Use GCC5/DWARF5 DW_AT_noreturn to mark functions that don't return normally.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311 };
312
313 static struct dwarf2_per_objfile *dwarf2_per_objfile;
314
315 /* Default names of the debugging sections. */
316
317 /* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
320 static const struct dwarf2_debug_sections dwarf2_elf_names =
321 {
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
331 { ".debug_addr", ".zdebug_addr" },
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
334 { ".gdb_index", ".zgdb_index" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
353 }
354 dwop_section_names =
355 {
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
367 };
368
369 /* local data types */
370
371 /* The data in a compilation unit header, after target2host
372 translation, looks like this. */
373 struct comp_unit_head
374 {
375 unsigned int length;
376 short version;
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
379 sect_offset abbrev_offset;
380
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
383
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
386
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
389 sect_offset offset;
390
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
393 cu_offset first_die_offset;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 typedef struct delayed_method_info delayed_method_info;
417 DEF_VEC_O (delayed_method_info);
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
425 /* The header of the compilation unit. */
426 struct comp_unit_head header;
427
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
438 const char *producer;
439
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
455
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
470 /* Backlink to our per_cu entry. */
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
478 htab_t die_hash;
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
511 Note this value comes from the Fission stub CU/TU's DIE. */
512 ULONGEST addr_base;
513
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base;
525
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
533 unsigned int has_loclist : 1;
534
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
541 unsigned int producer_is_gcc_lt_4_3 : 1;
542 unsigned int producer_is_icc : 1;
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
549 };
550
551 /* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
553 read_symtab_private field of the psymtab. */
554
555 struct dwarf2_per_cu_data
556 {
557 /* The start offset and length of this compilation unit.
558 NOTE: Unlike comp_unit_head.length, this length includes
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
562 sect_offset offset;
563 unsigned int length;
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
567 unsigned int queued : 1;
568
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
578 unsigned int is_debug_types : 1;
579
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
602 struct dwarf2_section_info *section;
603
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
606 struct dwarf2_cu *cu;
607
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
611 struct objfile *objfile;
612
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
618 or NULL for unread partial units. */
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
624
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
644 };
645
646 /* Entry in the signatured_types hash table. */
647
648 struct signatured_type
649 {
650 /* The "per_cu" object of this type.
651 This struct is used iff per_cu.is_debug_types.
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
656 /* The type's signature. */
657 ULONGEST signature;
658
659 /* Offset in the TU of the type's DIE, as read from the TU header.
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
683 };
684
685 typedef struct signatured_type *sig_type_ptr;
686 DEF_VEC_P (sig_type_ptr);
687
688 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691 struct stmt_list_hash
692 {
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698 };
699
700 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703 struct type_unit_group
704 {
705 /* dwarf2read.c's main "handle" on a TU symtab.
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
710 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
711 struct dwarf2_per_cu_data per_cu;
712
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
717
718 /* The compunit symtab.
719 Type units in a group needn't all be defined in the same source file,
720 so we create an essentially anonymous symtab as the compunit symtab. */
721 struct compunit_symtab *compunit_symtab;
722
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739 };
740
741 /* These sections are what may appear in a (real or virtual) DWO file. */
742
743 struct dwo_sections
744 {
745 struct dwarf2_section_info abbrev;
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
754 VEC (dwarf2_section_info_def) *types;
755 };
756
757 /* CUs/TUs in DWP/DWO files. */
758
759 struct dwo_unit
760 {
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
770 struct dwarf2_section_info *section;
771
772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778 };
779
780 /* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784 enum dwp_v2_section_ids
785 {
786 DW_SECT_MIN = 1
787 };
788
789 /* Data for one DWO file.
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
799
800 struct dwo_file
801 {
802 /* The DW_AT_GNU_dwo_name attribute.
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
810
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
814
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
818 struct dwo_sections sections;
819
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830 };
831
832 /* These sections are what may appear in a DWP file. */
833
834 struct dwp_sections
835 {
836 /* These are used by both DWP version 1 and 2. */
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
857 };
858
859 /* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
861
862 struct virtual_v1_dwo_sections
863 {
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
871 That is recorded here, and copied to dwo_unit.section. */
872 struct dwarf2_section_info info_or_types;
873 };
874
875 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880 struct virtual_v2_dwo_sections
881 {
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904 };
905
906 /* Contents of DWP hash tables. */
907
908 struct dwp_hash_table
909 {
910 uint32_t version, nr_columns;
911 uint32_t nr_units, nr_slots;
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923 #define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
935 };
936
937 /* Data for one DWP file. */
938
939 struct dwp_file
940 {
941 /* Name of the file. */
942 const char *name;
943
944 /* File format version. */
945 int version;
946
947 /* The bfd. */
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
953 /* Table of CUs in the file. */
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
962
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
965 unsigned int num_sections;
966 asection **elf_sections;
967 };
968
969 /* This represents a '.dwz' file. */
970
971 struct dwz_file
972 {
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
979 struct dwarf2_section_info gdb_index;
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983 };
984
985 /* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
988 struct exists to abstract away the constant parameters of die reading. */
989
990 struct die_reader_specs
991 {
992 /* The bfd of die_section. */
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
999 struct dwo_file *dwo_file;
1000
1001 /* The section the die comes from.
1002 This is either .debug_info or .debug_types, or the .dwo variants. */
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
1006 const gdb_byte *buffer;
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
1013 };
1014
1015 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1016 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1017 const gdb_byte *info_ptr,
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
1022 /* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025 struct line_header
1026 {
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
1031 unsigned char maximum_ops_per_instruction;
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
1048 const char **include_dirs;
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
1061 struct symtab *symtab; /* The associated symbol table, if any. */
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
1065 header. These point into dwarf2_per_objfile->line_buffer. */
1066 const gdb_byte *statement_program_start, *statement_program_end;
1067 };
1068
1069 /* When we construct a partial symbol table entry we only
1070 need this much information. */
1071 struct partial_die_info
1072 {
1073 /* Offset of this DIE. */
1074 sect_offset offset;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
1086 unsigned int may_be_inlined : 1;
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
1107 /* The name of this DIE. Normally the value of DW_AT_name, but
1108 sometimes a default name for unnamed DIEs. */
1109 const char *name;
1110
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
1117 const char *scope;
1118
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
1132
1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1134 DW_AT_sibling, if any. */
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
1137 const gdb_byte *sibling;
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
1142 sect_offset spec_offset;
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
1147 };
1148
1149 /* This data structure holds the information of an abbrev. */
1150 struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160 struct attr_abbrev
1161 {
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
1164 };
1165
1166 /* Size of abbrev_table.abbrev_hash_table. */
1167 #define ABBREV_HASH_SIZE 121
1168
1169 /* Top level data structure to contain an abbreviation table. */
1170
1171 struct abbrev_table
1172 {
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185 };
1186
1187 /* Attributes have a name and a value. */
1188 struct attribute
1189 {
1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
1198 union
1199 {
1200 const char *str;
1201 struct dwarf_block *blk;
1202 ULONGEST unsnd;
1203 LONGEST snd;
1204 CORE_ADDR addr;
1205 ULONGEST signature;
1206 }
1207 u;
1208 };
1209
1210 /* This data structure holds a complete die structure. */
1211 struct die_info
1212 {
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
1222
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
1229 /* Offset in .debug_info or .debug_types section. */
1230 sect_offset offset;
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
1235 together via their SIBLING fields. */
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
1239
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
1244 };
1245
1246 /* Get at parts of an attribute structure. */
1247
1248 #define DW_STRING(attr) ((attr)->u.str)
1249 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1250 #define DW_UNSND(attr) ((attr)->u.unsnd)
1251 #define DW_BLOCK(attr) ((attr)->u.blk)
1252 #define DW_SND(attr) ((attr)->u.snd)
1253 #define DW_ADDR(attr) ((attr)->u.addr)
1254 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1255
1256 /* Blocks are a bunch of untyped bytes. */
1257 struct dwarf_block
1258 {
1259 size_t size;
1260
1261 /* Valid only if SIZE is not zero. */
1262 const gdb_byte *data;
1263 };
1264
1265 #ifndef ATTR_ALLOC_CHUNK
1266 #define ATTR_ALLOC_CHUNK 4
1267 #endif
1268
1269 /* Allocate fields for structs, unions and enums in this size. */
1270 #ifndef DW_FIELD_ALLOC_CHUNK
1271 #define DW_FIELD_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277 static int bits_per_byte = 8;
1278
1279 /* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282 struct field_info
1283 {
1284 /* List of data member and baseclasses fields. */
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
1292 *fields, *baseclasses;
1293
1294 /* Number of fields (including baseclasses). */
1295 int nfields;
1296
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
1299
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
1302
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
1311
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
1317 const char *name;
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
1322
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
1335 };
1336
1337 /* One item on the queue of compilation units to read in full symbols
1338 for. */
1339 struct dwarf2_queue_item
1340 {
1341 struct dwarf2_per_cu_data *per_cu;
1342 enum language pretend_language;
1343 struct dwarf2_queue_item *next;
1344 };
1345
1346 /* The current queue. */
1347 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
1349 /* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354 static int dwarf2_max_cache_age = 5;
1355 static void
1356 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
1361 value);
1362 }
1363 \f
1364 /* local function prototypes */
1365
1366 static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368 static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
1370 static void dwarf2_locate_sections (bfd *, asection *, void *);
1371
1372 static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
1378 static void dwarf2_build_psymtabs_hard (struct objfile *);
1379
1380 static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 int, struct dwarf2_cu *);
1383
1384 static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
1386
1387 static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1389 int set_addrmap, struct dwarf2_cu *cu);
1390
1391 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1392 CORE_ADDR *highpc, int set_addrmap,
1393 struct dwarf2_cu *cu);
1394
1395 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1400 int need_pc, struct dwarf2_cu *cu);
1401
1402 static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
1404
1405 static void psymtab_to_symtab_1 (struct partial_symtab *);
1406
1407 static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410 static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413 static void abbrev_table_free (struct abbrev_table *);
1414
1415 static void abbrev_table_free_cleanup (void *);
1416
1417 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
1419
1420 static void dwarf2_free_abbrev_table (void *);
1421
1422 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1423
1424 static struct partial_die_info *load_partial_dies
1425 (const struct die_reader_specs *, const gdb_byte *, int);
1426
1427 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
1432
1433 static struct partial_die_info *find_partial_die (sect_offset, int,
1434 struct dwarf2_cu *);
1435
1436 static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
1439 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
1442
1443 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1444
1445 static int read_1_signed_byte (bfd *, const gdb_byte *);
1446
1447 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1450
1451 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1452
1453 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1454 unsigned int *);
1455
1456 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1457
1458 static LONGEST read_checked_initial_length_and_offset
1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1460 unsigned int *, unsigned int *);
1461
1462 static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
1464 unsigned int *);
1465
1466 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1467
1468 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
1471 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1472
1473 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
1478
1479 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1480
1481 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
1487 unsigned int *);
1488
1489 static const char *read_str_index (const struct die_reader_specs *reader,
1490 ULONGEST str_index);
1491
1492 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1493
1494 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1498 unsigned int);
1499
1500 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
1503 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1504
1505 static struct die_info *die_specification (struct die_info *die,
1506 struct dwarf2_cu **);
1507
1508 static void free_line_header (struct line_header *lh);
1509
1510 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
1512
1513 static void dwarf_decode_lines (struct line_header *, const char *,
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
1516
1517 static void dwarf2_start_subfile (const char *, const char *);
1518
1519 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *,
1521 CORE_ADDR);
1522
1523 static struct symbol *new_symbol (struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1528
1529 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1530 struct dwarf2_cu *);
1531
1532 static void dwarf2_const_value_attr (const struct attribute *attr,
1533 struct type *type,
1534 const char *name,
1535 struct obstack *obstack,
1536 struct dwarf2_cu *cu, LONGEST *value,
1537 const gdb_byte **bytes,
1538 struct dwarf2_locexpr_baton **baton);
1539
1540 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1541
1542 static int need_gnat_info (struct dwarf2_cu *);
1543
1544 static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
1546
1547 static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1549
1550 static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1554 struct dwarf2_cu *);
1555
1556 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1557
1558 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559
1560 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1561
1562 static char *typename_concat (struct obstack *obs, const char *prefix,
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
1565
1566 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1567
1568 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569
1570 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575
1576 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1578
1579 static int dwarf2_get_pc_bounds (struct die_info *,
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
1582
1583 static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1586
1587 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1589
1590 static void dwarf2_add_field (struct field_info *, struct die_info *,
1591 struct dwarf2_cu *);
1592
1593 static void dwarf2_attach_fields_to_type (struct field_info *,
1594 struct type *, struct dwarf2_cu *);
1595
1596 static void dwarf2_add_member_fn (struct field_info *,
1597 struct die_info *, struct type *,
1598 struct dwarf2_cu *);
1599
1600 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1601 struct type *,
1602 struct dwarf2_cu *);
1603
1604 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1605
1606 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1607
1608 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1609
1610 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611
1612 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
1614 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
1619 static const char *namespace_name (struct die_info *die,
1620 int *is_anonymous, struct dwarf2_cu *);
1621
1622 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1623
1624 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1625
1626 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1627 struct dwarf2_cu *);
1628
1629 static struct die_info *read_die_and_siblings_1
1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1631 struct die_info *);
1632
1633 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
1636 struct die_info *parent);
1637
1638 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int *, int);
1641
1642 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *);
1645
1646 static void process_die (struct die_info *, struct dwarf2_cu *);
1647
1648 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1649 struct obstack *);
1650
1651 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1652
1653 static const char *dwarf2_full_name (const char *name,
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
1657 static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1659
1660 static struct die_info *dwarf2_extension (struct die_info *die,
1661 struct dwarf2_cu **);
1662
1663 static const char *dwarf_tag_name (unsigned int);
1664
1665 static const char *dwarf_attr_name (unsigned int);
1666
1667 static const char *dwarf_form_name (unsigned int);
1668
1669 static char *dwarf_bool_name (unsigned int);
1670
1671 static const char *dwarf_type_encoding_name (unsigned int);
1672
1673 static struct die_info *sibling_die (struct die_info *);
1674
1675 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676
1677 static void dump_die_for_error (struct die_info *);
1678
1679 static void dump_die_1 (struct ui_file *, int level, int max_level,
1680 struct die_info *);
1681
1682 /*static*/ void dump_die (struct die_info *, int max_level);
1683
1684 static void store_in_ref_table (struct die_info *,
1685 struct dwarf2_cu *);
1686
1687 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1688
1689 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1690
1691 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1692 const struct attribute *,
1693 struct dwarf2_cu **);
1694
1695 static struct die_info *follow_die_ref (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699 static struct die_info *follow_die_sig (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1705
1706 static struct type *get_DW_AT_signature_type (struct die_info *,
1707 const struct attribute *,
1708 struct dwarf2_cu *);
1709
1710 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1711
1712 static void read_signatured_type (struct signatured_type *);
1713
1714 /* memory allocation interface */
1715
1716 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1717
1718 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1719
1720 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1721
1722 static int attr_form_is_block (const struct attribute *);
1723
1724 static int attr_form_is_section_offset (const struct attribute *);
1725
1726 static int attr_form_is_constant (const struct attribute *);
1727
1728 static int attr_form_is_ref (const struct attribute *);
1729
1730 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
1732 const struct attribute *attr);
1733
1734 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1735 struct symbol *sym,
1736 struct dwarf2_cu *cu,
1737 int is_block);
1738
1739 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
1742
1743 static void free_stack_comp_unit (void *);
1744
1745 static hashval_t partial_die_hash (const void *item);
1746
1747 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
1749 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1751
1752 static void init_one_comp_unit (struct dwarf2_cu *cu,
1753 struct dwarf2_per_cu_data *per_cu);
1754
1755 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
1758
1759 static void free_heap_comp_unit (void *);
1760
1761 static void free_cached_comp_units (void *);
1762
1763 static void age_cached_comp_units (void);
1764
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1766
1767 static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1769
1770 static void create_all_comp_units (struct objfile *);
1771
1772 static int create_all_type_units (struct objfile *);
1773
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
1776
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
1786 static void dwarf2_mark (struct dwarf2_cu *);
1787
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
1790 static struct type *get_die_type_at_offset (sect_offset,
1791 struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static void dwarf2_release_queue (void *dummy);
1796
1797 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
1800 static void process_queue (void);
1801
1802 static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
1804 const char **name, const char **comp_dir);
1805
1806 static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
1809 static const gdb_byte *read_and_check_comp_unit_head
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1813 int is_debug_types_section);
1814
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
1823
1824 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1825
1826 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
1828 static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
1831
1832 static struct dwp_file *get_dwp_file (void);
1833
1834 static struct dwo_unit *lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1836
1837 static struct dwo_unit *lookup_dwo_type_unit
1838 (struct signatured_type *, const char *, const char *);
1839
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
1842 static void free_dwo_file_cleanup (void *);
1843
1844 static void process_cu_includes (void);
1845
1846 static void check_producer (struct dwarf2_cu *cu);
1847 \f
1848 /* Various complaints about symbol reading that don't abort the process. */
1849
1850 static void
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852 {
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855 }
1856
1857 static void
1858 dwarf2_debug_line_missing_file_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870 }
1871
1872 static void
1873 dwarf2_complex_location_expr_complaint (void)
1874 {
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876 }
1877
1878 static void
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881 {
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885 }
1886
1887 static void
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889 {
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
1893 get_section_name (section),
1894 get_section_file_name (section));
1895 }
1896
1897 static void
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899 {
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904 }
1905
1906 static void
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908 {
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912 }
1913 \f
1914 #if WORDS_BIGENDIAN
1915
1916 /* Convert VALUE between big- and little-endian. */
1917 static offset_type
1918 byte_swap (offset_type value)
1919 {
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927 }
1928
1929 #define MAYBE_SWAP(V) byte_swap (V)
1930
1931 #else
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1934
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938 static CORE_ADDR
1939 attr_value_as_address (struct attribute *attr)
1940 {
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963 }
1964
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1967
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1972
1973 int
1974 dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
1976 {
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1983
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
1987
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996 }
1997
1998 /* Return the containing section of virtual section SECTION. */
1999
2000 static struct dwarf2_section_info *
2001 get_containing_section (const struct dwarf2_section_info *section)
2002 {
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
2005 }
2006
2007 /* Return the bfd owner of SECTION. */
2008
2009 static struct bfd *
2010 get_section_bfd_owner (const struct dwarf2_section_info *section)
2011 {
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
2018 }
2019
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023 static asection *
2024 get_section_bfd_section (const struct dwarf2_section_info *section)
2025 {
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
2032 }
2033
2034 /* Return the name of SECTION. */
2035
2036 static const char *
2037 get_section_name (const struct dwarf2_section_info *section)
2038 {
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043 }
2044
2045 /* Return the name of the file SECTION is in. */
2046
2047 static const char *
2048 get_section_file_name (const struct dwarf2_section_info *section)
2049 {
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053 }
2054
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058 static int
2059 get_section_id (const struct dwarf2_section_info *section)
2060 {
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066 }
2067
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2070
2071 static int
2072 get_section_flags (const struct dwarf2_section_info *section)
2073 {
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078 }
2079
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2082
2083 static int
2084 section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
2086 {
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
2094 }
2095
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100 static void
2101 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2102 {
2103 const struct dwarf2_debug_sections *names;
2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
2115 {
2116 dwarf2_per_objfile->info.s.asection = sectp;
2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->abbrev))
2120 {
2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->line))
2125 {
2126 dwarf2_per_objfile->line.s.asection = sectp;
2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->loc))
2130 {
2131 dwarf2_per_objfile->loc.s.asection = sectp;
2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->macinfo))
2135 {
2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
2141 dwarf2_per_objfile->macro.s.asection = sectp;
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->str))
2145 {
2146 dwarf2_per_objfile->str.s.asection = sectp;
2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
2151 dwarf2_per_objfile->addr.s.asection = sectp;
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->frame))
2155 {
2156 dwarf2_per_objfile->frame.s.asection = sectp;
2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->eh_frame))
2160 {
2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->ranges))
2165 {
2166 dwarf2_per_objfile->ranges.s.asection = sectp;
2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->types))
2170 {
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
2174 type_section.s.asection = sectp;
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
2179 }
2180 else if (section_is_p (sectp->name, &names->gdb_index))
2181 {
2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
2185
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
2189 }
2190
2191 /* A helper function that decides whether a section is empty,
2192 or not present. */
2193
2194 static int
2195 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2196 {
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
2200 }
2201
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
2206 If the section is compressed, uncompress it before returning. */
2207
2208 static void
2209 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2210 {
2211 asection *sectp;
2212 bfd *abfd;
2213 gdb_byte *buf, *retbuf;
2214
2215 if (info->readin)
2216 return;
2217 info->buffer = NULL;
2218 info->readin = 1;
2219
2220 if (dwarf2_section_empty_p (info))
2221 return;
2222
2223 sectp = get_section_bfd_section (info);
2224
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
2253 {
2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2255 return;
2256 }
2257
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294 {
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298 }
2299
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2301 SECTION_NAME. */
2302
2303 void
2304 dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
2306 asection **sectp, const gdb_byte **bufp,
2307 bfd_size_type *sizep)
2308 {
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
2333
2334 dwarf2_read_section (objfile, info);
2335
2336 *sectp = get_section_bfd_section (info);
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339 }
2340
2341 /* A helper function to find the sections for a .dwz file. */
2342
2343 static void
2344 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345 {
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
2352 dwz_file->abbrev.s.asection = sectp;
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
2357 dwz_file->info.s.asection = sectp;
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
2362 dwz_file->str.s.asection = sectp;
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
2367 dwz_file->line.s.asection = sectp;
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
2372 dwz_file->macro.s.asection = sectp;
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
2377 dwz_file->gdb_index.s.asection = sectp;
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
2380 }
2381
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2385
2386 static struct dwz_file *
2387 dwarf2_get_dwz_file (void)
2388 {
2389 bfd *dwz_bfd;
2390 char *data;
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
2394 bfd_size_type buildid_len_arg;
2395 size_t buildid_len;
2396 bfd_byte *buildid;
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2403 &buildid_len_arg, &buildid);
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
2411 cleanup = make_cleanup (xfree, data);
2412 make_cleanup (xfree, buildid);
2413
2414 buildid_len = (size_t) buildid_len_arg;
2415
2416 filename = (const char *) data;
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2434 if (dwz_bfd != NULL)
2435 {
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
2441 }
2442
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2459 dwarf2_per_objfile->dwz_file = result;
2460 return result;
2461 }
2462 \f
2463 /* DWARF quick_symbols_functions support. */
2464
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2471 {
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485 };
2486
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2491 {
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct compunit_symtab *compunit_symtab;
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508 };
2509
2510 /* Utility hash function for a stmt_list_hash. */
2511
2512 static hashval_t
2513 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514 {
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521 }
2522
2523 /* Utility equality function for a stmt_list_hash. */
2524
2525 static int
2526 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528 {
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536 }
2537
2538 /* Hash function for a quick_file_names. */
2539
2540 static hashval_t
2541 hash_file_name_entry (const void *e)
2542 {
2543 const struct quick_file_names *file_data = e;
2544
2545 return hash_stmt_list_entry (&file_data->hash);
2546 }
2547
2548 /* Equality function for a quick_file_names. */
2549
2550 static int
2551 eq_file_name_entry (const void *a, const void *b)
2552 {
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2557 }
2558
2559 /* Delete function for a quick_file_names. */
2560
2561 static void
2562 delete_file_name_entry (void *e)
2563 {
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576 }
2577
2578 /* Create a quick_file_names hash table. */
2579
2580 static htab_t
2581 create_quick_file_names_table (unsigned int nr_initial_entries)
2582 {
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586 }
2587
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592 static void
2593 load_cu (struct dwarf2_per_cu_data *per_cu)
2594 {
2595 if (per_cu->is_debug_types)
2596 load_full_type_unit (per_cu);
2597 else
2598 load_full_comp_unit (per_cu, language_minimal);
2599
2600 gdb_assert (per_cu->cu != NULL);
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2603 }
2604
2605 /* Read in the symbols for PER_CU. */
2606
2607 static void
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2609 {
2610 struct cleanup *back_to;
2611
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->compunit_symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
2636 }
2637
2638 process_queue ();
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645 }
2646
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2650
2651 static struct compunit_symtab *
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2653 {
2654 gdb_assert (dwarf2_per_objfile->using_index);
2655 if (!per_cu->v.quick->compunit_symtab)
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu);
2660 process_cu_includes ();
2661 do_cleanups (back_to);
2662 }
2663
2664 return per_cu->v.quick->compunit_symtab;
2665 }
2666
2667 /* Return the CU/TU given its index.
2668
2669 This is intended for loops like:
2670
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2673 {
2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2675
2676 ...;
2677 }
2678 */
2679
2680 static struct dwarf2_per_cu_data *
2681 dw2_get_cutu (int index)
2682 {
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2684 {
2685 index -= dwarf2_per_objfile->n_comp_units;
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2688 }
2689
2690 return dwarf2_per_objfile->all_comp_units[index];
2691 }
2692
2693 /* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2695 refers to a CU. */
2696
2697 static struct dwarf2_per_cu_data *
2698 dw2_get_cu (int index)
2699 {
2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2701
2702 return dwarf2_per_objfile->all_comp_units[index];
2703 }
2704
2705 /* A helper for create_cus_from_index that handles a given list of
2706 CUs. */
2707
2708 static void
2709 create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2712 int is_dwz,
2713 int base_offset)
2714 {
2715 offset_type i;
2716
2717 for (i = 0; i < n_elements; i += 2)
2718 {
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2721
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2725 cu_list += 2 * 8;
2726
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
2729 the_cu->offset.sect_off = offset;
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
2732 the_cu->section = section;
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2737 }
2738 }
2739
2740 /* Read the CU list from the mapped index, and use it to create all
2741 the CU objects for this objfile. */
2742
2743 static void
2744 create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2747 {
2748 struct dwz_file *dwz;
2749
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2755
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2758
2759 if (dwz_elements == 0)
2760 return;
2761
2762 dwz = dwarf2_get_dwz_file ();
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2765 }
2766
2767 /* Create the signatured type hash table from the index. */
2768
2769 static void
2770 create_signatured_type_table_from_index (struct objfile *objfile,
2771 struct dwarf2_section_info *section,
2772 const gdb_byte *bytes,
2773 offset_type elements)
2774 {
2775 offset_type i;
2776 htab_t sig_types_hash;
2777
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2780 = elements / 3;
2781 dwarf2_per_objfile->all_type_units
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
2784
2785 sig_types_hash = allocate_signatured_type_table (objfile);
2786
2787 for (i = 0; i < elements; i += 3)
2788 {
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
2791 void **slot;
2792
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 BFD_ENDIAN_LITTLE);
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2798 bytes += 3 * 8;
2799
2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2801 struct signatured_type);
2802 sig_type->signature = signature;
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
2805 sig_type->per_cu.section = section;
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2811
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2813 *slot = sig_type;
2814
2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2816 }
2817
2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
2819 }
2820
2821 /* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2823
2824 static void
2825 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826 {
2827 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2828 const gdb_byte *iter, *end;
2829 struct obstack temp_obstack;
2830 struct addrmap *mutable_map;
2831 struct cleanup *cleanup;
2832 CORE_ADDR baseaddr;
2833
2834 obstack_init (&temp_obstack);
2835 cleanup = make_cleanup_obstack_free (&temp_obstack);
2836 mutable_map = addrmap_create_mutable (&temp_obstack);
2837
2838 iter = index->address_table;
2839 end = iter + index->address_table_size;
2840
2841 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2842
2843 while (iter < end)
2844 {
2845 ULONGEST hi, lo, cu_index;
2846 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2847 iter += 8;
2848 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2849 iter += 8;
2850 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2851 iter += 4;
2852
2853 if (lo > hi)
2854 {
2855 complaint (&symfile_complaints,
2856 _(".gdb_index address table has invalid range (%s - %s)"),
2857 hex_string (lo), hex_string (hi));
2858 continue;
2859 }
2860
2861 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2862 {
2863 complaint (&symfile_complaints,
2864 _(".gdb_index address table has invalid CU number %u"),
2865 (unsigned) cu_index);
2866 continue;
2867 }
2868
2869 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2870 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2871 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2872 }
2873
2874 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2875 &objfile->objfile_obstack);
2876 do_cleanups (cleanup);
2877 }
2878
2879 /* The hash function for strings in the mapped index. This is the same as
2880 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2881 implementation. This is necessary because the hash function is tied to the
2882 format of the mapped index file. The hash values do not have to match with
2883 SYMBOL_HASH_NEXT.
2884
2885 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2886
2887 static hashval_t
2888 mapped_index_string_hash (int index_version, const void *p)
2889 {
2890 const unsigned char *str = (const unsigned char *) p;
2891 hashval_t r = 0;
2892 unsigned char c;
2893
2894 while ((c = *str++) != 0)
2895 {
2896 if (index_version >= 5)
2897 c = tolower (c);
2898 r = r * 67 + c - 113;
2899 }
2900
2901 return r;
2902 }
2903
2904 /* Find a slot in the mapped index INDEX for the object named NAME.
2905 If NAME is found, set *VEC_OUT to point to the CU vector in the
2906 constant pool and return 1. If NAME cannot be found, return 0. */
2907
2908 static int
2909 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2910 offset_type **vec_out)
2911 {
2912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2913 offset_type hash;
2914 offset_type slot, step;
2915 int (*cmp) (const char *, const char *);
2916
2917 if (current_language->la_language == language_cplus
2918 || current_language->la_language == language_java
2919 || current_language->la_language == language_fortran)
2920 {
2921 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2922 not contain any. */
2923
2924 if (strchr (name, '(') != NULL)
2925 {
2926 char *without_params = cp_remove_params (name);
2927
2928 if (without_params != NULL)
2929 {
2930 make_cleanup (xfree, without_params);
2931 name = without_params;
2932 }
2933 }
2934 }
2935
2936 /* Index version 4 did not support case insensitive searches. But the
2937 indices for case insensitive languages are built in lowercase, therefore
2938 simulate our NAME being searched is also lowercased. */
2939 hash = mapped_index_string_hash ((index->version == 4
2940 && case_sensitivity == case_sensitive_off
2941 ? 5 : index->version),
2942 name);
2943
2944 slot = hash & (index->symbol_table_slots - 1);
2945 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2946 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2947
2948 for (;;)
2949 {
2950 /* Convert a slot number to an offset into the table. */
2951 offset_type i = 2 * slot;
2952 const char *str;
2953 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2954 {
2955 do_cleanups (back_to);
2956 return 0;
2957 }
2958
2959 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2960 if (!cmp (name, str))
2961 {
2962 *vec_out = (offset_type *) (index->constant_pool
2963 + MAYBE_SWAP (index->symbol_table[i + 1]));
2964 do_cleanups (back_to);
2965 return 1;
2966 }
2967
2968 slot = (slot + step) & (index->symbol_table_slots - 1);
2969 }
2970 }
2971
2972 /* A helper function that reads the .gdb_index from SECTION and fills
2973 in MAP. FILENAME is the name of the file containing the section;
2974 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2975 ok to use deprecated sections.
2976
2977 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2978 out parameters that are filled in with information about the CU and
2979 TU lists in the section.
2980
2981 Returns 1 if all went well, 0 otherwise. */
2982
2983 static int
2984 read_index_from_section (struct objfile *objfile,
2985 const char *filename,
2986 int deprecated_ok,
2987 struct dwarf2_section_info *section,
2988 struct mapped_index *map,
2989 const gdb_byte **cu_list,
2990 offset_type *cu_list_elements,
2991 const gdb_byte **types_list,
2992 offset_type *types_list_elements)
2993 {
2994 const gdb_byte *addr;
2995 offset_type version;
2996 offset_type *metadata;
2997 int i;
2998
2999 if (dwarf2_section_empty_p (section))
3000 return 0;
3001
3002 /* Older elfutils strip versions could keep the section in the main
3003 executable while splitting it for the separate debug info file. */
3004 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3005 return 0;
3006
3007 dwarf2_read_section (objfile, section);
3008
3009 addr = section->buffer;
3010 /* Version check. */
3011 version = MAYBE_SWAP (*(offset_type *) addr);
3012 /* Versions earlier than 3 emitted every copy of a psymbol. This
3013 causes the index to behave very poorly for certain requests. Version 3
3014 contained incomplete addrmap. So, it seems better to just ignore such
3015 indices. */
3016 if (version < 4)
3017 {
3018 static int warning_printed = 0;
3019 if (!warning_printed)
3020 {
3021 warning (_("Skipping obsolete .gdb_index section in %s."),
3022 filename);
3023 warning_printed = 1;
3024 }
3025 return 0;
3026 }
3027 /* Index version 4 uses a different hash function than index version
3028 5 and later.
3029
3030 Versions earlier than 6 did not emit psymbols for inlined
3031 functions. Using these files will cause GDB not to be able to
3032 set breakpoints on inlined functions by name, so we ignore these
3033 indices unless the user has done
3034 "set use-deprecated-index-sections on". */
3035 if (version < 6 && !deprecated_ok)
3036 {
3037 static int warning_printed = 0;
3038 if (!warning_printed)
3039 {
3040 warning (_("\
3041 Skipping deprecated .gdb_index section in %s.\n\
3042 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3043 to use the section anyway."),
3044 filename);
3045 warning_printed = 1;
3046 }
3047 return 0;
3048 }
3049 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3050 of the TU (for symbols coming from TUs),
3051 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3052 Plus gold-generated indices can have duplicate entries for global symbols,
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3054 These are just performance bugs, and we can't distinguish gdb-generated
3055 indices from gold-generated ones, so issue no warning here. */
3056
3057 /* Indexes with higher version than the one supported by GDB may be no
3058 longer backward compatible. */
3059 if (version > 8)
3060 return 0;
3061
3062 map->version = version;
3063 map->total_size = section->size;
3064
3065 metadata = (offset_type *) (addr + sizeof (offset_type));
3066
3067 i = 0;
3068 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3069 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3070 / 8);
3071 ++i;
3072
3073 *types_list = addr + MAYBE_SWAP (metadata[i]);
3074 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3075 - MAYBE_SWAP (metadata[i]))
3076 / 8);
3077 ++i;
3078
3079 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3080 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3081 - MAYBE_SWAP (metadata[i]));
3082 ++i;
3083
3084 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3085 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3086 - MAYBE_SWAP (metadata[i]))
3087 / (2 * sizeof (offset_type)));
3088 ++i;
3089
3090 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3091
3092 return 1;
3093 }
3094
3095
3096 /* Read the index file. If everything went ok, initialize the "quick"
3097 elements of all the CUs and return 1. Otherwise, return 0. */
3098
3099 static int
3100 dwarf2_read_index (struct objfile *objfile)
3101 {
3102 struct mapped_index local_map, *map;
3103 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3104 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3105 struct dwz_file *dwz;
3106
3107 if (!read_index_from_section (objfile, objfile_name (objfile),
3108 use_deprecated_index_sections,
3109 &dwarf2_per_objfile->gdb_index, &local_map,
3110 &cu_list, &cu_list_elements,
3111 &types_list, &types_list_elements))
3112 return 0;
3113
3114 /* Don't use the index if it's empty. */
3115 if (local_map.symbol_table_slots == 0)
3116 return 0;
3117
3118 /* If there is a .dwz file, read it so we can get its CU list as
3119 well. */
3120 dwz = dwarf2_get_dwz_file ();
3121 if (dwz != NULL)
3122 {
3123 struct mapped_index dwz_map;
3124 const gdb_byte *dwz_types_ignore;
3125 offset_type dwz_types_elements_ignore;
3126
3127 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3128 1,
3129 &dwz->gdb_index, &dwz_map,
3130 &dwz_list, &dwz_list_elements,
3131 &dwz_types_ignore,
3132 &dwz_types_elements_ignore))
3133 {
3134 warning (_("could not read '.gdb_index' section from %s; skipping"),
3135 bfd_get_filename (dwz->dwz_bfd));
3136 return 0;
3137 }
3138 }
3139
3140 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3141 dwz_list_elements);
3142
3143 if (types_list_elements)
3144 {
3145 struct dwarf2_section_info *section;
3146
3147 /* We can only handle a single .debug_types when we have an
3148 index. */
3149 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3150 return 0;
3151
3152 section = VEC_index (dwarf2_section_info_def,
3153 dwarf2_per_objfile->types, 0);
3154
3155 create_signatured_type_table_from_index (objfile, section, types_list,
3156 types_list_elements);
3157 }
3158
3159 create_addrmap_from_index (objfile, &local_map);
3160
3161 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3162 *map = local_map;
3163
3164 dwarf2_per_objfile->index_table = map;
3165 dwarf2_per_objfile->using_index = 1;
3166 dwarf2_per_objfile->quick_file_names_table =
3167 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3168
3169 return 1;
3170 }
3171
3172 /* A helper for the "quick" functions which sets the global
3173 dwarf2_per_objfile according to OBJFILE. */
3174
3175 static void
3176 dw2_setup (struct objfile *objfile)
3177 {
3178 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3179 gdb_assert (dwarf2_per_objfile);
3180 }
3181
3182 /* die_reader_func for dw2_get_file_names. */
3183
3184 static void
3185 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3186 const gdb_byte *info_ptr,
3187 struct die_info *comp_unit_die,
3188 int has_children,
3189 void *data)
3190 {
3191 struct dwarf2_cu *cu = reader->cu;
3192 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3193 struct objfile *objfile = dwarf2_per_objfile->objfile;
3194 struct dwarf2_per_cu_data *lh_cu;
3195 struct line_header *lh;
3196 struct attribute *attr;
3197 int i;
3198 const char *name, *comp_dir;
3199 void **slot;
3200 struct quick_file_names *qfn;
3201 unsigned int line_offset;
3202
3203 gdb_assert (! this_cu->is_debug_types);
3204
3205 /* Our callers never want to match partial units -- instead they
3206 will match the enclosing full CU. */
3207 if (comp_unit_die->tag == DW_TAG_partial_unit)
3208 {
3209 this_cu->v.quick->no_file_data = 1;
3210 return;
3211 }
3212
3213 lh_cu = this_cu;
3214 lh = NULL;
3215 slot = NULL;
3216 line_offset = 0;
3217
3218 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3219 if (attr)
3220 {
3221 struct quick_file_names find_entry;
3222
3223 line_offset = DW_UNSND (attr);
3224
3225 /* We may have already read in this line header (TU line header sharing).
3226 If we have we're done. */
3227 find_entry.hash.dwo_unit = cu->dwo_unit;
3228 find_entry.hash.line_offset.sect_off = line_offset;
3229 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3230 &find_entry, INSERT);
3231 if (*slot != NULL)
3232 {
3233 lh_cu->v.quick->file_names = *slot;
3234 return;
3235 }
3236
3237 lh = dwarf_decode_line_header (line_offset, cu);
3238 }
3239 if (lh == NULL)
3240 {
3241 lh_cu->v.quick->no_file_data = 1;
3242 return;
3243 }
3244
3245 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3246 qfn->hash.dwo_unit = cu->dwo_unit;
3247 qfn->hash.line_offset.sect_off = line_offset;
3248 gdb_assert (slot != NULL);
3249 *slot = qfn;
3250
3251 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3252
3253 qfn->num_file_names = lh->num_file_names;
3254 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3255 lh->num_file_names * sizeof (char *));
3256 for (i = 0; i < lh->num_file_names; ++i)
3257 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3258 qfn->real_names = NULL;
3259
3260 free_line_header (lh);
3261
3262 lh_cu->v.quick->file_names = qfn;
3263 }
3264
3265 /* A helper for the "quick" functions which attempts to read the line
3266 table for THIS_CU. */
3267
3268 static struct quick_file_names *
3269 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3270 {
3271 /* This should never be called for TUs. */
3272 gdb_assert (! this_cu->is_debug_types);
3273 /* Nor type unit groups. */
3274 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3275
3276 if (this_cu->v.quick->file_names != NULL)
3277 return this_cu->v.quick->file_names;
3278 /* If we know there is no line data, no point in looking again. */
3279 if (this_cu->v.quick->no_file_data)
3280 return NULL;
3281
3282 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3283
3284 if (this_cu->v.quick->no_file_data)
3285 return NULL;
3286 return this_cu->v.quick->file_names;
3287 }
3288
3289 /* A helper for the "quick" functions which computes and caches the
3290 real path for a given file name from the line table. */
3291
3292 static const char *
3293 dw2_get_real_path (struct objfile *objfile,
3294 struct quick_file_names *qfn, int index)
3295 {
3296 if (qfn->real_names == NULL)
3297 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3298 qfn->num_file_names, const char *);
3299
3300 if (qfn->real_names[index] == NULL)
3301 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3302
3303 return qfn->real_names[index];
3304 }
3305
3306 static struct symtab *
3307 dw2_find_last_source_symtab (struct objfile *objfile)
3308 {
3309 struct compunit_symtab *cust;
3310 int index;
3311
3312 dw2_setup (objfile);
3313 index = dwarf2_per_objfile->n_comp_units - 1;
3314 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3315 if (cust == NULL)
3316 return NULL;
3317 return compunit_primary_filetab (cust);
3318 }
3319
3320 /* Traversal function for dw2_forget_cached_source_info. */
3321
3322 static int
3323 dw2_free_cached_file_names (void **slot, void *info)
3324 {
3325 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3326
3327 if (file_data->real_names)
3328 {
3329 int i;
3330
3331 for (i = 0; i < file_data->num_file_names; ++i)
3332 {
3333 xfree ((void*) file_data->real_names[i]);
3334 file_data->real_names[i] = NULL;
3335 }
3336 }
3337
3338 return 1;
3339 }
3340
3341 static void
3342 dw2_forget_cached_source_info (struct objfile *objfile)
3343 {
3344 dw2_setup (objfile);
3345
3346 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3347 dw2_free_cached_file_names, NULL);
3348 }
3349
3350 /* Helper function for dw2_map_symtabs_matching_filename that expands
3351 the symtabs and calls the iterator. */
3352
3353 static int
3354 dw2_map_expand_apply (struct objfile *objfile,
3355 struct dwarf2_per_cu_data *per_cu,
3356 const char *name, const char *real_path,
3357 int (*callback) (struct symtab *, void *),
3358 void *data)
3359 {
3360 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3361
3362 /* Don't visit already-expanded CUs. */
3363 if (per_cu->v.quick->compunit_symtab)
3364 return 0;
3365
3366 /* This may expand more than one symtab, and we want to iterate over
3367 all of them. */
3368 dw2_instantiate_symtab (per_cu);
3369
3370 return iterate_over_some_symtabs (name, real_path, callback, data,
3371 objfile->compunit_symtabs, last_made);
3372 }
3373
3374 /* Implementation of the map_symtabs_matching_filename method. */
3375
3376 static int
3377 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3378 const char *real_path,
3379 int (*callback) (struct symtab *, void *),
3380 void *data)
3381 {
3382 int i;
3383 const char *name_basename = lbasename (name);
3384
3385 dw2_setup (objfile);
3386
3387 /* The rule is CUs specify all the files, including those used by
3388 any TU, so there's no need to scan TUs here. */
3389
3390 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3391 {
3392 int j;
3393 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3394 struct quick_file_names *file_data;
3395
3396 /* We only need to look at symtabs not already expanded. */
3397 if (per_cu->v.quick->compunit_symtab)
3398 continue;
3399
3400 file_data = dw2_get_file_names (per_cu);
3401 if (file_data == NULL)
3402 continue;
3403
3404 for (j = 0; j < file_data->num_file_names; ++j)
3405 {
3406 const char *this_name = file_data->file_names[j];
3407 const char *this_real_name;
3408
3409 if (compare_filenames_for_search (this_name, name))
3410 {
3411 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3412 callback, data))
3413 return 1;
3414 continue;
3415 }
3416
3417 /* Before we invoke realpath, which can get expensive when many
3418 files are involved, do a quick comparison of the basenames. */
3419 if (! basenames_may_differ
3420 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3421 continue;
3422
3423 this_real_name = dw2_get_real_path (objfile, file_data, j);
3424 if (compare_filenames_for_search (this_real_name, name))
3425 {
3426 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3427 callback, data))
3428 return 1;
3429 continue;
3430 }
3431
3432 if (real_path != NULL)
3433 {
3434 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3435 gdb_assert (IS_ABSOLUTE_PATH (name));
3436 if (this_real_name != NULL
3437 && FILENAME_CMP (real_path, this_real_name) == 0)
3438 {
3439 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3440 callback, data))
3441 return 1;
3442 continue;
3443 }
3444 }
3445 }
3446 }
3447
3448 return 0;
3449 }
3450
3451 /* Struct used to manage iterating over all CUs looking for a symbol. */
3452
3453 struct dw2_symtab_iterator
3454 {
3455 /* The internalized form of .gdb_index. */
3456 struct mapped_index *index;
3457 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3458 int want_specific_block;
3459 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3460 Unused if !WANT_SPECIFIC_BLOCK. */
3461 int block_index;
3462 /* The kind of symbol we're looking for. */
3463 domain_enum domain;
3464 /* The list of CUs from the index entry of the symbol,
3465 or NULL if not found. */
3466 offset_type *vec;
3467 /* The next element in VEC to look at. */
3468 int next;
3469 /* The number of elements in VEC, or zero if there is no match. */
3470 int length;
3471 /* Have we seen a global version of the symbol?
3472 If so we can ignore all further global instances.
3473 This is to work around gold/15646, inefficient gold-generated
3474 indices. */
3475 int global_seen;
3476 };
3477
3478 /* Initialize the index symtab iterator ITER.
3479 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3480 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3481
3482 static void
3483 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3484 struct mapped_index *index,
3485 int want_specific_block,
3486 int block_index,
3487 domain_enum domain,
3488 const char *name)
3489 {
3490 iter->index = index;
3491 iter->want_specific_block = want_specific_block;
3492 iter->block_index = block_index;
3493 iter->domain = domain;
3494 iter->next = 0;
3495 iter->global_seen = 0;
3496
3497 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3498 iter->length = MAYBE_SWAP (*iter->vec);
3499 else
3500 {
3501 iter->vec = NULL;
3502 iter->length = 0;
3503 }
3504 }
3505
3506 /* Return the next matching CU or NULL if there are no more. */
3507
3508 static struct dwarf2_per_cu_data *
3509 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3510 {
3511 for ( ; iter->next < iter->length; ++iter->next)
3512 {
3513 offset_type cu_index_and_attrs =
3514 MAYBE_SWAP (iter->vec[iter->next + 1]);
3515 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3516 struct dwarf2_per_cu_data *per_cu;
3517 int want_static = iter->block_index != GLOBAL_BLOCK;
3518 /* This value is only valid for index versions >= 7. */
3519 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3520 gdb_index_symbol_kind symbol_kind =
3521 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3522 /* Only check the symbol attributes if they're present.
3523 Indices prior to version 7 don't record them,
3524 and indices >= 7 may elide them for certain symbols
3525 (gold does this). */
3526 int attrs_valid =
3527 (iter->index->version >= 7
3528 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3529
3530 /* Don't crash on bad data. */
3531 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3532 + dwarf2_per_objfile->n_type_units))
3533 {
3534 complaint (&symfile_complaints,
3535 _(".gdb_index entry has bad CU index"
3536 " [in module %s]"),
3537 objfile_name (dwarf2_per_objfile->objfile));
3538 continue;
3539 }
3540
3541 per_cu = dw2_get_cutu (cu_index);
3542
3543 /* Skip if already read in. */
3544 if (per_cu->v.quick->compunit_symtab)
3545 continue;
3546
3547 /* Check static vs global. */
3548 if (attrs_valid)
3549 {
3550 if (iter->want_specific_block
3551 && want_static != is_static)
3552 continue;
3553 /* Work around gold/15646. */
3554 if (!is_static && iter->global_seen)
3555 continue;
3556 if (!is_static)
3557 iter->global_seen = 1;
3558 }
3559
3560 /* Only check the symbol's kind if it has one. */
3561 if (attrs_valid)
3562 {
3563 switch (iter->domain)
3564 {
3565 case VAR_DOMAIN:
3566 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3567 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3568 /* Some types are also in VAR_DOMAIN. */
3569 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3570 continue;
3571 break;
3572 case STRUCT_DOMAIN:
3573 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3574 continue;
3575 break;
3576 case LABEL_DOMAIN:
3577 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3578 continue;
3579 break;
3580 default:
3581 break;
3582 }
3583 }
3584
3585 ++iter->next;
3586 return per_cu;
3587 }
3588
3589 return NULL;
3590 }
3591
3592 static struct compunit_symtab *
3593 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3594 const char *name, domain_enum domain)
3595 {
3596 struct compunit_symtab *stab_best = NULL;
3597 struct mapped_index *index;
3598
3599 dw2_setup (objfile);
3600
3601 index = dwarf2_per_objfile->index_table;
3602
3603 /* index is NULL if OBJF_READNOW. */
3604 if (index)
3605 {
3606 struct dw2_symtab_iterator iter;
3607 struct dwarf2_per_cu_data *per_cu;
3608
3609 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3610
3611 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3612 {
3613 struct symbol *sym = NULL;
3614 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3615 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3616 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3617
3618 /* Some caution must be observed with overloaded functions
3619 and methods, since the index will not contain any overload
3620 information (but NAME might contain it). */
3621 sym = block_lookup_symbol (block, name, domain);
3622
3623 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3624 {
3625 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3626 return stab;
3627
3628 stab_best = stab;
3629 }
3630
3631 /* Keep looking through other CUs. */
3632 }
3633 }
3634
3635 return stab_best;
3636 }
3637
3638 static void
3639 dw2_print_stats (struct objfile *objfile)
3640 {
3641 int i, total, count;
3642
3643 dw2_setup (objfile);
3644 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3645 count = 0;
3646 for (i = 0; i < total; ++i)
3647 {
3648 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3649
3650 if (!per_cu->v.quick->compunit_symtab)
3651 ++count;
3652 }
3653 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3654 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3655 }
3656
3657 /* This dumps minimal information about the index.
3658 It is called via "mt print objfiles".
3659 One use is to verify .gdb_index has been loaded by the
3660 gdb.dwarf2/gdb-index.exp testcase. */
3661
3662 static void
3663 dw2_dump (struct objfile *objfile)
3664 {
3665 dw2_setup (objfile);
3666 gdb_assert (dwarf2_per_objfile->using_index);
3667 printf_filtered (".gdb_index:");
3668 if (dwarf2_per_objfile->index_table != NULL)
3669 {
3670 printf_filtered (" version %d\n",
3671 dwarf2_per_objfile->index_table->version);
3672 }
3673 else
3674 printf_filtered (" faked for \"readnow\"\n");
3675 printf_filtered ("\n");
3676 }
3677
3678 static void
3679 dw2_relocate (struct objfile *objfile,
3680 const struct section_offsets *new_offsets,
3681 const struct section_offsets *delta)
3682 {
3683 /* There's nothing to relocate here. */
3684 }
3685
3686 static void
3687 dw2_expand_symtabs_for_function (struct objfile *objfile,
3688 const char *func_name)
3689 {
3690 struct mapped_index *index;
3691
3692 dw2_setup (objfile);
3693
3694 index = dwarf2_per_objfile->index_table;
3695
3696 /* index is NULL if OBJF_READNOW. */
3697 if (index)
3698 {
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 /* Note: It doesn't matter what we pass for block_index here. */
3703 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3704 func_name);
3705
3706 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3707 dw2_instantiate_symtab (per_cu);
3708 }
3709 }
3710
3711 static void
3712 dw2_expand_all_symtabs (struct objfile *objfile)
3713 {
3714 int i;
3715
3716 dw2_setup (objfile);
3717
3718 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3719 + dwarf2_per_objfile->n_type_units); ++i)
3720 {
3721 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3722
3723 dw2_instantiate_symtab (per_cu);
3724 }
3725 }
3726
3727 static void
3728 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3729 const char *fullname)
3730 {
3731 int i;
3732
3733 dw2_setup (objfile);
3734
3735 /* We don't need to consider type units here.
3736 This is only called for examining code, e.g. expand_line_sal.
3737 There can be an order of magnitude (or more) more type units
3738 than comp units, and we avoid them if we can. */
3739
3740 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3741 {
3742 int j;
3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3744 struct quick_file_names *file_data;
3745
3746 /* We only need to look at symtabs not already expanded. */
3747 if (per_cu->v.quick->compunit_symtab)
3748 continue;
3749
3750 file_data = dw2_get_file_names (per_cu);
3751 if (file_data == NULL)
3752 continue;
3753
3754 for (j = 0; j < file_data->num_file_names; ++j)
3755 {
3756 const char *this_fullname = file_data->file_names[j];
3757
3758 if (filename_cmp (this_fullname, fullname) == 0)
3759 {
3760 dw2_instantiate_symtab (per_cu);
3761 break;
3762 }
3763 }
3764 }
3765 }
3766
3767 static void
3768 dw2_map_matching_symbols (struct objfile *objfile,
3769 const char * name, domain_enum namespace,
3770 int global,
3771 int (*callback) (struct block *,
3772 struct symbol *, void *),
3773 void *data, symbol_compare_ftype *match,
3774 symbol_compare_ftype *ordered_compare)
3775 {
3776 /* Currently unimplemented; used for Ada. The function can be called if the
3777 current language is Ada for a non-Ada objfile using GNU index. As Ada
3778 does not look for non-Ada symbols this function should just return. */
3779 }
3780
3781 static void
3782 dw2_expand_symtabs_matching
3783 (struct objfile *objfile,
3784 expand_symtabs_file_matcher_ftype *file_matcher,
3785 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3786 enum search_domain kind,
3787 void *data)
3788 {
3789 int i;
3790 offset_type iter;
3791 struct mapped_index *index;
3792
3793 dw2_setup (objfile);
3794
3795 /* index_table is NULL if OBJF_READNOW. */
3796 if (!dwarf2_per_objfile->index_table)
3797 return;
3798 index = dwarf2_per_objfile->index_table;
3799
3800 if (file_matcher != NULL)
3801 {
3802 struct cleanup *cleanup;
3803 htab_t visited_found, visited_not_found;
3804
3805 visited_found = htab_create_alloc (10,
3806 htab_hash_pointer, htab_eq_pointer,
3807 NULL, xcalloc, xfree);
3808 cleanup = make_cleanup_htab_delete (visited_found);
3809 visited_not_found = htab_create_alloc (10,
3810 htab_hash_pointer, htab_eq_pointer,
3811 NULL, xcalloc, xfree);
3812 make_cleanup_htab_delete (visited_not_found);
3813
3814 /* The rule is CUs specify all the files, including those used by
3815 any TU, so there's no need to scan TUs here. */
3816
3817 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3818 {
3819 int j;
3820 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3821 struct quick_file_names *file_data;
3822 void **slot;
3823
3824 per_cu->v.quick->mark = 0;
3825
3826 /* We only need to look at symtabs not already expanded. */
3827 if (per_cu->v.quick->compunit_symtab)
3828 continue;
3829
3830 file_data = dw2_get_file_names (per_cu);
3831 if (file_data == NULL)
3832 continue;
3833
3834 if (htab_find (visited_not_found, file_data) != NULL)
3835 continue;
3836 else if (htab_find (visited_found, file_data) != NULL)
3837 {
3838 per_cu->v.quick->mark = 1;
3839 continue;
3840 }
3841
3842 for (j = 0; j < file_data->num_file_names; ++j)
3843 {
3844 const char *this_real_name;
3845
3846 if (file_matcher (file_data->file_names[j], data, 0))
3847 {
3848 per_cu->v.quick->mark = 1;
3849 break;
3850 }
3851
3852 /* Before we invoke realpath, which can get expensive when many
3853 files are involved, do a quick comparison of the basenames. */
3854 if (!basenames_may_differ
3855 && !file_matcher (lbasename (file_data->file_names[j]),
3856 data, 1))
3857 continue;
3858
3859 this_real_name = dw2_get_real_path (objfile, file_data, j);
3860 if (file_matcher (this_real_name, data, 0))
3861 {
3862 per_cu->v.quick->mark = 1;
3863 break;
3864 }
3865 }
3866
3867 slot = htab_find_slot (per_cu->v.quick->mark
3868 ? visited_found
3869 : visited_not_found,
3870 file_data, INSERT);
3871 *slot = file_data;
3872 }
3873
3874 do_cleanups (cleanup);
3875 }
3876
3877 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3878 {
3879 offset_type idx = 2 * iter;
3880 const char *name;
3881 offset_type *vec, vec_len, vec_idx;
3882 int global_seen = 0;
3883
3884 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3885 continue;
3886
3887 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3888
3889 if (! (*symbol_matcher) (name, data))
3890 continue;
3891
3892 /* The name was matched, now expand corresponding CUs that were
3893 marked. */
3894 vec = (offset_type *) (index->constant_pool
3895 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3896 vec_len = MAYBE_SWAP (vec[0]);
3897 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3898 {
3899 struct dwarf2_per_cu_data *per_cu;
3900 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3901 /* This value is only valid for index versions >= 7. */
3902 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3903 gdb_index_symbol_kind symbol_kind =
3904 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3905 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3906 /* Only check the symbol attributes if they're present.
3907 Indices prior to version 7 don't record them,
3908 and indices >= 7 may elide them for certain symbols
3909 (gold does this). */
3910 int attrs_valid =
3911 (index->version >= 7
3912 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3913
3914 /* Work around gold/15646. */
3915 if (attrs_valid)
3916 {
3917 if (!is_static && global_seen)
3918 continue;
3919 if (!is_static)
3920 global_seen = 1;
3921 }
3922
3923 /* Only check the symbol's kind if it has one. */
3924 if (attrs_valid)
3925 {
3926 switch (kind)
3927 {
3928 case VARIABLES_DOMAIN:
3929 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3930 continue;
3931 break;
3932 case FUNCTIONS_DOMAIN:
3933 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3934 continue;
3935 break;
3936 case TYPES_DOMAIN:
3937 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3938 continue;
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3945 /* Don't crash on bad data. */
3946 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3947 + dwarf2_per_objfile->n_type_units))
3948 {
3949 complaint (&symfile_complaints,
3950 _(".gdb_index entry has bad CU index"
3951 " [in module %s]"), objfile_name (objfile));
3952 continue;
3953 }
3954
3955 per_cu = dw2_get_cutu (cu_index);
3956 if (file_matcher == NULL || per_cu->v.quick->mark)
3957 dw2_instantiate_symtab (per_cu);
3958 }
3959 }
3960 }
3961
3962 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
3963 symtab. */
3964
3965 static struct compunit_symtab *
3966 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
3967 CORE_ADDR pc)
3968 {
3969 int i;
3970
3971 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
3972 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
3973 return cust;
3974
3975 if (cust->includes == NULL)
3976 return NULL;
3977
3978 for (i = 0; cust->includes[i]; ++i)
3979 {
3980 struct compunit_symtab *s = cust->includes[i];
3981
3982 s = recursively_find_pc_sect_compunit_symtab (s, pc);
3983 if (s != NULL)
3984 return s;
3985 }
3986
3987 return NULL;
3988 }
3989
3990 static struct compunit_symtab *
3991 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
3992 struct bound_minimal_symbol msymbol,
3993 CORE_ADDR pc,
3994 struct obj_section *section,
3995 int warn_if_readin)
3996 {
3997 struct dwarf2_per_cu_data *data;
3998 struct compunit_symtab *result;
3999
4000 dw2_setup (objfile);
4001
4002 if (!objfile->psymtabs_addrmap)
4003 return NULL;
4004
4005 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4006 if (!data)
4007 return NULL;
4008
4009 if (warn_if_readin && data->v.quick->compunit_symtab)
4010 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4011 paddress (get_objfile_arch (objfile), pc));
4012
4013 result
4014 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4015 pc);
4016 gdb_assert (result != NULL);
4017 return result;
4018 }
4019
4020 static void
4021 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4022 void *data, int need_fullname)
4023 {
4024 int i;
4025 struct cleanup *cleanup;
4026 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4027 NULL, xcalloc, xfree);
4028
4029 cleanup = make_cleanup_htab_delete (visited);
4030 dw2_setup (objfile);
4031
4032 /* The rule is CUs specify all the files, including those used by
4033 any TU, so there's no need to scan TUs here.
4034 We can ignore file names coming from already-expanded CUs. */
4035
4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4037 {
4038 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4039
4040 if (per_cu->v.quick->compunit_symtab)
4041 {
4042 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4043 INSERT);
4044
4045 *slot = per_cu->v.quick->file_names;
4046 }
4047 }
4048
4049 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4050 {
4051 int j;
4052 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4053 struct quick_file_names *file_data;
4054 void **slot;
4055
4056 /* We only need to look at symtabs not already expanded. */
4057 if (per_cu->v.quick->compunit_symtab)
4058 continue;
4059
4060 file_data = dw2_get_file_names (per_cu);
4061 if (file_data == NULL)
4062 continue;
4063
4064 slot = htab_find_slot (visited, file_data, INSERT);
4065 if (*slot)
4066 {
4067 /* Already visited. */
4068 continue;
4069 }
4070 *slot = file_data;
4071
4072 for (j = 0; j < file_data->num_file_names; ++j)
4073 {
4074 const char *this_real_name;
4075
4076 if (need_fullname)
4077 this_real_name = dw2_get_real_path (objfile, file_data, j);
4078 else
4079 this_real_name = NULL;
4080 (*fun) (file_data->file_names[j], this_real_name, data);
4081 }
4082 }
4083
4084 do_cleanups (cleanup);
4085 }
4086
4087 static int
4088 dw2_has_symbols (struct objfile *objfile)
4089 {
4090 return 1;
4091 }
4092
4093 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4094 {
4095 dw2_has_symbols,
4096 dw2_find_last_source_symtab,
4097 dw2_forget_cached_source_info,
4098 dw2_map_symtabs_matching_filename,
4099 dw2_lookup_symbol,
4100 dw2_print_stats,
4101 dw2_dump,
4102 dw2_relocate,
4103 dw2_expand_symtabs_for_function,
4104 dw2_expand_all_symtabs,
4105 dw2_expand_symtabs_with_fullname,
4106 dw2_map_matching_symbols,
4107 dw2_expand_symtabs_matching,
4108 dw2_find_pc_sect_compunit_symtab,
4109 dw2_map_symbol_filenames
4110 };
4111
4112 /* Initialize for reading DWARF for this objfile. Return 0 if this
4113 file will use psymtabs, or 1 if using the GNU index. */
4114
4115 int
4116 dwarf2_initialize_objfile (struct objfile *objfile)
4117 {
4118 /* If we're about to read full symbols, don't bother with the
4119 indices. In this case we also don't care if some other debug
4120 format is making psymtabs, because they are all about to be
4121 expanded anyway. */
4122 if ((objfile->flags & OBJF_READNOW))
4123 {
4124 int i;
4125
4126 dwarf2_per_objfile->using_index = 1;
4127 create_all_comp_units (objfile);
4128 create_all_type_units (objfile);
4129 dwarf2_per_objfile->quick_file_names_table =
4130 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4131
4132 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4133 + dwarf2_per_objfile->n_type_units); ++i)
4134 {
4135 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4136
4137 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4138 struct dwarf2_per_cu_quick_data);
4139 }
4140
4141 /* Return 1 so that gdb sees the "quick" functions. However,
4142 these functions will be no-ops because we will have expanded
4143 all symtabs. */
4144 return 1;
4145 }
4146
4147 if (dwarf2_read_index (objfile))
4148 return 1;
4149
4150 return 0;
4151 }
4152
4153 \f
4154
4155 /* Build a partial symbol table. */
4156
4157 void
4158 dwarf2_build_psymtabs (struct objfile *objfile)
4159 {
4160 volatile struct gdb_exception except;
4161
4162 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4163 {
4164 init_psymbol_list (objfile, 1024);
4165 }
4166
4167 TRY_CATCH (except, RETURN_MASK_ERROR)
4168 {
4169 /* This isn't really ideal: all the data we allocate on the
4170 objfile's obstack is still uselessly kept around. However,
4171 freeing it seems unsafe. */
4172 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4173
4174 dwarf2_build_psymtabs_hard (objfile);
4175 discard_cleanups (cleanups);
4176 }
4177 if (except.reason < 0)
4178 exception_print (gdb_stderr, except);
4179 }
4180
4181 /* Return the total length of the CU described by HEADER. */
4182
4183 static unsigned int
4184 get_cu_length (const struct comp_unit_head *header)
4185 {
4186 return header->initial_length_size + header->length;
4187 }
4188
4189 /* Return TRUE if OFFSET is within CU_HEADER. */
4190
4191 static inline int
4192 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4193 {
4194 sect_offset bottom = { cu_header->offset.sect_off };
4195 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4196
4197 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4198 }
4199
4200 /* Find the base address of the compilation unit for range lists and
4201 location lists. It will normally be specified by DW_AT_low_pc.
4202 In DWARF-3 draft 4, the base address could be overridden by
4203 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4204 compilation units with discontinuous ranges. */
4205
4206 static void
4207 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4208 {
4209 struct attribute *attr;
4210
4211 cu->base_known = 0;
4212 cu->base_address = 0;
4213
4214 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4215 if (attr)
4216 {
4217 cu->base_address = attr_value_as_address (attr);
4218 cu->base_known = 1;
4219 }
4220 else
4221 {
4222 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4223 if (attr)
4224 {
4225 cu->base_address = attr_value_as_address (attr);
4226 cu->base_known = 1;
4227 }
4228 }
4229 }
4230
4231 /* Read in the comp unit header information from the debug_info at info_ptr.
4232 NOTE: This leaves members offset, first_die_offset to be filled in
4233 by the caller. */
4234
4235 static const gdb_byte *
4236 read_comp_unit_head (struct comp_unit_head *cu_header,
4237 const gdb_byte *info_ptr, bfd *abfd)
4238 {
4239 int signed_addr;
4240 unsigned int bytes_read;
4241
4242 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4243 cu_header->initial_length_size = bytes_read;
4244 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4245 info_ptr += bytes_read;
4246 cu_header->version = read_2_bytes (abfd, info_ptr);
4247 info_ptr += 2;
4248 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4249 &bytes_read);
4250 info_ptr += bytes_read;
4251 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4252 info_ptr += 1;
4253 signed_addr = bfd_get_sign_extend_vma (abfd);
4254 if (signed_addr < 0)
4255 internal_error (__FILE__, __LINE__,
4256 _("read_comp_unit_head: dwarf from non elf file"));
4257 cu_header->signed_addr_p = signed_addr;
4258
4259 return info_ptr;
4260 }
4261
4262 /* Helper function that returns the proper abbrev section for
4263 THIS_CU. */
4264
4265 static struct dwarf2_section_info *
4266 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4267 {
4268 struct dwarf2_section_info *abbrev;
4269
4270 if (this_cu->is_dwz)
4271 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4272 else
4273 abbrev = &dwarf2_per_objfile->abbrev;
4274
4275 return abbrev;
4276 }
4277
4278 /* Subroutine of read_and_check_comp_unit_head and
4279 read_and_check_type_unit_head to simplify them.
4280 Perform various error checking on the header. */
4281
4282 static void
4283 error_check_comp_unit_head (struct comp_unit_head *header,
4284 struct dwarf2_section_info *section,
4285 struct dwarf2_section_info *abbrev_section)
4286 {
4287 bfd *abfd = get_section_bfd_owner (section);
4288 const char *filename = get_section_file_name (section);
4289
4290 if (header->version != 2 && header->version != 3 && header->version != 4)
4291 error (_("Dwarf Error: wrong version in compilation unit header "
4292 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4293 filename);
4294
4295 if (header->abbrev_offset.sect_off
4296 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4297 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4298 "(offset 0x%lx + 6) [in module %s]"),
4299 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4300 filename);
4301
4302 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4303 avoid potential 32-bit overflow. */
4304 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4305 > section->size)
4306 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4307 "(offset 0x%lx + 0) [in module %s]"),
4308 (long) header->length, (long) header->offset.sect_off,
4309 filename);
4310 }
4311
4312 /* Read in a CU/TU header and perform some basic error checking.
4313 The contents of the header are stored in HEADER.
4314 The result is a pointer to the start of the first DIE. */
4315
4316 static const gdb_byte *
4317 read_and_check_comp_unit_head (struct comp_unit_head *header,
4318 struct dwarf2_section_info *section,
4319 struct dwarf2_section_info *abbrev_section,
4320 const gdb_byte *info_ptr,
4321 int is_debug_types_section)
4322 {
4323 const gdb_byte *beg_of_comp_unit = info_ptr;
4324 bfd *abfd = get_section_bfd_owner (section);
4325
4326 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4327
4328 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4329
4330 /* If we're reading a type unit, skip over the signature and
4331 type_offset fields. */
4332 if (is_debug_types_section)
4333 info_ptr += 8 /*signature*/ + header->offset_size;
4334
4335 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4336
4337 error_check_comp_unit_head (header, section, abbrev_section);
4338
4339 return info_ptr;
4340 }
4341
4342 /* Read in the types comp unit header information from .debug_types entry at
4343 types_ptr. The result is a pointer to one past the end of the header. */
4344
4345 static const gdb_byte *
4346 read_and_check_type_unit_head (struct comp_unit_head *header,
4347 struct dwarf2_section_info *section,
4348 struct dwarf2_section_info *abbrev_section,
4349 const gdb_byte *info_ptr,
4350 ULONGEST *signature,
4351 cu_offset *type_offset_in_tu)
4352 {
4353 const gdb_byte *beg_of_comp_unit = info_ptr;
4354 bfd *abfd = get_section_bfd_owner (section);
4355
4356 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4357
4358 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4359
4360 /* If we're reading a type unit, skip over the signature and
4361 type_offset fields. */
4362 if (signature != NULL)
4363 *signature = read_8_bytes (abfd, info_ptr);
4364 info_ptr += 8;
4365 if (type_offset_in_tu != NULL)
4366 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4367 header->offset_size);
4368 info_ptr += header->offset_size;
4369
4370 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4371
4372 error_check_comp_unit_head (header, section, abbrev_section);
4373
4374 return info_ptr;
4375 }
4376
4377 /* Fetch the abbreviation table offset from a comp or type unit header. */
4378
4379 static sect_offset
4380 read_abbrev_offset (struct dwarf2_section_info *section,
4381 sect_offset offset)
4382 {
4383 bfd *abfd = get_section_bfd_owner (section);
4384 const gdb_byte *info_ptr;
4385 unsigned int length, initial_length_size, offset_size;
4386 sect_offset abbrev_offset;
4387
4388 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4389 info_ptr = section->buffer + offset.sect_off;
4390 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4391 offset_size = initial_length_size == 4 ? 4 : 8;
4392 info_ptr += initial_length_size + 2 /*version*/;
4393 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4394 return abbrev_offset;
4395 }
4396
4397 /* Allocate a new partial symtab for file named NAME and mark this new
4398 partial symtab as being an include of PST. */
4399
4400 static void
4401 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4402 struct objfile *objfile)
4403 {
4404 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4405
4406 if (!IS_ABSOLUTE_PATH (subpst->filename))
4407 {
4408 /* It shares objfile->objfile_obstack. */
4409 subpst->dirname = pst->dirname;
4410 }
4411
4412 subpst->section_offsets = pst->section_offsets;
4413 subpst->textlow = 0;
4414 subpst->texthigh = 0;
4415
4416 subpst->dependencies = (struct partial_symtab **)
4417 obstack_alloc (&objfile->objfile_obstack,
4418 sizeof (struct partial_symtab *));
4419 subpst->dependencies[0] = pst;
4420 subpst->number_of_dependencies = 1;
4421
4422 subpst->globals_offset = 0;
4423 subpst->n_global_syms = 0;
4424 subpst->statics_offset = 0;
4425 subpst->n_static_syms = 0;
4426 subpst->compunit_symtab = NULL;
4427 subpst->read_symtab = pst->read_symtab;
4428 subpst->readin = 0;
4429
4430 /* No private part is necessary for include psymtabs. This property
4431 can be used to differentiate between such include psymtabs and
4432 the regular ones. */
4433 subpst->read_symtab_private = NULL;
4434 }
4435
4436 /* Read the Line Number Program data and extract the list of files
4437 included by the source file represented by PST. Build an include
4438 partial symtab for each of these included files. */
4439
4440 static void
4441 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4442 struct die_info *die,
4443 struct partial_symtab *pst)
4444 {
4445 struct line_header *lh = NULL;
4446 struct attribute *attr;
4447
4448 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4449 if (attr)
4450 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4451 if (lh == NULL)
4452 return; /* No linetable, so no includes. */
4453
4454 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4455 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
4456
4457 free_line_header (lh);
4458 }
4459
4460 static hashval_t
4461 hash_signatured_type (const void *item)
4462 {
4463 const struct signatured_type *sig_type = item;
4464
4465 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4466 return sig_type->signature;
4467 }
4468
4469 static int
4470 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4471 {
4472 const struct signatured_type *lhs = item_lhs;
4473 const struct signatured_type *rhs = item_rhs;
4474
4475 return lhs->signature == rhs->signature;
4476 }
4477
4478 /* Allocate a hash table for signatured types. */
4479
4480 static htab_t
4481 allocate_signatured_type_table (struct objfile *objfile)
4482 {
4483 return htab_create_alloc_ex (41,
4484 hash_signatured_type,
4485 eq_signatured_type,
4486 NULL,
4487 &objfile->objfile_obstack,
4488 hashtab_obstack_allocate,
4489 dummy_obstack_deallocate);
4490 }
4491
4492 /* A helper function to add a signatured type CU to a table. */
4493
4494 static int
4495 add_signatured_type_cu_to_table (void **slot, void *datum)
4496 {
4497 struct signatured_type *sigt = *slot;
4498 struct signatured_type ***datap = datum;
4499
4500 **datap = sigt;
4501 ++*datap;
4502
4503 return 1;
4504 }
4505
4506 /* Create the hash table of all entries in the .debug_types
4507 (or .debug_types.dwo) section(s).
4508 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4509 otherwise it is NULL.
4510
4511 The result is a pointer to the hash table or NULL if there are no types.
4512
4513 Note: This function processes DWO files only, not DWP files. */
4514
4515 static htab_t
4516 create_debug_types_hash_table (struct dwo_file *dwo_file,
4517 VEC (dwarf2_section_info_def) *types)
4518 {
4519 struct objfile *objfile = dwarf2_per_objfile->objfile;
4520 htab_t types_htab = NULL;
4521 int ix;
4522 struct dwarf2_section_info *section;
4523 struct dwarf2_section_info *abbrev_section;
4524
4525 if (VEC_empty (dwarf2_section_info_def, types))
4526 return NULL;
4527
4528 abbrev_section = (dwo_file != NULL
4529 ? &dwo_file->sections.abbrev
4530 : &dwarf2_per_objfile->abbrev);
4531
4532 if (dwarf2_read_debug)
4533 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4534 dwo_file ? ".dwo" : "",
4535 get_section_file_name (abbrev_section));
4536
4537 for (ix = 0;
4538 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4539 ++ix)
4540 {
4541 bfd *abfd;
4542 const gdb_byte *info_ptr, *end_ptr;
4543
4544 dwarf2_read_section (objfile, section);
4545 info_ptr = section->buffer;
4546
4547 if (info_ptr == NULL)
4548 continue;
4549
4550 /* We can't set abfd until now because the section may be empty or
4551 not present, in which case the bfd is unknown. */
4552 abfd = get_section_bfd_owner (section);
4553
4554 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4555 because we don't need to read any dies: the signature is in the
4556 header. */
4557
4558 end_ptr = info_ptr + section->size;
4559 while (info_ptr < end_ptr)
4560 {
4561 sect_offset offset;
4562 cu_offset type_offset_in_tu;
4563 ULONGEST signature;
4564 struct signatured_type *sig_type;
4565 struct dwo_unit *dwo_tu;
4566 void **slot;
4567 const gdb_byte *ptr = info_ptr;
4568 struct comp_unit_head header;
4569 unsigned int length;
4570
4571 offset.sect_off = ptr - section->buffer;
4572
4573 /* We need to read the type's signature in order to build the hash
4574 table, but we don't need anything else just yet. */
4575
4576 ptr = read_and_check_type_unit_head (&header, section,
4577 abbrev_section, ptr,
4578 &signature, &type_offset_in_tu);
4579
4580 length = get_cu_length (&header);
4581
4582 /* Skip dummy type units. */
4583 if (ptr >= info_ptr + length
4584 || peek_abbrev_code (abfd, ptr) == 0)
4585 {
4586 info_ptr += length;
4587 continue;
4588 }
4589
4590 if (types_htab == NULL)
4591 {
4592 if (dwo_file)
4593 types_htab = allocate_dwo_unit_table (objfile);
4594 else
4595 types_htab = allocate_signatured_type_table (objfile);
4596 }
4597
4598 if (dwo_file)
4599 {
4600 sig_type = NULL;
4601 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4602 struct dwo_unit);
4603 dwo_tu->dwo_file = dwo_file;
4604 dwo_tu->signature = signature;
4605 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4606 dwo_tu->section = section;
4607 dwo_tu->offset = offset;
4608 dwo_tu->length = length;
4609 }
4610 else
4611 {
4612 /* N.B.: type_offset is not usable if this type uses a DWO file.
4613 The real type_offset is in the DWO file. */
4614 dwo_tu = NULL;
4615 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4616 struct signatured_type);
4617 sig_type->signature = signature;
4618 sig_type->type_offset_in_tu = type_offset_in_tu;
4619 sig_type->per_cu.objfile = objfile;
4620 sig_type->per_cu.is_debug_types = 1;
4621 sig_type->per_cu.section = section;
4622 sig_type->per_cu.offset = offset;
4623 sig_type->per_cu.length = length;
4624 }
4625
4626 slot = htab_find_slot (types_htab,
4627 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4628 INSERT);
4629 gdb_assert (slot != NULL);
4630 if (*slot != NULL)
4631 {
4632 sect_offset dup_offset;
4633
4634 if (dwo_file)
4635 {
4636 const struct dwo_unit *dup_tu = *slot;
4637
4638 dup_offset = dup_tu->offset;
4639 }
4640 else
4641 {
4642 const struct signatured_type *dup_tu = *slot;
4643
4644 dup_offset = dup_tu->per_cu.offset;
4645 }
4646
4647 complaint (&symfile_complaints,
4648 _("debug type entry at offset 0x%x is duplicate to"
4649 " the entry at offset 0x%x, signature %s"),
4650 offset.sect_off, dup_offset.sect_off,
4651 hex_string (signature));
4652 }
4653 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4654
4655 if (dwarf2_read_debug > 1)
4656 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4657 offset.sect_off,
4658 hex_string (signature));
4659
4660 info_ptr += length;
4661 }
4662 }
4663
4664 return types_htab;
4665 }
4666
4667 /* Create the hash table of all entries in the .debug_types section,
4668 and initialize all_type_units.
4669 The result is zero if there is an error (e.g. missing .debug_types section),
4670 otherwise non-zero. */
4671
4672 static int
4673 create_all_type_units (struct objfile *objfile)
4674 {
4675 htab_t types_htab;
4676 struct signatured_type **iter;
4677
4678 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4679 if (types_htab == NULL)
4680 {
4681 dwarf2_per_objfile->signatured_types = NULL;
4682 return 0;
4683 }
4684
4685 dwarf2_per_objfile->signatured_types = types_htab;
4686
4687 dwarf2_per_objfile->n_type_units
4688 = dwarf2_per_objfile->n_allocated_type_units
4689 = htab_elements (types_htab);
4690 dwarf2_per_objfile->all_type_units
4691 = xmalloc (dwarf2_per_objfile->n_type_units
4692 * sizeof (struct signatured_type *));
4693 iter = &dwarf2_per_objfile->all_type_units[0];
4694 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4695 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4696 == dwarf2_per_objfile->n_type_units);
4697
4698 return 1;
4699 }
4700
4701 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4702 If SLOT is non-NULL, it is the entry to use in the hash table.
4703 Otherwise we find one. */
4704
4705 static struct signatured_type *
4706 add_type_unit (ULONGEST sig, void **slot)
4707 {
4708 struct objfile *objfile = dwarf2_per_objfile->objfile;
4709 int n_type_units = dwarf2_per_objfile->n_type_units;
4710 struct signatured_type *sig_type;
4711
4712 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4713 ++n_type_units;
4714 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4715 {
4716 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4717 dwarf2_per_objfile->n_allocated_type_units = 1;
4718 dwarf2_per_objfile->n_allocated_type_units *= 2;
4719 dwarf2_per_objfile->all_type_units
4720 = xrealloc (dwarf2_per_objfile->all_type_units,
4721 dwarf2_per_objfile->n_allocated_type_units
4722 * sizeof (struct signatured_type *));
4723 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4724 }
4725 dwarf2_per_objfile->n_type_units = n_type_units;
4726
4727 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4728 struct signatured_type);
4729 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4730 sig_type->signature = sig;
4731 sig_type->per_cu.is_debug_types = 1;
4732 if (dwarf2_per_objfile->using_index)
4733 {
4734 sig_type->per_cu.v.quick =
4735 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4736 struct dwarf2_per_cu_quick_data);
4737 }
4738
4739 if (slot == NULL)
4740 {
4741 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4742 sig_type, INSERT);
4743 }
4744 gdb_assert (*slot == NULL);
4745 *slot = sig_type;
4746 /* The rest of sig_type must be filled in by the caller. */
4747 return sig_type;
4748 }
4749
4750 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4751 Fill in SIG_ENTRY with DWO_ENTRY. */
4752
4753 static void
4754 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4755 struct signatured_type *sig_entry,
4756 struct dwo_unit *dwo_entry)
4757 {
4758 /* Make sure we're not clobbering something we don't expect to. */
4759 gdb_assert (! sig_entry->per_cu.queued);
4760 gdb_assert (sig_entry->per_cu.cu == NULL);
4761 if (dwarf2_per_objfile->using_index)
4762 {
4763 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4764 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4765 }
4766 else
4767 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4768 gdb_assert (sig_entry->signature == dwo_entry->signature);
4769 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4770 gdb_assert (sig_entry->type_unit_group == NULL);
4771 gdb_assert (sig_entry->dwo_unit == NULL);
4772
4773 sig_entry->per_cu.section = dwo_entry->section;
4774 sig_entry->per_cu.offset = dwo_entry->offset;
4775 sig_entry->per_cu.length = dwo_entry->length;
4776 sig_entry->per_cu.reading_dwo_directly = 1;
4777 sig_entry->per_cu.objfile = objfile;
4778 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4779 sig_entry->dwo_unit = dwo_entry;
4780 }
4781
4782 /* Subroutine of lookup_signatured_type.
4783 If we haven't read the TU yet, create the signatured_type data structure
4784 for a TU to be read in directly from a DWO file, bypassing the stub.
4785 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4786 using .gdb_index, then when reading a CU we want to stay in the DWO file
4787 containing that CU. Otherwise we could end up reading several other DWO
4788 files (due to comdat folding) to process the transitive closure of all the
4789 mentioned TUs, and that can be slow. The current DWO file will have every
4790 type signature that it needs.
4791 We only do this for .gdb_index because in the psymtab case we already have
4792 to read all the DWOs to build the type unit groups. */
4793
4794 static struct signatured_type *
4795 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4796 {
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 struct dwo_file *dwo_file;
4799 struct dwo_unit find_dwo_entry, *dwo_entry;
4800 struct signatured_type find_sig_entry, *sig_entry;
4801 void **slot;
4802
4803 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4804
4805 /* If TU skeletons have been removed then we may not have read in any
4806 TUs yet. */
4807 if (dwarf2_per_objfile->signatured_types == NULL)
4808 {
4809 dwarf2_per_objfile->signatured_types
4810 = allocate_signatured_type_table (objfile);
4811 }
4812
4813 /* We only ever need to read in one copy of a signatured type.
4814 Use the global signatured_types array to do our own comdat-folding
4815 of types. If this is the first time we're reading this TU, and
4816 the TU has an entry in .gdb_index, replace the recorded data from
4817 .gdb_index with this TU. */
4818
4819 find_sig_entry.signature = sig;
4820 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4821 &find_sig_entry, INSERT);
4822 sig_entry = *slot;
4823
4824 /* We can get here with the TU already read, *or* in the process of being
4825 read. Don't reassign the global entry to point to this DWO if that's
4826 the case. Also note that if the TU is already being read, it may not
4827 have come from a DWO, the program may be a mix of Fission-compiled
4828 code and non-Fission-compiled code. */
4829
4830 /* Have we already tried to read this TU?
4831 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4832 needn't exist in the global table yet). */
4833 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4834 return sig_entry;
4835
4836 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4837 dwo_unit of the TU itself. */
4838 dwo_file = cu->dwo_unit->dwo_file;
4839
4840 /* Ok, this is the first time we're reading this TU. */
4841 if (dwo_file->tus == NULL)
4842 return NULL;
4843 find_dwo_entry.signature = sig;
4844 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4845 if (dwo_entry == NULL)
4846 return NULL;
4847
4848 /* If the global table doesn't have an entry for this TU, add one. */
4849 if (sig_entry == NULL)
4850 sig_entry = add_type_unit (sig, slot);
4851
4852 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4853 sig_entry->per_cu.tu_read = 1;
4854 return sig_entry;
4855 }
4856
4857 /* Subroutine of lookup_signatured_type.
4858 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4859 then try the DWP file. If the TU stub (skeleton) has been removed then
4860 it won't be in .gdb_index. */
4861
4862 static struct signatured_type *
4863 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4864 {
4865 struct objfile *objfile = dwarf2_per_objfile->objfile;
4866 struct dwp_file *dwp_file = get_dwp_file ();
4867 struct dwo_unit *dwo_entry;
4868 struct signatured_type find_sig_entry, *sig_entry;
4869 void **slot;
4870
4871 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4872 gdb_assert (dwp_file != NULL);
4873
4874 /* If TU skeletons have been removed then we may not have read in any
4875 TUs yet. */
4876 if (dwarf2_per_objfile->signatured_types == NULL)
4877 {
4878 dwarf2_per_objfile->signatured_types
4879 = allocate_signatured_type_table (objfile);
4880 }
4881
4882 find_sig_entry.signature = sig;
4883 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4884 &find_sig_entry, INSERT);
4885 sig_entry = *slot;
4886
4887 /* Have we already tried to read this TU?
4888 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4889 needn't exist in the global table yet). */
4890 if (sig_entry != NULL)
4891 return sig_entry;
4892
4893 if (dwp_file->tus == NULL)
4894 return NULL;
4895 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4896 sig, 1 /* is_debug_types */);
4897 if (dwo_entry == NULL)
4898 return NULL;
4899
4900 sig_entry = add_type_unit (sig, slot);
4901 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4902
4903 return sig_entry;
4904 }
4905
4906 /* Lookup a signature based type for DW_FORM_ref_sig8.
4907 Returns NULL if signature SIG is not present in the table.
4908 It is up to the caller to complain about this. */
4909
4910 static struct signatured_type *
4911 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4912 {
4913 if (cu->dwo_unit
4914 && dwarf2_per_objfile->using_index)
4915 {
4916 /* We're in a DWO/DWP file, and we're using .gdb_index.
4917 These cases require special processing. */
4918 if (get_dwp_file () == NULL)
4919 return lookup_dwo_signatured_type (cu, sig);
4920 else
4921 return lookup_dwp_signatured_type (cu, sig);
4922 }
4923 else
4924 {
4925 struct signatured_type find_entry, *entry;
4926
4927 if (dwarf2_per_objfile->signatured_types == NULL)
4928 return NULL;
4929 find_entry.signature = sig;
4930 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4931 return entry;
4932 }
4933 }
4934 \f
4935 /* Low level DIE reading support. */
4936
4937 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4938
4939 static void
4940 init_cu_die_reader (struct die_reader_specs *reader,
4941 struct dwarf2_cu *cu,
4942 struct dwarf2_section_info *section,
4943 struct dwo_file *dwo_file)
4944 {
4945 gdb_assert (section->readin && section->buffer != NULL);
4946 reader->abfd = get_section_bfd_owner (section);
4947 reader->cu = cu;
4948 reader->dwo_file = dwo_file;
4949 reader->die_section = section;
4950 reader->buffer = section->buffer;
4951 reader->buffer_end = section->buffer + section->size;
4952 reader->comp_dir = NULL;
4953 }
4954
4955 /* Subroutine of init_cutu_and_read_dies to simplify it.
4956 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4957 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4958 already.
4959
4960 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4961 from it to the DIE in the DWO. If NULL we are skipping the stub.
4962 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4963 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4964 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4965 STUB_COMP_DIR may be non-NULL.
4966 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4967 are filled in with the info of the DIE from the DWO file.
4968 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4969 provided an abbrev table to use.
4970 The result is non-zero if a valid (non-dummy) DIE was found. */
4971
4972 static int
4973 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4974 struct dwo_unit *dwo_unit,
4975 int abbrev_table_provided,
4976 struct die_info *stub_comp_unit_die,
4977 const char *stub_comp_dir,
4978 struct die_reader_specs *result_reader,
4979 const gdb_byte **result_info_ptr,
4980 struct die_info **result_comp_unit_die,
4981 int *result_has_children)
4982 {
4983 struct objfile *objfile = dwarf2_per_objfile->objfile;
4984 struct dwarf2_cu *cu = this_cu->cu;
4985 struct dwarf2_section_info *section;
4986 bfd *abfd;
4987 const gdb_byte *begin_info_ptr, *info_ptr;
4988 ULONGEST signature; /* Or dwo_id. */
4989 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4990 int i,num_extra_attrs;
4991 struct dwarf2_section_info *dwo_abbrev_section;
4992 struct attribute *attr;
4993 struct die_info *comp_unit_die;
4994
4995 /* At most one of these may be provided. */
4996 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4997
4998 /* These attributes aren't processed until later:
4999 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5000 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5001 referenced later. However, these attributes are found in the stub
5002 which we won't have later. In order to not impose this complication
5003 on the rest of the code, we read them here and copy them to the
5004 DWO CU/TU die. */
5005
5006 stmt_list = NULL;
5007 low_pc = NULL;
5008 high_pc = NULL;
5009 ranges = NULL;
5010 comp_dir = NULL;
5011
5012 if (stub_comp_unit_die != NULL)
5013 {
5014 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5015 DWO file. */
5016 if (! this_cu->is_debug_types)
5017 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5018 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5019 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5020 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5021 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5022
5023 /* There should be a DW_AT_addr_base attribute here (if needed).
5024 We need the value before we can process DW_FORM_GNU_addr_index. */
5025 cu->addr_base = 0;
5026 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5027 if (attr)
5028 cu->addr_base = DW_UNSND (attr);
5029
5030 /* There should be a DW_AT_ranges_base attribute here (if needed).
5031 We need the value before we can process DW_AT_ranges. */
5032 cu->ranges_base = 0;
5033 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5034 if (attr)
5035 cu->ranges_base = DW_UNSND (attr);
5036 }
5037 else if (stub_comp_dir != NULL)
5038 {
5039 /* Reconstruct the comp_dir attribute to simplify the code below. */
5040 comp_dir = (struct attribute *)
5041 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5042 comp_dir->name = DW_AT_comp_dir;
5043 comp_dir->form = DW_FORM_string;
5044 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5045 DW_STRING (comp_dir) = stub_comp_dir;
5046 }
5047
5048 /* Set up for reading the DWO CU/TU. */
5049 cu->dwo_unit = dwo_unit;
5050 section = dwo_unit->section;
5051 dwarf2_read_section (objfile, section);
5052 abfd = get_section_bfd_owner (section);
5053 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5054 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5055 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5056
5057 if (this_cu->is_debug_types)
5058 {
5059 ULONGEST header_signature;
5060 cu_offset type_offset_in_tu;
5061 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5062
5063 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5064 dwo_abbrev_section,
5065 info_ptr,
5066 &header_signature,
5067 &type_offset_in_tu);
5068 /* This is not an assert because it can be caused by bad debug info. */
5069 if (sig_type->signature != header_signature)
5070 {
5071 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5072 " TU at offset 0x%x [in module %s]"),
5073 hex_string (sig_type->signature),
5074 hex_string (header_signature),
5075 dwo_unit->offset.sect_off,
5076 bfd_get_filename (abfd));
5077 }
5078 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5079 /* For DWOs coming from DWP files, we don't know the CU length
5080 nor the type's offset in the TU until now. */
5081 dwo_unit->length = get_cu_length (&cu->header);
5082 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5083
5084 /* Establish the type offset that can be used to lookup the type.
5085 For DWO files, we don't know it until now. */
5086 sig_type->type_offset_in_section.sect_off =
5087 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5088 }
5089 else
5090 {
5091 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5092 dwo_abbrev_section,
5093 info_ptr, 0);
5094 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5095 /* For DWOs coming from DWP files, we don't know the CU length
5096 until now. */
5097 dwo_unit->length = get_cu_length (&cu->header);
5098 }
5099
5100 /* Replace the CU's original abbrev table with the DWO's.
5101 Reminder: We can't read the abbrev table until we've read the header. */
5102 if (abbrev_table_provided)
5103 {
5104 /* Don't free the provided abbrev table, the caller of
5105 init_cutu_and_read_dies owns it. */
5106 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5107 /* Ensure the DWO abbrev table gets freed. */
5108 make_cleanup (dwarf2_free_abbrev_table, cu);
5109 }
5110 else
5111 {
5112 dwarf2_free_abbrev_table (cu);
5113 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5114 /* Leave any existing abbrev table cleanup as is. */
5115 }
5116
5117 /* Read in the die, but leave space to copy over the attributes
5118 from the stub. This has the benefit of simplifying the rest of
5119 the code - all the work to maintain the illusion of a single
5120 DW_TAG_{compile,type}_unit DIE is done here. */
5121 num_extra_attrs = ((stmt_list != NULL)
5122 + (low_pc != NULL)
5123 + (high_pc != NULL)
5124 + (ranges != NULL)
5125 + (comp_dir != NULL));
5126 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5127 result_has_children, num_extra_attrs);
5128
5129 /* Copy over the attributes from the stub to the DIE we just read in. */
5130 comp_unit_die = *result_comp_unit_die;
5131 i = comp_unit_die->num_attrs;
5132 if (stmt_list != NULL)
5133 comp_unit_die->attrs[i++] = *stmt_list;
5134 if (low_pc != NULL)
5135 comp_unit_die->attrs[i++] = *low_pc;
5136 if (high_pc != NULL)
5137 comp_unit_die->attrs[i++] = *high_pc;
5138 if (ranges != NULL)
5139 comp_unit_die->attrs[i++] = *ranges;
5140 if (comp_dir != NULL)
5141 comp_unit_die->attrs[i++] = *comp_dir;
5142 comp_unit_die->num_attrs += num_extra_attrs;
5143
5144 if (dwarf2_die_debug)
5145 {
5146 fprintf_unfiltered (gdb_stdlog,
5147 "Read die from %s@0x%x of %s:\n",
5148 get_section_name (section),
5149 (unsigned) (begin_info_ptr - section->buffer),
5150 bfd_get_filename (abfd));
5151 dump_die (comp_unit_die, dwarf2_die_debug);
5152 }
5153
5154 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5155 TUs by skipping the stub and going directly to the entry in the DWO file.
5156 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5157 to get it via circuitous means. Blech. */
5158 if (comp_dir != NULL)
5159 result_reader->comp_dir = DW_STRING (comp_dir);
5160
5161 /* Skip dummy compilation units. */
5162 if (info_ptr >= begin_info_ptr + dwo_unit->length
5163 || peek_abbrev_code (abfd, info_ptr) == 0)
5164 return 0;
5165
5166 *result_info_ptr = info_ptr;
5167 return 1;
5168 }
5169
5170 /* Subroutine of init_cutu_and_read_dies to simplify it.
5171 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5172 Returns NULL if the specified DWO unit cannot be found. */
5173
5174 static struct dwo_unit *
5175 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5176 struct die_info *comp_unit_die)
5177 {
5178 struct dwarf2_cu *cu = this_cu->cu;
5179 struct attribute *attr;
5180 ULONGEST signature;
5181 struct dwo_unit *dwo_unit;
5182 const char *comp_dir, *dwo_name;
5183
5184 gdb_assert (cu != NULL);
5185
5186 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5187 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5188 gdb_assert (attr != NULL);
5189 dwo_name = DW_STRING (attr);
5190 comp_dir = NULL;
5191 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5192 if (attr)
5193 comp_dir = DW_STRING (attr);
5194
5195 if (this_cu->is_debug_types)
5196 {
5197 struct signatured_type *sig_type;
5198
5199 /* Since this_cu is the first member of struct signatured_type,
5200 we can go from a pointer to one to a pointer to the other. */
5201 sig_type = (struct signatured_type *) this_cu;
5202 signature = sig_type->signature;
5203 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5204 }
5205 else
5206 {
5207 struct attribute *attr;
5208
5209 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5210 if (! attr)
5211 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5212 " [in module %s]"),
5213 dwo_name, objfile_name (this_cu->objfile));
5214 signature = DW_UNSND (attr);
5215 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5216 signature);
5217 }
5218
5219 return dwo_unit;
5220 }
5221
5222 /* Subroutine of init_cutu_and_read_dies to simplify it.
5223 See it for a description of the parameters.
5224 Read a TU directly from a DWO file, bypassing the stub.
5225
5226 Note: This function could be a little bit simpler if we shared cleanups
5227 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5228 to do, so we keep this function self-contained. Or we could move this
5229 into our caller, but it's complex enough already. */
5230
5231 static void
5232 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5233 int use_existing_cu, int keep,
5234 die_reader_func_ftype *die_reader_func,
5235 void *data)
5236 {
5237 struct dwarf2_cu *cu;
5238 struct signatured_type *sig_type;
5239 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5240 struct die_reader_specs reader;
5241 const gdb_byte *info_ptr;
5242 struct die_info *comp_unit_die;
5243 int has_children;
5244
5245 /* Verify we can do the following downcast, and that we have the
5246 data we need. */
5247 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5248 sig_type = (struct signatured_type *) this_cu;
5249 gdb_assert (sig_type->dwo_unit != NULL);
5250
5251 cleanups = make_cleanup (null_cleanup, NULL);
5252
5253 if (use_existing_cu && this_cu->cu != NULL)
5254 {
5255 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5256 cu = this_cu->cu;
5257 /* There's no need to do the rereading_dwo_cu handling that
5258 init_cutu_and_read_dies does since we don't read the stub. */
5259 }
5260 else
5261 {
5262 /* If !use_existing_cu, this_cu->cu must be NULL. */
5263 gdb_assert (this_cu->cu == NULL);
5264 cu = xmalloc (sizeof (*cu));
5265 init_one_comp_unit (cu, this_cu);
5266 /* If an error occurs while loading, release our storage. */
5267 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5268 }
5269
5270 /* A future optimization, if needed, would be to use an existing
5271 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5272 could share abbrev tables. */
5273
5274 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5275 0 /* abbrev_table_provided */,
5276 NULL /* stub_comp_unit_die */,
5277 sig_type->dwo_unit->dwo_file->comp_dir,
5278 &reader, &info_ptr,
5279 &comp_unit_die, &has_children) == 0)
5280 {
5281 /* Dummy die. */
5282 do_cleanups (cleanups);
5283 return;
5284 }
5285
5286 /* All the "real" work is done here. */
5287 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5288
5289 /* This duplicates the code in init_cutu_and_read_dies,
5290 but the alternative is making the latter more complex.
5291 This function is only for the special case of using DWO files directly:
5292 no point in overly complicating the general case just to handle this. */
5293 if (free_cu_cleanup != NULL)
5294 {
5295 if (keep)
5296 {
5297 /* We've successfully allocated this compilation unit. Let our
5298 caller clean it up when finished with it. */
5299 discard_cleanups (free_cu_cleanup);
5300
5301 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5302 So we have to manually free the abbrev table. */
5303 dwarf2_free_abbrev_table (cu);
5304
5305 /* Link this CU into read_in_chain. */
5306 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5307 dwarf2_per_objfile->read_in_chain = this_cu;
5308 }
5309 else
5310 do_cleanups (free_cu_cleanup);
5311 }
5312
5313 do_cleanups (cleanups);
5314 }
5315
5316 /* Initialize a CU (or TU) and read its DIEs.
5317 If the CU defers to a DWO file, read the DWO file as well.
5318
5319 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5320 Otherwise the table specified in the comp unit header is read in and used.
5321 This is an optimization for when we already have the abbrev table.
5322
5323 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5324 Otherwise, a new CU is allocated with xmalloc.
5325
5326 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5327 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5328
5329 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5330 linker) then DIE_READER_FUNC will not get called. */
5331
5332 static void
5333 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5334 struct abbrev_table *abbrev_table,
5335 int use_existing_cu, int keep,
5336 die_reader_func_ftype *die_reader_func,
5337 void *data)
5338 {
5339 struct objfile *objfile = dwarf2_per_objfile->objfile;
5340 struct dwarf2_section_info *section = this_cu->section;
5341 bfd *abfd = get_section_bfd_owner (section);
5342 struct dwarf2_cu *cu;
5343 const gdb_byte *begin_info_ptr, *info_ptr;
5344 struct die_reader_specs reader;
5345 struct die_info *comp_unit_die;
5346 int has_children;
5347 struct attribute *attr;
5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5349 struct signatured_type *sig_type = NULL;
5350 struct dwarf2_section_info *abbrev_section;
5351 /* Non-zero if CU currently points to a DWO file and we need to
5352 reread it. When this happens we need to reread the skeleton die
5353 before we can reread the DWO file (this only applies to CUs, not TUs). */
5354 int rereading_dwo_cu = 0;
5355
5356 if (dwarf2_die_debug)
5357 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5358 this_cu->is_debug_types ? "type" : "comp",
5359 this_cu->offset.sect_off);
5360
5361 if (use_existing_cu)
5362 gdb_assert (keep);
5363
5364 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5365 file (instead of going through the stub), short-circuit all of this. */
5366 if (this_cu->reading_dwo_directly)
5367 {
5368 /* Narrow down the scope of possibilities to have to understand. */
5369 gdb_assert (this_cu->is_debug_types);
5370 gdb_assert (abbrev_table == NULL);
5371 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5372 die_reader_func, data);
5373 return;
5374 }
5375
5376 cleanups = make_cleanup (null_cleanup, NULL);
5377
5378 /* This is cheap if the section is already read in. */
5379 dwarf2_read_section (objfile, section);
5380
5381 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5382
5383 abbrev_section = get_abbrev_section_for_cu (this_cu);
5384
5385 if (use_existing_cu && this_cu->cu != NULL)
5386 {
5387 cu = this_cu->cu;
5388 /* If this CU is from a DWO file we need to start over, we need to
5389 refetch the attributes from the skeleton CU.
5390 This could be optimized by retrieving those attributes from when we
5391 were here the first time: the previous comp_unit_die was stored in
5392 comp_unit_obstack. But there's no data yet that we need this
5393 optimization. */
5394 if (cu->dwo_unit != NULL)
5395 rereading_dwo_cu = 1;
5396 }
5397 else
5398 {
5399 /* If !use_existing_cu, this_cu->cu must be NULL. */
5400 gdb_assert (this_cu->cu == NULL);
5401 cu = xmalloc (sizeof (*cu));
5402 init_one_comp_unit (cu, this_cu);
5403 /* If an error occurs while loading, release our storage. */
5404 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5405 }
5406
5407 /* Get the header. */
5408 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5409 {
5410 /* We already have the header, there's no need to read it in again. */
5411 info_ptr += cu->header.first_die_offset.cu_off;
5412 }
5413 else
5414 {
5415 if (this_cu->is_debug_types)
5416 {
5417 ULONGEST signature;
5418 cu_offset type_offset_in_tu;
5419
5420 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5421 abbrev_section, info_ptr,
5422 &signature,
5423 &type_offset_in_tu);
5424
5425 /* Since per_cu is the first member of struct signatured_type,
5426 we can go from a pointer to one to a pointer to the other. */
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->signature == signature);
5429 gdb_assert (sig_type->type_offset_in_tu.cu_off
5430 == type_offset_in_tu.cu_off);
5431 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5432
5433 /* LENGTH has not been set yet for type units if we're
5434 using .gdb_index. */
5435 this_cu->length = get_cu_length (&cu->header);
5436
5437 /* Establish the type offset that can be used to lookup the type. */
5438 sig_type->type_offset_in_section.sect_off =
5439 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5440 }
5441 else
5442 {
5443 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5444 abbrev_section,
5445 info_ptr, 0);
5446
5447 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5448 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5449 }
5450 }
5451
5452 /* Skip dummy compilation units. */
5453 if (info_ptr >= begin_info_ptr + this_cu->length
5454 || peek_abbrev_code (abfd, info_ptr) == 0)
5455 {
5456 do_cleanups (cleanups);
5457 return;
5458 }
5459
5460 /* If we don't have them yet, read the abbrevs for this compilation unit.
5461 And if we need to read them now, make sure they're freed when we're
5462 done. Note that it's important that if the CU had an abbrev table
5463 on entry we don't free it when we're done: Somewhere up the call stack
5464 it may be in use. */
5465 if (abbrev_table != NULL)
5466 {
5467 gdb_assert (cu->abbrev_table == NULL);
5468 gdb_assert (cu->header.abbrev_offset.sect_off
5469 == abbrev_table->offset.sect_off);
5470 cu->abbrev_table = abbrev_table;
5471 }
5472 else if (cu->abbrev_table == NULL)
5473 {
5474 dwarf2_read_abbrevs (cu, abbrev_section);
5475 make_cleanup (dwarf2_free_abbrev_table, cu);
5476 }
5477 else if (rereading_dwo_cu)
5478 {
5479 dwarf2_free_abbrev_table (cu);
5480 dwarf2_read_abbrevs (cu, abbrev_section);
5481 }
5482
5483 /* Read the top level CU/TU die. */
5484 init_cu_die_reader (&reader, cu, section, NULL);
5485 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5486
5487 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5488 from the DWO file.
5489 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5490 DWO CU, that this test will fail (the attribute will not be present). */
5491 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5492 if (attr)
5493 {
5494 struct dwo_unit *dwo_unit;
5495 struct die_info *dwo_comp_unit_die;
5496
5497 if (has_children)
5498 {
5499 complaint (&symfile_complaints,
5500 _("compilation unit with DW_AT_GNU_dwo_name"
5501 " has children (offset 0x%x) [in module %s]"),
5502 this_cu->offset.sect_off, bfd_get_filename (abfd));
5503 }
5504 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5505 if (dwo_unit != NULL)
5506 {
5507 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5508 abbrev_table != NULL,
5509 comp_unit_die, NULL,
5510 &reader, &info_ptr,
5511 &dwo_comp_unit_die, &has_children) == 0)
5512 {
5513 /* Dummy die. */
5514 do_cleanups (cleanups);
5515 return;
5516 }
5517 comp_unit_die = dwo_comp_unit_die;
5518 }
5519 else
5520 {
5521 /* Yikes, we couldn't find the rest of the DIE, we only have
5522 the stub. A complaint has already been logged. There's
5523 not much more we can do except pass on the stub DIE to
5524 die_reader_func. We don't want to throw an error on bad
5525 debug info. */
5526 }
5527 }
5528
5529 /* All of the above is setup for this call. Yikes. */
5530 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5531
5532 /* Done, clean up. */
5533 if (free_cu_cleanup != NULL)
5534 {
5535 if (keep)
5536 {
5537 /* We've successfully allocated this compilation unit. Let our
5538 caller clean it up when finished with it. */
5539 discard_cleanups (free_cu_cleanup);
5540
5541 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5542 So we have to manually free the abbrev table. */
5543 dwarf2_free_abbrev_table (cu);
5544
5545 /* Link this CU into read_in_chain. */
5546 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5547 dwarf2_per_objfile->read_in_chain = this_cu;
5548 }
5549 else
5550 do_cleanups (free_cu_cleanup);
5551 }
5552
5553 do_cleanups (cleanups);
5554 }
5555
5556 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5557 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5558 to have already done the lookup to find the DWO file).
5559
5560 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5561 THIS_CU->is_debug_types, but nothing else.
5562
5563 We fill in THIS_CU->length.
5564
5565 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5566 linker) then DIE_READER_FUNC will not get called.
5567
5568 THIS_CU->cu is always freed when done.
5569 This is done in order to not leave THIS_CU->cu in a state where we have
5570 to care whether it refers to the "main" CU or the DWO CU. */
5571
5572 static void
5573 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5574 struct dwo_file *dwo_file,
5575 die_reader_func_ftype *die_reader_func,
5576 void *data)
5577 {
5578 struct objfile *objfile = dwarf2_per_objfile->objfile;
5579 struct dwarf2_section_info *section = this_cu->section;
5580 bfd *abfd = get_section_bfd_owner (section);
5581 struct dwarf2_section_info *abbrev_section;
5582 struct dwarf2_cu cu;
5583 const gdb_byte *begin_info_ptr, *info_ptr;
5584 struct die_reader_specs reader;
5585 struct cleanup *cleanups;
5586 struct die_info *comp_unit_die;
5587 int has_children;
5588
5589 if (dwarf2_die_debug)
5590 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5591 this_cu->is_debug_types ? "type" : "comp",
5592 this_cu->offset.sect_off);
5593
5594 gdb_assert (this_cu->cu == NULL);
5595
5596 abbrev_section = (dwo_file != NULL
5597 ? &dwo_file->sections.abbrev
5598 : get_abbrev_section_for_cu (this_cu));
5599
5600 /* This is cheap if the section is already read in. */
5601 dwarf2_read_section (objfile, section);
5602
5603 init_one_comp_unit (&cu, this_cu);
5604
5605 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5606
5607 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5608 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5609 abbrev_section, info_ptr,
5610 this_cu->is_debug_types);
5611
5612 this_cu->length = get_cu_length (&cu.header);
5613
5614 /* Skip dummy compilation units. */
5615 if (info_ptr >= begin_info_ptr + this_cu->length
5616 || peek_abbrev_code (abfd, info_ptr) == 0)
5617 {
5618 do_cleanups (cleanups);
5619 return;
5620 }
5621
5622 dwarf2_read_abbrevs (&cu, abbrev_section);
5623 make_cleanup (dwarf2_free_abbrev_table, &cu);
5624
5625 init_cu_die_reader (&reader, &cu, section, dwo_file);
5626 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5627
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
5630 do_cleanups (cleanups);
5631 }
5632
5633 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5634 does not lookup the specified DWO file.
5635 This cannot be used to read DWO files.
5636
5637 THIS_CU->cu is always freed when done.
5638 This is done in order to not leave THIS_CU->cu in a state where we have
5639 to care whether it refers to the "main" CU or the DWO CU.
5640 We can revisit this if the data shows there's a performance issue. */
5641
5642 static void
5643 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5644 die_reader_func_ftype *die_reader_func,
5645 void *data)
5646 {
5647 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5648 }
5649 \f
5650 /* Type Unit Groups.
5651
5652 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5653 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5654 so that all types coming from the same compilation (.o file) are grouped
5655 together. A future step could be to put the types in the same symtab as
5656 the CU the types ultimately came from. */
5657
5658 static hashval_t
5659 hash_type_unit_group (const void *item)
5660 {
5661 const struct type_unit_group *tu_group = item;
5662
5663 return hash_stmt_list_entry (&tu_group->hash);
5664 }
5665
5666 static int
5667 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5668 {
5669 const struct type_unit_group *lhs = item_lhs;
5670 const struct type_unit_group *rhs = item_rhs;
5671
5672 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5673 }
5674
5675 /* Allocate a hash table for type unit groups. */
5676
5677 static htab_t
5678 allocate_type_unit_groups_table (void)
5679 {
5680 return htab_create_alloc_ex (3,
5681 hash_type_unit_group,
5682 eq_type_unit_group,
5683 NULL,
5684 &dwarf2_per_objfile->objfile->objfile_obstack,
5685 hashtab_obstack_allocate,
5686 dummy_obstack_deallocate);
5687 }
5688
5689 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5690 partial symtabs. We combine several TUs per psymtab to not let the size
5691 of any one psymtab grow too big. */
5692 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5693 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5694
5695 /* Helper routine for get_type_unit_group.
5696 Create the type_unit_group object used to hold one or more TUs. */
5697
5698 static struct type_unit_group *
5699 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5700 {
5701 struct objfile *objfile = dwarf2_per_objfile->objfile;
5702 struct dwarf2_per_cu_data *per_cu;
5703 struct type_unit_group *tu_group;
5704
5705 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5706 struct type_unit_group);
5707 per_cu = &tu_group->per_cu;
5708 per_cu->objfile = objfile;
5709
5710 if (dwarf2_per_objfile->using_index)
5711 {
5712 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5713 struct dwarf2_per_cu_quick_data);
5714 }
5715 else
5716 {
5717 unsigned int line_offset = line_offset_struct.sect_off;
5718 struct partial_symtab *pst;
5719 char *name;
5720
5721 /* Give the symtab a useful name for debug purposes. */
5722 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5723 name = xstrprintf ("<type_units_%d>",
5724 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5725 else
5726 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5727
5728 pst = create_partial_symtab (per_cu, name);
5729 pst->anonymous = 1;
5730
5731 xfree (name);
5732 }
5733
5734 tu_group->hash.dwo_unit = cu->dwo_unit;
5735 tu_group->hash.line_offset = line_offset_struct;
5736
5737 return tu_group;
5738 }
5739
5740 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5741 STMT_LIST is a DW_AT_stmt_list attribute. */
5742
5743 static struct type_unit_group *
5744 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5745 {
5746 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5747 struct type_unit_group *tu_group;
5748 void **slot;
5749 unsigned int line_offset;
5750 struct type_unit_group type_unit_group_for_lookup;
5751
5752 if (dwarf2_per_objfile->type_unit_groups == NULL)
5753 {
5754 dwarf2_per_objfile->type_unit_groups =
5755 allocate_type_unit_groups_table ();
5756 }
5757
5758 /* Do we need to create a new group, or can we use an existing one? */
5759
5760 if (stmt_list)
5761 {
5762 line_offset = DW_UNSND (stmt_list);
5763 ++tu_stats->nr_symtab_sharers;
5764 }
5765 else
5766 {
5767 /* Ugh, no stmt_list. Rare, but we have to handle it.
5768 We can do various things here like create one group per TU or
5769 spread them over multiple groups to split up the expansion work.
5770 To avoid worst case scenarios (too many groups or too large groups)
5771 we, umm, group them in bunches. */
5772 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5773 | (tu_stats->nr_stmt_less_type_units
5774 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5775 ++tu_stats->nr_stmt_less_type_units;
5776 }
5777
5778 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5779 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5780 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5781 &type_unit_group_for_lookup, INSERT);
5782 if (*slot != NULL)
5783 {
5784 tu_group = *slot;
5785 gdb_assert (tu_group != NULL);
5786 }
5787 else
5788 {
5789 sect_offset line_offset_struct;
5790
5791 line_offset_struct.sect_off = line_offset;
5792 tu_group = create_type_unit_group (cu, line_offset_struct);
5793 *slot = tu_group;
5794 ++tu_stats->nr_symtabs;
5795 }
5796
5797 return tu_group;
5798 }
5799 \f
5800 /* Partial symbol tables. */
5801
5802 /* Create a psymtab named NAME and assign it to PER_CU.
5803
5804 The caller must fill in the following details:
5805 dirname, textlow, texthigh. */
5806
5807 static struct partial_symtab *
5808 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5809 {
5810 struct objfile *objfile = per_cu->objfile;
5811 struct partial_symtab *pst;
5812
5813 pst = start_psymtab_common (objfile, objfile->section_offsets,
5814 name, 0,
5815 objfile->global_psymbols.next,
5816 objfile->static_psymbols.next);
5817
5818 pst->psymtabs_addrmap_supported = 1;
5819
5820 /* This is the glue that links PST into GDB's symbol API. */
5821 pst->read_symtab_private = per_cu;
5822 pst->read_symtab = dwarf2_read_symtab;
5823 per_cu->v.psymtab = pst;
5824
5825 return pst;
5826 }
5827
5828 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5829 type. */
5830
5831 struct process_psymtab_comp_unit_data
5832 {
5833 /* True if we are reading a DW_TAG_partial_unit. */
5834
5835 int want_partial_unit;
5836
5837 /* The "pretend" language that is used if the CU doesn't declare a
5838 language. */
5839
5840 enum language pretend_language;
5841 };
5842
5843 /* die_reader_func for process_psymtab_comp_unit. */
5844
5845 static void
5846 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5847 const gdb_byte *info_ptr,
5848 struct die_info *comp_unit_die,
5849 int has_children,
5850 void *data)
5851 {
5852 struct dwarf2_cu *cu = reader->cu;
5853 struct objfile *objfile = cu->objfile;
5854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5855 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5856 struct attribute *attr;
5857 CORE_ADDR baseaddr;
5858 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5859 struct partial_symtab *pst;
5860 int has_pc_info;
5861 const char *filename;
5862 struct process_psymtab_comp_unit_data *info = data;
5863
5864 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5865 return;
5866
5867 gdb_assert (! per_cu->is_debug_types);
5868
5869 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5870
5871 cu->list_in_scope = &file_symbols;
5872
5873 /* Allocate a new partial symbol table structure. */
5874 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5875 if (attr == NULL || !DW_STRING (attr))
5876 filename = "";
5877 else
5878 filename = DW_STRING (attr);
5879
5880 pst = create_partial_symtab (per_cu, filename);
5881
5882 /* This must be done before calling dwarf2_build_include_psymtabs. */
5883 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5884 if (attr != NULL)
5885 pst->dirname = DW_STRING (attr);
5886
5887 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5888
5889 dwarf2_find_base_address (comp_unit_die, cu);
5890
5891 /* Possibly set the default values of LOWPC and HIGHPC from
5892 `DW_AT_ranges'. */
5893 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5894 &best_highpc, cu, pst);
5895 if (has_pc_info == 1 && best_lowpc < best_highpc)
5896 /* Store the contiguous range if it is not empty; it can be empty for
5897 CUs with no code. */
5898 addrmap_set_empty (objfile->psymtabs_addrmap,
5899 gdbarch_adjust_dwarf2_addr (gdbarch,
5900 best_lowpc + baseaddr),
5901 gdbarch_adjust_dwarf2_addr (gdbarch,
5902 best_highpc + baseaddr) - 1,
5903 pst);
5904
5905 /* Check if comp unit has_children.
5906 If so, read the rest of the partial symbols from this comp unit.
5907 If not, there's no more debug_info for this comp unit. */
5908 if (has_children)
5909 {
5910 struct partial_die_info *first_die;
5911 CORE_ADDR lowpc, highpc;
5912
5913 lowpc = ((CORE_ADDR) -1);
5914 highpc = ((CORE_ADDR) 0);
5915
5916 first_die = load_partial_dies (reader, info_ptr, 1);
5917
5918 scan_partial_symbols (first_die, &lowpc, &highpc,
5919 ! has_pc_info, cu);
5920
5921 /* If we didn't find a lowpc, set it to highpc to avoid
5922 complaints from `maint check'. */
5923 if (lowpc == ((CORE_ADDR) -1))
5924 lowpc = highpc;
5925
5926 /* If the compilation unit didn't have an explicit address range,
5927 then use the information extracted from its child dies. */
5928 if (! has_pc_info)
5929 {
5930 best_lowpc = lowpc;
5931 best_highpc = highpc;
5932 }
5933 }
5934 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
5935 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
5936
5937 pst->n_global_syms = objfile->global_psymbols.next -
5938 (objfile->global_psymbols.list + pst->globals_offset);
5939 pst->n_static_syms = objfile->static_psymbols.next -
5940 (objfile->static_psymbols.list + pst->statics_offset);
5941 sort_pst_symbols (objfile, pst);
5942
5943 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5944 {
5945 int i;
5946 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5947 struct dwarf2_per_cu_data *iter;
5948
5949 /* Fill in 'dependencies' here; we fill in 'users' in a
5950 post-pass. */
5951 pst->number_of_dependencies = len;
5952 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5953 len * sizeof (struct symtab *));
5954 for (i = 0;
5955 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5956 i, iter);
5957 ++i)
5958 pst->dependencies[i] = iter->v.psymtab;
5959
5960 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5961 }
5962
5963 /* Get the list of files included in the current compilation unit,
5964 and build a psymtab for each of them. */
5965 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5966
5967 if (dwarf2_read_debug)
5968 {
5969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5970
5971 fprintf_unfiltered (gdb_stdlog,
5972 "Psymtab for %s unit @0x%x: %s - %s"
5973 ", %d global, %d static syms\n",
5974 per_cu->is_debug_types ? "type" : "comp",
5975 per_cu->offset.sect_off,
5976 paddress (gdbarch, pst->textlow),
5977 paddress (gdbarch, pst->texthigh),
5978 pst->n_global_syms, pst->n_static_syms);
5979 }
5980 }
5981
5982 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5983 Process compilation unit THIS_CU for a psymtab. */
5984
5985 static void
5986 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5987 int want_partial_unit,
5988 enum language pretend_language)
5989 {
5990 struct process_psymtab_comp_unit_data info;
5991
5992 /* If this compilation unit was already read in, free the
5993 cached copy in order to read it in again. This is
5994 necessary because we skipped some symbols when we first
5995 read in the compilation unit (see load_partial_dies).
5996 This problem could be avoided, but the benefit is unclear. */
5997 if (this_cu->cu != NULL)
5998 free_one_cached_comp_unit (this_cu);
5999
6000 gdb_assert (! this_cu->is_debug_types);
6001 info.want_partial_unit = want_partial_unit;
6002 info.pretend_language = pretend_language;
6003 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6004 process_psymtab_comp_unit_reader,
6005 &info);
6006
6007 /* Age out any secondary CUs. */
6008 age_cached_comp_units ();
6009 }
6010
6011 /* Reader function for build_type_psymtabs. */
6012
6013 static void
6014 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6015 const gdb_byte *info_ptr,
6016 struct die_info *type_unit_die,
6017 int has_children,
6018 void *data)
6019 {
6020 struct objfile *objfile = dwarf2_per_objfile->objfile;
6021 struct dwarf2_cu *cu = reader->cu;
6022 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6023 struct signatured_type *sig_type;
6024 struct type_unit_group *tu_group;
6025 struct attribute *attr;
6026 struct partial_die_info *first_die;
6027 CORE_ADDR lowpc, highpc;
6028 struct partial_symtab *pst;
6029
6030 gdb_assert (data == NULL);
6031 gdb_assert (per_cu->is_debug_types);
6032 sig_type = (struct signatured_type *) per_cu;
6033
6034 if (! has_children)
6035 return;
6036
6037 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6038 tu_group = get_type_unit_group (cu, attr);
6039
6040 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6041
6042 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6043 cu->list_in_scope = &file_symbols;
6044 pst = create_partial_symtab (per_cu, "");
6045 pst->anonymous = 1;
6046
6047 first_die = load_partial_dies (reader, info_ptr, 1);
6048
6049 lowpc = (CORE_ADDR) -1;
6050 highpc = (CORE_ADDR) 0;
6051 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6052
6053 pst->n_global_syms = objfile->global_psymbols.next -
6054 (objfile->global_psymbols.list + pst->globals_offset);
6055 pst->n_static_syms = objfile->static_psymbols.next -
6056 (objfile->static_psymbols.list + pst->statics_offset);
6057 sort_pst_symbols (objfile, pst);
6058 }
6059
6060 /* Struct used to sort TUs by their abbreviation table offset. */
6061
6062 struct tu_abbrev_offset
6063 {
6064 struct signatured_type *sig_type;
6065 sect_offset abbrev_offset;
6066 };
6067
6068 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6069
6070 static int
6071 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6072 {
6073 const struct tu_abbrev_offset * const *a = ap;
6074 const struct tu_abbrev_offset * const *b = bp;
6075 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6076 unsigned int boff = (*b)->abbrev_offset.sect_off;
6077
6078 return (aoff > boff) - (aoff < boff);
6079 }
6080
6081 /* Efficiently read all the type units.
6082 This does the bulk of the work for build_type_psymtabs.
6083
6084 The efficiency is because we sort TUs by the abbrev table they use and
6085 only read each abbrev table once. In one program there are 200K TUs
6086 sharing 8K abbrev tables.
6087
6088 The main purpose of this function is to support building the
6089 dwarf2_per_objfile->type_unit_groups table.
6090 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6091 can collapse the search space by grouping them by stmt_list.
6092 The savings can be significant, in the same program from above the 200K TUs
6093 share 8K stmt_list tables.
6094
6095 FUNC is expected to call get_type_unit_group, which will create the
6096 struct type_unit_group if necessary and add it to
6097 dwarf2_per_objfile->type_unit_groups. */
6098
6099 static void
6100 build_type_psymtabs_1 (void)
6101 {
6102 struct objfile *objfile = dwarf2_per_objfile->objfile;
6103 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6104 struct cleanup *cleanups;
6105 struct abbrev_table *abbrev_table;
6106 sect_offset abbrev_offset;
6107 struct tu_abbrev_offset *sorted_by_abbrev;
6108 struct type_unit_group **iter;
6109 int i;
6110
6111 /* It's up to the caller to not call us multiple times. */
6112 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6113
6114 if (dwarf2_per_objfile->n_type_units == 0)
6115 return;
6116
6117 /* TUs typically share abbrev tables, and there can be way more TUs than
6118 abbrev tables. Sort by abbrev table to reduce the number of times we
6119 read each abbrev table in.
6120 Alternatives are to punt or to maintain a cache of abbrev tables.
6121 This is simpler and efficient enough for now.
6122
6123 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6124 symtab to use). Typically TUs with the same abbrev offset have the same
6125 stmt_list value too so in practice this should work well.
6126
6127 The basic algorithm here is:
6128
6129 sort TUs by abbrev table
6130 for each TU with same abbrev table:
6131 read abbrev table if first user
6132 read TU top level DIE
6133 [IWBN if DWO skeletons had DW_AT_stmt_list]
6134 call FUNC */
6135
6136 if (dwarf2_read_debug)
6137 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6138
6139 /* Sort in a separate table to maintain the order of all_type_units
6140 for .gdb_index: TU indices directly index all_type_units. */
6141 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6142 dwarf2_per_objfile->n_type_units);
6143 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6144 {
6145 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6146
6147 sorted_by_abbrev[i].sig_type = sig_type;
6148 sorted_by_abbrev[i].abbrev_offset =
6149 read_abbrev_offset (sig_type->per_cu.section,
6150 sig_type->per_cu.offset);
6151 }
6152 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6153 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6154 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6155
6156 abbrev_offset.sect_off = ~(unsigned) 0;
6157 abbrev_table = NULL;
6158 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6159
6160 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6161 {
6162 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6163
6164 /* Switch to the next abbrev table if necessary. */
6165 if (abbrev_table == NULL
6166 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6167 {
6168 if (abbrev_table != NULL)
6169 {
6170 abbrev_table_free (abbrev_table);
6171 /* Reset to NULL in case abbrev_table_read_table throws
6172 an error: abbrev_table_free_cleanup will get called. */
6173 abbrev_table = NULL;
6174 }
6175 abbrev_offset = tu->abbrev_offset;
6176 abbrev_table =
6177 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6178 abbrev_offset);
6179 ++tu_stats->nr_uniq_abbrev_tables;
6180 }
6181
6182 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6183 build_type_psymtabs_reader, NULL);
6184 }
6185
6186 do_cleanups (cleanups);
6187 }
6188
6189 /* Print collected type unit statistics. */
6190
6191 static void
6192 print_tu_stats (void)
6193 {
6194 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6195
6196 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6197 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6198 dwarf2_per_objfile->n_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6200 tu_stats->nr_uniq_abbrev_tables);
6201 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6202 tu_stats->nr_symtabs);
6203 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6204 tu_stats->nr_symtab_sharers);
6205 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6206 tu_stats->nr_stmt_less_type_units);
6207 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6208 tu_stats->nr_all_type_units_reallocs);
6209 }
6210
6211 /* Traversal function for build_type_psymtabs. */
6212
6213 static int
6214 build_type_psymtab_dependencies (void **slot, void *info)
6215 {
6216 struct objfile *objfile = dwarf2_per_objfile->objfile;
6217 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6218 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6219 struct partial_symtab *pst = per_cu->v.psymtab;
6220 int len = VEC_length (sig_type_ptr, tu_group->tus);
6221 struct signatured_type *iter;
6222 int i;
6223
6224 gdb_assert (len > 0);
6225 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6226
6227 pst->number_of_dependencies = len;
6228 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6229 len * sizeof (struct psymtab *));
6230 for (i = 0;
6231 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6232 ++i)
6233 {
6234 gdb_assert (iter->per_cu.is_debug_types);
6235 pst->dependencies[i] = iter->per_cu.v.psymtab;
6236 iter->type_unit_group = tu_group;
6237 }
6238
6239 VEC_free (sig_type_ptr, tu_group->tus);
6240
6241 return 1;
6242 }
6243
6244 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6245 Build partial symbol tables for the .debug_types comp-units. */
6246
6247 static void
6248 build_type_psymtabs (struct objfile *objfile)
6249 {
6250 if (! create_all_type_units (objfile))
6251 return;
6252
6253 build_type_psymtabs_1 ();
6254 }
6255
6256 /* Traversal function for process_skeletonless_type_unit.
6257 Read a TU in a DWO file and build partial symbols for it. */
6258
6259 static int
6260 process_skeletonless_type_unit (void **slot, void *info)
6261 {
6262 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6263 struct objfile *objfile = info;
6264 struct signatured_type find_entry, *entry;
6265
6266 /* If this TU doesn't exist in the global table, add it and read it in. */
6267
6268 if (dwarf2_per_objfile->signatured_types == NULL)
6269 {
6270 dwarf2_per_objfile->signatured_types
6271 = allocate_signatured_type_table (objfile);
6272 }
6273
6274 find_entry.signature = dwo_unit->signature;
6275 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6276 INSERT);
6277 /* If we've already seen this type there's nothing to do. What's happening
6278 is we're doing our own version of comdat-folding here. */
6279 if (*slot != NULL)
6280 return 1;
6281
6282 /* This does the job that create_all_type_units would have done for
6283 this TU. */
6284 entry = add_type_unit (dwo_unit->signature, slot);
6285 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6286 *slot = entry;
6287
6288 /* This does the job that build_type_psymtabs_1 would have done. */
6289 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6290 build_type_psymtabs_reader, NULL);
6291
6292 return 1;
6293 }
6294
6295 /* Traversal function for process_skeletonless_type_units. */
6296
6297 static int
6298 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6299 {
6300 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6301
6302 if (dwo_file->tus != NULL)
6303 {
6304 htab_traverse_noresize (dwo_file->tus,
6305 process_skeletonless_type_unit, info);
6306 }
6307
6308 return 1;
6309 }
6310
6311 /* Scan all TUs of DWO files, verifying we've processed them.
6312 This is needed in case a TU was emitted without its skeleton.
6313 Note: This can't be done until we know what all the DWO files are. */
6314
6315 static void
6316 process_skeletonless_type_units (struct objfile *objfile)
6317 {
6318 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6319 if (get_dwp_file () == NULL
6320 && dwarf2_per_objfile->dwo_files != NULL)
6321 {
6322 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6323 process_dwo_file_for_skeletonless_type_units,
6324 objfile);
6325 }
6326 }
6327
6328 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6329
6330 static void
6331 psymtabs_addrmap_cleanup (void *o)
6332 {
6333 struct objfile *objfile = o;
6334
6335 objfile->psymtabs_addrmap = NULL;
6336 }
6337
6338 /* Compute the 'user' field for each psymtab in OBJFILE. */
6339
6340 static void
6341 set_partial_user (struct objfile *objfile)
6342 {
6343 int i;
6344
6345 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6346 {
6347 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6348 struct partial_symtab *pst = per_cu->v.psymtab;
6349 int j;
6350
6351 if (pst == NULL)
6352 continue;
6353
6354 for (j = 0; j < pst->number_of_dependencies; ++j)
6355 {
6356 /* Set the 'user' field only if it is not already set. */
6357 if (pst->dependencies[j]->user == NULL)
6358 pst->dependencies[j]->user = pst;
6359 }
6360 }
6361 }
6362
6363 /* Build the partial symbol table by doing a quick pass through the
6364 .debug_info and .debug_abbrev sections. */
6365
6366 static void
6367 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6368 {
6369 struct cleanup *back_to, *addrmap_cleanup;
6370 struct obstack temp_obstack;
6371 int i;
6372
6373 if (dwarf2_read_debug)
6374 {
6375 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6376 objfile_name (objfile));
6377 }
6378
6379 dwarf2_per_objfile->reading_partial_symbols = 1;
6380
6381 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6382
6383 /* Any cached compilation units will be linked by the per-objfile
6384 read_in_chain. Make sure to free them when we're done. */
6385 back_to = make_cleanup (free_cached_comp_units, NULL);
6386
6387 build_type_psymtabs (objfile);
6388
6389 create_all_comp_units (objfile);
6390
6391 /* Create a temporary address map on a temporary obstack. We later
6392 copy this to the final obstack. */
6393 obstack_init (&temp_obstack);
6394 make_cleanup_obstack_free (&temp_obstack);
6395 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6396 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6397
6398 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6399 {
6400 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6401
6402 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6403 }
6404
6405 /* This has to wait until we read the CUs, we need the list of DWOs. */
6406 process_skeletonless_type_units (objfile);
6407
6408 /* Now that all TUs have been processed we can fill in the dependencies. */
6409 if (dwarf2_per_objfile->type_unit_groups != NULL)
6410 {
6411 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6412 build_type_psymtab_dependencies, NULL);
6413 }
6414
6415 if (dwarf2_read_debug)
6416 print_tu_stats ();
6417
6418 set_partial_user (objfile);
6419
6420 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6421 &objfile->objfile_obstack);
6422 discard_cleanups (addrmap_cleanup);
6423
6424 do_cleanups (back_to);
6425
6426 if (dwarf2_read_debug)
6427 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6428 objfile_name (objfile));
6429 }
6430
6431 /* die_reader_func for load_partial_comp_unit. */
6432
6433 static void
6434 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6435 const gdb_byte *info_ptr,
6436 struct die_info *comp_unit_die,
6437 int has_children,
6438 void *data)
6439 {
6440 struct dwarf2_cu *cu = reader->cu;
6441
6442 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6443
6444 /* Check if comp unit has_children.
6445 If so, read the rest of the partial symbols from this comp unit.
6446 If not, there's no more debug_info for this comp unit. */
6447 if (has_children)
6448 load_partial_dies (reader, info_ptr, 0);
6449 }
6450
6451 /* Load the partial DIEs for a secondary CU into memory.
6452 This is also used when rereading a primary CU with load_all_dies. */
6453
6454 static void
6455 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6456 {
6457 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6458 load_partial_comp_unit_reader, NULL);
6459 }
6460
6461 static void
6462 read_comp_units_from_section (struct objfile *objfile,
6463 struct dwarf2_section_info *section,
6464 unsigned int is_dwz,
6465 int *n_allocated,
6466 int *n_comp_units,
6467 struct dwarf2_per_cu_data ***all_comp_units)
6468 {
6469 const gdb_byte *info_ptr;
6470 bfd *abfd = get_section_bfd_owner (section);
6471
6472 if (dwarf2_read_debug)
6473 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6474 get_section_name (section),
6475 get_section_file_name (section));
6476
6477 dwarf2_read_section (objfile, section);
6478
6479 info_ptr = section->buffer;
6480
6481 while (info_ptr < section->buffer + section->size)
6482 {
6483 unsigned int length, initial_length_size;
6484 struct dwarf2_per_cu_data *this_cu;
6485 sect_offset offset;
6486
6487 offset.sect_off = info_ptr - section->buffer;
6488
6489 /* Read just enough information to find out where the next
6490 compilation unit is. */
6491 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6492
6493 /* Save the compilation unit for later lookup. */
6494 this_cu = obstack_alloc (&objfile->objfile_obstack,
6495 sizeof (struct dwarf2_per_cu_data));
6496 memset (this_cu, 0, sizeof (*this_cu));
6497 this_cu->offset = offset;
6498 this_cu->length = length + initial_length_size;
6499 this_cu->is_dwz = is_dwz;
6500 this_cu->objfile = objfile;
6501 this_cu->section = section;
6502
6503 if (*n_comp_units == *n_allocated)
6504 {
6505 *n_allocated *= 2;
6506 *all_comp_units = xrealloc (*all_comp_units,
6507 *n_allocated
6508 * sizeof (struct dwarf2_per_cu_data *));
6509 }
6510 (*all_comp_units)[*n_comp_units] = this_cu;
6511 ++*n_comp_units;
6512
6513 info_ptr = info_ptr + this_cu->length;
6514 }
6515 }
6516
6517 /* Create a list of all compilation units in OBJFILE.
6518 This is only done for -readnow and building partial symtabs. */
6519
6520 static void
6521 create_all_comp_units (struct objfile *objfile)
6522 {
6523 int n_allocated;
6524 int n_comp_units;
6525 struct dwarf2_per_cu_data **all_comp_units;
6526 struct dwz_file *dwz;
6527
6528 n_comp_units = 0;
6529 n_allocated = 10;
6530 all_comp_units = xmalloc (n_allocated
6531 * sizeof (struct dwarf2_per_cu_data *));
6532
6533 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6534 &n_allocated, &n_comp_units, &all_comp_units);
6535
6536 dwz = dwarf2_get_dwz_file ();
6537 if (dwz != NULL)
6538 read_comp_units_from_section (objfile, &dwz->info, 1,
6539 &n_allocated, &n_comp_units,
6540 &all_comp_units);
6541
6542 dwarf2_per_objfile->all_comp_units
6543 = obstack_alloc (&objfile->objfile_obstack,
6544 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6545 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6546 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6547 xfree (all_comp_units);
6548 dwarf2_per_objfile->n_comp_units = n_comp_units;
6549 }
6550
6551 /* Process all loaded DIEs for compilation unit CU, starting at
6552 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6553 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6554 DW_AT_ranges). See the comments of add_partial_subprogram on how
6555 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6556
6557 static void
6558 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6559 CORE_ADDR *highpc, int set_addrmap,
6560 struct dwarf2_cu *cu)
6561 {
6562 struct partial_die_info *pdi;
6563
6564 /* Now, march along the PDI's, descending into ones which have
6565 interesting children but skipping the children of the other ones,
6566 until we reach the end of the compilation unit. */
6567
6568 pdi = first_die;
6569
6570 while (pdi != NULL)
6571 {
6572 fixup_partial_die (pdi, cu);
6573
6574 /* Anonymous namespaces or modules have no name but have interesting
6575 children, so we need to look at them. Ditto for anonymous
6576 enums. */
6577
6578 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6579 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6580 || pdi->tag == DW_TAG_imported_unit)
6581 {
6582 switch (pdi->tag)
6583 {
6584 case DW_TAG_subprogram:
6585 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6586 break;
6587 case DW_TAG_constant:
6588 case DW_TAG_variable:
6589 case DW_TAG_typedef:
6590 case DW_TAG_union_type:
6591 if (!pdi->is_declaration)
6592 {
6593 add_partial_symbol (pdi, cu);
6594 }
6595 break;
6596 case DW_TAG_class_type:
6597 case DW_TAG_interface_type:
6598 case DW_TAG_structure_type:
6599 if (!pdi->is_declaration)
6600 {
6601 add_partial_symbol (pdi, cu);
6602 }
6603 break;
6604 case DW_TAG_enumeration_type:
6605 if (!pdi->is_declaration)
6606 add_partial_enumeration (pdi, cu);
6607 break;
6608 case DW_TAG_base_type:
6609 case DW_TAG_subrange_type:
6610 /* File scope base type definitions are added to the partial
6611 symbol table. */
6612 add_partial_symbol (pdi, cu);
6613 break;
6614 case DW_TAG_namespace:
6615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6616 break;
6617 case DW_TAG_module:
6618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6619 break;
6620 case DW_TAG_imported_unit:
6621 {
6622 struct dwarf2_per_cu_data *per_cu;
6623
6624 /* For now we don't handle imported units in type units. */
6625 if (cu->per_cu->is_debug_types)
6626 {
6627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6628 " supported in type units [in module %s]"),
6629 objfile_name (cu->objfile));
6630 }
6631
6632 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6633 pdi->is_dwz,
6634 cu->objfile);
6635
6636 /* Go read the partial unit, if needed. */
6637 if (per_cu->v.psymtab == NULL)
6638 process_psymtab_comp_unit (per_cu, 1, cu->language);
6639
6640 VEC_safe_push (dwarf2_per_cu_ptr,
6641 cu->per_cu->imported_symtabs, per_cu);
6642 }
6643 break;
6644 case DW_TAG_imported_declaration:
6645 add_partial_symbol (pdi, cu);
6646 break;
6647 default:
6648 break;
6649 }
6650 }
6651
6652 /* If the die has a sibling, skip to the sibling. */
6653
6654 pdi = pdi->die_sibling;
6655 }
6656 }
6657
6658 /* Functions used to compute the fully scoped name of a partial DIE.
6659
6660 Normally, this is simple. For C++, the parent DIE's fully scoped
6661 name is concatenated with "::" and the partial DIE's name. For
6662 Java, the same thing occurs except that "." is used instead of "::".
6663 Enumerators are an exception; they use the scope of their parent
6664 enumeration type, i.e. the name of the enumeration type is not
6665 prepended to the enumerator.
6666
6667 There are two complexities. One is DW_AT_specification; in this
6668 case "parent" means the parent of the target of the specification,
6669 instead of the direct parent of the DIE. The other is compilers
6670 which do not emit DW_TAG_namespace; in this case we try to guess
6671 the fully qualified name of structure types from their members'
6672 linkage names. This must be done using the DIE's children rather
6673 than the children of any DW_AT_specification target. We only need
6674 to do this for structures at the top level, i.e. if the target of
6675 any DW_AT_specification (if any; otherwise the DIE itself) does not
6676 have a parent. */
6677
6678 /* Compute the scope prefix associated with PDI's parent, in
6679 compilation unit CU. The result will be allocated on CU's
6680 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6681 field. NULL is returned if no prefix is necessary. */
6682 static const char *
6683 partial_die_parent_scope (struct partial_die_info *pdi,
6684 struct dwarf2_cu *cu)
6685 {
6686 const char *grandparent_scope;
6687 struct partial_die_info *parent, *real_pdi;
6688
6689 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6690 then this means the parent of the specification DIE. */
6691
6692 real_pdi = pdi;
6693 while (real_pdi->has_specification)
6694 real_pdi = find_partial_die (real_pdi->spec_offset,
6695 real_pdi->spec_is_dwz, cu);
6696
6697 parent = real_pdi->die_parent;
6698 if (parent == NULL)
6699 return NULL;
6700
6701 if (parent->scope_set)
6702 return parent->scope;
6703
6704 fixup_partial_die (parent, cu);
6705
6706 grandparent_scope = partial_die_parent_scope (parent, cu);
6707
6708 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6709 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6710 Work around this problem here. */
6711 if (cu->language == language_cplus
6712 && parent->tag == DW_TAG_namespace
6713 && strcmp (parent->name, "::") == 0
6714 && grandparent_scope == NULL)
6715 {
6716 parent->scope = NULL;
6717 parent->scope_set = 1;
6718 return NULL;
6719 }
6720
6721 if (pdi->tag == DW_TAG_enumerator)
6722 /* Enumerators should not get the name of the enumeration as a prefix. */
6723 parent->scope = grandparent_scope;
6724 else if (parent->tag == DW_TAG_namespace
6725 || parent->tag == DW_TAG_module
6726 || parent->tag == DW_TAG_structure_type
6727 || parent->tag == DW_TAG_class_type
6728 || parent->tag == DW_TAG_interface_type
6729 || parent->tag == DW_TAG_union_type
6730 || parent->tag == DW_TAG_enumeration_type)
6731 {
6732 if (grandparent_scope == NULL)
6733 parent->scope = parent->name;
6734 else
6735 parent->scope = typename_concat (&cu->comp_unit_obstack,
6736 grandparent_scope,
6737 parent->name, 0, cu);
6738 }
6739 else
6740 {
6741 /* FIXME drow/2004-04-01: What should we be doing with
6742 function-local names? For partial symbols, we should probably be
6743 ignoring them. */
6744 complaint (&symfile_complaints,
6745 _("unhandled containing DIE tag %d for DIE at %d"),
6746 parent->tag, pdi->offset.sect_off);
6747 parent->scope = grandparent_scope;
6748 }
6749
6750 parent->scope_set = 1;
6751 return parent->scope;
6752 }
6753
6754 /* Return the fully scoped name associated with PDI, from compilation unit
6755 CU. The result will be allocated with malloc. */
6756
6757 static char *
6758 partial_die_full_name (struct partial_die_info *pdi,
6759 struct dwarf2_cu *cu)
6760 {
6761 const char *parent_scope;
6762
6763 /* If this is a template instantiation, we can not work out the
6764 template arguments from partial DIEs. So, unfortunately, we have
6765 to go through the full DIEs. At least any work we do building
6766 types here will be reused if full symbols are loaded later. */
6767 if (pdi->has_template_arguments)
6768 {
6769 fixup_partial_die (pdi, cu);
6770
6771 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6772 {
6773 struct die_info *die;
6774 struct attribute attr;
6775 struct dwarf2_cu *ref_cu = cu;
6776
6777 /* DW_FORM_ref_addr is using section offset. */
6778 attr.name = 0;
6779 attr.form = DW_FORM_ref_addr;
6780 attr.u.unsnd = pdi->offset.sect_off;
6781 die = follow_die_ref (NULL, &attr, &ref_cu);
6782
6783 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6784 }
6785 }
6786
6787 parent_scope = partial_die_parent_scope (pdi, cu);
6788 if (parent_scope == NULL)
6789 return NULL;
6790 else
6791 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6792 }
6793
6794 static void
6795 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6796 {
6797 struct objfile *objfile = cu->objfile;
6798 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6799 CORE_ADDR addr = 0;
6800 const char *actual_name = NULL;
6801 CORE_ADDR baseaddr;
6802 char *built_actual_name;
6803
6804 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6805
6806 built_actual_name = partial_die_full_name (pdi, cu);
6807 if (built_actual_name != NULL)
6808 actual_name = built_actual_name;
6809
6810 if (actual_name == NULL)
6811 actual_name = pdi->name;
6812
6813 switch (pdi->tag)
6814 {
6815 case DW_TAG_subprogram:
6816 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6817 if (pdi->is_external || cu->language == language_ada)
6818 {
6819 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6820 of the global scope. But in Ada, we want to be able to access
6821 nested procedures globally. So all Ada subprograms are stored
6822 in the global scope. */
6823 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6824 objfile); */
6825 add_psymbol_to_list (actual_name, strlen (actual_name),
6826 built_actual_name != NULL,
6827 VAR_DOMAIN, LOC_BLOCK,
6828 &objfile->global_psymbols,
6829 0, addr, cu->language, objfile);
6830 }
6831 else
6832 {
6833 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6834 objfile); */
6835 add_psymbol_to_list (actual_name, strlen (actual_name),
6836 built_actual_name != NULL,
6837 VAR_DOMAIN, LOC_BLOCK,
6838 &objfile->static_psymbols,
6839 0, addr, cu->language, objfile);
6840 }
6841 break;
6842 case DW_TAG_constant:
6843 {
6844 struct psymbol_allocation_list *list;
6845
6846 if (pdi->is_external)
6847 list = &objfile->global_psymbols;
6848 else
6849 list = &objfile->static_psymbols;
6850 add_psymbol_to_list (actual_name, strlen (actual_name),
6851 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6852 list, 0, 0, cu->language, objfile);
6853 }
6854 break;
6855 case DW_TAG_variable:
6856 if (pdi->d.locdesc)
6857 addr = decode_locdesc (pdi->d.locdesc, cu);
6858
6859 if (pdi->d.locdesc
6860 && addr == 0
6861 && !dwarf2_per_objfile->has_section_at_zero)
6862 {
6863 /* A global or static variable may also have been stripped
6864 out by the linker if unused, in which case its address
6865 will be nullified; do not add such variables into partial
6866 symbol table then. */
6867 }
6868 else if (pdi->is_external)
6869 {
6870 /* Global Variable.
6871 Don't enter into the minimal symbol tables as there is
6872 a minimal symbol table entry from the ELF symbols already.
6873 Enter into partial symbol table if it has a location
6874 descriptor or a type.
6875 If the location descriptor is missing, new_symbol will create
6876 a LOC_UNRESOLVED symbol, the address of the variable will then
6877 be determined from the minimal symbol table whenever the variable
6878 is referenced.
6879 The address for the partial symbol table entry is not
6880 used by GDB, but it comes in handy for debugging partial symbol
6881 table building. */
6882
6883 if (pdi->d.locdesc || pdi->has_type)
6884 add_psymbol_to_list (actual_name, strlen (actual_name),
6885 built_actual_name != NULL,
6886 VAR_DOMAIN, LOC_STATIC,
6887 &objfile->global_psymbols,
6888 0, addr + baseaddr,
6889 cu->language, objfile);
6890 }
6891 else
6892 {
6893 /* Static Variable. Skip symbols without location descriptors. */
6894 if (pdi->d.locdesc == NULL)
6895 {
6896 xfree (built_actual_name);
6897 return;
6898 }
6899 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6900 mst_file_data, objfile); */
6901 add_psymbol_to_list (actual_name, strlen (actual_name),
6902 built_actual_name != NULL,
6903 VAR_DOMAIN, LOC_STATIC,
6904 &objfile->static_psymbols,
6905 0, addr + baseaddr,
6906 cu->language, objfile);
6907 }
6908 break;
6909 case DW_TAG_typedef:
6910 case DW_TAG_base_type:
6911 case DW_TAG_subrange_type:
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL,
6914 VAR_DOMAIN, LOC_TYPEDEF,
6915 &objfile->static_psymbols,
6916 0, (CORE_ADDR) 0, cu->language, objfile);
6917 break;
6918 case DW_TAG_imported_declaration:
6919 case DW_TAG_namespace:
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
6921 built_actual_name != NULL,
6922 VAR_DOMAIN, LOC_TYPEDEF,
6923 &objfile->global_psymbols,
6924 0, (CORE_ADDR) 0, cu->language, objfile);
6925 break;
6926 case DW_TAG_module:
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL,
6929 MODULE_DOMAIN, LOC_TYPEDEF,
6930 &objfile->global_psymbols,
6931 0, (CORE_ADDR) 0, cu->language, objfile);
6932 break;
6933 case DW_TAG_class_type:
6934 case DW_TAG_interface_type:
6935 case DW_TAG_structure_type:
6936 case DW_TAG_union_type:
6937 case DW_TAG_enumeration_type:
6938 /* Skip external references. The DWARF standard says in the section
6939 about "Structure, Union, and Class Type Entries": "An incomplete
6940 structure, union or class type is represented by a structure,
6941 union or class entry that does not have a byte size attribute
6942 and that has a DW_AT_declaration attribute." */
6943 if (!pdi->has_byte_size && pdi->is_declaration)
6944 {
6945 xfree (built_actual_name);
6946 return;
6947 }
6948
6949 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6950 static vs. global. */
6951 add_psymbol_to_list (actual_name, strlen (actual_name),
6952 built_actual_name != NULL,
6953 STRUCT_DOMAIN, LOC_TYPEDEF,
6954 (cu->language == language_cplus
6955 || cu->language == language_java)
6956 ? &objfile->global_psymbols
6957 : &objfile->static_psymbols,
6958 0, (CORE_ADDR) 0, cu->language, objfile);
6959
6960 break;
6961 case DW_TAG_enumerator:
6962 add_psymbol_to_list (actual_name, strlen (actual_name),
6963 built_actual_name != NULL,
6964 VAR_DOMAIN, LOC_CONST,
6965 (cu->language == language_cplus
6966 || cu->language == language_java)
6967 ? &objfile->global_psymbols
6968 : &objfile->static_psymbols,
6969 0, (CORE_ADDR) 0, cu->language, objfile);
6970 break;
6971 default:
6972 break;
6973 }
6974
6975 xfree (built_actual_name);
6976 }
6977
6978 /* Read a partial die corresponding to a namespace; also, add a symbol
6979 corresponding to that namespace to the symbol table. NAMESPACE is
6980 the name of the enclosing namespace. */
6981
6982 static void
6983 add_partial_namespace (struct partial_die_info *pdi,
6984 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6985 int set_addrmap, struct dwarf2_cu *cu)
6986 {
6987 /* Add a symbol for the namespace. */
6988
6989 add_partial_symbol (pdi, cu);
6990
6991 /* Now scan partial symbols in that namespace. */
6992
6993 if (pdi->has_children)
6994 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
6995 }
6996
6997 /* Read a partial die corresponding to a Fortran module. */
6998
6999 static void
7000 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7001 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7002 {
7003 /* Add a symbol for the namespace. */
7004
7005 add_partial_symbol (pdi, cu);
7006
7007 /* Now scan partial symbols in that module. */
7008
7009 if (pdi->has_children)
7010 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7011 }
7012
7013 /* Read a partial die corresponding to a subprogram and create a partial
7014 symbol for that subprogram. When the CU language allows it, this
7015 routine also defines a partial symbol for each nested subprogram
7016 that this subprogram contains. If SET_ADDRMAP is true, record the
7017 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7018 and highest PC values found in PDI.
7019
7020 PDI may also be a lexical block, in which case we simply search
7021 recursively for subprograms defined inside that lexical block.
7022 Again, this is only performed when the CU language allows this
7023 type of definitions. */
7024
7025 static void
7026 add_partial_subprogram (struct partial_die_info *pdi,
7027 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7028 int set_addrmap, struct dwarf2_cu *cu)
7029 {
7030 if (pdi->tag == DW_TAG_subprogram)
7031 {
7032 if (pdi->has_pc_info)
7033 {
7034 if (pdi->lowpc < *lowpc)
7035 *lowpc = pdi->lowpc;
7036 if (pdi->highpc > *highpc)
7037 *highpc = pdi->highpc;
7038 if (set_addrmap)
7039 {
7040 struct objfile *objfile = cu->objfile;
7041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7042 CORE_ADDR baseaddr;
7043 CORE_ADDR highpc;
7044 CORE_ADDR lowpc;
7045
7046 baseaddr = ANOFFSET (objfile->section_offsets,
7047 SECT_OFF_TEXT (objfile));
7048 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7049 pdi->lowpc + baseaddr);
7050 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7051 pdi->highpc + baseaddr);
7052 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7053 cu->per_cu->v.psymtab);
7054 }
7055 }
7056
7057 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7058 {
7059 if (!pdi->is_declaration)
7060 /* Ignore subprogram DIEs that do not have a name, they are
7061 illegal. Do not emit a complaint at this point, we will
7062 do so when we convert this psymtab into a symtab. */
7063 if (pdi->name)
7064 add_partial_symbol (pdi, cu);
7065 }
7066 }
7067
7068 if (! pdi->has_children)
7069 return;
7070
7071 if (cu->language == language_ada)
7072 {
7073 pdi = pdi->die_child;
7074 while (pdi != NULL)
7075 {
7076 fixup_partial_die (pdi, cu);
7077 if (pdi->tag == DW_TAG_subprogram
7078 || pdi->tag == DW_TAG_lexical_block)
7079 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7080 pdi = pdi->die_sibling;
7081 }
7082 }
7083 }
7084
7085 /* Read a partial die corresponding to an enumeration type. */
7086
7087 static void
7088 add_partial_enumeration (struct partial_die_info *enum_pdi,
7089 struct dwarf2_cu *cu)
7090 {
7091 struct partial_die_info *pdi;
7092
7093 if (enum_pdi->name != NULL)
7094 add_partial_symbol (enum_pdi, cu);
7095
7096 pdi = enum_pdi->die_child;
7097 while (pdi)
7098 {
7099 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7100 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7101 else
7102 add_partial_symbol (pdi, cu);
7103 pdi = pdi->die_sibling;
7104 }
7105 }
7106
7107 /* Return the initial uleb128 in the die at INFO_PTR. */
7108
7109 static unsigned int
7110 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7111 {
7112 unsigned int bytes_read;
7113
7114 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7115 }
7116
7117 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7118 Return the corresponding abbrev, or NULL if the number is zero (indicating
7119 an empty DIE). In either case *BYTES_READ will be set to the length of
7120 the initial number. */
7121
7122 static struct abbrev_info *
7123 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7124 struct dwarf2_cu *cu)
7125 {
7126 bfd *abfd = cu->objfile->obfd;
7127 unsigned int abbrev_number;
7128 struct abbrev_info *abbrev;
7129
7130 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7131
7132 if (abbrev_number == 0)
7133 return NULL;
7134
7135 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7136 if (!abbrev)
7137 {
7138 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7139 " at offset 0x%x [in module %s]"),
7140 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7141 cu->header.offset.sect_off, bfd_get_filename (abfd));
7142 }
7143
7144 return abbrev;
7145 }
7146
7147 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7148 Returns a pointer to the end of a series of DIEs, terminated by an empty
7149 DIE. Any children of the skipped DIEs will also be skipped. */
7150
7151 static const gdb_byte *
7152 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7153 {
7154 struct dwarf2_cu *cu = reader->cu;
7155 struct abbrev_info *abbrev;
7156 unsigned int bytes_read;
7157
7158 while (1)
7159 {
7160 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7161 if (abbrev == NULL)
7162 return info_ptr + bytes_read;
7163 else
7164 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7165 }
7166 }
7167
7168 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7169 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7170 abbrev corresponding to that skipped uleb128 should be passed in
7171 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7172 children. */
7173
7174 static const gdb_byte *
7175 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7176 struct abbrev_info *abbrev)
7177 {
7178 unsigned int bytes_read;
7179 struct attribute attr;
7180 bfd *abfd = reader->abfd;
7181 struct dwarf2_cu *cu = reader->cu;
7182 const gdb_byte *buffer = reader->buffer;
7183 const gdb_byte *buffer_end = reader->buffer_end;
7184 const gdb_byte *start_info_ptr = info_ptr;
7185 unsigned int form, i;
7186
7187 for (i = 0; i < abbrev->num_attrs; i++)
7188 {
7189 /* The only abbrev we care about is DW_AT_sibling. */
7190 if (abbrev->attrs[i].name == DW_AT_sibling)
7191 {
7192 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7193 if (attr.form == DW_FORM_ref_addr)
7194 complaint (&symfile_complaints,
7195 _("ignoring absolute DW_AT_sibling"));
7196 else
7197 {
7198 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7199 const gdb_byte *sibling_ptr = buffer + off;
7200
7201 if (sibling_ptr < info_ptr)
7202 complaint (&symfile_complaints,
7203 _("DW_AT_sibling points backwards"));
7204 else if (sibling_ptr > reader->buffer_end)
7205 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7206 else
7207 return sibling_ptr;
7208 }
7209 }
7210
7211 /* If it isn't DW_AT_sibling, skip this attribute. */
7212 form = abbrev->attrs[i].form;
7213 skip_attribute:
7214 switch (form)
7215 {
7216 case DW_FORM_ref_addr:
7217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7218 and later it is offset sized. */
7219 if (cu->header.version == 2)
7220 info_ptr += cu->header.addr_size;
7221 else
7222 info_ptr += cu->header.offset_size;
7223 break;
7224 case DW_FORM_GNU_ref_alt:
7225 info_ptr += cu->header.offset_size;
7226 break;
7227 case DW_FORM_addr:
7228 info_ptr += cu->header.addr_size;
7229 break;
7230 case DW_FORM_data1:
7231 case DW_FORM_ref1:
7232 case DW_FORM_flag:
7233 info_ptr += 1;
7234 break;
7235 case DW_FORM_flag_present:
7236 break;
7237 case DW_FORM_data2:
7238 case DW_FORM_ref2:
7239 info_ptr += 2;
7240 break;
7241 case DW_FORM_data4:
7242 case DW_FORM_ref4:
7243 info_ptr += 4;
7244 break;
7245 case DW_FORM_data8:
7246 case DW_FORM_ref8:
7247 case DW_FORM_ref_sig8:
7248 info_ptr += 8;
7249 break;
7250 case DW_FORM_string:
7251 read_direct_string (abfd, info_ptr, &bytes_read);
7252 info_ptr += bytes_read;
7253 break;
7254 case DW_FORM_sec_offset:
7255 case DW_FORM_strp:
7256 case DW_FORM_GNU_strp_alt:
7257 info_ptr += cu->header.offset_size;
7258 break;
7259 case DW_FORM_exprloc:
7260 case DW_FORM_block:
7261 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7262 info_ptr += bytes_read;
7263 break;
7264 case DW_FORM_block1:
7265 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7266 break;
7267 case DW_FORM_block2:
7268 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7269 break;
7270 case DW_FORM_block4:
7271 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7272 break;
7273 case DW_FORM_sdata:
7274 case DW_FORM_udata:
7275 case DW_FORM_ref_udata:
7276 case DW_FORM_GNU_addr_index:
7277 case DW_FORM_GNU_str_index:
7278 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7279 break;
7280 case DW_FORM_indirect:
7281 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7282 info_ptr += bytes_read;
7283 /* We need to continue parsing from here, so just go back to
7284 the top. */
7285 goto skip_attribute;
7286
7287 default:
7288 error (_("Dwarf Error: Cannot handle %s "
7289 "in DWARF reader [in module %s]"),
7290 dwarf_form_name (form),
7291 bfd_get_filename (abfd));
7292 }
7293 }
7294
7295 if (abbrev->has_children)
7296 return skip_children (reader, info_ptr);
7297 else
7298 return info_ptr;
7299 }
7300
7301 /* Locate ORIG_PDI's sibling.
7302 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7303
7304 static const gdb_byte *
7305 locate_pdi_sibling (const struct die_reader_specs *reader,
7306 struct partial_die_info *orig_pdi,
7307 const gdb_byte *info_ptr)
7308 {
7309 /* Do we know the sibling already? */
7310
7311 if (orig_pdi->sibling)
7312 return orig_pdi->sibling;
7313
7314 /* Are there any children to deal with? */
7315
7316 if (!orig_pdi->has_children)
7317 return info_ptr;
7318
7319 /* Skip the children the long way. */
7320
7321 return skip_children (reader, info_ptr);
7322 }
7323
7324 /* Expand this partial symbol table into a full symbol table. SELF is
7325 not NULL. */
7326
7327 static void
7328 dwarf2_read_symtab (struct partial_symtab *self,
7329 struct objfile *objfile)
7330 {
7331 if (self->readin)
7332 {
7333 warning (_("bug: psymtab for %s is already read in."),
7334 self->filename);
7335 }
7336 else
7337 {
7338 if (info_verbose)
7339 {
7340 printf_filtered (_("Reading in symbols for %s..."),
7341 self->filename);
7342 gdb_flush (gdb_stdout);
7343 }
7344
7345 /* Restore our global data. */
7346 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7347
7348 /* If this psymtab is constructed from a debug-only objfile, the
7349 has_section_at_zero flag will not necessarily be correct. We
7350 can get the correct value for this flag by looking at the data
7351 associated with the (presumably stripped) associated objfile. */
7352 if (objfile->separate_debug_objfile_backlink)
7353 {
7354 struct dwarf2_per_objfile *dpo_backlink
7355 = objfile_data (objfile->separate_debug_objfile_backlink,
7356 dwarf2_objfile_data_key);
7357
7358 dwarf2_per_objfile->has_section_at_zero
7359 = dpo_backlink->has_section_at_zero;
7360 }
7361
7362 dwarf2_per_objfile->reading_partial_symbols = 0;
7363
7364 psymtab_to_symtab_1 (self);
7365
7366 /* Finish up the debug error message. */
7367 if (info_verbose)
7368 printf_filtered (_("done.\n"));
7369 }
7370
7371 process_cu_includes ();
7372 }
7373 \f
7374 /* Reading in full CUs. */
7375
7376 /* Add PER_CU to the queue. */
7377
7378 static void
7379 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7380 enum language pretend_language)
7381 {
7382 struct dwarf2_queue_item *item;
7383
7384 per_cu->queued = 1;
7385 item = xmalloc (sizeof (*item));
7386 item->per_cu = per_cu;
7387 item->pretend_language = pretend_language;
7388 item->next = NULL;
7389
7390 if (dwarf2_queue == NULL)
7391 dwarf2_queue = item;
7392 else
7393 dwarf2_queue_tail->next = item;
7394
7395 dwarf2_queue_tail = item;
7396 }
7397
7398 /* If PER_CU is not yet queued, add it to the queue.
7399 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7400 dependency.
7401 The result is non-zero if PER_CU was queued, otherwise the result is zero
7402 meaning either PER_CU is already queued or it is already loaded.
7403
7404 N.B. There is an invariant here that if a CU is queued then it is loaded.
7405 The caller is required to load PER_CU if we return non-zero. */
7406
7407 static int
7408 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7409 struct dwarf2_per_cu_data *per_cu,
7410 enum language pretend_language)
7411 {
7412 /* We may arrive here during partial symbol reading, if we need full
7413 DIEs to process an unusual case (e.g. template arguments). Do
7414 not queue PER_CU, just tell our caller to load its DIEs. */
7415 if (dwarf2_per_objfile->reading_partial_symbols)
7416 {
7417 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7418 return 1;
7419 return 0;
7420 }
7421
7422 /* Mark the dependence relation so that we don't flush PER_CU
7423 too early. */
7424 if (dependent_cu != NULL)
7425 dwarf2_add_dependence (dependent_cu, per_cu);
7426
7427 /* If it's already on the queue, we have nothing to do. */
7428 if (per_cu->queued)
7429 return 0;
7430
7431 /* If the compilation unit is already loaded, just mark it as
7432 used. */
7433 if (per_cu->cu != NULL)
7434 {
7435 per_cu->cu->last_used = 0;
7436 return 0;
7437 }
7438
7439 /* Add it to the queue. */
7440 queue_comp_unit (per_cu, pretend_language);
7441
7442 return 1;
7443 }
7444
7445 /* Process the queue. */
7446
7447 static void
7448 process_queue (void)
7449 {
7450 struct dwarf2_queue_item *item, *next_item;
7451
7452 if (dwarf2_read_debug)
7453 {
7454 fprintf_unfiltered (gdb_stdlog,
7455 "Expanding one or more symtabs of objfile %s ...\n",
7456 objfile_name (dwarf2_per_objfile->objfile));
7457 }
7458
7459 /* The queue starts out with one item, but following a DIE reference
7460 may load a new CU, adding it to the end of the queue. */
7461 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7462 {
7463 if (dwarf2_per_objfile->using_index
7464 ? !item->per_cu->v.quick->compunit_symtab
7465 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7466 {
7467 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7468 unsigned int debug_print_threshold;
7469 char buf[100];
7470
7471 if (per_cu->is_debug_types)
7472 {
7473 struct signatured_type *sig_type =
7474 (struct signatured_type *) per_cu;
7475
7476 sprintf (buf, "TU %s at offset 0x%x",
7477 hex_string (sig_type->signature),
7478 per_cu->offset.sect_off);
7479 /* There can be 100s of TUs.
7480 Only print them in verbose mode. */
7481 debug_print_threshold = 2;
7482 }
7483 else
7484 {
7485 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7486 debug_print_threshold = 1;
7487 }
7488
7489 if (dwarf2_read_debug >= debug_print_threshold)
7490 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7491
7492 if (per_cu->is_debug_types)
7493 process_full_type_unit (per_cu, item->pretend_language);
7494 else
7495 process_full_comp_unit (per_cu, item->pretend_language);
7496
7497 if (dwarf2_read_debug >= debug_print_threshold)
7498 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7499 }
7500
7501 item->per_cu->queued = 0;
7502 next_item = item->next;
7503 xfree (item);
7504 }
7505
7506 dwarf2_queue_tail = NULL;
7507
7508 if (dwarf2_read_debug)
7509 {
7510 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7511 objfile_name (dwarf2_per_objfile->objfile));
7512 }
7513 }
7514
7515 /* Free all allocated queue entries. This function only releases anything if
7516 an error was thrown; if the queue was processed then it would have been
7517 freed as we went along. */
7518
7519 static void
7520 dwarf2_release_queue (void *dummy)
7521 {
7522 struct dwarf2_queue_item *item, *last;
7523
7524 item = dwarf2_queue;
7525 while (item)
7526 {
7527 /* Anything still marked queued is likely to be in an
7528 inconsistent state, so discard it. */
7529 if (item->per_cu->queued)
7530 {
7531 if (item->per_cu->cu != NULL)
7532 free_one_cached_comp_unit (item->per_cu);
7533 item->per_cu->queued = 0;
7534 }
7535
7536 last = item;
7537 item = item->next;
7538 xfree (last);
7539 }
7540
7541 dwarf2_queue = dwarf2_queue_tail = NULL;
7542 }
7543
7544 /* Read in full symbols for PST, and anything it depends on. */
7545
7546 static void
7547 psymtab_to_symtab_1 (struct partial_symtab *pst)
7548 {
7549 struct dwarf2_per_cu_data *per_cu;
7550 int i;
7551
7552 if (pst->readin)
7553 return;
7554
7555 for (i = 0; i < pst->number_of_dependencies; i++)
7556 if (!pst->dependencies[i]->readin
7557 && pst->dependencies[i]->user == NULL)
7558 {
7559 /* Inform about additional files that need to be read in. */
7560 if (info_verbose)
7561 {
7562 /* FIXME: i18n: Need to make this a single string. */
7563 fputs_filtered (" ", gdb_stdout);
7564 wrap_here ("");
7565 fputs_filtered ("and ", gdb_stdout);
7566 wrap_here ("");
7567 printf_filtered ("%s...", pst->dependencies[i]->filename);
7568 wrap_here (""); /* Flush output. */
7569 gdb_flush (gdb_stdout);
7570 }
7571 psymtab_to_symtab_1 (pst->dependencies[i]);
7572 }
7573
7574 per_cu = pst->read_symtab_private;
7575
7576 if (per_cu == NULL)
7577 {
7578 /* It's an include file, no symbols to read for it.
7579 Everything is in the parent symtab. */
7580 pst->readin = 1;
7581 return;
7582 }
7583
7584 dw2_do_instantiate_symtab (per_cu);
7585 }
7586
7587 /* Trivial hash function for die_info: the hash value of a DIE
7588 is its offset in .debug_info for this objfile. */
7589
7590 static hashval_t
7591 die_hash (const void *item)
7592 {
7593 const struct die_info *die = item;
7594
7595 return die->offset.sect_off;
7596 }
7597
7598 /* Trivial comparison function for die_info structures: two DIEs
7599 are equal if they have the same offset. */
7600
7601 static int
7602 die_eq (const void *item_lhs, const void *item_rhs)
7603 {
7604 const struct die_info *die_lhs = item_lhs;
7605 const struct die_info *die_rhs = item_rhs;
7606
7607 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7608 }
7609
7610 /* die_reader_func for load_full_comp_unit.
7611 This is identical to read_signatured_type_reader,
7612 but is kept separate for now. */
7613
7614 static void
7615 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7616 const gdb_byte *info_ptr,
7617 struct die_info *comp_unit_die,
7618 int has_children,
7619 void *data)
7620 {
7621 struct dwarf2_cu *cu = reader->cu;
7622 enum language *language_ptr = data;
7623
7624 gdb_assert (cu->die_hash == NULL);
7625 cu->die_hash =
7626 htab_create_alloc_ex (cu->header.length / 12,
7627 die_hash,
7628 die_eq,
7629 NULL,
7630 &cu->comp_unit_obstack,
7631 hashtab_obstack_allocate,
7632 dummy_obstack_deallocate);
7633
7634 if (has_children)
7635 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7636 &info_ptr, comp_unit_die);
7637 cu->dies = comp_unit_die;
7638 /* comp_unit_die is not stored in die_hash, no need. */
7639
7640 /* We try not to read any attributes in this function, because not
7641 all CUs needed for references have been loaded yet, and symbol
7642 table processing isn't initialized. But we have to set the CU language,
7643 or we won't be able to build types correctly.
7644 Similarly, if we do not read the producer, we can not apply
7645 producer-specific interpretation. */
7646 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7647 }
7648
7649 /* Load the DIEs associated with PER_CU into memory. */
7650
7651 static void
7652 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7653 enum language pretend_language)
7654 {
7655 gdb_assert (! this_cu->is_debug_types);
7656
7657 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7658 load_full_comp_unit_reader, &pretend_language);
7659 }
7660
7661 /* Add a DIE to the delayed physname list. */
7662
7663 static void
7664 add_to_method_list (struct type *type, int fnfield_index, int index,
7665 const char *name, struct die_info *die,
7666 struct dwarf2_cu *cu)
7667 {
7668 struct delayed_method_info mi;
7669 mi.type = type;
7670 mi.fnfield_index = fnfield_index;
7671 mi.index = index;
7672 mi.name = name;
7673 mi.die = die;
7674 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7675 }
7676
7677 /* A cleanup for freeing the delayed method list. */
7678
7679 static void
7680 free_delayed_list (void *ptr)
7681 {
7682 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7683 if (cu->method_list != NULL)
7684 {
7685 VEC_free (delayed_method_info, cu->method_list);
7686 cu->method_list = NULL;
7687 }
7688 }
7689
7690 /* Compute the physnames of any methods on the CU's method list.
7691
7692 The computation of method physnames is delayed in order to avoid the
7693 (bad) condition that one of the method's formal parameters is of an as yet
7694 incomplete type. */
7695
7696 static void
7697 compute_delayed_physnames (struct dwarf2_cu *cu)
7698 {
7699 int i;
7700 struct delayed_method_info *mi;
7701 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7702 {
7703 const char *physname;
7704 struct fn_fieldlist *fn_flp
7705 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7706 physname = dwarf2_physname (mi->name, mi->die, cu);
7707 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7708 = physname ? physname : "";
7709 }
7710 }
7711
7712 /* Go objects should be embedded in a DW_TAG_module DIE,
7713 and it's not clear if/how imported objects will appear.
7714 To keep Go support simple until that's worked out,
7715 go back through what we've read and create something usable.
7716 We could do this while processing each DIE, and feels kinda cleaner,
7717 but that way is more invasive.
7718 This is to, for example, allow the user to type "p var" or "b main"
7719 without having to specify the package name, and allow lookups
7720 of module.object to work in contexts that use the expression
7721 parser. */
7722
7723 static void
7724 fixup_go_packaging (struct dwarf2_cu *cu)
7725 {
7726 char *package_name = NULL;
7727 struct pending *list;
7728 int i;
7729
7730 for (list = global_symbols; list != NULL; list = list->next)
7731 {
7732 for (i = 0; i < list->nsyms; ++i)
7733 {
7734 struct symbol *sym = list->symbol[i];
7735
7736 if (SYMBOL_LANGUAGE (sym) == language_go
7737 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7738 {
7739 char *this_package_name = go_symbol_package_name (sym);
7740
7741 if (this_package_name == NULL)
7742 continue;
7743 if (package_name == NULL)
7744 package_name = this_package_name;
7745 else
7746 {
7747 if (strcmp (package_name, this_package_name) != 0)
7748 complaint (&symfile_complaints,
7749 _("Symtab %s has objects from two different Go packages: %s and %s"),
7750 (symbol_symtab (sym) != NULL
7751 ? symtab_to_filename_for_display
7752 (symbol_symtab (sym))
7753 : objfile_name (cu->objfile)),
7754 this_package_name, package_name);
7755 xfree (this_package_name);
7756 }
7757 }
7758 }
7759 }
7760
7761 if (package_name != NULL)
7762 {
7763 struct objfile *objfile = cu->objfile;
7764 const char *saved_package_name
7765 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7766 package_name,
7767 strlen (package_name));
7768 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7769 saved_package_name, objfile);
7770 struct symbol *sym;
7771
7772 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7773
7774 sym = allocate_symbol (objfile);
7775 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7776 SYMBOL_SET_NAMES (sym, saved_package_name,
7777 strlen (saved_package_name), 0, objfile);
7778 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7779 e.g., "main" finds the "main" module and not C's main(). */
7780 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7781 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7782 SYMBOL_TYPE (sym) = type;
7783
7784 add_symbol_to_list (sym, &global_symbols);
7785
7786 xfree (package_name);
7787 }
7788 }
7789
7790 /* Return the symtab for PER_CU. This works properly regardless of
7791 whether we're using the index or psymtabs. */
7792
7793 static struct compunit_symtab *
7794 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7795 {
7796 return (dwarf2_per_objfile->using_index
7797 ? per_cu->v.quick->compunit_symtab
7798 : per_cu->v.psymtab->compunit_symtab);
7799 }
7800
7801 /* A helper function for computing the list of all symbol tables
7802 included by PER_CU. */
7803
7804 static void
7805 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7806 htab_t all_children, htab_t all_type_symtabs,
7807 struct dwarf2_per_cu_data *per_cu,
7808 struct compunit_symtab *immediate_parent)
7809 {
7810 void **slot;
7811 int ix;
7812 struct compunit_symtab *cust;
7813 struct dwarf2_per_cu_data *iter;
7814
7815 slot = htab_find_slot (all_children, per_cu, INSERT);
7816 if (*slot != NULL)
7817 {
7818 /* This inclusion and its children have been processed. */
7819 return;
7820 }
7821
7822 *slot = per_cu;
7823 /* Only add a CU if it has a symbol table. */
7824 cust = get_compunit_symtab (per_cu);
7825 if (cust != NULL)
7826 {
7827 /* If this is a type unit only add its symbol table if we haven't
7828 seen it yet (type unit per_cu's can share symtabs). */
7829 if (per_cu->is_debug_types)
7830 {
7831 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7832 if (*slot == NULL)
7833 {
7834 *slot = cust;
7835 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7836 if (cust->user == NULL)
7837 cust->user = immediate_parent;
7838 }
7839 }
7840 else
7841 {
7842 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7843 if (cust->user == NULL)
7844 cust->user = immediate_parent;
7845 }
7846 }
7847
7848 for (ix = 0;
7849 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7850 ++ix)
7851 {
7852 recursively_compute_inclusions (result, all_children,
7853 all_type_symtabs, iter, cust);
7854 }
7855 }
7856
7857 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7858 PER_CU. */
7859
7860 static void
7861 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7862 {
7863 gdb_assert (! per_cu->is_debug_types);
7864
7865 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7866 {
7867 int ix, len;
7868 struct dwarf2_per_cu_data *per_cu_iter;
7869 struct compunit_symtab *compunit_symtab_iter;
7870 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7871 htab_t all_children, all_type_symtabs;
7872 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7873
7874 /* If we don't have a symtab, we can just skip this case. */
7875 if (cust == NULL)
7876 return;
7877
7878 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7879 NULL, xcalloc, xfree);
7880 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7881 NULL, xcalloc, xfree);
7882
7883 for (ix = 0;
7884 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7885 ix, per_cu_iter);
7886 ++ix)
7887 {
7888 recursively_compute_inclusions (&result_symtabs, all_children,
7889 all_type_symtabs, per_cu_iter,
7890 cust);
7891 }
7892
7893 /* Now we have a transitive closure of all the included symtabs. */
7894 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7895 cust->includes
7896 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7897 (len + 1) * sizeof (struct symtab *));
7898 for (ix = 0;
7899 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7900 compunit_symtab_iter);
7901 ++ix)
7902 cust->includes[ix] = compunit_symtab_iter;
7903 cust->includes[len] = NULL;
7904
7905 VEC_free (compunit_symtab_ptr, result_symtabs);
7906 htab_delete (all_children);
7907 htab_delete (all_type_symtabs);
7908 }
7909 }
7910
7911 /* Compute the 'includes' field for the symtabs of all the CUs we just
7912 read. */
7913
7914 static void
7915 process_cu_includes (void)
7916 {
7917 int ix;
7918 struct dwarf2_per_cu_data *iter;
7919
7920 for (ix = 0;
7921 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7922 ix, iter);
7923 ++ix)
7924 {
7925 if (! iter->is_debug_types)
7926 compute_compunit_symtab_includes (iter);
7927 }
7928
7929 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7930 }
7931
7932 /* Generate full symbol information for PER_CU, whose DIEs have
7933 already been loaded into memory. */
7934
7935 static void
7936 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7937 enum language pretend_language)
7938 {
7939 struct dwarf2_cu *cu = per_cu->cu;
7940 struct objfile *objfile = per_cu->objfile;
7941 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7942 CORE_ADDR lowpc, highpc;
7943 struct compunit_symtab *cust;
7944 struct cleanup *back_to, *delayed_list_cleanup;
7945 CORE_ADDR baseaddr;
7946 struct block *static_block;
7947 CORE_ADDR addr;
7948
7949 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7950
7951 buildsym_init ();
7952 back_to = make_cleanup (really_free_pendings, NULL);
7953 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7954
7955 cu->list_in_scope = &file_symbols;
7956
7957 cu->language = pretend_language;
7958 cu->language_defn = language_def (cu->language);
7959
7960 /* Do line number decoding in read_file_scope () */
7961 process_die (cu->dies, cu);
7962
7963 /* For now fudge the Go package. */
7964 if (cu->language == language_go)
7965 fixup_go_packaging (cu);
7966
7967 /* Now that we have processed all the DIEs in the CU, all the types
7968 should be complete, and it should now be safe to compute all of the
7969 physnames. */
7970 compute_delayed_physnames (cu);
7971 do_cleanups (delayed_list_cleanup);
7972
7973 /* Some compilers don't define a DW_AT_high_pc attribute for the
7974 compilation unit. If the DW_AT_high_pc is missing, synthesize
7975 it, by scanning the DIE's below the compilation unit. */
7976 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7977
7978 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
7979 static_block = end_symtab_get_static_block (addr, 0, 1);
7980
7981 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7982 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7983 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7984 addrmap to help ensure it has an accurate map of pc values belonging to
7985 this comp unit. */
7986 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7987
7988 cust = end_symtab_from_static_block (static_block,
7989 SECT_OFF_TEXT (objfile), 0);
7990
7991 if (cust != NULL)
7992 {
7993 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7994
7995 /* Set symtab language to language from DW_AT_language. If the
7996 compilation is from a C file generated by language preprocessors, do
7997 not set the language if it was already deduced by start_subfile. */
7998 if (!(cu->language == language_c
7999 && COMPUNIT_FILETABS (cust)->language != language_c))
8000 COMPUNIT_FILETABS (cust)->language = cu->language;
8001
8002 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8003 produce DW_AT_location with location lists but it can be possibly
8004 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8005 there were bugs in prologue debug info, fixed later in GCC-4.5
8006 by "unwind info for epilogues" patch (which is not directly related).
8007
8008 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8009 needed, it would be wrong due to missing DW_AT_producer there.
8010
8011 Still one can confuse GDB by using non-standard GCC compilation
8012 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8013 */
8014 if (cu->has_loclist && gcc_4_minor >= 5)
8015 cust->locations_valid = 1;
8016
8017 if (gcc_4_minor >= 5)
8018 cust->epilogue_unwind_valid = 1;
8019
8020 cust->call_site_htab = cu->call_site_htab;
8021 }
8022
8023 if (dwarf2_per_objfile->using_index)
8024 per_cu->v.quick->compunit_symtab = cust;
8025 else
8026 {
8027 struct partial_symtab *pst = per_cu->v.psymtab;
8028 pst->compunit_symtab = cust;
8029 pst->readin = 1;
8030 }
8031
8032 /* Push it for inclusion processing later. */
8033 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8034
8035 do_cleanups (back_to);
8036 }
8037
8038 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8039 already been loaded into memory. */
8040
8041 static void
8042 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8043 enum language pretend_language)
8044 {
8045 struct dwarf2_cu *cu = per_cu->cu;
8046 struct objfile *objfile = per_cu->objfile;
8047 struct compunit_symtab *cust;
8048 struct cleanup *back_to, *delayed_list_cleanup;
8049 struct signatured_type *sig_type;
8050
8051 gdb_assert (per_cu->is_debug_types);
8052 sig_type = (struct signatured_type *) per_cu;
8053
8054 buildsym_init ();
8055 back_to = make_cleanup (really_free_pendings, NULL);
8056 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8057
8058 cu->list_in_scope = &file_symbols;
8059
8060 cu->language = pretend_language;
8061 cu->language_defn = language_def (cu->language);
8062
8063 /* The symbol tables are set up in read_type_unit_scope. */
8064 process_die (cu->dies, cu);
8065
8066 /* For now fudge the Go package. */
8067 if (cu->language == language_go)
8068 fixup_go_packaging (cu);
8069
8070 /* Now that we have processed all the DIEs in the CU, all the types
8071 should be complete, and it should now be safe to compute all of the
8072 physnames. */
8073 compute_delayed_physnames (cu);
8074 do_cleanups (delayed_list_cleanup);
8075
8076 /* TUs share symbol tables.
8077 If this is the first TU to use this symtab, complete the construction
8078 of it with end_expandable_symtab. Otherwise, complete the addition of
8079 this TU's symbols to the existing symtab. */
8080 if (sig_type->type_unit_group->compunit_symtab == NULL)
8081 {
8082 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8083 sig_type->type_unit_group->compunit_symtab = cust;
8084
8085 if (cust != NULL)
8086 {
8087 /* Set symtab language to language from DW_AT_language. If the
8088 compilation is from a C file generated by language preprocessors,
8089 do not set the language if it was already deduced by
8090 start_subfile. */
8091 if (!(cu->language == language_c
8092 && COMPUNIT_FILETABS (cust)->language != language_c))
8093 COMPUNIT_FILETABS (cust)->language = cu->language;
8094 }
8095 }
8096 else
8097 {
8098 augment_type_symtab ();
8099 cust = sig_type->type_unit_group->compunit_symtab;
8100 }
8101
8102 if (dwarf2_per_objfile->using_index)
8103 per_cu->v.quick->compunit_symtab = cust;
8104 else
8105 {
8106 struct partial_symtab *pst = per_cu->v.psymtab;
8107 pst->compunit_symtab = cust;
8108 pst->readin = 1;
8109 }
8110
8111 do_cleanups (back_to);
8112 }
8113
8114 /* Process an imported unit DIE. */
8115
8116 static void
8117 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8118 {
8119 struct attribute *attr;
8120
8121 /* For now we don't handle imported units in type units. */
8122 if (cu->per_cu->is_debug_types)
8123 {
8124 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8125 " supported in type units [in module %s]"),
8126 objfile_name (cu->objfile));
8127 }
8128
8129 attr = dwarf2_attr (die, DW_AT_import, cu);
8130 if (attr != NULL)
8131 {
8132 struct dwarf2_per_cu_data *per_cu;
8133 struct symtab *imported_symtab;
8134 sect_offset offset;
8135 int is_dwz;
8136
8137 offset = dwarf2_get_ref_die_offset (attr);
8138 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8139 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8140
8141 /* If necessary, add it to the queue and load its DIEs. */
8142 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8143 load_full_comp_unit (per_cu, cu->language);
8144
8145 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8146 per_cu);
8147 }
8148 }
8149
8150 /* Reset the in_process bit of a die. */
8151
8152 static void
8153 reset_die_in_process (void *arg)
8154 {
8155 struct die_info *die = arg;
8156
8157 die->in_process = 0;
8158 }
8159
8160 /* Process a die and its children. */
8161
8162 static void
8163 process_die (struct die_info *die, struct dwarf2_cu *cu)
8164 {
8165 struct cleanup *in_process;
8166
8167 /* We should only be processing those not already in process. */
8168 gdb_assert (!die->in_process);
8169
8170 die->in_process = 1;
8171 in_process = make_cleanup (reset_die_in_process,die);
8172
8173 switch (die->tag)
8174 {
8175 case DW_TAG_padding:
8176 break;
8177 case DW_TAG_compile_unit:
8178 case DW_TAG_partial_unit:
8179 read_file_scope (die, cu);
8180 break;
8181 case DW_TAG_type_unit:
8182 read_type_unit_scope (die, cu);
8183 break;
8184 case DW_TAG_subprogram:
8185 case DW_TAG_inlined_subroutine:
8186 read_func_scope (die, cu);
8187 break;
8188 case DW_TAG_lexical_block:
8189 case DW_TAG_try_block:
8190 case DW_TAG_catch_block:
8191 read_lexical_block_scope (die, cu);
8192 break;
8193 case DW_TAG_GNU_call_site:
8194 read_call_site_scope (die, cu);
8195 break;
8196 case DW_TAG_class_type:
8197 case DW_TAG_interface_type:
8198 case DW_TAG_structure_type:
8199 case DW_TAG_union_type:
8200 process_structure_scope (die, cu);
8201 break;
8202 case DW_TAG_enumeration_type:
8203 process_enumeration_scope (die, cu);
8204 break;
8205
8206 /* These dies have a type, but processing them does not create
8207 a symbol or recurse to process the children. Therefore we can
8208 read them on-demand through read_type_die. */
8209 case DW_TAG_subroutine_type:
8210 case DW_TAG_set_type:
8211 case DW_TAG_array_type:
8212 case DW_TAG_pointer_type:
8213 case DW_TAG_ptr_to_member_type:
8214 case DW_TAG_reference_type:
8215 case DW_TAG_string_type:
8216 break;
8217
8218 case DW_TAG_base_type:
8219 case DW_TAG_subrange_type:
8220 case DW_TAG_typedef:
8221 /* Add a typedef symbol for the type definition, if it has a
8222 DW_AT_name. */
8223 new_symbol (die, read_type_die (die, cu), cu);
8224 break;
8225 case DW_TAG_common_block:
8226 read_common_block (die, cu);
8227 break;
8228 case DW_TAG_common_inclusion:
8229 break;
8230 case DW_TAG_namespace:
8231 cu->processing_has_namespace_info = 1;
8232 read_namespace (die, cu);
8233 break;
8234 case DW_TAG_module:
8235 cu->processing_has_namespace_info = 1;
8236 read_module (die, cu);
8237 break;
8238 case DW_TAG_imported_declaration:
8239 cu->processing_has_namespace_info = 1;
8240 if (read_namespace_alias (die, cu))
8241 break;
8242 /* The declaration is not a global namespace alias: fall through. */
8243 case DW_TAG_imported_module:
8244 cu->processing_has_namespace_info = 1;
8245 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8246 || cu->language != language_fortran))
8247 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8248 dwarf_tag_name (die->tag));
8249 read_import_statement (die, cu);
8250 break;
8251
8252 case DW_TAG_imported_unit:
8253 process_imported_unit_die (die, cu);
8254 break;
8255
8256 default:
8257 new_symbol (die, NULL, cu);
8258 break;
8259 }
8260
8261 do_cleanups (in_process);
8262 }
8263 \f
8264 /* DWARF name computation. */
8265
8266 /* A helper function for dwarf2_compute_name which determines whether DIE
8267 needs to have the name of the scope prepended to the name listed in the
8268 die. */
8269
8270 static int
8271 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8272 {
8273 struct attribute *attr;
8274
8275 switch (die->tag)
8276 {
8277 case DW_TAG_namespace:
8278 case DW_TAG_typedef:
8279 case DW_TAG_class_type:
8280 case DW_TAG_interface_type:
8281 case DW_TAG_structure_type:
8282 case DW_TAG_union_type:
8283 case DW_TAG_enumeration_type:
8284 case DW_TAG_enumerator:
8285 case DW_TAG_subprogram:
8286 case DW_TAG_member:
8287 case DW_TAG_imported_declaration:
8288 return 1;
8289
8290 case DW_TAG_variable:
8291 case DW_TAG_constant:
8292 /* We only need to prefix "globally" visible variables. These include
8293 any variable marked with DW_AT_external or any variable that
8294 lives in a namespace. [Variables in anonymous namespaces
8295 require prefixing, but they are not DW_AT_external.] */
8296
8297 if (dwarf2_attr (die, DW_AT_specification, cu))
8298 {
8299 struct dwarf2_cu *spec_cu = cu;
8300
8301 return die_needs_namespace (die_specification (die, &spec_cu),
8302 spec_cu);
8303 }
8304
8305 attr = dwarf2_attr (die, DW_AT_external, cu);
8306 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8307 && die->parent->tag != DW_TAG_module)
8308 return 0;
8309 /* A variable in a lexical block of some kind does not need a
8310 namespace, even though in C++ such variables may be external
8311 and have a mangled name. */
8312 if (die->parent->tag == DW_TAG_lexical_block
8313 || die->parent->tag == DW_TAG_try_block
8314 || die->parent->tag == DW_TAG_catch_block
8315 || die->parent->tag == DW_TAG_subprogram)
8316 return 0;
8317 return 1;
8318
8319 default:
8320 return 0;
8321 }
8322 }
8323
8324 /* Retrieve the last character from a mem_file. */
8325
8326 static void
8327 do_ui_file_peek_last (void *object, const char *buffer, long length)
8328 {
8329 char *last_char_p = (char *) object;
8330
8331 if (length > 0)
8332 *last_char_p = buffer[length - 1];
8333 }
8334
8335 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8336 compute the physname for the object, which include a method's:
8337 - formal parameters (C++/Java),
8338 - receiver type (Go),
8339 - return type (Java).
8340
8341 The term "physname" is a bit confusing.
8342 For C++, for example, it is the demangled name.
8343 For Go, for example, it's the mangled name.
8344
8345 For Ada, return the DIE's linkage name rather than the fully qualified
8346 name. PHYSNAME is ignored..
8347
8348 The result is allocated on the objfile_obstack and canonicalized. */
8349
8350 static const char *
8351 dwarf2_compute_name (const char *name,
8352 struct die_info *die, struct dwarf2_cu *cu,
8353 int physname)
8354 {
8355 struct objfile *objfile = cu->objfile;
8356
8357 if (name == NULL)
8358 name = dwarf2_name (die, cu);
8359
8360 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8361 compute it by typename_concat inside GDB. */
8362 if (cu->language == language_ada
8363 || (cu->language == language_fortran && physname))
8364 {
8365 /* For Ada unit, we prefer the linkage name over the name, as
8366 the former contains the exported name, which the user expects
8367 to be able to reference. Ideally, we want the user to be able
8368 to reference this entity using either natural or linkage name,
8369 but we haven't started looking at this enhancement yet. */
8370 struct attribute *attr;
8371
8372 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8373 if (attr == NULL)
8374 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8375 if (attr && DW_STRING (attr))
8376 return DW_STRING (attr);
8377 }
8378
8379 /* These are the only languages we know how to qualify names in. */
8380 if (name != NULL
8381 && (cu->language == language_cplus || cu->language == language_java
8382 || cu->language == language_fortran))
8383 {
8384 if (die_needs_namespace (die, cu))
8385 {
8386 long length;
8387 const char *prefix;
8388 struct ui_file *buf;
8389 char *intermediate_name;
8390 const char *canonical_name = NULL;
8391
8392 prefix = determine_prefix (die, cu);
8393 buf = mem_fileopen ();
8394 if (*prefix != '\0')
8395 {
8396 char *prefixed_name = typename_concat (NULL, prefix, name,
8397 physname, cu);
8398
8399 fputs_unfiltered (prefixed_name, buf);
8400 xfree (prefixed_name);
8401 }
8402 else
8403 fputs_unfiltered (name, buf);
8404
8405 /* Template parameters may be specified in the DIE's DW_AT_name, or
8406 as children with DW_TAG_template_type_param or
8407 DW_TAG_value_type_param. If the latter, add them to the name
8408 here. If the name already has template parameters, then
8409 skip this step; some versions of GCC emit both, and
8410 it is more efficient to use the pre-computed name.
8411
8412 Something to keep in mind about this process: it is very
8413 unlikely, or in some cases downright impossible, to produce
8414 something that will match the mangled name of a function.
8415 If the definition of the function has the same debug info,
8416 we should be able to match up with it anyway. But fallbacks
8417 using the minimal symbol, for instance to find a method
8418 implemented in a stripped copy of libstdc++, will not work.
8419 If we do not have debug info for the definition, we will have to
8420 match them up some other way.
8421
8422 When we do name matching there is a related problem with function
8423 templates; two instantiated function templates are allowed to
8424 differ only by their return types, which we do not add here. */
8425
8426 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8427 {
8428 struct attribute *attr;
8429 struct die_info *child;
8430 int first = 1;
8431
8432 die->building_fullname = 1;
8433
8434 for (child = die->child; child != NULL; child = child->sibling)
8435 {
8436 struct type *type;
8437 LONGEST value;
8438 const gdb_byte *bytes;
8439 struct dwarf2_locexpr_baton *baton;
8440 struct value *v;
8441
8442 if (child->tag != DW_TAG_template_type_param
8443 && child->tag != DW_TAG_template_value_param)
8444 continue;
8445
8446 if (first)
8447 {
8448 fputs_unfiltered ("<", buf);
8449 first = 0;
8450 }
8451 else
8452 fputs_unfiltered (", ", buf);
8453
8454 attr = dwarf2_attr (child, DW_AT_type, cu);
8455 if (attr == NULL)
8456 {
8457 complaint (&symfile_complaints,
8458 _("template parameter missing DW_AT_type"));
8459 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8460 continue;
8461 }
8462 type = die_type (child, cu);
8463
8464 if (child->tag == DW_TAG_template_type_param)
8465 {
8466 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8467 continue;
8468 }
8469
8470 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8471 if (attr == NULL)
8472 {
8473 complaint (&symfile_complaints,
8474 _("template parameter missing "
8475 "DW_AT_const_value"));
8476 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8477 continue;
8478 }
8479
8480 dwarf2_const_value_attr (attr, type, name,
8481 &cu->comp_unit_obstack, cu,
8482 &value, &bytes, &baton);
8483
8484 if (TYPE_NOSIGN (type))
8485 /* GDB prints characters as NUMBER 'CHAR'. If that's
8486 changed, this can use value_print instead. */
8487 c_printchar (value, type, buf);
8488 else
8489 {
8490 struct value_print_options opts;
8491
8492 if (baton != NULL)
8493 v = dwarf2_evaluate_loc_desc (type, NULL,
8494 baton->data,
8495 baton->size,
8496 baton->per_cu);
8497 else if (bytes != NULL)
8498 {
8499 v = allocate_value (type);
8500 memcpy (value_contents_writeable (v), bytes,
8501 TYPE_LENGTH (type));
8502 }
8503 else
8504 v = value_from_longest (type, value);
8505
8506 /* Specify decimal so that we do not depend on
8507 the radix. */
8508 get_formatted_print_options (&opts, 'd');
8509 opts.raw = 1;
8510 value_print (v, buf, &opts);
8511 release_value (v);
8512 value_free (v);
8513 }
8514 }
8515
8516 die->building_fullname = 0;
8517
8518 if (!first)
8519 {
8520 /* Close the argument list, with a space if necessary
8521 (nested templates). */
8522 char last_char = '\0';
8523 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8524 if (last_char == '>')
8525 fputs_unfiltered (" >", buf);
8526 else
8527 fputs_unfiltered (">", buf);
8528 }
8529 }
8530
8531 /* For Java and C++ methods, append formal parameter type
8532 information, if PHYSNAME. */
8533
8534 if (physname && die->tag == DW_TAG_subprogram
8535 && (cu->language == language_cplus
8536 || cu->language == language_java))
8537 {
8538 struct type *type = read_type_die (die, cu);
8539
8540 c_type_print_args (type, buf, 1, cu->language,
8541 &type_print_raw_options);
8542
8543 if (cu->language == language_java)
8544 {
8545 /* For java, we must append the return type to method
8546 names. */
8547 if (die->tag == DW_TAG_subprogram)
8548 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8549 0, 0, &type_print_raw_options);
8550 }
8551 else if (cu->language == language_cplus)
8552 {
8553 /* Assume that an artificial first parameter is
8554 "this", but do not crash if it is not. RealView
8555 marks unnamed (and thus unused) parameters as
8556 artificial; there is no way to differentiate
8557 the two cases. */
8558 if (TYPE_NFIELDS (type) > 0
8559 && TYPE_FIELD_ARTIFICIAL (type, 0)
8560 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8561 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8562 0))))
8563 fputs_unfiltered (" const", buf);
8564 }
8565 }
8566
8567 intermediate_name = ui_file_xstrdup (buf, &length);
8568 ui_file_delete (buf);
8569
8570 if (cu->language == language_cplus)
8571 canonical_name
8572 = dwarf2_canonicalize_name (intermediate_name, cu,
8573 &objfile->per_bfd->storage_obstack);
8574
8575 /* If we only computed INTERMEDIATE_NAME, or if
8576 INTERMEDIATE_NAME is already canonical, then we need to
8577 copy it to the appropriate obstack. */
8578 if (canonical_name == NULL || canonical_name == intermediate_name)
8579 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8580 intermediate_name,
8581 strlen (intermediate_name));
8582 else
8583 name = canonical_name;
8584
8585 xfree (intermediate_name);
8586 }
8587 }
8588
8589 return name;
8590 }
8591
8592 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8593 If scope qualifiers are appropriate they will be added. The result
8594 will be allocated on the storage_obstack, or NULL if the DIE does
8595 not have a name. NAME may either be from a previous call to
8596 dwarf2_name or NULL.
8597
8598 The output string will be canonicalized (if C++/Java). */
8599
8600 static const char *
8601 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8602 {
8603 return dwarf2_compute_name (name, die, cu, 0);
8604 }
8605
8606 /* Construct a physname for the given DIE in CU. NAME may either be
8607 from a previous call to dwarf2_name or NULL. The result will be
8608 allocated on the objfile_objstack or NULL if the DIE does not have a
8609 name.
8610
8611 The output string will be canonicalized (if C++/Java). */
8612
8613 static const char *
8614 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8615 {
8616 struct objfile *objfile = cu->objfile;
8617 struct attribute *attr;
8618 const char *retval, *mangled = NULL, *canon = NULL;
8619 struct cleanup *back_to;
8620 int need_copy = 1;
8621
8622 /* In this case dwarf2_compute_name is just a shortcut not building anything
8623 on its own. */
8624 if (!die_needs_namespace (die, cu))
8625 return dwarf2_compute_name (name, die, cu, 1);
8626
8627 back_to = make_cleanup (null_cleanup, NULL);
8628
8629 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8630 if (!attr)
8631 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8632
8633 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8634 has computed. */
8635 if (attr && DW_STRING (attr))
8636 {
8637 char *demangled;
8638
8639 mangled = DW_STRING (attr);
8640
8641 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8642 type. It is easier for GDB users to search for such functions as
8643 `name(params)' than `long name(params)'. In such case the minimal
8644 symbol names do not match the full symbol names but for template
8645 functions there is never a need to look up their definition from their
8646 declaration so the only disadvantage remains the minimal symbol
8647 variant `long name(params)' does not have the proper inferior type.
8648 */
8649
8650 if (cu->language == language_go)
8651 {
8652 /* This is a lie, but we already lie to the caller new_symbol_full.
8653 new_symbol_full assumes we return the mangled name.
8654 This just undoes that lie until things are cleaned up. */
8655 demangled = NULL;
8656 }
8657 else
8658 {
8659 demangled = gdb_demangle (mangled,
8660 (DMGL_PARAMS | DMGL_ANSI
8661 | (cu->language == language_java
8662 ? DMGL_JAVA | DMGL_RET_POSTFIX
8663 : DMGL_RET_DROP)));
8664 }
8665 if (demangled)
8666 {
8667 make_cleanup (xfree, demangled);
8668 canon = demangled;
8669 }
8670 else
8671 {
8672 canon = mangled;
8673 need_copy = 0;
8674 }
8675 }
8676
8677 if (canon == NULL || check_physname)
8678 {
8679 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8680
8681 if (canon != NULL && strcmp (physname, canon) != 0)
8682 {
8683 /* It may not mean a bug in GDB. The compiler could also
8684 compute DW_AT_linkage_name incorrectly. But in such case
8685 GDB would need to be bug-to-bug compatible. */
8686
8687 complaint (&symfile_complaints,
8688 _("Computed physname <%s> does not match demangled <%s> "
8689 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8690 physname, canon, mangled, die->offset.sect_off,
8691 objfile_name (objfile));
8692
8693 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8694 is available here - over computed PHYSNAME. It is safer
8695 against both buggy GDB and buggy compilers. */
8696
8697 retval = canon;
8698 }
8699 else
8700 {
8701 retval = physname;
8702 need_copy = 0;
8703 }
8704 }
8705 else
8706 retval = canon;
8707
8708 if (need_copy)
8709 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8710 retval, strlen (retval));
8711
8712 do_cleanups (back_to);
8713 return retval;
8714 }
8715
8716 /* Inspect DIE in CU for a namespace alias. If one exists, record
8717 a new symbol for it.
8718
8719 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8720
8721 static int
8722 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8723 {
8724 struct attribute *attr;
8725
8726 /* If the die does not have a name, this is not a namespace
8727 alias. */
8728 attr = dwarf2_attr (die, DW_AT_name, cu);
8729 if (attr != NULL)
8730 {
8731 int num;
8732 struct die_info *d = die;
8733 struct dwarf2_cu *imported_cu = cu;
8734
8735 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8736 keep inspecting DIEs until we hit the underlying import. */
8737 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8738 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8739 {
8740 attr = dwarf2_attr (d, DW_AT_import, cu);
8741 if (attr == NULL)
8742 break;
8743
8744 d = follow_die_ref (d, attr, &imported_cu);
8745 if (d->tag != DW_TAG_imported_declaration)
8746 break;
8747 }
8748
8749 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8750 {
8751 complaint (&symfile_complaints,
8752 _("DIE at 0x%x has too many recursively imported "
8753 "declarations"), d->offset.sect_off);
8754 return 0;
8755 }
8756
8757 if (attr != NULL)
8758 {
8759 struct type *type;
8760 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8761
8762 type = get_die_type_at_offset (offset, cu->per_cu);
8763 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8764 {
8765 /* This declaration is a global namespace alias. Add
8766 a symbol for it whose type is the aliased namespace. */
8767 new_symbol (die, type, cu);
8768 return 1;
8769 }
8770 }
8771 }
8772
8773 return 0;
8774 }
8775
8776 /* Read the import statement specified by the given die and record it. */
8777
8778 static void
8779 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8780 {
8781 struct objfile *objfile = cu->objfile;
8782 struct attribute *import_attr;
8783 struct die_info *imported_die, *child_die;
8784 struct dwarf2_cu *imported_cu;
8785 const char *imported_name;
8786 const char *imported_name_prefix;
8787 const char *canonical_name;
8788 const char *import_alias;
8789 const char *imported_declaration = NULL;
8790 const char *import_prefix;
8791 VEC (const_char_ptr) *excludes = NULL;
8792 struct cleanup *cleanups;
8793
8794 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8795 if (import_attr == NULL)
8796 {
8797 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8798 dwarf_tag_name (die->tag));
8799 return;
8800 }
8801
8802 imported_cu = cu;
8803 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8804 imported_name = dwarf2_name (imported_die, imported_cu);
8805 if (imported_name == NULL)
8806 {
8807 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8808
8809 The import in the following code:
8810 namespace A
8811 {
8812 typedef int B;
8813 }
8814
8815 int main ()
8816 {
8817 using A::B;
8818 B b;
8819 return b;
8820 }
8821
8822 ...
8823 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8824 <52> DW_AT_decl_file : 1
8825 <53> DW_AT_decl_line : 6
8826 <54> DW_AT_import : <0x75>
8827 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8828 <59> DW_AT_name : B
8829 <5b> DW_AT_decl_file : 1
8830 <5c> DW_AT_decl_line : 2
8831 <5d> DW_AT_type : <0x6e>
8832 ...
8833 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8834 <76> DW_AT_byte_size : 4
8835 <77> DW_AT_encoding : 5 (signed)
8836
8837 imports the wrong die ( 0x75 instead of 0x58 ).
8838 This case will be ignored until the gcc bug is fixed. */
8839 return;
8840 }
8841
8842 /* Figure out the local name after import. */
8843 import_alias = dwarf2_name (die, cu);
8844
8845 /* Figure out where the statement is being imported to. */
8846 import_prefix = determine_prefix (die, cu);
8847
8848 /* Figure out what the scope of the imported die is and prepend it
8849 to the name of the imported die. */
8850 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8851
8852 if (imported_die->tag != DW_TAG_namespace
8853 && imported_die->tag != DW_TAG_module)
8854 {
8855 imported_declaration = imported_name;
8856 canonical_name = imported_name_prefix;
8857 }
8858 else if (strlen (imported_name_prefix) > 0)
8859 canonical_name = obconcat (&objfile->objfile_obstack,
8860 imported_name_prefix, "::", imported_name,
8861 (char *) NULL);
8862 else
8863 canonical_name = imported_name;
8864
8865 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8866
8867 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8868 for (child_die = die->child; child_die && child_die->tag;
8869 child_die = sibling_die (child_die))
8870 {
8871 /* DWARF-4: A Fortran use statement with a “rename list” may be
8872 represented by an imported module entry with an import attribute
8873 referring to the module and owned entries corresponding to those
8874 entities that are renamed as part of being imported. */
8875
8876 if (child_die->tag != DW_TAG_imported_declaration)
8877 {
8878 complaint (&symfile_complaints,
8879 _("child DW_TAG_imported_declaration expected "
8880 "- DIE at 0x%x [in module %s]"),
8881 child_die->offset.sect_off, objfile_name (objfile));
8882 continue;
8883 }
8884
8885 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8886 if (import_attr == NULL)
8887 {
8888 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8889 dwarf_tag_name (child_die->tag));
8890 continue;
8891 }
8892
8893 imported_cu = cu;
8894 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8895 &imported_cu);
8896 imported_name = dwarf2_name (imported_die, imported_cu);
8897 if (imported_name == NULL)
8898 {
8899 complaint (&symfile_complaints,
8900 _("child DW_TAG_imported_declaration has unknown "
8901 "imported name - DIE at 0x%x [in module %s]"),
8902 child_die->offset.sect_off, objfile_name (objfile));
8903 continue;
8904 }
8905
8906 VEC_safe_push (const_char_ptr, excludes, imported_name);
8907
8908 process_die (child_die, cu);
8909 }
8910
8911 cp_add_using_directive (import_prefix,
8912 canonical_name,
8913 import_alias,
8914 imported_declaration,
8915 excludes,
8916 0,
8917 &objfile->objfile_obstack);
8918
8919 do_cleanups (cleanups);
8920 }
8921
8922 /* Cleanup function for handle_DW_AT_stmt_list. */
8923
8924 static void
8925 free_cu_line_header (void *arg)
8926 {
8927 struct dwarf2_cu *cu = arg;
8928
8929 free_line_header (cu->line_header);
8930 cu->line_header = NULL;
8931 }
8932
8933 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8934 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8935 this, it was first present in GCC release 4.3.0. */
8936
8937 static int
8938 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8939 {
8940 if (!cu->checked_producer)
8941 check_producer (cu);
8942
8943 return cu->producer_is_gcc_lt_4_3;
8944 }
8945
8946 static void
8947 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8948 const char **name, const char **comp_dir)
8949 {
8950 struct attribute *attr;
8951
8952 *name = NULL;
8953 *comp_dir = NULL;
8954
8955 /* Find the filename. Do not use dwarf2_name here, since the filename
8956 is not a source language identifier. */
8957 attr = dwarf2_attr (die, DW_AT_name, cu);
8958 if (attr)
8959 {
8960 *name = DW_STRING (attr);
8961 }
8962
8963 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8964 if (attr)
8965 *comp_dir = DW_STRING (attr);
8966 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8967 && IS_ABSOLUTE_PATH (*name))
8968 {
8969 char *d = ldirname (*name);
8970
8971 *comp_dir = d;
8972 if (d != NULL)
8973 make_cleanup (xfree, d);
8974 }
8975 if (*comp_dir != NULL)
8976 {
8977 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8978 directory, get rid of it. */
8979 char *cp = strchr (*comp_dir, ':');
8980
8981 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8982 *comp_dir = cp + 1;
8983 }
8984
8985 if (*name == NULL)
8986 *name = "<unknown>";
8987 }
8988
8989 /* Handle DW_AT_stmt_list for a compilation unit.
8990 DIE is the DW_TAG_compile_unit die for CU.
8991 COMP_DIR is the compilation directory. LOWPC is passed to
8992 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
8993
8994 static void
8995 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8996 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
8997 {
8998 struct attribute *attr;
8999
9000 gdb_assert (! cu->per_cu->is_debug_types);
9001
9002 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9003 if (attr)
9004 {
9005 unsigned int line_offset = DW_UNSND (attr);
9006 struct line_header *line_header
9007 = dwarf_decode_line_header (line_offset, cu);
9008
9009 if (line_header)
9010 {
9011 cu->line_header = line_header;
9012 make_cleanup (free_cu_line_header, cu);
9013 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
9014 }
9015 }
9016 }
9017
9018 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9019
9020 static void
9021 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9022 {
9023 struct objfile *objfile = dwarf2_per_objfile->objfile;
9024 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9025 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9026 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9027 CORE_ADDR highpc = ((CORE_ADDR) 0);
9028 struct attribute *attr;
9029 const char *name = NULL;
9030 const char *comp_dir = NULL;
9031 struct die_info *child_die;
9032 bfd *abfd = objfile->obfd;
9033 CORE_ADDR baseaddr;
9034
9035 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9036
9037 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9038
9039 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9040 from finish_block. */
9041 if (lowpc == ((CORE_ADDR) -1))
9042 lowpc = highpc;
9043 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9044
9045 find_file_and_directory (die, cu, &name, &comp_dir);
9046
9047 prepare_one_comp_unit (cu, die, cu->language);
9048
9049 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9050 standardised yet. As a workaround for the language detection we fall
9051 back to the DW_AT_producer string. */
9052 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9053 cu->language = language_opencl;
9054
9055 /* Similar hack for Go. */
9056 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9057 set_cu_language (DW_LANG_Go, cu);
9058
9059 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9060
9061 /* Decode line number information if present. We do this before
9062 processing child DIEs, so that the line header table is available
9063 for DW_AT_decl_file. */
9064 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9065
9066 /* Process all dies in compilation unit. */
9067 if (die->child != NULL)
9068 {
9069 child_die = die->child;
9070 while (child_die && child_die->tag)
9071 {
9072 process_die (child_die, cu);
9073 child_die = sibling_die (child_die);
9074 }
9075 }
9076
9077 /* Decode macro information, if present. Dwarf 2 macro information
9078 refers to information in the line number info statement program
9079 header, so we can only read it if we've read the header
9080 successfully. */
9081 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9082 if (attr && cu->line_header)
9083 {
9084 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9085 complaint (&symfile_complaints,
9086 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9087
9088 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9089 }
9090 else
9091 {
9092 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9093 if (attr && cu->line_header)
9094 {
9095 unsigned int macro_offset = DW_UNSND (attr);
9096
9097 dwarf_decode_macros (cu, macro_offset, 0);
9098 }
9099 }
9100
9101 do_cleanups (back_to);
9102 }
9103
9104 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9105 Create the set of symtabs used by this TU, or if this TU is sharing
9106 symtabs with another TU and the symtabs have already been created
9107 then restore those symtabs in the line header.
9108 We don't need the pc/line-number mapping for type units. */
9109
9110 static void
9111 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9112 {
9113 struct objfile *objfile = dwarf2_per_objfile->objfile;
9114 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9115 struct type_unit_group *tu_group;
9116 int first_time;
9117 struct line_header *lh;
9118 struct attribute *attr;
9119 unsigned int i, line_offset;
9120 struct signatured_type *sig_type;
9121
9122 gdb_assert (per_cu->is_debug_types);
9123 sig_type = (struct signatured_type *) per_cu;
9124
9125 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9126
9127 /* If we're using .gdb_index (includes -readnow) then
9128 per_cu->type_unit_group may not have been set up yet. */
9129 if (sig_type->type_unit_group == NULL)
9130 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9131 tu_group = sig_type->type_unit_group;
9132
9133 /* If we've already processed this stmt_list there's no real need to
9134 do it again, we could fake it and just recreate the part we need
9135 (file name,index -> symtab mapping). If data shows this optimization
9136 is useful we can do it then. */
9137 first_time = tu_group->compunit_symtab == NULL;
9138
9139 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9140 debug info. */
9141 lh = NULL;
9142 if (attr != NULL)
9143 {
9144 line_offset = DW_UNSND (attr);
9145 lh = dwarf_decode_line_header (line_offset, cu);
9146 }
9147 if (lh == NULL)
9148 {
9149 if (first_time)
9150 dwarf2_start_symtab (cu, "", NULL, 0);
9151 else
9152 {
9153 gdb_assert (tu_group->symtabs == NULL);
9154 restart_symtab (tu_group->compunit_symtab, "", 0);
9155 }
9156 return;
9157 }
9158
9159 cu->line_header = lh;
9160 make_cleanup (free_cu_line_header, cu);
9161
9162 if (first_time)
9163 {
9164 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9165
9166 tu_group->num_symtabs = lh->num_file_names;
9167 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9168
9169 for (i = 0; i < lh->num_file_names; ++i)
9170 {
9171 const char *dir = NULL;
9172 struct file_entry *fe = &lh->file_names[i];
9173
9174 if (fe->dir_index)
9175 dir = lh->include_dirs[fe->dir_index - 1];
9176 dwarf2_start_subfile (fe->name, dir);
9177
9178 if (current_subfile->symtab == NULL)
9179 {
9180 /* NOTE: start_subfile will recognize when it's been passed
9181 a file it has already seen. So we can't assume there's a
9182 simple mapping from lh->file_names to subfiles, plus
9183 lh->file_names may contain dups. */
9184 current_subfile->symtab
9185 = allocate_symtab (cust, current_subfile->name);
9186 }
9187
9188 fe->symtab = current_subfile->symtab;
9189 tu_group->symtabs[i] = fe->symtab;
9190 }
9191 }
9192 else
9193 {
9194 restart_symtab (tu_group->compunit_symtab, "", 0);
9195
9196 for (i = 0; i < lh->num_file_names; ++i)
9197 {
9198 struct file_entry *fe = &lh->file_names[i];
9199
9200 fe->symtab = tu_group->symtabs[i];
9201 }
9202 }
9203
9204 /* The main symtab is allocated last. Type units don't have DW_AT_name
9205 so they don't have a "real" (so to speak) symtab anyway.
9206 There is later code that will assign the main symtab to all symbols
9207 that don't have one. We need to handle the case of a symbol with a
9208 missing symtab (DW_AT_decl_file) anyway. */
9209 }
9210
9211 /* Process DW_TAG_type_unit.
9212 For TUs we want to skip the first top level sibling if it's not the
9213 actual type being defined by this TU. In this case the first top
9214 level sibling is there to provide context only. */
9215
9216 static void
9217 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9218 {
9219 struct die_info *child_die;
9220
9221 prepare_one_comp_unit (cu, die, language_minimal);
9222
9223 /* Initialize (or reinitialize) the machinery for building symtabs.
9224 We do this before processing child DIEs, so that the line header table
9225 is available for DW_AT_decl_file. */
9226 setup_type_unit_groups (die, cu);
9227
9228 if (die->child != NULL)
9229 {
9230 child_die = die->child;
9231 while (child_die && child_die->tag)
9232 {
9233 process_die (child_die, cu);
9234 child_die = sibling_die (child_die);
9235 }
9236 }
9237 }
9238 \f
9239 /* DWO/DWP files.
9240
9241 http://gcc.gnu.org/wiki/DebugFission
9242 http://gcc.gnu.org/wiki/DebugFissionDWP
9243
9244 To simplify handling of both DWO files ("object" files with the DWARF info)
9245 and DWP files (a file with the DWOs packaged up into one file), we treat
9246 DWP files as having a collection of virtual DWO files. */
9247
9248 static hashval_t
9249 hash_dwo_file (const void *item)
9250 {
9251 const struct dwo_file *dwo_file = item;
9252 hashval_t hash;
9253
9254 hash = htab_hash_string (dwo_file->dwo_name);
9255 if (dwo_file->comp_dir != NULL)
9256 hash += htab_hash_string (dwo_file->comp_dir);
9257 return hash;
9258 }
9259
9260 static int
9261 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9262 {
9263 const struct dwo_file *lhs = item_lhs;
9264 const struct dwo_file *rhs = item_rhs;
9265
9266 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9267 return 0;
9268 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9269 return lhs->comp_dir == rhs->comp_dir;
9270 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9271 }
9272
9273 /* Allocate a hash table for DWO files. */
9274
9275 static htab_t
9276 allocate_dwo_file_hash_table (void)
9277 {
9278 struct objfile *objfile = dwarf2_per_objfile->objfile;
9279
9280 return htab_create_alloc_ex (41,
9281 hash_dwo_file,
9282 eq_dwo_file,
9283 NULL,
9284 &objfile->objfile_obstack,
9285 hashtab_obstack_allocate,
9286 dummy_obstack_deallocate);
9287 }
9288
9289 /* Lookup DWO file DWO_NAME. */
9290
9291 static void **
9292 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9293 {
9294 struct dwo_file find_entry;
9295 void **slot;
9296
9297 if (dwarf2_per_objfile->dwo_files == NULL)
9298 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9299
9300 memset (&find_entry, 0, sizeof (find_entry));
9301 find_entry.dwo_name = dwo_name;
9302 find_entry.comp_dir = comp_dir;
9303 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9304
9305 return slot;
9306 }
9307
9308 static hashval_t
9309 hash_dwo_unit (const void *item)
9310 {
9311 const struct dwo_unit *dwo_unit = item;
9312
9313 /* This drops the top 32 bits of the id, but is ok for a hash. */
9314 return dwo_unit->signature;
9315 }
9316
9317 static int
9318 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9319 {
9320 const struct dwo_unit *lhs = item_lhs;
9321 const struct dwo_unit *rhs = item_rhs;
9322
9323 /* The signature is assumed to be unique within the DWO file.
9324 So while object file CU dwo_id's always have the value zero,
9325 that's OK, assuming each object file DWO file has only one CU,
9326 and that's the rule for now. */
9327 return lhs->signature == rhs->signature;
9328 }
9329
9330 /* Allocate a hash table for DWO CUs,TUs.
9331 There is one of these tables for each of CUs,TUs for each DWO file. */
9332
9333 static htab_t
9334 allocate_dwo_unit_table (struct objfile *objfile)
9335 {
9336 /* Start out with a pretty small number.
9337 Generally DWO files contain only one CU and maybe some TUs. */
9338 return htab_create_alloc_ex (3,
9339 hash_dwo_unit,
9340 eq_dwo_unit,
9341 NULL,
9342 &objfile->objfile_obstack,
9343 hashtab_obstack_allocate,
9344 dummy_obstack_deallocate);
9345 }
9346
9347 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9348
9349 struct create_dwo_cu_data
9350 {
9351 struct dwo_file *dwo_file;
9352 struct dwo_unit dwo_unit;
9353 };
9354
9355 /* die_reader_func for create_dwo_cu. */
9356
9357 static void
9358 create_dwo_cu_reader (const struct die_reader_specs *reader,
9359 const gdb_byte *info_ptr,
9360 struct die_info *comp_unit_die,
9361 int has_children,
9362 void *datap)
9363 {
9364 struct dwarf2_cu *cu = reader->cu;
9365 struct objfile *objfile = dwarf2_per_objfile->objfile;
9366 sect_offset offset = cu->per_cu->offset;
9367 struct dwarf2_section_info *section = cu->per_cu->section;
9368 struct create_dwo_cu_data *data = datap;
9369 struct dwo_file *dwo_file = data->dwo_file;
9370 struct dwo_unit *dwo_unit = &data->dwo_unit;
9371 struct attribute *attr;
9372
9373 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9374 if (attr == NULL)
9375 {
9376 complaint (&symfile_complaints,
9377 _("Dwarf Error: debug entry at offset 0x%x is missing"
9378 " its dwo_id [in module %s]"),
9379 offset.sect_off, dwo_file->dwo_name);
9380 return;
9381 }
9382
9383 dwo_unit->dwo_file = dwo_file;
9384 dwo_unit->signature = DW_UNSND (attr);
9385 dwo_unit->section = section;
9386 dwo_unit->offset = offset;
9387 dwo_unit->length = cu->per_cu->length;
9388
9389 if (dwarf2_read_debug)
9390 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9391 offset.sect_off, hex_string (dwo_unit->signature));
9392 }
9393
9394 /* Create the dwo_unit for the lone CU in DWO_FILE.
9395 Note: This function processes DWO files only, not DWP files. */
9396
9397 static struct dwo_unit *
9398 create_dwo_cu (struct dwo_file *dwo_file)
9399 {
9400 struct objfile *objfile = dwarf2_per_objfile->objfile;
9401 struct dwarf2_section_info *section = &dwo_file->sections.info;
9402 bfd *abfd;
9403 htab_t cu_htab;
9404 const gdb_byte *info_ptr, *end_ptr;
9405 struct create_dwo_cu_data create_dwo_cu_data;
9406 struct dwo_unit *dwo_unit;
9407
9408 dwarf2_read_section (objfile, section);
9409 info_ptr = section->buffer;
9410
9411 if (info_ptr == NULL)
9412 return NULL;
9413
9414 /* We can't set abfd until now because the section may be empty or
9415 not present, in which case section->asection will be NULL. */
9416 abfd = get_section_bfd_owner (section);
9417
9418 if (dwarf2_read_debug)
9419 {
9420 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9421 get_section_name (section),
9422 get_section_file_name (section));
9423 }
9424
9425 create_dwo_cu_data.dwo_file = dwo_file;
9426 dwo_unit = NULL;
9427
9428 end_ptr = info_ptr + section->size;
9429 while (info_ptr < end_ptr)
9430 {
9431 struct dwarf2_per_cu_data per_cu;
9432
9433 memset (&create_dwo_cu_data.dwo_unit, 0,
9434 sizeof (create_dwo_cu_data.dwo_unit));
9435 memset (&per_cu, 0, sizeof (per_cu));
9436 per_cu.objfile = objfile;
9437 per_cu.is_debug_types = 0;
9438 per_cu.offset.sect_off = info_ptr - section->buffer;
9439 per_cu.section = section;
9440
9441 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9442 create_dwo_cu_reader,
9443 &create_dwo_cu_data);
9444
9445 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9446 {
9447 /* If we've already found one, complain. We only support one
9448 because having more than one requires hacking the dwo_name of
9449 each to match, which is highly unlikely to happen. */
9450 if (dwo_unit != NULL)
9451 {
9452 complaint (&symfile_complaints,
9453 _("Multiple CUs in DWO file %s [in module %s]"),
9454 dwo_file->dwo_name, objfile_name (objfile));
9455 break;
9456 }
9457
9458 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9459 *dwo_unit = create_dwo_cu_data.dwo_unit;
9460 }
9461
9462 info_ptr += per_cu.length;
9463 }
9464
9465 return dwo_unit;
9466 }
9467
9468 /* DWP file .debug_{cu,tu}_index section format:
9469 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9470
9471 DWP Version 1:
9472
9473 Both index sections have the same format, and serve to map a 64-bit
9474 signature to a set of section numbers. Each section begins with a header,
9475 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9476 indexes, and a pool of 32-bit section numbers. The index sections will be
9477 aligned at 8-byte boundaries in the file.
9478
9479 The index section header consists of:
9480
9481 V, 32 bit version number
9482 -, 32 bits unused
9483 N, 32 bit number of compilation units or type units in the index
9484 M, 32 bit number of slots in the hash table
9485
9486 Numbers are recorded using the byte order of the application binary.
9487
9488 The hash table begins at offset 16 in the section, and consists of an array
9489 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9490 order of the application binary). Unused slots in the hash table are 0.
9491 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9492
9493 The parallel table begins immediately after the hash table
9494 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9495 array of 32-bit indexes (using the byte order of the application binary),
9496 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9497 table contains a 32-bit index into the pool of section numbers. For unused
9498 hash table slots, the corresponding entry in the parallel table will be 0.
9499
9500 The pool of section numbers begins immediately following the hash table
9501 (at offset 16 + 12 * M from the beginning of the section). The pool of
9502 section numbers consists of an array of 32-bit words (using the byte order
9503 of the application binary). Each item in the array is indexed starting
9504 from 0. The hash table entry provides the index of the first section
9505 number in the set. Additional section numbers in the set follow, and the
9506 set is terminated by a 0 entry (section number 0 is not used in ELF).
9507
9508 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9509 section must be the first entry in the set, and the .debug_abbrev.dwo must
9510 be the second entry. Other members of the set may follow in any order.
9511
9512 ---
9513
9514 DWP Version 2:
9515
9516 DWP Version 2 combines all the .debug_info, etc. sections into one,
9517 and the entries in the index tables are now offsets into these sections.
9518 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9519 section.
9520
9521 Index Section Contents:
9522 Header
9523 Hash Table of Signatures dwp_hash_table.hash_table
9524 Parallel Table of Indices dwp_hash_table.unit_table
9525 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9526 Table of Section Sizes dwp_hash_table.v2.sizes
9527
9528 The index section header consists of:
9529
9530 V, 32 bit version number
9531 L, 32 bit number of columns in the table of section offsets
9532 N, 32 bit number of compilation units or type units in the index
9533 M, 32 bit number of slots in the hash table
9534
9535 Numbers are recorded using the byte order of the application binary.
9536
9537 The hash table has the same format as version 1.
9538 The parallel table of indices has the same format as version 1,
9539 except that the entries are origin-1 indices into the table of sections
9540 offsets and the table of section sizes.
9541
9542 The table of offsets begins immediately following the parallel table
9543 (at offset 16 + 12 * M from the beginning of the section). The table is
9544 a two-dimensional array of 32-bit words (using the byte order of the
9545 application binary), with L columns and N+1 rows, in row-major order.
9546 Each row in the array is indexed starting from 0. The first row provides
9547 a key to the remaining rows: each column in this row provides an identifier
9548 for a debug section, and the offsets in the same column of subsequent rows
9549 refer to that section. The section identifiers are:
9550
9551 DW_SECT_INFO 1 .debug_info.dwo
9552 DW_SECT_TYPES 2 .debug_types.dwo
9553 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9554 DW_SECT_LINE 4 .debug_line.dwo
9555 DW_SECT_LOC 5 .debug_loc.dwo
9556 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9557 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9558 DW_SECT_MACRO 8 .debug_macro.dwo
9559
9560 The offsets provided by the CU and TU index sections are the base offsets
9561 for the contributions made by each CU or TU to the corresponding section
9562 in the package file. Each CU and TU header contains an abbrev_offset
9563 field, used to find the abbreviations table for that CU or TU within the
9564 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9565 be interpreted as relative to the base offset given in the index section.
9566 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9567 should be interpreted as relative to the base offset for .debug_line.dwo,
9568 and offsets into other debug sections obtained from DWARF attributes should
9569 also be interpreted as relative to the corresponding base offset.
9570
9571 The table of sizes begins immediately following the table of offsets.
9572 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9573 with L columns and N rows, in row-major order. Each row in the array is
9574 indexed starting from 1 (row 0 is shared by the two tables).
9575
9576 ---
9577
9578 Hash table lookup is handled the same in version 1 and 2:
9579
9580 We assume that N and M will not exceed 2^32 - 1.
9581 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9582
9583 Given a 64-bit compilation unit signature or a type signature S, an entry
9584 in the hash table is located as follows:
9585
9586 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9587 the low-order k bits all set to 1.
9588
9589 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9590
9591 3) If the hash table entry at index H matches the signature, use that
9592 entry. If the hash table entry at index H is unused (all zeroes),
9593 terminate the search: the signature is not present in the table.
9594
9595 4) Let H = (H + H') modulo M. Repeat at Step 3.
9596
9597 Because M > N and H' and M are relatively prime, the search is guaranteed
9598 to stop at an unused slot or find the match. */
9599
9600 /* Create a hash table to map DWO IDs to their CU/TU entry in
9601 .debug_{info,types}.dwo in DWP_FILE.
9602 Returns NULL if there isn't one.
9603 Note: This function processes DWP files only, not DWO files. */
9604
9605 static struct dwp_hash_table *
9606 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9607 {
9608 struct objfile *objfile = dwarf2_per_objfile->objfile;
9609 bfd *dbfd = dwp_file->dbfd;
9610 const gdb_byte *index_ptr, *index_end;
9611 struct dwarf2_section_info *index;
9612 uint32_t version, nr_columns, nr_units, nr_slots;
9613 struct dwp_hash_table *htab;
9614
9615 if (is_debug_types)
9616 index = &dwp_file->sections.tu_index;
9617 else
9618 index = &dwp_file->sections.cu_index;
9619
9620 if (dwarf2_section_empty_p (index))
9621 return NULL;
9622 dwarf2_read_section (objfile, index);
9623
9624 index_ptr = index->buffer;
9625 index_end = index_ptr + index->size;
9626
9627 version = read_4_bytes (dbfd, index_ptr);
9628 index_ptr += 4;
9629 if (version == 2)
9630 nr_columns = read_4_bytes (dbfd, index_ptr);
9631 else
9632 nr_columns = 0;
9633 index_ptr += 4;
9634 nr_units = read_4_bytes (dbfd, index_ptr);
9635 index_ptr += 4;
9636 nr_slots = read_4_bytes (dbfd, index_ptr);
9637 index_ptr += 4;
9638
9639 if (version != 1 && version != 2)
9640 {
9641 error (_("Dwarf Error: unsupported DWP file version (%s)"
9642 " [in module %s]"),
9643 pulongest (version), dwp_file->name);
9644 }
9645 if (nr_slots != (nr_slots & -nr_slots))
9646 {
9647 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9648 " is not power of 2 [in module %s]"),
9649 pulongest (nr_slots), dwp_file->name);
9650 }
9651
9652 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9653 htab->version = version;
9654 htab->nr_columns = nr_columns;
9655 htab->nr_units = nr_units;
9656 htab->nr_slots = nr_slots;
9657 htab->hash_table = index_ptr;
9658 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9659
9660 /* Exit early if the table is empty. */
9661 if (nr_slots == 0 || nr_units == 0
9662 || (version == 2 && nr_columns == 0))
9663 {
9664 /* All must be zero. */
9665 if (nr_slots != 0 || nr_units != 0
9666 || (version == 2 && nr_columns != 0))
9667 {
9668 complaint (&symfile_complaints,
9669 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9670 " all zero [in modules %s]"),
9671 dwp_file->name);
9672 }
9673 return htab;
9674 }
9675
9676 if (version == 1)
9677 {
9678 htab->section_pool.v1.indices =
9679 htab->unit_table + sizeof (uint32_t) * nr_slots;
9680 /* It's harder to decide whether the section is too small in v1.
9681 V1 is deprecated anyway so we punt. */
9682 }
9683 else
9684 {
9685 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9686 int *ids = htab->section_pool.v2.section_ids;
9687 /* Reverse map for error checking. */
9688 int ids_seen[DW_SECT_MAX + 1];
9689 int i;
9690
9691 if (nr_columns < 2)
9692 {
9693 error (_("Dwarf Error: bad DWP hash table, too few columns"
9694 " in section table [in module %s]"),
9695 dwp_file->name);
9696 }
9697 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9698 {
9699 error (_("Dwarf Error: bad DWP hash table, too many columns"
9700 " in section table [in module %s]"),
9701 dwp_file->name);
9702 }
9703 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9704 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9705 for (i = 0; i < nr_columns; ++i)
9706 {
9707 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9708
9709 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9710 {
9711 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9712 " in section table [in module %s]"),
9713 id, dwp_file->name);
9714 }
9715 if (ids_seen[id] != -1)
9716 {
9717 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9718 " id %d in section table [in module %s]"),
9719 id, dwp_file->name);
9720 }
9721 ids_seen[id] = i;
9722 ids[i] = id;
9723 }
9724 /* Must have exactly one info or types section. */
9725 if (((ids_seen[DW_SECT_INFO] != -1)
9726 + (ids_seen[DW_SECT_TYPES] != -1))
9727 != 1)
9728 {
9729 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9730 " DWO info/types section [in module %s]"),
9731 dwp_file->name);
9732 }
9733 /* Must have an abbrev section. */
9734 if (ids_seen[DW_SECT_ABBREV] == -1)
9735 {
9736 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9737 " section [in module %s]"),
9738 dwp_file->name);
9739 }
9740 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9741 htab->section_pool.v2.sizes =
9742 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9743 * nr_units * nr_columns);
9744 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9745 * nr_units * nr_columns))
9746 > index_end)
9747 {
9748 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9749 " [in module %s]"),
9750 dwp_file->name);
9751 }
9752 }
9753
9754 return htab;
9755 }
9756
9757 /* Update SECTIONS with the data from SECTP.
9758
9759 This function is like the other "locate" section routines that are
9760 passed to bfd_map_over_sections, but in this context the sections to
9761 read comes from the DWP V1 hash table, not the full ELF section table.
9762
9763 The result is non-zero for success, or zero if an error was found. */
9764
9765 static int
9766 locate_v1_virtual_dwo_sections (asection *sectp,
9767 struct virtual_v1_dwo_sections *sections)
9768 {
9769 const struct dwop_section_names *names = &dwop_section_names;
9770
9771 if (section_is_p (sectp->name, &names->abbrev_dwo))
9772 {
9773 /* There can be only one. */
9774 if (sections->abbrev.s.asection != NULL)
9775 return 0;
9776 sections->abbrev.s.asection = sectp;
9777 sections->abbrev.size = bfd_get_section_size (sectp);
9778 }
9779 else if (section_is_p (sectp->name, &names->info_dwo)
9780 || section_is_p (sectp->name, &names->types_dwo))
9781 {
9782 /* There can be only one. */
9783 if (sections->info_or_types.s.asection != NULL)
9784 return 0;
9785 sections->info_or_types.s.asection = sectp;
9786 sections->info_or_types.size = bfd_get_section_size (sectp);
9787 }
9788 else if (section_is_p (sectp->name, &names->line_dwo))
9789 {
9790 /* There can be only one. */
9791 if (sections->line.s.asection != NULL)
9792 return 0;
9793 sections->line.s.asection = sectp;
9794 sections->line.size = bfd_get_section_size (sectp);
9795 }
9796 else if (section_is_p (sectp->name, &names->loc_dwo))
9797 {
9798 /* There can be only one. */
9799 if (sections->loc.s.asection != NULL)
9800 return 0;
9801 sections->loc.s.asection = sectp;
9802 sections->loc.size = bfd_get_section_size (sectp);
9803 }
9804 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9805 {
9806 /* There can be only one. */
9807 if (sections->macinfo.s.asection != NULL)
9808 return 0;
9809 sections->macinfo.s.asection = sectp;
9810 sections->macinfo.size = bfd_get_section_size (sectp);
9811 }
9812 else if (section_is_p (sectp->name, &names->macro_dwo))
9813 {
9814 /* There can be only one. */
9815 if (sections->macro.s.asection != NULL)
9816 return 0;
9817 sections->macro.s.asection = sectp;
9818 sections->macro.size = bfd_get_section_size (sectp);
9819 }
9820 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9821 {
9822 /* There can be only one. */
9823 if (sections->str_offsets.s.asection != NULL)
9824 return 0;
9825 sections->str_offsets.s.asection = sectp;
9826 sections->str_offsets.size = bfd_get_section_size (sectp);
9827 }
9828 else
9829 {
9830 /* No other kind of section is valid. */
9831 return 0;
9832 }
9833
9834 return 1;
9835 }
9836
9837 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9838 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9839 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9840 This is for DWP version 1 files. */
9841
9842 static struct dwo_unit *
9843 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9844 uint32_t unit_index,
9845 const char *comp_dir,
9846 ULONGEST signature, int is_debug_types)
9847 {
9848 struct objfile *objfile = dwarf2_per_objfile->objfile;
9849 const struct dwp_hash_table *dwp_htab =
9850 is_debug_types ? dwp_file->tus : dwp_file->cus;
9851 bfd *dbfd = dwp_file->dbfd;
9852 const char *kind = is_debug_types ? "TU" : "CU";
9853 struct dwo_file *dwo_file;
9854 struct dwo_unit *dwo_unit;
9855 struct virtual_v1_dwo_sections sections;
9856 void **dwo_file_slot;
9857 char *virtual_dwo_name;
9858 struct dwarf2_section_info *cutu;
9859 struct cleanup *cleanups;
9860 int i;
9861
9862 gdb_assert (dwp_file->version == 1);
9863
9864 if (dwarf2_read_debug)
9865 {
9866 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9867 kind,
9868 pulongest (unit_index), hex_string (signature),
9869 dwp_file->name);
9870 }
9871
9872 /* Fetch the sections of this DWO unit.
9873 Put a limit on the number of sections we look for so that bad data
9874 doesn't cause us to loop forever. */
9875
9876 #define MAX_NR_V1_DWO_SECTIONS \
9877 (1 /* .debug_info or .debug_types */ \
9878 + 1 /* .debug_abbrev */ \
9879 + 1 /* .debug_line */ \
9880 + 1 /* .debug_loc */ \
9881 + 1 /* .debug_str_offsets */ \
9882 + 1 /* .debug_macro or .debug_macinfo */ \
9883 + 1 /* trailing zero */)
9884
9885 memset (&sections, 0, sizeof (sections));
9886 cleanups = make_cleanup (null_cleanup, 0);
9887
9888 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9889 {
9890 asection *sectp;
9891 uint32_t section_nr =
9892 read_4_bytes (dbfd,
9893 dwp_htab->section_pool.v1.indices
9894 + (unit_index + i) * sizeof (uint32_t));
9895
9896 if (section_nr == 0)
9897 break;
9898 if (section_nr >= dwp_file->num_sections)
9899 {
9900 error (_("Dwarf Error: bad DWP hash table, section number too large"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904
9905 sectp = dwp_file->elf_sections[section_nr];
9906 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9907 {
9908 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9909 " [in module %s]"),
9910 dwp_file->name);
9911 }
9912 }
9913
9914 if (i < 2
9915 || dwarf2_section_empty_p (&sections.info_or_types)
9916 || dwarf2_section_empty_p (&sections.abbrev))
9917 {
9918 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9919 " [in module %s]"),
9920 dwp_file->name);
9921 }
9922 if (i == MAX_NR_V1_DWO_SECTIONS)
9923 {
9924 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9925 " [in module %s]"),
9926 dwp_file->name);
9927 }
9928
9929 /* It's easier for the rest of the code if we fake a struct dwo_file and
9930 have dwo_unit "live" in that. At least for now.
9931
9932 The DWP file can be made up of a random collection of CUs and TUs.
9933 However, for each CU + set of TUs that came from the same original DWO
9934 file, we can combine them back into a virtual DWO file to save space
9935 (fewer struct dwo_file objects to allocate). Remember that for really
9936 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9937
9938 virtual_dwo_name =
9939 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9940 get_section_id (&sections.abbrev),
9941 get_section_id (&sections.line),
9942 get_section_id (&sections.loc),
9943 get_section_id (&sections.str_offsets));
9944 make_cleanup (xfree, virtual_dwo_name);
9945 /* Can we use an existing virtual DWO file? */
9946 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9947 /* Create one if necessary. */
9948 if (*dwo_file_slot == NULL)
9949 {
9950 if (dwarf2_read_debug)
9951 {
9952 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9953 virtual_dwo_name);
9954 }
9955 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9956 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9957 virtual_dwo_name,
9958 strlen (virtual_dwo_name));
9959 dwo_file->comp_dir = comp_dir;
9960 dwo_file->sections.abbrev = sections.abbrev;
9961 dwo_file->sections.line = sections.line;
9962 dwo_file->sections.loc = sections.loc;
9963 dwo_file->sections.macinfo = sections.macinfo;
9964 dwo_file->sections.macro = sections.macro;
9965 dwo_file->sections.str_offsets = sections.str_offsets;
9966 /* The "str" section is global to the entire DWP file. */
9967 dwo_file->sections.str = dwp_file->sections.str;
9968 /* The info or types section is assigned below to dwo_unit,
9969 there's no need to record it in dwo_file.
9970 Also, we can't simply record type sections in dwo_file because
9971 we record a pointer into the vector in dwo_unit. As we collect more
9972 types we'll grow the vector and eventually have to reallocate space
9973 for it, invalidating all copies of pointers into the previous
9974 contents. */
9975 *dwo_file_slot = dwo_file;
9976 }
9977 else
9978 {
9979 if (dwarf2_read_debug)
9980 {
9981 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9982 virtual_dwo_name);
9983 }
9984 dwo_file = *dwo_file_slot;
9985 }
9986 do_cleanups (cleanups);
9987
9988 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9989 dwo_unit->dwo_file = dwo_file;
9990 dwo_unit->signature = signature;
9991 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9992 sizeof (struct dwarf2_section_info));
9993 *dwo_unit->section = sections.info_or_types;
9994 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9995
9996 return dwo_unit;
9997 }
9998
9999 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10000 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10001 piece within that section used by a TU/CU, return a virtual section
10002 of just that piece. */
10003
10004 static struct dwarf2_section_info
10005 create_dwp_v2_section (struct dwarf2_section_info *section,
10006 bfd_size_type offset, bfd_size_type size)
10007 {
10008 struct dwarf2_section_info result;
10009 asection *sectp;
10010
10011 gdb_assert (section != NULL);
10012 gdb_assert (!section->is_virtual);
10013
10014 memset (&result, 0, sizeof (result));
10015 result.s.containing_section = section;
10016 result.is_virtual = 1;
10017
10018 if (size == 0)
10019 return result;
10020
10021 sectp = get_section_bfd_section (section);
10022
10023 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10024 bounds of the real section. This is a pretty-rare event, so just
10025 flag an error (easier) instead of a warning and trying to cope. */
10026 if (sectp == NULL
10027 || offset + size > bfd_get_section_size (sectp))
10028 {
10029 bfd *abfd = sectp->owner;
10030
10031 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10032 " in section %s [in module %s]"),
10033 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10034 objfile_name (dwarf2_per_objfile->objfile));
10035 }
10036
10037 result.virtual_offset = offset;
10038 result.size = size;
10039 return result;
10040 }
10041
10042 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10043 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10044 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10045 This is for DWP version 2 files. */
10046
10047 static struct dwo_unit *
10048 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10049 uint32_t unit_index,
10050 const char *comp_dir,
10051 ULONGEST signature, int is_debug_types)
10052 {
10053 struct objfile *objfile = dwarf2_per_objfile->objfile;
10054 const struct dwp_hash_table *dwp_htab =
10055 is_debug_types ? dwp_file->tus : dwp_file->cus;
10056 bfd *dbfd = dwp_file->dbfd;
10057 const char *kind = is_debug_types ? "TU" : "CU";
10058 struct dwo_file *dwo_file;
10059 struct dwo_unit *dwo_unit;
10060 struct virtual_v2_dwo_sections sections;
10061 void **dwo_file_slot;
10062 char *virtual_dwo_name;
10063 struct dwarf2_section_info *cutu;
10064 struct cleanup *cleanups;
10065 int i;
10066
10067 gdb_assert (dwp_file->version == 2);
10068
10069 if (dwarf2_read_debug)
10070 {
10071 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10072 kind,
10073 pulongest (unit_index), hex_string (signature),
10074 dwp_file->name);
10075 }
10076
10077 /* Fetch the section offsets of this DWO unit. */
10078
10079 memset (&sections, 0, sizeof (sections));
10080 cleanups = make_cleanup (null_cleanup, 0);
10081
10082 for (i = 0; i < dwp_htab->nr_columns; ++i)
10083 {
10084 uint32_t offset = read_4_bytes (dbfd,
10085 dwp_htab->section_pool.v2.offsets
10086 + (((unit_index - 1) * dwp_htab->nr_columns
10087 + i)
10088 * sizeof (uint32_t)));
10089 uint32_t size = read_4_bytes (dbfd,
10090 dwp_htab->section_pool.v2.sizes
10091 + (((unit_index - 1) * dwp_htab->nr_columns
10092 + i)
10093 * sizeof (uint32_t)));
10094
10095 switch (dwp_htab->section_pool.v2.section_ids[i])
10096 {
10097 case DW_SECT_INFO:
10098 case DW_SECT_TYPES:
10099 sections.info_or_types_offset = offset;
10100 sections.info_or_types_size = size;
10101 break;
10102 case DW_SECT_ABBREV:
10103 sections.abbrev_offset = offset;
10104 sections.abbrev_size = size;
10105 break;
10106 case DW_SECT_LINE:
10107 sections.line_offset = offset;
10108 sections.line_size = size;
10109 break;
10110 case DW_SECT_LOC:
10111 sections.loc_offset = offset;
10112 sections.loc_size = size;
10113 break;
10114 case DW_SECT_STR_OFFSETS:
10115 sections.str_offsets_offset = offset;
10116 sections.str_offsets_size = size;
10117 break;
10118 case DW_SECT_MACINFO:
10119 sections.macinfo_offset = offset;
10120 sections.macinfo_size = size;
10121 break;
10122 case DW_SECT_MACRO:
10123 sections.macro_offset = offset;
10124 sections.macro_size = size;
10125 break;
10126 }
10127 }
10128
10129 /* It's easier for the rest of the code if we fake a struct dwo_file and
10130 have dwo_unit "live" in that. At least for now.
10131
10132 The DWP file can be made up of a random collection of CUs and TUs.
10133 However, for each CU + set of TUs that came from the same original DWO
10134 file, we can combine them back into a virtual DWO file to save space
10135 (fewer struct dwo_file objects to allocate). Remember that for really
10136 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10137
10138 virtual_dwo_name =
10139 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10140 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10141 (long) (sections.line_size ? sections.line_offset : 0),
10142 (long) (sections.loc_size ? sections.loc_offset : 0),
10143 (long) (sections.str_offsets_size
10144 ? sections.str_offsets_offset : 0));
10145 make_cleanup (xfree, virtual_dwo_name);
10146 /* Can we use an existing virtual DWO file? */
10147 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10148 /* Create one if necessary. */
10149 if (*dwo_file_slot == NULL)
10150 {
10151 if (dwarf2_read_debug)
10152 {
10153 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10154 virtual_dwo_name);
10155 }
10156 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10157 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10158 virtual_dwo_name,
10159 strlen (virtual_dwo_name));
10160 dwo_file->comp_dir = comp_dir;
10161 dwo_file->sections.abbrev =
10162 create_dwp_v2_section (&dwp_file->sections.abbrev,
10163 sections.abbrev_offset, sections.abbrev_size);
10164 dwo_file->sections.line =
10165 create_dwp_v2_section (&dwp_file->sections.line,
10166 sections.line_offset, sections.line_size);
10167 dwo_file->sections.loc =
10168 create_dwp_v2_section (&dwp_file->sections.loc,
10169 sections.loc_offset, sections.loc_size);
10170 dwo_file->sections.macinfo =
10171 create_dwp_v2_section (&dwp_file->sections.macinfo,
10172 sections.macinfo_offset, sections.macinfo_size);
10173 dwo_file->sections.macro =
10174 create_dwp_v2_section (&dwp_file->sections.macro,
10175 sections.macro_offset, sections.macro_size);
10176 dwo_file->sections.str_offsets =
10177 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10178 sections.str_offsets_offset,
10179 sections.str_offsets_size);
10180 /* The "str" section is global to the entire DWP file. */
10181 dwo_file->sections.str = dwp_file->sections.str;
10182 /* The info or types section is assigned below to dwo_unit,
10183 there's no need to record it in dwo_file.
10184 Also, we can't simply record type sections in dwo_file because
10185 we record a pointer into the vector in dwo_unit. As we collect more
10186 types we'll grow the vector and eventually have to reallocate space
10187 for it, invalidating all copies of pointers into the previous
10188 contents. */
10189 *dwo_file_slot = dwo_file;
10190 }
10191 else
10192 {
10193 if (dwarf2_read_debug)
10194 {
10195 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10196 virtual_dwo_name);
10197 }
10198 dwo_file = *dwo_file_slot;
10199 }
10200 do_cleanups (cleanups);
10201
10202 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10203 dwo_unit->dwo_file = dwo_file;
10204 dwo_unit->signature = signature;
10205 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10206 sizeof (struct dwarf2_section_info));
10207 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10208 ? &dwp_file->sections.types
10209 : &dwp_file->sections.info,
10210 sections.info_or_types_offset,
10211 sections.info_or_types_size);
10212 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10213
10214 return dwo_unit;
10215 }
10216
10217 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10218 Returns NULL if the signature isn't found. */
10219
10220 static struct dwo_unit *
10221 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10222 ULONGEST signature, int is_debug_types)
10223 {
10224 const struct dwp_hash_table *dwp_htab =
10225 is_debug_types ? dwp_file->tus : dwp_file->cus;
10226 bfd *dbfd = dwp_file->dbfd;
10227 uint32_t mask = dwp_htab->nr_slots - 1;
10228 uint32_t hash = signature & mask;
10229 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10230 unsigned int i;
10231 void **slot;
10232 struct dwo_unit find_dwo_cu, *dwo_cu;
10233
10234 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10235 find_dwo_cu.signature = signature;
10236 slot = htab_find_slot (is_debug_types
10237 ? dwp_file->loaded_tus
10238 : dwp_file->loaded_cus,
10239 &find_dwo_cu, INSERT);
10240
10241 if (*slot != NULL)
10242 return *slot;
10243
10244 /* Use a for loop so that we don't loop forever on bad debug info. */
10245 for (i = 0; i < dwp_htab->nr_slots; ++i)
10246 {
10247 ULONGEST signature_in_table;
10248
10249 signature_in_table =
10250 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10251 if (signature_in_table == signature)
10252 {
10253 uint32_t unit_index =
10254 read_4_bytes (dbfd,
10255 dwp_htab->unit_table + hash * sizeof (uint32_t));
10256
10257 if (dwp_file->version == 1)
10258 {
10259 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10260 comp_dir, signature,
10261 is_debug_types);
10262 }
10263 else
10264 {
10265 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10266 comp_dir, signature,
10267 is_debug_types);
10268 }
10269 return *slot;
10270 }
10271 if (signature_in_table == 0)
10272 return NULL;
10273 hash = (hash + hash2) & mask;
10274 }
10275
10276 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10277 " [in module %s]"),
10278 dwp_file->name);
10279 }
10280
10281 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10282 Open the file specified by FILE_NAME and hand it off to BFD for
10283 preliminary analysis. Return a newly initialized bfd *, which
10284 includes a canonicalized copy of FILE_NAME.
10285 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10286 SEARCH_CWD is true if the current directory is to be searched.
10287 It will be searched before debug-file-directory.
10288 If successful, the file is added to the bfd include table of the
10289 objfile's bfd (see gdb_bfd_record_inclusion).
10290 If unable to find/open the file, return NULL.
10291 NOTE: This function is derived from symfile_bfd_open. */
10292
10293 static bfd *
10294 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10295 {
10296 bfd *sym_bfd;
10297 int desc, flags;
10298 char *absolute_name;
10299 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10300 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10301 to debug_file_directory. */
10302 char *search_path;
10303 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10304
10305 if (search_cwd)
10306 {
10307 if (*debug_file_directory != '\0')
10308 search_path = concat (".", dirname_separator_string,
10309 debug_file_directory, NULL);
10310 else
10311 search_path = xstrdup (".");
10312 }
10313 else
10314 search_path = xstrdup (debug_file_directory);
10315
10316 flags = OPF_RETURN_REALPATH;
10317 if (is_dwp)
10318 flags |= OPF_SEARCH_IN_PATH;
10319 desc = openp (search_path, flags, file_name,
10320 O_RDONLY | O_BINARY, &absolute_name);
10321 xfree (search_path);
10322 if (desc < 0)
10323 return NULL;
10324
10325 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10326 xfree (absolute_name);
10327 if (sym_bfd == NULL)
10328 return NULL;
10329 bfd_set_cacheable (sym_bfd, 1);
10330
10331 if (!bfd_check_format (sym_bfd, bfd_object))
10332 {
10333 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10334 return NULL;
10335 }
10336
10337 /* Success. Record the bfd as having been included by the objfile's bfd.
10338 This is important because things like demangled_names_hash lives in the
10339 objfile's per_bfd space and may have references to things like symbol
10340 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10341 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10342
10343 return sym_bfd;
10344 }
10345
10346 /* Try to open DWO file FILE_NAME.
10347 COMP_DIR is the DW_AT_comp_dir attribute.
10348 The result is the bfd handle of the file.
10349 If there is a problem finding or opening the file, return NULL.
10350 Upon success, the canonicalized path of the file is stored in the bfd,
10351 same as symfile_bfd_open. */
10352
10353 static bfd *
10354 open_dwo_file (const char *file_name, const char *comp_dir)
10355 {
10356 bfd *abfd;
10357
10358 if (IS_ABSOLUTE_PATH (file_name))
10359 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10360
10361 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10362
10363 if (comp_dir != NULL)
10364 {
10365 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10366
10367 /* NOTE: If comp_dir is a relative path, this will also try the
10368 search path, which seems useful. */
10369 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10370 xfree (path_to_try);
10371 if (abfd != NULL)
10372 return abfd;
10373 }
10374
10375 /* That didn't work, try debug-file-directory, which, despite its name,
10376 is a list of paths. */
10377
10378 if (*debug_file_directory == '\0')
10379 return NULL;
10380
10381 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10382 }
10383
10384 /* This function is mapped across the sections and remembers the offset and
10385 size of each of the DWO debugging sections we are interested in. */
10386
10387 static void
10388 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10389 {
10390 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10391 const struct dwop_section_names *names = &dwop_section_names;
10392
10393 if (section_is_p (sectp->name, &names->abbrev_dwo))
10394 {
10395 dwo_sections->abbrev.s.asection = sectp;
10396 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10397 }
10398 else if (section_is_p (sectp->name, &names->info_dwo))
10399 {
10400 dwo_sections->info.s.asection = sectp;
10401 dwo_sections->info.size = bfd_get_section_size (sectp);
10402 }
10403 else if (section_is_p (sectp->name, &names->line_dwo))
10404 {
10405 dwo_sections->line.s.asection = sectp;
10406 dwo_sections->line.size = bfd_get_section_size (sectp);
10407 }
10408 else if (section_is_p (sectp->name, &names->loc_dwo))
10409 {
10410 dwo_sections->loc.s.asection = sectp;
10411 dwo_sections->loc.size = bfd_get_section_size (sectp);
10412 }
10413 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10414 {
10415 dwo_sections->macinfo.s.asection = sectp;
10416 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10417 }
10418 else if (section_is_p (sectp->name, &names->macro_dwo))
10419 {
10420 dwo_sections->macro.s.asection = sectp;
10421 dwo_sections->macro.size = bfd_get_section_size (sectp);
10422 }
10423 else if (section_is_p (sectp->name, &names->str_dwo))
10424 {
10425 dwo_sections->str.s.asection = sectp;
10426 dwo_sections->str.size = bfd_get_section_size (sectp);
10427 }
10428 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10429 {
10430 dwo_sections->str_offsets.s.asection = sectp;
10431 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10432 }
10433 else if (section_is_p (sectp->name, &names->types_dwo))
10434 {
10435 struct dwarf2_section_info type_section;
10436
10437 memset (&type_section, 0, sizeof (type_section));
10438 type_section.s.asection = sectp;
10439 type_section.size = bfd_get_section_size (sectp);
10440 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10441 &type_section);
10442 }
10443 }
10444
10445 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10446 by PER_CU. This is for the non-DWP case.
10447 The result is NULL if DWO_NAME can't be found. */
10448
10449 static struct dwo_file *
10450 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10451 const char *dwo_name, const char *comp_dir)
10452 {
10453 struct objfile *objfile = dwarf2_per_objfile->objfile;
10454 struct dwo_file *dwo_file;
10455 bfd *dbfd;
10456 struct cleanup *cleanups;
10457
10458 dbfd = open_dwo_file (dwo_name, comp_dir);
10459 if (dbfd == NULL)
10460 {
10461 if (dwarf2_read_debug)
10462 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10463 return NULL;
10464 }
10465 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10466 dwo_file->dwo_name = dwo_name;
10467 dwo_file->comp_dir = comp_dir;
10468 dwo_file->dbfd = dbfd;
10469
10470 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10471
10472 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10473
10474 dwo_file->cu = create_dwo_cu (dwo_file);
10475
10476 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10477 dwo_file->sections.types);
10478
10479 discard_cleanups (cleanups);
10480
10481 if (dwarf2_read_debug)
10482 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10483
10484 return dwo_file;
10485 }
10486
10487 /* This function is mapped across the sections and remembers the offset and
10488 size of each of the DWP debugging sections common to version 1 and 2 that
10489 we are interested in. */
10490
10491 static void
10492 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10493 void *dwp_file_ptr)
10494 {
10495 struct dwp_file *dwp_file = dwp_file_ptr;
10496 const struct dwop_section_names *names = &dwop_section_names;
10497 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10498
10499 /* Record the ELF section number for later lookup: this is what the
10500 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10501 gdb_assert (elf_section_nr < dwp_file->num_sections);
10502 dwp_file->elf_sections[elf_section_nr] = sectp;
10503
10504 /* Look for specific sections that we need. */
10505 if (section_is_p (sectp->name, &names->str_dwo))
10506 {
10507 dwp_file->sections.str.s.asection = sectp;
10508 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10509 }
10510 else if (section_is_p (sectp->name, &names->cu_index))
10511 {
10512 dwp_file->sections.cu_index.s.asection = sectp;
10513 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10514 }
10515 else if (section_is_p (sectp->name, &names->tu_index))
10516 {
10517 dwp_file->sections.tu_index.s.asection = sectp;
10518 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10519 }
10520 }
10521
10522 /* This function is mapped across the sections and remembers the offset and
10523 size of each of the DWP version 2 debugging sections that we are interested
10524 in. This is split into a separate function because we don't know if we
10525 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10526
10527 static void
10528 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10529 {
10530 struct dwp_file *dwp_file = dwp_file_ptr;
10531 const struct dwop_section_names *names = &dwop_section_names;
10532 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10533
10534 /* Record the ELF section number for later lookup: this is what the
10535 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10536 gdb_assert (elf_section_nr < dwp_file->num_sections);
10537 dwp_file->elf_sections[elf_section_nr] = sectp;
10538
10539 /* Look for specific sections that we need. */
10540 if (section_is_p (sectp->name, &names->abbrev_dwo))
10541 {
10542 dwp_file->sections.abbrev.s.asection = sectp;
10543 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10544 }
10545 else if (section_is_p (sectp->name, &names->info_dwo))
10546 {
10547 dwp_file->sections.info.s.asection = sectp;
10548 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10549 }
10550 else if (section_is_p (sectp->name, &names->line_dwo))
10551 {
10552 dwp_file->sections.line.s.asection = sectp;
10553 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10554 }
10555 else if (section_is_p (sectp->name, &names->loc_dwo))
10556 {
10557 dwp_file->sections.loc.s.asection = sectp;
10558 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10561 {
10562 dwp_file->sections.macinfo.s.asection = sectp;
10563 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10564 }
10565 else if (section_is_p (sectp->name, &names->macro_dwo))
10566 {
10567 dwp_file->sections.macro.s.asection = sectp;
10568 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10569 }
10570 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10571 {
10572 dwp_file->sections.str_offsets.s.asection = sectp;
10573 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10574 }
10575 else if (section_is_p (sectp->name, &names->types_dwo))
10576 {
10577 dwp_file->sections.types.s.asection = sectp;
10578 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10579 }
10580 }
10581
10582 /* Hash function for dwp_file loaded CUs/TUs. */
10583
10584 static hashval_t
10585 hash_dwp_loaded_cutus (const void *item)
10586 {
10587 const struct dwo_unit *dwo_unit = item;
10588
10589 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10590 return dwo_unit->signature;
10591 }
10592
10593 /* Equality function for dwp_file loaded CUs/TUs. */
10594
10595 static int
10596 eq_dwp_loaded_cutus (const void *a, const void *b)
10597 {
10598 const struct dwo_unit *dua = a;
10599 const struct dwo_unit *dub = b;
10600
10601 return dua->signature == dub->signature;
10602 }
10603
10604 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10605
10606 static htab_t
10607 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10608 {
10609 return htab_create_alloc_ex (3,
10610 hash_dwp_loaded_cutus,
10611 eq_dwp_loaded_cutus,
10612 NULL,
10613 &objfile->objfile_obstack,
10614 hashtab_obstack_allocate,
10615 dummy_obstack_deallocate);
10616 }
10617
10618 /* Try to open DWP file FILE_NAME.
10619 The result is the bfd handle of the file.
10620 If there is a problem finding or opening the file, return NULL.
10621 Upon success, the canonicalized path of the file is stored in the bfd,
10622 same as symfile_bfd_open. */
10623
10624 static bfd *
10625 open_dwp_file (const char *file_name)
10626 {
10627 bfd *abfd;
10628
10629 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10630 if (abfd != NULL)
10631 return abfd;
10632
10633 /* Work around upstream bug 15652.
10634 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10635 [Whether that's a "bug" is debatable, but it is getting in our way.]
10636 We have no real idea where the dwp file is, because gdb's realpath-ing
10637 of the executable's path may have discarded the needed info.
10638 [IWBN if the dwp file name was recorded in the executable, akin to
10639 .gnu_debuglink, but that doesn't exist yet.]
10640 Strip the directory from FILE_NAME and search again. */
10641 if (*debug_file_directory != '\0')
10642 {
10643 /* Don't implicitly search the current directory here.
10644 If the user wants to search "." to handle this case,
10645 it must be added to debug-file-directory. */
10646 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10647 0 /*search_cwd*/);
10648 }
10649
10650 return NULL;
10651 }
10652
10653 /* Initialize the use of the DWP file for the current objfile.
10654 By convention the name of the DWP file is ${objfile}.dwp.
10655 The result is NULL if it can't be found. */
10656
10657 static struct dwp_file *
10658 open_and_init_dwp_file (void)
10659 {
10660 struct objfile *objfile = dwarf2_per_objfile->objfile;
10661 struct dwp_file *dwp_file;
10662 char *dwp_name;
10663 bfd *dbfd;
10664 struct cleanup *cleanups;
10665
10666 /* Try to find first .dwp for the binary file before any symbolic links
10667 resolving. */
10668 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10669 cleanups = make_cleanup (xfree, dwp_name);
10670
10671 dbfd = open_dwp_file (dwp_name);
10672 if (dbfd == NULL
10673 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10674 {
10675 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10676 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10677 make_cleanup (xfree, dwp_name);
10678 dbfd = open_dwp_file (dwp_name);
10679 }
10680
10681 if (dbfd == NULL)
10682 {
10683 if (dwarf2_read_debug)
10684 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10685 do_cleanups (cleanups);
10686 return NULL;
10687 }
10688 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10689 dwp_file->name = bfd_get_filename (dbfd);
10690 dwp_file->dbfd = dbfd;
10691 do_cleanups (cleanups);
10692
10693 /* +1: section 0 is unused */
10694 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10695 dwp_file->elf_sections =
10696 OBSTACK_CALLOC (&objfile->objfile_obstack,
10697 dwp_file->num_sections, asection *);
10698
10699 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10700
10701 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10702
10703 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10704
10705 /* The DWP file version is stored in the hash table. Oh well. */
10706 if (dwp_file->cus->version != dwp_file->tus->version)
10707 {
10708 /* Technically speaking, we should try to limp along, but this is
10709 pretty bizarre. We use pulongest here because that's the established
10710 portability solution (e.g, we cannot use %u for uint32_t). */
10711 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10712 " TU version %s [in DWP file %s]"),
10713 pulongest (dwp_file->cus->version),
10714 pulongest (dwp_file->tus->version), dwp_name);
10715 }
10716 dwp_file->version = dwp_file->cus->version;
10717
10718 if (dwp_file->version == 2)
10719 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10720
10721 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10722 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10723
10724 if (dwarf2_read_debug)
10725 {
10726 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10727 fprintf_unfiltered (gdb_stdlog,
10728 " %s CUs, %s TUs\n",
10729 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10730 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10731 }
10732
10733 return dwp_file;
10734 }
10735
10736 /* Wrapper around open_and_init_dwp_file, only open it once. */
10737
10738 static struct dwp_file *
10739 get_dwp_file (void)
10740 {
10741 if (! dwarf2_per_objfile->dwp_checked)
10742 {
10743 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10744 dwarf2_per_objfile->dwp_checked = 1;
10745 }
10746 return dwarf2_per_objfile->dwp_file;
10747 }
10748
10749 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10750 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10751 or in the DWP file for the objfile, referenced by THIS_UNIT.
10752 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10753 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10754
10755 This is called, for example, when wanting to read a variable with a
10756 complex location. Therefore we don't want to do file i/o for every call.
10757 Therefore we don't want to look for a DWO file on every call.
10758 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10759 then we check if we've already seen DWO_NAME, and only THEN do we check
10760 for a DWO file.
10761
10762 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10763 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10764
10765 static struct dwo_unit *
10766 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10767 const char *dwo_name, const char *comp_dir,
10768 ULONGEST signature, int is_debug_types)
10769 {
10770 struct objfile *objfile = dwarf2_per_objfile->objfile;
10771 const char *kind = is_debug_types ? "TU" : "CU";
10772 void **dwo_file_slot;
10773 struct dwo_file *dwo_file;
10774 struct dwp_file *dwp_file;
10775
10776 /* First see if there's a DWP file.
10777 If we have a DWP file but didn't find the DWO inside it, don't
10778 look for the original DWO file. It makes gdb behave differently
10779 depending on whether one is debugging in the build tree. */
10780
10781 dwp_file = get_dwp_file ();
10782 if (dwp_file != NULL)
10783 {
10784 const struct dwp_hash_table *dwp_htab =
10785 is_debug_types ? dwp_file->tus : dwp_file->cus;
10786
10787 if (dwp_htab != NULL)
10788 {
10789 struct dwo_unit *dwo_cutu =
10790 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10791 signature, is_debug_types);
10792
10793 if (dwo_cutu != NULL)
10794 {
10795 if (dwarf2_read_debug)
10796 {
10797 fprintf_unfiltered (gdb_stdlog,
10798 "Virtual DWO %s %s found: @%s\n",
10799 kind, hex_string (signature),
10800 host_address_to_string (dwo_cutu));
10801 }
10802 return dwo_cutu;
10803 }
10804 }
10805 }
10806 else
10807 {
10808 /* No DWP file, look for the DWO file. */
10809
10810 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10811 if (*dwo_file_slot == NULL)
10812 {
10813 /* Read in the file and build a table of the CUs/TUs it contains. */
10814 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10815 }
10816 /* NOTE: This will be NULL if unable to open the file. */
10817 dwo_file = *dwo_file_slot;
10818
10819 if (dwo_file != NULL)
10820 {
10821 struct dwo_unit *dwo_cutu = NULL;
10822
10823 if (is_debug_types && dwo_file->tus)
10824 {
10825 struct dwo_unit find_dwo_cutu;
10826
10827 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10828 find_dwo_cutu.signature = signature;
10829 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10830 }
10831 else if (!is_debug_types && dwo_file->cu)
10832 {
10833 if (signature == dwo_file->cu->signature)
10834 dwo_cutu = dwo_file->cu;
10835 }
10836
10837 if (dwo_cutu != NULL)
10838 {
10839 if (dwarf2_read_debug)
10840 {
10841 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10842 kind, dwo_name, hex_string (signature),
10843 host_address_to_string (dwo_cutu));
10844 }
10845 return dwo_cutu;
10846 }
10847 }
10848 }
10849
10850 /* We didn't find it. This could mean a dwo_id mismatch, or
10851 someone deleted the DWO/DWP file, or the search path isn't set up
10852 correctly to find the file. */
10853
10854 if (dwarf2_read_debug)
10855 {
10856 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10857 kind, dwo_name, hex_string (signature));
10858 }
10859
10860 /* This is a warning and not a complaint because it can be caused by
10861 pilot error (e.g., user accidentally deleting the DWO). */
10862 {
10863 /* Print the name of the DWP file if we looked there, helps the user
10864 better diagnose the problem. */
10865 char *dwp_text = NULL;
10866 struct cleanup *cleanups;
10867
10868 if (dwp_file != NULL)
10869 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10870 cleanups = make_cleanup (xfree, dwp_text);
10871
10872 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10873 " [in module %s]"),
10874 kind, dwo_name, hex_string (signature),
10875 dwp_text != NULL ? dwp_text : "",
10876 this_unit->is_debug_types ? "TU" : "CU",
10877 this_unit->offset.sect_off, objfile_name (objfile));
10878
10879 do_cleanups (cleanups);
10880 }
10881 return NULL;
10882 }
10883
10884 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10885 See lookup_dwo_cutu_unit for details. */
10886
10887 static struct dwo_unit *
10888 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10889 const char *dwo_name, const char *comp_dir,
10890 ULONGEST signature)
10891 {
10892 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10893 }
10894
10895 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10896 See lookup_dwo_cutu_unit for details. */
10897
10898 static struct dwo_unit *
10899 lookup_dwo_type_unit (struct signatured_type *this_tu,
10900 const char *dwo_name, const char *comp_dir)
10901 {
10902 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10903 }
10904
10905 /* Traversal function for queue_and_load_all_dwo_tus. */
10906
10907 static int
10908 queue_and_load_dwo_tu (void **slot, void *info)
10909 {
10910 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10911 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10912 ULONGEST signature = dwo_unit->signature;
10913 struct signatured_type *sig_type =
10914 lookup_dwo_signatured_type (per_cu->cu, signature);
10915
10916 if (sig_type != NULL)
10917 {
10918 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10919
10920 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10921 a real dependency of PER_CU on SIG_TYPE. That is detected later
10922 while processing PER_CU. */
10923 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10924 load_full_type_unit (sig_cu);
10925 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10926 }
10927
10928 return 1;
10929 }
10930
10931 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10932 The DWO may have the only definition of the type, though it may not be
10933 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10934 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10935
10936 static void
10937 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10938 {
10939 struct dwo_unit *dwo_unit;
10940 struct dwo_file *dwo_file;
10941
10942 gdb_assert (!per_cu->is_debug_types);
10943 gdb_assert (get_dwp_file () == NULL);
10944 gdb_assert (per_cu->cu != NULL);
10945
10946 dwo_unit = per_cu->cu->dwo_unit;
10947 gdb_assert (dwo_unit != NULL);
10948
10949 dwo_file = dwo_unit->dwo_file;
10950 if (dwo_file->tus != NULL)
10951 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10952 }
10953
10954 /* Free all resources associated with DWO_FILE.
10955 Close the DWO file and munmap the sections.
10956 All memory should be on the objfile obstack. */
10957
10958 static void
10959 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10960 {
10961 int ix;
10962 struct dwarf2_section_info *section;
10963
10964 /* Note: dbfd is NULL for virtual DWO files. */
10965 gdb_bfd_unref (dwo_file->dbfd);
10966
10967 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10968 }
10969
10970 /* Wrapper for free_dwo_file for use in cleanups. */
10971
10972 static void
10973 free_dwo_file_cleanup (void *arg)
10974 {
10975 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10976 struct objfile *objfile = dwarf2_per_objfile->objfile;
10977
10978 free_dwo_file (dwo_file, objfile);
10979 }
10980
10981 /* Traversal function for free_dwo_files. */
10982
10983 static int
10984 free_dwo_file_from_slot (void **slot, void *info)
10985 {
10986 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10987 struct objfile *objfile = (struct objfile *) info;
10988
10989 free_dwo_file (dwo_file, objfile);
10990
10991 return 1;
10992 }
10993
10994 /* Free all resources associated with DWO_FILES. */
10995
10996 static void
10997 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10998 {
10999 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11000 }
11001 \f
11002 /* Read in various DIEs. */
11003
11004 /* qsort helper for inherit_abstract_dies. */
11005
11006 static int
11007 unsigned_int_compar (const void *ap, const void *bp)
11008 {
11009 unsigned int a = *(unsigned int *) ap;
11010 unsigned int b = *(unsigned int *) bp;
11011
11012 return (a > b) - (b > a);
11013 }
11014
11015 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11016 Inherit only the children of the DW_AT_abstract_origin DIE not being
11017 already referenced by DW_AT_abstract_origin from the children of the
11018 current DIE. */
11019
11020 static void
11021 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11022 {
11023 struct die_info *child_die;
11024 unsigned die_children_count;
11025 /* CU offsets which were referenced by children of the current DIE. */
11026 sect_offset *offsets;
11027 sect_offset *offsets_end, *offsetp;
11028 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11029 struct die_info *origin_die;
11030 /* Iterator of the ORIGIN_DIE children. */
11031 struct die_info *origin_child_die;
11032 struct cleanup *cleanups;
11033 struct attribute *attr;
11034 struct dwarf2_cu *origin_cu;
11035 struct pending **origin_previous_list_in_scope;
11036
11037 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11038 if (!attr)
11039 return;
11040
11041 /* Note that following die references may follow to a die in a
11042 different cu. */
11043
11044 origin_cu = cu;
11045 origin_die = follow_die_ref (die, attr, &origin_cu);
11046
11047 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11048 symbols in. */
11049 origin_previous_list_in_scope = origin_cu->list_in_scope;
11050 origin_cu->list_in_scope = cu->list_in_scope;
11051
11052 if (die->tag != origin_die->tag
11053 && !(die->tag == DW_TAG_inlined_subroutine
11054 && origin_die->tag == DW_TAG_subprogram))
11055 complaint (&symfile_complaints,
11056 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11057 die->offset.sect_off, origin_die->offset.sect_off);
11058
11059 child_die = die->child;
11060 die_children_count = 0;
11061 while (child_die && child_die->tag)
11062 {
11063 child_die = sibling_die (child_die);
11064 die_children_count++;
11065 }
11066 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11067 cleanups = make_cleanup (xfree, offsets);
11068
11069 offsets_end = offsets;
11070 child_die = die->child;
11071 while (child_die && child_die->tag)
11072 {
11073 /* For each CHILD_DIE, find the corresponding child of
11074 ORIGIN_DIE. If there is more than one layer of
11075 DW_AT_abstract_origin, follow them all; there shouldn't be,
11076 but GCC versions at least through 4.4 generate this (GCC PR
11077 40573). */
11078 struct die_info *child_origin_die = child_die;
11079 struct dwarf2_cu *child_origin_cu = cu;
11080
11081 while (1)
11082 {
11083 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11084 child_origin_cu);
11085 if (attr == NULL)
11086 break;
11087 child_origin_die = follow_die_ref (child_origin_die, attr,
11088 &child_origin_cu);
11089 }
11090
11091 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11092 counterpart may exist. */
11093 if (child_origin_die != child_die)
11094 {
11095 if (child_die->tag != child_origin_die->tag
11096 && !(child_die->tag == DW_TAG_inlined_subroutine
11097 && child_origin_die->tag == DW_TAG_subprogram))
11098 complaint (&symfile_complaints,
11099 _("Child DIE 0x%x and its abstract origin 0x%x have "
11100 "different tags"), child_die->offset.sect_off,
11101 child_origin_die->offset.sect_off);
11102 if (child_origin_die->parent != origin_die)
11103 complaint (&symfile_complaints,
11104 _("Child DIE 0x%x and its abstract origin 0x%x have "
11105 "different parents"), child_die->offset.sect_off,
11106 child_origin_die->offset.sect_off);
11107 else
11108 *offsets_end++ = child_origin_die->offset;
11109 }
11110 child_die = sibling_die (child_die);
11111 }
11112 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11113 unsigned_int_compar);
11114 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11115 if (offsetp[-1].sect_off == offsetp->sect_off)
11116 complaint (&symfile_complaints,
11117 _("Multiple children of DIE 0x%x refer "
11118 "to DIE 0x%x as their abstract origin"),
11119 die->offset.sect_off, offsetp->sect_off);
11120
11121 offsetp = offsets;
11122 origin_child_die = origin_die->child;
11123 while (origin_child_die && origin_child_die->tag)
11124 {
11125 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11126 while (offsetp < offsets_end
11127 && offsetp->sect_off < origin_child_die->offset.sect_off)
11128 offsetp++;
11129 if (offsetp >= offsets_end
11130 || offsetp->sect_off > origin_child_die->offset.sect_off)
11131 {
11132 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11133 Check whether we're already processing ORIGIN_CHILD_DIE.
11134 This can happen with mutually referenced abstract_origins.
11135 PR 16581. */
11136 if (!origin_child_die->in_process)
11137 process_die (origin_child_die, origin_cu);
11138 }
11139 origin_child_die = sibling_die (origin_child_die);
11140 }
11141 origin_cu->list_in_scope = origin_previous_list_in_scope;
11142
11143 do_cleanups (cleanups);
11144 }
11145
11146 static void
11147 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11148 {
11149 struct objfile *objfile = cu->objfile;
11150 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11151 struct context_stack *new;
11152 CORE_ADDR lowpc;
11153 CORE_ADDR highpc;
11154 struct die_info *child_die;
11155 struct attribute *attr, *call_line, *call_file;
11156 const char *name;
11157 CORE_ADDR baseaddr;
11158 struct block *block;
11159 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11160 VEC (symbolp) *template_args = NULL;
11161 struct template_symbol *templ_func = NULL;
11162
11163 if (inlined_func)
11164 {
11165 /* If we do not have call site information, we can't show the
11166 caller of this inlined function. That's too confusing, so
11167 only use the scope for local variables. */
11168 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11169 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11170 if (call_line == NULL || call_file == NULL)
11171 {
11172 read_lexical_block_scope (die, cu);
11173 return;
11174 }
11175 }
11176
11177 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11178
11179 name = dwarf2_name (die, cu);
11180
11181 /* Ignore functions with missing or empty names. These are actually
11182 illegal according to the DWARF standard. */
11183 if (name == NULL)
11184 {
11185 complaint (&symfile_complaints,
11186 _("missing name for subprogram DIE at %d"),
11187 die->offset.sect_off);
11188 return;
11189 }
11190
11191 /* Ignore functions with missing or invalid low and high pc attributes. */
11192 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11193 {
11194 attr = dwarf2_attr (die, DW_AT_external, cu);
11195 if (!attr || !DW_UNSND (attr))
11196 complaint (&symfile_complaints,
11197 _("cannot get low and high bounds "
11198 "for subprogram DIE at %d"),
11199 die->offset.sect_off);
11200 return;
11201 }
11202
11203 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11204 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11205
11206 /* If we have any template arguments, then we must allocate a
11207 different sort of symbol. */
11208 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11209 {
11210 if (child_die->tag == DW_TAG_template_type_param
11211 || child_die->tag == DW_TAG_template_value_param)
11212 {
11213 templ_func = allocate_template_symbol (objfile);
11214 templ_func->base.is_cplus_template_function = 1;
11215 break;
11216 }
11217 }
11218
11219 new = push_context (0, lowpc);
11220 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11221 (struct symbol *) templ_func);
11222
11223 /* If there is a location expression for DW_AT_frame_base, record
11224 it. */
11225 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11226 if (attr)
11227 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11228
11229 cu->list_in_scope = &local_symbols;
11230
11231 if (die->child != NULL)
11232 {
11233 child_die = die->child;
11234 while (child_die && child_die->tag)
11235 {
11236 if (child_die->tag == DW_TAG_template_type_param
11237 || child_die->tag == DW_TAG_template_value_param)
11238 {
11239 struct symbol *arg = new_symbol (child_die, NULL, cu);
11240
11241 if (arg != NULL)
11242 VEC_safe_push (symbolp, template_args, arg);
11243 }
11244 else
11245 process_die (child_die, cu);
11246 child_die = sibling_die (child_die);
11247 }
11248 }
11249
11250 inherit_abstract_dies (die, cu);
11251
11252 /* If we have a DW_AT_specification, we might need to import using
11253 directives from the context of the specification DIE. See the
11254 comment in determine_prefix. */
11255 if (cu->language == language_cplus
11256 && dwarf2_attr (die, DW_AT_specification, cu))
11257 {
11258 struct dwarf2_cu *spec_cu = cu;
11259 struct die_info *spec_die = die_specification (die, &spec_cu);
11260
11261 while (spec_die)
11262 {
11263 child_die = spec_die->child;
11264 while (child_die && child_die->tag)
11265 {
11266 if (child_die->tag == DW_TAG_imported_module)
11267 process_die (child_die, spec_cu);
11268 child_die = sibling_die (child_die);
11269 }
11270
11271 /* In some cases, GCC generates specification DIEs that
11272 themselves contain DW_AT_specification attributes. */
11273 spec_die = die_specification (spec_die, &spec_cu);
11274 }
11275 }
11276
11277 new = pop_context ();
11278 /* Make a block for the local symbols within. */
11279 block = finish_block (new->name, &local_symbols, new->old_blocks,
11280 lowpc, highpc);
11281
11282 /* For C++, set the block's scope. */
11283 if ((cu->language == language_cplus || cu->language == language_fortran)
11284 && cu->processing_has_namespace_info)
11285 block_set_scope (block, determine_prefix (die, cu),
11286 &objfile->objfile_obstack);
11287
11288 /* If we have address ranges, record them. */
11289 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11290
11291 gdbarch_make_symbol_special (gdbarch, new->name, objfile);
11292
11293 /* Attach template arguments to function. */
11294 if (! VEC_empty (symbolp, template_args))
11295 {
11296 gdb_assert (templ_func != NULL);
11297
11298 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11299 templ_func->template_arguments
11300 = obstack_alloc (&objfile->objfile_obstack,
11301 (templ_func->n_template_arguments
11302 * sizeof (struct symbol *)));
11303 memcpy (templ_func->template_arguments,
11304 VEC_address (symbolp, template_args),
11305 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11306 VEC_free (symbolp, template_args);
11307 }
11308
11309 /* In C++, we can have functions nested inside functions (e.g., when
11310 a function declares a class that has methods). This means that
11311 when we finish processing a function scope, we may need to go
11312 back to building a containing block's symbol lists. */
11313 local_symbols = new->locals;
11314 using_directives = new->using_directives;
11315
11316 /* If we've finished processing a top-level function, subsequent
11317 symbols go in the file symbol list. */
11318 if (outermost_context_p ())
11319 cu->list_in_scope = &file_symbols;
11320 }
11321
11322 /* Process all the DIES contained within a lexical block scope. Start
11323 a new scope, process the dies, and then close the scope. */
11324
11325 static void
11326 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11327 {
11328 struct objfile *objfile = cu->objfile;
11329 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11330 struct context_stack *new;
11331 CORE_ADDR lowpc, highpc;
11332 struct die_info *child_die;
11333 CORE_ADDR baseaddr;
11334
11335 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11336
11337 /* Ignore blocks with missing or invalid low and high pc attributes. */
11338 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11339 as multiple lexical blocks? Handling children in a sane way would
11340 be nasty. Might be easier to properly extend generic blocks to
11341 describe ranges. */
11342 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11343 return;
11344 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11345 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11346
11347 push_context (0, lowpc);
11348 if (die->child != NULL)
11349 {
11350 child_die = die->child;
11351 while (child_die && child_die->tag)
11352 {
11353 process_die (child_die, cu);
11354 child_die = sibling_die (child_die);
11355 }
11356 }
11357 new = pop_context ();
11358
11359 if (local_symbols != NULL || using_directives != NULL)
11360 {
11361 struct block *block
11362 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11363 highpc);
11364
11365 /* Note that recording ranges after traversing children, as we
11366 do here, means that recording a parent's ranges entails
11367 walking across all its children's ranges as they appear in
11368 the address map, which is quadratic behavior.
11369
11370 It would be nicer to record the parent's ranges before
11371 traversing its children, simply overriding whatever you find
11372 there. But since we don't even decide whether to create a
11373 block until after we've traversed its children, that's hard
11374 to do. */
11375 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11376 }
11377 local_symbols = new->locals;
11378 using_directives = new->using_directives;
11379 }
11380
11381 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11382
11383 static void
11384 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11385 {
11386 struct objfile *objfile = cu->objfile;
11387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11388 CORE_ADDR pc, baseaddr;
11389 struct attribute *attr;
11390 struct call_site *call_site, call_site_local;
11391 void **slot;
11392 int nparams;
11393 struct die_info *child_die;
11394
11395 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11396
11397 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11398 if (!attr)
11399 {
11400 complaint (&symfile_complaints,
11401 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11402 "DIE 0x%x [in module %s]"),
11403 die->offset.sect_off, objfile_name (objfile));
11404 return;
11405 }
11406 pc = attr_value_as_address (attr) + baseaddr;
11407 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11408
11409 if (cu->call_site_htab == NULL)
11410 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11411 NULL, &objfile->objfile_obstack,
11412 hashtab_obstack_allocate, NULL);
11413 call_site_local.pc = pc;
11414 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11415 if (*slot != NULL)
11416 {
11417 complaint (&symfile_complaints,
11418 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11419 "DIE 0x%x [in module %s]"),
11420 paddress (gdbarch, pc), die->offset.sect_off,
11421 objfile_name (objfile));
11422 return;
11423 }
11424
11425 /* Count parameters at the caller. */
11426
11427 nparams = 0;
11428 for (child_die = die->child; child_die && child_die->tag;
11429 child_die = sibling_die (child_die))
11430 {
11431 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11432 {
11433 complaint (&symfile_complaints,
11434 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11435 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11436 child_die->tag, child_die->offset.sect_off,
11437 objfile_name (objfile));
11438 continue;
11439 }
11440
11441 nparams++;
11442 }
11443
11444 call_site = obstack_alloc (&objfile->objfile_obstack,
11445 (sizeof (*call_site)
11446 + (sizeof (*call_site->parameter)
11447 * (nparams - 1))));
11448 *slot = call_site;
11449 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11450 call_site->pc = pc;
11451
11452 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11453 {
11454 struct die_info *func_die;
11455
11456 /* Skip also over DW_TAG_inlined_subroutine. */
11457 for (func_die = die->parent;
11458 func_die && func_die->tag != DW_TAG_subprogram
11459 && func_die->tag != DW_TAG_subroutine_type;
11460 func_die = func_die->parent);
11461
11462 /* DW_AT_GNU_all_call_sites is a superset
11463 of DW_AT_GNU_all_tail_call_sites. */
11464 if (func_die
11465 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11466 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11467 {
11468 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11469 not complete. But keep CALL_SITE for look ups via call_site_htab,
11470 both the initial caller containing the real return address PC and
11471 the final callee containing the current PC of a chain of tail
11472 calls do not need to have the tail call list complete. But any
11473 function candidate for a virtual tail call frame searched via
11474 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11475 determined unambiguously. */
11476 }
11477 else
11478 {
11479 struct type *func_type = NULL;
11480
11481 if (func_die)
11482 func_type = get_die_type (func_die, cu);
11483 if (func_type != NULL)
11484 {
11485 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11486
11487 /* Enlist this call site to the function. */
11488 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11489 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11490 }
11491 else
11492 complaint (&symfile_complaints,
11493 _("Cannot find function owning DW_TAG_GNU_call_site "
11494 "DIE 0x%x [in module %s]"),
11495 die->offset.sect_off, objfile_name (objfile));
11496 }
11497 }
11498
11499 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11500 if (attr == NULL)
11501 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11502 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11503 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11504 /* Keep NULL DWARF_BLOCK. */;
11505 else if (attr_form_is_block (attr))
11506 {
11507 struct dwarf2_locexpr_baton *dlbaton;
11508
11509 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11510 dlbaton->data = DW_BLOCK (attr)->data;
11511 dlbaton->size = DW_BLOCK (attr)->size;
11512 dlbaton->per_cu = cu->per_cu;
11513
11514 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11515 }
11516 else if (attr_form_is_ref (attr))
11517 {
11518 struct dwarf2_cu *target_cu = cu;
11519 struct die_info *target_die;
11520
11521 target_die = follow_die_ref (die, attr, &target_cu);
11522 gdb_assert (target_cu->objfile == objfile);
11523 if (die_is_declaration (target_die, target_cu))
11524 {
11525 const char *target_physname = NULL;
11526 struct attribute *target_attr;
11527
11528 /* Prefer the mangled name; otherwise compute the demangled one. */
11529 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11530 if (target_attr == NULL)
11531 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11532 target_cu);
11533 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11534 target_physname = DW_STRING (target_attr);
11535 else
11536 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11537 if (target_physname == NULL)
11538 complaint (&symfile_complaints,
11539 _("DW_AT_GNU_call_site_target target DIE has invalid "
11540 "physname, for referencing DIE 0x%x [in module %s]"),
11541 die->offset.sect_off, objfile_name (objfile));
11542 else
11543 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11544 }
11545 else
11546 {
11547 CORE_ADDR lowpc;
11548
11549 /* DW_AT_entry_pc should be preferred. */
11550 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11551 complaint (&symfile_complaints,
11552 _("DW_AT_GNU_call_site_target target DIE has invalid "
11553 "low pc, for referencing DIE 0x%x [in module %s]"),
11554 die->offset.sect_off, objfile_name (objfile));
11555 else
11556 {
11557 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11558 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11559 }
11560 }
11561 }
11562 else
11563 complaint (&symfile_complaints,
11564 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11565 "block nor reference, for DIE 0x%x [in module %s]"),
11566 die->offset.sect_off, objfile_name (objfile));
11567
11568 call_site->per_cu = cu->per_cu;
11569
11570 for (child_die = die->child;
11571 child_die && child_die->tag;
11572 child_die = sibling_die (child_die))
11573 {
11574 struct call_site_parameter *parameter;
11575 struct attribute *loc, *origin;
11576
11577 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11578 {
11579 /* Already printed the complaint above. */
11580 continue;
11581 }
11582
11583 gdb_assert (call_site->parameter_count < nparams);
11584 parameter = &call_site->parameter[call_site->parameter_count];
11585
11586 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11587 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11588 register is contained in DW_AT_GNU_call_site_value. */
11589
11590 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11591 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11592 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11593 {
11594 sect_offset offset;
11595
11596 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11597 offset = dwarf2_get_ref_die_offset (origin);
11598 if (!offset_in_cu_p (&cu->header, offset))
11599 {
11600 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11601 binding can be done only inside one CU. Such referenced DIE
11602 therefore cannot be even moved to DW_TAG_partial_unit. */
11603 complaint (&symfile_complaints,
11604 _("DW_AT_abstract_origin offset is not in CU for "
11605 "DW_TAG_GNU_call_site child DIE 0x%x "
11606 "[in module %s]"),
11607 child_die->offset.sect_off, objfile_name (objfile));
11608 continue;
11609 }
11610 parameter->u.param_offset.cu_off = (offset.sect_off
11611 - cu->header.offset.sect_off);
11612 }
11613 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11614 {
11615 complaint (&symfile_complaints,
11616 _("No DW_FORM_block* DW_AT_location for "
11617 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11618 child_die->offset.sect_off, objfile_name (objfile));
11619 continue;
11620 }
11621 else
11622 {
11623 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11624 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11625 if (parameter->u.dwarf_reg != -1)
11626 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11627 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11628 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11629 &parameter->u.fb_offset))
11630 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11631 else
11632 {
11633 complaint (&symfile_complaints,
11634 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11635 "for DW_FORM_block* DW_AT_location is supported for "
11636 "DW_TAG_GNU_call_site child DIE 0x%x "
11637 "[in module %s]"),
11638 child_die->offset.sect_off, objfile_name (objfile));
11639 continue;
11640 }
11641 }
11642
11643 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11644 if (!attr_form_is_block (attr))
11645 {
11646 complaint (&symfile_complaints,
11647 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11648 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11649 child_die->offset.sect_off, objfile_name (objfile));
11650 continue;
11651 }
11652 parameter->value = DW_BLOCK (attr)->data;
11653 parameter->value_size = DW_BLOCK (attr)->size;
11654
11655 /* Parameters are not pre-cleared by memset above. */
11656 parameter->data_value = NULL;
11657 parameter->data_value_size = 0;
11658 call_site->parameter_count++;
11659
11660 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11661 if (attr)
11662 {
11663 if (!attr_form_is_block (attr))
11664 complaint (&symfile_complaints,
11665 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11666 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11667 child_die->offset.sect_off, objfile_name (objfile));
11668 else
11669 {
11670 parameter->data_value = DW_BLOCK (attr)->data;
11671 parameter->data_value_size = DW_BLOCK (attr)->size;
11672 }
11673 }
11674 }
11675 }
11676
11677 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11678 Return 1 if the attributes are present and valid, otherwise, return 0.
11679 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11680
11681 static int
11682 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11683 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11684 struct partial_symtab *ranges_pst)
11685 {
11686 struct objfile *objfile = cu->objfile;
11687 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11688 struct comp_unit_head *cu_header = &cu->header;
11689 bfd *obfd = objfile->obfd;
11690 unsigned int addr_size = cu_header->addr_size;
11691 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11692 /* Base address selection entry. */
11693 CORE_ADDR base;
11694 int found_base;
11695 unsigned int dummy;
11696 const gdb_byte *buffer;
11697 CORE_ADDR marker;
11698 int low_set;
11699 CORE_ADDR low = 0;
11700 CORE_ADDR high = 0;
11701 CORE_ADDR baseaddr;
11702
11703 found_base = cu->base_known;
11704 base = cu->base_address;
11705
11706 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11707 if (offset >= dwarf2_per_objfile->ranges.size)
11708 {
11709 complaint (&symfile_complaints,
11710 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11711 offset);
11712 return 0;
11713 }
11714 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11715
11716 /* Read in the largest possible address. */
11717 marker = read_address (obfd, buffer, cu, &dummy);
11718 if ((marker & mask) == mask)
11719 {
11720 /* If we found the largest possible address, then
11721 read the base address. */
11722 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11723 buffer += 2 * addr_size;
11724 offset += 2 * addr_size;
11725 found_base = 1;
11726 }
11727
11728 low_set = 0;
11729
11730 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11731
11732 while (1)
11733 {
11734 CORE_ADDR range_beginning, range_end;
11735
11736 range_beginning = read_address (obfd, buffer, cu, &dummy);
11737 buffer += addr_size;
11738 range_end = read_address (obfd, buffer, cu, &dummy);
11739 buffer += addr_size;
11740 offset += 2 * addr_size;
11741
11742 /* An end of list marker is a pair of zero addresses. */
11743 if (range_beginning == 0 && range_end == 0)
11744 /* Found the end of list entry. */
11745 break;
11746
11747 /* Each base address selection entry is a pair of 2 values.
11748 The first is the largest possible address, the second is
11749 the base address. Check for a base address here. */
11750 if ((range_beginning & mask) == mask)
11751 {
11752 /* If we found the largest possible address, then
11753 read the base address. */
11754 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11755 found_base = 1;
11756 continue;
11757 }
11758
11759 if (!found_base)
11760 {
11761 /* We have no valid base address for the ranges
11762 data. */
11763 complaint (&symfile_complaints,
11764 _("Invalid .debug_ranges data (no base address)"));
11765 return 0;
11766 }
11767
11768 if (range_beginning > range_end)
11769 {
11770 /* Inverted range entries are invalid. */
11771 complaint (&symfile_complaints,
11772 _("Invalid .debug_ranges data (inverted range)"));
11773 return 0;
11774 }
11775
11776 /* Empty range entries have no effect. */
11777 if (range_beginning == range_end)
11778 continue;
11779
11780 range_beginning += base;
11781 range_end += base;
11782
11783 /* A not-uncommon case of bad debug info.
11784 Don't pollute the addrmap with bad data. */
11785 if (range_beginning + baseaddr == 0
11786 && !dwarf2_per_objfile->has_section_at_zero)
11787 {
11788 complaint (&symfile_complaints,
11789 _(".debug_ranges entry has start address of zero"
11790 " [in module %s]"), objfile_name (objfile));
11791 continue;
11792 }
11793
11794 if (ranges_pst != NULL)
11795 {
11796 CORE_ADDR lowpc;
11797 CORE_ADDR highpc;
11798
11799 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11800 range_beginning + baseaddr);
11801 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11802 range_end + baseaddr);
11803 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11804 ranges_pst);
11805 }
11806
11807 /* FIXME: This is recording everything as a low-high
11808 segment of consecutive addresses. We should have a
11809 data structure for discontiguous block ranges
11810 instead. */
11811 if (! low_set)
11812 {
11813 low = range_beginning;
11814 high = range_end;
11815 low_set = 1;
11816 }
11817 else
11818 {
11819 if (range_beginning < low)
11820 low = range_beginning;
11821 if (range_end > high)
11822 high = range_end;
11823 }
11824 }
11825
11826 if (! low_set)
11827 /* If the first entry is an end-of-list marker, the range
11828 describes an empty scope, i.e. no instructions. */
11829 return 0;
11830
11831 if (low_return)
11832 *low_return = low;
11833 if (high_return)
11834 *high_return = high;
11835 return 1;
11836 }
11837
11838 /* Get low and high pc attributes from a die. Return 1 if the attributes
11839 are present and valid, otherwise, return 0. Return -1 if the range is
11840 discontinuous, i.e. derived from DW_AT_ranges information. */
11841
11842 static int
11843 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11844 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11845 struct partial_symtab *pst)
11846 {
11847 struct attribute *attr;
11848 struct attribute *attr_high;
11849 CORE_ADDR low = 0;
11850 CORE_ADDR high = 0;
11851 int ret = 0;
11852
11853 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11854 if (attr_high)
11855 {
11856 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11857 if (attr)
11858 {
11859 low = attr_value_as_address (attr);
11860 high = attr_value_as_address (attr_high);
11861 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11862 high += low;
11863 }
11864 else
11865 /* Found high w/o low attribute. */
11866 return 0;
11867
11868 /* Found consecutive range of addresses. */
11869 ret = 1;
11870 }
11871 else
11872 {
11873 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11874 if (attr != NULL)
11875 {
11876 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11877 We take advantage of the fact that DW_AT_ranges does not appear
11878 in DW_TAG_compile_unit of DWO files. */
11879 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11880 unsigned int ranges_offset = (DW_UNSND (attr)
11881 + (need_ranges_base
11882 ? cu->ranges_base
11883 : 0));
11884
11885 /* Value of the DW_AT_ranges attribute is the offset in the
11886 .debug_ranges section. */
11887 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11888 return 0;
11889 /* Found discontinuous range of addresses. */
11890 ret = -1;
11891 }
11892 }
11893
11894 /* read_partial_die has also the strict LOW < HIGH requirement. */
11895 if (high <= low)
11896 return 0;
11897
11898 /* When using the GNU linker, .gnu.linkonce. sections are used to
11899 eliminate duplicate copies of functions and vtables and such.
11900 The linker will arbitrarily choose one and discard the others.
11901 The AT_*_pc values for such functions refer to local labels in
11902 these sections. If the section from that file was discarded, the
11903 labels are not in the output, so the relocs get a value of 0.
11904 If this is a discarded function, mark the pc bounds as invalid,
11905 so that GDB will ignore it. */
11906 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11907 return 0;
11908
11909 *lowpc = low;
11910 if (highpc)
11911 *highpc = high;
11912 return ret;
11913 }
11914
11915 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11916 its low and high PC addresses. Do nothing if these addresses could not
11917 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11918 and HIGHPC to the high address if greater than HIGHPC. */
11919
11920 static void
11921 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11922 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11923 struct dwarf2_cu *cu)
11924 {
11925 CORE_ADDR low, high;
11926 struct die_info *child = die->child;
11927
11928 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11929 {
11930 *lowpc = min (*lowpc, low);
11931 *highpc = max (*highpc, high);
11932 }
11933
11934 /* If the language does not allow nested subprograms (either inside
11935 subprograms or lexical blocks), we're done. */
11936 if (cu->language != language_ada)
11937 return;
11938
11939 /* Check all the children of the given DIE. If it contains nested
11940 subprograms, then check their pc bounds. Likewise, we need to
11941 check lexical blocks as well, as they may also contain subprogram
11942 definitions. */
11943 while (child && child->tag)
11944 {
11945 if (child->tag == DW_TAG_subprogram
11946 || child->tag == DW_TAG_lexical_block)
11947 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11948 child = sibling_die (child);
11949 }
11950 }
11951
11952 /* Get the low and high pc's represented by the scope DIE, and store
11953 them in *LOWPC and *HIGHPC. If the correct values can't be
11954 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11955
11956 static void
11957 get_scope_pc_bounds (struct die_info *die,
11958 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11959 struct dwarf2_cu *cu)
11960 {
11961 CORE_ADDR best_low = (CORE_ADDR) -1;
11962 CORE_ADDR best_high = (CORE_ADDR) 0;
11963 CORE_ADDR current_low, current_high;
11964
11965 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11966 {
11967 best_low = current_low;
11968 best_high = current_high;
11969 }
11970 else
11971 {
11972 struct die_info *child = die->child;
11973
11974 while (child && child->tag)
11975 {
11976 switch (child->tag) {
11977 case DW_TAG_subprogram:
11978 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11979 break;
11980 case DW_TAG_namespace:
11981 case DW_TAG_module:
11982 /* FIXME: carlton/2004-01-16: Should we do this for
11983 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11984 that current GCC's always emit the DIEs corresponding
11985 to definitions of methods of classes as children of a
11986 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11987 the DIEs giving the declarations, which could be
11988 anywhere). But I don't see any reason why the
11989 standards says that they have to be there. */
11990 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11991
11992 if (current_low != ((CORE_ADDR) -1))
11993 {
11994 best_low = min (best_low, current_low);
11995 best_high = max (best_high, current_high);
11996 }
11997 break;
11998 default:
11999 /* Ignore. */
12000 break;
12001 }
12002
12003 child = sibling_die (child);
12004 }
12005 }
12006
12007 *lowpc = best_low;
12008 *highpc = best_high;
12009 }
12010
12011 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12012 in DIE. */
12013
12014 static void
12015 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12016 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12017 {
12018 struct objfile *objfile = cu->objfile;
12019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12020 struct attribute *attr;
12021 struct attribute *attr_high;
12022
12023 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12024 if (attr_high)
12025 {
12026 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12027 if (attr)
12028 {
12029 CORE_ADDR low = attr_value_as_address (attr);
12030 CORE_ADDR high = attr_value_as_address (attr_high);
12031
12032 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12033 high += low;
12034
12035 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12036 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12037 record_block_range (block, low, high - 1);
12038 }
12039 }
12040
12041 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12042 if (attr)
12043 {
12044 bfd *obfd = objfile->obfd;
12045 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12046 We take advantage of the fact that DW_AT_ranges does not appear
12047 in DW_TAG_compile_unit of DWO files. */
12048 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12049
12050 /* The value of the DW_AT_ranges attribute is the offset of the
12051 address range list in the .debug_ranges section. */
12052 unsigned long offset = (DW_UNSND (attr)
12053 + (need_ranges_base ? cu->ranges_base : 0));
12054 const gdb_byte *buffer;
12055
12056 /* For some target architectures, but not others, the
12057 read_address function sign-extends the addresses it returns.
12058 To recognize base address selection entries, we need a
12059 mask. */
12060 unsigned int addr_size = cu->header.addr_size;
12061 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12062
12063 /* The base address, to which the next pair is relative. Note
12064 that this 'base' is a DWARF concept: most entries in a range
12065 list are relative, to reduce the number of relocs against the
12066 debugging information. This is separate from this function's
12067 'baseaddr' argument, which GDB uses to relocate debugging
12068 information from a shared library based on the address at
12069 which the library was loaded. */
12070 CORE_ADDR base = cu->base_address;
12071 int base_known = cu->base_known;
12072
12073 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12074 if (offset >= dwarf2_per_objfile->ranges.size)
12075 {
12076 complaint (&symfile_complaints,
12077 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12078 offset);
12079 return;
12080 }
12081 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12082
12083 for (;;)
12084 {
12085 unsigned int bytes_read;
12086 CORE_ADDR start, end;
12087
12088 start = read_address (obfd, buffer, cu, &bytes_read);
12089 buffer += bytes_read;
12090 end = read_address (obfd, buffer, cu, &bytes_read);
12091 buffer += bytes_read;
12092
12093 /* Did we find the end of the range list? */
12094 if (start == 0 && end == 0)
12095 break;
12096
12097 /* Did we find a base address selection entry? */
12098 else if ((start & base_select_mask) == base_select_mask)
12099 {
12100 base = end;
12101 base_known = 1;
12102 }
12103
12104 /* We found an ordinary address range. */
12105 else
12106 {
12107 if (!base_known)
12108 {
12109 complaint (&symfile_complaints,
12110 _("Invalid .debug_ranges data "
12111 "(no base address)"));
12112 return;
12113 }
12114
12115 if (start > end)
12116 {
12117 /* Inverted range entries are invalid. */
12118 complaint (&symfile_complaints,
12119 _("Invalid .debug_ranges data "
12120 "(inverted range)"));
12121 return;
12122 }
12123
12124 /* Empty range entries have no effect. */
12125 if (start == end)
12126 continue;
12127
12128 start += base + baseaddr;
12129 end += base + baseaddr;
12130
12131 /* A not-uncommon case of bad debug info.
12132 Don't pollute the addrmap with bad data. */
12133 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12134 {
12135 complaint (&symfile_complaints,
12136 _(".debug_ranges entry has start address of zero"
12137 " [in module %s]"), objfile_name (objfile));
12138 continue;
12139 }
12140
12141 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12142 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12143 record_block_range (block, start, end - 1);
12144 }
12145 }
12146 }
12147 }
12148
12149 /* Check whether the producer field indicates either of GCC < 4.6, or the
12150 Intel C/C++ compiler, and cache the result in CU. */
12151
12152 static void
12153 check_producer (struct dwarf2_cu *cu)
12154 {
12155 const char *cs;
12156 int major, minor, release;
12157
12158 if (cu->producer == NULL)
12159 {
12160 /* For unknown compilers expect their behavior is DWARF version
12161 compliant.
12162
12163 GCC started to support .debug_types sections by -gdwarf-4 since
12164 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12165 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12166 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12167 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12168 }
12169 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12170 {
12171 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12172
12173 cs = &cu->producer[strlen ("GNU ")];
12174 while (*cs && !isdigit (*cs))
12175 cs++;
12176 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12177 {
12178 /* Not recognized as GCC. */
12179 }
12180 else
12181 {
12182 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12183 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12184 }
12185 }
12186 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12187 cu->producer_is_icc = 1;
12188 else
12189 {
12190 /* For other non-GCC compilers, expect their behavior is DWARF version
12191 compliant. */
12192 }
12193
12194 cu->checked_producer = 1;
12195 }
12196
12197 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12198 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12199 during 4.6.0 experimental. */
12200
12201 static int
12202 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12203 {
12204 if (!cu->checked_producer)
12205 check_producer (cu);
12206
12207 return cu->producer_is_gxx_lt_4_6;
12208 }
12209
12210 /* Return the default accessibility type if it is not overriden by
12211 DW_AT_accessibility. */
12212
12213 static enum dwarf_access_attribute
12214 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12215 {
12216 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12217 {
12218 /* The default DWARF 2 accessibility for members is public, the default
12219 accessibility for inheritance is private. */
12220
12221 if (die->tag != DW_TAG_inheritance)
12222 return DW_ACCESS_public;
12223 else
12224 return DW_ACCESS_private;
12225 }
12226 else
12227 {
12228 /* DWARF 3+ defines the default accessibility a different way. The same
12229 rules apply now for DW_TAG_inheritance as for the members and it only
12230 depends on the container kind. */
12231
12232 if (die->parent->tag == DW_TAG_class_type)
12233 return DW_ACCESS_private;
12234 else
12235 return DW_ACCESS_public;
12236 }
12237 }
12238
12239 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12240 offset. If the attribute was not found return 0, otherwise return
12241 1. If it was found but could not properly be handled, set *OFFSET
12242 to 0. */
12243
12244 static int
12245 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12246 LONGEST *offset)
12247 {
12248 struct attribute *attr;
12249
12250 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12251 if (attr != NULL)
12252 {
12253 *offset = 0;
12254
12255 /* Note that we do not check for a section offset first here.
12256 This is because DW_AT_data_member_location is new in DWARF 4,
12257 so if we see it, we can assume that a constant form is really
12258 a constant and not a section offset. */
12259 if (attr_form_is_constant (attr))
12260 *offset = dwarf2_get_attr_constant_value (attr, 0);
12261 else if (attr_form_is_section_offset (attr))
12262 dwarf2_complex_location_expr_complaint ();
12263 else if (attr_form_is_block (attr))
12264 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12265 else
12266 dwarf2_complex_location_expr_complaint ();
12267
12268 return 1;
12269 }
12270
12271 return 0;
12272 }
12273
12274 /* Add an aggregate field to the field list. */
12275
12276 static void
12277 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12278 struct dwarf2_cu *cu)
12279 {
12280 struct objfile *objfile = cu->objfile;
12281 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12282 struct nextfield *new_field;
12283 struct attribute *attr;
12284 struct field *fp;
12285 const char *fieldname = "";
12286
12287 /* Allocate a new field list entry and link it in. */
12288 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12289 make_cleanup (xfree, new_field);
12290 memset (new_field, 0, sizeof (struct nextfield));
12291
12292 if (die->tag == DW_TAG_inheritance)
12293 {
12294 new_field->next = fip->baseclasses;
12295 fip->baseclasses = new_field;
12296 }
12297 else
12298 {
12299 new_field->next = fip->fields;
12300 fip->fields = new_field;
12301 }
12302 fip->nfields++;
12303
12304 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12305 if (attr)
12306 new_field->accessibility = DW_UNSND (attr);
12307 else
12308 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12309 if (new_field->accessibility != DW_ACCESS_public)
12310 fip->non_public_fields = 1;
12311
12312 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12313 if (attr)
12314 new_field->virtuality = DW_UNSND (attr);
12315 else
12316 new_field->virtuality = DW_VIRTUALITY_none;
12317
12318 fp = &new_field->field;
12319
12320 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12321 {
12322 LONGEST offset;
12323
12324 /* Data member other than a C++ static data member. */
12325
12326 /* Get type of field. */
12327 fp->type = die_type (die, cu);
12328
12329 SET_FIELD_BITPOS (*fp, 0);
12330
12331 /* Get bit size of field (zero if none). */
12332 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12333 if (attr)
12334 {
12335 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12336 }
12337 else
12338 {
12339 FIELD_BITSIZE (*fp) = 0;
12340 }
12341
12342 /* Get bit offset of field. */
12343 if (handle_data_member_location (die, cu, &offset))
12344 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12345 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12346 if (attr)
12347 {
12348 if (gdbarch_bits_big_endian (gdbarch))
12349 {
12350 /* For big endian bits, the DW_AT_bit_offset gives the
12351 additional bit offset from the MSB of the containing
12352 anonymous object to the MSB of the field. We don't
12353 have to do anything special since we don't need to
12354 know the size of the anonymous object. */
12355 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12356 }
12357 else
12358 {
12359 /* For little endian bits, compute the bit offset to the
12360 MSB of the anonymous object, subtract off the number of
12361 bits from the MSB of the field to the MSB of the
12362 object, and then subtract off the number of bits of
12363 the field itself. The result is the bit offset of
12364 the LSB of the field. */
12365 int anonymous_size;
12366 int bit_offset = DW_UNSND (attr);
12367
12368 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12369 if (attr)
12370 {
12371 /* The size of the anonymous object containing
12372 the bit field is explicit, so use the
12373 indicated size (in bytes). */
12374 anonymous_size = DW_UNSND (attr);
12375 }
12376 else
12377 {
12378 /* The size of the anonymous object containing
12379 the bit field must be inferred from the type
12380 attribute of the data member containing the
12381 bit field. */
12382 anonymous_size = TYPE_LENGTH (fp->type);
12383 }
12384 SET_FIELD_BITPOS (*fp,
12385 (FIELD_BITPOS (*fp)
12386 + anonymous_size * bits_per_byte
12387 - bit_offset - FIELD_BITSIZE (*fp)));
12388 }
12389 }
12390
12391 /* Get name of field. */
12392 fieldname = dwarf2_name (die, cu);
12393 if (fieldname == NULL)
12394 fieldname = "";
12395
12396 /* The name is already allocated along with this objfile, so we don't
12397 need to duplicate it for the type. */
12398 fp->name = fieldname;
12399
12400 /* Change accessibility for artificial fields (e.g. virtual table
12401 pointer or virtual base class pointer) to private. */
12402 if (dwarf2_attr (die, DW_AT_artificial, cu))
12403 {
12404 FIELD_ARTIFICIAL (*fp) = 1;
12405 new_field->accessibility = DW_ACCESS_private;
12406 fip->non_public_fields = 1;
12407 }
12408 }
12409 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12410 {
12411 /* C++ static member. */
12412
12413 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12414 is a declaration, but all versions of G++ as of this writing
12415 (so through at least 3.2.1) incorrectly generate
12416 DW_TAG_variable tags. */
12417
12418 const char *physname;
12419
12420 /* Get name of field. */
12421 fieldname = dwarf2_name (die, cu);
12422 if (fieldname == NULL)
12423 return;
12424
12425 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12426 if (attr
12427 /* Only create a symbol if this is an external value.
12428 new_symbol checks this and puts the value in the global symbol
12429 table, which we want. If it is not external, new_symbol
12430 will try to put the value in cu->list_in_scope which is wrong. */
12431 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12432 {
12433 /* A static const member, not much different than an enum as far as
12434 we're concerned, except that we can support more types. */
12435 new_symbol (die, NULL, cu);
12436 }
12437
12438 /* Get physical name. */
12439 physname = dwarf2_physname (fieldname, die, cu);
12440
12441 /* The name is already allocated along with this objfile, so we don't
12442 need to duplicate it for the type. */
12443 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12444 FIELD_TYPE (*fp) = die_type (die, cu);
12445 FIELD_NAME (*fp) = fieldname;
12446 }
12447 else if (die->tag == DW_TAG_inheritance)
12448 {
12449 LONGEST offset;
12450
12451 /* C++ base class field. */
12452 if (handle_data_member_location (die, cu, &offset))
12453 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12454 FIELD_BITSIZE (*fp) = 0;
12455 FIELD_TYPE (*fp) = die_type (die, cu);
12456 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12457 fip->nbaseclasses++;
12458 }
12459 }
12460
12461 /* Add a typedef defined in the scope of the FIP's class. */
12462
12463 static void
12464 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12465 struct dwarf2_cu *cu)
12466 {
12467 struct objfile *objfile = cu->objfile;
12468 struct typedef_field_list *new_field;
12469 struct attribute *attr;
12470 struct typedef_field *fp;
12471 char *fieldname = "";
12472
12473 /* Allocate a new field list entry and link it in. */
12474 new_field = xzalloc (sizeof (*new_field));
12475 make_cleanup (xfree, new_field);
12476
12477 gdb_assert (die->tag == DW_TAG_typedef);
12478
12479 fp = &new_field->field;
12480
12481 /* Get name of field. */
12482 fp->name = dwarf2_name (die, cu);
12483 if (fp->name == NULL)
12484 return;
12485
12486 fp->type = read_type_die (die, cu);
12487
12488 new_field->next = fip->typedef_field_list;
12489 fip->typedef_field_list = new_field;
12490 fip->typedef_field_list_count++;
12491 }
12492
12493 /* Create the vector of fields, and attach it to the type. */
12494
12495 static void
12496 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12497 struct dwarf2_cu *cu)
12498 {
12499 int nfields = fip->nfields;
12500
12501 /* Record the field count, allocate space for the array of fields,
12502 and create blank accessibility bitfields if necessary. */
12503 TYPE_NFIELDS (type) = nfields;
12504 TYPE_FIELDS (type) = (struct field *)
12505 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12506 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12507
12508 if (fip->non_public_fields && cu->language != language_ada)
12509 {
12510 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12511
12512 TYPE_FIELD_PRIVATE_BITS (type) =
12513 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12514 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12515
12516 TYPE_FIELD_PROTECTED_BITS (type) =
12517 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12518 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12519
12520 TYPE_FIELD_IGNORE_BITS (type) =
12521 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12522 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12523 }
12524
12525 /* If the type has baseclasses, allocate and clear a bit vector for
12526 TYPE_FIELD_VIRTUAL_BITS. */
12527 if (fip->nbaseclasses && cu->language != language_ada)
12528 {
12529 int num_bytes = B_BYTES (fip->nbaseclasses);
12530 unsigned char *pointer;
12531
12532 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12533 pointer = TYPE_ALLOC (type, num_bytes);
12534 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12535 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12536 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12537 }
12538
12539 /* Copy the saved-up fields into the field vector. Start from the head of
12540 the list, adding to the tail of the field array, so that they end up in
12541 the same order in the array in which they were added to the list. */
12542 while (nfields-- > 0)
12543 {
12544 struct nextfield *fieldp;
12545
12546 if (fip->fields)
12547 {
12548 fieldp = fip->fields;
12549 fip->fields = fieldp->next;
12550 }
12551 else
12552 {
12553 fieldp = fip->baseclasses;
12554 fip->baseclasses = fieldp->next;
12555 }
12556
12557 TYPE_FIELD (type, nfields) = fieldp->field;
12558 switch (fieldp->accessibility)
12559 {
12560 case DW_ACCESS_private:
12561 if (cu->language != language_ada)
12562 SET_TYPE_FIELD_PRIVATE (type, nfields);
12563 break;
12564
12565 case DW_ACCESS_protected:
12566 if (cu->language != language_ada)
12567 SET_TYPE_FIELD_PROTECTED (type, nfields);
12568 break;
12569
12570 case DW_ACCESS_public:
12571 break;
12572
12573 default:
12574 /* Unknown accessibility. Complain and treat it as public. */
12575 {
12576 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12577 fieldp->accessibility);
12578 }
12579 break;
12580 }
12581 if (nfields < fip->nbaseclasses)
12582 {
12583 switch (fieldp->virtuality)
12584 {
12585 case DW_VIRTUALITY_virtual:
12586 case DW_VIRTUALITY_pure_virtual:
12587 if (cu->language == language_ada)
12588 error (_("unexpected virtuality in component of Ada type"));
12589 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12590 break;
12591 }
12592 }
12593 }
12594 }
12595
12596 /* Return true if this member function is a constructor, false
12597 otherwise. */
12598
12599 static int
12600 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12601 {
12602 const char *fieldname;
12603 const char *typename;
12604 int len;
12605
12606 if (die->parent == NULL)
12607 return 0;
12608
12609 if (die->parent->tag != DW_TAG_structure_type
12610 && die->parent->tag != DW_TAG_union_type
12611 && die->parent->tag != DW_TAG_class_type)
12612 return 0;
12613
12614 fieldname = dwarf2_name (die, cu);
12615 typename = dwarf2_name (die->parent, cu);
12616 if (fieldname == NULL || typename == NULL)
12617 return 0;
12618
12619 len = strlen (fieldname);
12620 return (strncmp (fieldname, typename, len) == 0
12621 && (typename[len] == '\0' || typename[len] == '<'));
12622 }
12623
12624 /* Add a member function to the proper fieldlist. */
12625
12626 static void
12627 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12628 struct type *type, struct dwarf2_cu *cu)
12629 {
12630 struct objfile *objfile = cu->objfile;
12631 struct attribute *attr;
12632 struct fnfieldlist *flp;
12633 int i;
12634 struct fn_field *fnp;
12635 const char *fieldname;
12636 struct nextfnfield *new_fnfield;
12637 struct type *this_type;
12638 enum dwarf_access_attribute accessibility;
12639
12640 if (cu->language == language_ada)
12641 error (_("unexpected member function in Ada type"));
12642
12643 /* Get name of member function. */
12644 fieldname = dwarf2_name (die, cu);
12645 if (fieldname == NULL)
12646 return;
12647
12648 /* Look up member function name in fieldlist. */
12649 for (i = 0; i < fip->nfnfields; i++)
12650 {
12651 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12652 break;
12653 }
12654
12655 /* Create new list element if necessary. */
12656 if (i < fip->nfnfields)
12657 flp = &fip->fnfieldlists[i];
12658 else
12659 {
12660 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12661 {
12662 fip->fnfieldlists = (struct fnfieldlist *)
12663 xrealloc (fip->fnfieldlists,
12664 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12665 * sizeof (struct fnfieldlist));
12666 if (fip->nfnfields == 0)
12667 make_cleanup (free_current_contents, &fip->fnfieldlists);
12668 }
12669 flp = &fip->fnfieldlists[fip->nfnfields];
12670 flp->name = fieldname;
12671 flp->length = 0;
12672 flp->head = NULL;
12673 i = fip->nfnfields++;
12674 }
12675
12676 /* Create a new member function field and chain it to the field list
12677 entry. */
12678 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12679 make_cleanup (xfree, new_fnfield);
12680 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12681 new_fnfield->next = flp->head;
12682 flp->head = new_fnfield;
12683 flp->length++;
12684
12685 /* Fill in the member function field info. */
12686 fnp = &new_fnfield->fnfield;
12687
12688 /* Delay processing of the physname until later. */
12689 if (cu->language == language_cplus || cu->language == language_java)
12690 {
12691 add_to_method_list (type, i, flp->length - 1, fieldname,
12692 die, cu);
12693 }
12694 else
12695 {
12696 const char *physname = dwarf2_physname (fieldname, die, cu);
12697 fnp->physname = physname ? physname : "";
12698 }
12699
12700 fnp->type = alloc_type (objfile);
12701 this_type = read_type_die (die, cu);
12702 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12703 {
12704 int nparams = TYPE_NFIELDS (this_type);
12705
12706 /* TYPE is the domain of this method, and THIS_TYPE is the type
12707 of the method itself (TYPE_CODE_METHOD). */
12708 smash_to_method_type (fnp->type, type,
12709 TYPE_TARGET_TYPE (this_type),
12710 TYPE_FIELDS (this_type),
12711 TYPE_NFIELDS (this_type),
12712 TYPE_VARARGS (this_type));
12713
12714 /* Handle static member functions.
12715 Dwarf2 has no clean way to discern C++ static and non-static
12716 member functions. G++ helps GDB by marking the first
12717 parameter for non-static member functions (which is the this
12718 pointer) as artificial. We obtain this information from
12719 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12720 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12721 fnp->voffset = VOFFSET_STATIC;
12722 }
12723 else
12724 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12725 dwarf2_full_name (fieldname, die, cu));
12726
12727 /* Get fcontext from DW_AT_containing_type if present. */
12728 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12729 fnp->fcontext = die_containing_type (die, cu);
12730
12731 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12732 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12733
12734 /* Get accessibility. */
12735 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12736 if (attr)
12737 accessibility = DW_UNSND (attr);
12738 else
12739 accessibility = dwarf2_default_access_attribute (die, cu);
12740 switch (accessibility)
12741 {
12742 case DW_ACCESS_private:
12743 fnp->is_private = 1;
12744 break;
12745 case DW_ACCESS_protected:
12746 fnp->is_protected = 1;
12747 break;
12748 }
12749
12750 /* Check for artificial methods. */
12751 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12752 if (attr && DW_UNSND (attr) != 0)
12753 fnp->is_artificial = 1;
12754
12755 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12756
12757 /* Get index in virtual function table if it is a virtual member
12758 function. For older versions of GCC, this is an offset in the
12759 appropriate virtual table, as specified by DW_AT_containing_type.
12760 For everyone else, it is an expression to be evaluated relative
12761 to the object address. */
12762
12763 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12764 if (attr)
12765 {
12766 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12767 {
12768 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12769 {
12770 /* Old-style GCC. */
12771 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12772 }
12773 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12774 || (DW_BLOCK (attr)->size > 1
12775 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12776 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12777 {
12778 struct dwarf_block blk;
12779 int offset;
12780
12781 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12782 ? 1 : 2);
12783 blk.size = DW_BLOCK (attr)->size - offset;
12784 blk.data = DW_BLOCK (attr)->data + offset;
12785 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12786 if ((fnp->voffset % cu->header.addr_size) != 0)
12787 dwarf2_complex_location_expr_complaint ();
12788 else
12789 fnp->voffset /= cu->header.addr_size;
12790 fnp->voffset += 2;
12791 }
12792 else
12793 dwarf2_complex_location_expr_complaint ();
12794
12795 if (!fnp->fcontext)
12796 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12797 }
12798 else if (attr_form_is_section_offset (attr))
12799 {
12800 dwarf2_complex_location_expr_complaint ();
12801 }
12802 else
12803 {
12804 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12805 fieldname);
12806 }
12807 }
12808 else
12809 {
12810 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12811 if (attr && DW_UNSND (attr))
12812 {
12813 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12814 complaint (&symfile_complaints,
12815 _("Member function \"%s\" (offset %d) is virtual "
12816 "but the vtable offset is not specified"),
12817 fieldname, die->offset.sect_off);
12818 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12819 TYPE_CPLUS_DYNAMIC (type) = 1;
12820 }
12821 }
12822 }
12823
12824 /* Create the vector of member function fields, and attach it to the type. */
12825
12826 static void
12827 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12828 struct dwarf2_cu *cu)
12829 {
12830 struct fnfieldlist *flp;
12831 int i;
12832
12833 if (cu->language == language_ada)
12834 error (_("unexpected member functions in Ada type"));
12835
12836 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12837 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12838 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12839
12840 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12841 {
12842 struct nextfnfield *nfp = flp->head;
12843 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12844 int k;
12845
12846 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12847 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12848 fn_flp->fn_fields = (struct fn_field *)
12849 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12850 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12851 fn_flp->fn_fields[k] = nfp->fnfield;
12852 }
12853
12854 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12855 }
12856
12857 /* Returns non-zero if NAME is the name of a vtable member in CU's
12858 language, zero otherwise. */
12859 static int
12860 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12861 {
12862 static const char vptr[] = "_vptr";
12863 static const char vtable[] = "vtable";
12864
12865 /* Look for the C++ and Java forms of the vtable. */
12866 if ((cu->language == language_java
12867 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12868 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12869 && is_cplus_marker (name[sizeof (vptr) - 1])))
12870 return 1;
12871
12872 return 0;
12873 }
12874
12875 /* GCC outputs unnamed structures that are really pointers to member
12876 functions, with the ABI-specified layout. If TYPE describes
12877 such a structure, smash it into a member function type.
12878
12879 GCC shouldn't do this; it should just output pointer to member DIEs.
12880 This is GCC PR debug/28767. */
12881
12882 static void
12883 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12884 {
12885 struct type *pfn_type, *domain_type, *new_type;
12886
12887 /* Check for a structure with no name and two children. */
12888 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12889 return;
12890
12891 /* Check for __pfn and __delta members. */
12892 if (TYPE_FIELD_NAME (type, 0) == NULL
12893 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12894 || TYPE_FIELD_NAME (type, 1) == NULL
12895 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12896 return;
12897
12898 /* Find the type of the method. */
12899 pfn_type = TYPE_FIELD_TYPE (type, 0);
12900 if (pfn_type == NULL
12901 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12902 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12903 return;
12904
12905 /* Look for the "this" argument. */
12906 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12907 if (TYPE_NFIELDS (pfn_type) == 0
12908 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12909 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12910 return;
12911
12912 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12913 new_type = alloc_type (objfile);
12914 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12915 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12916 TYPE_VARARGS (pfn_type));
12917 smash_to_methodptr_type (type, new_type);
12918 }
12919
12920 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12921 (icc). */
12922
12923 static int
12924 producer_is_icc (struct dwarf2_cu *cu)
12925 {
12926 if (!cu->checked_producer)
12927 check_producer (cu);
12928
12929 return cu->producer_is_icc;
12930 }
12931
12932 /* Called when we find the DIE that starts a structure or union scope
12933 (definition) to create a type for the structure or union. Fill in
12934 the type's name and general properties; the members will not be
12935 processed until process_structure_scope. A symbol table entry for
12936 the type will also not be done until process_structure_scope (assuming
12937 the type has a name).
12938
12939 NOTE: we need to call these functions regardless of whether or not the
12940 DIE has a DW_AT_name attribute, since it might be an anonymous
12941 structure or union. This gets the type entered into our set of
12942 user defined types. */
12943
12944 static struct type *
12945 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12946 {
12947 struct objfile *objfile = cu->objfile;
12948 struct type *type;
12949 struct attribute *attr;
12950 const char *name;
12951
12952 /* If the definition of this type lives in .debug_types, read that type.
12953 Don't follow DW_AT_specification though, that will take us back up
12954 the chain and we want to go down. */
12955 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12956 if (attr)
12957 {
12958 type = get_DW_AT_signature_type (die, attr, cu);
12959
12960 /* The type's CU may not be the same as CU.
12961 Ensure TYPE is recorded with CU in die_type_hash. */
12962 return set_die_type (die, type, cu);
12963 }
12964
12965 type = alloc_type (objfile);
12966 INIT_CPLUS_SPECIFIC (type);
12967
12968 name = dwarf2_name (die, cu);
12969 if (name != NULL)
12970 {
12971 if (cu->language == language_cplus
12972 || cu->language == language_java)
12973 {
12974 const char *full_name = dwarf2_full_name (name, die, cu);
12975
12976 /* dwarf2_full_name might have already finished building the DIE's
12977 type. If so, there is no need to continue. */
12978 if (get_die_type (die, cu) != NULL)
12979 return get_die_type (die, cu);
12980
12981 TYPE_TAG_NAME (type) = full_name;
12982 if (die->tag == DW_TAG_structure_type
12983 || die->tag == DW_TAG_class_type)
12984 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12985 }
12986 else
12987 {
12988 /* The name is already allocated along with this objfile, so
12989 we don't need to duplicate it for the type. */
12990 TYPE_TAG_NAME (type) = name;
12991 if (die->tag == DW_TAG_class_type)
12992 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12993 }
12994 }
12995
12996 if (die->tag == DW_TAG_structure_type)
12997 {
12998 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12999 }
13000 else if (die->tag == DW_TAG_union_type)
13001 {
13002 TYPE_CODE (type) = TYPE_CODE_UNION;
13003 }
13004 else
13005 {
13006 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13007 }
13008
13009 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13010 TYPE_DECLARED_CLASS (type) = 1;
13011
13012 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13013 if (attr)
13014 {
13015 TYPE_LENGTH (type) = DW_UNSND (attr);
13016 }
13017 else
13018 {
13019 TYPE_LENGTH (type) = 0;
13020 }
13021
13022 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13023 {
13024 /* ICC does not output the required DW_AT_declaration
13025 on incomplete types, but gives them a size of zero. */
13026 TYPE_STUB (type) = 1;
13027 }
13028 else
13029 TYPE_STUB_SUPPORTED (type) = 1;
13030
13031 if (die_is_declaration (die, cu))
13032 TYPE_STUB (type) = 1;
13033 else if (attr == NULL && die->child == NULL
13034 && producer_is_realview (cu->producer))
13035 /* RealView does not output the required DW_AT_declaration
13036 on incomplete types. */
13037 TYPE_STUB (type) = 1;
13038
13039 /* We need to add the type field to the die immediately so we don't
13040 infinitely recurse when dealing with pointers to the structure
13041 type within the structure itself. */
13042 set_die_type (die, type, cu);
13043
13044 /* set_die_type should be already done. */
13045 set_descriptive_type (type, die, cu);
13046
13047 return type;
13048 }
13049
13050 /* Finish creating a structure or union type, including filling in
13051 its members and creating a symbol for it. */
13052
13053 static void
13054 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13055 {
13056 struct objfile *objfile = cu->objfile;
13057 struct die_info *child_die;
13058 struct type *type;
13059
13060 type = get_die_type (die, cu);
13061 if (type == NULL)
13062 type = read_structure_type (die, cu);
13063
13064 if (die->child != NULL && ! die_is_declaration (die, cu))
13065 {
13066 struct field_info fi;
13067 VEC (symbolp) *template_args = NULL;
13068 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13069
13070 memset (&fi, 0, sizeof (struct field_info));
13071
13072 child_die = die->child;
13073
13074 while (child_die && child_die->tag)
13075 {
13076 if (child_die->tag == DW_TAG_member
13077 || child_die->tag == DW_TAG_variable)
13078 {
13079 /* NOTE: carlton/2002-11-05: A C++ static data member
13080 should be a DW_TAG_member that is a declaration, but
13081 all versions of G++ as of this writing (so through at
13082 least 3.2.1) incorrectly generate DW_TAG_variable
13083 tags for them instead. */
13084 dwarf2_add_field (&fi, child_die, cu);
13085 }
13086 else if (child_die->tag == DW_TAG_subprogram)
13087 {
13088 /* C++ member function. */
13089 dwarf2_add_member_fn (&fi, child_die, type, cu);
13090 }
13091 else if (child_die->tag == DW_TAG_inheritance)
13092 {
13093 /* C++ base class field. */
13094 dwarf2_add_field (&fi, child_die, cu);
13095 }
13096 else if (child_die->tag == DW_TAG_typedef)
13097 dwarf2_add_typedef (&fi, child_die, cu);
13098 else if (child_die->tag == DW_TAG_template_type_param
13099 || child_die->tag == DW_TAG_template_value_param)
13100 {
13101 struct symbol *arg = new_symbol (child_die, NULL, cu);
13102
13103 if (arg != NULL)
13104 VEC_safe_push (symbolp, template_args, arg);
13105 }
13106
13107 child_die = sibling_die (child_die);
13108 }
13109
13110 /* Attach template arguments to type. */
13111 if (! VEC_empty (symbolp, template_args))
13112 {
13113 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13114 TYPE_N_TEMPLATE_ARGUMENTS (type)
13115 = VEC_length (symbolp, template_args);
13116 TYPE_TEMPLATE_ARGUMENTS (type)
13117 = obstack_alloc (&objfile->objfile_obstack,
13118 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13119 * sizeof (struct symbol *)));
13120 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13121 VEC_address (symbolp, template_args),
13122 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13123 * sizeof (struct symbol *)));
13124 VEC_free (symbolp, template_args);
13125 }
13126
13127 /* Attach fields and member functions to the type. */
13128 if (fi.nfields)
13129 dwarf2_attach_fields_to_type (&fi, type, cu);
13130 if (fi.nfnfields)
13131 {
13132 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13133
13134 /* Get the type which refers to the base class (possibly this
13135 class itself) which contains the vtable pointer for the current
13136 class from the DW_AT_containing_type attribute. This use of
13137 DW_AT_containing_type is a GNU extension. */
13138
13139 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13140 {
13141 struct type *t = die_containing_type (die, cu);
13142
13143 TYPE_VPTR_BASETYPE (type) = t;
13144 if (type == t)
13145 {
13146 int i;
13147
13148 /* Our own class provides vtbl ptr. */
13149 for (i = TYPE_NFIELDS (t) - 1;
13150 i >= TYPE_N_BASECLASSES (t);
13151 --i)
13152 {
13153 const char *fieldname = TYPE_FIELD_NAME (t, i);
13154
13155 if (is_vtable_name (fieldname, cu))
13156 {
13157 TYPE_VPTR_FIELDNO (type) = i;
13158 break;
13159 }
13160 }
13161
13162 /* Complain if virtual function table field not found. */
13163 if (i < TYPE_N_BASECLASSES (t))
13164 complaint (&symfile_complaints,
13165 _("virtual function table pointer "
13166 "not found when defining class '%s'"),
13167 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13168 "");
13169 }
13170 else
13171 {
13172 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13173 }
13174 }
13175 else if (cu->producer
13176 && strncmp (cu->producer,
13177 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13178 {
13179 /* The IBM XLC compiler does not provide direct indication
13180 of the containing type, but the vtable pointer is
13181 always named __vfp. */
13182
13183 int i;
13184
13185 for (i = TYPE_NFIELDS (type) - 1;
13186 i >= TYPE_N_BASECLASSES (type);
13187 --i)
13188 {
13189 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13190 {
13191 TYPE_VPTR_FIELDNO (type) = i;
13192 TYPE_VPTR_BASETYPE (type) = type;
13193 break;
13194 }
13195 }
13196 }
13197 }
13198
13199 /* Copy fi.typedef_field_list linked list elements content into the
13200 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13201 if (fi.typedef_field_list)
13202 {
13203 int i = fi.typedef_field_list_count;
13204
13205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13206 TYPE_TYPEDEF_FIELD_ARRAY (type)
13207 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13208 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13209
13210 /* Reverse the list order to keep the debug info elements order. */
13211 while (--i >= 0)
13212 {
13213 struct typedef_field *dest, *src;
13214
13215 dest = &TYPE_TYPEDEF_FIELD (type, i);
13216 src = &fi.typedef_field_list->field;
13217 fi.typedef_field_list = fi.typedef_field_list->next;
13218 *dest = *src;
13219 }
13220 }
13221
13222 do_cleanups (back_to);
13223
13224 if (HAVE_CPLUS_STRUCT (type))
13225 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13226 }
13227
13228 quirk_gcc_member_function_pointer (type, objfile);
13229
13230 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13231 snapshots) has been known to create a die giving a declaration
13232 for a class that has, as a child, a die giving a definition for a
13233 nested class. So we have to process our children even if the
13234 current die is a declaration. Normally, of course, a declaration
13235 won't have any children at all. */
13236
13237 child_die = die->child;
13238
13239 while (child_die != NULL && child_die->tag)
13240 {
13241 if (child_die->tag == DW_TAG_member
13242 || child_die->tag == DW_TAG_variable
13243 || child_die->tag == DW_TAG_inheritance
13244 || child_die->tag == DW_TAG_template_value_param
13245 || child_die->tag == DW_TAG_template_type_param)
13246 {
13247 /* Do nothing. */
13248 }
13249 else
13250 process_die (child_die, cu);
13251
13252 child_die = sibling_die (child_die);
13253 }
13254
13255 /* Do not consider external references. According to the DWARF standard,
13256 these DIEs are identified by the fact that they have no byte_size
13257 attribute, and a declaration attribute. */
13258 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13259 || !die_is_declaration (die, cu))
13260 new_symbol (die, type, cu);
13261 }
13262
13263 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13264 update TYPE using some information only available in DIE's children. */
13265
13266 static void
13267 update_enumeration_type_from_children (struct die_info *die,
13268 struct type *type,
13269 struct dwarf2_cu *cu)
13270 {
13271 struct obstack obstack;
13272 struct die_info *child_die;
13273 int unsigned_enum = 1;
13274 int flag_enum = 1;
13275 ULONGEST mask = 0;
13276 struct cleanup *old_chain;
13277
13278 obstack_init (&obstack);
13279 old_chain = make_cleanup_obstack_free (&obstack);
13280
13281 for (child_die = die->child;
13282 child_die != NULL && child_die->tag;
13283 child_die = sibling_die (child_die))
13284 {
13285 struct attribute *attr;
13286 LONGEST value;
13287 const gdb_byte *bytes;
13288 struct dwarf2_locexpr_baton *baton;
13289 const char *name;
13290
13291 if (child_die->tag != DW_TAG_enumerator)
13292 continue;
13293
13294 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13295 if (attr == NULL)
13296 continue;
13297
13298 name = dwarf2_name (child_die, cu);
13299 if (name == NULL)
13300 name = "<anonymous enumerator>";
13301
13302 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13303 &value, &bytes, &baton);
13304 if (value < 0)
13305 {
13306 unsigned_enum = 0;
13307 flag_enum = 0;
13308 }
13309 else if ((mask & value) != 0)
13310 flag_enum = 0;
13311 else
13312 mask |= value;
13313
13314 /* If we already know that the enum type is neither unsigned, nor
13315 a flag type, no need to look at the rest of the enumerates. */
13316 if (!unsigned_enum && !flag_enum)
13317 break;
13318 }
13319
13320 if (unsigned_enum)
13321 TYPE_UNSIGNED (type) = 1;
13322 if (flag_enum)
13323 TYPE_FLAG_ENUM (type) = 1;
13324
13325 do_cleanups (old_chain);
13326 }
13327
13328 /* Given a DW_AT_enumeration_type die, set its type. We do not
13329 complete the type's fields yet, or create any symbols. */
13330
13331 static struct type *
13332 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13333 {
13334 struct objfile *objfile = cu->objfile;
13335 struct type *type;
13336 struct attribute *attr;
13337 const char *name;
13338
13339 /* If the definition of this type lives in .debug_types, read that type.
13340 Don't follow DW_AT_specification though, that will take us back up
13341 the chain and we want to go down. */
13342 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13343 if (attr)
13344 {
13345 type = get_DW_AT_signature_type (die, attr, cu);
13346
13347 /* The type's CU may not be the same as CU.
13348 Ensure TYPE is recorded with CU in die_type_hash. */
13349 return set_die_type (die, type, cu);
13350 }
13351
13352 type = alloc_type (objfile);
13353
13354 TYPE_CODE (type) = TYPE_CODE_ENUM;
13355 name = dwarf2_full_name (NULL, die, cu);
13356 if (name != NULL)
13357 TYPE_TAG_NAME (type) = name;
13358
13359 attr = dwarf2_attr (die, DW_AT_type, cu);
13360 if (attr != NULL)
13361 {
13362 struct type *underlying_type = die_type (die, cu);
13363
13364 TYPE_TARGET_TYPE (type) = underlying_type;
13365 }
13366
13367 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13368 if (attr)
13369 {
13370 TYPE_LENGTH (type) = DW_UNSND (attr);
13371 }
13372 else
13373 {
13374 TYPE_LENGTH (type) = 0;
13375 }
13376
13377 /* The enumeration DIE can be incomplete. In Ada, any type can be
13378 declared as private in the package spec, and then defined only
13379 inside the package body. Such types are known as Taft Amendment
13380 Types. When another package uses such a type, an incomplete DIE
13381 may be generated by the compiler. */
13382 if (die_is_declaration (die, cu))
13383 TYPE_STUB (type) = 1;
13384
13385 /* Finish the creation of this type by using the enum's children.
13386 We must call this even when the underlying type has been provided
13387 so that we can determine if we're looking at a "flag" enum. */
13388 update_enumeration_type_from_children (die, type, cu);
13389
13390 /* If this type has an underlying type that is not a stub, then we
13391 may use its attributes. We always use the "unsigned" attribute
13392 in this situation, because ordinarily we guess whether the type
13393 is unsigned -- but the guess can be wrong and the underlying type
13394 can tell us the reality. However, we defer to a local size
13395 attribute if one exists, because this lets the compiler override
13396 the underlying type if needed. */
13397 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13398 {
13399 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13400 if (TYPE_LENGTH (type) == 0)
13401 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13402 }
13403
13404 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13405
13406 return set_die_type (die, type, cu);
13407 }
13408
13409 /* Given a pointer to a die which begins an enumeration, process all
13410 the dies that define the members of the enumeration, and create the
13411 symbol for the enumeration type.
13412
13413 NOTE: We reverse the order of the element list. */
13414
13415 static void
13416 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13417 {
13418 struct type *this_type;
13419
13420 this_type = get_die_type (die, cu);
13421 if (this_type == NULL)
13422 this_type = read_enumeration_type (die, cu);
13423
13424 if (die->child != NULL)
13425 {
13426 struct die_info *child_die;
13427 struct symbol *sym;
13428 struct field *fields = NULL;
13429 int num_fields = 0;
13430 const char *name;
13431
13432 child_die = die->child;
13433 while (child_die && child_die->tag)
13434 {
13435 if (child_die->tag != DW_TAG_enumerator)
13436 {
13437 process_die (child_die, cu);
13438 }
13439 else
13440 {
13441 name = dwarf2_name (child_die, cu);
13442 if (name)
13443 {
13444 sym = new_symbol (child_die, this_type, cu);
13445
13446 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13447 {
13448 fields = (struct field *)
13449 xrealloc (fields,
13450 (num_fields + DW_FIELD_ALLOC_CHUNK)
13451 * sizeof (struct field));
13452 }
13453
13454 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13455 FIELD_TYPE (fields[num_fields]) = NULL;
13456 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13457 FIELD_BITSIZE (fields[num_fields]) = 0;
13458
13459 num_fields++;
13460 }
13461 }
13462
13463 child_die = sibling_die (child_die);
13464 }
13465
13466 if (num_fields)
13467 {
13468 TYPE_NFIELDS (this_type) = num_fields;
13469 TYPE_FIELDS (this_type) = (struct field *)
13470 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13471 memcpy (TYPE_FIELDS (this_type), fields,
13472 sizeof (struct field) * num_fields);
13473 xfree (fields);
13474 }
13475 }
13476
13477 /* If we are reading an enum from a .debug_types unit, and the enum
13478 is a declaration, and the enum is not the signatured type in the
13479 unit, then we do not want to add a symbol for it. Adding a
13480 symbol would in some cases obscure the true definition of the
13481 enum, giving users an incomplete type when the definition is
13482 actually available. Note that we do not want to do this for all
13483 enums which are just declarations, because C++0x allows forward
13484 enum declarations. */
13485 if (cu->per_cu->is_debug_types
13486 && die_is_declaration (die, cu))
13487 {
13488 struct signatured_type *sig_type;
13489
13490 sig_type = (struct signatured_type *) cu->per_cu;
13491 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13492 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13493 return;
13494 }
13495
13496 new_symbol (die, this_type, cu);
13497 }
13498
13499 /* Extract all information from a DW_TAG_array_type DIE and put it in
13500 the DIE's type field. For now, this only handles one dimensional
13501 arrays. */
13502
13503 static struct type *
13504 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13505 {
13506 struct objfile *objfile = cu->objfile;
13507 struct die_info *child_die;
13508 struct type *type;
13509 struct type *element_type, *range_type, *index_type;
13510 struct type **range_types = NULL;
13511 struct attribute *attr;
13512 int ndim = 0;
13513 struct cleanup *back_to;
13514 const char *name;
13515 unsigned int bit_stride = 0;
13516
13517 element_type = die_type (die, cu);
13518
13519 /* The die_type call above may have already set the type for this DIE. */
13520 type = get_die_type (die, cu);
13521 if (type)
13522 return type;
13523
13524 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13525 if (attr != NULL)
13526 bit_stride = DW_UNSND (attr) * 8;
13527
13528 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13529 if (attr != NULL)
13530 bit_stride = DW_UNSND (attr);
13531
13532 /* Irix 6.2 native cc creates array types without children for
13533 arrays with unspecified length. */
13534 if (die->child == NULL)
13535 {
13536 index_type = objfile_type (objfile)->builtin_int;
13537 range_type = create_static_range_type (NULL, index_type, 0, -1);
13538 type = create_array_type_with_stride (NULL, element_type, range_type,
13539 bit_stride);
13540 return set_die_type (die, type, cu);
13541 }
13542
13543 back_to = make_cleanup (null_cleanup, NULL);
13544 child_die = die->child;
13545 while (child_die && child_die->tag)
13546 {
13547 if (child_die->tag == DW_TAG_subrange_type)
13548 {
13549 struct type *child_type = read_type_die (child_die, cu);
13550
13551 if (child_type != NULL)
13552 {
13553 /* The range type was succesfully read. Save it for the
13554 array type creation. */
13555 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13556 {
13557 range_types = (struct type **)
13558 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13559 * sizeof (struct type *));
13560 if (ndim == 0)
13561 make_cleanup (free_current_contents, &range_types);
13562 }
13563 range_types[ndim++] = child_type;
13564 }
13565 }
13566 child_die = sibling_die (child_die);
13567 }
13568
13569 /* Dwarf2 dimensions are output from left to right, create the
13570 necessary array types in backwards order. */
13571
13572 type = element_type;
13573
13574 if (read_array_order (die, cu) == DW_ORD_col_major)
13575 {
13576 int i = 0;
13577
13578 while (i < ndim)
13579 type = create_array_type_with_stride (NULL, type, range_types[i++],
13580 bit_stride);
13581 }
13582 else
13583 {
13584 while (ndim-- > 0)
13585 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13586 bit_stride);
13587 }
13588
13589 /* Understand Dwarf2 support for vector types (like they occur on
13590 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13591 array type. This is not part of the Dwarf2/3 standard yet, but a
13592 custom vendor extension. The main difference between a regular
13593 array and the vector variant is that vectors are passed by value
13594 to functions. */
13595 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13596 if (attr)
13597 make_vector_type (type);
13598
13599 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13600 implementation may choose to implement triple vectors using this
13601 attribute. */
13602 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13603 if (attr)
13604 {
13605 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13606 TYPE_LENGTH (type) = DW_UNSND (attr);
13607 else
13608 complaint (&symfile_complaints,
13609 _("DW_AT_byte_size for array type smaller "
13610 "than the total size of elements"));
13611 }
13612
13613 name = dwarf2_name (die, cu);
13614 if (name)
13615 TYPE_NAME (type) = name;
13616
13617 /* Install the type in the die. */
13618 set_die_type (die, type, cu);
13619
13620 /* set_die_type should be already done. */
13621 set_descriptive_type (type, die, cu);
13622
13623 do_cleanups (back_to);
13624
13625 return type;
13626 }
13627
13628 static enum dwarf_array_dim_ordering
13629 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13630 {
13631 struct attribute *attr;
13632
13633 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13634
13635 if (attr) return DW_SND (attr);
13636
13637 /* GNU F77 is a special case, as at 08/2004 array type info is the
13638 opposite order to the dwarf2 specification, but data is still
13639 laid out as per normal fortran.
13640
13641 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13642 version checking. */
13643
13644 if (cu->language == language_fortran
13645 && cu->producer && strstr (cu->producer, "GNU F77"))
13646 {
13647 return DW_ORD_row_major;
13648 }
13649
13650 switch (cu->language_defn->la_array_ordering)
13651 {
13652 case array_column_major:
13653 return DW_ORD_col_major;
13654 case array_row_major:
13655 default:
13656 return DW_ORD_row_major;
13657 };
13658 }
13659
13660 /* Extract all information from a DW_TAG_set_type DIE and put it in
13661 the DIE's type field. */
13662
13663 static struct type *
13664 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13665 {
13666 struct type *domain_type, *set_type;
13667 struct attribute *attr;
13668
13669 domain_type = die_type (die, cu);
13670
13671 /* The die_type call above may have already set the type for this DIE. */
13672 set_type = get_die_type (die, cu);
13673 if (set_type)
13674 return set_type;
13675
13676 set_type = create_set_type (NULL, domain_type);
13677
13678 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13679 if (attr)
13680 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13681
13682 return set_die_type (die, set_type, cu);
13683 }
13684
13685 /* A helper for read_common_block that creates a locexpr baton.
13686 SYM is the symbol which we are marking as computed.
13687 COMMON_DIE is the DIE for the common block.
13688 COMMON_LOC is the location expression attribute for the common
13689 block itself.
13690 MEMBER_LOC is the location expression attribute for the particular
13691 member of the common block that we are processing.
13692 CU is the CU from which the above come. */
13693
13694 static void
13695 mark_common_block_symbol_computed (struct symbol *sym,
13696 struct die_info *common_die,
13697 struct attribute *common_loc,
13698 struct attribute *member_loc,
13699 struct dwarf2_cu *cu)
13700 {
13701 struct objfile *objfile = dwarf2_per_objfile->objfile;
13702 struct dwarf2_locexpr_baton *baton;
13703 gdb_byte *ptr;
13704 unsigned int cu_off;
13705 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13706 LONGEST offset = 0;
13707
13708 gdb_assert (common_loc && member_loc);
13709 gdb_assert (attr_form_is_block (common_loc));
13710 gdb_assert (attr_form_is_block (member_loc)
13711 || attr_form_is_constant (member_loc));
13712
13713 baton = obstack_alloc (&objfile->objfile_obstack,
13714 sizeof (struct dwarf2_locexpr_baton));
13715 baton->per_cu = cu->per_cu;
13716 gdb_assert (baton->per_cu);
13717
13718 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13719
13720 if (attr_form_is_constant (member_loc))
13721 {
13722 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13723 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13724 }
13725 else
13726 baton->size += DW_BLOCK (member_loc)->size;
13727
13728 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13729 baton->data = ptr;
13730
13731 *ptr++ = DW_OP_call4;
13732 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13733 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13734 ptr += 4;
13735
13736 if (attr_form_is_constant (member_loc))
13737 {
13738 *ptr++ = DW_OP_addr;
13739 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13740 ptr += cu->header.addr_size;
13741 }
13742 else
13743 {
13744 /* We have to copy the data here, because DW_OP_call4 will only
13745 use a DW_AT_location attribute. */
13746 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13747 ptr += DW_BLOCK (member_loc)->size;
13748 }
13749
13750 *ptr++ = DW_OP_plus;
13751 gdb_assert (ptr - baton->data == baton->size);
13752
13753 SYMBOL_LOCATION_BATON (sym) = baton;
13754 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13755 }
13756
13757 /* Create appropriate locally-scoped variables for all the
13758 DW_TAG_common_block entries. Also create a struct common_block
13759 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13760 is used to sepate the common blocks name namespace from regular
13761 variable names. */
13762
13763 static void
13764 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13765 {
13766 struct attribute *attr;
13767
13768 attr = dwarf2_attr (die, DW_AT_location, cu);
13769 if (attr)
13770 {
13771 /* Support the .debug_loc offsets. */
13772 if (attr_form_is_block (attr))
13773 {
13774 /* Ok. */
13775 }
13776 else if (attr_form_is_section_offset (attr))
13777 {
13778 dwarf2_complex_location_expr_complaint ();
13779 attr = NULL;
13780 }
13781 else
13782 {
13783 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13784 "common block member");
13785 attr = NULL;
13786 }
13787 }
13788
13789 if (die->child != NULL)
13790 {
13791 struct objfile *objfile = cu->objfile;
13792 struct die_info *child_die;
13793 size_t n_entries = 0, size;
13794 struct common_block *common_block;
13795 struct symbol *sym;
13796
13797 for (child_die = die->child;
13798 child_die && child_die->tag;
13799 child_die = sibling_die (child_die))
13800 ++n_entries;
13801
13802 size = (sizeof (struct common_block)
13803 + (n_entries - 1) * sizeof (struct symbol *));
13804 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13805 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13806 common_block->n_entries = 0;
13807
13808 for (child_die = die->child;
13809 child_die && child_die->tag;
13810 child_die = sibling_die (child_die))
13811 {
13812 /* Create the symbol in the DW_TAG_common_block block in the current
13813 symbol scope. */
13814 sym = new_symbol (child_die, NULL, cu);
13815 if (sym != NULL)
13816 {
13817 struct attribute *member_loc;
13818
13819 common_block->contents[common_block->n_entries++] = sym;
13820
13821 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13822 cu);
13823 if (member_loc)
13824 {
13825 /* GDB has handled this for a long time, but it is
13826 not specified by DWARF. It seems to have been
13827 emitted by gfortran at least as recently as:
13828 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13829 complaint (&symfile_complaints,
13830 _("Variable in common block has "
13831 "DW_AT_data_member_location "
13832 "- DIE at 0x%x [in module %s]"),
13833 child_die->offset.sect_off,
13834 objfile_name (cu->objfile));
13835
13836 if (attr_form_is_section_offset (member_loc))
13837 dwarf2_complex_location_expr_complaint ();
13838 else if (attr_form_is_constant (member_loc)
13839 || attr_form_is_block (member_loc))
13840 {
13841 if (attr)
13842 mark_common_block_symbol_computed (sym, die, attr,
13843 member_loc, cu);
13844 }
13845 else
13846 dwarf2_complex_location_expr_complaint ();
13847 }
13848 }
13849 }
13850
13851 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13852 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13853 }
13854 }
13855
13856 /* Create a type for a C++ namespace. */
13857
13858 static struct type *
13859 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct objfile *objfile = cu->objfile;
13862 const char *previous_prefix, *name;
13863 int is_anonymous;
13864 struct type *type;
13865
13866 /* For extensions, reuse the type of the original namespace. */
13867 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13868 {
13869 struct die_info *ext_die;
13870 struct dwarf2_cu *ext_cu = cu;
13871
13872 ext_die = dwarf2_extension (die, &ext_cu);
13873 type = read_type_die (ext_die, ext_cu);
13874
13875 /* EXT_CU may not be the same as CU.
13876 Ensure TYPE is recorded with CU in die_type_hash. */
13877 return set_die_type (die, type, cu);
13878 }
13879
13880 name = namespace_name (die, &is_anonymous, cu);
13881
13882 /* Now build the name of the current namespace. */
13883
13884 previous_prefix = determine_prefix (die, cu);
13885 if (previous_prefix[0] != '\0')
13886 name = typename_concat (&objfile->objfile_obstack,
13887 previous_prefix, name, 0, cu);
13888
13889 /* Create the type. */
13890 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13891 objfile);
13892 TYPE_NAME (type) = name;
13893 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13894
13895 return set_die_type (die, type, cu);
13896 }
13897
13898 /* Read a C++ namespace. */
13899
13900 static void
13901 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13902 {
13903 struct objfile *objfile = cu->objfile;
13904 int is_anonymous;
13905
13906 /* Add a symbol associated to this if we haven't seen the namespace
13907 before. Also, add a using directive if it's an anonymous
13908 namespace. */
13909
13910 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13911 {
13912 struct type *type;
13913
13914 type = read_type_die (die, cu);
13915 new_symbol (die, type, cu);
13916
13917 namespace_name (die, &is_anonymous, cu);
13918 if (is_anonymous)
13919 {
13920 const char *previous_prefix = determine_prefix (die, cu);
13921
13922 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13923 NULL, NULL, 0, &objfile->objfile_obstack);
13924 }
13925 }
13926
13927 if (die->child != NULL)
13928 {
13929 struct die_info *child_die = die->child;
13930
13931 while (child_die && child_die->tag)
13932 {
13933 process_die (child_die, cu);
13934 child_die = sibling_die (child_die);
13935 }
13936 }
13937 }
13938
13939 /* Read a Fortran module as type. This DIE can be only a declaration used for
13940 imported module. Still we need that type as local Fortran "use ... only"
13941 declaration imports depend on the created type in determine_prefix. */
13942
13943 static struct type *
13944 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13945 {
13946 struct objfile *objfile = cu->objfile;
13947 const char *module_name;
13948 struct type *type;
13949
13950 module_name = dwarf2_name (die, cu);
13951 if (!module_name)
13952 complaint (&symfile_complaints,
13953 _("DW_TAG_module has no name, offset 0x%x"),
13954 die->offset.sect_off);
13955 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13956
13957 /* determine_prefix uses TYPE_TAG_NAME. */
13958 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13959
13960 return set_die_type (die, type, cu);
13961 }
13962
13963 /* Read a Fortran module. */
13964
13965 static void
13966 read_module (struct die_info *die, struct dwarf2_cu *cu)
13967 {
13968 struct die_info *child_die = die->child;
13969 struct type *type;
13970
13971 type = read_type_die (die, cu);
13972 new_symbol (die, type, cu);
13973
13974 while (child_die && child_die->tag)
13975 {
13976 process_die (child_die, cu);
13977 child_die = sibling_die (child_die);
13978 }
13979 }
13980
13981 /* Return the name of the namespace represented by DIE. Set
13982 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13983 namespace. */
13984
13985 static const char *
13986 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13987 {
13988 struct die_info *current_die;
13989 const char *name = NULL;
13990
13991 /* Loop through the extensions until we find a name. */
13992
13993 for (current_die = die;
13994 current_die != NULL;
13995 current_die = dwarf2_extension (die, &cu))
13996 {
13997 name = dwarf2_name (current_die, cu);
13998 if (name != NULL)
13999 break;
14000 }
14001
14002 /* Is it an anonymous namespace? */
14003
14004 *is_anonymous = (name == NULL);
14005 if (*is_anonymous)
14006 name = CP_ANONYMOUS_NAMESPACE_STR;
14007
14008 return name;
14009 }
14010
14011 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14012 the user defined type vector. */
14013
14014 static struct type *
14015 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14016 {
14017 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14018 struct comp_unit_head *cu_header = &cu->header;
14019 struct type *type;
14020 struct attribute *attr_byte_size;
14021 struct attribute *attr_address_class;
14022 int byte_size, addr_class;
14023 struct type *target_type;
14024
14025 target_type = die_type (die, cu);
14026
14027 /* The die_type call above may have already set the type for this DIE. */
14028 type = get_die_type (die, cu);
14029 if (type)
14030 return type;
14031
14032 type = lookup_pointer_type (target_type);
14033
14034 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14035 if (attr_byte_size)
14036 byte_size = DW_UNSND (attr_byte_size);
14037 else
14038 byte_size = cu_header->addr_size;
14039
14040 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14041 if (attr_address_class)
14042 addr_class = DW_UNSND (attr_address_class);
14043 else
14044 addr_class = DW_ADDR_none;
14045
14046 /* If the pointer size or address class is different than the
14047 default, create a type variant marked as such and set the
14048 length accordingly. */
14049 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14050 {
14051 if (gdbarch_address_class_type_flags_p (gdbarch))
14052 {
14053 int type_flags;
14054
14055 type_flags = gdbarch_address_class_type_flags
14056 (gdbarch, byte_size, addr_class);
14057 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14058 == 0);
14059 type = make_type_with_address_space (type, type_flags);
14060 }
14061 else if (TYPE_LENGTH (type) != byte_size)
14062 {
14063 complaint (&symfile_complaints,
14064 _("invalid pointer size %d"), byte_size);
14065 }
14066 else
14067 {
14068 /* Should we also complain about unhandled address classes? */
14069 }
14070 }
14071
14072 TYPE_LENGTH (type) = byte_size;
14073 return set_die_type (die, type, cu);
14074 }
14075
14076 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14077 the user defined type vector. */
14078
14079 static struct type *
14080 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14081 {
14082 struct type *type;
14083 struct type *to_type;
14084 struct type *domain;
14085
14086 to_type = die_type (die, cu);
14087 domain = die_containing_type (die, cu);
14088
14089 /* The calls above may have already set the type for this DIE. */
14090 type = get_die_type (die, cu);
14091 if (type)
14092 return type;
14093
14094 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14095 type = lookup_methodptr_type (to_type);
14096 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14097 {
14098 struct type *new_type = alloc_type (cu->objfile);
14099
14100 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14101 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14102 TYPE_VARARGS (to_type));
14103 type = lookup_methodptr_type (new_type);
14104 }
14105 else
14106 type = lookup_memberptr_type (to_type, domain);
14107
14108 return set_die_type (die, type, cu);
14109 }
14110
14111 /* Extract all information from a DW_TAG_reference_type DIE and add to
14112 the user defined type vector. */
14113
14114 static struct type *
14115 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14116 {
14117 struct comp_unit_head *cu_header = &cu->header;
14118 struct type *type, *target_type;
14119 struct attribute *attr;
14120
14121 target_type = die_type (die, cu);
14122
14123 /* The die_type call above may have already set the type for this DIE. */
14124 type = get_die_type (die, cu);
14125 if (type)
14126 return type;
14127
14128 type = lookup_reference_type (target_type);
14129 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14130 if (attr)
14131 {
14132 TYPE_LENGTH (type) = DW_UNSND (attr);
14133 }
14134 else
14135 {
14136 TYPE_LENGTH (type) = cu_header->addr_size;
14137 }
14138 return set_die_type (die, type, cu);
14139 }
14140
14141 /* Add the given cv-qualifiers to the element type of the array. GCC
14142 outputs DWARF type qualifiers that apply to an array, not the
14143 element type. But GDB relies on the array element type to carry
14144 the cv-qualifiers. This mimics section 6.7.3 of the C99
14145 specification. */
14146
14147 static struct type *
14148 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14149 struct type *base_type, int cnst, int voltl)
14150 {
14151 struct type *el_type, *inner_array;
14152
14153 base_type = copy_type (base_type);
14154 inner_array = base_type;
14155
14156 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14157 {
14158 TYPE_TARGET_TYPE (inner_array) =
14159 copy_type (TYPE_TARGET_TYPE (inner_array));
14160 inner_array = TYPE_TARGET_TYPE (inner_array);
14161 }
14162
14163 el_type = TYPE_TARGET_TYPE (inner_array);
14164 cnst |= TYPE_CONST (el_type);
14165 voltl |= TYPE_VOLATILE (el_type);
14166 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14167
14168 return set_die_type (die, base_type, cu);
14169 }
14170
14171 static struct type *
14172 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14173 {
14174 struct type *base_type, *cv_type;
14175
14176 base_type = die_type (die, cu);
14177
14178 /* The die_type call above may have already set the type for this DIE. */
14179 cv_type = get_die_type (die, cu);
14180 if (cv_type)
14181 return cv_type;
14182
14183 /* In case the const qualifier is applied to an array type, the element type
14184 is so qualified, not the array type (section 6.7.3 of C99). */
14185 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14186 return add_array_cv_type (die, cu, base_type, 1, 0);
14187
14188 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14189 return set_die_type (die, cv_type, cu);
14190 }
14191
14192 static struct type *
14193 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14194 {
14195 struct type *base_type, *cv_type;
14196
14197 base_type = die_type (die, cu);
14198
14199 /* The die_type call above may have already set the type for this DIE. */
14200 cv_type = get_die_type (die, cu);
14201 if (cv_type)
14202 return cv_type;
14203
14204 /* In case the volatile qualifier is applied to an array type, the
14205 element type is so qualified, not the array type (section 6.7.3
14206 of C99). */
14207 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14208 return add_array_cv_type (die, cu, base_type, 0, 1);
14209
14210 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14211 return set_die_type (die, cv_type, cu);
14212 }
14213
14214 /* Handle DW_TAG_restrict_type. */
14215
14216 static struct type *
14217 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14218 {
14219 struct type *base_type, *cv_type;
14220
14221 base_type = die_type (die, cu);
14222
14223 /* The die_type call above may have already set the type for this DIE. */
14224 cv_type = get_die_type (die, cu);
14225 if (cv_type)
14226 return cv_type;
14227
14228 cv_type = make_restrict_type (base_type);
14229 return set_die_type (die, cv_type, cu);
14230 }
14231
14232 /* Extract all information from a DW_TAG_string_type DIE and add to
14233 the user defined type vector. It isn't really a user defined type,
14234 but it behaves like one, with other DIE's using an AT_user_def_type
14235 attribute to reference it. */
14236
14237 static struct type *
14238 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14239 {
14240 struct objfile *objfile = cu->objfile;
14241 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14242 struct type *type, *range_type, *index_type, *char_type;
14243 struct attribute *attr;
14244 unsigned int length;
14245
14246 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14247 if (attr)
14248 {
14249 length = DW_UNSND (attr);
14250 }
14251 else
14252 {
14253 /* Check for the DW_AT_byte_size attribute. */
14254 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14255 if (attr)
14256 {
14257 length = DW_UNSND (attr);
14258 }
14259 else
14260 {
14261 length = 1;
14262 }
14263 }
14264
14265 index_type = objfile_type (objfile)->builtin_int;
14266 range_type = create_static_range_type (NULL, index_type, 1, length);
14267 char_type = language_string_char_type (cu->language_defn, gdbarch);
14268 type = create_string_type (NULL, char_type, range_type);
14269
14270 return set_die_type (die, type, cu);
14271 }
14272
14273 /* Assuming that DIE corresponds to a function, returns nonzero
14274 if the function is prototyped. */
14275
14276 static int
14277 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14278 {
14279 struct attribute *attr;
14280
14281 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14282 if (attr && (DW_UNSND (attr) != 0))
14283 return 1;
14284
14285 /* The DWARF standard implies that the DW_AT_prototyped attribute
14286 is only meaninful for C, but the concept also extends to other
14287 languages that allow unprototyped functions (Eg: Objective C).
14288 For all other languages, assume that functions are always
14289 prototyped. */
14290 if (cu->language != language_c
14291 && cu->language != language_objc
14292 && cu->language != language_opencl)
14293 return 1;
14294
14295 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14296 prototyped and unprototyped functions; default to prototyped,
14297 since that is more common in modern code (and RealView warns
14298 about unprototyped functions). */
14299 if (producer_is_realview (cu->producer))
14300 return 1;
14301
14302 return 0;
14303 }
14304
14305 /* Handle DIES due to C code like:
14306
14307 struct foo
14308 {
14309 int (*funcp)(int a, long l);
14310 int b;
14311 };
14312
14313 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14314
14315 static struct type *
14316 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14317 {
14318 struct objfile *objfile = cu->objfile;
14319 struct type *type; /* Type that this function returns. */
14320 struct type *ftype; /* Function that returns above type. */
14321 struct attribute *attr;
14322
14323 type = die_type (die, cu);
14324
14325 /* The die_type call above may have already set the type for this DIE. */
14326 ftype = get_die_type (die, cu);
14327 if (ftype)
14328 return ftype;
14329
14330 ftype = lookup_function_type (type);
14331
14332 if (prototyped_function_p (die, cu))
14333 TYPE_PROTOTYPED (ftype) = 1;
14334
14335 /* Store the calling convention in the type if it's available in
14336 the subroutine die. Otherwise set the calling convention to
14337 the default value DW_CC_normal. */
14338 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14339 if (attr)
14340 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14341 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14342 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14343 else
14344 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14345
14346 /* Record whether the function returns normally to its caller or not
14347 if the DWARF producer set that information. */
14348 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14349 if (attr && (DW_UNSND (attr) != 0))
14350 TYPE_NO_RETURN (ftype) = 1;
14351
14352 /* We need to add the subroutine type to the die immediately so
14353 we don't infinitely recurse when dealing with parameters
14354 declared as the same subroutine type. */
14355 set_die_type (die, ftype, cu);
14356
14357 if (die->child != NULL)
14358 {
14359 struct type *void_type = objfile_type (objfile)->builtin_void;
14360 struct die_info *child_die;
14361 int nparams, iparams;
14362
14363 /* Count the number of parameters.
14364 FIXME: GDB currently ignores vararg functions, but knows about
14365 vararg member functions. */
14366 nparams = 0;
14367 child_die = die->child;
14368 while (child_die && child_die->tag)
14369 {
14370 if (child_die->tag == DW_TAG_formal_parameter)
14371 nparams++;
14372 else if (child_die->tag == DW_TAG_unspecified_parameters)
14373 TYPE_VARARGS (ftype) = 1;
14374 child_die = sibling_die (child_die);
14375 }
14376
14377 /* Allocate storage for parameters and fill them in. */
14378 TYPE_NFIELDS (ftype) = nparams;
14379 TYPE_FIELDS (ftype) = (struct field *)
14380 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14381
14382 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14383 even if we error out during the parameters reading below. */
14384 for (iparams = 0; iparams < nparams; iparams++)
14385 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14386
14387 iparams = 0;
14388 child_die = die->child;
14389 while (child_die && child_die->tag)
14390 {
14391 if (child_die->tag == DW_TAG_formal_parameter)
14392 {
14393 struct type *arg_type;
14394
14395 /* DWARF version 2 has no clean way to discern C++
14396 static and non-static member functions. G++ helps
14397 GDB by marking the first parameter for non-static
14398 member functions (which is the this pointer) as
14399 artificial. We pass this information to
14400 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14401
14402 DWARF version 3 added DW_AT_object_pointer, which GCC
14403 4.5 does not yet generate. */
14404 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14405 if (attr)
14406 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14407 else
14408 {
14409 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14410
14411 /* GCC/43521: In java, the formal parameter
14412 "this" is sometimes not marked with DW_AT_artificial. */
14413 if (cu->language == language_java)
14414 {
14415 const char *name = dwarf2_name (child_die, cu);
14416
14417 if (name && !strcmp (name, "this"))
14418 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14419 }
14420 }
14421 arg_type = die_type (child_die, cu);
14422
14423 /* RealView does not mark THIS as const, which the testsuite
14424 expects. GCC marks THIS as const in method definitions,
14425 but not in the class specifications (GCC PR 43053). */
14426 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14427 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14428 {
14429 int is_this = 0;
14430 struct dwarf2_cu *arg_cu = cu;
14431 const char *name = dwarf2_name (child_die, cu);
14432
14433 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14434 if (attr)
14435 {
14436 /* If the compiler emits this, use it. */
14437 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14438 is_this = 1;
14439 }
14440 else if (name && strcmp (name, "this") == 0)
14441 /* Function definitions will have the argument names. */
14442 is_this = 1;
14443 else if (name == NULL && iparams == 0)
14444 /* Declarations may not have the names, so like
14445 elsewhere in GDB, assume an artificial first
14446 argument is "this". */
14447 is_this = 1;
14448
14449 if (is_this)
14450 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14451 arg_type, 0);
14452 }
14453
14454 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14455 iparams++;
14456 }
14457 child_die = sibling_die (child_die);
14458 }
14459 }
14460
14461 return ftype;
14462 }
14463
14464 static struct type *
14465 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14466 {
14467 struct objfile *objfile = cu->objfile;
14468 const char *name = NULL;
14469 struct type *this_type, *target_type;
14470
14471 name = dwarf2_full_name (NULL, die, cu);
14472 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14473 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14474 TYPE_NAME (this_type) = name;
14475 set_die_type (die, this_type, cu);
14476 target_type = die_type (die, cu);
14477 if (target_type != this_type)
14478 TYPE_TARGET_TYPE (this_type) = target_type;
14479 else
14480 {
14481 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14482 spec and cause infinite loops in GDB. */
14483 complaint (&symfile_complaints,
14484 _("Self-referential DW_TAG_typedef "
14485 "- DIE at 0x%x [in module %s]"),
14486 die->offset.sect_off, objfile_name (objfile));
14487 TYPE_TARGET_TYPE (this_type) = NULL;
14488 }
14489 return this_type;
14490 }
14491
14492 /* Find a representation of a given base type and install
14493 it in the TYPE field of the die. */
14494
14495 static struct type *
14496 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14497 {
14498 struct objfile *objfile = cu->objfile;
14499 struct type *type;
14500 struct attribute *attr;
14501 int encoding = 0, size = 0;
14502 const char *name;
14503 enum type_code code = TYPE_CODE_INT;
14504 int type_flags = 0;
14505 struct type *target_type = NULL;
14506
14507 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14508 if (attr)
14509 {
14510 encoding = DW_UNSND (attr);
14511 }
14512 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14513 if (attr)
14514 {
14515 size = DW_UNSND (attr);
14516 }
14517 name = dwarf2_name (die, cu);
14518 if (!name)
14519 {
14520 complaint (&symfile_complaints,
14521 _("DW_AT_name missing from DW_TAG_base_type"));
14522 }
14523
14524 switch (encoding)
14525 {
14526 case DW_ATE_address:
14527 /* Turn DW_ATE_address into a void * pointer. */
14528 code = TYPE_CODE_PTR;
14529 type_flags |= TYPE_FLAG_UNSIGNED;
14530 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14531 break;
14532 case DW_ATE_boolean:
14533 code = TYPE_CODE_BOOL;
14534 type_flags |= TYPE_FLAG_UNSIGNED;
14535 break;
14536 case DW_ATE_complex_float:
14537 code = TYPE_CODE_COMPLEX;
14538 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14539 break;
14540 case DW_ATE_decimal_float:
14541 code = TYPE_CODE_DECFLOAT;
14542 break;
14543 case DW_ATE_float:
14544 code = TYPE_CODE_FLT;
14545 break;
14546 case DW_ATE_signed:
14547 break;
14548 case DW_ATE_unsigned:
14549 type_flags |= TYPE_FLAG_UNSIGNED;
14550 if (cu->language == language_fortran
14551 && name
14552 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14553 code = TYPE_CODE_CHAR;
14554 break;
14555 case DW_ATE_signed_char:
14556 if (cu->language == language_ada || cu->language == language_m2
14557 || cu->language == language_pascal
14558 || cu->language == language_fortran)
14559 code = TYPE_CODE_CHAR;
14560 break;
14561 case DW_ATE_unsigned_char:
14562 if (cu->language == language_ada || cu->language == language_m2
14563 || cu->language == language_pascal
14564 || cu->language == language_fortran)
14565 code = TYPE_CODE_CHAR;
14566 type_flags |= TYPE_FLAG_UNSIGNED;
14567 break;
14568 case DW_ATE_UTF:
14569 /* We just treat this as an integer and then recognize the
14570 type by name elsewhere. */
14571 break;
14572
14573 default:
14574 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14575 dwarf_type_encoding_name (encoding));
14576 break;
14577 }
14578
14579 type = init_type (code, size, type_flags, NULL, objfile);
14580 TYPE_NAME (type) = name;
14581 TYPE_TARGET_TYPE (type) = target_type;
14582
14583 if (name && strcmp (name, "char") == 0)
14584 TYPE_NOSIGN (type) = 1;
14585
14586 return set_die_type (die, type, cu);
14587 }
14588
14589 /* Parse dwarf attribute if it's a block, reference or constant and put the
14590 resulting value of the attribute into struct bound_prop.
14591 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14592
14593 static int
14594 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14595 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14596 {
14597 struct dwarf2_property_baton *baton;
14598 struct obstack *obstack = &cu->objfile->objfile_obstack;
14599
14600 if (attr == NULL || prop == NULL)
14601 return 0;
14602
14603 if (attr_form_is_block (attr))
14604 {
14605 baton = obstack_alloc (obstack, sizeof (*baton));
14606 baton->referenced_type = NULL;
14607 baton->locexpr.per_cu = cu->per_cu;
14608 baton->locexpr.size = DW_BLOCK (attr)->size;
14609 baton->locexpr.data = DW_BLOCK (attr)->data;
14610 prop->data.baton = baton;
14611 prop->kind = PROP_LOCEXPR;
14612 gdb_assert (prop->data.baton != NULL);
14613 }
14614 else if (attr_form_is_ref (attr))
14615 {
14616 struct dwarf2_cu *target_cu = cu;
14617 struct die_info *target_die;
14618 struct attribute *target_attr;
14619
14620 target_die = follow_die_ref (die, attr, &target_cu);
14621 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14622 if (target_attr == NULL)
14623 return 0;
14624
14625 if (attr_form_is_section_offset (target_attr))
14626 {
14627 baton = obstack_alloc (obstack, sizeof (*baton));
14628 baton->referenced_type = die_type (target_die, target_cu);
14629 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14630 prop->data.baton = baton;
14631 prop->kind = PROP_LOCLIST;
14632 gdb_assert (prop->data.baton != NULL);
14633 }
14634 else if (attr_form_is_block (target_attr))
14635 {
14636 baton = obstack_alloc (obstack, sizeof (*baton));
14637 baton->referenced_type = die_type (target_die, target_cu);
14638 baton->locexpr.per_cu = cu->per_cu;
14639 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14640 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14641 prop->data.baton = baton;
14642 prop->kind = PROP_LOCEXPR;
14643 gdb_assert (prop->data.baton != NULL);
14644 }
14645 else
14646 {
14647 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14648 "dynamic property");
14649 return 0;
14650 }
14651 }
14652 else if (attr_form_is_constant (attr))
14653 {
14654 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14655 prop->kind = PROP_CONST;
14656 }
14657 else
14658 {
14659 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14660 dwarf2_name (die, cu));
14661 return 0;
14662 }
14663
14664 return 1;
14665 }
14666
14667 /* Read the given DW_AT_subrange DIE. */
14668
14669 static struct type *
14670 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14671 {
14672 struct type *base_type, *orig_base_type;
14673 struct type *range_type;
14674 struct attribute *attr;
14675 struct dynamic_prop low, high;
14676 int low_default_is_valid;
14677 int high_bound_is_count = 0;
14678 const char *name;
14679 LONGEST negative_mask;
14680
14681 orig_base_type = die_type (die, cu);
14682 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14683 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14684 creating the range type, but we use the result of check_typedef
14685 when examining properties of the type. */
14686 base_type = check_typedef (orig_base_type);
14687
14688 /* The die_type call above may have already set the type for this DIE. */
14689 range_type = get_die_type (die, cu);
14690 if (range_type)
14691 return range_type;
14692
14693 low.kind = PROP_CONST;
14694 high.kind = PROP_CONST;
14695 high.data.const_val = 0;
14696
14697 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14698 omitting DW_AT_lower_bound. */
14699 switch (cu->language)
14700 {
14701 case language_c:
14702 case language_cplus:
14703 low.data.const_val = 0;
14704 low_default_is_valid = 1;
14705 break;
14706 case language_fortran:
14707 low.data.const_val = 1;
14708 low_default_is_valid = 1;
14709 break;
14710 case language_d:
14711 case language_java:
14712 case language_objc:
14713 low.data.const_val = 0;
14714 low_default_is_valid = (cu->header.version >= 4);
14715 break;
14716 case language_ada:
14717 case language_m2:
14718 case language_pascal:
14719 low.data.const_val = 1;
14720 low_default_is_valid = (cu->header.version >= 4);
14721 break;
14722 default:
14723 low.data.const_val = 0;
14724 low_default_is_valid = 0;
14725 break;
14726 }
14727
14728 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14729 if (attr)
14730 attr_to_dynamic_prop (attr, die, cu, &low);
14731 else if (!low_default_is_valid)
14732 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14733 "- DIE at 0x%x [in module %s]"),
14734 die->offset.sect_off, objfile_name (cu->objfile));
14735
14736 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14737 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14738 {
14739 attr = dwarf2_attr (die, DW_AT_count, cu);
14740 if (attr_to_dynamic_prop (attr, die, cu, &high))
14741 {
14742 /* If bounds are constant do the final calculation here. */
14743 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14744 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14745 else
14746 high_bound_is_count = 1;
14747 }
14748 }
14749
14750 /* Dwarf-2 specifications explicitly allows to create subrange types
14751 without specifying a base type.
14752 In that case, the base type must be set to the type of
14753 the lower bound, upper bound or count, in that order, if any of these
14754 three attributes references an object that has a type.
14755 If no base type is found, the Dwarf-2 specifications say that
14756 a signed integer type of size equal to the size of an address should
14757 be used.
14758 For the following C code: `extern char gdb_int [];'
14759 GCC produces an empty range DIE.
14760 FIXME: muller/2010-05-28: Possible references to object for low bound,
14761 high bound or count are not yet handled by this code. */
14762 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14763 {
14764 struct objfile *objfile = cu->objfile;
14765 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14766 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14767 struct type *int_type = objfile_type (objfile)->builtin_int;
14768
14769 /* Test "int", "long int", and "long long int" objfile types,
14770 and select the first one having a size above or equal to the
14771 architecture address size. */
14772 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14773 base_type = int_type;
14774 else
14775 {
14776 int_type = objfile_type (objfile)->builtin_long;
14777 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14778 base_type = int_type;
14779 else
14780 {
14781 int_type = objfile_type (objfile)->builtin_long_long;
14782 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14783 base_type = int_type;
14784 }
14785 }
14786 }
14787
14788 /* Normally, the DWARF producers are expected to use a signed
14789 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14790 But this is unfortunately not always the case, as witnessed
14791 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14792 is used instead. To work around that ambiguity, we treat
14793 the bounds as signed, and thus sign-extend their values, when
14794 the base type is signed. */
14795 negative_mask =
14796 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14797 if (low.kind == PROP_CONST
14798 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14799 low.data.const_val |= negative_mask;
14800 if (high.kind == PROP_CONST
14801 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14802 high.data.const_val |= negative_mask;
14803
14804 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14805
14806 if (high_bound_is_count)
14807 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14808
14809 /* Ada expects an empty array on no boundary attributes. */
14810 if (attr == NULL && cu->language != language_ada)
14811 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14812
14813 name = dwarf2_name (die, cu);
14814 if (name)
14815 TYPE_NAME (range_type) = name;
14816
14817 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14818 if (attr)
14819 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14820
14821 set_die_type (die, range_type, cu);
14822
14823 /* set_die_type should be already done. */
14824 set_descriptive_type (range_type, die, cu);
14825
14826 return range_type;
14827 }
14828
14829 static struct type *
14830 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14831 {
14832 struct type *type;
14833
14834 /* For now, we only support the C meaning of an unspecified type: void. */
14835
14836 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14837 TYPE_NAME (type) = dwarf2_name (die, cu);
14838
14839 return set_die_type (die, type, cu);
14840 }
14841
14842 /* Read a single die and all its descendents. Set the die's sibling
14843 field to NULL; set other fields in the die correctly, and set all
14844 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14845 location of the info_ptr after reading all of those dies. PARENT
14846 is the parent of the die in question. */
14847
14848 static struct die_info *
14849 read_die_and_children (const struct die_reader_specs *reader,
14850 const gdb_byte *info_ptr,
14851 const gdb_byte **new_info_ptr,
14852 struct die_info *parent)
14853 {
14854 struct die_info *die;
14855 const gdb_byte *cur_ptr;
14856 int has_children;
14857
14858 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14859 if (die == NULL)
14860 {
14861 *new_info_ptr = cur_ptr;
14862 return NULL;
14863 }
14864 store_in_ref_table (die, reader->cu);
14865
14866 if (has_children)
14867 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14868 else
14869 {
14870 die->child = NULL;
14871 *new_info_ptr = cur_ptr;
14872 }
14873
14874 die->sibling = NULL;
14875 die->parent = parent;
14876 return die;
14877 }
14878
14879 /* Read a die, all of its descendents, and all of its siblings; set
14880 all of the fields of all of the dies correctly. Arguments are as
14881 in read_die_and_children. */
14882
14883 static struct die_info *
14884 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14885 const gdb_byte *info_ptr,
14886 const gdb_byte **new_info_ptr,
14887 struct die_info *parent)
14888 {
14889 struct die_info *first_die, *last_sibling;
14890 const gdb_byte *cur_ptr;
14891
14892 cur_ptr = info_ptr;
14893 first_die = last_sibling = NULL;
14894
14895 while (1)
14896 {
14897 struct die_info *die
14898 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14899
14900 if (die == NULL)
14901 {
14902 *new_info_ptr = cur_ptr;
14903 return first_die;
14904 }
14905
14906 if (!first_die)
14907 first_die = die;
14908 else
14909 last_sibling->sibling = die;
14910
14911 last_sibling = die;
14912 }
14913 }
14914
14915 /* Read a die, all of its descendents, and all of its siblings; set
14916 all of the fields of all of the dies correctly. Arguments are as
14917 in read_die_and_children.
14918 This the main entry point for reading a DIE and all its children. */
14919
14920 static struct die_info *
14921 read_die_and_siblings (const struct die_reader_specs *reader,
14922 const gdb_byte *info_ptr,
14923 const gdb_byte **new_info_ptr,
14924 struct die_info *parent)
14925 {
14926 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14927 new_info_ptr, parent);
14928
14929 if (dwarf2_die_debug)
14930 {
14931 fprintf_unfiltered (gdb_stdlog,
14932 "Read die from %s@0x%x of %s:\n",
14933 get_section_name (reader->die_section),
14934 (unsigned) (info_ptr - reader->die_section->buffer),
14935 bfd_get_filename (reader->abfd));
14936 dump_die (die, dwarf2_die_debug);
14937 }
14938
14939 return die;
14940 }
14941
14942 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14943 attributes.
14944 The caller is responsible for filling in the extra attributes
14945 and updating (*DIEP)->num_attrs.
14946 Set DIEP to point to a newly allocated die with its information,
14947 except for its child, sibling, and parent fields.
14948 Set HAS_CHILDREN to tell whether the die has children or not. */
14949
14950 static const gdb_byte *
14951 read_full_die_1 (const struct die_reader_specs *reader,
14952 struct die_info **diep, const gdb_byte *info_ptr,
14953 int *has_children, int num_extra_attrs)
14954 {
14955 unsigned int abbrev_number, bytes_read, i;
14956 sect_offset offset;
14957 struct abbrev_info *abbrev;
14958 struct die_info *die;
14959 struct dwarf2_cu *cu = reader->cu;
14960 bfd *abfd = reader->abfd;
14961
14962 offset.sect_off = info_ptr - reader->buffer;
14963 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14964 info_ptr += bytes_read;
14965 if (!abbrev_number)
14966 {
14967 *diep = NULL;
14968 *has_children = 0;
14969 return info_ptr;
14970 }
14971
14972 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14973 if (!abbrev)
14974 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14975 abbrev_number,
14976 bfd_get_filename (abfd));
14977
14978 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14979 die->offset = offset;
14980 die->tag = abbrev->tag;
14981 die->abbrev = abbrev_number;
14982
14983 /* Make the result usable.
14984 The caller needs to update num_attrs after adding the extra
14985 attributes. */
14986 die->num_attrs = abbrev->num_attrs;
14987
14988 for (i = 0; i < abbrev->num_attrs; ++i)
14989 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14990 info_ptr);
14991
14992 *diep = die;
14993 *has_children = abbrev->has_children;
14994 return info_ptr;
14995 }
14996
14997 /* Read a die and all its attributes.
14998 Set DIEP to point to a newly allocated die with its information,
14999 except for its child, sibling, and parent fields.
15000 Set HAS_CHILDREN to tell whether the die has children or not. */
15001
15002 static const gdb_byte *
15003 read_full_die (const struct die_reader_specs *reader,
15004 struct die_info **diep, const gdb_byte *info_ptr,
15005 int *has_children)
15006 {
15007 const gdb_byte *result;
15008
15009 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15010
15011 if (dwarf2_die_debug)
15012 {
15013 fprintf_unfiltered (gdb_stdlog,
15014 "Read die from %s@0x%x of %s:\n",
15015 get_section_name (reader->die_section),
15016 (unsigned) (info_ptr - reader->die_section->buffer),
15017 bfd_get_filename (reader->abfd));
15018 dump_die (*diep, dwarf2_die_debug);
15019 }
15020
15021 return result;
15022 }
15023 \f
15024 /* Abbreviation tables.
15025
15026 In DWARF version 2, the description of the debugging information is
15027 stored in a separate .debug_abbrev section. Before we read any
15028 dies from a section we read in all abbreviations and install them
15029 in a hash table. */
15030
15031 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15032
15033 static struct abbrev_info *
15034 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15035 {
15036 struct abbrev_info *abbrev;
15037
15038 abbrev = (struct abbrev_info *)
15039 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15040 memset (abbrev, 0, sizeof (struct abbrev_info));
15041 return abbrev;
15042 }
15043
15044 /* Add an abbreviation to the table. */
15045
15046 static void
15047 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15048 unsigned int abbrev_number,
15049 struct abbrev_info *abbrev)
15050 {
15051 unsigned int hash_number;
15052
15053 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15054 abbrev->next = abbrev_table->abbrevs[hash_number];
15055 abbrev_table->abbrevs[hash_number] = abbrev;
15056 }
15057
15058 /* Look up an abbrev in the table.
15059 Returns NULL if the abbrev is not found. */
15060
15061 static struct abbrev_info *
15062 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15063 unsigned int abbrev_number)
15064 {
15065 unsigned int hash_number;
15066 struct abbrev_info *abbrev;
15067
15068 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15069 abbrev = abbrev_table->abbrevs[hash_number];
15070
15071 while (abbrev)
15072 {
15073 if (abbrev->number == abbrev_number)
15074 return abbrev;
15075 abbrev = abbrev->next;
15076 }
15077 return NULL;
15078 }
15079
15080 /* Read in an abbrev table. */
15081
15082 static struct abbrev_table *
15083 abbrev_table_read_table (struct dwarf2_section_info *section,
15084 sect_offset offset)
15085 {
15086 struct objfile *objfile = dwarf2_per_objfile->objfile;
15087 bfd *abfd = get_section_bfd_owner (section);
15088 struct abbrev_table *abbrev_table;
15089 const gdb_byte *abbrev_ptr;
15090 struct abbrev_info *cur_abbrev;
15091 unsigned int abbrev_number, bytes_read, abbrev_name;
15092 unsigned int abbrev_form;
15093 struct attr_abbrev *cur_attrs;
15094 unsigned int allocated_attrs;
15095
15096 abbrev_table = XNEW (struct abbrev_table);
15097 abbrev_table->offset = offset;
15098 obstack_init (&abbrev_table->abbrev_obstack);
15099 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15100 (ABBREV_HASH_SIZE
15101 * sizeof (struct abbrev_info *)));
15102 memset (abbrev_table->abbrevs, 0,
15103 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15104
15105 dwarf2_read_section (objfile, section);
15106 abbrev_ptr = section->buffer + offset.sect_off;
15107 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15108 abbrev_ptr += bytes_read;
15109
15110 allocated_attrs = ATTR_ALLOC_CHUNK;
15111 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15112
15113 /* Loop until we reach an abbrev number of 0. */
15114 while (abbrev_number)
15115 {
15116 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15117
15118 /* read in abbrev header */
15119 cur_abbrev->number = abbrev_number;
15120 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15121 abbrev_ptr += bytes_read;
15122 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15123 abbrev_ptr += 1;
15124
15125 /* now read in declarations */
15126 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15127 abbrev_ptr += bytes_read;
15128 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15129 abbrev_ptr += bytes_read;
15130 while (abbrev_name)
15131 {
15132 if (cur_abbrev->num_attrs == allocated_attrs)
15133 {
15134 allocated_attrs += ATTR_ALLOC_CHUNK;
15135 cur_attrs
15136 = xrealloc (cur_attrs, (allocated_attrs
15137 * sizeof (struct attr_abbrev)));
15138 }
15139
15140 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15141 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15142 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15143 abbrev_ptr += bytes_read;
15144 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15145 abbrev_ptr += bytes_read;
15146 }
15147
15148 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15149 (cur_abbrev->num_attrs
15150 * sizeof (struct attr_abbrev)));
15151 memcpy (cur_abbrev->attrs, cur_attrs,
15152 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15153
15154 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15155
15156 /* Get next abbreviation.
15157 Under Irix6 the abbreviations for a compilation unit are not
15158 always properly terminated with an abbrev number of 0.
15159 Exit loop if we encounter an abbreviation which we have
15160 already read (which means we are about to read the abbreviations
15161 for the next compile unit) or if the end of the abbreviation
15162 table is reached. */
15163 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15164 break;
15165 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15166 abbrev_ptr += bytes_read;
15167 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15168 break;
15169 }
15170
15171 xfree (cur_attrs);
15172 return abbrev_table;
15173 }
15174
15175 /* Free the resources held by ABBREV_TABLE. */
15176
15177 static void
15178 abbrev_table_free (struct abbrev_table *abbrev_table)
15179 {
15180 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15181 xfree (abbrev_table);
15182 }
15183
15184 /* Same as abbrev_table_free but as a cleanup.
15185 We pass in a pointer to the pointer to the table so that we can
15186 set the pointer to NULL when we're done. It also simplifies
15187 build_type_psymtabs_1. */
15188
15189 static void
15190 abbrev_table_free_cleanup (void *table_ptr)
15191 {
15192 struct abbrev_table **abbrev_table_ptr = table_ptr;
15193
15194 if (*abbrev_table_ptr != NULL)
15195 abbrev_table_free (*abbrev_table_ptr);
15196 *abbrev_table_ptr = NULL;
15197 }
15198
15199 /* Read the abbrev table for CU from ABBREV_SECTION. */
15200
15201 static void
15202 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15203 struct dwarf2_section_info *abbrev_section)
15204 {
15205 cu->abbrev_table =
15206 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15207 }
15208
15209 /* Release the memory used by the abbrev table for a compilation unit. */
15210
15211 static void
15212 dwarf2_free_abbrev_table (void *ptr_to_cu)
15213 {
15214 struct dwarf2_cu *cu = ptr_to_cu;
15215
15216 if (cu->abbrev_table != NULL)
15217 abbrev_table_free (cu->abbrev_table);
15218 /* Set this to NULL so that we SEGV if we try to read it later,
15219 and also because free_comp_unit verifies this is NULL. */
15220 cu->abbrev_table = NULL;
15221 }
15222 \f
15223 /* Returns nonzero if TAG represents a type that we might generate a partial
15224 symbol for. */
15225
15226 static int
15227 is_type_tag_for_partial (int tag)
15228 {
15229 switch (tag)
15230 {
15231 #if 0
15232 /* Some types that would be reasonable to generate partial symbols for,
15233 that we don't at present. */
15234 case DW_TAG_array_type:
15235 case DW_TAG_file_type:
15236 case DW_TAG_ptr_to_member_type:
15237 case DW_TAG_set_type:
15238 case DW_TAG_string_type:
15239 case DW_TAG_subroutine_type:
15240 #endif
15241 case DW_TAG_base_type:
15242 case DW_TAG_class_type:
15243 case DW_TAG_interface_type:
15244 case DW_TAG_enumeration_type:
15245 case DW_TAG_structure_type:
15246 case DW_TAG_subrange_type:
15247 case DW_TAG_typedef:
15248 case DW_TAG_union_type:
15249 return 1;
15250 default:
15251 return 0;
15252 }
15253 }
15254
15255 /* Load all DIEs that are interesting for partial symbols into memory. */
15256
15257 static struct partial_die_info *
15258 load_partial_dies (const struct die_reader_specs *reader,
15259 const gdb_byte *info_ptr, int building_psymtab)
15260 {
15261 struct dwarf2_cu *cu = reader->cu;
15262 struct objfile *objfile = cu->objfile;
15263 struct partial_die_info *part_die;
15264 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15265 struct abbrev_info *abbrev;
15266 unsigned int bytes_read;
15267 unsigned int load_all = 0;
15268 int nesting_level = 1;
15269
15270 parent_die = NULL;
15271 last_die = NULL;
15272
15273 gdb_assert (cu->per_cu != NULL);
15274 if (cu->per_cu->load_all_dies)
15275 load_all = 1;
15276
15277 cu->partial_dies
15278 = htab_create_alloc_ex (cu->header.length / 12,
15279 partial_die_hash,
15280 partial_die_eq,
15281 NULL,
15282 &cu->comp_unit_obstack,
15283 hashtab_obstack_allocate,
15284 dummy_obstack_deallocate);
15285
15286 part_die = obstack_alloc (&cu->comp_unit_obstack,
15287 sizeof (struct partial_die_info));
15288
15289 while (1)
15290 {
15291 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15292
15293 /* A NULL abbrev means the end of a series of children. */
15294 if (abbrev == NULL)
15295 {
15296 if (--nesting_level == 0)
15297 {
15298 /* PART_DIE was probably the last thing allocated on the
15299 comp_unit_obstack, so we could call obstack_free
15300 here. We don't do that because the waste is small,
15301 and will be cleaned up when we're done with this
15302 compilation unit. This way, we're also more robust
15303 against other users of the comp_unit_obstack. */
15304 return first_die;
15305 }
15306 info_ptr += bytes_read;
15307 last_die = parent_die;
15308 parent_die = parent_die->die_parent;
15309 continue;
15310 }
15311
15312 /* Check for template arguments. We never save these; if
15313 they're seen, we just mark the parent, and go on our way. */
15314 if (parent_die != NULL
15315 && cu->language == language_cplus
15316 && (abbrev->tag == DW_TAG_template_type_param
15317 || abbrev->tag == DW_TAG_template_value_param))
15318 {
15319 parent_die->has_template_arguments = 1;
15320
15321 if (!load_all)
15322 {
15323 /* We don't need a partial DIE for the template argument. */
15324 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15325 continue;
15326 }
15327 }
15328
15329 /* We only recurse into c++ subprograms looking for template arguments.
15330 Skip their other children. */
15331 if (!load_all
15332 && cu->language == language_cplus
15333 && parent_die != NULL
15334 && parent_die->tag == DW_TAG_subprogram)
15335 {
15336 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15337 continue;
15338 }
15339
15340 /* Check whether this DIE is interesting enough to save. Normally
15341 we would not be interested in members here, but there may be
15342 later variables referencing them via DW_AT_specification (for
15343 static members). */
15344 if (!load_all
15345 && !is_type_tag_for_partial (abbrev->tag)
15346 && abbrev->tag != DW_TAG_constant
15347 && abbrev->tag != DW_TAG_enumerator
15348 && abbrev->tag != DW_TAG_subprogram
15349 && abbrev->tag != DW_TAG_lexical_block
15350 && abbrev->tag != DW_TAG_variable
15351 && abbrev->tag != DW_TAG_namespace
15352 && abbrev->tag != DW_TAG_module
15353 && abbrev->tag != DW_TAG_member
15354 && abbrev->tag != DW_TAG_imported_unit
15355 && abbrev->tag != DW_TAG_imported_declaration)
15356 {
15357 /* Otherwise we skip to the next sibling, if any. */
15358 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15359 continue;
15360 }
15361
15362 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15363 info_ptr);
15364
15365 /* This two-pass algorithm for processing partial symbols has a
15366 high cost in cache pressure. Thus, handle some simple cases
15367 here which cover the majority of C partial symbols. DIEs
15368 which neither have specification tags in them, nor could have
15369 specification tags elsewhere pointing at them, can simply be
15370 processed and discarded.
15371
15372 This segment is also optional; scan_partial_symbols and
15373 add_partial_symbol will handle these DIEs if we chain
15374 them in normally. When compilers which do not emit large
15375 quantities of duplicate debug information are more common,
15376 this code can probably be removed. */
15377
15378 /* Any complete simple types at the top level (pretty much all
15379 of them, for a language without namespaces), can be processed
15380 directly. */
15381 if (parent_die == NULL
15382 && part_die->has_specification == 0
15383 && part_die->is_declaration == 0
15384 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15385 || part_die->tag == DW_TAG_base_type
15386 || part_die->tag == DW_TAG_subrange_type))
15387 {
15388 if (building_psymtab && part_die->name != NULL)
15389 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15390 VAR_DOMAIN, LOC_TYPEDEF,
15391 &objfile->static_psymbols,
15392 0, (CORE_ADDR) 0, cu->language, objfile);
15393 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15394 continue;
15395 }
15396
15397 /* The exception for DW_TAG_typedef with has_children above is
15398 a workaround of GCC PR debug/47510. In the case of this complaint
15399 type_name_no_tag_or_error will error on such types later.
15400
15401 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15402 it could not find the child DIEs referenced later, this is checked
15403 above. In correct DWARF DW_TAG_typedef should have no children. */
15404
15405 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15406 complaint (&symfile_complaints,
15407 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15408 "- DIE at 0x%x [in module %s]"),
15409 part_die->offset.sect_off, objfile_name (objfile));
15410
15411 /* If we're at the second level, and we're an enumerator, and
15412 our parent has no specification (meaning possibly lives in a
15413 namespace elsewhere), then we can add the partial symbol now
15414 instead of queueing it. */
15415 if (part_die->tag == DW_TAG_enumerator
15416 && parent_die != NULL
15417 && parent_die->die_parent == NULL
15418 && parent_die->tag == DW_TAG_enumeration_type
15419 && parent_die->has_specification == 0)
15420 {
15421 if (part_die->name == NULL)
15422 complaint (&symfile_complaints,
15423 _("malformed enumerator DIE ignored"));
15424 else if (building_psymtab)
15425 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15426 VAR_DOMAIN, LOC_CONST,
15427 (cu->language == language_cplus
15428 || cu->language == language_java)
15429 ? &objfile->global_psymbols
15430 : &objfile->static_psymbols,
15431 0, (CORE_ADDR) 0, cu->language, objfile);
15432
15433 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15434 continue;
15435 }
15436
15437 /* We'll save this DIE so link it in. */
15438 part_die->die_parent = parent_die;
15439 part_die->die_sibling = NULL;
15440 part_die->die_child = NULL;
15441
15442 if (last_die && last_die == parent_die)
15443 last_die->die_child = part_die;
15444 else if (last_die)
15445 last_die->die_sibling = part_die;
15446
15447 last_die = part_die;
15448
15449 if (first_die == NULL)
15450 first_die = part_die;
15451
15452 /* Maybe add the DIE to the hash table. Not all DIEs that we
15453 find interesting need to be in the hash table, because we
15454 also have the parent/sibling/child chains; only those that we
15455 might refer to by offset later during partial symbol reading.
15456
15457 For now this means things that might have be the target of a
15458 DW_AT_specification, DW_AT_abstract_origin, or
15459 DW_AT_extension. DW_AT_extension will refer only to
15460 namespaces; DW_AT_abstract_origin refers to functions (and
15461 many things under the function DIE, but we do not recurse
15462 into function DIEs during partial symbol reading) and
15463 possibly variables as well; DW_AT_specification refers to
15464 declarations. Declarations ought to have the DW_AT_declaration
15465 flag. It happens that GCC forgets to put it in sometimes, but
15466 only for functions, not for types.
15467
15468 Adding more things than necessary to the hash table is harmless
15469 except for the performance cost. Adding too few will result in
15470 wasted time in find_partial_die, when we reread the compilation
15471 unit with load_all_dies set. */
15472
15473 if (load_all
15474 || abbrev->tag == DW_TAG_constant
15475 || abbrev->tag == DW_TAG_subprogram
15476 || abbrev->tag == DW_TAG_variable
15477 || abbrev->tag == DW_TAG_namespace
15478 || part_die->is_declaration)
15479 {
15480 void **slot;
15481
15482 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15483 part_die->offset.sect_off, INSERT);
15484 *slot = part_die;
15485 }
15486
15487 part_die = obstack_alloc (&cu->comp_unit_obstack,
15488 sizeof (struct partial_die_info));
15489
15490 /* For some DIEs we want to follow their children (if any). For C
15491 we have no reason to follow the children of structures; for other
15492 languages we have to, so that we can get at method physnames
15493 to infer fully qualified class names, for DW_AT_specification,
15494 and for C++ template arguments. For C++, we also look one level
15495 inside functions to find template arguments (if the name of the
15496 function does not already contain the template arguments).
15497
15498 For Ada, we need to scan the children of subprograms and lexical
15499 blocks as well because Ada allows the definition of nested
15500 entities that could be interesting for the debugger, such as
15501 nested subprograms for instance. */
15502 if (last_die->has_children
15503 && (load_all
15504 || last_die->tag == DW_TAG_namespace
15505 || last_die->tag == DW_TAG_module
15506 || last_die->tag == DW_TAG_enumeration_type
15507 || (cu->language == language_cplus
15508 && last_die->tag == DW_TAG_subprogram
15509 && (last_die->name == NULL
15510 || strchr (last_die->name, '<') == NULL))
15511 || (cu->language != language_c
15512 && (last_die->tag == DW_TAG_class_type
15513 || last_die->tag == DW_TAG_interface_type
15514 || last_die->tag == DW_TAG_structure_type
15515 || last_die->tag == DW_TAG_union_type))
15516 || (cu->language == language_ada
15517 && (last_die->tag == DW_TAG_subprogram
15518 || last_die->tag == DW_TAG_lexical_block))))
15519 {
15520 nesting_level++;
15521 parent_die = last_die;
15522 continue;
15523 }
15524
15525 /* Otherwise we skip to the next sibling, if any. */
15526 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15527
15528 /* Back to the top, do it again. */
15529 }
15530 }
15531
15532 /* Read a minimal amount of information into the minimal die structure. */
15533
15534 static const gdb_byte *
15535 read_partial_die (const struct die_reader_specs *reader,
15536 struct partial_die_info *part_die,
15537 struct abbrev_info *abbrev, unsigned int abbrev_len,
15538 const gdb_byte *info_ptr)
15539 {
15540 struct dwarf2_cu *cu = reader->cu;
15541 struct objfile *objfile = cu->objfile;
15542 const gdb_byte *buffer = reader->buffer;
15543 unsigned int i;
15544 struct attribute attr;
15545 int has_low_pc_attr = 0;
15546 int has_high_pc_attr = 0;
15547 int high_pc_relative = 0;
15548
15549 memset (part_die, 0, sizeof (struct partial_die_info));
15550
15551 part_die->offset.sect_off = info_ptr - buffer;
15552
15553 info_ptr += abbrev_len;
15554
15555 if (abbrev == NULL)
15556 return info_ptr;
15557
15558 part_die->tag = abbrev->tag;
15559 part_die->has_children = abbrev->has_children;
15560
15561 for (i = 0; i < abbrev->num_attrs; ++i)
15562 {
15563 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15564
15565 /* Store the data if it is of an attribute we want to keep in a
15566 partial symbol table. */
15567 switch (attr.name)
15568 {
15569 case DW_AT_name:
15570 switch (part_die->tag)
15571 {
15572 case DW_TAG_compile_unit:
15573 case DW_TAG_partial_unit:
15574 case DW_TAG_type_unit:
15575 /* Compilation units have a DW_AT_name that is a filename, not
15576 a source language identifier. */
15577 case DW_TAG_enumeration_type:
15578 case DW_TAG_enumerator:
15579 /* These tags always have simple identifiers already; no need
15580 to canonicalize them. */
15581 part_die->name = DW_STRING (&attr);
15582 break;
15583 default:
15584 part_die->name
15585 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15586 &objfile->per_bfd->storage_obstack);
15587 break;
15588 }
15589 break;
15590 case DW_AT_linkage_name:
15591 case DW_AT_MIPS_linkage_name:
15592 /* Note that both forms of linkage name might appear. We
15593 assume they will be the same, and we only store the last
15594 one we see. */
15595 if (cu->language == language_ada)
15596 part_die->name = DW_STRING (&attr);
15597 part_die->linkage_name = DW_STRING (&attr);
15598 break;
15599 case DW_AT_low_pc:
15600 has_low_pc_attr = 1;
15601 part_die->lowpc = attr_value_as_address (&attr);
15602 break;
15603 case DW_AT_high_pc:
15604 has_high_pc_attr = 1;
15605 part_die->highpc = attr_value_as_address (&attr);
15606 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15607 high_pc_relative = 1;
15608 break;
15609 case DW_AT_location:
15610 /* Support the .debug_loc offsets. */
15611 if (attr_form_is_block (&attr))
15612 {
15613 part_die->d.locdesc = DW_BLOCK (&attr);
15614 }
15615 else if (attr_form_is_section_offset (&attr))
15616 {
15617 dwarf2_complex_location_expr_complaint ();
15618 }
15619 else
15620 {
15621 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15622 "partial symbol information");
15623 }
15624 break;
15625 case DW_AT_external:
15626 part_die->is_external = DW_UNSND (&attr);
15627 break;
15628 case DW_AT_declaration:
15629 part_die->is_declaration = DW_UNSND (&attr);
15630 break;
15631 case DW_AT_type:
15632 part_die->has_type = 1;
15633 break;
15634 case DW_AT_abstract_origin:
15635 case DW_AT_specification:
15636 case DW_AT_extension:
15637 part_die->has_specification = 1;
15638 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15639 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15640 || cu->per_cu->is_dwz);
15641 break;
15642 case DW_AT_sibling:
15643 /* Ignore absolute siblings, they might point outside of
15644 the current compile unit. */
15645 if (attr.form == DW_FORM_ref_addr)
15646 complaint (&symfile_complaints,
15647 _("ignoring absolute DW_AT_sibling"));
15648 else
15649 {
15650 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15651 const gdb_byte *sibling_ptr = buffer + off;
15652
15653 if (sibling_ptr < info_ptr)
15654 complaint (&symfile_complaints,
15655 _("DW_AT_sibling points backwards"));
15656 else if (sibling_ptr > reader->buffer_end)
15657 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15658 else
15659 part_die->sibling = sibling_ptr;
15660 }
15661 break;
15662 case DW_AT_byte_size:
15663 part_die->has_byte_size = 1;
15664 break;
15665 case DW_AT_calling_convention:
15666 /* DWARF doesn't provide a way to identify a program's source-level
15667 entry point. DW_AT_calling_convention attributes are only meant
15668 to describe functions' calling conventions.
15669
15670 However, because it's a necessary piece of information in
15671 Fortran, and because DW_CC_program is the only piece of debugging
15672 information whose definition refers to a 'main program' at all,
15673 several compilers have begun marking Fortran main programs with
15674 DW_CC_program --- even when those functions use the standard
15675 calling conventions.
15676
15677 So until DWARF specifies a way to provide this information and
15678 compilers pick up the new representation, we'll support this
15679 practice. */
15680 if (DW_UNSND (&attr) == DW_CC_program
15681 && cu->language == language_fortran)
15682 set_objfile_main_name (objfile, part_die->name, language_fortran);
15683 break;
15684 case DW_AT_inline:
15685 if (DW_UNSND (&attr) == DW_INL_inlined
15686 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15687 part_die->may_be_inlined = 1;
15688 break;
15689
15690 case DW_AT_import:
15691 if (part_die->tag == DW_TAG_imported_unit)
15692 {
15693 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15694 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15695 || cu->per_cu->is_dwz);
15696 }
15697 break;
15698
15699 default:
15700 break;
15701 }
15702 }
15703
15704 if (high_pc_relative)
15705 part_die->highpc += part_die->lowpc;
15706
15707 if (has_low_pc_attr && has_high_pc_attr)
15708 {
15709 /* When using the GNU linker, .gnu.linkonce. sections are used to
15710 eliminate duplicate copies of functions and vtables and such.
15711 The linker will arbitrarily choose one and discard the others.
15712 The AT_*_pc values for such functions refer to local labels in
15713 these sections. If the section from that file was discarded, the
15714 labels are not in the output, so the relocs get a value of 0.
15715 If this is a discarded function, mark the pc bounds as invalid,
15716 so that GDB will ignore it. */
15717 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15718 {
15719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15720
15721 complaint (&symfile_complaints,
15722 _("DW_AT_low_pc %s is zero "
15723 "for DIE at 0x%x [in module %s]"),
15724 paddress (gdbarch, part_die->lowpc),
15725 part_die->offset.sect_off, objfile_name (objfile));
15726 }
15727 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15728 else if (part_die->lowpc >= part_die->highpc)
15729 {
15730 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15731
15732 complaint (&symfile_complaints,
15733 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15734 "for DIE at 0x%x [in module %s]"),
15735 paddress (gdbarch, part_die->lowpc),
15736 paddress (gdbarch, part_die->highpc),
15737 part_die->offset.sect_off, objfile_name (objfile));
15738 }
15739 else
15740 part_die->has_pc_info = 1;
15741 }
15742
15743 return info_ptr;
15744 }
15745
15746 /* Find a cached partial DIE at OFFSET in CU. */
15747
15748 static struct partial_die_info *
15749 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15750 {
15751 struct partial_die_info *lookup_die = NULL;
15752 struct partial_die_info part_die;
15753
15754 part_die.offset = offset;
15755 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15756 offset.sect_off);
15757
15758 return lookup_die;
15759 }
15760
15761 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15762 except in the case of .debug_types DIEs which do not reference
15763 outside their CU (they do however referencing other types via
15764 DW_FORM_ref_sig8). */
15765
15766 static struct partial_die_info *
15767 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15768 {
15769 struct objfile *objfile = cu->objfile;
15770 struct dwarf2_per_cu_data *per_cu = NULL;
15771 struct partial_die_info *pd = NULL;
15772
15773 if (offset_in_dwz == cu->per_cu->is_dwz
15774 && offset_in_cu_p (&cu->header, offset))
15775 {
15776 pd = find_partial_die_in_comp_unit (offset, cu);
15777 if (pd != NULL)
15778 return pd;
15779 /* We missed recording what we needed.
15780 Load all dies and try again. */
15781 per_cu = cu->per_cu;
15782 }
15783 else
15784 {
15785 /* TUs don't reference other CUs/TUs (except via type signatures). */
15786 if (cu->per_cu->is_debug_types)
15787 {
15788 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15789 " external reference to offset 0x%lx [in module %s].\n"),
15790 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15791 bfd_get_filename (objfile->obfd));
15792 }
15793 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15794 objfile);
15795
15796 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15797 load_partial_comp_unit (per_cu);
15798
15799 per_cu->cu->last_used = 0;
15800 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15801 }
15802
15803 /* If we didn't find it, and not all dies have been loaded,
15804 load them all and try again. */
15805
15806 if (pd == NULL && per_cu->load_all_dies == 0)
15807 {
15808 per_cu->load_all_dies = 1;
15809
15810 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15811 THIS_CU->cu may already be in use. So we can't just free it and
15812 replace its DIEs with the ones we read in. Instead, we leave those
15813 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15814 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15815 set. */
15816 load_partial_comp_unit (per_cu);
15817
15818 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15819 }
15820
15821 if (pd == NULL)
15822 internal_error (__FILE__, __LINE__,
15823 _("could not find partial DIE 0x%x "
15824 "in cache [from module %s]\n"),
15825 offset.sect_off, bfd_get_filename (objfile->obfd));
15826 return pd;
15827 }
15828
15829 /* See if we can figure out if the class lives in a namespace. We do
15830 this by looking for a member function; its demangled name will
15831 contain namespace info, if there is any. */
15832
15833 static void
15834 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15835 struct dwarf2_cu *cu)
15836 {
15837 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15838 what template types look like, because the demangler
15839 frequently doesn't give the same name as the debug info. We
15840 could fix this by only using the demangled name to get the
15841 prefix (but see comment in read_structure_type). */
15842
15843 struct partial_die_info *real_pdi;
15844 struct partial_die_info *child_pdi;
15845
15846 /* If this DIE (this DIE's specification, if any) has a parent, then
15847 we should not do this. We'll prepend the parent's fully qualified
15848 name when we create the partial symbol. */
15849
15850 real_pdi = struct_pdi;
15851 while (real_pdi->has_specification)
15852 real_pdi = find_partial_die (real_pdi->spec_offset,
15853 real_pdi->spec_is_dwz, cu);
15854
15855 if (real_pdi->die_parent != NULL)
15856 return;
15857
15858 for (child_pdi = struct_pdi->die_child;
15859 child_pdi != NULL;
15860 child_pdi = child_pdi->die_sibling)
15861 {
15862 if (child_pdi->tag == DW_TAG_subprogram
15863 && child_pdi->linkage_name != NULL)
15864 {
15865 char *actual_class_name
15866 = language_class_name_from_physname (cu->language_defn,
15867 child_pdi->linkage_name);
15868 if (actual_class_name != NULL)
15869 {
15870 struct_pdi->name
15871 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15872 actual_class_name,
15873 strlen (actual_class_name));
15874 xfree (actual_class_name);
15875 }
15876 break;
15877 }
15878 }
15879 }
15880
15881 /* Adjust PART_DIE before generating a symbol for it. This function
15882 may set the is_external flag or change the DIE's name. */
15883
15884 static void
15885 fixup_partial_die (struct partial_die_info *part_die,
15886 struct dwarf2_cu *cu)
15887 {
15888 /* Once we've fixed up a die, there's no point in doing so again.
15889 This also avoids a memory leak if we were to call
15890 guess_partial_die_structure_name multiple times. */
15891 if (part_die->fixup_called)
15892 return;
15893
15894 /* If we found a reference attribute and the DIE has no name, try
15895 to find a name in the referred to DIE. */
15896
15897 if (part_die->name == NULL && part_die->has_specification)
15898 {
15899 struct partial_die_info *spec_die;
15900
15901 spec_die = find_partial_die (part_die->spec_offset,
15902 part_die->spec_is_dwz, cu);
15903
15904 fixup_partial_die (spec_die, cu);
15905
15906 if (spec_die->name)
15907 {
15908 part_die->name = spec_die->name;
15909
15910 /* Copy DW_AT_external attribute if it is set. */
15911 if (spec_die->is_external)
15912 part_die->is_external = spec_die->is_external;
15913 }
15914 }
15915
15916 /* Set default names for some unnamed DIEs. */
15917
15918 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15919 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15920
15921 /* If there is no parent die to provide a namespace, and there are
15922 children, see if we can determine the namespace from their linkage
15923 name. */
15924 if (cu->language == language_cplus
15925 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15926 && part_die->die_parent == NULL
15927 && part_die->has_children
15928 && (part_die->tag == DW_TAG_class_type
15929 || part_die->tag == DW_TAG_structure_type
15930 || part_die->tag == DW_TAG_union_type))
15931 guess_partial_die_structure_name (part_die, cu);
15932
15933 /* GCC might emit a nameless struct or union that has a linkage
15934 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15935 if (part_die->name == NULL
15936 && (part_die->tag == DW_TAG_class_type
15937 || part_die->tag == DW_TAG_interface_type
15938 || part_die->tag == DW_TAG_structure_type
15939 || part_die->tag == DW_TAG_union_type)
15940 && part_die->linkage_name != NULL)
15941 {
15942 char *demangled;
15943
15944 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15945 if (demangled)
15946 {
15947 const char *base;
15948
15949 /* Strip any leading namespaces/classes, keep only the base name.
15950 DW_AT_name for named DIEs does not contain the prefixes. */
15951 base = strrchr (demangled, ':');
15952 if (base && base > demangled && base[-1] == ':')
15953 base++;
15954 else
15955 base = demangled;
15956
15957 part_die->name
15958 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15959 base, strlen (base));
15960 xfree (demangled);
15961 }
15962 }
15963
15964 part_die->fixup_called = 1;
15965 }
15966
15967 /* Read an attribute value described by an attribute form. */
15968
15969 static const gdb_byte *
15970 read_attribute_value (const struct die_reader_specs *reader,
15971 struct attribute *attr, unsigned form,
15972 const gdb_byte *info_ptr)
15973 {
15974 struct dwarf2_cu *cu = reader->cu;
15975 struct objfile *objfile = cu->objfile;
15976 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15977 bfd *abfd = reader->abfd;
15978 struct comp_unit_head *cu_header = &cu->header;
15979 unsigned int bytes_read;
15980 struct dwarf_block *blk;
15981
15982 attr->form = form;
15983 switch (form)
15984 {
15985 case DW_FORM_ref_addr:
15986 if (cu->header.version == 2)
15987 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15988 else
15989 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15990 &cu->header, &bytes_read);
15991 info_ptr += bytes_read;
15992 break;
15993 case DW_FORM_GNU_ref_alt:
15994 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15995 info_ptr += bytes_read;
15996 break;
15997 case DW_FORM_addr:
15998 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15999 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16000 info_ptr += bytes_read;
16001 break;
16002 case DW_FORM_block2:
16003 blk = dwarf_alloc_block (cu);
16004 blk->size = read_2_bytes (abfd, info_ptr);
16005 info_ptr += 2;
16006 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16007 info_ptr += blk->size;
16008 DW_BLOCK (attr) = blk;
16009 break;
16010 case DW_FORM_block4:
16011 blk = dwarf_alloc_block (cu);
16012 blk->size = read_4_bytes (abfd, info_ptr);
16013 info_ptr += 4;
16014 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16015 info_ptr += blk->size;
16016 DW_BLOCK (attr) = blk;
16017 break;
16018 case DW_FORM_data2:
16019 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16020 info_ptr += 2;
16021 break;
16022 case DW_FORM_data4:
16023 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16024 info_ptr += 4;
16025 break;
16026 case DW_FORM_data8:
16027 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16028 info_ptr += 8;
16029 break;
16030 case DW_FORM_sec_offset:
16031 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16032 info_ptr += bytes_read;
16033 break;
16034 case DW_FORM_string:
16035 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16036 DW_STRING_IS_CANONICAL (attr) = 0;
16037 info_ptr += bytes_read;
16038 break;
16039 case DW_FORM_strp:
16040 if (!cu->per_cu->is_dwz)
16041 {
16042 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16043 &bytes_read);
16044 DW_STRING_IS_CANONICAL (attr) = 0;
16045 info_ptr += bytes_read;
16046 break;
16047 }
16048 /* FALLTHROUGH */
16049 case DW_FORM_GNU_strp_alt:
16050 {
16051 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16052 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16053 &bytes_read);
16054
16055 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16056 DW_STRING_IS_CANONICAL (attr) = 0;
16057 info_ptr += bytes_read;
16058 }
16059 break;
16060 case DW_FORM_exprloc:
16061 case DW_FORM_block:
16062 blk = dwarf_alloc_block (cu);
16063 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16064 info_ptr += bytes_read;
16065 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16066 info_ptr += blk->size;
16067 DW_BLOCK (attr) = blk;
16068 break;
16069 case DW_FORM_block1:
16070 blk = dwarf_alloc_block (cu);
16071 blk->size = read_1_byte (abfd, info_ptr);
16072 info_ptr += 1;
16073 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16074 info_ptr += blk->size;
16075 DW_BLOCK (attr) = blk;
16076 break;
16077 case DW_FORM_data1:
16078 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16079 info_ptr += 1;
16080 break;
16081 case DW_FORM_flag:
16082 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16083 info_ptr += 1;
16084 break;
16085 case DW_FORM_flag_present:
16086 DW_UNSND (attr) = 1;
16087 break;
16088 case DW_FORM_sdata:
16089 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16090 info_ptr += bytes_read;
16091 break;
16092 case DW_FORM_udata:
16093 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16094 info_ptr += bytes_read;
16095 break;
16096 case DW_FORM_ref1:
16097 DW_UNSND (attr) = (cu->header.offset.sect_off
16098 + read_1_byte (abfd, info_ptr));
16099 info_ptr += 1;
16100 break;
16101 case DW_FORM_ref2:
16102 DW_UNSND (attr) = (cu->header.offset.sect_off
16103 + read_2_bytes (abfd, info_ptr));
16104 info_ptr += 2;
16105 break;
16106 case DW_FORM_ref4:
16107 DW_UNSND (attr) = (cu->header.offset.sect_off
16108 + read_4_bytes (abfd, info_ptr));
16109 info_ptr += 4;
16110 break;
16111 case DW_FORM_ref8:
16112 DW_UNSND (attr) = (cu->header.offset.sect_off
16113 + read_8_bytes (abfd, info_ptr));
16114 info_ptr += 8;
16115 break;
16116 case DW_FORM_ref_sig8:
16117 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16118 info_ptr += 8;
16119 break;
16120 case DW_FORM_ref_udata:
16121 DW_UNSND (attr) = (cu->header.offset.sect_off
16122 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16123 info_ptr += bytes_read;
16124 break;
16125 case DW_FORM_indirect:
16126 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16127 info_ptr += bytes_read;
16128 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16129 break;
16130 case DW_FORM_GNU_addr_index:
16131 if (reader->dwo_file == NULL)
16132 {
16133 /* For now flag a hard error.
16134 Later we can turn this into a complaint. */
16135 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16136 dwarf_form_name (form),
16137 bfd_get_filename (abfd));
16138 }
16139 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16140 info_ptr += bytes_read;
16141 break;
16142 case DW_FORM_GNU_str_index:
16143 if (reader->dwo_file == NULL)
16144 {
16145 /* For now flag a hard error.
16146 Later we can turn this into a complaint if warranted. */
16147 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16148 dwarf_form_name (form),
16149 bfd_get_filename (abfd));
16150 }
16151 {
16152 ULONGEST str_index =
16153 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16154
16155 DW_STRING (attr) = read_str_index (reader, str_index);
16156 DW_STRING_IS_CANONICAL (attr) = 0;
16157 info_ptr += bytes_read;
16158 }
16159 break;
16160 default:
16161 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16162 dwarf_form_name (form),
16163 bfd_get_filename (abfd));
16164 }
16165
16166 /* Super hack. */
16167 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16168 attr->form = DW_FORM_GNU_ref_alt;
16169
16170 /* We have seen instances where the compiler tried to emit a byte
16171 size attribute of -1 which ended up being encoded as an unsigned
16172 0xffffffff. Although 0xffffffff is technically a valid size value,
16173 an object of this size seems pretty unlikely so we can relatively
16174 safely treat these cases as if the size attribute was invalid and
16175 treat them as zero by default. */
16176 if (attr->name == DW_AT_byte_size
16177 && form == DW_FORM_data4
16178 && DW_UNSND (attr) >= 0xffffffff)
16179 {
16180 complaint
16181 (&symfile_complaints,
16182 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16183 hex_string (DW_UNSND (attr)));
16184 DW_UNSND (attr) = 0;
16185 }
16186
16187 return info_ptr;
16188 }
16189
16190 /* Read an attribute described by an abbreviated attribute. */
16191
16192 static const gdb_byte *
16193 read_attribute (const struct die_reader_specs *reader,
16194 struct attribute *attr, struct attr_abbrev *abbrev,
16195 const gdb_byte *info_ptr)
16196 {
16197 attr->name = abbrev->name;
16198 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16199 }
16200
16201 /* Read dwarf information from a buffer. */
16202
16203 static unsigned int
16204 read_1_byte (bfd *abfd, const gdb_byte *buf)
16205 {
16206 return bfd_get_8 (abfd, buf);
16207 }
16208
16209 static int
16210 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16211 {
16212 return bfd_get_signed_8 (abfd, buf);
16213 }
16214
16215 static unsigned int
16216 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16217 {
16218 return bfd_get_16 (abfd, buf);
16219 }
16220
16221 static int
16222 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16223 {
16224 return bfd_get_signed_16 (abfd, buf);
16225 }
16226
16227 static unsigned int
16228 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16229 {
16230 return bfd_get_32 (abfd, buf);
16231 }
16232
16233 static int
16234 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16235 {
16236 return bfd_get_signed_32 (abfd, buf);
16237 }
16238
16239 static ULONGEST
16240 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16241 {
16242 return bfd_get_64 (abfd, buf);
16243 }
16244
16245 static CORE_ADDR
16246 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16247 unsigned int *bytes_read)
16248 {
16249 struct comp_unit_head *cu_header = &cu->header;
16250 CORE_ADDR retval = 0;
16251
16252 if (cu_header->signed_addr_p)
16253 {
16254 switch (cu_header->addr_size)
16255 {
16256 case 2:
16257 retval = bfd_get_signed_16 (abfd, buf);
16258 break;
16259 case 4:
16260 retval = bfd_get_signed_32 (abfd, buf);
16261 break;
16262 case 8:
16263 retval = bfd_get_signed_64 (abfd, buf);
16264 break;
16265 default:
16266 internal_error (__FILE__, __LINE__,
16267 _("read_address: bad switch, signed [in module %s]"),
16268 bfd_get_filename (abfd));
16269 }
16270 }
16271 else
16272 {
16273 switch (cu_header->addr_size)
16274 {
16275 case 2:
16276 retval = bfd_get_16 (abfd, buf);
16277 break;
16278 case 4:
16279 retval = bfd_get_32 (abfd, buf);
16280 break;
16281 case 8:
16282 retval = bfd_get_64 (abfd, buf);
16283 break;
16284 default:
16285 internal_error (__FILE__, __LINE__,
16286 _("read_address: bad switch, "
16287 "unsigned [in module %s]"),
16288 bfd_get_filename (abfd));
16289 }
16290 }
16291
16292 *bytes_read = cu_header->addr_size;
16293 return retval;
16294 }
16295
16296 /* Read the initial length from a section. The (draft) DWARF 3
16297 specification allows the initial length to take up either 4 bytes
16298 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16299 bytes describe the length and all offsets will be 8 bytes in length
16300 instead of 4.
16301
16302 An older, non-standard 64-bit format is also handled by this
16303 function. The older format in question stores the initial length
16304 as an 8-byte quantity without an escape value. Lengths greater
16305 than 2^32 aren't very common which means that the initial 4 bytes
16306 is almost always zero. Since a length value of zero doesn't make
16307 sense for the 32-bit format, this initial zero can be considered to
16308 be an escape value which indicates the presence of the older 64-bit
16309 format. As written, the code can't detect (old format) lengths
16310 greater than 4GB. If it becomes necessary to handle lengths
16311 somewhat larger than 4GB, we could allow other small values (such
16312 as the non-sensical values of 1, 2, and 3) to also be used as
16313 escape values indicating the presence of the old format.
16314
16315 The value returned via bytes_read should be used to increment the
16316 relevant pointer after calling read_initial_length().
16317
16318 [ Note: read_initial_length() and read_offset() are based on the
16319 document entitled "DWARF Debugging Information Format", revision
16320 3, draft 8, dated November 19, 2001. This document was obtained
16321 from:
16322
16323 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16324
16325 This document is only a draft and is subject to change. (So beware.)
16326
16327 Details regarding the older, non-standard 64-bit format were
16328 determined empirically by examining 64-bit ELF files produced by
16329 the SGI toolchain on an IRIX 6.5 machine.
16330
16331 - Kevin, July 16, 2002
16332 ] */
16333
16334 static LONGEST
16335 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16336 {
16337 LONGEST length = bfd_get_32 (abfd, buf);
16338
16339 if (length == 0xffffffff)
16340 {
16341 length = bfd_get_64 (abfd, buf + 4);
16342 *bytes_read = 12;
16343 }
16344 else if (length == 0)
16345 {
16346 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16347 length = bfd_get_64 (abfd, buf);
16348 *bytes_read = 8;
16349 }
16350 else
16351 {
16352 *bytes_read = 4;
16353 }
16354
16355 return length;
16356 }
16357
16358 /* Cover function for read_initial_length.
16359 Returns the length of the object at BUF, and stores the size of the
16360 initial length in *BYTES_READ and stores the size that offsets will be in
16361 *OFFSET_SIZE.
16362 If the initial length size is not equivalent to that specified in
16363 CU_HEADER then issue a complaint.
16364 This is useful when reading non-comp-unit headers. */
16365
16366 static LONGEST
16367 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16368 const struct comp_unit_head *cu_header,
16369 unsigned int *bytes_read,
16370 unsigned int *offset_size)
16371 {
16372 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16373
16374 gdb_assert (cu_header->initial_length_size == 4
16375 || cu_header->initial_length_size == 8
16376 || cu_header->initial_length_size == 12);
16377
16378 if (cu_header->initial_length_size != *bytes_read)
16379 complaint (&symfile_complaints,
16380 _("intermixed 32-bit and 64-bit DWARF sections"));
16381
16382 *offset_size = (*bytes_read == 4) ? 4 : 8;
16383 return length;
16384 }
16385
16386 /* Read an offset from the data stream. The size of the offset is
16387 given by cu_header->offset_size. */
16388
16389 static LONGEST
16390 read_offset (bfd *abfd, const gdb_byte *buf,
16391 const struct comp_unit_head *cu_header,
16392 unsigned int *bytes_read)
16393 {
16394 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16395
16396 *bytes_read = cu_header->offset_size;
16397 return offset;
16398 }
16399
16400 /* Read an offset from the data stream. */
16401
16402 static LONGEST
16403 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16404 {
16405 LONGEST retval = 0;
16406
16407 switch (offset_size)
16408 {
16409 case 4:
16410 retval = bfd_get_32 (abfd, buf);
16411 break;
16412 case 8:
16413 retval = bfd_get_64 (abfd, buf);
16414 break;
16415 default:
16416 internal_error (__FILE__, __LINE__,
16417 _("read_offset_1: bad switch [in module %s]"),
16418 bfd_get_filename (abfd));
16419 }
16420
16421 return retval;
16422 }
16423
16424 static const gdb_byte *
16425 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16426 {
16427 /* If the size of a host char is 8 bits, we can return a pointer
16428 to the buffer, otherwise we have to copy the data to a buffer
16429 allocated on the temporary obstack. */
16430 gdb_assert (HOST_CHAR_BIT == 8);
16431 return buf;
16432 }
16433
16434 static const char *
16435 read_direct_string (bfd *abfd, const gdb_byte *buf,
16436 unsigned int *bytes_read_ptr)
16437 {
16438 /* If the size of a host char is 8 bits, we can return a pointer
16439 to the string, otherwise we have to copy the string to a buffer
16440 allocated on the temporary obstack. */
16441 gdb_assert (HOST_CHAR_BIT == 8);
16442 if (*buf == '\0')
16443 {
16444 *bytes_read_ptr = 1;
16445 return NULL;
16446 }
16447 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16448 return (const char *) buf;
16449 }
16450
16451 static const char *
16452 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16453 {
16454 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16455 if (dwarf2_per_objfile->str.buffer == NULL)
16456 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16457 bfd_get_filename (abfd));
16458 if (str_offset >= dwarf2_per_objfile->str.size)
16459 error (_("DW_FORM_strp pointing outside of "
16460 ".debug_str section [in module %s]"),
16461 bfd_get_filename (abfd));
16462 gdb_assert (HOST_CHAR_BIT == 8);
16463 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16464 return NULL;
16465 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16466 }
16467
16468 /* Read a string at offset STR_OFFSET in the .debug_str section from
16469 the .dwz file DWZ. Throw an error if the offset is too large. If
16470 the string consists of a single NUL byte, return NULL; otherwise
16471 return a pointer to the string. */
16472
16473 static const char *
16474 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16475 {
16476 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16477
16478 if (dwz->str.buffer == NULL)
16479 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16480 "section [in module %s]"),
16481 bfd_get_filename (dwz->dwz_bfd));
16482 if (str_offset >= dwz->str.size)
16483 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16484 ".debug_str section [in module %s]"),
16485 bfd_get_filename (dwz->dwz_bfd));
16486 gdb_assert (HOST_CHAR_BIT == 8);
16487 if (dwz->str.buffer[str_offset] == '\0')
16488 return NULL;
16489 return (const char *) (dwz->str.buffer + str_offset);
16490 }
16491
16492 static const char *
16493 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16494 const struct comp_unit_head *cu_header,
16495 unsigned int *bytes_read_ptr)
16496 {
16497 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16498
16499 return read_indirect_string_at_offset (abfd, str_offset);
16500 }
16501
16502 static ULONGEST
16503 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16504 unsigned int *bytes_read_ptr)
16505 {
16506 ULONGEST result;
16507 unsigned int num_read;
16508 int i, shift;
16509 unsigned char byte;
16510
16511 result = 0;
16512 shift = 0;
16513 num_read = 0;
16514 i = 0;
16515 while (1)
16516 {
16517 byte = bfd_get_8 (abfd, buf);
16518 buf++;
16519 num_read++;
16520 result |= ((ULONGEST) (byte & 127) << shift);
16521 if ((byte & 128) == 0)
16522 {
16523 break;
16524 }
16525 shift += 7;
16526 }
16527 *bytes_read_ptr = num_read;
16528 return result;
16529 }
16530
16531 static LONGEST
16532 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16533 unsigned int *bytes_read_ptr)
16534 {
16535 LONGEST result;
16536 int i, shift, num_read;
16537 unsigned char byte;
16538
16539 result = 0;
16540 shift = 0;
16541 num_read = 0;
16542 i = 0;
16543 while (1)
16544 {
16545 byte = bfd_get_8 (abfd, buf);
16546 buf++;
16547 num_read++;
16548 result |= ((LONGEST) (byte & 127) << shift);
16549 shift += 7;
16550 if ((byte & 128) == 0)
16551 {
16552 break;
16553 }
16554 }
16555 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16556 result |= -(((LONGEST) 1) << shift);
16557 *bytes_read_ptr = num_read;
16558 return result;
16559 }
16560
16561 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16562 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16563 ADDR_SIZE is the size of addresses from the CU header. */
16564
16565 static CORE_ADDR
16566 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16567 {
16568 struct objfile *objfile = dwarf2_per_objfile->objfile;
16569 bfd *abfd = objfile->obfd;
16570 const gdb_byte *info_ptr;
16571
16572 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16573 if (dwarf2_per_objfile->addr.buffer == NULL)
16574 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16575 objfile_name (objfile));
16576 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16577 error (_("DW_FORM_addr_index pointing outside of "
16578 ".debug_addr section [in module %s]"),
16579 objfile_name (objfile));
16580 info_ptr = (dwarf2_per_objfile->addr.buffer
16581 + addr_base + addr_index * addr_size);
16582 if (addr_size == 4)
16583 return bfd_get_32 (abfd, info_ptr);
16584 else
16585 return bfd_get_64 (abfd, info_ptr);
16586 }
16587
16588 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16589
16590 static CORE_ADDR
16591 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16592 {
16593 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16594 }
16595
16596 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16597
16598 static CORE_ADDR
16599 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16600 unsigned int *bytes_read)
16601 {
16602 bfd *abfd = cu->objfile->obfd;
16603 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16604
16605 return read_addr_index (cu, addr_index);
16606 }
16607
16608 /* Data structure to pass results from dwarf2_read_addr_index_reader
16609 back to dwarf2_read_addr_index. */
16610
16611 struct dwarf2_read_addr_index_data
16612 {
16613 ULONGEST addr_base;
16614 int addr_size;
16615 };
16616
16617 /* die_reader_func for dwarf2_read_addr_index. */
16618
16619 static void
16620 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16621 const gdb_byte *info_ptr,
16622 struct die_info *comp_unit_die,
16623 int has_children,
16624 void *data)
16625 {
16626 struct dwarf2_cu *cu = reader->cu;
16627 struct dwarf2_read_addr_index_data *aidata =
16628 (struct dwarf2_read_addr_index_data *) data;
16629
16630 aidata->addr_base = cu->addr_base;
16631 aidata->addr_size = cu->header.addr_size;
16632 }
16633
16634 /* Given an index in .debug_addr, fetch the value.
16635 NOTE: This can be called during dwarf expression evaluation,
16636 long after the debug information has been read, and thus per_cu->cu
16637 may no longer exist. */
16638
16639 CORE_ADDR
16640 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16641 unsigned int addr_index)
16642 {
16643 struct objfile *objfile = per_cu->objfile;
16644 struct dwarf2_cu *cu = per_cu->cu;
16645 ULONGEST addr_base;
16646 int addr_size;
16647
16648 /* This is intended to be called from outside this file. */
16649 dw2_setup (objfile);
16650
16651 /* We need addr_base and addr_size.
16652 If we don't have PER_CU->cu, we have to get it.
16653 Nasty, but the alternative is storing the needed info in PER_CU,
16654 which at this point doesn't seem justified: it's not clear how frequently
16655 it would get used and it would increase the size of every PER_CU.
16656 Entry points like dwarf2_per_cu_addr_size do a similar thing
16657 so we're not in uncharted territory here.
16658 Alas we need to be a bit more complicated as addr_base is contained
16659 in the DIE.
16660
16661 We don't need to read the entire CU(/TU).
16662 We just need the header and top level die.
16663
16664 IWBN to use the aging mechanism to let us lazily later discard the CU.
16665 For now we skip this optimization. */
16666
16667 if (cu != NULL)
16668 {
16669 addr_base = cu->addr_base;
16670 addr_size = cu->header.addr_size;
16671 }
16672 else
16673 {
16674 struct dwarf2_read_addr_index_data aidata;
16675
16676 /* Note: We can't use init_cutu_and_read_dies_simple here,
16677 we need addr_base. */
16678 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16679 dwarf2_read_addr_index_reader, &aidata);
16680 addr_base = aidata.addr_base;
16681 addr_size = aidata.addr_size;
16682 }
16683
16684 return read_addr_index_1 (addr_index, addr_base, addr_size);
16685 }
16686
16687 /* Given a DW_FORM_GNU_str_index, fetch the string.
16688 This is only used by the Fission support. */
16689
16690 static const char *
16691 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16692 {
16693 struct objfile *objfile = dwarf2_per_objfile->objfile;
16694 const char *objf_name = objfile_name (objfile);
16695 bfd *abfd = objfile->obfd;
16696 struct dwarf2_cu *cu = reader->cu;
16697 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16698 struct dwarf2_section_info *str_offsets_section =
16699 &reader->dwo_file->sections.str_offsets;
16700 const gdb_byte *info_ptr;
16701 ULONGEST str_offset;
16702 static const char form_name[] = "DW_FORM_GNU_str_index";
16703
16704 dwarf2_read_section (objfile, str_section);
16705 dwarf2_read_section (objfile, str_offsets_section);
16706 if (str_section->buffer == NULL)
16707 error (_("%s used without .debug_str.dwo section"
16708 " in CU at offset 0x%lx [in module %s]"),
16709 form_name, (long) cu->header.offset.sect_off, objf_name);
16710 if (str_offsets_section->buffer == NULL)
16711 error (_("%s used without .debug_str_offsets.dwo section"
16712 " in CU at offset 0x%lx [in module %s]"),
16713 form_name, (long) cu->header.offset.sect_off, objf_name);
16714 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16715 error (_("%s pointing outside of .debug_str_offsets.dwo"
16716 " section in CU at offset 0x%lx [in module %s]"),
16717 form_name, (long) cu->header.offset.sect_off, objf_name);
16718 info_ptr = (str_offsets_section->buffer
16719 + str_index * cu->header.offset_size);
16720 if (cu->header.offset_size == 4)
16721 str_offset = bfd_get_32 (abfd, info_ptr);
16722 else
16723 str_offset = bfd_get_64 (abfd, info_ptr);
16724 if (str_offset >= str_section->size)
16725 error (_("Offset from %s pointing outside of"
16726 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16727 form_name, (long) cu->header.offset.sect_off, objf_name);
16728 return (const char *) (str_section->buffer + str_offset);
16729 }
16730
16731 /* Return the length of an LEB128 number in BUF. */
16732
16733 static int
16734 leb128_size (const gdb_byte *buf)
16735 {
16736 const gdb_byte *begin = buf;
16737 gdb_byte byte;
16738
16739 while (1)
16740 {
16741 byte = *buf++;
16742 if ((byte & 128) == 0)
16743 return buf - begin;
16744 }
16745 }
16746
16747 static void
16748 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16749 {
16750 switch (lang)
16751 {
16752 case DW_LANG_C89:
16753 case DW_LANG_C99:
16754 case DW_LANG_C11:
16755 case DW_LANG_C:
16756 case DW_LANG_UPC:
16757 cu->language = language_c;
16758 break;
16759 case DW_LANG_C_plus_plus:
16760 case DW_LANG_C_plus_plus_11:
16761 case DW_LANG_C_plus_plus_14:
16762 cu->language = language_cplus;
16763 break;
16764 case DW_LANG_D:
16765 cu->language = language_d;
16766 break;
16767 case DW_LANG_Fortran77:
16768 case DW_LANG_Fortran90:
16769 case DW_LANG_Fortran95:
16770 cu->language = language_fortran;
16771 break;
16772 case DW_LANG_Go:
16773 cu->language = language_go;
16774 break;
16775 case DW_LANG_Mips_Assembler:
16776 cu->language = language_asm;
16777 break;
16778 case DW_LANG_Java:
16779 cu->language = language_java;
16780 break;
16781 case DW_LANG_Ada83:
16782 case DW_LANG_Ada95:
16783 cu->language = language_ada;
16784 break;
16785 case DW_LANG_Modula2:
16786 cu->language = language_m2;
16787 break;
16788 case DW_LANG_Pascal83:
16789 cu->language = language_pascal;
16790 break;
16791 case DW_LANG_ObjC:
16792 cu->language = language_objc;
16793 break;
16794 case DW_LANG_Cobol74:
16795 case DW_LANG_Cobol85:
16796 default:
16797 cu->language = language_minimal;
16798 break;
16799 }
16800 cu->language_defn = language_def (cu->language);
16801 }
16802
16803 /* Return the named attribute or NULL if not there. */
16804
16805 static struct attribute *
16806 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16807 {
16808 for (;;)
16809 {
16810 unsigned int i;
16811 struct attribute *spec = NULL;
16812
16813 for (i = 0; i < die->num_attrs; ++i)
16814 {
16815 if (die->attrs[i].name == name)
16816 return &die->attrs[i];
16817 if (die->attrs[i].name == DW_AT_specification
16818 || die->attrs[i].name == DW_AT_abstract_origin)
16819 spec = &die->attrs[i];
16820 }
16821
16822 if (!spec)
16823 break;
16824
16825 die = follow_die_ref (die, spec, &cu);
16826 }
16827
16828 return NULL;
16829 }
16830
16831 /* Return the named attribute or NULL if not there,
16832 but do not follow DW_AT_specification, etc.
16833 This is for use in contexts where we're reading .debug_types dies.
16834 Following DW_AT_specification, DW_AT_abstract_origin will take us
16835 back up the chain, and we want to go down. */
16836
16837 static struct attribute *
16838 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16839 {
16840 unsigned int i;
16841
16842 for (i = 0; i < die->num_attrs; ++i)
16843 if (die->attrs[i].name == name)
16844 return &die->attrs[i];
16845
16846 return NULL;
16847 }
16848
16849 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16850 and holds a non-zero value. This function should only be used for
16851 DW_FORM_flag or DW_FORM_flag_present attributes. */
16852
16853 static int
16854 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16855 {
16856 struct attribute *attr = dwarf2_attr (die, name, cu);
16857
16858 return (attr && DW_UNSND (attr));
16859 }
16860
16861 static int
16862 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16863 {
16864 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16865 which value is non-zero. However, we have to be careful with
16866 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16867 (via dwarf2_flag_true_p) follows this attribute. So we may
16868 end up accidently finding a declaration attribute that belongs
16869 to a different DIE referenced by the specification attribute,
16870 even though the given DIE does not have a declaration attribute. */
16871 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16872 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16873 }
16874
16875 /* Return the die giving the specification for DIE, if there is
16876 one. *SPEC_CU is the CU containing DIE on input, and the CU
16877 containing the return value on output. If there is no
16878 specification, but there is an abstract origin, that is
16879 returned. */
16880
16881 static struct die_info *
16882 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16883 {
16884 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16885 *spec_cu);
16886
16887 if (spec_attr == NULL)
16888 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16889
16890 if (spec_attr == NULL)
16891 return NULL;
16892 else
16893 return follow_die_ref (die, spec_attr, spec_cu);
16894 }
16895
16896 /* Free the line_header structure *LH, and any arrays and strings it
16897 refers to.
16898 NOTE: This is also used as a "cleanup" function. */
16899
16900 static void
16901 free_line_header (struct line_header *lh)
16902 {
16903 if (lh->standard_opcode_lengths)
16904 xfree (lh->standard_opcode_lengths);
16905
16906 /* Remember that all the lh->file_names[i].name pointers are
16907 pointers into debug_line_buffer, and don't need to be freed. */
16908 if (lh->file_names)
16909 xfree (lh->file_names);
16910
16911 /* Similarly for the include directory names. */
16912 if (lh->include_dirs)
16913 xfree (lh->include_dirs);
16914
16915 xfree (lh);
16916 }
16917
16918 /* Add an entry to LH's include directory table. */
16919
16920 static void
16921 add_include_dir (struct line_header *lh, const char *include_dir)
16922 {
16923 /* Grow the array if necessary. */
16924 if (lh->include_dirs_size == 0)
16925 {
16926 lh->include_dirs_size = 1; /* for testing */
16927 lh->include_dirs = xmalloc (lh->include_dirs_size
16928 * sizeof (*lh->include_dirs));
16929 }
16930 else if (lh->num_include_dirs >= lh->include_dirs_size)
16931 {
16932 lh->include_dirs_size *= 2;
16933 lh->include_dirs = xrealloc (lh->include_dirs,
16934 (lh->include_dirs_size
16935 * sizeof (*lh->include_dirs)));
16936 }
16937
16938 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16939 }
16940
16941 /* Add an entry to LH's file name table. */
16942
16943 static void
16944 add_file_name (struct line_header *lh,
16945 const char *name,
16946 unsigned int dir_index,
16947 unsigned int mod_time,
16948 unsigned int length)
16949 {
16950 struct file_entry *fe;
16951
16952 /* Grow the array if necessary. */
16953 if (lh->file_names_size == 0)
16954 {
16955 lh->file_names_size = 1; /* for testing */
16956 lh->file_names = xmalloc (lh->file_names_size
16957 * sizeof (*lh->file_names));
16958 }
16959 else if (lh->num_file_names >= lh->file_names_size)
16960 {
16961 lh->file_names_size *= 2;
16962 lh->file_names = xrealloc (lh->file_names,
16963 (lh->file_names_size
16964 * sizeof (*lh->file_names)));
16965 }
16966
16967 fe = &lh->file_names[lh->num_file_names++];
16968 fe->name = name;
16969 fe->dir_index = dir_index;
16970 fe->mod_time = mod_time;
16971 fe->length = length;
16972 fe->included_p = 0;
16973 fe->symtab = NULL;
16974 }
16975
16976 /* A convenience function to find the proper .debug_line section for a
16977 CU. */
16978
16979 static struct dwarf2_section_info *
16980 get_debug_line_section (struct dwarf2_cu *cu)
16981 {
16982 struct dwarf2_section_info *section;
16983
16984 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16985 DWO file. */
16986 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16987 section = &cu->dwo_unit->dwo_file->sections.line;
16988 else if (cu->per_cu->is_dwz)
16989 {
16990 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16991
16992 section = &dwz->line;
16993 }
16994 else
16995 section = &dwarf2_per_objfile->line;
16996
16997 return section;
16998 }
16999
17000 /* Read the statement program header starting at OFFSET in
17001 .debug_line, or .debug_line.dwo. Return a pointer
17002 to a struct line_header, allocated using xmalloc.
17003
17004 NOTE: the strings in the include directory and file name tables of
17005 the returned object point into the dwarf line section buffer,
17006 and must not be freed. */
17007
17008 static struct line_header *
17009 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17010 {
17011 struct cleanup *back_to;
17012 struct line_header *lh;
17013 const gdb_byte *line_ptr;
17014 unsigned int bytes_read, offset_size;
17015 int i;
17016 const char *cur_dir, *cur_file;
17017 struct dwarf2_section_info *section;
17018 bfd *abfd;
17019
17020 section = get_debug_line_section (cu);
17021 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17022 if (section->buffer == NULL)
17023 {
17024 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17025 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17026 else
17027 complaint (&symfile_complaints, _("missing .debug_line section"));
17028 return 0;
17029 }
17030
17031 /* We can't do this until we know the section is non-empty.
17032 Only then do we know we have such a section. */
17033 abfd = get_section_bfd_owner (section);
17034
17035 /* Make sure that at least there's room for the total_length field.
17036 That could be 12 bytes long, but we're just going to fudge that. */
17037 if (offset + 4 >= section->size)
17038 {
17039 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17040 return 0;
17041 }
17042
17043 lh = xmalloc (sizeof (*lh));
17044 memset (lh, 0, sizeof (*lh));
17045 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17046 (void *) lh);
17047
17048 line_ptr = section->buffer + offset;
17049
17050 /* Read in the header. */
17051 lh->total_length =
17052 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17053 &bytes_read, &offset_size);
17054 line_ptr += bytes_read;
17055 if (line_ptr + lh->total_length > (section->buffer + section->size))
17056 {
17057 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17058 do_cleanups (back_to);
17059 return 0;
17060 }
17061 lh->statement_program_end = line_ptr + lh->total_length;
17062 lh->version = read_2_bytes (abfd, line_ptr);
17063 line_ptr += 2;
17064 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17065 line_ptr += offset_size;
17066 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17067 line_ptr += 1;
17068 if (lh->version >= 4)
17069 {
17070 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17071 line_ptr += 1;
17072 }
17073 else
17074 lh->maximum_ops_per_instruction = 1;
17075
17076 if (lh->maximum_ops_per_instruction == 0)
17077 {
17078 lh->maximum_ops_per_instruction = 1;
17079 complaint (&symfile_complaints,
17080 _("invalid maximum_ops_per_instruction "
17081 "in `.debug_line' section"));
17082 }
17083
17084 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17085 line_ptr += 1;
17086 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17087 line_ptr += 1;
17088 lh->line_range = read_1_byte (abfd, line_ptr);
17089 line_ptr += 1;
17090 lh->opcode_base = read_1_byte (abfd, line_ptr);
17091 line_ptr += 1;
17092 lh->standard_opcode_lengths
17093 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17094
17095 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17096 for (i = 1; i < lh->opcode_base; ++i)
17097 {
17098 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17099 line_ptr += 1;
17100 }
17101
17102 /* Read directory table. */
17103 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17104 {
17105 line_ptr += bytes_read;
17106 add_include_dir (lh, cur_dir);
17107 }
17108 line_ptr += bytes_read;
17109
17110 /* Read file name table. */
17111 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17112 {
17113 unsigned int dir_index, mod_time, length;
17114
17115 line_ptr += bytes_read;
17116 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17117 line_ptr += bytes_read;
17118 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17119 line_ptr += bytes_read;
17120 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17121 line_ptr += bytes_read;
17122
17123 add_file_name (lh, cur_file, dir_index, mod_time, length);
17124 }
17125 line_ptr += bytes_read;
17126 lh->statement_program_start = line_ptr;
17127
17128 if (line_ptr > (section->buffer + section->size))
17129 complaint (&symfile_complaints,
17130 _("line number info header doesn't "
17131 "fit in `.debug_line' section"));
17132
17133 discard_cleanups (back_to);
17134 return lh;
17135 }
17136
17137 /* Subroutine of dwarf_decode_lines to simplify it.
17138 Return the file name of the psymtab for included file FILE_INDEX
17139 in line header LH of PST.
17140 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17141 If space for the result is malloc'd, it will be freed by a cleanup.
17142 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17143
17144 The function creates dangling cleanup registration. */
17145
17146 static const char *
17147 psymtab_include_file_name (const struct line_header *lh, int file_index,
17148 const struct partial_symtab *pst,
17149 const char *comp_dir)
17150 {
17151 const struct file_entry fe = lh->file_names [file_index];
17152 const char *include_name = fe.name;
17153 const char *include_name_to_compare = include_name;
17154 const char *dir_name = NULL;
17155 const char *pst_filename;
17156 char *copied_name = NULL;
17157 int file_is_pst;
17158
17159 if (fe.dir_index)
17160 dir_name = lh->include_dirs[fe.dir_index - 1];
17161
17162 if (!IS_ABSOLUTE_PATH (include_name)
17163 && (dir_name != NULL || comp_dir != NULL))
17164 {
17165 /* Avoid creating a duplicate psymtab for PST.
17166 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17167 Before we do the comparison, however, we need to account
17168 for DIR_NAME and COMP_DIR.
17169 First prepend dir_name (if non-NULL). If we still don't
17170 have an absolute path prepend comp_dir (if non-NULL).
17171 However, the directory we record in the include-file's
17172 psymtab does not contain COMP_DIR (to match the
17173 corresponding symtab(s)).
17174
17175 Example:
17176
17177 bash$ cd /tmp
17178 bash$ gcc -g ./hello.c
17179 include_name = "hello.c"
17180 dir_name = "."
17181 DW_AT_comp_dir = comp_dir = "/tmp"
17182 DW_AT_name = "./hello.c"
17183
17184 */
17185
17186 if (dir_name != NULL)
17187 {
17188 char *tem = concat (dir_name, SLASH_STRING,
17189 include_name, (char *)NULL);
17190
17191 make_cleanup (xfree, tem);
17192 include_name = tem;
17193 include_name_to_compare = include_name;
17194 }
17195 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17196 {
17197 char *tem = concat (comp_dir, SLASH_STRING,
17198 include_name, (char *)NULL);
17199
17200 make_cleanup (xfree, tem);
17201 include_name_to_compare = tem;
17202 }
17203 }
17204
17205 pst_filename = pst->filename;
17206 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17207 {
17208 copied_name = concat (pst->dirname, SLASH_STRING,
17209 pst_filename, (char *)NULL);
17210 pst_filename = copied_name;
17211 }
17212
17213 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17214
17215 if (copied_name != NULL)
17216 xfree (copied_name);
17217
17218 if (file_is_pst)
17219 return NULL;
17220 return include_name;
17221 }
17222
17223 /* Ignore this record_line request. */
17224
17225 static void
17226 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17227 {
17228 return;
17229 }
17230
17231 /* Return non-zero if we should add LINE to the line number table.
17232 LINE is the line to add, LAST_LINE is the last line that was added,
17233 LAST_SUBFILE is the subfile for LAST_LINE.
17234 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17235 had a non-zero discriminator.
17236
17237 We have to be careful in the presence of discriminators.
17238 E.g., for this line:
17239
17240 for (i = 0; i < 100000; i++);
17241
17242 clang can emit four line number entries for that one line,
17243 each with a different discriminator.
17244 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17245
17246 However, we want gdb to coalesce all four entries into one.
17247 Otherwise the user could stepi into the middle of the line and
17248 gdb would get confused about whether the pc really was in the
17249 middle of the line.
17250
17251 Things are further complicated by the fact that two consecutive
17252 line number entries for the same line is a heuristic used by gcc
17253 to denote the end of the prologue. So we can't just discard duplicate
17254 entries, we have to be selective about it. The heuristic we use is
17255 that we only collapse consecutive entries for the same line if at least
17256 one of those entries has a non-zero discriminator. PR 17276.
17257
17258 Note: Addresses in the line number state machine can never go backwards
17259 within one sequence, thus this coalescing is ok. */
17260
17261 static int
17262 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17263 int line_has_non_zero_discriminator,
17264 struct subfile *last_subfile)
17265 {
17266 if (current_subfile != last_subfile)
17267 return 1;
17268 if (line != last_line)
17269 return 1;
17270 /* Same line for the same file that we've seen already.
17271 As a last check, for pr 17276, only record the line if the line
17272 has never had a non-zero discriminator. */
17273 if (!line_has_non_zero_discriminator)
17274 return 1;
17275 return 0;
17276 }
17277
17278 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17279 in the line table of subfile SUBFILE. */
17280
17281 static void
17282 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17283 unsigned int line, CORE_ADDR address,
17284 record_line_ftype p_record_line)
17285 {
17286 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17287
17288 (*p_record_line) (subfile, line, addr);
17289 }
17290
17291 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17292 Mark the end of a set of line number records.
17293 The arguments are the same as for dwarf_record_line.
17294 If SUBFILE is NULL the request is ignored. */
17295
17296 static void
17297 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17298 CORE_ADDR address, record_line_ftype p_record_line)
17299 {
17300 if (subfile != NULL)
17301 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17302 }
17303
17304 /* Subroutine of dwarf_decode_lines to simplify it.
17305 Process the line number information in LH. */
17306
17307 static void
17308 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17309 const int decode_for_pst_p, CORE_ADDR lowpc)
17310 {
17311 const gdb_byte *line_ptr, *extended_end;
17312 const gdb_byte *line_end;
17313 unsigned int bytes_read, extended_len;
17314 unsigned char op_code, extended_op;
17315 CORE_ADDR baseaddr;
17316 struct objfile *objfile = cu->objfile;
17317 bfd *abfd = objfile->obfd;
17318 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17319 struct subfile *last_subfile = NULL;
17320 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17321 = record_line;
17322
17323 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17324
17325 line_ptr = lh->statement_program_start;
17326 line_end = lh->statement_program_end;
17327
17328 /* Read the statement sequences until there's nothing left. */
17329 while (line_ptr < line_end)
17330 {
17331 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17332 on the initial 0 address as if there was a line entry for it
17333 so that the backend has a chance to adjust it and also record
17334 it in case it needs it. This is currently used by MIPS code,
17335 cf. `mips_adjust_dwarf2_line'. */
17336 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17337 unsigned int file = 1;
17338 unsigned int line = 1;
17339 int is_stmt = lh->default_is_stmt;
17340 int end_sequence = 0;
17341 unsigned char op_index = 0;
17342 unsigned int discriminator = 0;
17343 /* The last line number that was recorded, used to coalesce
17344 consecutive entries for the same line. This can happen, for
17345 example, when discriminators are present. PR 17276. */
17346 unsigned int last_line = 0;
17347 int line_has_non_zero_discriminator = 0;
17348
17349 if (!decode_for_pst_p && lh->num_file_names >= file)
17350 {
17351 /* Start a subfile for the current file of the state machine. */
17352 /* lh->include_dirs and lh->file_names are 0-based, but the
17353 directory and file name numbers in the statement program
17354 are 1-based. */
17355 struct file_entry *fe = &lh->file_names[file - 1];
17356 const char *dir = NULL;
17357
17358 if (fe->dir_index)
17359 dir = lh->include_dirs[fe->dir_index - 1];
17360
17361 dwarf2_start_subfile (fe->name, dir);
17362 }
17363
17364 /* Decode the table. */
17365 while (!end_sequence)
17366 {
17367 op_code = read_1_byte (abfd, line_ptr);
17368 line_ptr += 1;
17369 if (line_ptr > line_end)
17370 {
17371 dwarf2_debug_line_missing_end_sequence_complaint ();
17372 break;
17373 }
17374
17375 if (op_code >= lh->opcode_base)
17376 {
17377 /* Special opcode. */
17378 unsigned char adj_opcode;
17379 CORE_ADDR addr_adj;
17380 int line_delta;
17381
17382 adj_opcode = op_code - lh->opcode_base;
17383 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17384 / lh->maximum_ops_per_instruction)
17385 * lh->minimum_instruction_length);
17386 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17387 op_index = ((op_index + (adj_opcode / lh->line_range))
17388 % lh->maximum_ops_per_instruction);
17389 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17390 line += line_delta;
17391 if (line_delta != 0)
17392 line_has_non_zero_discriminator = discriminator != 0;
17393 if (lh->num_file_names < file || file == 0)
17394 dwarf2_debug_line_missing_file_complaint ();
17395 /* For now we ignore lines not starting on an
17396 instruction boundary. */
17397 else if (op_index == 0)
17398 {
17399 lh->file_names[file - 1].included_p = 1;
17400 if (!decode_for_pst_p && is_stmt)
17401 {
17402 if (last_subfile != current_subfile)
17403 {
17404 dwarf_finish_line (gdbarch, last_subfile,
17405 address, p_record_line);
17406 }
17407 if (dwarf_record_line_p (line, last_line,
17408 line_has_non_zero_discriminator,
17409 last_subfile))
17410 {
17411 dwarf_record_line (gdbarch, current_subfile,
17412 line, address, p_record_line);
17413 }
17414 last_subfile = current_subfile;
17415 last_line = line;
17416 }
17417 }
17418 discriminator = 0;
17419 }
17420 else switch (op_code)
17421 {
17422 case DW_LNS_extended_op:
17423 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17424 &bytes_read);
17425 line_ptr += bytes_read;
17426 extended_end = line_ptr + extended_len;
17427 extended_op = read_1_byte (abfd, line_ptr);
17428 line_ptr += 1;
17429 switch (extended_op)
17430 {
17431 case DW_LNE_end_sequence:
17432 p_record_line = record_line;
17433 end_sequence = 1;
17434 break;
17435 case DW_LNE_set_address:
17436 address = read_address (abfd, line_ptr, cu, &bytes_read);
17437
17438 /* If address < lowpc then it's not a usable value, it's
17439 outside the pc range of the CU. However, we restrict
17440 the test to only address values of zero to preserve
17441 GDB's previous behaviour which is to handle the specific
17442 case of a function being GC'd by the linker. */
17443 if (address == 0 && address < lowpc)
17444 {
17445 /* This line table is for a function which has been
17446 GCd by the linker. Ignore it. PR gdb/12528 */
17447
17448 long line_offset
17449 = line_ptr - get_debug_line_section (cu)->buffer;
17450
17451 complaint (&symfile_complaints,
17452 _(".debug_line address at offset 0x%lx is 0 "
17453 "[in module %s]"),
17454 line_offset, objfile_name (objfile));
17455 p_record_line = noop_record_line;
17456 /* Note: p_record_line is left as noop_record_line
17457 until we see DW_LNE_end_sequence. */
17458 }
17459
17460 op_index = 0;
17461 line_ptr += bytes_read;
17462 address += baseaddr;
17463 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17464 break;
17465 case DW_LNE_define_file:
17466 {
17467 const char *cur_file;
17468 unsigned int dir_index, mod_time, length;
17469
17470 cur_file = read_direct_string (abfd, line_ptr,
17471 &bytes_read);
17472 line_ptr += bytes_read;
17473 dir_index =
17474 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17475 line_ptr += bytes_read;
17476 mod_time =
17477 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17478 line_ptr += bytes_read;
17479 length =
17480 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17481 line_ptr += bytes_read;
17482 add_file_name (lh, cur_file, dir_index, mod_time, length);
17483 }
17484 break;
17485 case DW_LNE_set_discriminator:
17486 /* The discriminator is not interesting to the debugger;
17487 just ignore it. We still need to check its value though:
17488 if there are consecutive entries for the same
17489 (non-prologue) line we want to coalesce them.
17490 PR 17276. */
17491 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17492 &bytes_read);
17493 line_has_non_zero_discriminator |= discriminator != 0;
17494 line_ptr += bytes_read;
17495 break;
17496 default:
17497 complaint (&symfile_complaints,
17498 _("mangled .debug_line section"));
17499 return;
17500 }
17501 /* Make sure that we parsed the extended op correctly. If e.g.
17502 we expected a different address size than the producer used,
17503 we may have read the wrong number of bytes. */
17504 if (line_ptr != extended_end)
17505 {
17506 complaint (&symfile_complaints,
17507 _("mangled .debug_line section"));
17508 return;
17509 }
17510 break;
17511 case DW_LNS_copy:
17512 if (lh->num_file_names < file || file == 0)
17513 dwarf2_debug_line_missing_file_complaint ();
17514 else
17515 {
17516 lh->file_names[file - 1].included_p = 1;
17517 if (!decode_for_pst_p && is_stmt)
17518 {
17519 if (last_subfile != current_subfile)
17520 {
17521 dwarf_finish_line (gdbarch, last_subfile,
17522 address, p_record_line);
17523 }
17524 if (dwarf_record_line_p (line, last_line,
17525 line_has_non_zero_discriminator,
17526 last_subfile))
17527 {
17528 dwarf_record_line (gdbarch, current_subfile,
17529 line, address, p_record_line);
17530 }
17531 last_subfile = current_subfile;
17532 last_line = line;
17533 }
17534 }
17535 discriminator = 0;
17536 break;
17537 case DW_LNS_advance_pc:
17538 {
17539 CORE_ADDR adjust
17540 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17541 CORE_ADDR addr_adj;
17542
17543 addr_adj = (((op_index + adjust)
17544 / lh->maximum_ops_per_instruction)
17545 * lh->minimum_instruction_length);
17546 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17547 op_index = ((op_index + adjust)
17548 % lh->maximum_ops_per_instruction);
17549 line_ptr += bytes_read;
17550 }
17551 break;
17552 case DW_LNS_advance_line:
17553 {
17554 int line_delta
17555 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17556
17557 line += line_delta;
17558 if (line_delta != 0)
17559 line_has_non_zero_discriminator = discriminator != 0;
17560 line_ptr += bytes_read;
17561 }
17562 break;
17563 case DW_LNS_set_file:
17564 {
17565 /* The arrays lh->include_dirs and lh->file_names are
17566 0-based, but the directory and file name numbers in
17567 the statement program are 1-based. */
17568 struct file_entry *fe;
17569 const char *dir = NULL;
17570
17571 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17572 line_ptr += bytes_read;
17573 if (lh->num_file_names < file || file == 0)
17574 dwarf2_debug_line_missing_file_complaint ();
17575 else
17576 {
17577 fe = &lh->file_names[file - 1];
17578 if (fe->dir_index)
17579 dir = lh->include_dirs[fe->dir_index - 1];
17580 if (!decode_for_pst_p)
17581 {
17582 last_subfile = current_subfile;
17583 line_has_non_zero_discriminator = discriminator != 0;
17584 dwarf2_start_subfile (fe->name, dir);
17585 }
17586 }
17587 }
17588 break;
17589 case DW_LNS_set_column:
17590 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17591 line_ptr += bytes_read;
17592 break;
17593 case DW_LNS_negate_stmt:
17594 is_stmt = (!is_stmt);
17595 break;
17596 case DW_LNS_set_basic_block:
17597 break;
17598 /* Add to the address register of the state machine the
17599 address increment value corresponding to special opcode
17600 255. I.e., this value is scaled by the minimum
17601 instruction length since special opcode 255 would have
17602 scaled the increment. */
17603 case DW_LNS_const_add_pc:
17604 {
17605 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17606 CORE_ADDR addr_adj;
17607
17608 addr_adj = (((op_index + adjust)
17609 / lh->maximum_ops_per_instruction)
17610 * lh->minimum_instruction_length);
17611 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17612 op_index = ((op_index + adjust)
17613 % lh->maximum_ops_per_instruction);
17614 }
17615 break;
17616 case DW_LNS_fixed_advance_pc:
17617 {
17618 CORE_ADDR addr_adj;
17619
17620 addr_adj = read_2_bytes (abfd, line_ptr);
17621 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17622 op_index = 0;
17623 line_ptr += 2;
17624 }
17625 break;
17626 default:
17627 {
17628 /* Unknown standard opcode, ignore it. */
17629 int i;
17630
17631 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17632 {
17633 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17634 line_ptr += bytes_read;
17635 }
17636 }
17637 }
17638 }
17639 if (lh->num_file_names < file || file == 0)
17640 dwarf2_debug_line_missing_file_complaint ();
17641 else
17642 {
17643 lh->file_names[file - 1].included_p = 1;
17644 if (!decode_for_pst_p)
17645 {
17646 dwarf_finish_line (gdbarch, current_subfile, address,
17647 p_record_line);
17648 }
17649 }
17650 }
17651 }
17652
17653 /* Decode the Line Number Program (LNP) for the given line_header
17654 structure and CU. The actual information extracted and the type
17655 of structures created from the LNP depends on the value of PST.
17656
17657 1. If PST is NULL, then this procedure uses the data from the program
17658 to create all necessary symbol tables, and their linetables.
17659
17660 2. If PST is not NULL, this procedure reads the program to determine
17661 the list of files included by the unit represented by PST, and
17662 builds all the associated partial symbol tables.
17663
17664 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17665 It is used for relative paths in the line table.
17666 NOTE: When processing partial symtabs (pst != NULL),
17667 comp_dir == pst->dirname.
17668
17669 NOTE: It is important that psymtabs have the same file name (via strcmp)
17670 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17671 symtab we don't use it in the name of the psymtabs we create.
17672 E.g. expand_line_sal requires this when finding psymtabs to expand.
17673 A good testcase for this is mb-inline.exp.
17674
17675 LOWPC is the lowest address in CU (or 0 if not known). */
17676
17677 static void
17678 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17679 struct dwarf2_cu *cu, struct partial_symtab *pst,
17680 CORE_ADDR lowpc)
17681 {
17682 struct objfile *objfile = cu->objfile;
17683 const int decode_for_pst_p = (pst != NULL);
17684
17685 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17686
17687 if (decode_for_pst_p)
17688 {
17689 int file_index;
17690
17691 /* Now that we're done scanning the Line Header Program, we can
17692 create the psymtab of each included file. */
17693 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17694 if (lh->file_names[file_index].included_p == 1)
17695 {
17696 const char *include_name =
17697 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17698 if (include_name != NULL)
17699 dwarf2_create_include_psymtab (include_name, pst, objfile);
17700 }
17701 }
17702 else
17703 {
17704 /* Make sure a symtab is created for every file, even files
17705 which contain only variables (i.e. no code with associated
17706 line numbers). */
17707 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17708 int i;
17709
17710 for (i = 0; i < lh->num_file_names; i++)
17711 {
17712 const char *dir = NULL;
17713 struct file_entry *fe;
17714
17715 fe = &lh->file_names[i];
17716 if (fe->dir_index)
17717 dir = lh->include_dirs[fe->dir_index - 1];
17718 dwarf2_start_subfile (fe->name, dir);
17719
17720 if (current_subfile->symtab == NULL)
17721 {
17722 current_subfile->symtab
17723 = allocate_symtab (cust, current_subfile->name);
17724 }
17725 fe->symtab = current_subfile->symtab;
17726 }
17727 }
17728 }
17729
17730 /* Start a subfile for DWARF. FILENAME is the name of the file and
17731 DIRNAME the name of the source directory which contains FILENAME
17732 or NULL if not known.
17733 This routine tries to keep line numbers from identical absolute and
17734 relative file names in a common subfile.
17735
17736 Using the `list' example from the GDB testsuite, which resides in
17737 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17738 of /srcdir/list0.c yields the following debugging information for list0.c:
17739
17740 DW_AT_name: /srcdir/list0.c
17741 DW_AT_comp_dir: /compdir
17742 files.files[0].name: list0.h
17743 files.files[0].dir: /srcdir
17744 files.files[1].name: list0.c
17745 files.files[1].dir: /srcdir
17746
17747 The line number information for list0.c has to end up in a single
17748 subfile, so that `break /srcdir/list0.c:1' works as expected.
17749 start_subfile will ensure that this happens provided that we pass the
17750 concatenation of files.files[1].dir and files.files[1].name as the
17751 subfile's name. */
17752
17753 static void
17754 dwarf2_start_subfile (const char *filename, const char *dirname)
17755 {
17756 char *copy = NULL;
17757
17758 /* In order not to lose the line information directory,
17759 we concatenate it to the filename when it makes sense.
17760 Note that the Dwarf3 standard says (speaking of filenames in line
17761 information): ``The directory index is ignored for file names
17762 that represent full path names''. Thus ignoring dirname in the
17763 `else' branch below isn't an issue. */
17764
17765 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17766 {
17767 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17768 filename = copy;
17769 }
17770
17771 start_subfile (filename);
17772
17773 if (copy != NULL)
17774 xfree (copy);
17775 }
17776
17777 /* Start a symtab for DWARF.
17778 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17779
17780 static struct compunit_symtab *
17781 dwarf2_start_symtab (struct dwarf2_cu *cu,
17782 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17783 {
17784 struct compunit_symtab *cust
17785 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17786
17787 record_debugformat ("DWARF 2");
17788 record_producer (cu->producer);
17789
17790 /* We assume that we're processing GCC output. */
17791 processing_gcc_compilation = 2;
17792
17793 cu->processing_has_namespace_info = 0;
17794
17795 return cust;
17796 }
17797
17798 static void
17799 var_decode_location (struct attribute *attr, struct symbol *sym,
17800 struct dwarf2_cu *cu)
17801 {
17802 struct objfile *objfile = cu->objfile;
17803 struct comp_unit_head *cu_header = &cu->header;
17804
17805 /* NOTE drow/2003-01-30: There used to be a comment and some special
17806 code here to turn a symbol with DW_AT_external and a
17807 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17808 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17809 with some versions of binutils) where shared libraries could have
17810 relocations against symbols in their debug information - the
17811 minimal symbol would have the right address, but the debug info
17812 would not. It's no longer necessary, because we will explicitly
17813 apply relocations when we read in the debug information now. */
17814
17815 /* A DW_AT_location attribute with no contents indicates that a
17816 variable has been optimized away. */
17817 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17818 {
17819 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17820 return;
17821 }
17822
17823 /* Handle one degenerate form of location expression specially, to
17824 preserve GDB's previous behavior when section offsets are
17825 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17826 then mark this symbol as LOC_STATIC. */
17827
17828 if (attr_form_is_block (attr)
17829 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17830 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17831 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17832 && (DW_BLOCK (attr)->size
17833 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17834 {
17835 unsigned int dummy;
17836
17837 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17838 SYMBOL_VALUE_ADDRESS (sym) =
17839 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17840 else
17841 SYMBOL_VALUE_ADDRESS (sym) =
17842 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17843 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17844 fixup_symbol_section (sym, objfile);
17845 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17846 SYMBOL_SECTION (sym));
17847 return;
17848 }
17849
17850 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17851 expression evaluator, and use LOC_COMPUTED only when necessary
17852 (i.e. when the value of a register or memory location is
17853 referenced, or a thread-local block, etc.). Then again, it might
17854 not be worthwhile. I'm assuming that it isn't unless performance
17855 or memory numbers show me otherwise. */
17856
17857 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17858
17859 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17860 cu->has_loclist = 1;
17861 }
17862
17863 /* Given a pointer to a DWARF information entry, figure out if we need
17864 to make a symbol table entry for it, and if so, create a new entry
17865 and return a pointer to it.
17866 If TYPE is NULL, determine symbol type from the die, otherwise
17867 used the passed type.
17868 If SPACE is not NULL, use it to hold the new symbol. If it is
17869 NULL, allocate a new symbol on the objfile's obstack. */
17870
17871 static struct symbol *
17872 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17873 struct symbol *space)
17874 {
17875 struct objfile *objfile = cu->objfile;
17876 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17877 struct symbol *sym = NULL;
17878 const char *name;
17879 struct attribute *attr = NULL;
17880 struct attribute *attr2 = NULL;
17881 CORE_ADDR baseaddr;
17882 struct pending **list_to_add = NULL;
17883
17884 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17885
17886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17887
17888 name = dwarf2_name (die, cu);
17889 if (name)
17890 {
17891 const char *linkagename;
17892 int suppress_add = 0;
17893
17894 if (space)
17895 sym = space;
17896 else
17897 sym = allocate_symbol (objfile);
17898 OBJSTAT (objfile, n_syms++);
17899
17900 /* Cache this symbol's name and the name's demangled form (if any). */
17901 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17902 linkagename = dwarf2_physname (name, die, cu);
17903 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17904
17905 /* Fortran does not have mangling standard and the mangling does differ
17906 between gfortran, iFort etc. */
17907 if (cu->language == language_fortran
17908 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17909 symbol_set_demangled_name (&(sym->ginfo),
17910 dwarf2_full_name (name, die, cu),
17911 NULL);
17912
17913 /* Default assumptions.
17914 Use the passed type or decode it from the die. */
17915 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17916 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17917 if (type != NULL)
17918 SYMBOL_TYPE (sym) = type;
17919 else
17920 SYMBOL_TYPE (sym) = die_type (die, cu);
17921 attr = dwarf2_attr (die,
17922 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17923 cu);
17924 if (attr)
17925 {
17926 SYMBOL_LINE (sym) = DW_UNSND (attr);
17927 }
17928
17929 attr = dwarf2_attr (die,
17930 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17931 cu);
17932 if (attr)
17933 {
17934 int file_index = DW_UNSND (attr);
17935
17936 if (cu->line_header == NULL
17937 || file_index > cu->line_header->num_file_names)
17938 complaint (&symfile_complaints,
17939 _("file index out of range"));
17940 else if (file_index > 0)
17941 {
17942 struct file_entry *fe;
17943
17944 fe = &cu->line_header->file_names[file_index - 1];
17945 symbol_set_symtab (sym, fe->symtab);
17946 }
17947 }
17948
17949 switch (die->tag)
17950 {
17951 case DW_TAG_label:
17952 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17953 if (attr)
17954 {
17955 CORE_ADDR addr;
17956
17957 addr = attr_value_as_address (attr);
17958 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
17959 SYMBOL_VALUE_ADDRESS (sym) = addr;
17960 }
17961 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17962 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17963 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17964 add_symbol_to_list (sym, cu->list_in_scope);
17965 break;
17966 case DW_TAG_subprogram:
17967 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17968 finish_block. */
17969 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17970 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17971 if ((attr2 && (DW_UNSND (attr2) != 0))
17972 || cu->language == language_ada)
17973 {
17974 /* Subprograms marked external are stored as a global symbol.
17975 Ada subprograms, whether marked external or not, are always
17976 stored as a global symbol, because we want to be able to
17977 access them globally. For instance, we want to be able
17978 to break on a nested subprogram without having to
17979 specify the context. */
17980 list_to_add = &global_symbols;
17981 }
17982 else
17983 {
17984 list_to_add = cu->list_in_scope;
17985 }
17986 break;
17987 case DW_TAG_inlined_subroutine:
17988 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17989 finish_block. */
17990 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17991 SYMBOL_INLINED (sym) = 1;
17992 list_to_add = cu->list_in_scope;
17993 break;
17994 case DW_TAG_template_value_param:
17995 suppress_add = 1;
17996 /* Fall through. */
17997 case DW_TAG_constant:
17998 case DW_TAG_variable:
17999 case DW_TAG_member:
18000 /* Compilation with minimal debug info may result in
18001 variables with missing type entries. Change the
18002 misleading `void' type to something sensible. */
18003 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18004 SYMBOL_TYPE (sym)
18005 = objfile_type (objfile)->nodebug_data_symbol;
18006
18007 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18008 /* In the case of DW_TAG_member, we should only be called for
18009 static const members. */
18010 if (die->tag == DW_TAG_member)
18011 {
18012 /* dwarf2_add_field uses die_is_declaration,
18013 so we do the same. */
18014 gdb_assert (die_is_declaration (die, cu));
18015 gdb_assert (attr);
18016 }
18017 if (attr)
18018 {
18019 dwarf2_const_value (attr, sym, cu);
18020 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18021 if (!suppress_add)
18022 {
18023 if (attr2 && (DW_UNSND (attr2) != 0))
18024 list_to_add = &global_symbols;
18025 else
18026 list_to_add = cu->list_in_scope;
18027 }
18028 break;
18029 }
18030 attr = dwarf2_attr (die, DW_AT_location, cu);
18031 if (attr)
18032 {
18033 var_decode_location (attr, sym, cu);
18034 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18035
18036 /* Fortran explicitly imports any global symbols to the local
18037 scope by DW_TAG_common_block. */
18038 if (cu->language == language_fortran && die->parent
18039 && die->parent->tag == DW_TAG_common_block)
18040 attr2 = NULL;
18041
18042 if (SYMBOL_CLASS (sym) == LOC_STATIC
18043 && SYMBOL_VALUE_ADDRESS (sym) == 0
18044 && !dwarf2_per_objfile->has_section_at_zero)
18045 {
18046 /* When a static variable is eliminated by the linker,
18047 the corresponding debug information is not stripped
18048 out, but the variable address is set to null;
18049 do not add such variables into symbol table. */
18050 }
18051 else if (attr2 && (DW_UNSND (attr2) != 0))
18052 {
18053 /* Workaround gfortran PR debug/40040 - it uses
18054 DW_AT_location for variables in -fPIC libraries which may
18055 get overriden by other libraries/executable and get
18056 a different address. Resolve it by the minimal symbol
18057 which may come from inferior's executable using copy
18058 relocation. Make this workaround only for gfortran as for
18059 other compilers GDB cannot guess the minimal symbol
18060 Fortran mangling kind. */
18061 if (cu->language == language_fortran && die->parent
18062 && die->parent->tag == DW_TAG_module
18063 && cu->producer
18064 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
18065 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18066
18067 /* A variable with DW_AT_external is never static,
18068 but it may be block-scoped. */
18069 list_to_add = (cu->list_in_scope == &file_symbols
18070 ? &global_symbols : cu->list_in_scope);
18071 }
18072 else
18073 list_to_add = cu->list_in_scope;
18074 }
18075 else
18076 {
18077 /* We do not know the address of this symbol.
18078 If it is an external symbol and we have type information
18079 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18080 The address of the variable will then be determined from
18081 the minimal symbol table whenever the variable is
18082 referenced. */
18083 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18084
18085 /* Fortran explicitly imports any global symbols to the local
18086 scope by DW_TAG_common_block. */
18087 if (cu->language == language_fortran && die->parent
18088 && die->parent->tag == DW_TAG_common_block)
18089 {
18090 /* SYMBOL_CLASS doesn't matter here because
18091 read_common_block is going to reset it. */
18092 if (!suppress_add)
18093 list_to_add = cu->list_in_scope;
18094 }
18095 else if (attr2 && (DW_UNSND (attr2) != 0)
18096 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18097 {
18098 /* A variable with DW_AT_external is never static, but it
18099 may be block-scoped. */
18100 list_to_add = (cu->list_in_scope == &file_symbols
18101 ? &global_symbols : cu->list_in_scope);
18102
18103 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18104 }
18105 else if (!die_is_declaration (die, cu))
18106 {
18107 /* Use the default LOC_OPTIMIZED_OUT class. */
18108 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18109 if (!suppress_add)
18110 list_to_add = cu->list_in_scope;
18111 }
18112 }
18113 break;
18114 case DW_TAG_formal_parameter:
18115 /* If we are inside a function, mark this as an argument. If
18116 not, we might be looking at an argument to an inlined function
18117 when we do not have enough information to show inlined frames;
18118 pretend it's a local variable in that case so that the user can
18119 still see it. */
18120 if (context_stack_depth > 0
18121 && context_stack[context_stack_depth - 1].name != NULL)
18122 SYMBOL_IS_ARGUMENT (sym) = 1;
18123 attr = dwarf2_attr (die, DW_AT_location, cu);
18124 if (attr)
18125 {
18126 var_decode_location (attr, sym, cu);
18127 }
18128 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18129 if (attr)
18130 {
18131 dwarf2_const_value (attr, sym, cu);
18132 }
18133
18134 list_to_add = cu->list_in_scope;
18135 break;
18136 case DW_TAG_unspecified_parameters:
18137 /* From varargs functions; gdb doesn't seem to have any
18138 interest in this information, so just ignore it for now.
18139 (FIXME?) */
18140 break;
18141 case DW_TAG_template_type_param:
18142 suppress_add = 1;
18143 /* Fall through. */
18144 case DW_TAG_class_type:
18145 case DW_TAG_interface_type:
18146 case DW_TAG_structure_type:
18147 case DW_TAG_union_type:
18148 case DW_TAG_set_type:
18149 case DW_TAG_enumeration_type:
18150 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18151 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18152
18153 {
18154 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18155 really ever be static objects: otherwise, if you try
18156 to, say, break of a class's method and you're in a file
18157 which doesn't mention that class, it won't work unless
18158 the check for all static symbols in lookup_symbol_aux
18159 saves you. See the OtherFileClass tests in
18160 gdb.c++/namespace.exp. */
18161
18162 if (!suppress_add)
18163 {
18164 list_to_add = (cu->list_in_scope == &file_symbols
18165 && (cu->language == language_cplus
18166 || cu->language == language_java)
18167 ? &global_symbols : cu->list_in_scope);
18168
18169 /* The semantics of C++ state that "struct foo {
18170 ... }" also defines a typedef for "foo". A Java
18171 class declaration also defines a typedef for the
18172 class. */
18173 if (cu->language == language_cplus
18174 || cu->language == language_java
18175 || cu->language == language_ada)
18176 {
18177 /* The symbol's name is already allocated along
18178 with this objfile, so we don't need to
18179 duplicate it for the type. */
18180 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18181 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18182 }
18183 }
18184 }
18185 break;
18186 case DW_TAG_typedef:
18187 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18188 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18189 list_to_add = cu->list_in_scope;
18190 break;
18191 case DW_TAG_base_type:
18192 case DW_TAG_subrange_type:
18193 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18194 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18195 list_to_add = cu->list_in_scope;
18196 break;
18197 case DW_TAG_enumerator:
18198 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18199 if (attr)
18200 {
18201 dwarf2_const_value (attr, sym, cu);
18202 }
18203 {
18204 /* NOTE: carlton/2003-11-10: See comment above in the
18205 DW_TAG_class_type, etc. block. */
18206
18207 list_to_add = (cu->list_in_scope == &file_symbols
18208 && (cu->language == language_cplus
18209 || cu->language == language_java)
18210 ? &global_symbols : cu->list_in_scope);
18211 }
18212 break;
18213 case DW_TAG_imported_declaration:
18214 case DW_TAG_namespace:
18215 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18216 list_to_add = &global_symbols;
18217 break;
18218 case DW_TAG_module:
18219 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18220 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18221 list_to_add = &global_symbols;
18222 break;
18223 case DW_TAG_common_block:
18224 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18225 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18226 add_symbol_to_list (sym, cu->list_in_scope);
18227 break;
18228 default:
18229 /* Not a tag we recognize. Hopefully we aren't processing
18230 trash data, but since we must specifically ignore things
18231 we don't recognize, there is nothing else we should do at
18232 this point. */
18233 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18234 dwarf_tag_name (die->tag));
18235 break;
18236 }
18237
18238 if (suppress_add)
18239 {
18240 sym->hash_next = objfile->template_symbols;
18241 objfile->template_symbols = sym;
18242 list_to_add = NULL;
18243 }
18244
18245 if (list_to_add != NULL)
18246 add_symbol_to_list (sym, list_to_add);
18247
18248 /* For the benefit of old versions of GCC, check for anonymous
18249 namespaces based on the demangled name. */
18250 if (!cu->processing_has_namespace_info
18251 && cu->language == language_cplus)
18252 cp_scan_for_anonymous_namespaces (sym, objfile);
18253 }
18254 return (sym);
18255 }
18256
18257 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18258
18259 static struct symbol *
18260 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18261 {
18262 return new_symbol_full (die, type, cu, NULL);
18263 }
18264
18265 /* Given an attr with a DW_FORM_dataN value in host byte order,
18266 zero-extend it as appropriate for the symbol's type. The DWARF
18267 standard (v4) is not entirely clear about the meaning of using
18268 DW_FORM_dataN for a constant with a signed type, where the type is
18269 wider than the data. The conclusion of a discussion on the DWARF
18270 list was that this is unspecified. We choose to always zero-extend
18271 because that is the interpretation long in use by GCC. */
18272
18273 static gdb_byte *
18274 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18275 struct dwarf2_cu *cu, LONGEST *value, int bits)
18276 {
18277 struct objfile *objfile = cu->objfile;
18278 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18279 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18280 LONGEST l = DW_UNSND (attr);
18281
18282 if (bits < sizeof (*value) * 8)
18283 {
18284 l &= ((LONGEST) 1 << bits) - 1;
18285 *value = l;
18286 }
18287 else if (bits == sizeof (*value) * 8)
18288 *value = l;
18289 else
18290 {
18291 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18292 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18293 return bytes;
18294 }
18295
18296 return NULL;
18297 }
18298
18299 /* Read a constant value from an attribute. Either set *VALUE, or if
18300 the value does not fit in *VALUE, set *BYTES - either already
18301 allocated on the objfile obstack, or newly allocated on OBSTACK,
18302 or, set *BATON, if we translated the constant to a location
18303 expression. */
18304
18305 static void
18306 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18307 const char *name, struct obstack *obstack,
18308 struct dwarf2_cu *cu,
18309 LONGEST *value, const gdb_byte **bytes,
18310 struct dwarf2_locexpr_baton **baton)
18311 {
18312 struct objfile *objfile = cu->objfile;
18313 struct comp_unit_head *cu_header = &cu->header;
18314 struct dwarf_block *blk;
18315 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18316 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18317
18318 *value = 0;
18319 *bytes = NULL;
18320 *baton = NULL;
18321
18322 switch (attr->form)
18323 {
18324 case DW_FORM_addr:
18325 case DW_FORM_GNU_addr_index:
18326 {
18327 gdb_byte *data;
18328
18329 if (TYPE_LENGTH (type) != cu_header->addr_size)
18330 dwarf2_const_value_length_mismatch_complaint (name,
18331 cu_header->addr_size,
18332 TYPE_LENGTH (type));
18333 /* Symbols of this form are reasonably rare, so we just
18334 piggyback on the existing location code rather than writing
18335 a new implementation of symbol_computed_ops. */
18336 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18337 (*baton)->per_cu = cu->per_cu;
18338 gdb_assert ((*baton)->per_cu);
18339
18340 (*baton)->size = 2 + cu_header->addr_size;
18341 data = obstack_alloc (obstack, (*baton)->size);
18342 (*baton)->data = data;
18343
18344 data[0] = DW_OP_addr;
18345 store_unsigned_integer (&data[1], cu_header->addr_size,
18346 byte_order, DW_ADDR (attr));
18347 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18348 }
18349 break;
18350 case DW_FORM_string:
18351 case DW_FORM_strp:
18352 case DW_FORM_GNU_str_index:
18353 case DW_FORM_GNU_strp_alt:
18354 /* DW_STRING is already allocated on the objfile obstack, point
18355 directly to it. */
18356 *bytes = (const gdb_byte *) DW_STRING (attr);
18357 break;
18358 case DW_FORM_block1:
18359 case DW_FORM_block2:
18360 case DW_FORM_block4:
18361 case DW_FORM_block:
18362 case DW_FORM_exprloc:
18363 blk = DW_BLOCK (attr);
18364 if (TYPE_LENGTH (type) != blk->size)
18365 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18366 TYPE_LENGTH (type));
18367 *bytes = blk->data;
18368 break;
18369
18370 /* The DW_AT_const_value attributes are supposed to carry the
18371 symbol's value "represented as it would be on the target
18372 architecture." By the time we get here, it's already been
18373 converted to host endianness, so we just need to sign- or
18374 zero-extend it as appropriate. */
18375 case DW_FORM_data1:
18376 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18377 break;
18378 case DW_FORM_data2:
18379 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18380 break;
18381 case DW_FORM_data4:
18382 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18383 break;
18384 case DW_FORM_data8:
18385 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18386 break;
18387
18388 case DW_FORM_sdata:
18389 *value = DW_SND (attr);
18390 break;
18391
18392 case DW_FORM_udata:
18393 *value = DW_UNSND (attr);
18394 break;
18395
18396 default:
18397 complaint (&symfile_complaints,
18398 _("unsupported const value attribute form: '%s'"),
18399 dwarf_form_name (attr->form));
18400 *value = 0;
18401 break;
18402 }
18403 }
18404
18405
18406 /* Copy constant value from an attribute to a symbol. */
18407
18408 static void
18409 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18410 struct dwarf2_cu *cu)
18411 {
18412 struct objfile *objfile = cu->objfile;
18413 struct comp_unit_head *cu_header = &cu->header;
18414 LONGEST value;
18415 const gdb_byte *bytes;
18416 struct dwarf2_locexpr_baton *baton;
18417
18418 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18419 SYMBOL_PRINT_NAME (sym),
18420 &objfile->objfile_obstack, cu,
18421 &value, &bytes, &baton);
18422
18423 if (baton != NULL)
18424 {
18425 SYMBOL_LOCATION_BATON (sym) = baton;
18426 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18427 }
18428 else if (bytes != NULL)
18429 {
18430 SYMBOL_VALUE_BYTES (sym) = bytes;
18431 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18432 }
18433 else
18434 {
18435 SYMBOL_VALUE (sym) = value;
18436 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18437 }
18438 }
18439
18440 /* Return the type of the die in question using its DW_AT_type attribute. */
18441
18442 static struct type *
18443 die_type (struct die_info *die, struct dwarf2_cu *cu)
18444 {
18445 struct attribute *type_attr;
18446
18447 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18448 if (!type_attr)
18449 {
18450 /* A missing DW_AT_type represents a void type. */
18451 return objfile_type (cu->objfile)->builtin_void;
18452 }
18453
18454 return lookup_die_type (die, type_attr, cu);
18455 }
18456
18457 /* True iff CU's producer generates GNAT Ada auxiliary information
18458 that allows to find parallel types through that information instead
18459 of having to do expensive parallel lookups by type name. */
18460
18461 static int
18462 need_gnat_info (struct dwarf2_cu *cu)
18463 {
18464 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18465 of GNAT produces this auxiliary information, without any indication
18466 that it is produced. Part of enhancing the FSF version of GNAT
18467 to produce that information will be to put in place an indicator
18468 that we can use in order to determine whether the descriptive type
18469 info is available or not. One suggestion that has been made is
18470 to use a new attribute, attached to the CU die. For now, assume
18471 that the descriptive type info is not available. */
18472 return 0;
18473 }
18474
18475 /* Return the auxiliary type of the die in question using its
18476 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18477 attribute is not present. */
18478
18479 static struct type *
18480 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18481 {
18482 struct attribute *type_attr;
18483
18484 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18485 if (!type_attr)
18486 return NULL;
18487
18488 return lookup_die_type (die, type_attr, cu);
18489 }
18490
18491 /* If DIE has a descriptive_type attribute, then set the TYPE's
18492 descriptive type accordingly. */
18493
18494 static void
18495 set_descriptive_type (struct type *type, struct die_info *die,
18496 struct dwarf2_cu *cu)
18497 {
18498 struct type *descriptive_type = die_descriptive_type (die, cu);
18499
18500 if (descriptive_type)
18501 {
18502 ALLOCATE_GNAT_AUX_TYPE (type);
18503 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18504 }
18505 }
18506
18507 /* Return the containing type of the die in question using its
18508 DW_AT_containing_type attribute. */
18509
18510 static struct type *
18511 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18512 {
18513 struct attribute *type_attr;
18514
18515 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18516 if (!type_attr)
18517 error (_("Dwarf Error: Problem turning containing type into gdb type "
18518 "[in module %s]"), objfile_name (cu->objfile));
18519
18520 return lookup_die_type (die, type_attr, cu);
18521 }
18522
18523 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18524
18525 static struct type *
18526 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18527 {
18528 struct objfile *objfile = dwarf2_per_objfile->objfile;
18529 char *message, *saved;
18530
18531 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18532 objfile_name (objfile),
18533 cu->header.offset.sect_off,
18534 die->offset.sect_off);
18535 saved = obstack_copy0 (&objfile->objfile_obstack,
18536 message, strlen (message));
18537 xfree (message);
18538
18539 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18540 }
18541
18542 /* Look up the type of DIE in CU using its type attribute ATTR.
18543 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18544 DW_AT_containing_type.
18545 If there is no type substitute an error marker. */
18546
18547 static struct type *
18548 lookup_die_type (struct die_info *die, const struct attribute *attr,
18549 struct dwarf2_cu *cu)
18550 {
18551 struct objfile *objfile = cu->objfile;
18552 struct type *this_type;
18553
18554 gdb_assert (attr->name == DW_AT_type
18555 || attr->name == DW_AT_GNAT_descriptive_type
18556 || attr->name == DW_AT_containing_type);
18557
18558 /* First see if we have it cached. */
18559
18560 if (attr->form == DW_FORM_GNU_ref_alt)
18561 {
18562 struct dwarf2_per_cu_data *per_cu;
18563 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18564
18565 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18566 this_type = get_die_type_at_offset (offset, per_cu);
18567 }
18568 else if (attr_form_is_ref (attr))
18569 {
18570 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18571
18572 this_type = get_die_type_at_offset (offset, cu->per_cu);
18573 }
18574 else if (attr->form == DW_FORM_ref_sig8)
18575 {
18576 ULONGEST signature = DW_SIGNATURE (attr);
18577
18578 return get_signatured_type (die, signature, cu);
18579 }
18580 else
18581 {
18582 complaint (&symfile_complaints,
18583 _("Dwarf Error: Bad type attribute %s in DIE"
18584 " at 0x%x [in module %s]"),
18585 dwarf_attr_name (attr->name), die->offset.sect_off,
18586 objfile_name (objfile));
18587 return build_error_marker_type (cu, die);
18588 }
18589
18590 /* If not cached we need to read it in. */
18591
18592 if (this_type == NULL)
18593 {
18594 struct die_info *type_die = NULL;
18595 struct dwarf2_cu *type_cu = cu;
18596
18597 if (attr_form_is_ref (attr))
18598 type_die = follow_die_ref (die, attr, &type_cu);
18599 if (type_die == NULL)
18600 return build_error_marker_type (cu, die);
18601 /* If we find the type now, it's probably because the type came
18602 from an inter-CU reference and the type's CU got expanded before
18603 ours. */
18604 this_type = read_type_die (type_die, type_cu);
18605 }
18606
18607 /* If we still don't have a type use an error marker. */
18608
18609 if (this_type == NULL)
18610 return build_error_marker_type (cu, die);
18611
18612 return this_type;
18613 }
18614
18615 /* Return the type in DIE, CU.
18616 Returns NULL for invalid types.
18617
18618 This first does a lookup in die_type_hash,
18619 and only reads the die in if necessary.
18620
18621 NOTE: This can be called when reading in partial or full symbols. */
18622
18623 static struct type *
18624 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18625 {
18626 struct type *this_type;
18627
18628 this_type = get_die_type (die, cu);
18629 if (this_type)
18630 return this_type;
18631
18632 return read_type_die_1 (die, cu);
18633 }
18634
18635 /* Read the type in DIE, CU.
18636 Returns NULL for invalid types. */
18637
18638 static struct type *
18639 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18640 {
18641 struct type *this_type = NULL;
18642
18643 switch (die->tag)
18644 {
18645 case DW_TAG_class_type:
18646 case DW_TAG_interface_type:
18647 case DW_TAG_structure_type:
18648 case DW_TAG_union_type:
18649 this_type = read_structure_type (die, cu);
18650 break;
18651 case DW_TAG_enumeration_type:
18652 this_type = read_enumeration_type (die, cu);
18653 break;
18654 case DW_TAG_subprogram:
18655 case DW_TAG_subroutine_type:
18656 case DW_TAG_inlined_subroutine:
18657 this_type = read_subroutine_type (die, cu);
18658 break;
18659 case DW_TAG_array_type:
18660 this_type = read_array_type (die, cu);
18661 break;
18662 case DW_TAG_set_type:
18663 this_type = read_set_type (die, cu);
18664 break;
18665 case DW_TAG_pointer_type:
18666 this_type = read_tag_pointer_type (die, cu);
18667 break;
18668 case DW_TAG_ptr_to_member_type:
18669 this_type = read_tag_ptr_to_member_type (die, cu);
18670 break;
18671 case DW_TAG_reference_type:
18672 this_type = read_tag_reference_type (die, cu);
18673 break;
18674 case DW_TAG_const_type:
18675 this_type = read_tag_const_type (die, cu);
18676 break;
18677 case DW_TAG_volatile_type:
18678 this_type = read_tag_volatile_type (die, cu);
18679 break;
18680 case DW_TAG_restrict_type:
18681 this_type = read_tag_restrict_type (die, cu);
18682 break;
18683 case DW_TAG_string_type:
18684 this_type = read_tag_string_type (die, cu);
18685 break;
18686 case DW_TAG_typedef:
18687 this_type = read_typedef (die, cu);
18688 break;
18689 case DW_TAG_subrange_type:
18690 this_type = read_subrange_type (die, cu);
18691 break;
18692 case DW_TAG_base_type:
18693 this_type = read_base_type (die, cu);
18694 break;
18695 case DW_TAG_unspecified_type:
18696 this_type = read_unspecified_type (die, cu);
18697 break;
18698 case DW_TAG_namespace:
18699 this_type = read_namespace_type (die, cu);
18700 break;
18701 case DW_TAG_module:
18702 this_type = read_module_type (die, cu);
18703 break;
18704 default:
18705 complaint (&symfile_complaints,
18706 _("unexpected tag in read_type_die: '%s'"),
18707 dwarf_tag_name (die->tag));
18708 break;
18709 }
18710
18711 return this_type;
18712 }
18713
18714 /* See if we can figure out if the class lives in a namespace. We do
18715 this by looking for a member function; its demangled name will
18716 contain namespace info, if there is any.
18717 Return the computed name or NULL.
18718 Space for the result is allocated on the objfile's obstack.
18719 This is the full-die version of guess_partial_die_structure_name.
18720 In this case we know DIE has no useful parent. */
18721
18722 static char *
18723 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18724 {
18725 struct die_info *spec_die;
18726 struct dwarf2_cu *spec_cu;
18727 struct die_info *child;
18728
18729 spec_cu = cu;
18730 spec_die = die_specification (die, &spec_cu);
18731 if (spec_die != NULL)
18732 {
18733 die = spec_die;
18734 cu = spec_cu;
18735 }
18736
18737 for (child = die->child;
18738 child != NULL;
18739 child = child->sibling)
18740 {
18741 if (child->tag == DW_TAG_subprogram)
18742 {
18743 struct attribute *attr;
18744
18745 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18746 if (attr == NULL)
18747 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18748 if (attr != NULL)
18749 {
18750 char *actual_name
18751 = language_class_name_from_physname (cu->language_defn,
18752 DW_STRING (attr));
18753 char *name = NULL;
18754
18755 if (actual_name != NULL)
18756 {
18757 const char *die_name = dwarf2_name (die, cu);
18758
18759 if (die_name != NULL
18760 && strcmp (die_name, actual_name) != 0)
18761 {
18762 /* Strip off the class name from the full name.
18763 We want the prefix. */
18764 int die_name_len = strlen (die_name);
18765 int actual_name_len = strlen (actual_name);
18766
18767 /* Test for '::' as a sanity check. */
18768 if (actual_name_len > die_name_len + 2
18769 && actual_name[actual_name_len
18770 - die_name_len - 1] == ':')
18771 name =
18772 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18773 actual_name,
18774 actual_name_len - die_name_len - 2);
18775 }
18776 }
18777 xfree (actual_name);
18778 return name;
18779 }
18780 }
18781 }
18782
18783 return NULL;
18784 }
18785
18786 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18787 prefix part in such case. See
18788 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18789
18790 static char *
18791 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18792 {
18793 struct attribute *attr;
18794 char *base;
18795
18796 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18797 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18798 return NULL;
18799
18800 attr = dwarf2_attr (die, DW_AT_name, cu);
18801 if (attr != NULL && DW_STRING (attr) != NULL)
18802 return NULL;
18803
18804 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18805 if (attr == NULL)
18806 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18807 if (attr == NULL || DW_STRING (attr) == NULL)
18808 return NULL;
18809
18810 /* dwarf2_name had to be already called. */
18811 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18812
18813 /* Strip the base name, keep any leading namespaces/classes. */
18814 base = strrchr (DW_STRING (attr), ':');
18815 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18816 return "";
18817
18818 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18819 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18820 }
18821
18822 /* Return the name of the namespace/class that DIE is defined within,
18823 or "" if we can't tell. The caller should not xfree the result.
18824
18825 For example, if we're within the method foo() in the following
18826 code:
18827
18828 namespace N {
18829 class C {
18830 void foo () {
18831 }
18832 };
18833 }
18834
18835 then determine_prefix on foo's die will return "N::C". */
18836
18837 static const char *
18838 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18839 {
18840 struct die_info *parent, *spec_die;
18841 struct dwarf2_cu *spec_cu;
18842 struct type *parent_type;
18843 char *retval;
18844
18845 if (cu->language != language_cplus && cu->language != language_java
18846 && cu->language != language_fortran)
18847 return "";
18848
18849 retval = anonymous_struct_prefix (die, cu);
18850 if (retval)
18851 return retval;
18852
18853 /* We have to be careful in the presence of DW_AT_specification.
18854 For example, with GCC 3.4, given the code
18855
18856 namespace N {
18857 void foo() {
18858 // Definition of N::foo.
18859 }
18860 }
18861
18862 then we'll have a tree of DIEs like this:
18863
18864 1: DW_TAG_compile_unit
18865 2: DW_TAG_namespace // N
18866 3: DW_TAG_subprogram // declaration of N::foo
18867 4: DW_TAG_subprogram // definition of N::foo
18868 DW_AT_specification // refers to die #3
18869
18870 Thus, when processing die #4, we have to pretend that we're in
18871 the context of its DW_AT_specification, namely the contex of die
18872 #3. */
18873 spec_cu = cu;
18874 spec_die = die_specification (die, &spec_cu);
18875 if (spec_die == NULL)
18876 parent = die->parent;
18877 else
18878 {
18879 parent = spec_die->parent;
18880 cu = spec_cu;
18881 }
18882
18883 if (parent == NULL)
18884 return "";
18885 else if (parent->building_fullname)
18886 {
18887 const char *name;
18888 const char *parent_name;
18889
18890 /* It has been seen on RealView 2.2 built binaries,
18891 DW_TAG_template_type_param types actually _defined_ as
18892 children of the parent class:
18893
18894 enum E {};
18895 template class <class Enum> Class{};
18896 Class<enum E> class_e;
18897
18898 1: DW_TAG_class_type (Class)
18899 2: DW_TAG_enumeration_type (E)
18900 3: DW_TAG_enumerator (enum1:0)
18901 3: DW_TAG_enumerator (enum2:1)
18902 ...
18903 2: DW_TAG_template_type_param
18904 DW_AT_type DW_FORM_ref_udata (E)
18905
18906 Besides being broken debug info, it can put GDB into an
18907 infinite loop. Consider:
18908
18909 When we're building the full name for Class<E>, we'll start
18910 at Class, and go look over its template type parameters,
18911 finding E. We'll then try to build the full name of E, and
18912 reach here. We're now trying to build the full name of E,
18913 and look over the parent DIE for containing scope. In the
18914 broken case, if we followed the parent DIE of E, we'd again
18915 find Class, and once again go look at its template type
18916 arguments, etc., etc. Simply don't consider such parent die
18917 as source-level parent of this die (it can't be, the language
18918 doesn't allow it), and break the loop here. */
18919 name = dwarf2_name (die, cu);
18920 parent_name = dwarf2_name (parent, cu);
18921 complaint (&symfile_complaints,
18922 _("template param type '%s' defined within parent '%s'"),
18923 name ? name : "<unknown>",
18924 parent_name ? parent_name : "<unknown>");
18925 return "";
18926 }
18927 else
18928 switch (parent->tag)
18929 {
18930 case DW_TAG_namespace:
18931 parent_type = read_type_die (parent, cu);
18932 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18933 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18934 Work around this problem here. */
18935 if (cu->language == language_cplus
18936 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18937 return "";
18938 /* We give a name to even anonymous namespaces. */
18939 return TYPE_TAG_NAME (parent_type);
18940 case DW_TAG_class_type:
18941 case DW_TAG_interface_type:
18942 case DW_TAG_structure_type:
18943 case DW_TAG_union_type:
18944 case DW_TAG_module:
18945 parent_type = read_type_die (parent, cu);
18946 if (TYPE_TAG_NAME (parent_type) != NULL)
18947 return TYPE_TAG_NAME (parent_type);
18948 else
18949 /* An anonymous structure is only allowed non-static data
18950 members; no typedefs, no member functions, et cetera.
18951 So it does not need a prefix. */
18952 return "";
18953 case DW_TAG_compile_unit:
18954 case DW_TAG_partial_unit:
18955 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18956 if (cu->language == language_cplus
18957 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18958 && die->child != NULL
18959 && (die->tag == DW_TAG_class_type
18960 || die->tag == DW_TAG_structure_type
18961 || die->tag == DW_TAG_union_type))
18962 {
18963 char *name = guess_full_die_structure_name (die, cu);
18964 if (name != NULL)
18965 return name;
18966 }
18967 return "";
18968 case DW_TAG_enumeration_type:
18969 parent_type = read_type_die (parent, cu);
18970 if (TYPE_DECLARED_CLASS (parent_type))
18971 {
18972 if (TYPE_TAG_NAME (parent_type) != NULL)
18973 return TYPE_TAG_NAME (parent_type);
18974 return "";
18975 }
18976 /* Fall through. */
18977 default:
18978 return determine_prefix (parent, cu);
18979 }
18980 }
18981
18982 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18983 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18984 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18985 an obconcat, otherwise allocate storage for the result. The CU argument is
18986 used to determine the language and hence, the appropriate separator. */
18987
18988 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18989
18990 static char *
18991 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18992 int physname, struct dwarf2_cu *cu)
18993 {
18994 const char *lead = "";
18995 const char *sep;
18996
18997 if (suffix == NULL || suffix[0] == '\0'
18998 || prefix == NULL || prefix[0] == '\0')
18999 sep = "";
19000 else if (cu->language == language_java)
19001 sep = ".";
19002 else if (cu->language == language_fortran && physname)
19003 {
19004 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19005 DW_AT_MIPS_linkage_name is preferred and used instead. */
19006
19007 lead = "__";
19008 sep = "_MOD_";
19009 }
19010 else
19011 sep = "::";
19012
19013 if (prefix == NULL)
19014 prefix = "";
19015 if (suffix == NULL)
19016 suffix = "";
19017
19018 if (obs == NULL)
19019 {
19020 char *retval
19021 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19022
19023 strcpy (retval, lead);
19024 strcat (retval, prefix);
19025 strcat (retval, sep);
19026 strcat (retval, suffix);
19027 return retval;
19028 }
19029 else
19030 {
19031 /* We have an obstack. */
19032 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19033 }
19034 }
19035
19036 /* Return sibling of die, NULL if no sibling. */
19037
19038 static struct die_info *
19039 sibling_die (struct die_info *die)
19040 {
19041 return die->sibling;
19042 }
19043
19044 /* Get name of a die, return NULL if not found. */
19045
19046 static const char *
19047 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19048 struct obstack *obstack)
19049 {
19050 if (name && cu->language == language_cplus)
19051 {
19052 char *canon_name = cp_canonicalize_string (name);
19053
19054 if (canon_name != NULL)
19055 {
19056 if (strcmp (canon_name, name) != 0)
19057 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19058 xfree (canon_name);
19059 }
19060 }
19061
19062 return name;
19063 }
19064
19065 /* Get name of a die, return NULL if not found. */
19066
19067 static const char *
19068 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19069 {
19070 struct attribute *attr;
19071
19072 attr = dwarf2_attr (die, DW_AT_name, cu);
19073 if ((!attr || !DW_STRING (attr))
19074 && die->tag != DW_TAG_class_type
19075 && die->tag != DW_TAG_interface_type
19076 && die->tag != DW_TAG_structure_type
19077 && die->tag != DW_TAG_union_type)
19078 return NULL;
19079
19080 switch (die->tag)
19081 {
19082 case DW_TAG_compile_unit:
19083 case DW_TAG_partial_unit:
19084 /* Compilation units have a DW_AT_name that is a filename, not
19085 a source language identifier. */
19086 case DW_TAG_enumeration_type:
19087 case DW_TAG_enumerator:
19088 /* These tags always have simple identifiers already; no need
19089 to canonicalize them. */
19090 return DW_STRING (attr);
19091
19092 case DW_TAG_subprogram:
19093 /* Java constructors will all be named "<init>", so return
19094 the class name when we see this special case. */
19095 if (cu->language == language_java
19096 && DW_STRING (attr) != NULL
19097 && strcmp (DW_STRING (attr), "<init>") == 0)
19098 {
19099 struct dwarf2_cu *spec_cu = cu;
19100 struct die_info *spec_die;
19101
19102 /* GCJ will output '<init>' for Java constructor names.
19103 For this special case, return the name of the parent class. */
19104
19105 /* GCJ may output subprogram DIEs with AT_specification set.
19106 If so, use the name of the specified DIE. */
19107 spec_die = die_specification (die, &spec_cu);
19108 if (spec_die != NULL)
19109 return dwarf2_name (spec_die, spec_cu);
19110
19111 do
19112 {
19113 die = die->parent;
19114 if (die->tag == DW_TAG_class_type)
19115 return dwarf2_name (die, cu);
19116 }
19117 while (die->tag != DW_TAG_compile_unit
19118 && die->tag != DW_TAG_partial_unit);
19119 }
19120 break;
19121
19122 case DW_TAG_class_type:
19123 case DW_TAG_interface_type:
19124 case DW_TAG_structure_type:
19125 case DW_TAG_union_type:
19126 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19127 structures or unions. These were of the form "._%d" in GCC 4.1,
19128 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19129 and GCC 4.4. We work around this problem by ignoring these. */
19130 if (attr && DW_STRING (attr)
19131 && (strncmp (DW_STRING (attr), "._", 2) == 0
19132 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19133 return NULL;
19134
19135 /* GCC might emit a nameless typedef that has a linkage name. See
19136 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19137 if (!attr || DW_STRING (attr) == NULL)
19138 {
19139 char *demangled = NULL;
19140
19141 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19142 if (attr == NULL)
19143 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19144
19145 if (attr == NULL || DW_STRING (attr) == NULL)
19146 return NULL;
19147
19148 /* Avoid demangling DW_STRING (attr) the second time on a second
19149 call for the same DIE. */
19150 if (!DW_STRING_IS_CANONICAL (attr))
19151 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19152
19153 if (demangled)
19154 {
19155 char *base;
19156
19157 /* FIXME: we already did this for the partial symbol... */
19158 DW_STRING (attr)
19159 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19160 demangled, strlen (demangled));
19161 DW_STRING_IS_CANONICAL (attr) = 1;
19162 xfree (demangled);
19163
19164 /* Strip any leading namespaces/classes, keep only the base name.
19165 DW_AT_name for named DIEs does not contain the prefixes. */
19166 base = strrchr (DW_STRING (attr), ':');
19167 if (base && base > DW_STRING (attr) && base[-1] == ':')
19168 return &base[1];
19169 else
19170 return DW_STRING (attr);
19171 }
19172 }
19173 break;
19174
19175 default:
19176 break;
19177 }
19178
19179 if (!DW_STRING_IS_CANONICAL (attr))
19180 {
19181 DW_STRING (attr)
19182 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19183 &cu->objfile->per_bfd->storage_obstack);
19184 DW_STRING_IS_CANONICAL (attr) = 1;
19185 }
19186 return DW_STRING (attr);
19187 }
19188
19189 /* Return the die that this die in an extension of, or NULL if there
19190 is none. *EXT_CU is the CU containing DIE on input, and the CU
19191 containing the return value on output. */
19192
19193 static struct die_info *
19194 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19195 {
19196 struct attribute *attr;
19197
19198 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19199 if (attr == NULL)
19200 return NULL;
19201
19202 return follow_die_ref (die, attr, ext_cu);
19203 }
19204
19205 /* Convert a DIE tag into its string name. */
19206
19207 static const char *
19208 dwarf_tag_name (unsigned tag)
19209 {
19210 const char *name = get_DW_TAG_name (tag);
19211
19212 if (name == NULL)
19213 return "DW_TAG_<unknown>";
19214
19215 return name;
19216 }
19217
19218 /* Convert a DWARF attribute code into its string name. */
19219
19220 static const char *
19221 dwarf_attr_name (unsigned attr)
19222 {
19223 const char *name;
19224
19225 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19226 if (attr == DW_AT_MIPS_fde)
19227 return "DW_AT_MIPS_fde";
19228 #else
19229 if (attr == DW_AT_HP_block_index)
19230 return "DW_AT_HP_block_index";
19231 #endif
19232
19233 name = get_DW_AT_name (attr);
19234
19235 if (name == NULL)
19236 return "DW_AT_<unknown>";
19237
19238 return name;
19239 }
19240
19241 /* Convert a DWARF value form code into its string name. */
19242
19243 static const char *
19244 dwarf_form_name (unsigned form)
19245 {
19246 const char *name = get_DW_FORM_name (form);
19247
19248 if (name == NULL)
19249 return "DW_FORM_<unknown>";
19250
19251 return name;
19252 }
19253
19254 static char *
19255 dwarf_bool_name (unsigned mybool)
19256 {
19257 if (mybool)
19258 return "TRUE";
19259 else
19260 return "FALSE";
19261 }
19262
19263 /* Convert a DWARF type code into its string name. */
19264
19265 static const char *
19266 dwarf_type_encoding_name (unsigned enc)
19267 {
19268 const char *name = get_DW_ATE_name (enc);
19269
19270 if (name == NULL)
19271 return "DW_ATE_<unknown>";
19272
19273 return name;
19274 }
19275
19276 static void
19277 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19278 {
19279 unsigned int i;
19280
19281 print_spaces (indent, f);
19282 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19283 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19284
19285 if (die->parent != NULL)
19286 {
19287 print_spaces (indent, f);
19288 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19289 die->parent->offset.sect_off);
19290 }
19291
19292 print_spaces (indent, f);
19293 fprintf_unfiltered (f, " has children: %s\n",
19294 dwarf_bool_name (die->child != NULL));
19295
19296 print_spaces (indent, f);
19297 fprintf_unfiltered (f, " attributes:\n");
19298
19299 for (i = 0; i < die->num_attrs; ++i)
19300 {
19301 print_spaces (indent, f);
19302 fprintf_unfiltered (f, " %s (%s) ",
19303 dwarf_attr_name (die->attrs[i].name),
19304 dwarf_form_name (die->attrs[i].form));
19305
19306 switch (die->attrs[i].form)
19307 {
19308 case DW_FORM_addr:
19309 case DW_FORM_GNU_addr_index:
19310 fprintf_unfiltered (f, "address: ");
19311 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19312 break;
19313 case DW_FORM_block2:
19314 case DW_FORM_block4:
19315 case DW_FORM_block:
19316 case DW_FORM_block1:
19317 fprintf_unfiltered (f, "block: size %s",
19318 pulongest (DW_BLOCK (&die->attrs[i])->size));
19319 break;
19320 case DW_FORM_exprloc:
19321 fprintf_unfiltered (f, "expression: size %s",
19322 pulongest (DW_BLOCK (&die->attrs[i])->size));
19323 break;
19324 case DW_FORM_ref_addr:
19325 fprintf_unfiltered (f, "ref address: ");
19326 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19327 break;
19328 case DW_FORM_GNU_ref_alt:
19329 fprintf_unfiltered (f, "alt ref address: ");
19330 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19331 break;
19332 case DW_FORM_ref1:
19333 case DW_FORM_ref2:
19334 case DW_FORM_ref4:
19335 case DW_FORM_ref8:
19336 case DW_FORM_ref_udata:
19337 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19338 (long) (DW_UNSND (&die->attrs[i])));
19339 break;
19340 case DW_FORM_data1:
19341 case DW_FORM_data2:
19342 case DW_FORM_data4:
19343 case DW_FORM_data8:
19344 case DW_FORM_udata:
19345 case DW_FORM_sdata:
19346 fprintf_unfiltered (f, "constant: %s",
19347 pulongest (DW_UNSND (&die->attrs[i])));
19348 break;
19349 case DW_FORM_sec_offset:
19350 fprintf_unfiltered (f, "section offset: %s",
19351 pulongest (DW_UNSND (&die->attrs[i])));
19352 break;
19353 case DW_FORM_ref_sig8:
19354 fprintf_unfiltered (f, "signature: %s",
19355 hex_string (DW_SIGNATURE (&die->attrs[i])));
19356 break;
19357 case DW_FORM_string:
19358 case DW_FORM_strp:
19359 case DW_FORM_GNU_str_index:
19360 case DW_FORM_GNU_strp_alt:
19361 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19362 DW_STRING (&die->attrs[i])
19363 ? DW_STRING (&die->attrs[i]) : "",
19364 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19365 break;
19366 case DW_FORM_flag:
19367 if (DW_UNSND (&die->attrs[i]))
19368 fprintf_unfiltered (f, "flag: TRUE");
19369 else
19370 fprintf_unfiltered (f, "flag: FALSE");
19371 break;
19372 case DW_FORM_flag_present:
19373 fprintf_unfiltered (f, "flag: TRUE");
19374 break;
19375 case DW_FORM_indirect:
19376 /* The reader will have reduced the indirect form to
19377 the "base form" so this form should not occur. */
19378 fprintf_unfiltered (f,
19379 "unexpected attribute form: DW_FORM_indirect");
19380 break;
19381 default:
19382 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19383 die->attrs[i].form);
19384 break;
19385 }
19386 fprintf_unfiltered (f, "\n");
19387 }
19388 }
19389
19390 static void
19391 dump_die_for_error (struct die_info *die)
19392 {
19393 dump_die_shallow (gdb_stderr, 0, die);
19394 }
19395
19396 static void
19397 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19398 {
19399 int indent = level * 4;
19400
19401 gdb_assert (die != NULL);
19402
19403 if (level >= max_level)
19404 return;
19405
19406 dump_die_shallow (f, indent, die);
19407
19408 if (die->child != NULL)
19409 {
19410 print_spaces (indent, f);
19411 fprintf_unfiltered (f, " Children:");
19412 if (level + 1 < max_level)
19413 {
19414 fprintf_unfiltered (f, "\n");
19415 dump_die_1 (f, level + 1, max_level, die->child);
19416 }
19417 else
19418 {
19419 fprintf_unfiltered (f,
19420 " [not printed, max nesting level reached]\n");
19421 }
19422 }
19423
19424 if (die->sibling != NULL && level > 0)
19425 {
19426 dump_die_1 (f, level, max_level, die->sibling);
19427 }
19428 }
19429
19430 /* This is called from the pdie macro in gdbinit.in.
19431 It's not static so gcc will keep a copy callable from gdb. */
19432
19433 void
19434 dump_die (struct die_info *die, int max_level)
19435 {
19436 dump_die_1 (gdb_stdlog, 0, max_level, die);
19437 }
19438
19439 static void
19440 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19441 {
19442 void **slot;
19443
19444 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19445 INSERT);
19446
19447 *slot = die;
19448 }
19449
19450 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19451 required kind. */
19452
19453 static sect_offset
19454 dwarf2_get_ref_die_offset (const struct attribute *attr)
19455 {
19456 sect_offset retval = { DW_UNSND (attr) };
19457
19458 if (attr_form_is_ref (attr))
19459 return retval;
19460
19461 retval.sect_off = 0;
19462 complaint (&symfile_complaints,
19463 _("unsupported die ref attribute form: '%s'"),
19464 dwarf_form_name (attr->form));
19465 return retval;
19466 }
19467
19468 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19469 * the value held by the attribute is not constant. */
19470
19471 static LONGEST
19472 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19473 {
19474 if (attr->form == DW_FORM_sdata)
19475 return DW_SND (attr);
19476 else if (attr->form == DW_FORM_udata
19477 || attr->form == DW_FORM_data1
19478 || attr->form == DW_FORM_data2
19479 || attr->form == DW_FORM_data4
19480 || attr->form == DW_FORM_data8)
19481 return DW_UNSND (attr);
19482 else
19483 {
19484 complaint (&symfile_complaints,
19485 _("Attribute value is not a constant (%s)"),
19486 dwarf_form_name (attr->form));
19487 return default_value;
19488 }
19489 }
19490
19491 /* Follow reference or signature attribute ATTR of SRC_DIE.
19492 On entry *REF_CU is the CU of SRC_DIE.
19493 On exit *REF_CU is the CU of the result. */
19494
19495 static struct die_info *
19496 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19497 struct dwarf2_cu **ref_cu)
19498 {
19499 struct die_info *die;
19500
19501 if (attr_form_is_ref (attr))
19502 die = follow_die_ref (src_die, attr, ref_cu);
19503 else if (attr->form == DW_FORM_ref_sig8)
19504 die = follow_die_sig (src_die, attr, ref_cu);
19505 else
19506 {
19507 dump_die_for_error (src_die);
19508 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19509 objfile_name ((*ref_cu)->objfile));
19510 }
19511
19512 return die;
19513 }
19514
19515 /* Follow reference OFFSET.
19516 On entry *REF_CU is the CU of the source die referencing OFFSET.
19517 On exit *REF_CU is the CU of the result.
19518 Returns NULL if OFFSET is invalid. */
19519
19520 static struct die_info *
19521 follow_die_offset (sect_offset offset, int offset_in_dwz,
19522 struct dwarf2_cu **ref_cu)
19523 {
19524 struct die_info temp_die;
19525 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19526
19527 gdb_assert (cu->per_cu != NULL);
19528
19529 target_cu = cu;
19530
19531 if (cu->per_cu->is_debug_types)
19532 {
19533 /* .debug_types CUs cannot reference anything outside their CU.
19534 If they need to, they have to reference a signatured type via
19535 DW_FORM_ref_sig8. */
19536 if (! offset_in_cu_p (&cu->header, offset))
19537 return NULL;
19538 }
19539 else if (offset_in_dwz != cu->per_cu->is_dwz
19540 || ! offset_in_cu_p (&cu->header, offset))
19541 {
19542 struct dwarf2_per_cu_data *per_cu;
19543
19544 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19545 cu->objfile);
19546
19547 /* If necessary, add it to the queue and load its DIEs. */
19548 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19549 load_full_comp_unit (per_cu, cu->language);
19550
19551 target_cu = per_cu->cu;
19552 }
19553 else if (cu->dies == NULL)
19554 {
19555 /* We're loading full DIEs during partial symbol reading. */
19556 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19557 load_full_comp_unit (cu->per_cu, language_minimal);
19558 }
19559
19560 *ref_cu = target_cu;
19561 temp_die.offset = offset;
19562 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19563 }
19564
19565 /* Follow reference attribute ATTR of SRC_DIE.
19566 On entry *REF_CU is the CU of SRC_DIE.
19567 On exit *REF_CU is the CU of the result. */
19568
19569 static struct die_info *
19570 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19571 struct dwarf2_cu **ref_cu)
19572 {
19573 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19574 struct dwarf2_cu *cu = *ref_cu;
19575 struct die_info *die;
19576
19577 die = follow_die_offset (offset,
19578 (attr->form == DW_FORM_GNU_ref_alt
19579 || cu->per_cu->is_dwz),
19580 ref_cu);
19581 if (!die)
19582 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19583 "at 0x%x [in module %s]"),
19584 offset.sect_off, src_die->offset.sect_off,
19585 objfile_name (cu->objfile));
19586
19587 return die;
19588 }
19589
19590 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19591 Returned value is intended for DW_OP_call*. Returned
19592 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19593
19594 struct dwarf2_locexpr_baton
19595 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19596 struct dwarf2_per_cu_data *per_cu,
19597 CORE_ADDR (*get_frame_pc) (void *baton),
19598 void *baton)
19599 {
19600 struct dwarf2_cu *cu;
19601 struct die_info *die;
19602 struct attribute *attr;
19603 struct dwarf2_locexpr_baton retval;
19604
19605 dw2_setup (per_cu->objfile);
19606
19607 if (per_cu->cu == NULL)
19608 load_cu (per_cu);
19609 cu = per_cu->cu;
19610
19611 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19612 if (!die)
19613 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19614 offset.sect_off, objfile_name (per_cu->objfile));
19615
19616 attr = dwarf2_attr (die, DW_AT_location, cu);
19617 if (!attr)
19618 {
19619 /* DWARF: "If there is no such attribute, then there is no effect.".
19620 DATA is ignored if SIZE is 0. */
19621
19622 retval.data = NULL;
19623 retval.size = 0;
19624 }
19625 else if (attr_form_is_section_offset (attr))
19626 {
19627 struct dwarf2_loclist_baton loclist_baton;
19628 CORE_ADDR pc = (*get_frame_pc) (baton);
19629 size_t size;
19630
19631 fill_in_loclist_baton (cu, &loclist_baton, attr);
19632
19633 retval.data = dwarf2_find_location_expression (&loclist_baton,
19634 &size, pc);
19635 retval.size = size;
19636 }
19637 else
19638 {
19639 if (!attr_form_is_block (attr))
19640 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19641 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19642 offset.sect_off, objfile_name (per_cu->objfile));
19643
19644 retval.data = DW_BLOCK (attr)->data;
19645 retval.size = DW_BLOCK (attr)->size;
19646 }
19647 retval.per_cu = cu->per_cu;
19648
19649 age_cached_comp_units ();
19650
19651 return retval;
19652 }
19653
19654 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19655 offset. */
19656
19657 struct dwarf2_locexpr_baton
19658 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19659 struct dwarf2_per_cu_data *per_cu,
19660 CORE_ADDR (*get_frame_pc) (void *baton),
19661 void *baton)
19662 {
19663 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19664
19665 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19666 }
19667
19668 /* Write a constant of a given type as target-ordered bytes into
19669 OBSTACK. */
19670
19671 static const gdb_byte *
19672 write_constant_as_bytes (struct obstack *obstack,
19673 enum bfd_endian byte_order,
19674 struct type *type,
19675 ULONGEST value,
19676 LONGEST *len)
19677 {
19678 gdb_byte *result;
19679
19680 *len = TYPE_LENGTH (type);
19681 result = obstack_alloc (obstack, *len);
19682 store_unsigned_integer (result, *len, byte_order, value);
19683
19684 return result;
19685 }
19686
19687 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19688 pointer to the constant bytes and set LEN to the length of the
19689 data. If memory is needed, allocate it on OBSTACK. If the DIE
19690 does not have a DW_AT_const_value, return NULL. */
19691
19692 const gdb_byte *
19693 dwarf2_fetch_constant_bytes (sect_offset offset,
19694 struct dwarf2_per_cu_data *per_cu,
19695 struct obstack *obstack,
19696 LONGEST *len)
19697 {
19698 struct dwarf2_cu *cu;
19699 struct die_info *die;
19700 struct attribute *attr;
19701 const gdb_byte *result = NULL;
19702 struct type *type;
19703 LONGEST value;
19704 enum bfd_endian byte_order;
19705
19706 dw2_setup (per_cu->objfile);
19707
19708 if (per_cu->cu == NULL)
19709 load_cu (per_cu);
19710 cu = per_cu->cu;
19711
19712 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19713 if (!die)
19714 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19715 offset.sect_off, objfile_name (per_cu->objfile));
19716
19717
19718 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19719 if (attr == NULL)
19720 return NULL;
19721
19722 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19723 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19724
19725 switch (attr->form)
19726 {
19727 case DW_FORM_addr:
19728 case DW_FORM_GNU_addr_index:
19729 {
19730 gdb_byte *tem;
19731
19732 *len = cu->header.addr_size;
19733 tem = obstack_alloc (obstack, *len);
19734 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19735 result = tem;
19736 }
19737 break;
19738 case DW_FORM_string:
19739 case DW_FORM_strp:
19740 case DW_FORM_GNU_str_index:
19741 case DW_FORM_GNU_strp_alt:
19742 /* DW_STRING is already allocated on the objfile obstack, point
19743 directly to it. */
19744 result = (const gdb_byte *) DW_STRING (attr);
19745 *len = strlen (DW_STRING (attr));
19746 break;
19747 case DW_FORM_block1:
19748 case DW_FORM_block2:
19749 case DW_FORM_block4:
19750 case DW_FORM_block:
19751 case DW_FORM_exprloc:
19752 result = DW_BLOCK (attr)->data;
19753 *len = DW_BLOCK (attr)->size;
19754 break;
19755
19756 /* The DW_AT_const_value attributes are supposed to carry the
19757 symbol's value "represented as it would be on the target
19758 architecture." By the time we get here, it's already been
19759 converted to host endianness, so we just need to sign- or
19760 zero-extend it as appropriate. */
19761 case DW_FORM_data1:
19762 type = die_type (die, cu);
19763 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19764 if (result == NULL)
19765 result = write_constant_as_bytes (obstack, byte_order,
19766 type, value, len);
19767 break;
19768 case DW_FORM_data2:
19769 type = die_type (die, cu);
19770 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19771 if (result == NULL)
19772 result = write_constant_as_bytes (obstack, byte_order,
19773 type, value, len);
19774 break;
19775 case DW_FORM_data4:
19776 type = die_type (die, cu);
19777 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19778 if (result == NULL)
19779 result = write_constant_as_bytes (obstack, byte_order,
19780 type, value, len);
19781 break;
19782 case DW_FORM_data8:
19783 type = die_type (die, cu);
19784 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19785 if (result == NULL)
19786 result = write_constant_as_bytes (obstack, byte_order,
19787 type, value, len);
19788 break;
19789
19790 case DW_FORM_sdata:
19791 type = die_type (die, cu);
19792 result = write_constant_as_bytes (obstack, byte_order,
19793 type, DW_SND (attr), len);
19794 break;
19795
19796 case DW_FORM_udata:
19797 type = die_type (die, cu);
19798 result = write_constant_as_bytes (obstack, byte_order,
19799 type, DW_UNSND (attr), len);
19800 break;
19801
19802 default:
19803 complaint (&symfile_complaints,
19804 _("unsupported const value attribute form: '%s'"),
19805 dwarf_form_name (attr->form));
19806 break;
19807 }
19808
19809 return result;
19810 }
19811
19812 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19813 PER_CU. */
19814
19815 struct type *
19816 dwarf2_get_die_type (cu_offset die_offset,
19817 struct dwarf2_per_cu_data *per_cu)
19818 {
19819 sect_offset die_offset_sect;
19820
19821 dw2_setup (per_cu->objfile);
19822
19823 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19824 return get_die_type_at_offset (die_offset_sect, per_cu);
19825 }
19826
19827 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19828 On entry *REF_CU is the CU of SRC_DIE.
19829 On exit *REF_CU is the CU of the result.
19830 Returns NULL if the referenced DIE isn't found. */
19831
19832 static struct die_info *
19833 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19834 struct dwarf2_cu **ref_cu)
19835 {
19836 struct objfile *objfile = (*ref_cu)->objfile;
19837 struct die_info temp_die;
19838 struct dwarf2_cu *sig_cu;
19839 struct die_info *die;
19840
19841 /* While it might be nice to assert sig_type->type == NULL here,
19842 we can get here for DW_AT_imported_declaration where we need
19843 the DIE not the type. */
19844
19845 /* If necessary, add it to the queue and load its DIEs. */
19846
19847 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19848 read_signatured_type (sig_type);
19849
19850 sig_cu = sig_type->per_cu.cu;
19851 gdb_assert (sig_cu != NULL);
19852 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19853 temp_die.offset = sig_type->type_offset_in_section;
19854 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19855 temp_die.offset.sect_off);
19856 if (die)
19857 {
19858 /* For .gdb_index version 7 keep track of included TUs.
19859 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19860 if (dwarf2_per_objfile->index_table != NULL
19861 && dwarf2_per_objfile->index_table->version <= 7)
19862 {
19863 VEC_safe_push (dwarf2_per_cu_ptr,
19864 (*ref_cu)->per_cu->imported_symtabs,
19865 sig_cu->per_cu);
19866 }
19867
19868 *ref_cu = sig_cu;
19869 return die;
19870 }
19871
19872 return NULL;
19873 }
19874
19875 /* Follow signatured type referenced by ATTR in SRC_DIE.
19876 On entry *REF_CU is the CU of SRC_DIE.
19877 On exit *REF_CU is the CU of the result.
19878 The result is the DIE of the type.
19879 If the referenced type cannot be found an error is thrown. */
19880
19881 static struct die_info *
19882 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19883 struct dwarf2_cu **ref_cu)
19884 {
19885 ULONGEST signature = DW_SIGNATURE (attr);
19886 struct signatured_type *sig_type;
19887 struct die_info *die;
19888
19889 gdb_assert (attr->form == DW_FORM_ref_sig8);
19890
19891 sig_type = lookup_signatured_type (*ref_cu, signature);
19892 /* sig_type will be NULL if the signatured type is missing from
19893 the debug info. */
19894 if (sig_type == NULL)
19895 {
19896 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19897 " from DIE at 0x%x [in module %s]"),
19898 hex_string (signature), src_die->offset.sect_off,
19899 objfile_name ((*ref_cu)->objfile));
19900 }
19901
19902 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19903 if (die == NULL)
19904 {
19905 dump_die_for_error (src_die);
19906 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19907 " from DIE at 0x%x [in module %s]"),
19908 hex_string (signature), src_die->offset.sect_off,
19909 objfile_name ((*ref_cu)->objfile));
19910 }
19911
19912 return die;
19913 }
19914
19915 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19916 reading in and processing the type unit if necessary. */
19917
19918 static struct type *
19919 get_signatured_type (struct die_info *die, ULONGEST signature,
19920 struct dwarf2_cu *cu)
19921 {
19922 struct signatured_type *sig_type;
19923 struct dwarf2_cu *type_cu;
19924 struct die_info *type_die;
19925 struct type *type;
19926
19927 sig_type = lookup_signatured_type (cu, signature);
19928 /* sig_type will be NULL if the signatured type is missing from
19929 the debug info. */
19930 if (sig_type == NULL)
19931 {
19932 complaint (&symfile_complaints,
19933 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19934 " from DIE at 0x%x [in module %s]"),
19935 hex_string (signature), die->offset.sect_off,
19936 objfile_name (dwarf2_per_objfile->objfile));
19937 return build_error_marker_type (cu, die);
19938 }
19939
19940 /* If we already know the type we're done. */
19941 if (sig_type->type != NULL)
19942 return sig_type->type;
19943
19944 type_cu = cu;
19945 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19946 if (type_die != NULL)
19947 {
19948 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19949 is created. This is important, for example, because for c++ classes
19950 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19951 type = read_type_die (type_die, type_cu);
19952 if (type == NULL)
19953 {
19954 complaint (&symfile_complaints,
19955 _("Dwarf Error: Cannot build signatured type %s"
19956 " referenced from DIE at 0x%x [in module %s]"),
19957 hex_string (signature), die->offset.sect_off,
19958 objfile_name (dwarf2_per_objfile->objfile));
19959 type = build_error_marker_type (cu, die);
19960 }
19961 }
19962 else
19963 {
19964 complaint (&symfile_complaints,
19965 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19966 " from DIE at 0x%x [in module %s]"),
19967 hex_string (signature), die->offset.sect_off,
19968 objfile_name (dwarf2_per_objfile->objfile));
19969 type = build_error_marker_type (cu, die);
19970 }
19971 sig_type->type = type;
19972
19973 return type;
19974 }
19975
19976 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19977 reading in and processing the type unit if necessary. */
19978
19979 static struct type *
19980 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19981 struct dwarf2_cu *cu) /* ARI: editCase function */
19982 {
19983 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19984 if (attr_form_is_ref (attr))
19985 {
19986 struct dwarf2_cu *type_cu = cu;
19987 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19988
19989 return read_type_die (type_die, type_cu);
19990 }
19991 else if (attr->form == DW_FORM_ref_sig8)
19992 {
19993 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19994 }
19995 else
19996 {
19997 complaint (&symfile_complaints,
19998 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19999 " at 0x%x [in module %s]"),
20000 dwarf_form_name (attr->form), die->offset.sect_off,
20001 objfile_name (dwarf2_per_objfile->objfile));
20002 return build_error_marker_type (cu, die);
20003 }
20004 }
20005
20006 /* Load the DIEs associated with type unit PER_CU into memory. */
20007
20008 static void
20009 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20010 {
20011 struct signatured_type *sig_type;
20012
20013 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20014 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20015
20016 /* We have the per_cu, but we need the signatured_type.
20017 Fortunately this is an easy translation. */
20018 gdb_assert (per_cu->is_debug_types);
20019 sig_type = (struct signatured_type *) per_cu;
20020
20021 gdb_assert (per_cu->cu == NULL);
20022
20023 read_signatured_type (sig_type);
20024
20025 gdb_assert (per_cu->cu != NULL);
20026 }
20027
20028 /* die_reader_func for read_signatured_type.
20029 This is identical to load_full_comp_unit_reader,
20030 but is kept separate for now. */
20031
20032 static void
20033 read_signatured_type_reader (const struct die_reader_specs *reader,
20034 const gdb_byte *info_ptr,
20035 struct die_info *comp_unit_die,
20036 int has_children,
20037 void *data)
20038 {
20039 struct dwarf2_cu *cu = reader->cu;
20040
20041 gdb_assert (cu->die_hash == NULL);
20042 cu->die_hash =
20043 htab_create_alloc_ex (cu->header.length / 12,
20044 die_hash,
20045 die_eq,
20046 NULL,
20047 &cu->comp_unit_obstack,
20048 hashtab_obstack_allocate,
20049 dummy_obstack_deallocate);
20050
20051 if (has_children)
20052 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20053 &info_ptr, comp_unit_die);
20054 cu->dies = comp_unit_die;
20055 /* comp_unit_die is not stored in die_hash, no need. */
20056
20057 /* We try not to read any attributes in this function, because not
20058 all CUs needed for references have been loaded yet, and symbol
20059 table processing isn't initialized. But we have to set the CU language,
20060 or we won't be able to build types correctly.
20061 Similarly, if we do not read the producer, we can not apply
20062 producer-specific interpretation. */
20063 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20064 }
20065
20066 /* Read in a signatured type and build its CU and DIEs.
20067 If the type is a stub for the real type in a DWO file,
20068 read in the real type from the DWO file as well. */
20069
20070 static void
20071 read_signatured_type (struct signatured_type *sig_type)
20072 {
20073 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20074
20075 gdb_assert (per_cu->is_debug_types);
20076 gdb_assert (per_cu->cu == NULL);
20077
20078 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20079 read_signatured_type_reader, NULL);
20080 sig_type->per_cu.tu_read = 1;
20081 }
20082
20083 /* Decode simple location descriptions.
20084 Given a pointer to a dwarf block that defines a location, compute
20085 the location and return the value.
20086
20087 NOTE drow/2003-11-18: This function is called in two situations
20088 now: for the address of static or global variables (partial symbols
20089 only) and for offsets into structures which are expected to be
20090 (more or less) constant. The partial symbol case should go away,
20091 and only the constant case should remain. That will let this
20092 function complain more accurately. A few special modes are allowed
20093 without complaint for global variables (for instance, global
20094 register values and thread-local values).
20095
20096 A location description containing no operations indicates that the
20097 object is optimized out. The return value is 0 for that case.
20098 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20099 callers will only want a very basic result and this can become a
20100 complaint.
20101
20102 Note that stack[0] is unused except as a default error return. */
20103
20104 static CORE_ADDR
20105 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20106 {
20107 struct objfile *objfile = cu->objfile;
20108 size_t i;
20109 size_t size = blk->size;
20110 const gdb_byte *data = blk->data;
20111 CORE_ADDR stack[64];
20112 int stacki;
20113 unsigned int bytes_read, unsnd;
20114 gdb_byte op;
20115
20116 i = 0;
20117 stacki = 0;
20118 stack[stacki] = 0;
20119 stack[++stacki] = 0;
20120
20121 while (i < size)
20122 {
20123 op = data[i++];
20124 switch (op)
20125 {
20126 case DW_OP_lit0:
20127 case DW_OP_lit1:
20128 case DW_OP_lit2:
20129 case DW_OP_lit3:
20130 case DW_OP_lit4:
20131 case DW_OP_lit5:
20132 case DW_OP_lit6:
20133 case DW_OP_lit7:
20134 case DW_OP_lit8:
20135 case DW_OP_lit9:
20136 case DW_OP_lit10:
20137 case DW_OP_lit11:
20138 case DW_OP_lit12:
20139 case DW_OP_lit13:
20140 case DW_OP_lit14:
20141 case DW_OP_lit15:
20142 case DW_OP_lit16:
20143 case DW_OP_lit17:
20144 case DW_OP_lit18:
20145 case DW_OP_lit19:
20146 case DW_OP_lit20:
20147 case DW_OP_lit21:
20148 case DW_OP_lit22:
20149 case DW_OP_lit23:
20150 case DW_OP_lit24:
20151 case DW_OP_lit25:
20152 case DW_OP_lit26:
20153 case DW_OP_lit27:
20154 case DW_OP_lit28:
20155 case DW_OP_lit29:
20156 case DW_OP_lit30:
20157 case DW_OP_lit31:
20158 stack[++stacki] = op - DW_OP_lit0;
20159 break;
20160
20161 case DW_OP_reg0:
20162 case DW_OP_reg1:
20163 case DW_OP_reg2:
20164 case DW_OP_reg3:
20165 case DW_OP_reg4:
20166 case DW_OP_reg5:
20167 case DW_OP_reg6:
20168 case DW_OP_reg7:
20169 case DW_OP_reg8:
20170 case DW_OP_reg9:
20171 case DW_OP_reg10:
20172 case DW_OP_reg11:
20173 case DW_OP_reg12:
20174 case DW_OP_reg13:
20175 case DW_OP_reg14:
20176 case DW_OP_reg15:
20177 case DW_OP_reg16:
20178 case DW_OP_reg17:
20179 case DW_OP_reg18:
20180 case DW_OP_reg19:
20181 case DW_OP_reg20:
20182 case DW_OP_reg21:
20183 case DW_OP_reg22:
20184 case DW_OP_reg23:
20185 case DW_OP_reg24:
20186 case DW_OP_reg25:
20187 case DW_OP_reg26:
20188 case DW_OP_reg27:
20189 case DW_OP_reg28:
20190 case DW_OP_reg29:
20191 case DW_OP_reg30:
20192 case DW_OP_reg31:
20193 stack[++stacki] = op - DW_OP_reg0;
20194 if (i < size)
20195 dwarf2_complex_location_expr_complaint ();
20196 break;
20197
20198 case DW_OP_regx:
20199 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20200 i += bytes_read;
20201 stack[++stacki] = unsnd;
20202 if (i < size)
20203 dwarf2_complex_location_expr_complaint ();
20204 break;
20205
20206 case DW_OP_addr:
20207 stack[++stacki] = read_address (objfile->obfd, &data[i],
20208 cu, &bytes_read);
20209 i += bytes_read;
20210 break;
20211
20212 case DW_OP_const1u:
20213 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20214 i += 1;
20215 break;
20216
20217 case DW_OP_const1s:
20218 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20219 i += 1;
20220 break;
20221
20222 case DW_OP_const2u:
20223 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20224 i += 2;
20225 break;
20226
20227 case DW_OP_const2s:
20228 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20229 i += 2;
20230 break;
20231
20232 case DW_OP_const4u:
20233 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20234 i += 4;
20235 break;
20236
20237 case DW_OP_const4s:
20238 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20239 i += 4;
20240 break;
20241
20242 case DW_OP_const8u:
20243 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20244 i += 8;
20245 break;
20246
20247 case DW_OP_constu:
20248 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20249 &bytes_read);
20250 i += bytes_read;
20251 break;
20252
20253 case DW_OP_consts:
20254 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20255 i += bytes_read;
20256 break;
20257
20258 case DW_OP_dup:
20259 stack[stacki + 1] = stack[stacki];
20260 stacki++;
20261 break;
20262
20263 case DW_OP_plus:
20264 stack[stacki - 1] += stack[stacki];
20265 stacki--;
20266 break;
20267
20268 case DW_OP_plus_uconst:
20269 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20270 &bytes_read);
20271 i += bytes_read;
20272 break;
20273
20274 case DW_OP_minus:
20275 stack[stacki - 1] -= stack[stacki];
20276 stacki--;
20277 break;
20278
20279 case DW_OP_deref:
20280 /* If we're not the last op, then we definitely can't encode
20281 this using GDB's address_class enum. This is valid for partial
20282 global symbols, although the variable's address will be bogus
20283 in the psymtab. */
20284 if (i < size)
20285 dwarf2_complex_location_expr_complaint ();
20286 break;
20287
20288 case DW_OP_GNU_push_tls_address:
20289 /* The top of the stack has the offset from the beginning
20290 of the thread control block at which the variable is located. */
20291 /* Nothing should follow this operator, so the top of stack would
20292 be returned. */
20293 /* This is valid for partial global symbols, but the variable's
20294 address will be bogus in the psymtab. Make it always at least
20295 non-zero to not look as a variable garbage collected by linker
20296 which have DW_OP_addr 0. */
20297 if (i < size)
20298 dwarf2_complex_location_expr_complaint ();
20299 stack[stacki]++;
20300 break;
20301
20302 case DW_OP_GNU_uninit:
20303 break;
20304
20305 case DW_OP_GNU_addr_index:
20306 case DW_OP_GNU_const_index:
20307 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20308 &bytes_read);
20309 i += bytes_read;
20310 break;
20311
20312 default:
20313 {
20314 const char *name = get_DW_OP_name (op);
20315
20316 if (name)
20317 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20318 name);
20319 else
20320 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20321 op);
20322 }
20323
20324 return (stack[stacki]);
20325 }
20326
20327 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20328 outside of the allocated space. Also enforce minimum>0. */
20329 if (stacki >= ARRAY_SIZE (stack) - 1)
20330 {
20331 complaint (&symfile_complaints,
20332 _("location description stack overflow"));
20333 return 0;
20334 }
20335
20336 if (stacki <= 0)
20337 {
20338 complaint (&symfile_complaints,
20339 _("location description stack underflow"));
20340 return 0;
20341 }
20342 }
20343 return (stack[stacki]);
20344 }
20345
20346 /* memory allocation interface */
20347
20348 static struct dwarf_block *
20349 dwarf_alloc_block (struct dwarf2_cu *cu)
20350 {
20351 struct dwarf_block *blk;
20352
20353 blk = (struct dwarf_block *)
20354 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20355 return (blk);
20356 }
20357
20358 static struct die_info *
20359 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20360 {
20361 struct die_info *die;
20362 size_t size = sizeof (struct die_info);
20363
20364 if (num_attrs > 1)
20365 size += (num_attrs - 1) * sizeof (struct attribute);
20366
20367 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20368 memset (die, 0, sizeof (struct die_info));
20369 return (die);
20370 }
20371
20372 \f
20373 /* Macro support. */
20374
20375 /* Return file name relative to the compilation directory of file number I in
20376 *LH's file name table. The result is allocated using xmalloc; the caller is
20377 responsible for freeing it. */
20378
20379 static char *
20380 file_file_name (int file, struct line_header *lh)
20381 {
20382 /* Is the file number a valid index into the line header's file name
20383 table? Remember that file numbers start with one, not zero. */
20384 if (1 <= file && file <= lh->num_file_names)
20385 {
20386 struct file_entry *fe = &lh->file_names[file - 1];
20387
20388 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20389 return xstrdup (fe->name);
20390 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20391 fe->name, NULL);
20392 }
20393 else
20394 {
20395 /* The compiler produced a bogus file number. We can at least
20396 record the macro definitions made in the file, even if we
20397 won't be able to find the file by name. */
20398 char fake_name[80];
20399
20400 xsnprintf (fake_name, sizeof (fake_name),
20401 "<bad macro file number %d>", file);
20402
20403 complaint (&symfile_complaints,
20404 _("bad file number in macro information (%d)"),
20405 file);
20406
20407 return xstrdup (fake_name);
20408 }
20409 }
20410
20411 /* Return the full name of file number I in *LH's file name table.
20412 Use COMP_DIR as the name of the current directory of the
20413 compilation. The result is allocated using xmalloc; the caller is
20414 responsible for freeing it. */
20415 static char *
20416 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20417 {
20418 /* Is the file number a valid index into the line header's file name
20419 table? Remember that file numbers start with one, not zero. */
20420 if (1 <= file && file <= lh->num_file_names)
20421 {
20422 char *relative = file_file_name (file, lh);
20423
20424 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20425 return relative;
20426 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20427 }
20428 else
20429 return file_file_name (file, lh);
20430 }
20431
20432
20433 static struct macro_source_file *
20434 macro_start_file (int file, int line,
20435 struct macro_source_file *current_file,
20436 struct line_header *lh)
20437 {
20438 /* File name relative to the compilation directory of this source file. */
20439 char *file_name = file_file_name (file, lh);
20440
20441 if (! current_file)
20442 {
20443 /* Note: We don't create a macro table for this compilation unit
20444 at all until we actually get a filename. */
20445 struct macro_table *macro_table = get_macro_table ();
20446
20447 /* If we have no current file, then this must be the start_file
20448 directive for the compilation unit's main source file. */
20449 current_file = macro_set_main (macro_table, file_name);
20450 macro_define_special (macro_table);
20451 }
20452 else
20453 current_file = macro_include (current_file, line, file_name);
20454
20455 xfree (file_name);
20456
20457 return current_file;
20458 }
20459
20460
20461 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20462 followed by a null byte. */
20463 static char *
20464 copy_string (const char *buf, int len)
20465 {
20466 char *s = xmalloc (len + 1);
20467
20468 memcpy (s, buf, len);
20469 s[len] = '\0';
20470 return s;
20471 }
20472
20473
20474 static const char *
20475 consume_improper_spaces (const char *p, const char *body)
20476 {
20477 if (*p == ' ')
20478 {
20479 complaint (&symfile_complaints,
20480 _("macro definition contains spaces "
20481 "in formal argument list:\n`%s'"),
20482 body);
20483
20484 while (*p == ' ')
20485 p++;
20486 }
20487
20488 return p;
20489 }
20490
20491
20492 static void
20493 parse_macro_definition (struct macro_source_file *file, int line,
20494 const char *body)
20495 {
20496 const char *p;
20497
20498 /* The body string takes one of two forms. For object-like macro
20499 definitions, it should be:
20500
20501 <macro name> " " <definition>
20502
20503 For function-like macro definitions, it should be:
20504
20505 <macro name> "() " <definition>
20506 or
20507 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20508
20509 Spaces may appear only where explicitly indicated, and in the
20510 <definition>.
20511
20512 The Dwarf 2 spec says that an object-like macro's name is always
20513 followed by a space, but versions of GCC around March 2002 omit
20514 the space when the macro's definition is the empty string.
20515
20516 The Dwarf 2 spec says that there should be no spaces between the
20517 formal arguments in a function-like macro's formal argument list,
20518 but versions of GCC around March 2002 include spaces after the
20519 commas. */
20520
20521
20522 /* Find the extent of the macro name. The macro name is terminated
20523 by either a space or null character (for an object-like macro) or
20524 an opening paren (for a function-like macro). */
20525 for (p = body; *p; p++)
20526 if (*p == ' ' || *p == '(')
20527 break;
20528
20529 if (*p == ' ' || *p == '\0')
20530 {
20531 /* It's an object-like macro. */
20532 int name_len = p - body;
20533 char *name = copy_string (body, name_len);
20534 const char *replacement;
20535
20536 if (*p == ' ')
20537 replacement = body + name_len + 1;
20538 else
20539 {
20540 dwarf2_macro_malformed_definition_complaint (body);
20541 replacement = body + name_len;
20542 }
20543
20544 macro_define_object (file, line, name, replacement);
20545
20546 xfree (name);
20547 }
20548 else if (*p == '(')
20549 {
20550 /* It's a function-like macro. */
20551 char *name = copy_string (body, p - body);
20552 int argc = 0;
20553 int argv_size = 1;
20554 char **argv = xmalloc (argv_size * sizeof (*argv));
20555
20556 p++;
20557
20558 p = consume_improper_spaces (p, body);
20559
20560 /* Parse the formal argument list. */
20561 while (*p && *p != ')')
20562 {
20563 /* Find the extent of the current argument name. */
20564 const char *arg_start = p;
20565
20566 while (*p && *p != ',' && *p != ')' && *p != ' ')
20567 p++;
20568
20569 if (! *p || p == arg_start)
20570 dwarf2_macro_malformed_definition_complaint (body);
20571 else
20572 {
20573 /* Make sure argv has room for the new argument. */
20574 if (argc >= argv_size)
20575 {
20576 argv_size *= 2;
20577 argv = xrealloc (argv, argv_size * sizeof (*argv));
20578 }
20579
20580 argv[argc++] = copy_string (arg_start, p - arg_start);
20581 }
20582
20583 p = consume_improper_spaces (p, body);
20584
20585 /* Consume the comma, if present. */
20586 if (*p == ',')
20587 {
20588 p++;
20589
20590 p = consume_improper_spaces (p, body);
20591 }
20592 }
20593
20594 if (*p == ')')
20595 {
20596 p++;
20597
20598 if (*p == ' ')
20599 /* Perfectly formed definition, no complaints. */
20600 macro_define_function (file, line, name,
20601 argc, (const char **) argv,
20602 p + 1);
20603 else if (*p == '\0')
20604 {
20605 /* Complain, but do define it. */
20606 dwarf2_macro_malformed_definition_complaint (body);
20607 macro_define_function (file, line, name,
20608 argc, (const char **) argv,
20609 p);
20610 }
20611 else
20612 /* Just complain. */
20613 dwarf2_macro_malformed_definition_complaint (body);
20614 }
20615 else
20616 /* Just complain. */
20617 dwarf2_macro_malformed_definition_complaint (body);
20618
20619 xfree (name);
20620 {
20621 int i;
20622
20623 for (i = 0; i < argc; i++)
20624 xfree (argv[i]);
20625 }
20626 xfree (argv);
20627 }
20628 else
20629 dwarf2_macro_malformed_definition_complaint (body);
20630 }
20631
20632 /* Skip some bytes from BYTES according to the form given in FORM.
20633 Returns the new pointer. */
20634
20635 static const gdb_byte *
20636 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20637 enum dwarf_form form,
20638 unsigned int offset_size,
20639 struct dwarf2_section_info *section)
20640 {
20641 unsigned int bytes_read;
20642
20643 switch (form)
20644 {
20645 case DW_FORM_data1:
20646 case DW_FORM_flag:
20647 ++bytes;
20648 break;
20649
20650 case DW_FORM_data2:
20651 bytes += 2;
20652 break;
20653
20654 case DW_FORM_data4:
20655 bytes += 4;
20656 break;
20657
20658 case DW_FORM_data8:
20659 bytes += 8;
20660 break;
20661
20662 case DW_FORM_string:
20663 read_direct_string (abfd, bytes, &bytes_read);
20664 bytes += bytes_read;
20665 break;
20666
20667 case DW_FORM_sec_offset:
20668 case DW_FORM_strp:
20669 case DW_FORM_GNU_strp_alt:
20670 bytes += offset_size;
20671 break;
20672
20673 case DW_FORM_block:
20674 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20675 bytes += bytes_read;
20676 break;
20677
20678 case DW_FORM_block1:
20679 bytes += 1 + read_1_byte (abfd, bytes);
20680 break;
20681 case DW_FORM_block2:
20682 bytes += 2 + read_2_bytes (abfd, bytes);
20683 break;
20684 case DW_FORM_block4:
20685 bytes += 4 + read_4_bytes (abfd, bytes);
20686 break;
20687
20688 case DW_FORM_sdata:
20689 case DW_FORM_udata:
20690 case DW_FORM_GNU_addr_index:
20691 case DW_FORM_GNU_str_index:
20692 bytes = gdb_skip_leb128 (bytes, buffer_end);
20693 if (bytes == NULL)
20694 {
20695 dwarf2_section_buffer_overflow_complaint (section);
20696 return NULL;
20697 }
20698 break;
20699
20700 default:
20701 {
20702 complain:
20703 complaint (&symfile_complaints,
20704 _("invalid form 0x%x in `%s'"),
20705 form, get_section_name (section));
20706 return NULL;
20707 }
20708 }
20709
20710 return bytes;
20711 }
20712
20713 /* A helper for dwarf_decode_macros that handles skipping an unknown
20714 opcode. Returns an updated pointer to the macro data buffer; or,
20715 on error, issues a complaint and returns NULL. */
20716
20717 static const gdb_byte *
20718 skip_unknown_opcode (unsigned int opcode,
20719 const gdb_byte **opcode_definitions,
20720 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20721 bfd *abfd,
20722 unsigned int offset_size,
20723 struct dwarf2_section_info *section)
20724 {
20725 unsigned int bytes_read, i;
20726 unsigned long arg;
20727 const gdb_byte *defn;
20728
20729 if (opcode_definitions[opcode] == NULL)
20730 {
20731 complaint (&symfile_complaints,
20732 _("unrecognized DW_MACFINO opcode 0x%x"),
20733 opcode);
20734 return NULL;
20735 }
20736
20737 defn = opcode_definitions[opcode];
20738 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20739 defn += bytes_read;
20740
20741 for (i = 0; i < arg; ++i)
20742 {
20743 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20744 section);
20745 if (mac_ptr == NULL)
20746 {
20747 /* skip_form_bytes already issued the complaint. */
20748 return NULL;
20749 }
20750 }
20751
20752 return mac_ptr;
20753 }
20754
20755 /* A helper function which parses the header of a macro section.
20756 If the macro section is the extended (for now called "GNU") type,
20757 then this updates *OFFSET_SIZE. Returns a pointer to just after
20758 the header, or issues a complaint and returns NULL on error. */
20759
20760 static const gdb_byte *
20761 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20762 bfd *abfd,
20763 const gdb_byte *mac_ptr,
20764 unsigned int *offset_size,
20765 int section_is_gnu)
20766 {
20767 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20768
20769 if (section_is_gnu)
20770 {
20771 unsigned int version, flags;
20772
20773 version = read_2_bytes (abfd, mac_ptr);
20774 if (version != 4)
20775 {
20776 complaint (&symfile_complaints,
20777 _("unrecognized version `%d' in .debug_macro section"),
20778 version);
20779 return NULL;
20780 }
20781 mac_ptr += 2;
20782
20783 flags = read_1_byte (abfd, mac_ptr);
20784 ++mac_ptr;
20785 *offset_size = (flags & 1) ? 8 : 4;
20786
20787 if ((flags & 2) != 0)
20788 /* We don't need the line table offset. */
20789 mac_ptr += *offset_size;
20790
20791 /* Vendor opcode descriptions. */
20792 if ((flags & 4) != 0)
20793 {
20794 unsigned int i, count;
20795
20796 count = read_1_byte (abfd, mac_ptr);
20797 ++mac_ptr;
20798 for (i = 0; i < count; ++i)
20799 {
20800 unsigned int opcode, bytes_read;
20801 unsigned long arg;
20802
20803 opcode = read_1_byte (abfd, mac_ptr);
20804 ++mac_ptr;
20805 opcode_definitions[opcode] = mac_ptr;
20806 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20807 mac_ptr += bytes_read;
20808 mac_ptr += arg;
20809 }
20810 }
20811 }
20812
20813 return mac_ptr;
20814 }
20815
20816 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20817 including DW_MACRO_GNU_transparent_include. */
20818
20819 static void
20820 dwarf_decode_macro_bytes (bfd *abfd,
20821 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20822 struct macro_source_file *current_file,
20823 struct line_header *lh,
20824 struct dwarf2_section_info *section,
20825 int section_is_gnu, int section_is_dwz,
20826 unsigned int offset_size,
20827 htab_t include_hash)
20828 {
20829 struct objfile *objfile = dwarf2_per_objfile->objfile;
20830 enum dwarf_macro_record_type macinfo_type;
20831 int at_commandline;
20832 const gdb_byte *opcode_definitions[256];
20833
20834 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20835 &offset_size, section_is_gnu);
20836 if (mac_ptr == NULL)
20837 {
20838 /* We already issued a complaint. */
20839 return;
20840 }
20841
20842 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20843 GDB is still reading the definitions from command line. First
20844 DW_MACINFO_start_file will need to be ignored as it was already executed
20845 to create CURRENT_FILE for the main source holding also the command line
20846 definitions. On first met DW_MACINFO_start_file this flag is reset to
20847 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20848
20849 at_commandline = 1;
20850
20851 do
20852 {
20853 /* Do we at least have room for a macinfo type byte? */
20854 if (mac_ptr >= mac_end)
20855 {
20856 dwarf2_section_buffer_overflow_complaint (section);
20857 break;
20858 }
20859
20860 macinfo_type = read_1_byte (abfd, mac_ptr);
20861 mac_ptr++;
20862
20863 /* Note that we rely on the fact that the corresponding GNU and
20864 DWARF constants are the same. */
20865 switch (macinfo_type)
20866 {
20867 /* A zero macinfo type indicates the end of the macro
20868 information. */
20869 case 0:
20870 break;
20871
20872 case DW_MACRO_GNU_define:
20873 case DW_MACRO_GNU_undef:
20874 case DW_MACRO_GNU_define_indirect:
20875 case DW_MACRO_GNU_undef_indirect:
20876 case DW_MACRO_GNU_define_indirect_alt:
20877 case DW_MACRO_GNU_undef_indirect_alt:
20878 {
20879 unsigned int bytes_read;
20880 int line;
20881 const char *body;
20882 int is_define;
20883
20884 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20885 mac_ptr += bytes_read;
20886
20887 if (macinfo_type == DW_MACRO_GNU_define
20888 || macinfo_type == DW_MACRO_GNU_undef)
20889 {
20890 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20891 mac_ptr += bytes_read;
20892 }
20893 else
20894 {
20895 LONGEST str_offset;
20896
20897 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20898 mac_ptr += offset_size;
20899
20900 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20901 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20902 || section_is_dwz)
20903 {
20904 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20905
20906 body = read_indirect_string_from_dwz (dwz, str_offset);
20907 }
20908 else
20909 body = read_indirect_string_at_offset (abfd, str_offset);
20910 }
20911
20912 is_define = (macinfo_type == DW_MACRO_GNU_define
20913 || macinfo_type == DW_MACRO_GNU_define_indirect
20914 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20915 if (! current_file)
20916 {
20917 /* DWARF violation as no main source is present. */
20918 complaint (&symfile_complaints,
20919 _("debug info with no main source gives macro %s "
20920 "on line %d: %s"),
20921 is_define ? _("definition") : _("undefinition"),
20922 line, body);
20923 break;
20924 }
20925 if ((line == 0 && !at_commandline)
20926 || (line != 0 && at_commandline))
20927 complaint (&symfile_complaints,
20928 _("debug info gives %s macro %s with %s line %d: %s"),
20929 at_commandline ? _("command-line") : _("in-file"),
20930 is_define ? _("definition") : _("undefinition"),
20931 line == 0 ? _("zero") : _("non-zero"), line, body);
20932
20933 if (is_define)
20934 parse_macro_definition (current_file, line, body);
20935 else
20936 {
20937 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20938 || macinfo_type == DW_MACRO_GNU_undef_indirect
20939 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20940 macro_undef (current_file, line, body);
20941 }
20942 }
20943 break;
20944
20945 case DW_MACRO_GNU_start_file:
20946 {
20947 unsigned int bytes_read;
20948 int line, file;
20949
20950 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20951 mac_ptr += bytes_read;
20952 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20953 mac_ptr += bytes_read;
20954
20955 if ((line == 0 && !at_commandline)
20956 || (line != 0 && at_commandline))
20957 complaint (&symfile_complaints,
20958 _("debug info gives source %d included "
20959 "from %s at %s line %d"),
20960 file, at_commandline ? _("command-line") : _("file"),
20961 line == 0 ? _("zero") : _("non-zero"), line);
20962
20963 if (at_commandline)
20964 {
20965 /* This DW_MACRO_GNU_start_file was executed in the
20966 pass one. */
20967 at_commandline = 0;
20968 }
20969 else
20970 current_file = macro_start_file (file, line, current_file, lh);
20971 }
20972 break;
20973
20974 case DW_MACRO_GNU_end_file:
20975 if (! current_file)
20976 complaint (&symfile_complaints,
20977 _("macro debug info has an unmatched "
20978 "`close_file' directive"));
20979 else
20980 {
20981 current_file = current_file->included_by;
20982 if (! current_file)
20983 {
20984 enum dwarf_macro_record_type next_type;
20985
20986 /* GCC circa March 2002 doesn't produce the zero
20987 type byte marking the end of the compilation
20988 unit. Complain if it's not there, but exit no
20989 matter what. */
20990
20991 /* Do we at least have room for a macinfo type byte? */
20992 if (mac_ptr >= mac_end)
20993 {
20994 dwarf2_section_buffer_overflow_complaint (section);
20995 return;
20996 }
20997
20998 /* We don't increment mac_ptr here, so this is just
20999 a look-ahead. */
21000 next_type = read_1_byte (abfd, mac_ptr);
21001 if (next_type != 0)
21002 complaint (&symfile_complaints,
21003 _("no terminating 0-type entry for "
21004 "macros in `.debug_macinfo' section"));
21005
21006 return;
21007 }
21008 }
21009 break;
21010
21011 case DW_MACRO_GNU_transparent_include:
21012 case DW_MACRO_GNU_transparent_include_alt:
21013 {
21014 LONGEST offset;
21015 void **slot;
21016 bfd *include_bfd = abfd;
21017 struct dwarf2_section_info *include_section = section;
21018 struct dwarf2_section_info alt_section;
21019 const gdb_byte *include_mac_end = mac_end;
21020 int is_dwz = section_is_dwz;
21021 const gdb_byte *new_mac_ptr;
21022
21023 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21024 mac_ptr += offset_size;
21025
21026 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21027 {
21028 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21029
21030 dwarf2_read_section (objfile, &dwz->macro);
21031
21032 include_section = &dwz->macro;
21033 include_bfd = get_section_bfd_owner (include_section);
21034 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21035 is_dwz = 1;
21036 }
21037
21038 new_mac_ptr = include_section->buffer + offset;
21039 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21040
21041 if (*slot != NULL)
21042 {
21043 /* This has actually happened; see
21044 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21045 complaint (&symfile_complaints,
21046 _("recursive DW_MACRO_GNU_transparent_include in "
21047 ".debug_macro section"));
21048 }
21049 else
21050 {
21051 *slot = (void *) new_mac_ptr;
21052
21053 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21054 include_mac_end, current_file, lh,
21055 section, section_is_gnu, is_dwz,
21056 offset_size, include_hash);
21057
21058 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21059 }
21060 }
21061 break;
21062
21063 case DW_MACINFO_vendor_ext:
21064 if (!section_is_gnu)
21065 {
21066 unsigned int bytes_read;
21067 int constant;
21068
21069 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21070 mac_ptr += bytes_read;
21071 read_direct_string (abfd, mac_ptr, &bytes_read);
21072 mac_ptr += bytes_read;
21073
21074 /* We don't recognize any vendor extensions. */
21075 break;
21076 }
21077 /* FALLTHROUGH */
21078
21079 default:
21080 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21081 mac_ptr, mac_end, abfd, offset_size,
21082 section);
21083 if (mac_ptr == NULL)
21084 return;
21085 break;
21086 }
21087 } while (macinfo_type != 0);
21088 }
21089
21090 static void
21091 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21092 int section_is_gnu)
21093 {
21094 struct objfile *objfile = dwarf2_per_objfile->objfile;
21095 struct line_header *lh = cu->line_header;
21096 bfd *abfd;
21097 const gdb_byte *mac_ptr, *mac_end;
21098 struct macro_source_file *current_file = 0;
21099 enum dwarf_macro_record_type macinfo_type;
21100 unsigned int offset_size = cu->header.offset_size;
21101 const gdb_byte *opcode_definitions[256];
21102 struct cleanup *cleanup;
21103 htab_t include_hash;
21104 void **slot;
21105 struct dwarf2_section_info *section;
21106 const char *section_name;
21107
21108 if (cu->dwo_unit != NULL)
21109 {
21110 if (section_is_gnu)
21111 {
21112 section = &cu->dwo_unit->dwo_file->sections.macro;
21113 section_name = ".debug_macro.dwo";
21114 }
21115 else
21116 {
21117 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21118 section_name = ".debug_macinfo.dwo";
21119 }
21120 }
21121 else
21122 {
21123 if (section_is_gnu)
21124 {
21125 section = &dwarf2_per_objfile->macro;
21126 section_name = ".debug_macro";
21127 }
21128 else
21129 {
21130 section = &dwarf2_per_objfile->macinfo;
21131 section_name = ".debug_macinfo";
21132 }
21133 }
21134
21135 dwarf2_read_section (objfile, section);
21136 if (section->buffer == NULL)
21137 {
21138 complaint (&symfile_complaints, _("missing %s section"), section_name);
21139 return;
21140 }
21141 abfd = get_section_bfd_owner (section);
21142
21143 /* First pass: Find the name of the base filename.
21144 This filename is needed in order to process all macros whose definition
21145 (or undefinition) comes from the command line. These macros are defined
21146 before the first DW_MACINFO_start_file entry, and yet still need to be
21147 associated to the base file.
21148
21149 To determine the base file name, we scan the macro definitions until we
21150 reach the first DW_MACINFO_start_file entry. We then initialize
21151 CURRENT_FILE accordingly so that any macro definition found before the
21152 first DW_MACINFO_start_file can still be associated to the base file. */
21153
21154 mac_ptr = section->buffer + offset;
21155 mac_end = section->buffer + section->size;
21156
21157 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21158 &offset_size, section_is_gnu);
21159 if (mac_ptr == NULL)
21160 {
21161 /* We already issued a complaint. */
21162 return;
21163 }
21164
21165 do
21166 {
21167 /* Do we at least have room for a macinfo type byte? */
21168 if (mac_ptr >= mac_end)
21169 {
21170 /* Complaint is printed during the second pass as GDB will probably
21171 stop the first pass earlier upon finding
21172 DW_MACINFO_start_file. */
21173 break;
21174 }
21175
21176 macinfo_type = read_1_byte (abfd, mac_ptr);
21177 mac_ptr++;
21178
21179 /* Note that we rely on the fact that the corresponding GNU and
21180 DWARF constants are the same. */
21181 switch (macinfo_type)
21182 {
21183 /* A zero macinfo type indicates the end of the macro
21184 information. */
21185 case 0:
21186 break;
21187
21188 case DW_MACRO_GNU_define:
21189 case DW_MACRO_GNU_undef:
21190 /* Only skip the data by MAC_PTR. */
21191 {
21192 unsigned int bytes_read;
21193
21194 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21195 mac_ptr += bytes_read;
21196 read_direct_string (abfd, mac_ptr, &bytes_read);
21197 mac_ptr += bytes_read;
21198 }
21199 break;
21200
21201 case DW_MACRO_GNU_start_file:
21202 {
21203 unsigned int bytes_read;
21204 int line, file;
21205
21206 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21207 mac_ptr += bytes_read;
21208 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21209 mac_ptr += bytes_read;
21210
21211 current_file = macro_start_file (file, line, current_file, lh);
21212 }
21213 break;
21214
21215 case DW_MACRO_GNU_end_file:
21216 /* No data to skip by MAC_PTR. */
21217 break;
21218
21219 case DW_MACRO_GNU_define_indirect:
21220 case DW_MACRO_GNU_undef_indirect:
21221 case DW_MACRO_GNU_define_indirect_alt:
21222 case DW_MACRO_GNU_undef_indirect_alt:
21223 {
21224 unsigned int bytes_read;
21225
21226 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21227 mac_ptr += bytes_read;
21228 mac_ptr += offset_size;
21229 }
21230 break;
21231
21232 case DW_MACRO_GNU_transparent_include:
21233 case DW_MACRO_GNU_transparent_include_alt:
21234 /* Note that, according to the spec, a transparent include
21235 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21236 skip this opcode. */
21237 mac_ptr += offset_size;
21238 break;
21239
21240 case DW_MACINFO_vendor_ext:
21241 /* Only skip the data by MAC_PTR. */
21242 if (!section_is_gnu)
21243 {
21244 unsigned int bytes_read;
21245
21246 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21247 mac_ptr += bytes_read;
21248 read_direct_string (abfd, mac_ptr, &bytes_read);
21249 mac_ptr += bytes_read;
21250 }
21251 /* FALLTHROUGH */
21252
21253 default:
21254 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21255 mac_ptr, mac_end, abfd, offset_size,
21256 section);
21257 if (mac_ptr == NULL)
21258 return;
21259 break;
21260 }
21261 } while (macinfo_type != 0 && current_file == NULL);
21262
21263 /* Second pass: Process all entries.
21264
21265 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21266 command-line macro definitions/undefinitions. This flag is unset when we
21267 reach the first DW_MACINFO_start_file entry. */
21268
21269 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21270 NULL, xcalloc, xfree);
21271 cleanup = make_cleanup_htab_delete (include_hash);
21272 mac_ptr = section->buffer + offset;
21273 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21274 *slot = (void *) mac_ptr;
21275 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21276 current_file, lh, section,
21277 section_is_gnu, 0, offset_size, include_hash);
21278 do_cleanups (cleanup);
21279 }
21280
21281 /* Check if the attribute's form is a DW_FORM_block*
21282 if so return true else false. */
21283
21284 static int
21285 attr_form_is_block (const struct attribute *attr)
21286 {
21287 return (attr == NULL ? 0 :
21288 attr->form == DW_FORM_block1
21289 || attr->form == DW_FORM_block2
21290 || attr->form == DW_FORM_block4
21291 || attr->form == DW_FORM_block
21292 || attr->form == DW_FORM_exprloc);
21293 }
21294
21295 /* Return non-zero if ATTR's value is a section offset --- classes
21296 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21297 You may use DW_UNSND (attr) to retrieve such offsets.
21298
21299 Section 7.5.4, "Attribute Encodings", explains that no attribute
21300 may have a value that belongs to more than one of these classes; it
21301 would be ambiguous if we did, because we use the same forms for all
21302 of them. */
21303
21304 static int
21305 attr_form_is_section_offset (const struct attribute *attr)
21306 {
21307 return (attr->form == DW_FORM_data4
21308 || attr->form == DW_FORM_data8
21309 || attr->form == DW_FORM_sec_offset);
21310 }
21311
21312 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21313 zero otherwise. When this function returns true, you can apply
21314 dwarf2_get_attr_constant_value to it.
21315
21316 However, note that for some attributes you must check
21317 attr_form_is_section_offset before using this test. DW_FORM_data4
21318 and DW_FORM_data8 are members of both the constant class, and of
21319 the classes that contain offsets into other debug sections
21320 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21321 that, if an attribute's can be either a constant or one of the
21322 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21323 taken as section offsets, not constants. */
21324
21325 static int
21326 attr_form_is_constant (const struct attribute *attr)
21327 {
21328 switch (attr->form)
21329 {
21330 case DW_FORM_sdata:
21331 case DW_FORM_udata:
21332 case DW_FORM_data1:
21333 case DW_FORM_data2:
21334 case DW_FORM_data4:
21335 case DW_FORM_data8:
21336 return 1;
21337 default:
21338 return 0;
21339 }
21340 }
21341
21342
21343 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21344 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21345
21346 static int
21347 attr_form_is_ref (const struct attribute *attr)
21348 {
21349 switch (attr->form)
21350 {
21351 case DW_FORM_ref_addr:
21352 case DW_FORM_ref1:
21353 case DW_FORM_ref2:
21354 case DW_FORM_ref4:
21355 case DW_FORM_ref8:
21356 case DW_FORM_ref_udata:
21357 case DW_FORM_GNU_ref_alt:
21358 return 1;
21359 default:
21360 return 0;
21361 }
21362 }
21363
21364 /* Return the .debug_loc section to use for CU.
21365 For DWO files use .debug_loc.dwo. */
21366
21367 static struct dwarf2_section_info *
21368 cu_debug_loc_section (struct dwarf2_cu *cu)
21369 {
21370 if (cu->dwo_unit)
21371 return &cu->dwo_unit->dwo_file->sections.loc;
21372 return &dwarf2_per_objfile->loc;
21373 }
21374
21375 /* A helper function that fills in a dwarf2_loclist_baton. */
21376
21377 static void
21378 fill_in_loclist_baton (struct dwarf2_cu *cu,
21379 struct dwarf2_loclist_baton *baton,
21380 const struct attribute *attr)
21381 {
21382 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21383
21384 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21385
21386 baton->per_cu = cu->per_cu;
21387 gdb_assert (baton->per_cu);
21388 /* We don't know how long the location list is, but make sure we
21389 don't run off the edge of the section. */
21390 baton->size = section->size - DW_UNSND (attr);
21391 baton->data = section->buffer + DW_UNSND (attr);
21392 baton->base_address = cu->base_address;
21393 baton->from_dwo = cu->dwo_unit != NULL;
21394 }
21395
21396 static void
21397 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21398 struct dwarf2_cu *cu, int is_block)
21399 {
21400 struct objfile *objfile = dwarf2_per_objfile->objfile;
21401 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21402
21403 if (attr_form_is_section_offset (attr)
21404 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21405 the section. If so, fall through to the complaint in the
21406 other branch. */
21407 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21408 {
21409 struct dwarf2_loclist_baton *baton;
21410
21411 baton = obstack_alloc (&objfile->objfile_obstack,
21412 sizeof (struct dwarf2_loclist_baton));
21413
21414 fill_in_loclist_baton (cu, baton, attr);
21415
21416 if (cu->base_known == 0)
21417 complaint (&symfile_complaints,
21418 _("Location list used without "
21419 "specifying the CU base address."));
21420
21421 SYMBOL_ACLASS_INDEX (sym) = (is_block
21422 ? dwarf2_loclist_block_index
21423 : dwarf2_loclist_index);
21424 SYMBOL_LOCATION_BATON (sym) = baton;
21425 }
21426 else
21427 {
21428 struct dwarf2_locexpr_baton *baton;
21429
21430 baton = obstack_alloc (&objfile->objfile_obstack,
21431 sizeof (struct dwarf2_locexpr_baton));
21432 baton->per_cu = cu->per_cu;
21433 gdb_assert (baton->per_cu);
21434
21435 if (attr_form_is_block (attr))
21436 {
21437 /* Note that we're just copying the block's data pointer
21438 here, not the actual data. We're still pointing into the
21439 info_buffer for SYM's objfile; right now we never release
21440 that buffer, but when we do clean up properly this may
21441 need to change. */
21442 baton->size = DW_BLOCK (attr)->size;
21443 baton->data = DW_BLOCK (attr)->data;
21444 }
21445 else
21446 {
21447 dwarf2_invalid_attrib_class_complaint ("location description",
21448 SYMBOL_NATURAL_NAME (sym));
21449 baton->size = 0;
21450 }
21451
21452 SYMBOL_ACLASS_INDEX (sym) = (is_block
21453 ? dwarf2_locexpr_block_index
21454 : dwarf2_locexpr_index);
21455 SYMBOL_LOCATION_BATON (sym) = baton;
21456 }
21457 }
21458
21459 /* Return the OBJFILE associated with the compilation unit CU. If CU
21460 came from a separate debuginfo file, then the master objfile is
21461 returned. */
21462
21463 struct objfile *
21464 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21465 {
21466 struct objfile *objfile = per_cu->objfile;
21467
21468 /* Return the master objfile, so that we can report and look up the
21469 correct file containing this variable. */
21470 if (objfile->separate_debug_objfile_backlink)
21471 objfile = objfile->separate_debug_objfile_backlink;
21472
21473 return objfile;
21474 }
21475
21476 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21477 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21478 CU_HEADERP first. */
21479
21480 static const struct comp_unit_head *
21481 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21482 struct dwarf2_per_cu_data *per_cu)
21483 {
21484 const gdb_byte *info_ptr;
21485
21486 if (per_cu->cu)
21487 return &per_cu->cu->header;
21488
21489 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21490
21491 memset (cu_headerp, 0, sizeof (*cu_headerp));
21492 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21493
21494 return cu_headerp;
21495 }
21496
21497 /* Return the address size given in the compilation unit header for CU. */
21498
21499 int
21500 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21501 {
21502 struct comp_unit_head cu_header_local;
21503 const struct comp_unit_head *cu_headerp;
21504
21505 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21506
21507 return cu_headerp->addr_size;
21508 }
21509
21510 /* Return the offset size given in the compilation unit header for CU. */
21511
21512 int
21513 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21514 {
21515 struct comp_unit_head cu_header_local;
21516 const struct comp_unit_head *cu_headerp;
21517
21518 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21519
21520 return cu_headerp->offset_size;
21521 }
21522
21523 /* See its dwarf2loc.h declaration. */
21524
21525 int
21526 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21527 {
21528 struct comp_unit_head cu_header_local;
21529 const struct comp_unit_head *cu_headerp;
21530
21531 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21532
21533 if (cu_headerp->version == 2)
21534 return cu_headerp->addr_size;
21535 else
21536 return cu_headerp->offset_size;
21537 }
21538
21539 /* Return the text offset of the CU. The returned offset comes from
21540 this CU's objfile. If this objfile came from a separate debuginfo
21541 file, then the offset may be different from the corresponding
21542 offset in the parent objfile. */
21543
21544 CORE_ADDR
21545 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21546 {
21547 struct objfile *objfile = per_cu->objfile;
21548
21549 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21550 }
21551
21552 /* Locate the .debug_info compilation unit from CU's objfile which contains
21553 the DIE at OFFSET. Raises an error on failure. */
21554
21555 static struct dwarf2_per_cu_data *
21556 dwarf2_find_containing_comp_unit (sect_offset offset,
21557 unsigned int offset_in_dwz,
21558 struct objfile *objfile)
21559 {
21560 struct dwarf2_per_cu_data *this_cu;
21561 int low, high;
21562 const sect_offset *cu_off;
21563
21564 low = 0;
21565 high = dwarf2_per_objfile->n_comp_units - 1;
21566 while (high > low)
21567 {
21568 struct dwarf2_per_cu_data *mid_cu;
21569 int mid = low + (high - low) / 2;
21570
21571 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21572 cu_off = &mid_cu->offset;
21573 if (mid_cu->is_dwz > offset_in_dwz
21574 || (mid_cu->is_dwz == offset_in_dwz
21575 && cu_off->sect_off >= offset.sect_off))
21576 high = mid;
21577 else
21578 low = mid + 1;
21579 }
21580 gdb_assert (low == high);
21581 this_cu = dwarf2_per_objfile->all_comp_units[low];
21582 cu_off = &this_cu->offset;
21583 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21584 {
21585 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21586 error (_("Dwarf Error: could not find partial DIE containing "
21587 "offset 0x%lx [in module %s]"),
21588 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21589
21590 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21591 <= offset.sect_off);
21592 return dwarf2_per_objfile->all_comp_units[low-1];
21593 }
21594 else
21595 {
21596 this_cu = dwarf2_per_objfile->all_comp_units[low];
21597 if (low == dwarf2_per_objfile->n_comp_units - 1
21598 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21599 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21600 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21601 return this_cu;
21602 }
21603 }
21604
21605 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21606
21607 static void
21608 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21609 {
21610 memset (cu, 0, sizeof (*cu));
21611 per_cu->cu = cu;
21612 cu->per_cu = per_cu;
21613 cu->objfile = per_cu->objfile;
21614 obstack_init (&cu->comp_unit_obstack);
21615 }
21616
21617 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21618
21619 static void
21620 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21621 enum language pretend_language)
21622 {
21623 struct attribute *attr;
21624
21625 /* Set the language we're debugging. */
21626 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21627 if (attr)
21628 set_cu_language (DW_UNSND (attr), cu);
21629 else
21630 {
21631 cu->language = pretend_language;
21632 cu->language_defn = language_def (cu->language);
21633 }
21634
21635 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21636 if (attr)
21637 cu->producer = DW_STRING (attr);
21638 }
21639
21640 /* Release one cached compilation unit, CU. We unlink it from the tree
21641 of compilation units, but we don't remove it from the read_in_chain;
21642 the caller is responsible for that.
21643 NOTE: DATA is a void * because this function is also used as a
21644 cleanup routine. */
21645
21646 static void
21647 free_heap_comp_unit (void *data)
21648 {
21649 struct dwarf2_cu *cu = data;
21650
21651 gdb_assert (cu->per_cu != NULL);
21652 cu->per_cu->cu = NULL;
21653 cu->per_cu = NULL;
21654
21655 obstack_free (&cu->comp_unit_obstack, NULL);
21656
21657 xfree (cu);
21658 }
21659
21660 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21661 when we're finished with it. We can't free the pointer itself, but be
21662 sure to unlink it from the cache. Also release any associated storage. */
21663
21664 static void
21665 free_stack_comp_unit (void *data)
21666 {
21667 struct dwarf2_cu *cu = data;
21668
21669 gdb_assert (cu->per_cu != NULL);
21670 cu->per_cu->cu = NULL;
21671 cu->per_cu = NULL;
21672
21673 obstack_free (&cu->comp_unit_obstack, NULL);
21674 cu->partial_dies = NULL;
21675 }
21676
21677 /* Free all cached compilation units. */
21678
21679 static void
21680 free_cached_comp_units (void *data)
21681 {
21682 struct dwarf2_per_cu_data *per_cu, **last_chain;
21683
21684 per_cu = dwarf2_per_objfile->read_in_chain;
21685 last_chain = &dwarf2_per_objfile->read_in_chain;
21686 while (per_cu != NULL)
21687 {
21688 struct dwarf2_per_cu_data *next_cu;
21689
21690 next_cu = per_cu->cu->read_in_chain;
21691
21692 free_heap_comp_unit (per_cu->cu);
21693 *last_chain = next_cu;
21694
21695 per_cu = next_cu;
21696 }
21697 }
21698
21699 /* Increase the age counter on each cached compilation unit, and free
21700 any that are too old. */
21701
21702 static void
21703 age_cached_comp_units (void)
21704 {
21705 struct dwarf2_per_cu_data *per_cu, **last_chain;
21706
21707 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21708 per_cu = dwarf2_per_objfile->read_in_chain;
21709 while (per_cu != NULL)
21710 {
21711 per_cu->cu->last_used ++;
21712 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21713 dwarf2_mark (per_cu->cu);
21714 per_cu = per_cu->cu->read_in_chain;
21715 }
21716
21717 per_cu = dwarf2_per_objfile->read_in_chain;
21718 last_chain = &dwarf2_per_objfile->read_in_chain;
21719 while (per_cu != NULL)
21720 {
21721 struct dwarf2_per_cu_data *next_cu;
21722
21723 next_cu = per_cu->cu->read_in_chain;
21724
21725 if (!per_cu->cu->mark)
21726 {
21727 free_heap_comp_unit (per_cu->cu);
21728 *last_chain = next_cu;
21729 }
21730 else
21731 last_chain = &per_cu->cu->read_in_chain;
21732
21733 per_cu = next_cu;
21734 }
21735 }
21736
21737 /* Remove a single compilation unit from the cache. */
21738
21739 static void
21740 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21741 {
21742 struct dwarf2_per_cu_data *per_cu, **last_chain;
21743
21744 per_cu = dwarf2_per_objfile->read_in_chain;
21745 last_chain = &dwarf2_per_objfile->read_in_chain;
21746 while (per_cu != NULL)
21747 {
21748 struct dwarf2_per_cu_data *next_cu;
21749
21750 next_cu = per_cu->cu->read_in_chain;
21751
21752 if (per_cu == target_per_cu)
21753 {
21754 free_heap_comp_unit (per_cu->cu);
21755 per_cu->cu = NULL;
21756 *last_chain = next_cu;
21757 break;
21758 }
21759 else
21760 last_chain = &per_cu->cu->read_in_chain;
21761
21762 per_cu = next_cu;
21763 }
21764 }
21765
21766 /* Release all extra memory associated with OBJFILE. */
21767
21768 void
21769 dwarf2_free_objfile (struct objfile *objfile)
21770 {
21771 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21772
21773 if (dwarf2_per_objfile == NULL)
21774 return;
21775
21776 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21777 free_cached_comp_units (NULL);
21778
21779 if (dwarf2_per_objfile->quick_file_names_table)
21780 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21781
21782 /* Everything else should be on the objfile obstack. */
21783 }
21784
21785 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21786 We store these in a hash table separate from the DIEs, and preserve them
21787 when the DIEs are flushed out of cache.
21788
21789 The CU "per_cu" pointer is needed because offset alone is not enough to
21790 uniquely identify the type. A file may have multiple .debug_types sections,
21791 or the type may come from a DWO file. Furthermore, while it's more logical
21792 to use per_cu->section+offset, with Fission the section with the data is in
21793 the DWO file but we don't know that section at the point we need it.
21794 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21795 because we can enter the lookup routine, get_die_type_at_offset, from
21796 outside this file, and thus won't necessarily have PER_CU->cu.
21797 Fortunately, PER_CU is stable for the life of the objfile. */
21798
21799 struct dwarf2_per_cu_offset_and_type
21800 {
21801 const struct dwarf2_per_cu_data *per_cu;
21802 sect_offset offset;
21803 struct type *type;
21804 };
21805
21806 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21807
21808 static hashval_t
21809 per_cu_offset_and_type_hash (const void *item)
21810 {
21811 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21812
21813 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21814 }
21815
21816 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21817
21818 static int
21819 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21820 {
21821 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21822 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21823
21824 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21825 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21826 }
21827
21828 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21829 table if necessary. For convenience, return TYPE.
21830
21831 The DIEs reading must have careful ordering to:
21832 * Not cause infite loops trying to read in DIEs as a prerequisite for
21833 reading current DIE.
21834 * Not trying to dereference contents of still incompletely read in types
21835 while reading in other DIEs.
21836 * Enable referencing still incompletely read in types just by a pointer to
21837 the type without accessing its fields.
21838
21839 Therefore caller should follow these rules:
21840 * Try to fetch any prerequisite types we may need to build this DIE type
21841 before building the type and calling set_die_type.
21842 * After building type call set_die_type for current DIE as soon as
21843 possible before fetching more types to complete the current type.
21844 * Make the type as complete as possible before fetching more types. */
21845
21846 static struct type *
21847 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21848 {
21849 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21850 struct objfile *objfile = cu->objfile;
21851 struct attribute *attr;
21852 struct dynamic_prop prop;
21853
21854 /* For Ada types, make sure that the gnat-specific data is always
21855 initialized (if not already set). There are a few types where
21856 we should not be doing so, because the type-specific area is
21857 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21858 where the type-specific area is used to store the floatformat).
21859 But this is not a problem, because the gnat-specific information
21860 is actually not needed for these types. */
21861 if (need_gnat_info (cu)
21862 && TYPE_CODE (type) != TYPE_CODE_FUNC
21863 && TYPE_CODE (type) != TYPE_CODE_FLT
21864 && !HAVE_GNAT_AUX_INFO (type))
21865 INIT_GNAT_SPECIFIC (type);
21866
21867 /* Read DW_AT_data_location and set in type. */
21868 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21869 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21870 {
21871 TYPE_DATA_LOCATION (type)
21872 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21873 *TYPE_DATA_LOCATION (type) = prop;
21874 }
21875
21876 if (dwarf2_per_objfile->die_type_hash == NULL)
21877 {
21878 dwarf2_per_objfile->die_type_hash =
21879 htab_create_alloc_ex (127,
21880 per_cu_offset_and_type_hash,
21881 per_cu_offset_and_type_eq,
21882 NULL,
21883 &objfile->objfile_obstack,
21884 hashtab_obstack_allocate,
21885 dummy_obstack_deallocate);
21886 }
21887
21888 ofs.per_cu = cu->per_cu;
21889 ofs.offset = die->offset;
21890 ofs.type = type;
21891 slot = (struct dwarf2_per_cu_offset_and_type **)
21892 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21893 if (*slot)
21894 complaint (&symfile_complaints,
21895 _("A problem internal to GDB: DIE 0x%x has type already set"),
21896 die->offset.sect_off);
21897 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21898 **slot = ofs;
21899 return type;
21900 }
21901
21902 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21903 or return NULL if the die does not have a saved type. */
21904
21905 static struct type *
21906 get_die_type_at_offset (sect_offset offset,
21907 struct dwarf2_per_cu_data *per_cu)
21908 {
21909 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21910
21911 if (dwarf2_per_objfile->die_type_hash == NULL)
21912 return NULL;
21913
21914 ofs.per_cu = per_cu;
21915 ofs.offset = offset;
21916 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21917 if (slot)
21918 return slot->type;
21919 else
21920 return NULL;
21921 }
21922
21923 /* Look up the type for DIE in CU in die_type_hash,
21924 or return NULL if DIE does not have a saved type. */
21925
21926 static struct type *
21927 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21928 {
21929 return get_die_type_at_offset (die->offset, cu->per_cu);
21930 }
21931
21932 /* Add a dependence relationship from CU to REF_PER_CU. */
21933
21934 static void
21935 dwarf2_add_dependence (struct dwarf2_cu *cu,
21936 struct dwarf2_per_cu_data *ref_per_cu)
21937 {
21938 void **slot;
21939
21940 if (cu->dependencies == NULL)
21941 cu->dependencies
21942 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21943 NULL, &cu->comp_unit_obstack,
21944 hashtab_obstack_allocate,
21945 dummy_obstack_deallocate);
21946
21947 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21948 if (*slot == NULL)
21949 *slot = ref_per_cu;
21950 }
21951
21952 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21953 Set the mark field in every compilation unit in the
21954 cache that we must keep because we are keeping CU. */
21955
21956 static int
21957 dwarf2_mark_helper (void **slot, void *data)
21958 {
21959 struct dwarf2_per_cu_data *per_cu;
21960
21961 per_cu = (struct dwarf2_per_cu_data *) *slot;
21962
21963 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21964 reading of the chain. As such dependencies remain valid it is not much
21965 useful to track and undo them during QUIT cleanups. */
21966 if (per_cu->cu == NULL)
21967 return 1;
21968
21969 if (per_cu->cu->mark)
21970 return 1;
21971 per_cu->cu->mark = 1;
21972
21973 if (per_cu->cu->dependencies != NULL)
21974 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21975
21976 return 1;
21977 }
21978
21979 /* Set the mark field in CU and in every other compilation unit in the
21980 cache that we must keep because we are keeping CU. */
21981
21982 static void
21983 dwarf2_mark (struct dwarf2_cu *cu)
21984 {
21985 if (cu->mark)
21986 return;
21987 cu->mark = 1;
21988 if (cu->dependencies != NULL)
21989 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21990 }
21991
21992 static void
21993 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21994 {
21995 while (per_cu)
21996 {
21997 per_cu->cu->mark = 0;
21998 per_cu = per_cu->cu->read_in_chain;
21999 }
22000 }
22001
22002 /* Trivial hash function for partial_die_info: the hash value of a DIE
22003 is its offset in .debug_info for this objfile. */
22004
22005 static hashval_t
22006 partial_die_hash (const void *item)
22007 {
22008 const struct partial_die_info *part_die = item;
22009
22010 return part_die->offset.sect_off;
22011 }
22012
22013 /* Trivial comparison function for partial_die_info structures: two DIEs
22014 are equal if they have the same offset. */
22015
22016 static int
22017 partial_die_eq (const void *item_lhs, const void *item_rhs)
22018 {
22019 const struct partial_die_info *part_die_lhs = item_lhs;
22020 const struct partial_die_info *part_die_rhs = item_rhs;
22021
22022 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22023 }
22024
22025 static struct cmd_list_element *set_dwarf2_cmdlist;
22026 static struct cmd_list_element *show_dwarf2_cmdlist;
22027
22028 static void
22029 set_dwarf2_cmd (char *args, int from_tty)
22030 {
22031 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22032 gdb_stdout);
22033 }
22034
22035 static void
22036 show_dwarf2_cmd (char *args, int from_tty)
22037 {
22038 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22039 }
22040
22041 /* Free data associated with OBJFILE, if necessary. */
22042
22043 static void
22044 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22045 {
22046 struct dwarf2_per_objfile *data = d;
22047 int ix;
22048
22049 /* Make sure we don't accidentally use dwarf2_per_objfile while
22050 cleaning up. */
22051 dwarf2_per_objfile = NULL;
22052
22053 for (ix = 0; ix < data->n_comp_units; ++ix)
22054 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22055
22056 for (ix = 0; ix < data->n_type_units; ++ix)
22057 VEC_free (dwarf2_per_cu_ptr,
22058 data->all_type_units[ix]->per_cu.imported_symtabs);
22059 xfree (data->all_type_units);
22060
22061 VEC_free (dwarf2_section_info_def, data->types);
22062
22063 if (data->dwo_files)
22064 free_dwo_files (data->dwo_files, objfile);
22065 if (data->dwp_file)
22066 gdb_bfd_unref (data->dwp_file->dbfd);
22067
22068 if (data->dwz_file && data->dwz_file->dwz_bfd)
22069 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22070 }
22071
22072 \f
22073 /* The "save gdb-index" command. */
22074
22075 /* The contents of the hash table we create when building the string
22076 table. */
22077 struct strtab_entry
22078 {
22079 offset_type offset;
22080 const char *str;
22081 };
22082
22083 /* Hash function for a strtab_entry.
22084
22085 Function is used only during write_hash_table so no index format backward
22086 compatibility is needed. */
22087
22088 static hashval_t
22089 hash_strtab_entry (const void *e)
22090 {
22091 const struct strtab_entry *entry = e;
22092 return mapped_index_string_hash (INT_MAX, entry->str);
22093 }
22094
22095 /* Equality function for a strtab_entry. */
22096
22097 static int
22098 eq_strtab_entry (const void *a, const void *b)
22099 {
22100 const struct strtab_entry *ea = a;
22101 const struct strtab_entry *eb = b;
22102 return !strcmp (ea->str, eb->str);
22103 }
22104
22105 /* Create a strtab_entry hash table. */
22106
22107 static htab_t
22108 create_strtab (void)
22109 {
22110 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22111 xfree, xcalloc, xfree);
22112 }
22113
22114 /* Add a string to the constant pool. Return the string's offset in
22115 host order. */
22116
22117 static offset_type
22118 add_string (htab_t table, struct obstack *cpool, const char *str)
22119 {
22120 void **slot;
22121 struct strtab_entry entry;
22122 struct strtab_entry *result;
22123
22124 entry.str = str;
22125 slot = htab_find_slot (table, &entry, INSERT);
22126 if (*slot)
22127 result = *slot;
22128 else
22129 {
22130 result = XNEW (struct strtab_entry);
22131 result->offset = obstack_object_size (cpool);
22132 result->str = str;
22133 obstack_grow_str0 (cpool, str);
22134 *slot = result;
22135 }
22136 return result->offset;
22137 }
22138
22139 /* An entry in the symbol table. */
22140 struct symtab_index_entry
22141 {
22142 /* The name of the symbol. */
22143 const char *name;
22144 /* The offset of the name in the constant pool. */
22145 offset_type index_offset;
22146 /* A sorted vector of the indices of all the CUs that hold an object
22147 of this name. */
22148 VEC (offset_type) *cu_indices;
22149 };
22150
22151 /* The symbol table. This is a power-of-2-sized hash table. */
22152 struct mapped_symtab
22153 {
22154 offset_type n_elements;
22155 offset_type size;
22156 struct symtab_index_entry **data;
22157 };
22158
22159 /* Hash function for a symtab_index_entry. */
22160
22161 static hashval_t
22162 hash_symtab_entry (const void *e)
22163 {
22164 const struct symtab_index_entry *entry = e;
22165 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22166 sizeof (offset_type) * VEC_length (offset_type,
22167 entry->cu_indices),
22168 0);
22169 }
22170
22171 /* Equality function for a symtab_index_entry. */
22172
22173 static int
22174 eq_symtab_entry (const void *a, const void *b)
22175 {
22176 const struct symtab_index_entry *ea = a;
22177 const struct symtab_index_entry *eb = b;
22178 int len = VEC_length (offset_type, ea->cu_indices);
22179 if (len != VEC_length (offset_type, eb->cu_indices))
22180 return 0;
22181 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22182 VEC_address (offset_type, eb->cu_indices),
22183 sizeof (offset_type) * len);
22184 }
22185
22186 /* Destroy a symtab_index_entry. */
22187
22188 static void
22189 delete_symtab_entry (void *p)
22190 {
22191 struct symtab_index_entry *entry = p;
22192 VEC_free (offset_type, entry->cu_indices);
22193 xfree (entry);
22194 }
22195
22196 /* Create a hash table holding symtab_index_entry objects. */
22197
22198 static htab_t
22199 create_symbol_hash_table (void)
22200 {
22201 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22202 delete_symtab_entry, xcalloc, xfree);
22203 }
22204
22205 /* Create a new mapped symtab object. */
22206
22207 static struct mapped_symtab *
22208 create_mapped_symtab (void)
22209 {
22210 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22211 symtab->n_elements = 0;
22212 symtab->size = 1024;
22213 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22214 return symtab;
22215 }
22216
22217 /* Destroy a mapped_symtab. */
22218
22219 static void
22220 cleanup_mapped_symtab (void *p)
22221 {
22222 struct mapped_symtab *symtab = p;
22223 /* The contents of the array are freed when the other hash table is
22224 destroyed. */
22225 xfree (symtab->data);
22226 xfree (symtab);
22227 }
22228
22229 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22230 the slot.
22231
22232 Function is used only during write_hash_table so no index format backward
22233 compatibility is needed. */
22234
22235 static struct symtab_index_entry **
22236 find_slot (struct mapped_symtab *symtab, const char *name)
22237 {
22238 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22239
22240 index = hash & (symtab->size - 1);
22241 step = ((hash * 17) & (symtab->size - 1)) | 1;
22242
22243 for (;;)
22244 {
22245 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22246 return &symtab->data[index];
22247 index = (index + step) & (symtab->size - 1);
22248 }
22249 }
22250
22251 /* Expand SYMTAB's hash table. */
22252
22253 static void
22254 hash_expand (struct mapped_symtab *symtab)
22255 {
22256 offset_type old_size = symtab->size;
22257 offset_type i;
22258 struct symtab_index_entry **old_entries = symtab->data;
22259
22260 symtab->size *= 2;
22261 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22262
22263 for (i = 0; i < old_size; ++i)
22264 {
22265 if (old_entries[i])
22266 {
22267 struct symtab_index_entry **slot = find_slot (symtab,
22268 old_entries[i]->name);
22269 *slot = old_entries[i];
22270 }
22271 }
22272
22273 xfree (old_entries);
22274 }
22275
22276 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22277 CU_INDEX is the index of the CU in which the symbol appears.
22278 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22279
22280 static void
22281 add_index_entry (struct mapped_symtab *symtab, const char *name,
22282 int is_static, gdb_index_symbol_kind kind,
22283 offset_type cu_index)
22284 {
22285 struct symtab_index_entry **slot;
22286 offset_type cu_index_and_attrs;
22287
22288 ++symtab->n_elements;
22289 if (4 * symtab->n_elements / 3 >= symtab->size)
22290 hash_expand (symtab);
22291
22292 slot = find_slot (symtab, name);
22293 if (!*slot)
22294 {
22295 *slot = XNEW (struct symtab_index_entry);
22296 (*slot)->name = name;
22297 /* index_offset is set later. */
22298 (*slot)->cu_indices = NULL;
22299 }
22300
22301 cu_index_and_attrs = 0;
22302 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22303 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22304 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22305
22306 /* We don't want to record an index value twice as we want to avoid the
22307 duplication.
22308 We process all global symbols and then all static symbols
22309 (which would allow us to avoid the duplication by only having to check
22310 the last entry pushed), but a symbol could have multiple kinds in one CU.
22311 To keep things simple we don't worry about the duplication here and
22312 sort and uniqufy the list after we've processed all symbols. */
22313 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22314 }
22315
22316 /* qsort helper routine for uniquify_cu_indices. */
22317
22318 static int
22319 offset_type_compare (const void *ap, const void *bp)
22320 {
22321 offset_type a = *(offset_type *) ap;
22322 offset_type b = *(offset_type *) bp;
22323
22324 return (a > b) - (b > a);
22325 }
22326
22327 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22328
22329 static void
22330 uniquify_cu_indices (struct mapped_symtab *symtab)
22331 {
22332 int i;
22333
22334 for (i = 0; i < symtab->size; ++i)
22335 {
22336 struct symtab_index_entry *entry = symtab->data[i];
22337
22338 if (entry
22339 && entry->cu_indices != NULL)
22340 {
22341 unsigned int next_to_insert, next_to_check;
22342 offset_type last_value;
22343
22344 qsort (VEC_address (offset_type, entry->cu_indices),
22345 VEC_length (offset_type, entry->cu_indices),
22346 sizeof (offset_type), offset_type_compare);
22347
22348 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22349 next_to_insert = 1;
22350 for (next_to_check = 1;
22351 next_to_check < VEC_length (offset_type, entry->cu_indices);
22352 ++next_to_check)
22353 {
22354 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22355 != last_value)
22356 {
22357 last_value = VEC_index (offset_type, entry->cu_indices,
22358 next_to_check);
22359 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22360 last_value);
22361 ++next_to_insert;
22362 }
22363 }
22364 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22365 }
22366 }
22367 }
22368
22369 /* Add a vector of indices to the constant pool. */
22370
22371 static offset_type
22372 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22373 struct symtab_index_entry *entry)
22374 {
22375 void **slot;
22376
22377 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22378 if (!*slot)
22379 {
22380 offset_type len = VEC_length (offset_type, entry->cu_indices);
22381 offset_type val = MAYBE_SWAP (len);
22382 offset_type iter;
22383 int i;
22384
22385 *slot = entry;
22386 entry->index_offset = obstack_object_size (cpool);
22387
22388 obstack_grow (cpool, &val, sizeof (val));
22389 for (i = 0;
22390 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22391 ++i)
22392 {
22393 val = MAYBE_SWAP (iter);
22394 obstack_grow (cpool, &val, sizeof (val));
22395 }
22396 }
22397 else
22398 {
22399 struct symtab_index_entry *old_entry = *slot;
22400 entry->index_offset = old_entry->index_offset;
22401 entry = old_entry;
22402 }
22403 return entry->index_offset;
22404 }
22405
22406 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22407 constant pool entries going into the obstack CPOOL. */
22408
22409 static void
22410 write_hash_table (struct mapped_symtab *symtab,
22411 struct obstack *output, struct obstack *cpool)
22412 {
22413 offset_type i;
22414 htab_t symbol_hash_table;
22415 htab_t str_table;
22416
22417 symbol_hash_table = create_symbol_hash_table ();
22418 str_table = create_strtab ();
22419
22420 /* We add all the index vectors to the constant pool first, to
22421 ensure alignment is ok. */
22422 for (i = 0; i < symtab->size; ++i)
22423 {
22424 if (symtab->data[i])
22425 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22426 }
22427
22428 /* Now write out the hash table. */
22429 for (i = 0; i < symtab->size; ++i)
22430 {
22431 offset_type str_off, vec_off;
22432
22433 if (symtab->data[i])
22434 {
22435 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22436 vec_off = symtab->data[i]->index_offset;
22437 }
22438 else
22439 {
22440 /* While 0 is a valid constant pool index, it is not valid
22441 to have 0 for both offsets. */
22442 str_off = 0;
22443 vec_off = 0;
22444 }
22445
22446 str_off = MAYBE_SWAP (str_off);
22447 vec_off = MAYBE_SWAP (vec_off);
22448
22449 obstack_grow (output, &str_off, sizeof (str_off));
22450 obstack_grow (output, &vec_off, sizeof (vec_off));
22451 }
22452
22453 htab_delete (str_table);
22454 htab_delete (symbol_hash_table);
22455 }
22456
22457 /* Struct to map psymtab to CU index in the index file. */
22458 struct psymtab_cu_index_map
22459 {
22460 struct partial_symtab *psymtab;
22461 unsigned int cu_index;
22462 };
22463
22464 static hashval_t
22465 hash_psymtab_cu_index (const void *item)
22466 {
22467 const struct psymtab_cu_index_map *map = item;
22468
22469 return htab_hash_pointer (map->psymtab);
22470 }
22471
22472 static int
22473 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22474 {
22475 const struct psymtab_cu_index_map *lhs = item_lhs;
22476 const struct psymtab_cu_index_map *rhs = item_rhs;
22477
22478 return lhs->psymtab == rhs->psymtab;
22479 }
22480
22481 /* Helper struct for building the address table. */
22482 struct addrmap_index_data
22483 {
22484 struct objfile *objfile;
22485 struct obstack *addr_obstack;
22486 htab_t cu_index_htab;
22487
22488 /* Non-zero if the previous_* fields are valid.
22489 We can't write an entry until we see the next entry (since it is only then
22490 that we know the end of the entry). */
22491 int previous_valid;
22492 /* Index of the CU in the table of all CUs in the index file. */
22493 unsigned int previous_cu_index;
22494 /* Start address of the CU. */
22495 CORE_ADDR previous_cu_start;
22496 };
22497
22498 /* Write an address entry to OBSTACK. */
22499
22500 static void
22501 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22502 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22503 {
22504 offset_type cu_index_to_write;
22505 gdb_byte addr[8];
22506 CORE_ADDR baseaddr;
22507
22508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22509
22510 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22511 obstack_grow (obstack, addr, 8);
22512 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22513 obstack_grow (obstack, addr, 8);
22514 cu_index_to_write = MAYBE_SWAP (cu_index);
22515 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22516 }
22517
22518 /* Worker function for traversing an addrmap to build the address table. */
22519
22520 static int
22521 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22522 {
22523 struct addrmap_index_data *data = datap;
22524 struct partial_symtab *pst = obj;
22525
22526 if (data->previous_valid)
22527 add_address_entry (data->objfile, data->addr_obstack,
22528 data->previous_cu_start, start_addr,
22529 data->previous_cu_index);
22530
22531 data->previous_cu_start = start_addr;
22532 if (pst != NULL)
22533 {
22534 struct psymtab_cu_index_map find_map, *map;
22535 find_map.psymtab = pst;
22536 map = htab_find (data->cu_index_htab, &find_map);
22537 gdb_assert (map != NULL);
22538 data->previous_cu_index = map->cu_index;
22539 data->previous_valid = 1;
22540 }
22541 else
22542 data->previous_valid = 0;
22543
22544 return 0;
22545 }
22546
22547 /* Write OBJFILE's address map to OBSTACK.
22548 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22549 in the index file. */
22550
22551 static void
22552 write_address_map (struct objfile *objfile, struct obstack *obstack,
22553 htab_t cu_index_htab)
22554 {
22555 struct addrmap_index_data addrmap_index_data;
22556
22557 /* When writing the address table, we have to cope with the fact that
22558 the addrmap iterator only provides the start of a region; we have to
22559 wait until the next invocation to get the start of the next region. */
22560
22561 addrmap_index_data.objfile = objfile;
22562 addrmap_index_data.addr_obstack = obstack;
22563 addrmap_index_data.cu_index_htab = cu_index_htab;
22564 addrmap_index_data.previous_valid = 0;
22565
22566 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22567 &addrmap_index_data);
22568
22569 /* It's highly unlikely the last entry (end address = 0xff...ff)
22570 is valid, but we should still handle it.
22571 The end address is recorded as the start of the next region, but that
22572 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22573 anyway. */
22574 if (addrmap_index_data.previous_valid)
22575 add_address_entry (objfile, obstack,
22576 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22577 addrmap_index_data.previous_cu_index);
22578 }
22579
22580 /* Return the symbol kind of PSYM. */
22581
22582 static gdb_index_symbol_kind
22583 symbol_kind (struct partial_symbol *psym)
22584 {
22585 domain_enum domain = PSYMBOL_DOMAIN (psym);
22586 enum address_class aclass = PSYMBOL_CLASS (psym);
22587
22588 switch (domain)
22589 {
22590 case VAR_DOMAIN:
22591 switch (aclass)
22592 {
22593 case LOC_BLOCK:
22594 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22595 case LOC_TYPEDEF:
22596 return GDB_INDEX_SYMBOL_KIND_TYPE;
22597 case LOC_COMPUTED:
22598 case LOC_CONST_BYTES:
22599 case LOC_OPTIMIZED_OUT:
22600 case LOC_STATIC:
22601 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22602 case LOC_CONST:
22603 /* Note: It's currently impossible to recognize psyms as enum values
22604 short of reading the type info. For now punt. */
22605 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22606 default:
22607 /* There are other LOC_FOO values that one might want to classify
22608 as variables, but dwarf2read.c doesn't currently use them. */
22609 return GDB_INDEX_SYMBOL_KIND_OTHER;
22610 }
22611 case STRUCT_DOMAIN:
22612 return GDB_INDEX_SYMBOL_KIND_TYPE;
22613 default:
22614 return GDB_INDEX_SYMBOL_KIND_OTHER;
22615 }
22616 }
22617
22618 /* Add a list of partial symbols to SYMTAB. */
22619
22620 static void
22621 write_psymbols (struct mapped_symtab *symtab,
22622 htab_t psyms_seen,
22623 struct partial_symbol **psymp,
22624 int count,
22625 offset_type cu_index,
22626 int is_static)
22627 {
22628 for (; count-- > 0; ++psymp)
22629 {
22630 struct partial_symbol *psym = *psymp;
22631 void **slot;
22632
22633 if (SYMBOL_LANGUAGE (psym) == language_ada)
22634 error (_("Ada is not currently supported by the index"));
22635
22636 /* Only add a given psymbol once. */
22637 slot = htab_find_slot (psyms_seen, psym, INSERT);
22638 if (!*slot)
22639 {
22640 gdb_index_symbol_kind kind = symbol_kind (psym);
22641
22642 *slot = psym;
22643 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22644 is_static, kind, cu_index);
22645 }
22646 }
22647 }
22648
22649 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22650 exception if there is an error. */
22651
22652 static void
22653 write_obstack (FILE *file, struct obstack *obstack)
22654 {
22655 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22656 file)
22657 != obstack_object_size (obstack))
22658 error (_("couldn't data write to file"));
22659 }
22660
22661 /* Unlink a file if the argument is not NULL. */
22662
22663 static void
22664 unlink_if_set (void *p)
22665 {
22666 char **filename = p;
22667 if (*filename)
22668 unlink (*filename);
22669 }
22670
22671 /* A helper struct used when iterating over debug_types. */
22672 struct signatured_type_index_data
22673 {
22674 struct objfile *objfile;
22675 struct mapped_symtab *symtab;
22676 struct obstack *types_list;
22677 htab_t psyms_seen;
22678 int cu_index;
22679 };
22680
22681 /* A helper function that writes a single signatured_type to an
22682 obstack. */
22683
22684 static int
22685 write_one_signatured_type (void **slot, void *d)
22686 {
22687 struct signatured_type_index_data *info = d;
22688 struct signatured_type *entry = (struct signatured_type *) *slot;
22689 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22690 gdb_byte val[8];
22691
22692 write_psymbols (info->symtab,
22693 info->psyms_seen,
22694 info->objfile->global_psymbols.list
22695 + psymtab->globals_offset,
22696 psymtab->n_global_syms, info->cu_index,
22697 0);
22698 write_psymbols (info->symtab,
22699 info->psyms_seen,
22700 info->objfile->static_psymbols.list
22701 + psymtab->statics_offset,
22702 psymtab->n_static_syms, info->cu_index,
22703 1);
22704
22705 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22706 entry->per_cu.offset.sect_off);
22707 obstack_grow (info->types_list, val, 8);
22708 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22709 entry->type_offset_in_tu.cu_off);
22710 obstack_grow (info->types_list, val, 8);
22711 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22712 obstack_grow (info->types_list, val, 8);
22713
22714 ++info->cu_index;
22715
22716 return 1;
22717 }
22718
22719 /* Recurse into all "included" dependencies and write their symbols as
22720 if they appeared in this psymtab. */
22721
22722 static void
22723 recursively_write_psymbols (struct objfile *objfile,
22724 struct partial_symtab *psymtab,
22725 struct mapped_symtab *symtab,
22726 htab_t psyms_seen,
22727 offset_type cu_index)
22728 {
22729 int i;
22730
22731 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22732 if (psymtab->dependencies[i]->user != NULL)
22733 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22734 symtab, psyms_seen, cu_index);
22735
22736 write_psymbols (symtab,
22737 psyms_seen,
22738 objfile->global_psymbols.list + psymtab->globals_offset,
22739 psymtab->n_global_syms, cu_index,
22740 0);
22741 write_psymbols (symtab,
22742 psyms_seen,
22743 objfile->static_psymbols.list + psymtab->statics_offset,
22744 psymtab->n_static_syms, cu_index,
22745 1);
22746 }
22747
22748 /* Create an index file for OBJFILE in the directory DIR. */
22749
22750 static void
22751 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22752 {
22753 struct cleanup *cleanup;
22754 char *filename, *cleanup_filename;
22755 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22756 struct obstack cu_list, types_cu_list;
22757 int i;
22758 FILE *out_file;
22759 struct mapped_symtab *symtab;
22760 offset_type val, size_of_contents, total_len;
22761 struct stat st;
22762 htab_t psyms_seen;
22763 htab_t cu_index_htab;
22764 struct psymtab_cu_index_map *psymtab_cu_index_map;
22765
22766 if (dwarf2_per_objfile->using_index)
22767 error (_("Cannot use an index to create the index"));
22768
22769 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22770 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22771
22772 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22773 return;
22774
22775 if (stat (objfile_name (objfile), &st) < 0)
22776 perror_with_name (objfile_name (objfile));
22777
22778 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22779 INDEX_SUFFIX, (char *) NULL);
22780 cleanup = make_cleanup (xfree, filename);
22781
22782 out_file = gdb_fopen_cloexec (filename, "wb");
22783 if (!out_file)
22784 error (_("Can't open `%s' for writing"), filename);
22785
22786 cleanup_filename = filename;
22787 make_cleanup (unlink_if_set, &cleanup_filename);
22788
22789 symtab = create_mapped_symtab ();
22790 make_cleanup (cleanup_mapped_symtab, symtab);
22791
22792 obstack_init (&addr_obstack);
22793 make_cleanup_obstack_free (&addr_obstack);
22794
22795 obstack_init (&cu_list);
22796 make_cleanup_obstack_free (&cu_list);
22797
22798 obstack_init (&types_cu_list);
22799 make_cleanup_obstack_free (&types_cu_list);
22800
22801 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22802 NULL, xcalloc, xfree);
22803 make_cleanup_htab_delete (psyms_seen);
22804
22805 /* While we're scanning CU's create a table that maps a psymtab pointer
22806 (which is what addrmap records) to its index (which is what is recorded
22807 in the index file). This will later be needed to write the address
22808 table. */
22809 cu_index_htab = htab_create_alloc (100,
22810 hash_psymtab_cu_index,
22811 eq_psymtab_cu_index,
22812 NULL, xcalloc, xfree);
22813 make_cleanup_htab_delete (cu_index_htab);
22814 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22815 xmalloc (sizeof (struct psymtab_cu_index_map)
22816 * dwarf2_per_objfile->n_comp_units);
22817 make_cleanup (xfree, psymtab_cu_index_map);
22818
22819 /* The CU list is already sorted, so we don't need to do additional
22820 work here. Also, the debug_types entries do not appear in
22821 all_comp_units, but only in their own hash table. */
22822 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22823 {
22824 struct dwarf2_per_cu_data *per_cu
22825 = dwarf2_per_objfile->all_comp_units[i];
22826 struct partial_symtab *psymtab = per_cu->v.psymtab;
22827 gdb_byte val[8];
22828 struct psymtab_cu_index_map *map;
22829 void **slot;
22830
22831 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22832 It may be referenced from a local scope but in such case it does not
22833 need to be present in .gdb_index. */
22834 if (psymtab == NULL)
22835 continue;
22836
22837 if (psymtab->user == NULL)
22838 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22839
22840 map = &psymtab_cu_index_map[i];
22841 map->psymtab = psymtab;
22842 map->cu_index = i;
22843 slot = htab_find_slot (cu_index_htab, map, INSERT);
22844 gdb_assert (slot != NULL);
22845 gdb_assert (*slot == NULL);
22846 *slot = map;
22847
22848 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22849 per_cu->offset.sect_off);
22850 obstack_grow (&cu_list, val, 8);
22851 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22852 obstack_grow (&cu_list, val, 8);
22853 }
22854
22855 /* Dump the address map. */
22856 write_address_map (objfile, &addr_obstack, cu_index_htab);
22857
22858 /* Write out the .debug_type entries, if any. */
22859 if (dwarf2_per_objfile->signatured_types)
22860 {
22861 struct signatured_type_index_data sig_data;
22862
22863 sig_data.objfile = objfile;
22864 sig_data.symtab = symtab;
22865 sig_data.types_list = &types_cu_list;
22866 sig_data.psyms_seen = psyms_seen;
22867 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22868 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22869 write_one_signatured_type, &sig_data);
22870 }
22871
22872 /* Now that we've processed all symbols we can shrink their cu_indices
22873 lists. */
22874 uniquify_cu_indices (symtab);
22875
22876 obstack_init (&constant_pool);
22877 make_cleanup_obstack_free (&constant_pool);
22878 obstack_init (&symtab_obstack);
22879 make_cleanup_obstack_free (&symtab_obstack);
22880 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22881
22882 obstack_init (&contents);
22883 make_cleanup_obstack_free (&contents);
22884 size_of_contents = 6 * sizeof (offset_type);
22885 total_len = size_of_contents;
22886
22887 /* The version number. */
22888 val = MAYBE_SWAP (8);
22889 obstack_grow (&contents, &val, sizeof (val));
22890
22891 /* The offset of the CU list from the start of the file. */
22892 val = MAYBE_SWAP (total_len);
22893 obstack_grow (&contents, &val, sizeof (val));
22894 total_len += obstack_object_size (&cu_list);
22895
22896 /* The offset of the types CU list from the start of the file. */
22897 val = MAYBE_SWAP (total_len);
22898 obstack_grow (&contents, &val, sizeof (val));
22899 total_len += obstack_object_size (&types_cu_list);
22900
22901 /* The offset of the address table from the start of the file. */
22902 val = MAYBE_SWAP (total_len);
22903 obstack_grow (&contents, &val, sizeof (val));
22904 total_len += obstack_object_size (&addr_obstack);
22905
22906 /* The offset of the symbol table from the start of the file. */
22907 val = MAYBE_SWAP (total_len);
22908 obstack_grow (&contents, &val, sizeof (val));
22909 total_len += obstack_object_size (&symtab_obstack);
22910
22911 /* The offset of the constant pool from the start of the file. */
22912 val = MAYBE_SWAP (total_len);
22913 obstack_grow (&contents, &val, sizeof (val));
22914 total_len += obstack_object_size (&constant_pool);
22915
22916 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22917
22918 write_obstack (out_file, &contents);
22919 write_obstack (out_file, &cu_list);
22920 write_obstack (out_file, &types_cu_list);
22921 write_obstack (out_file, &addr_obstack);
22922 write_obstack (out_file, &symtab_obstack);
22923 write_obstack (out_file, &constant_pool);
22924
22925 fclose (out_file);
22926
22927 /* We want to keep the file, so we set cleanup_filename to NULL
22928 here. See unlink_if_set. */
22929 cleanup_filename = NULL;
22930
22931 do_cleanups (cleanup);
22932 }
22933
22934 /* Implementation of the `save gdb-index' command.
22935
22936 Note that the file format used by this command is documented in the
22937 GDB manual. Any changes here must be documented there. */
22938
22939 static void
22940 save_gdb_index_command (char *arg, int from_tty)
22941 {
22942 struct objfile *objfile;
22943
22944 if (!arg || !*arg)
22945 error (_("usage: save gdb-index DIRECTORY"));
22946
22947 ALL_OBJFILES (objfile)
22948 {
22949 struct stat st;
22950
22951 /* If the objfile does not correspond to an actual file, skip it. */
22952 if (stat (objfile_name (objfile), &st) < 0)
22953 continue;
22954
22955 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22956 if (dwarf2_per_objfile)
22957 {
22958 volatile struct gdb_exception except;
22959
22960 TRY_CATCH (except, RETURN_MASK_ERROR)
22961 {
22962 write_psymtabs_to_index (objfile, arg);
22963 }
22964 if (except.reason < 0)
22965 exception_fprintf (gdb_stderr, except,
22966 _("Error while writing index for `%s': "),
22967 objfile_name (objfile));
22968 }
22969 }
22970 }
22971
22972 \f
22973
22974 int dwarf2_always_disassemble;
22975
22976 static void
22977 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22978 struct cmd_list_element *c, const char *value)
22979 {
22980 fprintf_filtered (file,
22981 _("Whether to always disassemble "
22982 "DWARF expressions is %s.\n"),
22983 value);
22984 }
22985
22986 static void
22987 show_check_physname (struct ui_file *file, int from_tty,
22988 struct cmd_list_element *c, const char *value)
22989 {
22990 fprintf_filtered (file,
22991 _("Whether to check \"physname\" is %s.\n"),
22992 value);
22993 }
22994
22995 void _initialize_dwarf2_read (void);
22996
22997 void
22998 _initialize_dwarf2_read (void)
22999 {
23000 struct cmd_list_element *c;
23001
23002 dwarf2_objfile_data_key
23003 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23004
23005 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23006 Set DWARF 2 specific variables.\n\
23007 Configure DWARF 2 variables such as the cache size"),
23008 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23009 0/*allow-unknown*/, &maintenance_set_cmdlist);
23010
23011 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23012 Show DWARF 2 specific variables\n\
23013 Show DWARF 2 variables such as the cache size"),
23014 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23015 0/*allow-unknown*/, &maintenance_show_cmdlist);
23016
23017 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23018 &dwarf2_max_cache_age, _("\
23019 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23020 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23021 A higher limit means that cached compilation units will be stored\n\
23022 in memory longer, and more total memory will be used. Zero disables\n\
23023 caching, which can slow down startup."),
23024 NULL,
23025 show_dwarf2_max_cache_age,
23026 &set_dwarf2_cmdlist,
23027 &show_dwarf2_cmdlist);
23028
23029 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23030 &dwarf2_always_disassemble, _("\
23031 Set whether `info address' always disassembles DWARF expressions."), _("\
23032 Show whether `info address' always disassembles DWARF expressions."), _("\
23033 When enabled, DWARF expressions are always printed in an assembly-like\n\
23034 syntax. When disabled, expressions will be printed in a more\n\
23035 conversational style, when possible."),
23036 NULL,
23037 show_dwarf2_always_disassemble,
23038 &set_dwarf2_cmdlist,
23039 &show_dwarf2_cmdlist);
23040
23041 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23042 Set debugging of the dwarf2 reader."), _("\
23043 Show debugging of the dwarf2 reader."), _("\
23044 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23045 reading and symtab expansion. A value of 1 (one) provides basic\n\
23046 information. A value greater than 1 provides more verbose information."),
23047 NULL,
23048 NULL,
23049 &setdebuglist, &showdebuglist);
23050
23051 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23052 Set debugging of the dwarf2 DIE reader."), _("\
23053 Show debugging of the dwarf2 DIE reader."), _("\
23054 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23055 The value is the maximum depth to print."),
23056 NULL,
23057 NULL,
23058 &setdebuglist, &showdebuglist);
23059
23060 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23061 Set cross-checking of \"physname\" code against demangler."), _("\
23062 Show cross-checking of \"physname\" code against demangler."), _("\
23063 When enabled, GDB's internal \"physname\" code is checked against\n\
23064 the demangler."),
23065 NULL, show_check_physname,
23066 &setdebuglist, &showdebuglist);
23067
23068 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23069 no_class, &use_deprecated_index_sections, _("\
23070 Set whether to use deprecated gdb_index sections."), _("\
23071 Show whether to use deprecated gdb_index sections."), _("\
23072 When enabled, deprecated .gdb_index sections are used anyway.\n\
23073 Normally they are ignored either because of a missing feature or\n\
23074 performance issue.\n\
23075 Warning: This option must be enabled before gdb reads the file."),
23076 NULL,
23077 NULL,
23078 &setlist, &showlist);
23079
23080 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23081 _("\
23082 Save a gdb-index file.\n\
23083 Usage: save gdb-index DIRECTORY"),
23084 &save_cmdlist);
23085 set_cmd_completer (c, filename_completer);
23086
23087 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23088 &dwarf2_locexpr_funcs);
23089 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23090 &dwarf2_loclist_funcs);
23091
23092 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23093 &dwarf2_block_frame_base_locexpr_funcs);
23094 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23095 &dwarf2_block_frame_base_loclist_funcs);
23096 }
This page took 0.646131 seconds and 4 git commands to generate.