab_delete (visited_found);
3812 visited_not_found = htab_create_alloc (10,
3813 htab_hash_pointer, htab_eq_pointer,
3814 NULL, xcalloc, xfree);
3815 make_cleanup_htab_delete (visited_not_found);
3816
3817 /* The rule is CUs specify all the files, including those used by
3818 any TU, so there's no need to scan TUs here. */
3819
3820 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3821 {
3822 int j;
3823 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3824 struct quick_file_names *file_data;
3825 void **slot;
3826
3827 per_cu->v.quick->mark = 0;
3828
3829 /* We only need to look at symtabs not already expanded. */
3830 if (per_cu->v.quick->symtab)
3831 continue;
3832
3833 file_data = dw2_get_file_names (per_cu);
3834 if (file_data == NULL)
3835 continue;
3836
3837 if (htab_find (visited_not_found, file_data) != NULL)
3838 continue;
3839 else if (htab_find (visited_found, file_data) != NULL)
3840 {
3841 per_cu->v.quick->mark = 1;
3842 continue;
3843 }
3844
3845 for (j = 0; j < file_data->num_file_names; ++j)
3846 {
3847 const char *this_real_name;
3848
3849 if (file_matcher (file_data->file_names[j], data, 0))
3850 {
3851 per_cu->v.quick->mark = 1;
3852 break;
3853 }
3854
3855 /* Before we invoke realpath, which can get expensive when many
3856 files are involved, do a quick comparison of the basenames. */
3857 if (!basenames_may_differ
3858 && !file_matcher (lbasename (file_data->file_names[j]),
3859 data, 1))
3860 continue;
3861
3862 this_real_name = dw2_get_real_path (objfile, file_data, j);
3863 if (file_matcher (this_real_name, data, 0))
3864 {
3865 per_cu->v.quick->mark = 1;
3866 break;
3867 }
3868 }
3869
3870 slot = htab_find_slot (per_cu->v.quick->mark
3871 ? visited_found
3872 : visited_not_found,
3873 file_data, INSERT);
3874 *slot = file_data;
3875 }
3876
3877 do_cleanups (cleanup);
3878 }
3879
3880 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3881 {
3882 offset_type idx = 2 * iter;
3883 const char *name;
3884 offset_type *vec, vec_len, vec_idx;
3885 int global_seen = 0;
3886
3887 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3888 continue;
3889
3890 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3891
3892 if (! (*symbol_matcher) (name, data))
3893 continue;
3894
3895 /* The name was matched, now expand corresponding CUs that were
3896 marked. */
3897 vec = (offset_type *) (index->constant_pool
3898 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3899 vec_len = MAYBE_SWAP (vec[0]);
3900 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3901 {
3902 struct dwarf2_per_cu_data *per_cu;
3903 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3904 /* This value is only valid for index versions >= 7. */
3905 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3906 gdb_index_symbol_kind symbol_kind =
3907 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3908 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3909 /* Only check the symbol attributes if they're present.
3910 Indices prior to version 7 don't record them,
3911 and indices >= 7 may elide them for certain symbols
3912 (gold does this). */
3913 int attrs_valid =
3914 (index->version >= 7
3915 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3916
3917 /* Work around gold/15646. */
3918 if (attrs_valid)
3919 {
3920 if (!is_static && global_seen)
3921 continue;
3922 if (!is_static)
3923 global_seen = 1;
3924 }
3925
3926 /* Only check the symbol's kind if it has one. */
3927 if (attrs_valid)
3928 {
3929 switch (kind)
3930 {
3931 case VARIABLES_DOMAIN:
3932 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3933 continue;
3934 break;
3935 case FUNCTIONS_DOMAIN:
3936 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3937 continue;
3938 break;
3939 case TYPES_DOMAIN:
3940 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3941 continue;
3942 break;
3943 default:
3944 break;
3945 }
3946 }
3947
3948 /* Don't crash on bad data. */
3949 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3950 + dwarf2_per_objfile->n_type_units))
3951 {
3952 complaint (&symfile_complaints,
3953 _(".gdb_index entry has bad CU index"
3954 " [in module %s]"), objfile_name (objfile));
3955 continue;
3956 }
3957
3958 per_cu = dw2_get_cutu (cu_index);
3959 if (file_matcher == NULL || per_cu->v.quick->mark)
3960 dw2_instantiate_symtab (per_cu);
3961 }
3962 }
3963 }
3964
3965 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3966 symtab. */
3967
3968 static struct symtab *
3969 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3970 {
3971 int i;
3972
3973 if (BLOCKVECTOR (symtab) != NULL
3974 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3975 return symtab;
3976
3977 if (symtab->includes == NULL)
3978 return NULL;
3979
3980 for (i = 0; symtab->includes[i]; ++i)
3981 {
3982 struct symtab *s = symtab->includes[i];
3983
3984 s = recursively_find_pc_sect_symtab (s, pc);
3985 if (s != NULL)
3986 return s;
3987 }
3988
3989 return NULL;
3990 }
3991
3992 static struct symtab *
3993 dw2_find_pc_sect_symtab (struct objfile *objfile,
3994 struct bound_minimal_symbol msymbol,
3995 CORE_ADDR pc,
3996 struct obj_section *section,
3997 int warn_if_readin)
3998 {
3999 struct dwarf2_per_cu_data *data;
4000 struct symtab *result;
4001
4002 dw2_setup (objfile);
4003
4004 if (!objfile->psymtabs_addrmap)
4005 return NULL;
4006
4007 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4008 if (!data)
4009 return NULL;
4010
4011 if (warn_if_readin && data->v.quick->symtab)
4012 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4013 paddress (get_objfile_arch (objfile), pc));
4014
4015 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4016 gdb_assert (result != NULL);
4017 return result;
4018 }
4019
4020 static void
4021 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4022 void *data, int need_fullname)
4023 {
4024 int i;
4025 struct cleanup *cleanup;
4026 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4027 NULL, xcalloc, xfree);
4028
4029 cleanup = make_cleanup_htab_delete (visited);
4030 dw2_setup (objfile);
4031
4032 /* The rule is CUs specify all the files, including those used by
4033 any TU, so there's no need to scan TUs here.
4034 We can ignore file names coming from already-expanded CUs. */
4035
4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4037 {
4038 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4039
4040 if (per_cu->v.quick->symtab)
4041 {
4042 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4043 INSERT);
4044
4045 *slot = per_cu->v.quick->file_names;
4046 }
4047 }
4048
4049 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4050 {
4051 int j;
4052 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4053 struct quick_file_names *file_data;
4054 void **slot;
4055
4056 /* We only need to look at symtabs not already expanded. */
4057 if (per_cu->v.quick->symtab)
4058 continue;
4059
4060 file_data = dw2_get_file_names (per_cu);
4061 if (file_data == NULL)
4062 continue;
4063
4064 slot = htab_find_slot (visited, file_data, INSERT);
4065 if (*slot)
4066 {
4067 /* Already visited. */
4068 continue;
4069 }
4070 *slot = file_data;
4071
4072 for (j = 0; j < file_data->num_file_names; ++j)
4073 {
4074 const char *this_real_name;
4075
4076 if (need_fullname)
4077 this_real_name = dw2_get_real_path (objfile, file_data, j);
4078 else
4079 this_real_name = NULL;
4080 (*fun) (file_data->file_names[j], this_real_name, data);
4081 }
4082 }
4083
4084 do_cleanups (cleanup);
4085 }
4086
4087 static int
4088 dw2_has_symbols (struct objfile *objfile)
4089 {
4090 return 1;
4091 }
4092
4093 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4094 {
4095 dw2_has_symbols,
4096 dw2_find_last_source_symtab,
4097 dw2_forget_cached_source_info,
4098 dw2_map_symtabs_matching_filename,
4099 dw2_lookup_symbol,
4100 dw2_print_stats,
4101 dw2_dump,
4102 dw2_relocate,
4103 dw2_expand_symtabs_for_function,
4104 dw2_expand_all_symtabs,
4105 dw2_expand_symtabs_with_fullname,
4106 dw2_map_matching_symbols,
4107 dw2_expand_symtabs_matching,
4108 dw2_find_pc_sect_symtab,
4109 dw2_map_symbol_filenames
4110 };
4111
4112 /* Initialize for reading DWARF for this objfile. Return 0 if this
4113 file will use psymtabs, or 1 if using the GNU index. */
4114
4115 int
4116 dwarf2_initialize_objfile (struct objfile *objfile)
4117 {
4118 /* If we're about to read full symbols, don't bother with the
4119 indices. In this case we also don't care if some other debug
4120 format is making psymtabs, because they are all about to be
4121 expanded anyway. */
4122 if ((objfile->flags & OBJF_READNOW))
4123 {
4124 int i;
4125
4126 dwarf2_per_objfile->using_index = 1;
4127 create_all_comp_units (objfile);
4128 create_all_type_units (objfile);
4129 dwarf2_per_objfile->quick_file_names_table =
4130 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4131
4132 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4133 + dwarf2_per_objfile->n_type_units); ++i)
4134 {
4135 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4136
4137 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4138 struct dwarf2_per_cu_quick_data);
4139 }
4140
4141 /* Return 1 so that gdb sees the "quick" functions. However,
4142 these functions will be no-ops because we will have expanded
4143 all symtabs. */
4144 return 1;
4145 }
4146
4147 if (dwarf2_read_index (objfile))
4148 return 1;
4149
4150 return 0;
4151 }
4152
4153 \f
4154
4155 /* Build a partial symbol table. */
4156
4157 void
4158 dwarf2_build_psymtabs (struct objfile *objfile)
4159 {
4160 volatile struct gdb_exception except;
4161
4162 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4163 {
4164 init_psymbol_list (objfile, 1024);
4165 }
4166
4167 TRY_CATCH (except, RETURN_MASK_ERROR)
4168 {
4169 /* This isn't really ideal: all the data we allocate on the
4170 objfile's obstack is still uselessly kept around. However,
4171 freeing it seems unsafe. */
4172 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4173
4174 dwarf2_build_psymtabs_hard (objfile);
4175 discard_cleanups (cleanups);
4176 }
4177 if (except.reason < 0)
4178 exception_print (gdb_stderr, except);
4179 }
4180
4181 /* Return the total length of the CU described by HEADER. */
4182
4183 static unsigned int
4184 get_cu_length (const struct comp_unit_head *header)
4185 {
4186 return header->initial_length_size + header->length;
4187 }
4188
4189 /* Return TRUE if OFFSET is within CU_HEADER. */
4190
4191 static inline int
4192 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4193 {
4194 sect_offset bottom = { cu_header->offset.sect_off };
4195 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4196
4197 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4198 }
4199
4200 /* Find the base address of the compilation unit for range lists and
4201 location lists. It will normally be specified by DW_AT_low_pc.
4202 In DWARF-3 draft 4, the base address could be overridden by
4203 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4204 compilation units with discontinuous ranges. */
4205
4206 static void
4207 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4208 {
4209 struct attribute *attr;
4210
4211 cu->base_known = 0;
4212 cu->base_address = 0;
4213
4214 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4215 if (attr)
4216 {
4217 cu->base_address = attr_value_as_address (attr);
4218 cu->base_known = 1;
4219 }
4220 else
4221 {
4222 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4223 if (attr)
4224 {
4225 cu->base_address = attr_value_as_address (attr);
4226 cu->base_known = 1;
4227 }
4228 }
4229 }
4230
4231 /* Read in the comp unit header information from the debug_info at info_ptr.
4232 NOTE: This leaves members offset, first_die_offset to be filled in
4233 by the caller. */
4234
4235 static const gdb_byte *
4236 read_comp_unit_head (struct comp_unit_head *cu_header,
4237 const gdb_byte *info_ptr, bfd *abfd)
4238 {
4239 int signed_addr;
4240 unsigned int bytes_read;
4241
4242 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4243 cu_header->initial_length_size = bytes_read;
4244 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4245 info_ptr += bytes_read;
4246 cu_header->version = read_2_bytes (abfd, info_ptr);
4247 info_ptr += 2;
4248 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4249 &bytes_read);
4250 info_ptr += bytes_read;
4251 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4252 info_ptr += 1;
4253 signed_addr = bfd_get_sign_extend_vma (abfd);
4254 if (signed_addr < 0)
4255 internal_error (__FILE__, __LINE__,
4256 _("read_comp_unit_head: dwarf from non elf file"));
4257 cu_header->signed_addr_p = signed_addr;
4258
4259 return info_ptr;
4260 }
4261
4262 /* Helper function that returns the proper abbrev section for
4263 THIS_CU. */
4264
4265 static struct dwarf2_section_info *
4266 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4267 {
4268 struct dwarf2_section_info *abbrev;
4269
4270 if (this_cu->is_dwz)
4271 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4272 else
4273 abbrev = &dwarf2_per_objfile->abbrev;
4274
4275 return abbrev;
4276 }
4277
4278 /* Subroutine of read_and_check_comp_unit_head and
4279 read_and_check_type_unit_head to simplify them.
4280 Perform various error checking on the header. */
4281
4282 static void
4283 error_check_comp_unit_head (struct comp_unit_head *header,
4284 struct dwarf2_section_info *section,
4285 struct dwarf2_section_info *abbrev_section)
4286 {
4287 bfd *abfd = get_section_bfd_owner (section);
4288 const char *filename = get_section_file_name (section);
4289
4290 if (header->version != 2 && header->version != 3 && header->version != 4)
4291 error (_("Dwarf Error: wrong version in compilation unit header "
4292 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4293 filename);
4294
4295 if (header->abbrev_offset.sect_off
4296 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4297 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4298 "(offset 0x%lx + 6) [in module %s]"),
4299 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4300 filename);
4301
4302 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4303 avoid potential 32-bit overflow. */
4304 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4305 > section->size)
4306 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4307 "(offset 0x%lx + 0) [in module %s]"),
4308 (long) header->length, (long) header->offset.sect_off,
4309 filename);
4310 }
4311
4312 /* Read in a CU/TU header and perform some basic error checking.
4313 The contents of the header are stored in HEADER.
4314 The result is a pointer to the start of the first DIE. */
4315
4316 static const gdb_byte *
4317 read_and_check_comp_unit_head (struct comp_unit_head *header,
4318 struct dwarf2_section_info *section,
4319 struct dwarf2_section_info *abbrev_section,
4320 const gdb_byte *info_ptr,
4321 int is_debug_types_section)
4322 {
4323 const gdb_byte *beg_of_comp_unit = info_ptr;
4324 bfd *abfd = get_section_bfd_owner (section);
4325
4326 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4327
4328 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4329
4330 /* If we're reading a type unit, skip over the signature and
4331 type_offset fields. */
4332 if (is_debug_types_section)
4333 info_ptr += 8 /*signature*/ + header->offset_size;
4334
4335 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4336
4337 error_check_comp_unit_head (header, section, abbrev_section);
4338
4339 return info_ptr;
4340 }
4341
4342 /* Read in the types comp unit header information from .debug_types entry at
4343 types_ptr. The result is a pointer to one past the end of the header. */
4344
4345 static const gdb_byte *
4346 read_and_check_type_unit_head (struct comp_unit_head *header,
4347 struct dwarf2_section_info *section,
4348 struct dwarf2_section_info *abbrev_section,
4349 const gdb_byte *info_ptr,
4350 ULONGEST *signature,
4351 cu_offset *type_offset_in_tu)
4352 {
4353 const gdb_byte *beg_of_comp_unit = info_ptr;
4354 bfd *abfd = get_section_bfd_owner (section);
4355
4356 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4357
4358 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4359
4360 /* If we're reading a type unit, skip over the signature and
4361 type_offset fields. */
4362 if (signature != NULL)
4363 *signature = read_8_bytes (abfd, info_ptr);
4364 info_ptr += 8;
4365 if (type_offset_in_tu != NULL)
4366 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4367 header->offset_size);
4368 info_ptr += header->offset_size;
4369
4370 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4371
4372 error_check_comp_unit_head (header, section, abbrev_section);
4373
4374 return info_ptr;
4375 }
4376
4377 /* Fetch the abbreviation table offset from a comp or type unit header. */
4378
4379 static sect_offset
4380 read_abbrev_offset (struct dwarf2_section_info *section,
4381 sect_offset offset)
4382 {
4383 bfd *abfd = get_section_bfd_owner (section);
4384 const gdb_byte *info_ptr;
4385 unsigned int length, initial_length_size, offset_size;
4386 sect_offset abbrev_offset;
4387
4388 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4389 info_ptr = section->buffer + offset.sect_off;
4390 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4391 offset_size = initial_length_size == 4 ? 4 : 8;
4392 info_ptr += initial_length_size + 2 /*version*/;
4393 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4394 return abbrev_offset;
4395 }
4396
4397 /* Allocate a new partial symtab for file named NAME and mark this new
4398 partial symtab as being an include of PST. */
4399
4400 static void
4401 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4402 struct objfile *objfile)
4403 {
4404 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4405
4406 if (!IS_ABSOLUTE_PATH (subpst->filename))
4407 {
4408 /* It shares objfile->objfile_obstack. */
4409 subpst->dirname = pst->dirname;
4410 }
4411
4412 subpst->section_offsets = pst->section_offsets;
4413 subpst->textlow = 0;
4414 subpst->texthigh = 0;
4415
4416 subpst->dependencies = (struct partial_symtab **)
4417 obstack_alloc (&objfile->objfile_obstack,
4418 sizeof (struct partial_symtab *));
4419 subpst->dependencies[0] = pst;
4420 subpst->number_of_dependencies = 1;
4421
4422 subpst->globals_offset = 0;
4423 subpst->n_global_syms = 0;
4424 subpst->statics_offset = 0;
4425 subpst->n_static_syms = 0;
4426 subpst->symtab = NULL;
4427 subpst->read_symtab = pst->read_symtab;
4428 subpst->readin = 0;
4429
4430 /* No private part is necessary for include psymtabs. This property
4431 can be used to differentiate between such include psymtabs and
4432 the regular ones. */
4433 subpst->read_symtab_private = NULL;
4434 }
4435
4436 /* Read the Line Number Program data and extract the list of files
4437 included by the source file represented by PST. Build an include
4438 partial symtab for each of these included files. */
4439
4440 static void
4441 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4442 struct die_info *die,
4443 struct partial_symtab *pst)
4444 {
4445 struct line_header *lh = NULL;
4446 struct attribute *attr;
4447
4448 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4449 if (attr)
4450 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4451 if (lh == NULL)
4452 return; /* No linetable, so no includes. */
4453
4454 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4455 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
4456
4457 free_line_header (lh);
4458 }
4459
4460 static hashval_t
4461 hash_signatured_type (const void *item)
4462 {
4463 const struct signatured_type *sig_type = item;
4464
4465 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4466 return sig_type->signature;
4467 }
4468
4469 static int
4470 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4471 {
4472 const struct signatured_type *lhs = item_lhs;
4473 const struct signatured_type *rhs = item_rhs;
4474
4475 return lhs->signature == rhs->signature;
4476 }
4477
4478 /* Allocate a hash table for signatured types. */
4479
4480 static htab_t
4481 allocate_signatured_type_table (struct objfile *objfile)
4482 {
4483 return htab_create_alloc_ex (41,
4484 hash_signatured_type,
4485 eq_signatured_type,
4486 NULL,
4487 &objfile->objfile_obstack,
4488 hashtab_obstack_allocate,
4489 dummy_obstack_deallocate);
4490 }
4491
4492 /* A helper function to add a signatured type CU to a table. */
4493
4494 static int
4495 add_signatured_type_cu_to_table (void **slot, void *datum)
4496 {
4497 struct signatured_type *sigt = *slot;
4498 struct signatured_type ***datap = datum;
4499
4500 **datap = sigt;
4501 ++*datap;
4502
4503 return 1;
4504 }
4505
4506 /* Create the hash table of all entries in the .debug_types
4507 (or .debug_types.dwo) section(s).
4508 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4509 otherwise it is NULL.
4510
4511 The result is a pointer to the hash table or NULL if there are no types.
4512
4513 Note: This function processes DWO files only, not DWP files. */
4514
4515 static htab_t
4516 create_debug_types_hash_table (struct dwo_file *dwo_file,
4517 VEC (dwarf2_section_info_def) *types)
4518 {
4519 struct objfile *objfile = dwarf2_per_objfile->objfile;
4520 htab_t types_htab = NULL;
4521 int ix;
4522 struct dwarf2_section_info *section;
4523 struct dwarf2_section_info *abbrev_section;
4524
4525 if (VEC_empty (dwarf2_section_info_def, types))
4526 return NULL;
4527
4528 abbrev_section = (dwo_file != NULL
4529 ? &dwo_file->sections.abbrev
4530 : &dwarf2_per_objfile->abbrev);
4531
4532 if (dwarf2_read_debug)
4533 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4534 dwo_file ? ".dwo" : "",
4535 get_section_file_name (abbrev_section));
4536
4537 for (ix = 0;
4538 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4539 ++ix)
4540 {
4541 bfd *abfd;
4542 const gdb_byte *info_ptr, *end_ptr;
4543
4544 dwarf2_read_section (objfile, section);
4545 info_ptr = section->buffer;
4546
4547 if (info_ptr == NULL)
4548 continue;
4549
4550 /* We can't set abfd until now because the section may be empty or
4551 not present, in which case the bfd is unknown. */
4552 abfd = get_section_bfd_owner (section);
4553
4554 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4555 because we don't need to read any dies: the signature is in the
4556 header. */
4557
4558 end_ptr = info_ptr + section->size;
4559 while (info_ptr < end_ptr)
4560 {
4561 sect_offset offset;
4562 cu_offset type_offset_in_tu;
4563 ULONGEST signature;
4564 struct signatured_type *sig_type;
4565 struct dwo_unit *dwo_tu;
4566 void **slot;
4567 const gdb_byte *ptr = info_ptr;
4568 struct comp_unit_head header;
4569 unsigned int length;
4570
4571 offset.sect_off = ptr - section->buffer;
4572
4573 /* We need to read the type's signature in order to build the hash
4574 table, but we don't need anything else just yet. */
4575
4576 ptr = read_and_check_type_unit_head (&header, section,
4577 abbrev_section, ptr,
4578 &signature, &type_offset_in_tu);
4579
4580 length = get_cu_length (&header);
4581
4582 /* Skip dummy type units. */
4583 if (ptr >= info_ptr + length
4584 || peek_abbrev_code (abfd, ptr) == 0)
4585 {
4586 info_ptr += length;
4587 continue;
4588 }
4589
4590 if (types_htab == NULL)
4591 {
4592 if (dwo_file)
4593 types_htab = allocate_dwo_unit_table (objfile);
4594 else
4595 types_htab = allocate_signatured_type_table (objfile);
4596 }
4597
4598 if (dwo_file)
4599 {
4600 sig_type = NULL;
4601 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4602 struct dwo_unit);
4603 dwo_tu->dwo_file = dwo_file;
4604 dwo_tu->signature = signature;
4605 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4606 dwo_tu->section = section;
4607 dwo_tu->offset = offset;
4608 dwo_tu->length = length;
4609 }
4610 else
4611 {
4612 /* N.B.: type_offset is not usable if this type uses a DWO file.
4613 The real type_offset is in the DWO file. */
4614 dwo_tu = NULL;
4615 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4616 struct signatured_type);
4617 sig_type->signature = signature;
4618 sig_type->type_offset_in_tu = type_offset_in_tu;
4619 sig_type->per_cu.objfile = objfile;
4620 sig_type->per_cu.is_debug_types = 1;
4621 sig_type->per_cu.section = section;
4622 sig_type->per_cu.offset = offset;
4623 sig_type->per_cu.length = length;
4624 }
4625
4626 slot = htab_find_slot (types_htab,
4627 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4628 INSERT);
4629 gdb_assert (slot != NULL);
4630 if (*slot != NULL)
4631 {
4632 sect_offset dup_offset;
4633
4634 if (dwo_file)
4635 {
4636 const struct dwo_unit *dup_tu = *slot;
4637
4638 dup_offset = dup_tu->offset;
4639 }
4640 else
4641 {
4642 const struct signatured_type *dup_tu = *slot;
4643
4644 dup_offset = dup_tu->per_cu.offset;
4645 }
4646
4647 complaint (&symfile_complaints,
4648 _("debug type entry at offset 0x%x is duplicate to"
4649 " the entry at offset 0x%x, signature %s"),
4650 offset.sect_off, dup_offset.sect_off,
4651 hex_string (signature));
4652 }
4653 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4654
4655 if (dwarf2_read_debug > 1)
4656 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4657 offset.sect_off,
4658 hex_string (signature));
4659
4660 info_ptr += length;
4661 }
4662 }
4663
4664 return types_htab;
4665 }
4666
4667 /* Create the hash table of all entries in the .debug_types section,
4668 and initialize all_type_units.
4669 The result is zero if there is an error (e.g. missing .debug_types section),
4670 otherwise non-zero. */
4671
4672 static int
4673 create_all_type_units (struct objfile *objfile)
4674 {
4675 htab_t types_htab;
4676 struct signatured_type **iter;
4677
4678 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4679 if (types_htab == NULL)
4680 {
4681 dwarf2_per_objfile->signatured_types = NULL;
4682 return 0;
4683 }
4684
4685 dwarf2_per_objfile->signatured_types = types_htab;
4686
4687 dwarf2_per_objfile->n_type_units
4688 = dwarf2_per_objfile->n_allocated_type_units
4689 = htab_elements (types_htab);
4690 dwarf2_per_objfile->all_type_units
4691 = xmalloc (dwarf2_per_objfile->n_type_units
4692 * sizeof (struct signatured_type *));
4693 iter = &dwarf2_per_objfile->all_type_units[0];
4694 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4695 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4696 == dwarf2_per_objfile->n_type_units);
4697
4698 return 1;
4699 }
4700
4701 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4702 If SLOT is non-NULL, it is the entry to use in the hash table.
4703 Otherwise we find one. */
4704
4705 static struct signatured_type *
4706 add_type_unit (ULONGEST sig, void **slot)
4707 {
4708 struct objfile *objfile = dwarf2_per_objfile->objfile;
4709 int n_type_units = dwarf2_per_objfile->n_type_units;
4710 struct signatured_type *sig_type;
4711
4712 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4713 ++n_type_units;
4714 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4715 {
4716 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4717 dwarf2_per_objfile->n_allocated_type_units = 1;
4718 dwarf2_per_objfile->n_allocated_type_units *= 2;
4719 dwarf2_per_objfile->all_type_units
4720 = xrealloc (dwarf2_per_objfile->all_type_units,
4721 dwarf2_per_objfile->n_allocated_type_units
4722 * sizeof (struct signatured_type *));
4723 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4724 }
4725 dwarf2_per_objfile->n_type_units = n_type_units;
4726
4727 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4728 struct signatured_type);
4729 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4730 sig_type->signature = sig;
4731 sig_type->per_cu.is_debug_types = 1;
4732 if (dwarf2_per_objfile->using_index)
4733 {
4734 sig_type->per_cu.v.quick =
4735 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4736 struct dwarf2_per_cu_quick_data);
4737 }
4738
4739 if (slot == NULL)
4740 {
4741 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4742 sig_type, INSERT);
4743 }
4744 gdb_assert (*slot == NULL);
4745 *slot = sig_type;
4746 /* The rest of sig_type must be filled in by the caller. */
4747 return sig_type;
4748 }
4749
4750 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4751 Fill in SIG_ENTRY with DWO_ENTRY. */
4752
4753 static void
4754 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4755 struct signatured_type *sig_entry,
4756 struct dwo_unit *dwo_entry)
4757 {
4758 /* Make sure we're not clobbering something we don't expect to. */
4759 gdb_assert (! sig_entry->per_cu.queued);
4760 gdb_assert (sig_entry->per_cu.cu == NULL);
4761 if (dwarf2_per_objfile->using_index)
4762 {
4763 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4764 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4765 }
4766 else
4767 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4768 gdb_assert (sig_entry->signature == dwo_entry->signature);
4769 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4770 gdb_assert (sig_entry->type_unit_group == NULL);
4771 gdb_assert (sig_entry->dwo_unit == NULL);
4772
4773 sig_entry->per_cu.section = dwo_entry->section;
4774 sig_entry->per_cu.offset = dwo_entry->offset;
4775 sig_entry->per_cu.length = dwo_entry->length;
4776 sig_entry->per_cu.reading_dwo_directly = 1;
4777 sig_entry->per_cu.objfile = objfile;
4778 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4779 sig_entry->dwo_unit = dwo_entry;
4780 }
4781
4782 /* Subroutine of lookup_signatured_type.
4783 If we haven't read the TU yet, create the signatured_type data structure
4784 for a TU to be read in directly from a DWO file, bypassing the stub.
4785 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4786 using .gdb_index, then when reading a CU we want to stay in the DWO file
4787 containing that CU. Otherwise we could end up reading several other DWO
4788 files (due to comdat folding) to process the transitive closure of all the
4789 mentioned TUs, and that can be slow. The current DWO file will have every
4790 type signature that it needs.
4791 We only do this for .gdb_index because in the psymtab case we already have
4792 to read all the DWOs to build the type unit groups. */
4793
4794 static struct signatured_type *
4795 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4796 {
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 struct dwo_file *dwo_file;
4799 struct dwo_unit find_dwo_entry, *dwo_entry;
4800 struct signatured_type find_sig_entry, *sig_entry;
4801 void **slot;
4802
4803 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4804
4805 /* If TU skeletons have been removed then we may not have read in any
4806 TUs yet. */
4807 if (dwarf2_per_objfile->signatured_types == NULL)
4808 {
4809 dwarf2_per_objfile->signatured_types
4810 = allocate_signatured_type_table (objfile);
4811 }
4812
4813 /* We only ever need to read in one copy of a signatured type.
4814 Use the global signatured_types array to do our own comdat-folding
4815 of types. If this is the first time we're reading this TU, and
4816 the TU has an entry in .gdb_index, replace the recorded data from
4817 .gdb_index with this TU. */
4818
4819 find_sig_entry.signature = sig;
4820 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4821 &find_sig_entry, INSERT);
4822 sig_entry = *slot;
4823
4824 /* We can get here with the TU already read, *or* in the process of being
4825 read. Don't reassign the global entry to point to this DWO if that's
4826 the case. Also note that if the TU is already being read, it may not
4827 have come from a DWO, the program may be a mix of Fission-compiled
4828 code and non-Fission-compiled code. */
4829
4830 /* Have we already tried to read this TU?
4831 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4832 needn't exist in the global table yet). */
4833 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4834 return sig_entry;
4835
4836 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4837 dwo_unit of the TU itself. */
4838 dwo_file = cu->dwo_unit->dwo_file;
4839
4840 /* Ok, this is the first time we're reading this TU. */
4841 if (dwo_file->tus == NULL)
4842 return NULL;
4843 find_dwo_entry.signature = sig;
4844 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4845 if (dwo_entry == NULL)
4846 return NULL;
4847
4848 /* If the global table doesn't have an entry for this TU, add one. */
4849 if (sig_entry == NULL)
4850 sig_entry = add_type_unit (sig, slot);
4851
4852 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4853 sig_entry->per_cu.tu_read = 1;
4854 return sig_entry;
4855 }
4856
4857 /* Subroutine of lookup_signatured_type.
4858 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4859 then try the DWP file. If the TU stub (skeleton) has been removed then
4860 it won't be in .gdb_index. */
4861
4862 static struct signatured_type *
4863 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4864 {
4865 struct objfile *objfile = dwarf2_per_objfile->objfile;
4866 struct dwp_file *dwp_file = get_dwp_file ();
4867 struct dwo_unit *dwo_entry;
4868 struct signatured_type find_sig_entry, *sig_entry;
4869 void **slot;
4870
4871 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4872 gdb_assert (dwp_file != NULL);
4873
4874 /* If TU skeletons have been removed then we may not have read in any
4875 TUs yet. */
4876 if (dwarf2_per_objfile->signatured_types == NULL)
4877 {
4878 dwarf2_per_objfile->signatured_types
4879 = allocate_signatured_type_table (objfile);
4880 }
4881
4882 find_sig_entry.signature = sig;
4883 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4884 &find_sig_entry, INSERT);
4885 sig_entry = *slot;
4886
4887 /* Have we already tried to read this TU?
4888 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4889 needn't exist in the global table yet). */
4890 if (sig_entry != NULL)
4891 return sig_entry;
4892
4893 if (dwp_file->tus == NULL)
4894 return NULL;
4895 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4896 sig, 1 /* is_debug_types */);
4897 if (dwo_entry == NULL)
4898 return NULL;
4899
4900 sig_entry = add_type_unit (sig, slot);
4901 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4902
4903 return sig_entry;
4904 }
4905
4906 /* Lookup a signature based type for DW_FORM_ref_sig8.
4907 Returns NULL if signature SIG is not present in the table.
4908 It is up to the caller to complain about this. */
4909
4910 static struct signatured_type *
4911 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4912 {
4913 if (cu->dwo_unit
4914 && dwarf2_per_objfile->using_index)
4915 {
4916 /* We're in a DWO/DWP file, and we're using .gdb_index.
4917 These cases require special processing. */
4918 if (get_dwp_file () == NULL)
4919 return lookup_dwo_signatured_type (cu, sig);
4920 else
4921 return lookup_dwp_signatured_type (cu, sig);
4922 }
4923 else
4924 {
4925 struct signatured_type find_entry, *entry;
4926
4927 if (dwarf2_per_objfile->signatured_types == NULL)
4928 return NULL;
4929 find_entry.signature = sig;
4930 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4931 return entry;
4932 }
4933 }
4934 \f
4935 /* Low level DIE reading support. */
4936
4937 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4938
4939 static void
4940 init_cu_die_reader (struct die_reader_specs *reader,
4941 struct dwarf2_cu *cu,
4942 struct dwarf2_section_info *section,
4943 struct dwo_file *dwo_file)
4944 {
4945 gdb_assert (section->readin && section->buffer != NULL);
4946 reader->abfd = get_section_bfd_owner (section);
4947 reader->cu = cu;
4948 reader->dwo_file = dwo_file;
4949 reader->die_section = section;
4950 reader->buffer = section->buffer;
4951 reader->buffer_end = section->buffer + section->size;
4952 reader->comp_dir = NULL;
4953 }
4954
4955 /* Subroutine of init_cutu_and_read_dies to simplify it.
4956 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4957 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4958 already.
4959
4960 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4961 from it to the DIE in the DWO. If NULL we are skipping the stub.
4962 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4963 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4964 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4965 STUB_COMP_DIR may be non-NULL.
4966 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4967 are filled in with the info of the DIE from the DWO file.
4968 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4969 provided an abbrev table to use.
4970 The result is non-zero if a valid (non-dummy) DIE was found. */
4971
4972 static int
4973 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4974 struct dwo_unit *dwo_unit,
4975 int abbrev_table_provided,
4976 struct die_info *stub_comp_unit_die,
4977 const char *stub_comp_dir,
4978 struct die_reader_specs *result_reader,
4979 const gdb_byte **result_info_ptr,
4980 struct die_info **result_comp_unit_die,
4981 int *result_has_children)
4982 {
4983 struct objfile *objfile = dwarf2_per_objfile->objfile;
4984 struct dwarf2_cu *cu = this_cu->cu;
4985 struct dwarf2_section_info *section;
4986 bfd *abfd;
4987 const gdb_byte *begin_info_ptr, *info_ptr;
4988 ULONGEST signature; /* Or dwo_id. */
4989 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4990 int i,num_extra_attrs;
4991 struct dwarf2_section_info *dwo_abbrev_section;
4992 struct attribute *attr;
4993 struct die_info *comp_unit_die;
4994
4995 /* At most one of these may be provided. */
4996 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4997
4998 /* These attributes aren't processed until later:
4999 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5000 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5001 referenced later. However, these attributes are found in the stub
5002 which we won't have later. In order to not impose this complication
5003 on the rest of the code, we read them here and copy them to the
5004 DWO CU/TU die. */
5005
5006 stmt_list = NULL;
5007 low_pc = NULL;
5008 high_pc = NULL;
5009 ranges = NULL;
5010 comp_dir = NULL;
5011
5012 if (stub_comp_unit_die != NULL)
5013 {
5014 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5015 DWO file. */
5016 if (! this_cu->is_debug_types)
5017 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5018 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5019 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5020 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5021 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5022
5023 /* There should be a DW_AT_addr_base attribute here (if needed).
5024 We need the value before we can process DW_FORM_GNU_addr_index. */
5025 cu->addr_base = 0;
5026 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5027 if (attr)
5028 cu->addr_base = DW_UNSND (attr);
5029
5030 /* There should be a DW_AT_ranges_base attribute here (if needed).
5031 We need the value before we can process DW_AT_ranges. */
5032 cu->ranges_base = 0;
5033 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5034 if (attr)
5035 cu->ranges_base = DW_UNSND (attr);
5036 }
5037 else if (stub_comp_dir != NULL)
5038 {
5039 /* Reconstruct the comp_dir attribute to simplify the code below. */
5040 comp_dir = (struct attribute *)
5041 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5042 comp_dir->name = DW_AT_comp_dir;
5043 comp_dir->form = DW_FORM_string;
5044 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5045 DW_STRING (comp_dir) = stub_comp_dir;
5046 }
5047
5048 /* Set up for reading the DWO CU/TU. */
5049 cu->dwo_unit = dwo_unit;
5050 section = dwo_unit->section;
5051 dwarf2_read_section (objfile, section);
5052 abfd = get_section_bfd_owner (section);
5053 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5054 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5055 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5056
5057 if (this_cu->is_debug_types)
5058 {
5059 ULONGEST header_signature;
5060 cu_offset type_offset_in_tu;
5061 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5062
5063 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5064 dwo_abbrev_section,
5065 info_ptr,
5066 &header_signature,
5067 &type_offset_in_tu);
5068 /* This is not an assert because it can be caused by bad debug info. */
5069 if (sig_type->signature != header_signature)
5070 {
5071 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5072 " TU at offset 0x%x [in module %s]"),
5073 hex_string (sig_type->signature),
5074 hex_string (header_signature),
5075 dwo_unit->offset.sect_off,
5076 bfd_get_filename (abfd));
5077 }
5078 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5079 /* For DWOs coming from DWP files, we don't know the CU length
5080 nor the type's offset in the TU until now. */
5081 dwo_unit->length = get_cu_length (&cu->header);
5082 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5083
5084 /* Establish the type offset that can be used to lookup the type.
5085 For DWO files, we don't know it until now. */
5086 sig_type->type_offset_in_section.sect_off =
5087 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5088 }
5089 else
5090 {
5091 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5092 dwo_abbrev_section,
5093 info_ptr, 0);
5094 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5095 /* For DWOs coming from DWP files, we don't know the CU length
5096 until now. */
5097 dwo_unit->length = get_cu_length (&cu->header);
5098 }
5099
5100 /* Replace the CU's original abbrev table with the DWO's.
5101 Reminder: We can't read the abbrev table until we've read the header. */
5102 if (abbrev_table_provided)
5103 {
5104 /* Don't free the provided abbrev table, the caller of
5105 init_cutu_and_read_dies owns it. */
5106 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5107 /* Ensure the DWO abbrev table gets freed. */
5108 make_cleanup (dwarf2_free_abbrev_table, cu);
5109 }
5110 else
5111 {
5112 dwarf2_free_abbrev_table (cu);
5113 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5114 /* Leave any existing abbrev table cleanup as is. */
5115 }
5116
5117 /* Read in the die, but leave space to copy over the attributes
5118 from the stub. This has the benefit of simplifying the rest of
5119 the code - all the work to maintain the illusion of a single
5120 DW_TAG_{compile,type}_unit DIE is done here. */
5121 num_extra_attrs = ((stmt_list != NULL)
5122 + (low_pc != NULL)
5123 + (high_pc != NULL)
5124 + (ranges != NULL)
5125 + (comp_dir != NULL));
5126 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5127 result_has_children, num_extra_attrs);
5128
5129 /* Copy over the attributes from the stub to the DIE we just read in. */
5130 comp_unit_die = *result_comp_unit_die;
5131 i = comp_unit_die->num_attrs;
5132 if (stmt_list != NULL)
5133 comp_unit_die->attrs[i++] = *stmt_list;
5134 if (low_pc != NULL)
5135 comp_unit_die->attrs[i++] = *low_pc;
5136 if (high_pc != NULL)
5137 comp_unit_die->attrs[i++] = *high_pc;
5138 if (ranges != NULL)
5139 comp_unit_die->attrs[i++] = *ranges;
5140 if (comp_dir != NULL)
5141 comp_unit_die->attrs[i++] = *comp_dir;
5142 comp_unit_die->num_attrs += num_extra_attrs;
5143
5144 if (dwarf2_die_debug)
5145 {
5146 fprintf_unfiltered (gdb_stdlog,
5147 "Read die from %s@0x%x of %s:\n",
5148 get_section_name (section),
5149 (unsigned) (begin_info_ptr - section->buffer),
5150 bfd_get_filename (abfd));
5151 dump_die (comp_unit_die, dwarf2_die_debug);
5152 }
5153
5154 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5155 TUs by skipping the stub and going directly to the entry in the DWO file.
5156 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5157 to get it via circuitous means. Blech. */
5158 if (comp_dir != NULL)
5159 result_reader->comp_dir = DW_STRING (comp_dir);
5160
5161 /* Skip dummy compilation units. */
5162 if (info_ptr >= begin_info_ptr + dwo_unit->length
5163 || peek_abbrev_code (abfd, info_ptr) == 0)
5164 return 0;
5165
5166 *result_info_ptr = info_ptr;
5167 return 1;
5168 }
5169
5170 /* Subroutine of init_cutu_and_read_dies to simplify it.
5171 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5172 Returns NULL if the specified DWO unit cannot be found. */
5173
5174 static struct dwo_unit *
5175 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5176 struct die_info *comp_unit_die)
5177 {
5178 struct dwarf2_cu *cu = this_cu->cu;
5179 struct attribute *attr;
5180 ULONGEST signature;
5181 struct dwo_unit *dwo_unit;
5182 const char *comp_dir, *dwo_name;
5183
5184 gdb_assert (cu != NULL);
5185
5186 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5187 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5188 gdb_assert (attr != NULL);
5189 dwo_name = DW_STRING (attr);
5190 comp_dir = NULL;
5191 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5192 if (attr)
5193 comp_dir = DW_STRING (attr);
5194
5195 if (this_cu->is_debug_types)
5196 {
5197 struct signatured_type *sig_type;
5198
5199 /* Since this_cu is the first member of struct signatured_type,
5200 we can go from a pointer to one to a pointer to the other. */
5201 sig_type = (struct signatured_type *) this_cu;
5202 signature = sig_type->signature;
5203 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5204 }
5205 else
5206 {
5207 struct attribute *attr;
5208
5209 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5210 if (! attr)
5211 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5212 " [in module %s]"),
5213 dwo_name, objfile_name (this_cu->objfile));
5214 signature = DW_UNSND (attr);
5215 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5216 signature);
5217 }
5218
5219 return dwo_unit;
5220 }
5221
5222 /* Subroutine of init_cutu_and_read_dies to simplify it.
5223 See it for a description of the parameters.
5224 Read a TU directly from a DWO file, bypassing the stub.
5225
5226 Note: This function could be a little bit simpler if we shared cleanups
5227 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5228 to do, so we keep this function self-contained. Or we could move this
5229 into our caller, but it's complex enough already. */
5230
5231 static void
5232 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5233 int use_existing_cu, int keep,
5234 die_reader_func_ftype *die_reader_func,
5235 void *data)
5236 {
5237 struct dwarf2_cu *cu;
5238 struct signatured_type *sig_type;
5239 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5240 struct die_reader_specs reader;
5241 const gdb_byte *info_ptr;
5242 struct die_info *comp_unit_die;
5243 int has_children;
5244
5245 /* Verify we can do the following downcast, and that we have the
5246 data we need. */
5247 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5248 sig_type = (struct signatured_type *) this_cu;
5249 gdb_assert (sig_type->dwo_unit != NULL);
5250
5251 cleanups = make_cleanup (null_cleanup, NULL);
5252
5253 if (use_existing_cu && this_cu->cu != NULL)
5254 {
5255 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5256 cu = this_cu->cu;
5257 /* There's no need to do the rereading_dwo_cu handling that
5258 init_cutu_and_read_dies does since we don't read the stub. */
5259 }
5260 else
5261 {
5262 /* If !use_existing_cu, this_cu->cu must be NULL. */
5263 gdb_assert (this_cu->cu == NULL);
5264 cu = xmalloc (sizeof (*cu));
5265 init_one_comp_unit (cu, this_cu);
5266 /* If an error occurs while loading, release our storage. */
5267 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5268 }
5269
5270 /* A future optimization, if needed, would be to use an existing
5271 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5272 could share abbrev tables. */
5273
5274 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5275 0 /* abbrev_table_provided */,
5276 NULL /* stub_comp_unit_die */,
5277 sig_type->dwo_unit->dwo_file->comp_dir,
5278 &reader, &info_ptr,
5279 &comp_unit_die, &has_children) == 0)
5280 {
5281 /* Dummy die. */
5282 do_cleanups (cleanups);
5283 return;
5284 }
5285
5286 /* All the "real" work is done here. */
5287 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5288
5289 /* This duplicates the code in init_cutu_and_read_dies,
5290 but the alternative is making the latter more complex.
5291 This function is only for the special case of using DWO files directly:
5292 no point in overly complicating the general case just to handle this. */
5293 if (free_cu_cleanup != NULL)
5294 {
5295 if (keep)
5296 {
5297 /* We've successfully allocated this compilation unit. Let our
5298 caller clean it up when finished with it. */
5299 discard_cleanups (free_cu_cleanup);
5300
5301 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5302 So we have to manually free the abbrev table. */
5303 dwarf2_free_abbrev_table (cu);
5304
5305 /* Link this CU into read_in_chain. */
5306 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5307 dwarf2_per_objfile->read_in_chain = this_cu;
5308 }
5309 else
5310 do_cleanups (free_cu_cleanup);
5311 }
5312
5313 do_cleanups (cleanups);
5314 }
5315
5316 /* Initialize a CU (or TU) and read its DIEs.
5317 If the CU defers to a DWO file, read the DWO file as well.
5318
5319 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5320 Otherwise the table specified in the comp unit header is read in and used.
5321 This is an optimization for when we already have the abbrev table.
5322
5323 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5324 Otherwise, a new CU is allocated with xmalloc.
5325
5326 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5327 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5328
5329 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5330 linker) then DIE_READER_FUNC will not get called. */
5331
5332 static void
5333 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5334 struct abbrev_table *abbrev_table,
5335 int use_existing_cu, int keep,
5336 die_reader_func_ftype *die_reader_func,
5337 void *data)
5338 {
5339 struct objfile *objfile = dwarf2_per_objfile->objfile;
5340 struct dwarf2_section_info *section = this_cu->section;
5341 bfd *abfd = get_section_bfd_owner (section);
5342 struct dwarf2_cu *cu;
5343 const gdb_byte *begin_info_ptr, *info_ptr;
5344 struct die_reader_specs reader;
5345 struct die_info *comp_unit_die;
5346 int has_children;
5347 struct attribute *attr;
5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5349 struct signatured_type *sig_type = NULL;
5350 struct dwarf2_section_info *abbrev_section;
5351 /* Non-zero if CU currently points to a DWO file and we need to
5352 reread it. When this happens we need to reread the skeleton die
5353 before we can reread the DWO file (this only applies to CUs, not TUs). */
5354 int rereading_dwo_cu = 0;
5355
5356 if (dwarf2_die_debug)
5357 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5358 this_cu->is_debug_types ? "type" : "comp",
5359 this_cu->offset.sect_off);
5360
5361 if (use_existing_cu)
5362 gdb_assert (keep);
5363
5364 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5365 file (instead of going through the stub), short-circuit all of this. */
5366 if (this_cu->reading_dwo_directly)
5367 {
5368 /* Narrow down the scope of possibilities to have to understand. */
5369 gdb_assert (this_cu->is_debug_types);
5370 gdb_assert (abbrev_table == NULL);
5371 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5372 die_reader_func, data);
5373 return;
5374 }
5375
5376 cleanups = make_cleanup (null_cleanup, NULL);
5377
5378 /* This is cheap if the section is already read in. */
5379 dwarf2_read_section (objfile, section);
5380
5381 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5382
5383 abbrev_section = get_abbrev_section_for_cu (this_cu);
5384
5385 if (use_existing_cu && this_cu->cu != NULL)
5386 {
5387 cu = this_cu->cu;
5388 /* If this CU is from a DWO file we need to start over, we need to
5389 refetch the attributes from the skeleton CU.
5390 This could be optimized by retrieving those attributes from when we
5391 were here the first time: the previous comp_unit_die was stored in
5392 comp_unit_obstack. But there's no data yet that we need this
5393 optimization. */
5394 if (cu->dwo_unit != NULL)
5395 rereading_dwo_cu = 1;
5396 }
5397 else
5398 {
5399 /* If !use_existing_cu, this_cu->cu must be NULL. */
5400 gdb_assert (this_cu->cu == NULL);
5401 cu = xmalloc (sizeof (*cu));
5402 init_one_comp_unit (cu, this_cu);
5403 /* If an error occurs while loading, release our storage. */
5404 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5405 }
5406
5407 /* Get the header. */
5408 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5409 {
5410 /* We already have the header, there's no need to read it in again. */
5411 info_ptr += cu->header.first_die_offset.cu_off;
5412 }
5413 else
5414 {
5415 if (this_cu->is_debug_types)
5416 {
5417 ULONGEST signature;
5418 cu_offset type_offset_in_tu;
5419
5420 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5421 abbrev_section, info_ptr,
5422 &signature,
5423 &type_offset_in_tu);
5424
5425 /* Since per_cu is the first member of struct signatured_type,
5426 we can go from a pointer to one to a pointer to the other. */
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->signature == signature);
5429 gdb_assert (sig_type->type_offset_in_tu.cu_off
5430 == type_offset_in_tu.cu_off);
5431 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5432
5433 /* LENGTH has not been set yet for type units if we're
5434 using .gdb_index. */
5435 this_cu->length = get_cu_length (&cu->header);
5436
5437 /* Establish the type offset that can be used to lookup the type. */
5438 sig_type->type_offset_in_section.sect_off =
5439 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5440 }
5441 else
5442 {
5443 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5444 abbrev_section,
5445 info_ptr, 0);
5446
5447 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5448 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5449 }
5450 }
5451
5452 /* Skip dummy compilation units. */
5453 if (info_ptr >= begin_info_ptr + this_cu->length
5454 || peek_abbrev_code (abfd, info_ptr) == 0)
5455 {
5456 do_cleanups (cleanups);
5457 return;
5458 }
5459
5460 /* If we don't have them yet, read the abbrevs for this compilation unit.
5461 And if we need to read them now, make sure they're freed when we're
5462 done. Note that it's important that if the CU had an abbrev table
5463 on entry we don't free it when we're done: Somewhere up the call stack
5464 it may be in use. */
5465 if (abbrev_table != NULL)
5466 {
5467 gdb_assert (cu->abbrev_table == NULL);
5468 gdb_assert (cu->header.abbrev_offset.sect_off
5469 == abbrev_table->offset.sect_off);
5470 cu->abbrev_table = abbrev_table;
5471 }
5472 else if (cu->abbrev_table == NULL)
5473 {
5474 dwarf2_read_abbrevs (cu, abbrev_section);
5475 make_cleanup (dwarf2_free_abbrev_table, cu);
5476 }
5477 else if (rereading_dwo_cu)
5478 {
5479 dwarf2_free_abbrev_table (cu);
5480 dwarf2_read_abbrevs (cu, abbrev_section);
5481 }
5482
5483 /* Read the top level CU/TU die. */
5484 init_cu_die_reader (&reader, cu, section, NULL);
5485 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5486
5487 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5488 from the DWO file.
5489 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5490 DWO CU, that this test will fail (the attribute will not be present). */
5491 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5492 if (attr)
5493 {
5494 struct dwo_unit *dwo_unit;
5495 struct die_info *dwo_comp_unit_die;
5496
5497 if (has_children)
5498 {
5499 complaint (&symfile_complaints,
5500 _("compilation unit with DW_AT_GNU_dwo_name"
5501 " has children (offset 0x%x) [in module %s]"),
5502 this_cu->offset.sect_off, bfd_get_filename (abfd));
5503 }
5504 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5505 if (dwo_unit != NULL)
5506 {
5507 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5508 abbrev_table != NULL,
5509 comp_unit_die, NULL,
5510 &reader, &info_ptr,
5511 &dwo_comp_unit_die, &has_children) == 0)
5512 {
5513 /* Dummy die. */
5514 do_cleanups (cleanups);
5515 return;
5516 }
5517 comp_unit_die = dwo_comp_unit_die;
5518 }
5519 else
5520 {
5521 /* Yikes, we couldn't find the rest of the DIE, we only have
5522 the stub. A complaint has already been logged. There's
5523 not much more we can do except pass on the stub DIE to
5524 die_reader_func. We don't want to throw an error on bad
5525 debug info. */
5526 }
5527 }
5528
5529 /* All of the above is setup for this call. Yikes. */
5530 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5531
5532 /* Done, clean up. */
5533 if (free_cu_cleanup != NULL)
5534 {
5535 if (keep)
5536 {
5537 /* We've successfully allocated this compilation unit. Let our
5538 caller clean it up when finished with it. */
5539 discard_cleanups (free_cu_cleanup);
5540
5541 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5542 So we have to manually free the abbrev table. */
5543 dwarf2_free_abbrev_table (cu);
5544
5545 /* Link this CU into read_in_chain. */
5546 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5547 dwarf2_per_objfile->read_in_chain = this_cu;
5548 }
5549 else
5550 do_cleanups (free_cu_cleanup);
5551 }
5552
5553 do_cleanups (cleanups);
5554 }
5555
5556 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5557 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5558 to have already done the lookup to find the DWO file).
5559
5560 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5561 THIS_CU->is_debug_types, but nothing else.
5562
5563 We fill in THIS_CU->length.
5564
5565 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5566 linker) then DIE_READER_FUNC will not get called.
5567
5568 THIS_CU->cu is always freed when done.
5569 This is done in order to not leave THIS_CU->cu in a state where we have
5570 to care whether it refers to the "main" CU or the DWO CU. */
5571
5572 static void
5573 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5574 struct dwo_file *dwo_file,
5575 die_reader_func_ftype *die_reader_func,
5576 void *data)
5577 {
5578 struct objfile *objfile = dwarf2_per_objfile->objfile;
5579 struct dwarf2_section_info *section = this_cu->section;
5580 bfd *abfd = get_section_bfd_owner (section);
5581 struct dwarf2_section_info *abbrev_section;
5582 struct dwarf2_cu cu;
5583 const gdb_byte *begin_info_ptr, *info_ptr;
5584 struct die_reader_specs reader;
5585 struct cleanup *cleanups;
5586 struct die_info *comp_unit_die;
5587 int has_children;
5588
5589 if (dwarf2_die_debug)
5590 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5591 this_cu->is_debug_types ? "type" : "comp",
5592 this_cu->offset.sect_off);
5593
5594 gdb_assert (this_cu->cu == NULL);
5595
5596 abbrev_section = (dwo_file != NULL
5597 ? &dwo_file->sections.abbrev
5598 : get_abbrev_section_for_cu (this_cu));
5599
5600 /* This is cheap if the section is already read in. */
5601 dwarf2_read_section (objfile, section);
5602
5603 init_one_comp_unit (&cu, this_cu);
5604
5605 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5606
5607 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5608 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5609 abbrev_section, info_ptr,
5610 this_cu->is_debug_types);
5611
5612 this_cu->length = get_cu_length (&cu.header);
5613
5614 /* Skip dummy compilation units. */
5615 if (info_ptr >= begin_info_ptr + this_cu->length
5616 || peek_abbrev_code (abfd, info_ptr) == 0)
5617 {
5618 do_cleanups (cleanups);
5619 return;
5620 }
5621
5622 dwarf2_read_abbrevs (&cu, abbrev_section);
5623 make_cleanup (dwarf2_free_abbrev_table, &cu);
5624
5625 init_cu_die_reader (&reader, &cu, section, dwo_file);
5626 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5627
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
5630 do_cleanups (cleanups);
5631 }
5632
5633 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5634 does not lookup the specified DWO file.
5635 This cannot be used to read DWO files.
5636
5637 THIS_CU->cu is always freed when done.
5638 This is done in order to not leave THIS_CU->cu in a state where we have
5639 to care whether it refers to the "main" CU or the DWO CU.
5640 We can revisit this if the data shows there's a performance issue. */
5641
5642 static void
5643 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5644 die_reader_func_ftype *die_reader_func,
5645 void *data)
5646 {
5647 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5648 }
5649 \f
5650 /* Type Unit Groups.
5651
5652 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5653 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5654 so that all types coming from the same compilation (.o file) are grouped
5655 together. A future step could be to put the types in the same symtab as
5656 the CU the types ultimately came from. */
5657
5658 static hashval_t
5659 hash_type_unit_group (const void *item)
5660 {
5661 const struct type_unit_group *tu_group = item;
5662
5663 return hash_stmt_list_entry (&tu_group->hash);
5664 }
5665
5666 static int
5667 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5668 {
5669 const struct type_unit_group *lhs = item_lhs;
5670 const struct type_unit_group *rhs = item_rhs;
5671
5672 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5673 }
5674
5675 /* Allocate a hash table for type unit groups. */
5676
5677 static htab_t
5678 allocate_type_unit_groups_table (void)
5679 {
5680 return htab_create_alloc_ex (3,
5681 hash_type_unit_group,
5682 eq_type_unit_group,
5683 NULL,
5684 &dwarf2_per_objfile->objfile->objfile_obstack,
5685 hashtab_obstack_allocate,
5686 dummy_obstack_deallocate);
5687 }
5688
5689 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5690 partial symtabs. We combine several TUs per psymtab to not let the size
5691 of any one psymtab grow too big. */
5692 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5693 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5694
5695 /* Helper routine for get_type_unit_group.
5696 Create the type_unit_group object used to hold one or more TUs. */
5697
5698 static struct type_unit_group *
5699 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5700 {
5701 struct objfile *objfile = dwarf2_per_objfile->objfile;
5702 struct dwarf2_per_cu_data *per_cu;
5703 struct type_unit_group *tu_group;
5704
5705 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5706 struct type_unit_group);
5707 per_cu = &tu_group->per_cu;
5708 per_cu->objfile = objfile;
5709
5710 if (dwarf2_per_objfile->using_index)
5711 {
5712 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5713 struct dwarf2_per_cu_quick_data);
5714 }
5715 else
5716 {
5717 unsigned int line_offset = line_offset_struct.sect_off;
5718 struct partial_symtab *pst;
5719 char *name;
5720
5721 /* Give the symtab a useful name for debug purposes. */
5722 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5723 name = xstrprintf ("<type_units_%d>",
5724 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5725 else
5726 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5727
5728 pst = create_partial_symtab (per_cu, name);
5729 pst->anonymous = 1;
5730
5731 xfree (name);
5732 }
5733
5734 tu_group->hash.dwo_unit = cu->dwo_unit;
5735 tu_group->hash.line_offset = line_offset_struct;
5736
5737 return tu_group;
5738 }
5739
5740 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5741 STMT_LIST is a DW_AT_stmt_list attribute. */
5742
5743 static struct type_unit_group *
5744 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5745 {
5746 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5747 struct type_unit_group *tu_group;
5748 void **slot;
5749 unsigned int line_offset;
5750 struct type_unit_group type_unit_group_for_lookup;
5751
5752 if (dwarf2_per_objfile->type_unit_groups == NULL)
5753 {
5754 dwarf2_per_objfile->type_unit_groups =
5755 allocate_type_unit_groups_table ();
5756 }
5757
5758 /* Do we need to create a new group, or can we use an existing one? */
5759
5760 if (stmt_list)
5761 {
5762 line_offset = DW_UNSND (stmt_list);
5763 ++tu_stats->nr_symtab_sharers;
5764 }
5765 else
5766 {
5767 /* Ugh, no stmt_list. Rare, but we have to handle it.
5768 We can do various things here like create one group per TU or
5769 spread them over multiple groups to split up the expansion work.
5770 To avoid worst case scenarios (too many groups or too large groups)
5771 we, umm, group them in bunches. */
5772 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5773 | (tu_stats->nr_stmt_less_type_units
5774 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5775 ++tu_stats->nr_stmt_less_type_units;
5776 }
5777
5778 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5779 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5780 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5781 &type_unit_group_for_lookup, INSERT);
5782 if (*slot != NULL)
5783 {
5784 tu_group = *slot;
5785 gdb_assert (tu_group != NULL);
5786 }
5787 else
5788 {
5789 sect_offset line_offset_struct;
5790
5791 line_offset_struct.sect_off = line_offset;
5792 tu_group = create_type_unit_group (cu, line_offset_struct);
5793 *slot = tu_group;
5794 ++tu_stats->nr_symtabs;
5795 }
5796
5797 return tu_group;
5798 }
5799 \f
5800 /* Partial symbol tables. */
5801
5802 /* Create a psymtab named NAME and assign it to PER_CU.
5803
5804 The caller must fill in the following details:
5805 dirname, textlow, texthigh. */
5806
5807 static struct partial_symtab *
5808 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5809 {
5810 struct objfile *objfile = per_cu->objfile;
5811 struct partial_symtab *pst;
5812
5813 pst = start_psymtab_common (objfile, objfile->section_offsets,
5814 name, 0,
5815 objfile->global_psymbols.next,
5816 objfile->static_psymbols.next);
5817
5818 pst->psymtabs_addrmap_supported = 1;
5819
5820 /* This is the glue that links PST into GDB's symbol API. */
5821 pst->read_symtab_private = per_cu;
5822 pst->read_symtab = dwarf2_read_symtab;
5823 per_cu->v.psymtab = pst;
5824
5825 return pst;
5826 }
5827
5828 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5829 type. */
5830
5831 struct process_psymtab_comp_unit_data
5832 {
5833 /* True if we are reading a DW_TAG_partial_unit. */
5834
5835 int want_partial_unit;
5836
5837 /* The "pretend" language that is used if the CU doesn't declare a
5838 language. */
5839
5840 enum language pretend_language;
5841 };
5842
5843 /* die_reader_func for process_psymtab_comp_unit. */
5844
5845 static void
5846 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5847 const gdb_byte *info_ptr,
5848 struct die_info *comp_unit_die,
5849 int has_children,
5850 void *data)
5851 {
5852 struct dwarf2_cu *cu = reader->cu;
5853 struct objfile *objfile = cu->objfile;
5854 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5855 struct attribute *attr;
5856 CORE_ADDR baseaddr;
5857 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5858 struct partial_symtab *pst;
5859 int has_pc_info;
5860 const char *filename;
5861 struct process_psymtab_comp_unit_data *info = data;
5862
5863 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5864 return;
5865
5866 gdb_assert (! per_cu->is_debug_types);
5867
5868 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5869
5870 cu->list_in_scope = &file_symbols;
5871
5872 /* Allocate a new partial symbol table structure. */
5873 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5874 if (attr == NULL || !DW_STRING (attr))
5875 filename = "";
5876 else
5877 filename = DW_STRING (attr);
5878
5879 pst = create_partial_symtab (per_cu, filename);
5880
5881 /* This must be done before calling dwarf2_build_include_psymtabs. */
5882 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5883 if (attr != NULL)
5884 pst->dirname = DW_STRING (attr);
5885
5886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5887
5888 dwarf2_find_base_address (comp_unit_die, cu);
5889
5890 /* Possibly set the default values of LOWPC and HIGHPC from
5891 `DW_AT_ranges'. */
5892 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5893 &best_highpc, cu, pst);
5894 if (has_pc_info == 1 && best_lowpc < best_highpc)
5895 /* Store the contiguous range if it is not empty; it can be empty for
5896 CUs with no code. */
5897 addrmap_set_empty (objfile->psymtabs_addrmap,
5898 best_lowpc + baseaddr,
5899 best_highpc + baseaddr - 1, pst);
5900
5901 /* Check if comp unit has_children.
5902 If so, read the rest of the partial symbols from this comp unit.
5903 If not, there's no more debug_info for this comp unit. */
5904 if (has_children)
5905 {
5906 struct partial_die_info *first_die;
5907 CORE_ADDR lowpc, highpc;
5908
5909 lowpc = ((CORE_ADDR) -1);
5910 highpc = ((CORE_ADDR) 0);
5911
5912 first_die = load_partial_dies (reader, info_ptr, 1);
5913
5914 scan_partial_symbols (first_die, &lowpc, &highpc,
5915 ! has_pc_info, cu);
5916
5917 /* If we didn't find a lowpc, set it to highpc to avoid
5918 complaints from `maint check'. */
5919 if (lowpc == ((CORE_ADDR) -1))
5920 lowpc = highpc;
5921
5922 /* If the compilation unit didn't have an explicit address range,
5923 then use the information extracted from its child dies. */
5924 if (! has_pc_info)
5925 {
5926 best_lowpc = lowpc;
5927 best_highpc = highpc;
5928 }
5929 }
5930 pst->textlow = best_lowpc + baseaddr;
5931 pst->texthigh = best_highpc + baseaddr;
5932
5933 pst->n_global_syms = objfile->global_psymbols.next -
5934 (objfile->global_psymbols.list + pst->globals_offset);
5935 pst->n_static_syms = objfile->static_psymbols.next -
5936 (objfile->static_psymbols.list + pst->statics_offset);
5937 sort_pst_symbols (objfile, pst);
5938
5939 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5940 {
5941 int i;
5942 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5943 struct dwarf2_per_cu_data *iter;
5944
5945 /* Fill in 'dependencies' here; we fill in 'users' in a
5946 post-pass. */
5947 pst->number_of_dependencies = len;
5948 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5949 len * sizeof (struct symtab *));
5950 for (i = 0;
5951 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5952 i, iter);
5953 ++i)
5954 pst->dependencies[i] = iter->v.psymtab;
5955
5956 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5957 }
5958
5959 /* Get the list of files included in the current compilation unit,
5960 and build a psymtab for each of them. */
5961 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5962
5963 if (dwarf2_read_debug)
5964 {
5965 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5966
5967 fprintf_unfiltered (gdb_stdlog,
5968 "Psymtab for %s unit @0x%x: %s - %s"
5969 ", %d global, %d static syms\n",
5970 per_cu->is_debug_types ? "type" : "comp",
5971 per_cu->offset.sect_off,
5972 paddress (gdbarch, pst->textlow),
5973 paddress (gdbarch, pst->texthigh),
5974 pst->n_global_syms, pst->n_static_syms);
5975 }
5976 }
5977
5978 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5979 Process compilation unit THIS_CU for a psymtab. */
5980
5981 static void
5982 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5983 int want_partial_unit,
5984 enum language pretend_language)
5985 {
5986 struct process_psymtab_comp_unit_data info;
5987
5988 /* If this compilation unit was already read in, free the
5989 cached copy in order to read it in again. This is
5990 necessary because we skipped some symbols when we first
5991 read in the compilation unit (see load_partial_dies).
5992 This problem could be avoided, but the benefit is unclear. */
5993 if (this_cu->cu != NULL)
5994 free_one_cached_comp_unit (this_cu);
5995
5996 gdb_assert (! this_cu->is_debug_types);
5997 info.want_partial_unit = want_partial_unit;
5998 info.pretend_language = pretend_language;
5999 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6000 process_psymtab_comp_unit_reader,
6001 &info);
6002
6003 /* Age out any secondary CUs. */
6004 age_cached_comp_units ();
6005 }
6006
6007 /* Reader function for build_type_psymtabs. */
6008
6009 static void
6010 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6011 const gdb_byte *info_ptr,
6012 struct die_info *type_unit_die,
6013 int has_children,
6014 void *data)
6015 {
6016 struct objfile *objfile = dwarf2_per_objfile->objfile;
6017 struct dwarf2_cu *cu = reader->cu;
6018 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6019 struct signatured_type *sig_type;
6020 struct type_unit_group *tu_group;
6021 struct attribute *attr;
6022 struct partial_die_info *first_die;
6023 CORE_ADDR lowpc, highpc;
6024 struct partial_symtab *pst;
6025
6026 gdb_assert (data == NULL);
6027 gdb_assert (per_cu->is_debug_types);
6028 sig_type = (struct signatured_type *) per_cu;
6029
6030 if (! has_children)
6031 return;
6032
6033 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6034 tu_group = get_type_unit_group (cu, attr);
6035
6036 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6037
6038 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6039 cu->list_in_scope = &file_symbols;
6040 pst = create_partial_symtab (per_cu, "");
6041 pst->anonymous = 1;
6042
6043 first_die = load_partial_dies (reader, info_ptr, 1);
6044
6045 lowpc = (CORE_ADDR) -1;
6046 highpc = (CORE_ADDR) 0;
6047 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6048
6049 pst->n_global_syms = objfile->global_psymbols.next -
6050 (objfile->global_psymbols.list + pst->globals_offset);
6051 pst->n_static_syms = objfile->static_psymbols.next -
6052 (objfile->static_psymbols.list + pst->statics_offset);
6053 sort_pst_symbols (objfile, pst);
6054 }
6055
6056 /* Struct used to sort TUs by their abbreviation table offset. */
6057
6058 struct tu_abbrev_offset
6059 {
6060 struct signatured_type *sig_type;
6061 sect_offset abbrev_offset;
6062 };
6063
6064 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6065
6066 static int
6067 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6068 {
6069 const struct tu_abbrev_offset * const *a = ap;
6070 const struct tu_abbrev_offset * const *b = bp;
6071 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6072 unsigned int boff = (*b)->abbrev_offset.sect_off;
6073
6074 return (aoff > boff) - (aoff < boff);
6075 }
6076
6077 /* Efficiently read all the type units.
6078 This does the bulk of the work for build_type_psymtabs.
6079
6080 The efficiency is because we sort TUs by the abbrev table they use and
6081 only read each abbrev table once. In one program there are 200K TUs
6082 sharing 8K abbrev tables.
6083
6084 The main purpose of this function is to support building the
6085 dwarf2_per_objfile->type_unit_groups table.
6086 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6087 can collapse the search space by grouping them by stmt_list.
6088 The savings can be significant, in the same program from above the 200K TUs
6089 share 8K stmt_list tables.
6090
6091 FUNC is expected to call get_type_unit_group, which will create the
6092 struct type_unit_group if necessary and add it to
6093 dwarf2_per_objfile->type_unit_groups. */
6094
6095 static void
6096 build_type_psymtabs_1 (void)
6097 {
6098 struct objfile *objfile = dwarf2_per_objfile->objfile;
6099 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6100 struct cleanup *cleanups;
6101 struct abbrev_table *abbrev_table;
6102 sect_offset abbrev_offset;
6103 struct tu_abbrev_offset *sorted_by_abbrev;
6104 struct type_unit_group **iter;
6105 int i;
6106
6107 /* It's up to the caller to not call us multiple times. */
6108 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6109
6110 if (dwarf2_per_objfile->n_type_units == 0)
6111 return;
6112
6113 /* TUs typically share abbrev tables, and there can be way more TUs than
6114 abbrev tables. Sort by abbrev table to reduce the number of times we
6115 read each abbrev table in.
6116 Alternatives are to punt or to maintain a cache of abbrev tables.
6117 This is simpler and efficient enough for now.
6118
6119 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6120 symtab to use). Typically TUs with the same abbrev offset have the same
6121 stmt_list value too so in practice this should work well.
6122
6123 The basic algorithm here is:
6124
6125 sort TUs by abbrev table
6126 for each TU with same abbrev table:
6127 read abbrev table if first user
6128 read TU top level DIE
6129 [IWBN if DWO skeletons had DW_AT_stmt_list]
6130 call FUNC */
6131
6132 if (dwarf2_read_debug)
6133 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6134
6135 /* Sort in a separate table to maintain the order of all_type_units
6136 for .gdb_index: TU indices directly index all_type_units. */
6137 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6138 dwarf2_per_objfile->n_type_units);
6139 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6140 {
6141 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6142
6143 sorted_by_abbrev[i].sig_type = sig_type;
6144 sorted_by_abbrev[i].abbrev_offset =
6145 read_abbrev_offset (sig_type->per_cu.section,
6146 sig_type->per_cu.offset);
6147 }
6148 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6149 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6150 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6151
6152 abbrev_offset.sect_off = ~(unsigned) 0;
6153 abbrev_table = NULL;
6154 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6155
6156 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6157 {
6158 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6159
6160 /* Switch to the next abbrev table if necessary. */
6161 if (abbrev_table == NULL
6162 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6163 {
6164 if (abbrev_table != NULL)
6165 {
6166 abbrev_table_free (abbrev_table);
6167 /* Reset to NULL in case abbrev_table_read_table throws
6168 an error: abbrev_table_free_cleanup will get called. */
6169 abbrev_table = NULL;
6170 }
6171 abbrev_offset = tu->abbrev_offset;
6172 abbrev_table =
6173 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6174 abbrev_offset);
6175 ++tu_stats->nr_uniq_abbrev_tables;
6176 }
6177
6178 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6179 build_type_psymtabs_reader, NULL);
6180 }
6181
6182 do_cleanups (cleanups);
6183 }
6184
6185 /* Print collected type unit statistics. */
6186
6187 static void
6188 print_tu_stats (void)
6189 {
6190 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6191
6192 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6193 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6194 dwarf2_per_objfile->n_type_units);
6195 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6196 tu_stats->nr_uniq_abbrev_tables);
6197 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6198 tu_stats->nr_symtabs);
6199 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6200 tu_stats->nr_symtab_sharers);
6201 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6202 tu_stats->nr_stmt_less_type_units);
6203 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6204 tu_stats->nr_all_type_units_reallocs);
6205 }
6206
6207 /* Traversal function for build_type_psymtabs. */
6208
6209 static int
6210 build_type_psymtab_dependencies (void **slot, void *info)
6211 {
6212 struct objfile *objfile = dwarf2_per_objfile->objfile;
6213 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6214 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6215 struct partial_symtab *pst = per_cu->v.psymtab;
6216 int len = VEC_length (sig_type_ptr, tu_group->tus);
6217 struct signatured_type *iter;
6218 int i;
6219
6220 gdb_assert (len > 0);
6221 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6222
6223 pst->number_of_dependencies = len;
6224 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6225 len * sizeof (struct psymtab *));
6226 for (i = 0;
6227 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6228 ++i)
6229 {
6230 gdb_assert (iter->per_cu.is_debug_types);
6231 pst->dependencies[i] = iter->per_cu.v.psymtab;
6232 iter->type_unit_group = tu_group;
6233 }
6234
6235 VEC_free (sig_type_ptr, tu_group->tus);
6236
6237 return 1;
6238 }
6239
6240 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6241 Build partial symbol tables for the .debug_types comp-units. */
6242
6243 static void
6244 build_type_psymtabs (struct objfile *objfile)
6245 {
6246 if (! create_all_type_units (objfile))
6247 return;
6248
6249 build_type_psymtabs_1 ();
6250 }
6251
6252 /* Traversal function for process_skeletonless_type_unit.
6253 Read a TU in a DWO file and build partial symbols for it. */
6254
6255 static int
6256 process_skeletonless_type_unit (void **slot, void *info)
6257 {
6258 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6259 struct objfile *objfile = info;
6260 struct signatured_type find_entry, *entry;
6261
6262 /* If this TU doesn't exist in the global table, add it and read it in. */
6263
6264 if (dwarf2_per_objfile->signatured_types == NULL)
6265 {
6266 dwarf2_per_objfile->signatured_types
6267 = allocate_signatured_type_table (objfile);
6268 }
6269
6270 find_entry.signature = dwo_unit->signature;
6271 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6272 INSERT);
6273 /* If we've already seen this type there's nothing to do. What's happening
6274 is we're doing our own version of comdat-folding here. */
6275 if (*slot != NULL)
6276 return 1;
6277
6278 /* This does the job that create_all_type_units would have done for
6279 this TU. */
6280 entry = add_type_unit (dwo_unit->signature, slot);
6281 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6282 *slot = entry;
6283
6284 /* This does the job that build_type_psymtabs_1 would have done. */
6285 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6286 build_type_psymtabs_reader, NULL);
6287
6288 return 1;
6289 }
6290
6291 /* Traversal function for process_skeletonless_type_units. */
6292
6293 static int
6294 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6295 {
6296 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6297
6298 if (dwo_file->tus != NULL)
6299 {
6300 htab_traverse_noresize (dwo_file->tus,
6301 process_skeletonless_type_unit, info);
6302 }
6303
6304 return 1;
6305 }
6306
6307 /* Scan all TUs of DWO files, verifying we've processed them.
6308 This is needed in case a TU was emitted without its skeleton.
6309 Note: This can't be done until we know what all the DWO files are. */
6310
6311 static void
6312 process_skeletonless_type_units (struct objfile *objfile)
6313 {
6314 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6315 if (get_dwp_file () == NULL
6316 && dwarf2_per_objfile->dwo_files != NULL)
6317 {
6318 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6319 process_dwo_file_for_skeletonless_type_units,
6320 objfile);
6321 }
6322 }
6323
6324 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6325
6326 static void
6327 psymtabs_addrmap_cleanup (void *o)
6328 {
6329 struct objfile *objfile = o;
6330
6331 objfile->psymtabs_addrmap = NULL;
6332 }
6333
6334 /* Compute the 'user' field for each psymtab in OBJFILE. */
6335
6336 static void
6337 set_partial_user (struct objfile *objfile)
6338 {
6339 int i;
6340
6341 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6342 {
6343 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6344 struct partial_symtab *pst = per_cu->v.psymtab;
6345 int j;
6346
6347 if (pst == NULL)
6348 continue;
6349
6350 for (j = 0; j < pst->number_of_dependencies; ++j)
6351 {
6352 /* Set the 'user' field only if it is not already set. */
6353 if (pst->dependencies[j]->user == NULL)
6354 pst->dependencies[j]->user = pst;
6355 }
6356 }
6357 }
6358
6359 /* Build the partial symbol table by doing a quick pass through the
6360 .debug_info and .debug_abbrev sections. */
6361
6362 static void
6363 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6364 {
6365 struct cleanup *back_to, *addrmap_cleanup;
6366 struct obstack temp_obstack;
6367 int i;
6368
6369 if (dwarf2_read_debug)
6370 {
6371 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6372 objfile_name (objfile));
6373 }
6374
6375 dwarf2_per_objfile->reading_partial_symbols = 1;
6376
6377 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6378
6379 /* Any cached compilation units will be linked by the per-objfile
6380 read_in_chain. Make sure to free them when we're done. */
6381 back_to = make_cleanup (free_cached_comp_units, NULL);
6382
6383 build_type_psymtabs (objfile);
6384
6385 create_all_comp_units (objfile);
6386
6387 /* Create a temporary address map on a temporary obstack. We later
6388 copy this to the final obstack. */
6389 obstack_init (&temp_obstack);
6390 make_cleanup_obstack_free (&temp_obstack);
6391 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6392 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6393
6394 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6395 {
6396 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6397
6398 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6399 }
6400
6401 /* This has to wait until we read the CUs, we need the list of DWOs. */
6402 process_skeletonless_type_units (objfile);
6403
6404 /* Now that all TUs have been processed we can fill in the dependencies. */
6405 if (dwarf2_per_objfile->type_unit_groups != NULL)
6406 {
6407 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6408 build_type_psymtab_dependencies, NULL);
6409 }
6410
6411 if (dwarf2_read_debug)
6412 print_tu_stats ();
6413
6414 set_partial_user (objfile);
6415
6416 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6417 &objfile->objfile_obstack);
6418 discard_cleanups (addrmap_cleanup);
6419
6420 do_cleanups (back_to);
6421
6422 if (dwarf2_read_debug)
6423 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6424 objfile_name (objfile));
6425 }
6426
6427 /* die_reader_func for load_partial_comp_unit. */
6428
6429 static void
6430 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6431 const gdb_byte *info_ptr,
6432 struct die_info *comp_unit_die,
6433 int has_children,
6434 void *data)
6435 {
6436 struct dwarf2_cu *cu = reader->cu;
6437
6438 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6439
6440 /* Check if comp unit has_children.
6441 If so, read the rest of the partial symbols from this comp unit.
6442 If not, there's no more debug_info for this comp unit. */
6443 if (has_children)
6444 load_partial_dies (reader, info_ptr, 0);
6445 }
6446
6447 /* Load the partial DIEs for a secondary CU into memory.
6448 This is also used when rereading a primary CU with load_all_dies. */
6449
6450 static void
6451 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6452 {
6453 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6454 load_partial_comp_unit_reader, NULL);
6455 }
6456
6457 static void
6458 read_comp_units_from_section (struct objfile *objfile,
6459 struct dwarf2_section_info *section,
6460 unsigned int is_dwz,
6461 int *n_allocated,
6462 int *n_comp_units,
6463 struct dwarf2_per_cu_data ***all_comp_units)
6464 {
6465 const gdb_byte *info_ptr;
6466 bfd *abfd = get_section_bfd_owner (section);
6467
6468 if (dwarf2_read_debug)
6469 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6470 get_section_name (section),
6471 get_section_file_name (section));
6472
6473 dwarf2_read_section (objfile, section);
6474
6475 info_ptr = section->buffer;
6476
6477 while (info_ptr < section->buffer + section->size)
6478 {
6479 unsigned int length, initial_length_size;
6480 struct dwarf2_per_cu_data *this_cu;
6481 sect_offset offset;
6482
6483 offset.sect_off = info_ptr - section->buffer;
6484
6485 /* Read just enough information to find out where the next
6486 compilation unit is. */
6487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6488
6489 /* Save the compilation unit for later lookup. */
6490 this_cu = obstack_alloc (&objfile->objfile_obstack,
6491 sizeof (struct dwarf2_per_cu_data));
6492 memset (this_cu, 0, sizeof (*this_cu));
6493 this_cu->offset = offset;
6494 this_cu->length = length + initial_length_size;
6495 this_cu->is_dwz = is_dwz;
6496 this_cu->objfile = objfile;
6497 this_cu->section = section;
6498
6499 if (*n_comp_units == *n_allocated)
6500 {
6501 *n_allocated *= 2;
6502 *all_comp_units = xrealloc (*all_comp_units,
6503 *n_allocated
6504 * sizeof (struct dwarf2_per_cu_data *));
6505 }
6506 (*all_comp_units)[*n_comp_units] = this_cu;
6507 ++*n_comp_units;
6508
6509 info_ptr = info_ptr + this_cu->length;
6510 }
6511 }
6512
6513 /* Create a list of all compilation units in OBJFILE.
6514 This is only done for -readnow and building partial symtabs. */
6515
6516 static void
6517 create_all_comp_units (struct objfile *objfile)
6518 {
6519 int n_allocated;
6520 int n_comp_units;
6521 struct dwarf2_per_cu_data **all_comp_units;
6522 struct dwz_file *dwz;
6523
6524 n_comp_units = 0;
6525 n_allocated = 10;
6526 all_comp_units = xmalloc (n_allocated
6527 * sizeof (struct dwarf2_per_cu_data *));
6528
6529 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6530 &n_allocated, &n_comp_units, &all_comp_units);
6531
6532 dwz = dwarf2_get_dwz_file ();
6533 if (dwz != NULL)
6534 read_comp_units_from_section (objfile, &dwz->info, 1,
6535 &n_allocated, &n_comp_units,
6536 &all_comp_units);
6537
6538 dwarf2_per_objfile->all_comp_units
6539 = obstack_alloc (&objfile->objfile_obstack,
6540 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6541 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6542 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6543 xfree (all_comp_units);
6544 dwarf2_per_objfile->n_comp_units = n_comp_units;
6545 }
6546
6547 /* Process all loaded DIEs for compilation unit CU, starting at
6548 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6549 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6550 DW_AT_ranges). See the comments of add_partial_subprogram on how
6551 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6552
6553 static void
6554 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6555 CORE_ADDR *highpc, int set_addrmap,
6556 struct dwarf2_cu *cu)
6557 {
6558 struct partial_die_info *pdi;
6559
6560 /* Now, march along the PDI's, descending into ones which have
6561 interesting children but skipping the children of the other ones,
6562 until we reach the end of the compilation unit. */
6563
6564 pdi = first_die;
6565
6566 while (pdi != NULL)
6567 {
6568 fixup_partial_die (pdi, cu);
6569
6570 /* Anonymous namespaces or modules have no name but have interesting
6571 children, so we need to look at them. Ditto for anonymous
6572 enums. */
6573
6574 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6575 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6576 || pdi->tag == DW_TAG_imported_unit)
6577 {
6578 switch (pdi->tag)
6579 {
6580 case DW_TAG_subprogram:
6581 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6582 break;
6583 case DW_TAG_constant:
6584 case DW_TAG_variable:
6585 case DW_TAG_typedef:
6586 case DW_TAG_union_type:
6587 if (!pdi->is_declaration)
6588 {
6589 add_partial_symbol (pdi, cu);
6590 }
6591 break;
6592 case DW_TAG_class_type:
6593 case DW_TAG_interface_type:
6594 case DW_TAG_structure_type:
6595 if (!pdi->is_declaration)
6596 {
6597 add_partial_symbol (pdi, cu);
6598 }
6599 break;
6600 case DW_TAG_enumeration_type:
6601 if (!pdi->is_declaration)
6602 add_partial_enumeration (pdi, cu);
6603 break;
6604 case DW_TAG_base_type:
6605 case DW_TAG_subrange_type:
6606 /* File scope base type definitions are added to the partial
6607 symbol table. */
6608 add_partial_symbol (pdi, cu);
6609 break;
6610 case DW_TAG_namespace:
6611 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6612 break;
6613 case DW_TAG_module:
6614 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6615 break;
6616 case DW_TAG_imported_unit:
6617 {
6618 struct dwarf2_per_cu_data *per_cu;
6619
6620 /* For now we don't handle imported units in type units. */
6621 if (cu->per_cu->is_debug_types)
6622 {
6623 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6624 " supported in type units [in module %s]"),
6625 objfile_name (cu->objfile));
6626 }
6627
6628 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6629 pdi->is_dwz,
6630 cu->objfile);
6631
6632 /* Go read the partial unit, if needed. */
6633 if (per_cu->v.psymtab == NULL)
6634 process_psymtab_comp_unit (per_cu, 1, cu->language);
6635
6636 VEC_safe_push (dwarf2_per_cu_ptr,
6637 cu->per_cu->imported_symtabs, per_cu);
6638 }
6639 break;
6640 case DW_TAG_imported_declaration:
6641 add_partial_symbol (pdi, cu);
6642 break;
6643 default:
6644 break;
6645 }
6646 }
6647
6648 /* If the die has a sibling, skip to the sibling. */
6649
6650 pdi = pdi->die_sibling;
6651 }
6652 }
6653
6654 /* Functions used to compute the fully scoped name of a partial DIE.
6655
6656 Normally, this is simple. For C++, the parent DIE's fully scoped
6657 name is concatenated with "::" and the partial DIE's name. For
6658 Java, the same thing occurs except that "." is used instead of "::".
6659 Enumerators are an exception; they use the scope of their parent
6660 enumeration type, i.e. the name of the enumeration type is not
6661 prepended to the enumerator.
6662
6663 There are two complexities. One is DW_AT_specification; in this
6664 case "parent" means the parent of the target of the specification,
6665 instead of the direct parent of the DIE. The other is compilers
6666 which do not emit DW_TAG_namespace; in this case we try to guess
6667 the fully qualified name of structure types from their members'
6668 linkage names. This must be done using the DIE's children rather
6669 than the children of any DW_AT_specification target. We only need
6670 to do this for structures at the top level, i.e. if the target of
6671 any DW_AT_specification (if any; otherwise the DIE itself) does not
6672 have a parent. */
6673
6674 /* Compute the scope prefix associated with PDI's parent, in
6675 compilation unit CU. The result will be allocated on CU's
6676 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6677 field. NULL is returned if no prefix is necessary. */
6678 static const char *
6679 partial_die_parent_scope (struct partial_die_info *pdi,
6680 struct dwarf2_cu *cu)
6681 {
6682 const char *grandparent_scope;
6683 struct partial_die_info *parent, *real_pdi;
6684
6685 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6686 then this means the parent of the specification DIE. */
6687
6688 real_pdi = pdi;
6689 while (real_pdi->has_specification)
6690 real_pdi = find_partial_die (real_pdi->spec_offset,
6691 real_pdi->spec_is_dwz, cu);
6692
6693 parent = real_pdi->die_parent;
6694 if (parent == NULL)
6695 return NULL;
6696
6697 if (parent->scope_set)
6698 return parent->scope;
6699
6700 fixup_partial_die (parent, cu);
6701
6702 grandparent_scope = partial_die_parent_scope (parent, cu);
6703
6704 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6705 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6706 Work around this problem here. */
6707 if (cu->language == language_cplus
6708 && parent->tag == DW_TAG_namespace
6709 && strcmp (parent->name, "::") == 0
6710 && grandparent_scope == NULL)
6711 {
6712 parent->scope = NULL;
6713 parent->scope_set = 1;
6714 return NULL;
6715 }
6716
6717 if (pdi->tag == DW_TAG_enumerator)
6718 /* Enumerators should not get the name of the enumeration as a prefix. */
6719 parent->scope = grandparent_scope;
6720 else if (parent->tag == DW_TAG_namespace
6721 || parent->tag == DW_TAG_module
6722 || parent->tag == DW_TAG_structure_type
6723 || parent->tag == DW_TAG_class_type
6724 || parent->tag == DW_TAG_interface_type
6725 || parent->tag == DW_TAG_union_type
6726 || parent->tag == DW_TAG_enumeration_type)
6727 {
6728 if (grandparent_scope == NULL)
6729 parent->scope = parent->name;
6730 else
6731 parent->scope = typename_concat (&cu->comp_unit_obstack,
6732 grandparent_scope,
6733 parent->name, 0, cu);
6734 }
6735 else
6736 {
6737 /* FIXME drow/2004-04-01: What should we be doing with
6738 function-local names? For partial symbols, we should probably be
6739 ignoring them. */
6740 complaint (&symfile_complaints,
6741 _("unhandled containing DIE tag %d for DIE at %d"),
6742 parent->tag, pdi->offset.sect_off);
6743 parent->scope = grandparent_scope;
6744 }
6745
6746 parent->scope_set = 1;
6747 return parent->scope;
6748 }
6749
6750 /* Return the fully scoped name associated with PDI, from compilation unit
6751 CU. The result will be allocated with malloc. */
6752
6753 static char *
6754 partial_die_full_name (struct partial_die_info *pdi,
6755 struct dwarf2_cu *cu)
6756 {
6757 const char *parent_scope;
6758
6759 /* If this is a template instantiation, we can not work out the
6760 template arguments from partial DIEs. So, unfortunately, we have
6761 to go through the full DIEs. At least any work we do building
6762 types here will be reused if full symbols are loaded later. */
6763 if (pdi->has_template_arguments)
6764 {
6765 fixup_partial_die (pdi, cu);
6766
6767 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6768 {
6769 struct die_info *die;
6770 struct attribute attr;
6771 struct dwarf2_cu *ref_cu = cu;
6772
6773 /* DW_FORM_ref_addr is using section offset. */
6774 attr.name = 0;
6775 attr.form = DW_FORM_ref_addr;
6776 attr.u.unsnd = pdi->offset.sect_off;
6777 die = follow_die_ref (NULL, &attr, &ref_cu);
6778
6779 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6780 }
6781 }
6782
6783 parent_scope = partial_die_parent_scope (pdi, cu);
6784 if (parent_scope == NULL)
6785 return NULL;
6786 else
6787 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6788 }
6789
6790 static void
6791 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6792 {
6793 struct objfile *objfile = cu->objfile;
6794 CORE_ADDR addr = 0;
6795 const char *actual_name = NULL;
6796 CORE_ADDR baseaddr;
6797 char *built_actual_name;
6798
6799 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6800
6801 built_actual_name = partial_die_full_name (pdi, cu);
6802 if (built_actual_name != NULL)
6803 actual_name = built_actual_name;
6804
6805 if (actual_name == NULL)
6806 actual_name = pdi->name;
6807
6808 switch (pdi->tag)
6809 {
6810 case DW_TAG_subprogram:
6811 if (pdi->is_external || cu->language == language_ada)
6812 {
6813 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6814 of the global scope. But in Ada, we want to be able to access
6815 nested procedures globally. So all Ada subprograms are stored
6816 in the global scope. */
6817 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6818 mst_text, objfile); */
6819 add_psymbol_to_list (actual_name, strlen (actual_name),
6820 built_actual_name != NULL,
6821 VAR_DOMAIN, LOC_BLOCK,
6822 &objfile->global_psymbols,
6823 0, pdi->lowpc + baseaddr,
6824 cu->language, objfile);
6825 }
6826 else
6827 {
6828 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6829 mst_file_text, objfile); */
6830 add_psymbol_to_list (actual_name, strlen (actual_name),
6831 built_actual_name != NULL,
6832 VAR_DOMAIN, LOC_BLOCK,
6833 &objfile->static_psymbols,
6834 0, pdi->lowpc + baseaddr,
6835 cu->language, objfile);
6836 }
6837 break;
6838 case DW_TAG_constant:
6839 {
6840 struct psymbol_allocation_list *list;
6841
6842 if (pdi->is_external)
6843 list = &objfile->global_psymbols;
6844 else
6845 list = &objfile->static_psymbols;
6846 add_psymbol_to_list (actual_name, strlen (actual_name),
6847 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6848 list, 0, 0, cu->language, objfile);
6849 }
6850 break;
6851 case DW_TAG_variable:
6852 if (pdi->d.locdesc)
6853 addr = decode_locdesc (pdi->d.locdesc, cu);
6854
6855 if (pdi->d.locdesc
6856 && addr == 0
6857 && !dwarf2_per_objfile->has_section_at_zero)
6858 {
6859 /* A global or static variable may also have been stripped
6860 out by the linker if unused, in which case its address
6861 will be nullified; do not add such variables into partial
6862 symbol table then. */
6863 }
6864 else if (pdi->is_external)
6865 {
6866 /* Global Variable.
6867 Don't enter into the minimal symbol tables as there is
6868 a minimal symbol table entry from the ELF symbols already.
6869 Enter into partial symbol table if it has a location
6870 descriptor or a type.
6871 If the location descriptor is missing, new_symbol will create
6872 a LOC_UNRESOLVED symbol, the address of the variable will then
6873 be determined from the minimal symbol table whenever the variable
6874 is referenced.
6875 The address for the partial symbol table entry is not
6876 used by GDB, but it comes in handy for debugging partial symbol
6877 table building. */
6878
6879 if (pdi->d.locdesc || pdi->has_type)
6880 add_psymbol_to_list (actual_name, strlen (actual_name),
6881 built_actual_name != NULL,
6882 VAR_DOMAIN, LOC_STATIC,
6883 &objfile->global_psymbols,
6884 0, addr + baseaddr,
6885 cu->language, objfile);
6886 }
6887 else
6888 {
6889 /* Static Variable. Skip symbols without location descriptors. */
6890 if (pdi->d.locdesc == NULL)
6891 {
6892 xfree (built_actual_name);
6893 return;
6894 }
6895 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6896 mst_file_data, objfile); */
6897 add_psymbol_to_list (actual_name, strlen (actual_name),
6898 built_actual_name != NULL,
6899 VAR_DOMAIN, LOC_STATIC,
6900 &objfile->static_psymbols,
6901 0, addr + baseaddr,
6902 cu->language, objfile);
6903 }
6904 break;
6905 case DW_TAG_typedef:
6906 case DW_TAG_base_type:
6907 case DW_TAG_subrange_type:
6908 add_psymbol_to_list (actual_name, strlen (actual_name),
6909 built_actual_name != NULL,
6910 VAR_DOMAIN, LOC_TYPEDEF,
6911 &objfile->static_psymbols,
6912 0, (CORE_ADDR) 0, cu->language, objfile);
6913 break;
6914 case DW_TAG_imported_declaration:
6915 case DW_TAG_namespace:
6916 add_psymbol_to_list (actual_name, strlen (actual_name),
6917 built_actual_name != NULL,
6918 VAR_DOMAIN, LOC_TYPEDEF,
6919 &objfile->global_psymbols,
6920 0, (CORE_ADDR) 0, cu->language, objfile);
6921 break;
6922 case DW_TAG_module:
6923 add_psymbol_to_list (actual_name, strlen (actual_name),
6924 built_actual_name != NULL,
6925 MODULE_DOMAIN, LOC_TYPEDEF,
6926 &objfile->global_psymbols,
6927 0, (CORE_ADDR) 0, cu->language, objfile);
6928 break;
6929 case DW_TAG_class_type:
6930 case DW_TAG_interface_type:
6931 case DW_TAG_structure_type:
6932 case DW_TAG_union_type:
6933 case DW_TAG_enumeration_type:
6934 /* Skip external references. The DWARF standard says in the section
6935 about "Structure, Union, and Class Type Entries": "An incomplete
6936 structure, union or class type is represented by a structure,
6937 union or class entry that does not have a byte size attribute
6938 and that has a DW_AT_declaration attribute." */
6939 if (!pdi->has_byte_size && pdi->is_declaration)
6940 {
6941 xfree (built_actual_name);
6942 return;
6943 }
6944
6945 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6946 static vs. global. */
6947 add_psymbol_to_list (actual_name, strlen (actual_name),
6948 built_actual_name != NULL,
6949 STRUCT_DOMAIN, LOC_TYPEDEF,
6950 (cu->language == language_cplus
6951 || cu->language == language_java)
6952 ? &objfile->global_psymbols
6953 : &objfile->static_psymbols,
6954 0, (CORE_ADDR) 0, cu->language, objfile);
6955
6956 break;
6957 case DW_TAG_enumerator:
6958 add_psymbol_to_list (actual_name, strlen (actual_name),
6959 built_actual_name != NULL,
6960 VAR_DOMAIN, LOC_CONST,
6961 (cu->language == language_cplus
6962 || cu->language == language_java)
6963 ? &objfile->global_psymbols
6964 : &objfile->static_psymbols,
6965 0, (CORE_ADDR) 0, cu->language, objfile);
6966 break;
6967 default:
6968 break;
6969 }
6970
6971 xfree (built_actual_name);
6972 }
6973
6974 /* Read a partial die corresponding to a namespace; also, add a symbol
6975 corresponding to that namespace to the symbol table. NAMESPACE is
6976 the name of the enclosing namespace. */
6977
6978 static void
6979 add_partial_namespace (struct partial_die_info *pdi,
6980 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6981 int set_addrmap, struct dwarf2_cu *cu)
6982 {
6983 /* Add a symbol for the namespace. */
6984
6985 add_partial_symbol (pdi, cu);
6986
6987 /* Now scan partial symbols in that namespace. */
6988
6989 if (pdi->has_children)
6990 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
6991 }
6992
6993 /* Read a partial die corresponding to a Fortran module. */
6994
6995 static void
6996 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6997 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
6998 {
6999 /* Add a symbol for the namespace. */
7000
7001 add_partial_symbol (pdi, cu);
7002
7003 /* Now scan partial symbols in that module. */
7004
7005 if (pdi->has_children)
7006 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7007 }
7008
7009 /* Read a partial die corresponding to a subprogram and create a partial
7010 symbol for that subprogram. When the CU language allows it, this
7011 routine also defines a partial symbol for each nested subprogram
7012 that this subprogram contains. If SET_ADDRMAP is true, record the
7013 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7014 and highest PC values found in PDI.
7015
7016 PDI may also be a lexical block, in which case we simply search
7017 recursively for subprograms defined inside that lexical block.
7018 Again, this is only performed when the CU language allows this
7019 type of definitions. */
7020
7021 static void
7022 add_partial_subprogram (struct partial_die_info *pdi,
7023 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7024 int set_addrmap, struct dwarf2_cu *cu)
7025 {
7026 if (pdi->tag == DW_TAG_subprogram)
7027 {
7028 if (pdi->has_pc_info)
7029 {
7030 if (pdi->lowpc < *lowpc)
7031 *lowpc = pdi->lowpc;
7032 if (pdi->highpc > *highpc)
7033 *highpc = pdi->highpc;
7034 if (set_addrmap)
7035 {
7036 CORE_ADDR baseaddr;
7037 struct objfile *objfile = cu->objfile;
7038
7039 baseaddr = ANOFFSET (objfile->section_offsets,
7040 SECT_OFF_TEXT (objfile));
7041 addrmap_set_empty (objfile->psymtabs_addrmap,
7042 pdi->lowpc + baseaddr,
7043 pdi->highpc - 1 + baseaddr,
7044 cu->per_cu->v.psymtab);
7045 }
7046 }
7047
7048 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7049 {
7050 if (!pdi->is_declaration)
7051 /* Ignore subprogram DIEs that do not have a name, they are
7052 illegal. Do not emit a complaint at this point, we will
7053 do so when we convert this psymtab into a symtab. */
7054 if (pdi->name)
7055 add_partial_symbol (pdi, cu);
7056 }
7057 }
7058
7059 if (! pdi->has_children)
7060 return;
7061
7062 if (cu->language == language_ada)
7063 {
7064 pdi = pdi->die_child;
7065 while (pdi != NULL)
7066 {
7067 fixup_partial_die (pdi, cu);
7068 if (pdi->tag == DW_TAG_subprogram
7069 || pdi->tag == DW_TAG_lexical_block)
7070 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7071 pdi = pdi->die_sibling;
7072 }
7073 }
7074 }
7075
7076 /* Read a partial die corresponding to an enumeration type. */
7077
7078 static void
7079 add_partial_enumeration (struct partial_die_info *enum_pdi,
7080 struct dwarf2_cu *cu)
7081 {
7082 struct partial_die_info *pdi;
7083
7084 if (enum_pdi->name != NULL)
7085 add_partial_symbol (enum_pdi, cu);
7086
7087 pdi = enum_pdi->die_child;
7088 while (pdi)
7089 {
7090 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7091 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7092 else
7093 add_partial_symbol (pdi, cu);
7094 pdi = pdi->die_sibling;
7095 }
7096 }
7097
7098 /* Return the initial uleb128 in the die at INFO_PTR. */
7099
7100 static unsigned int
7101 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7102 {
7103 unsigned int bytes_read;
7104
7105 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7106 }
7107
7108 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7109 Return the corresponding abbrev, or NULL if the number is zero (indicating
7110 an empty DIE). In either case *BYTES_READ will be set to the length of
7111 the initial number. */
7112
7113 static struct abbrev_info *
7114 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7115 struct dwarf2_cu *cu)
7116 {
7117 bfd *abfd = cu->objfile->obfd;
7118 unsigned int abbrev_number;
7119 struct abbrev_info *abbrev;
7120
7121 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7122
7123 if (abbrev_number == 0)
7124 return NULL;
7125
7126 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7127 if (!abbrev)
7128 {
7129 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7130 abbrev_number, bfd_get_filename (abfd));
7131 }
7132
7133 return abbrev;
7134 }
7135
7136 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7137 Returns a pointer to the end of a series of DIEs, terminated by an empty
7138 DIE. Any children of the skipped DIEs will also be skipped. */
7139
7140 static const gdb_byte *
7141 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7142 {
7143 struct dwarf2_cu *cu = reader->cu;
7144 struct abbrev_info *abbrev;
7145 unsigned int bytes_read;
7146
7147 while (1)
7148 {
7149 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7150 if (abbrev == NULL)
7151 return info_ptr + bytes_read;
7152 else
7153 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7154 }
7155 }
7156
7157 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7158 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7159 abbrev corresponding to that skipped uleb128 should be passed in
7160 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7161 children. */
7162
7163 static const gdb_byte *
7164 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7165 struct abbrev_info *abbrev)
7166 {
7167 unsigned int bytes_read;
7168 struct attribute attr;
7169 bfd *abfd = reader->abfd;
7170 struct dwarf2_cu *cu = reader->cu;
7171 const gdb_byte *buffer = reader->buffer;
7172 const gdb_byte *buffer_end = reader->buffer_end;
7173 const gdb_byte *start_info_ptr = info_ptr;
7174 unsigned int form, i;
7175
7176 for (i = 0; i < abbrev->num_attrs; i++)
7177 {
7178 /* The only abbrev we care about is DW_AT_sibling. */
7179 if (abbrev->attrs[i].name == DW_AT_sibling)
7180 {
7181 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7182 if (attr.form == DW_FORM_ref_addr)
7183 complaint (&symfile_complaints,
7184 _("ignoring absolute DW_AT_sibling"));
7185 else
7186 {
7187 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7188 const gdb_byte *sibling_ptr = buffer + off;
7189
7190 if (sibling_ptr < info_ptr)
7191 complaint (&symfile_complaints,
7192 _("DW_AT_sibling points backwards"));
7193 else if (sibling_ptr > reader->buffer_end)
7194 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7195 else
7196 return sibling_ptr;
7197 }
7198 }
7199
7200 /* If it isn't DW_AT_sibling, skip this attribute. */
7201 form = abbrev->attrs[i].form;
7202 skip_attribute:
7203 switch (form)
7204 {
7205 case DW_FORM_ref_addr:
7206 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7207 and later it is offset sized. */
7208 if (cu->header.version == 2)
7209 info_ptr += cu->header.addr_size;
7210 else
7211 info_ptr += cu->header.offset_size;
7212 break;
7213 case DW_FORM_GNU_ref_alt:
7214 info_ptr += cu->header.offset_size;
7215 break;
7216 case DW_FORM_addr:
7217 info_ptr += cu->header.addr_size;
7218 break;
7219 case DW_FORM_data1:
7220 case DW_FORM_ref1:
7221 case DW_FORM_flag:
7222 info_ptr += 1;
7223 break;
7224 case DW_FORM_flag_present:
7225 break;
7226 case DW_FORM_data2:
7227 case DW_FORM_ref2:
7228 info_ptr += 2;
7229 break;
7230 case DW_FORM_data4:
7231 case DW_FORM_ref4:
7232 info_ptr += 4;
7233 break;
7234 case DW_FORM_data8:
7235 case DW_FORM_ref8:
7236 case DW_FORM_ref_sig8:
7237 info_ptr += 8;
7238 break;
7239 case DW_FORM_string:
7240 read_direct_string (abfd, info_ptr, &bytes_read);
7241 info_ptr += bytes_read;
7242 break;
7243 case DW_FORM_sec_offset:
7244 case DW_FORM_strp:
7245 case DW_FORM_GNU_strp_alt:
7246 info_ptr += cu->header.offset_size;
7247 break;
7248 case DW_FORM_exprloc:
7249 case DW_FORM_block:
7250 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7251 info_ptr += bytes_read;
7252 break;
7253 case DW_FORM_block1:
7254 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7255 break;
7256 case DW_FORM_block2:
7257 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7258 break;
7259 case DW_FORM_block4:
7260 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7261 break;
7262 case DW_FORM_sdata:
7263 case DW_FORM_udata:
7264 case DW_FORM_ref_udata:
7265 case DW_FORM_GNU_addr_index:
7266 case DW_FORM_GNU_str_index:
7267 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7268 break;
7269 case DW_FORM_indirect:
7270 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7271 info_ptr += bytes_read;
7272 /* We need to continue parsing from here, so just go back to
7273 the top. */
7274 goto skip_attribute;
7275
7276 default:
7277 error (_("Dwarf Error: Cannot handle %s "
7278 "in DWARF reader [in module %s]"),
7279 dwarf_form_name (form),
7280 bfd_get_filename (abfd));
7281 }
7282 }
7283
7284 if (abbrev->has_children)
7285 return skip_children (reader, info_ptr);
7286 else
7287 return info_ptr;
7288 }
7289
7290 /* Locate ORIG_PDI's sibling.
7291 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7292
7293 static const gdb_byte *
7294 locate_pdi_sibling (const struct die_reader_specs *reader,
7295 struct partial_die_info *orig_pdi,
7296 const gdb_byte *info_ptr)
7297 {
7298 /* Do we know the sibling already? */
7299
7300 if (orig_pdi->sibling)
7301 return orig_pdi->sibling;
7302
7303 /* Are there any children to deal with? */
7304
7305 if (!orig_pdi->has_children)
7306 return info_ptr;
7307
7308 /* Skip the children the long way. */
7309
7310 return skip_children (reader, info_ptr);
7311 }
7312
7313 /* Expand this partial symbol table into a full symbol table. SELF is
7314 not NULL. */
7315
7316 static void
7317 dwarf2_read_symtab (struct partial_symtab *self,
7318 struct objfile *objfile)
7319 {
7320 if (self->readin)
7321 {
7322 warning (_("bug: psymtab for %s is already read in."),
7323 self->filename);
7324 }
7325 else
7326 {
7327 if (info_verbose)
7328 {
7329 printf_filtered (_("Reading in symbols for %s..."),
7330 self->filename);
7331 gdb_flush (gdb_stdout);
7332 }
7333
7334 /* Restore our global data. */
7335 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7336
7337 /* If this psymtab is constructed from a debug-only objfile, the
7338 has_section_at_zero flag will not necessarily be correct. We
7339 can get the correct value for this flag by looking at the data
7340 associated with the (presumably stripped) associated objfile. */
7341 if (objfile->separate_debug_objfile_backlink)
7342 {
7343 struct dwarf2_per_objfile *dpo_backlink
7344 = objfile_data (objfile->separate_debug_objfile_backlink,
7345 dwarf2_objfile_data_key);
7346
7347 dwarf2_per_objfile->has_section_at_zero
7348 = dpo_backlink->has_section_at_zero;
7349 }
7350
7351 dwarf2_per_objfile->reading_partial_symbols = 0;
7352
7353 psymtab_to_symtab_1 (self);
7354
7355 /* Finish up the debug error message. */
7356 if (info_verbose)
7357 printf_filtered (_("done.\n"));
7358 }
7359
7360 process_cu_includes ();
7361 }
7362 \f
7363 /* Reading in full CUs. */
7364
7365 /* Add PER_CU to the queue. */
7366
7367 static void
7368 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7369 enum language pretend_language)
7370 {
7371 struct dwarf2_queue_item *item;
7372
7373 per_cu->queued = 1;
7374 item = xmalloc (sizeof (*item));
7375 item->per_cu = per_cu;
7376 item->pretend_language = pretend_language;
7377 item->next = NULL;
7378
7379 if (dwarf2_queue == NULL)
7380 dwarf2_queue = item;
7381 else
7382 dwarf2_queue_tail->next = item;
7383
7384 dwarf2_queue_tail = item;
7385 }
7386
7387 /* If PER_CU is not yet queued, add it to the queue.
7388 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7389 dependency.
7390 The result is non-zero if PER_CU was queued, otherwise the result is zero
7391 meaning either PER_CU is already queued or it is already loaded.
7392
7393 N.B. There is an invariant here that if a CU is queued then it is loaded.
7394 The caller is required to load PER_CU if we return non-zero. */
7395
7396 static int
7397 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7398 struct dwarf2_per_cu_data *per_cu,
7399 enum language pretend_language)
7400 {
7401 /* We may arrive here during partial symbol reading, if we need full
7402 DIEs to process an unusual case (e.g. template arguments). Do
7403 not queue PER_CU, just tell our caller to load its DIEs. */
7404 if (dwarf2_per_objfile->reading_partial_symbols)
7405 {
7406 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7407 return 1;
7408 return 0;
7409 }
7410
7411 /* Mark the dependence relation so that we don't flush PER_CU
7412 too early. */
7413 if (dependent_cu != NULL)
7414 dwarf2_add_dependence (dependent_cu, per_cu);
7415
7416 /* If it's already on the queue, we have nothing to do. */
7417 if (per_cu->queued)
7418 return 0;
7419
7420 /* If the compilation unit is already loaded, just mark it as
7421 used. */
7422 if (per_cu->cu != NULL)
7423 {
7424 per_cu->cu->last_used = 0;
7425 return 0;
7426 }
7427
7428 /* Add it to the queue. */
7429 queue_comp_unit (per_cu, pretend_language);
7430
7431 return 1;
7432 }
7433
7434 /* Process the queue. */
7435
7436 static void
7437 process_queue (void)
7438 {
7439 struct dwarf2_queue_item *item, *next_item;
7440
7441 if (dwarf2_read_debug)
7442 {
7443 fprintf_unfiltered (gdb_stdlog,
7444 "Expanding one or more symtabs of objfile %s ...\n",
7445 objfile_name (dwarf2_per_objfile->objfile));
7446 }
7447
7448 /* The queue starts out with one item, but following a DIE reference
7449 may load a new CU, adding it to the end of the queue. */
7450 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7451 {
7452 if (dwarf2_per_objfile->using_index
7453 ? !item->per_cu->v.quick->symtab
7454 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7455 {
7456 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7457 unsigned int debug_print_threshold;
7458 char buf[100];
7459
7460 if (per_cu->is_debug_types)
7461 {
7462 struct signatured_type *sig_type =
7463 (struct signatured_type *) per_cu;
7464
7465 sprintf (buf, "TU %s at offset 0x%x",
7466 hex_string (sig_type->signature),
7467 per_cu->offset.sect_off);
7468 /* There can be 100s of TUs.
7469 Only print them in verbose mode. */
7470 debug_print_threshold = 2;
7471 }
7472 else
7473 {
7474 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7475 debug_print_threshold = 1;
7476 }
7477
7478 if (dwarf2_read_debug >= debug_print_threshold)
7479 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7480
7481 if (per_cu->is_debug_types)
7482 process_full_type_unit (per_cu, item->pretend_language);
7483 else
7484 process_full_comp_unit (per_cu, item->pretend_language);
7485
7486 if (dwarf2_read_debug >= debug_print_threshold)
7487 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7488 }
7489
7490 item->per_cu->queued = 0;
7491 next_item = item->next;
7492 xfree (item);
7493 }
7494
7495 dwarf2_queue_tail = NULL;
7496
7497 if (dwarf2_read_debug)
7498 {
7499 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7500 objfile_name (dwarf2_per_objfile->objfile));
7501 }
7502 }
7503
7504 /* Free all allocated queue entries. This function only releases anything if
7505 an error was thrown; if the queue was processed then it would have been
7506 freed as we went along. */
7507
7508 static void
7509 dwarf2_release_queue (void *dummy)
7510 {
7511 struct dwarf2_queue_item *item, *last;
7512
7513 item = dwarf2_queue;
7514 while (item)
7515 {
7516 /* Anything still marked queued is likely to be in an
7517 inconsistent state, so discard it. */
7518 if (item->per_cu->queued)
7519 {
7520 if (item->per_cu->cu != NULL)
7521 free_one_cached_comp_unit (item->per_cu);
7522 item->per_cu->queued = 0;
7523 }
7524
7525 last = item;
7526 item = item->next;
7527 xfree (last);
7528 }
7529
7530 dwarf2_queue = dwarf2_queue_tail = NULL;
7531 }
7532
7533 /* Read in full symbols for PST, and anything it depends on. */
7534
7535 static void
7536 psymtab_to_symtab_1 (struct partial_symtab *pst)
7537 {
7538 struct dwarf2_per_cu_data *per_cu;
7539 int i;
7540
7541 if (pst->readin)
7542 return;
7543
7544 for (i = 0; i < pst->number_of_dependencies; i++)
7545 if (!pst->dependencies[i]->readin
7546 && pst->dependencies[i]->user == NULL)
7547 {
7548 /* Inform about additional files that need to be read in. */
7549 if (info_verbose)
7550 {
7551 /* FIXME: i18n: Need to make this a single string. */
7552 fputs_filtered (" ", gdb_stdout);
7553 wrap_here ("");
7554 fputs_filtered ("and ", gdb_stdout);
7555 wrap_here ("");
7556 printf_filtered ("%s...", pst->dependencies[i]->filename);
7557 wrap_here (""); /* Flush output. */
7558 gdb_flush (gdb_stdout);
7559 }
7560 psymtab_to_symtab_1 (pst->dependencies[i]);
7561 }
7562
7563 per_cu = pst->read_symtab_private;
7564
7565 if (per_cu == NULL)
7566 {
7567 /* It's an include file, no symbols to read for it.
7568 Everything is in the parent symtab. */
7569 pst->readin = 1;
7570 return;
7571 }
7572
7573 dw2_do_instantiate_symtab (per_cu);
7574 }
7575
7576 /* Trivial hash function for die_info: the hash value of a DIE
7577 is its offset in .debug_info for this objfile. */
7578
7579 static hashval_t
7580 die_hash (const void *item)
7581 {
7582 const struct die_info *die = item;
7583
7584 return die->offset.sect_off;
7585 }
7586
7587 /* Trivial comparison function for die_info structures: two DIEs
7588 are equal if they have the same offset. */
7589
7590 static int
7591 die_eq (const void *item_lhs, const void *item_rhs)
7592 {
7593 const struct die_info *die_lhs = item_lhs;
7594 const struct die_info *die_rhs = item_rhs;
7595
7596 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7597 }
7598
7599 /* die_reader_func for load_full_comp_unit.
7600 This is identical to read_signatured_type_reader,
7601 but is kept separate for now. */
7602
7603 static void
7604 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7605 const gdb_byte *info_ptr,
7606 struct die_info *comp_unit_die,
7607 int has_children,
7608 void *data)
7609 {
7610 struct dwarf2_cu *cu = reader->cu;
7611 enum language *language_ptr = data;
7612
7613 gdb_assert (cu->die_hash == NULL);
7614 cu->die_hash =
7615 htab_create_alloc_ex (cu->header.length / 12,
7616 die_hash,
7617 die_eq,
7618 NULL,
7619 &cu->comp_unit_obstack,
7620 hashtab_obstack_allocate,
7621 dummy_obstack_deallocate);
7622
7623 if (has_children)
7624 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7625 &info_ptr, comp_unit_die);
7626 cu->dies = comp_unit_die;
7627 /* comp_unit_die is not stored in die_hash, no need. */
7628
7629 /* We try not to read any attributes in this function, because not
7630 all CUs needed for references have been loaded yet, and symbol
7631 table processing isn't initialized. But we have to set the CU language,
7632 or we won't be able to build types correctly.
7633 Similarly, if we do not read the producer, we can not apply
7634 producer-specific interpretation. */
7635 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7636 }
7637
7638 /* Load the DIEs associated with PER_CU into memory. */
7639
7640 static void
7641 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7642 enum language pretend_language)
7643 {
7644 gdb_assert (! this_cu->is_debug_types);
7645
7646 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7647 load_full_comp_unit_reader, &pretend_language);
7648 }
7649
7650 /* Add a DIE to the delayed physname list. */
7651
7652 static void
7653 add_to_method_list (struct type *type, int fnfield_index, int index,
7654 const char *name, struct die_info *die,
7655 struct dwarf2_cu *cu)
7656 {
7657 struct delayed_method_info mi;
7658 mi.type = type;
7659 mi.fnfield_index = fnfield_index;
7660 mi.index = index;
7661 mi.name = name;
7662 mi.die = die;
7663 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7664 }
7665
7666 /* A cleanup for freeing the delayed method list. */
7667
7668 static void
7669 free_delayed_list (void *ptr)
7670 {
7671 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7672 if (cu->method_list != NULL)
7673 {
7674 VEC_free (delayed_method_info, cu->method_list);
7675 cu->method_list = NULL;
7676 }
7677 }
7678
7679 /* Compute the physnames of any methods on the CU's method list.
7680
7681 The computation of method physnames is delayed in order to avoid the
7682 (bad) condition that one of the method's formal parameters is of an as yet
7683 incomplete type. */
7684
7685 static void
7686 compute_delayed_physnames (struct dwarf2_cu *cu)
7687 {
7688 int i;
7689 struct delayed_method_info *mi;
7690 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7691 {
7692 const char *physname;
7693 struct fn_fieldlist *fn_flp
7694 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7695 physname = dwarf2_physname (mi->name, mi->die, cu);
7696 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7697 }
7698 }
7699
7700 /* Go objects should be embedded in a DW_TAG_module DIE,
7701 and it's not clear if/how imported objects will appear.
7702 To keep Go support simple until that's worked out,
7703 go back through what we've read and create something usable.
7704 We could do this while processing each DIE, and feels kinda cleaner,
7705 but that way is more invasive.
7706 This is to, for example, allow the user to type "p var" or "b main"
7707 without having to specify the package name, and allow lookups
7708 of module.object to work in contexts that use the expression
7709 parser. */
7710
7711 static void
7712 fixup_go_packaging (struct dwarf2_cu *cu)
7713 {
7714 char *package_name = NULL;
7715 struct pending *list;
7716 int i;
7717
7718 for (list = global_symbols; list != NULL; list = list->next)
7719 {
7720 for (i = 0; i < list->nsyms; ++i)
7721 {
7722 struct symbol *sym = list->symbol[i];
7723
7724 if (SYMBOL_LANGUAGE (sym) == language_go
7725 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7726 {
7727 char *this_package_name = go_symbol_package_name (sym);
7728
7729 if (this_package_name == NULL)
7730 continue;
7731 if (package_name == NULL)
7732 package_name = this_package_name;
7733 else
7734 {
7735 if (strcmp (package_name, this_package_name) != 0)
7736 complaint (&symfile_complaints,
7737 _("Symtab %s has objects from two different Go packages: %s and %s"),
7738 (SYMBOL_SYMTAB (sym)
7739 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7740 : objfile_name (cu->objfile)),
7741 this_package_name, package_name);
7742 xfree (this_package_name);
7743 }
7744 }
7745 }
7746 }
7747
7748 if (package_name != NULL)
7749 {
7750 struct objfile *objfile = cu->objfile;
7751 const char *saved_package_name
7752 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7753 package_name,
7754 strlen (package_name));
7755 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7756 saved_package_name, objfile);
7757 struct symbol *sym;
7758
7759 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7760
7761 sym = allocate_symbol (objfile);
7762 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7763 SYMBOL_SET_NAMES (sym, saved_package_name,
7764 strlen (saved_package_name), 0, objfile);
7765 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7766 e.g., "main" finds the "main" module and not C's main(). */
7767 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7768 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7769 SYMBOL_TYPE (sym) = type;
7770
7771 add_symbol_to_list (sym, &global_symbols);
7772
7773 xfree (package_name);
7774 }
7775 }
7776
7777 /* Return the symtab for PER_CU. This works properly regardless of
7778 whether we're using the index or psymtabs. */
7779
7780 static struct symtab *
7781 get_symtab (struct dwarf2_per_cu_data *per_cu)
7782 {
7783 return (dwarf2_per_objfile->using_index
7784 ? per_cu->v.quick->symtab
7785 : per_cu->v.psymtab->symtab);
7786 }
7787
7788 /* A helper function for computing the list of all symbol tables
7789 included by PER_CU. */
7790
7791 static void
7792 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7793 htab_t all_children, htab_t all_type_symtabs,
7794 struct dwarf2_per_cu_data *per_cu,
7795 struct symtab *immediate_parent)
7796 {
7797 void **slot;
7798 int ix;
7799 struct symtab *symtab;
7800 struct dwarf2_per_cu_data *iter;
7801
7802 slot = htab_find_slot (all_children, per_cu, INSERT);
7803 if (*slot != NULL)
7804 {
7805 /* This inclusion and its children have been processed. */
7806 return;
7807 }
7808
7809 *slot = per_cu;
7810 /* Only add a CU if it has a symbol table. */
7811 symtab = get_symtab (per_cu);
7812 if (symtab != NULL)
7813 {
7814 /* If this is a type unit only add its symbol table if we haven't
7815 seen it yet (type unit per_cu's can share symtabs). */
7816 if (per_cu->is_debug_types)
7817 {
7818 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7819 if (*slot == NULL)
7820 {
7821 *slot = symtab;
7822 VEC_safe_push (symtab_ptr, *result, symtab);
7823 if (symtab->user == NULL)
7824 symtab->user = immediate_parent;
7825 }
7826 }
7827 else
7828 {
7829 VEC_safe_push (symtab_ptr, *result, symtab);
7830 if (symtab->user == NULL)
7831 symtab->user = immediate_parent;
7832 }
7833 }
7834
7835 for (ix = 0;
7836 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7837 ++ix)
7838 {
7839 recursively_compute_inclusions (result, all_children,
7840 all_type_symtabs, iter, symtab);
7841 }
7842 }
7843
7844 /* Compute the symtab 'includes' fields for the symtab related to
7845 PER_CU. */
7846
7847 static void
7848 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7849 {
7850 gdb_assert (! per_cu->is_debug_types);
7851
7852 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7853 {
7854 int ix, len;
7855 struct dwarf2_per_cu_data *per_cu_iter;
7856 struct symtab *symtab_iter;
7857 VEC (symtab_ptr) *result_symtabs = NULL;
7858 htab_t all_children, all_type_symtabs;
7859 struct symtab *symtab = get_symtab (per_cu);
7860
7861 /* If we don't have a symtab, we can just skip this case. */
7862 if (symtab == NULL)
7863 return;
7864
7865 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7866 NULL, xcalloc, xfree);
7867 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7868 NULL, xcalloc, xfree);
7869
7870 for (ix = 0;
7871 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7872 ix, per_cu_iter);
7873 ++ix)
7874 {
7875 recursively_compute_inclusions (&result_symtabs, all_children,
7876 all_type_symtabs, per_cu_iter,
7877 symtab);
7878 }
7879
7880 /* Now we have a transitive closure of all the included symtabs. */
7881 len = VEC_length (symtab_ptr, result_symtabs);
7882 symtab->includes
7883 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7884 (len + 1) * sizeof (struct symtab *));
7885 for (ix = 0;
7886 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7887 ++ix)
7888 symtab->includes[ix] = symtab_iter;
7889 symtab->includes[len] = NULL;
7890
7891 VEC_free (symtab_ptr, result_symtabs);
7892 htab_delete (all_children);
7893 htab_delete (all_type_symtabs);
7894 }
7895 }
7896
7897 /* Compute the 'includes' field for the symtabs of all the CUs we just
7898 read. */
7899
7900 static void
7901 process_cu_includes (void)
7902 {
7903 int ix;
7904 struct dwarf2_per_cu_data *iter;
7905
7906 for (ix = 0;
7907 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7908 ix, iter);
7909 ++ix)
7910 {
7911 if (! iter->is_debug_types)
7912 compute_symtab_includes (iter);
7913 }
7914
7915 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7916 }
7917
7918 /* Generate full symbol information for PER_CU, whose DIEs have
7919 already been loaded into memory. */
7920
7921 static void
7922 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7923 enum language pretend_language)
7924 {
7925 struct dwarf2_cu *cu = per_cu->cu;
7926 struct objfile *objfile = per_cu->objfile;
7927 CORE_ADDR lowpc, highpc;
7928 struct symtab *symtab;
7929 struct cleanup *back_to, *delayed_list_cleanup;
7930 CORE_ADDR baseaddr;
7931 struct block *static_block;
7932
7933 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7934
7935 buildsym_init ();
7936 back_to = make_cleanup (really_free_pendings, NULL);
7937 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7938
7939 cu->list_in_scope = &file_symbols;
7940
7941 cu->language = pretend_language;
7942 cu->language_defn = language_def (cu->language);
7943
7944 /* Do line number decoding in read_file_scope () */
7945 process_die (cu->dies, cu);
7946
7947 /* For now fudge the Go package. */
7948 if (cu->language == language_go)
7949 fixup_go_packaging (cu);
7950
7951 /* Now that we have processed all the DIEs in the CU, all the types
7952 should be complete, and it should now be safe to compute all of the
7953 physnames. */
7954 compute_delayed_physnames (cu);
7955 do_cleanups (delayed_list_cleanup);
7956
7957 /* Some compilers don't define a DW_AT_high_pc attribute for the
7958 compilation unit. If the DW_AT_high_pc is missing, synthesize
7959 it, by scanning the DIE's below the compilation unit. */
7960 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7961
7962 static_block
7963 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7964
7965 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7966 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7967 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7968 addrmap to help ensure it has an accurate map of pc values belonging to
7969 this comp unit. */
7970 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7971
7972 symtab = end_symtab_from_static_block (static_block, objfile,
7973 SECT_OFF_TEXT (objfile), 0);
7974
7975 if (symtab != NULL)
7976 {
7977 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7978
7979 /* Set symtab language to language from DW_AT_language. If the
7980 compilation is from a C file generated by language preprocessors, do
7981 not set the language if it was already deduced by start_subfile. */
7982 if (!(cu->language == language_c && symtab->language != language_c))
7983 symtab->language = cu->language;
7984
7985 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7986 produce DW_AT_location with location lists but it can be possibly
7987 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7988 there were bugs in prologue debug info, fixed later in GCC-4.5
7989 by "unwind info for epilogues" patch (which is not directly related).
7990
7991 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7992 needed, it would be wrong due to missing DW_AT_producer there.
7993
7994 Still one can confuse GDB by using non-standard GCC compilation
7995 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7996 */
7997 if (cu->has_loclist && gcc_4_minor >= 5)
7998 symtab->locations_valid = 1;
7999
8000 if (gcc_4_minor >= 5)
8001 symtab->epilogue_unwind_valid = 1;
8002
8003 symtab->call_site_htab = cu->call_site_htab;
8004 }
8005
8006 if (dwarf2_per_objfile->using_index)
8007 per_cu->v.quick->symtab = symtab;
8008 else
8009 {
8010 struct partial_symtab *pst = per_cu->v.psymtab;
8011 pst->symtab = symtab;
8012 pst->readin = 1;
8013 }
8014
8015 /* Push it for inclusion processing later. */
8016 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8017
8018 do_cleanups (back_to);
8019 }
8020
8021 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8022 already been loaded into memory. */
8023
8024 static void
8025 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8026 enum language pretend_language)
8027 {
8028 struct dwarf2_cu *cu = per_cu->cu;
8029 struct objfile *objfile = per_cu->objfile;
8030 struct symtab *symtab;
8031 struct cleanup *back_to, *delayed_list_cleanup;
8032 struct signatured_type *sig_type;
8033
8034 gdb_assert (per_cu->is_debug_types);
8035 sig_type = (struct signatured_type *) per_cu;
8036
8037 buildsym_init ();
8038 back_to = make_cleanup (really_free_pendings, NULL);
8039 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8040
8041 cu->list_in_scope = &file_symbols;
8042
8043 cu->language = pretend_language;
8044 cu->language_defn = language_def (cu->language);
8045
8046 /* The symbol tables are set up in read_type_unit_scope. */
8047 process_die (cu->dies, cu);
8048
8049 /* For now fudge the Go package. */
8050 if (cu->language == language_go)
8051 fixup_go_packaging (cu);
8052
8053 /* Now that we have processed all the DIEs in the CU, all the types
8054 should be complete, and it should now be safe to compute all of the
8055 physnames. */
8056 compute_delayed_physnames (cu);
8057 do_cleanups (delayed_list_cleanup);
8058
8059 /* TUs share symbol tables.
8060 If this is the first TU to use this symtab, complete the construction
8061 of it with end_expandable_symtab. Otherwise, complete the addition of
8062 this TU's symbols to the existing symtab. */
8063 if (sig_type->type_unit_group->primary_symtab == NULL)
8064 {
8065 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8066 sig_type->type_unit_group->primary_symtab = symtab;
8067
8068 if (symtab != NULL)
8069 {
8070 /* Set symtab language to language from DW_AT_language. If the
8071 compilation is from a C file generated by language preprocessors,
8072 do not set the language if it was already deduced by
8073 start_subfile. */
8074 if (!(cu->language == language_c && symtab->language != language_c))
8075 symtab->language = cu->language;
8076 }
8077 }
8078 else
8079 {
8080 augment_type_symtab (objfile,
8081 sig_type->type_unit_group->primary_symtab);
8082 symtab = sig_type->type_unit_group->primary_symtab;
8083 }
8084
8085 if (dwarf2_per_objfile->using_index)
8086 per_cu->v.quick->symtab = symtab;
8087 else
8088 {
8089 struct partial_symtab *pst = per_cu->v.psymtab;
8090 pst->symtab = symtab;
8091 pst->readin = 1;
8092 }
8093
8094 do_cleanups (back_to);
8095 }
8096
8097 /* Process an imported unit DIE. */
8098
8099 static void
8100 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8101 {
8102 struct attribute *attr;
8103
8104 /* For now we don't handle imported units in type units. */
8105 if (cu->per_cu->is_debug_types)
8106 {
8107 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8108 " supported in type units [in module %s]"),
8109 objfile_name (cu->objfile));
8110 }
8111
8112 attr = dwarf2_attr (die, DW_AT_import, cu);
8113 if (attr != NULL)
8114 {
8115 struct dwarf2_per_cu_data *per_cu;
8116 struct symtab *imported_symtab;
8117 sect_offset offset;
8118 int is_dwz;
8119
8120 offset = dwarf2_get_ref_die_offset (attr);
8121 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8122 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8123
8124 /* If necessary, add it to the queue and load its DIEs. */
8125 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8126 load_full_comp_unit (per_cu, cu->language);
8127
8128 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8129 per_cu);
8130 }
8131 }
8132
8133 /* Reset the in_process bit of a die. */
8134
8135 static void
8136 reset_die_in_process (void *arg)
8137 {
8138 struct die_info *die = arg;
8139
8140 die->in_process = 0;
8141 }
8142
8143 /* Process a die and its children. */
8144
8145 static void
8146 process_die (struct die_info *die, struct dwarf2_cu *cu)
8147 {
8148 struct cleanup *in_process;
8149
8150 /* We should only be processing those not already in process. */
8151 gdb_assert (!die->in_process);
8152
8153 die->in_process = 1;
8154 in_process = make_cleanup (reset_die_in_process,die);
8155
8156 switch (die->tag)
8157 {
8158 case DW_TAG_padding:
8159 break;
8160 case DW_TAG_compile_unit:
8161 case DW_TAG_partial_unit:
8162 read_file_scope (die, cu);
8163 break;
8164 case DW_TAG_type_unit:
8165 read_type_unit_scope (die, cu);
8166 break;
8167 case DW_TAG_subprogram:
8168 case DW_TAG_inlined_subroutine:
8169 read_func_scope (die, cu);
8170 break;
8171 case DW_TAG_lexical_block:
8172 case DW_TAG_try_block:
8173 case DW_TAG_catch_block:
8174 read_lexical_block_scope (die, cu);
8175 break;
8176 case DW_TAG_GNU_call_site:
8177 read_call_site_scope (die, cu);
8178 break;
8179 case DW_TAG_class_type:
8180 case DW_TAG_interface_type:
8181 case DW_TAG_structure_type:
8182 case DW_TAG_union_type:
8183 process_structure_scope (die, cu);
8184 break;
8185 case DW_TAG_enumeration_type:
8186 process_enumeration_scope (die, cu);
8187 break;
8188
8189 /* These dies have a type, but processing them does not create
8190 a symbol or recurse to process the children. Therefore we can
8191 read them on-demand through read_type_die. */
8192 case DW_TAG_subroutine_type:
8193 case DW_TAG_set_type:
8194 case DW_TAG_array_type:
8195 case DW_TAG_pointer_type:
8196 case DW_TAG_ptr_to_member_type:
8197 case DW_TAG_reference_type:
8198 case DW_TAG_string_type:
8199 break;
8200
8201 case DW_TAG_base_type:
8202 case DW_TAG_subrange_type:
8203 case DW_TAG_typedef:
8204 /* Add a typedef symbol for the type definition, if it has a
8205 DW_AT_name. */
8206 new_symbol (die, read_type_die (die, cu), cu);
8207 break;
8208 case DW_TAG_common_block:
8209 read_common_block (die, cu);
8210 break;
8211 case DW_TAG_common_inclusion:
8212 break;
8213 case DW_TAG_namespace:
8214 cu->processing_has_namespace_info = 1;
8215 read_namespace (die, cu);
8216 break;
8217 case DW_TAG_module:
8218 cu->processing_has_namespace_info = 1;
8219 read_module (die, cu);
8220 break;
8221 case DW_TAG_imported_declaration:
8222 cu->processing_has_namespace_info = 1;
8223 if (read_namespace_alias (die, cu))
8224 break;
8225 /* The declaration is not a global namespace alias: fall through. */
8226 case DW_TAG_imported_module:
8227 cu->processing_has_namespace_info = 1;
8228 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8229 || cu->language != language_fortran))
8230 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8231 dwarf_tag_name (die->tag));
8232 read_import_statement (die, cu);
8233 break;
8234
8235 case DW_TAG_imported_unit:
8236 process_imported_unit_die (die, cu);
8237 break;
8238
8239 default:
8240 new_symbol (die, NULL, cu);
8241 break;
8242 }
8243
8244 do_cleanups (in_process);
8245 }
8246 \f
8247 /* DWARF name computation. */
8248
8249 /* A helper function for dwarf2_compute_name which determines whether DIE
8250 needs to have the name of the scope prepended to the name listed in the
8251 die. */
8252
8253 static int
8254 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8255 {
8256 struct attribute *attr;
8257
8258 switch (die->tag)
8259 {
8260 case DW_TAG_namespace:
8261 case DW_TAG_typedef:
8262 case DW_TAG_class_type:
8263 case DW_TAG_interface_type:
8264 case DW_TAG_structure_type:
8265 case DW_TAG_union_type:
8266 case DW_TAG_enumeration_type:
8267 case DW_TAG_enumerator:
8268 case DW_TAG_subprogram:
8269 case DW_TAG_member:
8270 case DW_TAG_imported_declaration:
8271 return 1;
8272
8273 case DW_TAG_variable:
8274 case DW_TAG_constant:
8275 /* We only need to prefix "globally" visible variables. These include
8276 any variable marked with DW_AT_external or any variable that
8277 lives in a namespace. [Variables in anonymous namespaces
8278 require prefixing, but they are not DW_AT_external.] */
8279
8280 if (dwarf2_attr (die, DW_AT_specification, cu))
8281 {
8282 struct dwarf2_cu *spec_cu = cu;
8283
8284 return die_needs_namespace (die_specification (die, &spec_cu),
8285 spec_cu);
8286 }
8287
8288 attr = dwarf2_attr (die, DW_AT_external, cu);
8289 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8290 && die->parent->tag != DW_TAG_module)
8291 return 0;
8292 /* A variable in a lexical block of some kind does not need a
8293 namespace, even though in C++ such variables may be external
8294 and have a mangled name. */
8295 if (die->parent->tag == DW_TAG_lexical_block
8296 || die->parent->tag == DW_TAG_try_block
8297 || die->parent->tag == DW_TAG_catch_block
8298 || die->parent->tag == DW_TAG_subprogram)
8299 return 0;
8300 return 1;
8301
8302 default:
8303 return 0;
8304 }
8305 }
8306
8307 /* Retrieve the last character from a mem_file. */
8308
8309 static void
8310 do_ui_file_peek_last (void *object, const char *buffer, long length)
8311 {
8312 char *last_char_p = (char *) object;
8313
8314 if (length > 0)
8315 *last_char_p = buffer[length - 1];
8316 }
8317
8318 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8319 compute the physname for the object, which include a method's:
8320 - formal parameters (C++/Java),
8321 - receiver type (Go),
8322 - return type (Java).
8323
8324 The term "physname" is a bit confusing.
8325 For C++, for example, it is the demangled name.
8326 For Go, for example, it's the mangled name.
8327
8328 For Ada, return the DIE's linkage name rather than the fully qualified
8329 name. PHYSNAME is ignored..
8330
8331 The result is allocated on the objfile_obstack and canonicalized. */
8332
8333 static const char *
8334 dwarf2_compute_name (const char *name,
8335 struct die_info *die, struct dwarf2_cu *cu,
8336 int physname)
8337 {
8338 struct objfile *objfile = cu->objfile;
8339
8340 if (name == NULL)
8341 name = dwarf2_name (die, cu);
8342
8343 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8344 compute it by typename_concat inside GDB. */
8345 if (cu->language == language_ada
8346 || (cu->language == language_fortran && physname))
8347 {
8348 /* For Ada unit, we prefer the linkage name over the name, as
8349 the former contains the exported name, which the user expects
8350 to be able to reference. Ideally, we want the user to be able
8351 to reference this entity using either natural or linkage name,
8352 but we haven't started looking at this enhancement yet. */
8353 struct attribute *attr;
8354
8355 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8356 if (attr == NULL)
8357 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8358 if (attr && DW_STRING (attr))
8359 return DW_STRING (attr);
8360 }
8361
8362 /* These are the only languages we know how to qualify names in. */
8363 if (name != NULL
8364 && (cu->language == language_cplus || cu->language == language_java
8365 || cu->language == language_fortran))
8366 {
8367 if (die_needs_namespace (die, cu))
8368 {
8369 long length;
8370 const char *prefix;
8371 struct ui_file *buf;
8372 char *intermediate_name;
8373 const char *canonical_name = NULL;
8374
8375 prefix = determine_prefix (die, cu);
8376 buf = mem_fileopen ();
8377 if (*prefix != '\0')
8378 {
8379 char *prefixed_name = typename_concat (NULL, prefix, name,
8380 physname, cu);
8381
8382 fputs_unfiltered (prefixed_name, buf);
8383 xfree (prefixed_name);
8384 }
8385 else
8386 fputs_unfiltered (name, buf);
8387
8388 /* Template parameters may be specified in the DIE's DW_AT_name, or
8389 as children with DW_TAG_template_type_param or
8390 DW_TAG_value_type_param. If the latter, add them to the name
8391 here. If the name already has template parameters, then
8392 skip this step; some versions of GCC emit both, and
8393 it is more efficient to use the pre-computed name.
8394
8395 Something to keep in mind about this process: it is very
8396 unlikely, or in some cases downright impossible, to produce
8397 something that will match the mangled name of a function.
8398 If the definition of the function has the same debug info,
8399 we should be able to match up with it anyway. But fallbacks
8400 using the minimal symbol, for instance to find a method
8401 implemented in a stripped copy of libstdc++, will not work.
8402 If we do not have debug info for the definition, we will have to
8403 match them up some other way.
8404
8405 When we do name matching there is a related problem with function
8406 templates; two instantiated function templates are allowed to
8407 differ only by their return types, which we do not add here. */
8408
8409 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8410 {
8411 struct attribute *attr;
8412 struct die_info *child;
8413 int first = 1;
8414
8415 die->building_fullname = 1;
8416
8417 for (child = die->child; child != NULL; child = child->sibling)
8418 {
8419 struct type *type;
8420 LONGEST value;
8421 const gdb_byte *bytes;
8422 struct dwarf2_locexpr_baton *baton;
8423 struct value *v;
8424
8425 if (child->tag != DW_TAG_template_type_param
8426 && child->tag != DW_TAG_template_value_param)
8427 continue;
8428
8429 if (first)
8430 {
8431 fputs_unfiltered ("<", buf);
8432 first = 0;
8433 }
8434 else
8435 fputs_unfiltered (", ", buf);
8436
8437 attr = dwarf2_attr (child, DW_AT_type, cu);
8438 if (attr == NULL)
8439 {
8440 complaint (&symfile_complaints,
8441 _("template parameter missing DW_AT_type"));
8442 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8443 continue;
8444 }
8445 type = die_type (child, cu);
8446
8447 if (child->tag == DW_TAG_template_type_param)
8448 {
8449 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8450 continue;
8451 }
8452
8453 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8454 if (attr == NULL)
8455 {
8456 complaint (&symfile_complaints,
8457 _("template parameter missing "
8458 "DW_AT_const_value"));
8459 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8460 continue;
8461 }
8462
8463 dwarf2_const_value_attr (attr, type, name,
8464 &cu->comp_unit_obstack, cu,
8465 &value, &bytes, &baton);
8466
8467 if (TYPE_NOSIGN (type))
8468 /* GDB prints characters as NUMBER 'CHAR'. If that's
8469 changed, this can use value_print instead. */
8470 c_printchar (value, type, buf);
8471 else
8472 {
8473 struct value_print_options opts;
8474
8475 if (baton != NULL)
8476 v = dwarf2_evaluate_loc_desc (type, NULL,
8477 baton->data,
8478 baton->size,
8479 baton->per_cu);
8480 else if (bytes != NULL)
8481 {
8482 v = allocate_value (type);
8483 memcpy (value_contents_writeable (v), bytes,
8484 TYPE_LENGTH (type));
8485 }
8486 else
8487 v = value_from_longest (type, value);
8488
8489 /* Specify decimal so that we do not depend on
8490 the radix. */
8491 get_formatted_print_options (&opts, 'd');
8492 opts.raw = 1;
8493 value_print (v, buf, &opts);
8494 release_value (v);
8495 value_free (v);
8496 }
8497 }
8498
8499 die->building_fullname = 0;
8500
8501 if (!first)
8502 {
8503 /* Close the argument list, with a space if necessary
8504 (nested templates). */
8505 char last_char = '\0';
8506 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8507 if (last_char == '>')
8508 fputs_unfiltered (" >", buf);
8509 else
8510 fputs_unfiltered (">", buf);
8511 }
8512 }
8513
8514 /* For Java and C++ methods, append formal parameter type
8515 information, if PHYSNAME. */
8516
8517 if (physname && die->tag == DW_TAG_subprogram
8518 && (cu->language == language_cplus
8519 || cu->language == language_java))
8520 {
8521 struct type *type = read_type_die (die, cu);
8522
8523 c_type_print_args (type, buf, 1, cu->language,
8524 &type_print_raw_options);
8525
8526 if (cu->language == language_java)
8527 {
8528 /* For java, we must append the return type to method
8529 names. */
8530 if (die->tag == DW_TAG_subprogram)
8531 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8532 0, 0, &type_print_raw_options);
8533 }
8534 else if (cu->language == language_cplus)
8535 {
8536 /* Assume that an artificial first parameter is
8537 "this", but do not crash if it is not. RealView
8538 marks unnamed (and thus unused) parameters as
8539 artificial; there is no way to differentiate
8540 the two cases. */
8541 if (TYPE_NFIELDS (type) > 0
8542 && TYPE_FIELD_ARTIFICIAL (type, 0)
8543 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8544 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8545 0))))
8546 fputs_unfiltered (" const", buf);
8547 }
8548 }
8549
8550 intermediate_name = ui_file_xstrdup (buf, &length);
8551 ui_file_delete (buf);
8552
8553 if (cu->language == language_cplus)
8554 canonical_name
8555 = dwarf2_canonicalize_name (intermediate_name, cu,
8556 &objfile->per_bfd->storage_obstack);
8557
8558 /* If we only computed INTERMEDIATE_NAME, or if
8559 INTERMEDIATE_NAME is already canonical, then we need to
8560 copy it to the appropriate obstack. */
8561 if (canonical_name == NULL || canonical_name == intermediate_name)
8562 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8563 intermediate_name,
8564 strlen (intermediate_name));
8565 else
8566 name = canonical_name;
8567
8568 xfree (intermediate_name);
8569 }
8570 }
8571
8572 return name;
8573 }
8574
8575 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8576 If scope qualifiers are appropriate they will be added. The result
8577 will be allocated on the storage_obstack, or NULL if the DIE does
8578 not have a name. NAME may either be from a previous call to
8579 dwarf2_name or NULL.
8580
8581 The output string will be canonicalized (if C++/Java). */
8582
8583 static const char *
8584 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8585 {
8586 return dwarf2_compute_name (name, die, cu, 0);
8587 }
8588
8589 /* Construct a physname for the given DIE in CU. NAME may either be
8590 from a previous call to dwarf2_name or NULL. The result will be
8591 allocated on the objfile_objstack or NULL if the DIE does not have a
8592 name.
8593
8594 The output string will be canonicalized (if C++/Java). */
8595
8596 static const char *
8597 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8598 {
8599 struct objfile *objfile = cu->objfile;
8600 struct attribute *attr;
8601 const char *retval, *mangled = NULL, *canon = NULL;
8602 struct cleanup *back_to;
8603 int need_copy = 1;
8604
8605 /* In this case dwarf2_compute_name is just a shortcut not building anything
8606 on its own. */
8607 if (!die_needs_namespace (die, cu))
8608 return dwarf2_compute_name (name, die, cu, 1);
8609
8610 back_to = make_cleanup (null_cleanup, NULL);
8611
8612 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8613 if (!attr)
8614 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8615
8616 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8617 has computed. */
8618 if (attr && DW_STRING (attr))
8619 {
8620 char *demangled;
8621
8622 mangled = DW_STRING (attr);
8623
8624 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8625 type. It is easier for GDB users to search for such functions as
8626 `name(params)' than `long name(params)'. In such case the minimal
8627 symbol names do not match the full symbol names but for template
8628 functions there is never a need to look up their definition from their
8629 declaration so the only disadvantage remains the minimal symbol
8630 variant `long name(params)' does not have the proper inferior type.
8631 */
8632
8633 if (cu->language == language_go)
8634 {
8635 /* This is a lie, but we already lie to the caller new_symbol_full.
8636 new_symbol_full assumes we return the mangled name.
8637 This just undoes that lie until things are cleaned up. */
8638 demangled = NULL;
8639 }
8640 else
8641 {
8642 demangled = gdb_demangle (mangled,
8643 (DMGL_PARAMS | DMGL_ANSI
8644 | (cu->language == language_java
8645 ? DMGL_JAVA | DMGL_RET_POSTFIX
8646 : DMGL_RET_DROP)));
8647 }
8648 if (demangled)
8649 {
8650 make_cleanup (xfree, demangled);
8651 canon = demangled;
8652 }
8653 else
8654 {
8655 canon = mangled;
8656 need_copy = 0;
8657 }
8658 }
8659
8660 if (canon == NULL || check_physname)
8661 {
8662 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8663
8664 if (canon != NULL && strcmp (physname, canon) != 0)
8665 {
8666 /* It may not mean a bug in GDB. The compiler could also
8667 compute DW_AT_linkage_name incorrectly. But in such case
8668 GDB would need to be bug-to-bug compatible. */
8669
8670 complaint (&symfile_complaints,
8671 _("Computed physname <%s> does not match demangled <%s> "
8672 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8673 physname, canon, mangled, die->offset.sect_off,
8674 objfile_name (objfile));
8675
8676 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8677 is available here - over computed PHYSNAME. It is safer
8678 against both buggy GDB and buggy compilers. */
8679
8680 retval = canon;
8681 }
8682 else
8683 {
8684 retval = physname;
8685 need_copy = 0;
8686 }
8687 }
8688 else
8689 retval = canon;
8690
8691 if (need_copy)
8692 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8693 retval, strlen (retval));
8694
8695 do_cleanups (back_to);
8696 return retval;
8697 }
8698
8699 /* Inspect DIE in CU for a namespace alias. If one exists, record
8700 a new symbol for it.
8701
8702 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8703
8704 static int
8705 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8706 {
8707 struct attribute *attr;
8708
8709 /* If the die does not have a name, this is not a namespace
8710 alias. */
8711 attr = dwarf2_attr (die, DW_AT_name, cu);
8712 if (attr != NULL)
8713 {
8714 int num;
8715 struct die_info *d = die;
8716 struct dwarf2_cu *imported_cu = cu;
8717
8718 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8719 keep inspecting DIEs until we hit the underlying import. */
8720 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8721 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8722 {
8723 attr = dwarf2_attr (d, DW_AT_import, cu);
8724 if (attr == NULL)
8725 break;
8726
8727 d = follow_die_ref (d, attr, &imported_cu);
8728 if (d->tag != DW_TAG_imported_declaration)
8729 break;
8730 }
8731
8732 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8733 {
8734 complaint (&symfile_complaints,
8735 _("DIE at 0x%x has too many recursively imported "
8736 "declarations"), d->offset.sect_off);
8737 return 0;
8738 }
8739
8740 if (attr != NULL)
8741 {
8742 struct type *type;
8743 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8744
8745 type = get_die_type_at_offset (offset, cu->per_cu);
8746 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8747 {
8748 /* This declaration is a global namespace alias. Add
8749 a symbol for it whose type is the aliased namespace. */
8750 new_symbol (die, type, cu);
8751 return 1;
8752 }
8753 }
8754 }
8755
8756 return 0;
8757 }
8758
8759 /* Read the import statement specified by the given die and record it. */
8760
8761 static void
8762 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8763 {
8764 struct objfile *objfile = cu->objfile;
8765 struct attribute *import_attr;
8766 struct die_info *imported_die, *child_die;
8767 struct dwarf2_cu *imported_cu;
8768 const char *imported_name;
8769 const char *imported_name_prefix;
8770 const char *canonical_name;
8771 const char *import_alias;
8772 const char *imported_declaration = NULL;
8773 const char *import_prefix;
8774 VEC (const_char_ptr) *excludes = NULL;
8775 struct cleanup *cleanups;
8776
8777 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8778 if (import_attr == NULL)
8779 {
8780 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8781 dwarf_tag_name (die->tag));
8782 return;
8783 }
8784
8785 imported_cu = cu;
8786 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8787 imported_name = dwarf2_name (imported_die, imported_cu);
8788 if (imported_name == NULL)
8789 {
8790 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8791
8792 The import in the following code:
8793 namespace A
8794 {
8795 typedef int B;
8796 }
8797
8798 int main ()
8799 {
8800 using A::B;
8801 B b;
8802 return b;
8803 }
8804
8805 ...
8806 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8807 <52> DW_AT_decl_file : 1
8808 <53> DW_AT_decl_line : 6
8809 <54> DW_AT_import : <0x75>
8810 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8811 <59> DW_AT_name : B
8812 <5b> DW_AT_decl_file : 1
8813 <5c> DW_AT_decl_line : 2
8814 <5d> DW_AT_type : <0x6e>
8815 ...
8816 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8817 <76> DW_AT_byte_size : 4
8818 <77> DW_AT_encoding : 5 (signed)
8819
8820 imports the wrong die ( 0x75 instead of 0x58 ).
8821 This case will be ignored until the gcc bug is fixed. */
8822 return;
8823 }
8824
8825 /* Figure out the local name after import. */
8826 import_alias = dwarf2_name (die, cu);
8827
8828 /* Figure out where the statement is being imported to. */
8829 import_prefix = determine_prefix (die, cu);
8830
8831 /* Figure out what the scope of the imported die is and prepend it
8832 to the name of the imported die. */
8833 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8834
8835 if (imported_die->tag != DW_TAG_namespace
8836 && imported_die->tag != DW_TAG_module)
8837 {
8838 imported_declaration = imported_name;
8839 canonical_name = imported_name_prefix;
8840 }
8841 else if (strlen (imported_name_prefix) > 0)
8842 canonical_name = obconcat (&objfile->objfile_obstack,
8843 imported_name_prefix, "::", imported_name,
8844 (char *) NULL);
8845 else
8846 canonical_name = imported_name;
8847
8848 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8849
8850 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8851 for (child_die = die->child; child_die && child_die->tag;
8852 child_die = sibling_die (child_die))
8853 {
8854 /* DWARF-4: A Fortran use statement with a “rename list” may be
8855 represented by an imported module entry with an import attribute
8856 referring to the module and owned entries corresponding to those
8857 entities that are renamed as part of being imported. */
8858
8859 if (child_die->tag != DW_TAG_imported_declaration)
8860 {
8861 complaint (&symfile_complaints,
8862 _("child DW_TAG_imported_declaration expected "
8863 "- DIE at 0x%x [in module %s]"),
8864 child_die->offset.sect_off, objfile_name (objfile));
8865 continue;
8866 }
8867
8868 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8869 if (import_attr == NULL)
8870 {
8871 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8872 dwarf_tag_name (child_die->tag));
8873 continue;
8874 }
8875
8876 imported_cu = cu;
8877 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8878 &imported_cu);
8879 imported_name = dwarf2_name (imported_die, imported_cu);
8880 if (imported_name == NULL)
8881 {
8882 complaint (&symfile_complaints,
8883 _("child DW_TAG_imported_declaration has unknown "
8884 "imported name - DIE at 0x%x [in module %s]"),
8885 child_die->offset.sect_off, objfile_name (objfile));
8886 continue;
8887 }
8888
8889 VEC_safe_push (const_char_ptr, excludes, imported_name);
8890
8891 process_die (child_die, cu);
8892 }
8893
8894 cp_add_using_directive (import_prefix,
8895 canonical_name,
8896 import_alias,
8897 imported_declaration,
8898 excludes,
8899 0,
8900 &objfile->objfile_obstack);
8901
8902 do_cleanups (cleanups);
8903 }
8904
8905 /* Cleanup function for handle_DW_AT_stmt_list. */
8906
8907 static void
8908 free_cu_line_header (void *arg)
8909 {
8910 struct dwarf2_cu *cu = arg;
8911
8912 free_line_header (cu->line_header);
8913 cu->line_header = NULL;
8914 }
8915
8916 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8917 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8918 this, it was first present in GCC release 4.3.0. */
8919
8920 static int
8921 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8922 {
8923 if (!cu->checked_producer)
8924 check_producer (cu);
8925
8926 return cu->producer_is_gcc_lt_4_3;
8927 }
8928
8929 static void
8930 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8931 const char **name, const char **comp_dir)
8932 {
8933 struct attribute *attr;
8934
8935 *name = NULL;
8936 *comp_dir = NULL;
8937
8938 /* Find the filename. Do not use dwarf2_name here, since the filename
8939 is not a source language identifier. */
8940 attr = dwarf2_attr (die, DW_AT_name, cu);
8941 if (attr)
8942 {
8943 *name = DW_STRING (attr);
8944 }
8945
8946 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8947 if (attr)
8948 *comp_dir = DW_STRING (attr);
8949 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8950 && IS_ABSOLUTE_PATH (*name))
8951 {
8952 char *d = ldirname (*name);
8953
8954 *comp_dir = d;
8955 if (d != NULL)
8956 make_cleanup (xfree, d);
8957 }
8958 if (*comp_dir != NULL)
8959 {
8960 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8961 directory, get rid of it. */
8962 char *cp = strchr (*comp_dir, ':');
8963
8964 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8965 *comp_dir = cp + 1;
8966 }
8967
8968 if (*name == NULL)
8969 *name = "<unknown>";
8970 }
8971
8972 /* Handle DW_AT_stmt_list for a compilation unit.
8973 DIE is the DW_TAG_compile_unit die for CU.
8974 COMP_DIR is the compilation directory. LOWPC is passed to
8975 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
8976
8977 static void
8978 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8979 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
8980 {
8981 struct attribute *attr;
8982
8983 gdb_assert (! cu->per_cu->is_debug_types);
8984
8985 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8986 if (attr)
8987 {
8988 unsigned int line_offset = DW_UNSND (attr);
8989 struct line_header *line_header
8990 = dwarf_decode_line_header (line_offset, cu);
8991
8992 if (line_header)
8993 {
8994 cu->line_header = line_header;
8995 make_cleanup (free_cu_line_header, cu);
8996 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
8997 }
8998 }
8999 }
9000
9001 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9002
9003 static void
9004 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9005 {
9006 struct objfile *objfile = dwarf2_per_objfile->objfile;
9007 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9008 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9009 CORE_ADDR highpc = ((CORE_ADDR) 0);
9010 struct attribute *attr;
9011 const char *name = NULL;
9012 const char *comp_dir = NULL;
9013 struct die_info *child_die;
9014 bfd *abfd = objfile->obfd;
9015 CORE_ADDR baseaddr;
9016
9017 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9018
9019 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9020
9021 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9022 from finish_block. */
9023 if (lowpc == ((CORE_ADDR) -1))
9024 lowpc = highpc;
9025 lowpc += baseaddr;
9026 highpc += baseaddr;
9027
9028 find_file_and_directory (die, cu, &name, &comp_dir);
9029
9030 prepare_one_comp_unit (cu, die, cu->language);
9031
9032 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9033 standardised yet. As a workaround for the language detection we fall
9034 back to the DW_AT_producer string. */
9035 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9036 cu->language = language_opencl;
9037
9038 /* Similar hack for Go. */
9039 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9040 set_cu_language (DW_LANG_Go, cu);
9041
9042 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9043
9044 /* Decode line number information if present. We do this before
9045 processing child DIEs, so that the line header table is available
9046 for DW_AT_decl_file. */
9047 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9048
9049 /* Process all dies in compilation unit. */
9050 if (die->child != NULL)
9051 {
9052 child_die = die->child;
9053 while (child_die && child_die->tag)
9054 {
9055 process_die (child_die, cu);
9056 child_die = sibling_die (child_die);
9057 }
9058 }
9059
9060 /* Decode macro information, if present. Dwarf 2 macro information
9061 refers to information in the line number info statement program
9062 header, so we can only read it if we've read the header
9063 successfully. */
9064 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9065 if (attr && cu->line_header)
9066 {
9067 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9068 complaint (&symfile_complaints,
9069 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9070
9071 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9072 }
9073 else
9074 {
9075 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9076 if (attr && cu->line_header)
9077 {
9078 unsigned int macro_offset = DW_UNSND (attr);
9079
9080 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9081 }
9082 }
9083
9084 do_cleanups (back_to);
9085 }
9086
9087 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9088 Create the set of symtabs used by this TU, or if this TU is sharing
9089 symtabs with another TU and the symtabs have already been created
9090 then restore those symtabs in the line header.
9091 We don't need the pc/line-number mapping for type units. */
9092
9093 static void
9094 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9095 {
9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
9097 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9098 struct type_unit_group *tu_group;
9099 int first_time;
9100 struct line_header *lh;
9101 struct attribute *attr;
9102 unsigned int i, line_offset;
9103 struct signatured_type *sig_type;
9104
9105 gdb_assert (per_cu->is_debug_types);
9106 sig_type = (struct signatured_type *) per_cu;
9107
9108 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9109
9110 /* If we're using .gdb_index (includes -readnow) then
9111 per_cu->type_unit_group may not have been set up yet. */
9112 if (sig_type->type_unit_group == NULL)
9113 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9114 tu_group = sig_type->type_unit_group;
9115
9116 /* If we've already processed this stmt_list there's no real need to
9117 do it again, we could fake it and just recreate the part we need
9118 (file name,index -> symtab mapping). If data shows this optimization
9119 is useful we can do it then. */
9120 first_time = tu_group->primary_symtab == NULL;
9121
9122 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9123 debug info. */
9124 lh = NULL;
9125 if (attr != NULL)
9126 {
9127 line_offset = DW_UNSND (attr);
9128 lh = dwarf_decode_line_header (line_offset, cu);
9129 }
9130 if (lh == NULL)
9131 {
9132 if (first_time)
9133 dwarf2_start_symtab (cu, "", NULL, 0);
9134 else
9135 {
9136 gdb_assert (tu_group->symtabs == NULL);
9137 restart_symtab (0);
9138 }
9139 /* Note: The primary symtab will get allocated at the end. */
9140 return;
9141 }
9142
9143 cu->line_header = lh;
9144 make_cleanup (free_cu_line_header, cu);
9145
9146 if (first_time)
9147 {
9148 dwarf2_start_symtab (cu, "", NULL, 0);
9149
9150 tu_group->num_symtabs = lh->num_file_names;
9151 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9152
9153 for (i = 0; i < lh->num_file_names; ++i)
9154 {
9155 const char *dir = NULL;
9156 struct file_entry *fe = &lh->file_names[i];
9157
9158 if (fe->dir_index)
9159 dir = lh->include_dirs[fe->dir_index - 1];
9160 dwarf2_start_subfile (fe->name, dir, NULL);
9161
9162 /* Note: We don't have to watch for the main subfile here, type units
9163 don't have DW_AT_name. */
9164
9165 if (current_subfile->symtab == NULL)
9166 {
9167 /* NOTE: start_subfile will recognize when it's been passed
9168 a file it has already seen. So we can't assume there's a
9169 simple mapping from lh->file_names to subfiles,
9170 lh->file_names may contain dups. */
9171 current_subfile->symtab = allocate_symtab (current_subfile->name,
9172 objfile);
9173 }
9174
9175 fe->symtab = current_subfile->symtab;
9176 tu_group->symtabs[i] = fe->symtab;
9177 }
9178 }
9179 else
9180 {
9181 restart_symtab (0);
9182
9183 for (i = 0; i < lh->num_file_names; ++i)
9184 {
9185 struct file_entry *fe = &lh->file_names[i];
9186
9187 fe->symtab = tu_group->symtabs[i];
9188 }
9189 }
9190
9191 /* The main symtab is allocated last. Type units don't have DW_AT_name
9192 so they don't have a "real" (so to speak) symtab anyway.
9193 There is later code that will assign the main symtab to all symbols
9194 that don't have one. We need to handle the case of a symbol with a
9195 missing symtab (DW_AT_decl_file) anyway. */
9196 }
9197
9198 /* Process DW_TAG_type_unit.
9199 For TUs we want to skip the first top level sibling if it's not the
9200 actual type being defined by this TU. In this case the first top
9201 level sibling is there to provide context only. */
9202
9203 static void
9204 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9205 {
9206 struct die_info *child_die;
9207
9208 prepare_one_comp_unit (cu, die, language_minimal);
9209
9210 /* Initialize (or reinitialize) the machinery for building symtabs.
9211 We do this before processing child DIEs, so that the line header table
9212 is available for DW_AT_decl_file. */
9213 setup_type_unit_groups (die, cu);
9214
9215 if (die->child != NULL)
9216 {
9217 child_die = die->child;
9218 while (child_die && child_die->tag)
9219 {
9220 process_die (child_die, cu);
9221 child_die = sibling_die (child_die);
9222 }
9223 }
9224 }
9225 \f
9226 /* DWO/DWP files.
9227
9228 http://gcc.gnu.org/wiki/DebugFission
9229 http://gcc.gnu.org/wiki/DebugFissionDWP
9230
9231 To simplify handling of both DWO files ("object" files with the DWARF info)
9232 and DWP files (a file with the DWOs packaged up into one file), we treat
9233 DWP files as having a collection of virtual DWO files. */
9234
9235 static hashval_t
9236 hash_dwo_file (const void *item)
9237 {
9238 const struct dwo_file *dwo_file = item;
9239 hashval_t hash;
9240
9241 hash = htab_hash_string (dwo_file->dwo_name);
9242 if (dwo_file->comp_dir != NULL)
9243 hash += htab_hash_string (dwo_file->comp_dir);
9244 return hash;
9245 }
9246
9247 static int
9248 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9249 {
9250 const struct dwo_file *lhs = item_lhs;
9251 const struct dwo_file *rhs = item_rhs;
9252
9253 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9254 return 0;
9255 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9256 return lhs->comp_dir == rhs->comp_dir;
9257 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9258 }
9259
9260 /* Allocate a hash table for DWO files. */
9261
9262 static htab_t
9263 allocate_dwo_file_hash_table (void)
9264 {
9265 struct objfile *objfile = dwarf2_per_objfile->objfile;
9266
9267 return htab_create_alloc_ex (41,
9268 hash_dwo_file,
9269 eq_dwo_file,
9270 NULL,
9271 &objfile->objfile_obstack,
9272 hashtab_obstack_allocate,
9273 dummy_obstack_deallocate);
9274 }
9275
9276 /* Lookup DWO file DWO_NAME. */
9277
9278 static void **
9279 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9280 {
9281 struct dwo_file find_entry;
9282 void **slot;
9283
9284 if (dwarf2_per_objfile->dwo_files == NULL)
9285 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9286
9287 memset (&find_entry, 0, sizeof (find_entry));
9288 find_entry.dwo_name = dwo_name;
9289 find_entry.comp_dir = comp_dir;
9290 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9291
9292 return slot;
9293 }
9294
9295 static hashval_t
9296 hash_dwo_unit (const void *item)
9297 {
9298 const struct dwo_unit *dwo_unit = item;
9299
9300 /* This drops the top 32 bits of the id, but is ok for a hash. */
9301 return dwo_unit->signature;
9302 }
9303
9304 static int
9305 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9306 {
9307 const struct dwo_unit *lhs = item_lhs;
9308 const struct dwo_unit *rhs = item_rhs;
9309
9310 /* The signature is assumed to be unique within the DWO file.
9311 So while object file CU dwo_id's always have the value zero,
9312 that's OK, assuming each object file DWO file has only one CU,
9313 and that's the rule for now. */
9314 return lhs->signature == rhs->signature;
9315 }
9316
9317 /* Allocate a hash table for DWO CUs,TUs.
9318 There is one of these tables for each of CUs,TUs for each DWO file. */
9319
9320 static htab_t
9321 allocate_dwo_unit_table (struct objfile *objfile)
9322 {
9323 /* Start out with a pretty small number.
9324 Generally DWO files contain only one CU and maybe some TUs. */
9325 return htab_create_alloc_ex (3,
9326 hash_dwo_unit,
9327 eq_dwo_unit,
9328 NULL,
9329 &objfile->objfile_obstack,
9330 hashtab_obstack_allocate,
9331 dummy_obstack_deallocate);
9332 }
9333
9334 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9335
9336 struct create_dwo_cu_data
9337 {
9338 struct dwo_file *dwo_file;
9339 struct dwo_unit dwo_unit;
9340 };
9341
9342 /* die_reader_func for create_dwo_cu. */
9343
9344 static void
9345 create_dwo_cu_reader (const struct die_reader_specs *reader,
9346 const gdb_byte *info_ptr,
9347 struct die_info *comp_unit_die,
9348 int has_children,
9349 void *datap)
9350 {
9351 struct dwarf2_cu *cu = reader->cu;
9352 struct objfile *objfile = dwarf2_per_objfile->objfile;
9353 sect_offset offset = cu->per_cu->offset;
9354 struct dwarf2_section_info *section = cu->per_cu->section;
9355 struct create_dwo_cu_data *data = datap;
9356 struct dwo_file *dwo_file = data->dwo_file;
9357 struct dwo_unit *dwo_unit = &data->dwo_unit;
9358 struct attribute *attr;
9359
9360 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9361 if (attr == NULL)
9362 {
9363 complaint (&symfile_complaints,
9364 _("Dwarf Error: debug entry at offset 0x%x is missing"
9365 " its dwo_id [in module %s]"),
9366 offset.sect_off, dwo_file->dwo_name);
9367 return;
9368 }
9369
9370 dwo_unit->dwo_file = dwo_file;
9371 dwo_unit->signature = DW_UNSND (attr);
9372 dwo_unit->section = section;
9373 dwo_unit->offset = offset;
9374 dwo_unit->length = cu->per_cu->length;
9375
9376 if (dwarf2_read_debug)
9377 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9378 offset.sect_off, hex_string (dwo_unit->signature));
9379 }
9380
9381 /* Create the dwo_unit for the lone CU in DWO_FILE.
9382 Note: This function processes DWO files only, not DWP files. */
9383
9384 static struct dwo_unit *
9385 create_dwo_cu (struct dwo_file *dwo_file)
9386 {
9387 struct objfile *objfile = dwarf2_per_objfile->objfile;
9388 struct dwarf2_section_info *section = &dwo_file->sections.info;
9389 bfd *abfd;
9390 htab_t cu_htab;
9391 const gdb_byte *info_ptr, *end_ptr;
9392 struct create_dwo_cu_data create_dwo_cu_data;
9393 struct dwo_unit *dwo_unit;
9394
9395 dwarf2_read_section (objfile, section);
9396 info_ptr = section->buffer;
9397
9398 if (info_ptr == NULL)
9399 return NULL;
9400
9401 /* We can't set abfd until now because the section may be empty or
9402 not present, in which case section->asection will be NULL. */
9403 abfd = get_section_bfd_owner (section);
9404
9405 if (dwarf2_read_debug)
9406 {
9407 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9408 get_section_name (section),
9409 get_section_file_name (section));
9410 }
9411
9412 create_dwo_cu_data.dwo_file = dwo_file;
9413 dwo_unit = NULL;
9414
9415 end_ptr = info_ptr + section->size;
9416 while (info_ptr < end_ptr)
9417 {
9418 struct dwarf2_per_cu_data per_cu;
9419
9420 memset (&create_dwo_cu_data.dwo_unit, 0,
9421 sizeof (create_dwo_cu_data.dwo_unit));
9422 memset (&per_cu, 0, sizeof (per_cu));
9423 per_cu.objfile = objfile;
9424 per_cu.is_debug_types = 0;
9425 per_cu.offset.sect_off = info_ptr - section->buffer;
9426 per_cu.section = section;
9427
9428 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9429 create_dwo_cu_reader,
9430 &create_dwo_cu_data);
9431
9432 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9433 {
9434 /* If we've already found one, complain. We only support one
9435 because having more than one requires hacking the dwo_name of
9436 each to match, which is highly unlikely to happen. */
9437 if (dwo_unit != NULL)
9438 {
9439 complaint (&symfile_complaints,
9440 _("Multiple CUs in DWO file %s [in module %s]"),
9441 dwo_file->dwo_name, objfile_name (objfile));
9442 break;
9443 }
9444
9445 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9446 *dwo_unit = create_dwo_cu_data.dwo_unit;
9447 }
9448
9449 info_ptr += per_cu.length;
9450 }
9451
9452 return dwo_unit;
9453 }
9454
9455 /* DWP file .debug_{cu,tu}_index section format:
9456 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9457
9458 DWP Version 1:
9459
9460 Both index sections have the same format, and serve to map a 64-bit
9461 signature to a set of section numbers. Each section begins with a header,
9462 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9463 indexes, and a pool of 32-bit section numbers. The index sections will be
9464 aligned at 8-byte boundaries in the file.
9465
9466 The index section header consists of:
9467
9468 V, 32 bit version number
9469 -, 32 bits unused
9470 N, 32 bit number of compilation units or type units in the index
9471 M, 32 bit number of slots in the hash table
9472
9473 Numbers are recorded using the byte order of the application binary.
9474
9475 The hash table begins at offset 16 in the section, and consists of an array
9476 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9477 order of the application binary). Unused slots in the hash table are 0.
9478 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9479
9480 The parallel table begins immediately after the hash table
9481 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9482 array of 32-bit indexes (using the byte order of the application binary),
9483 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9484 table contains a 32-bit index into the pool of section numbers. For unused
9485 hash table slots, the corresponding entry in the parallel table will be 0.
9486
9487 The pool of section numbers begins immediately following the hash table
9488 (at offset 16 + 12 * M from the beginning of the section). The pool of
9489 section numbers consists of an array of 32-bit words (using the byte order
9490 of the application binary). Each item in the array is indexed starting
9491 from 0. The hash table entry provides the index of the first section
9492 number in the set. Additional section numbers in the set follow, and the
9493 set is terminated by a 0 entry (section number 0 is not used in ELF).
9494
9495 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9496 section must be the first entry in the set, and the .debug_abbrev.dwo must
9497 be the second entry. Other members of the set may follow in any order.
9498
9499 ---
9500
9501 DWP Version 2:
9502
9503 DWP Version 2 combines all the .debug_info, etc. sections into one,
9504 and the entries in the index tables are now offsets into these sections.
9505 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9506 section.
9507
9508 Index Section Contents:
9509 Header
9510 Hash Table of Signatures dwp_hash_table.hash_table
9511 Parallel Table of Indices dwp_hash_table.unit_table
9512 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9513 Table of Section Sizes dwp_hash_table.v2.sizes
9514
9515 The index section header consists of:
9516
9517 V, 32 bit version number
9518 L, 32 bit number of columns in the table of section offsets
9519 N, 32 bit number of compilation units or type units in the index
9520 M, 32 bit number of slots in the hash table
9521
9522 Numbers are recorded using the byte order of the application binary.
9523
9524 The hash table has the same format as version 1.
9525 The parallel table of indices has the same format as version 1,
9526 except that the entries are origin-1 indices into the table of sections
9527 offsets and the table of section sizes.
9528
9529 The table of offsets begins immediately following the parallel table
9530 (at offset 16 + 12 * M from the beginning of the section). The table is
9531 a two-dimensional array of 32-bit words (using the byte order of the
9532 application binary), with L columns and N+1 rows, in row-major order.
9533 Each row in the array is indexed starting from 0. The first row provides
9534 a key to the remaining rows: each column in this row provides an identifier
9535 for a debug section, and the offsets in the same column of subsequent rows
9536 refer to that section. The section identifiers are:
9537
9538 DW_SECT_INFO 1 .debug_info.dwo
9539 DW_SECT_TYPES 2 .debug_types.dwo
9540 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9541 DW_SECT_LINE 4 .debug_line.dwo
9542 DW_SECT_LOC 5 .debug_loc.dwo
9543 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9544 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9545 DW_SECT_MACRO 8 .debug_macro.dwo
9546
9547 The offsets provided by the CU and TU index sections are the base offsets
9548 for the contributions made by each CU or TU to the corresponding section
9549 in the package file. Each CU and TU header contains an abbrev_offset
9550 field, used to find the abbreviations table for that CU or TU within the
9551 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9552 be interpreted as relative to the base offset given in the index section.
9553 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9554 should be interpreted as relative to the base offset for .debug_line.dwo,
9555 and offsets into other debug sections obtained from DWARF attributes should
9556 also be interpreted as relative to the corresponding base offset.
9557
9558 The table of sizes begins immediately following the table of offsets.
9559 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9560 with L columns and N rows, in row-major order. Each row in the array is
9561 indexed starting from 1 (row 0 is shared by the two tables).
9562
9563 ---
9564
9565 Hash table lookup is handled the same in version 1 and 2:
9566
9567 We assume that N and M will not exceed 2^32 - 1.
9568 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9569
9570 Given a 64-bit compilation unit signature or a type signature S, an entry
9571 in the hash table is located as follows:
9572
9573 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9574 the low-order k bits all set to 1.
9575
9576 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9577
9578 3) If the hash table entry at index H matches the signature, use that
9579 entry. If the hash table entry at index H is unused (all zeroes),
9580 terminate the search: the signature is not present in the table.
9581
9582 4) Let H = (H + H') modulo M. Repeat at Step 3.
9583
9584 Because M > N and H' and M are relatively prime, the search is guaranteed
9585 to stop at an unused slot or find the match. */
9586
9587 /* Create a hash table to map DWO IDs to their CU/TU entry in
9588 .debug_{info,types}.dwo in DWP_FILE.
9589 Returns NULL if there isn't one.
9590 Note: This function processes DWP files only, not DWO files. */
9591
9592 static struct dwp_hash_table *
9593 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9594 {
9595 struct objfile *objfile = dwarf2_per_objfile->objfile;
9596 bfd *dbfd = dwp_file->dbfd;
9597 const gdb_byte *index_ptr, *index_end;
9598 struct dwarf2_section_info *index;
9599 uint32_t version, nr_columns, nr_units, nr_slots;
9600 struct dwp_hash_table *htab;
9601
9602 if (is_debug_types)
9603 index = &dwp_file->sections.tu_index;
9604 else
9605 index = &dwp_file->sections.cu_index;
9606
9607 if (dwarf2_section_empty_p (index))
9608 return NULL;
9609 dwarf2_read_section (objfile, index);
9610
9611 index_ptr = index->buffer;
9612 index_end = index_ptr + index->size;
9613
9614 version = read_4_bytes (dbfd, index_ptr);
9615 index_ptr += 4;
9616 if (version == 2)
9617 nr_columns = read_4_bytes (dbfd, index_ptr);
9618 else
9619 nr_columns = 0;
9620 index_ptr += 4;
9621 nr_units = read_4_bytes (dbfd, index_ptr);
9622 index_ptr += 4;
9623 nr_slots = read_4_bytes (dbfd, index_ptr);
9624 index_ptr += 4;
9625
9626 if (version != 1 && version != 2)
9627 {
9628 error (_("Dwarf Error: unsupported DWP file version (%s)"
9629 " [in module %s]"),
9630 pulongest (version), dwp_file->name);
9631 }
9632 if (nr_slots != (nr_slots & -nr_slots))
9633 {
9634 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9635 " is not power of 2 [in module %s]"),
9636 pulongest (nr_slots), dwp_file->name);
9637 }
9638
9639 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9640 htab->version = version;
9641 htab->nr_columns = nr_columns;
9642 htab->nr_units = nr_units;
9643 htab->nr_slots = nr_slots;
9644 htab->hash_table = index_ptr;
9645 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9646
9647 /* Exit early if the table is empty. */
9648 if (nr_slots == 0 || nr_units == 0
9649 || (version == 2 && nr_columns == 0))
9650 {
9651 /* All must be zero. */
9652 if (nr_slots != 0 || nr_units != 0
9653 || (version == 2 && nr_columns != 0))
9654 {
9655 complaint (&symfile_complaints,
9656 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9657 " all zero [in modules %s]"),
9658 dwp_file->name);
9659 }
9660 return htab;
9661 }
9662
9663 if (version == 1)
9664 {
9665 htab->section_pool.v1.indices =
9666 htab->unit_table + sizeof (uint32_t) * nr_slots;
9667 /* It's harder to decide whether the section is too small in v1.
9668 V1 is deprecated anyway so we punt. */
9669 }
9670 else
9671 {
9672 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9673 int *ids = htab->section_pool.v2.section_ids;
9674 /* Reverse map for error checking. */
9675 int ids_seen[DW_SECT_MAX + 1];
9676 int i;
9677
9678 if (nr_columns < 2)
9679 {
9680 error (_("Dwarf Error: bad DWP hash table, too few columns"
9681 " in section table [in module %s]"),
9682 dwp_file->name);
9683 }
9684 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9685 {
9686 error (_("Dwarf Error: bad DWP hash table, too many columns"
9687 " in section table [in module %s]"),
9688 dwp_file->name);
9689 }
9690 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9691 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9692 for (i = 0; i < nr_columns; ++i)
9693 {
9694 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9695
9696 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9697 {
9698 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9699 " in section table [in module %s]"),
9700 id, dwp_file->name);
9701 }
9702 if (ids_seen[id] != -1)
9703 {
9704 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9705 " id %d in section table [in module %s]"),
9706 id, dwp_file->name);
9707 }
9708 ids_seen[id] = i;
9709 ids[i] = id;
9710 }
9711 /* Must have exactly one info or types section. */
9712 if (((ids_seen[DW_SECT_INFO] != -1)
9713 + (ids_seen[DW_SECT_TYPES] != -1))
9714 != 1)
9715 {
9716 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9717 " DWO info/types section [in module %s]"),
9718 dwp_file->name);
9719 }
9720 /* Must have an abbrev section. */
9721 if (ids_seen[DW_SECT_ABBREV] == -1)
9722 {
9723 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9724 " section [in module %s]"),
9725 dwp_file->name);
9726 }
9727 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9728 htab->section_pool.v2.sizes =
9729 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9730 * nr_units * nr_columns);
9731 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9732 * nr_units * nr_columns))
9733 > index_end)
9734 {
9735 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9736 " [in module %s]"),
9737 dwp_file->name);
9738 }
9739 }
9740
9741 return htab;
9742 }
9743
9744 /* Update SECTIONS with the data from SECTP.
9745
9746 This function is like the other "locate" section routines that are
9747 passed to bfd_map_over_sections, but in this context the sections to
9748 read comes from the DWP V1 hash table, not the full ELF section table.
9749
9750 The result is non-zero for success, or zero if an error was found. */
9751
9752 static int
9753 locate_v1_virtual_dwo_sections (asection *sectp,
9754 struct virtual_v1_dwo_sections *sections)
9755 {
9756 const struct dwop_section_names *names = &dwop_section_names;
9757
9758 if (section_is_p (sectp->name, &names->abbrev_dwo))
9759 {
9760 /* There can be only one. */
9761 if (sections->abbrev.s.asection != NULL)
9762 return 0;
9763 sections->abbrev.s.asection = sectp;
9764 sections->abbrev.size = bfd_get_section_size (sectp);
9765 }
9766 else if (section_is_p (sectp->name, &names->info_dwo)
9767 || section_is_p (sectp->name, &names->types_dwo))
9768 {
9769 /* There can be only one. */
9770 if (sections->info_or_types.s.asection != NULL)
9771 return 0;
9772 sections->info_or_types.s.asection = sectp;
9773 sections->info_or_types.size = bfd_get_section_size (sectp);
9774 }
9775 else if (section_is_p (sectp->name, &names->line_dwo))
9776 {
9777 /* There can be only one. */
9778 if (sections->line.s.asection != NULL)
9779 return 0;
9780 sections->line.s.asection = sectp;
9781 sections->line.size = bfd_get_section_size (sectp);
9782 }
9783 else if (section_is_p (sectp->name, &names->loc_dwo))
9784 {
9785 /* There can be only one. */
9786 if (sections->loc.s.asection != NULL)
9787 return 0;
9788 sections->loc.s.asection = sectp;
9789 sections->loc.size = bfd_get_section_size (sectp);
9790 }
9791 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9792 {
9793 /* There can be only one. */
9794 if (sections->macinfo.s.asection != NULL)
9795 return 0;
9796 sections->macinfo.s.asection = sectp;
9797 sections->macinfo.size = bfd_get_section_size (sectp);
9798 }
9799 else if (section_is_p (sectp->name, &names->macro_dwo))
9800 {
9801 /* There can be only one. */
9802 if (sections->macro.s.asection != NULL)
9803 return 0;
9804 sections->macro.s.asection = sectp;
9805 sections->macro.size = bfd_get_section_size (sectp);
9806 }
9807 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9808 {
9809 /* There can be only one. */
9810 if (sections->str_offsets.s.asection != NULL)
9811 return 0;
9812 sections->str_offsets.s.asection = sectp;
9813 sections->str_offsets.size = bfd_get_section_size (sectp);
9814 }
9815 else
9816 {
9817 /* No other kind of section is valid. */
9818 return 0;
9819 }
9820
9821 return 1;
9822 }
9823
9824 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9825 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9826 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9827 This is for DWP version 1 files. */
9828
9829 static struct dwo_unit *
9830 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9831 uint32_t unit_index,
9832 const char *comp_dir,
9833 ULONGEST signature, int is_debug_types)
9834 {
9835 struct objfile *objfile = dwarf2_per_objfile->objfile;
9836 const struct dwp_hash_table *dwp_htab =
9837 is_debug_types ? dwp_file->tus : dwp_file->cus;
9838 bfd *dbfd = dwp_file->dbfd;
9839 const char *kind = is_debug_types ? "TU" : "CU";
9840 struct dwo_file *dwo_file;
9841 struct dwo_unit *dwo_unit;
9842 struct virtual_v1_dwo_sections sections;
9843 void **dwo_file_slot;
9844 char *virtual_dwo_name;
9845 struct dwarf2_section_info *cutu;
9846 struct cleanup *cleanups;
9847 int i;
9848
9849 gdb_assert (dwp_file->version == 1);
9850
9851 if (dwarf2_read_debug)
9852 {
9853 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9854 kind,
9855 pulongest (unit_index), hex_string (signature),
9856 dwp_file->name);
9857 }
9858
9859 /* Fetch the sections of this DWO unit.
9860 Put a limit on the number of sections we look for so that bad data
9861 doesn't cause us to loop forever. */
9862
9863 #define MAX_NR_V1_DWO_SECTIONS \
9864 (1 /* .debug_info or .debug_types */ \
9865 + 1 /* .debug_abbrev */ \
9866 + 1 /* .debug_line */ \
9867 + 1 /* .debug_loc */ \
9868 + 1 /* .debug_str_offsets */ \
9869 + 1 /* .debug_macro or .debug_macinfo */ \
9870 + 1 /* trailing zero */)
9871
9872 memset (&sections, 0, sizeof (sections));
9873 cleanups = make_cleanup (null_cleanup, 0);
9874
9875 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9876 {
9877 asection *sectp;
9878 uint32_t section_nr =
9879 read_4_bytes (dbfd,
9880 dwp_htab->section_pool.v1.indices
9881 + (unit_index + i) * sizeof (uint32_t));
9882
9883 if (section_nr == 0)
9884 break;
9885 if (section_nr >= dwp_file->num_sections)
9886 {
9887 error (_("Dwarf Error: bad DWP hash table, section number too large"
9888 " [in module %s]"),
9889 dwp_file->name);
9890 }
9891
9892 sectp = dwp_file->elf_sections[section_nr];
9893 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9894 {
9895 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9896 " [in module %s]"),
9897 dwp_file->name);
9898 }
9899 }
9900
9901 if (i < 2
9902 || dwarf2_section_empty_p (&sections.info_or_types)
9903 || dwarf2_section_empty_p (&sections.abbrev))
9904 {
9905 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9906 " [in module %s]"),
9907 dwp_file->name);
9908 }
9909 if (i == MAX_NR_V1_DWO_SECTIONS)
9910 {
9911 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9912 " [in module %s]"),
9913 dwp_file->name);
9914 }
9915
9916 /* It's easier for the rest of the code if we fake a struct dwo_file and
9917 have dwo_unit "live" in that. At least for now.
9918
9919 The DWP file can be made up of a random collection of CUs and TUs.
9920 However, for each CU + set of TUs that came from the same original DWO
9921 file, we can combine them back into a virtual DWO file to save space
9922 (fewer struct dwo_file objects to allocate). Remember that for really
9923 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9924
9925 virtual_dwo_name =
9926 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9927 get_section_id (&sections.abbrev),
9928 get_section_id (&sections.line),
9929 get_section_id (&sections.loc),
9930 get_section_id (&sections.str_offsets));
9931 make_cleanup (xfree, virtual_dwo_name);
9932 /* Can we use an existing virtual DWO file? */
9933 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9934 /* Create one if necessary. */
9935 if (*dwo_file_slot == NULL)
9936 {
9937 if (dwarf2_read_debug)
9938 {
9939 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9940 virtual_dwo_name);
9941 }
9942 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9943 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9944 virtual_dwo_name,
9945 strlen (virtual_dwo_name));
9946 dwo_file->comp_dir = comp_dir;
9947 dwo_file->sections.abbrev = sections.abbrev;
9948 dwo_file->sections.line = sections.line;
9949 dwo_file->sections.loc = sections.loc;
9950 dwo_file->sections.macinfo = sections.macinfo;
9951 dwo_file->sections.macro = sections.macro;
9952 dwo_file->sections.str_offsets = sections.str_offsets;
9953 /* The "str" section is global to the entire DWP file. */
9954 dwo_file->sections.str = dwp_file->sections.str;
9955 /* The info or types section is assigned below to dwo_unit,
9956 there's no need to record it in dwo_file.
9957 Also, we can't simply record type sections in dwo_file because
9958 we record a pointer into the vector in dwo_unit. As we collect more
9959 types we'll grow the vector and eventually have to reallocate space
9960 for it, invalidating all copies of pointers into the previous
9961 contents. */
9962 *dwo_file_slot = dwo_file;
9963 }
9964 else
9965 {
9966 if (dwarf2_read_debug)
9967 {
9968 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9969 virtual_dwo_name);
9970 }
9971 dwo_file = *dwo_file_slot;
9972 }
9973 do_cleanups (cleanups);
9974
9975 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9976 dwo_unit->dwo_file = dwo_file;
9977 dwo_unit->signature = signature;
9978 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9979 sizeof (struct dwarf2_section_info));
9980 *dwo_unit->section = sections.info_or_types;
9981 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9982
9983 return dwo_unit;
9984 }
9985
9986 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9987 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9988 piece within that section used by a TU/CU, return a virtual section
9989 of just that piece. */
9990
9991 static struct dwarf2_section_info
9992 create_dwp_v2_section (struct dwarf2_section_info *section,
9993 bfd_size_type offset, bfd_size_type size)
9994 {
9995 struct dwarf2_section_info result;
9996 asection *sectp;
9997
9998 gdb_assert (section != NULL);
9999 gdb_assert (!section->is_virtual);
10000
10001 memset (&result, 0, sizeof (result));
10002 result.s.containing_section = section;
10003 result.is_virtual = 1;
10004
10005 if (size == 0)
10006 return result;
10007
10008 sectp = get_section_bfd_section (section);
10009
10010 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10011 bounds of the real section. This is a pretty-rare event, so just
10012 flag an error (easier) instead of a warning and trying to cope. */
10013 if (sectp == NULL
10014 || offset + size > bfd_get_section_size (sectp))
10015 {
10016 bfd *abfd = sectp->owner;
10017
10018 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10019 " in section %s [in module %s]"),
10020 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10021 objfile_name (dwarf2_per_objfile->objfile));
10022 }
10023
10024 result.virtual_offset = offset;
10025 result.size = size;
10026 return result;
10027 }
10028
10029 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10030 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10031 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10032 This is for DWP version 2 files. */
10033
10034 static struct dwo_unit *
10035 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10036 uint32_t unit_index,
10037 const char *comp_dir,
10038 ULONGEST signature, int is_debug_types)
10039 {
10040 struct objfile *objfile = dwarf2_per_objfile->objfile;
10041 const struct dwp_hash_table *dwp_htab =
10042 is_debug_types ? dwp_file->tus : dwp_file->cus;
10043 bfd *dbfd = dwp_file->dbfd;
10044 const char *kind = is_debug_types ? "TU" : "CU";
10045 struct dwo_file *dwo_file;
10046 struct dwo_unit *dwo_unit;
10047 struct virtual_v2_dwo_sections sections;
10048 void **dwo_file_slot;
10049 char *virtual_dwo_name;
10050 struct dwarf2_section_info *cutu;
10051 struct cleanup *cleanups;
10052 int i;
10053
10054 gdb_assert (dwp_file->version == 2);
10055
10056 if (dwarf2_read_debug)
10057 {
10058 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10059 kind,
10060 pulongest (unit_index), hex_string (signature),
10061 dwp_file->name);
10062 }
10063
10064 /* Fetch the section offsets of this DWO unit. */
10065
10066 memset (&sections, 0, sizeof (sections));
10067 cleanups = make_cleanup (null_cleanup, 0);
10068
10069 for (i = 0; i < dwp_htab->nr_columns; ++i)
10070 {
10071 uint32_t offset = read_4_bytes (dbfd,
10072 dwp_htab->section_pool.v2.offsets
10073 + (((unit_index - 1) * dwp_htab->nr_columns
10074 + i)
10075 * sizeof (uint32_t)));
10076 uint32_t size = read_4_bytes (dbfd,
10077 dwp_htab->section_pool.v2.sizes
10078 + (((unit_index - 1) * dwp_htab->nr_columns
10079 + i)
10080 * sizeof (uint32_t)));
10081
10082 switch (dwp_htab->section_pool.v2.section_ids[i])
10083 {
10084 case DW_SECT_INFO:
10085 case DW_SECT_TYPES:
10086 sections.info_or_types_offset = offset;
10087 sections.info_or_types_size = size;
10088 break;
10089 case DW_SECT_ABBREV:
10090 sections.abbrev_offset = offset;
10091 sections.abbrev_size = size;
10092 break;
10093 case DW_SECT_LINE:
10094 sections.line_offset = offset;
10095 sections.line_size = size;
10096 break;
10097 case DW_SECT_LOC:
10098 sections.loc_offset = offset;
10099 sections.loc_size = size;
10100 break;
10101 case DW_SECT_STR_OFFSETS:
10102 sections.str_offsets_offset = offset;
10103 sections.str_offsets_size = size;
10104 break;
10105 case DW_SECT_MACINFO:
10106 sections.macinfo_offset = offset;
10107 sections.macinfo_size = size;
10108 break;
10109 case DW_SECT_MACRO:
10110 sections.macro_offset = offset;
10111 sections.macro_size = size;
10112 break;
10113 }
10114 }
10115
10116 /* It's easier for the rest of the code if we fake a struct dwo_file and
10117 have dwo_unit "live" in that. At least for now.
10118
10119 The DWP file can be made up of a random collection of CUs and TUs.
10120 However, for each CU + set of TUs that came from the same original DWO
10121 file, we can combine them back into a virtual DWO file to save space
10122 (fewer struct dwo_file objects to allocate). Remember that for really
10123 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10124
10125 virtual_dwo_name =
10126 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10127 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10128 (long) (sections.line_size ? sections.line_offset : 0),
10129 (long) (sections.loc_size ? sections.loc_offset : 0),
10130 (long) (sections.str_offsets_size
10131 ? sections.str_offsets_offset : 0));
10132 make_cleanup (xfree, virtual_dwo_name);
10133 /* Can we use an existing virtual DWO file? */
10134 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10135 /* Create one if necessary. */
10136 if (*dwo_file_slot == NULL)
10137 {
10138 if (dwarf2_read_debug)
10139 {
10140 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10141 virtual_dwo_name);
10142 }
10143 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10144 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10145 virtual_dwo_name,
10146 strlen (virtual_dwo_name));
10147 dwo_file->comp_dir = comp_dir;
10148 dwo_file->sections.abbrev =
10149 create_dwp_v2_section (&dwp_file->sections.abbrev,
10150 sections.abbrev_offset, sections.abbrev_size);
10151 dwo_file->sections.line =
10152 create_dwp_v2_section (&dwp_file->sections.line,
10153 sections.line_offset, sections.line_size);
10154 dwo_file->sections.loc =
10155 create_dwp_v2_section (&dwp_file->sections.loc,
10156 sections.loc_offset, sections.loc_size);
10157 dwo_file->sections.macinfo =
10158 create_dwp_v2_section (&dwp_file->sections.macinfo,
10159 sections.macinfo_offset, sections.macinfo_size);
10160 dwo_file->sections.macro =
10161 create_dwp_v2_section (&dwp_file->sections.macro,
10162 sections.macro_offset, sections.macro_size);
10163 dwo_file->sections.str_offsets =
10164 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10165 sections.str_offsets_offset,
10166 sections.str_offsets_size);
10167 /* The "str" section is global to the entire DWP file. */
10168 dwo_file->sections.str = dwp_file->sections.str;
10169 /* The info or types section is assigned below to dwo_unit,
10170 there's no need to record it in dwo_file.
10171 Also, we can't simply record type sections in dwo_file because
10172 we record a pointer into the vector in dwo_unit. As we collect more
10173 types we'll grow the vector and eventually have to reallocate space
10174 for it, invalidating all copies of pointers into the previous
10175 contents. */
10176 *dwo_file_slot = dwo_file;
10177 }
10178 else
10179 {
10180 if (dwarf2_read_debug)
10181 {
10182 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10183 virtual_dwo_name);
10184 }
10185 dwo_file = *dwo_file_slot;
10186 }
10187 do_cleanups (cleanups);
10188
10189 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10190 dwo_unit->dwo_file = dwo_file;
10191 dwo_unit->signature = signature;
10192 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10193 sizeof (struct dwarf2_section_info));
10194 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10195 ? &dwp_file->sections.types
10196 : &dwp_file->sections.info,
10197 sections.info_or_types_offset,
10198 sections.info_or_types_size);
10199 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10200
10201 return dwo_unit;
10202 }
10203
10204 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10205 Returns NULL if the signature isn't found. */
10206
10207 static struct dwo_unit *
10208 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10209 ULONGEST signature, int is_debug_types)
10210 {
10211 const struct dwp_hash_table *dwp_htab =
10212 is_debug_types ? dwp_file->tus : dwp_file->cus;
10213 bfd *dbfd = dwp_file->dbfd;
10214 uint32_t mask = dwp_htab->nr_slots - 1;
10215 uint32_t hash = signature & mask;
10216 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10217 unsigned int i;
10218 void **slot;
10219 struct dwo_unit find_dwo_cu, *dwo_cu;
10220
10221 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10222 find_dwo_cu.signature = signature;
10223 slot = htab_find_slot (is_debug_types
10224 ? dwp_file->loaded_tus
10225 : dwp_file->loaded_cus,
10226 &find_dwo_cu, INSERT);
10227
10228 if (*slot != NULL)
10229 return *slot;
10230
10231 /* Use a for loop so that we don't loop forever on bad debug info. */
10232 for (i = 0; i < dwp_htab->nr_slots; ++i)
10233 {
10234 ULONGEST signature_in_table;
10235
10236 signature_in_table =
10237 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10238 if (signature_in_table == signature)
10239 {
10240 uint32_t unit_index =
10241 read_4_bytes (dbfd,
10242 dwp_htab->unit_table + hash * sizeof (uint32_t));
10243
10244 if (dwp_file->version == 1)
10245 {
10246 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10247 comp_dir, signature,
10248 is_debug_types);
10249 }
10250 else
10251 {
10252 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10253 comp_dir, signature,
10254 is_debug_types);
10255 }
10256 return *slot;
10257 }
10258 if (signature_in_table == 0)
10259 return NULL;
10260 hash = (hash + hash2) & mask;
10261 }
10262
10263 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10264 " [in module %s]"),
10265 dwp_file->name);
10266 }
10267
10268 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10269 Open the file specified by FILE_NAME and hand it off to BFD for
10270 preliminary analysis. Return a newly initialized bfd *, which
10271 includes a canonicalized copy of FILE_NAME.
10272 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10273 SEARCH_CWD is true if the current directory is to be searched.
10274 It will be searched before debug-file-directory.
10275 If successful, the file is added to the bfd include table of the
10276 objfile's bfd (see gdb_bfd_record_inclusion).
10277 If unable to find/open the file, return NULL.
10278 NOTE: This function is derived from symfile_bfd_open. */
10279
10280 static bfd *
10281 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10282 {
10283 bfd *sym_bfd;
10284 int desc, flags;
10285 char *absolute_name;
10286 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10287 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10288 to debug_file_directory. */
10289 char *search_path;
10290 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10291
10292 if (search_cwd)
10293 {
10294 if (*debug_file_directory != '\0')
10295 search_path = concat (".", dirname_separator_string,
10296 debug_file_directory, NULL);
10297 else
10298 search_path = xstrdup (".");
10299 }
10300 else
10301 search_path = xstrdup (debug_file_directory);
10302
10303 flags = OPF_RETURN_REALPATH;
10304 if (is_dwp)
10305 flags |= OPF_SEARCH_IN_PATH;
10306 desc = openp (search_path, flags, file_name,
10307 O_RDONLY | O_BINARY, &absolute_name);
10308 xfree (search_path);
10309 if (desc < 0)
10310 return NULL;
10311
10312 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10313 xfree (absolute_name);
10314 if (sym_bfd == NULL)
10315 return NULL;
10316 bfd_set_cacheable (sym_bfd, 1);
10317
10318 if (!bfd_check_format (sym_bfd, bfd_object))
10319 {
10320 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10321 return NULL;
10322 }
10323
10324 /* Success. Record the bfd as having been included by the objfile's bfd.
10325 This is important because things like demangled_names_hash lives in the
10326 objfile's per_bfd space and may have references to things like symbol
10327 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10328 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10329
10330 return sym_bfd;
10331 }
10332
10333 /* Try to open DWO file FILE_NAME.
10334 COMP_DIR is the DW_AT_comp_dir attribute.
10335 The result is the bfd handle of the file.
10336 If there is a problem finding or opening the file, return NULL.
10337 Upon success, the canonicalized path of the file is stored in the bfd,
10338 same as symfile_bfd_open. */
10339
10340 static bfd *
10341 open_dwo_file (const char *file_name, const char *comp_dir)
10342 {
10343 bfd *abfd;
10344
10345 if (IS_ABSOLUTE_PATH (file_name))
10346 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10347
10348 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10349
10350 if (comp_dir != NULL)
10351 {
10352 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10353
10354 /* NOTE: If comp_dir is a relative path, this will also try the
10355 search path, which seems useful. */
10356 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10357 xfree (path_to_try);
10358 if (abfd != NULL)
10359 return abfd;
10360 }
10361
10362 /* That didn't work, try debug-file-directory, which, despite its name,
10363 is a list of paths. */
10364
10365 if (*debug_file_directory == '\0')
10366 return NULL;
10367
10368 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10369 }
10370
10371 /* This function is mapped across the sections and remembers the offset and
10372 size of each of the DWO debugging sections we are interested in. */
10373
10374 static void
10375 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10376 {
10377 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10378 const struct dwop_section_names *names = &dwop_section_names;
10379
10380 if (section_is_p (sectp->name, &names->abbrev_dwo))
10381 {
10382 dwo_sections->abbrev.s.asection = sectp;
10383 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10384 }
10385 else if (section_is_p (sectp->name, &names->info_dwo))
10386 {
10387 dwo_sections->info.s.asection = sectp;
10388 dwo_sections->info.size = bfd_get_section_size (sectp);
10389 }
10390 else if (section_is_p (sectp->name, &names->line_dwo))
10391 {
10392 dwo_sections->line.s.asection = sectp;
10393 dwo_sections->line.size = bfd_get_section_size (sectp);
10394 }
10395 else if (section_is_p (sectp->name, &names->loc_dwo))
10396 {
10397 dwo_sections->loc.s.asection = sectp;
10398 dwo_sections->loc.size = bfd_get_section_size (sectp);
10399 }
10400 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10401 {
10402 dwo_sections->macinfo.s.asection = sectp;
10403 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10404 }
10405 else if (section_is_p (sectp->name, &names->macro_dwo))
10406 {
10407 dwo_sections->macro.s.asection = sectp;
10408 dwo_sections->macro.size = bfd_get_section_size (sectp);
10409 }
10410 else if (section_is_p (sectp->name, &names->str_dwo))
10411 {
10412 dwo_sections->str.s.asection = sectp;
10413 dwo_sections->str.size = bfd_get_section_size (sectp);
10414 }
10415 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10416 {
10417 dwo_sections->str_offsets.s.asection = sectp;
10418 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10419 }
10420 else if (section_is_p (sectp->name, &names->types_dwo))
10421 {
10422 struct dwarf2_section_info type_section;
10423
10424 memset (&type_section, 0, sizeof (type_section));
10425 type_section.s.asection = sectp;
10426 type_section.size = bfd_get_section_size (sectp);
10427 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10428 &type_section);
10429 }
10430 }
10431
10432 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10433 by PER_CU. This is for the non-DWP case.
10434 The result is NULL if DWO_NAME can't be found. */
10435
10436 static struct dwo_file *
10437 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10438 const char *dwo_name, const char *comp_dir)
10439 {
10440 struct objfile *objfile = dwarf2_per_objfile->objfile;
10441 struct dwo_file *dwo_file;
10442 bfd *dbfd;
10443 struct cleanup *cleanups;
10444
10445 dbfd = open_dwo_file (dwo_name, comp_dir);
10446 if (dbfd == NULL)
10447 {
10448 if (dwarf2_read_debug)
10449 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10450 return NULL;
10451 }
10452 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10453 dwo_file->dwo_name = dwo_name;
10454 dwo_file->comp_dir = comp_dir;
10455 dwo_file->dbfd = dbfd;
10456
10457 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10458
10459 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10460
10461 dwo_file->cu = create_dwo_cu (dwo_file);
10462
10463 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10464 dwo_file->sections.types);
10465
10466 discard_cleanups (cleanups);
10467
10468 if (dwarf2_read_debug)
10469 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10470
10471 return dwo_file;
10472 }
10473
10474 /* This function is mapped across the sections and remembers the offset and
10475 size of each of the DWP debugging sections common to version 1 and 2 that
10476 we are interested in. */
10477
10478 static void
10479 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10480 void *dwp_file_ptr)
10481 {
10482 struct dwp_file *dwp_file = dwp_file_ptr;
10483 const struct dwop_section_names *names = &dwop_section_names;
10484 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10485
10486 /* Record the ELF section number for later lookup: this is what the
10487 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10488 gdb_assert (elf_section_nr < dwp_file->num_sections);
10489 dwp_file->elf_sections[elf_section_nr] = sectp;
10490
10491 /* Look for specific sections that we need. */
10492 if (section_is_p (sectp->name, &names->str_dwo))
10493 {
10494 dwp_file->sections.str.s.asection = sectp;
10495 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10496 }
10497 else if (section_is_p (sectp->name, &names->cu_index))
10498 {
10499 dwp_file->sections.cu_index.s.asection = sectp;
10500 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10501 }
10502 else if (section_is_p (sectp->name, &names->tu_index))
10503 {
10504 dwp_file->sections.tu_index.s.asection = sectp;
10505 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10506 }
10507 }
10508
10509 /* This function is mapped across the sections and remembers the offset and
10510 size of each of the DWP version 2 debugging sections that we are interested
10511 in. This is split into a separate function because we don't know if we
10512 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10513
10514 static void
10515 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10516 {
10517 struct dwp_file *dwp_file = dwp_file_ptr;
10518 const struct dwop_section_names *names = &dwop_section_names;
10519 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10520
10521 /* Record the ELF section number for later lookup: this is what the
10522 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10523 gdb_assert (elf_section_nr < dwp_file->num_sections);
10524 dwp_file->elf_sections[elf_section_nr] = sectp;
10525
10526 /* Look for specific sections that we need. */
10527 if (section_is_p (sectp->name, &names->abbrev_dwo))
10528 {
10529 dwp_file->sections.abbrev.s.asection = sectp;
10530 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10531 }
10532 else if (section_is_p (sectp->name, &names->info_dwo))
10533 {
10534 dwp_file->sections.info.s.asection = sectp;
10535 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10536 }
10537 else if (section_is_p (sectp->name, &names->line_dwo))
10538 {
10539 dwp_file->sections.line.s.asection = sectp;
10540 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10541 }
10542 else if (section_is_p (sectp->name, &names->loc_dwo))
10543 {
10544 dwp_file->sections.loc.s.asection = sectp;
10545 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10546 }
10547 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10548 {
10549 dwp_file->sections.macinfo.s.asection = sectp;
10550 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10551 }
10552 else if (section_is_p (sectp->name, &names->macro_dwo))
10553 {
10554 dwp_file->sections.macro.s.asection = sectp;
10555 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10556 }
10557 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10558 {
10559 dwp_file->sections.str_offsets.s.asection = sectp;
10560 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10561 }
10562 else if (section_is_p (sectp->name, &names->types_dwo))
10563 {
10564 dwp_file->sections.types.s.asection = sectp;
10565 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10566 }
10567 }
10568
10569 /* Hash function for dwp_file loaded CUs/TUs. */
10570
10571 static hashval_t
10572 hash_dwp_loaded_cutus (const void *item)
10573 {
10574 const struct dwo_unit *dwo_unit = item;
10575
10576 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10577 return dwo_unit->signature;
10578 }
10579
10580 /* Equality function for dwp_file loaded CUs/TUs. */
10581
10582 static int
10583 eq_dwp_loaded_cutus (const void *a, const void *b)
10584 {
10585 const struct dwo_unit *dua = a;
10586 const struct dwo_unit *dub = b;
10587
10588 return dua->signature == dub->signature;
10589 }
10590
10591 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10592
10593 static htab_t
10594 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10595 {
10596 return htab_create_alloc_ex (3,
10597 hash_dwp_loaded_cutus,
10598 eq_dwp_loaded_cutus,
10599 NULL,
10600 &objfile->objfile_obstack,
10601 hashtab_obstack_allocate,
10602 dummy_obstack_deallocate);
10603 }
10604
10605 /* Try to open DWP file FILE_NAME.
10606 The result is the bfd handle of the file.
10607 If there is a problem finding or opening the file, return NULL.
10608 Upon success, the canonicalized path of the file is stored in the bfd,
10609 same as symfile_bfd_open. */
10610
10611 static bfd *
10612 open_dwp_file (const char *file_name)
10613 {
10614 bfd *abfd;
10615
10616 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10617 if (abfd != NULL)
10618 return abfd;
10619
10620 /* Work around upstream bug 15652.
10621 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10622 [Whether that's a "bug" is debatable, but it is getting in our way.]
10623 We have no real idea where the dwp file is, because gdb's realpath-ing
10624 of the executable's path may have discarded the needed info.
10625 [IWBN if the dwp file name was recorded in the executable, akin to
10626 .gnu_debuglink, but that doesn't exist yet.]
10627 Strip the directory from FILE_NAME and search again. */
10628 if (*debug_file_directory != '\0')
10629 {
10630 /* Don't implicitly search the current directory here.
10631 If the user wants to search "." to handle this case,
10632 it must be added to debug-file-directory. */
10633 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10634 0 /*search_cwd*/);
10635 }
10636
10637 return NULL;
10638 }
10639
10640 /* Initialize the use of the DWP file for the current objfile.
10641 By convention the name of the DWP file is ${objfile}.dwp.
10642 The result is NULL if it can't be found. */
10643
10644 static struct dwp_file *
10645 open_and_init_dwp_file (void)
10646 {
10647 struct objfile *objfile = dwarf2_per_objfile->objfile;
10648 struct dwp_file *dwp_file;
10649 char *dwp_name;
10650 bfd *dbfd;
10651 struct cleanup *cleanups;
10652
10653 /* Try to find first .dwp for the binary file before any symbolic links
10654 resolving. */
10655 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10656 cleanups = make_cleanup (xfree, dwp_name);
10657
10658 dbfd = open_dwp_file (dwp_name);
10659 if (dbfd == NULL
10660 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10661 {
10662 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10663 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10664 make_cleanup (xfree, dwp_name);
10665 dbfd = open_dwp_file (dwp_name);
10666 }
10667
10668 if (dbfd == NULL)
10669 {
10670 if (dwarf2_read_debug)
10671 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10672 do_cleanups (cleanups);
10673 return NULL;
10674 }
10675 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10676 dwp_file->name = bfd_get_filename (dbfd);
10677 dwp_file->dbfd = dbfd;
10678 do_cleanups (cleanups);
10679
10680 /* +1: section 0 is unused */
10681 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10682 dwp_file->elf_sections =
10683 OBSTACK_CALLOC (&objfile->objfile_obstack,
10684 dwp_file->num_sections, asection *);
10685
10686 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10687
10688 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10689
10690 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10691
10692 /* The DWP file version is stored in the hash table. Oh well. */
10693 if (dwp_file->cus->version != dwp_file->tus->version)
10694 {
10695 /* Technically speaking, we should try to limp along, but this is
10696 pretty bizarre. We use pulongest here because that's the established
10697 portability solution (e.g, we cannot use %u for uint32_t). */
10698 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10699 " TU version %s [in DWP file %s]"),
10700 pulongest (dwp_file->cus->version),
10701 pulongest (dwp_file->tus->version), dwp_name);
10702 }
10703 dwp_file->version = dwp_file->cus->version;
10704
10705 if (dwp_file->version == 2)
10706 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10707
10708 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10709 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10710
10711 if (dwarf2_read_debug)
10712 {
10713 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10714 fprintf_unfiltered (gdb_stdlog,
10715 " %s CUs, %s TUs\n",
10716 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10717 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10718 }
10719
10720 return dwp_file;
10721 }
10722
10723 /* Wrapper around open_and_init_dwp_file, only open it once. */
10724
10725 static struct dwp_file *
10726 get_dwp_file (void)
10727 {
10728 if (! dwarf2_per_objfile->dwp_checked)
10729 {
10730 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10731 dwarf2_per_objfile->dwp_checked = 1;
10732 }
10733 return dwarf2_per_objfile->dwp_file;
10734 }
10735
10736 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10737 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10738 or in the DWP file for the objfile, referenced by THIS_UNIT.
10739 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10740 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10741
10742 This is called, for example, when wanting to read a variable with a
10743 complex location. Therefore we don't want to do file i/o for every call.
10744 Therefore we don't want to look for a DWO file on every call.
10745 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10746 then we check if we've already seen DWO_NAME, and only THEN do we check
10747 for a DWO file.
10748
10749 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10750 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10751
10752 static struct dwo_unit *
10753 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10754 const char *dwo_name, const char *comp_dir,
10755 ULONGEST signature, int is_debug_types)
10756 {
10757 struct objfile *objfile = dwarf2_per_objfile->objfile;
10758 const char *kind = is_debug_types ? "TU" : "CU";
10759 void **dwo_file_slot;
10760 struct dwo_file *dwo_file;
10761 struct dwp_file *dwp_file;
10762
10763 /* First see if there's a DWP file.
10764 If we have a DWP file but didn't find the DWO inside it, don't
10765 look for the original DWO file. It makes gdb behave differently
10766 depending on whether one is debugging in the build tree. */
10767
10768 dwp_file = get_dwp_file ();
10769 if (dwp_file != NULL)
10770 {
10771 const struct dwp_hash_table *dwp_htab =
10772 is_debug_types ? dwp_file->tus : dwp_file->cus;
10773
10774 if (dwp_htab != NULL)
10775 {
10776 struct dwo_unit *dwo_cutu =
10777 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10778 signature, is_debug_types);
10779
10780 if (dwo_cutu != NULL)
10781 {
10782 if (dwarf2_read_debug)
10783 {
10784 fprintf_unfiltered (gdb_stdlog,
10785 "Virtual DWO %s %s found: @%s\n",
10786 kind, hex_string (signature),
10787 host_address_to_string (dwo_cutu));
10788 }
10789 return dwo_cutu;
10790 }
10791 }
10792 }
10793 else
10794 {
10795 /* No DWP file, look for the DWO file. */
10796
10797 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10798 if (*dwo_file_slot == NULL)
10799 {
10800 /* Read in the file and build a table of the CUs/TUs it contains. */
10801 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10802 }
10803 /* NOTE: This will be NULL if unable to open the file. */
10804 dwo_file = *dwo_file_slot;
10805
10806 if (dwo_file != NULL)
10807 {
10808 struct dwo_unit *dwo_cutu = NULL;
10809
10810 if (is_debug_types && dwo_file->tus)
10811 {
10812 struct dwo_unit find_dwo_cutu;
10813
10814 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10815 find_dwo_cutu.signature = signature;
10816 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10817 }
10818 else if (!is_debug_types && dwo_file->cu)
10819 {
10820 if (signature == dwo_file->cu->signature)
10821 dwo_cutu = dwo_file->cu;
10822 }
10823
10824 if (dwo_cutu != NULL)
10825 {
10826 if (dwarf2_read_debug)
10827 {
10828 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10829 kind, dwo_name, hex_string (signature),
10830 host_address_to_string (dwo_cutu));
10831 }
10832 return dwo_cutu;
10833 }
10834 }
10835 }
10836
10837 /* We didn't find it. This could mean a dwo_id mismatch, or
10838 someone deleted the DWO/DWP file, or the search path isn't set up
10839 correctly to find the file. */
10840
10841 if (dwarf2_read_debug)
10842 {
10843 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10844 kind, dwo_name, hex_string (signature));
10845 }
10846
10847 /* This is a warning and not a complaint because it can be caused by
10848 pilot error (e.g., user accidentally deleting the DWO). */
10849 {
10850 /* Print the name of the DWP file if we looked there, helps the user
10851 better diagnose the problem. */
10852 char *dwp_text = NULL;
10853 struct cleanup *cleanups;
10854
10855 if (dwp_file != NULL)
10856 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10857 cleanups = make_cleanup (xfree, dwp_text);
10858
10859 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10860 " [in module %s]"),
10861 kind, dwo_name, hex_string (signature),
10862 dwp_text != NULL ? dwp_text : "",
10863 this_unit->is_debug_types ? "TU" : "CU",
10864 this_unit->offset.sect_off, objfile_name (objfile));
10865
10866 do_cleanups (cleanups);
10867 }
10868 return NULL;
10869 }
10870
10871 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10872 See lookup_dwo_cutu_unit for details. */
10873
10874 static struct dwo_unit *
10875 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10876 const char *dwo_name, const char *comp_dir,
10877 ULONGEST signature)
10878 {
10879 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10880 }
10881
10882 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10883 See lookup_dwo_cutu_unit for details. */
10884
10885 static struct dwo_unit *
10886 lookup_dwo_type_unit (struct signatured_type *this_tu,
10887 const char *dwo_name, const char *comp_dir)
10888 {
10889 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10890 }
10891
10892 /* Traversal function for queue_and_load_all_dwo_tus. */
10893
10894 static int
10895 queue_and_load_dwo_tu (void **slot, void *info)
10896 {
10897 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10898 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10899 ULONGEST signature = dwo_unit->signature;
10900 struct signatured_type *sig_type =
10901 lookup_dwo_signatured_type (per_cu->cu, signature);
10902
10903 if (sig_type != NULL)
10904 {
10905 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10906
10907 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10908 a real dependency of PER_CU on SIG_TYPE. That is detected later
10909 while processing PER_CU. */
10910 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10911 load_full_type_unit (sig_cu);
10912 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10913 }
10914
10915 return 1;
10916 }
10917
10918 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10919 The DWO may have the only definition of the type, though it may not be
10920 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10921 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10922
10923 static void
10924 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10925 {
10926 struct dwo_unit *dwo_unit;
10927 struct dwo_file *dwo_file;
10928
10929 gdb_assert (!per_cu->is_debug_types);
10930 gdb_assert (get_dwp_file () == NULL);
10931 gdb_assert (per_cu->cu != NULL);
10932
10933 dwo_unit = per_cu->cu->dwo_unit;
10934 gdb_assert (dwo_unit != NULL);
10935
10936 dwo_file = dwo_unit->dwo_file;
10937 if (dwo_file->tus != NULL)
10938 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10939 }
10940
10941 /* Free all resources associated with DWO_FILE.
10942 Close the DWO file and munmap the sections.
10943 All memory should be on the objfile obstack. */
10944
10945 static void
10946 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10947 {
10948 int ix;
10949 struct dwarf2_section_info *section;
10950
10951 /* Note: dbfd is NULL for virtual DWO files. */
10952 gdb_bfd_unref (dwo_file->dbfd);
10953
10954 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10955 }
10956
10957 /* Wrapper for free_dwo_file for use in cleanups. */
10958
10959 static void
10960 free_dwo_file_cleanup (void *arg)
10961 {
10962 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10963 struct objfile *objfile = dwarf2_per_objfile->objfile;
10964
10965 free_dwo_file (dwo_file, objfile);
10966 }
10967
10968 /* Traversal function for free_dwo_files. */
10969
10970 static int
10971 free_dwo_file_from_slot (void **slot, void *info)
10972 {
10973 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10974 struct objfile *objfile = (struct objfile *) info;
10975
10976 free_dwo_file (dwo_file, objfile);
10977
10978 return 1;
10979 }
10980
10981 /* Free all resources associated with DWO_FILES. */
10982
10983 static void
10984 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10985 {
10986 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10987 }
10988 \f
10989 /* Read in various DIEs. */
10990
10991 /* qsort helper for inherit_abstract_dies. */
10992
10993 static int
10994 unsigned_int_compar (const void *ap, const void *bp)
10995 {
10996 unsigned int a = *(unsigned int *) ap;
10997 unsigned int b = *(unsigned int *) bp;
10998
10999 return (a > b) - (b > a);
11000 }
11001
11002 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11003 Inherit only the children of the DW_AT_abstract_origin DIE not being
11004 already referenced by DW_AT_abstract_origin from the children of the
11005 current DIE. */
11006
11007 static void
11008 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11009 {
11010 struct die_info *child_die;
11011 unsigned die_children_count;
11012 /* CU offsets which were referenced by children of the current DIE. */
11013 sect_offset *offsets;
11014 sect_offset *offsets_end, *offsetp;
11015 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11016 struct die_info *origin_die;
11017 /* Iterator of the ORIGIN_DIE children. */
11018 struct die_info *origin_child_die;
11019 struct cleanup *cleanups;
11020 struct attribute *attr;
11021 struct dwarf2_cu *origin_cu;
11022 struct pending **origin_previous_list_in_scope;
11023
11024 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11025 if (!attr)
11026 return;
11027
11028 /* Note that following die references may follow to a die in a
11029 different cu. */
11030
11031 origin_cu = cu;
11032 origin_die = follow_die_ref (die, attr, &origin_cu);
11033
11034 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11035 symbols in. */
11036 origin_previous_list_in_scope = origin_cu->list_in_scope;
11037 origin_cu->list_in_scope = cu->list_in_scope;
11038
11039 if (die->tag != origin_die->tag
11040 && !(die->tag == DW_TAG_inlined_subroutine
11041 && origin_die->tag == DW_TAG_subprogram))
11042 complaint (&symfile_complaints,
11043 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11044 die->offset.sect_off, origin_die->offset.sect_off);
11045
11046 child_die = die->child;
11047 die_children_count = 0;
11048 while (child_die && child_die->tag)
11049 {
11050 child_die = sibling_die (child_die);
11051 die_children_count++;
11052 }
11053 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11054 cleanups = make_cleanup (xfree, offsets);
11055
11056 offsets_end = offsets;
11057 child_die = die->child;
11058 while (child_die && child_die->tag)
11059 {
11060 /* For each CHILD_DIE, find the corresponding child of
11061 ORIGIN_DIE. If there is more than one layer of
11062 DW_AT_abstract_origin, follow them all; there shouldn't be,
11063 but GCC versions at least through 4.4 generate this (GCC PR
11064 40573). */
11065 struct die_info *child_origin_die = child_die;
11066 struct dwarf2_cu *child_origin_cu = cu;
11067
11068 while (1)
11069 {
11070 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11071 child_origin_cu);
11072 if (attr == NULL)
11073 break;
11074 child_origin_die = follow_die_ref (child_origin_die, attr,
11075 &child_origin_cu);
11076 }
11077
11078 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11079 counterpart may exist. */
11080 if (child_origin_die != child_die)
11081 {
11082 if (child_die->tag != child_origin_die->tag
11083 && !(child_die->tag == DW_TAG_inlined_subroutine
11084 && child_origin_die->tag == DW_TAG_subprogram))
11085 complaint (&symfile_complaints,
11086 _("Child DIE 0x%x and its abstract origin 0x%x have "
11087 "different tags"), child_die->offset.sect_off,
11088 child_origin_die->offset.sect_off);
11089 if (child_origin_die->parent != origin_die)
11090 complaint (&symfile_complaints,
11091 _("Child DIE 0x%x and its abstract origin 0x%x have "
11092 "different parents"), child_die->offset.sect_off,
11093 child_origin_die->offset.sect_off);
11094 else
11095 *offsets_end++ = child_origin_die->offset;
11096 }
11097 child_die = sibling_die (child_die);
11098 }
11099 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11100 unsigned_int_compar);
11101 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11102 if (offsetp[-1].sect_off == offsetp->sect_off)
11103 complaint (&symfile_complaints,
11104 _("Multiple children of DIE 0x%x refer "
11105 "to DIE 0x%x as their abstract origin"),
11106 die->offset.sect_off, offsetp->sect_off);
11107
11108 offsetp = offsets;
11109 origin_child_die = origin_die->child;
11110 while (origin_child_die && origin_child_die->tag)
11111 {
11112 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11113 while (offsetp < offsets_end
11114 && offsetp->sect_off < origin_child_die->offset.sect_off)
11115 offsetp++;
11116 if (offsetp >= offsets_end
11117 || offsetp->sect_off > origin_child_die->offset.sect_off)
11118 {
11119 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11120 Check whether we're already processing ORIGIN_CHILD_DIE.
11121 This can happen with mutually referenced abstract_origins.
11122 PR 16581. */
11123 if (!origin_child_die->in_process)
11124 process_die (origin_child_die, origin_cu);
11125 }
11126 origin_child_die = sibling_die (origin_child_die);
11127 }
11128 origin_cu->list_in_scope = origin_previous_list_in_scope;
11129
11130 do_cleanups (cleanups);
11131 }
11132
11133 static void
11134 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11135 {
11136 struct objfile *objfile = cu->objfile;
11137 struct context_stack *new;
11138 CORE_ADDR lowpc;
11139 CORE_ADDR highpc;
11140 struct die_info *child_die;
11141 struct attribute *attr, *call_line, *call_file;
11142 const char *name;
11143 CORE_ADDR baseaddr;
11144 struct block *block;
11145 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11146 VEC (symbolp) *template_args = NULL;
11147 struct template_symbol *templ_func = NULL;
11148
11149 if (inlined_func)
11150 {
11151 /* If we do not have call site information, we can't show the
11152 caller of this inlined function. That's too confusing, so
11153 only use the scope for local variables. */
11154 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11155 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11156 if (call_line == NULL || call_file == NULL)
11157 {
11158 read_lexical_block_scope (die, cu);
11159 return;
11160 }
11161 }
11162
11163 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11164
11165 name = dwarf2_name (die, cu);
11166
11167 /* Ignore functions with missing or empty names. These are actually
11168 illegal according to the DWARF standard. */
11169 if (name == NULL)
11170 {
11171 complaint (&symfile_complaints,
11172 _("missing name for subprogram DIE at %d"),
11173 die->offset.sect_off);
11174 return;
11175 }
11176
11177 /* Ignore functions with missing or invalid low and high pc attributes. */
11178 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11179 {
11180 attr = dwarf2_attr (die, DW_AT_external, cu);
11181 if (!attr || !DW_UNSND (attr))
11182 complaint (&symfile_complaints,
11183 _("cannot get low and high bounds "
11184 "for subprogram DIE at %d"),
11185 die->offset.sect_off);
11186 return;
11187 }
11188
11189 lowpc += baseaddr;
11190 highpc += baseaddr;
11191
11192 /* If we have any template arguments, then we must allocate a
11193 different sort of symbol. */
11194 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11195 {
11196 if (child_die->tag == DW_TAG_template_type_param
11197 || child_die->tag == DW_TAG_template_value_param)
11198 {
11199 templ_func = allocate_template_symbol (objfile);
11200 templ_func->base.is_cplus_template_function = 1;
11201 break;
11202 }
11203 }
11204
11205 new = push_context (0, lowpc);
11206 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11207 (struct symbol *) templ_func);
11208
11209 /* If there is a location expression for DW_AT_frame_base, record
11210 it. */
11211 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11212 if (attr)
11213 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11214
11215 cu->list_in_scope = &local_symbols;
11216
11217 if (die->child != NULL)
11218 {
11219 child_die = die->child;
11220 while (child_die && child_die->tag)
11221 {
11222 if (child_die->tag == DW_TAG_template_type_param
11223 || child_die->tag == DW_TAG_template_value_param)
11224 {
11225 struct symbol *arg = new_symbol (child_die, NULL, cu);
11226
11227 if (arg != NULL)
11228 VEC_safe_push (symbolp, template_args, arg);
11229 }
11230 else
11231 process_die (child_die, cu);
11232 child_die = sibling_die (child_die);
11233 }
11234 }
11235
11236 inherit_abstract_dies (die, cu);
11237
11238 /* If we have a DW_AT_specification, we might need to import using
11239 directives from the context of the specification DIE. See the
11240 comment in determine_prefix. */
11241 if (cu->language == language_cplus
11242 && dwarf2_attr (die, DW_AT_specification, cu))
11243 {
11244 struct dwarf2_cu *spec_cu = cu;
11245 struct die_info *spec_die = die_specification (die, &spec_cu);
11246
11247 while (spec_die)
11248 {
11249 child_die = spec_die->child;
11250 while (child_die && child_die->tag)
11251 {
11252 if (child_die->tag == DW_TAG_imported_module)
11253 process_die (child_die, spec_cu);
11254 child_die = sibling_die (child_die);
11255 }
11256
11257 /* In some cases, GCC generates specification DIEs that
11258 themselves contain DW_AT_specification attributes. */
11259 spec_die = die_specification (spec_die, &spec_cu);
11260 }
11261 }
11262
11263 new = pop_context ();
11264 /* Make a block for the local symbols within. */
11265 block = finish_block (new->name, &local_symbols, new->old_blocks,
11266 lowpc, highpc, objfile);
11267
11268 /* For C++, set the block's scope. */
11269 if ((cu->language == language_cplus || cu->language == language_fortran)
11270 && cu->processing_has_namespace_info)
11271 block_set_scope (block, determine_prefix (die, cu),
11272 &objfile->objfile_obstack);
11273
11274 /* If we have address ranges, record them. */
11275 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11276
11277 /* Attach template arguments to function. */
11278 if (! VEC_empty (symbolp, template_args))
11279 {
11280 gdb_assert (templ_func != NULL);
11281
11282 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11283 templ_func->template_arguments
11284 = obstack_alloc (&objfile->objfile_obstack,
11285 (templ_func->n_template_arguments
11286 * sizeof (struct symbol *)));
11287 memcpy (templ_func->template_arguments,
11288 VEC_address (symbolp, template_args),
11289 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11290 VEC_free (symbolp, template_args);
11291 }
11292
11293 /* In C++, we can have functions nested inside functions (e.g., when
11294 a function declares a class that has methods). This means that
11295 when we finish processing a function scope, we may need to go
11296 back to building a containing block's symbol lists. */
11297 local_symbols = new->locals;
11298 using_directives = new->using_directives;
11299
11300 /* If we've finished processing a top-level function, subsequent
11301 symbols go in the file symbol list. */
11302 if (outermost_context_p ())
11303 cu->list_in_scope = &file_symbols;
11304 }
11305
11306 /* Process all the DIES contained within a lexical block scope. Start
11307 a new scope, process the dies, and then close the scope. */
11308
11309 static void
11310 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11311 {
11312 struct objfile *objfile = cu->objfile;
11313 struct context_stack *new;
11314 CORE_ADDR lowpc, highpc;
11315 struct die_info *child_die;
11316 CORE_ADDR baseaddr;
11317
11318 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11319
11320 /* Ignore blocks with missing or invalid low and high pc attributes. */
11321 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11322 as multiple lexical blocks? Handling children in a sane way would
11323 be nasty. Might be easier to properly extend generic blocks to
11324 describe ranges. */
11325 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11326 return;
11327 lowpc += baseaddr;
11328 highpc += baseaddr;
11329
11330 push_context (0, lowpc);
11331 if (die->child != NULL)
11332 {
11333 child_die = die->child;
11334 while (child_die && child_die->tag)
11335 {
11336 process_die (child_die, cu);
11337 child_die = sibling_die (child_die);
11338 }
11339 }
11340 new = pop_context ();
11341
11342 if (local_symbols != NULL || using_directives != NULL)
11343 {
11344 struct block *block
11345 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11346 highpc, objfile);
11347
11348 /* Note that recording ranges after traversing children, as we
11349 do here, means that recording a parent's ranges entails
11350 walking across all its children's ranges as they appear in
11351 the address map, which is quadratic behavior.
11352
11353 It would be nicer to record the parent's ranges before
11354 traversing its children, simply overriding whatever you find
11355 there. But since we don't even decide whether to create a
11356 block until after we've traversed its children, that's hard
11357 to do. */
11358 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11359 }
11360 local_symbols = new->locals;
11361 using_directives = new->using_directives;
11362 }
11363
11364 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11365
11366 static void
11367 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11368 {
11369 struct objfile *objfile = cu->objfile;
11370 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11371 CORE_ADDR pc, baseaddr;
11372 struct attribute *attr;
11373 struct call_site *call_site, call_site_local;
11374 void **slot;
11375 int nparams;
11376 struct die_info *child_die;
11377
11378 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11379
11380 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11381 if (!attr)
11382 {
11383 complaint (&symfile_complaints,
11384 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11385 "DIE 0x%x [in module %s]"),
11386 die->offset.sect_off, objfile_name (objfile));
11387 return;
11388 }
11389 pc = attr_value_as_address (attr) + baseaddr;
11390
11391 if (cu->call_site_htab == NULL)
11392 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11393 NULL, &objfile->objfile_obstack,
11394 hashtab_obstack_allocate, NULL);
11395 call_site_local.pc = pc;
11396 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11397 if (*slot != NULL)
11398 {
11399 complaint (&symfile_complaints,
11400 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11401 "DIE 0x%x [in module %s]"),
11402 paddress (gdbarch, pc), die->offset.sect_off,
11403 objfile_name (objfile));
11404 return;
11405 }
11406
11407 /* Count parameters at the caller. */
11408
11409 nparams = 0;
11410 for (child_die = die->child; child_die && child_die->tag;
11411 child_die = sibling_die (child_die))
11412 {
11413 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11414 {
11415 complaint (&symfile_complaints,
11416 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11417 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11418 child_die->tag, child_die->offset.sect_off,
11419 objfile_name (objfile));
11420 continue;
11421 }
11422
11423 nparams++;
11424 }
11425
11426 call_site = obstack_alloc (&objfile->objfile_obstack,
11427 (sizeof (*call_site)
11428 + (sizeof (*call_site->parameter)
11429 * (nparams - 1))));
11430 *slot = call_site;
11431 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11432 call_site->pc = pc;
11433
11434 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11435 {
11436 struct die_info *func_die;
11437
11438 /* Skip also over DW_TAG_inlined_subroutine. */
11439 for (func_die = die->parent;
11440 func_die && func_die->tag != DW_TAG_subprogram
11441 && func_die->tag != DW_TAG_subroutine_type;
11442 func_die = func_die->parent);
11443
11444 /* DW_AT_GNU_all_call_sites is a superset
11445 of DW_AT_GNU_all_tail_call_sites. */
11446 if (func_die
11447 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11448 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11449 {
11450 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11451 not complete. But keep CALL_SITE for look ups via call_site_htab,
11452 both the initial caller containing the real return address PC and
11453 the final callee containing the current PC of a chain of tail
11454 calls do not need to have the tail call list complete. But any
11455 function candidate for a virtual tail call frame searched via
11456 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11457 determined unambiguously. */
11458 }
11459 else
11460 {
11461 struct type *func_type = NULL;
11462
11463 if (func_die)
11464 func_type = get_die_type (func_die, cu);
11465 if (func_type != NULL)
11466 {
11467 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11468
11469 /* Enlist this call site to the function. */
11470 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11471 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11472 }
11473 else
11474 complaint (&symfile_complaints,
11475 _("Cannot find function owning DW_TAG_GNU_call_site "
11476 "DIE 0x%x [in module %s]"),
11477 die->offset.sect_off, objfile_name (objfile));
11478 }
11479 }
11480
11481 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11482 if (attr == NULL)
11483 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11484 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11485 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11486 /* Keep NULL DWARF_BLOCK. */;
11487 else if (attr_form_is_block (attr))
11488 {
11489 struct dwarf2_locexpr_baton *dlbaton;
11490
11491 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11492 dlbaton->data = DW_BLOCK (attr)->data;
11493 dlbaton->size = DW_BLOCK (attr)->size;
11494 dlbaton->per_cu = cu->per_cu;
11495
11496 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11497 }
11498 else if (attr_form_is_ref (attr))
11499 {
11500 struct dwarf2_cu *target_cu = cu;
11501 struct die_info *target_die;
11502
11503 target_die = follow_die_ref (die, attr, &target_cu);
11504 gdb_assert (target_cu->objfile == objfile);
11505 if (die_is_declaration (target_die, target_cu))
11506 {
11507 const char *target_physname = NULL;
11508 struct attribute *target_attr;
11509
11510 /* Prefer the mangled name; otherwise compute the demangled one. */
11511 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11512 if (target_attr == NULL)
11513 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11514 target_cu);
11515 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11516 target_physname = DW_STRING (target_attr);
11517 else
11518 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11519 if (target_physname == NULL)
11520 complaint (&symfile_complaints,
11521 _("DW_AT_GNU_call_site_target target DIE has invalid "
11522 "physname, for referencing DIE 0x%x [in module %s]"),
11523 die->offset.sect_off, objfile_name (objfile));
11524 else
11525 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11526 }
11527 else
11528 {
11529 CORE_ADDR lowpc;
11530
11531 /* DW_AT_entry_pc should be preferred. */
11532 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11533 complaint (&symfile_complaints,
11534 _("DW_AT_GNU_call_site_target target DIE has invalid "
11535 "low pc, for referencing DIE 0x%x [in module %s]"),
11536 die->offset.sect_off, objfile_name (objfile));
11537 else
11538 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11539 }
11540 }
11541 else
11542 complaint (&symfile_complaints,
11543 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11544 "block nor reference, for DIE 0x%x [in module %s]"),
11545 die->offset.sect_off, objfile_name (objfile));
11546
11547 call_site->per_cu = cu->per_cu;
11548
11549 for (child_die = die->child;
11550 child_die && child_die->tag;
11551 child_die = sibling_die (child_die))
11552 {
11553 struct call_site_parameter *parameter;
11554 struct attribute *loc, *origin;
11555
11556 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11557 {
11558 /* Already printed the complaint above. */
11559 continue;
11560 }
11561
11562 gdb_assert (call_site->parameter_count < nparams);
11563 parameter = &call_site->parameter[call_site->parameter_count];
11564
11565 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11566 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11567 register is contained in DW_AT_GNU_call_site_value. */
11568
11569 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11570 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11571 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11572 {
11573 sect_offset offset;
11574
11575 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11576 offset = dwarf2_get_ref_die_offset (origin);
11577 if (!offset_in_cu_p (&cu->header, offset))
11578 {
11579 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11580 binding can be done only inside one CU. Such referenced DIE
11581 therefore cannot be even moved to DW_TAG_partial_unit. */
11582 complaint (&symfile_complaints,
11583 _("DW_AT_abstract_origin offset is not in CU for "
11584 "DW_TAG_GNU_call_site child DIE 0x%x "
11585 "[in module %s]"),
11586 child_die->offset.sect_off, objfile_name (objfile));
11587 continue;
11588 }
11589 parameter->u.param_offset.cu_off = (offset.sect_off
11590 - cu->header.offset.sect_off);
11591 }
11592 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11593 {
11594 complaint (&symfile_complaints,
11595 _("No DW_FORM_block* DW_AT_location for "
11596 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11597 child_die->offset.sect_off, objfile_name (objfile));
11598 continue;
11599 }
11600 else
11601 {
11602 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11603 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11604 if (parameter->u.dwarf_reg != -1)
11605 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11606 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11607 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11608 &parameter->u.fb_offset))
11609 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11610 else
11611 {
11612 complaint (&symfile_complaints,
11613 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11614 "for DW_FORM_block* DW_AT_location is supported for "
11615 "DW_TAG_GNU_call_site child DIE 0x%x "
11616 "[in module %s]"),
11617 child_die->offset.sect_off, objfile_name (objfile));
11618 continue;
11619 }
11620 }
11621
11622 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11623 if (!attr_form_is_block (attr))
11624 {
11625 complaint (&symfile_complaints,
11626 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11627 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11628 child_die->offset.sect_off, objfile_name (objfile));
11629 continue;
11630 }
11631 parameter->value = DW_BLOCK (attr)->data;
11632 parameter->value_size = DW_BLOCK (attr)->size;
11633
11634 /* Parameters are not pre-cleared by memset above. */
11635 parameter->data_value = NULL;
11636 parameter->data_value_size = 0;
11637 call_site->parameter_count++;
11638
11639 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11640 if (attr)
11641 {
11642 if (!attr_form_is_block (attr))
11643 complaint (&symfile_complaints,
11644 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11645 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11646 child_die->offset.sect_off, objfile_name (objfile));
11647 else
11648 {
11649 parameter->data_value = DW_BLOCK (attr)->data;
11650 parameter->data_value_size = DW_BLOCK (attr)->size;
11651 }
11652 }
11653 }
11654 }
11655
11656 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11657 Return 1 if the attributes are present and valid, otherwise, return 0.
11658 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11659
11660 static int
11661 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11662 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11663 struct partial_symtab *ranges_pst)
11664 {
11665 struct objfile *objfile = cu->objfile;
11666 struct comp_unit_head *cu_header = &cu->header;
11667 bfd *obfd = objfile->obfd;
11668 unsigned int addr_size = cu_header->addr_size;
11669 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11670 /* Base address selection entry. */
11671 CORE_ADDR base;
11672 int found_base;
11673 unsigned int dummy;
11674 const gdb_byte *buffer;
11675 CORE_ADDR marker;
11676 int low_set;
11677 CORE_ADDR low = 0;
11678 CORE_ADDR high = 0;
11679 CORE_ADDR baseaddr;
11680
11681 found_base = cu->base_known;
11682 base = cu->base_address;
11683
11684 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11685 if (offset >= dwarf2_per_objfile->ranges.size)
11686 {
11687 complaint (&symfile_complaints,
11688 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11689 offset);
11690 return 0;
11691 }
11692 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11693
11694 /* Read in the largest possible address. */
11695 marker = read_address (obfd, buffer, cu, &dummy);
11696 if ((marker & mask) == mask)
11697 {
11698 /* If we found the largest possible address, then
11699 read the base address. */
11700 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11701 buffer += 2 * addr_size;
11702 offset += 2 * addr_size;
11703 found_base = 1;
11704 }
11705
11706 low_set = 0;
11707
11708 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11709
11710 while (1)
11711 {
11712 CORE_ADDR range_beginning, range_end;
11713
11714 range_beginning = read_address (obfd, buffer, cu, &dummy);
11715 buffer += addr_size;
11716 range_end = read_address (obfd, buffer, cu, &dummy);
11717 buffer += addr_size;
11718 offset += 2 * addr_size;
11719
11720 /* An end of list marker is a pair of zero addresses. */
11721 if (range_beginning == 0 && range_end == 0)
11722 /* Found the end of list entry. */
11723 break;
11724
11725 /* Each base address selection entry is a pair of 2 values.
11726 The first is the largest possible address, the second is
11727 the base address. Check for a base address here. */
11728 if ((range_beginning & mask) == mask)
11729 {
11730 /* If we found the largest possible address, then
11731 read the base address. */
11732 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11733 found_base = 1;
11734 continue;
11735 }
11736
11737 if (!found_base)
11738 {
11739 /* We have no valid base address for the ranges
11740 data. */
11741 complaint (&symfile_complaints,
11742 _("Invalid .debug_ranges data (no base address)"));
11743 return 0;
11744 }
11745
11746 if (range_beginning > range_end)
11747 {
11748 /* Inverted range entries are invalid. */
11749 complaint (&symfile_complaints,
11750 _("Invalid .debug_ranges data (inverted range)"));
11751 return 0;
11752 }
11753
11754 /* Empty range entries have no effect. */
11755 if (range_beginning == range_end)
11756 continue;
11757
11758 range_beginning += base;
11759 range_end += base;
11760
11761 /* A not-uncommon case of bad debug info.
11762 Don't pollute the addrmap with bad data. */
11763 if (range_beginning + baseaddr == 0
11764 && !dwarf2_per_objfile->has_section_at_zero)
11765 {
11766 complaint (&symfile_complaints,
11767 _(".debug_ranges entry has start address of zero"
11768 " [in module %s]"), objfile_name (objfile));
11769 continue;
11770 }
11771
11772 if (ranges_pst != NULL)
11773 addrmap_set_empty (objfile->psymtabs_addrmap,
11774 range_beginning + baseaddr,
11775 range_end - 1 + baseaddr,
11776 ranges_pst);
11777
11778 /* FIXME: This is recording everything as a low-high
11779 segment of consecutive addresses. We should have a
11780 data structure for discontiguous block ranges
11781 instead. */
11782 if (! low_set)
11783 {
11784 low = range_beginning;
11785 high = range_end;
11786 low_set = 1;
11787 }
11788 else
11789 {
11790 if (range_beginning < low)
11791 low = range_beginning;
11792 if (range_end > high)
11793 high = range_end;
11794 }
11795 }
11796
11797 if (! low_set)
11798 /* If the first entry is an end-of-list marker, the range
11799 describes an empty scope, i.e. no instructions. */
11800 return 0;
11801
11802 if (low_return)
11803 *low_return = low;
11804 if (high_return)
11805 *high_return = high;
11806 return 1;
11807 }
11808
11809 /* Get low and high pc attributes from a die. Return 1 if the attributes
11810 are present and valid, otherwise, return 0. Return -1 if the range is
11811 discontinuous, i.e. derived from DW_AT_ranges information. */
11812
11813 static int
11814 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11815 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11816 struct partial_symtab *pst)
11817 {
11818 struct attribute *attr;
11819 struct attribute *attr_high;
11820 CORE_ADDR low = 0;
11821 CORE_ADDR high = 0;
11822 int ret = 0;
11823
11824 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11825 if (attr_high)
11826 {
11827 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11828 if (attr)
11829 {
11830 low = attr_value_as_address (attr);
11831 high = attr_value_as_address (attr_high);
11832 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11833 high += low;
11834 }
11835 else
11836 /* Found high w/o low attribute. */
11837 return 0;
11838
11839 /* Found consecutive range of addresses. */
11840 ret = 1;
11841 }
11842 else
11843 {
11844 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11845 if (attr != NULL)
11846 {
11847 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11848 We take advantage of the fact that DW_AT_ranges does not appear
11849 in DW_TAG_compile_unit of DWO files. */
11850 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11851 unsigned int ranges_offset = (DW_UNSND (attr)
11852 + (need_ranges_base
11853 ? cu->ranges_base
11854 : 0));
11855
11856 /* Value of the DW_AT_ranges attribute is the offset in the
11857 .debug_ranges section. */
11858 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11859 return 0;
11860 /* Found discontinuous range of addresses. */
11861 ret = -1;
11862 }
11863 }
11864
11865 /* read_partial_die has also the strict LOW < HIGH requirement. */
11866 if (high <= low)
11867 return 0;
11868
11869 /* When using the GNU linker, .gnu.linkonce. sections are used to
11870 eliminate duplicate copies of functions and vtables and such.
11871 The linker will arbitrarily choose one and discard the others.
11872 The AT_*_pc values for such functions refer to local labels in
11873 these sections. If the section from that file was discarded, the
11874 labels are not in the output, so the relocs get a value of 0.
11875 If this is a discarded function, mark the pc bounds as invalid,
11876 so that GDB will ignore it. */
11877 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11878 return 0;
11879
11880 *lowpc = low;
11881 if (highpc)
11882 *highpc = high;
11883 return ret;
11884 }
11885
11886 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11887 its low and high PC addresses. Do nothing if these addresses could not
11888 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11889 and HIGHPC to the high address if greater than HIGHPC. */
11890
11891 static void
11892 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11893 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11894 struct dwarf2_cu *cu)
11895 {
11896 CORE_ADDR low, high;
11897 struct die_info *child = die->child;
11898
11899 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11900 {
11901 *lowpc = min (*lowpc, low);
11902 *highpc = max (*highpc, high);
11903 }
11904
11905 /* If the language does not allow nested subprograms (either inside
11906 subprograms or lexical blocks), we're done. */
11907 if (cu->language != language_ada)
11908 return;
11909
11910 /* Check all the children of the given DIE. If it contains nested
11911 subprograms, then check their pc bounds. Likewise, we need to
11912 check lexical blocks as well, as they may also contain subprogram
11913 definitions. */
11914 while (child && child->tag)
11915 {
11916 if (child->tag == DW_TAG_subprogram
11917 || child->tag == DW_TAG_lexical_block)
11918 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11919 child = sibling_die (child);
11920 }
11921 }
11922
11923 /* Get the low and high pc's represented by the scope DIE, and store
11924 them in *LOWPC and *HIGHPC. If the correct values can't be
11925 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11926
11927 static void
11928 get_scope_pc_bounds (struct die_info *die,
11929 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11930 struct dwarf2_cu *cu)
11931 {
11932 CORE_ADDR best_low = (CORE_ADDR) -1;
11933 CORE_ADDR best_high = (CORE_ADDR) 0;
11934 CORE_ADDR current_low, current_high;
11935
11936 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11937 {
11938 best_low = current_low;
11939 best_high = current_high;
11940 }
11941 else
11942 {
11943 struct die_info *child = die->child;
11944
11945 while (child && child->tag)
11946 {
11947 switch (child->tag) {
11948 case DW_TAG_subprogram:
11949 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11950 break;
11951 case DW_TAG_namespace:
11952 case DW_TAG_module:
11953 /* FIXME: carlton/2004-01-16: Should we do this for
11954 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11955 that current GCC's always emit the DIEs corresponding
11956 to definitions of methods of classes as children of a
11957 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11958 the DIEs giving the declarations, which could be
11959 anywhere). But I don't see any reason why the
11960 standards says that they have to be there. */
11961 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11962
11963 if (current_low != ((CORE_ADDR) -1))
11964 {
11965 best_low = min (best_low, current_low);
11966 best_high = max (best_high, current_high);
11967 }
11968 break;
11969 default:
11970 /* Ignore. */
11971 break;
11972 }
11973
11974 child = sibling_die (child);
11975 }
11976 }
11977
11978 *lowpc = best_low;
11979 *highpc = best_high;
11980 }
11981
11982 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11983 in DIE. */
11984
11985 static void
11986 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11987 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11988 {
11989 struct objfile *objfile = cu->objfile;
11990 struct attribute *attr;
11991 struct attribute *attr_high;
11992
11993 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11994 if (attr_high)
11995 {
11996 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11997 if (attr)
11998 {
11999 CORE_ADDR low = attr_value_as_address (attr);
12000 CORE_ADDR high = attr_value_as_address (attr_high);
12001
12002 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12003 high += low;
12004
12005 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12006 }
12007 }
12008
12009 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12010 if (attr)
12011 {
12012 bfd *obfd = objfile->obfd;
12013 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12014 We take advantage of the fact that DW_AT_ranges does not appear
12015 in DW_TAG_compile_unit of DWO files. */
12016 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12017
12018 /* The value of the DW_AT_ranges attribute is the offset of the
12019 address range list in the .debug_ranges section. */
12020 unsigned long offset = (DW_UNSND (attr)
12021 + (need_ranges_base ? cu->ranges_base : 0));
12022 const gdb_byte *buffer;
12023
12024 /* For some target architectures, but not others, the
12025 read_address function sign-extends the addresses it returns.
12026 To recognize base address selection entries, we need a
12027 mask. */
12028 unsigned int addr_size = cu->header.addr_size;
12029 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12030
12031 /* The base address, to which the next pair is relative. Note
12032 that this 'base' is a DWARF concept: most entries in a range
12033 list are relative, to reduce the number of relocs against the
12034 debugging information. This is separate from this function's
12035 'baseaddr' argument, which GDB uses to relocate debugging
12036 information from a shared library based on the address at
12037 which the library was loaded. */
12038 CORE_ADDR base = cu->base_address;
12039 int base_known = cu->base_known;
12040
12041 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12042 if (offset >= dwarf2_per_objfile->ranges.size)
12043 {
12044 complaint (&symfile_complaints,
12045 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12046 offset);
12047 return;
12048 }
12049 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12050
12051 for (;;)
12052 {
12053 unsigned int bytes_read;
12054 CORE_ADDR start, end;
12055
12056 start = read_address (obfd, buffer, cu, &bytes_read);
12057 buffer += bytes_read;
12058 end = read_address (obfd, buffer, cu, &bytes_read);
12059 buffer += bytes_read;
12060
12061 /* Did we find the end of the range list? */
12062 if (start == 0 && end == 0)
12063 break;
12064
12065 /* Did we find a base address selection entry? */
12066 else if ((start & base_select_mask) == base_select_mask)
12067 {
12068 base = end;
12069 base_known = 1;
12070 }
12071
12072 /* We found an ordinary address range. */
12073 else
12074 {
12075 if (!base_known)
12076 {
12077 complaint (&symfile_complaints,
12078 _("Invalid .debug_ranges data "
12079 "(no base address)"));
12080 return;
12081 }
12082
12083 if (start > end)
12084 {
12085 /* Inverted range entries are invalid. */
12086 complaint (&symfile_complaints,
12087 _("Invalid .debug_ranges data "
12088 "(inverted range)"));
12089 return;
12090 }
12091
12092 /* Empty range entries have no effect. */
12093 if (start == end)
12094 continue;
12095
12096 start += base + baseaddr;
12097 end += base + baseaddr;
12098
12099 /* A not-uncommon case of bad debug info.
12100 Don't pollute the addrmap with bad data. */
12101 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12102 {
12103 complaint (&symfile_complaints,
12104 _(".debug_ranges entry has start address of zero"
12105 " [in module %s]"), objfile_name (objfile));
12106 continue;
12107 }
12108
12109 record_block_range (block, start, end - 1);
12110 }
12111 }
12112 }
12113 }
12114
12115 /* Check whether the producer field indicates either of GCC < 4.6, or the
12116 Intel C/C++ compiler, and cache the result in CU. */
12117
12118 static void
12119 check_producer (struct dwarf2_cu *cu)
12120 {
12121 const char *cs;
12122 int major, minor, release;
12123
12124 if (cu->producer == NULL)
12125 {
12126 /* For unknown compilers expect their behavior is DWARF version
12127 compliant.
12128
12129 GCC started to support .debug_types sections by -gdwarf-4 since
12130 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12131 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12132 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12133 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12134 }
12135 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12136 {
12137 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12138
12139 cs = &cu->producer[strlen ("GNU ")];
12140 while (*cs && !isdigit (*cs))
12141 cs++;
12142 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12143 {
12144 /* Not recognized as GCC. */
12145 }
12146 else
12147 {
12148 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12149 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12150 }
12151 }
12152 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12153 cu->producer_is_icc = 1;
12154 else
12155 {
12156 /* For other non-GCC compilers, expect their behavior is DWARF version
12157 compliant. */
12158 }
12159
12160 cu->checked_producer = 1;
12161 }
12162
12163 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12164 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12165 during 4.6.0 experimental. */
12166
12167 static int
12168 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12169 {
12170 if (!cu->checked_producer)
12171 check_producer (cu);
12172
12173 return cu->producer_is_gxx_lt_4_6;
12174 }
12175
12176 /* Return the default accessibility type if it is not overriden by
12177 DW_AT_accessibility. */
12178
12179 static enum dwarf_access_attribute
12180 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12181 {
12182 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12183 {
12184 /* The default DWARF 2 accessibility for members is public, the default
12185 accessibility for inheritance is private. */
12186
12187 if (die->tag != DW_TAG_inheritance)
12188 return DW_ACCESS_public;
12189 else
12190 return DW_ACCESS_private;
12191 }
12192 else
12193 {
12194 /* DWARF 3+ defines the default accessibility a different way. The same
12195 rules apply now for DW_TAG_inheritance as for the members and it only
12196 depends on the container kind. */
12197
12198 if (die->parent->tag == DW_TAG_class_type)
12199 return DW_ACCESS_private;
12200 else
12201 return DW_ACCESS_public;
12202 }
12203 }
12204
12205 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12206 offset. If the attribute was not found return 0, otherwise return
12207 1. If it was found but could not properly be handled, set *OFFSET
12208 to 0. */
12209
12210 static int
12211 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12212 LONGEST *offset)
12213 {
12214 struct attribute *attr;
12215
12216 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12217 if (attr != NULL)
12218 {
12219 *offset = 0;
12220
12221 /* Note that we do not check for a section offset first here.
12222 This is because DW_AT_data_member_location is new in DWARF 4,
12223 so if we see it, we can assume that a constant form is really
12224 a constant and not a section offset. */
12225 if (attr_form_is_constant (attr))
12226 *offset = dwarf2_get_attr_constant_value (attr, 0);
12227 else if (attr_form_is_section_offset (attr))
12228 dwarf2_complex_location_expr_complaint ();
12229 else if (attr_form_is_block (attr))
12230 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12231 else
12232 dwarf2_complex_location_expr_complaint ();
12233
12234 return 1;
12235 }
12236
12237 return 0;
12238 }
12239
12240 /* Add an aggregate field to the field list. */
12241
12242 static void
12243 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12244 struct dwarf2_cu *cu)
12245 {
12246 struct objfile *objfile = cu->objfile;
12247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12248 struct nextfield *new_field;
12249 struct attribute *attr;
12250 struct field *fp;
12251 const char *fieldname = "";
12252
12253 /* Allocate a new field list entry and link it in. */
12254 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12255 make_cleanup (xfree, new_field);
12256 memset (new_field, 0, sizeof (struct nextfield));
12257
12258 if (die->tag == DW_TAG_inheritance)
12259 {
12260 new_field->next = fip->baseclasses;
12261 fip->baseclasses = new_field;
12262 }
12263 else
12264 {
12265 new_field->next = fip->fields;
12266 fip->fields = new_field;
12267 }
12268 fip->nfields++;
12269
12270 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12271 if (attr)
12272 new_field->accessibility = DW_UNSND (attr);
12273 else
12274 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12275 if (new_field->accessibility != DW_ACCESS_public)
12276 fip->non_public_fields = 1;
12277
12278 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12279 if (attr)
12280 new_field->virtuality = DW_UNSND (attr);
12281 else
12282 new_field->virtuality = DW_VIRTUALITY_none;
12283
12284 fp = &new_field->field;
12285
12286 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12287 {
12288 LONGEST offset;
12289
12290 /* Data member other than a C++ static data member. */
12291
12292 /* Get type of field. */
12293 fp->type = die_type (die, cu);
12294
12295 SET_FIELD_BITPOS (*fp, 0);
12296
12297 /* Get bit size of field (zero if none). */
12298 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12299 if (attr)
12300 {
12301 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12302 }
12303 else
12304 {
12305 FIELD_BITSIZE (*fp) = 0;
12306 }
12307
12308 /* Get bit offset of field. */
12309 if (handle_data_member_location (die, cu, &offset))
12310 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12311 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12312 if (attr)
12313 {
12314 if (gdbarch_bits_big_endian (gdbarch))
12315 {
12316 /* For big endian bits, the DW_AT_bit_offset gives the
12317 additional bit offset from the MSB of the containing
12318 anonymous object to the MSB of the field. We don't
12319 have to do anything special since we don't need to
12320 know the size of the anonymous object. */
12321 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12322 }
12323 else
12324 {
12325 /* For little endian bits, compute the bit offset to the
12326 MSB of the anonymous object, subtract off the number of
12327 bits from the MSB of the field to the MSB of the
12328 object, and then subtract off the number of bits of
12329 the field itself. The result is the bit offset of
12330 the LSB of the field. */
12331 int anonymous_size;
12332 int bit_offset = DW_UNSND (attr);
12333
12334 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12335 if (attr)
12336 {
12337 /* The size of the anonymous object containing
12338 the bit field is explicit, so use the
12339 indicated size (in bytes). */
12340 anonymous_size = DW_UNSND (attr);
12341 }
12342 else
12343 {
12344 /* The size of the anonymous object containing
12345 the bit field must be inferred from the type
12346 attribute of the data member containing the
12347 bit field. */
12348 anonymous_size = TYPE_LENGTH (fp->type);
12349 }
12350 SET_FIELD_BITPOS (*fp,
12351 (FIELD_BITPOS (*fp)
12352 + anonymous_size * bits_per_byte
12353 - bit_offset - FIELD_BITSIZE (*fp)));
12354 }
12355 }
12356
12357 /* Get name of field. */
12358 fieldname = dwarf2_name (die, cu);
12359 if (fieldname == NULL)
12360 fieldname = "";
12361
12362 /* The name is already allocated along with this objfile, so we don't
12363 need to duplicate it for the type. */
12364 fp->name = fieldname;
12365
12366 /* Change accessibility for artificial fields (e.g. virtual table
12367 pointer or virtual base class pointer) to private. */
12368 if (dwarf2_attr (die, DW_AT_artificial, cu))
12369 {
12370 FIELD_ARTIFICIAL (*fp) = 1;
12371 new_field->accessibility = DW_ACCESS_private;
12372 fip->non_public_fields = 1;
12373 }
12374 }
12375 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12376 {
12377 /* C++ static member. */
12378
12379 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12380 is a declaration, but all versions of G++ as of this writing
12381 (so through at least 3.2.1) incorrectly generate
12382 DW_TAG_variable tags. */
12383
12384 const char *physname;
12385
12386 /* Get name of field. */
12387 fieldname = dwarf2_name (die, cu);
12388 if (fieldname == NULL)
12389 return;
12390
12391 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12392 if (attr
12393 /* Only create a symbol if this is an external value.
12394 new_symbol checks this and puts the value in the global symbol
12395 table, which we want. If it is not external, new_symbol
12396 will try to put the value in cu->list_in_scope which is wrong. */
12397 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12398 {
12399 /* A static const member, not much different than an enum as far as
12400 we're concerned, except that we can support more types. */
12401 new_symbol (die, NULL, cu);
12402 }
12403
12404 /* Get physical name. */
12405 physname = dwarf2_physname (fieldname, die, cu);
12406
12407 /* The name is already allocated along with this objfile, so we don't
12408 need to duplicate it for the type. */
12409 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12410 FIELD_TYPE (*fp) = die_type (die, cu);
12411 FIELD_NAME (*fp) = fieldname;
12412 }
12413 else if (die->tag == DW_TAG_inheritance)
12414 {
12415 LONGEST offset;
12416
12417 /* C++ base class field. */
12418 if (handle_data_member_location (die, cu, &offset))
12419 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12420 FIELD_BITSIZE (*fp) = 0;
12421 FIELD_TYPE (*fp) = die_type (die, cu);
12422 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12423 fip->nbaseclasses++;
12424 }
12425 }
12426
12427 /* Add a typedef defined in the scope of the FIP's class. */
12428
12429 static void
12430 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12431 struct dwarf2_cu *cu)
12432 {
12433 struct objfile *objfile = cu->objfile;
12434 struct typedef_field_list *new_field;
12435 struct attribute *attr;
12436 struct typedef_field *fp;
12437 char *fieldname = "";
12438
12439 /* Allocate a new field list entry and link it in. */
12440 new_field = xzalloc (sizeof (*new_field));
12441 make_cleanup (xfree, new_field);
12442
12443 gdb_assert (die->tag == DW_TAG_typedef);
12444
12445 fp = &new_field->field;
12446
12447 /* Get name of field. */
12448 fp->name = dwarf2_name (die, cu);
12449 if (fp->name == NULL)
12450 return;
12451
12452 fp->type = read_type_die (die, cu);
12453
12454 new_field->next = fip->typedef_field_list;
12455 fip->typedef_field_list = new_field;
12456 fip->typedef_field_list_count++;
12457 }
12458
12459 /* Create the vector of fields, and attach it to the type. */
12460
12461 static void
12462 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12463 struct dwarf2_cu *cu)
12464 {
12465 int nfields = fip->nfields;
12466
12467 /* Record the field count, allocate space for the array of fields,
12468 and create blank accessibility bitfields if necessary. */
12469 TYPE_NFIELDS (type) = nfields;
12470 TYPE_FIELDS (type) = (struct field *)
12471 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12472 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12473
12474 if (fip->non_public_fields && cu->language != language_ada)
12475 {
12476 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12477
12478 TYPE_FIELD_PRIVATE_BITS (type) =
12479 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12480 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12481
12482 TYPE_FIELD_PROTECTED_BITS (type) =
12483 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12484 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12485
12486 TYPE_FIELD_IGNORE_BITS (type) =
12487 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12488 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12489 }
12490
12491 /* If the type has baseclasses, allocate and clear a bit vector for
12492 TYPE_FIELD_VIRTUAL_BITS. */
12493 if (fip->nbaseclasses && cu->language != language_ada)
12494 {
12495 int num_bytes = B_BYTES (fip->nbaseclasses);
12496 unsigned char *pointer;
12497
12498 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12499 pointer = TYPE_ALLOC (type, num_bytes);
12500 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12501 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12502 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12503 }
12504
12505 /* Copy the saved-up fields into the field vector. Start from the head of
12506 the list, adding to the tail of the field array, so that they end up in
12507 the same order in the array in which they were added to the list. */
12508 while (nfields-- > 0)
12509 {
12510 struct nextfield *fieldp;
12511
12512 if (fip->fields)
12513 {
12514 fieldp = fip->fields;
12515 fip->fields = fieldp->next;
12516 }
12517 else
12518 {
12519 fieldp = fip->baseclasses;
12520 fip->baseclasses = fieldp->next;
12521 }
12522
12523 TYPE_FIELD (type, nfields) = fieldp->field;
12524 switch (fieldp->accessibility)
12525 {
12526 case DW_ACCESS_private:
12527 if (cu->language != language_ada)
12528 SET_TYPE_FIELD_PRIVATE (type, nfields);
12529 break;
12530
12531 case DW_ACCESS_protected:
12532 if (cu->language != language_ada)
12533 SET_TYPE_FIELD_PROTECTED (type, nfields);
12534 break;
12535
12536 case DW_ACCESS_public:
12537 break;
12538
12539 default:
12540 /* Unknown accessibility. Complain and treat it as public. */
12541 {
12542 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12543 fieldp->accessibility);
12544 }
12545 break;
12546 }
12547 if (nfields < fip->nbaseclasses)
12548 {
12549 switch (fieldp->virtuality)
12550 {
12551 case DW_VIRTUALITY_virtual:
12552 case DW_VIRTUALITY_pure_virtual:
12553 if (cu->language == language_ada)
12554 error (_("unexpected virtuality in component of Ada type"));
12555 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12556 break;
12557 }
12558 }
12559 }
12560 }
12561
12562 /* Return true if this member function is a constructor, false
12563 otherwise. */
12564
12565 static int
12566 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12567 {
12568 const char *fieldname;
12569 const char *typename;
12570 int len;
12571
12572 if (die->parent == NULL)
12573 return 0;
12574
12575 if (die->parent->tag != DW_TAG_structure_type
12576 && die->parent->tag != DW_TAG_union_type
12577 && die->parent->tag != DW_TAG_class_type)
12578 return 0;
12579
12580 fieldname = dwarf2_name (die, cu);
12581 typename = dwarf2_name (die->parent, cu);
12582 if (fieldname == NULL || typename == NULL)
12583 return 0;
12584
12585 len = strlen (fieldname);
12586 return (strncmp (fieldname, typename, len) == 0
12587 && (typename[len] == '\0' || typename[len] == '<'));
12588 }
12589
12590 /* Add a member function to the proper fieldlist. */
12591
12592 static void
12593 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12594 struct type *type, struct dwarf2_cu *cu)
12595 {
12596 struct objfile *objfile = cu->objfile;
12597 struct attribute *attr;
12598 struct fnfieldlist *flp;
12599 int i;
12600 struct fn_field *fnp;
12601 const char *fieldname;
12602 struct nextfnfield *new_fnfield;
12603 struct type *this_type;
12604 enum dwarf_access_attribute accessibility;
12605
12606 if (cu->language == language_ada)
12607 error (_("unexpected member function in Ada type"));
12608
12609 /* Get name of member function. */
12610 fieldname = dwarf2_name (die, cu);
12611 if (fieldname == NULL)
12612 return;
12613
12614 /* Look up member function name in fieldlist. */
12615 for (i = 0; i < fip->nfnfields; i++)
12616 {
12617 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12618 break;
12619 }
12620
12621 /* Create new list element if necessary. */
12622 if (i < fip->nfnfields)
12623 flp = &fip->fnfieldlists[i];
12624 else
12625 {
12626 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12627 {
12628 fip->fnfieldlists = (struct fnfieldlist *)
12629 xrealloc (fip->fnfieldlists,
12630 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12631 * sizeof (struct fnfieldlist));
12632 if (fip->nfnfields == 0)
12633 make_cleanup (free_current_contents, &fip->fnfieldlists);
12634 }
12635 flp = &fip->fnfieldlists[fip->nfnfields];
12636 flp->name = fieldname;
12637 flp->length = 0;
12638 flp->head = NULL;
12639 i = fip->nfnfields++;
12640 }
12641
12642 /* Create a new member function field and chain it to the field list
12643 entry. */
12644 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12645 make_cleanup (xfree, new_fnfield);
12646 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12647 new_fnfield->next = flp->head;
12648 flp->head = new_fnfield;
12649 flp->length++;
12650
12651 /* Fill in the member function field info. */
12652 fnp = &new_fnfield->fnfield;
12653
12654 /* Delay processing of the physname until later. */
12655 if (cu->language == language_cplus || cu->language == language_java)
12656 {
12657 add_to_method_list (type, i, flp->length - 1, fieldname,
12658 die, cu);
12659 }
12660 else
12661 {
12662 const char *physname = dwarf2_physname (fieldname, die, cu);
12663 fnp->physname = physname ? physname : "";
12664 }
12665
12666 fnp->type = alloc_type (objfile);
12667 this_type = read_type_die (die, cu);
12668 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12669 {
12670 int nparams = TYPE_NFIELDS (this_type);
12671
12672 /* TYPE is the domain of this method, and THIS_TYPE is the type
12673 of the method itself (TYPE_CODE_METHOD). */
12674 smash_to_method_type (fnp->type, type,
12675 TYPE_TARGET_TYPE (this_type),
12676 TYPE_FIELDS (this_type),
12677 TYPE_NFIELDS (this_type),
12678 TYPE_VARARGS (this_type));
12679
12680 /* Handle static member functions.
12681 Dwarf2 has no clean way to discern C++ static and non-static
12682 member functions. G++ helps GDB by marking the first
12683 parameter for non-static member functions (which is the this
12684 pointer) as artificial. We obtain this information from
12685 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12686 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12687 fnp->voffset = VOFFSET_STATIC;
12688 }
12689 else
12690 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12691 dwarf2_full_name (fieldname, die, cu));
12692
12693 /* Get fcontext from DW_AT_containing_type if present. */
12694 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12695 fnp->fcontext = die_containing_type (die, cu);
12696
12697 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12698 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12699
12700 /* Get accessibility. */
12701 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12702 if (attr)
12703 accessibility = DW_UNSND (attr);
12704 else
12705 accessibility = dwarf2_default_access_attribute (die, cu);
12706 switch (accessibility)
12707 {
12708 case DW_ACCESS_private:
12709 fnp->is_private = 1;
12710 break;
12711 case DW_ACCESS_protected:
12712 fnp->is_protected = 1;
12713 break;
12714 }
12715
12716 /* Check for artificial methods. */
12717 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12718 if (attr && DW_UNSND (attr) != 0)
12719 fnp->is_artificial = 1;
12720
12721 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12722
12723 /* Get index in virtual function table if it is a virtual member
12724 function. For older versions of GCC, this is an offset in the
12725 appropriate virtual table, as specified by DW_AT_containing_type.
12726 For everyone else, it is an expression to be evaluated relative
12727 to the object address. */
12728
12729 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12730 if (attr)
12731 {
12732 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12733 {
12734 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12735 {
12736 /* Old-style GCC. */
12737 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12738 }
12739 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12740 || (DW_BLOCK (attr)->size > 1
12741 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12742 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12743 {
12744 struct dwarf_block blk;
12745 int offset;
12746
12747 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12748 ? 1 : 2);
12749 blk.size = DW_BLOCK (attr)->size - offset;
12750 blk.data = DW_BLOCK (attr)->data + offset;
12751 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12752 if ((fnp->voffset % cu->header.addr_size) != 0)
12753 dwarf2_complex_location_expr_complaint ();
12754 else
12755 fnp->voffset /= cu->header.addr_size;
12756 fnp->voffset += 2;
12757 }
12758 else
12759 dwarf2_complex_location_expr_complaint ();
12760
12761 if (!fnp->fcontext)
12762 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12763 }
12764 else if (attr_form_is_section_offset (attr))
12765 {
12766 dwarf2_complex_location_expr_complaint ();
12767 }
12768 else
12769 {
12770 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12771 fieldname);
12772 }
12773 }
12774 else
12775 {
12776 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12777 if (attr && DW_UNSND (attr))
12778 {
12779 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12780 complaint (&symfile_complaints,
12781 _("Member function \"%s\" (offset %d) is virtual "
12782 "but the vtable offset is not specified"),
12783 fieldname, die->offset.sect_off);
12784 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12785 TYPE_CPLUS_DYNAMIC (type) = 1;
12786 }
12787 }
12788 }
12789
12790 /* Create the vector of member function fields, and attach it to the type. */
12791
12792 static void
12793 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12794 struct dwarf2_cu *cu)
12795 {
12796 struct fnfieldlist *flp;
12797 int i;
12798
12799 if (cu->language == language_ada)
12800 error (_("unexpected member functions in Ada type"));
12801
12802 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12803 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12804 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12805
12806 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12807 {
12808 struct nextfnfield *nfp = flp->head;
12809 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12810 int k;
12811
12812 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12813 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12814 fn_flp->fn_fields = (struct fn_field *)
12815 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12816 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12817 fn_flp->fn_fields[k] = nfp->fnfield;
12818 }
12819
12820 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12821 }
12822
12823 /* Returns non-zero if NAME is the name of a vtable member in CU's
12824 language, zero otherwise. */
12825 static int
12826 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12827 {
12828 static const char vptr[] = "_vptr";
12829 static const char vtable[] = "vtable";
12830
12831 /* Look for the C++ and Java forms of the vtable. */
12832 if ((cu->language == language_java
12833 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12834 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12835 && is_cplus_marker (name[sizeof (vptr) - 1])))
12836 return 1;
12837
12838 return 0;
12839 }
12840
12841 /* GCC outputs unnamed structures that are really pointers to member
12842 functions, with the ABI-specified layout. If TYPE describes
12843 such a structure, smash it into a member function type.
12844
12845 GCC shouldn't do this; it should just output pointer to member DIEs.
12846 This is GCC PR debug/28767. */
12847
12848 static void
12849 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12850 {
12851 struct type *pfn_type, *domain_type, *new_type;
12852
12853 /* Check for a structure with no name and two children. */
12854 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12855 return;
12856
12857 /* Check for __pfn and __delta members. */
12858 if (TYPE_FIELD_NAME (type, 0) == NULL
12859 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12860 || TYPE_FIELD_NAME (type, 1) == NULL
12861 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12862 return;
12863
12864 /* Find the type of the method. */
12865 pfn_type = TYPE_FIELD_TYPE (type, 0);
12866 if (pfn_type == NULL
12867 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12868 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12869 return;
12870
12871 /* Look for the "this" argument. */
12872 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12873 if (TYPE_NFIELDS (pfn_type) == 0
12874 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12875 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12876 return;
12877
12878 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12879 new_type = alloc_type (objfile);
12880 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12881 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12882 TYPE_VARARGS (pfn_type));
12883 smash_to_methodptr_type (type, new_type);
12884 }
12885
12886 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12887 (icc). */
12888
12889 static int
12890 producer_is_icc (struct dwarf2_cu *cu)
12891 {
12892 if (!cu->checked_producer)
12893 check_producer (cu);
12894
12895 return cu->producer_is_icc;
12896 }
12897
12898 /* Called when we find the DIE that starts a structure or union scope
12899 (definition) to create a type for the structure or union. Fill in
12900 the type's name and general properties; the members will not be
12901 processed until process_structure_scope. A symbol table entry for
12902 the type will also not be done until process_structure_scope (assuming
12903 the type has a name).
12904
12905 NOTE: we need to call these functions regardless of whether or not the
12906 DIE has a DW_AT_name attribute, since it might be an anonymous
12907 structure or union. This gets the type entered into our set of
12908 user defined types. */
12909
12910 static struct type *
12911 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12912 {
12913 struct objfile *objfile = cu->objfile;
12914 struct type *type;
12915 struct attribute *attr;
12916 const char *name;
12917
12918 /* If the definition of this type lives in .debug_types, read that type.
12919 Don't follow DW_AT_specification though, that will take us back up
12920 the chain and we want to go down. */
12921 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12922 if (attr)
12923 {
12924 type = get_DW_AT_signature_type (die, attr, cu);
12925
12926 /* The type's CU may not be the same as CU.
12927 Ensure TYPE is recorded with CU in die_type_hash. */
12928 return set_die_type (die, type, cu);
12929 }
12930
12931 type = alloc_type (objfile);
12932 INIT_CPLUS_SPECIFIC (type);
12933
12934 name = dwarf2_name (die, cu);
12935 if (name != NULL)
12936 {
12937 if (cu->language == language_cplus
12938 || cu->language == language_java)
12939 {
12940 const char *full_name = dwarf2_full_name (name, die, cu);
12941
12942 /* dwarf2_full_name might have already finished building the DIE's
12943 type. If so, there is no need to continue. */
12944 if (get_die_type (die, cu) != NULL)
12945 return get_die_type (die, cu);
12946
12947 TYPE_TAG_NAME (type) = full_name;
12948 if (die->tag == DW_TAG_structure_type
12949 || die->tag == DW_TAG_class_type)
12950 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12951 }
12952 else
12953 {
12954 /* The name is already allocated along with this objfile, so
12955 we don't need to duplicate it for the type. */
12956 TYPE_TAG_NAME (type) = name;
12957 if (die->tag == DW_TAG_class_type)
12958 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12959 }
12960 }
12961
12962 if (die->tag == DW_TAG_structure_type)
12963 {
12964 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12965 }
12966 else if (die->tag == DW_TAG_union_type)
12967 {
12968 TYPE_CODE (type) = TYPE_CODE_UNION;
12969 }
12970 else
12971 {
12972 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12973 }
12974
12975 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12976 TYPE_DECLARED_CLASS (type) = 1;
12977
12978 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12979 if (attr)
12980 {
12981 TYPE_LENGTH (type) = DW_UNSND (attr);
12982 }
12983 else
12984 {
12985 TYPE_LENGTH (type) = 0;
12986 }
12987
12988 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12989 {
12990 /* ICC does not output the required DW_AT_declaration
12991 on incomplete types, but gives them a size of zero. */
12992 TYPE_STUB (type) = 1;
12993 }
12994 else
12995 TYPE_STUB_SUPPORTED (type) = 1;
12996
12997 if (die_is_declaration (die, cu))
12998 TYPE_STUB (type) = 1;
12999 else if (attr == NULL && die->child == NULL
13000 && producer_is_realview (cu->producer))
13001 /* RealView does not output the required DW_AT_declaration
13002 on incomplete types. */
13003 TYPE_STUB (type) = 1;
13004
13005 /* We need to add the type field to the die immediately so we don't
13006 infinitely recurse when dealing with pointers to the structure
13007 type within the structure itself. */
13008 set_die_type (die, type, cu);
13009
13010 /* set_die_type should be already done. */
13011 set_descriptive_type (type, die, cu);
13012
13013 return type;
13014 }
13015
13016 /* Finish creating a structure or union type, including filling in
13017 its members and creating a symbol for it. */
13018
13019 static void
13020 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13021 {
13022 struct objfile *objfile = cu->objfile;
13023 struct die_info *child_die;
13024 struct type *type;
13025
13026 type = get_die_type (die, cu);
13027 if (type == NULL)
13028 type = read_structure_type (die, cu);
13029
13030 if (die->child != NULL && ! die_is_declaration (die, cu))
13031 {
13032 struct field_info fi;
13033 VEC (symbolp) *template_args = NULL;
13034 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13035
13036 memset (&fi, 0, sizeof (struct field_info));
13037
13038 child_die = die->child;
13039
13040 while (child_die && child_die->tag)
13041 {
13042 if (child_die->tag == DW_TAG_member
13043 || child_die->tag == DW_TAG_variable)
13044 {
13045 /* NOTE: carlton/2002-11-05: A C++ static data member
13046 should be a DW_TAG_member that is a declaration, but
13047 all versions of G++ as of this writing (so through at
13048 least 3.2.1) incorrectly generate DW_TAG_variable
13049 tags for them instead. */
13050 dwarf2_add_field (&fi, child_die, cu);
13051 }
13052 else if (child_die->tag == DW_TAG_subprogram)
13053 {
13054 /* C++ member function. */
13055 dwarf2_add_member_fn (&fi, child_die, type, cu);
13056 }
13057 else if (child_die->tag == DW_TAG_inheritance)
13058 {
13059 /* C++ base class field. */
13060 dwarf2_add_field (&fi, child_die, cu);
13061 }
13062 else if (child_die->tag == DW_TAG_typedef)
13063 dwarf2_add_typedef (&fi, child_die, cu);
13064 else if (child_die->tag == DW_TAG_template_type_param
13065 || child_die->tag == DW_TAG_template_value_param)
13066 {
13067 struct symbol *arg = new_symbol (child_die, NULL, cu);
13068
13069 if (arg != NULL)
13070 VEC_safe_push (symbolp, template_args, arg);
13071 }
13072
13073 child_die = sibling_die (child_die);
13074 }
13075
13076 /* Attach template arguments to type. */
13077 if (! VEC_empty (symbolp, template_args))
13078 {
13079 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13080 TYPE_N_TEMPLATE_ARGUMENTS (type)
13081 = VEC_length (symbolp, template_args);
13082 TYPE_TEMPLATE_ARGUMENTS (type)
13083 = obstack_alloc (&objfile->objfile_obstack,
13084 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13085 * sizeof (struct symbol *)));
13086 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13087 VEC_address (symbolp, template_args),
13088 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13089 * sizeof (struct symbol *)));
13090 VEC_free (symbolp, template_args);
13091 }
13092
13093 /* Attach fields and member functions to the type. */
13094 if (fi.nfields)
13095 dwarf2_attach_fields_to_type (&fi, type, cu);
13096 if (fi.nfnfields)
13097 {
13098 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13099
13100 /* Get the type which refers to the base class (possibly this
13101 class itself) which contains the vtable pointer for the current
13102 class from the DW_AT_containing_type attribute. This use of
13103 DW_AT_containing_type is a GNU extension. */
13104
13105 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13106 {
13107 struct type *t = die_containing_type (die, cu);
13108
13109 TYPE_VPTR_BASETYPE (type) = t;
13110 if (type == t)
13111 {
13112 int i;
13113
13114 /* Our own class provides vtbl ptr. */
13115 for (i = TYPE_NFIELDS (t) - 1;
13116 i >= TYPE_N_BASECLASSES (t);
13117 --i)
13118 {
13119 const char *fieldname = TYPE_FIELD_NAME (t, i);
13120
13121 if (is_vtable_name (fieldname, cu))
13122 {
13123 TYPE_VPTR_FIELDNO (type) = i;
13124 break;
13125 }
13126 }
13127
13128 /* Complain if virtual function table field not found. */
13129 if (i < TYPE_N_BASECLASSES (t))
13130 complaint (&symfile_complaints,
13131 _("virtual function table pointer "
13132 "not found when defining class '%s'"),
13133 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13134 "");
13135 }
13136 else
13137 {
13138 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13139 }
13140 }
13141 else if (cu->producer
13142 && strncmp (cu->producer,
13143 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13144 {
13145 /* The IBM XLC compiler does not provide direct indication
13146 of the containing type, but the vtable pointer is
13147 always named __vfp. */
13148
13149 int i;
13150
13151 for (i = TYPE_NFIELDS (type) - 1;
13152 i >= TYPE_N_BASECLASSES (type);
13153 --i)
13154 {
13155 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13156 {
13157 TYPE_VPTR_FIELDNO (type) = i;
13158 TYPE_VPTR_BASETYPE (type) = type;
13159 break;
13160 }
13161 }
13162 }
13163 }
13164
13165 /* Copy fi.typedef_field_list linked list elements content into the
13166 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13167 if (fi.typedef_field_list)
13168 {
13169 int i = fi.typedef_field_list_count;
13170
13171 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13172 TYPE_TYPEDEF_FIELD_ARRAY (type)
13173 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13174 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13175
13176 /* Reverse the list order to keep the debug info elements order. */
13177 while (--i >= 0)
13178 {
13179 struct typedef_field *dest, *src;
13180
13181 dest = &TYPE_TYPEDEF_FIELD (type, i);
13182 src = &fi.typedef_field_list->field;
13183 fi.typedef_field_list = fi.typedef_field_list->next;
13184 *dest = *src;
13185 }
13186 }
13187
13188 do_cleanups (back_to);
13189
13190 if (HAVE_CPLUS_STRUCT (type))
13191 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13192 }
13193
13194 quirk_gcc_member_function_pointer (type, objfile);
13195
13196 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13197 snapshots) has been known to create a die giving a declaration
13198 for a class that has, as a child, a die giving a definition for a
13199 nested class. So we have to process our children even if the
13200 current die is a declaration. Normally, of course, a declaration
13201 won't have any children at all. */
13202
13203 child_die = die->child;
13204
13205 while (child_die != NULL && child_die->tag)
13206 {
13207 if (child_die->tag == DW_TAG_member
13208 || child_die->tag == DW_TAG_variable
13209 || child_die->tag == DW_TAG_inheritance
13210 || child_die->tag == DW_TAG_template_value_param
13211 || child_die->tag == DW_TAG_template_type_param)
13212 {
13213 /* Do nothing. */
13214 }
13215 else
13216 process_die (child_die, cu);
13217
13218 child_die = sibling_die (child_die);
13219 }
13220
13221 /* Do not consider external references. According to the DWARF standard,
13222 these DIEs are identified by the fact that they have no byte_size
13223 attribute, and a declaration attribute. */
13224 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13225 || !die_is_declaration (die, cu))
13226 new_symbol (die, type, cu);
13227 }
13228
13229 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13230 update TYPE using some information only available in DIE's children. */
13231
13232 static void
13233 update_enumeration_type_from_children (struct die_info *die,
13234 struct type *type,
13235 struct dwarf2_cu *cu)
13236 {
13237 struct obstack obstack;
13238 struct die_info *child_die;
13239 int unsigned_enum = 1;
13240 int flag_enum = 1;
13241 ULONGEST mask = 0;
13242 struct cleanup *old_chain;
13243
13244 obstack_init (&obstack);
13245 old_chain = make_cleanup_obstack_free (&obstack);
13246
13247 for (child_die = die->child;
13248 child_die != NULL && child_die->tag;
13249 child_die = sibling_die (child_die))
13250 {
13251 struct attribute *attr;
13252 LONGEST value;
13253 const gdb_byte *bytes;
13254 struct dwarf2_locexpr_baton *baton;
13255 const char *name;
13256
13257 if (child_die->tag != DW_TAG_enumerator)
13258 continue;
13259
13260 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13261 if (attr == NULL)
13262 continue;
13263
13264 name = dwarf2_name (child_die, cu);
13265 if (name == NULL)
13266 name = "<anonymous enumerator>";
13267
13268 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13269 &value, &bytes, &baton);
13270 if (value < 0)
13271 {
13272 unsigned_enum = 0;
13273 flag_enum = 0;
13274 }
13275 else if ((mask & value) != 0)
13276 flag_enum = 0;
13277 else
13278 mask |= value;
13279
13280 /* If we already know that the enum type is neither unsigned, nor
13281 a flag type, no need to look at the rest of the enumerates. */
13282 if (!unsigned_enum && !flag_enum)
13283 break;
13284 }
13285
13286 if (unsigned_enum)
13287 TYPE_UNSIGNED (type) = 1;
13288 if (flag_enum)
13289 TYPE_FLAG_ENUM (type) = 1;
13290
13291 do_cleanups (old_chain);
13292 }
13293
13294 /* Given a DW_AT_enumeration_type die, set its type. We do not
13295 complete the type's fields yet, or create any symbols. */
13296
13297 static struct type *
13298 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13299 {
13300 struct objfile *objfile = cu->objfile;
13301 struct type *type;
13302 struct attribute *attr;
13303 const char *name;
13304
13305 /* If the definition of this type lives in .debug_types, read that type.
13306 Don't follow DW_AT_specification though, that will take us back up
13307 the chain and we want to go down. */
13308 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13309 if (attr)
13310 {
13311 type = get_DW_AT_signature_type (die, attr, cu);
13312
13313 /* The type's CU may not be the same as CU.
13314 Ensure TYPE is recorded with CU in die_type_hash. */
13315 return set_die_type (die, type, cu);
13316 }
13317
13318 type = alloc_type (objfile);
13319
13320 TYPE_CODE (type) = TYPE_CODE_ENUM;
13321 name = dwarf2_full_name (NULL, die, cu);
13322 if (name != NULL)
13323 TYPE_TAG_NAME (type) = name;
13324
13325 attr = dwarf2_attr (die, DW_AT_type, cu);
13326 if (attr != NULL)
13327 {
13328 struct type *underlying_type = die_type (die, cu);
13329
13330 TYPE_TARGET_TYPE (type) = underlying_type;
13331 }
13332
13333 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13334 if (attr)
13335 {
13336 TYPE_LENGTH (type) = DW_UNSND (attr);
13337 }
13338 else
13339 {
13340 TYPE_LENGTH (type) = 0;
13341 }
13342
13343 /* The enumeration DIE can be incomplete. In Ada, any type can be
13344 declared as private in the package spec, and then defined only
13345 inside the package body. Such types are known as Taft Amendment
13346 Types. When another package uses such a type, an incomplete DIE
13347 may be generated by the compiler. */
13348 if (die_is_declaration (die, cu))
13349 TYPE_STUB (type) = 1;
13350
13351 /* Finish the creation of this type by using the enum's children.
13352 We must call this even when the underlying type has been provided
13353 so that we can determine if we're looking at a "flag" enum. */
13354 update_enumeration_type_from_children (die, type, cu);
13355
13356 /* If this type has an underlying type that is not a stub, then we
13357 may use its attributes. We always use the "unsigned" attribute
13358 in this situation, because ordinarily we guess whether the type
13359 is unsigned -- but the guess can be wrong and the underlying type
13360 can tell us the reality. However, we defer to a local size
13361 attribute if one exists, because this lets the compiler override
13362 the underlying type if needed. */
13363 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13364 {
13365 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13366 if (TYPE_LENGTH (type) == 0)
13367 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13368 }
13369
13370 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13371
13372 return set_die_type (die, type, cu);
13373 }
13374
13375 /* Given a pointer to a die which begins an enumeration, process all
13376 the dies that define the members of the enumeration, and create the
13377 symbol for the enumeration type.
13378
13379 NOTE: We reverse the order of the element list. */
13380
13381 static void
13382 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13383 {
13384 struct type *this_type;
13385
13386 this_type = get_die_type (die, cu);
13387 if (this_type == NULL)
13388 this_type = read_enumeration_type (die, cu);
13389
13390 if (die->child != NULL)
13391 {
13392 struct die_info *child_die;
13393 struct symbol *sym;
13394 struct field *fields = NULL;
13395 int num_fields = 0;
13396 const char *name;
13397
13398 child_die = die->child;
13399 while (child_die && child_die->tag)
13400 {
13401 if (child_die->tag != DW_TAG_enumerator)
13402 {
13403 process_die (child_die, cu);
13404 }
13405 else
13406 {
13407 name = dwarf2_name (child_die, cu);
13408 if (name)
13409 {
13410 sym = new_symbol (child_die, this_type, cu);
13411
13412 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13413 {
13414 fields = (struct field *)
13415 xrealloc (fields,
13416 (num_fields + DW_FIELD_ALLOC_CHUNK)
13417 * sizeof (struct field));
13418 }
13419
13420 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13421 FIELD_TYPE (fields[num_fields]) = NULL;
13422 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13423 FIELD_BITSIZE (fields[num_fields]) = 0;
13424
13425 num_fields++;
13426 }
13427 }
13428
13429 child_die = sibling_die (child_die);
13430 }
13431
13432 if (num_fields)
13433 {
13434 TYPE_NFIELDS (this_type) = num_fields;
13435 TYPE_FIELDS (this_type) = (struct field *)
13436 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13437 memcpy (TYPE_FIELDS (this_type), fields,
13438 sizeof (struct field) * num_fields);
13439 xfree (fields);
13440 }
13441 }
13442
13443 /* If we are reading an enum from a .debug_types unit, and the enum
13444 is a declaration, and the enum is not the signatured type in the
13445 unit, then we do not want to add a symbol for it. Adding a
13446 symbol would in some cases obscure the true definition of the
13447 enum, giving users an incomplete type when the definition is
13448 actually available. Note that we do not want to do this for all
13449 enums which are just declarations, because C++0x allows forward
13450 enum declarations. */
13451 if (cu->per_cu->is_debug_types
13452 && die_is_declaration (die, cu))
13453 {
13454 struct signatured_type *sig_type;
13455
13456 sig_type = (struct signatured_type *) cu->per_cu;
13457 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13458 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13459 return;
13460 }
13461
13462 new_symbol (die, this_type, cu);
13463 }
13464
13465 /* Extract all information from a DW_TAG_array_type DIE and put it in
13466 the DIE's type field. For now, this only handles one dimensional
13467 arrays. */
13468
13469 static struct type *
13470 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13471 {
13472 struct objfile *objfile = cu->objfile;
13473 struct die_info *child_die;
13474 struct type *type;
13475 struct type *element_type, *range_type, *index_type;
13476 struct type **range_types = NULL;
13477 struct attribute *attr;
13478 int ndim = 0;
13479 struct cleanup *back_to;
13480 const char *name;
13481 unsigned int bit_stride = 0;
13482
13483 element_type = die_type (die, cu);
13484
13485 /* The die_type call above may have already set the type for this DIE. */
13486 type = get_die_type (die, cu);
13487 if (type)
13488 return type;
13489
13490 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13491 if (attr != NULL)
13492 bit_stride = DW_UNSND (attr) * 8;
13493
13494 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13495 if (attr != NULL)
13496 bit_stride = DW_UNSND (attr);
13497
13498 /* Irix 6.2 native cc creates array types without children for
13499 arrays with unspecified length. */
13500 if (die->child == NULL)
13501 {
13502 index_type = objfile_type (objfile)->builtin_int;
13503 range_type = create_static_range_type (NULL, index_type, 0, -1);
13504 type = create_array_type_with_stride (NULL, element_type, range_type,
13505 bit_stride);
13506 return set_die_type (die, type, cu);
13507 }
13508
13509 back_to = make_cleanup (null_cleanup, NULL);
13510 child_die = die->child;
13511 while (child_die && child_die->tag)
13512 {
13513 if (child_die->tag == DW_TAG_subrange_type)
13514 {
13515 struct type *child_type = read_type_die (child_die, cu);
13516
13517 if (child_type != NULL)
13518 {
13519 /* The range type was succesfully read. Save it for the
13520 array type creation. */
13521 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13522 {
13523 range_types = (struct type **)
13524 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13525 * sizeof (struct type *));
13526 if (ndim == 0)
13527 make_cleanup (free_current_contents, &range_types);
13528 }
13529 range_types[ndim++] = child_type;
13530 }
13531 }
13532 child_die = sibling_die (child_die);
13533 }
13534
13535 /* Dwarf2 dimensions are output from left to right, create the
13536 necessary array types in backwards order. */
13537
13538 type = element_type;
13539
13540 if (read_array_order (die, cu) == DW_ORD_col_major)
13541 {
13542 int i = 0;
13543
13544 while (i < ndim)
13545 type = create_array_type_with_stride (NULL, type, range_types[i++],
13546 bit_stride);
13547 }
13548 else
13549 {
13550 while (ndim-- > 0)
13551 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13552 bit_stride);
13553 }
13554
13555 /* Understand Dwarf2 support for vector types (like they occur on
13556 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13557 array type. This is not part of the Dwarf2/3 standard yet, but a
13558 custom vendor extension. The main difference between a regular
13559 array and the vector variant is that vectors are passed by value
13560 to functions. */
13561 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13562 if (attr)
13563 make_vector_type (type);
13564
13565 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13566 implementation may choose to implement triple vectors using this
13567 attribute. */
13568 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13569 if (attr)
13570 {
13571 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13572 TYPE_LENGTH (type) = DW_UNSND (attr);
13573 else
13574 complaint (&symfile_complaints,
13575 _("DW_AT_byte_size for array type smaller "
13576 "than the total size of elements"));
13577 }
13578
13579 name = dwarf2_name (die, cu);
13580 if (name)
13581 TYPE_NAME (type) = name;
13582
13583 /* Install the type in the die. */
13584 set_die_type (die, type, cu);
13585
13586 /* set_die_type should be already done. */
13587 set_descriptive_type (type, die, cu);
13588
13589 do_cleanups (back_to);
13590
13591 return type;
13592 }
13593
13594 static enum dwarf_array_dim_ordering
13595 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13596 {
13597 struct attribute *attr;
13598
13599 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13600
13601 if (attr) return DW_SND (attr);
13602
13603 /* GNU F77 is a special case, as at 08/2004 array type info is the
13604 opposite order to the dwarf2 specification, but data is still
13605 laid out as per normal fortran.
13606
13607 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13608 version checking. */
13609
13610 if (cu->language == language_fortran
13611 && cu->producer && strstr (cu->producer, "GNU F77"))
13612 {
13613 return DW_ORD_row_major;
13614 }
13615
13616 switch (cu->language_defn->la_array_ordering)
13617 {
13618 case array_column_major:
13619 return DW_ORD_col_major;
13620 case array_row_major:
13621 default:
13622 return DW_ORD_row_major;
13623 };
13624 }
13625
13626 /* Extract all information from a DW_TAG_set_type DIE and put it in
13627 the DIE's type field. */
13628
13629 static struct type *
13630 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13631 {
13632 struct type *domain_type, *set_type;
13633 struct attribute *attr;
13634
13635 domain_type = die_type (die, cu);
13636
13637 /* The die_type call above may have already set the type for this DIE. */
13638 set_type = get_die_type (die, cu);
13639 if (set_type)
13640 return set_type;
13641
13642 set_type = create_set_type (NULL, domain_type);
13643
13644 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13645 if (attr)
13646 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13647
13648 return set_die_type (die, set_type, cu);
13649 }
13650
13651 /* A helper for read_common_block that creates a locexpr baton.
13652 SYM is the symbol which we are marking as computed.
13653 COMMON_DIE is the DIE for the common block.
13654 COMMON_LOC is the location expression attribute for the common
13655 block itself.
13656 MEMBER_LOC is the location expression attribute for the particular
13657 member of the common block that we are processing.
13658 CU is the CU from which the above come. */
13659
13660 static void
13661 mark_common_block_symbol_computed (struct symbol *sym,
13662 struct die_info *common_die,
13663 struct attribute *common_loc,
13664 struct attribute *member_loc,
13665 struct dwarf2_cu *cu)
13666 {
13667 struct objfile *objfile = dwarf2_per_objfile->objfile;
13668 struct dwarf2_locexpr_baton *baton;
13669 gdb_byte *ptr;
13670 unsigned int cu_off;
13671 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13672 LONGEST offset = 0;
13673
13674 gdb_assert (common_loc && member_loc);
13675 gdb_assert (attr_form_is_block (common_loc));
13676 gdb_assert (attr_form_is_block (member_loc)
13677 || attr_form_is_constant (member_loc));
13678
13679 baton = obstack_alloc (&objfile->objfile_obstack,
13680 sizeof (struct dwarf2_locexpr_baton));
13681 baton->per_cu = cu->per_cu;
13682 gdb_assert (baton->per_cu);
13683
13684 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13685
13686 if (attr_form_is_constant (member_loc))
13687 {
13688 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13689 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13690 }
13691 else
13692 baton->size += DW_BLOCK (member_loc)->size;
13693
13694 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13695 baton->data = ptr;
13696
13697 *ptr++ = DW_OP_call4;
13698 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13699 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13700 ptr += 4;
13701
13702 if (attr_form_is_constant (member_loc))
13703 {
13704 *ptr++ = DW_OP_addr;
13705 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13706 ptr += cu->header.addr_size;
13707 }
13708 else
13709 {
13710 /* We have to copy the data here, because DW_OP_call4 will only
13711 use a DW_AT_location attribute. */
13712 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13713 ptr += DW_BLOCK (member_loc)->size;
13714 }
13715
13716 *ptr++ = DW_OP_plus;
13717 gdb_assert (ptr - baton->data == baton->size);
13718
13719 SYMBOL_LOCATION_BATON (sym) = baton;
13720 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13721 }
13722
13723 /* Create appropriate locally-scoped variables for all the
13724 DW_TAG_common_block entries. Also create a struct common_block
13725 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13726 is used to sepate the common blocks name namespace from regular
13727 variable names. */
13728
13729 static void
13730 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13731 {
13732 struct attribute *attr;
13733
13734 attr = dwarf2_attr (die, DW_AT_location, cu);
13735 if (attr)
13736 {
13737 /* Support the .debug_loc offsets. */
13738 if (attr_form_is_block (attr))
13739 {
13740 /* Ok. */
13741 }
13742 else if (attr_form_is_section_offset (attr))
13743 {
13744 dwarf2_complex_location_expr_complaint ();
13745 attr = NULL;
13746 }
13747 else
13748 {
13749 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13750 "common block member");
13751 attr = NULL;
13752 }
13753 }
13754
13755 if (die->child != NULL)
13756 {
13757 struct objfile *objfile = cu->objfile;
13758 struct die_info *child_die;
13759 size_t n_entries = 0, size;
13760 struct common_block *common_block;
13761 struct symbol *sym;
13762
13763 for (child_die = die->child;
13764 child_die && child_die->tag;
13765 child_die = sibling_die (child_die))
13766 ++n_entries;
13767
13768 size = (sizeof (struct common_block)
13769 + (n_entries - 1) * sizeof (struct symbol *));
13770 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13771 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13772 common_block->n_entries = 0;
13773
13774 for (child_die = die->child;
13775 child_die && child_die->tag;
13776 child_die = sibling_die (child_die))
13777 {
13778 /* Create the symbol in the DW_TAG_common_block block in the current
13779 symbol scope. */
13780 sym = new_symbol (child_die, NULL, cu);
13781 if (sym != NULL)
13782 {
13783 struct attribute *member_loc;
13784
13785 common_block->contents[common_block->n_entries++] = sym;
13786
13787 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13788 cu);
13789 if (member_loc)
13790 {
13791 /* GDB has handled this for a long time, but it is
13792 not specified by DWARF. It seems to have been
13793 emitted by gfortran at least as recently as:
13794 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13795 complaint (&symfile_complaints,
13796 _("Variable in common block has "
13797 "DW_AT_data_member_location "
13798 "- DIE at 0x%x [in module %s]"),
13799 child_die->offset.sect_off,
13800 objfile_name (cu->objfile));
13801
13802 if (attr_form_is_section_offset (member_loc))
13803 dwarf2_complex_location_expr_complaint ();
13804 else if (attr_form_is_constant (member_loc)
13805 || attr_form_is_block (member_loc))
13806 {
13807 if (attr)
13808 mark_common_block_symbol_computed (sym, die, attr,
13809 member_loc, cu);
13810 }
13811 else
13812 dwarf2_complex_location_expr_complaint ();
13813 }
13814 }
13815 }
13816
13817 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13818 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13819 }
13820 }
13821
13822 /* Create a type for a C++ namespace. */
13823
13824 static struct type *
13825 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13826 {
13827 struct objfile *objfile = cu->objfile;
13828 const char *previous_prefix, *name;
13829 int is_anonymous;
13830 struct type *type;
13831
13832 /* For extensions, reuse the type of the original namespace. */
13833 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13834 {
13835 struct die_info *ext_die;
13836 struct dwarf2_cu *ext_cu = cu;
13837
13838 ext_die = dwarf2_extension (die, &ext_cu);
13839 type = read_type_die (ext_die, ext_cu);
13840
13841 /* EXT_CU may not be the same as CU.
13842 Ensure TYPE is recorded with CU in die_type_hash. */
13843 return set_die_type (die, type, cu);
13844 }
13845
13846 name = namespace_name (die, &is_anonymous, cu);
13847
13848 /* Now build the name of the current namespace. */
13849
13850 previous_prefix = determine_prefix (die, cu);
13851 if (previous_prefix[0] != '\0')
13852 name = typename_concat (&objfile->objfile_obstack,
13853 previous_prefix, name, 0, cu);
13854
13855 /* Create the type. */
13856 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13857 objfile);
13858 TYPE_NAME (type) = name;
13859 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13860
13861 return set_die_type (die, type, cu);
13862 }
13863
13864 /* Read a C++ namespace. */
13865
13866 static void
13867 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13868 {
13869 struct objfile *objfile = cu->objfile;
13870 int is_anonymous;
13871
13872 /* Add a symbol associated to this if we haven't seen the namespace
13873 before. Also, add a using directive if it's an anonymous
13874 namespace. */
13875
13876 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13877 {
13878 struct type *type;
13879
13880 type = read_type_die (die, cu);
13881 new_symbol (die, type, cu);
13882
13883 namespace_name (die, &is_anonymous, cu);
13884 if (is_anonymous)
13885 {
13886 const char *previous_prefix = determine_prefix (die, cu);
13887
13888 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13889 NULL, NULL, 0, &objfile->objfile_obstack);
13890 }
13891 }
13892
13893 if (die->child != NULL)
13894 {
13895 struct die_info *child_die = die->child;
13896
13897 while (child_die && child_die->tag)
13898 {
13899 process_die (child_die, cu);
13900 child_die = sibling_die (child_die);
13901 }
13902 }
13903 }
13904
13905 /* Read a Fortran module as type. This DIE can be only a declaration used for
13906 imported module. Still we need that type as local Fortran "use ... only"
13907 declaration imports depend on the created type in determine_prefix. */
13908
13909 static struct type *
13910 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13911 {
13912 struct objfile *objfile = cu->objfile;
13913 const char *module_name;
13914 struct type *type;
13915
13916 module_name = dwarf2_name (die, cu);
13917 if (!module_name)
13918 complaint (&symfile_complaints,
13919 _("DW_TAG_module has no name, offset 0x%x"),
13920 die->offset.sect_off);
13921 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13922
13923 /* determine_prefix uses TYPE_TAG_NAME. */
13924 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13925
13926 return set_die_type (die, type, cu);
13927 }
13928
13929 /* Read a Fortran module. */
13930
13931 static void
13932 read_module (struct die_info *die, struct dwarf2_cu *cu)
13933 {
13934 struct die_info *child_die = die->child;
13935 struct type *type;
13936
13937 type = read_type_die (die, cu);
13938 new_symbol (die, type, cu);
13939
13940 while (child_die && child_die->tag)
13941 {
13942 process_die (child_die, cu);
13943 child_die = sibling_die (child_die);
13944 }
13945 }
13946
13947 /* Return the name of the namespace represented by DIE. Set
13948 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13949 namespace. */
13950
13951 static const char *
13952 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13953 {
13954 struct die_info *current_die;
13955 const char *name = NULL;
13956
13957 /* Loop through the extensions until we find a name. */
13958
13959 for (current_die = die;
13960 current_die != NULL;
13961 current_die = dwarf2_extension (die, &cu))
13962 {
13963 name = dwarf2_name (current_die, cu);
13964 if (name != NULL)
13965 break;
13966 }
13967
13968 /* Is it an anonymous namespace? */
13969
13970 *is_anonymous = (name == NULL);
13971 if (*is_anonymous)
13972 name = CP_ANONYMOUS_NAMESPACE_STR;
13973
13974 return name;
13975 }
13976
13977 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13978 the user defined type vector. */
13979
13980 static struct type *
13981 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13982 {
13983 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13984 struct comp_unit_head *cu_header = &cu->header;
13985 struct type *type;
13986 struct attribute *attr_byte_size;
13987 struct attribute *attr_address_class;
13988 int byte_size, addr_class;
13989 struct type *target_type;
13990
13991 target_type = die_type (die, cu);
13992
13993 /* The die_type call above may have already set the type for this DIE. */
13994 type = get_die_type (die, cu);
13995 if (type)
13996 return type;
13997
13998 type = lookup_pointer_type (target_type);
13999
14000 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14001 if (attr_byte_size)
14002 byte_size = DW_UNSND (attr_byte_size);
14003 else
14004 byte_size = cu_header->addr_size;
14005
14006 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14007 if (attr_address_class)
14008 addr_class = DW_UNSND (attr_address_class);
14009 else
14010 addr_class = DW_ADDR_none;
14011
14012 /* If the pointer size or address class is different than the
14013 default, create a type variant marked as such and set the
14014 length accordingly. */
14015 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14016 {
14017 if (gdbarch_address_class_type_flags_p (gdbarch))
14018 {
14019 int type_flags;
14020
14021 type_flags = gdbarch_address_class_type_flags
14022 (gdbarch, byte_size, addr_class);
14023 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14024 == 0);
14025 type = make_type_with_address_space (type, type_flags);
14026 }
14027 else if (TYPE_LENGTH (type) != byte_size)
14028 {
14029 complaint (&symfile_complaints,
14030 _("invalid pointer size %d"), byte_size);
14031 }
14032 else
14033 {
14034 /* Should we also complain about unhandled address classes? */
14035 }
14036 }
14037
14038 TYPE_LENGTH (type) = byte_size;
14039 return set_die_type (die, type, cu);
14040 }
14041
14042 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14043 the user defined type vector. */
14044
14045 static struct type *
14046 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14047 {
14048 struct type *type;
14049 struct type *to_type;
14050 struct type *domain;
14051
14052 to_type = die_type (die, cu);
14053 domain = die_containing_type (die, cu);
14054
14055 /* The calls above may have already set the type for this DIE. */
14056 type = get_die_type (die, cu);
14057 if (type)
14058 return type;
14059
14060 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14061 type = lookup_methodptr_type (to_type);
14062 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14063 {
14064 struct type *new_type = alloc_type (cu->objfile);
14065
14066 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14067 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14068 TYPE_VARARGS (to_type));
14069 type = lookup_methodptr_type (new_type);
14070 }
14071 else
14072 type = lookup_memberptr_type (to_type, domain);
14073
14074 return set_die_type (die, type, cu);
14075 }
14076
14077 /* Extract all information from a DW_TAG_reference_type DIE and add to
14078 the user defined type vector. */
14079
14080 static struct type *
14081 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14082 {
14083 struct comp_unit_head *cu_header = &cu->header;
14084 struct type *type, *target_type;
14085 struct attribute *attr;
14086
14087 target_type = die_type (die, cu);
14088
14089 /* The die_type call above may have already set the type for this DIE. */
14090 type = get_die_type (die, cu);
14091 if (type)
14092 return type;
14093
14094 type = lookup_reference_type (target_type);
14095 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14096 if (attr)
14097 {
14098 TYPE_LENGTH (type) = DW_UNSND (attr);
14099 }
14100 else
14101 {
14102 TYPE_LENGTH (type) = cu_header->addr_size;
14103 }
14104 return set_die_type (die, type, cu);
14105 }
14106
14107 /* Add the given cv-qualifiers to the element type of the array. GCC
14108 outputs DWARF type qualifiers that apply to an array, not the
14109 element type. But GDB relies on the array element type to carry
14110 the cv-qualifiers. This mimics section 6.7.3 of the C99
14111 specification. */
14112
14113 static struct type *
14114 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14115 struct type *base_type, int cnst, int voltl)
14116 {
14117 struct type *el_type, *inner_array;
14118
14119 base_type = copy_type (base_type);
14120 inner_array = base_type;
14121
14122 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14123 {
14124 TYPE_TARGET_TYPE (inner_array) =
14125 copy_type (TYPE_TARGET_TYPE (inner_array));
14126 inner_array = TYPE_TARGET_TYPE (inner_array);
14127 }
14128
14129 el_type = TYPE_TARGET_TYPE (inner_array);
14130 cnst |= TYPE_CONST (el_type);
14131 voltl |= TYPE_VOLATILE (el_type);
14132 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14133
14134 return set_die_type (die, base_type, cu);
14135 }
14136
14137 static struct type *
14138 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14139 {
14140 struct type *base_type, *cv_type;
14141
14142 base_type = die_type (die, cu);
14143
14144 /* The die_type call above may have already set the type for this DIE. */
14145 cv_type = get_die_type (die, cu);
14146 if (cv_type)
14147 return cv_type;
14148
14149 /* In case the const qualifier is applied to an array type, the element type
14150 is so qualified, not the array type (section 6.7.3 of C99). */
14151 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14152 return add_array_cv_type (die, cu, base_type, 1, 0);
14153
14154 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14155 return set_die_type (die, cv_type, cu);
14156 }
14157
14158 static struct type *
14159 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14160 {
14161 struct type *base_type, *cv_type;
14162
14163 base_type = die_type (die, cu);
14164
14165 /* The die_type call above may have already set the type for this DIE. */
14166 cv_type = get_die_type (die, cu);
14167 if (cv_type)
14168 return cv_type;
14169
14170 /* In case the volatile qualifier is applied to an array type, the
14171 element type is so qualified, not the array type (section 6.7.3
14172 of C99). */
14173 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14174 return add_array_cv_type (die, cu, base_type, 0, 1);
14175
14176 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14177 return set_die_type (die, cv_type, cu);
14178 }
14179
14180 /* Handle DW_TAG_restrict_type. */
14181
14182 static struct type *
14183 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14184 {
14185 struct type *base_type, *cv_type;
14186
14187 base_type = die_type (die, cu);
14188
14189 /* The die_type call above may have already set the type for this DIE. */
14190 cv_type = get_die_type (die, cu);
14191 if (cv_type)
14192 return cv_type;
14193
14194 cv_type = make_restrict_type (base_type);
14195 return set_die_type (die, cv_type, cu);
14196 }
14197
14198 /* Extract all information from a DW_TAG_string_type DIE and add to
14199 the user defined type vector. It isn't really a user defined type,
14200 but it behaves like one, with other DIE's using an AT_user_def_type
14201 attribute to reference it. */
14202
14203 static struct type *
14204 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14205 {
14206 struct objfile *objfile = cu->objfile;
14207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14208 struct type *type, *range_type, *index_type, *char_type;
14209 struct attribute *attr;
14210 unsigned int length;
14211
14212 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14213 if (attr)
14214 {
14215 length = DW_UNSND (attr);
14216 }
14217 else
14218 {
14219 /* Check for the DW_AT_byte_size attribute. */
14220 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14221 if (attr)
14222 {
14223 length = DW_UNSND (attr);
14224 }
14225 else
14226 {
14227 length = 1;
14228 }
14229 }
14230
14231 index_type = objfile_type (objfile)->builtin_int;
14232 range_type = create_static_range_type (NULL, index_type, 1, length);
14233 char_type = language_string_char_type (cu->language_defn, gdbarch);
14234 type = create_string_type (NULL, char_type, range_type);
14235
14236 return set_die_type (die, type, cu);
14237 }
14238
14239 /* Assuming that DIE corresponds to a function, returns nonzero
14240 if the function is prototyped. */
14241
14242 static int
14243 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14244 {
14245 struct attribute *attr;
14246
14247 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14248 if (attr && (DW_UNSND (attr) != 0))
14249 return 1;
14250
14251 /* The DWARF standard implies that the DW_AT_prototyped attribute
14252 is only meaninful for C, but the concept also extends to other
14253 languages that allow unprototyped functions (Eg: Objective C).
14254 For all other languages, assume that functions are always
14255 prototyped. */
14256 if (cu->language != language_c
14257 && cu->language != language_objc
14258 && cu->language != language_opencl)
14259 return 1;
14260
14261 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14262 prototyped and unprototyped functions; default to prototyped,
14263 since that is more common in modern code (and RealView warns
14264 about unprototyped functions). */
14265 if (producer_is_realview (cu->producer))
14266 return 1;
14267
14268 return 0;
14269 }
14270
14271 /* Handle DIES due to C code like:
14272
14273 struct foo
14274 {
14275 int (*funcp)(int a, long l);
14276 int b;
14277 };
14278
14279 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14280
14281 static struct type *
14282 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14283 {
14284 struct objfile *objfile = cu->objfile;
14285 struct type *type; /* Type that this function returns. */
14286 struct type *ftype; /* Function that returns above type. */
14287 struct attribute *attr;
14288
14289 type = die_type (die, cu);
14290
14291 /* The die_type call above may have already set the type for this DIE. */
14292 ftype = get_die_type (die, cu);
14293 if (ftype)
14294 return ftype;
14295
14296 ftype = lookup_function_type (type);
14297
14298 if (prototyped_function_p (die, cu))
14299 TYPE_PROTOTYPED (ftype) = 1;
14300
14301 /* Store the calling convention in the type if it's available in
14302 the subroutine die. Otherwise set the calling convention to
14303 the default value DW_CC_normal. */
14304 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14305 if (attr)
14306 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14307 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14308 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14309 else
14310 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14311
14312 /* We need to add the subroutine type to the die immediately so
14313 we don't infinitely recurse when dealing with parameters
14314 declared as the same subroutine type. */
14315 set_die_type (die, ftype, cu);
14316
14317 if (die->child != NULL)
14318 {
14319 struct type *void_type = objfile_type (objfile)->builtin_void;
14320 struct die_info *child_die;
14321 int nparams, iparams;
14322
14323 /* Count the number of parameters.
14324 FIXME: GDB currently ignores vararg functions, but knows about
14325 vararg member functions. */
14326 nparams = 0;
14327 child_die = die->child;
14328 while (child_die && child_die->tag)
14329 {
14330 if (child_die->tag == DW_TAG_formal_parameter)
14331 nparams++;
14332 else if (child_die->tag == DW_TAG_unspecified_parameters)
14333 TYPE_VARARGS (ftype) = 1;
14334 child_die = sibling_die (child_die);
14335 }
14336
14337 /* Allocate storage for parameters and fill them in. */
14338 TYPE_NFIELDS (ftype) = nparams;
14339 TYPE_FIELDS (ftype) = (struct field *)
14340 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14341
14342 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14343 even if we error out during the parameters reading below. */
14344 for (iparams = 0; iparams < nparams; iparams++)
14345 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14346
14347 iparams = 0;
14348 child_die = die->child;
14349 while (child_die && child_die->tag)
14350 {
14351 if (child_die->tag == DW_TAG_formal_parameter)
14352 {
14353 struct type *arg_type;
14354
14355 /* DWARF version 2 has no clean way to discern C++
14356 static and non-static member functions. G++ helps
14357 GDB by marking the first parameter for non-static
14358 member functions (which is the this pointer) as
14359 artificial. We pass this information to
14360 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14361
14362 DWARF version 3 added DW_AT_object_pointer, which GCC
14363 4.5 does not yet generate. */
14364 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14365 if (attr)
14366 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14367 else
14368 {
14369 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14370
14371 /* GCC/43521: In java, the formal parameter
14372 "this" is sometimes not marked with DW_AT_artificial. */
14373 if (cu->language == language_java)
14374 {
14375 const char *name = dwarf2_name (child_die, cu);
14376
14377 if (name && !strcmp (name, "this"))
14378 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14379 }
14380 }
14381 arg_type = die_type (child_die, cu);
14382
14383 /* RealView does not mark THIS as const, which the testsuite
14384 expects. GCC marks THIS as const in method definitions,
14385 but not in the class specifications (GCC PR 43053). */
14386 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14387 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14388 {
14389 int is_this = 0;
14390 struct dwarf2_cu *arg_cu = cu;
14391 const char *name = dwarf2_name (child_die, cu);
14392
14393 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14394 if (attr)
14395 {
14396 /* If the compiler emits this, use it. */
14397 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14398 is_this = 1;
14399 }
14400 else if (name && strcmp (name, "this") == 0)
14401 /* Function definitions will have the argument names. */
14402 is_this = 1;
14403 else if (name == NULL && iparams == 0)
14404 /* Declarations may not have the names, so like
14405 elsewhere in GDB, assume an artificial first
14406 argument is "this". */
14407 is_this = 1;
14408
14409 if (is_this)
14410 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14411 arg_type, 0);
14412 }
14413
14414 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14415 iparams++;
14416 }
14417 child_die = sibling_die (child_die);
14418 }
14419 }
14420
14421 return ftype;
14422 }
14423
14424 static struct type *
14425 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14426 {
14427 struct objfile *objfile = cu->objfile;
14428 const char *name = NULL;
14429 struct type *this_type, *target_type;
14430
14431 name = dwarf2_full_name (NULL, die, cu);
14432 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14433 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14434 TYPE_NAME (this_type) = name;
14435 set_die_type (die, this_type, cu);
14436 target_type = die_type (die, cu);
14437 if (target_type != this_type)
14438 TYPE_TARGET_TYPE (this_type) = target_type;
14439 else
14440 {
14441 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14442 spec and cause infinite loops in GDB. */
14443 complaint (&symfile_complaints,
14444 _("Self-referential DW_TAG_typedef "
14445 "- DIE at 0x%x [in module %s]"),
14446 die->offset.sect_off, objfile_name (objfile));
14447 TYPE_TARGET_TYPE (this_type) = NULL;
14448 }
14449 return this_type;
14450 }
14451
14452 /* Find a representation of a given base type and install
14453 it in the TYPE field of the die. */
14454
14455 static struct type *
14456 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14457 {
14458 struct objfile *objfile = cu->objfile;
14459 struct type *type;
14460 struct attribute *attr;
14461 int encoding = 0, size = 0;
14462 const char *name;
14463 enum type_code code = TYPE_CODE_INT;
14464 int type_flags = 0;
14465 struct type *target_type = NULL;
14466
14467 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14468 if (attr)
14469 {
14470 encoding = DW_UNSND (attr);
14471 }
14472 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14473 if (attr)
14474 {
14475 size = DW_UNSND (attr);
14476 }
14477 name = dwarf2_name (die, cu);
14478 if (!name)
14479 {
14480 complaint (&symfile_complaints,
14481 _("DW_AT_name missing from DW_TAG_base_type"));
14482 }
14483
14484 switch (encoding)
14485 {
14486 case DW_ATE_address:
14487 /* Turn DW_ATE_address into a void * pointer. */
14488 code = TYPE_CODE_PTR;
14489 type_flags |= TYPE_FLAG_UNSIGNED;
14490 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14491 break;
14492 case DW_ATE_boolean:
14493 code = TYPE_CODE_BOOL;
14494 type_flags |= TYPE_FLAG_UNSIGNED;
14495 break;
14496 case DW_ATE_complex_float:
14497 code = TYPE_CODE_COMPLEX;
14498 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14499 break;
14500 case DW_ATE_decimal_float:
14501 code = TYPE_CODE_DECFLOAT;
14502 break;
14503 case DW_ATE_float:
14504 code = TYPE_CODE_FLT;
14505 break;
14506 case DW_ATE_signed:
14507 break;
14508 case DW_ATE_unsigned:
14509 type_flags |= TYPE_FLAG_UNSIGNED;
14510 if (cu->language == language_fortran
14511 && name
14512 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14513 code = TYPE_CODE_CHAR;
14514 break;
14515 case DW_ATE_signed_char:
14516 if (cu->language == language_ada || cu->language == language_m2
14517 || cu->language == language_pascal
14518 || cu->language == language_fortran)
14519 code = TYPE_CODE_CHAR;
14520 break;
14521 case DW_ATE_unsigned_char:
14522 if (cu->language == language_ada || cu->language == language_m2
14523 || cu->language == language_pascal
14524 || cu->language == language_fortran)
14525 code = TYPE_CODE_CHAR;
14526 type_flags |= TYPE_FLAG_UNSIGNED;
14527 break;
14528 case DW_ATE_UTF:
14529 /* We just treat this as an integer and then recognize the
14530 type by name elsewhere. */
14531 break;
14532
14533 default:
14534 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14535 dwarf_type_encoding_name (encoding));
14536 break;
14537 }
14538
14539 type = init_type (code, size, type_flags, NULL, objfile);
14540 TYPE_NAME (type) = name;
14541 TYPE_TARGET_TYPE (type) = target_type;
14542
14543 if (name && strcmp (name, "char") == 0)
14544 TYPE_NOSIGN (type) = 1;
14545
14546 return set_die_type (die, type, cu);
14547 }
14548
14549 /* Parse dwarf attribute if it's a block, reference or constant and put the
14550 resulting value of the attribute into struct bound_prop.
14551 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14552
14553 static int
14554 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14555 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14556 {
14557 struct dwarf2_property_baton *baton;
14558 struct obstack *obstack = &cu->objfile->objfile_obstack;
14559
14560 if (attr == NULL || prop == NULL)
14561 return 0;
14562
14563 if (attr_form_is_block (attr))
14564 {
14565 baton = obstack_alloc (obstack, sizeof (*baton));
14566 baton->referenced_type = NULL;
14567 baton->locexpr.per_cu = cu->per_cu;
14568 baton->locexpr.size = DW_BLOCK (attr)->size;
14569 baton->locexpr.data = DW_BLOCK (attr)->data;
14570 prop->data.baton = baton;
14571 prop->kind = PROP_LOCEXPR;
14572 gdb_assert (prop->data.baton != NULL);
14573 }
14574 else if (attr_form_is_ref (attr))
14575 {
14576 struct dwarf2_cu *target_cu = cu;
14577 struct die_info *target_die;
14578 struct attribute *target_attr;
14579
14580 target_die = follow_die_ref (die, attr, &target_cu);
14581 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14582 if (target_attr == NULL)
14583 return 0;
14584
14585 if (attr_form_is_section_offset (target_attr))
14586 {
14587 baton = obstack_alloc (obstack, sizeof (*baton));
14588 baton->referenced_type = die_type (target_die, target_cu);
14589 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14590 prop->data.baton = baton;
14591 prop->kind = PROP_LOCLIST;
14592 gdb_assert (prop->data.baton != NULL);
14593 }
14594 else if (attr_form_is_block (target_attr))
14595 {
14596 baton = obstack_alloc (obstack, sizeof (*baton));
14597 baton->referenced_type = die_type (target_die, target_cu);
14598 baton->locexpr.per_cu = cu->per_cu;
14599 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14600 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14601 prop->data.baton = baton;
14602 prop->kind = PROP_LOCEXPR;
14603 gdb_assert (prop->data.baton != NULL);
14604 }
14605 else
14606 {
14607 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14608 "dynamic property");
14609 return 0;
14610 }
14611 }
14612 else if (attr_form_is_constant (attr))
14613 {
14614 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14615 prop->kind = PROP_CONST;
14616 }
14617 else
14618 {
14619 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14620 dwarf2_name (die, cu));
14621 return 0;
14622 }
14623
14624 return 1;
14625 }
14626
14627 /* Read the given DW_AT_subrange DIE. */
14628
14629 static struct type *
14630 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14631 {
14632 struct type *base_type, *orig_base_type;
14633 struct type *range_type;
14634 struct attribute *attr;
14635 struct dynamic_prop low, high;
14636 int low_default_is_valid;
14637 int high_bound_is_count = 0;
14638 const char *name;
14639 LONGEST negative_mask;
14640
14641 orig_base_type = die_type (die, cu);
14642 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14643 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14644 creating the range type, but we use the result of check_typedef
14645 when examining properties of the type. */
14646 base_type = check_typedef (orig_base_type);
14647
14648 /* The die_type call above may have already set the type for this DIE. */
14649 range_type = get_die_type (die, cu);
14650 if (range_type)
14651 return range_type;
14652
14653 low.kind = PROP_CONST;
14654 high.kind = PROP_CONST;
14655 high.data.const_val = 0;
14656
14657 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14658 omitting DW_AT_lower_bound. */
14659 switch (cu->language)
14660 {
14661 case language_c:
14662 case language_cplus:
14663 low.data.const_val = 0;
14664 low_default_is_valid = 1;
14665 break;
14666 case language_fortran:
14667 low.data.const_val = 1;
14668 low_default_is_valid = 1;
14669 break;
14670 case language_d:
14671 case language_java:
14672 case language_objc:
14673 low.data.const_val = 0;
14674 low_default_is_valid = (cu->header.version >= 4);
14675 break;
14676 case language_ada:
14677 case language_m2:
14678 case language_pascal:
14679 low.data.const_val = 1;
14680 low_default_is_valid = (cu->header.version >= 4);
14681 break;
14682 default:
14683 low.data.const_val = 0;
14684 low_default_is_valid = 0;
14685 break;
14686 }
14687
14688 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14689 if (attr)
14690 attr_to_dynamic_prop (attr, die, cu, &low);
14691 else if (!low_default_is_valid)
14692 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14693 "- DIE at 0x%x [in module %s]"),
14694 die->offset.sect_off, objfile_name (cu->objfile));
14695
14696 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14697 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14698 {
14699 attr = dwarf2_attr (die, DW_AT_count, cu);
14700 if (attr_to_dynamic_prop (attr, die, cu, &high))
14701 {
14702 /* If bounds are constant do the final calculation here. */
14703 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14704 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14705 else
14706 high_bound_is_count = 1;
14707 }
14708 }
14709
14710 /* Dwarf-2 specifications explicitly allows to create subrange types
14711 without specifying a base type.
14712 In that case, the base type must be set to the type of
14713 the lower bound, upper bound or count, in that order, if any of these
14714 three attributes references an object that has a type.
14715 If no base type is found, the Dwarf-2 specifications say that
14716 a signed integer type of size equal to the size of an address should
14717 be used.
14718 For the following C code: `extern char gdb_int [];'
14719 GCC produces an empty range DIE.
14720 FIXME: muller/2010-05-28: Possible references to object for low bound,
14721 high bound or count are not yet handled by this code. */
14722 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14723 {
14724 struct objfile *objfile = cu->objfile;
14725 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14726 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14727 struct type *int_type = objfile_type (objfile)->builtin_int;
14728
14729 /* Test "int", "long int", and "long long int" objfile types,
14730 and select the first one having a size above or equal to the
14731 architecture address size. */
14732 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14733 base_type = int_type;
14734 else
14735 {
14736 int_type = objfile_type (objfile)->builtin_long;
14737 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14738 base_type = int_type;
14739 else
14740 {
14741 int_type = objfile_type (objfile)->builtin_long_long;
14742 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14743 base_type = int_type;
14744 }
14745 }
14746 }
14747
14748 /* Normally, the DWARF producers are expected to use a signed
14749 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14750 But this is unfortunately not always the case, as witnessed
14751 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14752 is used instead. To work around that ambiguity, we treat
14753 the bounds as signed, and thus sign-extend their values, when
14754 the base type is signed. */
14755 negative_mask =
14756 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14757 if (low.kind == PROP_CONST
14758 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14759 low.data.const_val |= negative_mask;
14760 if (high.kind == PROP_CONST
14761 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14762 high.data.const_val |= negative_mask;
14763
14764 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14765
14766 if (high_bound_is_count)
14767 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14768
14769 /* Ada expects an empty array on no boundary attributes. */
14770 if (attr == NULL && cu->language != language_ada)
14771 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14772
14773 name = dwarf2_name (die, cu);
14774 if (name)
14775 TYPE_NAME (range_type) = name;
14776
14777 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14778 if (attr)
14779 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14780
14781 set_die_type (die, range_type, cu);
14782
14783 /* set_die_type should be already done. */
14784 set_descriptive_type (range_type, die, cu);
14785
14786 return range_type;
14787 }
14788
14789 static struct type *
14790 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14791 {
14792 struct type *type;
14793
14794 /* For now, we only support the C meaning of an unspecified type: void. */
14795
14796 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14797 TYPE_NAME (type) = dwarf2_name (die, cu);
14798
14799 return set_die_type (die, type, cu);
14800 }
14801
14802 /* Read a single die and all its descendents. Set the die's sibling
14803 field to NULL; set other fields in the die correctly, and set all
14804 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14805 location of the info_ptr after reading all of those dies. PARENT
14806 is the parent of the die in question. */
14807
14808 static struct die_info *
14809 read_die_and_children (const struct die_reader_specs *reader,
14810 const gdb_byte *info_ptr,
14811 const gdb_byte **new_info_ptr,
14812 struct die_info *parent)
14813 {
14814 struct die_info *die;
14815 const gdb_byte *cur_ptr;
14816 int has_children;
14817
14818 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14819 if (die == NULL)
14820 {
14821 *new_info_ptr = cur_ptr;
14822 return NULL;
14823 }
14824 store_in_ref_table (die, reader->cu);
14825
14826 if (has_children)
14827 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14828 else
14829 {
14830 die->child = NULL;
14831 *new_info_ptr = cur_ptr;
14832 }
14833
14834 die->sibling = NULL;
14835 die->parent = parent;
14836 return die;
14837 }
14838
14839 /* Read a die, all of its descendents, and all of its siblings; set
14840 all of the fields of all of the dies correctly. Arguments are as
14841 in read_die_and_children. */
14842
14843 static struct die_info *
14844 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14845 const gdb_byte *info_ptr,
14846 const gdb_byte **new_info_ptr,
14847 struct die_info *parent)
14848 {
14849 struct die_info *first_die, *last_sibling;
14850 const gdb_byte *cur_ptr;
14851
14852 cur_ptr = info_ptr;
14853 first_die = last_sibling = NULL;
14854
14855 while (1)
14856 {
14857 struct die_info *die
14858 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14859
14860 if (die == NULL)
14861 {
14862 *new_info_ptr = cur_ptr;
14863 return first_die;
14864 }
14865
14866 if (!first_die)
14867 first_die = die;
14868 else
14869 last_sibling->sibling = die;
14870
14871 last_sibling = die;
14872 }
14873 }
14874
14875 /* Read a die, all of its descendents, and all of its siblings; set
14876 all of the fields of all of the dies correctly. Arguments are as
14877 in read_die_and_children.
14878 This the main entry point for reading a DIE and all its children. */
14879
14880 static struct die_info *
14881 read_die_and_siblings (const struct die_reader_specs *reader,
14882 const gdb_byte *info_ptr,
14883 const gdb_byte **new_info_ptr,
14884 struct die_info *parent)
14885 {
14886 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14887 new_info_ptr, parent);
14888
14889 if (dwarf2_die_debug)
14890 {
14891 fprintf_unfiltered (gdb_stdlog,
14892 "Read die from %s@0x%x of %s:\n",
14893 get_section_name (reader->die_section),
14894 (unsigned) (info_ptr - reader->die_section->buffer),
14895 bfd_get_filename (reader->abfd));
14896 dump_die (die, dwarf2_die_debug);
14897 }
14898
14899 return die;
14900 }
14901
14902 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14903 attributes.
14904 The caller is responsible for filling in the extra attributes
14905 and updating (*DIEP)->num_attrs.
14906 Set DIEP to point to a newly allocated die with its information,
14907 except for its child, sibling, and parent fields.
14908 Set HAS_CHILDREN to tell whether the die has children or not. */
14909
14910 static const gdb_byte *
14911 read_full_die_1 (const struct die_reader_specs *reader,
14912 struct die_info **diep, const gdb_byte *info_ptr,
14913 int *has_children, int num_extra_attrs)
14914 {
14915 unsigned int abbrev_number, bytes_read, i;
14916 sect_offset offset;
14917 struct abbrev_info *abbrev;
14918 struct die_info *die;
14919 struct dwarf2_cu *cu = reader->cu;
14920 bfd *abfd = reader->abfd;
14921
14922 offset.sect_off = info_ptr - reader->buffer;
14923 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14924 info_ptr += bytes_read;
14925 if (!abbrev_number)
14926 {
14927 *diep = NULL;
14928 *has_children = 0;
14929 return info_ptr;
14930 }
14931
14932 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14933 if (!abbrev)
14934 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14935 abbrev_number,
14936 bfd_get_filename (abfd));
14937
14938 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14939 die->offset = offset;
14940 die->tag = abbrev->tag;
14941 die->abbrev = abbrev_number;
14942
14943 /* Make the result usable.
14944 The caller needs to update num_attrs after adding the extra
14945 attributes. */
14946 die->num_attrs = abbrev->num_attrs;
14947
14948 for (i = 0; i < abbrev->num_attrs; ++i)
14949 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14950 info_ptr);
14951
14952 *diep = die;
14953 *has_children = abbrev->has_children;
14954 return info_ptr;
14955 }
14956
14957 /* Read a die and all its attributes.
14958 Set DIEP to point to a newly allocated die with its information,
14959 except for its child, sibling, and parent fields.
14960 Set HAS_CHILDREN to tell whether the die has children or not. */
14961
14962 static const gdb_byte *
14963 read_full_die (const struct die_reader_specs *reader,
14964 struct die_info **diep, const gdb_byte *info_ptr,
14965 int *has_children)
14966 {
14967 const gdb_byte *result;
14968
14969 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14970
14971 if (dwarf2_die_debug)
14972 {
14973 fprintf_unfiltered (gdb_stdlog,
14974 "Read die from %s@0x%x of %s:\n",
14975 get_section_name (reader->die_section),
14976 (unsigned) (info_ptr - reader->die_section->buffer),
14977 bfd_get_filename (reader->abfd));
14978 dump_die (*diep, dwarf2_die_debug);
14979 }
14980
14981 return result;
14982 }
14983 \f
14984 /* Abbreviation tables.
14985
14986 In DWARF version 2, the description of the debugging information is
14987 stored in a separate .debug_abbrev section. Before we read any
14988 dies from a section we read in all abbreviations and install them
14989 in a hash table. */
14990
14991 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14992
14993 static struct abbrev_info *
14994 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14995 {
14996 struct abbrev_info *abbrev;
14997
14998 abbrev = (struct abbrev_info *)
14999 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15000 memset (abbrev, 0, sizeof (struct abbrev_info));
15001 return abbrev;
15002 }
15003
15004 /* Add an abbreviation to the table. */
15005
15006 static void
15007 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15008 unsigned int abbrev_number,
15009 struct abbrev_info *abbrev)
15010 {
15011 unsigned int hash_number;
15012
15013 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15014 abbrev->next = abbrev_table->abbrevs[hash_number];
15015 abbrev_table->abbrevs[hash_number] = abbrev;
15016 }
15017
15018 /* Look up an abbrev in the table.
15019 Returns NULL if the abbrev is not found. */
15020
15021 static struct abbrev_info *
15022 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15023 unsigned int abbrev_number)
15024 {
15025 unsigned int hash_number;
15026 struct abbrev_info *abbrev;
15027
15028 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15029 abbrev = abbrev_table->abbrevs[hash_number];
15030
15031 while (abbrev)
15032 {
15033 if (abbrev->number == abbrev_number)
15034 return abbrev;
15035 abbrev = abbrev->next;
15036 }
15037 return NULL;
15038 }
15039
15040 /* Read in an abbrev table. */
15041
15042 static struct abbrev_table *
15043 abbrev_table_read_table (struct dwarf2_section_info *section,
15044 sect_offset offset)
15045 {
15046 struct objfile *objfile = dwarf2_per_objfile->objfile;
15047 bfd *abfd = get_section_bfd_owner (section);
15048 struct abbrev_table *abbrev_table;
15049 const gdb_byte *abbrev_ptr;
15050 struct abbrev_info *cur_abbrev;
15051 unsigned int abbrev_number, bytes_read, abbrev_name;
15052 unsigned int abbrev_form;
15053 struct attr_abbrev *cur_attrs;
15054 unsigned int allocated_attrs;
15055
15056 abbrev_table = XNEW (struct abbrev_table);
15057 abbrev_table->offset = offset;
15058 obstack_init (&abbrev_table->abbrev_obstack);
15059 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15060 (ABBREV_HASH_SIZE
15061 * sizeof (struct abbrev_info *)));
15062 memset (abbrev_table->abbrevs, 0,
15063 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15064
15065 dwarf2_read_section (objfile, section);
15066 abbrev_ptr = section->buffer + offset.sect_off;
15067 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15068 abbrev_ptr += bytes_read;
15069
15070 allocated_attrs = ATTR_ALLOC_CHUNK;
15071 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15072
15073 /* Loop until we reach an abbrev number of 0. */
15074 while (abbrev_number)
15075 {
15076 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15077
15078 /* read in abbrev header */
15079 cur_abbrev->number = abbrev_number;
15080 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15083 abbrev_ptr += 1;
15084
15085 /* now read in declarations */
15086 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15087 abbrev_ptr += bytes_read;
15088 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15089 abbrev_ptr += bytes_read;
15090 while (abbrev_name)
15091 {
15092 if (cur_abbrev->num_attrs == allocated_attrs)
15093 {
15094 allocated_attrs += ATTR_ALLOC_CHUNK;
15095 cur_attrs
15096 = xrealloc (cur_attrs, (allocated_attrs
15097 * sizeof (struct attr_abbrev)));
15098 }
15099
15100 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15101 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15102 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15103 abbrev_ptr += bytes_read;
15104 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15105 abbrev_ptr += bytes_read;
15106 }
15107
15108 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15109 (cur_abbrev->num_attrs
15110 * sizeof (struct attr_abbrev)));
15111 memcpy (cur_abbrev->attrs, cur_attrs,
15112 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15113
15114 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15115
15116 /* Get next abbreviation.
15117 Under Irix6 the abbreviations for a compilation unit are not
15118 always properly terminated with an abbrev number of 0.
15119 Exit loop if we encounter an abbreviation which we have
15120 already read (which means we are about to read the abbreviations
15121 for the next compile unit) or if the end of the abbreviation
15122 table is reached. */
15123 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15124 break;
15125 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15126 abbrev_ptr += bytes_read;
15127 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15128 break;
15129 }
15130
15131 xfree (cur_attrs);
15132 return abbrev_table;
15133 }
15134
15135 /* Free the resources held by ABBREV_TABLE. */
15136
15137 static void
15138 abbrev_table_free (struct abbrev_table *abbrev_table)
15139 {
15140 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15141 xfree (abbrev_table);
15142 }
15143
15144 /* Same as abbrev_table_free but as a cleanup.
15145 We pass in a pointer to the pointer to the table so that we can
15146 set the pointer to NULL when we're done. It also simplifies
15147 build_type_psymtabs_1. */
15148
15149 static void
15150 abbrev_table_free_cleanup (void *table_ptr)
15151 {
15152 struct abbrev_table **abbrev_table_ptr = table_ptr;
15153
15154 if (*abbrev_table_ptr != NULL)
15155 abbrev_table_free (*abbrev_table_ptr);
15156 *abbrev_table_ptr = NULL;
15157 }
15158
15159 /* Read the abbrev table for CU from ABBREV_SECTION. */
15160
15161 static void
15162 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15163 struct dwarf2_section_info *abbrev_section)
15164 {
15165 cu->abbrev_table =
15166 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15167 }
15168
15169 /* Release the memory used by the abbrev table for a compilation unit. */
15170
15171 static void
15172 dwarf2_free_abbrev_table (void *ptr_to_cu)
15173 {
15174 struct dwarf2_cu *cu = ptr_to_cu;
15175
15176 if (cu->abbrev_table != NULL)
15177 abbrev_table_free (cu->abbrev_table);
15178 /* Set this to NULL so that we SEGV if we try to read it later,
15179 and also because free_comp_unit verifies this is NULL. */
15180 cu->abbrev_table = NULL;
15181 }
15182 \f
15183 /* Returns nonzero if TAG represents a type that we might generate a partial
15184 symbol for. */
15185
15186 static int
15187 is_type_tag_for_partial (int tag)
15188 {
15189 switch (tag)
15190 {
15191 #if 0
15192 /* Some types that would be reasonable to generate partial symbols for,
15193 that we don't at present. */
15194 case DW_TAG_array_type:
15195 case DW_TAG_file_type:
15196 case DW_TAG_ptr_to_member_type:
15197 case DW_TAG_set_type:
15198 case DW_TAG_string_type:
15199 case DW_TAG_subroutine_type:
15200 #endif
15201 case DW_TAG_base_type:
15202 case DW_TAG_class_type:
15203 case DW_TAG_interface_type:
15204 case DW_TAG_enumeration_type:
15205 case DW_TAG_structure_type:
15206 case DW_TAG_subrange_type:
15207 case DW_TAG_typedef:
15208 case DW_TAG_union_type:
15209 return 1;
15210 default:
15211 return 0;
15212 }
15213 }
15214
15215 /* Load all DIEs that are interesting for partial symbols into memory. */
15216
15217 static struct partial_die_info *
15218 load_partial_dies (const struct die_reader_specs *reader,
15219 const gdb_byte *info_ptr, int building_psymtab)
15220 {
15221 struct dwarf2_cu *cu = reader->cu;
15222 struct objfile *objfile = cu->objfile;
15223 struct partial_die_info *part_die;
15224 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15225 struct abbrev_info *abbrev;
15226 unsigned int bytes_read;
15227 unsigned int load_all = 0;
15228 int nesting_level = 1;
15229
15230 parent_die = NULL;
15231 last_die = NULL;
15232
15233 gdb_assert (cu->per_cu != NULL);
15234 if (cu->per_cu->load_all_dies)
15235 load_all = 1;
15236
15237 cu->partial_dies
15238 = htab_create_alloc_ex (cu->header.length / 12,
15239 partial_die_hash,
15240 partial_die_eq,
15241 NULL,
15242 &cu->comp_unit_obstack,
15243 hashtab_obstack_allocate,
15244 dummy_obstack_deallocate);
15245
15246 part_die = obstack_alloc (&cu->comp_unit_obstack,
15247 sizeof (struct partial_die_info));
15248
15249 while (1)
15250 {
15251 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15252
15253 /* A NULL abbrev means the end of a series of children. */
15254 if (abbrev == NULL)
15255 {
15256 if (--nesting_level == 0)
15257 {
15258 /* PART_DIE was probably the last thing allocated on the
15259 comp_unit_obstack, so we could call obstack_free
15260 here. We don't do that because the waste is small,
15261 and will be cleaned up when we're done with this
15262 compilation unit. This way, we're also more robust
15263 against other users of the comp_unit_obstack. */
15264 return first_die;
15265 }
15266 info_ptr += bytes_read;
15267 last_die = parent_die;
15268 parent_die = parent_die->die_parent;
15269 continue;
15270 }
15271
15272 /* Check for template arguments. We never save these; if
15273 they're seen, we just mark the parent, and go on our way. */
15274 if (parent_die != NULL
15275 && cu->language == language_cplus
15276 && (abbrev->tag == DW_TAG_template_type_param
15277 || abbrev->tag == DW_TAG_template_value_param))
15278 {
15279 parent_die->has_template_arguments = 1;
15280
15281 if (!load_all)
15282 {
15283 /* We don't need a partial DIE for the template argument. */
15284 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15285 continue;
15286 }
15287 }
15288
15289 /* We only recurse into c++ subprograms looking for template arguments.
15290 Skip their other children. */
15291 if (!load_all
15292 && cu->language == language_cplus
15293 && parent_die != NULL
15294 && parent_die->tag == DW_TAG_subprogram)
15295 {
15296 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15297 continue;
15298 }
15299
15300 /* Check whether this DIE is interesting enough to save. Normally
15301 we would not be interested in members here, but there may be
15302 later variables referencing them via DW_AT_specification (for
15303 static members). */
15304 if (!load_all
15305 && !is_type_tag_for_partial (abbrev->tag)
15306 && abbrev->tag != DW_TAG_constant
15307 && abbrev->tag != DW_TAG_enumerator
15308 && abbrev->tag != DW_TAG_subprogram
15309 && abbrev->tag != DW_TAG_lexical_block
15310 && abbrev->tag != DW_TAG_variable
15311 && abbrev->tag != DW_TAG_namespace
15312 && abbrev->tag != DW_TAG_module
15313 && abbrev->tag != DW_TAG_member
15314 && abbrev->tag != DW_TAG_imported_unit
15315 && abbrev->tag != DW_TAG_imported_declaration)
15316 {
15317 /* Otherwise we skip to the next sibling, if any. */
15318 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15319 continue;
15320 }
15321
15322 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15323 info_ptr);
15324
15325 /* This two-pass algorithm for processing partial symbols has a
15326 high cost in cache pressure. Thus, handle some simple cases
15327 here which cover the majority of C partial symbols. DIEs
15328 which neither have specification tags in them, nor could have
15329 specification tags elsewhere pointing at them, can simply be
15330 processed and discarded.
15331
15332 This segment is also optional; scan_partial_symbols and
15333 add_partial_symbol will handle these DIEs if we chain
15334 them in normally. When compilers which do not emit large
15335 quantities of duplicate debug information are more common,
15336 this code can probably be removed. */
15337
15338 /* Any complete simple types at the top level (pretty much all
15339 of them, for a language without namespaces), can be processed
15340 directly. */
15341 if (parent_die == NULL
15342 && part_die->has_specification == 0
15343 && part_die->is_declaration == 0
15344 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15345 || part_die->tag == DW_TAG_base_type
15346 || part_die->tag == DW_TAG_subrange_type))
15347 {
15348 if (building_psymtab && part_die->name != NULL)
15349 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15350 VAR_DOMAIN, LOC_TYPEDEF,
15351 &objfile->static_psymbols,
15352 0, (CORE_ADDR) 0, cu->language, objfile);
15353 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15354 continue;
15355 }
15356
15357 /* The exception for DW_TAG_typedef with has_children above is
15358 a workaround of GCC PR debug/47510. In the case of this complaint
15359 type_name_no_tag_or_error will error on such types later.
15360
15361 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15362 it could not find the child DIEs referenced later, this is checked
15363 above. In correct DWARF DW_TAG_typedef should have no children. */
15364
15365 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15366 complaint (&symfile_complaints,
15367 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15368 "- DIE at 0x%x [in module %s]"),
15369 part_die->offset.sect_off, objfile_name (objfile));
15370
15371 /* If we're at the second level, and we're an enumerator, and
15372 our parent has no specification (meaning possibly lives in a
15373 namespace elsewhere), then we can add the partial symbol now
15374 instead of queueing it. */
15375 if (part_die->tag == DW_TAG_enumerator
15376 && parent_die != NULL
15377 && parent_die->die_parent == NULL
15378 && parent_die->tag == DW_TAG_enumeration_type
15379 && parent_die->has_specification == 0)
15380 {
15381 if (part_die->name == NULL)
15382 complaint (&symfile_complaints,
15383 _("malformed enumerator DIE ignored"));
15384 else if (building_psymtab)
15385 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15386 VAR_DOMAIN, LOC_CONST,
15387 (cu->language == language_cplus
15388 || cu->language == language_java)
15389 ? &objfile->global_psymbols
15390 : &objfile->static_psymbols,
15391 0, (CORE_ADDR) 0, cu->language, objfile);
15392
15393 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15394 continue;
15395 }
15396
15397 /* We'll save this DIE so link it in. */
15398 part_die->die_parent = parent_die;
15399 part_die->die_sibling = NULL;
15400 part_die->die_child = NULL;
15401
15402 if (last_die && last_die == parent_die)
15403 last_die->die_child = part_die;
15404 else if (last_die)
15405 last_die->die_sibling = part_die;
15406
15407 last_die = part_die;
15408
15409 if (first_die == NULL)
15410 first_die = part_die;
15411
15412 /* Maybe add the DIE to the hash table. Not all DIEs that we
15413 find interesting need to be in the hash table, because we
15414 also have the parent/sibling/child chains; only those that we
15415 might refer to by offset later during partial symbol reading.
15416
15417 For now this means things that might have be the target of a
15418 DW_AT_specification, DW_AT_abstract_origin, or
15419 DW_AT_extension. DW_AT_extension will refer only to
15420 namespaces; DW_AT_abstract_origin refers to functions (and
15421 many things under the function DIE, but we do not recurse
15422 into function DIEs during partial symbol reading) and
15423 possibly variables as well; DW_AT_specification refers to
15424 declarations. Declarations ought to have the DW_AT_declaration
15425 flag. It happens that GCC forgets to put it in sometimes, but
15426 only for functions, not for types.
15427
15428 Adding more things than necessary to the hash table is harmless
15429 except for the performance cost. Adding too few will result in
15430 wasted time in find_partial_die, when we reread the compilation
15431 unit with load_all_dies set. */
15432
15433 if (load_all
15434 || abbrev->tag == DW_TAG_constant
15435 || abbrev->tag == DW_TAG_subprogram
15436 || abbrev->tag == DW_TAG_variable
15437 || abbrev->tag == DW_TAG_namespace
15438 || part_die->is_declaration)
15439 {
15440 void **slot;
15441
15442 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15443 part_die->offset.sect_off, INSERT);
15444 *slot = part_die;
15445 }
15446
15447 part_die = obstack_alloc (&cu->comp_unit_obstack,
15448 sizeof (struct partial_die_info));
15449
15450 /* For some DIEs we want to follow their children (if any). For C
15451 we have no reason to follow the children of structures; for other
15452 languages we have to, so that we can get at method physnames
15453 to infer fully qualified class names, for DW_AT_specification,
15454 and for C++ template arguments. For C++, we also look one level
15455 inside functions to find template arguments (if the name of the
15456 function does not already contain the template arguments).
15457
15458 For Ada, we need to scan the children of subprograms and lexical
15459 blocks as well because Ada allows the definition of nested
15460 entities that could be interesting for the debugger, such as
15461 nested subprograms for instance. */
15462 if (last_die->has_children
15463 && (load_all
15464 || last_die->tag == DW_TAG_namespace
15465 || last_die->tag == DW_TAG_module
15466 || last_die->tag == DW_TAG_enumeration_type
15467 || (cu->language == language_cplus
15468 && last_die->tag == DW_TAG_subprogram
15469 && (last_die->name == NULL
15470 || strchr (last_die->name, '<') == NULL))
15471 || (cu->language != language_c
15472 && (last_die->tag == DW_TAG_class_type
15473 || last_die->tag == DW_TAG_interface_type
15474 || last_die->tag == DW_TAG_structure_type
15475 || last_die->tag == DW_TAG_union_type))
15476 || (cu->language == language_ada
15477 && (last_die->tag == DW_TAG_subprogram
15478 || last_die->tag == DW_TAG_lexical_block))))
15479 {
15480 nesting_level++;
15481 parent_die = last_die;
15482 continue;
15483 }
15484
15485 /* Otherwise we skip to the next sibling, if any. */
15486 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15487
15488 /* Back to the top, do it again. */
15489 }
15490 }
15491
15492 /* Read a minimal amount of information into the minimal die structure. */
15493
15494 static const gdb_byte *
15495 read_partial_die (const struct die_reader_specs *reader,
15496 struct partial_die_info *part_die,
15497 struct abbrev_info *abbrev, unsigned int abbrev_len,
15498 const gdb_byte *info_ptr)
15499 {
15500 struct dwarf2_cu *cu = reader->cu;
15501 struct objfile *objfile = cu->objfile;
15502 const gdb_byte *buffer = reader->buffer;
15503 unsigned int i;
15504 struct attribute attr;
15505 int has_low_pc_attr = 0;
15506 int has_high_pc_attr = 0;
15507 int high_pc_relative = 0;
15508
15509 memset (part_die, 0, sizeof (struct partial_die_info));
15510
15511 part_die->offset.sect_off = info_ptr - buffer;
15512
15513 info_ptr += abbrev_len;
15514
15515 if (abbrev == NULL)
15516 return info_ptr;
15517
15518 part_die->tag = abbrev->tag;
15519 part_die->has_children = abbrev->has_children;
15520
15521 for (i = 0; i < abbrev->num_attrs; ++i)
15522 {
15523 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15524
15525 /* Store the data if it is of an attribute we want to keep in a
15526 partial symbol table. */
15527 switch (attr.name)
15528 {
15529 case DW_AT_name:
15530 switch (part_die->tag)
15531 {
15532 case DW_TAG_compile_unit:
15533 case DW_TAG_partial_unit:
15534 case DW_TAG_type_unit:
15535 /* Compilation units have a DW_AT_name that is a filename, not
15536 a source language identifier. */
15537 case DW_TAG_enumeration_type:
15538 case DW_TAG_enumerator:
15539 /* These tags always have simple identifiers already; no need
15540 to canonicalize them. */
15541 part_die->name = DW_STRING (&attr);
15542 break;
15543 default:
15544 part_die->name
15545 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15546 &objfile->per_bfd->storage_obstack);
15547 break;
15548 }
15549 break;
15550 case DW_AT_linkage_name:
15551 case DW_AT_MIPS_linkage_name:
15552 /* Note that both forms of linkage name might appear. We
15553 assume they will be the same, and we only store the last
15554 one we see. */
15555 if (cu->language == language_ada)
15556 part_die->name = DW_STRING (&attr);
15557 part_die->linkage_name = DW_STRING (&attr);
15558 break;
15559 case DW_AT_low_pc:
15560 has_low_pc_attr = 1;
15561 part_die->lowpc = attr_value_as_address (&attr);
15562 break;
15563 case DW_AT_high_pc:
15564 has_high_pc_attr = 1;
15565 part_die->highpc = attr_value_as_address (&attr);
15566 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15567 high_pc_relative = 1;
15568 break;
15569 case DW_AT_location:
15570 /* Support the .debug_loc offsets. */
15571 if (attr_form_is_block (&attr))
15572 {
15573 part_die->d.locdesc = DW_BLOCK (&attr);
15574 }
15575 else if (attr_form_is_section_offset (&attr))
15576 {
15577 dwarf2_complex_location_expr_complaint ();
15578 }
15579 else
15580 {
15581 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15582 "partial symbol information");
15583 }
15584 break;
15585 case DW_AT_external:
15586 part_die->is_external = DW_UNSND (&attr);
15587 break;
15588 case DW_AT_declaration:
15589 part_die->is_declaration = DW_UNSND (&attr);
15590 break;
15591 case DW_AT_type:
15592 part_die->has_type = 1;
15593 break;
15594 case DW_AT_abstract_origin:
15595 case DW_AT_specification:
15596 case DW_AT_extension:
15597 part_die->has_specification = 1;
15598 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15599 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15600 || cu->per_cu->is_dwz);
15601 break;
15602 case DW_AT_sibling:
15603 /* Ignore absolute siblings, they might point outside of
15604 the current compile unit. */
15605 if (attr.form == DW_FORM_ref_addr)
15606 complaint (&symfile_complaints,
15607 _("ignoring absolute DW_AT_sibling"));
15608 else
15609 {
15610 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15611 const gdb_byte *sibling_ptr = buffer + off;
15612
15613 if (sibling_ptr < info_ptr)
15614 complaint (&symfile_complaints,
15615 _("DW_AT_sibling points backwards"));
15616 else if (sibling_ptr > reader->buffer_end)
15617 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15618 else
15619 part_die->sibling = sibling_ptr;
15620 }
15621 break;
15622 case DW_AT_byte_size:
15623 part_die->has_byte_size = 1;
15624 break;
15625 case DW_AT_calling_convention:
15626 /* DWARF doesn't provide a way to identify a program's source-level
15627 entry point. DW_AT_calling_convention attributes are only meant
15628 to describe functions' calling conventions.
15629
15630 However, because it's a necessary piece of information in
15631 Fortran, and because DW_CC_program is the only piece of debugging
15632 information whose definition refers to a 'main program' at all,
15633 several compilers have begun marking Fortran main programs with
15634 DW_CC_program --- even when those functions use the standard
15635 calling conventions.
15636
15637 So until DWARF specifies a way to provide this information and
15638 compilers pick up the new representation, we'll support this
15639 practice. */
15640 if (DW_UNSND (&attr) == DW_CC_program
15641 && cu->language == language_fortran)
15642 set_objfile_main_name (objfile, part_die->name, language_fortran);
15643 break;
15644 case DW_AT_inline:
15645 if (DW_UNSND (&attr) == DW_INL_inlined
15646 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15647 part_die->may_be_inlined = 1;
15648 break;
15649
15650 case DW_AT_import:
15651 if (part_die->tag == DW_TAG_imported_unit)
15652 {
15653 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15654 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15655 || cu->per_cu->is_dwz);
15656 }
15657 break;
15658
15659 default:
15660 break;
15661 }
15662 }
15663
15664 if (high_pc_relative)
15665 part_die->highpc += part_die->lowpc;
15666
15667 if (has_low_pc_attr && has_high_pc_attr)
15668 {
15669 /* When using the GNU linker, .gnu.linkonce. sections are used to
15670 eliminate duplicate copies of functions and vtables and such.
15671 The linker will arbitrarily choose one and discard the others.
15672 The AT_*_pc values for such functions refer to local labels in
15673 these sections. If the section from that file was discarded, the
15674 labels are not in the output, so the relocs get a value of 0.
15675 If this is a discarded function, mark the pc bounds as invalid,
15676 so that GDB will ignore it. */
15677 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15678 {
15679 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15680
15681 complaint (&symfile_complaints,
15682 _("DW_AT_low_pc %s is zero "
15683 "for DIE at 0x%x [in module %s]"),
15684 paddress (gdbarch, part_die->lowpc),
15685 part_die->offset.sect_off, objfile_name (objfile));
15686 }
15687 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15688 else if (part_die->lowpc >= part_die->highpc)
15689 {
15690 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15691
15692 complaint (&symfile_complaints,
15693 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15694 "for DIE at 0x%x [in module %s]"),
15695 paddress (gdbarch, part_die->lowpc),
15696 paddress (gdbarch, part_die->highpc),
15697 part_die->offset.sect_off, objfile_name (objfile));
15698 }
15699 else
15700 part_die->has_pc_info = 1;
15701 }
15702
15703 return info_ptr;
15704 }
15705
15706 /* Find a cached partial DIE at OFFSET in CU. */
15707
15708 static struct partial_die_info *
15709 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15710 {
15711 struct partial_die_info *lookup_die = NULL;
15712 struct partial_die_info part_die;
15713
15714 part_die.offset = offset;
15715 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15716 offset.sect_off);
15717
15718 return lookup_die;
15719 }
15720
15721 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15722 except in the case of .debug_types DIEs which do not reference
15723 outside their CU (they do however referencing other types via
15724 DW_FORM_ref_sig8). */
15725
15726 static struct partial_die_info *
15727 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15728 {
15729 struct objfile *objfile = cu->objfile;
15730 struct dwarf2_per_cu_data *per_cu = NULL;
15731 struct partial_die_info *pd = NULL;
15732
15733 if (offset_in_dwz == cu->per_cu->is_dwz
15734 && offset_in_cu_p (&cu->header, offset))
15735 {
15736 pd = find_partial_die_in_comp_unit (offset, cu);
15737 if (pd != NULL)
15738 return pd;
15739 /* We missed recording what we needed.
15740 Load all dies and try again. */
15741 per_cu = cu->per_cu;
15742 }
15743 else
15744 {
15745 /* TUs don't reference other CUs/TUs (except via type signatures). */
15746 if (cu->per_cu->is_debug_types)
15747 {
15748 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15749 " external reference to offset 0x%lx [in module %s].\n"),
15750 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15751 bfd_get_filename (objfile->obfd));
15752 }
15753 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15754 objfile);
15755
15756 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15757 load_partial_comp_unit (per_cu);
15758
15759 per_cu->cu->last_used = 0;
15760 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15761 }
15762
15763 /* If we didn't find it, and not all dies have been loaded,
15764 load them all and try again. */
15765
15766 if (pd == NULL && per_cu->load_all_dies == 0)
15767 {
15768 per_cu->load_all_dies = 1;
15769
15770 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15771 THIS_CU->cu may already be in use. So we can't just free it and
15772 replace its DIEs with the ones we read in. Instead, we leave those
15773 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15774 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15775 set. */
15776 load_partial_comp_unit (per_cu);
15777
15778 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15779 }
15780
15781 if (pd == NULL)
15782 internal_error (__FILE__, __LINE__,
15783 _("could not find partial DIE 0x%x "
15784 "in cache [from module %s]\n"),
15785 offset.sect_off, bfd_get_filename (objfile->obfd));
15786 return pd;
15787 }
15788
15789 /* See if we can figure out if the class lives in a namespace. We do
15790 this by looking for a member function; its demangled name will
15791 contain namespace info, if there is any. */
15792
15793 static void
15794 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15795 struct dwarf2_cu *cu)
15796 {
15797 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15798 what template types look like, because the demangler
15799 frequently doesn't give the same name as the debug info. We
15800 could fix this by only using the demangled name to get the
15801 prefix (but see comment in read_structure_type). */
15802
15803 struct partial_die_info *real_pdi;
15804 struct partial_die_info *child_pdi;
15805
15806 /* If this DIE (this DIE's specification, if any) has a parent, then
15807 we should not do this. We'll prepend the parent's fully qualified
15808 name when we create the partial symbol. */
15809
15810 real_pdi = struct_pdi;
15811 while (real_pdi->has_specification)
15812 real_pdi = find_partial_die (real_pdi->spec_offset,
15813 real_pdi->spec_is_dwz, cu);
15814
15815 if (real_pdi->die_parent != NULL)
15816 return;
15817
15818 for (child_pdi = struct_pdi->die_child;
15819 child_pdi != NULL;
15820 child_pdi = child_pdi->die_sibling)
15821 {
15822 if (child_pdi->tag == DW_TAG_subprogram
15823 && child_pdi->linkage_name != NULL)
15824 {
15825 char *actual_class_name
15826 = language_class_name_from_physname (cu->language_defn,
15827 child_pdi->linkage_name);
15828 if (actual_class_name != NULL)
15829 {
15830 struct_pdi->name
15831 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15832 actual_class_name,
15833 strlen (actual_class_name));
15834 xfree (actual_class_name);
15835 }
15836 break;
15837 }
15838 }
15839 }
15840
15841 /* Adjust PART_DIE before generating a symbol for it. This function
15842 may set the is_external flag or change the DIE's name. */
15843
15844 static void
15845 fixup_partial_die (struct partial_die_info *part_die,
15846 struct dwarf2_cu *cu)
15847 {
15848 /* Once we've fixed up a die, there's no point in doing so again.
15849 This also avoids a memory leak if we were to call
15850 guess_partial_die_structure_name multiple times. */
15851 if (part_die->fixup_called)
15852 return;
15853
15854 /* If we found a reference attribute and the DIE has no name, try
15855 to find a name in the referred to DIE. */
15856
15857 if (part_die->name == NULL && part_die->has_specification)
15858 {
15859 struct partial_die_info *spec_die;
15860
15861 spec_die = find_partial_die (part_die->spec_offset,
15862 part_die->spec_is_dwz, cu);
15863
15864 fixup_partial_die (spec_die, cu);
15865
15866 if (spec_die->name)
15867 {
15868 part_die->name = spec_die->name;
15869
15870 /* Copy DW_AT_external attribute if it is set. */
15871 if (spec_die->is_external)
15872 part_die->is_external = spec_die->is_external;
15873 }
15874 }
15875
15876 /* Set default names for some unnamed DIEs. */
15877
15878 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15879 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15880
15881 /* If there is no parent die to provide a namespace, and there are
15882 children, see if we can determine the namespace from their linkage
15883 name. */
15884 if (cu->language == language_cplus
15885 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15886 && part_die->die_parent == NULL
15887 && part_die->has_children
15888 && (part_die->tag == DW_TAG_class_type
15889 || part_die->tag == DW_TAG_structure_type
15890 || part_die->tag == DW_TAG_union_type))
15891 guess_partial_die_structure_name (part_die, cu);
15892
15893 /* GCC might emit a nameless struct or union that has a linkage
15894 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15895 if (part_die->name == NULL
15896 && (part_die->tag == DW_TAG_class_type
15897 || part_die->tag == DW_TAG_interface_type
15898 || part_die->tag == DW_TAG_structure_type
15899 || part_die->tag == DW_TAG_union_type)
15900 && part_die->linkage_name != NULL)
15901 {
15902 char *demangled;
15903
15904 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15905 if (demangled)
15906 {
15907 const char *base;
15908
15909 /* Strip any leading namespaces/classes, keep only the base name.
15910 DW_AT_name for named DIEs does not contain the prefixes. */
15911 base = strrchr (demangled, ':');
15912 if (base && base > demangled && base[-1] == ':')
15913 base++;
15914 else
15915 base = demangled;
15916
15917 part_die->name
15918 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15919 base, strlen (base));
15920 xfree (demangled);
15921 }
15922 }
15923
15924 part_die->fixup_called = 1;
15925 }
15926
15927 /* Read an attribute value described by an attribute form. */
15928
15929 static const gdb_byte *
15930 read_attribute_value (const struct die_reader_specs *reader,
15931 struct attribute *attr, unsigned form,
15932 const gdb_byte *info_ptr)
15933 {
15934 struct dwarf2_cu *cu = reader->cu;
15935 bfd *abfd = reader->abfd;
15936 struct comp_unit_head *cu_header = &cu->header;
15937 unsigned int bytes_read;
15938 struct dwarf_block *blk;
15939
15940 attr->form = form;
15941 switch (form)
15942 {
15943 case DW_FORM_ref_addr:
15944 if (cu->header.version == 2)
15945 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15946 else
15947 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15948 &cu->header, &bytes_read);
15949 info_ptr += bytes_read;
15950 break;
15951 case DW_FORM_GNU_ref_alt:
15952 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15953 info_ptr += bytes_read;
15954 break;
15955 case DW_FORM_addr:
15956 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15957 info_ptr += bytes_read;
15958 break;
15959 case DW_FORM_block2:
15960 blk = dwarf_alloc_block (cu);
15961 blk->size = read_2_bytes (abfd, info_ptr);
15962 info_ptr += 2;
15963 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15964 info_ptr += blk->size;
15965 DW_BLOCK (attr) = blk;
15966 break;
15967 case DW_FORM_block4:
15968 blk = dwarf_alloc_block (cu);
15969 blk->size = read_4_bytes (abfd, info_ptr);
15970 info_ptr += 4;
15971 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15972 info_ptr += blk->size;
15973 DW_BLOCK (attr) = blk;
15974 break;
15975 case DW_FORM_data2:
15976 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15977 info_ptr += 2;
15978 break;
15979 case DW_FORM_data4:
15980 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15981 info_ptr += 4;
15982 break;
15983 case DW_FORM_data8:
15984 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15985 info_ptr += 8;
15986 break;
15987 case DW_FORM_sec_offset:
15988 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15989 info_ptr += bytes_read;
15990 break;
15991 case DW_FORM_string:
15992 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15993 DW_STRING_IS_CANONICAL (attr) = 0;
15994 info_ptr += bytes_read;
15995 break;
15996 case DW_FORM_strp:
15997 if (!cu->per_cu->is_dwz)
15998 {
15999 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16000 &bytes_read);
16001 DW_STRING_IS_CANONICAL (attr) = 0;
16002 info_ptr += bytes_read;
16003 break;
16004 }
16005 /* FALLTHROUGH */
16006 case DW_FORM_GNU_strp_alt:
16007 {
16008 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16009 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16010 &bytes_read);
16011
16012 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16013 DW_STRING_IS_CANONICAL (attr) = 0;
16014 info_ptr += bytes_read;
16015 }
16016 break;
16017 case DW_FORM_exprloc:
16018 case DW_FORM_block:
16019 blk = dwarf_alloc_block (cu);
16020 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16021 info_ptr += bytes_read;
16022 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16023 info_ptr += blk->size;
16024 DW_BLOCK (attr) = blk;
16025 break;
16026 case DW_FORM_block1:
16027 blk = dwarf_alloc_block (cu);
16028 blk->size = read_1_byte (abfd, info_ptr);
16029 info_ptr += 1;
16030 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16031 info_ptr += blk->size;
16032 DW_BLOCK (attr) = blk;
16033 break;
16034 case DW_FORM_data1:
16035 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16036 info_ptr += 1;
16037 break;
16038 case DW_FORM_flag:
16039 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16040 info_ptr += 1;
16041 break;
16042 case DW_FORM_flag_present:
16043 DW_UNSND (attr) = 1;
16044 break;
16045 case DW_FORM_sdata:
16046 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16047 info_ptr += bytes_read;
16048 break;
16049 case DW_FORM_udata:
16050 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16051 info_ptr += bytes_read;
16052 break;
16053 case DW_FORM_ref1:
16054 DW_UNSND (attr) = (cu->header.offset.sect_off
16055 + read_1_byte (abfd, info_ptr));
16056 info_ptr += 1;
16057 break;
16058 case DW_FORM_ref2:
16059 DW_UNSND (attr) = (cu->header.offset.sect_off
16060 + read_2_bytes (abfd, info_ptr));
16061 info_ptr += 2;
16062 break;
16063 case DW_FORM_ref4:
16064 DW_UNSND (attr) = (cu->header.offset.sect_off
16065 + read_4_bytes (abfd, info_ptr));
16066 info_ptr += 4;
16067 break;
16068 case DW_FORM_ref8:
16069 DW_UNSND (attr) = (cu->header.offset.sect_off
16070 + read_8_bytes (abfd, info_ptr));
16071 info_ptr += 8;
16072 break;
16073 case DW_FORM_ref_sig8:
16074 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16075 info_ptr += 8;
16076 break;
16077 case DW_FORM_ref_udata:
16078 DW_UNSND (attr) = (cu->header.offset.sect_off
16079 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16080 info_ptr += bytes_read;
16081 break;
16082 case DW_FORM_indirect:
16083 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16084 info_ptr += bytes_read;
16085 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16086 break;
16087 case DW_FORM_GNU_addr_index:
16088 if (reader->dwo_file == NULL)
16089 {
16090 /* For now flag a hard error.
16091 Later we can turn this into a complaint. */
16092 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16093 dwarf_form_name (form),
16094 bfd_get_filename (abfd));
16095 }
16096 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16097 info_ptr += bytes_read;
16098 break;
16099 case DW_FORM_GNU_str_index:
16100 if (reader->dwo_file == NULL)
16101 {
16102 /* For now flag a hard error.
16103 Later we can turn this into a complaint if warranted. */
16104 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16105 dwarf_form_name (form),
16106 bfd_get_filename (abfd));
16107 }
16108 {
16109 ULONGEST str_index =
16110 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16111
16112 DW_STRING (attr) = read_str_index (reader, str_index);
16113 DW_STRING_IS_CANONICAL (attr) = 0;
16114 info_ptr += bytes_read;
16115 }
16116 break;
16117 default:
16118 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16119 dwarf_form_name (form),
16120 bfd_get_filename (abfd));
16121 }
16122
16123 /* Super hack. */
16124 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16125 attr->form = DW_FORM_GNU_ref_alt;
16126
16127 /* We have seen instances where the compiler tried to emit a byte
16128 size attribute of -1 which ended up being encoded as an unsigned
16129 0xffffffff. Although 0xffffffff is technically a valid size value,
16130 an object of this size seems pretty unlikely so we can relatively
16131 safely treat these cases as if the size attribute was invalid and
16132 treat them as zero by default. */
16133 if (attr->name == DW_AT_byte_size
16134 && form == DW_FORM_data4
16135 && DW_UNSND (attr) >= 0xffffffff)
16136 {
16137 complaint
16138 (&symfile_complaints,
16139 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16140 hex_string (DW_UNSND (attr)));
16141 DW_UNSND (attr) = 0;
16142 }
16143
16144 return info_ptr;
16145 }
16146
16147 /* Read an attribute described by an abbreviated attribute. */
16148
16149 static const gdb_byte *
16150 read_attribute (const struct die_reader_specs *reader,
16151 struct attribute *attr, struct attr_abbrev *abbrev,
16152 const gdb_byte *info_ptr)
16153 {
16154 attr->name = abbrev->name;
16155 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16156 }
16157
16158 /* Read dwarf information from a buffer. */
16159
16160 static unsigned int
16161 read_1_byte (bfd *abfd, const gdb_byte *buf)
16162 {
16163 return bfd_get_8 (abfd, buf);
16164 }
16165
16166 static int
16167 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16168 {
16169 return bfd_get_signed_8 (abfd, buf);
16170 }
16171
16172 static unsigned int
16173 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16174 {
16175 return bfd_get_16 (abfd, buf);
16176 }
16177
16178 static int
16179 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16180 {
16181 return bfd_get_signed_16 (abfd, buf);
16182 }
16183
16184 static unsigned int
16185 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16186 {
16187 return bfd_get_32 (abfd, buf);
16188 }
16189
16190 static int
16191 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16192 {
16193 return bfd_get_signed_32 (abfd, buf);
16194 }
16195
16196 static ULONGEST
16197 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16198 {
16199 return bfd_get_64 (abfd, buf);
16200 }
16201
16202 static CORE_ADDR
16203 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16204 unsigned int *bytes_read)
16205 {
16206 struct comp_unit_head *cu_header = &cu->header;
16207 CORE_ADDR retval = 0;
16208
16209 if (cu_header->signed_addr_p)
16210 {
16211 switch (cu_header->addr_size)
16212 {
16213 case 2:
16214 retval = bfd_get_signed_16 (abfd, buf);
16215 break;
16216 case 4:
16217 retval = bfd_get_signed_32 (abfd, buf);
16218 break;
16219 case 8:
16220 retval = bfd_get_signed_64 (abfd, buf);
16221 break;
16222 default:
16223 internal_error (__FILE__, __LINE__,
16224 _("read_address: bad switch, signed [in module %s]"),
16225 bfd_get_filename (abfd));
16226 }
16227 }
16228 else
16229 {
16230 switch (cu_header->addr_size)
16231 {
16232 case 2:
16233 retval = bfd_get_16 (abfd, buf);
16234 break;
16235 case 4:
16236 retval = bfd_get_32 (abfd, buf);
16237 break;
16238 case 8:
16239 retval = bfd_get_64 (abfd, buf);
16240 break;
16241 default:
16242 internal_error (__FILE__, __LINE__,
16243 _("read_address: bad switch, "
16244 "unsigned [in module %s]"),
16245 bfd_get_filename (abfd));
16246 }
16247 }
16248
16249 *bytes_read = cu_header->addr_size;
16250 return retval;
16251 }
16252
16253 /* Read the initial length from a section. The (draft) DWARF 3
16254 specification allows the initial length to take up either 4 bytes
16255 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16256 bytes describe the length and all offsets will be 8 bytes in length
16257 instead of 4.
16258
16259 An older, non-standard 64-bit format is also handled by this
16260 function. The older format in question stores the initial length
16261 as an 8-byte quantity without an escape value. Lengths greater
16262 than 2^32 aren't very common which means that the initial 4 bytes
16263 is almost always zero. Since a length value of zero doesn't make
16264 sense for the 32-bit format, this initial zero can be considered to
16265 be an escape value which indicates the presence of the older 64-bit
16266 format. As written, the code can't detect (old format) lengths
16267 greater than 4GB. If it becomes necessary to handle lengths
16268 somewhat larger than 4GB, we could allow other small values (such
16269 as the non-sensical values of 1, 2, and 3) to also be used as
16270 escape values indicating the presence of the old format.
16271
16272 The value returned via bytes_read should be used to increment the
16273 relevant pointer after calling read_initial_length().
16274
16275 [ Note: read_initial_length() and read_offset() are based on the
16276 document entitled "DWARF Debugging Information Format", revision
16277 3, draft 8, dated November 19, 2001. This document was obtained
16278 from:
16279
16280 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16281
16282 This document is only a draft and is subject to change. (So beware.)
16283
16284 Details regarding the older, non-standard 64-bit format were
16285 determined empirically by examining 64-bit ELF files produced by
16286 the SGI toolchain on an IRIX 6.5 machine.
16287
16288 - Kevin, July 16, 2002
16289 ] */
16290
16291 static LONGEST
16292 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16293 {
16294 LONGEST length = bfd_get_32 (abfd, buf);
16295
16296 if (length == 0xffffffff)
16297 {
16298 length = bfd_get_64 (abfd, buf + 4);
16299 *bytes_read = 12;
16300 }
16301 else if (length == 0)
16302 {
16303 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16304 length = bfd_get_64 (abfd, buf);
16305 *bytes_read = 8;
16306 }
16307 else
16308 {
16309 *bytes_read = 4;
16310 }
16311
16312 return length;
16313 }
16314
16315 /* Cover function for read_initial_length.
16316 Returns the length of the object at BUF, and stores the size of the
16317 initial length in *BYTES_READ and stores the size that offsets will be in
16318 *OFFSET_SIZE.
16319 If the initial length size is not equivalent to that specified in
16320 CU_HEADER then issue a complaint.
16321 This is useful when reading non-comp-unit headers. */
16322
16323 static LONGEST
16324 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16325 const struct comp_unit_head *cu_header,
16326 unsigned int *bytes_read,
16327 unsigned int *offset_size)
16328 {
16329 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16330
16331 gdb_assert (cu_header->initial_length_size == 4
16332 || cu_header->initial_length_size == 8
16333 || cu_header->initial_length_size == 12);
16334
16335 if (cu_header->initial_length_size != *bytes_read)
16336 complaint (&symfile_complaints,
16337 _("intermixed 32-bit and 64-bit DWARF sections"));
16338
16339 *offset_size = (*bytes_read == 4) ? 4 : 8;
16340 return length;
16341 }
16342
16343 /* Read an offset from the data stream. The size of the offset is
16344 given by cu_header->offset_size. */
16345
16346 static LONGEST
16347 read_offset (bfd *abfd, const gdb_byte *buf,
16348 const struct comp_unit_head *cu_header,
16349 unsigned int *bytes_read)
16350 {
16351 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16352
16353 *bytes_read = cu_header->offset_size;
16354 return offset;
16355 }
16356
16357 /* Read an offset from the data stream. */
16358
16359 static LONGEST
16360 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16361 {
16362 LONGEST retval = 0;
16363
16364 switch (offset_size)
16365 {
16366 case 4:
16367 retval = bfd_get_32 (abfd, buf);
16368 break;
16369 case 8:
16370 retval = bfd_get_64 (abfd, buf);
16371 break;
16372 default:
16373 internal_error (__FILE__, __LINE__,
16374 _("read_offset_1: bad switch [in module %s]"),
16375 bfd_get_filename (abfd));
16376 }
16377
16378 return retval;
16379 }
16380
16381 static const gdb_byte *
16382 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16383 {
16384 /* If the size of a host char is 8 bits, we can return a pointer
16385 to the buffer, otherwise we have to copy the data to a buffer
16386 allocated on the temporary obstack. */
16387 gdb_assert (HOST_CHAR_BIT == 8);
16388 return buf;
16389 }
16390
16391 static const char *
16392 read_direct_string (bfd *abfd, const gdb_byte *buf,
16393 unsigned int *bytes_read_ptr)
16394 {
16395 /* If the size of a host char is 8 bits, we can return a pointer
16396 to the string, otherwise we have to copy the string to a buffer
16397 allocated on the temporary obstack. */
16398 gdb_assert (HOST_CHAR_BIT == 8);
16399 if (*buf == '\0')
16400 {
16401 *bytes_read_ptr = 1;
16402 return NULL;
16403 }
16404 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16405 return (const char *) buf;
16406 }
16407
16408 static const char *
16409 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16410 {
16411 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16412 if (dwarf2_per_objfile->str.buffer == NULL)
16413 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16414 bfd_get_filename (abfd));
16415 if (str_offset >= dwarf2_per_objfile->str.size)
16416 error (_("DW_FORM_strp pointing outside of "
16417 ".debug_str section [in module %s]"),
16418 bfd_get_filename (abfd));
16419 gdb_assert (HOST_CHAR_BIT == 8);
16420 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16421 return NULL;
16422 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16423 }
16424
16425 /* Read a string at offset STR_OFFSET in the .debug_str section from
16426 the .dwz file DWZ. Throw an error if the offset is too large. If
16427 the string consists of a single NUL byte, return NULL; otherwise
16428 return a pointer to the string. */
16429
16430 static const char *
16431 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16432 {
16433 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16434
16435 if (dwz->str.buffer == NULL)
16436 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16437 "section [in module %s]"),
16438 bfd_get_filename (dwz->dwz_bfd));
16439 if (str_offset >= dwz->str.size)
16440 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16441 ".debug_str section [in module %s]"),
16442 bfd_get_filename (dwz->dwz_bfd));
16443 gdb_assert (HOST_CHAR_BIT == 8);
16444 if (dwz->str.buffer[str_offset] == '\0')
16445 return NULL;
16446 return (const char *) (dwz->str.buffer + str_offset);
16447 }
16448
16449 static const char *
16450 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16451 const struct comp_unit_head *cu_header,
16452 unsigned int *bytes_read_ptr)
16453 {
16454 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16455
16456 return read_indirect_string_at_offset (abfd, str_offset);
16457 }
16458
16459 static ULONGEST
16460 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16461 unsigned int *bytes_read_ptr)
16462 {
16463 ULONGEST result;
16464 unsigned int num_read;
16465 int i, shift;
16466 unsigned char byte;
16467
16468 result = 0;
16469 shift = 0;
16470 num_read = 0;
16471 i = 0;
16472 while (1)
16473 {
16474 byte = bfd_get_8 (abfd, buf);
16475 buf++;
16476 num_read++;
16477 result |= ((ULONGEST) (byte & 127) << shift);
16478 if ((byte & 128) == 0)
16479 {
16480 break;
16481 }
16482 shift += 7;
16483 }
16484 *bytes_read_ptr = num_read;
16485 return result;
16486 }
16487
16488 static LONGEST
16489 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16490 unsigned int *bytes_read_ptr)
16491 {
16492 LONGEST result;
16493 int i, shift, num_read;
16494 unsigned char byte;
16495
16496 result = 0;
16497 shift = 0;
16498 num_read = 0;
16499 i = 0;
16500 while (1)
16501 {
16502 byte = bfd_get_8 (abfd, buf);
16503 buf++;
16504 num_read++;
16505 result |= ((LONGEST) (byte & 127) << shift);
16506 shift += 7;
16507 if ((byte & 128) == 0)
16508 {
16509 break;
16510 }
16511 }
16512 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16513 result |= -(((LONGEST) 1) << shift);
16514 *bytes_read_ptr = num_read;
16515 return result;
16516 }
16517
16518 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16519 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16520 ADDR_SIZE is the size of addresses from the CU header. */
16521
16522 static CORE_ADDR
16523 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16524 {
16525 struct objfile *objfile = dwarf2_per_objfile->objfile;
16526 bfd *abfd = objfile->obfd;
16527 const gdb_byte *info_ptr;
16528
16529 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16530 if (dwarf2_per_objfile->addr.buffer == NULL)
16531 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16532 objfile_name (objfile));
16533 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16534 error (_("DW_FORM_addr_index pointing outside of "
16535 ".debug_addr section [in module %s]"),
16536 objfile_name (objfile));
16537 info_ptr = (dwarf2_per_objfile->addr.buffer
16538 + addr_base + addr_index * addr_size);
16539 if (addr_size == 4)
16540 return bfd_get_32 (abfd, info_ptr);
16541 else
16542 return bfd_get_64 (abfd, info_ptr);
16543 }
16544
16545 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16546
16547 static CORE_ADDR
16548 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16549 {
16550 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16551 }
16552
16553 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16554
16555 static CORE_ADDR
16556 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16557 unsigned int *bytes_read)
16558 {
16559 bfd *abfd = cu->objfile->obfd;
16560 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16561
16562 return read_addr_index (cu, addr_index);
16563 }
16564
16565 /* Data structure to pass results from dwarf2_read_addr_index_reader
16566 back to dwarf2_read_addr_index. */
16567
16568 struct dwarf2_read_addr_index_data
16569 {
16570 ULONGEST addr_base;
16571 int addr_size;
16572 };
16573
16574 /* die_reader_func for dwarf2_read_addr_index. */
16575
16576 static void
16577 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16578 const gdb_byte *info_ptr,
16579 struct die_info *comp_unit_die,
16580 int has_children,
16581 void *data)
16582 {
16583 struct dwarf2_cu *cu = reader->cu;
16584 struct dwarf2_read_addr_index_data *aidata =
16585 (struct dwarf2_read_addr_index_data *) data;
16586
16587 aidata->addr_base = cu->addr_base;
16588 aidata->addr_size = cu->header.addr_size;
16589 }
16590
16591 /* Given an index in .debug_addr, fetch the value.
16592 NOTE: This can be called during dwarf expression evaluation,
16593 long after the debug information has been read, and thus per_cu->cu
16594 may no longer exist. */
16595
16596 CORE_ADDR
16597 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16598 unsigned int addr_index)
16599 {
16600 struct objfile *objfile = per_cu->objfile;
16601 struct dwarf2_cu *cu = per_cu->cu;
16602 ULONGEST addr_base;
16603 int addr_size;
16604
16605 /* This is intended to be called from outside this file. */
16606 dw2_setup (objfile);
16607
16608 /* We need addr_base and addr_size.
16609 If we don't have PER_CU->cu, we have to get it.
16610 Nasty, but the alternative is storing the needed info in PER_CU,
16611 which at this point doesn't seem justified: it's not clear how frequently
16612 it would get used and it would increase the size of every PER_CU.
16613 Entry points like dwarf2_per_cu_addr_size do a similar thing
16614 so we're not in uncharted territory here.
16615 Alas we need to be a bit more complicated as addr_base is contained
16616 in the DIE.
16617
16618 We don't need to read the entire CU(/TU).
16619 We just need the header and top level die.
16620
16621 IWBN to use the aging mechanism to let us lazily later discard the CU.
16622 For now we skip this optimization. */
16623
16624 if (cu != NULL)
16625 {
16626 addr_base = cu->addr_base;
16627 addr_size = cu->header.addr_size;
16628 }
16629 else
16630 {
16631 struct dwarf2_read_addr_index_data aidata;
16632
16633 /* Note: We can't use init_cutu_and_read_dies_simple here,
16634 we need addr_base. */
16635 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16636 dwarf2_read_addr_index_reader, &aidata);
16637 addr_base = aidata.addr_base;
16638 addr_size = aidata.addr_size;
16639 }
16640
16641 return read_addr_index_1 (addr_index, addr_base, addr_size);
16642 }
16643
16644 /* Given a DW_FORM_GNU_str_index, fetch the string.
16645 This is only used by the Fission support. */
16646
16647 static const char *
16648 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16649 {
16650 struct objfile *objfile = dwarf2_per_objfile->objfile;
16651 const char *objf_name = objfile_name (objfile);
16652 bfd *abfd = objfile->obfd;
16653 struct dwarf2_cu *cu = reader->cu;
16654 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16655 struct dwarf2_section_info *str_offsets_section =
16656 &reader->dwo_file->sections.str_offsets;
16657 const gdb_byte *info_ptr;
16658 ULONGEST str_offset;
16659 static const char form_name[] = "DW_FORM_GNU_str_index";
16660
16661 dwarf2_read_section (objfile, str_section);
16662 dwarf2_read_section (objfile, str_offsets_section);
16663 if (str_section->buffer == NULL)
16664 error (_("%s used without .debug_str.dwo section"
16665 " in CU at offset 0x%lx [in module %s]"),
16666 form_name, (long) cu->header.offset.sect_off, objf_name);
16667 if (str_offsets_section->buffer == NULL)
16668 error (_("%s used without .debug_str_offsets.dwo section"
16669 " in CU at offset 0x%lx [in module %s]"),
16670 form_name, (long) cu->header.offset.sect_off, objf_name);
16671 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16672 error (_("%s pointing outside of .debug_str_offsets.dwo"
16673 " section in CU at offset 0x%lx [in module %s]"),
16674 form_name, (long) cu->header.offset.sect_off, objf_name);
16675 info_ptr = (str_offsets_section->buffer
16676 + str_index * cu->header.offset_size);
16677 if (cu->header.offset_size == 4)
16678 str_offset = bfd_get_32 (abfd, info_ptr);
16679 else
16680 str_offset = bfd_get_64 (abfd, info_ptr);
16681 if (str_offset >= str_section->size)
16682 error (_("Offset from %s pointing outside of"
16683 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16684 form_name, (long) cu->header.offset.sect_off, objf_name);
16685 return (const char *) (str_section->buffer + str_offset);
16686 }
16687
16688 /* Return the length of an LEB128 number in BUF. */
16689
16690 static int
16691 leb128_size (const gdb_byte *buf)
16692 {
16693 const gdb_byte *begin = buf;
16694 gdb_byte byte;
16695
16696 while (1)
16697 {
16698 byte = *buf++;
16699 if ((byte & 128) == 0)
16700 return buf - begin;
16701 }
16702 }
16703
16704 static void
16705 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16706 {
16707 switch (lang)
16708 {
16709 case DW_LANG_C89:
16710 case DW_LANG_C99:
16711 case DW_LANG_C:
16712 case DW_LANG_UPC:
16713 cu->language = language_c;
16714 break;
16715 case DW_LANG_C_plus_plus:
16716 cu->language = language_cplus;
16717 break;
16718 case DW_LANG_D:
16719 cu->language = language_d;
16720 break;
16721 case DW_LANG_Fortran77:
16722 case DW_LANG_Fortran90:
16723 case DW_LANG_Fortran95:
16724 cu->language = language_fortran;
16725 break;
16726 case DW_LANG_Go:
16727 cu->language = language_go;
16728 break;
16729 case DW_LANG_Mips_Assembler:
16730 cu->language = language_asm;
16731 break;
16732 case DW_LANG_Java:
16733 cu->language = language_java;
16734 break;
16735 case DW_LANG_Ada83:
16736 case DW_LANG_Ada95:
16737 cu->language = language_ada;
16738 break;
16739 case DW_LANG_Modula2:
16740 cu->language = language_m2;
16741 break;
16742 case DW_LANG_Pascal83:
16743 cu->language = language_pascal;
16744 break;
16745 case DW_LANG_ObjC:
16746 cu->language = language_objc;
16747 break;
16748 case DW_LANG_Cobol74:
16749 case DW_LANG_Cobol85:
16750 default:
16751 cu->language = language_minimal;
16752 break;
16753 }
16754 cu->language_defn = language_def (cu->language);
16755 }
16756
16757 /* Return the named attribute or NULL if not there. */
16758
16759 static struct attribute *
16760 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16761 {
16762 for (;;)
16763 {
16764 unsigned int i;
16765 struct attribute *spec = NULL;
16766
16767 for (i = 0; i < die->num_attrs; ++i)
16768 {
16769 if (die->attrs[i].name == name)
16770 return &die->attrs[i];
16771 if (die->attrs[i].name == DW_AT_specification
16772 || die->attrs[i].name == DW_AT_abstract_origin)
16773 spec = &die->attrs[i];
16774 }
16775
16776 if (!spec)
16777 break;
16778
16779 die = follow_die_ref (die, spec, &cu);
16780 }
16781
16782 return NULL;
16783 }
16784
16785 /* Return the named attribute or NULL if not there,
16786 but do not follow DW_AT_specification, etc.
16787 This is for use in contexts where we're reading .debug_types dies.
16788 Following DW_AT_specification, DW_AT_abstract_origin will take us
16789 back up the chain, and we want to go down. */
16790
16791 static struct attribute *
16792 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16793 {
16794 unsigned int i;
16795
16796 for (i = 0; i < die->num_attrs; ++i)
16797 if (die->attrs[i].name == name)
16798 return &die->attrs[i];
16799
16800 return NULL;
16801 }
16802
16803 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16804 and holds a non-zero value. This function should only be used for
16805 DW_FORM_flag or DW_FORM_flag_present attributes. */
16806
16807 static int
16808 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16809 {
16810 struct attribute *attr = dwarf2_attr (die, name, cu);
16811
16812 return (attr && DW_UNSND (attr));
16813 }
16814
16815 static int
16816 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16817 {
16818 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16819 which value is non-zero. However, we have to be careful with
16820 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16821 (via dwarf2_flag_true_p) follows this attribute. So we may
16822 end up accidently finding a declaration attribute that belongs
16823 to a different DIE referenced by the specification attribute,
16824 even though the given DIE does not have a declaration attribute. */
16825 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16826 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16827 }
16828
16829 /* Return the die giving the specification for DIE, if there is
16830 one. *SPEC_CU is the CU containing DIE on input, and the CU
16831 containing the return value on output. If there is no
16832 specification, but there is an abstract origin, that is
16833 returned. */
16834
16835 static struct die_info *
16836 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16837 {
16838 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16839 *spec_cu);
16840
16841 if (spec_attr == NULL)
16842 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16843
16844 if (spec_attr == NULL)
16845 return NULL;
16846 else
16847 return follow_die_ref (die, spec_attr, spec_cu);
16848 }
16849
16850 /* Free the line_header structure *LH, and any arrays and strings it
16851 refers to.
16852 NOTE: This is also used as a "cleanup" function. */
16853
16854 static void
16855 free_line_header (struct line_header *lh)
16856 {
16857 if (lh->standard_opcode_lengths)
16858 xfree (lh->standard_opcode_lengths);
16859
16860 /* Remember that all the lh->file_names[i].name pointers are
16861 pointers into debug_line_buffer, and don't need to be freed. */
16862 if (lh->file_names)
16863 xfree (lh->file_names);
16864
16865 /* Similarly for the include directory names. */
16866 if (lh->include_dirs)
16867 xfree (lh->include_dirs);
16868
16869 xfree (lh);
16870 }
16871
16872 /* Add an entry to LH's include directory table. */
16873
16874 static void
16875 add_include_dir (struct line_header *lh, const char *include_dir)
16876 {
16877 /* Grow the array if necessary. */
16878 if (lh->include_dirs_size == 0)
16879 {
16880 lh->include_dirs_size = 1; /* for testing */
16881 lh->include_dirs = xmalloc (lh->include_dirs_size
16882 * sizeof (*lh->include_dirs));
16883 }
16884 else if (lh->num_include_dirs >= lh->include_dirs_size)
16885 {
16886 lh->include_dirs_size *= 2;
16887 lh->include_dirs = xrealloc (lh->include_dirs,
16888 (lh->include_dirs_size
16889 * sizeof (*lh->include_dirs)));
16890 }
16891
16892 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16893 }
16894
16895 /* Add an entry to LH's file name table. */
16896
16897 static void
16898 add_file_name (struct line_header *lh,
16899 const char *name,
16900 unsigned int dir_index,
16901 unsigned int mod_time,
16902 unsigned int length)
16903 {
16904 struct file_entry *fe;
16905
16906 /* Grow the array if necessary. */
16907 if (lh->file_names_size == 0)
16908 {
16909 lh->file_names_size = 1; /* for testing */
16910 lh->file_names = xmalloc (lh->file_names_size
16911 * sizeof (*lh->file_names));
16912 }
16913 else if (lh->num_file_names >= lh->file_names_size)
16914 {
16915 lh->file_names_size *= 2;
16916 lh->file_names = xrealloc (lh->file_names,
16917 (lh->file_names_size
16918 * sizeof (*lh->file_names)));
16919 }
16920
16921 fe = &lh->file_names[lh->num_file_names++];
16922 fe->name = name;
16923 fe->dir_index = dir_index;
16924 fe->mod_time = mod_time;
16925 fe->length = length;
16926 fe->included_p = 0;
16927 fe->symtab = NULL;
16928 }
16929
16930 /* A convenience function to find the proper .debug_line section for a
16931 CU. */
16932
16933 static struct dwarf2_section_info *
16934 get_debug_line_section (struct dwarf2_cu *cu)
16935 {
16936 struct dwarf2_section_info *section;
16937
16938 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16939 DWO file. */
16940 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16941 section = &cu->dwo_unit->dwo_file->sections.line;
16942 else if (cu->per_cu->is_dwz)
16943 {
16944 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16945
16946 section = &dwz->line;
16947 }
16948 else
16949 section = &dwarf2_per_objfile->line;
16950
16951 return section;
16952 }
16953
16954 /* Read the statement program header starting at OFFSET in
16955 .debug_line, or .debug_line.dwo. Return a pointer
16956 to a struct line_header, allocated using xmalloc.
16957
16958 NOTE: the strings in the include directory and file name tables of
16959 the returned object point into the dwarf line section buffer,
16960 and must not be freed. */
16961
16962 static struct line_header *
16963 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16964 {
16965 struct cleanup *back_to;
16966 struct line_header *lh;
16967 const gdb_byte *line_ptr;
16968 unsigned int bytes_read, offset_size;
16969 int i;
16970 const char *cur_dir, *cur_file;
16971 struct dwarf2_section_info *section;
16972 bfd *abfd;
16973
16974 section = get_debug_line_section (cu);
16975 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16976 if (section->buffer == NULL)
16977 {
16978 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16979 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16980 else
16981 complaint (&symfile_complaints, _("missing .debug_line section"));
16982 return 0;
16983 }
16984
16985 /* We can't do this until we know the section is non-empty.
16986 Only then do we know we have such a section. */
16987 abfd = get_section_bfd_owner (section);
16988
16989 /* Make sure that at least there's room for the total_length field.
16990 That could be 12 bytes long, but we're just going to fudge that. */
16991 if (offset + 4 >= section->size)
16992 {
16993 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16994 return 0;
16995 }
16996
16997 lh = xmalloc (sizeof (*lh));
16998 memset (lh, 0, sizeof (*lh));
16999 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17000 (void *) lh);
17001
17002 line_ptr = section->buffer + offset;
17003
17004 /* Read in the header. */
17005 lh->total_length =
17006 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17007 &bytes_read, &offset_size);
17008 line_ptr += bytes_read;
17009 if (line_ptr + lh->total_length > (section->buffer + section->size))
17010 {
17011 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17012 do_cleanups (back_to);
17013 return 0;
17014 }
17015 lh->statement_program_end = line_ptr + lh->total_length;
17016 lh->version = read_2_bytes (abfd, line_ptr);
17017 line_ptr += 2;
17018 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17019 line_ptr += offset_size;
17020 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17021 line_ptr += 1;
17022 if (lh->version >= 4)
17023 {
17024 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17025 line_ptr += 1;
17026 }
17027 else
17028 lh->maximum_ops_per_instruction = 1;
17029
17030 if (lh->maximum_ops_per_instruction == 0)
17031 {
17032 lh->maximum_ops_per_instruction = 1;
17033 complaint (&symfile_complaints,
17034 _("invalid maximum_ops_per_instruction "
17035 "in `.debug_line' section"));
17036 }
17037
17038 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17039 line_ptr += 1;
17040 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17041 line_ptr += 1;
17042 lh->line_range = read_1_byte (abfd, line_ptr);
17043 line_ptr += 1;
17044 lh->opcode_base = read_1_byte (abfd, line_ptr);
17045 line_ptr += 1;
17046 lh->standard_opcode_lengths
17047 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17048
17049 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17050 for (i = 1; i < lh->opcode_base; ++i)
17051 {
17052 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17053 line_ptr += 1;
17054 }
17055
17056 /* Read directory table. */
17057 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17058 {
17059 line_ptr += bytes_read;
17060 add_include_dir (lh, cur_dir);
17061 }
17062 line_ptr += bytes_read;
17063
17064 /* Read file name table. */
17065 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17066 {
17067 unsigned int dir_index, mod_time, length;
17068
17069 line_ptr += bytes_read;
17070 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17071 line_ptr += bytes_read;
17072 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17073 line_ptr += bytes_read;
17074 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17075 line_ptr += bytes_read;
17076
17077 add_file_name (lh, cur_file, dir_index, mod_time, length);
17078 }
17079 line_ptr += bytes_read;
17080 lh->statement_program_start = line_ptr;
17081
17082 if (line_ptr > (section->buffer + section->size))
17083 complaint (&symfile_complaints,
17084 _("line number info header doesn't "
17085 "fit in `.debug_line' section"));
17086
17087 discard_cleanups (back_to);
17088 return lh;
17089 }
17090
17091 /* Subroutine of dwarf_decode_lines to simplify it.
17092 Return the file name of the psymtab for included file FILE_INDEX
17093 in line header LH of PST.
17094 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17095 If space for the result is malloc'd, it will be freed by a cleanup.
17096 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17097
17098 The function creates dangling cleanup registration. */
17099
17100 static const char *
17101 psymtab_include_file_name (const struct line_header *lh, int file_index,
17102 const struct partial_symtab *pst,
17103 const char *comp_dir)
17104 {
17105 const struct file_entry fe = lh->file_names [file_index];
17106 const char *include_name = fe.name;
17107 const char *include_name_to_compare = include_name;
17108 const char *dir_name = NULL;
17109 const char *pst_filename;
17110 char *copied_name = NULL;
17111 int file_is_pst;
17112
17113 if (fe.dir_index)
17114 dir_name = lh->include_dirs[fe.dir_index - 1];
17115
17116 if (!IS_ABSOLUTE_PATH (include_name)
17117 && (dir_name != NULL || comp_dir != NULL))
17118 {
17119 /* Avoid creating a duplicate psymtab for PST.
17120 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17121 Before we do the comparison, however, we need to account
17122 for DIR_NAME and COMP_DIR.
17123 First prepend dir_name (if non-NULL). If we still don't
17124 have an absolute path prepend comp_dir (if non-NULL).
17125 However, the directory we record in the include-file's
17126 psymtab does not contain COMP_DIR (to match the
17127 corresponding symtab(s)).
17128
17129 Example:
17130
17131 bash$ cd /tmp
17132 bash$ gcc -g ./hello.c
17133 include_name = "hello.c"
17134 dir_name = "."
17135 DW_AT_comp_dir = comp_dir = "/tmp"
17136 DW_AT_name = "./hello.c"
17137
17138 */
17139
17140 if (dir_name != NULL)
17141 {
17142 char *tem = concat (dir_name, SLASH_STRING,
17143 include_name, (char *)NULL);
17144
17145 make_cleanup (xfree, tem);
17146 include_name = tem;
17147 include_name_to_compare = include_name;
17148 }
17149 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17150 {
17151 char *tem = concat (comp_dir, SLASH_STRING,
17152 include_name, (char *)NULL);
17153
17154 make_cleanup (xfree, tem);
17155 include_name_to_compare = tem;
17156 }
17157 }
17158
17159 pst_filename = pst->filename;
17160 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17161 {
17162 copied_name = concat (pst->dirname, SLASH_STRING,
17163 pst_filename, (char *)NULL);
17164 pst_filename = copied_name;
17165 }
17166
17167 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17168
17169 if (copied_name != NULL)
17170 xfree (copied_name);
17171
17172 if (file_is_pst)
17173 return NULL;
17174 return include_name;
17175 }
17176
17177 /* Ignore this record_line request. */
17178
17179 static void
17180 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17181 {
17182 return;
17183 }
17184
17185 /* Return non-zero if we should add LINE to the line number table.
17186 LINE is the line to add, LAST_LINE is the last line that was added,
17187 LAST_SUBFILE is the subfile for LAST_LINE.
17188 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17189 had a non-zero discriminator.
17190
17191 We have to be careful in the presence of discriminators.
17192 E.g., for this line:
17193
17194 for (i = 0; i < 100000; i++);
17195
17196 clang can emit four line number entries for that one line,
17197 each with a different discriminator.
17198 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17199
17200 However, we want gdb to coalesce all four entries into one.
17201 Otherwise the user could stepi into the middle of the line and
17202 gdb would get confused about whether the pc really was in the
17203 middle of the line.
17204
17205 Things are further complicated by the fact that two consecutive
17206 line number entries for the same line is a heuristic used by gcc
17207 to denote the end of the prologue. So we can't just discard duplicate
17208 entries, we have to be selective about it. The heuristic we use is
17209 that we only collapse consecutive entries for the same line if at least
17210 one of those entries has a non-zero discriminator. PR 17276.
17211
17212 Note: Addresses in the line number state machine can never go backwards
17213 within one sequence, thus this coalescing is ok. */
17214
17215 static int
17216 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17217 int line_has_non_zero_discriminator,
17218 struct subfile *last_subfile)
17219 {
17220 if (current_subfile != last_subfile)
17221 return 1;
17222 if (line != last_line)
17223 return 1;
17224 /* Same line for the same file that we've seen already.
17225 As a last check, for pr 17276, only record the line if the line
17226 has never had a non-zero discriminator. */
17227 if (!line_has_non_zero_discriminator)
17228 return 1;
17229 return 0;
17230 }
17231
17232 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17233 in the line table of subfile SUBFILE. */
17234
17235 static void
17236 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17237 unsigned int line, CORE_ADDR address,
17238 record_line_ftype p_record_line)
17239 {
17240 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17241
17242 (*p_record_line) (subfile, line, addr);
17243 }
17244
17245 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17246 Mark the end of a set of line number records.
17247 The arguments are the same as for dwarf_record_line.
17248 If SUBFILE is NULL the request is ignored. */
17249
17250 static void
17251 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17252 CORE_ADDR address, record_line_ftype p_record_line)
17253 {
17254 if (subfile != NULL)
17255 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17256 }
17257
17258 /* Subroutine of dwarf_decode_lines to simplify it.
17259 Process the line number information in LH. */
17260
17261 static void
17262 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17263 struct dwarf2_cu *cu, const int decode_for_pst_p,
17264 CORE_ADDR lowpc)
17265 {
17266 const gdb_byte *line_ptr, *extended_end;
17267 const gdb_byte *line_end;
17268 unsigned int bytes_read, extended_len;
17269 unsigned char op_code, extended_op;
17270 CORE_ADDR baseaddr;
17271 struct objfile *objfile = cu->objfile;
17272 bfd *abfd = objfile->obfd;
17273 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17274 struct subfile *last_subfile = NULL;
17275 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17276 = record_line;
17277
17278 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17279
17280 line_ptr = lh->statement_program_start;
17281 line_end = lh->statement_program_end;
17282
17283 /* Read the statement sequences until there's nothing left. */
17284 while (line_ptr < line_end)
17285 {
17286 /* state machine registers */
17287 CORE_ADDR address = 0;
17288 unsigned int file = 1;
17289 unsigned int line = 1;
17290 int is_stmt = lh->default_is_stmt;
17291 int end_sequence = 0;
17292 unsigned char op_index = 0;
17293 unsigned int discriminator = 0;
17294 /* The last line number that was recorded, used to coalesce
17295 consecutive entries for the same line. This can happen, for
17296 example, when discriminators are present. PR 17276. */
17297 unsigned int last_line = 0;
17298 int line_has_non_zero_discriminator = 0;
17299
17300 if (!decode_for_pst_p && lh->num_file_names >= file)
17301 {
17302 /* Start a subfile for the current file of the state machine. */
17303 /* lh->include_dirs and lh->file_names are 0-based, but the
17304 directory and file name numbers in the statement program
17305 are 1-based. */
17306 struct file_entry *fe = &lh->file_names[file - 1];
17307 const char *dir = NULL;
17308
17309 if (fe->dir_index)
17310 dir = lh->include_dirs[fe->dir_index - 1];
17311
17312 dwarf2_start_subfile (fe->name, dir, comp_dir);
17313 }
17314
17315 /* Decode the table. */
17316 while (!end_sequence)
17317 {
17318 op_code = read_1_byte (abfd, line_ptr);
17319 line_ptr += 1;
17320 if (line_ptr > line_end)
17321 {
17322 dwarf2_debug_line_missing_end_sequence_complaint ();
17323 break;
17324 }
17325
17326 if (op_code >= lh->opcode_base)
17327 {
17328 /* Special opcode. */
17329 unsigned char adj_opcode;
17330 int line_delta;
17331
17332 adj_opcode = op_code - lh->opcode_base;
17333 address += (((op_index + (adj_opcode / lh->line_range))
17334 / lh->maximum_ops_per_instruction)
17335 * lh->minimum_instruction_length);
17336 op_index = ((op_index + (adj_opcode / lh->line_range))
17337 % lh->maximum_ops_per_instruction);
17338 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17339 line += line_delta;
17340 if (line_delta != 0)
17341 line_has_non_zero_discriminator = discriminator != 0;
17342 if (lh->num_file_names < file || file == 0)
17343 dwarf2_debug_line_missing_file_complaint ();
17344 /* For now we ignore lines not starting on an
17345 instruction boundary. */
17346 else if (op_index == 0)
17347 {
17348 lh->file_names[file - 1].included_p = 1;
17349 if (!decode_for_pst_p && is_stmt)
17350 {
17351 if (last_subfile != current_subfile)
17352 {
17353 dwarf_finish_line (gdbarch, last_subfile,
17354 address, p_record_line);
17355 }
17356 if (dwarf_record_line_p (line, last_line,
17357 line_has_non_zero_discriminator,
17358 last_subfile))
17359 {
17360 dwarf_record_line (gdbarch, current_subfile,
17361 line, address, p_record_line);
17362 }
17363 last_subfile = current_subfile;
17364 last_line = line;
17365 }
17366 }
17367 discriminator = 0;
17368 }
17369 else switch (op_code)
17370 {
17371 case DW_LNS_extended_op:
17372 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17373 &bytes_read);
17374 line_ptr += bytes_read;
17375 extended_end = line_ptr + extended_len;
17376 extended_op = read_1_byte (abfd, line_ptr);
17377 line_ptr += 1;
17378 switch (extended_op)
17379 {
17380 case DW_LNE_end_sequence:
17381 p_record_line = record_line;
17382 end_sequence = 1;
17383 break;
17384 case DW_LNE_set_address:
17385 address = read_address (abfd, line_ptr, cu, &bytes_read);
17386
17387 /* If address < lowpc then it's not a usable value, it's
17388 outside the pc range of the CU. However, we restrict
17389 the test to only address values of zero to preserve
17390 GDB's previous behaviour which is to handle the specific
17391 case of a function being GC'd by the linker. */
17392 if (address == 0 && address < lowpc)
17393 {
17394 /* This line table is for a function which has been
17395 GCd by the linker. Ignore it. PR gdb/12528 */
17396
17397 long line_offset
17398 = line_ptr - get_debug_line_section (cu)->buffer;
17399
17400 complaint (&symfile_complaints,
17401 _(".debug_line address at offset 0x%lx is 0 "
17402 "[in module %s]"),
17403 line_offset, objfile_name (objfile));
17404 p_record_line = noop_record_line;
17405 /* Note: p_record_line is left as noop_record_line
17406 until we see DW_LNE_end_sequence. */
17407 }
17408
17409 op_index = 0;
17410 line_ptr += bytes_read;
17411 address += baseaddr;
17412 break;
17413 case DW_LNE_define_file:
17414 {
17415 const char *cur_file;
17416 unsigned int dir_index, mod_time, length;
17417
17418 cur_file = read_direct_string (abfd, line_ptr,
17419 &bytes_read);
17420 line_ptr += bytes_read;
17421 dir_index =
17422 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17423 line_ptr += bytes_read;
17424 mod_time =
17425 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17426 line_ptr += bytes_read;
17427 length =
17428 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17429 line_ptr += bytes_read;
17430 add_file_name (lh, cur_file, dir_index, mod_time, length);
17431 }
17432 break;
17433 case DW_LNE_set_discriminator:
17434 /* The discriminator is not interesting to the debugger;
17435 just ignore it. We still need to check its value though:
17436 if there are consecutive entries for the same
17437 (non-prologue) line we want to coalesce them.
17438 PR 17276. */
17439 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17440 &bytes_read);
17441 line_has_non_zero_discriminator |= discriminator != 0;
17442 line_ptr += bytes_read;
17443 break;
17444 default:
17445 complaint (&symfile_complaints,
17446 _("mangled .debug_line section"));
17447 return;
17448 }
17449 /* Make sure that we parsed the extended op correctly. If e.g.
17450 we expected a different address size than the producer used,
17451 we may have read the wrong number of bytes. */
17452 if (line_ptr != extended_end)
17453 {
17454 complaint (&symfile_complaints,
17455 _("mangled .debug_line section"));
17456 return;
17457 }
17458 break;
17459 case DW_LNS_copy:
17460 if (lh->num_file_names < file || file == 0)
17461 dwarf2_debug_line_missing_file_complaint ();
17462 else
17463 {
17464 lh->file_names[file - 1].included_p = 1;
17465 if (!decode_for_pst_p && is_stmt)
17466 {
17467 if (last_subfile != current_subfile)
17468 {
17469 dwarf_finish_line (gdbarch, last_subfile,
17470 address, p_record_line);
17471 }
17472 if (dwarf_record_line_p (line, last_line,
17473 line_has_non_zero_discriminator,
17474 last_subfile))
17475 {
17476 dwarf_record_line (gdbarch, current_subfile,
17477 line, address, p_record_line);
17478 }
17479 last_subfile = current_subfile;
17480 last_line = line;
17481 }
17482 }
17483 discriminator = 0;
17484 break;
17485 case DW_LNS_advance_pc:
17486 {
17487 CORE_ADDR adjust
17488 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17489
17490 address += (((op_index + adjust)
17491 / lh->maximum_ops_per_instruction)
17492 * lh->minimum_instruction_length);
17493 op_index = ((op_index + adjust)
17494 % lh->maximum_ops_per_instruction);
17495 line_ptr += bytes_read;
17496 }
17497 break;
17498 case DW_LNS_advance_line:
17499 {
17500 int line_delta
17501 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17502
17503 line += line_delta;
17504 if (line_delta != 0)
17505 line_has_non_zero_discriminator = discriminator != 0;
17506 line_ptr += bytes_read;
17507 }
17508 break;
17509 case DW_LNS_set_file:
17510 {
17511 /* The arrays lh->include_dirs and lh->file_names are
17512 0-based, but the directory and file name numbers in
17513 the statement program are 1-based. */
17514 struct file_entry *fe;
17515 const char *dir = NULL;
17516
17517 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17518 line_ptr += bytes_read;
17519 if (lh->num_file_names < file || file == 0)
17520 dwarf2_debug_line_missing_file_complaint ();
17521 else
17522 {
17523 fe = &lh->file_names[file - 1];
17524 if (fe->dir_index)
17525 dir = lh->include_dirs[fe->dir_index - 1];
17526 if (!decode_for_pst_p)
17527 {
17528 last_subfile = current_subfile;
17529 line_has_non_zero_discriminator = discriminator != 0;
17530 dwarf2_start_subfile (fe->name, dir, comp_dir);
17531 }
17532 }
17533 }
17534 break;
17535 case DW_LNS_set_column:
17536 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17537 line_ptr += bytes_read;
17538 break;
17539 case DW_LNS_negate_stmt:
17540 is_stmt = (!is_stmt);
17541 break;
17542 case DW_LNS_set_basic_block:
17543 break;
17544 /* Add to the address register of the state machine the
17545 address increment value corresponding to special opcode
17546 255. I.e., this value is scaled by the minimum
17547 instruction length since special opcode 255 would have
17548 scaled the increment. */
17549 case DW_LNS_const_add_pc:
17550 {
17551 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17552
17553 address += (((op_index + adjust)
17554 / lh->maximum_ops_per_instruction)
17555 * lh->minimum_instruction_length);
17556 op_index = ((op_index + adjust)
17557 % lh->maximum_ops_per_instruction);
17558 }
17559 break;
17560 case DW_LNS_fixed_advance_pc:
17561 address += read_2_bytes (abfd, line_ptr);
17562 op_index = 0;
17563 line_ptr += 2;
17564 break;
17565 default:
17566 {
17567 /* Unknown standard opcode, ignore it. */
17568 int i;
17569
17570 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17571 {
17572 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17573 line_ptr += bytes_read;
17574 }
17575 }
17576 }
17577 }
17578 if (lh->num_file_names < file || file == 0)
17579 dwarf2_debug_line_missing_file_complaint ();
17580 else
17581 {
17582 lh->file_names[file - 1].included_p = 1;
17583 if (!decode_for_pst_p)
17584 {
17585 dwarf_finish_line (gdbarch, current_subfile, address,
17586 p_record_line);
17587 }
17588 }
17589 }
17590 }
17591
17592 /* Decode the Line Number Program (LNP) for the given line_header
17593 structure and CU. The actual information extracted and the type
17594 of structures created from the LNP depends on the value of PST.
17595
17596 1. If PST is NULL, then this procedure uses the data from the program
17597 to create all necessary symbol tables, and their linetables.
17598
17599 2. If PST is not NULL, this procedure reads the program to determine
17600 the list of files included by the unit represented by PST, and
17601 builds all the associated partial symbol tables.
17602
17603 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17604 It is used for relative paths in the line table.
17605 NOTE: When processing partial symtabs (pst != NULL),
17606 comp_dir == pst->dirname.
17607
17608 NOTE: It is important that psymtabs have the same file name (via strcmp)
17609 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17610 symtab we don't use it in the name of the psymtabs we create.
17611 E.g. expand_line_sal requires this when finding psymtabs to expand.
17612 A good testcase for this is mb-inline.exp.
17613
17614 LOWPC is the lowest address in CU (or 0 if not known). */
17615
17616 static void
17617 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17618 struct dwarf2_cu *cu, struct partial_symtab *pst,
17619 CORE_ADDR lowpc)
17620 {
17621 struct objfile *objfile = cu->objfile;
17622 const int decode_for_pst_p = (pst != NULL);
17623 struct subfile *first_subfile = current_subfile;
17624
17625 dwarf_decode_lines_1 (lh, comp_dir, cu, decode_for_pst_p, lowpc);
17626
17627 if (decode_for_pst_p)
17628 {
17629 int file_index;
17630
17631 /* Now that we're done scanning the Line Header Program, we can
17632 create the psymtab of each included file. */
17633 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17634 if (lh->file_names[file_index].included_p == 1)
17635 {
17636 const char *include_name =
17637 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17638 if (include_name != NULL)
17639 dwarf2_create_include_psymtab (include_name, pst, objfile);
17640 }
17641 }
17642 else
17643 {
17644 /* Make sure a symtab is created for every file, even files
17645 which contain only variables (i.e. no code with associated
17646 line numbers). */
17647 int i;
17648
17649 for (i = 0; i < lh->num_file_names; i++)
17650 {
17651 const char *dir = NULL;
17652 struct file_entry *fe;
17653
17654 fe = &lh->file_names[i];
17655 if (fe->dir_index)
17656 dir = lh->include_dirs[fe->dir_index - 1];
17657 dwarf2_start_subfile (fe->name, dir, comp_dir);
17658
17659 /* Skip the main file; we don't need it, and it must be
17660 allocated last, so that it will show up before the
17661 non-primary symtabs in the objfile's symtab list. */
17662 if (current_subfile == first_subfile)
17663 continue;
17664
17665 if (current_subfile->symtab == NULL)
17666 current_subfile->symtab = allocate_symtab (current_subfile->name,
17667 objfile);
17668 fe->symtab = current_subfile->symtab;
17669 }
17670 }
17671 }
17672
17673 /* Start a subfile for DWARF. FILENAME is the name of the file and
17674 DIRNAME the name of the source directory which contains FILENAME
17675 or NULL if not known. COMP_DIR is the compilation directory for the
17676 linetable's compilation unit or NULL if not known.
17677 This routine tries to keep line numbers from identical absolute and
17678 relative file names in a common subfile.
17679
17680 Using the `list' example from the GDB testsuite, which resides in
17681 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17682 of /srcdir/list0.c yields the following debugging information for list0.c:
17683
17684 DW_AT_name: /srcdir/list0.c
17685 DW_AT_comp_dir: /compdir
17686 files.files[0].name: list0.h
17687 files.files[0].dir: /srcdir
17688 files.files[1].name: list0.c
17689 files.files[1].dir: /srcdir
17690
17691 The line number information for list0.c has to end up in a single
17692 subfile, so that `break /srcdir/list0.c:1' works as expected.
17693 start_subfile will ensure that this happens provided that we pass the
17694 concatenation of files.files[1].dir and files.files[1].name as the
17695 subfile's name. */
17696
17697 static void
17698 dwarf2_start_subfile (const char *filename, const char *dirname,
17699 const char *comp_dir)
17700 {
17701 char *copy = NULL;
17702
17703 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17704 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17705 second argument to start_subfile. To be consistent, we do the
17706 same here. In order not to lose the line information directory,
17707 we concatenate it to the filename when it makes sense.
17708 Note that the Dwarf3 standard says (speaking of filenames in line
17709 information): ``The directory index is ignored for file names
17710 that represent full path names''. Thus ignoring dirname in the
17711 `else' branch below isn't an issue. */
17712
17713 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17714 {
17715 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17716 filename = copy;
17717 }
17718
17719 start_subfile (filename, comp_dir);
17720
17721 if (copy != NULL)
17722 xfree (copy);
17723 }
17724
17725 /* Start a symtab for DWARF.
17726 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17727
17728 static void
17729 dwarf2_start_symtab (struct dwarf2_cu *cu,
17730 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17731 {
17732 start_symtab (name, comp_dir, low_pc);
17733 record_debugformat ("DWARF 2");
17734 record_producer (cu->producer);
17735
17736 /* We assume that we're processing GCC output. */
17737 processing_gcc_compilation = 2;
17738
17739 cu->processing_has_namespace_info = 0;
17740 }
17741
17742 static void
17743 var_decode_location (struct attribute *attr, struct symbol *sym,
17744 struct dwarf2_cu *cu)
17745 {
17746 struct objfile *objfile = cu->objfile;
17747 struct comp_unit_head *cu_header = &cu->header;
17748
17749 /* NOTE drow/2003-01-30: There used to be a comment and some special
17750 code here to turn a symbol with DW_AT_external and a
17751 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17752 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17753 with some versions of binutils) where shared libraries could have
17754 relocations against symbols in their debug information - the
17755 minimal symbol would have the right address, but the debug info
17756 would not. It's no longer necessary, because we will explicitly
17757 apply relocations when we read in the debug information now. */
17758
17759 /* A DW_AT_location attribute with no contents indicates that a
17760 variable has been optimized away. */
17761 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17762 {
17763 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17764 return;
17765 }
17766
17767 /* Handle one degenerate form of location expression specially, to
17768 preserve GDB's previous behavior when section offsets are
17769 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17770 then mark this symbol as LOC_STATIC. */
17771
17772 if (attr_form_is_block (attr)
17773 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17774 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17775 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17776 && (DW_BLOCK (attr)->size
17777 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17778 {
17779 unsigned int dummy;
17780
17781 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17782 SYMBOL_VALUE_ADDRESS (sym) =
17783 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17784 else
17785 SYMBOL_VALUE_ADDRESS (sym) =
17786 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17787 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17788 fixup_symbol_section (sym, objfile);
17789 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17790 SYMBOL_SECTION (sym));
17791 return;
17792 }
17793
17794 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17795 expression evaluator, and use LOC_COMPUTED only when necessary
17796 (i.e. when the value of a register or memory location is
17797 referenced, or a thread-local block, etc.). Then again, it might
17798 not be worthwhile. I'm assuming that it isn't unless performance
17799 or memory numbers show me otherwise. */
17800
17801 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17802
17803 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17804 cu->has_loclist = 1;
17805 }
17806
17807 /* Given a pointer to a DWARF information entry, figure out if we need
17808 to make a symbol table entry for it, and if so, create a new entry
17809 and return a pointer to it.
17810 If TYPE is NULL, determine symbol type from the die, otherwise
17811 used the passed type.
17812 If SPACE is not NULL, use it to hold the new symbol. If it is
17813 NULL, allocate a new symbol on the objfile's obstack. */
17814
17815 static struct symbol *
17816 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17817 struct symbol *space)
17818 {
17819 struct objfile *objfile = cu->objfile;
17820 struct symbol *sym = NULL;
17821 const char *name;
17822 struct attribute *attr = NULL;
17823 struct attribute *attr2 = NULL;
17824 CORE_ADDR baseaddr;
17825 struct pending **list_to_add = NULL;
17826
17827 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17828
17829 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17830
17831 name = dwarf2_name (die, cu);
17832 if (name)
17833 {
17834 const char *linkagename;
17835 int suppress_add = 0;
17836
17837 if (space)
17838 sym = space;
17839 else
17840 sym = allocate_symbol (objfile);
17841 OBJSTAT (objfile, n_syms++);
17842
17843 /* Cache this symbol's name and the name's demangled form (if any). */
17844 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17845 linkagename = dwarf2_physname (name, die, cu);
17846 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17847
17848 /* Fortran does not have mangling standard and the mangling does differ
17849 between gfortran, iFort etc. */
17850 if (cu->language == language_fortran
17851 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17852 symbol_set_demangled_name (&(sym->ginfo),
17853 dwarf2_full_name (name, die, cu),
17854 NULL);
17855
17856 /* Default assumptions.
17857 Use the passed type or decode it from the die. */
17858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17859 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17860 if (type != NULL)
17861 SYMBOL_TYPE (sym) = type;
17862 else
17863 SYMBOL_TYPE (sym) = die_type (die, cu);
17864 attr = dwarf2_attr (die,
17865 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17866 cu);
17867 if (attr)
17868 {
17869 SYMBOL_LINE (sym) = DW_UNSND (attr);
17870 }
17871
17872 attr = dwarf2_attr (die,
17873 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17874 cu);
17875 if (attr)
17876 {
17877 int file_index = DW_UNSND (attr);
17878
17879 if (cu->line_header == NULL
17880 || file_index > cu->line_header->num_file_names)
17881 complaint (&symfile_complaints,
17882 _("file index out of range"));
17883 else if (file_index > 0)
17884 {
17885 struct file_entry *fe;
17886
17887 fe = &cu->line_header->file_names[file_index - 1];
17888 SYMBOL_SYMTAB (sym) = fe->symtab;
17889 }
17890 }
17891
17892 switch (die->tag)
17893 {
17894 case DW_TAG_label:
17895 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17896 if (attr)
17897 SYMBOL_VALUE_ADDRESS (sym)
17898 = attr_value_as_address (attr) + baseaddr;
17899 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17900 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17901 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17902 add_symbol_to_list (sym, cu->list_in_scope);
17903 break;
17904 case DW_TAG_subprogram:
17905 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17906 finish_block. */
17907 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17908 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17909 if ((attr2 && (DW_UNSND (attr2) != 0))
17910 || cu->language == language_ada)
17911 {
17912 /* Subprograms marked external are stored as a global symbol.
17913 Ada subprograms, whether marked external or not, are always
17914 stored as a global symbol, because we want to be able to
17915 access them globally. For instance, we want to be able
17916 to break on a nested subprogram without having to
17917 specify the context. */
17918 list_to_add = &global_symbols;
17919 }
17920 else
17921 {
17922 list_to_add = cu->list_in_scope;
17923 }
17924 break;
17925 case DW_TAG_inlined_subroutine:
17926 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17927 finish_block. */
17928 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17929 SYMBOL_INLINED (sym) = 1;
17930 list_to_add = cu->list_in_scope;
17931 break;
17932 case DW_TAG_template_value_param:
17933 suppress_add = 1;
17934 /* Fall through. */
17935 case DW_TAG_constant:
17936 case DW_TAG_variable:
17937 case DW_TAG_member:
17938 /* Compilation with minimal debug info may result in
17939 variables with missing type entries. Change the
17940 misleading `void' type to something sensible. */
17941 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17942 SYMBOL_TYPE (sym)
17943 = objfile_type (objfile)->nodebug_data_symbol;
17944
17945 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17946 /* In the case of DW_TAG_member, we should only be called for
17947 static const members. */
17948 if (die->tag == DW_TAG_member)
17949 {
17950 /* dwarf2_add_field uses die_is_declaration,
17951 so we do the same. */
17952 gdb_assert (die_is_declaration (die, cu));
17953 gdb_assert (attr);
17954 }
17955 if (attr)
17956 {
17957 dwarf2_const_value (attr, sym, cu);
17958 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17959 if (!suppress_add)
17960 {
17961 if (attr2 && (DW_UNSND (attr2) != 0))
17962 list_to_add = &global_symbols;
17963 else
17964 list_to_add = cu->list_in_scope;
17965 }
17966 break;
17967 }
17968 attr = dwarf2_attr (die, DW_AT_location, cu);
17969 if (attr)
17970 {
17971 var_decode_location (attr, sym, cu);
17972 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17973
17974 /* Fortran explicitly imports any global symbols to the local
17975 scope by DW_TAG_common_block. */
17976 if (cu->language == language_fortran && die->parent
17977 && die->parent->tag == DW_TAG_common_block)
17978 attr2 = NULL;
17979
17980 if (SYMBOL_CLASS (sym) == LOC_STATIC
17981 && SYMBOL_VALUE_ADDRESS (sym) == 0
17982 && !dwarf2_per_objfile->has_section_at_zero)
17983 {
17984 /* When a static variable is eliminated by the linker,
17985 the corresponding debug information is not stripped
17986 out, but the variable address is set to null;
17987 do not add such variables into symbol table. */
17988 }
17989 else if (attr2 && (DW_UNSND (attr2) != 0))
17990 {
17991 /* Workaround gfortran PR debug/40040 - it uses
17992 DW_AT_location for variables in -fPIC libraries which may
17993 get overriden by other libraries/executable and get
17994 a different address. Resolve it by the minimal symbol
17995 which may come from inferior's executable using copy
17996 relocation. Make this workaround only for gfortran as for
17997 other compilers GDB cannot guess the minimal symbol
17998 Fortran mangling kind. */
17999 if (cu->language == language_fortran && die->parent
18000 && die->parent->tag == DW_TAG_module
18001 && cu->producer
18002 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
18003 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18004
18005 /* A variable with DW_AT_external is never static,
18006 but it may be block-scoped. */
18007 list_to_add = (cu->list_in_scope == &file_symbols
18008 ? &global_symbols : cu->list_in_scope);
18009 }
18010 else
18011 list_to_add = cu->list_in_scope;
18012 }
18013 else
18014 {
18015 /* We do not know the address of this symbol.
18016 If it is an external symbol and we have type information
18017 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18018 The address of the variable will then be determined from
18019 the minimal symbol table whenever the variable is
18020 referenced. */
18021 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18022
18023 /* Fortran explicitly imports any global symbols to the local
18024 scope by DW_TAG_common_block. */
18025 if (cu->language == language_fortran && die->parent
18026 && die->parent->tag == DW_TAG_common_block)
18027 {
18028 /* SYMBOL_CLASS doesn't matter here because
18029 read_common_block is going to reset it. */
18030 if (!suppress_add)
18031 list_to_add = cu->list_in_scope;
18032 }
18033 else if (attr2 && (DW_UNSND (attr2) != 0)
18034 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18035 {
18036 /* A variable with DW_AT_external is never static, but it
18037 may be block-scoped. */
18038 list_to_add = (cu->list_in_scope == &file_symbols
18039 ? &global_symbols : cu->list_in_scope);
18040
18041 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18042 }
18043 else if (!die_is_declaration (die, cu))
18044 {
18045 /* Use the default LOC_OPTIMIZED_OUT class. */
18046 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18047 if (!suppress_add)
18048 list_to_add = cu->list_in_scope;
18049 }
18050 }
18051 break;
18052 case DW_TAG_formal_parameter:
18053 /* If we are inside a function, mark this as an argument. If
18054 not, we might be looking at an argument to an inlined function
18055 when we do not have enough information to show inlined frames;
18056 pretend it's a local variable in that case so that the user can
18057 still see it. */
18058 if (context_stack_depth > 0
18059 && context_stack[context_stack_depth - 1].name != NULL)
18060 SYMBOL_IS_ARGUMENT (sym) = 1;
18061 attr = dwarf2_attr (die, DW_AT_location, cu);
18062 if (attr)
18063 {
18064 var_decode_location (attr, sym, cu);
18065 }
18066 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18067 if (attr)
18068 {
18069 dwarf2_const_value (attr, sym, cu);
18070 }
18071
18072 list_to_add = cu->list_in_scope;
18073 break;
18074 case DW_TAG_unspecified_parameters:
18075 /* From varargs functions; gdb doesn't seem to have any
18076 interest in this information, so just ignore it for now.
18077 (FIXME?) */
18078 break;
18079 case DW_TAG_template_type_param:
18080 suppress_add = 1;
18081 /* Fall through. */
18082 case DW_TAG_class_type:
18083 case DW_TAG_interface_type:
18084 case DW_TAG_structure_type:
18085 case DW_TAG_union_type:
18086 case DW_TAG_set_type:
18087 case DW_TAG_enumeration_type:
18088 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18089 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18090
18091 {
18092 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18093 really ever be static objects: otherwise, if you try
18094 to, say, break of a class's method and you're in a file
18095 which doesn't mention that class, it won't work unless
18096 the check for all static symbols in lookup_symbol_aux
18097 saves you. See the OtherFileClass tests in
18098 gdb.c++/namespace.exp. */
18099
18100 if (!suppress_add)
18101 {
18102 list_to_add = (cu->list_in_scope == &file_symbols
18103 && (cu->language == language_cplus
18104 || cu->language == language_java)
18105 ? &global_symbols : cu->list_in_scope);
18106
18107 /* The semantics of C++ state that "struct foo {
18108 ... }" also defines a typedef for "foo". A Java
18109 class declaration also defines a typedef for the
18110 class. */
18111 if (cu->language == language_cplus
18112 || cu->language == language_java
18113 || cu->language == language_ada)
18114 {
18115 /* The symbol's name is already allocated along
18116 with this objfile, so we don't need to
18117 duplicate it for the type. */
18118 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18119 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18120 }
18121 }
18122 }
18123 break;
18124 case DW_TAG_typedef:
18125 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18126 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18127 list_to_add = cu->list_in_scope;
18128 break;
18129 case DW_TAG_base_type:
18130 case DW_TAG_subrange_type:
18131 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18132 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18133 list_to_add = cu->list_in_scope;
18134 break;
18135 case DW_TAG_enumerator:
18136 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18137 if (attr)
18138 {
18139 dwarf2_const_value (attr, sym, cu);
18140 }
18141 {
18142 /* NOTE: carlton/2003-11-10: See comment above in the
18143 DW_TAG_class_type, etc. block. */
18144
18145 list_to_add = (cu->list_in_scope == &file_symbols
18146 && (cu->language == language_cplus
18147 || cu->language == language_java)
18148 ? &global_symbols : cu->list_in_scope);
18149 }
18150 break;
18151 case DW_TAG_imported_declaration:
18152 case DW_TAG_namespace:
18153 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18154 list_to_add = &global_symbols;
18155 break;
18156 case DW_TAG_module:
18157 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18158 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18159 list_to_add = &global_symbols;
18160 break;
18161 case DW_TAG_common_block:
18162 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18163 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18164 add_symbol_to_list (sym, cu->list_in_scope);
18165 break;
18166 default:
18167 /* Not a tag we recognize. Hopefully we aren't processing
18168 trash data, but since we must specifically ignore things
18169 we don't recognize, there is nothing else we should do at
18170 this point. */
18171 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18172 dwarf_tag_name (die->tag));
18173 break;
18174 }
18175
18176 if (suppress_add)
18177 {
18178 sym->hash_next = objfile->template_symbols;
18179 objfile->template_symbols = sym;
18180 list_to_add = NULL;
18181 }
18182
18183 if (list_to_add != NULL)
18184 add_symbol_to_list (sym, list_to_add);
18185
18186 /* For the benefit of old versions of GCC, check for anonymous
18187 namespaces based on the demangled name. */
18188 if (!cu->processing_has_namespace_info
18189 && cu->language == language_cplus)
18190 cp_scan_for_anonymous_namespaces (sym, objfile);
18191 }
18192 return (sym);
18193 }
18194
18195 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18196
18197 static struct symbol *
18198 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18199 {
18200 return new_symbol_full (die, type, cu, NULL);
18201 }
18202
18203 /* Given an attr with a DW_FORM_dataN value in host byte order,
18204 zero-extend it as appropriate for the symbol's type. The DWARF
18205 standard (v4) is not entirely clear about the meaning of using
18206 DW_FORM_dataN for a constant with a signed type, where the type is
18207 wider than the data. The conclusion of a discussion on the DWARF
18208 list was that this is unspecified. We choose to always zero-extend
18209 because that is the interpretation long in use by GCC. */
18210
18211 static gdb_byte *
18212 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18213 struct dwarf2_cu *cu, LONGEST *value, int bits)
18214 {
18215 struct objfile *objfile = cu->objfile;
18216 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18217 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18218 LONGEST l = DW_UNSND (attr);
18219
18220 if (bits < sizeof (*value) * 8)
18221 {
18222 l &= ((LONGEST) 1 << bits) - 1;
18223 *value = l;
18224 }
18225 else if (bits == sizeof (*value) * 8)
18226 *value = l;
18227 else
18228 {
18229 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18230 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18231 return bytes;
18232 }
18233
18234 return NULL;
18235 }
18236
18237 /* Read a constant value from an attribute. Either set *VALUE, or if
18238 the value does not fit in *VALUE, set *BYTES - either already
18239 allocated on the objfile obstack, or newly allocated on OBSTACK,
18240 or, set *BATON, if we translated the constant to a location
18241 expression. */
18242
18243 static void
18244 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18245 const char *name, struct obstack *obstack,
18246 struct dwarf2_cu *cu,
18247 LONGEST *value, const gdb_byte **bytes,
18248 struct dwarf2_locexpr_baton **baton)
18249 {
18250 struct objfile *objfile = cu->objfile;
18251 struct comp_unit_head *cu_header = &cu->header;
18252 struct dwarf_block *blk;
18253 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18254 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18255
18256 *value = 0;
18257 *bytes = NULL;
18258 *baton = NULL;
18259
18260 switch (attr->form)
18261 {
18262 case DW_FORM_addr:
18263 case DW_FORM_GNU_addr_index:
18264 {
18265 gdb_byte *data;
18266
18267 if (TYPE_LENGTH (type) != cu_header->addr_size)
18268 dwarf2_const_value_length_mismatch_complaint (name,
18269 cu_header->addr_size,
18270 TYPE_LENGTH (type));
18271 /* Symbols of this form are reasonably rare, so we just
18272 piggyback on the existing location code rather than writing
18273 a new implementation of symbol_computed_ops. */
18274 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18275 (*baton)->per_cu = cu->per_cu;
18276 gdb_assert ((*baton)->per_cu);
18277
18278 (*baton)->size = 2 + cu_header->addr_size;
18279 data = obstack_alloc (obstack, (*baton)->size);
18280 (*baton)->data = data;
18281
18282 data[0] = DW_OP_addr;
18283 store_unsigned_integer (&data[1], cu_header->addr_size,
18284 byte_order, DW_ADDR (attr));
18285 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18286 }
18287 break;
18288 case DW_FORM_string:
18289 case DW_FORM_strp:
18290 case DW_FORM_GNU_str_index:
18291 case DW_FORM_GNU_strp_alt:
18292 /* DW_STRING is already allocated on the objfile obstack, point
18293 directly to it. */
18294 *bytes = (const gdb_byte *) DW_STRING (attr);
18295 break;
18296 case DW_FORM_block1:
18297 case DW_FORM_block2:
18298 case DW_FORM_block4:
18299 case DW_FORM_block:
18300 case DW_FORM_exprloc:
18301 blk = DW_BLOCK (attr);
18302 if (TYPE_LENGTH (type) != blk->size)
18303 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18304 TYPE_LENGTH (type));
18305 *bytes = blk->data;
18306 break;
18307
18308 /* The DW_AT_const_value attributes are supposed to carry the
18309 symbol's value "represented as it would be on the target
18310 architecture." By the time we get here, it's already been
18311 converted to host endianness, so we just need to sign- or
18312 zero-extend it as appropriate. */
18313 case DW_FORM_data1:
18314 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18315 break;
18316 case DW_FORM_data2:
18317 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18318 break;
18319 case DW_FORM_data4:
18320 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18321 break;
18322 case DW_FORM_data8:
18323 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18324 break;
18325
18326 case DW_FORM_sdata:
18327 *value = DW_SND (attr);
18328 break;
18329
18330 case DW_FORM_udata:
18331 *value = DW_UNSND (attr);
18332 break;
18333
18334 default:
18335 complaint (&symfile_complaints,
18336 _("unsupported const value attribute form: '%s'"),
18337 dwarf_form_name (attr->form));
18338 *value = 0;
18339 break;
18340 }
18341 }
18342
18343
18344 /* Copy constant value from an attribute to a symbol. */
18345
18346 static void
18347 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18348 struct dwarf2_cu *cu)
18349 {
18350 struct objfile *objfile = cu->objfile;
18351 struct comp_unit_head *cu_header = &cu->header;
18352 LONGEST value;
18353 const gdb_byte *bytes;
18354 struct dwarf2_locexpr_baton *baton;
18355
18356 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18357 SYMBOL_PRINT_NAME (sym),
18358 &objfile->objfile_obstack, cu,
18359 &value, &bytes, &baton);
18360
18361 if (baton != NULL)
18362 {
18363 SYMBOL_LOCATION_BATON (sym) = baton;
18364 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18365 }
18366 else if (bytes != NULL)
18367 {
18368 SYMBOL_VALUE_BYTES (sym) = bytes;
18369 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18370 }
18371 else
18372 {
18373 SYMBOL_VALUE (sym) = value;
18374 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18375 }
18376 }
18377
18378 /* Return the type of the die in question using its DW_AT_type attribute. */
18379
18380 static struct type *
18381 die_type (struct die_info *die, struct dwarf2_cu *cu)
18382 {
18383 struct attribute *type_attr;
18384
18385 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18386 if (!type_attr)
18387 {
18388 /* A missing DW_AT_type represents a void type. */
18389 return objfile_type (cu->objfile)->builtin_void;
18390 }
18391
18392 return lookup_die_type (die, type_attr, cu);
18393 }
18394
18395 /* True iff CU's producer generates GNAT Ada auxiliary information
18396 that allows to find parallel types through that information instead
18397 of having to do expensive parallel lookups by type name. */
18398
18399 static int
18400 need_gnat_info (struct dwarf2_cu *cu)
18401 {
18402 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18403 of GNAT produces this auxiliary information, without any indication
18404 that it is produced. Part of enhancing the FSF version of GNAT
18405 to produce that information will be to put in place an indicator
18406 that we can use in order to determine whether the descriptive type
18407 info is available or not. One suggestion that has been made is
18408 to use a new attribute, attached to the CU die. For now, assume
18409 that the descriptive type info is not available. */
18410 return 0;
18411 }
18412
18413 /* Return the auxiliary type of the die in question using its
18414 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18415 attribute is not present. */
18416
18417 static struct type *
18418 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18419 {
18420 struct attribute *type_attr;
18421
18422 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18423 if (!type_attr)
18424 return NULL;
18425
18426 return lookup_die_type (die, type_attr, cu);
18427 }
18428
18429 /* If DIE has a descriptive_type attribute, then set the TYPE's
18430 descriptive type accordingly. */
18431
18432 static void
18433 set_descriptive_type (struct type *type, struct die_info *die,
18434 struct dwarf2_cu *cu)
18435 {
18436 struct type *descriptive_type = die_descriptive_type (die, cu);
18437
18438 if (descriptive_type)
18439 {
18440 ALLOCATE_GNAT_AUX_TYPE (type);
18441 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18442 }
18443 }
18444
18445 /* Return the containing type of the die in question using its
18446 DW_AT_containing_type attribute. */
18447
18448 static struct type *
18449 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18450 {
18451 struct attribute *type_attr;
18452
18453 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18454 if (!type_attr)
18455 error (_("Dwarf Error: Problem turning containing type into gdb type "
18456 "[in module %s]"), objfile_name (cu->objfile));
18457
18458 return lookup_die_type (die, type_attr, cu);
18459 }
18460
18461 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18462
18463 static struct type *
18464 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18465 {
18466 struct objfile *objfile = dwarf2_per_objfile->objfile;
18467 char *message, *saved;
18468
18469 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18470 objfile_name (objfile),
18471 cu->header.offset.sect_off,
18472 die->offset.sect_off);
18473 saved = obstack_copy0 (&objfile->objfile_obstack,
18474 message, strlen (message));
18475 xfree (message);
18476
18477 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18478 }
18479
18480 /* Look up the type of DIE in CU using its type attribute ATTR.
18481 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18482 DW_AT_containing_type.
18483 If there is no type substitute an error marker. */
18484
18485 static struct type *
18486 lookup_die_type (struct die_info *die, const struct attribute *attr,
18487 struct dwarf2_cu *cu)
18488 {
18489 struct objfile *objfile = cu->objfile;
18490 struct type *this_type;
18491
18492 gdb_assert (attr->name == DW_AT_type
18493 || attr->name == DW_AT_GNAT_descriptive_type
18494 || attr->name == DW_AT_containing_type);
18495
18496 /* First see if we have it cached. */
18497
18498 if (attr->form == DW_FORM_GNU_ref_alt)
18499 {
18500 struct dwarf2_per_cu_data *per_cu;
18501 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18502
18503 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18504 this_type = get_die_type_at_offset (offset, per_cu);
18505 }
18506 else if (attr_form_is_ref (attr))
18507 {
18508 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18509
18510 this_type = get_die_type_at_offset (offset, cu->per_cu);
18511 }
18512 else if (attr->form == DW_FORM_ref_sig8)
18513 {
18514 ULONGEST signature = DW_SIGNATURE (attr);
18515
18516 return get_signatured_type (die, signature, cu);
18517 }
18518 else
18519 {
18520 complaint (&symfile_complaints,
18521 _("Dwarf Error: Bad type attribute %s in DIE"
18522 " at 0x%x [in module %s]"),
18523 dwarf_attr_name (attr->name), die->offset.sect_off,
18524 objfile_name (objfile));
18525 return build_error_marker_type (cu, die);
18526 }
18527
18528 /* If not cached we need to read it in. */
18529
18530 if (this_type == NULL)
18531 {
18532 struct die_info *type_die = NULL;
18533 struct dwarf2_cu *type_cu = cu;
18534
18535 if (attr_form_is_ref (attr))
18536 type_die = follow_die_ref (die, attr, &type_cu);
18537 if (type_die == NULL)
18538 return build_error_marker_type (cu, die);
18539 /* If we find the type now, it's probably because the type came
18540 from an inter-CU reference and the type's CU got expanded before
18541 ours. */
18542 this_type = read_type_die (type_die, type_cu);
18543 }
18544
18545 /* If we still don't have a type use an error marker. */
18546
18547 if (this_type == NULL)
18548 return build_error_marker_type (cu, die);
18549
18550 return this_type;
18551 }
18552
18553 /* Return the type in DIE, CU.
18554 Returns NULL for invalid types.
18555
18556 This first does a lookup in die_type_hash,
18557 and only reads the die in if necessary.
18558
18559 NOTE: This can be called when reading in partial or full symbols. */
18560
18561 static struct type *
18562 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18563 {
18564 struct type *this_type;
18565
18566 this_type = get_die_type (die, cu);
18567 if (this_type)
18568 return this_type;
18569
18570 return read_type_die_1 (die, cu);
18571 }
18572
18573 /* Read the type in DIE, CU.
18574 Returns NULL for invalid types. */
18575
18576 static struct type *
18577 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18578 {
18579 struct type *this_type = NULL;
18580
18581 switch (die->tag)
18582 {
18583 case DW_TAG_class_type:
18584 case DW_TAG_interface_type:
18585 case DW_TAG_structure_type:
18586 case DW_TAG_union_type:
18587 this_type = read_structure_type (die, cu);
18588 break;
18589 case DW_TAG_enumeration_type:
18590 this_type = read_enumeration_type (die, cu);
18591 break;
18592 case DW_TAG_subprogram:
18593 case DW_TAG_subroutine_type:
18594 case DW_TAG_inlined_subroutine:
18595 this_type = read_subroutine_type (die, cu);
18596 break;
18597 case DW_TAG_array_type:
18598 this_type = read_array_type (die, cu);
18599 break;
18600 case DW_TAG_set_type:
18601 this_type = read_set_type (die, cu);
18602 break;
18603 case DW_TAG_pointer_type:
18604 this_type = read_tag_pointer_type (die, cu);
18605 break;
18606 case DW_TAG_ptr_to_member_type:
18607 this_type = read_tag_ptr_to_member_type (die, cu);
18608 break;
18609 case DW_TAG_reference_type:
18610 this_type = read_tag_reference_type (die, cu);
18611 break;
18612 case DW_TAG_const_type:
18613 this_type = read_tag_const_type (die, cu);
18614 break;
18615 case DW_TAG_volatile_type:
18616 this_type = read_tag_volatile_type (die, cu);
18617 break;
18618 case DW_TAG_restrict_type:
18619 this_type = read_tag_restrict_type (die, cu);
18620 break;
18621 case DW_TAG_string_type:
18622 this_type = read_tag_string_type (die, cu);
18623 break;
18624 case DW_TAG_typedef:
18625 this_type = read_typedef (die, cu);
18626 break;
18627 case DW_TAG_subrange_type:
18628 this_type = read_subrange_type (die, cu);
18629 break;
18630 case DW_TAG_base_type:
18631 this_type = read_base_type (die, cu);
18632 break;
18633 case DW_TAG_unspecified_type:
18634 this_type = read_unspecified_type (die, cu);
18635 break;
18636 case DW_TAG_namespace:
18637 this_type = read_namespace_type (die, cu);
18638 break;
18639 case DW_TAG_module:
18640 this_type = read_module_type (die, cu);
18641 break;
18642 default:
18643 complaint (&symfile_complaints,
18644 _("unexpected tag in read_type_die: '%s'"),
18645 dwarf_tag_name (die->tag));
18646 break;
18647 }
18648
18649 return this_type;
18650 }
18651
18652 /* See if we can figure out if the class lives in a namespace. We do
18653 this by looking for a member function; its demangled name will
18654 contain namespace info, if there is any.
18655 Return the computed name or NULL.
18656 Space for the result is allocated on the objfile's obstack.
18657 This is the full-die version of guess_partial_die_structure_name.
18658 In this case we know DIE has no useful parent. */
18659
18660 static char *
18661 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18662 {
18663 struct die_info *spec_die;
18664 struct dwarf2_cu *spec_cu;
18665 struct die_info *child;
18666
18667 spec_cu = cu;
18668 spec_die = die_specification (die, &spec_cu);
18669 if (spec_die != NULL)
18670 {
18671 die = spec_die;
18672 cu = spec_cu;
18673 }
18674
18675 for (child = die->child;
18676 child != NULL;
18677 child = child->sibling)
18678 {
18679 if (child->tag == DW_TAG_subprogram)
18680 {
18681 struct attribute *attr;
18682
18683 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18684 if (attr == NULL)
18685 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18686 if (attr != NULL)
18687 {
18688 char *actual_name
18689 = language_class_name_from_physname (cu->language_defn,
18690 DW_STRING (attr));
18691 char *name = NULL;
18692
18693 if (actual_name != NULL)
18694 {
18695 const char *die_name = dwarf2_name (die, cu);
18696
18697 if (die_name != NULL
18698 && strcmp (die_name, actual_name) != 0)
18699 {
18700 /* Strip off the class name from the full name.
18701 We want the prefix. */
18702 int die_name_len = strlen (die_name);
18703 int actual_name_len = strlen (actual_name);
18704
18705 /* Test for '::' as a sanity check. */
18706 if (actual_name_len > die_name_len + 2
18707 && actual_name[actual_name_len
18708 - die_name_len - 1] == ':')
18709 name =
18710 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18711 actual_name,
18712 actual_name_len - die_name_len - 2);
18713 }
18714 }
18715 xfree (actual_name);
18716 return name;
18717 }
18718 }
18719 }
18720
18721 return NULL;
18722 }
18723
18724 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18725 prefix part in such case. See
18726 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18727
18728 static char *
18729 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18730 {
18731 struct attribute *attr;
18732 char *base;
18733
18734 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18735 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18736 return NULL;
18737
18738 attr = dwarf2_attr (die, DW_AT_name, cu);
18739 if (attr != NULL && DW_STRING (attr) != NULL)
18740 return NULL;
18741
18742 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18743 if (attr == NULL)
18744 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18745 if (attr == NULL || DW_STRING (attr) == NULL)
18746 return NULL;
18747
18748 /* dwarf2_name had to be already called. */
18749 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18750
18751 /* Strip the base name, keep any leading namespaces/classes. */
18752 base = strrchr (DW_STRING (attr), ':');
18753 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18754 return "";
18755
18756 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18757 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18758 }
18759
18760 /* Return the name of the namespace/class that DIE is defined within,
18761 or "" if we can't tell. The caller should not xfree the result.
18762
18763 For example, if we're within the method foo() in the following
18764 code:
18765
18766 namespace N {
18767 class C {
18768 void foo () {
18769 }
18770 };
18771 }
18772
18773 then determine_prefix on foo's die will return "N::C". */
18774
18775 static const char *
18776 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18777 {
18778 struct die_info *parent, *spec_die;
18779 struct dwarf2_cu *spec_cu;
18780 struct type *parent_type;
18781 char *retval;
18782
18783 if (cu->language != language_cplus && cu->language != language_java
18784 && cu->language != language_fortran)
18785 return "";
18786
18787 retval = anonymous_struct_prefix (die, cu);
18788 if (retval)
18789 return retval;
18790
18791 /* We have to be careful in the presence of DW_AT_specification.
18792 For example, with GCC 3.4, given the code
18793
18794 namespace N {
18795 void foo() {
18796 // Definition of N::foo.
18797 }
18798 }
18799
18800 then we'll have a tree of DIEs like this:
18801
18802 1: DW_TAG_compile_unit
18803 2: DW_TAG_namespace // N
18804 3: DW_TAG_subprogram // declaration of N::foo
18805 4: DW_TAG_subprogram // definition of N::foo
18806 DW_AT_specification // refers to die #3
18807
18808 Thus, when processing die #4, we have to pretend that we're in
18809 the context of its DW_AT_specification, namely the contex of die
18810 #3. */
18811 spec_cu = cu;
18812 spec_die = die_specification (die, &spec_cu);
18813 if (spec_die == NULL)
18814 parent = die->parent;
18815 else
18816 {
18817 parent = spec_die->parent;
18818 cu = spec_cu;
18819 }
18820
18821 if (parent == NULL)
18822 return "";
18823 else if (parent->building_fullname)
18824 {
18825 const char *name;
18826 const char *parent_name;
18827
18828 /* It has been seen on RealView 2.2 built binaries,
18829 DW_TAG_template_type_param types actually _defined_ as
18830 children of the parent class:
18831
18832 enum E {};
18833 template class <class Enum> Class{};
18834 Class<enum E> class_e;
18835
18836 1: DW_TAG_class_type (Class)
18837 2: DW_TAG_enumeration_type (E)
18838 3: DW_TAG_enumerator (enum1:0)
18839 3: DW_TAG_enumerator (enum2:1)
18840 ...
18841 2: DW_TAG_template_type_param
18842 DW_AT_type DW_FORM_ref_udata (E)
18843
18844 Besides being broken debug info, it can put GDB into an
18845 infinite loop. Consider:
18846
18847 When we're building the full name for Class<E>, we'll start
18848 at Class, and go look over its template type parameters,
18849 finding E. We'll then try to build the full name of E, and
18850 reach here. We're now trying to build the full name of E,
18851 and look over the parent DIE for containing scope. In the
18852 broken case, if we followed the parent DIE of E, we'd again
18853 find Class, and once again go look at its template type
18854 arguments, etc., etc. Simply don't consider such parent die
18855 as source-level parent of this die (it can't be, the language
18856 doesn't allow it), and break the loop here. */
18857 name = dwarf2_name (die, cu);
18858 parent_name = dwarf2_name (parent, cu);
18859 complaint (&symfile_complaints,
18860 _("template param type '%s' defined within parent '%s'"),
18861 name ? name : "<unknown>",
18862 parent_name ? parent_name : "<unknown>");
18863 return "";
18864 }
18865 else
18866 switch (parent->tag)
18867 {
18868 case DW_TAG_namespace:
18869 parent_type = read_type_die (parent, cu);
18870 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18871 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18872 Work around this problem here. */
18873 if (cu->language == language_cplus
18874 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18875 return "";
18876 /* We give a name to even anonymous namespaces. */
18877 return TYPE_TAG_NAME (parent_type);
18878 case DW_TAG_class_type:
18879 case DW_TAG_interface_type:
18880 case DW_TAG_structure_type:
18881 case DW_TAG_union_type:
18882 case DW_TAG_module:
18883 parent_type = read_type_die (parent, cu);
18884 if (TYPE_TAG_NAME (parent_type) != NULL)
18885 return TYPE_TAG_NAME (parent_type);
18886 else
18887 /* An anonymous structure is only allowed non-static data
18888 members; no typedefs, no member functions, et cetera.
18889 So it does not need a prefix. */
18890 return "";
18891 case DW_TAG_compile_unit:
18892 case DW_TAG_partial_unit:
18893 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18894 if (cu->language == language_cplus
18895 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18896 && die->child != NULL
18897 && (die->tag == DW_TAG_class_type
18898 || die->tag == DW_TAG_structure_type
18899 || die->tag == DW_TAG_union_type))
18900 {
18901 char *name = guess_full_die_structure_name (die, cu);
18902 if (name != NULL)
18903 return name;
18904 }
18905 return "";
18906 case DW_TAG_enumeration_type:
18907 parent_type = read_type_die (parent, cu);
18908 if (TYPE_DECLARED_CLASS (parent_type))
18909 {
18910 if (TYPE_TAG_NAME (parent_type) != NULL)
18911 return TYPE_TAG_NAME (parent_type);
18912 return "";
18913 }
18914 /* Fall through. */
18915 default:
18916 return determine_prefix (parent, cu);
18917 }
18918 }
18919
18920 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18921 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18922 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18923 an obconcat, otherwise allocate storage for the result. The CU argument is
18924 used to determine the language and hence, the appropriate separator. */
18925
18926 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18927
18928 static char *
18929 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18930 int physname, struct dwarf2_cu *cu)
18931 {
18932 const char *lead = "";
18933 const char *sep;
18934
18935 if (suffix == NULL || suffix[0] == '\0'
18936 || prefix == NULL || prefix[0] == '\0')
18937 sep = "";
18938 else if (cu->language == language_java)
18939 sep = ".";
18940 else if (cu->language == language_fortran && physname)
18941 {
18942 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18943 DW_AT_MIPS_linkage_name is preferred and used instead. */
18944
18945 lead = "__";
18946 sep = "_MOD_";
18947 }
18948 else
18949 sep = "::";
18950
18951 if (prefix == NULL)
18952 prefix = "";
18953 if (suffix == NULL)
18954 suffix = "";
18955
18956 if (obs == NULL)
18957 {
18958 char *retval
18959 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18960
18961 strcpy (retval, lead);
18962 strcat (retval, prefix);
18963 strcat (retval, sep);
18964 strcat (retval, suffix);
18965 return retval;
18966 }
18967 else
18968 {
18969 /* We have an obstack. */
18970 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18971 }
18972 }
18973
18974 /* Return sibling of die, NULL if no sibling. */
18975
18976 static struct die_info *
18977 sibling_die (struct die_info *die)
18978 {
18979 return die->sibling;
18980 }
18981
18982 /* Get name of a die, return NULL if not found. */
18983
18984 static const char *
18985 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18986 struct obstack *obstack)
18987 {
18988 if (name && cu->language == language_cplus)
18989 {
18990 char *canon_name = cp_canonicalize_string (name);
18991
18992 if (canon_name != NULL)
18993 {
18994 if (strcmp (canon_name, name) != 0)
18995 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18996 xfree (canon_name);
18997 }
18998 }
18999
19000 return name;
19001 }
19002
19003 /* Get name of a die, return NULL if not found. */
19004
19005 static const char *
19006 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19007 {
19008 struct attribute *attr;
19009
19010 attr = dwarf2_attr (die, DW_AT_name, cu);
19011 if ((!attr || !DW_STRING (attr))
19012 && die->tag != DW_TAG_class_type
19013 && die->tag != DW_TAG_interface_type
19014 && die->tag != DW_TAG_structure_type
19015 && die->tag != DW_TAG_union_type)
19016 return NULL;
19017
19018 switch (die->tag)
19019 {
19020 case DW_TAG_compile_unit:
19021 case DW_TAG_partial_unit:
19022 /* Compilation units have a DW_AT_name that is a filename, not
19023 a source language identifier. */
19024 case DW_TAG_enumeration_type:
19025 case DW_TAG_enumerator:
19026 /* These tags always have simple identifiers already; no need
19027 to canonicalize them. */
19028 return DW_STRING (attr);
19029
19030 case DW_TAG_subprogram:
19031 /* Java constructors will all be named "<init>", so return
19032 the class name when we see this special case. */
19033 if (cu->language == language_java
19034 && DW_STRING (attr) != NULL
19035 && strcmp (DW_STRING (attr), "<init>") == 0)
19036 {
19037 struct dwarf2_cu *spec_cu = cu;
19038 struct die_info *spec_die;
19039
19040 /* GCJ will output '<init>' for Java constructor names.
19041 For this special case, return the name of the parent class. */
19042
19043 /* GCJ may output subprogram DIEs with AT_specification set.
19044 If so, use the name of the specified DIE. */
19045 spec_die = die_specification (die, &spec_cu);
19046 if (spec_die != NULL)
19047 return dwarf2_name (spec_die, spec_cu);
19048
19049 do
19050 {
19051 die = die->parent;
19052 if (die->tag == DW_TAG_class_type)
19053 return dwarf2_name (die, cu);
19054 }
19055 while (die->tag != DW_TAG_compile_unit
19056 && die->tag != DW_TAG_partial_unit);
19057 }
19058 break;
19059
19060 case DW_TAG_class_type:
19061 case DW_TAG_interface_type:
19062 case DW_TAG_structure_type:
19063 case DW_TAG_union_type:
19064 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19065 structures or unions. These were of the form "._%d" in GCC 4.1,
19066 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19067 and GCC 4.4. We work around this problem by ignoring these. */
19068 if (attr && DW_STRING (attr)
19069 && (strncmp (DW_STRING (attr), "._", 2) == 0
19070 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19071 return NULL;
19072
19073 /* GCC might emit a nameless typedef that has a linkage name. See
19074 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19075 if (!attr || DW_STRING (attr) == NULL)
19076 {
19077 char *demangled = NULL;
19078
19079 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19080 if (attr == NULL)
19081 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19082
19083 if (attr == NULL || DW_STRING (attr) == NULL)
19084 return NULL;
19085
19086 /* Avoid demangling DW_STRING (attr) the second time on a second
19087 call for the same DIE. */
19088 if (!DW_STRING_IS_CANONICAL (attr))
19089 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19090
19091 if (demangled)
19092 {
19093 char *base;
19094
19095 /* FIXME: we already did this for the partial symbol... */
19096 DW_STRING (attr)
19097 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19098 demangled, strlen (demangled));
19099 DW_STRING_IS_CANONICAL (attr) = 1;
19100 xfree (demangled);
19101
19102 /* Strip any leading namespaces/classes, keep only the base name.
19103 DW_AT_name for named DIEs does not contain the prefixes. */
19104 base = strrchr (DW_STRING (attr), ':');
19105 if (base && base > DW_STRING (attr) && base[-1] == ':')
19106 return &base[1];
19107 else
19108 return DW_STRING (attr);
19109 }
19110 }
19111 break;
19112
19113 default:
19114 break;
19115 }
19116
19117 if (!DW_STRING_IS_CANONICAL (attr))
19118 {
19119 DW_STRING (attr)
19120 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19121 &cu->objfile->per_bfd->storage_obstack);
19122 DW_STRING_IS_CANONICAL (attr) = 1;
19123 }
19124 return DW_STRING (attr);
19125 }
19126
19127 /* Return the die that this die in an extension of, or NULL if there
19128 is none. *EXT_CU is the CU containing DIE on input, and the CU
19129 containing the return value on output. */
19130
19131 static struct die_info *
19132 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19133 {
19134 struct attribute *attr;
19135
19136 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19137 if (attr == NULL)
19138 return NULL;
19139
19140 return follow_die_ref (die, attr, ext_cu);
19141 }
19142
19143 /* Convert a DIE tag into its string name. */
19144
19145 static const char *
19146 dwarf_tag_name (unsigned tag)
19147 {
19148 const char *name = get_DW_TAG_name (tag);
19149
19150 if (name == NULL)
19151 return "DW_TAG_<unknown>";
19152
19153 return name;
19154 }
19155
19156 /* Convert a DWARF attribute code into its string name. */
19157
19158 static const char *
19159 dwarf_attr_name (unsigned attr)
19160 {
19161 const char *name;
19162
19163 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19164 if (attr == DW_AT_MIPS_fde)
19165 return "DW_AT_MIPS_fde";
19166 #else
19167 if (attr == DW_AT_HP_block_index)
19168 return "DW_AT_HP_block_index";
19169 #endif
19170
19171 name = get_DW_AT_name (attr);
19172
19173 if (name == NULL)
19174 return "DW_AT_<unknown>";
19175
19176 return name;
19177 }
19178
19179 /* Convert a DWARF value form code into its string name. */
19180
19181 static const char *
19182 dwarf_form_name (unsigned form)
19183 {
19184 const char *name = get_DW_FORM_name (form);
19185
19186 if (name == NULL)
19187 return "DW_FORM_<unknown>";
19188
19189 return name;
19190 }
19191
19192 static char *
19193 dwarf_bool_name (unsigned mybool)
19194 {
19195 if (mybool)
19196 return "TRUE";
19197 else
19198 return "FALSE";
19199 }
19200
19201 /* Convert a DWARF type code into its string name. */
19202
19203 static const char *
19204 dwarf_type_encoding_name (unsigned enc)
19205 {
19206 const char *name = get_DW_ATE_name (enc);
19207
19208 if (name == NULL)
19209 return "DW_ATE_<unknown>";
19210
19211 return name;
19212 }
19213
19214 static void
19215 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19216 {
19217 unsigned int i;
19218
19219 print_spaces (indent, f);
19220 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19221 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19222
19223 if (die->parent != NULL)
19224 {
19225 print_spaces (indent, f);
19226 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19227 die->parent->offset.sect_off);
19228 }
19229
19230 print_spaces (indent, f);
19231 fprintf_unfiltered (f, " has children: %s\n",
19232 dwarf_bool_name (die->child != NULL));
19233
19234 print_spaces (indent, f);
19235 fprintf_unfiltered (f, " attributes:\n");
19236
19237 for (i = 0; i < die->num_attrs; ++i)
19238 {
19239 print_spaces (indent, f);
19240 fprintf_unfiltered (f, " %s (%s) ",
19241 dwarf_attr_name (die->attrs[i].name),
19242 dwarf_form_name (die->attrs[i].form));
19243
19244 switch (die->attrs[i].form)
19245 {
19246 case DW_FORM_addr:
19247 case DW_FORM_GNU_addr_index:
19248 fprintf_unfiltered (f, "address: ");
19249 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19250 break;
19251 case DW_FORM_block2:
19252 case DW_FORM_block4:
19253 case DW_FORM_block:
19254 case DW_FORM_block1:
19255 fprintf_unfiltered (f, "block: size %s",
19256 pulongest (DW_BLOCK (&die->attrs[i])->size));
19257 break;
19258 case DW_FORM_exprloc:
19259 fprintf_unfiltered (f, "expression: size %s",
19260 pulongest (DW_BLOCK (&die->attrs[i])->size));
19261 break;
19262 case DW_FORM_ref_addr:
19263 fprintf_unfiltered (f, "ref address: ");
19264 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19265 break;
19266 case DW_FORM_GNU_ref_alt:
19267 fprintf_unfiltered (f, "alt ref address: ");
19268 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19269 break;
19270 case DW_FORM_ref1:
19271 case DW_FORM_ref2:
19272 case DW_FORM_ref4:
19273 case DW_FORM_ref8:
19274 case DW_FORM_ref_udata:
19275 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19276 (long) (DW_UNSND (&die->attrs[i])));
19277 break;
19278 case DW_FORM_data1:
19279 case DW_FORM_data2:
19280 case DW_FORM_data4:
19281 case DW_FORM_data8:
19282 case DW_FORM_udata:
19283 case DW_FORM_sdata:
19284 fprintf_unfiltered (f, "constant: %s",
19285 pulongest (DW_UNSND (&die->attrs[i])));
19286 break;
19287 case DW_FORM_sec_offset:
19288 fprintf_unfiltered (f, "section offset: %s",
19289 pulongest (DW_UNSND (&die->attrs[i])));
19290 break;
19291 case DW_FORM_ref_sig8:
19292 fprintf_unfiltered (f, "signature: %s",
19293 hex_string (DW_SIGNATURE (&die->attrs[i])));
19294 break;
19295 case DW_FORM_string:
19296 case DW_FORM_strp:
19297 case DW_FORM_GNU_str_index:
19298 case DW_FORM_GNU_strp_alt:
19299 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19300 DW_STRING (&die->attrs[i])
19301 ? DW_STRING (&die->attrs[i]) : "",
19302 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19303 break;
19304 case DW_FORM_flag:
19305 if (DW_UNSND (&die->attrs[i]))
19306 fprintf_unfiltered (f, "flag: TRUE");
19307 else
19308 fprintf_unfiltered (f, "flag: FALSE");
19309 break;
19310 case DW_FORM_flag_present:
19311 fprintf_unfiltered (f, "flag: TRUE");
19312 break;
19313 case DW_FORM_indirect:
19314 /* The reader will have reduced the indirect form to
19315 the "base form" so this form should not occur. */
19316 fprintf_unfiltered (f,
19317 "unexpected attribute form: DW_FORM_indirect");
19318 break;
19319 default:
19320 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19321 die->attrs[i].form);
19322 break;
19323 }
19324 fprintf_unfiltered (f, "\n");
19325 }
19326 }
19327
19328 static void
19329 dump_die_for_error (struct die_info *die)
19330 {
19331 dump_die_shallow (gdb_stderr, 0, die);
19332 }
19333
19334 static void
19335 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19336 {
19337 int indent = level * 4;
19338
19339 gdb_assert (die != NULL);
19340
19341 if (level >= max_level)
19342 return;
19343
19344 dump_die_shallow (f, indent, die);
19345
19346 if (die->child != NULL)
19347 {
19348 print_spaces (indent, f);
19349 fprintf_unfiltered (f, " Children:");
19350 if (level + 1 < max_level)
19351 {
19352 fprintf_unfiltered (f, "\n");
19353 dump_die_1 (f, level + 1, max_level, die->child);
19354 }
19355 else
19356 {
19357 fprintf_unfiltered (f,
19358 " [not printed, max nesting level reached]\n");
19359 }
19360 }
19361
19362 if (die->sibling != NULL && level > 0)
19363 {
19364 dump_die_1 (f, level, max_level, die->sibling);
19365 }
19366 }
19367
19368 /* This is called from the pdie macro in gdbinit.in.
19369 It's not static so gcc will keep a copy callable from gdb. */
19370
19371 void
19372 dump_die (struct die_info *die, int max_level)
19373 {
19374 dump_die_1 (gdb_stdlog, 0, max_level, die);
19375 }
19376
19377 static void
19378 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19379 {
19380 void **slot;
19381
19382 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19383 INSERT);
19384
19385 *slot = die;
19386 }
19387
19388 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19389 required kind. */
19390
19391 static sect_offset
19392 dwarf2_get_ref_die_offset (const struct attribute *attr)
19393 {
19394 sect_offset retval = { DW_UNSND (attr) };
19395
19396 if (attr_form_is_ref (attr))
19397 return retval;
19398
19399 retval.sect_off = 0;
19400 complaint (&symfile_complaints,
19401 _("unsupported die ref attribute form: '%s'"),
19402 dwarf_form_name (attr->form));
19403 return retval;
19404 }
19405
19406 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19407 * the value held by the attribute is not constant. */
19408
19409 static LONGEST
19410 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19411 {
19412 if (attr->form == DW_FORM_sdata)
19413 return DW_SND (attr);
19414 else if (attr->form == DW_FORM_udata
19415 || attr->form == DW_FORM_data1
19416 || attr->form == DW_FORM_data2
19417 || attr->form == DW_FORM_data4
19418 || attr->form == DW_FORM_data8)
19419 return DW_UNSND (attr);
19420 else
19421 {
19422 complaint (&symfile_complaints,
19423 _("Attribute value is not a constant (%s)"),
19424 dwarf_form_name (attr->form));
19425 return default_value;
19426 }
19427 }
19428
19429 /* Follow reference or signature attribute ATTR of SRC_DIE.
19430 On entry *REF_CU is the CU of SRC_DIE.
19431 On exit *REF_CU is the CU of the result. */
19432
19433 static struct die_info *
19434 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19435 struct dwarf2_cu **ref_cu)
19436 {
19437 struct die_info *die;
19438
19439 if (attr_form_is_ref (attr))
19440 die = follow_die_ref (src_die, attr, ref_cu);
19441 else if (attr->form == DW_FORM_ref_sig8)
19442 die = follow_die_sig (src_die, attr, ref_cu);
19443 else
19444 {
19445 dump_die_for_error (src_die);
19446 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19447 objfile_name ((*ref_cu)->objfile));
19448 }
19449
19450 return die;
19451 }
19452
19453 /* Follow reference OFFSET.
19454 On entry *REF_CU is the CU of the source die referencing OFFSET.
19455 On exit *REF_CU is the CU of the result.
19456 Returns NULL if OFFSET is invalid. */
19457
19458 static struct die_info *
19459 follow_die_offset (sect_offset offset, int offset_in_dwz,
19460 struct dwarf2_cu **ref_cu)
19461 {
19462 struct die_info temp_die;
19463 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19464
19465 gdb_assert (cu->per_cu != NULL);
19466
19467 target_cu = cu;
19468
19469 if (cu->per_cu->is_debug_types)
19470 {
19471 /* .debug_types CUs cannot reference anything outside their CU.
19472 If they need to, they have to reference a signatured type via
19473 DW_FORM_ref_sig8. */
19474 if (! offset_in_cu_p (&cu->header, offset))
19475 return NULL;
19476 }
19477 else if (offset_in_dwz != cu->per_cu->is_dwz
19478 || ! offset_in_cu_p (&cu->header, offset))
19479 {
19480 struct dwarf2_per_cu_data *per_cu;
19481
19482 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19483 cu->objfile);
19484
19485 /* If necessary, add it to the queue and load its DIEs. */
19486 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19487 load_full_comp_unit (per_cu, cu->language);
19488
19489 target_cu = per_cu->cu;
19490 }
19491 else if (cu->dies == NULL)
19492 {
19493 /* We're loading full DIEs during partial symbol reading. */
19494 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19495 load_full_comp_unit (cu->per_cu, language_minimal);
19496 }
19497
19498 *ref_cu = target_cu;
19499 temp_die.offset = offset;
19500 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19501 }
19502
19503 /* Follow reference attribute ATTR of SRC_DIE.
19504 On entry *REF_CU is the CU of SRC_DIE.
19505 On exit *REF_CU is the CU of the result. */
19506
19507 static struct die_info *
19508 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19509 struct dwarf2_cu **ref_cu)
19510 {
19511 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19512 struct dwarf2_cu *cu = *ref_cu;
19513 struct die_info *die;
19514
19515 die = follow_die_offset (offset,
19516 (attr->form == DW_FORM_GNU_ref_alt
19517 || cu->per_cu->is_dwz),
19518 ref_cu);
19519 if (!die)
19520 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19521 "at 0x%x [in module %s]"),
19522 offset.sect_off, src_die->offset.sect_off,
19523 objfile_name (cu->objfile));
19524
19525 return die;
19526 }
19527
19528 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19529 Returned value is intended for DW_OP_call*. Returned
19530 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19531
19532 struct dwarf2_locexpr_baton
19533 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19534 struct dwarf2_per_cu_data *per_cu,
19535 CORE_ADDR (*get_frame_pc) (void *baton),
19536 void *baton)
19537 {
19538 struct dwarf2_cu *cu;
19539 struct die_info *die;
19540 struct attribute *attr;
19541 struct dwarf2_locexpr_baton retval;
19542
19543 dw2_setup (per_cu->objfile);
19544
19545 if (per_cu->cu == NULL)
19546 load_cu (per_cu);
19547 cu = per_cu->cu;
19548
19549 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19550 if (!die)
19551 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19552 offset.sect_off, objfile_name (per_cu->objfile));
19553
19554 attr = dwarf2_attr (die, DW_AT_location, cu);
19555 if (!attr)
19556 {
19557 /* DWARF: "If there is no such attribute, then there is no effect.".
19558 DATA is ignored if SIZE is 0. */
19559
19560 retval.data = NULL;
19561 retval.size = 0;
19562 }
19563 else if (attr_form_is_section_offset (attr))
19564 {
19565 struct dwarf2_loclist_baton loclist_baton;
19566 CORE_ADDR pc = (*get_frame_pc) (baton);
19567 size_t size;
19568
19569 fill_in_loclist_baton (cu, &loclist_baton, attr);
19570
19571 retval.data = dwarf2_find_location_expression (&loclist_baton,
19572 &size, pc);
19573 retval.size = size;
19574 }
19575 else
19576 {
19577 if (!attr_form_is_block (attr))
19578 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19579 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19580 offset.sect_off, objfile_name (per_cu->objfile));
19581
19582 retval.data = DW_BLOCK (attr)->data;
19583 retval.size = DW_BLOCK (attr)->size;
19584 }
19585 retval.per_cu = cu->per_cu;
19586
19587 age_cached_comp_units ();
19588
19589 return retval;
19590 }
19591
19592 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19593 offset. */
19594
19595 struct dwarf2_locexpr_baton
19596 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19597 struct dwarf2_per_cu_data *per_cu,
19598 CORE_ADDR (*get_frame_pc) (void *baton),
19599 void *baton)
19600 {
19601 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19602
19603 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19604 }
19605
19606 /* Write a constant of a given type as target-ordered bytes into
19607 OBSTACK. */
19608
19609 static const gdb_byte *
19610 write_constant_as_bytes (struct obstack *obstack,
19611 enum bfd_endian byte_order,
19612 struct type *type,
19613 ULONGEST value,
19614 LONGEST *len)
19615 {
19616 gdb_byte *result;
19617
19618 *len = TYPE_LENGTH (type);
19619 result = obstack_alloc (obstack, *len);
19620 store_unsigned_integer (result, *len, byte_order, value);
19621
19622 return result;
19623 }
19624
19625 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19626 pointer to the constant bytes and set LEN to the length of the
19627 data. If memory is needed, allocate it on OBSTACK. If the DIE
19628 does not have a DW_AT_const_value, return NULL. */
19629
19630 const gdb_byte *
19631 dwarf2_fetch_constant_bytes (sect_offset offset,
19632 struct dwarf2_per_cu_data *per_cu,
19633 struct obstack *obstack,
19634 LONGEST *len)
19635 {
19636 struct dwarf2_cu *cu;
19637 struct die_info *die;
19638 struct attribute *attr;
19639 const gdb_byte *result = NULL;
19640 struct type *type;
19641 LONGEST value;
19642 enum bfd_endian byte_order;
19643
19644 dw2_setup (per_cu->objfile);
19645
19646 if (per_cu->cu == NULL)
19647 load_cu (per_cu);
19648 cu = per_cu->cu;
19649
19650 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19651 if (!die)
19652 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19653 offset.sect_off, objfile_name (per_cu->objfile));
19654
19655
19656 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19657 if (attr == NULL)
19658 return NULL;
19659
19660 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19661 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19662
19663 switch (attr->form)
19664 {
19665 case DW_FORM_addr:
19666 case DW_FORM_GNU_addr_index:
19667 {
19668 gdb_byte *tem;
19669
19670 *len = cu->header.addr_size;
19671 tem = obstack_alloc (obstack, *len);
19672 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19673 result = tem;
19674 }
19675 break;
19676 case DW_FORM_string:
19677 case DW_FORM_strp:
19678 case DW_FORM_GNU_str_index:
19679 case DW_FORM_GNU_strp_alt:
19680 /* DW_STRING is already allocated on the objfile obstack, point
19681 directly to it. */
19682 result = (const gdb_byte *) DW_STRING (attr);
19683 *len = strlen (DW_STRING (attr));
19684 break;
19685 case DW_FORM_block1:
19686 case DW_FORM_block2:
19687 case DW_FORM_block4:
19688 case DW_FORM_block:
19689 case DW_FORM_exprloc:
19690 result = DW_BLOCK (attr)->data;
19691 *len = DW_BLOCK (attr)->size;
19692 break;
19693
19694 /* The DW_AT_const_value attributes are supposed to carry the
19695 symbol's value "represented as it would be on the target
19696 architecture." By the time we get here, it's already been
19697 converted to host endianness, so we just need to sign- or
19698 zero-extend it as appropriate. */
19699 case DW_FORM_data1:
19700 type = die_type (die, cu);
19701 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19702 if (result == NULL)
19703 result = write_constant_as_bytes (obstack, byte_order,
19704 type, value, len);
19705 break;
19706 case DW_FORM_data2:
19707 type = die_type (die, cu);
19708 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19709 if (result == NULL)
19710 result = write_constant_as_bytes (obstack, byte_order,
19711 type, value, len);
19712 break;
19713 case DW_FORM_data4:
19714 type = die_type (die, cu);
19715 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19716 if (result == NULL)
19717 result = write_constant_as_bytes (obstack, byte_order,
19718 type, value, len);
19719 break;
19720 case DW_FORM_data8:
19721 type = die_type (die, cu);
19722 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19723 if (result == NULL)
19724 result = write_constant_as_bytes (obstack, byte_order,
19725 type, value, len);
19726 break;
19727
19728 case DW_FORM_sdata:
19729 type = die_type (die, cu);
19730 result = write_constant_as_bytes (obstack, byte_order,
19731 type, DW_SND (attr), len);
19732 break;
19733
19734 case DW_FORM_udata:
19735 type = die_type (die, cu);
19736 result = write_constant_as_bytes (obstack, byte_order,
19737 type, DW_UNSND (attr), len);
19738 break;
19739
19740 default:
19741 complaint (&symfile_complaints,
19742 _("unsupported const value attribute form: '%s'"),
19743 dwarf_form_name (attr->form));
19744 break;
19745 }
19746
19747 return result;
19748 }
19749
19750 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19751 PER_CU. */
19752
19753 struct type *
19754 dwarf2_get_die_type (cu_offset die_offset,
19755 struct dwarf2_per_cu_data *per_cu)
19756 {
19757 sect_offset die_offset_sect;
19758
19759 dw2_setup (per_cu->objfile);
19760
19761 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19762 return get_die_type_at_offset (die_offset_sect, per_cu);
19763 }
19764
19765 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19766 On entry *REF_CU is the CU of SRC_DIE.
19767 On exit *REF_CU is the CU of the result.
19768 Returns NULL if the referenced DIE isn't found. */
19769
19770 static struct die_info *
19771 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19772 struct dwarf2_cu **ref_cu)
19773 {
19774 struct objfile *objfile = (*ref_cu)->objfile;
19775 struct die_info temp_die;
19776 struct dwarf2_cu *sig_cu;
19777 struct die_info *die;
19778
19779 /* While it might be nice to assert sig_type->type == NULL here,
19780 we can get here for DW_AT_imported_declaration where we need
19781 the DIE not the type. */
19782
19783 /* If necessary, add it to the queue and load its DIEs. */
19784
19785 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19786 read_signatured_type (sig_type);
19787
19788 sig_cu = sig_type->per_cu.cu;
19789 gdb_assert (sig_cu != NULL);
19790 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19791 temp_die.offset = sig_type->type_offset_in_section;
19792 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19793 temp_die.offset.sect_off);
19794 if (die)
19795 {
19796 /* For .gdb_index version 7 keep track of included TUs.
19797 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19798 if (dwarf2_per_objfile->index_table != NULL
19799 && dwarf2_per_objfile->index_table->version <= 7)
19800 {
19801 VEC_safe_push (dwarf2_per_cu_ptr,
19802 (*ref_cu)->per_cu->imported_symtabs,
19803 sig_cu->per_cu);
19804 }
19805
19806 *ref_cu = sig_cu;
19807 return die;
19808 }
19809
19810 return NULL;
19811 }
19812
19813 /* Follow signatured type referenced by ATTR in SRC_DIE.
19814 On entry *REF_CU is the CU of SRC_DIE.
19815 On exit *REF_CU is the CU of the result.
19816 The result is the DIE of the type.
19817 If the referenced type cannot be found an error is thrown. */
19818
19819 static struct die_info *
19820 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19821 struct dwarf2_cu **ref_cu)
19822 {
19823 ULONGEST signature = DW_SIGNATURE (attr);
19824 struct signatured_type *sig_type;
19825 struct die_info *die;
19826
19827 gdb_assert (attr->form == DW_FORM_ref_sig8);
19828
19829 sig_type = lookup_signatured_type (*ref_cu, signature);
19830 /* sig_type will be NULL if the signatured type is missing from
19831 the debug info. */
19832 if (sig_type == NULL)
19833 {
19834 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19835 " from DIE at 0x%x [in module %s]"),
19836 hex_string (signature), src_die->offset.sect_off,
19837 objfile_name ((*ref_cu)->objfile));
19838 }
19839
19840 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19841 if (die == NULL)
19842 {
19843 dump_die_for_error (src_die);
19844 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19845 " from DIE at 0x%x [in module %s]"),
19846 hex_string (signature), src_die->offset.sect_off,
19847 objfile_name ((*ref_cu)->objfile));
19848 }
19849
19850 return die;
19851 }
19852
19853 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19854 reading in and processing the type unit if necessary. */
19855
19856 static struct type *
19857 get_signatured_type (struct die_info *die, ULONGEST signature,
19858 struct dwarf2_cu *cu)
19859 {
19860 struct signatured_type *sig_type;
19861 struct dwarf2_cu *type_cu;
19862 struct die_info *type_die;
19863 struct type *type;
19864
19865 sig_type = lookup_signatured_type (cu, signature);
19866 /* sig_type will be NULL if the signatured type is missing from
19867 the debug info. */
19868 if (sig_type == NULL)
19869 {
19870 complaint (&symfile_complaints,
19871 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19872 " from DIE at 0x%x [in module %s]"),
19873 hex_string (signature), die->offset.sect_off,
19874 objfile_name (dwarf2_per_objfile->objfile));
19875 return build_error_marker_type (cu, die);
19876 }
19877
19878 /* If we already know the type we're done. */
19879 if (sig_type->type != NULL)
19880 return sig_type->type;
19881
19882 type_cu = cu;
19883 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19884 if (type_die != NULL)
19885 {
19886 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19887 is created. This is important, for example, because for c++ classes
19888 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19889 type = read_type_die (type_die, type_cu);
19890 if (type == NULL)
19891 {
19892 complaint (&symfile_complaints,
19893 _("Dwarf Error: Cannot build signatured type %s"
19894 " referenced from DIE at 0x%x [in module %s]"),
19895 hex_string (signature), die->offset.sect_off,
19896 objfile_name (dwarf2_per_objfile->objfile));
19897 type = build_error_marker_type (cu, die);
19898 }
19899 }
19900 else
19901 {
19902 complaint (&symfile_complaints,
19903 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19904 " from DIE at 0x%x [in module %s]"),
19905 hex_string (signature), die->offset.sect_off,
19906 objfile_name (dwarf2_per_objfile->objfile));
19907 type = build_error_marker_type (cu, die);
19908 }
19909 sig_type->type = type;
19910
19911 return type;
19912 }
19913
19914 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19915 reading in and processing the type unit if necessary. */
19916
19917 static struct type *
19918 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19919 struct dwarf2_cu *cu) /* ARI: editCase function */
19920 {
19921 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19922 if (attr_form_is_ref (attr))
19923 {
19924 struct dwarf2_cu *type_cu = cu;
19925 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19926
19927 return read_type_die (type_die, type_cu);
19928 }
19929 else if (attr->form == DW_FORM_ref_sig8)
19930 {
19931 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19932 }
19933 else
19934 {
19935 complaint (&symfile_complaints,
19936 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19937 " at 0x%x [in module %s]"),
19938 dwarf_form_name (attr->form), die->offset.sect_off,
19939 objfile_name (dwarf2_per_objfile->objfile));
19940 return build_error_marker_type (cu, die);
19941 }
19942 }
19943
19944 /* Load the DIEs associated with type unit PER_CU into memory. */
19945
19946 static void
19947 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19948 {
19949 struct signatured_type *sig_type;
19950
19951 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19952 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19953
19954 /* We have the per_cu, but we need the signatured_type.
19955 Fortunately this is an easy translation. */
19956 gdb_assert (per_cu->is_debug_types);
19957 sig_type = (struct signatured_type *) per_cu;
19958
19959 gdb_assert (per_cu->cu == NULL);
19960
19961 read_signatured_type (sig_type);
19962
19963 gdb_assert (per_cu->cu != NULL);
19964 }
19965
19966 /* die_reader_func for read_signatured_type.
19967 This is identical to load_full_comp_unit_reader,
19968 but is kept separate for now. */
19969
19970 static void
19971 read_signatured_type_reader (const struct die_reader_specs *reader,
19972 const gdb_byte *info_ptr,
19973 struct die_info *comp_unit_die,
19974 int has_children,
19975 void *data)
19976 {
19977 struct dwarf2_cu *cu = reader->cu;
19978
19979 gdb_assert (cu->die_hash == NULL);
19980 cu->die_hash =
19981 htab_create_alloc_ex (cu->header.length / 12,
19982 die_hash,
19983 die_eq,
19984 NULL,
19985 &cu->comp_unit_obstack,
19986 hashtab_obstack_allocate,
19987 dummy_obstack_deallocate);
19988
19989 if (has_children)
19990 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19991 &info_ptr, comp_unit_die);
19992 cu->dies = comp_unit_die;
19993 /* comp_unit_die is not stored in die_hash, no need. */
19994
19995 /* We try not to read any attributes in this function, because not
19996 all CUs needed for references have been loaded yet, and symbol
19997 table processing isn't initialized. But we have to set the CU language,
19998 or we won't be able to build types correctly.
19999 Similarly, if we do not read the producer, we can not apply
20000 producer-specific interpretation. */
20001 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20002 }
20003
20004 /* Read in a signatured type and build its CU and DIEs.
20005 If the type is a stub for the real type in a DWO file,
20006 read in the real type from the DWO file as well. */
20007
20008 static void
20009 read_signatured_type (struct signatured_type *sig_type)
20010 {
20011 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20012
20013 gdb_assert (per_cu->is_debug_types);
20014 gdb_assert (per_cu->cu == NULL);
20015
20016 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20017 read_signatured_type_reader, NULL);
20018 sig_type->per_cu.tu_read = 1;
20019 }
20020
20021 /* Decode simple location descriptions.
20022 Given a pointer to a dwarf block that defines a location, compute
20023 the location and return the value.
20024
20025 NOTE drow/2003-11-18: This function is called in two situations
20026 now: for the address of static or global variables (partial symbols
20027 only) and for offsets into structures which are expected to be
20028 (more or less) constant. The partial symbol case should go away,
20029 and only the constant case should remain. That will let this
20030 function complain more accurately. A few special modes are allowed
20031 without complaint for global variables (for instance, global
20032 register values and thread-local values).
20033
20034 A location description containing no operations indicates that the
20035 object is optimized out. The return value is 0 for that case.
20036 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20037 callers will only want a very basic result and this can become a
20038 complaint.
20039
20040 Note that stack[0] is unused except as a default error return. */
20041
20042 static CORE_ADDR
20043 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20044 {
20045 struct objfile *objfile = cu->objfile;
20046 size_t i;
20047 size_t size = blk->size;
20048 const gdb_byte *data = blk->data;
20049 CORE_ADDR stack[64];
20050 int stacki;
20051 unsigned int bytes_read, unsnd;
20052 gdb_byte op;
20053
20054 i = 0;
20055 stacki = 0;
20056 stack[stacki] = 0;
20057 stack[++stacki] = 0;
20058
20059 while (i < size)
20060 {
20061 op = data[i++];
20062 switch (op)
20063 {
20064 case DW_OP_lit0:
20065 case DW_OP_lit1:
20066 case DW_OP_lit2:
20067 case DW_OP_lit3:
20068 case DW_OP_lit4:
20069 case DW_OP_lit5:
20070 case DW_OP_lit6:
20071 case DW_OP_lit7:
20072 case DW_OP_lit8:
20073 case DW_OP_lit9:
20074 case DW_OP_lit10:
20075 case DW_OP_lit11:
20076 case DW_OP_lit12:
20077 case DW_OP_lit13:
20078 case DW_OP_lit14:
20079 case DW_OP_lit15:
20080 case DW_OP_lit16:
20081 case DW_OP_lit17:
20082 case DW_OP_lit18:
20083 case DW_OP_lit19:
20084 case DW_OP_lit20:
20085 case DW_OP_lit21:
20086 case DW_OP_lit22:
20087 case DW_OP_lit23:
20088 case DW_OP_lit24:
20089 case DW_OP_lit25:
20090 case DW_OP_lit26:
20091 case DW_OP_lit27:
20092 case DW_OP_lit28:
20093 case DW_OP_lit29:
20094 case DW_OP_lit30:
20095 case DW_OP_lit31:
20096 stack[++stacki] = op - DW_OP_lit0;
20097 break;
20098
20099 case DW_OP_reg0:
20100 case DW_OP_reg1:
20101 case DW_OP_reg2:
20102 case DW_OP_reg3:
20103 case DW_OP_reg4:
20104 case DW_OP_reg5:
20105 case DW_OP_reg6:
20106 case DW_OP_reg7:
20107 case DW_OP_reg8:
20108 case DW_OP_reg9:
20109 case DW_OP_reg10:
20110 case DW_OP_reg11:
20111 case DW_OP_reg12:
20112 case DW_OP_reg13:
20113 case DW_OP_reg14:
20114 case DW_OP_reg15:
20115 case DW_OP_reg16:
20116 case DW_OP_reg17:
20117 case DW_OP_reg18:
20118 case DW_OP_reg19:
20119 case DW_OP_reg20:
20120 case DW_OP_reg21:
20121 case DW_OP_reg22:
20122 case DW_OP_reg23:
20123 case DW_OP_reg24:
20124 case DW_OP_reg25:
20125 case DW_OP_reg26:
20126 case DW_OP_reg27:
20127 case DW_OP_reg28:
20128 case DW_OP_reg29:
20129 case DW_OP_reg30:
20130 case DW_OP_reg31:
20131 stack[++stacki] = op - DW_OP_reg0;
20132 if (i < size)
20133 dwarf2_complex_location_expr_complaint ();
20134 break;
20135
20136 case DW_OP_regx:
20137 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20138 i += bytes_read;
20139 stack[++stacki] = unsnd;
20140 if (i < size)
20141 dwarf2_complex_location_expr_complaint ();
20142 break;
20143
20144 case DW_OP_addr:
20145 stack[++stacki] = read_address (objfile->obfd, &data[i],
20146 cu, &bytes_read);
20147 i += bytes_read;
20148 break;
20149
20150 case DW_OP_const1u:
20151 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20152 i += 1;
20153 break;
20154
20155 case DW_OP_const1s:
20156 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20157 i += 1;
20158 break;
20159
20160 case DW_OP_const2u:
20161 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20162 i += 2;
20163 break;
20164
20165 case DW_OP_const2s:
20166 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20167 i += 2;
20168 break;
20169
20170 case DW_OP_const4u:
20171 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20172 i += 4;
20173 break;
20174
20175 case DW_OP_const4s:
20176 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20177 i += 4;
20178 break;
20179
20180 case DW_OP_const8u:
20181 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20182 i += 8;
20183 break;
20184
20185 case DW_OP_constu:
20186 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20187 &bytes_read);
20188 i += bytes_read;
20189 break;
20190
20191 case DW_OP_consts:
20192 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20193 i += bytes_read;
20194 break;
20195
20196 case DW_OP_dup:
20197 stack[stacki + 1] = stack[stacki];
20198 stacki++;
20199 break;
20200
20201 case DW_OP_plus:
20202 stack[stacki - 1] += stack[stacki];
20203 stacki--;
20204 break;
20205
20206 case DW_OP_plus_uconst:
20207 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20208 &bytes_read);
20209 i += bytes_read;
20210 break;
20211
20212 case DW_OP_minus:
20213 stack[stacki - 1] -= stack[stacki];
20214 stacki--;
20215 break;
20216
20217 case DW_OP_deref:
20218 /* If we're not the last op, then we definitely can't encode
20219 this using GDB's address_class enum. This is valid for partial
20220 global symbols, although the variable's address will be bogus
20221 in the psymtab. */
20222 if (i < size)
20223 dwarf2_complex_location_expr_complaint ();
20224 break;
20225
20226 case DW_OP_GNU_push_tls_address:
20227 /* The top of the stack has the offset from the beginning
20228 of the thread control block at which the variable is located. */
20229 /* Nothing should follow this operator, so the top of stack would
20230 be returned. */
20231 /* This is valid for partial global symbols, but the variable's
20232 address will be bogus in the psymtab. Make it always at least
20233 non-zero to not look as a variable garbage collected by linker
20234 which have DW_OP_addr 0. */
20235 if (i < size)
20236 dwarf2_complex_location_expr_complaint ();
20237 stack[stacki]++;
20238 break;
20239
20240 case DW_OP_GNU_uninit:
20241 break;
20242
20243 case DW_OP_GNU_addr_index:
20244 case DW_OP_GNU_const_index:
20245 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20246 &bytes_read);
20247 i += bytes_read;
20248 break;
20249
20250 default:
20251 {
20252 const char *name = get_DW_OP_name (op);
20253
20254 if (name)
20255 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20256 name);
20257 else
20258 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20259 op);
20260 }
20261
20262 return (stack[stacki]);
20263 }
20264
20265 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20266 outside of the allocated space. Also enforce minimum>0. */
20267 if (stacki >= ARRAY_SIZE (stack) - 1)
20268 {
20269 complaint (&symfile_complaints,
20270 _("location description stack overflow"));
20271 return 0;
20272 }
20273
20274 if (stacki <= 0)
20275 {
20276 complaint (&symfile_complaints,
20277 _("location description stack underflow"));
20278 return 0;
20279 }
20280 }
20281 return (stack[stacki]);
20282 }
20283
20284 /* memory allocation interface */
20285
20286 static struct dwarf_block *
20287 dwarf_alloc_block (struct dwarf2_cu *cu)
20288 {
20289 struct dwarf_block *blk;
20290
20291 blk = (struct dwarf_block *)
20292 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20293 return (blk);
20294 }
20295
20296 static struct die_info *
20297 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20298 {
20299 struct die_info *die;
20300 size_t size = sizeof (struct die_info);
20301
20302 if (num_attrs > 1)
20303 size += (num_attrs - 1) * sizeof (struct attribute);
20304
20305 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20306 memset (die, 0, sizeof (struct die_info));
20307 return (die);
20308 }
20309
20310 \f
20311 /* Macro support. */
20312
20313 /* Return file name relative to the compilation directory of file number I in
20314 *LH's file name table. The result is allocated using xmalloc; the caller is
20315 responsible for freeing it. */
20316
20317 static char *
20318 file_file_name (int file, struct line_header *lh)
20319 {
20320 /* Is the file number a valid index into the line header's file name
20321 table? Remember that file numbers start with one, not zero. */
20322 if (1 <= file && file <= lh->num_file_names)
20323 {
20324 struct file_entry *fe = &lh->file_names[file - 1];
20325
20326 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20327 return xstrdup (fe->name);
20328 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20329 fe->name, NULL);
20330 }
20331 else
20332 {
20333 /* The compiler produced a bogus file number. We can at least
20334 record the macro definitions made in the file, even if we
20335 won't be able to find the file by name. */
20336 char fake_name[80];
20337
20338 xsnprintf (fake_name, sizeof (fake_name),
20339 "<bad macro file number %d>", file);
20340
20341 complaint (&symfile_complaints,
20342 _("bad file number in macro information (%d)"),
20343 file);
20344
20345 return xstrdup (fake_name);
20346 }
20347 }
20348
20349 /* Return the full name of file number I in *LH's file name table.
20350 Use COMP_DIR as the name of the current directory of the
20351 compilation. The result is allocated using xmalloc; the caller is
20352 responsible for freeing it. */
20353 static char *
20354 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20355 {
20356 /* Is the file number a valid index into the line header's file name
20357 table? Remember that file numbers start with one, not zero. */
20358 if (1 <= file && file <= lh->num_file_names)
20359 {
20360 char *relative = file_file_name (file, lh);
20361
20362 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20363 return relative;
20364 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20365 }
20366 else
20367 return file_file_name (file, lh);
20368 }
20369
20370
20371 static struct macro_source_file *
20372 macro_start_file (int file, int line,
20373 struct macro_source_file *current_file,
20374 const char *comp_dir,
20375 struct line_header *lh, struct objfile *objfile)
20376 {
20377 /* File name relative to the compilation directory of this source file. */
20378 char *file_name = file_file_name (file, lh);
20379
20380 if (! current_file)
20381 {
20382 /* Note: We don't create a macro table for this compilation unit
20383 at all until we actually get a filename. */
20384 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20385
20386 /* If we have no current file, then this must be the start_file
20387 directive for the compilation unit's main source file. */
20388 current_file = macro_set_main (macro_table, file_name);
20389 macro_define_special (macro_table);
20390 }
20391 else
20392 current_file = macro_include (current_file, line, file_name);
20393
20394 xfree (file_name);
20395
20396 return current_file;
20397 }
20398
20399
20400 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20401 followed by a null byte. */
20402 static char *
20403 copy_string (const char *buf, int len)
20404 {
20405 char *s = xmalloc (len + 1);
20406
20407 memcpy (s, buf, len);
20408 s[len] = '\0';
20409 return s;
20410 }
20411
20412
20413 static const char *
20414 consume_improper_spaces (const char *p, const char *body)
20415 {
20416 if (*p == ' ')
20417 {
20418 complaint (&symfile_complaints,
20419 _("macro definition contains spaces "
20420 "in formal argument list:\n`%s'"),
20421 body);
20422
20423 while (*p == ' ')
20424 p++;
20425 }
20426
20427 return p;
20428 }
20429
20430
20431 static void
20432 parse_macro_definition (struct macro_source_file *file, int line,
20433 const char *body)
20434 {
20435 const char *p;
20436
20437 /* The body string takes one of two forms. For object-like macro
20438 definitions, it should be:
20439
20440 <macro name> " " <definition>
20441
20442 For function-like macro definitions, it should be:
20443
20444 <macro name> "() " <definition>
20445 or
20446 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20447
20448 Spaces may appear only where explicitly indicated, and in the
20449 <definition>.
20450
20451 The Dwarf 2 spec says that an object-like macro's name is always
20452 followed by a space, but versions of GCC around March 2002 omit
20453 the space when the macro's definition is the empty string.
20454
20455 The Dwarf 2 spec says that there should be no spaces between the
20456 formal arguments in a function-like macro's formal argument list,
20457 but versions of GCC around March 2002 include spaces after the
20458 commas. */
20459
20460
20461 /* Find the extent of the macro name. The macro name is terminated
20462 by either a space or null character (for an object-like macro) or
20463 an opening paren (for a function-like macro). */
20464 for (p = body; *p; p++)
20465 if (*p == ' ' || *p == '(')
20466 break;
20467
20468 if (*p == ' ' || *p == '\0')
20469 {
20470 /* It's an object-like macro. */
20471 int name_len = p - body;
20472 char *name = copy_string (body, name_len);
20473 const char *replacement;
20474
20475 if (*p == ' ')
20476 replacement = body + name_len + 1;
20477 else
20478 {
20479 dwarf2_macro_malformed_definition_complaint (body);
20480 replacement = body + name_len;
20481 }
20482
20483 macro_define_object (file, line, name, replacement);
20484
20485 xfree (name);
20486 }
20487 else if (*p == '(')
20488 {
20489 /* It's a function-like macro. */
20490 char *name = copy_string (body, p - body);
20491 int argc = 0;
20492 int argv_size = 1;
20493 char **argv = xmalloc (argv_size * sizeof (*argv));
20494
20495 p++;
20496
20497 p = consume_improper_spaces (p, body);
20498
20499 /* Parse the formal argument list. */
20500 while (*p && *p != ')')
20501 {
20502 /* Find the extent of the current argument name. */
20503 const char *arg_start = p;
20504
20505 while (*p && *p != ',' && *p != ')' && *p != ' ')
20506 p++;
20507
20508 if (! *p || p == arg_start)
20509 dwarf2_macro_malformed_definition_complaint (body);
20510 else
20511 {
20512 /* Make sure argv has room for the new argument. */
20513 if (argc >= argv_size)
20514 {
20515 argv_size *= 2;
20516 argv = xrealloc (argv, argv_size * sizeof (*argv));
20517 }
20518
20519 argv[argc++] = copy_string (arg_start, p - arg_start);
20520 }
20521
20522 p = consume_improper_spaces (p, body);
20523
20524 /* Consume the comma, if present. */
20525 if (*p == ',')
20526 {
20527 p++;
20528
20529 p = consume_improper_spaces (p, body);
20530 }
20531 }
20532
20533 if (*p == ')')
20534 {
20535 p++;
20536
20537 if (*p == ' ')
20538 /* Perfectly formed definition, no complaints. */
20539 macro_define_function (file, line, name,
20540 argc, (const char **) argv,
20541 p + 1);
20542 else if (*p == '\0')
20543 {
20544 /* Complain, but do define it. */
20545 dwarf2_macro_malformed_definition_complaint (body);
20546 macro_define_function (file, line, name,
20547 argc, (const char **) argv,
20548 p);
20549 }
20550 else
20551 /* Just complain. */
20552 dwarf2_macro_malformed_definition_complaint (body);
20553 }
20554 else
20555 /* Just complain. */
20556 dwarf2_macro_malformed_definition_complaint (body);
20557
20558 xfree (name);
20559 {
20560 int i;
20561
20562 for (i = 0; i < argc; i++)
20563 xfree (argv[i]);
20564 }
20565 xfree (argv);
20566 }
20567 else
20568 dwarf2_macro_malformed_definition_complaint (body);
20569 }
20570
20571 /* Skip some bytes from BYTES according to the form given in FORM.
20572 Returns the new pointer. */
20573
20574 static const gdb_byte *
20575 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20576 enum dwarf_form form,
20577 unsigned int offset_size,
20578 struct dwarf2_section_info *section)
20579 {
20580 unsigned int bytes_read;
20581
20582 switch (form)
20583 {
20584 case DW_FORM_data1:
20585 case DW_FORM_flag:
20586 ++bytes;
20587 break;
20588
20589 case DW_FORM_data2:
20590 bytes += 2;
20591 break;
20592
20593 case DW_FORM_data4:
20594 bytes += 4;
20595 break;
20596
20597 case DW_FORM_data8:
20598 bytes += 8;
20599 break;
20600
20601 case DW_FORM_string:
20602 read_direct_string (abfd, bytes, &bytes_read);
20603 bytes += bytes_read;
20604 break;
20605
20606 case DW_FORM_sec_offset:
20607 case DW_FORM_strp:
20608 case DW_FORM_GNU_strp_alt:
20609 bytes += offset_size;
20610 break;
20611
20612 case DW_FORM_block:
20613 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20614 bytes += bytes_read;
20615 break;
20616
20617 case DW_FORM_block1:
20618 bytes += 1 + read_1_byte (abfd, bytes);
20619 break;
20620 case DW_FORM_block2:
20621 bytes += 2 + read_2_bytes (abfd, bytes);
20622 break;
20623 case DW_FORM_block4:
20624 bytes += 4 + read_4_bytes (abfd, bytes);
20625 break;
20626
20627 case DW_FORM_sdata:
20628 case DW_FORM_udata:
20629 case DW_FORM_GNU_addr_index:
20630 case DW_FORM_GNU_str_index:
20631 bytes = gdb_skip_leb128 (bytes, buffer_end);
20632 if (bytes == NULL)
20633 {
20634 dwarf2_section_buffer_overflow_complaint (section);
20635 return NULL;
20636 }
20637 break;
20638
20639 default:
20640 {
20641 complain:
20642 complaint (&symfile_complaints,
20643 _("invalid form 0x%x in `%s'"),
20644 form, get_section_name (section));
20645 return NULL;
20646 }
20647 }
20648
20649 return bytes;
20650 }
20651
20652 /* A helper for dwarf_decode_macros that handles skipping an unknown
20653 opcode. Returns an updated pointer to the macro data buffer; or,
20654 on error, issues a complaint and returns NULL. */
20655
20656 static const gdb_byte *
20657 skip_unknown_opcode (unsigned int opcode,
20658 const gdb_byte **opcode_definitions,
20659 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20660 bfd *abfd,
20661 unsigned int offset_size,
20662 struct dwarf2_section_info *section)
20663 {
20664 unsigned int bytes_read, i;
20665 unsigned long arg;
20666 const gdb_byte *defn;
20667
20668 if (opcode_definitions[opcode] == NULL)
20669 {
20670 complaint (&symfile_complaints,
20671 _("unrecognized DW_MACFINO opcode 0x%x"),
20672 opcode);
20673 return NULL;
20674 }
20675
20676 defn = opcode_definitions[opcode];
20677 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20678 defn += bytes_read;
20679
20680 for (i = 0; i < arg; ++i)
20681 {
20682 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20683 section);
20684 if (mac_ptr == NULL)
20685 {
20686 /* skip_form_bytes already issued the complaint. */
20687 return NULL;
20688 }
20689 }
20690
20691 return mac_ptr;
20692 }
20693
20694 /* A helper function which parses the header of a macro section.
20695 If the macro section is the extended (for now called "GNU") type,
20696 then this updates *OFFSET_SIZE. Returns a pointer to just after
20697 the header, or issues a complaint and returns NULL on error. */
20698
20699 static const gdb_byte *
20700 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20701 bfd *abfd,
20702 const gdb_byte *mac_ptr,
20703 unsigned int *offset_size,
20704 int section_is_gnu)
20705 {
20706 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20707
20708 if (section_is_gnu)
20709 {
20710 unsigned int version, flags;
20711
20712 version = read_2_bytes (abfd, mac_ptr);
20713 if (version != 4)
20714 {
20715 complaint (&symfile_complaints,
20716 _("unrecognized version `%d' in .debug_macro section"),
20717 version);
20718 return NULL;
20719 }
20720 mac_ptr += 2;
20721
20722 flags = read_1_byte (abfd, mac_ptr);
20723 ++mac_ptr;
20724 *offset_size = (flags & 1) ? 8 : 4;
20725
20726 if ((flags & 2) != 0)
20727 /* We don't need the line table offset. */
20728 mac_ptr += *offset_size;
20729
20730 /* Vendor opcode descriptions. */
20731 if ((flags & 4) != 0)
20732 {
20733 unsigned int i, count;
20734
20735 count = read_1_byte (abfd, mac_ptr);
20736 ++mac_ptr;
20737 for (i = 0; i < count; ++i)
20738 {
20739 unsigned int opcode, bytes_read;
20740 unsigned long arg;
20741
20742 opcode = read_1_byte (abfd, mac_ptr);
20743 ++mac_ptr;
20744 opcode_definitions[opcode] = mac_ptr;
20745 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20746 mac_ptr += bytes_read;
20747 mac_ptr += arg;
20748 }
20749 }
20750 }
20751
20752 return mac_ptr;
20753 }
20754
20755 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20756 including DW_MACRO_GNU_transparent_include. */
20757
20758 static void
20759 dwarf_decode_macro_bytes (bfd *abfd,
20760 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20761 struct macro_source_file *current_file,
20762 struct line_header *lh, const char *comp_dir,
20763 struct dwarf2_section_info *section,
20764 int section_is_gnu, int section_is_dwz,
20765 unsigned int offset_size,
20766 struct objfile *objfile,
20767 htab_t include_hash)
20768 {
20769 enum dwarf_macro_record_type macinfo_type;
20770 int at_commandline;
20771 const gdb_byte *opcode_definitions[256];
20772
20773 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20774 &offset_size, section_is_gnu);
20775 if (mac_ptr == NULL)
20776 {
20777 /* We already issued a complaint. */
20778 return;
20779 }
20780
20781 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20782 GDB is still reading the definitions from command line. First
20783 DW_MACINFO_start_file will need to be ignored as it was already executed
20784 to create CURRENT_FILE for the main source holding also the command line
20785 definitions. On first met DW_MACINFO_start_file this flag is reset to
20786 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20787
20788 at_commandline = 1;
20789
20790 do
20791 {
20792 /* Do we at least have room for a macinfo type byte? */
20793 if (mac_ptr >= mac_end)
20794 {
20795 dwarf2_section_buffer_overflow_complaint (section);
20796 break;
20797 }
20798
20799 macinfo_type = read_1_byte (abfd, mac_ptr);
20800 mac_ptr++;
20801
20802 /* Note that we rely on the fact that the corresponding GNU and
20803 DWARF constants are the same. */
20804 switch (macinfo_type)
20805 {
20806 /* A zero macinfo type indicates the end of the macro
20807 information. */
20808 case 0:
20809 break;
20810
20811 case DW_MACRO_GNU_define:
20812 case DW_MACRO_GNU_undef:
20813 case DW_MACRO_GNU_define_indirect:
20814 case DW_MACRO_GNU_undef_indirect:
20815 case DW_MACRO_GNU_define_indirect_alt:
20816 case DW_MACRO_GNU_undef_indirect_alt:
20817 {
20818 unsigned int bytes_read;
20819 int line;
20820 const char *body;
20821 int is_define;
20822
20823 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20824 mac_ptr += bytes_read;
20825
20826 if (macinfo_type == DW_MACRO_GNU_define
20827 || macinfo_type == DW_MACRO_GNU_undef)
20828 {
20829 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20830 mac_ptr += bytes_read;
20831 }
20832 else
20833 {
20834 LONGEST str_offset;
20835
20836 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20837 mac_ptr += offset_size;
20838
20839 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20840 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20841 || section_is_dwz)
20842 {
20843 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20844
20845 body = read_indirect_string_from_dwz (dwz, str_offset);
20846 }
20847 else
20848 body = read_indirect_string_at_offset (abfd, str_offset);
20849 }
20850
20851 is_define = (macinfo_type == DW_MACRO_GNU_define
20852 || macinfo_type == DW_MACRO_GNU_define_indirect
20853 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20854 if (! current_file)
20855 {
20856 /* DWARF violation as no main source is present. */
20857 complaint (&symfile_complaints,
20858 _("debug info with no main source gives macro %s "
20859 "on line %d: %s"),
20860 is_define ? _("definition") : _("undefinition"),
20861 line, body);
20862 break;
20863 }
20864 if ((line == 0 && !at_commandline)
20865 || (line != 0 && at_commandline))
20866 complaint (&symfile_complaints,
20867 _("debug info gives %s macro %s with %s line %d: %s"),
20868 at_commandline ? _("command-line") : _("in-file"),
20869 is_define ? _("definition") : _("undefinition"),
20870 line == 0 ? _("zero") : _("non-zero"), line, body);
20871
20872 if (is_define)
20873 parse_macro_definition (current_file, line, body);
20874 else
20875 {
20876 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20877 || macinfo_type == DW_MACRO_GNU_undef_indirect
20878 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20879 macro_undef (current_file, line, body);
20880 }
20881 }
20882 break;
20883
20884 case DW_MACRO_GNU_start_file:
20885 {
20886 unsigned int bytes_read;
20887 int line, file;
20888
20889 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20890 mac_ptr += bytes_read;
20891 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20892 mac_ptr += bytes_read;
20893
20894 if ((line == 0 && !at_commandline)
20895 || (line != 0 && at_commandline))
20896 complaint (&symfile_complaints,
20897 _("debug info gives source %d included "
20898 "from %s at %s line %d"),
20899 file, at_commandline ? _("command-line") : _("file"),
20900 line == 0 ? _("zero") : _("non-zero"), line);
20901
20902 if (at_commandline)
20903 {
20904 /* This DW_MACRO_GNU_start_file was executed in the
20905 pass one. */
20906 at_commandline = 0;
20907 }
20908 else
20909 current_file = macro_start_file (file, line,
20910 current_file, comp_dir,
20911 lh, objfile);
20912 }
20913 break;
20914
20915 case DW_MACRO_GNU_end_file:
20916 if (! current_file)
20917 complaint (&symfile_complaints,
20918 _("macro debug info has an unmatched "
20919 "`close_file' directive"));
20920 else
20921 {
20922 current_file = current_file->included_by;
20923 if (! current_file)
20924 {
20925 enum dwarf_macro_record_type next_type;
20926
20927 /* GCC circa March 2002 doesn't produce the zero
20928 type byte marking the end of the compilation
20929 unit. Complain if it's not there, but exit no
20930 matter what. */
20931
20932 /* Do we at least have room for a macinfo type byte? */
20933 if (mac_ptr >= mac_end)
20934 {
20935 dwarf2_section_buffer_overflow_complaint (section);
20936 return;
20937 }
20938
20939 /* We don't increment mac_ptr here, so this is just
20940 a look-ahead. */
20941 next_type = read_1_byte (abfd, mac_ptr);
20942 if (next_type != 0)
20943 complaint (&symfile_complaints,
20944 _("no terminating 0-type entry for "
20945 "macros in `.debug_macinfo' section"));
20946
20947 return;
20948 }
20949 }
20950 break;
20951
20952 case DW_MACRO_GNU_transparent_include:
20953 case DW_MACRO_GNU_transparent_include_alt:
20954 {
20955 LONGEST offset;
20956 void **slot;
20957 bfd *include_bfd = abfd;
20958 struct dwarf2_section_info *include_section = section;
20959 struct dwarf2_section_info alt_section;
20960 const gdb_byte *include_mac_end = mac_end;
20961 int is_dwz = section_is_dwz;
20962 const gdb_byte *new_mac_ptr;
20963
20964 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20965 mac_ptr += offset_size;
20966
20967 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20968 {
20969 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20970
20971 dwarf2_read_section (dwarf2_per_objfile->objfile,
20972 &dwz->macro);
20973
20974 include_section = &dwz->macro;
20975 include_bfd = get_section_bfd_owner (include_section);
20976 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20977 is_dwz = 1;
20978 }
20979
20980 new_mac_ptr = include_section->buffer + offset;
20981 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20982
20983 if (*slot != NULL)
20984 {
20985 /* This has actually happened; see
20986 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20987 complaint (&symfile_complaints,
20988 _("recursive DW_MACRO_GNU_transparent_include in "
20989 ".debug_macro section"));
20990 }
20991 else
20992 {
20993 *slot = (void *) new_mac_ptr;
20994
20995 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20996 include_mac_end, current_file,
20997 lh, comp_dir,
20998 section, section_is_gnu, is_dwz,
20999 offset_size, objfile, include_hash);
21000
21001 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21002 }
21003 }
21004 break;
21005
21006 case DW_MACINFO_vendor_ext:
21007 if (!section_is_gnu)
21008 {
21009 unsigned int bytes_read;
21010 int constant;
21011
21012 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21013 mac_ptr += bytes_read;
21014 read_direct_string (abfd, mac_ptr, &bytes_read);
21015 mac_ptr += bytes_read;
21016
21017 /* We don't recognize any vendor extensions. */
21018 break;
21019 }
21020 /* FALLTHROUGH */
21021
21022 default:
21023 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21024 mac_ptr, mac_end, abfd, offset_size,
21025 section);
21026 if (mac_ptr == NULL)
21027 return;
21028 break;
21029 }
21030 } while (macinfo_type != 0);
21031 }
21032
21033 static void
21034 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21035 const char *comp_dir, int section_is_gnu)
21036 {
21037 struct objfile *objfile = dwarf2_per_objfile->objfile;
21038 struct line_header *lh = cu->line_header;
21039 bfd *abfd;
21040 const gdb_byte *mac_ptr, *mac_end;
21041 struct macro_source_file *current_file = 0;
21042 enum dwarf_macro_record_type macinfo_type;
21043 unsigned int offset_size = cu->header.offset_size;
21044 const gdb_byte *opcode_definitions[256];
21045 struct cleanup *cleanup;
21046 htab_t include_hash;
21047 void **slot;
21048 struct dwarf2_section_info *section;
21049 const char *section_name;
21050
21051 if (cu->dwo_unit != NULL)
21052 {
21053 if (section_is_gnu)
21054 {
21055 section = &cu->dwo_unit->dwo_file->sections.macro;
21056 section_name = ".debug_macro.dwo";
21057 }
21058 else
21059 {
21060 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21061 section_name = ".debug_macinfo.dwo";
21062 }
21063 }
21064 else
21065 {
21066 if (section_is_gnu)
21067 {
21068 section = &dwarf2_per_objfile->macro;
21069 section_name = ".debug_macro";
21070 }
21071 else
21072 {
21073 section = &dwarf2_per_objfile->macinfo;
21074 section_name = ".debug_macinfo";
21075 }
21076 }
21077
21078 dwarf2_read_section (objfile, section);
21079 if (section->buffer == NULL)
21080 {
21081 complaint (&symfile_complaints, _("missing %s section"), section_name);
21082 return;
21083 }
21084 abfd = get_section_bfd_owner (section);
21085
21086 /* First pass: Find the name of the base filename.
21087 This filename is needed in order to process all macros whose definition
21088 (or undefinition) comes from the command line. These macros are defined
21089 before the first DW_MACINFO_start_file entry, and yet still need to be
21090 associated to the base file.
21091
21092 To determine the base file name, we scan the macro definitions until we
21093 reach the first DW_MACINFO_start_file entry. We then initialize
21094 CURRENT_FILE accordingly so that any macro definition found before the
21095 first DW_MACINFO_start_file can still be associated to the base file. */
21096
21097 mac_ptr = section->buffer + offset;
21098 mac_end = section->buffer + section->size;
21099
21100 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21101 &offset_size, section_is_gnu);
21102 if (mac_ptr == NULL)
21103 {
21104 /* We already issued a complaint. */
21105 return;
21106 }
21107
21108 do
21109 {
21110 /* Do we at least have room for a macinfo type byte? */
21111 if (mac_ptr >= mac_end)
21112 {
21113 /* Complaint is printed during the second pass as GDB will probably
21114 stop the first pass earlier upon finding
21115 DW_MACINFO_start_file. */
21116 break;
21117 }
21118
21119 macinfo_type = read_1_byte (abfd, mac_ptr);
21120 mac_ptr++;
21121
21122 /* Note that we rely on the fact that the corresponding GNU and
21123 DWARF constants are the same. */
21124 switch (macinfo_type)
21125 {
21126 /* A zero macinfo type indicates the end of the macro
21127 information. */
21128 case 0:
21129 break;
21130
21131 case DW_MACRO_GNU_define:
21132 case DW_MACRO_GNU_undef:
21133 /* Only skip the data by MAC_PTR. */
21134 {
21135 unsigned int bytes_read;
21136
21137 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21138 mac_ptr += bytes_read;
21139 read_direct_string (abfd, mac_ptr, &bytes_read);
21140 mac_ptr += bytes_read;
21141 }
21142 break;
21143
21144 case DW_MACRO_GNU_start_file:
21145 {
21146 unsigned int bytes_read;
21147 int line, file;
21148
21149 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21150 mac_ptr += bytes_read;
21151 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21152 mac_ptr += bytes_read;
21153
21154 current_file = macro_start_file (file, line, current_file,
21155 comp_dir, lh, objfile);
21156 }
21157 break;
21158
21159 case DW_MACRO_GNU_end_file:
21160 /* No data to skip by MAC_PTR. */
21161 break;
21162
21163 case DW_MACRO_GNU_define_indirect:
21164 case DW_MACRO_GNU_undef_indirect:
21165 case DW_MACRO_GNU_define_indirect_alt:
21166 case DW_MACRO_GNU_undef_indirect_alt:
21167 {
21168 unsigned int bytes_read;
21169
21170 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21171 mac_ptr += bytes_read;
21172 mac_ptr += offset_size;
21173 }
21174 break;
21175
21176 case DW_MACRO_GNU_transparent_include:
21177 case DW_MACRO_GNU_transparent_include_alt:
21178 /* Note that, according to the spec, a transparent include
21179 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21180 skip this opcode. */
21181 mac_ptr += offset_size;
21182 break;
21183
21184 case DW_MACINFO_vendor_ext:
21185 /* Only skip the data by MAC_PTR. */
21186 if (!section_is_gnu)
21187 {
21188 unsigned int bytes_read;
21189
21190 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21191 mac_ptr += bytes_read;
21192 read_direct_string (abfd, mac_ptr, &bytes_read);
21193 mac_ptr += bytes_read;
21194 }
21195 /* FALLTHROUGH */
21196
21197 default:
21198 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21199 mac_ptr, mac_end, abfd, offset_size,
21200 section);
21201 if (mac_ptr == NULL)
21202 return;
21203 break;
21204 }
21205 } while (macinfo_type != 0 && current_file == NULL);
21206
21207 /* Second pass: Process all entries.
21208
21209 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21210 command-line macro definitions/undefinitions. This flag is unset when we
21211 reach the first DW_MACINFO_start_file entry. */
21212
21213 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21214 NULL, xcalloc, xfree);
21215 cleanup = make_cleanup_htab_delete (include_hash);
21216 mac_ptr = section->buffer + offset;
21217 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21218 *slot = (void *) mac_ptr;
21219 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21220 current_file, lh, comp_dir, section,
21221 section_is_gnu, 0,
21222 offset_size, objfile, include_hash);
21223 do_cleanups (cleanup);
21224 }
21225
21226 /* Check if the attribute's form is a DW_FORM_block*
21227 if so return true else false. */
21228
21229 static int
21230 attr_form_is_block (const struct attribute *attr)
21231 {
21232 return (attr == NULL ? 0 :
21233 attr->form == DW_FORM_block1
21234 || attr->form == DW_FORM_block2
21235 || attr->form == DW_FORM_block4
21236 || attr->form == DW_FORM_block
21237 || attr->form == DW_FORM_exprloc);
21238 }
21239
21240 /* Return non-zero if ATTR's value is a section offset --- classes
21241 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21242 You may use DW_UNSND (attr) to retrieve such offsets.
21243
21244 Section 7.5.4, "Attribute Encodings", explains that no attribute
21245 may have a value that belongs to more than one of these classes; it
21246 would be ambiguous if we did, because we use the same forms for all
21247 of them. */
21248
21249 static int
21250 attr_form_is_section_offset (const struct attribute *attr)
21251 {
21252 return (attr->form == DW_FORM_data4
21253 || attr->form == DW_FORM_data8
21254 || attr->form == DW_FORM_sec_offset);
21255 }
21256
21257 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21258 zero otherwise. When this function returns true, you can apply
21259 dwarf2_get_attr_constant_value to it.
21260
21261 However, note that for some attributes you must check
21262 attr_form_is_section_offset before using this test. DW_FORM_data4
21263 and DW_FORM_data8 are members of both the constant class, and of
21264 the classes that contain offsets into other debug sections
21265 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21266 that, if an attribute's can be either a constant or one of the
21267 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21268 taken as section offsets, not constants. */
21269
21270 static int
21271 attr_form_is_constant (const struct attribute *attr)
21272 {
21273 switch (attr->form)
21274 {
21275 case DW_FORM_sdata:
21276 case DW_FORM_udata:
21277 case DW_FORM_data1:
21278 case DW_FORM_data2:
21279 case DW_FORM_data4:
21280 case DW_FORM_data8:
21281 return 1;
21282 default:
21283 return 0;
21284 }
21285 }
21286
21287
21288 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21289 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21290
21291 static int
21292 attr_form_is_ref (const struct attribute *attr)
21293 {
21294 switch (attr->form)
21295 {
21296 case DW_FORM_ref_addr:
21297 case DW_FORM_ref1:
21298 case DW_FORM_ref2:
21299 case DW_FORM_ref4:
21300 case DW_FORM_ref8:
21301 case DW_FORM_ref_udata:
21302 case DW_FORM_GNU_ref_alt:
21303 return 1;
21304 default:
21305 return 0;
21306 }
21307 }
21308
21309 /* Return the .debug_loc section to use for CU.
21310 For DWO files use .debug_loc.dwo. */
21311
21312 static struct dwarf2_section_info *
21313 cu_debug_loc_section (struct dwarf2_cu *cu)
21314 {
21315 if (cu->dwo_unit)
21316 return &cu->dwo_unit->dwo_file->sections.loc;
21317 return &dwarf2_per_objfile->loc;
21318 }
21319
21320 /* A helper function that fills in a dwarf2_loclist_baton. */
21321
21322 static void
21323 fill_in_loclist_baton (struct dwarf2_cu *cu,
21324 struct dwarf2_loclist_baton *baton,
21325 const struct attribute *attr)
21326 {
21327 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21328
21329 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21330
21331 baton->per_cu = cu->per_cu;
21332 gdb_assert (baton->per_cu);
21333 /* We don't know how long the location list is, but make sure we
21334 don't run off the edge of the section. */
21335 baton->size = section->size - DW_UNSND (attr);
21336 baton->data = section->buffer + DW_UNSND (attr);
21337 baton->base_address = cu->base_address;
21338 baton->from_dwo = cu->dwo_unit != NULL;
21339 }
21340
21341 static void
21342 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21343 struct dwarf2_cu *cu, int is_block)
21344 {
21345 struct objfile *objfile = dwarf2_per_objfile->objfile;
21346 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21347
21348 if (attr_form_is_section_offset (attr)
21349 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21350 the section. If so, fall through to the complaint in the
21351 other branch. */
21352 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21353 {
21354 struct dwarf2_loclist_baton *baton;
21355
21356 baton = obstack_alloc (&objfile->objfile_obstack,
21357 sizeof (struct dwarf2_loclist_baton));
21358
21359 fill_in_loclist_baton (cu, baton, attr);
21360
21361 if (cu->base_known == 0)
21362 complaint (&symfile_complaints,
21363 _("Location list used without "
21364 "specifying the CU base address."));
21365
21366 SYMBOL_ACLASS_INDEX (sym) = (is_block
21367 ? dwarf2_loclist_block_index
21368 : dwarf2_loclist_index);
21369 SYMBOL_LOCATION_BATON (sym) = baton;
21370 }
21371 else
21372 {
21373 struct dwarf2_locexpr_baton *baton;
21374
21375 baton = obstack_alloc (&objfile->objfile_obstack,
21376 sizeof (struct dwarf2_locexpr_baton));
21377 baton->per_cu = cu->per_cu;
21378 gdb_assert (baton->per_cu);
21379
21380 if (attr_form_is_block (attr))
21381 {
21382 /* Note that we're just copying the block's data pointer
21383 here, not the actual data. We're still pointing into the
21384 info_buffer for SYM's objfile; right now we never release
21385 that buffer, but when we do clean up properly this may
21386 need to change. */
21387 baton->size = DW_BLOCK (attr)->size;
21388 baton->data = DW_BLOCK (attr)->data;
21389 }
21390 else
21391 {
21392 dwarf2_invalid_attrib_class_complaint ("location description",
21393 SYMBOL_NATURAL_NAME (sym));
21394 baton->size = 0;
21395 }
21396
21397 SYMBOL_ACLASS_INDEX (sym) = (is_block
21398 ? dwarf2_locexpr_block_index
21399 : dwarf2_locexpr_index);
21400 SYMBOL_LOCATION_BATON (sym) = baton;
21401 }
21402 }
21403
21404 /* Return the OBJFILE associated with the compilation unit CU. If CU
21405 came from a separate debuginfo file, then the master objfile is
21406 returned. */
21407
21408 struct objfile *
21409 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21410 {
21411 struct objfile *objfile = per_cu->objfile;
21412
21413 /* Return the master objfile, so that we can report and look up the
21414 correct file containing this variable. */
21415 if (objfile->separate_debug_objfile_backlink)
21416 objfile = objfile->separate_debug_objfile_backlink;
21417
21418 return objfile;
21419 }
21420
21421 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21422 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21423 CU_HEADERP first. */
21424
21425 static const struct comp_unit_head *
21426 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21427 struct dwarf2_per_cu_data *per_cu)
21428 {
21429 const gdb_byte *info_ptr;
21430
21431 if (per_cu->cu)
21432 return &per_cu->cu->header;
21433
21434 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21435
21436 memset (cu_headerp, 0, sizeof (*cu_headerp));
21437 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21438
21439 return cu_headerp;
21440 }
21441
21442 /* Return the address size given in the compilation unit header for CU. */
21443
21444 int
21445 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21446 {
21447 struct comp_unit_head cu_header_local;
21448 const struct comp_unit_head *cu_headerp;
21449
21450 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21451
21452 return cu_headerp->addr_size;
21453 }
21454
21455 /* Return the offset size given in the compilation unit header for CU. */
21456
21457 int
21458 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21459 {
21460 struct comp_unit_head cu_header_local;
21461 const struct comp_unit_head *cu_headerp;
21462
21463 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21464
21465 return cu_headerp->offset_size;
21466 }
21467
21468 /* See its dwarf2loc.h declaration. */
21469
21470 int
21471 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21472 {
21473 struct comp_unit_head cu_header_local;
21474 const struct comp_unit_head *cu_headerp;
21475
21476 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21477
21478 if (cu_headerp->version == 2)
21479 return cu_headerp->addr_size;
21480 else
21481 return cu_headerp->offset_size;
21482 }
21483
21484 /* Return the text offset of the CU. The returned offset comes from
21485 this CU's objfile. If this objfile came from a separate debuginfo
21486 file, then the offset may be different from the corresponding
21487 offset in the parent objfile. */
21488
21489 CORE_ADDR
21490 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21491 {
21492 struct objfile *objfile = per_cu->objfile;
21493
21494 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21495 }
21496
21497 /* Locate the .debug_info compilation unit from CU's objfile which contains
21498 the DIE at OFFSET. Raises an error on failure. */
21499
21500 static struct dwarf2_per_cu_data *
21501 dwarf2_find_containing_comp_unit (sect_offset offset,
21502 unsigned int offset_in_dwz,
21503 struct objfile *objfile)
21504 {
21505 struct dwarf2_per_cu_data *this_cu;
21506 int low, high;
21507 const sect_offset *cu_off;
21508
21509 low = 0;
21510 high = dwarf2_per_objfile->n_comp_units - 1;
21511 while (high > low)
21512 {
21513 struct dwarf2_per_cu_data *mid_cu;
21514 int mid = low + (high - low) / 2;
21515
21516 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21517 cu_off = &mid_cu->offset;
21518 if (mid_cu->is_dwz > offset_in_dwz
21519 || (mid_cu->is_dwz == offset_in_dwz
21520 && cu_off->sect_off >= offset.sect_off))
21521 high = mid;
21522 else
21523 low = mid + 1;
21524 }
21525 gdb_assert (low == high);
21526 this_cu = dwarf2_per_objfile->all_comp_units[low];
21527 cu_off = &this_cu->offset;
21528 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21529 {
21530 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21531 error (_("Dwarf Error: could not find partial DIE containing "
21532 "offset 0x%lx [in module %s]"),
21533 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21534
21535 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21536 <= offset.sect_off);
21537 return dwarf2_per_objfile->all_comp_units[low-1];
21538 }
21539 else
21540 {
21541 this_cu = dwarf2_per_objfile->all_comp_units[low];
21542 if (low == dwarf2_per_objfile->n_comp_units - 1
21543 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21544 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21545 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21546 return this_cu;
21547 }
21548 }
21549
21550 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21551
21552 static void
21553 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21554 {
21555 memset (cu, 0, sizeof (*cu));
21556 per_cu->cu = cu;
21557 cu->per_cu = per_cu;
21558 cu->objfile = per_cu->objfile;
21559 obstack_init (&cu->comp_unit_obstack);
21560 }
21561
21562 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21563
21564 static void
21565 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21566 enum language pretend_language)
21567 {
21568 struct attribute *attr;
21569
21570 /* Set the language we're debugging. */
21571 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21572 if (attr)
21573 set_cu_language (DW_UNSND (attr), cu);
21574 else
21575 {
21576 cu->language = pretend_language;
21577 cu->language_defn = language_def (cu->language);
21578 }
21579
21580 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21581 if (attr)
21582 cu->producer = DW_STRING (attr);
21583 }
21584
21585 /* Release one cached compilation unit, CU. We unlink it from the tree
21586 of compilation units, but we don't remove it from the read_in_chain;
21587 the caller is responsible for that.
21588 NOTE: DATA is a void * because this function is also used as a
21589 cleanup routine. */
21590
21591 static void
21592 free_heap_comp_unit (void *data)
21593 {
21594 struct dwarf2_cu *cu = data;
21595
21596 gdb_assert (cu->per_cu != NULL);
21597 cu->per_cu->cu = NULL;
21598 cu->per_cu = NULL;
21599
21600 obstack_free (&cu->comp_unit_obstack, NULL);
21601
21602 xfree (cu);
21603 }
21604
21605 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21606 when we're finished with it. We can't free the pointer itself, but be
21607 sure to unlink it from the cache. Also release any associated storage. */
21608
21609 static void
21610 free_stack_comp_unit (void *data)
21611 {
21612 struct dwarf2_cu *cu = data;
21613
21614 gdb_assert (cu->per_cu != NULL);
21615 cu->per_cu->cu = NULL;
21616 cu->per_cu = NULL;
21617
21618 obstack_free (&cu->comp_unit_obstack, NULL);
21619 cu->partial_dies = NULL;
21620 }
21621
21622 /* Free all cached compilation units. */
21623
21624 static void
21625 free_cached_comp_units (void *data)
21626 {
21627 struct dwarf2_per_cu_data *per_cu, **last_chain;
21628
21629 per_cu = dwarf2_per_objfile->read_in_chain;
21630 last_chain = &dwarf2_per_objfile->read_in_chain;
21631 while (per_cu != NULL)
21632 {
21633 struct dwarf2_per_cu_data *next_cu;
21634
21635 next_cu = per_cu->cu->read_in_chain;
21636
21637 free_heap_comp_unit (per_cu->cu);
21638 *last_chain = next_cu;
21639
21640 per_cu = next_cu;
21641 }
21642 }
21643
21644 /* Increase the age counter on each cached compilation unit, and free
21645 any that are too old. */
21646
21647 static void
21648 age_cached_comp_units (void)
21649 {
21650 struct dwarf2_per_cu_data *per_cu, **last_chain;
21651
21652 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21653 per_cu = dwarf2_per_objfile->read_in_chain;
21654 while (per_cu != NULL)
21655 {
21656 per_cu->cu->last_used ++;
21657 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21658 dwarf2_mark (per_cu->cu);
21659 per_cu = per_cu->cu->read_in_chain;
21660 }
21661
21662 per_cu = dwarf2_per_objfile->read_in_chain;
21663 last_chain = &dwarf2_per_objfile->read_in_chain;
21664 while (per_cu != NULL)
21665 {
21666 struct dwarf2_per_cu_data *next_cu;
21667
21668 next_cu = per_cu->cu->read_in_chain;
21669
21670 if (!per_cu->cu->mark)
21671 {
21672 free_heap_comp_unit (per_cu->cu);
21673 *last_chain = next_cu;
21674 }
21675 else
21676 last_chain = &per_cu->cu->read_in_chain;
21677
21678 per_cu = next_cu;
21679 }
21680 }
21681
21682 /* Remove a single compilation unit from the cache. */
21683
21684 static void
21685 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21686 {
21687 struct dwarf2_per_cu_data *per_cu, **last_chain;
21688
21689 per_cu = dwarf2_per_objfile->read_in_chain;
21690 last_chain = &dwarf2_per_objfile->read_in_chain;
21691 while (per_cu != NULL)
21692 {
21693 struct dwarf2_per_cu_data *next_cu;
21694
21695 next_cu = per_cu->cu->read_in_chain;
21696
21697 if (per_cu == target_per_cu)
21698 {
21699 free_heap_comp_unit (per_cu->cu);
21700 per_cu->cu = NULL;
21701 *last_chain = next_cu;
21702 break;
21703 }
21704 else
21705 last_chain = &per_cu->cu->read_in_chain;
21706
21707 per_cu = next_cu;
21708 }
21709 }
21710
21711 /* Release all extra memory associated with OBJFILE. */
21712
21713 void
21714 dwarf2_free_objfile (struct objfile *objfile)
21715 {
21716 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21717
21718 if (dwarf2_per_objfile == NULL)
21719 return;
21720
21721 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21722 free_cached_comp_units (NULL);
21723
21724 if (dwarf2_per_objfile->quick_file_names_table)
21725 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21726
21727 /* Everything else should be on the objfile obstack. */
21728 }
21729
21730 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21731 We store these in a hash table separate from the DIEs, and preserve them
21732 when the DIEs are flushed out of cache.
21733
21734 The CU "per_cu" pointer is needed because offset alone is not enough to
21735 uniquely identify the type. A file may have multiple .debug_types sections,
21736 or the type may come from a DWO file. Furthermore, while it's more logical
21737 to use per_cu->section+offset, with Fission the section with the data is in
21738 the DWO file but we don't know that section at the point we need it.
21739 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21740 because we can enter the lookup routine, get_die_type_at_offset, from
21741 outside this file, and thus won't necessarily have PER_CU->cu.
21742 Fortunately, PER_CU is stable for the life of the objfile. */
21743
21744 struct dwarf2_per_cu_offset_and_type
21745 {
21746 const struct dwarf2_per_cu_data *per_cu;
21747 sect_offset offset;
21748 struct type *type;
21749 };
21750
21751 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21752
21753 static hashval_t
21754 per_cu_offset_and_type_hash (const void *item)
21755 {
21756 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21757
21758 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21759 }
21760
21761 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21762
21763 static int
21764 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21765 {
21766 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21767 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21768
21769 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21770 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21771 }
21772
21773 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21774 table if necessary. For convenience, return TYPE.
21775
21776 The DIEs reading must have careful ordering to:
21777 * Not cause infite loops trying to read in DIEs as a prerequisite for
21778 reading current DIE.
21779 * Not trying to dereference contents of still incompletely read in types
21780 while reading in other DIEs.
21781 * Enable referencing still incompletely read in types just by a pointer to
21782 the type without accessing its fields.
21783
21784 Therefore caller should follow these rules:
21785 * Try to fetch any prerequisite types we may need to build this DIE type
21786 before building the type and calling set_die_type.
21787 * After building type call set_die_type for current DIE as soon as
21788 possible before fetching more types to complete the current type.
21789 * Make the type as complete as possible before fetching more types. */
21790
21791 static struct type *
21792 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21793 {
21794 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21795 struct objfile *objfile = cu->objfile;
21796 struct attribute *attr;
21797 struct dynamic_prop prop;
21798
21799 /* For Ada types, make sure that the gnat-specific data is always
21800 initialized (if not already set). There are a few types where
21801 we should not be doing so, because the type-specific area is
21802 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21803 where the type-specific area is used to store the floatformat).
21804 But this is not a problem, because the gnat-specific information
21805 is actually not needed for these types. */
21806 if (need_gnat_info (cu)
21807 && TYPE_CODE (type) != TYPE_CODE_FUNC
21808 && TYPE_CODE (type) != TYPE_CODE_FLT
21809 && !HAVE_GNAT_AUX_INFO (type))
21810 INIT_GNAT_SPECIFIC (type);
21811
21812 /* Read DW_AT_data_location and set in type. */
21813 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21814 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21815 {
21816 TYPE_DATA_LOCATION (type)
21817 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21818 *TYPE_DATA_LOCATION (type) = prop;
21819 }
21820
21821 if (dwarf2_per_objfile->die_type_hash == NULL)
21822 {
21823 dwarf2_per_objfile->die_type_hash =
21824 htab_create_alloc_ex (127,
21825 per_cu_offset_and_type_hash,
21826 per_cu_offset_and_type_eq,
21827 NULL,
21828 &objfile->objfile_obstack,
21829 hashtab_obstack_allocate,
21830 dummy_obstack_deallocate);
21831 }
21832
21833 ofs.per_cu = cu->per_cu;
21834 ofs.offset = die->offset;
21835 ofs.type = type;
21836 slot = (struct dwarf2_per_cu_offset_and_type **)
21837 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21838 if (*slot)
21839 complaint (&symfile_complaints,
21840 _("A problem internal to GDB: DIE 0x%x has type already set"),
21841 die->offset.sect_off);
21842 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21843 **slot = ofs;
21844 return type;
21845 }
21846
21847 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21848 or return NULL if the die does not have a saved type. */
21849
21850 static struct type *
21851 get_die_type_at_offset (sect_offset offset,
21852 struct dwarf2_per_cu_data *per_cu)
21853 {
21854 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21855
21856 if (dwarf2_per_objfile->die_type_hash == NULL)
21857 return NULL;
21858
21859 ofs.per_cu = per_cu;
21860 ofs.offset = offset;
21861 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21862 if (slot)
21863 return slot->type;
21864 else
21865 return NULL;
21866 }
21867
21868 /* Look up the type for DIE in CU in die_type_hash,
21869 or return NULL if DIE does not have a saved type. */
21870
21871 static struct type *
21872 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21873 {
21874 return get_die_type_at_offset (die->offset, cu->per_cu);
21875 }
21876
21877 /* Add a dependence relationship from CU to REF_PER_CU. */
21878
21879 static void
21880 dwarf2_add_dependence (struct dwarf2_cu *cu,
21881 struct dwarf2_per_cu_data *ref_per_cu)
21882 {
21883 void **slot;
21884
21885 if (cu->dependencies == NULL)
21886 cu->dependencies
21887 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21888 NULL, &cu->comp_unit_obstack,
21889 hashtab_obstack_allocate,
21890 dummy_obstack_deallocate);
21891
21892 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21893 if (*slot == NULL)
21894 *slot = ref_per_cu;
21895 }
21896
21897 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21898 Set the mark field in every compilation unit in the
21899 cache that we must keep because we are keeping CU. */
21900
21901 static int
21902 dwarf2_mark_helper (void **slot, void *data)
21903 {
21904 struct dwarf2_per_cu_data *per_cu;
21905
21906 per_cu = (struct dwarf2_per_cu_data *) *slot;
21907
21908 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21909 reading of the chain. As such dependencies remain valid it is not much
21910 useful to track and undo them during QUIT cleanups. */
21911 if (per_cu->cu == NULL)
21912 return 1;
21913
21914 if (per_cu->cu->mark)
21915 return 1;
21916 per_cu->cu->mark = 1;
21917
21918 if (per_cu->cu->dependencies != NULL)
21919 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21920
21921 return 1;
21922 }
21923
21924 /* Set the mark field in CU and in every other compilation unit in the
21925 cache that we must keep because we are keeping CU. */
21926
21927 static void
21928 dwarf2_mark (struct dwarf2_cu *cu)
21929 {
21930 if (cu->mark)
21931 return;
21932 cu->mark = 1;
21933 if (cu->dependencies != NULL)
21934 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21935 }
21936
21937 static void
21938 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21939 {
21940 while (per_cu)
21941 {
21942 per_cu->cu->mark = 0;
21943 per_cu = per_cu->cu->read_in_chain;
21944 }
21945 }
21946
21947 /* Trivial hash function for partial_die_info: the hash value of a DIE
21948 is its offset in .debug_info for this objfile. */
21949
21950 static hashval_t
21951 partial_die_hash (const void *item)
21952 {
21953 const struct partial_die_info *part_die = item;
21954
21955 return part_die->offset.sect_off;
21956 }
21957
21958 /* Trivial comparison function for partial_die_info structures: two DIEs
21959 are equal if they have the same offset. */
21960
21961 static int
21962 partial_die_eq (const void *item_lhs, const void *item_rhs)
21963 {
21964 const struct partial_die_info *part_die_lhs = item_lhs;
21965 const struct partial_die_info *part_die_rhs = item_rhs;
21966
21967 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21968 }
21969
21970 static struct cmd_list_element *set_dwarf2_cmdlist;
21971 static struct cmd_list_element *show_dwarf2_cmdlist;
21972
21973 static void
21974 set_dwarf2_cmd (char *args, int from_tty)
21975 {
21976 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21977 gdb_stdout);
21978 }
21979
21980 static void
21981 show_dwarf2_cmd (char *args, int from_tty)
21982 {
21983 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21984 }
21985
21986 /* Free data associated with OBJFILE, if necessary. */
21987
21988 static void
21989 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21990 {
21991 struct dwarf2_per_objfile *data = d;
21992 int ix;
21993
21994 /* Make sure we don't accidentally use dwarf2_per_objfile while
21995 cleaning up. */
21996 dwarf2_per_objfile = NULL;
21997
21998 for (ix = 0; ix < data->n_comp_units; ++ix)
21999 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22000
22001 for (ix = 0; ix < data->n_type_units; ++ix)
22002 VEC_free (dwarf2_per_cu_ptr,
22003 data->all_type_units[ix]->per_cu.imported_symtabs);
22004 xfree (data->all_type_units);
22005
22006 VEC_free (dwarf2_section_info_def, data->types);
22007
22008 if (data->dwo_files)
22009 free_dwo_files (data->dwo_files, objfile);
22010 if (data->dwp_file)
22011 gdb_bfd_unref (data->dwp_file->dbfd);
22012
22013 if (data->dwz_file && data->dwz_file->dwz_bfd)
22014 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22015 }
22016
22017 \f
22018 /* The "save gdb-index" command. */
22019
22020 /* The contents of the hash table we create when building the string
22021 table. */
22022 struct strtab_entry
22023 {
22024 offset_type offset;
22025 const char *str;
22026 };
22027
22028 /* Hash function for a strtab_entry.
22029
22030 Function is used only during write_hash_table so no index format backward
22031 compatibility is needed. */
22032
22033 static hashval_t
22034 hash_strtab_entry (const void *e)
22035 {
22036 const struct strtab_entry *entry = e;
22037 return mapped_index_string_hash (INT_MAX, entry->str);
22038 }
22039
22040 /* Equality function for a strtab_entry. */
22041
22042 static int
22043 eq_strtab_entry (const void *a, const void *b)
22044 {
22045 const struct strtab_entry *ea = a;
22046 const struct strtab_entry *eb = b;
22047 return !strcmp (ea->str, eb->str);
22048 }
22049
22050 /* Create a strtab_entry hash table. */
22051
22052 static htab_t
22053 create_strtab (void)
22054 {
22055 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22056 xfree, xcalloc, xfree);
22057 }
22058
22059 /* Add a string to the constant pool. Return the string's offset in
22060 host order. */
22061
22062 static offset_type
22063 add_string (htab_t table, struct obstack *cpool, const char *str)
22064 {
22065 void **slot;
22066 struct strtab_entry entry;
22067 struct strtab_entry *result;
22068
22069 entry.str = str;
22070 slot = htab_find_slot (table, &entry, INSERT);
22071 if (*slot)
22072 result = *slot;
22073 else
22074 {
22075 result = XNEW (struct strtab_entry);
22076 result->offset = obstack_object_size (cpool);
22077 result->str = str;
22078 obstack_grow_str0 (cpool, str);
22079 *slot = result;
22080 }
22081 return result->offset;
22082 }
22083
22084 /* An entry in the symbol table. */
22085 struct symtab_index_entry
22086 {
22087 /* The name of the symbol. */
22088 const char *name;
22089 /* The offset of the name in the constant pool. */
22090 offset_type index_offset;
22091 /* A sorted vector of the indices of all the CUs that hold an object
22092 of this name. */
22093 VEC (offset_type) *cu_indices;
22094 };
22095
22096 /* The symbol table. This is a power-of-2-sized hash table. */
22097 struct mapped_symtab
22098 {
22099 offset_type n_elements;
22100 offset_type size;
22101 struct symtab_index_entry **data;
22102 };
22103
22104 /* Hash function for a symtab_index_entry. */
22105
22106 static hashval_t
22107 hash_symtab_entry (const void *e)
22108 {
22109 const struct symtab_index_entry *entry = e;
22110 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22111 sizeof (offset_type) * VEC_length (offset_type,
22112 entry->cu_indices),
22113 0);
22114 }
22115
22116 /* Equality function for a symtab_index_entry. */
22117
22118 static int
22119 eq_symtab_entry (const void *a, const void *b)
22120 {
22121 const struct symtab_index_entry *ea = a;
22122 const struct symtab_index_entry *eb = b;
22123 int len = VEC_length (offset_type, ea->cu_indices);
22124 if (len != VEC_length (offset_type, eb->cu_indices))
22125 return 0;
22126 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22127 VEC_address (offset_type, eb->cu_indices),
22128 sizeof (offset_type) * len);
22129 }
22130
22131 /* Destroy a symtab_index_entry. */
22132
22133 static void
22134 delete_symtab_entry (void *p)
22135 {
22136 struct symtab_index_entry *entry = p;
22137 VEC_free (offset_type, entry->cu_indices);
22138 xfree (entry);
22139 }
22140
22141 /* Create a hash table holding symtab_index_entry objects. */
22142
22143 static htab_t
22144 create_symbol_hash_table (void)
22145 {
22146 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22147 delete_symtab_entry, xcalloc, xfree);
22148 }
22149
22150 /* Create a new mapped symtab object. */
22151
22152 static struct mapped_symtab *
22153 create_mapped_symtab (void)
22154 {
22155 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22156 symtab->n_elements = 0;
22157 symtab->size = 1024;
22158 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22159 return symtab;
22160 }
22161
22162 /* Destroy a mapped_symtab. */
22163
22164 static void
22165 cleanup_mapped_symtab (void *p)
22166 {
22167 struct mapped_symtab *symtab = p;
22168 /* The contents of the array are freed when the other hash table is
22169 destroyed. */
22170 xfree (symtab->data);
22171 xfree (symtab);
22172 }
22173
22174 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22175 the slot.
22176
22177 Function is used only during write_hash_table so no index format backward
22178 compatibility is needed. */
22179
22180 static struct symtab_index_entry **
22181 find_slot (struct mapped_symtab *symtab, const char *name)
22182 {
22183 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22184
22185 index = hash & (symtab->size - 1);
22186 step = ((hash * 17) & (symtab->size - 1)) | 1;
22187
22188 for (;;)
22189 {
22190 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22191 return &symtab->data[index];
22192 index = (index + step) & (symtab->size - 1);
22193 }
22194 }
22195
22196 /* Expand SYMTAB's hash table. */
22197
22198 static void
22199 hash_expand (struct mapped_symtab *symtab)
22200 {
22201 offset_type old_size = symtab->size;
22202 offset_type i;
22203 struct symtab_index_entry **old_entries = symtab->data;
22204
22205 symtab->size *= 2;
22206 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22207
22208 for (i = 0; i < old_size; ++i)
22209 {
22210 if (old_entries[i])
22211 {
22212 struct symtab_index_entry **slot = find_slot (symtab,
22213 old_entries[i]->name);
22214 *slot = old_entries[i];
22215 }
22216 }
22217
22218 xfree (old_entries);
22219 }
22220
22221 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22222 CU_INDEX is the index of the CU in which the symbol appears.
22223 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22224
22225 static void
22226 add_index_entry (struct mapped_symtab *symtab, const char *name,
22227 int is_static, gdb_index_symbol_kind kind,
22228 offset_type cu_index)
22229 {
22230 struct symtab_index_entry **slot;
22231 offset_type cu_index_and_attrs;
22232
22233 ++symtab->n_elements;
22234 if (4 * symtab->n_elements / 3 >= symtab->size)
22235 hash_expand (symtab);
22236
22237 slot = find_slot (symtab, name);
22238 if (!*slot)
22239 {
22240 *slot = XNEW (struct symtab_index_entry);
22241 (*slot)->name = name;
22242 /* index_offset is set later. */
22243 (*slot)->cu_indices = NULL;
22244 }
22245
22246 cu_index_and_attrs = 0;
22247 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22248 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22249 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22250
22251 /* We don't want to record an index value twice as we want to avoid the
22252 duplication.
22253 We process all global symbols and then all static symbols
22254 (which would allow us to avoid the duplication by only having to check
22255 the last entry pushed), but a symbol could have multiple kinds in one CU.
22256 To keep things simple we don't worry about the duplication here and
22257 sort and uniqufy the list after we've processed all symbols. */
22258 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22259 }
22260
22261 /* qsort helper routine for uniquify_cu_indices. */
22262
22263 static int
22264 offset_type_compare (const void *ap, const void *bp)
22265 {
22266 offset_type a = *(offset_type *) ap;
22267 offset_type b = *(offset_type *) bp;
22268
22269 return (a > b) - (b > a);
22270 }
22271
22272 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22273
22274 static void
22275 uniquify_cu_indices (struct mapped_symtab *symtab)
22276 {
22277 int i;
22278
22279 for (i = 0; i < symtab->size; ++i)
22280 {
22281 struct symtab_index_entry *entry = symtab->data[i];
22282
22283 if (entry
22284 && entry->cu_indices != NULL)
22285 {
22286 unsigned int next_to_insert, next_to_check;
22287 offset_type last_value;
22288
22289 qsort (VEC_address (offset_type, entry->cu_indices),
22290 VEC_length (offset_type, entry->cu_indices),
22291 sizeof (offset_type), offset_type_compare);
22292
22293 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22294 next_to_insert = 1;
22295 for (next_to_check = 1;
22296 next_to_check < VEC_length (offset_type, entry->cu_indices);
22297 ++next_to_check)
22298 {
22299 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22300 != last_value)
22301 {
22302 last_value = VEC_index (offset_type, entry->cu_indices,
22303 next_to_check);
22304 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22305 last_value);
22306 ++next_to_insert;
22307 }
22308 }
22309 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22310 }
22311 }
22312 }
22313
22314 /* Add a vector of indices to the constant pool. */
22315
22316 static offset_type
22317 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22318 struct symtab_index_entry *entry)
22319 {
22320 void **slot;
22321
22322 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22323 if (!*slot)
22324 {
22325 offset_type len = VEC_length (offset_type, entry->cu_indices);
22326 offset_type val = MAYBE_SWAP (len);
22327 offset_type iter;
22328 int i;
22329
22330 *slot = entry;
22331 entry->index_offset = obstack_object_size (cpool);
22332
22333 obstack_grow (cpool, &val, sizeof (val));
22334 for (i = 0;
22335 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22336 ++i)
22337 {
22338 val = MAYBE_SWAP (iter);
22339 obstack_grow (cpool, &val, sizeof (val));
22340 }
22341 }
22342 else
22343 {
22344 struct symtab_index_entry *old_entry = *slot;
22345 entry->index_offset = old_entry->index_offset;
22346 entry = old_entry;
22347 }
22348 return entry->index_offset;
22349 }
22350
22351 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22352 constant pool entries going into the obstack CPOOL. */
22353
22354 static void
22355 write_hash_table (struct mapped_symtab *symtab,
22356 struct obstack *output, struct obstack *cpool)
22357 {
22358 offset_type i;
22359 htab_t symbol_hash_table;
22360 htab_t str_table;
22361
22362 symbol_hash_table = create_symbol_hash_table ();
22363 str_table = create_strtab ();
22364
22365 /* We add all the index vectors to the constant pool first, to
22366 ensure alignment is ok. */
22367 for (i = 0; i < symtab->size; ++i)
22368 {
22369 if (symtab->data[i])
22370 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22371 }
22372
22373 /* Now write out the hash table. */
22374 for (i = 0; i < symtab->size; ++i)
22375 {
22376 offset_type str_off, vec_off;
22377
22378 if (symtab->data[i])
22379 {
22380 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22381 vec_off = symtab->data[i]->index_offset;
22382 }
22383 else
22384 {
22385 /* While 0 is a valid constant pool index, it is not valid
22386 to have 0 for both offsets. */
22387 str_off = 0;
22388 vec_off = 0;
22389 }
22390
22391 str_off = MAYBE_SWAP (str_off);
22392 vec_off = MAYBE_SWAP (vec_off);
22393
22394 obstack_grow (output, &str_off, sizeof (str_off));
22395 obstack_grow (output, &vec_off, sizeof (vec_off));
22396 }
22397
22398 htab_delete (str_table);
22399 htab_delete (symbol_hash_table);
22400 }
22401
22402 /* Struct to map psymtab to CU index in the index file. */
22403 struct psymtab_cu_index_map
22404 {
22405 struct partial_symtab *psymtab;
22406 unsigned int cu_index;
22407 };
22408
22409 static hashval_t
22410 hash_psymtab_cu_index (const void *item)
22411 {
22412 const struct psymtab_cu_index_map *map = item;
22413
22414 return htab_hash_pointer (map->psymtab);
22415 }
22416
22417 static int
22418 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22419 {
22420 const struct psymtab_cu_index_map *lhs = item_lhs;
22421 const struct psymtab_cu_index_map *rhs = item_rhs;
22422
22423 return lhs->psymtab == rhs->psymtab;
22424 }
22425
22426 /* Helper struct for building the address table. */
22427 struct addrmap_index_data
22428 {
22429 struct objfile *objfile;
22430 struct obstack *addr_obstack;
22431 htab_t cu_index_htab;
22432
22433 /* Non-zero if the previous_* fields are valid.
22434 We can't write an entry until we see the next entry (since it is only then
22435 that we know the end of the entry). */
22436 int previous_valid;
22437 /* Index of the CU in the table of all CUs in the index file. */
22438 unsigned int previous_cu_index;
22439 /* Start address of the CU. */
22440 CORE_ADDR previous_cu_start;
22441 };
22442
22443 /* Write an address entry to OBSTACK. */
22444
22445 static void
22446 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22447 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22448 {
22449 offset_type cu_index_to_write;
22450 gdb_byte addr[8];
22451 CORE_ADDR baseaddr;
22452
22453 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22454
22455 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22456 obstack_grow (obstack, addr, 8);
22457 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22458 obstack_grow (obstack, addr, 8);
22459 cu_index_to_write = MAYBE_SWAP (cu_index);
22460 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22461 }
22462
22463 /* Worker function for traversing an addrmap to build the address table. */
22464
22465 static int
22466 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22467 {
22468 struct addrmap_index_data *data = datap;
22469 struct partial_symtab *pst = obj;
22470
22471 if (data->previous_valid)
22472 add_address_entry (data->objfile, data->addr_obstack,
22473 data->previous_cu_start, start_addr,
22474 data->previous_cu_index);
22475
22476 data->previous_cu_start = start_addr;
22477 if (pst != NULL)
22478 {
22479 struct psymtab_cu_index_map find_map, *map;
22480 find_map.psymtab = pst;
22481 map = htab_find (data->cu_index_htab, &find_map);
22482 gdb_assert (map != NULL);
22483 data->previous_cu_index = map->cu_index;
22484 data->previous_valid = 1;
22485 }
22486 else
22487 data->previous_valid = 0;
22488
22489 return 0;
22490 }
22491
22492 /* Write OBJFILE's address map to OBSTACK.
22493 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22494 in the index file. */
22495
22496 static void
22497 write_address_map (struct objfile *objfile, struct obstack *obstack,
22498 htab_t cu_index_htab)
22499 {
22500 struct addrmap_index_data addrmap_index_data;
22501
22502 /* When writing the address table, we have to cope with the fact that
22503 the addrmap iterator only provides the start of a region; we have to
22504 wait until the next invocation to get the start of the next region. */
22505
22506 addrmap_index_data.objfile = objfile;
22507 addrmap_index_data.addr_obstack = obstack;
22508 addrmap_index_data.cu_index_htab = cu_index_htab;
22509 addrmap_index_data.previous_valid = 0;
22510
22511 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22512 &addrmap_index_data);
22513
22514 /* It's highly unlikely the last entry (end address = 0xff...ff)
22515 is valid, but we should still handle it.
22516 The end address is recorded as the start of the next region, but that
22517 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22518 anyway. */
22519 if (addrmap_index_data.previous_valid)
22520 add_address_entry (objfile, obstack,
22521 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22522 addrmap_index_data.previous_cu_index);
22523 }
22524
22525 /* Return the symbol kind of PSYM. */
22526
22527 static gdb_index_symbol_kind
22528 symbol_kind (struct partial_symbol *psym)
22529 {
22530 domain_enum domain = PSYMBOL_DOMAIN (psym);
22531 enum address_class aclass = PSYMBOL_CLASS (psym);
22532
22533 switch (domain)
22534 {
22535 case VAR_DOMAIN:
22536 switch (aclass)
22537 {
22538 case LOC_BLOCK:
22539 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22540 case LOC_TYPEDEF:
22541 return GDB_INDEX_SYMBOL_KIND_TYPE;
22542 case LOC_COMPUTED:
22543 case LOC_CONST_BYTES:
22544 case LOC_OPTIMIZED_OUT:
22545 case LOC_STATIC:
22546 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22547 case LOC_CONST:
22548 /* Note: It's currently impossible to recognize psyms as enum values
22549 short of reading the type info. For now punt. */
22550 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22551 default:
22552 /* There are other LOC_FOO values that one might want to classify
22553 as variables, but dwarf2read.c doesn't currently use them. */
22554 return GDB_INDEX_SYMBOL_KIND_OTHER;
22555 }
22556 case STRUCT_DOMAIN:
22557 return GDB_INDEX_SYMBOL_KIND_TYPE;
22558 default:
22559 return GDB_INDEX_SYMBOL_KIND_OTHER;
22560 }
22561 }
22562
22563 /* Add a list of partial symbols to SYMTAB. */
22564
22565 static void
22566 write_psymbols (struct mapped_symtab *symtab,
22567 htab_t psyms_seen,
22568 struct partial_symbol **psymp,
22569 int count,
22570 offset_type cu_index,
22571 int is_static)
22572 {
22573 for (; count-- > 0; ++psymp)
22574 {
22575 struct partial_symbol *psym = *psymp;
22576 void **slot;
22577
22578 if (SYMBOL_LANGUAGE (psym) == language_ada)
22579 error (_("Ada is not currently supported by the index"));
22580
22581 /* Only add a given psymbol once. */
22582 slot = htab_find_slot (psyms_seen, psym, INSERT);
22583 if (!*slot)
22584 {
22585 gdb_index_symbol_kind kind = symbol_kind (psym);
22586
22587 *slot = psym;
22588 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22589 is_static, kind, cu_index);
22590 }
22591 }
22592 }
22593
22594 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22595 exception if there is an error. */
22596
22597 static void
22598 write_obstack (FILE *file, struct obstack *obstack)
22599 {
22600 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22601 file)
22602 != obstack_object_size (obstack))
22603 error (_("couldn't data write to file"));
22604 }
22605
22606 /* Unlink a file if the argument is not NULL. */
22607
22608 static void
22609 unlink_if_set (void *p)
22610 {
22611 char **filename = p;
22612 if (*filename)
22613 unlink (*filename);
22614 }
22615
22616 /* A helper struct used when iterating over debug_types. */
22617 struct signatured_type_index_data
22618 {
22619 struct objfile *objfile;
22620 struct mapped_symtab *symtab;
22621 struct obstack *types_list;
22622 htab_t psyms_seen;
22623 int cu_index;
22624 };
22625
22626 /* A helper function that writes a single signatured_type to an
22627 obstack. */
22628
22629 static int
22630 write_one_signatured_type (void **slot, void *d)
22631 {
22632 struct signatured_type_index_data *info = d;
22633 struct signatured_type *entry = (struct signatured_type *) *slot;
22634 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22635 gdb_byte val[8];
22636
22637 write_psymbols (info->symtab,
22638 info->psyms_seen,
22639 info->objfile->global_psymbols.list
22640 + psymtab->globals_offset,
22641 psymtab->n_global_syms, info->cu_index,
22642 0);
22643 write_psymbols (info->symtab,
22644 info->psyms_seen,
22645 info->objfile->static_psymbols.list
22646 + psymtab->statics_offset,
22647 psymtab->n_static_syms, info->cu_index,
22648 1);
22649
22650 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22651 entry->per_cu.offset.sect_off);
22652 obstack_grow (info->types_list, val, 8);
22653 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22654 entry->type_offset_in_tu.cu_off);
22655 obstack_grow (info->types_list, val, 8);
22656 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22657 obstack_grow (info->types_list, val, 8);
22658
22659 ++info->cu_index;
22660
22661 return 1;
22662 }
22663
22664 /* Recurse into all "included" dependencies and write their symbols as
22665 if they appeared in this psymtab. */
22666
22667 static void
22668 recursively_write_psymbols (struct objfile *objfile,
22669 struct partial_symtab *psymtab,
22670 struct mapped_symtab *symtab,
22671 htab_t psyms_seen,
22672 offset_type cu_index)
22673 {
22674 int i;
22675
22676 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22677 if (psymtab->dependencies[i]->user != NULL)
22678 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22679 symtab, psyms_seen, cu_index);
22680
22681 write_psymbols (symtab,
22682 psyms_seen,
22683 objfile->global_psymbols.list + psymtab->globals_offset,
22684 psymtab->n_global_syms, cu_index,
22685 0);
22686 write_psymbols (symtab,
22687 psyms_seen,
22688 objfile->static_psymbols.list + psymtab->statics_offset,
22689 psymtab->n_static_syms, cu_index,
22690 1);
22691 }
22692
22693 /* Create an index file for OBJFILE in the directory DIR. */
22694
22695 static void
22696 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22697 {
22698 struct cleanup *cleanup;
22699 char *filename, *cleanup_filename;
22700 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22701 struct obstack cu_list, types_cu_list;
22702 int i;
22703 FILE *out_file;
22704 struct mapped_symtab *symtab;
22705 offset_type val, size_of_contents, total_len;
22706 struct stat st;
22707 htab_t psyms_seen;
22708 htab_t cu_index_htab;
22709 struct psymtab_cu_index_map *psymtab_cu_index_map;
22710
22711 if (dwarf2_per_objfile->using_index)
22712 error (_("Cannot use an index to create the index"));
22713
22714 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22715 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22716
22717 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22718 return;
22719
22720 if (stat (objfile_name (objfile), &st) < 0)
22721 perror_with_name (objfile_name (objfile));
22722
22723 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22724 INDEX_SUFFIX, (char *) NULL);
22725 cleanup = make_cleanup (xfree, filename);
22726
22727 out_file = gdb_fopen_cloexec (filename, "wb");
22728 if (!out_file)
22729 error (_("Can't open `%s' for writing"), filename);
22730
22731 cleanup_filename = filename;
22732 make_cleanup (unlink_if_set, &cleanup_filename);
22733
22734 symtab = create_mapped_symtab ();
22735 make_cleanup (cleanup_mapped_symtab, symtab);
22736
22737 obstack_init (&addr_obstack);
22738 make_cleanup_obstack_free (&addr_obstack);
22739
22740 obstack_init (&cu_list);
22741 make_cleanup_obstack_free (&cu_list);
22742
22743 obstack_init (&types_cu_list);
22744 make_cleanup_obstack_free (&types_cu_list);
22745
22746 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22747 NULL, xcalloc, xfree);
22748 make_cleanup_htab_delete (psyms_seen);
22749
22750 /* While we're scanning CU's create a table that maps a psymtab pointer
22751 (which is what addrmap records) to its index (which is what is recorded
22752 in the index file). This will later be needed to write the address
22753 table. */
22754 cu_index_htab = htab_create_alloc (100,
22755 hash_psymtab_cu_index,
22756 eq_psymtab_cu_index,
22757 NULL, xcalloc, xfree);
22758 make_cleanup_htab_delete (cu_index_htab);
22759 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22760 xmalloc (sizeof (struct psymtab_cu_index_map)
22761 * dwarf2_per_objfile->n_comp_units);
22762 make_cleanup (xfree, psymtab_cu_index_map);
22763
22764 /* The CU list is already sorted, so we don't need to do additional
22765 work here. Also, the debug_types entries do not appear in
22766 all_comp_units, but only in their own hash table. */
22767 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22768 {
22769 struct dwarf2_per_cu_data *per_cu
22770 = dwarf2_per_objfile->all_comp_units[i];
22771 struct partial_symtab *psymtab = per_cu->v.psymtab;
22772 gdb_byte val[8];
22773 struct psymtab_cu_index_map *map;
22774 void **slot;
22775
22776 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22777 It may be referenced from a local scope but in such case it does not
22778 need to be present in .gdb_index. */
22779 if (psymtab == NULL)
22780 continue;
22781
22782 if (psymtab->user == NULL)
22783 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22784
22785 map = &psymtab_cu_index_map[i];
22786 map->psymtab = psymtab;
22787 map->cu_index = i;
22788 slot = htab_find_slot (cu_index_htab, map, INSERT);
22789 gdb_assert (slot != NULL);
22790 gdb_assert (*slot == NULL);
22791 *slot = map;
22792
22793 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22794 per_cu->offset.sect_off);
22795 obstack_grow (&cu_list, val, 8);
22796 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22797 obstack_grow (&cu_list, val, 8);
22798 }
22799
22800 /* Dump the address map. */
22801 write_address_map (objfile, &addr_obstack, cu_index_htab);
22802
22803 /* Write out the .debug_type entries, if any. */
22804 if (dwarf2_per_objfile->signatured_types)
22805 {
22806 struct signatured_type_index_data sig_data;
22807
22808 sig_data.objfile = objfile;
22809 sig_data.symtab = symtab;
22810 sig_data.types_list = &types_cu_list;
22811 sig_data.psyms_seen = psyms_seen;
22812 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22813 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22814 write_one_signatured_type, &sig_data);
22815 }
22816
22817 /* Now that we've processed all symbols we can shrink their cu_indices
22818 lists. */
22819 uniquify_cu_indices (symtab);
22820
22821 obstack_init (&constant_pool);
22822 make_cleanup_obstack_free (&constant_pool);
22823 obstack_init (&symtab_obstack);
22824 make_cleanup_obstack_free (&symtab_obstack);
22825 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22826
22827 obstack_init (&contents);
22828 make_cleanup_obstack_free (&contents);
22829 size_of_contents = 6 * sizeof (offset_type);
22830 total_len = size_of_contents;
22831
22832 /* The version number. */
22833 val = MAYBE_SWAP (8);
22834 obstack_grow (&contents, &val, sizeof (val));
22835
22836 /* The offset of the CU list from the start of the file. */
22837 val = MAYBE_SWAP (total_len);
22838 obstack_grow (&contents, &val, sizeof (val));
22839 total_len += obstack_object_size (&cu_list);
22840
22841 /* The offset of the types CU list from the start of the file. */
22842 val = MAYBE_SWAP (total_len);
22843 obstack_grow (&contents, &val, sizeof (val));
22844 total_len += obstack_object_size (&types_cu_list);
22845
22846 /* The offset of the address table from the start of the file. */
22847 val = MAYBE_SWAP (total_len);
22848 obstack_grow (&contents, &val, sizeof (val));
22849 total_len += obstack_object_size (&addr_obstack);
22850
22851 /* The offset of the symbol table from the start of the file. */
22852 val = MAYBE_SWAP (total_len);
22853 obstack_grow (&contents, &val, sizeof (val));
22854 total_len += obstack_object_size (&symtab_obstack);
22855
22856 /* The offset of the constant pool from the start of the file. */
22857 val = MAYBE_SWAP (total_len);
22858 obstack_grow (&contents, &val, sizeof (val));
22859 total_len += obstack_object_size (&constant_pool);
22860
22861 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22862
22863 write_obstack (out_file, &contents);
22864 write_obstack (out_file, &cu_list);
22865 write_obstack (out_file, &types_cu_list);
22866 write_obstack (out_file, &addr_obstack);
22867 write_obstack (out_file, &symtab_obstack);
22868 write_obstack (out_file, &constant_pool);
22869
22870 fclose (out_file);
22871
22872 /* We want to keep the file, so we set cleanup_filename to NULL
22873 here. See unlink_if_set. */
22874 cleanup_filename = NULL;
22875
22876 do_cleanups (cleanup);
22877 }
22878
22879 /* Implementation of the `save gdb-index' command.
22880
22881 Note that the file format used by this command is documented in the
22882 GDB manual. Any changes here must be documented there. */
22883
22884 static void
22885 save_gdb_index_command (char *arg, int from_tty)
22886 {
22887 struct objfile *objfile;
22888
22889 if (!arg || !*arg)
22890 error (_("usage: save gdb-index DIRECTORY"));
22891
22892 ALL_OBJFILES (objfile)
22893 {
22894 struct stat st;
22895
22896 /* If the objfile does not correspond to an actual file, skip it. */
22897 if (stat (objfile_name (objfile), &st) < 0)
22898 continue;
22899
22900 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22901 if (dwarf2_per_objfile)
22902 {
22903 volatile struct gdb_exception except;
22904
22905 TRY_CATCH (except, RETURN_MASK_ERROR)
22906 {
22907 write_psymtabs_to_index (objfile, arg);
22908 }
22909 if (except.reason < 0)
22910 exception_fprintf (gdb_stderr, except,
22911 _("Error while writing index for `%s': "),
22912 objfile_name (objfile));
22913 }
22914 }
22915 }
22916
22917 \f
22918
22919 int dwarf2_always_disassemble;
22920
22921 static void
22922 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22923 struct cmd_list_element *c, const char *value)
22924 {
22925 fprintf_filtered (file,
22926 _("Whether to always disassemble "
22927 "DWARF expressions is %s.\n"),
22928 value);
22929 }
22930
22931 static void
22932 show_check_physname (struct ui_file *file, int from_tty,
22933 struct cmd_list_element *c, const char *value)
22934 {
22935 fprintf_filtered (file,
22936 _("Whether to check \"physname\" is %s.\n"),
22937 value);
22938 }
22939
22940 void _initialize_dwarf2_read (void);
22941
22942 void
22943 _initialize_dwarf2_read (void)
22944 {
22945 struct cmd_list_element *c;
22946
22947 dwarf2_objfile_data_key
22948 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22949
22950 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22951 Set DWARF 2 specific variables.\n\
22952 Configure DWARF 2 variables such as the cache size"),
22953 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22954 0/*allow-unknown*/, &maintenance_set_cmdlist);
22955
22956 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22957 Show DWARF 2 specific variables\n\
22958 Show DWARF 2 variables such as the cache size"),
22959 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22960 0/*allow-unknown*/, &maintenance_show_cmdlist);
22961
22962 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22963 &dwarf2_max_cache_age, _("\
22964 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22965 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22966 A higher limit means that cached compilation units will be stored\n\
22967 in memory longer, and more total memory will be used. Zero disables\n\
22968 caching, which can slow down startup."),
22969 NULL,
22970 show_dwarf2_max_cache_age,
22971 &set_dwarf2_cmdlist,
22972 &show_dwarf2_cmdlist);
22973
22974 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22975 &dwarf2_always_disassemble, _("\
22976 Set whether `info address' always disassembles DWARF expressions."), _("\
22977 Show whether `info address' always disassembles DWARF expressions."), _("\
22978 When enabled, DWARF expressions are always printed in an assembly-like\n\
22979 syntax. When disabled, expressions will be printed in a more\n\
22980 conversational style, when possible."),
22981 NULL,
22982 show_dwarf2_always_disassemble,
22983 &set_dwarf2_cmdlist,
22984 &show_dwarf2_cmdlist);
22985
22986 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22987 Set debugging of the dwarf2 reader."), _("\
22988 Show debugging of the dwarf2 reader."), _("\
22989 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22990 reading and symtab expansion. A value of 1 (one) provides basic\n\
22991 information. A value greater than 1 provides more verbose information."),
22992 NULL,
22993 NULL,
22994 &setdebuglist, &showdebuglist);
22995
22996 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22997 Set debugging of the dwarf2 DIE reader."), _("\
22998 Show debugging of the dwarf2 DIE reader."), _("\
22999 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23000 The value is the maximum depth to print."),
23001 NULL,
23002 NULL,
23003 &setdebuglist, &showdebuglist);
23004
23005 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23006 Set cross-checking of \"physname\" code against demangler."), _("\
23007 Show cross-checking of \"physname\" code against demangler."), _("\
23008 When enabled, GDB's internal \"physname\" code is checked against\n\
23009 the demangler."),
23010 NULL, show_check_physname,
23011 &setdebuglist, &showdebuglist);
23012
23013 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23014 no_class, &use_deprecated_index_sections, _("\
23015 Set whether to use deprecated gdb_index sections."), _("\
23016 Show whether to use deprecated gdb_index sections."), _("\
23017 When enabled, deprecated .gdb_index sections are used anyway.\n\
23018 Normally they are ignored either because of a missing feature or\n\
23019 performance issue.\n\
23020 Warning: This option must be enabled before gdb reads the file."),
23021 NULL,
23022 NULL,
23023 &setlist, &showlist);
23024
23025 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23026 _("\
23027 Save a gdb-index file.\n\
23028 Usage: save gdb-index DIRECTORY"),
23029 &save_cmdlist);
23030 set_cmd_completer (c, filename_completer);
23031
23032 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23033 &dwarf2_locexpr_funcs);
23034 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23035 &dwarf2_loclist_funcs);
23036
23037 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23038 &dwarf2_block_frame_base_locexpr_funcs);
23039 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23040 &dwarf2_block_frame_base_loclist_funcs);
23041 }
This page took 0.509963 seconds and 4 git commands to generate.