* dwarf2read.c: Move definitions of complaint functions to after
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backlink to our per_cu entry. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* Non-zero if the TU has been read.
562 This is used to assist the "Stay in DWO Optimization" for Fission:
563 When reading a DWO, it's faster to read TUs from the DWO instead of
564 fetching them from random other DWOs (due to comdat folding).
565 If the TU has already been read, the optimization is unnecessary
566 (and unwise - we don't want to change where gdb thinks the TU lives
567 "midflight").
568 This flag is only valid if is_debug_types is true. */
569 unsigned int tu_read : 1;
570
571 /* The section this CU/TU lives in.
572 If the DIE refers to a DWO file, this is always the original die,
573 not the DWO file. */
574 struct dwarf2_section_info *section;
575
576 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
577 of the CU cache it gets reset to NULL again. */
578 struct dwarf2_cu *cu;
579
580 /* The corresponding objfile.
581 Normally we can get the objfile from dwarf2_per_objfile.
582 However we can enter this file with just a "per_cu" handle. */
583 struct objfile *objfile;
584
585 /* When using partial symbol tables, the 'psymtab' field is active.
586 Otherwise the 'quick' field is active. */
587 union
588 {
589 /* The partial symbol table associated with this compilation unit,
590 or NULL for unread partial units. */
591 struct partial_symtab *psymtab;
592
593 /* Data needed by the "quick" functions. */
594 struct dwarf2_per_cu_quick_data *quick;
595 } v;
596
597 /* The CUs we import using DW_TAG_imported_unit. This is filled in
598 while reading psymtabs, used to compute the psymtab dependencies,
599 and then cleared. Then it is filled in again while reading full
600 symbols, and only deleted when the objfile is destroyed.
601
602 This is also used to work around a difference between the way gold
603 generates .gdb_index version <=7 and the way gdb does. Arguably this
604 is a gold bug. For symbols coming from TUs, gold records in the index
605 the CU that includes the TU instead of the TU itself. This breaks
606 dw2_lookup_symbol: It assumes that if the index says symbol X lives
607 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
608 will find X. Alas TUs live in their own symtab, so after expanding CU Y
609 we need to look in TU Z to find X. Fortunately, this is akin to
610 DW_TAG_imported_unit, so we just use the same mechanism: For
611 .gdb_index version <=7 this also records the TUs that the CU referred
612 to. Concurrently with this change gdb was modified to emit version 8
613 indices so we only pay a price for gold generated indices.
614 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
615 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
616 };
617
618 /* Entry in the signatured_types hash table. */
619
620 struct signatured_type
621 {
622 /* The "per_cu" object of this type.
623 This struct is used iff per_cu.is_debug_types.
624 N.B.: This is the first member so that it's easy to convert pointers
625 between them. */
626 struct dwarf2_per_cu_data per_cu;
627
628 /* The type's signature. */
629 ULONGEST signature;
630
631 /* Offset in the TU of the type's DIE, as read from the TU header.
632 If this TU is a DWO stub and the definition lives in a DWO file
633 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
634 cu_offset type_offset_in_tu;
635
636 /* Offset in the section of the type's DIE.
637 If the definition lives in a DWO file, this is the offset in the
638 .debug_types.dwo section.
639 The value is zero until the actual value is known.
640 Zero is otherwise not a valid section offset. */
641 sect_offset type_offset_in_section;
642
643 /* Type units are grouped by their DW_AT_stmt_list entry so that they
644 can share them. This points to the containing symtab. */
645 struct type_unit_group *type_unit_group;
646
647 /* The type.
648 The first time we encounter this type we fully read it in and install it
649 in the symbol tables. Subsequent times we only need the type. */
650 struct type *type;
651
652 /* Containing DWO unit.
653 This field is valid iff per_cu.reading_dwo_directly. */
654 struct dwo_unit *dwo_unit;
655 };
656
657 typedef struct signatured_type *sig_type_ptr;
658 DEF_VEC_P (sig_type_ptr);
659
660 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
661 This includes type_unit_group and quick_file_names. */
662
663 struct stmt_list_hash
664 {
665 /* The DWO unit this table is from or NULL if there is none. */
666 struct dwo_unit *dwo_unit;
667
668 /* Offset in .debug_line or .debug_line.dwo. */
669 sect_offset line_offset;
670 };
671
672 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
673 an object of this type. */
674
675 struct type_unit_group
676 {
677 /* dwarf2read.c's main "handle" on a TU symtab.
678 To simplify things we create an artificial CU that "includes" all the
679 type units using this stmt_list so that the rest of the code still has
680 a "per_cu" handle on the symtab.
681 This PER_CU is recognized by having no section. */
682 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
683 struct dwarf2_per_cu_data per_cu;
684
685 /* The TUs that share this DW_AT_stmt_list entry.
686 This is added to while parsing type units to build partial symtabs,
687 and is deleted afterwards and not used again. */
688 VEC (sig_type_ptr) *tus;
689
690 /* The primary symtab.
691 Type units in a group needn't all be defined in the same source file,
692 so we create an essentially anonymous symtab as the primary symtab. */
693 struct symtab *primary_symtab;
694
695 /* The data used to construct the hash key. */
696 struct stmt_list_hash hash;
697
698 /* The number of symtabs from the line header.
699 The value here must match line_header.num_file_names. */
700 unsigned int num_symtabs;
701
702 /* The symbol tables for this TU (obtained from the files listed in
703 DW_AT_stmt_list).
704 WARNING: The order of entries here must match the order of entries
705 in the line header. After the first TU using this type_unit_group, the
706 line header for the subsequent TUs is recreated from this. This is done
707 because we need to use the same symtabs for each TU using the same
708 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
709 there's no guarantee the line header doesn't have duplicate entries. */
710 struct symtab **symtabs;
711 };
712
713 /* These sections are what may appear in a DWO file. */
714
715 struct dwo_sections
716 {
717 struct dwarf2_section_info abbrev;
718 struct dwarf2_section_info line;
719 struct dwarf2_section_info loc;
720 struct dwarf2_section_info macinfo;
721 struct dwarf2_section_info macro;
722 struct dwarf2_section_info str;
723 struct dwarf2_section_info str_offsets;
724 /* In the case of a virtual DWO file, these two are unused. */
725 struct dwarf2_section_info info;
726 VEC (dwarf2_section_info_def) *types;
727 };
728
729 /* CUs/TUs in DWP/DWO files. */
730
731 struct dwo_unit
732 {
733 /* Backlink to the containing struct dwo_file. */
734 struct dwo_file *dwo_file;
735
736 /* The "id" that distinguishes this CU/TU.
737 .debug_info calls this "dwo_id", .debug_types calls this "signature".
738 Since signatures came first, we stick with it for consistency. */
739 ULONGEST signature;
740
741 /* The section this CU/TU lives in, in the DWO file. */
742 struct dwarf2_section_info *section;
743
744 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
745 sect_offset offset;
746 unsigned int length;
747
748 /* For types, offset in the type's DIE of the type defined by this TU. */
749 cu_offset type_offset_in_tu;
750 };
751
752 /* Data for one DWO file.
753 This includes virtual DWO files that have been packaged into a
754 DWP file. */
755
756 struct dwo_file
757 {
758 /* The DW_AT_GNU_dwo_name attribute.
759 For virtual DWO files the name is constructed from the section offsets
760 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
761 from related CU+TUs. */
762 const char *dwo_name;
763
764 /* The DW_AT_comp_dir attribute. */
765 const char *comp_dir;
766
767 /* The bfd, when the file is open. Otherwise this is NULL.
768 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
769 bfd *dbfd;
770
771 /* Section info for this file. */
772 struct dwo_sections sections;
773
774 /* The CU in the file.
775 We only support one because having more than one requires hacking the
776 dwo_name of each to match, which is highly unlikely to happen.
777 Doing this means all TUs can share comp_dir: We also assume that
778 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
779 struct dwo_unit *cu;
780
781 /* Table of TUs in the file.
782 Each element is a struct dwo_unit. */
783 htab_t tus;
784 };
785
786 /* These sections are what may appear in a DWP file. */
787
788 struct dwp_sections
789 {
790 struct dwarf2_section_info str;
791 struct dwarf2_section_info cu_index;
792 struct dwarf2_section_info tu_index;
793 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
794 by section number. We don't need to record them here. */
795 };
796
797 /* These sections are what may appear in a virtual DWO file. */
798
799 struct virtual_dwo_sections
800 {
801 struct dwarf2_section_info abbrev;
802 struct dwarf2_section_info line;
803 struct dwarf2_section_info loc;
804 struct dwarf2_section_info macinfo;
805 struct dwarf2_section_info macro;
806 struct dwarf2_section_info str_offsets;
807 /* Each DWP hash table entry records one CU or one TU.
808 That is recorded here, and copied to dwo_unit.section. */
809 struct dwarf2_section_info info_or_types;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t nr_units, nr_slots;
817 const gdb_byte *hash_table, *unit_table, *section_pool;
818 };
819
820 /* Data for one DWP file. */
821
822 struct dwp_file
823 {
824 /* Name of the file. */
825 const char *name;
826
827 /* The bfd. */
828 bfd *dbfd;
829
830 /* Section info for this file. */
831 struct dwp_sections sections;
832
833 /* Table of CUs in the file. */
834 const struct dwp_hash_table *cus;
835
836 /* Table of TUs in the file. */
837 const struct dwp_hash_table *tus;
838
839 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
840 htab_t loaded_cutus;
841
842 /* Table to map ELF section numbers to their sections. */
843 unsigned int num_sections;
844 asection **elf_sections;
845 };
846
847 /* This represents a '.dwz' file. */
848
849 struct dwz_file
850 {
851 /* A dwz file can only contain a few sections. */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info str;
855 struct dwarf2_section_info line;
856 struct dwarf2_section_info macro;
857 struct dwarf2_section_info gdb_index;
858
859 /* The dwz's BFD. */
860 bfd *dwz_bfd;
861 };
862
863 /* Struct used to pass misc. parameters to read_die_and_children, et
864 al. which are used for both .debug_info and .debug_types dies.
865 All parameters here are unchanging for the life of the call. This
866 struct exists to abstract away the constant parameters of die reading. */
867
868 struct die_reader_specs
869 {
870 /* die_section->asection->owner. */
871 bfd* abfd;
872
873 /* The CU of the DIE we are parsing. */
874 struct dwarf2_cu *cu;
875
876 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
877 struct dwo_file *dwo_file;
878
879 /* The section the die comes from.
880 This is either .debug_info or .debug_types, or the .dwo variants. */
881 struct dwarf2_section_info *die_section;
882
883 /* die_section->buffer. */
884 const gdb_byte *buffer;
885
886 /* The end of the buffer. */
887 const gdb_byte *buffer_end;
888
889 /* The value of the DW_AT_comp_dir attribute. */
890 const char *comp_dir;
891 };
892
893 /* Type of function passed to init_cutu_and_read_dies, et.al. */
894 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
895 const gdb_byte *info_ptr,
896 struct die_info *comp_unit_die,
897 int has_children,
898 void *data);
899
900 /* The line number information for a compilation unit (found in the
901 .debug_line section) begins with a "statement program header",
902 which contains the following information. */
903 struct line_header
904 {
905 unsigned int total_length;
906 unsigned short version;
907 unsigned int header_length;
908 unsigned char minimum_instruction_length;
909 unsigned char maximum_ops_per_instruction;
910 unsigned char default_is_stmt;
911 int line_base;
912 unsigned char line_range;
913 unsigned char opcode_base;
914
915 /* standard_opcode_lengths[i] is the number of operands for the
916 standard opcode whose value is i. This means that
917 standard_opcode_lengths[0] is unused, and the last meaningful
918 element is standard_opcode_lengths[opcode_base - 1]. */
919 unsigned char *standard_opcode_lengths;
920
921 /* The include_directories table. NOTE! These strings are not
922 allocated with xmalloc; instead, they are pointers into
923 debug_line_buffer. If you try to free them, `free' will get
924 indigestion. */
925 unsigned int num_include_dirs, include_dirs_size;
926 const char **include_dirs;
927
928 /* The file_names table. NOTE! These strings are not allocated
929 with xmalloc; instead, they are pointers into debug_line_buffer.
930 Don't try to free them directly. */
931 unsigned int num_file_names, file_names_size;
932 struct file_entry
933 {
934 const char *name;
935 unsigned int dir_index;
936 unsigned int mod_time;
937 unsigned int length;
938 int included_p; /* Non-zero if referenced by the Line Number Program. */
939 struct symtab *symtab; /* The associated symbol table, if any. */
940 } *file_names;
941
942 /* The start and end of the statement program following this
943 header. These point into dwarf2_per_objfile->line_buffer. */
944 const gdb_byte *statement_program_start, *statement_program_end;
945 };
946
947 /* When we construct a partial symbol table entry we only
948 need this much information. */
949 struct partial_die_info
950 {
951 /* Offset of this DIE. */
952 sect_offset offset;
953
954 /* DWARF-2 tag for this DIE. */
955 ENUM_BITFIELD(dwarf_tag) tag : 16;
956
957 /* Assorted flags describing the data found in this DIE. */
958 unsigned int has_children : 1;
959 unsigned int is_external : 1;
960 unsigned int is_declaration : 1;
961 unsigned int has_type : 1;
962 unsigned int has_specification : 1;
963 unsigned int has_pc_info : 1;
964 unsigned int may_be_inlined : 1;
965
966 /* Flag set if the SCOPE field of this structure has been
967 computed. */
968 unsigned int scope_set : 1;
969
970 /* Flag set if the DIE has a byte_size attribute. */
971 unsigned int has_byte_size : 1;
972
973 /* Flag set if any of the DIE's children are template arguments. */
974 unsigned int has_template_arguments : 1;
975
976 /* Flag set if fixup_partial_die has been called on this die. */
977 unsigned int fixup_called : 1;
978
979 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
980 unsigned int is_dwz : 1;
981
982 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
983 unsigned int spec_is_dwz : 1;
984
985 /* The name of this DIE. Normally the value of DW_AT_name, but
986 sometimes a default name for unnamed DIEs. */
987 const char *name;
988
989 /* The linkage name, if present. */
990 const char *linkage_name;
991
992 /* The scope to prepend to our children. This is generally
993 allocated on the comp_unit_obstack, so will disappear
994 when this compilation unit leaves the cache. */
995 const char *scope;
996
997 /* Some data associated with the partial DIE. The tag determines
998 which field is live. */
999 union
1000 {
1001 /* The location description associated with this DIE, if any. */
1002 struct dwarf_block *locdesc;
1003 /* The offset of an import, for DW_TAG_imported_unit. */
1004 sect_offset offset;
1005 } d;
1006
1007 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1008 CORE_ADDR lowpc;
1009 CORE_ADDR highpc;
1010
1011 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1012 DW_AT_sibling, if any. */
1013 /* NOTE: This member isn't strictly necessary, read_partial_die could
1014 return DW_AT_sibling values to its caller load_partial_dies. */
1015 const gdb_byte *sibling;
1016
1017 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1018 DW_AT_specification (or DW_AT_abstract_origin or
1019 DW_AT_extension). */
1020 sect_offset spec_offset;
1021
1022 /* Pointers to this DIE's parent, first child, and next sibling,
1023 if any. */
1024 struct partial_die_info *die_parent, *die_child, *die_sibling;
1025 };
1026
1027 /* This data structure holds the information of an abbrev. */
1028 struct abbrev_info
1029 {
1030 unsigned int number; /* number identifying abbrev */
1031 enum dwarf_tag tag; /* dwarf tag */
1032 unsigned short has_children; /* boolean */
1033 unsigned short num_attrs; /* number of attributes */
1034 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1035 struct abbrev_info *next; /* next in chain */
1036 };
1037
1038 struct attr_abbrev
1039 {
1040 ENUM_BITFIELD(dwarf_attribute) name : 16;
1041 ENUM_BITFIELD(dwarf_form) form : 16;
1042 };
1043
1044 /* Size of abbrev_table.abbrev_hash_table. */
1045 #define ABBREV_HASH_SIZE 121
1046
1047 /* Top level data structure to contain an abbreviation table. */
1048
1049 struct abbrev_table
1050 {
1051 /* Where the abbrev table came from.
1052 This is used as a sanity check when the table is used. */
1053 sect_offset offset;
1054
1055 /* Storage for the abbrev table. */
1056 struct obstack abbrev_obstack;
1057
1058 /* Hash table of abbrevs.
1059 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1060 It could be statically allocated, but the previous code didn't so we
1061 don't either. */
1062 struct abbrev_info **abbrevs;
1063 };
1064
1065 /* Attributes have a name and a value. */
1066 struct attribute
1067 {
1068 ENUM_BITFIELD(dwarf_attribute) name : 16;
1069 ENUM_BITFIELD(dwarf_form) form : 15;
1070
1071 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1072 field should be in u.str (existing only for DW_STRING) but it is kept
1073 here for better struct attribute alignment. */
1074 unsigned int string_is_canonical : 1;
1075
1076 union
1077 {
1078 const char *str;
1079 struct dwarf_block *blk;
1080 ULONGEST unsnd;
1081 LONGEST snd;
1082 CORE_ADDR addr;
1083 ULONGEST signature;
1084 }
1085 u;
1086 };
1087
1088 /* This data structure holds a complete die structure. */
1089 struct die_info
1090 {
1091 /* DWARF-2 tag for this DIE. */
1092 ENUM_BITFIELD(dwarf_tag) tag : 16;
1093
1094 /* Number of attributes */
1095 unsigned char num_attrs;
1096
1097 /* True if we're presently building the full type name for the
1098 type derived from this DIE. */
1099 unsigned char building_fullname : 1;
1100
1101 /* Abbrev number */
1102 unsigned int abbrev;
1103
1104 /* Offset in .debug_info or .debug_types section. */
1105 sect_offset offset;
1106
1107 /* The dies in a compilation unit form an n-ary tree. PARENT
1108 points to this die's parent; CHILD points to the first child of
1109 this node; and all the children of a given node are chained
1110 together via their SIBLING fields. */
1111 struct die_info *child; /* Its first child, if any. */
1112 struct die_info *sibling; /* Its next sibling, if any. */
1113 struct die_info *parent; /* Its parent, if any. */
1114
1115 /* An array of attributes, with NUM_ATTRS elements. There may be
1116 zero, but it's not common and zero-sized arrays are not
1117 sufficiently portable C. */
1118 struct attribute attrs[1];
1119 };
1120
1121 /* Get at parts of an attribute structure. */
1122
1123 #define DW_STRING(attr) ((attr)->u.str)
1124 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1125 #define DW_UNSND(attr) ((attr)->u.unsnd)
1126 #define DW_BLOCK(attr) ((attr)->u.blk)
1127 #define DW_SND(attr) ((attr)->u.snd)
1128 #define DW_ADDR(attr) ((attr)->u.addr)
1129 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1130
1131 /* Blocks are a bunch of untyped bytes. */
1132 struct dwarf_block
1133 {
1134 size_t size;
1135
1136 /* Valid only if SIZE is not zero. */
1137 const gdb_byte *data;
1138 };
1139
1140 #ifndef ATTR_ALLOC_CHUNK
1141 #define ATTR_ALLOC_CHUNK 4
1142 #endif
1143
1144 /* Allocate fields for structs, unions and enums in this size. */
1145 #ifndef DW_FIELD_ALLOC_CHUNK
1146 #define DW_FIELD_ALLOC_CHUNK 4
1147 #endif
1148
1149 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1150 but this would require a corresponding change in unpack_field_as_long
1151 and friends. */
1152 static int bits_per_byte = 8;
1153
1154 /* The routines that read and process dies for a C struct or C++ class
1155 pass lists of data member fields and lists of member function fields
1156 in an instance of a field_info structure, as defined below. */
1157 struct field_info
1158 {
1159 /* List of data member and baseclasses fields. */
1160 struct nextfield
1161 {
1162 struct nextfield *next;
1163 int accessibility;
1164 int virtuality;
1165 struct field field;
1166 }
1167 *fields, *baseclasses;
1168
1169 /* Number of fields (including baseclasses). */
1170 int nfields;
1171
1172 /* Number of baseclasses. */
1173 int nbaseclasses;
1174
1175 /* Set if the accesibility of one of the fields is not public. */
1176 int non_public_fields;
1177
1178 /* Member function fields array, entries are allocated in the order they
1179 are encountered in the object file. */
1180 struct nextfnfield
1181 {
1182 struct nextfnfield *next;
1183 struct fn_field fnfield;
1184 }
1185 *fnfields;
1186
1187 /* Member function fieldlist array, contains name of possibly overloaded
1188 member function, number of overloaded member functions and a pointer
1189 to the head of the member function field chain. */
1190 struct fnfieldlist
1191 {
1192 const char *name;
1193 int length;
1194 struct nextfnfield *head;
1195 }
1196 *fnfieldlists;
1197
1198 /* Number of entries in the fnfieldlists array. */
1199 int nfnfields;
1200
1201 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1202 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1203 struct typedef_field_list
1204 {
1205 struct typedef_field field;
1206 struct typedef_field_list *next;
1207 }
1208 *typedef_field_list;
1209 unsigned typedef_field_list_count;
1210 };
1211
1212 /* One item on the queue of compilation units to read in full symbols
1213 for. */
1214 struct dwarf2_queue_item
1215 {
1216 struct dwarf2_per_cu_data *per_cu;
1217 enum language pretend_language;
1218 struct dwarf2_queue_item *next;
1219 };
1220
1221 /* The current queue. */
1222 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1223
1224 /* Loaded secondary compilation units are kept in memory until they
1225 have not been referenced for the processing of this many
1226 compilation units. Set this to zero to disable caching. Cache
1227 sizes of up to at least twenty will improve startup time for
1228 typical inter-CU-reference binaries, at an obvious memory cost. */
1229 static int dwarf2_max_cache_age = 5;
1230 static void
1231 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1232 struct cmd_list_element *c, const char *value)
1233 {
1234 fprintf_filtered (file, _("The upper bound on the age of cached "
1235 "dwarf2 compilation units is %s.\n"),
1236 value);
1237 }
1238 \f
1239 /* local function prototypes */
1240
1241 static void dwarf2_locate_sections (bfd *, asection *, void *);
1242
1243 static void dwarf2_find_base_address (struct die_info *die,
1244 struct dwarf2_cu *cu);
1245
1246 static struct partial_symtab *create_partial_symtab
1247 (struct dwarf2_per_cu_data *per_cu, const char *name);
1248
1249 static void dwarf2_build_psymtabs_hard (struct objfile *);
1250
1251 static void scan_partial_symbols (struct partial_die_info *,
1252 CORE_ADDR *, CORE_ADDR *,
1253 int, struct dwarf2_cu *);
1254
1255 static void add_partial_symbol (struct partial_die_info *,
1256 struct dwarf2_cu *);
1257
1258 static void add_partial_namespace (struct partial_die_info *pdi,
1259 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1260 int need_pc, struct dwarf2_cu *cu);
1261
1262 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1263 CORE_ADDR *highpc, int need_pc,
1264 struct dwarf2_cu *cu);
1265
1266 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1267 struct dwarf2_cu *cu);
1268
1269 static void add_partial_subprogram (struct partial_die_info *pdi,
1270 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1271 int need_pc, struct dwarf2_cu *cu);
1272
1273 static void dwarf2_read_symtab (struct partial_symtab *,
1274 struct objfile *);
1275
1276 static void psymtab_to_symtab_1 (struct partial_symtab *);
1277
1278 static struct abbrev_info *abbrev_table_lookup_abbrev
1279 (const struct abbrev_table *, unsigned int);
1280
1281 static struct abbrev_table *abbrev_table_read_table
1282 (struct dwarf2_section_info *, sect_offset);
1283
1284 static void abbrev_table_free (struct abbrev_table *);
1285
1286 static void abbrev_table_free_cleanup (void *);
1287
1288 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1289 struct dwarf2_section_info *);
1290
1291 static void dwarf2_free_abbrev_table (void *);
1292
1293 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1294
1295 static struct partial_die_info *load_partial_dies
1296 (const struct die_reader_specs *, const gdb_byte *, int);
1297
1298 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1299 struct partial_die_info *,
1300 struct abbrev_info *,
1301 unsigned int,
1302 const gdb_byte *);
1303
1304 static struct partial_die_info *find_partial_die (sect_offset, int,
1305 struct dwarf2_cu *);
1306
1307 static void fixup_partial_die (struct partial_die_info *,
1308 struct dwarf2_cu *);
1309
1310 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1311 struct attribute *, struct attr_abbrev *,
1312 const gdb_byte *);
1313
1314 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1315
1316 static int read_1_signed_byte (bfd *, const gdb_byte *);
1317
1318 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1319
1320 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1321
1322 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1323
1324 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1325 unsigned int *);
1326
1327 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1328
1329 static LONGEST read_checked_initial_length_and_offset
1330 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1331 unsigned int *, unsigned int *);
1332
1333 static LONGEST read_offset (bfd *, const gdb_byte *,
1334 const struct comp_unit_head *,
1335 unsigned int *);
1336
1337 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1338
1339 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1340 sect_offset);
1341
1342 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1343
1344 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1345
1346 static const char *read_indirect_string (bfd *, const gdb_byte *,
1347 const struct comp_unit_head *,
1348 unsigned int *);
1349
1350 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1351
1352 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1353
1354 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1355
1356 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1357 const gdb_byte *,
1358 unsigned int *);
1359
1360 static const char *read_str_index (const struct die_reader_specs *reader,
1361 struct dwarf2_cu *cu, ULONGEST str_index);
1362
1363 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1364
1365 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1366 struct dwarf2_cu *);
1367
1368 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1369 unsigned int);
1370
1371 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1372 struct dwarf2_cu *cu);
1373
1374 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1375
1376 static struct die_info *die_specification (struct die_info *die,
1377 struct dwarf2_cu **);
1378
1379 static void free_line_header (struct line_header *lh);
1380
1381 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1382 struct dwarf2_cu *cu);
1383
1384 static void dwarf_decode_lines (struct line_header *, const char *,
1385 struct dwarf2_cu *, struct partial_symtab *,
1386 int);
1387
1388 static void dwarf2_start_subfile (const char *, const char *, const char *);
1389
1390 static void dwarf2_start_symtab (struct dwarf2_cu *,
1391 const char *, const char *, CORE_ADDR);
1392
1393 static struct symbol *new_symbol (struct die_info *, struct type *,
1394 struct dwarf2_cu *);
1395
1396 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1397 struct dwarf2_cu *, struct symbol *);
1398
1399 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1400 struct dwarf2_cu *);
1401
1402 static void dwarf2_const_value_attr (const struct attribute *attr,
1403 struct type *type,
1404 const char *name,
1405 struct obstack *obstack,
1406 struct dwarf2_cu *cu, LONGEST *value,
1407 const gdb_byte **bytes,
1408 struct dwarf2_locexpr_baton **baton);
1409
1410 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1411
1412 static int need_gnat_info (struct dwarf2_cu *);
1413
1414 static struct type *die_descriptive_type (struct die_info *,
1415 struct dwarf2_cu *);
1416
1417 static void set_descriptive_type (struct type *, struct die_info *,
1418 struct dwarf2_cu *);
1419
1420 static struct type *die_containing_type (struct die_info *,
1421 struct dwarf2_cu *);
1422
1423 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1424 struct dwarf2_cu *);
1425
1426 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1427
1428 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1429
1430 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1431
1432 static char *typename_concat (struct obstack *obs, const char *prefix,
1433 const char *suffix, int physname,
1434 struct dwarf2_cu *cu);
1435
1436 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1437
1438 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1439
1440 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1441
1442 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1443
1444 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1445
1446 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1447 struct dwarf2_cu *, struct partial_symtab *);
1448
1449 static int dwarf2_get_pc_bounds (struct die_info *,
1450 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1451 struct partial_symtab *);
1452
1453 static void get_scope_pc_bounds (struct die_info *,
1454 CORE_ADDR *, CORE_ADDR *,
1455 struct dwarf2_cu *);
1456
1457 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1458 CORE_ADDR, struct dwarf2_cu *);
1459
1460 static void dwarf2_add_field (struct field_info *, struct die_info *,
1461 struct dwarf2_cu *);
1462
1463 static void dwarf2_attach_fields_to_type (struct field_info *,
1464 struct type *, struct dwarf2_cu *);
1465
1466 static void dwarf2_add_member_fn (struct field_info *,
1467 struct die_info *, struct type *,
1468 struct dwarf2_cu *);
1469
1470 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1471 struct type *,
1472 struct dwarf2_cu *);
1473
1474 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1475
1476 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1477
1478 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1479
1480 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1481
1482 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1483
1484 static struct type *read_module_type (struct die_info *die,
1485 struct dwarf2_cu *cu);
1486
1487 static const char *namespace_name (struct die_info *die,
1488 int *is_anonymous, struct dwarf2_cu *);
1489
1490 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1491
1492 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1493
1494 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1495 struct dwarf2_cu *);
1496
1497 static struct die_info *read_die_and_siblings_1
1498 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1499 struct die_info *);
1500
1501 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1502 const gdb_byte *info_ptr,
1503 const gdb_byte **new_info_ptr,
1504 struct die_info *parent);
1505
1506 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1507 struct die_info **, const gdb_byte *,
1508 int *, int);
1509
1510 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1511 struct die_info **, const gdb_byte *,
1512 int *);
1513
1514 static void process_die (struct die_info *, struct dwarf2_cu *);
1515
1516 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1517 struct obstack *);
1518
1519 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1520
1521 static const char *dwarf2_full_name (const char *name,
1522 struct die_info *die,
1523 struct dwarf2_cu *cu);
1524
1525 static const char *dwarf2_physname (const char *name, struct die_info *die,
1526 struct dwarf2_cu *cu);
1527
1528 static struct die_info *dwarf2_extension (struct die_info *die,
1529 struct dwarf2_cu **);
1530
1531 static const char *dwarf_tag_name (unsigned int);
1532
1533 static const char *dwarf_attr_name (unsigned int);
1534
1535 static const char *dwarf_form_name (unsigned int);
1536
1537 static char *dwarf_bool_name (unsigned int);
1538
1539 static const char *dwarf_type_encoding_name (unsigned int);
1540
1541 static struct die_info *sibling_die (struct die_info *);
1542
1543 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1544
1545 static void dump_die_for_error (struct die_info *);
1546
1547 static void dump_die_1 (struct ui_file *, int level, int max_level,
1548 struct die_info *);
1549
1550 /*static*/ void dump_die (struct die_info *, int max_level);
1551
1552 static void store_in_ref_table (struct die_info *,
1553 struct dwarf2_cu *);
1554
1555 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1556
1557 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1558
1559 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1560 const struct attribute *,
1561 struct dwarf2_cu **);
1562
1563 static struct die_info *follow_die_ref (struct die_info *,
1564 const struct attribute *,
1565 struct dwarf2_cu **);
1566
1567 static struct die_info *follow_die_sig (struct die_info *,
1568 const struct attribute *,
1569 struct dwarf2_cu **);
1570
1571 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1572 struct dwarf2_cu *);
1573
1574 static struct type *get_DW_AT_signature_type (struct die_info *,
1575 const struct attribute *,
1576 struct dwarf2_cu *);
1577
1578 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1579
1580 static void read_signatured_type (struct signatured_type *);
1581
1582 static struct type_unit_group *get_type_unit_group
1583 (struct dwarf2_cu *, const struct attribute *);
1584
1585 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1586
1587 /* memory allocation interface */
1588
1589 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1590
1591 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1592
1593 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1594 const char *, int);
1595
1596 static int attr_form_is_block (const struct attribute *);
1597
1598 static int attr_form_is_section_offset (const struct attribute *);
1599
1600 static int attr_form_is_constant (const struct attribute *);
1601
1602 static int attr_form_is_ref (const struct attribute *);
1603
1604 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1605 struct dwarf2_loclist_baton *baton,
1606 const struct attribute *attr);
1607
1608 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1609 struct symbol *sym,
1610 struct dwarf2_cu *cu,
1611 int is_block);
1612
1613 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1614 const gdb_byte *info_ptr,
1615 struct abbrev_info *abbrev);
1616
1617 static void free_stack_comp_unit (void *);
1618
1619 static hashval_t partial_die_hash (const void *item);
1620
1621 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1622
1623 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1624 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1625
1626 static void init_one_comp_unit (struct dwarf2_cu *cu,
1627 struct dwarf2_per_cu_data *per_cu);
1628
1629 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1630 struct die_info *comp_unit_die,
1631 enum language pretend_language);
1632
1633 static void free_heap_comp_unit (void *);
1634
1635 static void free_cached_comp_units (void *);
1636
1637 static void age_cached_comp_units (void);
1638
1639 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1640
1641 static struct type *set_die_type (struct die_info *, struct type *,
1642 struct dwarf2_cu *);
1643
1644 static void create_all_comp_units (struct objfile *);
1645
1646 static int create_all_type_units (struct objfile *);
1647
1648 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1649 enum language);
1650
1651 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1652 enum language);
1653
1654 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1655 enum language);
1656
1657 static void dwarf2_add_dependence (struct dwarf2_cu *,
1658 struct dwarf2_per_cu_data *);
1659
1660 static void dwarf2_mark (struct dwarf2_cu *);
1661
1662 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1663
1664 static struct type *get_die_type_at_offset (sect_offset,
1665 struct dwarf2_per_cu_data *);
1666
1667 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1668
1669 static void dwarf2_release_queue (void *dummy);
1670
1671 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1672 enum language pretend_language);
1673
1674 static void process_queue (void);
1675
1676 static void find_file_and_directory (struct die_info *die,
1677 struct dwarf2_cu *cu,
1678 const char **name, const char **comp_dir);
1679
1680 static char *file_full_name (int file, struct line_header *lh,
1681 const char *comp_dir);
1682
1683 static const gdb_byte *read_and_check_comp_unit_head
1684 (struct comp_unit_head *header,
1685 struct dwarf2_section_info *section,
1686 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1687 int is_debug_types_section);
1688
1689 static void init_cutu_and_read_dies
1690 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1691 int use_existing_cu, int keep,
1692 die_reader_func_ftype *die_reader_func, void *data);
1693
1694 static void init_cutu_and_read_dies_simple
1695 (struct dwarf2_per_cu_data *this_cu,
1696 die_reader_func_ftype *die_reader_func, void *data);
1697
1698 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1699
1700 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1701
1702 static struct dwo_unit *lookup_dwo_in_dwp
1703 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1704 const char *comp_dir, ULONGEST signature, int is_debug_types);
1705
1706 static struct dwp_file *get_dwp_file (void);
1707
1708 static struct dwo_unit *lookup_dwo_comp_unit
1709 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1710
1711 static struct dwo_unit *lookup_dwo_type_unit
1712 (struct signatured_type *, const char *, const char *);
1713
1714 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1715
1716 static void free_dwo_file_cleanup (void *);
1717
1718 static void process_cu_includes (void);
1719
1720 static void check_producer (struct dwarf2_cu *cu);
1721 \f
1722 /* Various complaints about symbol reading that don't abort the process. */
1723
1724 static void
1725 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1726 {
1727 complaint (&symfile_complaints,
1728 _("statement list doesn't fit in .debug_line section"));
1729 }
1730
1731 static void
1732 dwarf2_debug_line_missing_file_complaint (void)
1733 {
1734 complaint (&symfile_complaints,
1735 _(".debug_line section has line data without a file"));
1736 }
1737
1738 static void
1739 dwarf2_debug_line_missing_end_sequence_complaint (void)
1740 {
1741 complaint (&symfile_complaints,
1742 _(".debug_line section has line "
1743 "program sequence without an end"));
1744 }
1745
1746 static void
1747 dwarf2_complex_location_expr_complaint (void)
1748 {
1749 complaint (&symfile_complaints, _("location expression too complex"));
1750 }
1751
1752 static void
1753 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1754 int arg3)
1755 {
1756 complaint (&symfile_complaints,
1757 _("const value length mismatch for '%s', got %d, expected %d"),
1758 arg1, arg2, arg3);
1759 }
1760
1761 static void
1762 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1763 {
1764 complaint (&symfile_complaints,
1765 _("debug info runs off end of %s section"
1766 " [in module %s]"),
1767 section->asection->name,
1768 bfd_get_filename (section->asection->owner));
1769 }
1770
1771 static void
1772 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1773 {
1774 complaint (&symfile_complaints,
1775 _("macro debug info contains a "
1776 "malformed macro definition:\n`%s'"),
1777 arg1);
1778 }
1779
1780 static void
1781 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1782 {
1783 complaint (&symfile_complaints,
1784 _("invalid attribute class or form for '%s' in '%s'"),
1785 arg1, arg2);
1786 }
1787 \f
1788 #if WORDS_BIGENDIAN
1789
1790 /* Convert VALUE between big- and little-endian. */
1791 static offset_type
1792 byte_swap (offset_type value)
1793 {
1794 offset_type result;
1795
1796 result = (value & 0xff) << 24;
1797 result |= (value & 0xff00) << 8;
1798 result |= (value & 0xff0000) >> 8;
1799 result |= (value & 0xff000000) >> 24;
1800 return result;
1801 }
1802
1803 #define MAYBE_SWAP(V) byte_swap (V)
1804
1805 #else
1806 #define MAYBE_SWAP(V) (V)
1807 #endif /* WORDS_BIGENDIAN */
1808
1809 /* The suffix for an index file. */
1810 #define INDEX_SUFFIX ".gdb-index"
1811
1812 /* Try to locate the sections we need for DWARF 2 debugging
1813 information and return true if we have enough to do something.
1814 NAMES points to the dwarf2 section names, or is NULL if the standard
1815 ELF names are used. */
1816
1817 int
1818 dwarf2_has_info (struct objfile *objfile,
1819 const struct dwarf2_debug_sections *names)
1820 {
1821 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1822 if (!dwarf2_per_objfile)
1823 {
1824 /* Initialize per-objfile state. */
1825 struct dwarf2_per_objfile *data
1826 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1827
1828 memset (data, 0, sizeof (*data));
1829 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1830 dwarf2_per_objfile = data;
1831
1832 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1833 (void *) names);
1834 dwarf2_per_objfile->objfile = objfile;
1835 }
1836 return (dwarf2_per_objfile->info.asection != NULL
1837 && dwarf2_per_objfile->abbrev.asection != NULL);
1838 }
1839
1840 /* When loading sections, we look either for uncompressed section or for
1841 compressed section names. */
1842
1843 static int
1844 section_is_p (const char *section_name,
1845 const struct dwarf2_section_names *names)
1846 {
1847 if (names->normal != NULL
1848 && strcmp (section_name, names->normal) == 0)
1849 return 1;
1850 if (names->compressed != NULL
1851 && strcmp (section_name, names->compressed) == 0)
1852 return 1;
1853 return 0;
1854 }
1855
1856 /* This function is mapped across the sections and remembers the
1857 offset and size of each of the debugging sections we are interested
1858 in. */
1859
1860 static void
1861 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1862 {
1863 const struct dwarf2_debug_sections *names;
1864 flagword aflag = bfd_get_section_flags (abfd, sectp);
1865
1866 if (vnames == NULL)
1867 names = &dwarf2_elf_names;
1868 else
1869 names = (const struct dwarf2_debug_sections *) vnames;
1870
1871 if ((aflag & SEC_HAS_CONTENTS) == 0)
1872 {
1873 }
1874 else if (section_is_p (sectp->name, &names->info))
1875 {
1876 dwarf2_per_objfile->info.asection = sectp;
1877 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1878 }
1879 else if (section_is_p (sectp->name, &names->abbrev))
1880 {
1881 dwarf2_per_objfile->abbrev.asection = sectp;
1882 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1883 }
1884 else if (section_is_p (sectp->name, &names->line))
1885 {
1886 dwarf2_per_objfile->line.asection = sectp;
1887 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1888 }
1889 else if (section_is_p (sectp->name, &names->loc))
1890 {
1891 dwarf2_per_objfile->loc.asection = sectp;
1892 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1893 }
1894 else if (section_is_p (sectp->name, &names->macinfo))
1895 {
1896 dwarf2_per_objfile->macinfo.asection = sectp;
1897 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1898 }
1899 else if (section_is_p (sectp->name, &names->macro))
1900 {
1901 dwarf2_per_objfile->macro.asection = sectp;
1902 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1903 }
1904 else if (section_is_p (sectp->name, &names->str))
1905 {
1906 dwarf2_per_objfile->str.asection = sectp;
1907 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1908 }
1909 else if (section_is_p (sectp->name, &names->addr))
1910 {
1911 dwarf2_per_objfile->addr.asection = sectp;
1912 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1913 }
1914 else if (section_is_p (sectp->name, &names->frame))
1915 {
1916 dwarf2_per_objfile->frame.asection = sectp;
1917 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1918 }
1919 else if (section_is_p (sectp->name, &names->eh_frame))
1920 {
1921 dwarf2_per_objfile->eh_frame.asection = sectp;
1922 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1923 }
1924 else if (section_is_p (sectp->name, &names->ranges))
1925 {
1926 dwarf2_per_objfile->ranges.asection = sectp;
1927 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1928 }
1929 else if (section_is_p (sectp->name, &names->types))
1930 {
1931 struct dwarf2_section_info type_section;
1932
1933 memset (&type_section, 0, sizeof (type_section));
1934 type_section.asection = sectp;
1935 type_section.size = bfd_get_section_size (sectp);
1936
1937 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1938 &type_section);
1939 }
1940 else if (section_is_p (sectp->name, &names->gdb_index))
1941 {
1942 dwarf2_per_objfile->gdb_index.asection = sectp;
1943 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1944 }
1945
1946 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1947 && bfd_section_vma (abfd, sectp) == 0)
1948 dwarf2_per_objfile->has_section_at_zero = 1;
1949 }
1950
1951 /* A helper function that decides whether a section is empty,
1952 or not present. */
1953
1954 static int
1955 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1956 {
1957 return info->asection == NULL || info->size == 0;
1958 }
1959
1960 /* Read the contents of the section INFO.
1961 OBJFILE is the main object file, but not necessarily the file where
1962 the section comes from. E.g., for DWO files INFO->asection->owner
1963 is the bfd of the DWO file.
1964 If the section is compressed, uncompress it before returning. */
1965
1966 static void
1967 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1968 {
1969 asection *sectp = info->asection;
1970 bfd *abfd;
1971 gdb_byte *buf, *retbuf;
1972 unsigned char header[4];
1973
1974 if (info->readin)
1975 return;
1976 info->buffer = NULL;
1977 info->readin = 1;
1978
1979 if (dwarf2_section_empty_p (info))
1980 return;
1981
1982 abfd = sectp->owner;
1983
1984 /* If the section has relocations, we must read it ourselves.
1985 Otherwise we attach it to the BFD. */
1986 if ((sectp->flags & SEC_RELOC) == 0)
1987 {
1988 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1989 return;
1990 }
1991
1992 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1993 info->buffer = buf;
1994
1995 /* When debugging .o files, we may need to apply relocations; see
1996 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1997 We never compress sections in .o files, so we only need to
1998 try this when the section is not compressed. */
1999 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2000 if (retbuf != NULL)
2001 {
2002 info->buffer = retbuf;
2003 return;
2004 }
2005
2006 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2007 || bfd_bread (buf, info->size, abfd) != info->size)
2008 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2009 bfd_get_filename (abfd));
2010 }
2011
2012 /* A helper function that returns the size of a section in a safe way.
2013 If you are positive that the section has been read before using the
2014 size, then it is safe to refer to the dwarf2_section_info object's
2015 "size" field directly. In other cases, you must call this
2016 function, because for compressed sections the size field is not set
2017 correctly until the section has been read. */
2018
2019 static bfd_size_type
2020 dwarf2_section_size (struct objfile *objfile,
2021 struct dwarf2_section_info *info)
2022 {
2023 if (!info->readin)
2024 dwarf2_read_section (objfile, info);
2025 return info->size;
2026 }
2027
2028 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2029 SECTION_NAME. */
2030
2031 void
2032 dwarf2_get_section_info (struct objfile *objfile,
2033 enum dwarf2_section_enum sect,
2034 asection **sectp, const gdb_byte **bufp,
2035 bfd_size_type *sizep)
2036 {
2037 struct dwarf2_per_objfile *data
2038 = objfile_data (objfile, dwarf2_objfile_data_key);
2039 struct dwarf2_section_info *info;
2040
2041 /* We may see an objfile without any DWARF, in which case we just
2042 return nothing. */
2043 if (data == NULL)
2044 {
2045 *sectp = NULL;
2046 *bufp = NULL;
2047 *sizep = 0;
2048 return;
2049 }
2050 switch (sect)
2051 {
2052 case DWARF2_DEBUG_FRAME:
2053 info = &data->frame;
2054 break;
2055 case DWARF2_EH_FRAME:
2056 info = &data->eh_frame;
2057 break;
2058 default:
2059 gdb_assert_not_reached ("unexpected section");
2060 }
2061
2062 dwarf2_read_section (objfile, info);
2063
2064 *sectp = info->asection;
2065 *bufp = info->buffer;
2066 *sizep = info->size;
2067 }
2068
2069 /* A helper function to find the sections for a .dwz file. */
2070
2071 static void
2072 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2073 {
2074 struct dwz_file *dwz_file = arg;
2075
2076 /* Note that we only support the standard ELF names, because .dwz
2077 is ELF-only (at the time of writing). */
2078 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2079 {
2080 dwz_file->abbrev.asection = sectp;
2081 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2082 }
2083 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2084 {
2085 dwz_file->info.asection = sectp;
2086 dwz_file->info.size = bfd_get_section_size (sectp);
2087 }
2088 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2089 {
2090 dwz_file->str.asection = sectp;
2091 dwz_file->str.size = bfd_get_section_size (sectp);
2092 }
2093 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2094 {
2095 dwz_file->line.asection = sectp;
2096 dwz_file->line.size = bfd_get_section_size (sectp);
2097 }
2098 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2099 {
2100 dwz_file->macro.asection = sectp;
2101 dwz_file->macro.size = bfd_get_section_size (sectp);
2102 }
2103 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2104 {
2105 dwz_file->gdb_index.asection = sectp;
2106 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2107 }
2108 }
2109
2110 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2111 there is no .gnu_debugaltlink section in the file. Error if there
2112 is such a section but the file cannot be found. */
2113
2114 static struct dwz_file *
2115 dwarf2_get_dwz_file (void)
2116 {
2117 bfd *dwz_bfd;
2118 char *data;
2119 struct cleanup *cleanup;
2120 const char *filename;
2121 struct dwz_file *result;
2122 unsigned long buildid;
2123
2124 if (dwarf2_per_objfile->dwz_file != NULL)
2125 return dwarf2_per_objfile->dwz_file;
2126
2127 bfd_set_error (bfd_error_no_error);
2128 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2129 &buildid);
2130 if (data == NULL)
2131 {
2132 if (bfd_get_error () == bfd_error_no_error)
2133 return NULL;
2134 error (_("could not read '.gnu_debugaltlink' section: %s"),
2135 bfd_errmsg (bfd_get_error ()));
2136 }
2137 cleanup = make_cleanup (xfree, data);
2138
2139 filename = (const char *) data;
2140 if (!IS_ABSOLUTE_PATH (filename))
2141 {
2142 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2143 char *rel;
2144
2145 make_cleanup (xfree, abs);
2146 abs = ldirname (abs);
2147 make_cleanup (xfree, abs);
2148
2149 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2150 make_cleanup (xfree, rel);
2151 filename = rel;
2152 }
2153
2154 /* The format is just a NUL-terminated file name, followed by the
2155 build-id. For now, though, we ignore the build-id. */
2156 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2157 if (dwz_bfd == NULL)
2158 error (_("could not read '%s': %s"), filename,
2159 bfd_errmsg (bfd_get_error ()));
2160
2161 if (!bfd_check_format (dwz_bfd, bfd_object))
2162 {
2163 gdb_bfd_unref (dwz_bfd);
2164 error (_("file '%s' was not usable: %s"), filename,
2165 bfd_errmsg (bfd_get_error ()));
2166 }
2167
2168 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2169 struct dwz_file);
2170 result->dwz_bfd = dwz_bfd;
2171
2172 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2173
2174 do_cleanups (cleanup);
2175
2176 dwarf2_per_objfile->dwz_file = result;
2177 return result;
2178 }
2179 \f
2180 /* DWARF quick_symbols_functions support. */
2181
2182 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2183 unique line tables, so we maintain a separate table of all .debug_line
2184 derived entries to support the sharing.
2185 All the quick functions need is the list of file names. We discard the
2186 line_header when we're done and don't need to record it here. */
2187 struct quick_file_names
2188 {
2189 /* The data used to construct the hash key. */
2190 struct stmt_list_hash hash;
2191
2192 /* The number of entries in file_names, real_names. */
2193 unsigned int num_file_names;
2194
2195 /* The file names from the line table, after being run through
2196 file_full_name. */
2197 const char **file_names;
2198
2199 /* The file names from the line table after being run through
2200 gdb_realpath. These are computed lazily. */
2201 const char **real_names;
2202 };
2203
2204 /* When using the index (and thus not using psymtabs), each CU has an
2205 object of this type. This is used to hold information needed by
2206 the various "quick" methods. */
2207 struct dwarf2_per_cu_quick_data
2208 {
2209 /* The file table. This can be NULL if there was no file table
2210 or it's currently not read in.
2211 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2212 struct quick_file_names *file_names;
2213
2214 /* The corresponding symbol table. This is NULL if symbols for this
2215 CU have not yet been read. */
2216 struct symtab *symtab;
2217
2218 /* A temporary mark bit used when iterating over all CUs in
2219 expand_symtabs_matching. */
2220 unsigned int mark : 1;
2221
2222 /* True if we've tried to read the file table and found there isn't one.
2223 There will be no point in trying to read it again next time. */
2224 unsigned int no_file_data : 1;
2225 };
2226
2227 /* Utility hash function for a stmt_list_hash. */
2228
2229 static hashval_t
2230 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2231 {
2232 hashval_t v = 0;
2233
2234 if (stmt_list_hash->dwo_unit != NULL)
2235 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2236 v += stmt_list_hash->line_offset.sect_off;
2237 return v;
2238 }
2239
2240 /* Utility equality function for a stmt_list_hash. */
2241
2242 static int
2243 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2244 const struct stmt_list_hash *rhs)
2245 {
2246 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2247 return 0;
2248 if (lhs->dwo_unit != NULL
2249 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2250 return 0;
2251
2252 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2253 }
2254
2255 /* Hash function for a quick_file_names. */
2256
2257 static hashval_t
2258 hash_file_name_entry (const void *e)
2259 {
2260 const struct quick_file_names *file_data = e;
2261
2262 return hash_stmt_list_entry (&file_data->hash);
2263 }
2264
2265 /* Equality function for a quick_file_names. */
2266
2267 static int
2268 eq_file_name_entry (const void *a, const void *b)
2269 {
2270 const struct quick_file_names *ea = a;
2271 const struct quick_file_names *eb = b;
2272
2273 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2274 }
2275
2276 /* Delete function for a quick_file_names. */
2277
2278 static void
2279 delete_file_name_entry (void *e)
2280 {
2281 struct quick_file_names *file_data = e;
2282 int i;
2283
2284 for (i = 0; i < file_data->num_file_names; ++i)
2285 {
2286 xfree ((void*) file_data->file_names[i]);
2287 if (file_data->real_names)
2288 xfree ((void*) file_data->real_names[i]);
2289 }
2290
2291 /* The space for the struct itself lives on objfile_obstack,
2292 so we don't free it here. */
2293 }
2294
2295 /* Create a quick_file_names hash table. */
2296
2297 static htab_t
2298 create_quick_file_names_table (unsigned int nr_initial_entries)
2299 {
2300 return htab_create_alloc (nr_initial_entries,
2301 hash_file_name_entry, eq_file_name_entry,
2302 delete_file_name_entry, xcalloc, xfree);
2303 }
2304
2305 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2306 have to be created afterwards. You should call age_cached_comp_units after
2307 processing PER_CU->CU. dw2_setup must have been already called. */
2308
2309 static void
2310 load_cu (struct dwarf2_per_cu_data *per_cu)
2311 {
2312 if (per_cu->is_debug_types)
2313 load_full_type_unit (per_cu);
2314 else
2315 load_full_comp_unit (per_cu, language_minimal);
2316
2317 gdb_assert (per_cu->cu != NULL);
2318
2319 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2320 }
2321
2322 /* Read in the symbols for PER_CU. */
2323
2324 static void
2325 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2326 {
2327 struct cleanup *back_to;
2328
2329 /* Skip type_unit_groups, reading the type units they contain
2330 is handled elsewhere. */
2331 if (IS_TYPE_UNIT_GROUP (per_cu))
2332 return;
2333
2334 back_to = make_cleanup (dwarf2_release_queue, NULL);
2335
2336 if (dwarf2_per_objfile->using_index
2337 ? per_cu->v.quick->symtab == NULL
2338 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2339 {
2340 queue_comp_unit (per_cu, language_minimal);
2341 load_cu (per_cu);
2342
2343 /* If we just loaded a CU from a DWO, and we're working with an index
2344 that may badly handle TUs, load all the TUs in that DWO as well.
2345 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2346 if (!per_cu->is_debug_types
2347 && per_cu->cu->dwo_unit != NULL
2348 && dwarf2_per_objfile->index_table != NULL
2349 && dwarf2_per_objfile->index_table->version <= 7
2350 /* DWP files aren't supported yet. */
2351 && get_dwp_file () == NULL)
2352 queue_and_load_all_dwo_tus (per_cu);
2353 }
2354
2355 process_queue ();
2356
2357 /* Age the cache, releasing compilation units that have not
2358 been used recently. */
2359 age_cached_comp_units ();
2360
2361 do_cleanups (back_to);
2362 }
2363
2364 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2365 the objfile from which this CU came. Returns the resulting symbol
2366 table. */
2367
2368 static struct symtab *
2369 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2370 {
2371 gdb_assert (dwarf2_per_objfile->using_index);
2372 if (!per_cu->v.quick->symtab)
2373 {
2374 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2375 increment_reading_symtab ();
2376 dw2_do_instantiate_symtab (per_cu);
2377 process_cu_includes ();
2378 do_cleanups (back_to);
2379 }
2380 return per_cu->v.quick->symtab;
2381 }
2382
2383 /* Return the CU given its index.
2384
2385 This is intended for loops like:
2386
2387 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2388 + dwarf2_per_objfile->n_type_units); ++i)
2389 {
2390 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2391
2392 ...;
2393 }
2394 */
2395
2396 static struct dwarf2_per_cu_data *
2397 dw2_get_cu (int index)
2398 {
2399 if (index >= dwarf2_per_objfile->n_comp_units)
2400 {
2401 index -= dwarf2_per_objfile->n_comp_units;
2402 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2403 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2404 }
2405
2406 return dwarf2_per_objfile->all_comp_units[index];
2407 }
2408
2409 /* Return the primary CU given its index.
2410 The difference between this function and dw2_get_cu is in the handling
2411 of type units (TUs). Here we return the type_unit_group object.
2412
2413 This is intended for loops like:
2414
2415 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2416 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2417 {
2418 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2419
2420 ...;
2421 }
2422 */
2423
2424 static struct dwarf2_per_cu_data *
2425 dw2_get_primary_cu (int index)
2426 {
2427 if (index >= dwarf2_per_objfile->n_comp_units)
2428 {
2429 index -= dwarf2_per_objfile->n_comp_units;
2430 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2431 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2432 }
2433
2434 return dwarf2_per_objfile->all_comp_units[index];
2435 }
2436
2437 /* A helper for create_cus_from_index that handles a given list of
2438 CUs. */
2439
2440 static void
2441 create_cus_from_index_list (struct objfile *objfile,
2442 const gdb_byte *cu_list, offset_type n_elements,
2443 struct dwarf2_section_info *section,
2444 int is_dwz,
2445 int base_offset)
2446 {
2447 offset_type i;
2448
2449 for (i = 0; i < n_elements; i += 2)
2450 {
2451 struct dwarf2_per_cu_data *the_cu;
2452 ULONGEST offset, length;
2453
2454 gdb_static_assert (sizeof (ULONGEST) >= 8);
2455 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2456 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2457 cu_list += 2 * 8;
2458
2459 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2460 struct dwarf2_per_cu_data);
2461 the_cu->offset.sect_off = offset;
2462 the_cu->length = length;
2463 the_cu->objfile = objfile;
2464 the_cu->section = section;
2465 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2466 struct dwarf2_per_cu_quick_data);
2467 the_cu->is_dwz = is_dwz;
2468 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2469 }
2470 }
2471
2472 /* Read the CU list from the mapped index, and use it to create all
2473 the CU objects for this objfile. */
2474
2475 static void
2476 create_cus_from_index (struct objfile *objfile,
2477 const gdb_byte *cu_list, offset_type cu_list_elements,
2478 const gdb_byte *dwz_list, offset_type dwz_elements)
2479 {
2480 struct dwz_file *dwz;
2481
2482 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2483 dwarf2_per_objfile->all_comp_units
2484 = obstack_alloc (&objfile->objfile_obstack,
2485 dwarf2_per_objfile->n_comp_units
2486 * sizeof (struct dwarf2_per_cu_data *));
2487
2488 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2489 &dwarf2_per_objfile->info, 0, 0);
2490
2491 if (dwz_elements == 0)
2492 return;
2493
2494 dwz = dwarf2_get_dwz_file ();
2495 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2496 cu_list_elements / 2);
2497 }
2498
2499 /* Create the signatured type hash table from the index. */
2500
2501 static void
2502 create_signatured_type_table_from_index (struct objfile *objfile,
2503 struct dwarf2_section_info *section,
2504 const gdb_byte *bytes,
2505 offset_type elements)
2506 {
2507 offset_type i;
2508 htab_t sig_types_hash;
2509
2510 dwarf2_per_objfile->n_type_units = elements / 3;
2511 dwarf2_per_objfile->all_type_units
2512 = xmalloc (dwarf2_per_objfile->n_type_units
2513 * sizeof (struct signatured_type *));
2514
2515 sig_types_hash = allocate_signatured_type_table (objfile);
2516
2517 for (i = 0; i < elements; i += 3)
2518 {
2519 struct signatured_type *sig_type;
2520 ULONGEST offset, type_offset_in_tu, signature;
2521 void **slot;
2522
2523 gdb_static_assert (sizeof (ULONGEST) >= 8);
2524 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2525 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2526 BFD_ENDIAN_LITTLE);
2527 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2528 bytes += 3 * 8;
2529
2530 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2531 struct signatured_type);
2532 sig_type->signature = signature;
2533 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2534 sig_type->per_cu.is_debug_types = 1;
2535 sig_type->per_cu.section = section;
2536 sig_type->per_cu.offset.sect_off = offset;
2537 sig_type->per_cu.objfile = objfile;
2538 sig_type->per_cu.v.quick
2539 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2540 struct dwarf2_per_cu_quick_data);
2541
2542 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2543 *slot = sig_type;
2544
2545 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2546 }
2547
2548 dwarf2_per_objfile->signatured_types = sig_types_hash;
2549 }
2550
2551 /* Read the address map data from the mapped index, and use it to
2552 populate the objfile's psymtabs_addrmap. */
2553
2554 static void
2555 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2556 {
2557 const gdb_byte *iter, *end;
2558 struct obstack temp_obstack;
2559 struct addrmap *mutable_map;
2560 struct cleanup *cleanup;
2561 CORE_ADDR baseaddr;
2562
2563 obstack_init (&temp_obstack);
2564 cleanup = make_cleanup_obstack_free (&temp_obstack);
2565 mutable_map = addrmap_create_mutable (&temp_obstack);
2566
2567 iter = index->address_table;
2568 end = iter + index->address_table_size;
2569
2570 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2571
2572 while (iter < end)
2573 {
2574 ULONGEST hi, lo, cu_index;
2575 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2576 iter += 8;
2577 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2578 iter += 8;
2579 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2580 iter += 4;
2581
2582 if (lo > hi)
2583 {
2584 complaint (&symfile_complaints,
2585 _(".gdb_index address table has invalid range (%s - %s)"),
2586 hex_string (lo), hex_string (hi));
2587 continue;
2588 }
2589
2590 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2591 {
2592 complaint (&symfile_complaints,
2593 _(".gdb_index address table has invalid CU number %u"),
2594 (unsigned) cu_index);
2595 continue;
2596 }
2597
2598 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2599 dw2_get_cu (cu_index));
2600 }
2601
2602 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2603 &objfile->objfile_obstack);
2604 do_cleanups (cleanup);
2605 }
2606
2607 /* The hash function for strings in the mapped index. This is the same as
2608 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2609 implementation. This is necessary because the hash function is tied to the
2610 format of the mapped index file. The hash values do not have to match with
2611 SYMBOL_HASH_NEXT.
2612
2613 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2614
2615 static hashval_t
2616 mapped_index_string_hash (int index_version, const void *p)
2617 {
2618 const unsigned char *str = (const unsigned char *) p;
2619 hashval_t r = 0;
2620 unsigned char c;
2621
2622 while ((c = *str++) != 0)
2623 {
2624 if (index_version >= 5)
2625 c = tolower (c);
2626 r = r * 67 + c - 113;
2627 }
2628
2629 return r;
2630 }
2631
2632 /* Find a slot in the mapped index INDEX for the object named NAME.
2633 If NAME is found, set *VEC_OUT to point to the CU vector in the
2634 constant pool and return 1. If NAME cannot be found, return 0. */
2635
2636 static int
2637 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2638 offset_type **vec_out)
2639 {
2640 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2641 offset_type hash;
2642 offset_type slot, step;
2643 int (*cmp) (const char *, const char *);
2644
2645 if (current_language->la_language == language_cplus
2646 || current_language->la_language == language_java
2647 || current_language->la_language == language_fortran)
2648 {
2649 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2650 not contain any. */
2651 const char *paren = strchr (name, '(');
2652
2653 if (paren)
2654 {
2655 char *dup;
2656
2657 dup = xmalloc (paren - name + 1);
2658 memcpy (dup, name, paren - name);
2659 dup[paren - name] = 0;
2660
2661 make_cleanup (xfree, dup);
2662 name = dup;
2663 }
2664 }
2665
2666 /* Index version 4 did not support case insensitive searches. But the
2667 indices for case insensitive languages are built in lowercase, therefore
2668 simulate our NAME being searched is also lowercased. */
2669 hash = mapped_index_string_hash ((index->version == 4
2670 && case_sensitivity == case_sensitive_off
2671 ? 5 : index->version),
2672 name);
2673
2674 slot = hash & (index->symbol_table_slots - 1);
2675 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2676 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2677
2678 for (;;)
2679 {
2680 /* Convert a slot number to an offset into the table. */
2681 offset_type i = 2 * slot;
2682 const char *str;
2683 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2684 {
2685 do_cleanups (back_to);
2686 return 0;
2687 }
2688
2689 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2690 if (!cmp (name, str))
2691 {
2692 *vec_out = (offset_type *) (index->constant_pool
2693 + MAYBE_SWAP (index->symbol_table[i + 1]));
2694 do_cleanups (back_to);
2695 return 1;
2696 }
2697
2698 slot = (slot + step) & (index->symbol_table_slots - 1);
2699 }
2700 }
2701
2702 /* A helper function that reads the .gdb_index from SECTION and fills
2703 in MAP. FILENAME is the name of the file containing the section;
2704 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2705 ok to use deprecated sections.
2706
2707 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2708 out parameters that are filled in with information about the CU and
2709 TU lists in the section.
2710
2711 Returns 1 if all went well, 0 otherwise. */
2712
2713 static int
2714 read_index_from_section (struct objfile *objfile,
2715 const char *filename,
2716 int deprecated_ok,
2717 struct dwarf2_section_info *section,
2718 struct mapped_index *map,
2719 const gdb_byte **cu_list,
2720 offset_type *cu_list_elements,
2721 const gdb_byte **types_list,
2722 offset_type *types_list_elements)
2723 {
2724 const gdb_byte *addr;
2725 offset_type version;
2726 offset_type *metadata;
2727 int i;
2728
2729 if (dwarf2_section_empty_p (section))
2730 return 0;
2731
2732 /* Older elfutils strip versions could keep the section in the main
2733 executable while splitting it for the separate debug info file. */
2734 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2735 return 0;
2736
2737 dwarf2_read_section (objfile, section);
2738
2739 addr = section->buffer;
2740 /* Version check. */
2741 version = MAYBE_SWAP (*(offset_type *) addr);
2742 /* Versions earlier than 3 emitted every copy of a psymbol. This
2743 causes the index to behave very poorly for certain requests. Version 3
2744 contained incomplete addrmap. So, it seems better to just ignore such
2745 indices. */
2746 if (version < 4)
2747 {
2748 static int warning_printed = 0;
2749 if (!warning_printed)
2750 {
2751 warning (_("Skipping obsolete .gdb_index section in %s."),
2752 filename);
2753 warning_printed = 1;
2754 }
2755 return 0;
2756 }
2757 /* Index version 4 uses a different hash function than index version
2758 5 and later.
2759
2760 Versions earlier than 6 did not emit psymbols for inlined
2761 functions. Using these files will cause GDB not to be able to
2762 set breakpoints on inlined functions by name, so we ignore these
2763 indices unless the user has done
2764 "set use-deprecated-index-sections on". */
2765 if (version < 6 && !deprecated_ok)
2766 {
2767 static int warning_printed = 0;
2768 if (!warning_printed)
2769 {
2770 warning (_("\
2771 Skipping deprecated .gdb_index section in %s.\n\
2772 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2773 to use the section anyway."),
2774 filename);
2775 warning_printed = 1;
2776 }
2777 return 0;
2778 }
2779 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2780 of the TU (for symbols coming from TUs). It's just a performance bug, and
2781 we can't distinguish gdb-generated indices from gold-generated ones, so
2782 nothing to do here. */
2783
2784 /* Indexes with higher version than the one supported by GDB may be no
2785 longer backward compatible. */
2786 if (version > 8)
2787 return 0;
2788
2789 map->version = version;
2790 map->total_size = section->size;
2791
2792 metadata = (offset_type *) (addr + sizeof (offset_type));
2793
2794 i = 0;
2795 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2796 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2797 / 8);
2798 ++i;
2799
2800 *types_list = addr + MAYBE_SWAP (metadata[i]);
2801 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2802 - MAYBE_SWAP (metadata[i]))
2803 / 8);
2804 ++i;
2805
2806 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2807 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2808 - MAYBE_SWAP (metadata[i]));
2809 ++i;
2810
2811 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2812 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2813 - MAYBE_SWAP (metadata[i]))
2814 / (2 * sizeof (offset_type)));
2815 ++i;
2816
2817 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2818
2819 return 1;
2820 }
2821
2822
2823 /* Read the index file. If everything went ok, initialize the "quick"
2824 elements of all the CUs and return 1. Otherwise, return 0. */
2825
2826 static int
2827 dwarf2_read_index (struct objfile *objfile)
2828 {
2829 struct mapped_index local_map, *map;
2830 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2831 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2832 struct dwz_file *dwz;
2833
2834 if (!read_index_from_section (objfile, objfile->name,
2835 use_deprecated_index_sections,
2836 &dwarf2_per_objfile->gdb_index, &local_map,
2837 &cu_list, &cu_list_elements,
2838 &types_list, &types_list_elements))
2839 return 0;
2840
2841 /* Don't use the index if it's empty. */
2842 if (local_map.symbol_table_slots == 0)
2843 return 0;
2844
2845 /* If there is a .dwz file, read it so we can get its CU list as
2846 well. */
2847 dwz = dwarf2_get_dwz_file ();
2848 if (dwz != NULL)
2849 {
2850 struct mapped_index dwz_map;
2851 const gdb_byte *dwz_types_ignore;
2852 offset_type dwz_types_elements_ignore;
2853
2854 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2855 1,
2856 &dwz->gdb_index, &dwz_map,
2857 &dwz_list, &dwz_list_elements,
2858 &dwz_types_ignore,
2859 &dwz_types_elements_ignore))
2860 {
2861 warning (_("could not read '.gdb_index' section from %s; skipping"),
2862 bfd_get_filename (dwz->dwz_bfd));
2863 return 0;
2864 }
2865 }
2866
2867 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2868 dwz_list_elements);
2869
2870 if (types_list_elements)
2871 {
2872 struct dwarf2_section_info *section;
2873
2874 /* We can only handle a single .debug_types when we have an
2875 index. */
2876 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2877 return 0;
2878
2879 section = VEC_index (dwarf2_section_info_def,
2880 dwarf2_per_objfile->types, 0);
2881
2882 create_signatured_type_table_from_index (objfile, section, types_list,
2883 types_list_elements);
2884 }
2885
2886 create_addrmap_from_index (objfile, &local_map);
2887
2888 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2889 *map = local_map;
2890
2891 dwarf2_per_objfile->index_table = map;
2892 dwarf2_per_objfile->using_index = 1;
2893 dwarf2_per_objfile->quick_file_names_table =
2894 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2895
2896 return 1;
2897 }
2898
2899 /* A helper for the "quick" functions which sets the global
2900 dwarf2_per_objfile according to OBJFILE. */
2901
2902 static void
2903 dw2_setup (struct objfile *objfile)
2904 {
2905 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2906 gdb_assert (dwarf2_per_objfile);
2907 }
2908
2909 /* die_reader_func for dw2_get_file_names. */
2910
2911 static void
2912 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2913 const gdb_byte *info_ptr,
2914 struct die_info *comp_unit_die,
2915 int has_children,
2916 void *data)
2917 {
2918 struct dwarf2_cu *cu = reader->cu;
2919 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2920 struct objfile *objfile = dwarf2_per_objfile->objfile;
2921 struct dwarf2_per_cu_data *lh_cu;
2922 struct line_header *lh;
2923 struct attribute *attr;
2924 int i;
2925 const char *name, *comp_dir;
2926 void **slot;
2927 struct quick_file_names *qfn;
2928 unsigned int line_offset;
2929
2930 gdb_assert (! this_cu->is_debug_types);
2931
2932 /* Our callers never want to match partial units -- instead they
2933 will match the enclosing full CU. */
2934 if (comp_unit_die->tag == DW_TAG_partial_unit)
2935 {
2936 this_cu->v.quick->no_file_data = 1;
2937 return;
2938 }
2939
2940 lh_cu = this_cu;
2941 lh = NULL;
2942 slot = NULL;
2943 line_offset = 0;
2944
2945 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2946 if (attr)
2947 {
2948 struct quick_file_names find_entry;
2949
2950 line_offset = DW_UNSND (attr);
2951
2952 /* We may have already read in this line header (TU line header sharing).
2953 If we have we're done. */
2954 find_entry.hash.dwo_unit = cu->dwo_unit;
2955 find_entry.hash.line_offset.sect_off = line_offset;
2956 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2957 &find_entry, INSERT);
2958 if (*slot != NULL)
2959 {
2960 lh_cu->v.quick->file_names = *slot;
2961 return;
2962 }
2963
2964 lh = dwarf_decode_line_header (line_offset, cu);
2965 }
2966 if (lh == NULL)
2967 {
2968 lh_cu->v.quick->no_file_data = 1;
2969 return;
2970 }
2971
2972 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2973 qfn->hash.dwo_unit = cu->dwo_unit;
2974 qfn->hash.line_offset.sect_off = line_offset;
2975 gdb_assert (slot != NULL);
2976 *slot = qfn;
2977
2978 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2979
2980 qfn->num_file_names = lh->num_file_names;
2981 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2982 lh->num_file_names * sizeof (char *));
2983 for (i = 0; i < lh->num_file_names; ++i)
2984 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2985 qfn->real_names = NULL;
2986
2987 free_line_header (lh);
2988
2989 lh_cu->v.quick->file_names = qfn;
2990 }
2991
2992 /* A helper for the "quick" functions which attempts to read the line
2993 table for THIS_CU. */
2994
2995 static struct quick_file_names *
2996 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2997 {
2998 /* This should never be called for TUs. */
2999 gdb_assert (! this_cu->is_debug_types);
3000 /* Nor type unit groups. */
3001 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3002
3003 if (this_cu->v.quick->file_names != NULL)
3004 return this_cu->v.quick->file_names;
3005 /* If we know there is no line data, no point in looking again. */
3006 if (this_cu->v.quick->no_file_data)
3007 return NULL;
3008
3009 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3010
3011 if (this_cu->v.quick->no_file_data)
3012 return NULL;
3013 return this_cu->v.quick->file_names;
3014 }
3015
3016 /* A helper for the "quick" functions which computes and caches the
3017 real path for a given file name from the line table. */
3018
3019 static const char *
3020 dw2_get_real_path (struct objfile *objfile,
3021 struct quick_file_names *qfn, int index)
3022 {
3023 if (qfn->real_names == NULL)
3024 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3025 qfn->num_file_names, sizeof (char *));
3026
3027 if (qfn->real_names[index] == NULL)
3028 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3029
3030 return qfn->real_names[index];
3031 }
3032
3033 static struct symtab *
3034 dw2_find_last_source_symtab (struct objfile *objfile)
3035 {
3036 int index;
3037
3038 dw2_setup (objfile);
3039 index = dwarf2_per_objfile->n_comp_units - 1;
3040 return dw2_instantiate_symtab (dw2_get_cu (index));
3041 }
3042
3043 /* Traversal function for dw2_forget_cached_source_info. */
3044
3045 static int
3046 dw2_free_cached_file_names (void **slot, void *info)
3047 {
3048 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3049
3050 if (file_data->real_names)
3051 {
3052 int i;
3053
3054 for (i = 0; i < file_data->num_file_names; ++i)
3055 {
3056 xfree ((void*) file_data->real_names[i]);
3057 file_data->real_names[i] = NULL;
3058 }
3059 }
3060
3061 return 1;
3062 }
3063
3064 static void
3065 dw2_forget_cached_source_info (struct objfile *objfile)
3066 {
3067 dw2_setup (objfile);
3068
3069 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3070 dw2_free_cached_file_names, NULL);
3071 }
3072
3073 /* Helper function for dw2_map_symtabs_matching_filename that expands
3074 the symtabs and calls the iterator. */
3075
3076 static int
3077 dw2_map_expand_apply (struct objfile *objfile,
3078 struct dwarf2_per_cu_data *per_cu,
3079 const char *name, const char *real_path,
3080 int (*callback) (struct symtab *, void *),
3081 void *data)
3082 {
3083 struct symtab *last_made = objfile->symtabs;
3084
3085 /* Don't visit already-expanded CUs. */
3086 if (per_cu->v.quick->symtab)
3087 return 0;
3088
3089 /* This may expand more than one symtab, and we want to iterate over
3090 all of them. */
3091 dw2_instantiate_symtab (per_cu);
3092
3093 return iterate_over_some_symtabs (name, real_path, callback, data,
3094 objfile->symtabs, last_made);
3095 }
3096
3097 /* Implementation of the map_symtabs_matching_filename method. */
3098
3099 static int
3100 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3101 const char *real_path,
3102 int (*callback) (struct symtab *, void *),
3103 void *data)
3104 {
3105 int i;
3106 const char *name_basename = lbasename (name);
3107
3108 dw2_setup (objfile);
3109
3110 /* The rule is CUs specify all the files, including those used by
3111 any TU, so there's no need to scan TUs here. */
3112
3113 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3114 {
3115 int j;
3116 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3117 struct quick_file_names *file_data;
3118
3119 /* We only need to look at symtabs not already expanded. */
3120 if (per_cu->v.quick->symtab)
3121 continue;
3122
3123 file_data = dw2_get_file_names (per_cu);
3124 if (file_data == NULL)
3125 continue;
3126
3127 for (j = 0; j < file_data->num_file_names; ++j)
3128 {
3129 const char *this_name = file_data->file_names[j];
3130 const char *this_real_name;
3131
3132 if (compare_filenames_for_search (this_name, name))
3133 {
3134 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3135 callback, data))
3136 return 1;
3137 continue;
3138 }
3139
3140 /* Before we invoke realpath, which can get expensive when many
3141 files are involved, do a quick comparison of the basenames. */
3142 if (! basenames_may_differ
3143 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3144 continue;
3145
3146 this_real_name = dw2_get_real_path (objfile, file_data, j);
3147 if (compare_filenames_for_search (this_real_name, name))
3148 {
3149 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3150 callback, data))
3151 return 1;
3152 continue;
3153 }
3154
3155 if (real_path != NULL)
3156 {
3157 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3158 gdb_assert (IS_ABSOLUTE_PATH (name));
3159 if (this_real_name != NULL
3160 && FILENAME_CMP (real_path, this_real_name) == 0)
3161 {
3162 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3163 callback, data))
3164 return 1;
3165 continue;
3166 }
3167 }
3168 }
3169 }
3170
3171 return 0;
3172 }
3173
3174 /* Struct used to manage iterating over all CUs looking for a symbol. */
3175
3176 struct dw2_symtab_iterator
3177 {
3178 /* The internalized form of .gdb_index. */
3179 struct mapped_index *index;
3180 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3181 int want_specific_block;
3182 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3183 Unused if !WANT_SPECIFIC_BLOCK. */
3184 int block_index;
3185 /* The kind of symbol we're looking for. */
3186 domain_enum domain;
3187 /* The list of CUs from the index entry of the symbol,
3188 or NULL if not found. */
3189 offset_type *vec;
3190 /* The next element in VEC to look at. */
3191 int next;
3192 /* The number of elements in VEC, or zero if there is no match. */
3193 int length;
3194 };
3195
3196 /* Initialize the index symtab iterator ITER.
3197 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3198 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3199
3200 static void
3201 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3202 struct mapped_index *index,
3203 int want_specific_block,
3204 int block_index,
3205 domain_enum domain,
3206 const char *name)
3207 {
3208 iter->index = index;
3209 iter->want_specific_block = want_specific_block;
3210 iter->block_index = block_index;
3211 iter->domain = domain;
3212 iter->next = 0;
3213
3214 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3215 iter->length = MAYBE_SWAP (*iter->vec);
3216 else
3217 {
3218 iter->vec = NULL;
3219 iter->length = 0;
3220 }
3221 }
3222
3223 /* Return the next matching CU or NULL if there are no more. */
3224
3225 static struct dwarf2_per_cu_data *
3226 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3227 {
3228 for ( ; iter->next < iter->length; ++iter->next)
3229 {
3230 offset_type cu_index_and_attrs =
3231 MAYBE_SWAP (iter->vec[iter->next + 1]);
3232 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3233 struct dwarf2_per_cu_data *per_cu;
3234 int want_static = iter->block_index != GLOBAL_BLOCK;
3235 /* This value is only valid for index versions >= 7. */
3236 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3237 gdb_index_symbol_kind symbol_kind =
3238 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3239 /* Only check the symbol attributes if they're present.
3240 Indices prior to version 7 don't record them,
3241 and indices >= 7 may elide them for certain symbols
3242 (gold does this). */
3243 int attrs_valid =
3244 (iter->index->version >= 7
3245 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3246
3247 /* Don't crash on bad data. */
3248 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3249 + dwarf2_per_objfile->n_type_units))
3250 {
3251 complaint (&symfile_complaints,
3252 _(".gdb_index entry has bad CU index"
3253 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3254 continue;
3255 }
3256
3257 per_cu = dw2_get_cu (cu_index);
3258
3259 /* Skip if already read in. */
3260 if (per_cu->v.quick->symtab)
3261 continue;
3262
3263 if (attrs_valid
3264 && iter->want_specific_block
3265 && want_static != is_static)
3266 continue;
3267
3268 /* Only check the symbol's kind if it has one. */
3269 if (attrs_valid)
3270 {
3271 switch (iter->domain)
3272 {
3273 case VAR_DOMAIN:
3274 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3275 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3276 /* Some types are also in VAR_DOMAIN. */
3277 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3278 continue;
3279 break;
3280 case STRUCT_DOMAIN:
3281 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3282 continue;
3283 break;
3284 case LABEL_DOMAIN:
3285 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3286 continue;
3287 break;
3288 default:
3289 break;
3290 }
3291 }
3292
3293 ++iter->next;
3294 return per_cu;
3295 }
3296
3297 return NULL;
3298 }
3299
3300 static struct symtab *
3301 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3302 const char *name, domain_enum domain)
3303 {
3304 struct symtab *stab_best = NULL;
3305 struct mapped_index *index;
3306
3307 dw2_setup (objfile);
3308
3309 index = dwarf2_per_objfile->index_table;
3310
3311 /* index is NULL if OBJF_READNOW. */
3312 if (index)
3313 {
3314 struct dw2_symtab_iterator iter;
3315 struct dwarf2_per_cu_data *per_cu;
3316
3317 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3318
3319 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3320 {
3321 struct symbol *sym = NULL;
3322 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3323
3324 /* Some caution must be observed with overloaded functions
3325 and methods, since the index will not contain any overload
3326 information (but NAME might contain it). */
3327 if (stab->primary)
3328 {
3329 struct blockvector *bv = BLOCKVECTOR (stab);
3330 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3331
3332 sym = lookup_block_symbol (block, name, domain);
3333 }
3334
3335 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3336 {
3337 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3338 return stab;
3339
3340 stab_best = stab;
3341 }
3342
3343 /* Keep looking through other CUs. */
3344 }
3345 }
3346
3347 return stab_best;
3348 }
3349
3350 static void
3351 dw2_print_stats (struct objfile *objfile)
3352 {
3353 int i, total, count;
3354
3355 dw2_setup (objfile);
3356 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3357 count = 0;
3358 for (i = 0; i < total; ++i)
3359 {
3360 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3361
3362 if (!per_cu->v.quick->symtab)
3363 ++count;
3364 }
3365 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3366 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3367 }
3368
3369 /* This dumps minimal information about the index.
3370 It is called via "mt print objfiles".
3371 One use is to verify .gdb_index has been loaded by the
3372 gdb.dwarf2/gdb-index.exp testcase. */
3373
3374 static void
3375 dw2_dump (struct objfile *objfile)
3376 {
3377 dw2_setup (objfile);
3378 gdb_assert (dwarf2_per_objfile->using_index);
3379 printf_filtered (".gdb_index:");
3380 if (dwarf2_per_objfile->index_table != NULL)
3381 {
3382 printf_filtered (" version %d\n",
3383 dwarf2_per_objfile->index_table->version);
3384 }
3385 else
3386 printf_filtered (" faked for \"readnow\"\n");
3387 printf_filtered ("\n");
3388 }
3389
3390 static void
3391 dw2_relocate (struct objfile *objfile,
3392 const struct section_offsets *new_offsets,
3393 const struct section_offsets *delta)
3394 {
3395 /* There's nothing to relocate here. */
3396 }
3397
3398 static void
3399 dw2_expand_symtabs_for_function (struct objfile *objfile,
3400 const char *func_name)
3401 {
3402 struct mapped_index *index;
3403
3404 dw2_setup (objfile);
3405
3406 index = dwarf2_per_objfile->index_table;
3407
3408 /* index is NULL if OBJF_READNOW. */
3409 if (index)
3410 {
3411 struct dw2_symtab_iterator iter;
3412 struct dwarf2_per_cu_data *per_cu;
3413
3414 /* Note: It doesn't matter what we pass for block_index here. */
3415 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3416 func_name);
3417
3418 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3419 dw2_instantiate_symtab (per_cu);
3420 }
3421 }
3422
3423 static void
3424 dw2_expand_all_symtabs (struct objfile *objfile)
3425 {
3426 int i;
3427
3428 dw2_setup (objfile);
3429
3430 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3431 + dwarf2_per_objfile->n_type_units); ++i)
3432 {
3433 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3434
3435 dw2_instantiate_symtab (per_cu);
3436 }
3437 }
3438
3439 static void
3440 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3441 const char *fullname)
3442 {
3443 int i;
3444
3445 dw2_setup (objfile);
3446
3447 /* We don't need to consider type units here.
3448 This is only called for examining code, e.g. expand_line_sal.
3449 There can be an order of magnitude (or more) more type units
3450 than comp units, and we avoid them if we can. */
3451
3452 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3453 {
3454 int j;
3455 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3456 struct quick_file_names *file_data;
3457
3458 /* We only need to look at symtabs not already expanded. */
3459 if (per_cu->v.quick->symtab)
3460 continue;
3461
3462 file_data = dw2_get_file_names (per_cu);
3463 if (file_data == NULL)
3464 continue;
3465
3466 for (j = 0; j < file_data->num_file_names; ++j)
3467 {
3468 const char *this_fullname = file_data->file_names[j];
3469
3470 if (filename_cmp (this_fullname, fullname) == 0)
3471 {
3472 dw2_instantiate_symtab (per_cu);
3473 break;
3474 }
3475 }
3476 }
3477 }
3478
3479 static void
3480 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3481 struct objfile *objfile, int global,
3482 int (*callback) (struct block *,
3483 struct symbol *, void *),
3484 void *data, symbol_compare_ftype *match,
3485 symbol_compare_ftype *ordered_compare)
3486 {
3487 /* Currently unimplemented; used for Ada. The function can be called if the
3488 current language is Ada for a non-Ada objfile using GNU index. As Ada
3489 does not look for non-Ada symbols this function should just return. */
3490 }
3491
3492 static void
3493 dw2_expand_symtabs_matching
3494 (struct objfile *objfile,
3495 int (*file_matcher) (const char *, void *, int basenames),
3496 int (*name_matcher) (const char *, void *),
3497 enum search_domain kind,
3498 void *data)
3499 {
3500 int i;
3501 offset_type iter;
3502 struct mapped_index *index;
3503
3504 dw2_setup (objfile);
3505
3506 /* index_table is NULL if OBJF_READNOW. */
3507 if (!dwarf2_per_objfile->index_table)
3508 return;
3509 index = dwarf2_per_objfile->index_table;
3510
3511 if (file_matcher != NULL)
3512 {
3513 struct cleanup *cleanup;
3514 htab_t visited_found, visited_not_found;
3515
3516 visited_found = htab_create_alloc (10,
3517 htab_hash_pointer, htab_eq_pointer,
3518 NULL, xcalloc, xfree);
3519 cleanup = make_cleanup_htab_delete (visited_found);
3520 visited_not_found = htab_create_alloc (10,
3521 htab_hash_pointer, htab_eq_pointer,
3522 NULL, xcalloc, xfree);
3523 make_cleanup_htab_delete (visited_not_found);
3524
3525 /* The rule is CUs specify all the files, including those used by
3526 any TU, so there's no need to scan TUs here. */
3527
3528 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3529 {
3530 int j;
3531 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3532 struct quick_file_names *file_data;
3533 void **slot;
3534
3535 per_cu->v.quick->mark = 0;
3536
3537 /* We only need to look at symtabs not already expanded. */
3538 if (per_cu->v.quick->symtab)
3539 continue;
3540
3541 file_data = dw2_get_file_names (per_cu);
3542 if (file_data == NULL)
3543 continue;
3544
3545 if (htab_find (visited_not_found, file_data) != NULL)
3546 continue;
3547 else if (htab_find (visited_found, file_data) != NULL)
3548 {
3549 per_cu->v.quick->mark = 1;
3550 continue;
3551 }
3552
3553 for (j = 0; j < file_data->num_file_names; ++j)
3554 {
3555 const char *this_real_name;
3556
3557 if (file_matcher (file_data->file_names[j], data, 0))
3558 {
3559 per_cu->v.quick->mark = 1;
3560 break;
3561 }
3562
3563 /* Before we invoke realpath, which can get expensive when many
3564 files are involved, do a quick comparison of the basenames. */
3565 if (!basenames_may_differ
3566 && !file_matcher (lbasename (file_data->file_names[j]),
3567 data, 1))
3568 continue;
3569
3570 this_real_name = dw2_get_real_path (objfile, file_data, j);
3571 if (file_matcher (this_real_name, data, 0))
3572 {
3573 per_cu->v.quick->mark = 1;
3574 break;
3575 }
3576 }
3577
3578 slot = htab_find_slot (per_cu->v.quick->mark
3579 ? visited_found
3580 : visited_not_found,
3581 file_data, INSERT);
3582 *slot = file_data;
3583 }
3584
3585 do_cleanups (cleanup);
3586 }
3587
3588 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3589 {
3590 offset_type idx = 2 * iter;
3591 const char *name;
3592 offset_type *vec, vec_len, vec_idx;
3593
3594 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3595 continue;
3596
3597 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3598
3599 if (! (*name_matcher) (name, data))
3600 continue;
3601
3602 /* The name was matched, now expand corresponding CUs that were
3603 marked. */
3604 vec = (offset_type *) (index->constant_pool
3605 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3606 vec_len = MAYBE_SWAP (vec[0]);
3607 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3608 {
3609 struct dwarf2_per_cu_data *per_cu;
3610 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3611 gdb_index_symbol_kind symbol_kind =
3612 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3613 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3614 /* Only check the symbol attributes if they're present.
3615 Indices prior to version 7 don't record them,
3616 and indices >= 7 may elide them for certain symbols
3617 (gold does this). */
3618 int attrs_valid =
3619 (index->version >= 7
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3621
3622 /* Only check the symbol's kind if it has one. */
3623 if (attrs_valid)
3624 {
3625 switch (kind)
3626 {
3627 case VARIABLES_DOMAIN:
3628 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3629 continue;
3630 break;
3631 case FUNCTIONS_DOMAIN:
3632 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3633 continue;
3634 break;
3635 case TYPES_DOMAIN:
3636 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3637 continue;
3638 break;
3639 default:
3640 break;
3641 }
3642 }
3643
3644 /* Don't crash on bad data. */
3645 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3646 + dwarf2_per_objfile->n_type_units))
3647 {
3648 complaint (&symfile_complaints,
3649 _(".gdb_index entry has bad CU index"
3650 " [in module %s]"), objfile->name);
3651 continue;
3652 }
3653
3654 per_cu = dw2_get_cu (cu_index);
3655 if (file_matcher == NULL || per_cu->v.quick->mark)
3656 dw2_instantiate_symtab (per_cu);
3657 }
3658 }
3659 }
3660
3661 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3662 symtab. */
3663
3664 static struct symtab *
3665 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3666 {
3667 int i;
3668
3669 if (BLOCKVECTOR (symtab) != NULL
3670 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3671 return symtab;
3672
3673 if (symtab->includes == NULL)
3674 return NULL;
3675
3676 for (i = 0; symtab->includes[i]; ++i)
3677 {
3678 struct symtab *s = symtab->includes[i];
3679
3680 s = recursively_find_pc_sect_symtab (s, pc);
3681 if (s != NULL)
3682 return s;
3683 }
3684
3685 return NULL;
3686 }
3687
3688 static struct symtab *
3689 dw2_find_pc_sect_symtab (struct objfile *objfile,
3690 struct minimal_symbol *msymbol,
3691 CORE_ADDR pc,
3692 struct obj_section *section,
3693 int warn_if_readin)
3694 {
3695 struct dwarf2_per_cu_data *data;
3696 struct symtab *result;
3697
3698 dw2_setup (objfile);
3699
3700 if (!objfile->psymtabs_addrmap)
3701 return NULL;
3702
3703 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3704 if (!data)
3705 return NULL;
3706
3707 if (warn_if_readin && data->v.quick->symtab)
3708 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3709 paddress (get_objfile_arch (objfile), pc));
3710
3711 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3712 gdb_assert (result != NULL);
3713 return result;
3714 }
3715
3716 static void
3717 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3718 void *data, int need_fullname)
3719 {
3720 int i;
3721 struct cleanup *cleanup;
3722 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3723 NULL, xcalloc, xfree);
3724
3725 cleanup = make_cleanup_htab_delete (visited);
3726 dw2_setup (objfile);
3727
3728 /* The rule is CUs specify all the files, including those used by
3729 any TU, so there's no need to scan TUs here.
3730 We can ignore file names coming from already-expanded CUs. */
3731
3732 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3733 {
3734 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3735
3736 if (per_cu->v.quick->symtab)
3737 {
3738 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3739 INSERT);
3740
3741 *slot = per_cu->v.quick->file_names;
3742 }
3743 }
3744
3745 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3746 {
3747 int j;
3748 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3749 struct quick_file_names *file_data;
3750 void **slot;
3751
3752 /* We only need to look at symtabs not already expanded. */
3753 if (per_cu->v.quick->symtab)
3754 continue;
3755
3756 file_data = dw2_get_file_names (per_cu);
3757 if (file_data == NULL)
3758 continue;
3759
3760 slot = htab_find_slot (visited, file_data, INSERT);
3761 if (*slot)
3762 {
3763 /* Already visited. */
3764 continue;
3765 }
3766 *slot = file_data;
3767
3768 for (j = 0; j < file_data->num_file_names; ++j)
3769 {
3770 const char *this_real_name;
3771
3772 if (need_fullname)
3773 this_real_name = dw2_get_real_path (objfile, file_data, j);
3774 else
3775 this_real_name = NULL;
3776 (*fun) (file_data->file_names[j], this_real_name, data);
3777 }
3778 }
3779
3780 do_cleanups (cleanup);
3781 }
3782
3783 static int
3784 dw2_has_symbols (struct objfile *objfile)
3785 {
3786 return 1;
3787 }
3788
3789 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3790 {
3791 dw2_has_symbols,
3792 dw2_find_last_source_symtab,
3793 dw2_forget_cached_source_info,
3794 dw2_map_symtabs_matching_filename,
3795 dw2_lookup_symbol,
3796 dw2_print_stats,
3797 dw2_dump,
3798 dw2_relocate,
3799 dw2_expand_symtabs_for_function,
3800 dw2_expand_all_symtabs,
3801 dw2_expand_symtabs_with_fullname,
3802 dw2_map_matching_symbols,
3803 dw2_expand_symtabs_matching,
3804 dw2_find_pc_sect_symtab,
3805 dw2_map_symbol_filenames
3806 };
3807
3808 /* Initialize for reading DWARF for this objfile. Return 0 if this
3809 file will use psymtabs, or 1 if using the GNU index. */
3810
3811 int
3812 dwarf2_initialize_objfile (struct objfile *objfile)
3813 {
3814 /* If we're about to read full symbols, don't bother with the
3815 indices. In this case we also don't care if some other debug
3816 format is making psymtabs, because they are all about to be
3817 expanded anyway. */
3818 if ((objfile->flags & OBJF_READNOW))
3819 {
3820 int i;
3821
3822 dwarf2_per_objfile->using_index = 1;
3823 create_all_comp_units (objfile);
3824 create_all_type_units (objfile);
3825 dwarf2_per_objfile->quick_file_names_table =
3826 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3827
3828 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3829 + dwarf2_per_objfile->n_type_units); ++i)
3830 {
3831 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3832
3833 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3834 struct dwarf2_per_cu_quick_data);
3835 }
3836
3837 /* Return 1 so that gdb sees the "quick" functions. However,
3838 these functions will be no-ops because we will have expanded
3839 all symtabs. */
3840 return 1;
3841 }
3842
3843 if (dwarf2_read_index (objfile))
3844 return 1;
3845
3846 return 0;
3847 }
3848
3849 \f
3850
3851 /* Build a partial symbol table. */
3852
3853 void
3854 dwarf2_build_psymtabs (struct objfile *objfile)
3855 {
3856 volatile struct gdb_exception except;
3857
3858 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3859 {
3860 init_psymbol_list (objfile, 1024);
3861 }
3862
3863 TRY_CATCH (except, RETURN_MASK_ERROR)
3864 {
3865 /* This isn't really ideal: all the data we allocate on the
3866 objfile's obstack is still uselessly kept around. However,
3867 freeing it seems unsafe. */
3868 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3869
3870 dwarf2_build_psymtabs_hard (objfile);
3871 discard_cleanups (cleanups);
3872 }
3873 if (except.reason < 0)
3874 exception_print (gdb_stderr, except);
3875 }
3876
3877 /* Return the total length of the CU described by HEADER. */
3878
3879 static unsigned int
3880 get_cu_length (const struct comp_unit_head *header)
3881 {
3882 return header->initial_length_size + header->length;
3883 }
3884
3885 /* Return TRUE if OFFSET is within CU_HEADER. */
3886
3887 static inline int
3888 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3889 {
3890 sect_offset bottom = { cu_header->offset.sect_off };
3891 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3892
3893 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3894 }
3895
3896 /* Find the base address of the compilation unit for range lists and
3897 location lists. It will normally be specified by DW_AT_low_pc.
3898 In DWARF-3 draft 4, the base address could be overridden by
3899 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3900 compilation units with discontinuous ranges. */
3901
3902 static void
3903 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3904 {
3905 struct attribute *attr;
3906
3907 cu->base_known = 0;
3908 cu->base_address = 0;
3909
3910 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3911 if (attr)
3912 {
3913 cu->base_address = DW_ADDR (attr);
3914 cu->base_known = 1;
3915 }
3916 else
3917 {
3918 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3919 if (attr)
3920 {
3921 cu->base_address = DW_ADDR (attr);
3922 cu->base_known = 1;
3923 }
3924 }
3925 }
3926
3927 /* Read in the comp unit header information from the debug_info at info_ptr.
3928 NOTE: This leaves members offset, first_die_offset to be filled in
3929 by the caller. */
3930
3931 static const gdb_byte *
3932 read_comp_unit_head (struct comp_unit_head *cu_header,
3933 const gdb_byte *info_ptr, bfd *abfd)
3934 {
3935 int signed_addr;
3936 unsigned int bytes_read;
3937
3938 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3939 cu_header->initial_length_size = bytes_read;
3940 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3941 info_ptr += bytes_read;
3942 cu_header->version = read_2_bytes (abfd, info_ptr);
3943 info_ptr += 2;
3944 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3945 &bytes_read);
3946 info_ptr += bytes_read;
3947 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3948 info_ptr += 1;
3949 signed_addr = bfd_get_sign_extend_vma (abfd);
3950 if (signed_addr < 0)
3951 internal_error (__FILE__, __LINE__,
3952 _("read_comp_unit_head: dwarf from non elf file"));
3953 cu_header->signed_addr_p = signed_addr;
3954
3955 return info_ptr;
3956 }
3957
3958 /* Helper function that returns the proper abbrev section for
3959 THIS_CU. */
3960
3961 static struct dwarf2_section_info *
3962 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3963 {
3964 struct dwarf2_section_info *abbrev;
3965
3966 if (this_cu->is_dwz)
3967 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3968 else
3969 abbrev = &dwarf2_per_objfile->abbrev;
3970
3971 return abbrev;
3972 }
3973
3974 /* Subroutine of read_and_check_comp_unit_head and
3975 read_and_check_type_unit_head to simplify them.
3976 Perform various error checking on the header. */
3977
3978 static void
3979 error_check_comp_unit_head (struct comp_unit_head *header,
3980 struct dwarf2_section_info *section,
3981 struct dwarf2_section_info *abbrev_section)
3982 {
3983 bfd *abfd = section->asection->owner;
3984 const char *filename = bfd_get_filename (abfd);
3985
3986 if (header->version != 2 && header->version != 3 && header->version != 4)
3987 error (_("Dwarf Error: wrong version in compilation unit header "
3988 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3989 filename);
3990
3991 if (header->abbrev_offset.sect_off
3992 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3993 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3994 "(offset 0x%lx + 6) [in module %s]"),
3995 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3996 filename);
3997
3998 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3999 avoid potential 32-bit overflow. */
4000 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4001 > section->size)
4002 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4003 "(offset 0x%lx + 0) [in module %s]"),
4004 (long) header->length, (long) header->offset.sect_off,
4005 filename);
4006 }
4007
4008 /* Read in a CU/TU header and perform some basic error checking.
4009 The contents of the header are stored in HEADER.
4010 The result is a pointer to the start of the first DIE. */
4011
4012 static const gdb_byte *
4013 read_and_check_comp_unit_head (struct comp_unit_head *header,
4014 struct dwarf2_section_info *section,
4015 struct dwarf2_section_info *abbrev_section,
4016 const gdb_byte *info_ptr,
4017 int is_debug_types_section)
4018 {
4019 const gdb_byte *beg_of_comp_unit = info_ptr;
4020 bfd *abfd = section->asection->owner;
4021
4022 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4023
4024 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4025
4026 /* If we're reading a type unit, skip over the signature and
4027 type_offset fields. */
4028 if (is_debug_types_section)
4029 info_ptr += 8 /*signature*/ + header->offset_size;
4030
4031 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4032
4033 error_check_comp_unit_head (header, section, abbrev_section);
4034
4035 return info_ptr;
4036 }
4037
4038 /* Read in the types comp unit header information from .debug_types entry at
4039 types_ptr. The result is a pointer to one past the end of the header. */
4040
4041 static const gdb_byte *
4042 read_and_check_type_unit_head (struct comp_unit_head *header,
4043 struct dwarf2_section_info *section,
4044 struct dwarf2_section_info *abbrev_section,
4045 const gdb_byte *info_ptr,
4046 ULONGEST *signature,
4047 cu_offset *type_offset_in_tu)
4048 {
4049 const gdb_byte *beg_of_comp_unit = info_ptr;
4050 bfd *abfd = section->asection->owner;
4051
4052 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4053
4054 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4055
4056 /* If we're reading a type unit, skip over the signature and
4057 type_offset fields. */
4058 if (signature != NULL)
4059 *signature = read_8_bytes (abfd, info_ptr);
4060 info_ptr += 8;
4061 if (type_offset_in_tu != NULL)
4062 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4063 header->offset_size);
4064 info_ptr += header->offset_size;
4065
4066 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4067
4068 error_check_comp_unit_head (header, section, abbrev_section);
4069
4070 return info_ptr;
4071 }
4072
4073 /* Fetch the abbreviation table offset from a comp or type unit header. */
4074
4075 static sect_offset
4076 read_abbrev_offset (struct dwarf2_section_info *section,
4077 sect_offset offset)
4078 {
4079 bfd *abfd = section->asection->owner;
4080 const gdb_byte *info_ptr;
4081 unsigned int length, initial_length_size, offset_size;
4082 sect_offset abbrev_offset;
4083
4084 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4085 info_ptr = section->buffer + offset.sect_off;
4086 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4087 offset_size = initial_length_size == 4 ? 4 : 8;
4088 info_ptr += initial_length_size + 2 /*version*/;
4089 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4090 return abbrev_offset;
4091 }
4092
4093 /* Allocate a new partial symtab for file named NAME and mark this new
4094 partial symtab as being an include of PST. */
4095
4096 static void
4097 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4098 struct objfile *objfile)
4099 {
4100 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4101
4102 if (!IS_ABSOLUTE_PATH (subpst->filename))
4103 {
4104 /* It shares objfile->objfile_obstack. */
4105 subpst->dirname = pst->dirname;
4106 }
4107
4108 subpst->section_offsets = pst->section_offsets;
4109 subpst->textlow = 0;
4110 subpst->texthigh = 0;
4111
4112 subpst->dependencies = (struct partial_symtab **)
4113 obstack_alloc (&objfile->objfile_obstack,
4114 sizeof (struct partial_symtab *));
4115 subpst->dependencies[0] = pst;
4116 subpst->number_of_dependencies = 1;
4117
4118 subpst->globals_offset = 0;
4119 subpst->n_global_syms = 0;
4120 subpst->statics_offset = 0;
4121 subpst->n_static_syms = 0;
4122 subpst->symtab = NULL;
4123 subpst->read_symtab = pst->read_symtab;
4124 subpst->readin = 0;
4125
4126 /* No private part is necessary for include psymtabs. This property
4127 can be used to differentiate between such include psymtabs and
4128 the regular ones. */
4129 subpst->read_symtab_private = NULL;
4130 }
4131
4132 /* Read the Line Number Program data and extract the list of files
4133 included by the source file represented by PST. Build an include
4134 partial symtab for each of these included files. */
4135
4136 static void
4137 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4138 struct die_info *die,
4139 struct partial_symtab *pst)
4140 {
4141 struct line_header *lh = NULL;
4142 struct attribute *attr;
4143
4144 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4145 if (attr)
4146 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4147 if (lh == NULL)
4148 return; /* No linetable, so no includes. */
4149
4150 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4151 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4152
4153 free_line_header (lh);
4154 }
4155
4156 static hashval_t
4157 hash_signatured_type (const void *item)
4158 {
4159 const struct signatured_type *sig_type = item;
4160
4161 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4162 return sig_type->signature;
4163 }
4164
4165 static int
4166 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4167 {
4168 const struct signatured_type *lhs = item_lhs;
4169 const struct signatured_type *rhs = item_rhs;
4170
4171 return lhs->signature == rhs->signature;
4172 }
4173
4174 /* Allocate a hash table for signatured types. */
4175
4176 static htab_t
4177 allocate_signatured_type_table (struct objfile *objfile)
4178 {
4179 return htab_create_alloc_ex (41,
4180 hash_signatured_type,
4181 eq_signatured_type,
4182 NULL,
4183 &objfile->objfile_obstack,
4184 hashtab_obstack_allocate,
4185 dummy_obstack_deallocate);
4186 }
4187
4188 /* A helper function to add a signatured type CU to a table. */
4189
4190 static int
4191 add_signatured_type_cu_to_table (void **slot, void *datum)
4192 {
4193 struct signatured_type *sigt = *slot;
4194 struct signatured_type ***datap = datum;
4195
4196 **datap = sigt;
4197 ++*datap;
4198
4199 return 1;
4200 }
4201
4202 /* Create the hash table of all entries in the .debug_types
4203 (or .debug_types.dwo) section(s).
4204 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4205 otherwise it is NULL.
4206
4207 The result is a pointer to the hash table or NULL if there are no types.
4208
4209 Note: This function processes DWO files only, not DWP files. */
4210
4211 static htab_t
4212 create_debug_types_hash_table (struct dwo_file *dwo_file,
4213 VEC (dwarf2_section_info_def) *types)
4214 {
4215 struct objfile *objfile = dwarf2_per_objfile->objfile;
4216 htab_t types_htab = NULL;
4217 int ix;
4218 struct dwarf2_section_info *section;
4219 struct dwarf2_section_info *abbrev_section;
4220
4221 if (VEC_empty (dwarf2_section_info_def, types))
4222 return NULL;
4223
4224 abbrev_section = (dwo_file != NULL
4225 ? &dwo_file->sections.abbrev
4226 : &dwarf2_per_objfile->abbrev);
4227
4228 if (dwarf2_read_debug)
4229 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4230 dwo_file ? ".dwo" : "",
4231 bfd_get_filename (abbrev_section->asection->owner));
4232
4233 for (ix = 0;
4234 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4235 ++ix)
4236 {
4237 bfd *abfd;
4238 const gdb_byte *info_ptr, *end_ptr;
4239 struct dwarf2_section_info *abbrev_section;
4240
4241 dwarf2_read_section (objfile, section);
4242 info_ptr = section->buffer;
4243
4244 if (info_ptr == NULL)
4245 continue;
4246
4247 /* We can't set abfd until now because the section may be empty or
4248 not present, in which case section->asection will be NULL. */
4249 abfd = section->asection->owner;
4250
4251 if (dwo_file)
4252 abbrev_section = &dwo_file->sections.abbrev;
4253 else
4254 abbrev_section = &dwarf2_per_objfile->abbrev;
4255
4256 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4257 because we don't need to read any dies: the signature is in the
4258 header. */
4259
4260 end_ptr = info_ptr + section->size;
4261 while (info_ptr < end_ptr)
4262 {
4263 sect_offset offset;
4264 cu_offset type_offset_in_tu;
4265 ULONGEST signature;
4266 struct signatured_type *sig_type;
4267 struct dwo_unit *dwo_tu;
4268 void **slot;
4269 const gdb_byte *ptr = info_ptr;
4270 struct comp_unit_head header;
4271 unsigned int length;
4272
4273 offset.sect_off = ptr - section->buffer;
4274
4275 /* We need to read the type's signature in order to build the hash
4276 table, but we don't need anything else just yet. */
4277
4278 ptr = read_and_check_type_unit_head (&header, section,
4279 abbrev_section, ptr,
4280 &signature, &type_offset_in_tu);
4281
4282 length = get_cu_length (&header);
4283
4284 /* Skip dummy type units. */
4285 if (ptr >= info_ptr + length
4286 || peek_abbrev_code (abfd, ptr) == 0)
4287 {
4288 info_ptr += length;
4289 continue;
4290 }
4291
4292 if (types_htab == NULL)
4293 {
4294 if (dwo_file)
4295 types_htab = allocate_dwo_unit_table (objfile);
4296 else
4297 types_htab = allocate_signatured_type_table (objfile);
4298 }
4299
4300 if (dwo_file)
4301 {
4302 sig_type = NULL;
4303 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4304 struct dwo_unit);
4305 dwo_tu->dwo_file = dwo_file;
4306 dwo_tu->signature = signature;
4307 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4308 dwo_tu->section = section;
4309 dwo_tu->offset = offset;
4310 dwo_tu->length = length;
4311 }
4312 else
4313 {
4314 /* N.B.: type_offset is not usable if this type uses a DWO file.
4315 The real type_offset is in the DWO file. */
4316 dwo_tu = NULL;
4317 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4318 struct signatured_type);
4319 sig_type->signature = signature;
4320 sig_type->type_offset_in_tu = type_offset_in_tu;
4321 sig_type->per_cu.objfile = objfile;
4322 sig_type->per_cu.is_debug_types = 1;
4323 sig_type->per_cu.section = section;
4324 sig_type->per_cu.offset = offset;
4325 sig_type->per_cu.length = length;
4326 }
4327
4328 slot = htab_find_slot (types_htab,
4329 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4330 INSERT);
4331 gdb_assert (slot != NULL);
4332 if (*slot != NULL)
4333 {
4334 sect_offset dup_offset;
4335
4336 if (dwo_file)
4337 {
4338 const struct dwo_unit *dup_tu = *slot;
4339
4340 dup_offset = dup_tu->offset;
4341 }
4342 else
4343 {
4344 const struct signatured_type *dup_tu = *slot;
4345
4346 dup_offset = dup_tu->per_cu.offset;
4347 }
4348
4349 complaint (&symfile_complaints,
4350 _("debug type entry at offset 0x%x is duplicate to"
4351 " the entry at offset 0x%x, signature %s"),
4352 offset.sect_off, dup_offset.sect_off,
4353 hex_string (signature));
4354 }
4355 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4356
4357 if (dwarf2_read_debug)
4358 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4359 offset.sect_off,
4360 hex_string (signature));
4361
4362 info_ptr += length;
4363 }
4364 }
4365
4366 return types_htab;
4367 }
4368
4369 /* Create the hash table of all entries in the .debug_types section,
4370 and initialize all_type_units.
4371 The result is zero if there is an error (e.g. missing .debug_types section),
4372 otherwise non-zero. */
4373
4374 static int
4375 create_all_type_units (struct objfile *objfile)
4376 {
4377 htab_t types_htab;
4378 struct signatured_type **iter;
4379
4380 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4381 if (types_htab == NULL)
4382 {
4383 dwarf2_per_objfile->signatured_types = NULL;
4384 return 0;
4385 }
4386
4387 dwarf2_per_objfile->signatured_types = types_htab;
4388
4389 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4390 dwarf2_per_objfile->all_type_units
4391 = xmalloc (dwarf2_per_objfile->n_type_units
4392 * sizeof (struct signatured_type *));
4393 iter = &dwarf2_per_objfile->all_type_units[0];
4394 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4395 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4396 == dwarf2_per_objfile->n_type_units);
4397
4398 return 1;
4399 }
4400
4401 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4402 Fill in SIG_ENTRY with DWO_ENTRY. */
4403
4404 static void
4405 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4406 struct signatured_type *sig_entry,
4407 struct dwo_unit *dwo_entry)
4408 {
4409 /* Make sure we're not clobbering something we don't expect to. */
4410 gdb_assert (! sig_entry->per_cu.queued);
4411 gdb_assert (sig_entry->per_cu.cu == NULL);
4412 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4413 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4414 gdb_assert (sig_entry->signature == dwo_entry->signature);
4415 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4416 gdb_assert (sig_entry->type_unit_group == NULL);
4417 gdb_assert (sig_entry->dwo_unit == NULL);
4418
4419 sig_entry->per_cu.section = dwo_entry->section;
4420 sig_entry->per_cu.offset = dwo_entry->offset;
4421 sig_entry->per_cu.length = dwo_entry->length;
4422 sig_entry->per_cu.reading_dwo_directly = 1;
4423 sig_entry->per_cu.objfile = objfile;
4424 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4425 sig_entry->dwo_unit = dwo_entry;
4426 }
4427
4428 /* Subroutine of lookup_signatured_type.
4429 If we haven't read the TU yet, create the signatured_type data structure
4430 for a TU to be read in directly from a DWO file, bypassing the stub.
4431 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4432 using .gdb_index, then when reading a CU we want to stay in the DWO file
4433 containing that CU. Otherwise we could end up reading several other DWO
4434 files (due to comdat folding) to process the transitive closure of all the
4435 mentioned TUs, and that can be slow. The current DWO file will have every
4436 type signature that it needs.
4437 We only do this for .gdb_index because in the psymtab case we already have
4438 to read all the DWOs to build the type unit groups. */
4439
4440 static struct signatured_type *
4441 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4442 {
4443 struct objfile *objfile = dwarf2_per_objfile->objfile;
4444 struct dwo_file *dwo_file;
4445 struct dwo_unit find_dwo_entry, *dwo_entry;
4446 struct signatured_type find_sig_entry, *sig_entry;
4447
4448 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4449
4450 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4451 dwo_unit of the TU itself. */
4452 dwo_file = cu->dwo_unit->dwo_file;
4453
4454 /* We only ever need to read in one copy of a signatured type.
4455 Just use the global signatured_types array. If this is the first time
4456 we're reading this type, replace the recorded data from .gdb_index with
4457 this TU. */
4458
4459 if (dwarf2_per_objfile->signatured_types == NULL)
4460 return NULL;
4461 find_sig_entry.signature = sig;
4462 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4463 if (sig_entry == NULL)
4464 return NULL;
4465
4466 /* We can get here with the TU already read, *or* in the process of being
4467 read. Don't reassign it if that's the case. Also note that if the TU is
4468 already being read, it may not have come from a DWO, the program may be
4469 a mix of Fission-compiled code and non-Fission-compiled code. */
4470 /* Have we already tried to read this TU? */
4471 if (sig_entry->per_cu.tu_read)
4472 return sig_entry;
4473
4474 /* Ok, this is the first time we're reading this TU. */
4475 if (dwo_file->tus == NULL)
4476 return NULL;
4477 find_dwo_entry.signature = sig;
4478 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4479 if (dwo_entry == NULL)
4480 return NULL;
4481
4482 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4483 sig_entry->per_cu.tu_read = 1;
4484 return sig_entry;
4485 }
4486
4487 /* Subroutine of lookup_dwp_signatured_type.
4488 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4489
4490 static struct signatured_type *
4491 add_type_unit (ULONGEST sig)
4492 {
4493 struct objfile *objfile = dwarf2_per_objfile->objfile;
4494 int n_type_units = dwarf2_per_objfile->n_type_units;
4495 struct signatured_type *sig_type;
4496 void **slot;
4497
4498 ++n_type_units;
4499 dwarf2_per_objfile->all_type_units =
4500 xrealloc (dwarf2_per_objfile->all_type_units,
4501 n_type_units * sizeof (struct signatured_type *));
4502 dwarf2_per_objfile->n_type_units = n_type_units;
4503 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4504 struct signatured_type);
4505 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4506 sig_type->signature = sig;
4507 sig_type->per_cu.is_debug_types = 1;
4508 sig_type->per_cu.v.quick =
4509 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4510 struct dwarf2_per_cu_quick_data);
4511 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4512 sig_type, INSERT);
4513 gdb_assert (*slot == NULL);
4514 *slot = sig_type;
4515 /* The rest of sig_type must be filled in by the caller. */
4516 return sig_type;
4517 }
4518
4519 /* Subroutine of lookup_signatured_type.
4520 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4521 then try the DWP file.
4522 Normally this "can't happen", but if there's a bug in signature
4523 generation and/or the DWP file is built incorrectly, it can happen.
4524 Using the type directly from the DWP file means we don't have the stub
4525 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4526 not critical. [Eventually the stub may go away for type units anyway.] */
4527
4528 static struct signatured_type *
4529 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4530 {
4531 struct objfile *objfile = dwarf2_per_objfile->objfile;
4532 struct dwp_file *dwp_file = get_dwp_file ();
4533 struct dwo_unit *dwo_entry;
4534 struct signatured_type find_sig_entry, *sig_entry;
4535
4536 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4537 gdb_assert (dwp_file != NULL);
4538
4539 if (dwarf2_per_objfile->signatured_types != NULL)
4540 {
4541 find_sig_entry.signature = sig;
4542 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4543 &find_sig_entry);
4544 if (sig_entry != NULL)
4545 return sig_entry;
4546 }
4547
4548 /* This is the "shouldn't happen" case.
4549 Try the DWP file and hope for the best. */
4550 if (dwp_file->tus == NULL)
4551 return NULL;
4552 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4553 sig, 1 /* is_debug_types */);
4554 if (dwo_entry == NULL)
4555 return NULL;
4556
4557 sig_entry = add_type_unit (sig);
4558 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4559
4560 /* The caller will signal a complaint if we return NULL.
4561 Here we don't return NULL but we still want to complain. */
4562 complaint (&symfile_complaints,
4563 _("Bad type signature %s referenced by %s at 0x%x,"
4564 " coping by using copy in DWP [in module %s]"),
4565 hex_string (sig),
4566 cu->per_cu->is_debug_types ? "TU" : "CU",
4567 cu->per_cu->offset.sect_off,
4568 objfile->name);
4569
4570 return sig_entry;
4571 }
4572
4573 /* Lookup a signature based type for DW_FORM_ref_sig8.
4574 Returns NULL if signature SIG is not present in the table.
4575 It is up to the caller to complain about this. */
4576
4577 static struct signatured_type *
4578 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4579 {
4580 if (cu->dwo_unit
4581 && dwarf2_per_objfile->using_index)
4582 {
4583 /* We're in a DWO/DWP file, and we're using .gdb_index.
4584 These cases require special processing. */
4585 if (get_dwp_file () == NULL)
4586 return lookup_dwo_signatured_type (cu, sig);
4587 else
4588 return lookup_dwp_signatured_type (cu, sig);
4589 }
4590 else
4591 {
4592 struct signatured_type find_entry, *entry;
4593
4594 if (dwarf2_per_objfile->signatured_types == NULL)
4595 return NULL;
4596 find_entry.signature = sig;
4597 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4598 return entry;
4599 }
4600 }
4601 \f
4602 /* Low level DIE reading support. */
4603
4604 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4605
4606 static void
4607 init_cu_die_reader (struct die_reader_specs *reader,
4608 struct dwarf2_cu *cu,
4609 struct dwarf2_section_info *section,
4610 struct dwo_file *dwo_file)
4611 {
4612 gdb_assert (section->readin && section->buffer != NULL);
4613 reader->abfd = section->asection->owner;
4614 reader->cu = cu;
4615 reader->dwo_file = dwo_file;
4616 reader->die_section = section;
4617 reader->buffer = section->buffer;
4618 reader->buffer_end = section->buffer + section->size;
4619 reader->comp_dir = NULL;
4620 }
4621
4622 /* Subroutine of init_cutu_and_read_dies to simplify it.
4623 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4624 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4625 already.
4626
4627 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4628 from it to the DIE in the DWO. If NULL we are skipping the stub.
4629 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4630 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4631 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4632 COMP_DIR must be non-NULL.
4633 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4634 are filled in with the info of the DIE from the DWO file.
4635 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4636 provided an abbrev table to use.
4637 The result is non-zero if a valid (non-dummy) DIE was found. */
4638
4639 static int
4640 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4641 struct dwo_unit *dwo_unit,
4642 int abbrev_table_provided,
4643 struct die_info *stub_comp_unit_die,
4644 const char *stub_comp_dir,
4645 struct die_reader_specs *result_reader,
4646 const gdb_byte **result_info_ptr,
4647 struct die_info **result_comp_unit_die,
4648 int *result_has_children)
4649 {
4650 struct objfile *objfile = dwarf2_per_objfile->objfile;
4651 struct dwarf2_cu *cu = this_cu->cu;
4652 struct dwarf2_section_info *section;
4653 bfd *abfd;
4654 const gdb_byte *begin_info_ptr, *info_ptr;
4655 const char *comp_dir_string;
4656 ULONGEST signature; /* Or dwo_id. */
4657 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4658 int i,num_extra_attrs;
4659 struct dwarf2_section_info *dwo_abbrev_section;
4660 struct attribute *attr;
4661 struct attribute comp_dir_attr;
4662 struct die_info *comp_unit_die;
4663
4664 /* Both can't be provided. */
4665 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4666
4667 /* These attributes aren't processed until later:
4668 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4669 However, the attribute is found in the stub which we won't have later.
4670 In order to not impose this complication on the rest of the code,
4671 we read them here and copy them to the DWO CU/TU die. */
4672
4673 stmt_list = NULL;
4674 low_pc = NULL;
4675 high_pc = NULL;
4676 ranges = NULL;
4677 comp_dir = NULL;
4678
4679 if (stub_comp_unit_die != NULL)
4680 {
4681 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4682 DWO file. */
4683 if (! this_cu->is_debug_types)
4684 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4685 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4686 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4687 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4688 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4689
4690 /* There should be a DW_AT_addr_base attribute here (if needed).
4691 We need the value before we can process DW_FORM_GNU_addr_index. */
4692 cu->addr_base = 0;
4693 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4694 if (attr)
4695 cu->addr_base = DW_UNSND (attr);
4696
4697 /* There should be a DW_AT_ranges_base attribute here (if needed).
4698 We need the value before we can process DW_AT_ranges. */
4699 cu->ranges_base = 0;
4700 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4701 if (attr)
4702 cu->ranges_base = DW_UNSND (attr);
4703 }
4704 else if (stub_comp_dir != NULL)
4705 {
4706 /* Reconstruct the comp_dir attribute to simplify the code below. */
4707 comp_dir = (struct attribute *)
4708 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4709 comp_dir->name = DW_AT_comp_dir;
4710 comp_dir->form = DW_FORM_string;
4711 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4712 DW_STRING (comp_dir) = stub_comp_dir;
4713 }
4714
4715 /* Set up for reading the DWO CU/TU. */
4716 cu->dwo_unit = dwo_unit;
4717 section = dwo_unit->section;
4718 dwarf2_read_section (objfile, section);
4719 abfd = section->asection->owner;
4720 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4721 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4722 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4723
4724 if (this_cu->is_debug_types)
4725 {
4726 ULONGEST header_signature;
4727 cu_offset type_offset_in_tu;
4728 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4729
4730 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4731 dwo_abbrev_section,
4732 info_ptr,
4733 &header_signature,
4734 &type_offset_in_tu);
4735 /* This is not an assert because it can be caused by bad debug info. */
4736 if (sig_type->signature != header_signature)
4737 {
4738 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4739 " TU at offset 0x%x [in module %s]"),
4740 hex_string (sig_type->signature),
4741 hex_string (header_signature),
4742 dwo_unit->offset.sect_off,
4743 bfd_get_filename (abfd));
4744 }
4745 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4746 /* For DWOs coming from DWP files, we don't know the CU length
4747 nor the type's offset in the TU until now. */
4748 dwo_unit->length = get_cu_length (&cu->header);
4749 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4750
4751 /* Establish the type offset that can be used to lookup the type.
4752 For DWO files, we don't know it until now. */
4753 sig_type->type_offset_in_section.sect_off =
4754 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4755 }
4756 else
4757 {
4758 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4759 dwo_abbrev_section,
4760 info_ptr, 0);
4761 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4762 /* For DWOs coming from DWP files, we don't know the CU length
4763 until now. */
4764 dwo_unit->length = get_cu_length (&cu->header);
4765 }
4766
4767 /* Replace the CU's original abbrev table with the DWO's.
4768 Reminder: We can't read the abbrev table until we've read the header. */
4769 if (abbrev_table_provided)
4770 {
4771 /* Don't free the provided abbrev table, the caller of
4772 init_cutu_and_read_dies owns it. */
4773 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4774 /* Ensure the DWO abbrev table gets freed. */
4775 make_cleanup (dwarf2_free_abbrev_table, cu);
4776 }
4777 else
4778 {
4779 dwarf2_free_abbrev_table (cu);
4780 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4781 /* Leave any existing abbrev table cleanup as is. */
4782 }
4783
4784 /* Read in the die, but leave space to copy over the attributes
4785 from the stub. This has the benefit of simplifying the rest of
4786 the code - all the work to maintain the illusion of a single
4787 DW_TAG_{compile,type}_unit DIE is done here. */
4788 num_extra_attrs = ((stmt_list != NULL)
4789 + (low_pc != NULL)
4790 + (high_pc != NULL)
4791 + (ranges != NULL)
4792 + (comp_dir != NULL));
4793 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4794 result_has_children, num_extra_attrs);
4795
4796 /* Copy over the attributes from the stub to the DIE we just read in. */
4797 comp_unit_die = *result_comp_unit_die;
4798 i = comp_unit_die->num_attrs;
4799 if (stmt_list != NULL)
4800 comp_unit_die->attrs[i++] = *stmt_list;
4801 if (low_pc != NULL)
4802 comp_unit_die->attrs[i++] = *low_pc;
4803 if (high_pc != NULL)
4804 comp_unit_die->attrs[i++] = *high_pc;
4805 if (ranges != NULL)
4806 comp_unit_die->attrs[i++] = *ranges;
4807 if (comp_dir != NULL)
4808 comp_unit_die->attrs[i++] = *comp_dir;
4809 comp_unit_die->num_attrs += num_extra_attrs;
4810
4811 if (dwarf2_die_debug)
4812 {
4813 fprintf_unfiltered (gdb_stdlog,
4814 "Read die from %s@0x%x of %s:\n",
4815 bfd_section_name (abfd, section->asection),
4816 (unsigned) (begin_info_ptr - section->buffer),
4817 bfd_get_filename (abfd));
4818 dump_die (comp_unit_die, dwarf2_die_debug);
4819 }
4820
4821 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4822 TUs by skipping the stub and going directly to the entry in the DWO file.
4823 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4824 to get it via circuitous means. Blech. */
4825 if (comp_dir != NULL)
4826 result_reader->comp_dir = DW_STRING (comp_dir);
4827
4828 /* Skip dummy compilation units. */
4829 if (info_ptr >= begin_info_ptr + dwo_unit->length
4830 || peek_abbrev_code (abfd, info_ptr) == 0)
4831 return 0;
4832
4833 *result_info_ptr = info_ptr;
4834 return 1;
4835 }
4836
4837 /* Subroutine of init_cutu_and_read_dies to simplify it.
4838 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4839 Returns NULL if the specified DWO unit cannot be found. */
4840
4841 static struct dwo_unit *
4842 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4843 struct die_info *comp_unit_die)
4844 {
4845 struct dwarf2_cu *cu = this_cu->cu;
4846 struct attribute *attr;
4847 ULONGEST signature;
4848 struct dwo_unit *dwo_unit;
4849 const char *comp_dir, *dwo_name;
4850
4851 gdb_assert (cu != NULL);
4852
4853 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4854 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4855 gdb_assert (attr != NULL);
4856 dwo_name = DW_STRING (attr);
4857 comp_dir = NULL;
4858 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4859 if (attr)
4860 comp_dir = DW_STRING (attr);
4861
4862 if (this_cu->is_debug_types)
4863 {
4864 struct signatured_type *sig_type;
4865
4866 /* Since this_cu is the first member of struct signatured_type,
4867 we can go from a pointer to one to a pointer to the other. */
4868 sig_type = (struct signatured_type *) this_cu;
4869 signature = sig_type->signature;
4870 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4871 }
4872 else
4873 {
4874 struct attribute *attr;
4875
4876 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4877 if (! attr)
4878 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4879 " [in module %s]"),
4880 dwo_name, this_cu->objfile->name);
4881 signature = DW_UNSND (attr);
4882 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4883 signature);
4884 }
4885
4886 return dwo_unit;
4887 }
4888
4889 /* Subroutine of init_cutu_and_read_dies to simplify it.
4890 Read a TU directly from a DWO file, bypassing the stub. */
4891
4892 static void
4893 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4894 die_reader_func_ftype *die_reader_func,
4895 void *data)
4896 {
4897 struct dwarf2_cu *cu;
4898 struct signatured_type *sig_type;
4899 struct cleanup *cleanups, *free_cu_cleanup;
4900 struct die_reader_specs reader;
4901 const gdb_byte *info_ptr;
4902 struct die_info *comp_unit_die;
4903 int has_children;
4904
4905 /* Verify we can do the following downcast, and that we have the
4906 data we need. */
4907 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4908 sig_type = (struct signatured_type *) this_cu;
4909 gdb_assert (sig_type->dwo_unit != NULL);
4910
4911 cleanups = make_cleanup (null_cleanup, NULL);
4912
4913 gdb_assert (this_cu->cu == NULL);
4914 cu = xmalloc (sizeof (*cu));
4915 init_one_comp_unit (cu, this_cu);
4916 /* If an error occurs while loading, release our storage. */
4917 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4918
4919 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4920 0 /* abbrev_table_provided */,
4921 NULL /* stub_comp_unit_die */,
4922 sig_type->dwo_unit->dwo_file->comp_dir,
4923 &reader, &info_ptr,
4924 &comp_unit_die, &has_children) == 0)
4925 {
4926 /* Dummy die. */
4927 do_cleanups (cleanups);
4928 return;
4929 }
4930
4931 /* All the "real" work is done here. */
4932 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4933
4934 /* This duplicates some code in init_cutu_and_read_dies,
4935 but the alternative is making the latter more complex.
4936 This function is only for the special case of using DWO files directly:
4937 no point in overly complicating the general case just to handle this. */
4938 if (keep)
4939 {
4940 /* We've successfully allocated this compilation unit. Let our
4941 caller clean it up when finished with it. */
4942 discard_cleanups (free_cu_cleanup);
4943
4944 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4945 So we have to manually free the abbrev table. */
4946 dwarf2_free_abbrev_table (cu);
4947
4948 /* Link this CU into read_in_chain. */
4949 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4950 dwarf2_per_objfile->read_in_chain = this_cu;
4951 }
4952 else
4953 do_cleanups (free_cu_cleanup);
4954
4955 do_cleanups (cleanups);
4956 }
4957
4958 /* Initialize a CU (or TU) and read its DIEs.
4959 If the CU defers to a DWO file, read the DWO file as well.
4960
4961 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4962 Otherwise the table specified in the comp unit header is read in and used.
4963 This is an optimization for when we already have the abbrev table.
4964
4965 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4966 Otherwise, a new CU is allocated with xmalloc.
4967
4968 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4969 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4970
4971 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4972 linker) then DIE_READER_FUNC will not get called. */
4973
4974 static void
4975 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4976 struct abbrev_table *abbrev_table,
4977 int use_existing_cu, int keep,
4978 die_reader_func_ftype *die_reader_func,
4979 void *data)
4980 {
4981 struct objfile *objfile = dwarf2_per_objfile->objfile;
4982 struct dwarf2_section_info *section = this_cu->section;
4983 bfd *abfd = section->asection->owner;
4984 struct dwarf2_cu *cu;
4985 const gdb_byte *begin_info_ptr, *info_ptr;
4986 struct die_reader_specs reader;
4987 struct die_info *comp_unit_die;
4988 int has_children;
4989 struct attribute *attr;
4990 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4991 struct signatured_type *sig_type = NULL;
4992 struct dwarf2_section_info *abbrev_section;
4993 /* Non-zero if CU currently points to a DWO file and we need to
4994 reread it. When this happens we need to reread the skeleton die
4995 before we can reread the DWO file (this only applies to CUs, not TUs). */
4996 int rereading_dwo_cu = 0;
4997
4998 if (dwarf2_die_debug)
4999 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5000 this_cu->is_debug_types ? "type" : "comp",
5001 this_cu->offset.sect_off);
5002
5003 if (use_existing_cu)
5004 gdb_assert (keep);
5005
5006 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5007 file (instead of going through the stub), short-circuit all of this. */
5008 if (this_cu->reading_dwo_directly)
5009 {
5010 /* Narrow down the scope of possibilities to have to understand. */
5011 gdb_assert (this_cu->is_debug_types);
5012 gdb_assert (abbrev_table == NULL);
5013 gdb_assert (!use_existing_cu);
5014 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5015 return;
5016 }
5017
5018 cleanups = make_cleanup (null_cleanup, NULL);
5019
5020 /* This is cheap if the section is already read in. */
5021 dwarf2_read_section (objfile, section);
5022
5023 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5024
5025 abbrev_section = get_abbrev_section_for_cu (this_cu);
5026
5027 if (use_existing_cu && this_cu->cu != NULL)
5028 {
5029 cu = this_cu->cu;
5030
5031 /* If this CU is from a DWO file we need to start over, we need to
5032 refetch the attributes from the skeleton CU.
5033 This could be optimized by retrieving those attributes from when we
5034 were here the first time: the previous comp_unit_die was stored in
5035 comp_unit_obstack. But there's no data yet that we need this
5036 optimization. */
5037 if (cu->dwo_unit != NULL)
5038 rereading_dwo_cu = 1;
5039 }
5040 else
5041 {
5042 /* If !use_existing_cu, this_cu->cu must be NULL. */
5043 gdb_assert (this_cu->cu == NULL);
5044
5045 cu = xmalloc (sizeof (*cu));
5046 init_one_comp_unit (cu, this_cu);
5047
5048 /* If an error occurs while loading, release our storage. */
5049 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5050 }
5051
5052 /* Get the header. */
5053 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5054 {
5055 /* We already have the header, there's no need to read it in again. */
5056 info_ptr += cu->header.first_die_offset.cu_off;
5057 }
5058 else
5059 {
5060 if (this_cu->is_debug_types)
5061 {
5062 ULONGEST signature;
5063 cu_offset type_offset_in_tu;
5064
5065 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5066 abbrev_section, info_ptr,
5067 &signature,
5068 &type_offset_in_tu);
5069
5070 /* Since per_cu is the first member of struct signatured_type,
5071 we can go from a pointer to one to a pointer to the other. */
5072 sig_type = (struct signatured_type *) this_cu;
5073 gdb_assert (sig_type->signature == signature);
5074 gdb_assert (sig_type->type_offset_in_tu.cu_off
5075 == type_offset_in_tu.cu_off);
5076 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5077
5078 /* LENGTH has not been set yet for type units if we're
5079 using .gdb_index. */
5080 this_cu->length = get_cu_length (&cu->header);
5081
5082 /* Establish the type offset that can be used to lookup the type. */
5083 sig_type->type_offset_in_section.sect_off =
5084 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5085 }
5086 else
5087 {
5088 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5089 abbrev_section,
5090 info_ptr, 0);
5091
5092 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5093 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5094 }
5095 }
5096
5097 /* Skip dummy compilation units. */
5098 if (info_ptr >= begin_info_ptr + this_cu->length
5099 || peek_abbrev_code (abfd, info_ptr) == 0)
5100 {
5101 do_cleanups (cleanups);
5102 return;
5103 }
5104
5105 /* If we don't have them yet, read the abbrevs for this compilation unit.
5106 And if we need to read them now, make sure they're freed when we're
5107 done. Note that it's important that if the CU had an abbrev table
5108 on entry we don't free it when we're done: Somewhere up the call stack
5109 it may be in use. */
5110 if (abbrev_table != NULL)
5111 {
5112 gdb_assert (cu->abbrev_table == NULL);
5113 gdb_assert (cu->header.abbrev_offset.sect_off
5114 == abbrev_table->offset.sect_off);
5115 cu->abbrev_table = abbrev_table;
5116 }
5117 else if (cu->abbrev_table == NULL)
5118 {
5119 dwarf2_read_abbrevs (cu, abbrev_section);
5120 make_cleanup (dwarf2_free_abbrev_table, cu);
5121 }
5122 else if (rereading_dwo_cu)
5123 {
5124 dwarf2_free_abbrev_table (cu);
5125 dwarf2_read_abbrevs (cu, abbrev_section);
5126 }
5127
5128 /* Read the top level CU/TU die. */
5129 init_cu_die_reader (&reader, cu, section, NULL);
5130 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5131
5132 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5133 from the DWO file.
5134 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5135 DWO CU, that this test will fail (the attribute will not be present). */
5136 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5137 if (attr)
5138 {
5139 struct dwo_unit *dwo_unit;
5140 struct die_info *dwo_comp_unit_die;
5141
5142 if (has_children)
5143 {
5144 complaint (&symfile_complaints,
5145 _("compilation unit with DW_AT_GNU_dwo_name"
5146 " has children (offset 0x%x) [in module %s]"),
5147 this_cu->offset.sect_off, bfd_get_filename (abfd));
5148 }
5149 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5150 if (dwo_unit != NULL)
5151 {
5152 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5153 abbrev_table != NULL,
5154 comp_unit_die, NULL,
5155 &reader, &info_ptr,
5156 &dwo_comp_unit_die, &has_children) == 0)
5157 {
5158 /* Dummy die. */
5159 do_cleanups (cleanups);
5160 return;
5161 }
5162 comp_unit_die = dwo_comp_unit_die;
5163 }
5164 else
5165 {
5166 /* Yikes, we couldn't find the rest of the DIE, we only have
5167 the stub. A complaint has already been logged. There's
5168 not much more we can do except pass on the stub DIE to
5169 die_reader_func. We don't want to throw an error on bad
5170 debug info. */
5171 }
5172 }
5173
5174 /* All of the above is setup for this call. Yikes. */
5175 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5176
5177 /* Done, clean up. */
5178 if (free_cu_cleanup != NULL)
5179 {
5180 if (keep)
5181 {
5182 /* We've successfully allocated this compilation unit. Let our
5183 caller clean it up when finished with it. */
5184 discard_cleanups (free_cu_cleanup);
5185
5186 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5187 So we have to manually free the abbrev table. */
5188 dwarf2_free_abbrev_table (cu);
5189
5190 /* Link this CU into read_in_chain. */
5191 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5192 dwarf2_per_objfile->read_in_chain = this_cu;
5193 }
5194 else
5195 do_cleanups (free_cu_cleanup);
5196 }
5197
5198 do_cleanups (cleanups);
5199 }
5200
5201 /* Read CU/TU THIS_CU in section SECTION,
5202 but do not follow DW_AT_GNU_dwo_name if present.
5203 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5204 to have already done the lookup to find the DWO/DWP file).
5205
5206 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5207 THIS_CU->is_debug_types, but nothing else.
5208
5209 We fill in THIS_CU->length.
5210
5211 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5212 linker) then DIE_READER_FUNC will not get called.
5213
5214 THIS_CU->cu is always freed when done.
5215 This is done in order to not leave THIS_CU->cu in a state where we have
5216 to care whether it refers to the "main" CU or the DWO CU. */
5217
5218 static void
5219 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5220 struct dwarf2_section_info *abbrev_section,
5221 struct dwo_file *dwo_file,
5222 die_reader_func_ftype *die_reader_func,
5223 void *data)
5224 {
5225 struct objfile *objfile = dwarf2_per_objfile->objfile;
5226 struct dwarf2_section_info *section = this_cu->section;
5227 bfd *abfd = section->asection->owner;
5228 struct dwarf2_cu cu;
5229 const gdb_byte *begin_info_ptr, *info_ptr;
5230 struct die_reader_specs reader;
5231 struct cleanup *cleanups;
5232 struct die_info *comp_unit_die;
5233 int has_children;
5234
5235 if (dwarf2_die_debug)
5236 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5237 this_cu->is_debug_types ? "type" : "comp",
5238 this_cu->offset.sect_off);
5239
5240 gdb_assert (this_cu->cu == NULL);
5241
5242 /* This is cheap if the section is already read in. */
5243 dwarf2_read_section (objfile, section);
5244
5245 init_one_comp_unit (&cu, this_cu);
5246
5247 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5248
5249 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5250 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5251 abbrev_section, info_ptr,
5252 this_cu->is_debug_types);
5253
5254 this_cu->length = get_cu_length (&cu.header);
5255
5256 /* Skip dummy compilation units. */
5257 if (info_ptr >= begin_info_ptr + this_cu->length
5258 || peek_abbrev_code (abfd, info_ptr) == 0)
5259 {
5260 do_cleanups (cleanups);
5261 return;
5262 }
5263
5264 dwarf2_read_abbrevs (&cu, abbrev_section);
5265 make_cleanup (dwarf2_free_abbrev_table, &cu);
5266
5267 init_cu_die_reader (&reader, &cu, section, dwo_file);
5268 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5269
5270 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5271
5272 do_cleanups (cleanups);
5273 }
5274
5275 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5276 does not lookup the specified DWO file.
5277 This cannot be used to read DWO files.
5278
5279 THIS_CU->cu is always freed when done.
5280 This is done in order to not leave THIS_CU->cu in a state where we have
5281 to care whether it refers to the "main" CU or the DWO CU.
5282 We can revisit this if the data shows there's a performance issue. */
5283
5284 static void
5285 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5286 die_reader_func_ftype *die_reader_func,
5287 void *data)
5288 {
5289 init_cutu_and_read_dies_no_follow (this_cu,
5290 get_abbrev_section_for_cu (this_cu),
5291 NULL,
5292 die_reader_func, data);
5293 }
5294 \f
5295 /* Type Unit Groups.
5296
5297 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5298 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5299 so that all types coming from the same compilation (.o file) are grouped
5300 together. A future step could be to put the types in the same symtab as
5301 the CU the types ultimately came from. */
5302
5303 static hashval_t
5304 hash_type_unit_group (const void *item)
5305 {
5306 const struct type_unit_group *tu_group = item;
5307
5308 return hash_stmt_list_entry (&tu_group->hash);
5309 }
5310
5311 static int
5312 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5313 {
5314 const struct type_unit_group *lhs = item_lhs;
5315 const struct type_unit_group *rhs = item_rhs;
5316
5317 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5318 }
5319
5320 /* Allocate a hash table for type unit groups. */
5321
5322 static htab_t
5323 allocate_type_unit_groups_table (void)
5324 {
5325 return htab_create_alloc_ex (3,
5326 hash_type_unit_group,
5327 eq_type_unit_group,
5328 NULL,
5329 &dwarf2_per_objfile->objfile->objfile_obstack,
5330 hashtab_obstack_allocate,
5331 dummy_obstack_deallocate);
5332 }
5333
5334 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5335 partial symtabs. We combine several TUs per psymtab to not let the size
5336 of any one psymtab grow too big. */
5337 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5338 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5339
5340 /* Helper routine for get_type_unit_group.
5341 Create the type_unit_group object used to hold one or more TUs. */
5342
5343 static struct type_unit_group *
5344 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5345 {
5346 struct objfile *objfile = dwarf2_per_objfile->objfile;
5347 struct dwarf2_per_cu_data *per_cu;
5348 struct type_unit_group *tu_group;
5349
5350 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5351 struct type_unit_group);
5352 per_cu = &tu_group->per_cu;
5353 per_cu->objfile = objfile;
5354
5355 if (dwarf2_per_objfile->using_index)
5356 {
5357 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5358 struct dwarf2_per_cu_quick_data);
5359 }
5360 else
5361 {
5362 unsigned int line_offset = line_offset_struct.sect_off;
5363 struct partial_symtab *pst;
5364 char *name;
5365
5366 /* Give the symtab a useful name for debug purposes. */
5367 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5368 name = xstrprintf ("<type_units_%d>",
5369 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5370 else
5371 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5372
5373 pst = create_partial_symtab (per_cu, name);
5374 pst->anonymous = 1;
5375
5376 xfree (name);
5377 }
5378
5379 tu_group->hash.dwo_unit = cu->dwo_unit;
5380 tu_group->hash.line_offset = line_offset_struct;
5381
5382 return tu_group;
5383 }
5384
5385 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5386 STMT_LIST is a DW_AT_stmt_list attribute. */
5387
5388 static struct type_unit_group *
5389 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5390 {
5391 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5392 struct type_unit_group *tu_group;
5393 void **slot;
5394 unsigned int line_offset;
5395 struct type_unit_group type_unit_group_for_lookup;
5396
5397 if (dwarf2_per_objfile->type_unit_groups == NULL)
5398 {
5399 dwarf2_per_objfile->type_unit_groups =
5400 allocate_type_unit_groups_table ();
5401 }
5402
5403 /* Do we need to create a new group, or can we use an existing one? */
5404
5405 if (stmt_list)
5406 {
5407 line_offset = DW_UNSND (stmt_list);
5408 ++tu_stats->nr_symtab_sharers;
5409 }
5410 else
5411 {
5412 /* Ugh, no stmt_list. Rare, but we have to handle it.
5413 We can do various things here like create one group per TU or
5414 spread them over multiple groups to split up the expansion work.
5415 To avoid worst case scenarios (too many groups or too large groups)
5416 we, umm, group them in bunches. */
5417 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5418 | (tu_stats->nr_stmt_less_type_units
5419 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5420 ++tu_stats->nr_stmt_less_type_units;
5421 }
5422
5423 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5424 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5425 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5426 &type_unit_group_for_lookup, INSERT);
5427 if (*slot != NULL)
5428 {
5429 tu_group = *slot;
5430 gdb_assert (tu_group != NULL);
5431 }
5432 else
5433 {
5434 sect_offset line_offset_struct;
5435
5436 line_offset_struct.sect_off = line_offset;
5437 tu_group = create_type_unit_group (cu, line_offset_struct);
5438 *slot = tu_group;
5439 ++tu_stats->nr_symtabs;
5440 }
5441
5442 return tu_group;
5443 }
5444
5445 /* Struct used to sort TUs by their abbreviation table offset. */
5446
5447 struct tu_abbrev_offset
5448 {
5449 struct signatured_type *sig_type;
5450 sect_offset abbrev_offset;
5451 };
5452
5453 /* Helper routine for build_type_unit_groups, passed to qsort. */
5454
5455 static int
5456 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5457 {
5458 const struct tu_abbrev_offset * const *a = ap;
5459 const struct tu_abbrev_offset * const *b = bp;
5460 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5461 unsigned int boff = (*b)->abbrev_offset.sect_off;
5462
5463 return (aoff > boff) - (aoff < boff);
5464 }
5465
5466 /* A helper function to add a type_unit_group to a table. */
5467
5468 static int
5469 add_type_unit_group_to_table (void **slot, void *datum)
5470 {
5471 struct type_unit_group *tu_group = *slot;
5472 struct type_unit_group ***datap = datum;
5473
5474 **datap = tu_group;
5475 ++*datap;
5476
5477 return 1;
5478 }
5479
5480 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5481 each one passing FUNC,DATA.
5482
5483 The efficiency is because we sort TUs by the abbrev table they use and
5484 only read each abbrev table once. In one program there are 200K TUs
5485 sharing 8K abbrev tables.
5486
5487 The main purpose of this function is to support building the
5488 dwarf2_per_objfile->type_unit_groups table.
5489 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5490 can collapse the search space by grouping them by stmt_list.
5491 The savings can be significant, in the same program from above the 200K TUs
5492 share 8K stmt_list tables.
5493
5494 FUNC is expected to call get_type_unit_group, which will create the
5495 struct type_unit_group if necessary and add it to
5496 dwarf2_per_objfile->type_unit_groups. */
5497
5498 static void
5499 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5500 {
5501 struct objfile *objfile = dwarf2_per_objfile->objfile;
5502 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5503 struct cleanup *cleanups;
5504 struct abbrev_table *abbrev_table;
5505 sect_offset abbrev_offset;
5506 struct tu_abbrev_offset *sorted_by_abbrev;
5507 struct type_unit_group **iter;
5508 int i;
5509
5510 /* It's up to the caller to not call us multiple times. */
5511 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5512
5513 if (dwarf2_per_objfile->n_type_units == 0)
5514 return;
5515
5516 /* TUs typically share abbrev tables, and there can be way more TUs than
5517 abbrev tables. Sort by abbrev table to reduce the number of times we
5518 read each abbrev table in.
5519 Alternatives are to punt or to maintain a cache of abbrev tables.
5520 This is simpler and efficient enough for now.
5521
5522 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5523 symtab to use). Typically TUs with the same abbrev offset have the same
5524 stmt_list value too so in practice this should work well.
5525
5526 The basic algorithm here is:
5527
5528 sort TUs by abbrev table
5529 for each TU with same abbrev table:
5530 read abbrev table if first user
5531 read TU top level DIE
5532 [IWBN if DWO skeletons had DW_AT_stmt_list]
5533 call FUNC */
5534
5535 if (dwarf2_read_debug)
5536 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5537
5538 /* Sort in a separate table to maintain the order of all_type_units
5539 for .gdb_index: TU indices directly index all_type_units. */
5540 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5541 dwarf2_per_objfile->n_type_units);
5542 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5543 {
5544 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5545
5546 sorted_by_abbrev[i].sig_type = sig_type;
5547 sorted_by_abbrev[i].abbrev_offset =
5548 read_abbrev_offset (sig_type->per_cu.section,
5549 sig_type->per_cu.offset);
5550 }
5551 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5552 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5553 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5554
5555 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5556 called any number of times, so we don't reset tu_stats here. */
5557
5558 abbrev_offset.sect_off = ~(unsigned) 0;
5559 abbrev_table = NULL;
5560 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5561
5562 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5563 {
5564 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5565
5566 /* Switch to the next abbrev table if necessary. */
5567 if (abbrev_table == NULL
5568 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5569 {
5570 if (abbrev_table != NULL)
5571 {
5572 abbrev_table_free (abbrev_table);
5573 /* Reset to NULL in case abbrev_table_read_table throws
5574 an error: abbrev_table_free_cleanup will get called. */
5575 abbrev_table = NULL;
5576 }
5577 abbrev_offset = tu->abbrev_offset;
5578 abbrev_table =
5579 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5580 abbrev_offset);
5581 ++tu_stats->nr_uniq_abbrev_tables;
5582 }
5583
5584 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5585 func, data);
5586 }
5587
5588 /* type_unit_groups can be NULL if there is an error in the debug info.
5589 Just create an empty table so the rest of gdb doesn't have to watch
5590 for this error case. */
5591 if (dwarf2_per_objfile->type_unit_groups == NULL)
5592 {
5593 dwarf2_per_objfile->type_unit_groups =
5594 allocate_type_unit_groups_table ();
5595 dwarf2_per_objfile->n_type_unit_groups = 0;
5596 }
5597
5598 /* Create a vector of pointers to primary type units to make it easy to
5599 iterate over them and CUs. See dw2_get_primary_cu. */
5600 dwarf2_per_objfile->n_type_unit_groups =
5601 htab_elements (dwarf2_per_objfile->type_unit_groups);
5602 dwarf2_per_objfile->all_type_unit_groups =
5603 obstack_alloc (&objfile->objfile_obstack,
5604 dwarf2_per_objfile->n_type_unit_groups
5605 * sizeof (struct type_unit_group *));
5606 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5607 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5608 add_type_unit_group_to_table, &iter);
5609 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5610 == dwarf2_per_objfile->n_type_unit_groups);
5611
5612 do_cleanups (cleanups);
5613
5614 if (dwarf2_read_debug)
5615 {
5616 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5617 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5618 dwarf2_per_objfile->n_type_units);
5619 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5620 tu_stats->nr_uniq_abbrev_tables);
5621 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5622 tu_stats->nr_symtabs);
5623 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5624 tu_stats->nr_symtab_sharers);
5625 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5626 tu_stats->nr_stmt_less_type_units);
5627 }
5628 }
5629 \f
5630 /* Partial symbol tables. */
5631
5632 /* Create a psymtab named NAME and assign it to PER_CU.
5633
5634 The caller must fill in the following details:
5635 dirname, textlow, texthigh. */
5636
5637 static struct partial_symtab *
5638 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5639 {
5640 struct objfile *objfile = per_cu->objfile;
5641 struct partial_symtab *pst;
5642
5643 pst = start_psymtab_common (objfile, objfile->section_offsets,
5644 name, 0,
5645 objfile->global_psymbols.next,
5646 objfile->static_psymbols.next);
5647
5648 pst->psymtabs_addrmap_supported = 1;
5649
5650 /* This is the glue that links PST into GDB's symbol API. */
5651 pst->read_symtab_private = per_cu;
5652 pst->read_symtab = dwarf2_read_symtab;
5653 per_cu->v.psymtab = pst;
5654
5655 return pst;
5656 }
5657
5658 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5659 type. */
5660
5661 struct process_psymtab_comp_unit_data
5662 {
5663 /* True if we are reading a DW_TAG_partial_unit. */
5664
5665 int want_partial_unit;
5666
5667 /* The "pretend" language that is used if the CU doesn't declare a
5668 language. */
5669
5670 enum language pretend_language;
5671 };
5672
5673 /* die_reader_func for process_psymtab_comp_unit. */
5674
5675 static void
5676 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5677 const gdb_byte *info_ptr,
5678 struct die_info *comp_unit_die,
5679 int has_children,
5680 void *data)
5681 {
5682 struct dwarf2_cu *cu = reader->cu;
5683 struct objfile *objfile = cu->objfile;
5684 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5685 struct attribute *attr;
5686 CORE_ADDR baseaddr;
5687 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5688 struct partial_symtab *pst;
5689 int has_pc_info;
5690 const char *filename;
5691 struct process_psymtab_comp_unit_data *info = data;
5692
5693 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5694 return;
5695
5696 gdb_assert (! per_cu->is_debug_types);
5697
5698 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5699
5700 cu->list_in_scope = &file_symbols;
5701
5702 /* Allocate a new partial symbol table structure. */
5703 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5704 if (attr == NULL || !DW_STRING (attr))
5705 filename = "";
5706 else
5707 filename = DW_STRING (attr);
5708
5709 pst = create_partial_symtab (per_cu, filename);
5710
5711 /* This must be done before calling dwarf2_build_include_psymtabs. */
5712 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5713 if (attr != NULL)
5714 pst->dirname = DW_STRING (attr);
5715
5716 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5717
5718 dwarf2_find_base_address (comp_unit_die, cu);
5719
5720 /* Possibly set the default values of LOWPC and HIGHPC from
5721 `DW_AT_ranges'. */
5722 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5723 &best_highpc, cu, pst);
5724 if (has_pc_info == 1 && best_lowpc < best_highpc)
5725 /* Store the contiguous range if it is not empty; it can be empty for
5726 CUs with no code. */
5727 addrmap_set_empty (objfile->psymtabs_addrmap,
5728 best_lowpc + baseaddr,
5729 best_highpc + baseaddr - 1, pst);
5730
5731 /* Check if comp unit has_children.
5732 If so, read the rest of the partial symbols from this comp unit.
5733 If not, there's no more debug_info for this comp unit. */
5734 if (has_children)
5735 {
5736 struct partial_die_info *first_die;
5737 CORE_ADDR lowpc, highpc;
5738
5739 lowpc = ((CORE_ADDR) -1);
5740 highpc = ((CORE_ADDR) 0);
5741
5742 first_die = load_partial_dies (reader, info_ptr, 1);
5743
5744 scan_partial_symbols (first_die, &lowpc, &highpc,
5745 ! has_pc_info, cu);
5746
5747 /* If we didn't find a lowpc, set it to highpc to avoid
5748 complaints from `maint check'. */
5749 if (lowpc == ((CORE_ADDR) -1))
5750 lowpc = highpc;
5751
5752 /* If the compilation unit didn't have an explicit address range,
5753 then use the information extracted from its child dies. */
5754 if (! has_pc_info)
5755 {
5756 best_lowpc = lowpc;
5757 best_highpc = highpc;
5758 }
5759 }
5760 pst->textlow = best_lowpc + baseaddr;
5761 pst->texthigh = best_highpc + baseaddr;
5762
5763 pst->n_global_syms = objfile->global_psymbols.next -
5764 (objfile->global_psymbols.list + pst->globals_offset);
5765 pst->n_static_syms = objfile->static_psymbols.next -
5766 (objfile->static_psymbols.list + pst->statics_offset);
5767 sort_pst_symbols (objfile, pst);
5768
5769 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5770 {
5771 int i;
5772 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5773 struct dwarf2_per_cu_data *iter;
5774
5775 /* Fill in 'dependencies' here; we fill in 'users' in a
5776 post-pass. */
5777 pst->number_of_dependencies = len;
5778 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5779 len * sizeof (struct symtab *));
5780 for (i = 0;
5781 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5782 i, iter);
5783 ++i)
5784 pst->dependencies[i] = iter->v.psymtab;
5785
5786 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5787 }
5788
5789 /* Get the list of files included in the current compilation unit,
5790 and build a psymtab for each of them. */
5791 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5792
5793 if (dwarf2_read_debug)
5794 {
5795 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5796
5797 fprintf_unfiltered (gdb_stdlog,
5798 "Psymtab for %s unit @0x%x: %s - %s"
5799 ", %d global, %d static syms\n",
5800 per_cu->is_debug_types ? "type" : "comp",
5801 per_cu->offset.sect_off,
5802 paddress (gdbarch, pst->textlow),
5803 paddress (gdbarch, pst->texthigh),
5804 pst->n_global_syms, pst->n_static_syms);
5805 }
5806 }
5807
5808 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5809 Process compilation unit THIS_CU for a psymtab. */
5810
5811 static void
5812 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5813 int want_partial_unit,
5814 enum language pretend_language)
5815 {
5816 struct process_psymtab_comp_unit_data info;
5817
5818 /* If this compilation unit was already read in, free the
5819 cached copy in order to read it in again. This is
5820 necessary because we skipped some symbols when we first
5821 read in the compilation unit (see load_partial_dies).
5822 This problem could be avoided, but the benefit is unclear. */
5823 if (this_cu->cu != NULL)
5824 free_one_cached_comp_unit (this_cu);
5825
5826 gdb_assert (! this_cu->is_debug_types);
5827 info.want_partial_unit = want_partial_unit;
5828 info.pretend_language = pretend_language;
5829 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5830 process_psymtab_comp_unit_reader,
5831 &info);
5832
5833 /* Age out any secondary CUs. */
5834 age_cached_comp_units ();
5835 }
5836
5837 /* Reader function for build_type_psymtabs. */
5838
5839 static void
5840 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5841 const gdb_byte *info_ptr,
5842 struct die_info *type_unit_die,
5843 int has_children,
5844 void *data)
5845 {
5846 struct objfile *objfile = dwarf2_per_objfile->objfile;
5847 struct dwarf2_cu *cu = reader->cu;
5848 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5849 struct signatured_type *sig_type;
5850 struct type_unit_group *tu_group;
5851 struct attribute *attr;
5852 struct partial_die_info *first_die;
5853 CORE_ADDR lowpc, highpc;
5854 struct partial_symtab *pst;
5855
5856 gdb_assert (data == NULL);
5857 gdb_assert (per_cu->is_debug_types);
5858 sig_type = (struct signatured_type *) per_cu;
5859
5860 if (! has_children)
5861 return;
5862
5863 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5864 tu_group = get_type_unit_group (cu, attr);
5865
5866 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5867
5868 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5869 cu->list_in_scope = &file_symbols;
5870 pst = create_partial_symtab (per_cu, "");
5871 pst->anonymous = 1;
5872
5873 first_die = load_partial_dies (reader, info_ptr, 1);
5874
5875 lowpc = (CORE_ADDR) -1;
5876 highpc = (CORE_ADDR) 0;
5877 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5878
5879 pst->n_global_syms = objfile->global_psymbols.next -
5880 (objfile->global_psymbols.list + pst->globals_offset);
5881 pst->n_static_syms = objfile->static_psymbols.next -
5882 (objfile->static_psymbols.list + pst->statics_offset);
5883 sort_pst_symbols (objfile, pst);
5884 }
5885
5886 /* Traversal function for build_type_psymtabs. */
5887
5888 static int
5889 build_type_psymtab_dependencies (void **slot, void *info)
5890 {
5891 struct objfile *objfile = dwarf2_per_objfile->objfile;
5892 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5893 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5894 struct partial_symtab *pst = per_cu->v.psymtab;
5895 int len = VEC_length (sig_type_ptr, tu_group->tus);
5896 struct signatured_type *iter;
5897 int i;
5898
5899 gdb_assert (len > 0);
5900 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5901
5902 pst->number_of_dependencies = len;
5903 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5904 len * sizeof (struct psymtab *));
5905 for (i = 0;
5906 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5907 ++i)
5908 {
5909 gdb_assert (iter->per_cu.is_debug_types);
5910 pst->dependencies[i] = iter->per_cu.v.psymtab;
5911 iter->type_unit_group = tu_group;
5912 }
5913
5914 VEC_free (sig_type_ptr, tu_group->tus);
5915
5916 return 1;
5917 }
5918
5919 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5920 Build partial symbol tables for the .debug_types comp-units. */
5921
5922 static void
5923 build_type_psymtabs (struct objfile *objfile)
5924 {
5925 if (! create_all_type_units (objfile))
5926 return;
5927
5928 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5929
5930 /* Now that all TUs have been processed we can fill in the dependencies. */
5931 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5932 build_type_psymtab_dependencies, NULL);
5933 }
5934
5935 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5936
5937 static void
5938 psymtabs_addrmap_cleanup (void *o)
5939 {
5940 struct objfile *objfile = o;
5941
5942 objfile->psymtabs_addrmap = NULL;
5943 }
5944
5945 /* Compute the 'user' field for each psymtab in OBJFILE. */
5946
5947 static void
5948 set_partial_user (struct objfile *objfile)
5949 {
5950 int i;
5951
5952 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5953 {
5954 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5955 struct partial_symtab *pst = per_cu->v.psymtab;
5956 int j;
5957
5958 if (pst == NULL)
5959 continue;
5960
5961 for (j = 0; j < pst->number_of_dependencies; ++j)
5962 {
5963 /* Set the 'user' field only if it is not already set. */
5964 if (pst->dependencies[j]->user == NULL)
5965 pst->dependencies[j]->user = pst;
5966 }
5967 }
5968 }
5969
5970 /* Build the partial symbol table by doing a quick pass through the
5971 .debug_info and .debug_abbrev sections. */
5972
5973 static void
5974 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5975 {
5976 struct cleanup *back_to, *addrmap_cleanup;
5977 struct obstack temp_obstack;
5978 int i;
5979
5980 if (dwarf2_read_debug)
5981 {
5982 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5983 objfile->name);
5984 }
5985
5986 dwarf2_per_objfile->reading_partial_symbols = 1;
5987
5988 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5989
5990 /* Any cached compilation units will be linked by the per-objfile
5991 read_in_chain. Make sure to free them when we're done. */
5992 back_to = make_cleanup (free_cached_comp_units, NULL);
5993
5994 build_type_psymtabs (objfile);
5995
5996 create_all_comp_units (objfile);
5997
5998 /* Create a temporary address map on a temporary obstack. We later
5999 copy this to the final obstack. */
6000 obstack_init (&temp_obstack);
6001 make_cleanup_obstack_free (&temp_obstack);
6002 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6003 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6004
6005 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6006 {
6007 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6008
6009 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6010 }
6011
6012 set_partial_user (objfile);
6013
6014 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6015 &objfile->objfile_obstack);
6016 discard_cleanups (addrmap_cleanup);
6017
6018 do_cleanups (back_to);
6019
6020 if (dwarf2_read_debug)
6021 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6022 objfile->name);
6023 }
6024
6025 /* die_reader_func for load_partial_comp_unit. */
6026
6027 static void
6028 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6029 const gdb_byte *info_ptr,
6030 struct die_info *comp_unit_die,
6031 int has_children,
6032 void *data)
6033 {
6034 struct dwarf2_cu *cu = reader->cu;
6035
6036 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6037
6038 /* Check if comp unit has_children.
6039 If so, read the rest of the partial symbols from this comp unit.
6040 If not, there's no more debug_info for this comp unit. */
6041 if (has_children)
6042 load_partial_dies (reader, info_ptr, 0);
6043 }
6044
6045 /* Load the partial DIEs for a secondary CU into memory.
6046 This is also used when rereading a primary CU with load_all_dies. */
6047
6048 static void
6049 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6050 {
6051 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6052 load_partial_comp_unit_reader, NULL);
6053 }
6054
6055 static void
6056 read_comp_units_from_section (struct objfile *objfile,
6057 struct dwarf2_section_info *section,
6058 unsigned int is_dwz,
6059 int *n_allocated,
6060 int *n_comp_units,
6061 struct dwarf2_per_cu_data ***all_comp_units)
6062 {
6063 const gdb_byte *info_ptr;
6064 bfd *abfd = section->asection->owner;
6065
6066 if (dwarf2_read_debug)
6067 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6068 section->asection->name, bfd_get_filename (abfd));
6069
6070 dwarf2_read_section (objfile, section);
6071
6072 info_ptr = section->buffer;
6073
6074 while (info_ptr < section->buffer + section->size)
6075 {
6076 unsigned int length, initial_length_size;
6077 struct dwarf2_per_cu_data *this_cu;
6078 sect_offset offset;
6079
6080 offset.sect_off = info_ptr - section->buffer;
6081
6082 /* Read just enough information to find out where the next
6083 compilation unit is. */
6084 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6085
6086 /* Save the compilation unit for later lookup. */
6087 this_cu = obstack_alloc (&objfile->objfile_obstack,
6088 sizeof (struct dwarf2_per_cu_data));
6089 memset (this_cu, 0, sizeof (*this_cu));
6090 this_cu->offset = offset;
6091 this_cu->length = length + initial_length_size;
6092 this_cu->is_dwz = is_dwz;
6093 this_cu->objfile = objfile;
6094 this_cu->section = section;
6095
6096 if (*n_comp_units == *n_allocated)
6097 {
6098 *n_allocated *= 2;
6099 *all_comp_units = xrealloc (*all_comp_units,
6100 *n_allocated
6101 * sizeof (struct dwarf2_per_cu_data *));
6102 }
6103 (*all_comp_units)[*n_comp_units] = this_cu;
6104 ++*n_comp_units;
6105
6106 info_ptr = info_ptr + this_cu->length;
6107 }
6108 }
6109
6110 /* Create a list of all compilation units in OBJFILE.
6111 This is only done for -readnow and building partial symtabs. */
6112
6113 static void
6114 create_all_comp_units (struct objfile *objfile)
6115 {
6116 int n_allocated;
6117 int n_comp_units;
6118 struct dwarf2_per_cu_data **all_comp_units;
6119 struct dwz_file *dwz;
6120
6121 n_comp_units = 0;
6122 n_allocated = 10;
6123 all_comp_units = xmalloc (n_allocated
6124 * sizeof (struct dwarf2_per_cu_data *));
6125
6126 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6127 &n_allocated, &n_comp_units, &all_comp_units);
6128
6129 dwz = dwarf2_get_dwz_file ();
6130 if (dwz != NULL)
6131 read_comp_units_from_section (objfile, &dwz->info, 1,
6132 &n_allocated, &n_comp_units,
6133 &all_comp_units);
6134
6135 dwarf2_per_objfile->all_comp_units
6136 = obstack_alloc (&objfile->objfile_obstack,
6137 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6138 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6139 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6140 xfree (all_comp_units);
6141 dwarf2_per_objfile->n_comp_units = n_comp_units;
6142 }
6143
6144 /* Process all loaded DIEs for compilation unit CU, starting at
6145 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6146 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6147 DW_AT_ranges). If NEED_PC is set, then this function will set
6148 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6149 and record the covered ranges in the addrmap. */
6150
6151 static void
6152 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6153 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6154 {
6155 struct partial_die_info *pdi;
6156
6157 /* Now, march along the PDI's, descending into ones which have
6158 interesting children but skipping the children of the other ones,
6159 until we reach the end of the compilation unit. */
6160
6161 pdi = first_die;
6162
6163 while (pdi != NULL)
6164 {
6165 fixup_partial_die (pdi, cu);
6166
6167 /* Anonymous namespaces or modules have no name but have interesting
6168 children, so we need to look at them. Ditto for anonymous
6169 enums. */
6170
6171 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6172 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6173 || pdi->tag == DW_TAG_imported_unit)
6174 {
6175 switch (pdi->tag)
6176 {
6177 case DW_TAG_subprogram:
6178 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6179 break;
6180 case DW_TAG_constant:
6181 case DW_TAG_variable:
6182 case DW_TAG_typedef:
6183 case DW_TAG_union_type:
6184 if (!pdi->is_declaration)
6185 {
6186 add_partial_symbol (pdi, cu);
6187 }
6188 break;
6189 case DW_TAG_class_type:
6190 case DW_TAG_interface_type:
6191 case DW_TAG_structure_type:
6192 if (!pdi->is_declaration)
6193 {
6194 add_partial_symbol (pdi, cu);
6195 }
6196 break;
6197 case DW_TAG_enumeration_type:
6198 if (!pdi->is_declaration)
6199 add_partial_enumeration (pdi, cu);
6200 break;
6201 case DW_TAG_base_type:
6202 case DW_TAG_subrange_type:
6203 /* File scope base type definitions are added to the partial
6204 symbol table. */
6205 add_partial_symbol (pdi, cu);
6206 break;
6207 case DW_TAG_namespace:
6208 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6209 break;
6210 case DW_TAG_module:
6211 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6212 break;
6213 case DW_TAG_imported_unit:
6214 {
6215 struct dwarf2_per_cu_data *per_cu;
6216
6217 /* For now we don't handle imported units in type units. */
6218 if (cu->per_cu->is_debug_types)
6219 {
6220 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6221 " supported in type units [in module %s]"),
6222 cu->objfile->name);
6223 }
6224
6225 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6226 pdi->is_dwz,
6227 cu->objfile);
6228
6229 /* Go read the partial unit, if needed. */
6230 if (per_cu->v.psymtab == NULL)
6231 process_psymtab_comp_unit (per_cu, 1, cu->language);
6232
6233 VEC_safe_push (dwarf2_per_cu_ptr,
6234 cu->per_cu->imported_symtabs, per_cu);
6235 }
6236 break;
6237 default:
6238 break;
6239 }
6240 }
6241
6242 /* If the die has a sibling, skip to the sibling. */
6243
6244 pdi = pdi->die_sibling;
6245 }
6246 }
6247
6248 /* Functions used to compute the fully scoped name of a partial DIE.
6249
6250 Normally, this is simple. For C++, the parent DIE's fully scoped
6251 name is concatenated with "::" and the partial DIE's name. For
6252 Java, the same thing occurs except that "." is used instead of "::".
6253 Enumerators are an exception; they use the scope of their parent
6254 enumeration type, i.e. the name of the enumeration type is not
6255 prepended to the enumerator.
6256
6257 There are two complexities. One is DW_AT_specification; in this
6258 case "parent" means the parent of the target of the specification,
6259 instead of the direct parent of the DIE. The other is compilers
6260 which do not emit DW_TAG_namespace; in this case we try to guess
6261 the fully qualified name of structure types from their members'
6262 linkage names. This must be done using the DIE's children rather
6263 than the children of any DW_AT_specification target. We only need
6264 to do this for structures at the top level, i.e. if the target of
6265 any DW_AT_specification (if any; otherwise the DIE itself) does not
6266 have a parent. */
6267
6268 /* Compute the scope prefix associated with PDI's parent, in
6269 compilation unit CU. The result will be allocated on CU's
6270 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6271 field. NULL is returned if no prefix is necessary. */
6272 static const char *
6273 partial_die_parent_scope (struct partial_die_info *pdi,
6274 struct dwarf2_cu *cu)
6275 {
6276 const char *grandparent_scope;
6277 struct partial_die_info *parent, *real_pdi;
6278
6279 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6280 then this means the parent of the specification DIE. */
6281
6282 real_pdi = pdi;
6283 while (real_pdi->has_specification)
6284 real_pdi = find_partial_die (real_pdi->spec_offset,
6285 real_pdi->spec_is_dwz, cu);
6286
6287 parent = real_pdi->die_parent;
6288 if (parent == NULL)
6289 return NULL;
6290
6291 if (parent->scope_set)
6292 return parent->scope;
6293
6294 fixup_partial_die (parent, cu);
6295
6296 grandparent_scope = partial_die_parent_scope (parent, cu);
6297
6298 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6299 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6300 Work around this problem here. */
6301 if (cu->language == language_cplus
6302 && parent->tag == DW_TAG_namespace
6303 && strcmp (parent->name, "::") == 0
6304 && grandparent_scope == NULL)
6305 {
6306 parent->scope = NULL;
6307 parent->scope_set = 1;
6308 return NULL;
6309 }
6310
6311 if (pdi->tag == DW_TAG_enumerator)
6312 /* Enumerators should not get the name of the enumeration as a prefix. */
6313 parent->scope = grandparent_scope;
6314 else if (parent->tag == DW_TAG_namespace
6315 || parent->tag == DW_TAG_module
6316 || parent->tag == DW_TAG_structure_type
6317 || parent->tag == DW_TAG_class_type
6318 || parent->tag == DW_TAG_interface_type
6319 || parent->tag == DW_TAG_union_type
6320 || parent->tag == DW_TAG_enumeration_type)
6321 {
6322 if (grandparent_scope == NULL)
6323 parent->scope = parent->name;
6324 else
6325 parent->scope = typename_concat (&cu->comp_unit_obstack,
6326 grandparent_scope,
6327 parent->name, 0, cu);
6328 }
6329 else
6330 {
6331 /* FIXME drow/2004-04-01: What should we be doing with
6332 function-local names? For partial symbols, we should probably be
6333 ignoring them. */
6334 complaint (&symfile_complaints,
6335 _("unhandled containing DIE tag %d for DIE at %d"),
6336 parent->tag, pdi->offset.sect_off);
6337 parent->scope = grandparent_scope;
6338 }
6339
6340 parent->scope_set = 1;
6341 return parent->scope;
6342 }
6343
6344 /* Return the fully scoped name associated with PDI, from compilation unit
6345 CU. The result will be allocated with malloc. */
6346
6347 static char *
6348 partial_die_full_name (struct partial_die_info *pdi,
6349 struct dwarf2_cu *cu)
6350 {
6351 const char *parent_scope;
6352
6353 /* If this is a template instantiation, we can not work out the
6354 template arguments from partial DIEs. So, unfortunately, we have
6355 to go through the full DIEs. At least any work we do building
6356 types here will be reused if full symbols are loaded later. */
6357 if (pdi->has_template_arguments)
6358 {
6359 fixup_partial_die (pdi, cu);
6360
6361 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6362 {
6363 struct die_info *die;
6364 struct attribute attr;
6365 struct dwarf2_cu *ref_cu = cu;
6366
6367 /* DW_FORM_ref_addr is using section offset. */
6368 attr.name = 0;
6369 attr.form = DW_FORM_ref_addr;
6370 attr.u.unsnd = pdi->offset.sect_off;
6371 die = follow_die_ref (NULL, &attr, &ref_cu);
6372
6373 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6374 }
6375 }
6376
6377 parent_scope = partial_die_parent_scope (pdi, cu);
6378 if (parent_scope == NULL)
6379 return NULL;
6380 else
6381 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6382 }
6383
6384 static void
6385 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6386 {
6387 struct objfile *objfile = cu->objfile;
6388 CORE_ADDR addr = 0;
6389 const char *actual_name = NULL;
6390 CORE_ADDR baseaddr;
6391 char *built_actual_name;
6392
6393 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6394
6395 built_actual_name = partial_die_full_name (pdi, cu);
6396 if (built_actual_name != NULL)
6397 actual_name = built_actual_name;
6398
6399 if (actual_name == NULL)
6400 actual_name = pdi->name;
6401
6402 switch (pdi->tag)
6403 {
6404 case DW_TAG_subprogram:
6405 if (pdi->is_external || cu->language == language_ada)
6406 {
6407 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6408 of the global scope. But in Ada, we want to be able to access
6409 nested procedures globally. So all Ada subprograms are stored
6410 in the global scope. */
6411 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6412 mst_text, objfile); */
6413 add_psymbol_to_list (actual_name, strlen (actual_name),
6414 built_actual_name != NULL,
6415 VAR_DOMAIN, LOC_BLOCK,
6416 &objfile->global_psymbols,
6417 0, pdi->lowpc + baseaddr,
6418 cu->language, objfile);
6419 }
6420 else
6421 {
6422 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6423 mst_file_text, objfile); */
6424 add_psymbol_to_list (actual_name, strlen (actual_name),
6425 built_actual_name != NULL,
6426 VAR_DOMAIN, LOC_BLOCK,
6427 &objfile->static_psymbols,
6428 0, pdi->lowpc + baseaddr,
6429 cu->language, objfile);
6430 }
6431 break;
6432 case DW_TAG_constant:
6433 {
6434 struct psymbol_allocation_list *list;
6435
6436 if (pdi->is_external)
6437 list = &objfile->global_psymbols;
6438 else
6439 list = &objfile->static_psymbols;
6440 add_psymbol_to_list (actual_name, strlen (actual_name),
6441 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6442 list, 0, 0, cu->language, objfile);
6443 }
6444 break;
6445 case DW_TAG_variable:
6446 if (pdi->d.locdesc)
6447 addr = decode_locdesc (pdi->d.locdesc, cu);
6448
6449 if (pdi->d.locdesc
6450 && addr == 0
6451 && !dwarf2_per_objfile->has_section_at_zero)
6452 {
6453 /* A global or static variable may also have been stripped
6454 out by the linker if unused, in which case its address
6455 will be nullified; do not add such variables into partial
6456 symbol table then. */
6457 }
6458 else if (pdi->is_external)
6459 {
6460 /* Global Variable.
6461 Don't enter into the minimal symbol tables as there is
6462 a minimal symbol table entry from the ELF symbols already.
6463 Enter into partial symbol table if it has a location
6464 descriptor or a type.
6465 If the location descriptor is missing, new_symbol will create
6466 a LOC_UNRESOLVED symbol, the address of the variable will then
6467 be determined from the minimal symbol table whenever the variable
6468 is referenced.
6469 The address for the partial symbol table entry is not
6470 used by GDB, but it comes in handy for debugging partial symbol
6471 table building. */
6472
6473 if (pdi->d.locdesc || pdi->has_type)
6474 add_psymbol_to_list (actual_name, strlen (actual_name),
6475 built_actual_name != NULL,
6476 VAR_DOMAIN, LOC_STATIC,
6477 &objfile->global_psymbols,
6478 0, addr + baseaddr,
6479 cu->language, objfile);
6480 }
6481 else
6482 {
6483 /* Static Variable. Skip symbols without location descriptors. */
6484 if (pdi->d.locdesc == NULL)
6485 {
6486 xfree (built_actual_name);
6487 return;
6488 }
6489 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6490 mst_file_data, objfile); */
6491 add_psymbol_to_list (actual_name, strlen (actual_name),
6492 built_actual_name != NULL,
6493 VAR_DOMAIN, LOC_STATIC,
6494 &objfile->static_psymbols,
6495 0, addr + baseaddr,
6496 cu->language, objfile);
6497 }
6498 break;
6499 case DW_TAG_typedef:
6500 case DW_TAG_base_type:
6501 case DW_TAG_subrange_type:
6502 add_psymbol_to_list (actual_name, strlen (actual_name),
6503 built_actual_name != NULL,
6504 VAR_DOMAIN, LOC_TYPEDEF,
6505 &objfile->static_psymbols,
6506 0, (CORE_ADDR) 0, cu->language, objfile);
6507 break;
6508 case DW_TAG_namespace:
6509 add_psymbol_to_list (actual_name, strlen (actual_name),
6510 built_actual_name != NULL,
6511 VAR_DOMAIN, LOC_TYPEDEF,
6512 &objfile->global_psymbols,
6513 0, (CORE_ADDR) 0, cu->language, objfile);
6514 break;
6515 case DW_TAG_class_type:
6516 case DW_TAG_interface_type:
6517 case DW_TAG_structure_type:
6518 case DW_TAG_union_type:
6519 case DW_TAG_enumeration_type:
6520 /* Skip external references. The DWARF standard says in the section
6521 about "Structure, Union, and Class Type Entries": "An incomplete
6522 structure, union or class type is represented by a structure,
6523 union or class entry that does not have a byte size attribute
6524 and that has a DW_AT_declaration attribute." */
6525 if (!pdi->has_byte_size && pdi->is_declaration)
6526 {
6527 xfree (built_actual_name);
6528 return;
6529 }
6530
6531 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6532 static vs. global. */
6533 add_psymbol_to_list (actual_name, strlen (actual_name),
6534 built_actual_name != NULL,
6535 STRUCT_DOMAIN, LOC_TYPEDEF,
6536 (cu->language == language_cplus
6537 || cu->language == language_java)
6538 ? &objfile->global_psymbols
6539 : &objfile->static_psymbols,
6540 0, (CORE_ADDR) 0, cu->language, objfile);
6541
6542 break;
6543 case DW_TAG_enumerator:
6544 add_psymbol_to_list (actual_name, strlen (actual_name),
6545 built_actual_name != NULL,
6546 VAR_DOMAIN, LOC_CONST,
6547 (cu->language == language_cplus
6548 || cu->language == language_java)
6549 ? &objfile->global_psymbols
6550 : &objfile->static_psymbols,
6551 0, (CORE_ADDR) 0, cu->language, objfile);
6552 break;
6553 default:
6554 break;
6555 }
6556
6557 xfree (built_actual_name);
6558 }
6559
6560 /* Read a partial die corresponding to a namespace; also, add a symbol
6561 corresponding to that namespace to the symbol table. NAMESPACE is
6562 the name of the enclosing namespace. */
6563
6564 static void
6565 add_partial_namespace (struct partial_die_info *pdi,
6566 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6567 int need_pc, struct dwarf2_cu *cu)
6568 {
6569 /* Add a symbol for the namespace. */
6570
6571 add_partial_symbol (pdi, cu);
6572
6573 /* Now scan partial symbols in that namespace. */
6574
6575 if (pdi->has_children)
6576 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6577 }
6578
6579 /* Read a partial die corresponding to a Fortran module. */
6580
6581 static void
6582 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6583 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6584 {
6585 /* Now scan partial symbols in that module. */
6586
6587 if (pdi->has_children)
6588 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6589 }
6590
6591 /* Read a partial die corresponding to a subprogram and create a partial
6592 symbol for that subprogram. When the CU language allows it, this
6593 routine also defines a partial symbol for each nested subprogram
6594 that this subprogram contains.
6595
6596 DIE my also be a lexical block, in which case we simply search
6597 recursively for suprograms defined inside that lexical block.
6598 Again, this is only performed when the CU language allows this
6599 type of definitions. */
6600
6601 static void
6602 add_partial_subprogram (struct partial_die_info *pdi,
6603 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6604 int need_pc, struct dwarf2_cu *cu)
6605 {
6606 if (pdi->tag == DW_TAG_subprogram)
6607 {
6608 if (pdi->has_pc_info)
6609 {
6610 if (pdi->lowpc < *lowpc)
6611 *lowpc = pdi->lowpc;
6612 if (pdi->highpc > *highpc)
6613 *highpc = pdi->highpc;
6614 if (need_pc)
6615 {
6616 CORE_ADDR baseaddr;
6617 struct objfile *objfile = cu->objfile;
6618
6619 baseaddr = ANOFFSET (objfile->section_offsets,
6620 SECT_OFF_TEXT (objfile));
6621 addrmap_set_empty (objfile->psymtabs_addrmap,
6622 pdi->lowpc + baseaddr,
6623 pdi->highpc - 1 + baseaddr,
6624 cu->per_cu->v.psymtab);
6625 }
6626 }
6627
6628 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6629 {
6630 if (!pdi->is_declaration)
6631 /* Ignore subprogram DIEs that do not have a name, they are
6632 illegal. Do not emit a complaint at this point, we will
6633 do so when we convert this psymtab into a symtab. */
6634 if (pdi->name)
6635 add_partial_symbol (pdi, cu);
6636 }
6637 }
6638
6639 if (! pdi->has_children)
6640 return;
6641
6642 if (cu->language == language_ada)
6643 {
6644 pdi = pdi->die_child;
6645 while (pdi != NULL)
6646 {
6647 fixup_partial_die (pdi, cu);
6648 if (pdi->tag == DW_TAG_subprogram
6649 || pdi->tag == DW_TAG_lexical_block)
6650 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6651 pdi = pdi->die_sibling;
6652 }
6653 }
6654 }
6655
6656 /* Read a partial die corresponding to an enumeration type. */
6657
6658 static void
6659 add_partial_enumeration (struct partial_die_info *enum_pdi,
6660 struct dwarf2_cu *cu)
6661 {
6662 struct partial_die_info *pdi;
6663
6664 if (enum_pdi->name != NULL)
6665 add_partial_symbol (enum_pdi, cu);
6666
6667 pdi = enum_pdi->die_child;
6668 while (pdi)
6669 {
6670 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6671 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6672 else
6673 add_partial_symbol (pdi, cu);
6674 pdi = pdi->die_sibling;
6675 }
6676 }
6677
6678 /* Return the initial uleb128 in the die at INFO_PTR. */
6679
6680 static unsigned int
6681 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6682 {
6683 unsigned int bytes_read;
6684
6685 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6686 }
6687
6688 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6689 Return the corresponding abbrev, or NULL if the number is zero (indicating
6690 an empty DIE). In either case *BYTES_READ will be set to the length of
6691 the initial number. */
6692
6693 static struct abbrev_info *
6694 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6695 struct dwarf2_cu *cu)
6696 {
6697 bfd *abfd = cu->objfile->obfd;
6698 unsigned int abbrev_number;
6699 struct abbrev_info *abbrev;
6700
6701 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6702
6703 if (abbrev_number == 0)
6704 return NULL;
6705
6706 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6707 if (!abbrev)
6708 {
6709 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6710 abbrev_number, bfd_get_filename (abfd));
6711 }
6712
6713 return abbrev;
6714 }
6715
6716 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6717 Returns a pointer to the end of a series of DIEs, terminated by an empty
6718 DIE. Any children of the skipped DIEs will also be skipped. */
6719
6720 static const gdb_byte *
6721 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6722 {
6723 struct dwarf2_cu *cu = reader->cu;
6724 struct abbrev_info *abbrev;
6725 unsigned int bytes_read;
6726
6727 while (1)
6728 {
6729 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6730 if (abbrev == NULL)
6731 return info_ptr + bytes_read;
6732 else
6733 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6734 }
6735 }
6736
6737 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6738 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6739 abbrev corresponding to that skipped uleb128 should be passed in
6740 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6741 children. */
6742
6743 static const gdb_byte *
6744 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6745 struct abbrev_info *abbrev)
6746 {
6747 unsigned int bytes_read;
6748 struct attribute attr;
6749 bfd *abfd = reader->abfd;
6750 struct dwarf2_cu *cu = reader->cu;
6751 const gdb_byte *buffer = reader->buffer;
6752 const gdb_byte *buffer_end = reader->buffer_end;
6753 const gdb_byte *start_info_ptr = info_ptr;
6754 unsigned int form, i;
6755
6756 for (i = 0; i < abbrev->num_attrs; i++)
6757 {
6758 /* The only abbrev we care about is DW_AT_sibling. */
6759 if (abbrev->attrs[i].name == DW_AT_sibling)
6760 {
6761 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6762 if (attr.form == DW_FORM_ref_addr)
6763 complaint (&symfile_complaints,
6764 _("ignoring absolute DW_AT_sibling"));
6765 else
6766 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6767 }
6768
6769 /* If it isn't DW_AT_sibling, skip this attribute. */
6770 form = abbrev->attrs[i].form;
6771 skip_attribute:
6772 switch (form)
6773 {
6774 case DW_FORM_ref_addr:
6775 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6776 and later it is offset sized. */
6777 if (cu->header.version == 2)
6778 info_ptr += cu->header.addr_size;
6779 else
6780 info_ptr += cu->header.offset_size;
6781 break;
6782 case DW_FORM_GNU_ref_alt:
6783 info_ptr += cu->header.offset_size;
6784 break;
6785 case DW_FORM_addr:
6786 info_ptr += cu->header.addr_size;
6787 break;
6788 case DW_FORM_data1:
6789 case DW_FORM_ref1:
6790 case DW_FORM_flag:
6791 info_ptr += 1;
6792 break;
6793 case DW_FORM_flag_present:
6794 break;
6795 case DW_FORM_data2:
6796 case DW_FORM_ref2:
6797 info_ptr += 2;
6798 break;
6799 case DW_FORM_data4:
6800 case DW_FORM_ref4:
6801 info_ptr += 4;
6802 break;
6803 case DW_FORM_data8:
6804 case DW_FORM_ref8:
6805 case DW_FORM_ref_sig8:
6806 info_ptr += 8;
6807 break;
6808 case DW_FORM_string:
6809 read_direct_string (abfd, info_ptr, &bytes_read);
6810 info_ptr += bytes_read;
6811 break;
6812 case DW_FORM_sec_offset:
6813 case DW_FORM_strp:
6814 case DW_FORM_GNU_strp_alt:
6815 info_ptr += cu->header.offset_size;
6816 break;
6817 case DW_FORM_exprloc:
6818 case DW_FORM_block:
6819 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6820 info_ptr += bytes_read;
6821 break;
6822 case DW_FORM_block1:
6823 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6824 break;
6825 case DW_FORM_block2:
6826 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6827 break;
6828 case DW_FORM_block4:
6829 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6830 break;
6831 case DW_FORM_sdata:
6832 case DW_FORM_udata:
6833 case DW_FORM_ref_udata:
6834 case DW_FORM_GNU_addr_index:
6835 case DW_FORM_GNU_str_index:
6836 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6837 break;
6838 case DW_FORM_indirect:
6839 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6840 info_ptr += bytes_read;
6841 /* We need to continue parsing from here, so just go back to
6842 the top. */
6843 goto skip_attribute;
6844
6845 default:
6846 error (_("Dwarf Error: Cannot handle %s "
6847 "in DWARF reader [in module %s]"),
6848 dwarf_form_name (form),
6849 bfd_get_filename (abfd));
6850 }
6851 }
6852
6853 if (abbrev->has_children)
6854 return skip_children (reader, info_ptr);
6855 else
6856 return info_ptr;
6857 }
6858
6859 /* Locate ORIG_PDI's sibling.
6860 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6861
6862 static const gdb_byte *
6863 locate_pdi_sibling (const struct die_reader_specs *reader,
6864 struct partial_die_info *orig_pdi,
6865 const gdb_byte *info_ptr)
6866 {
6867 /* Do we know the sibling already? */
6868
6869 if (orig_pdi->sibling)
6870 return orig_pdi->sibling;
6871
6872 /* Are there any children to deal with? */
6873
6874 if (!orig_pdi->has_children)
6875 return info_ptr;
6876
6877 /* Skip the children the long way. */
6878
6879 return skip_children (reader, info_ptr);
6880 }
6881
6882 /* Expand this partial symbol table into a full symbol table. SELF is
6883 not NULL. */
6884
6885 static void
6886 dwarf2_read_symtab (struct partial_symtab *self,
6887 struct objfile *objfile)
6888 {
6889 if (self->readin)
6890 {
6891 warning (_("bug: psymtab for %s is already read in."),
6892 self->filename);
6893 }
6894 else
6895 {
6896 if (info_verbose)
6897 {
6898 printf_filtered (_("Reading in symbols for %s..."),
6899 self->filename);
6900 gdb_flush (gdb_stdout);
6901 }
6902
6903 /* Restore our global data. */
6904 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6905
6906 /* If this psymtab is constructed from a debug-only objfile, the
6907 has_section_at_zero flag will not necessarily be correct. We
6908 can get the correct value for this flag by looking at the data
6909 associated with the (presumably stripped) associated objfile. */
6910 if (objfile->separate_debug_objfile_backlink)
6911 {
6912 struct dwarf2_per_objfile *dpo_backlink
6913 = objfile_data (objfile->separate_debug_objfile_backlink,
6914 dwarf2_objfile_data_key);
6915
6916 dwarf2_per_objfile->has_section_at_zero
6917 = dpo_backlink->has_section_at_zero;
6918 }
6919
6920 dwarf2_per_objfile->reading_partial_symbols = 0;
6921
6922 psymtab_to_symtab_1 (self);
6923
6924 /* Finish up the debug error message. */
6925 if (info_verbose)
6926 printf_filtered (_("done.\n"));
6927 }
6928
6929 process_cu_includes ();
6930 }
6931 \f
6932 /* Reading in full CUs. */
6933
6934 /* Add PER_CU to the queue. */
6935
6936 static void
6937 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6938 enum language pretend_language)
6939 {
6940 struct dwarf2_queue_item *item;
6941
6942 per_cu->queued = 1;
6943 item = xmalloc (sizeof (*item));
6944 item->per_cu = per_cu;
6945 item->pretend_language = pretend_language;
6946 item->next = NULL;
6947
6948 if (dwarf2_queue == NULL)
6949 dwarf2_queue = item;
6950 else
6951 dwarf2_queue_tail->next = item;
6952
6953 dwarf2_queue_tail = item;
6954 }
6955
6956 /* If PER_CU is not yet queued, add it to the queue.
6957 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
6958 dependency.
6959 The result is non-zero if PER_CU was queued, otherwise the result is zero
6960 meaning either PER_CU is already queued or it is already loaded.
6961
6962 N.B. There is an invariant here that if a CU is queued then it is loaded.
6963 The caller is required to load PER_CU if we return non-zero. */
6964
6965 static int
6966 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
6967 struct dwarf2_per_cu_data *per_cu,
6968 enum language pretend_language)
6969 {
6970 /* We may arrive here during partial symbol reading, if we need full
6971 DIEs to process an unusual case (e.g. template arguments). Do
6972 not queue PER_CU, just tell our caller to load its DIEs. */
6973 if (dwarf2_per_objfile->reading_partial_symbols)
6974 {
6975 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6976 return 1;
6977 return 0;
6978 }
6979
6980 /* Mark the dependence relation so that we don't flush PER_CU
6981 too early. */
6982 if (dependent_cu != NULL)
6983 dwarf2_add_dependence (dependent_cu, per_cu);
6984
6985 /* If it's already on the queue, we have nothing to do. */
6986 if (per_cu->queued)
6987 return 0;
6988
6989 /* If the compilation unit is already loaded, just mark it as
6990 used. */
6991 if (per_cu->cu != NULL)
6992 {
6993 per_cu->cu->last_used = 0;
6994 return 0;
6995 }
6996
6997 /* Add it to the queue. */
6998 queue_comp_unit (per_cu, pretend_language);
6999
7000 return 1;
7001 }
7002
7003 /* Process the queue. */
7004
7005 static void
7006 process_queue (void)
7007 {
7008 struct dwarf2_queue_item *item, *next_item;
7009
7010 if (dwarf2_read_debug)
7011 {
7012 fprintf_unfiltered (gdb_stdlog,
7013 "Expanding one or more symtabs of objfile %s ...\n",
7014 dwarf2_per_objfile->objfile->name);
7015 }
7016
7017 /* The queue starts out with one item, but following a DIE reference
7018 may load a new CU, adding it to the end of the queue. */
7019 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7020 {
7021 if (dwarf2_per_objfile->using_index
7022 ? !item->per_cu->v.quick->symtab
7023 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7024 {
7025 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7026 char buf[100];
7027
7028 if (per_cu->is_debug_types)
7029 {
7030 struct signatured_type *sig_type =
7031 (struct signatured_type *) per_cu;
7032
7033 sprintf (buf, "TU %s at offset 0x%x",
7034 hex_string (sig_type->signature), per_cu->offset.sect_off);
7035 }
7036 else
7037 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7038
7039 if (dwarf2_read_debug)
7040 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7041
7042 if (per_cu->is_debug_types)
7043 process_full_type_unit (per_cu, item->pretend_language);
7044 else
7045 process_full_comp_unit (per_cu, item->pretend_language);
7046
7047 if (dwarf2_read_debug)
7048 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7049 }
7050
7051 item->per_cu->queued = 0;
7052 next_item = item->next;
7053 xfree (item);
7054 }
7055
7056 dwarf2_queue_tail = NULL;
7057
7058 if (dwarf2_read_debug)
7059 {
7060 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7061 dwarf2_per_objfile->objfile->name);
7062 }
7063 }
7064
7065 /* Free all allocated queue entries. This function only releases anything if
7066 an error was thrown; if the queue was processed then it would have been
7067 freed as we went along. */
7068
7069 static void
7070 dwarf2_release_queue (void *dummy)
7071 {
7072 struct dwarf2_queue_item *item, *last;
7073
7074 item = dwarf2_queue;
7075 while (item)
7076 {
7077 /* Anything still marked queued is likely to be in an
7078 inconsistent state, so discard it. */
7079 if (item->per_cu->queued)
7080 {
7081 if (item->per_cu->cu != NULL)
7082 free_one_cached_comp_unit (item->per_cu);
7083 item->per_cu->queued = 0;
7084 }
7085
7086 last = item;
7087 item = item->next;
7088 xfree (last);
7089 }
7090
7091 dwarf2_queue = dwarf2_queue_tail = NULL;
7092 }
7093
7094 /* Read in full symbols for PST, and anything it depends on. */
7095
7096 static void
7097 psymtab_to_symtab_1 (struct partial_symtab *pst)
7098 {
7099 struct dwarf2_per_cu_data *per_cu;
7100 int i;
7101
7102 if (pst->readin)
7103 return;
7104
7105 for (i = 0; i < pst->number_of_dependencies; i++)
7106 if (!pst->dependencies[i]->readin
7107 && pst->dependencies[i]->user == NULL)
7108 {
7109 /* Inform about additional files that need to be read in. */
7110 if (info_verbose)
7111 {
7112 /* FIXME: i18n: Need to make this a single string. */
7113 fputs_filtered (" ", gdb_stdout);
7114 wrap_here ("");
7115 fputs_filtered ("and ", gdb_stdout);
7116 wrap_here ("");
7117 printf_filtered ("%s...", pst->dependencies[i]->filename);
7118 wrap_here (""); /* Flush output. */
7119 gdb_flush (gdb_stdout);
7120 }
7121 psymtab_to_symtab_1 (pst->dependencies[i]);
7122 }
7123
7124 per_cu = pst->read_symtab_private;
7125
7126 if (per_cu == NULL)
7127 {
7128 /* It's an include file, no symbols to read for it.
7129 Everything is in the parent symtab. */
7130 pst->readin = 1;
7131 return;
7132 }
7133
7134 dw2_do_instantiate_symtab (per_cu);
7135 }
7136
7137 /* Trivial hash function for die_info: the hash value of a DIE
7138 is its offset in .debug_info for this objfile. */
7139
7140 static hashval_t
7141 die_hash (const void *item)
7142 {
7143 const struct die_info *die = item;
7144
7145 return die->offset.sect_off;
7146 }
7147
7148 /* Trivial comparison function for die_info structures: two DIEs
7149 are equal if they have the same offset. */
7150
7151 static int
7152 die_eq (const void *item_lhs, const void *item_rhs)
7153 {
7154 const struct die_info *die_lhs = item_lhs;
7155 const struct die_info *die_rhs = item_rhs;
7156
7157 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7158 }
7159
7160 /* die_reader_func for load_full_comp_unit.
7161 This is identical to read_signatured_type_reader,
7162 but is kept separate for now. */
7163
7164 static void
7165 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7166 const gdb_byte *info_ptr,
7167 struct die_info *comp_unit_die,
7168 int has_children,
7169 void *data)
7170 {
7171 struct dwarf2_cu *cu = reader->cu;
7172 enum language *language_ptr = data;
7173
7174 gdb_assert (cu->die_hash == NULL);
7175 cu->die_hash =
7176 htab_create_alloc_ex (cu->header.length / 12,
7177 die_hash,
7178 die_eq,
7179 NULL,
7180 &cu->comp_unit_obstack,
7181 hashtab_obstack_allocate,
7182 dummy_obstack_deallocate);
7183
7184 if (has_children)
7185 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7186 &info_ptr, comp_unit_die);
7187 cu->dies = comp_unit_die;
7188 /* comp_unit_die is not stored in die_hash, no need. */
7189
7190 /* We try not to read any attributes in this function, because not
7191 all CUs needed for references have been loaded yet, and symbol
7192 table processing isn't initialized. But we have to set the CU language,
7193 or we won't be able to build types correctly.
7194 Similarly, if we do not read the producer, we can not apply
7195 producer-specific interpretation. */
7196 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7197 }
7198
7199 /* Load the DIEs associated with PER_CU into memory. */
7200
7201 static void
7202 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7203 enum language pretend_language)
7204 {
7205 gdb_assert (! this_cu->is_debug_types);
7206
7207 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7208 load_full_comp_unit_reader, &pretend_language);
7209 }
7210
7211 /* Add a DIE to the delayed physname list. */
7212
7213 static void
7214 add_to_method_list (struct type *type, int fnfield_index, int index,
7215 const char *name, struct die_info *die,
7216 struct dwarf2_cu *cu)
7217 {
7218 struct delayed_method_info mi;
7219 mi.type = type;
7220 mi.fnfield_index = fnfield_index;
7221 mi.index = index;
7222 mi.name = name;
7223 mi.die = die;
7224 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7225 }
7226
7227 /* A cleanup for freeing the delayed method list. */
7228
7229 static void
7230 free_delayed_list (void *ptr)
7231 {
7232 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7233 if (cu->method_list != NULL)
7234 {
7235 VEC_free (delayed_method_info, cu->method_list);
7236 cu->method_list = NULL;
7237 }
7238 }
7239
7240 /* Compute the physnames of any methods on the CU's method list.
7241
7242 The computation of method physnames is delayed in order to avoid the
7243 (bad) condition that one of the method's formal parameters is of an as yet
7244 incomplete type. */
7245
7246 static void
7247 compute_delayed_physnames (struct dwarf2_cu *cu)
7248 {
7249 int i;
7250 struct delayed_method_info *mi;
7251 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7252 {
7253 const char *physname;
7254 struct fn_fieldlist *fn_flp
7255 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7256 physname = dwarf2_physname (mi->name, mi->die, cu);
7257 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7258 }
7259 }
7260
7261 /* Go objects should be embedded in a DW_TAG_module DIE,
7262 and it's not clear if/how imported objects will appear.
7263 To keep Go support simple until that's worked out,
7264 go back through what we've read and create something usable.
7265 We could do this while processing each DIE, and feels kinda cleaner,
7266 but that way is more invasive.
7267 This is to, for example, allow the user to type "p var" or "b main"
7268 without having to specify the package name, and allow lookups
7269 of module.object to work in contexts that use the expression
7270 parser. */
7271
7272 static void
7273 fixup_go_packaging (struct dwarf2_cu *cu)
7274 {
7275 char *package_name = NULL;
7276 struct pending *list;
7277 int i;
7278
7279 for (list = global_symbols; list != NULL; list = list->next)
7280 {
7281 for (i = 0; i < list->nsyms; ++i)
7282 {
7283 struct symbol *sym = list->symbol[i];
7284
7285 if (SYMBOL_LANGUAGE (sym) == language_go
7286 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7287 {
7288 char *this_package_name = go_symbol_package_name (sym);
7289
7290 if (this_package_name == NULL)
7291 continue;
7292 if (package_name == NULL)
7293 package_name = this_package_name;
7294 else
7295 {
7296 if (strcmp (package_name, this_package_name) != 0)
7297 complaint (&symfile_complaints,
7298 _("Symtab %s has objects from two different Go packages: %s and %s"),
7299 (SYMBOL_SYMTAB (sym)
7300 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7301 : cu->objfile->name),
7302 this_package_name, package_name);
7303 xfree (this_package_name);
7304 }
7305 }
7306 }
7307 }
7308
7309 if (package_name != NULL)
7310 {
7311 struct objfile *objfile = cu->objfile;
7312 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7313 package_name,
7314 strlen (package_name));
7315 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7316 saved_package_name, objfile);
7317 struct symbol *sym;
7318
7319 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7320
7321 sym = allocate_symbol (objfile);
7322 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7323 SYMBOL_SET_NAMES (sym, saved_package_name,
7324 strlen (saved_package_name), 0, objfile);
7325 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7326 e.g., "main" finds the "main" module and not C's main(). */
7327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7328 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7329 SYMBOL_TYPE (sym) = type;
7330
7331 add_symbol_to_list (sym, &global_symbols);
7332
7333 xfree (package_name);
7334 }
7335 }
7336
7337 /* Return the symtab for PER_CU. This works properly regardless of
7338 whether we're using the index or psymtabs. */
7339
7340 static struct symtab *
7341 get_symtab (struct dwarf2_per_cu_data *per_cu)
7342 {
7343 return (dwarf2_per_objfile->using_index
7344 ? per_cu->v.quick->symtab
7345 : per_cu->v.psymtab->symtab);
7346 }
7347
7348 /* A helper function for computing the list of all symbol tables
7349 included by PER_CU. */
7350
7351 static void
7352 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7353 htab_t all_children, htab_t all_type_symtabs,
7354 struct dwarf2_per_cu_data *per_cu,
7355 struct symtab *immediate_parent)
7356 {
7357 void **slot;
7358 int ix;
7359 struct symtab *symtab;
7360 struct dwarf2_per_cu_data *iter;
7361
7362 slot = htab_find_slot (all_children, per_cu, INSERT);
7363 if (*slot != NULL)
7364 {
7365 /* This inclusion and its children have been processed. */
7366 return;
7367 }
7368
7369 *slot = per_cu;
7370 /* Only add a CU if it has a symbol table. */
7371 symtab = get_symtab (per_cu);
7372 if (symtab != NULL)
7373 {
7374 /* If this is a type unit only add its symbol table if we haven't
7375 seen it yet (type unit per_cu's can share symtabs). */
7376 if (per_cu->is_debug_types)
7377 {
7378 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7379 if (*slot == NULL)
7380 {
7381 *slot = symtab;
7382 VEC_safe_push (symtab_ptr, *result, symtab);
7383 if (symtab->user == NULL)
7384 symtab->user = immediate_parent;
7385 }
7386 }
7387 else
7388 {
7389 VEC_safe_push (symtab_ptr, *result, symtab);
7390 if (symtab->user == NULL)
7391 symtab->user = immediate_parent;
7392 }
7393 }
7394
7395 for (ix = 0;
7396 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7397 ++ix)
7398 {
7399 recursively_compute_inclusions (result, all_children,
7400 all_type_symtabs, iter, symtab);
7401 }
7402 }
7403
7404 /* Compute the symtab 'includes' fields for the symtab related to
7405 PER_CU. */
7406
7407 static void
7408 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7409 {
7410 gdb_assert (! per_cu->is_debug_types);
7411
7412 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7413 {
7414 int ix, len;
7415 struct dwarf2_per_cu_data *per_cu_iter;
7416 struct symtab *symtab_iter;
7417 VEC (symtab_ptr) *result_symtabs = NULL;
7418 htab_t all_children, all_type_symtabs;
7419 struct symtab *symtab = get_symtab (per_cu);
7420
7421 /* If we don't have a symtab, we can just skip this case. */
7422 if (symtab == NULL)
7423 return;
7424
7425 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7426 NULL, xcalloc, xfree);
7427 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7428 NULL, xcalloc, xfree);
7429
7430 for (ix = 0;
7431 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7432 ix, per_cu_iter);
7433 ++ix)
7434 {
7435 recursively_compute_inclusions (&result_symtabs, all_children,
7436 all_type_symtabs, per_cu_iter,
7437 symtab);
7438 }
7439
7440 /* Now we have a transitive closure of all the included symtabs. */
7441 len = VEC_length (symtab_ptr, result_symtabs);
7442 symtab->includes
7443 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7444 (len + 1) * sizeof (struct symtab *));
7445 for (ix = 0;
7446 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7447 ++ix)
7448 symtab->includes[ix] = symtab_iter;
7449 symtab->includes[len] = NULL;
7450
7451 VEC_free (symtab_ptr, result_symtabs);
7452 htab_delete (all_children);
7453 htab_delete (all_type_symtabs);
7454 }
7455 }
7456
7457 /* Compute the 'includes' field for the symtabs of all the CUs we just
7458 read. */
7459
7460 static void
7461 process_cu_includes (void)
7462 {
7463 int ix;
7464 struct dwarf2_per_cu_data *iter;
7465
7466 for (ix = 0;
7467 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7468 ix, iter);
7469 ++ix)
7470 {
7471 if (! iter->is_debug_types)
7472 compute_symtab_includes (iter);
7473 }
7474
7475 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7476 }
7477
7478 /* Generate full symbol information for PER_CU, whose DIEs have
7479 already been loaded into memory. */
7480
7481 static void
7482 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7483 enum language pretend_language)
7484 {
7485 struct dwarf2_cu *cu = per_cu->cu;
7486 struct objfile *objfile = per_cu->objfile;
7487 CORE_ADDR lowpc, highpc;
7488 struct symtab *symtab;
7489 struct cleanup *back_to, *delayed_list_cleanup;
7490 CORE_ADDR baseaddr;
7491 struct block *static_block;
7492
7493 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7494
7495 buildsym_init ();
7496 back_to = make_cleanup (really_free_pendings, NULL);
7497 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7498
7499 cu->list_in_scope = &file_symbols;
7500
7501 cu->language = pretend_language;
7502 cu->language_defn = language_def (cu->language);
7503
7504 /* Do line number decoding in read_file_scope () */
7505 process_die (cu->dies, cu);
7506
7507 /* For now fudge the Go package. */
7508 if (cu->language == language_go)
7509 fixup_go_packaging (cu);
7510
7511 /* Now that we have processed all the DIEs in the CU, all the types
7512 should be complete, and it should now be safe to compute all of the
7513 physnames. */
7514 compute_delayed_physnames (cu);
7515 do_cleanups (delayed_list_cleanup);
7516
7517 /* Some compilers don't define a DW_AT_high_pc attribute for the
7518 compilation unit. If the DW_AT_high_pc is missing, synthesize
7519 it, by scanning the DIE's below the compilation unit. */
7520 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7521
7522 static_block
7523 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7524
7525 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7526 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7527 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7528 addrmap to help ensure it has an accurate map of pc values belonging to
7529 this comp unit. */
7530 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7531
7532 symtab = end_symtab_from_static_block (static_block, objfile,
7533 SECT_OFF_TEXT (objfile), 0);
7534
7535 if (symtab != NULL)
7536 {
7537 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7538
7539 /* Set symtab language to language from DW_AT_language. If the
7540 compilation is from a C file generated by language preprocessors, do
7541 not set the language if it was already deduced by start_subfile. */
7542 if (!(cu->language == language_c && symtab->language != language_c))
7543 symtab->language = cu->language;
7544
7545 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7546 produce DW_AT_location with location lists but it can be possibly
7547 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7548 there were bugs in prologue debug info, fixed later in GCC-4.5
7549 by "unwind info for epilogues" patch (which is not directly related).
7550
7551 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7552 needed, it would be wrong due to missing DW_AT_producer there.
7553
7554 Still one can confuse GDB by using non-standard GCC compilation
7555 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7556 */
7557 if (cu->has_loclist && gcc_4_minor >= 5)
7558 symtab->locations_valid = 1;
7559
7560 if (gcc_4_minor >= 5)
7561 symtab->epilogue_unwind_valid = 1;
7562
7563 symtab->call_site_htab = cu->call_site_htab;
7564 }
7565
7566 if (dwarf2_per_objfile->using_index)
7567 per_cu->v.quick->symtab = symtab;
7568 else
7569 {
7570 struct partial_symtab *pst = per_cu->v.psymtab;
7571 pst->symtab = symtab;
7572 pst->readin = 1;
7573 }
7574
7575 /* Push it for inclusion processing later. */
7576 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7577
7578 do_cleanups (back_to);
7579 }
7580
7581 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7582 already been loaded into memory. */
7583
7584 static void
7585 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7586 enum language pretend_language)
7587 {
7588 struct dwarf2_cu *cu = per_cu->cu;
7589 struct objfile *objfile = per_cu->objfile;
7590 struct symtab *symtab;
7591 struct cleanup *back_to, *delayed_list_cleanup;
7592 struct signatured_type *sig_type;
7593
7594 gdb_assert (per_cu->is_debug_types);
7595 sig_type = (struct signatured_type *) per_cu;
7596
7597 buildsym_init ();
7598 back_to = make_cleanup (really_free_pendings, NULL);
7599 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7600
7601 cu->list_in_scope = &file_symbols;
7602
7603 cu->language = pretend_language;
7604 cu->language_defn = language_def (cu->language);
7605
7606 /* The symbol tables are set up in read_type_unit_scope. */
7607 process_die (cu->dies, cu);
7608
7609 /* For now fudge the Go package. */
7610 if (cu->language == language_go)
7611 fixup_go_packaging (cu);
7612
7613 /* Now that we have processed all the DIEs in the CU, all the types
7614 should be complete, and it should now be safe to compute all of the
7615 physnames. */
7616 compute_delayed_physnames (cu);
7617 do_cleanups (delayed_list_cleanup);
7618
7619 /* TUs share symbol tables.
7620 If this is the first TU to use this symtab, complete the construction
7621 of it with end_expandable_symtab. Otherwise, complete the addition of
7622 this TU's symbols to the existing symtab. */
7623 if (sig_type->type_unit_group->primary_symtab == NULL)
7624 {
7625 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7626 sig_type->type_unit_group->primary_symtab = symtab;
7627
7628 if (symtab != NULL)
7629 {
7630 /* Set symtab language to language from DW_AT_language. If the
7631 compilation is from a C file generated by language preprocessors,
7632 do not set the language if it was already deduced by
7633 start_subfile. */
7634 if (!(cu->language == language_c && symtab->language != language_c))
7635 symtab->language = cu->language;
7636 }
7637 }
7638 else
7639 {
7640 augment_type_symtab (objfile,
7641 sig_type->type_unit_group->primary_symtab);
7642 symtab = sig_type->type_unit_group->primary_symtab;
7643 }
7644
7645 if (dwarf2_per_objfile->using_index)
7646 per_cu->v.quick->symtab = symtab;
7647 else
7648 {
7649 struct partial_symtab *pst = per_cu->v.psymtab;
7650 pst->symtab = symtab;
7651 pst->readin = 1;
7652 }
7653
7654 do_cleanups (back_to);
7655 }
7656
7657 /* Process an imported unit DIE. */
7658
7659 static void
7660 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7661 {
7662 struct attribute *attr;
7663
7664 /* For now we don't handle imported units in type units. */
7665 if (cu->per_cu->is_debug_types)
7666 {
7667 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7668 " supported in type units [in module %s]"),
7669 cu->objfile->name);
7670 }
7671
7672 attr = dwarf2_attr (die, DW_AT_import, cu);
7673 if (attr != NULL)
7674 {
7675 struct dwarf2_per_cu_data *per_cu;
7676 struct symtab *imported_symtab;
7677 sect_offset offset;
7678 int is_dwz;
7679
7680 offset = dwarf2_get_ref_die_offset (attr);
7681 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7682 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7683
7684 /* If necessary, add it to the queue and load its DIEs. */
7685 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7686 load_full_comp_unit (per_cu, cu->language);
7687
7688 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7689 per_cu);
7690 }
7691 }
7692
7693 /* Process a die and its children. */
7694
7695 static void
7696 process_die (struct die_info *die, struct dwarf2_cu *cu)
7697 {
7698 switch (die->tag)
7699 {
7700 case DW_TAG_padding:
7701 break;
7702 case DW_TAG_compile_unit:
7703 case DW_TAG_partial_unit:
7704 read_file_scope (die, cu);
7705 break;
7706 case DW_TAG_type_unit:
7707 read_type_unit_scope (die, cu);
7708 break;
7709 case DW_TAG_subprogram:
7710 case DW_TAG_inlined_subroutine:
7711 read_func_scope (die, cu);
7712 break;
7713 case DW_TAG_lexical_block:
7714 case DW_TAG_try_block:
7715 case DW_TAG_catch_block:
7716 read_lexical_block_scope (die, cu);
7717 break;
7718 case DW_TAG_GNU_call_site:
7719 read_call_site_scope (die, cu);
7720 break;
7721 case DW_TAG_class_type:
7722 case DW_TAG_interface_type:
7723 case DW_TAG_structure_type:
7724 case DW_TAG_union_type:
7725 process_structure_scope (die, cu);
7726 break;
7727 case DW_TAG_enumeration_type:
7728 process_enumeration_scope (die, cu);
7729 break;
7730
7731 /* These dies have a type, but processing them does not create
7732 a symbol or recurse to process the children. Therefore we can
7733 read them on-demand through read_type_die. */
7734 case DW_TAG_subroutine_type:
7735 case DW_TAG_set_type:
7736 case DW_TAG_array_type:
7737 case DW_TAG_pointer_type:
7738 case DW_TAG_ptr_to_member_type:
7739 case DW_TAG_reference_type:
7740 case DW_TAG_string_type:
7741 break;
7742
7743 case DW_TAG_base_type:
7744 case DW_TAG_subrange_type:
7745 case DW_TAG_typedef:
7746 /* Add a typedef symbol for the type definition, if it has a
7747 DW_AT_name. */
7748 new_symbol (die, read_type_die (die, cu), cu);
7749 break;
7750 case DW_TAG_common_block:
7751 read_common_block (die, cu);
7752 break;
7753 case DW_TAG_common_inclusion:
7754 break;
7755 case DW_TAG_namespace:
7756 cu->processing_has_namespace_info = 1;
7757 read_namespace (die, cu);
7758 break;
7759 case DW_TAG_module:
7760 cu->processing_has_namespace_info = 1;
7761 read_module (die, cu);
7762 break;
7763 case DW_TAG_imported_declaration:
7764 case DW_TAG_imported_module:
7765 cu->processing_has_namespace_info = 1;
7766 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7767 || cu->language != language_fortran))
7768 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7769 dwarf_tag_name (die->tag));
7770 read_import_statement (die, cu);
7771 break;
7772
7773 case DW_TAG_imported_unit:
7774 process_imported_unit_die (die, cu);
7775 break;
7776
7777 default:
7778 new_symbol (die, NULL, cu);
7779 break;
7780 }
7781 }
7782 \f
7783 /* DWARF name computation. */
7784
7785 /* A helper function for dwarf2_compute_name which determines whether DIE
7786 needs to have the name of the scope prepended to the name listed in the
7787 die. */
7788
7789 static int
7790 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7791 {
7792 struct attribute *attr;
7793
7794 switch (die->tag)
7795 {
7796 case DW_TAG_namespace:
7797 case DW_TAG_typedef:
7798 case DW_TAG_class_type:
7799 case DW_TAG_interface_type:
7800 case DW_TAG_structure_type:
7801 case DW_TAG_union_type:
7802 case DW_TAG_enumeration_type:
7803 case DW_TAG_enumerator:
7804 case DW_TAG_subprogram:
7805 case DW_TAG_member:
7806 return 1;
7807
7808 case DW_TAG_variable:
7809 case DW_TAG_constant:
7810 /* We only need to prefix "globally" visible variables. These include
7811 any variable marked with DW_AT_external or any variable that
7812 lives in a namespace. [Variables in anonymous namespaces
7813 require prefixing, but they are not DW_AT_external.] */
7814
7815 if (dwarf2_attr (die, DW_AT_specification, cu))
7816 {
7817 struct dwarf2_cu *spec_cu = cu;
7818
7819 return die_needs_namespace (die_specification (die, &spec_cu),
7820 spec_cu);
7821 }
7822
7823 attr = dwarf2_attr (die, DW_AT_external, cu);
7824 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7825 && die->parent->tag != DW_TAG_module)
7826 return 0;
7827 /* A variable in a lexical block of some kind does not need a
7828 namespace, even though in C++ such variables may be external
7829 and have a mangled name. */
7830 if (die->parent->tag == DW_TAG_lexical_block
7831 || die->parent->tag == DW_TAG_try_block
7832 || die->parent->tag == DW_TAG_catch_block
7833 || die->parent->tag == DW_TAG_subprogram)
7834 return 0;
7835 return 1;
7836
7837 default:
7838 return 0;
7839 }
7840 }
7841
7842 /* Retrieve the last character from a mem_file. */
7843
7844 static void
7845 do_ui_file_peek_last (void *object, const char *buffer, long length)
7846 {
7847 char *last_char_p = (char *) object;
7848
7849 if (length > 0)
7850 *last_char_p = buffer[length - 1];
7851 }
7852
7853 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7854 compute the physname for the object, which include a method's:
7855 - formal parameters (C++/Java),
7856 - receiver type (Go),
7857 - return type (Java).
7858
7859 The term "physname" is a bit confusing.
7860 For C++, for example, it is the demangled name.
7861 For Go, for example, it's the mangled name.
7862
7863 For Ada, return the DIE's linkage name rather than the fully qualified
7864 name. PHYSNAME is ignored..
7865
7866 The result is allocated on the objfile_obstack and canonicalized. */
7867
7868 static const char *
7869 dwarf2_compute_name (const char *name,
7870 struct die_info *die, struct dwarf2_cu *cu,
7871 int physname)
7872 {
7873 struct objfile *objfile = cu->objfile;
7874
7875 if (name == NULL)
7876 name = dwarf2_name (die, cu);
7877
7878 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7879 compute it by typename_concat inside GDB. */
7880 if (cu->language == language_ada
7881 || (cu->language == language_fortran && physname))
7882 {
7883 /* For Ada unit, we prefer the linkage name over the name, as
7884 the former contains the exported name, which the user expects
7885 to be able to reference. Ideally, we want the user to be able
7886 to reference this entity using either natural or linkage name,
7887 but we haven't started looking at this enhancement yet. */
7888 struct attribute *attr;
7889
7890 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7891 if (attr == NULL)
7892 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7893 if (attr && DW_STRING (attr))
7894 return DW_STRING (attr);
7895 }
7896
7897 /* These are the only languages we know how to qualify names in. */
7898 if (name != NULL
7899 && (cu->language == language_cplus || cu->language == language_java
7900 || cu->language == language_fortran))
7901 {
7902 if (die_needs_namespace (die, cu))
7903 {
7904 long length;
7905 const char *prefix;
7906 struct ui_file *buf;
7907
7908 prefix = determine_prefix (die, cu);
7909 buf = mem_fileopen ();
7910 if (*prefix != '\0')
7911 {
7912 char *prefixed_name = typename_concat (NULL, prefix, name,
7913 physname, cu);
7914
7915 fputs_unfiltered (prefixed_name, buf);
7916 xfree (prefixed_name);
7917 }
7918 else
7919 fputs_unfiltered (name, buf);
7920
7921 /* Template parameters may be specified in the DIE's DW_AT_name, or
7922 as children with DW_TAG_template_type_param or
7923 DW_TAG_value_type_param. If the latter, add them to the name
7924 here. If the name already has template parameters, then
7925 skip this step; some versions of GCC emit both, and
7926 it is more efficient to use the pre-computed name.
7927
7928 Something to keep in mind about this process: it is very
7929 unlikely, or in some cases downright impossible, to produce
7930 something that will match the mangled name of a function.
7931 If the definition of the function has the same debug info,
7932 we should be able to match up with it anyway. But fallbacks
7933 using the minimal symbol, for instance to find a method
7934 implemented in a stripped copy of libstdc++, will not work.
7935 If we do not have debug info for the definition, we will have to
7936 match them up some other way.
7937
7938 When we do name matching there is a related problem with function
7939 templates; two instantiated function templates are allowed to
7940 differ only by their return types, which we do not add here. */
7941
7942 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7943 {
7944 struct attribute *attr;
7945 struct die_info *child;
7946 int first = 1;
7947
7948 die->building_fullname = 1;
7949
7950 for (child = die->child; child != NULL; child = child->sibling)
7951 {
7952 struct type *type;
7953 LONGEST value;
7954 const gdb_byte *bytes;
7955 struct dwarf2_locexpr_baton *baton;
7956 struct value *v;
7957
7958 if (child->tag != DW_TAG_template_type_param
7959 && child->tag != DW_TAG_template_value_param)
7960 continue;
7961
7962 if (first)
7963 {
7964 fputs_unfiltered ("<", buf);
7965 first = 0;
7966 }
7967 else
7968 fputs_unfiltered (", ", buf);
7969
7970 attr = dwarf2_attr (child, DW_AT_type, cu);
7971 if (attr == NULL)
7972 {
7973 complaint (&symfile_complaints,
7974 _("template parameter missing DW_AT_type"));
7975 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7976 continue;
7977 }
7978 type = die_type (child, cu);
7979
7980 if (child->tag == DW_TAG_template_type_param)
7981 {
7982 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7983 continue;
7984 }
7985
7986 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7987 if (attr == NULL)
7988 {
7989 complaint (&symfile_complaints,
7990 _("template parameter missing "
7991 "DW_AT_const_value"));
7992 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7993 continue;
7994 }
7995
7996 dwarf2_const_value_attr (attr, type, name,
7997 &cu->comp_unit_obstack, cu,
7998 &value, &bytes, &baton);
7999
8000 if (TYPE_NOSIGN (type))
8001 /* GDB prints characters as NUMBER 'CHAR'. If that's
8002 changed, this can use value_print instead. */
8003 c_printchar (value, type, buf);
8004 else
8005 {
8006 struct value_print_options opts;
8007
8008 if (baton != NULL)
8009 v = dwarf2_evaluate_loc_desc (type, NULL,
8010 baton->data,
8011 baton->size,
8012 baton->per_cu);
8013 else if (bytes != NULL)
8014 {
8015 v = allocate_value (type);
8016 memcpy (value_contents_writeable (v), bytes,
8017 TYPE_LENGTH (type));
8018 }
8019 else
8020 v = value_from_longest (type, value);
8021
8022 /* Specify decimal so that we do not depend on
8023 the radix. */
8024 get_formatted_print_options (&opts, 'd');
8025 opts.raw = 1;
8026 value_print (v, buf, &opts);
8027 release_value (v);
8028 value_free (v);
8029 }
8030 }
8031
8032 die->building_fullname = 0;
8033
8034 if (!first)
8035 {
8036 /* Close the argument list, with a space if necessary
8037 (nested templates). */
8038 char last_char = '\0';
8039 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8040 if (last_char == '>')
8041 fputs_unfiltered (" >", buf);
8042 else
8043 fputs_unfiltered (">", buf);
8044 }
8045 }
8046
8047 /* For Java and C++ methods, append formal parameter type
8048 information, if PHYSNAME. */
8049
8050 if (physname && die->tag == DW_TAG_subprogram
8051 && (cu->language == language_cplus
8052 || cu->language == language_java))
8053 {
8054 struct type *type = read_type_die (die, cu);
8055
8056 c_type_print_args (type, buf, 1, cu->language,
8057 &type_print_raw_options);
8058
8059 if (cu->language == language_java)
8060 {
8061 /* For java, we must append the return type to method
8062 names. */
8063 if (die->tag == DW_TAG_subprogram)
8064 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8065 0, 0, &type_print_raw_options);
8066 }
8067 else if (cu->language == language_cplus)
8068 {
8069 /* Assume that an artificial first parameter is
8070 "this", but do not crash if it is not. RealView
8071 marks unnamed (and thus unused) parameters as
8072 artificial; there is no way to differentiate
8073 the two cases. */
8074 if (TYPE_NFIELDS (type) > 0
8075 && TYPE_FIELD_ARTIFICIAL (type, 0)
8076 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8077 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8078 0))))
8079 fputs_unfiltered (" const", buf);
8080 }
8081 }
8082
8083 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8084 &length);
8085 ui_file_delete (buf);
8086
8087 if (cu->language == language_cplus)
8088 {
8089 const char *cname
8090 = dwarf2_canonicalize_name (name, cu,
8091 &objfile->objfile_obstack);
8092
8093 if (cname != NULL)
8094 name = cname;
8095 }
8096 }
8097 }
8098
8099 return name;
8100 }
8101
8102 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8103 If scope qualifiers are appropriate they will be added. The result
8104 will be allocated on the objfile_obstack, or NULL if the DIE does
8105 not have a name. NAME may either be from a previous call to
8106 dwarf2_name or NULL.
8107
8108 The output string will be canonicalized (if C++/Java). */
8109
8110 static const char *
8111 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8112 {
8113 return dwarf2_compute_name (name, die, cu, 0);
8114 }
8115
8116 /* Construct a physname for the given DIE in CU. NAME may either be
8117 from a previous call to dwarf2_name or NULL. The result will be
8118 allocated on the objfile_objstack or NULL if the DIE does not have a
8119 name.
8120
8121 The output string will be canonicalized (if C++/Java). */
8122
8123 static const char *
8124 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8125 {
8126 struct objfile *objfile = cu->objfile;
8127 struct attribute *attr;
8128 const char *retval, *mangled = NULL, *canon = NULL;
8129 struct cleanup *back_to;
8130 int need_copy = 1;
8131
8132 /* In this case dwarf2_compute_name is just a shortcut not building anything
8133 on its own. */
8134 if (!die_needs_namespace (die, cu))
8135 return dwarf2_compute_name (name, die, cu, 1);
8136
8137 back_to = make_cleanup (null_cleanup, NULL);
8138
8139 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8140 if (!attr)
8141 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8142
8143 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8144 has computed. */
8145 if (attr && DW_STRING (attr))
8146 {
8147 char *demangled;
8148
8149 mangled = DW_STRING (attr);
8150
8151 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8152 type. It is easier for GDB users to search for such functions as
8153 `name(params)' than `long name(params)'. In such case the minimal
8154 symbol names do not match the full symbol names but for template
8155 functions there is never a need to look up their definition from their
8156 declaration so the only disadvantage remains the minimal symbol
8157 variant `long name(params)' does not have the proper inferior type.
8158 */
8159
8160 if (cu->language == language_go)
8161 {
8162 /* This is a lie, but we already lie to the caller new_symbol_full.
8163 new_symbol_full assumes we return the mangled name.
8164 This just undoes that lie until things are cleaned up. */
8165 demangled = NULL;
8166 }
8167 else
8168 {
8169 demangled = gdb_demangle (mangled,
8170 (DMGL_PARAMS | DMGL_ANSI
8171 | (cu->language == language_java
8172 ? DMGL_JAVA | DMGL_RET_POSTFIX
8173 : DMGL_RET_DROP)));
8174 }
8175 if (demangled)
8176 {
8177 make_cleanup (xfree, demangled);
8178 canon = demangled;
8179 }
8180 else
8181 {
8182 canon = mangled;
8183 need_copy = 0;
8184 }
8185 }
8186
8187 if (canon == NULL || check_physname)
8188 {
8189 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8190
8191 if (canon != NULL && strcmp (physname, canon) != 0)
8192 {
8193 /* It may not mean a bug in GDB. The compiler could also
8194 compute DW_AT_linkage_name incorrectly. But in such case
8195 GDB would need to be bug-to-bug compatible. */
8196
8197 complaint (&symfile_complaints,
8198 _("Computed physname <%s> does not match demangled <%s> "
8199 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8200 physname, canon, mangled, die->offset.sect_off, objfile->name);
8201
8202 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8203 is available here - over computed PHYSNAME. It is safer
8204 against both buggy GDB and buggy compilers. */
8205
8206 retval = canon;
8207 }
8208 else
8209 {
8210 retval = physname;
8211 need_copy = 0;
8212 }
8213 }
8214 else
8215 retval = canon;
8216
8217 if (need_copy)
8218 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8219
8220 do_cleanups (back_to);
8221 return retval;
8222 }
8223
8224 /* Read the import statement specified by the given die and record it. */
8225
8226 static void
8227 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8228 {
8229 struct objfile *objfile = cu->objfile;
8230 struct attribute *import_attr;
8231 struct die_info *imported_die, *child_die;
8232 struct dwarf2_cu *imported_cu;
8233 const char *imported_name;
8234 const char *imported_name_prefix;
8235 const char *canonical_name;
8236 const char *import_alias;
8237 const char *imported_declaration = NULL;
8238 const char *import_prefix;
8239 VEC (const_char_ptr) *excludes = NULL;
8240 struct cleanup *cleanups;
8241
8242 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8243 if (import_attr == NULL)
8244 {
8245 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8246 dwarf_tag_name (die->tag));
8247 return;
8248 }
8249
8250 imported_cu = cu;
8251 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8252 imported_name = dwarf2_name (imported_die, imported_cu);
8253 if (imported_name == NULL)
8254 {
8255 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8256
8257 The import in the following code:
8258 namespace A
8259 {
8260 typedef int B;
8261 }
8262
8263 int main ()
8264 {
8265 using A::B;
8266 B b;
8267 return b;
8268 }
8269
8270 ...
8271 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8272 <52> DW_AT_decl_file : 1
8273 <53> DW_AT_decl_line : 6
8274 <54> DW_AT_import : <0x75>
8275 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8276 <59> DW_AT_name : B
8277 <5b> DW_AT_decl_file : 1
8278 <5c> DW_AT_decl_line : 2
8279 <5d> DW_AT_type : <0x6e>
8280 ...
8281 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8282 <76> DW_AT_byte_size : 4
8283 <77> DW_AT_encoding : 5 (signed)
8284
8285 imports the wrong die ( 0x75 instead of 0x58 ).
8286 This case will be ignored until the gcc bug is fixed. */
8287 return;
8288 }
8289
8290 /* Figure out the local name after import. */
8291 import_alias = dwarf2_name (die, cu);
8292
8293 /* Figure out where the statement is being imported to. */
8294 import_prefix = determine_prefix (die, cu);
8295
8296 /* Figure out what the scope of the imported die is and prepend it
8297 to the name of the imported die. */
8298 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8299
8300 if (imported_die->tag != DW_TAG_namespace
8301 && imported_die->tag != DW_TAG_module)
8302 {
8303 imported_declaration = imported_name;
8304 canonical_name = imported_name_prefix;
8305 }
8306 else if (strlen (imported_name_prefix) > 0)
8307 canonical_name = obconcat (&objfile->objfile_obstack,
8308 imported_name_prefix, "::", imported_name,
8309 (char *) NULL);
8310 else
8311 canonical_name = imported_name;
8312
8313 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8314
8315 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8316 for (child_die = die->child; child_die && child_die->tag;
8317 child_die = sibling_die (child_die))
8318 {
8319 /* DWARF-4: A Fortran use statement with a “rename list” may be
8320 represented by an imported module entry with an import attribute
8321 referring to the module and owned entries corresponding to those
8322 entities that are renamed as part of being imported. */
8323
8324 if (child_die->tag != DW_TAG_imported_declaration)
8325 {
8326 complaint (&symfile_complaints,
8327 _("child DW_TAG_imported_declaration expected "
8328 "- DIE at 0x%x [in module %s]"),
8329 child_die->offset.sect_off, objfile->name);
8330 continue;
8331 }
8332
8333 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8334 if (import_attr == NULL)
8335 {
8336 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8337 dwarf_tag_name (child_die->tag));
8338 continue;
8339 }
8340
8341 imported_cu = cu;
8342 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8343 &imported_cu);
8344 imported_name = dwarf2_name (imported_die, imported_cu);
8345 if (imported_name == NULL)
8346 {
8347 complaint (&symfile_complaints,
8348 _("child DW_TAG_imported_declaration has unknown "
8349 "imported name - DIE at 0x%x [in module %s]"),
8350 child_die->offset.sect_off, objfile->name);
8351 continue;
8352 }
8353
8354 VEC_safe_push (const_char_ptr, excludes, imported_name);
8355
8356 process_die (child_die, cu);
8357 }
8358
8359 cp_add_using_directive (import_prefix,
8360 canonical_name,
8361 import_alias,
8362 imported_declaration,
8363 excludes,
8364 0,
8365 &objfile->objfile_obstack);
8366
8367 do_cleanups (cleanups);
8368 }
8369
8370 /* Cleanup function for handle_DW_AT_stmt_list. */
8371
8372 static void
8373 free_cu_line_header (void *arg)
8374 {
8375 struct dwarf2_cu *cu = arg;
8376
8377 free_line_header (cu->line_header);
8378 cu->line_header = NULL;
8379 }
8380
8381 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8382 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8383 this, it was first present in GCC release 4.3.0. */
8384
8385 static int
8386 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8387 {
8388 if (!cu->checked_producer)
8389 check_producer (cu);
8390
8391 return cu->producer_is_gcc_lt_4_3;
8392 }
8393
8394 static void
8395 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8396 const char **name, const char **comp_dir)
8397 {
8398 struct attribute *attr;
8399
8400 *name = NULL;
8401 *comp_dir = NULL;
8402
8403 /* Find the filename. Do not use dwarf2_name here, since the filename
8404 is not a source language identifier. */
8405 attr = dwarf2_attr (die, DW_AT_name, cu);
8406 if (attr)
8407 {
8408 *name = DW_STRING (attr);
8409 }
8410
8411 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8412 if (attr)
8413 *comp_dir = DW_STRING (attr);
8414 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8415 && IS_ABSOLUTE_PATH (*name))
8416 {
8417 char *d = ldirname (*name);
8418
8419 *comp_dir = d;
8420 if (d != NULL)
8421 make_cleanup (xfree, d);
8422 }
8423 if (*comp_dir != NULL)
8424 {
8425 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8426 directory, get rid of it. */
8427 char *cp = strchr (*comp_dir, ':');
8428
8429 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8430 *comp_dir = cp + 1;
8431 }
8432
8433 if (*name == NULL)
8434 *name = "<unknown>";
8435 }
8436
8437 /* Handle DW_AT_stmt_list for a compilation unit.
8438 DIE is the DW_TAG_compile_unit die for CU.
8439 COMP_DIR is the compilation directory.
8440 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8441
8442 static void
8443 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8444 const char *comp_dir) /* ARI: editCase function */
8445 {
8446 struct attribute *attr;
8447
8448 gdb_assert (! cu->per_cu->is_debug_types);
8449
8450 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8451 if (attr)
8452 {
8453 unsigned int line_offset = DW_UNSND (attr);
8454 struct line_header *line_header
8455 = dwarf_decode_line_header (line_offset, cu);
8456
8457 if (line_header)
8458 {
8459 cu->line_header = line_header;
8460 make_cleanup (free_cu_line_header, cu);
8461 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8462 }
8463 }
8464 }
8465
8466 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8467
8468 static void
8469 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8470 {
8471 struct objfile *objfile = dwarf2_per_objfile->objfile;
8472 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8473 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8474 CORE_ADDR highpc = ((CORE_ADDR) 0);
8475 struct attribute *attr;
8476 const char *name = NULL;
8477 const char *comp_dir = NULL;
8478 struct die_info *child_die;
8479 bfd *abfd = objfile->obfd;
8480 CORE_ADDR baseaddr;
8481
8482 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8483
8484 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8485
8486 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8487 from finish_block. */
8488 if (lowpc == ((CORE_ADDR) -1))
8489 lowpc = highpc;
8490 lowpc += baseaddr;
8491 highpc += baseaddr;
8492
8493 find_file_and_directory (die, cu, &name, &comp_dir);
8494
8495 prepare_one_comp_unit (cu, die, cu->language);
8496
8497 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8498 standardised yet. As a workaround for the language detection we fall
8499 back to the DW_AT_producer string. */
8500 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8501 cu->language = language_opencl;
8502
8503 /* Similar hack for Go. */
8504 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8505 set_cu_language (DW_LANG_Go, cu);
8506
8507 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8508
8509 /* Decode line number information if present. We do this before
8510 processing child DIEs, so that the line header table is available
8511 for DW_AT_decl_file. */
8512 handle_DW_AT_stmt_list (die, cu, comp_dir);
8513
8514 /* Process all dies in compilation unit. */
8515 if (die->child != NULL)
8516 {
8517 child_die = die->child;
8518 while (child_die && child_die->tag)
8519 {
8520 process_die (child_die, cu);
8521 child_die = sibling_die (child_die);
8522 }
8523 }
8524
8525 /* Decode macro information, if present. Dwarf 2 macro information
8526 refers to information in the line number info statement program
8527 header, so we can only read it if we've read the header
8528 successfully. */
8529 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8530 if (attr && cu->line_header)
8531 {
8532 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8533 complaint (&symfile_complaints,
8534 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8535
8536 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8537 }
8538 else
8539 {
8540 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8541 if (attr && cu->line_header)
8542 {
8543 unsigned int macro_offset = DW_UNSND (attr);
8544
8545 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8546 }
8547 }
8548
8549 do_cleanups (back_to);
8550 }
8551
8552 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8553 Create the set of symtabs used by this TU, or if this TU is sharing
8554 symtabs with another TU and the symtabs have already been created
8555 then restore those symtabs in the line header.
8556 We don't need the pc/line-number mapping for type units. */
8557
8558 static void
8559 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8560 {
8561 struct objfile *objfile = dwarf2_per_objfile->objfile;
8562 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8563 struct type_unit_group *tu_group;
8564 int first_time;
8565 struct line_header *lh;
8566 struct attribute *attr;
8567 unsigned int i, line_offset;
8568 struct signatured_type *sig_type;
8569
8570 gdb_assert (per_cu->is_debug_types);
8571 sig_type = (struct signatured_type *) per_cu;
8572
8573 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8574
8575 /* If we're using .gdb_index (includes -readnow) then
8576 per_cu->type_unit_group may not have been set up yet. */
8577 if (sig_type->type_unit_group == NULL)
8578 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8579 tu_group = sig_type->type_unit_group;
8580
8581 /* If we've already processed this stmt_list there's no real need to
8582 do it again, we could fake it and just recreate the part we need
8583 (file name,index -> symtab mapping). If data shows this optimization
8584 is useful we can do it then. */
8585 first_time = tu_group->primary_symtab == NULL;
8586
8587 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8588 debug info. */
8589 lh = NULL;
8590 if (attr != NULL)
8591 {
8592 line_offset = DW_UNSND (attr);
8593 lh = dwarf_decode_line_header (line_offset, cu);
8594 }
8595 if (lh == NULL)
8596 {
8597 if (first_time)
8598 dwarf2_start_symtab (cu, "", NULL, 0);
8599 else
8600 {
8601 gdb_assert (tu_group->symtabs == NULL);
8602 restart_symtab (0);
8603 }
8604 /* Note: The primary symtab will get allocated at the end. */
8605 return;
8606 }
8607
8608 cu->line_header = lh;
8609 make_cleanup (free_cu_line_header, cu);
8610
8611 if (first_time)
8612 {
8613 dwarf2_start_symtab (cu, "", NULL, 0);
8614
8615 tu_group->num_symtabs = lh->num_file_names;
8616 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8617
8618 for (i = 0; i < lh->num_file_names; ++i)
8619 {
8620 const char *dir = NULL;
8621 struct file_entry *fe = &lh->file_names[i];
8622
8623 if (fe->dir_index)
8624 dir = lh->include_dirs[fe->dir_index - 1];
8625 dwarf2_start_subfile (fe->name, dir, NULL);
8626
8627 /* Note: We don't have to watch for the main subfile here, type units
8628 don't have DW_AT_name. */
8629
8630 if (current_subfile->symtab == NULL)
8631 {
8632 /* NOTE: start_subfile will recognize when it's been passed
8633 a file it has already seen. So we can't assume there's a
8634 simple mapping from lh->file_names to subfiles,
8635 lh->file_names may contain dups. */
8636 current_subfile->symtab = allocate_symtab (current_subfile->name,
8637 objfile);
8638 }
8639
8640 fe->symtab = current_subfile->symtab;
8641 tu_group->symtabs[i] = fe->symtab;
8642 }
8643 }
8644 else
8645 {
8646 restart_symtab (0);
8647
8648 for (i = 0; i < lh->num_file_names; ++i)
8649 {
8650 struct file_entry *fe = &lh->file_names[i];
8651
8652 fe->symtab = tu_group->symtabs[i];
8653 }
8654 }
8655
8656 /* The main symtab is allocated last. Type units don't have DW_AT_name
8657 so they don't have a "real" (so to speak) symtab anyway.
8658 There is later code that will assign the main symtab to all symbols
8659 that don't have one. We need to handle the case of a symbol with a
8660 missing symtab (DW_AT_decl_file) anyway. */
8661 }
8662
8663 /* Process DW_TAG_type_unit.
8664 For TUs we want to skip the first top level sibling if it's not the
8665 actual type being defined by this TU. In this case the first top
8666 level sibling is there to provide context only. */
8667
8668 static void
8669 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8670 {
8671 struct die_info *child_die;
8672
8673 prepare_one_comp_unit (cu, die, language_minimal);
8674
8675 /* Initialize (or reinitialize) the machinery for building symtabs.
8676 We do this before processing child DIEs, so that the line header table
8677 is available for DW_AT_decl_file. */
8678 setup_type_unit_groups (die, cu);
8679
8680 if (die->child != NULL)
8681 {
8682 child_die = die->child;
8683 while (child_die && child_die->tag)
8684 {
8685 process_die (child_die, cu);
8686 child_die = sibling_die (child_die);
8687 }
8688 }
8689 }
8690 \f
8691 /* DWO/DWP files.
8692
8693 http://gcc.gnu.org/wiki/DebugFission
8694 http://gcc.gnu.org/wiki/DebugFissionDWP
8695
8696 To simplify handling of both DWO files ("object" files with the DWARF info)
8697 and DWP files (a file with the DWOs packaged up into one file), we treat
8698 DWP files as having a collection of virtual DWO files. */
8699
8700 static hashval_t
8701 hash_dwo_file (const void *item)
8702 {
8703 const struct dwo_file *dwo_file = item;
8704 hashval_t hash;
8705
8706 hash = htab_hash_string (dwo_file->dwo_name);
8707 if (dwo_file->comp_dir != NULL)
8708 hash += htab_hash_string (dwo_file->comp_dir);
8709 return hash;
8710 }
8711
8712 static int
8713 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8714 {
8715 const struct dwo_file *lhs = item_lhs;
8716 const struct dwo_file *rhs = item_rhs;
8717
8718 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8719 return 0;
8720 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8721 return lhs->comp_dir == rhs->comp_dir;
8722 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8723 }
8724
8725 /* Allocate a hash table for DWO files. */
8726
8727 static htab_t
8728 allocate_dwo_file_hash_table (void)
8729 {
8730 struct objfile *objfile = dwarf2_per_objfile->objfile;
8731
8732 return htab_create_alloc_ex (41,
8733 hash_dwo_file,
8734 eq_dwo_file,
8735 NULL,
8736 &objfile->objfile_obstack,
8737 hashtab_obstack_allocate,
8738 dummy_obstack_deallocate);
8739 }
8740
8741 /* Lookup DWO file DWO_NAME. */
8742
8743 static void **
8744 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8745 {
8746 struct dwo_file find_entry;
8747 void **slot;
8748
8749 if (dwarf2_per_objfile->dwo_files == NULL)
8750 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8751
8752 memset (&find_entry, 0, sizeof (find_entry));
8753 find_entry.dwo_name = dwo_name;
8754 find_entry.comp_dir = comp_dir;
8755 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8756
8757 return slot;
8758 }
8759
8760 static hashval_t
8761 hash_dwo_unit (const void *item)
8762 {
8763 const struct dwo_unit *dwo_unit = item;
8764
8765 /* This drops the top 32 bits of the id, but is ok for a hash. */
8766 return dwo_unit->signature;
8767 }
8768
8769 static int
8770 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8771 {
8772 const struct dwo_unit *lhs = item_lhs;
8773 const struct dwo_unit *rhs = item_rhs;
8774
8775 /* The signature is assumed to be unique within the DWO file.
8776 So while object file CU dwo_id's always have the value zero,
8777 that's OK, assuming each object file DWO file has only one CU,
8778 and that's the rule for now. */
8779 return lhs->signature == rhs->signature;
8780 }
8781
8782 /* Allocate a hash table for DWO CUs,TUs.
8783 There is one of these tables for each of CUs,TUs for each DWO file. */
8784
8785 static htab_t
8786 allocate_dwo_unit_table (struct objfile *objfile)
8787 {
8788 /* Start out with a pretty small number.
8789 Generally DWO files contain only one CU and maybe some TUs. */
8790 return htab_create_alloc_ex (3,
8791 hash_dwo_unit,
8792 eq_dwo_unit,
8793 NULL,
8794 &objfile->objfile_obstack,
8795 hashtab_obstack_allocate,
8796 dummy_obstack_deallocate);
8797 }
8798
8799 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8800
8801 struct create_dwo_cu_data
8802 {
8803 struct dwo_file *dwo_file;
8804 struct dwo_unit dwo_unit;
8805 };
8806
8807 /* die_reader_func for create_dwo_cu. */
8808
8809 static void
8810 create_dwo_cu_reader (const struct die_reader_specs *reader,
8811 const gdb_byte *info_ptr,
8812 struct die_info *comp_unit_die,
8813 int has_children,
8814 void *datap)
8815 {
8816 struct dwarf2_cu *cu = reader->cu;
8817 struct objfile *objfile = dwarf2_per_objfile->objfile;
8818 sect_offset offset = cu->per_cu->offset;
8819 struct dwarf2_section_info *section = cu->per_cu->section;
8820 struct create_dwo_cu_data *data = datap;
8821 struct dwo_file *dwo_file = data->dwo_file;
8822 struct dwo_unit *dwo_unit = &data->dwo_unit;
8823 struct attribute *attr;
8824
8825 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8826 if (attr == NULL)
8827 {
8828 complaint (&symfile_complaints,
8829 _("Dwarf Error: debug entry at offset 0x%x is missing"
8830 " its dwo_id [in module %s]"),
8831 offset.sect_off, dwo_file->dwo_name);
8832 return;
8833 }
8834
8835 dwo_unit->dwo_file = dwo_file;
8836 dwo_unit->signature = DW_UNSND (attr);
8837 dwo_unit->section = section;
8838 dwo_unit->offset = offset;
8839 dwo_unit->length = cu->per_cu->length;
8840
8841 if (dwarf2_read_debug)
8842 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8843 offset.sect_off, hex_string (dwo_unit->signature));
8844 }
8845
8846 /* Create the dwo_unit for the lone CU in DWO_FILE.
8847 Note: This function processes DWO files only, not DWP files. */
8848
8849 static struct dwo_unit *
8850 create_dwo_cu (struct dwo_file *dwo_file)
8851 {
8852 struct objfile *objfile = dwarf2_per_objfile->objfile;
8853 struct dwarf2_section_info *section = &dwo_file->sections.info;
8854 bfd *abfd;
8855 htab_t cu_htab;
8856 const gdb_byte *info_ptr, *end_ptr;
8857 struct create_dwo_cu_data create_dwo_cu_data;
8858 struct dwo_unit *dwo_unit;
8859
8860 dwarf2_read_section (objfile, section);
8861 info_ptr = section->buffer;
8862
8863 if (info_ptr == NULL)
8864 return NULL;
8865
8866 /* We can't set abfd until now because the section may be empty or
8867 not present, in which case section->asection will be NULL. */
8868 abfd = section->asection->owner;
8869
8870 if (dwarf2_read_debug)
8871 {
8872 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8873 bfd_section_name (abfd, section->asection),
8874 bfd_get_filename (abfd));
8875 }
8876
8877 create_dwo_cu_data.dwo_file = dwo_file;
8878 dwo_unit = NULL;
8879
8880 end_ptr = info_ptr + section->size;
8881 while (info_ptr < end_ptr)
8882 {
8883 struct dwarf2_per_cu_data per_cu;
8884
8885 memset (&create_dwo_cu_data.dwo_unit, 0,
8886 sizeof (create_dwo_cu_data.dwo_unit));
8887 memset (&per_cu, 0, sizeof (per_cu));
8888 per_cu.objfile = objfile;
8889 per_cu.is_debug_types = 0;
8890 per_cu.offset.sect_off = info_ptr - section->buffer;
8891 per_cu.section = section;
8892
8893 init_cutu_and_read_dies_no_follow (&per_cu,
8894 &dwo_file->sections.abbrev,
8895 dwo_file,
8896 create_dwo_cu_reader,
8897 &create_dwo_cu_data);
8898
8899 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8900 {
8901 /* If we've already found one, complain. We only support one
8902 because having more than one requires hacking the dwo_name of
8903 each to match, which is highly unlikely to happen. */
8904 if (dwo_unit != NULL)
8905 {
8906 complaint (&symfile_complaints,
8907 _("Multiple CUs in DWO file %s [in module %s]"),
8908 dwo_file->dwo_name, objfile->name);
8909 break;
8910 }
8911
8912 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8913 *dwo_unit = create_dwo_cu_data.dwo_unit;
8914 }
8915
8916 info_ptr += per_cu.length;
8917 }
8918
8919 return dwo_unit;
8920 }
8921
8922 /* DWP file .debug_{cu,tu}_index section format:
8923 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8924
8925 DWP Version 1:
8926
8927 Both index sections have the same format, and serve to map a 64-bit
8928 signature to a set of section numbers. Each section begins with a header,
8929 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8930 indexes, and a pool of 32-bit section numbers. The index sections will be
8931 aligned at 8-byte boundaries in the file.
8932
8933 The index section header consists of:
8934
8935 V, 32 bit version number
8936 -, 32 bits unused
8937 N, 32 bit number of compilation units or type units in the index
8938 M, 32 bit number of slots in the hash table
8939
8940 Numbers are recorded using the byte order of the application binary.
8941
8942 We assume that N and M will not exceed 2^32 - 1.
8943
8944 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8945
8946 The hash table begins at offset 16 in the section, and consists of an array
8947 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8948 order of the application binary). Unused slots in the hash table are 0.
8949 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8950
8951 The parallel table begins immediately after the hash table
8952 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8953 array of 32-bit indexes (using the byte order of the application binary),
8954 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8955 table contains a 32-bit index into the pool of section numbers. For unused
8956 hash table slots, the corresponding entry in the parallel table will be 0.
8957
8958 Given a 64-bit compilation unit signature or a type signature S, an entry
8959 in the hash table is located as follows:
8960
8961 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8962 the low-order k bits all set to 1.
8963
8964 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8965
8966 3) If the hash table entry at index H matches the signature, use that
8967 entry. If the hash table entry at index H is unused (all zeroes),
8968 terminate the search: the signature is not present in the table.
8969
8970 4) Let H = (H + H') modulo M. Repeat at Step 3.
8971
8972 Because M > N and H' and M are relatively prime, the search is guaranteed
8973 to stop at an unused slot or find the match.
8974
8975 The pool of section numbers begins immediately following the hash table
8976 (at offset 16 + 12 * M from the beginning of the section). The pool of
8977 section numbers consists of an array of 32-bit words (using the byte order
8978 of the application binary). Each item in the array is indexed starting
8979 from 0. The hash table entry provides the index of the first section
8980 number in the set. Additional section numbers in the set follow, and the
8981 set is terminated by a 0 entry (section number 0 is not used in ELF).
8982
8983 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8984 section must be the first entry in the set, and the .debug_abbrev.dwo must
8985 be the second entry. Other members of the set may follow in any order. */
8986
8987 /* Create a hash table to map DWO IDs to their CU/TU entry in
8988 .debug_{info,types}.dwo in DWP_FILE.
8989 Returns NULL if there isn't one.
8990 Note: This function processes DWP files only, not DWO files. */
8991
8992 static struct dwp_hash_table *
8993 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8994 {
8995 struct objfile *objfile = dwarf2_per_objfile->objfile;
8996 bfd *dbfd = dwp_file->dbfd;
8997 const gdb_byte *index_ptr, *index_end;
8998 struct dwarf2_section_info *index;
8999 uint32_t version, nr_units, nr_slots;
9000 struct dwp_hash_table *htab;
9001
9002 if (is_debug_types)
9003 index = &dwp_file->sections.tu_index;
9004 else
9005 index = &dwp_file->sections.cu_index;
9006
9007 if (dwarf2_section_empty_p (index))
9008 return NULL;
9009 dwarf2_read_section (objfile, index);
9010
9011 index_ptr = index->buffer;
9012 index_end = index_ptr + index->size;
9013
9014 version = read_4_bytes (dbfd, index_ptr);
9015 index_ptr += 8; /* Skip the unused word. */
9016 nr_units = read_4_bytes (dbfd, index_ptr);
9017 index_ptr += 4;
9018 nr_slots = read_4_bytes (dbfd, index_ptr);
9019 index_ptr += 4;
9020
9021 if (version != 1)
9022 {
9023 error (_("Dwarf Error: unsupported DWP file version (%s)"
9024 " [in module %s]"),
9025 pulongest (version), dwp_file->name);
9026 }
9027 if (nr_slots != (nr_slots & -nr_slots))
9028 {
9029 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9030 " is not power of 2 [in module %s]"),
9031 pulongest (nr_slots), dwp_file->name);
9032 }
9033
9034 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9035 htab->nr_units = nr_units;
9036 htab->nr_slots = nr_slots;
9037 htab->hash_table = index_ptr;
9038 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9039 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9040
9041 return htab;
9042 }
9043
9044 /* Update SECTIONS with the data from SECTP.
9045
9046 This function is like the other "locate" section routines that are
9047 passed to bfd_map_over_sections, but in this context the sections to
9048 read comes from the DWP hash table, not the full ELF section table.
9049
9050 The result is non-zero for success, or zero if an error was found. */
9051
9052 static int
9053 locate_virtual_dwo_sections (asection *sectp,
9054 struct virtual_dwo_sections *sections)
9055 {
9056 const struct dwop_section_names *names = &dwop_section_names;
9057
9058 if (section_is_p (sectp->name, &names->abbrev_dwo))
9059 {
9060 /* There can be only one. */
9061 if (sections->abbrev.asection != NULL)
9062 return 0;
9063 sections->abbrev.asection = sectp;
9064 sections->abbrev.size = bfd_get_section_size (sectp);
9065 }
9066 else if (section_is_p (sectp->name, &names->info_dwo)
9067 || section_is_p (sectp->name, &names->types_dwo))
9068 {
9069 /* There can be only one. */
9070 if (sections->info_or_types.asection != NULL)
9071 return 0;
9072 sections->info_or_types.asection = sectp;
9073 sections->info_or_types.size = bfd_get_section_size (sectp);
9074 }
9075 else if (section_is_p (sectp->name, &names->line_dwo))
9076 {
9077 /* There can be only one. */
9078 if (sections->line.asection != NULL)
9079 return 0;
9080 sections->line.asection = sectp;
9081 sections->line.size = bfd_get_section_size (sectp);
9082 }
9083 else if (section_is_p (sectp->name, &names->loc_dwo))
9084 {
9085 /* There can be only one. */
9086 if (sections->loc.asection != NULL)
9087 return 0;
9088 sections->loc.asection = sectp;
9089 sections->loc.size = bfd_get_section_size (sectp);
9090 }
9091 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9092 {
9093 /* There can be only one. */
9094 if (sections->macinfo.asection != NULL)
9095 return 0;
9096 sections->macinfo.asection = sectp;
9097 sections->macinfo.size = bfd_get_section_size (sectp);
9098 }
9099 else if (section_is_p (sectp->name, &names->macro_dwo))
9100 {
9101 /* There can be only one. */
9102 if (sections->macro.asection != NULL)
9103 return 0;
9104 sections->macro.asection = sectp;
9105 sections->macro.size = bfd_get_section_size (sectp);
9106 }
9107 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9108 {
9109 /* There can be only one. */
9110 if (sections->str_offsets.asection != NULL)
9111 return 0;
9112 sections->str_offsets.asection = sectp;
9113 sections->str_offsets.size = bfd_get_section_size (sectp);
9114 }
9115 else
9116 {
9117 /* No other kind of section is valid. */
9118 return 0;
9119 }
9120
9121 return 1;
9122 }
9123
9124 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9125 HTAB is the hash table from the DWP file.
9126 SECTION_INDEX is the index of the DWO in HTAB.
9127 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9128
9129 static struct dwo_unit *
9130 create_dwo_in_dwp (struct dwp_file *dwp_file,
9131 const struct dwp_hash_table *htab,
9132 uint32_t section_index,
9133 const char *comp_dir,
9134 ULONGEST signature, int is_debug_types)
9135 {
9136 struct objfile *objfile = dwarf2_per_objfile->objfile;
9137 bfd *dbfd = dwp_file->dbfd;
9138 const char *kind = is_debug_types ? "TU" : "CU";
9139 struct dwo_file *dwo_file;
9140 struct dwo_unit *dwo_unit;
9141 struct virtual_dwo_sections sections;
9142 void **dwo_file_slot;
9143 char *virtual_dwo_name;
9144 struct dwarf2_section_info *cutu;
9145 struct cleanup *cleanups;
9146 int i;
9147
9148 if (dwarf2_read_debug)
9149 {
9150 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9151 kind,
9152 pulongest (section_index), hex_string (signature),
9153 dwp_file->name);
9154 }
9155
9156 /* Fetch the sections of this DWO.
9157 Put a limit on the number of sections we look for so that bad data
9158 doesn't cause us to loop forever. */
9159
9160 #define MAX_NR_DWO_SECTIONS \
9161 (1 /* .debug_info or .debug_types */ \
9162 + 1 /* .debug_abbrev */ \
9163 + 1 /* .debug_line */ \
9164 + 1 /* .debug_loc */ \
9165 + 1 /* .debug_str_offsets */ \
9166 + 1 /* .debug_macro */ \
9167 + 1 /* .debug_macinfo */ \
9168 + 1 /* trailing zero */)
9169
9170 memset (&sections, 0, sizeof (sections));
9171 cleanups = make_cleanup (null_cleanup, 0);
9172
9173 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9174 {
9175 asection *sectp;
9176 uint32_t section_nr =
9177 read_4_bytes (dbfd,
9178 htab->section_pool
9179 + (section_index + i) * sizeof (uint32_t));
9180
9181 if (section_nr == 0)
9182 break;
9183 if (section_nr >= dwp_file->num_sections)
9184 {
9185 error (_("Dwarf Error: bad DWP hash table, section number too large"
9186 " [in module %s]"),
9187 dwp_file->name);
9188 }
9189
9190 sectp = dwp_file->elf_sections[section_nr];
9191 if (! locate_virtual_dwo_sections (sectp, &sections))
9192 {
9193 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9194 " [in module %s]"),
9195 dwp_file->name);
9196 }
9197 }
9198
9199 if (i < 2
9200 || sections.info_or_types.asection == NULL
9201 || sections.abbrev.asection == NULL)
9202 {
9203 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9204 " [in module %s]"),
9205 dwp_file->name);
9206 }
9207 if (i == MAX_NR_DWO_SECTIONS)
9208 {
9209 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9210 " [in module %s]"),
9211 dwp_file->name);
9212 }
9213
9214 /* It's easier for the rest of the code if we fake a struct dwo_file and
9215 have dwo_unit "live" in that. At least for now.
9216
9217 The DWP file can be made up of a random collection of CUs and TUs.
9218 However, for each CU + set of TUs that came from the same original DWO
9219 file, we want to combine them back into a virtual DWO file to save space
9220 (fewer struct dwo_file objects to allocated). Remember that for really
9221 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9222
9223 virtual_dwo_name =
9224 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9225 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9226 sections.line.asection ? sections.line.asection->id : 0,
9227 sections.loc.asection ? sections.loc.asection->id : 0,
9228 (sections.str_offsets.asection
9229 ? sections.str_offsets.asection->id
9230 : 0));
9231 make_cleanup (xfree, virtual_dwo_name);
9232 /* Can we use an existing virtual DWO file? */
9233 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9234 /* Create one if necessary. */
9235 if (*dwo_file_slot == NULL)
9236 {
9237 if (dwarf2_read_debug)
9238 {
9239 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9240 virtual_dwo_name);
9241 }
9242 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9243 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9244 virtual_dwo_name,
9245 strlen (virtual_dwo_name));
9246 dwo_file->comp_dir = comp_dir;
9247 dwo_file->sections.abbrev = sections.abbrev;
9248 dwo_file->sections.line = sections.line;
9249 dwo_file->sections.loc = sections.loc;
9250 dwo_file->sections.macinfo = sections.macinfo;
9251 dwo_file->sections.macro = sections.macro;
9252 dwo_file->sections.str_offsets = sections.str_offsets;
9253 /* The "str" section is global to the entire DWP file. */
9254 dwo_file->sections.str = dwp_file->sections.str;
9255 /* The info or types section is assigned later to dwo_unit,
9256 there's no need to record it in dwo_file.
9257 Also, we can't simply record type sections in dwo_file because
9258 we record a pointer into the vector in dwo_unit. As we collect more
9259 types we'll grow the vector and eventually have to reallocate space
9260 for it, invalidating all the pointers into the current copy. */
9261 *dwo_file_slot = dwo_file;
9262 }
9263 else
9264 {
9265 if (dwarf2_read_debug)
9266 {
9267 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9268 virtual_dwo_name);
9269 }
9270 dwo_file = *dwo_file_slot;
9271 }
9272 do_cleanups (cleanups);
9273
9274 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9275 dwo_unit->dwo_file = dwo_file;
9276 dwo_unit->signature = signature;
9277 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9278 sizeof (struct dwarf2_section_info));
9279 *dwo_unit->section = sections.info_or_types;
9280 /* offset, length, type_offset_in_tu are set later. */
9281
9282 return dwo_unit;
9283 }
9284
9285 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9286
9287 static struct dwo_unit *
9288 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9289 const struct dwp_hash_table *htab,
9290 const char *comp_dir,
9291 ULONGEST signature, int is_debug_types)
9292 {
9293 bfd *dbfd = dwp_file->dbfd;
9294 uint32_t mask = htab->nr_slots - 1;
9295 uint32_t hash = signature & mask;
9296 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9297 unsigned int i;
9298 void **slot;
9299 struct dwo_unit find_dwo_cu, *dwo_cu;
9300
9301 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9302 find_dwo_cu.signature = signature;
9303 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9304
9305 if (*slot != NULL)
9306 return *slot;
9307
9308 /* Use a for loop so that we don't loop forever on bad debug info. */
9309 for (i = 0; i < htab->nr_slots; ++i)
9310 {
9311 ULONGEST signature_in_table;
9312
9313 signature_in_table =
9314 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9315 if (signature_in_table == signature)
9316 {
9317 uint32_t section_index =
9318 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9319
9320 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9321 comp_dir, signature, is_debug_types);
9322 return *slot;
9323 }
9324 if (signature_in_table == 0)
9325 return NULL;
9326 hash = (hash + hash2) & mask;
9327 }
9328
9329 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9330 " [in module %s]"),
9331 dwp_file->name);
9332 }
9333
9334 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9335 Open the file specified by FILE_NAME and hand it off to BFD for
9336 preliminary analysis. Return a newly initialized bfd *, which
9337 includes a canonicalized copy of FILE_NAME.
9338 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9339 SEARCH_CWD is true if the current directory is to be searched.
9340 It will be searched before debug-file-directory.
9341 If unable to find/open the file, return NULL.
9342 NOTE: This function is derived from symfile_bfd_open. */
9343
9344 static bfd *
9345 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
9346 {
9347 bfd *sym_bfd;
9348 int desc, flags;
9349 char *absolute_name;
9350 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9351 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9352 to debug_file_directory. */
9353 char *search_path;
9354 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9355
9356 if (search_cwd)
9357 {
9358 if (*debug_file_directory != '\0')
9359 search_path = concat (".", dirname_separator_string,
9360 debug_file_directory, NULL);
9361 else
9362 search_path = xstrdup (".");
9363 }
9364 else
9365 search_path = xstrdup (debug_file_directory);
9366
9367 flags = OPF_RETURN_REALPATH;
9368 if (is_dwp)
9369 flags |= OPF_SEARCH_IN_PATH;
9370 desc = openp (search_path, flags, file_name,
9371 O_RDONLY | O_BINARY, &absolute_name);
9372 xfree (search_path);
9373 if (desc < 0)
9374 return NULL;
9375
9376 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9377 xfree (absolute_name);
9378 if (sym_bfd == NULL)
9379 return NULL;
9380 bfd_set_cacheable (sym_bfd, 1);
9381
9382 if (!bfd_check_format (sym_bfd, bfd_object))
9383 {
9384 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9385 return NULL;
9386 }
9387
9388 return sym_bfd;
9389 }
9390
9391 /* Try to open DWO file FILE_NAME.
9392 COMP_DIR is the DW_AT_comp_dir attribute.
9393 The result is the bfd handle of the file.
9394 If there is a problem finding or opening the file, return NULL.
9395 Upon success, the canonicalized path of the file is stored in the bfd,
9396 same as symfile_bfd_open. */
9397
9398 static bfd *
9399 open_dwo_file (const char *file_name, const char *comp_dir)
9400 {
9401 bfd *abfd;
9402
9403 if (IS_ABSOLUTE_PATH (file_name))
9404 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
9405
9406 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9407
9408 if (comp_dir != NULL)
9409 {
9410 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9411
9412 /* NOTE: If comp_dir is a relative path, this will also try the
9413 search path, which seems useful. */
9414 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
9415 xfree (path_to_try);
9416 if (abfd != NULL)
9417 return abfd;
9418 }
9419
9420 /* That didn't work, try debug-file-directory, which, despite its name,
9421 is a list of paths. */
9422
9423 if (*debug_file_directory == '\0')
9424 return NULL;
9425
9426 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
9427 }
9428
9429 /* This function is mapped across the sections and remembers the offset and
9430 size of each of the DWO debugging sections we are interested in. */
9431
9432 static void
9433 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9434 {
9435 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9436 const struct dwop_section_names *names = &dwop_section_names;
9437
9438 if (section_is_p (sectp->name, &names->abbrev_dwo))
9439 {
9440 dwo_sections->abbrev.asection = sectp;
9441 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9442 }
9443 else if (section_is_p (sectp->name, &names->info_dwo))
9444 {
9445 dwo_sections->info.asection = sectp;
9446 dwo_sections->info.size = bfd_get_section_size (sectp);
9447 }
9448 else if (section_is_p (sectp->name, &names->line_dwo))
9449 {
9450 dwo_sections->line.asection = sectp;
9451 dwo_sections->line.size = bfd_get_section_size (sectp);
9452 }
9453 else if (section_is_p (sectp->name, &names->loc_dwo))
9454 {
9455 dwo_sections->loc.asection = sectp;
9456 dwo_sections->loc.size = bfd_get_section_size (sectp);
9457 }
9458 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9459 {
9460 dwo_sections->macinfo.asection = sectp;
9461 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9462 }
9463 else if (section_is_p (sectp->name, &names->macro_dwo))
9464 {
9465 dwo_sections->macro.asection = sectp;
9466 dwo_sections->macro.size = bfd_get_section_size (sectp);
9467 }
9468 else if (section_is_p (sectp->name, &names->str_dwo))
9469 {
9470 dwo_sections->str.asection = sectp;
9471 dwo_sections->str.size = bfd_get_section_size (sectp);
9472 }
9473 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9474 {
9475 dwo_sections->str_offsets.asection = sectp;
9476 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9477 }
9478 else if (section_is_p (sectp->name, &names->types_dwo))
9479 {
9480 struct dwarf2_section_info type_section;
9481
9482 memset (&type_section, 0, sizeof (type_section));
9483 type_section.asection = sectp;
9484 type_section.size = bfd_get_section_size (sectp);
9485 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9486 &type_section);
9487 }
9488 }
9489
9490 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9491 by PER_CU. This is for the non-DWP case.
9492 The result is NULL if DWO_NAME can't be found. */
9493
9494 static struct dwo_file *
9495 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9496 const char *dwo_name, const char *comp_dir)
9497 {
9498 struct objfile *objfile = dwarf2_per_objfile->objfile;
9499 struct dwo_file *dwo_file;
9500 bfd *dbfd;
9501 struct cleanup *cleanups;
9502
9503 dbfd = open_dwo_file (dwo_name, comp_dir);
9504 if (dbfd == NULL)
9505 {
9506 if (dwarf2_read_debug)
9507 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9508 return NULL;
9509 }
9510 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9511 dwo_file->dwo_name = dwo_name;
9512 dwo_file->comp_dir = comp_dir;
9513 dwo_file->dbfd = dbfd;
9514
9515 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9516
9517 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9518
9519 dwo_file->cu = create_dwo_cu (dwo_file);
9520
9521 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9522 dwo_file->sections.types);
9523
9524 discard_cleanups (cleanups);
9525
9526 if (dwarf2_read_debug)
9527 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9528
9529 return dwo_file;
9530 }
9531
9532 /* This function is mapped across the sections and remembers the offset and
9533 size of each of the DWP debugging sections we are interested in. */
9534
9535 static void
9536 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9537 {
9538 struct dwp_file *dwp_file = dwp_file_ptr;
9539 const struct dwop_section_names *names = &dwop_section_names;
9540 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9541
9542 /* Record the ELF section number for later lookup: this is what the
9543 .debug_cu_index,.debug_tu_index tables use. */
9544 gdb_assert (elf_section_nr < dwp_file->num_sections);
9545 dwp_file->elf_sections[elf_section_nr] = sectp;
9546
9547 /* Look for specific sections that we need. */
9548 if (section_is_p (sectp->name, &names->str_dwo))
9549 {
9550 dwp_file->sections.str.asection = sectp;
9551 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9552 }
9553 else if (section_is_p (sectp->name, &names->cu_index))
9554 {
9555 dwp_file->sections.cu_index.asection = sectp;
9556 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9557 }
9558 else if (section_is_p (sectp->name, &names->tu_index))
9559 {
9560 dwp_file->sections.tu_index.asection = sectp;
9561 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9562 }
9563 }
9564
9565 /* Hash function for dwp_file loaded CUs/TUs. */
9566
9567 static hashval_t
9568 hash_dwp_loaded_cutus (const void *item)
9569 {
9570 const struct dwo_unit *dwo_unit = item;
9571
9572 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9573 return dwo_unit->signature;
9574 }
9575
9576 /* Equality function for dwp_file loaded CUs/TUs. */
9577
9578 static int
9579 eq_dwp_loaded_cutus (const void *a, const void *b)
9580 {
9581 const struct dwo_unit *dua = a;
9582 const struct dwo_unit *dub = b;
9583
9584 return dua->signature == dub->signature;
9585 }
9586
9587 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9588
9589 static htab_t
9590 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9591 {
9592 return htab_create_alloc_ex (3,
9593 hash_dwp_loaded_cutus,
9594 eq_dwp_loaded_cutus,
9595 NULL,
9596 &objfile->objfile_obstack,
9597 hashtab_obstack_allocate,
9598 dummy_obstack_deallocate);
9599 }
9600
9601 /* Try to open DWP file FILE_NAME.
9602 The result is the bfd handle of the file.
9603 If there is a problem finding or opening the file, return NULL.
9604 Upon success, the canonicalized path of the file is stored in the bfd,
9605 same as symfile_bfd_open. */
9606
9607 static bfd *
9608 open_dwp_file (const char *file_name)
9609 {
9610 bfd *abfd;
9611
9612 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9613 if (abfd != NULL)
9614 return abfd;
9615
9616 /* Work around upstream bug 15652.
9617 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9618 [Whether that's a "bug" is debatable, but it is getting in our way.]
9619 We have no real idea where the dwp file is, because gdb's realpath-ing
9620 of the executable's path may have discarded the needed info.
9621 [IWBN if the dwp file name was recorded in the executable, akin to
9622 .gnu_debuglink, but that doesn't exist yet.]
9623 Strip the directory from FILE_NAME and search again. */
9624 if (*debug_file_directory != '\0')
9625 {
9626 /* Don't implicitly search the current directory here.
9627 If the user wants to search "." to handle this case,
9628 it must be added to debug-file-directory. */
9629 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9630 0 /*search_cwd*/);
9631 }
9632
9633 return NULL;
9634 }
9635
9636 /* Initialize the use of the DWP file for the current objfile.
9637 By convention the name of the DWP file is ${objfile}.dwp.
9638 The result is NULL if it can't be found. */
9639
9640 static struct dwp_file *
9641 open_and_init_dwp_file (void)
9642 {
9643 struct objfile *objfile = dwarf2_per_objfile->objfile;
9644 struct dwp_file *dwp_file;
9645 char *dwp_name;
9646 bfd *dbfd;
9647 struct cleanup *cleanups;
9648
9649 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9650 cleanups = make_cleanup (xfree, dwp_name);
9651
9652 dbfd = open_dwp_file (dwp_name);
9653 if (dbfd == NULL)
9654 {
9655 if (dwarf2_read_debug)
9656 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9657 do_cleanups (cleanups);
9658 return NULL;
9659 }
9660 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9661 dwp_file->name = bfd_get_filename (dbfd);
9662 dwp_file->dbfd = dbfd;
9663 do_cleanups (cleanups);
9664
9665 /* +1: section 0 is unused */
9666 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9667 dwp_file->elf_sections =
9668 OBSTACK_CALLOC (&objfile->objfile_obstack,
9669 dwp_file->num_sections, asection *);
9670
9671 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9672
9673 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9674
9675 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9676
9677 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9678
9679 if (dwarf2_read_debug)
9680 {
9681 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9682 fprintf_unfiltered (gdb_stdlog,
9683 " %s CUs, %s TUs\n",
9684 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9685 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9686 }
9687
9688 return dwp_file;
9689 }
9690
9691 /* Wrapper around open_and_init_dwp_file, only open it once. */
9692
9693 static struct dwp_file *
9694 get_dwp_file (void)
9695 {
9696 if (! dwarf2_per_objfile->dwp_checked)
9697 {
9698 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9699 dwarf2_per_objfile->dwp_checked = 1;
9700 }
9701 return dwarf2_per_objfile->dwp_file;
9702 }
9703
9704 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9705 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9706 or in the DWP file for the objfile, referenced by THIS_UNIT.
9707 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9708 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9709
9710 This is called, for example, when wanting to read a variable with a
9711 complex location. Therefore we don't want to do file i/o for every call.
9712 Therefore we don't want to look for a DWO file on every call.
9713 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9714 then we check if we've already seen DWO_NAME, and only THEN do we check
9715 for a DWO file.
9716
9717 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9718 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9719
9720 static struct dwo_unit *
9721 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9722 const char *dwo_name, const char *comp_dir,
9723 ULONGEST signature, int is_debug_types)
9724 {
9725 struct objfile *objfile = dwarf2_per_objfile->objfile;
9726 const char *kind = is_debug_types ? "TU" : "CU";
9727 void **dwo_file_slot;
9728 struct dwo_file *dwo_file;
9729 struct dwp_file *dwp_file;
9730
9731 /* First see if there's a DWP file.
9732 If we have a DWP file but didn't find the DWO inside it, don't
9733 look for the original DWO file. It makes gdb behave differently
9734 depending on whether one is debugging in the build tree. */
9735
9736 dwp_file = get_dwp_file ();
9737 if (dwp_file != NULL)
9738 {
9739 const struct dwp_hash_table *dwp_htab =
9740 is_debug_types ? dwp_file->tus : dwp_file->cus;
9741
9742 if (dwp_htab != NULL)
9743 {
9744 struct dwo_unit *dwo_cutu =
9745 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9746 signature, is_debug_types);
9747
9748 if (dwo_cutu != NULL)
9749 {
9750 if (dwarf2_read_debug)
9751 {
9752 fprintf_unfiltered (gdb_stdlog,
9753 "Virtual DWO %s %s found: @%s\n",
9754 kind, hex_string (signature),
9755 host_address_to_string (dwo_cutu));
9756 }
9757 return dwo_cutu;
9758 }
9759 }
9760 }
9761 else
9762 {
9763 /* No DWP file, look for the DWO file. */
9764
9765 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9766 if (*dwo_file_slot == NULL)
9767 {
9768 /* Read in the file and build a table of the CUs/TUs it contains. */
9769 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9770 }
9771 /* NOTE: This will be NULL if unable to open the file. */
9772 dwo_file = *dwo_file_slot;
9773
9774 if (dwo_file != NULL)
9775 {
9776 struct dwo_unit *dwo_cutu = NULL;
9777
9778 if (is_debug_types && dwo_file->tus)
9779 {
9780 struct dwo_unit find_dwo_cutu;
9781
9782 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9783 find_dwo_cutu.signature = signature;
9784 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9785 }
9786 else if (!is_debug_types && dwo_file->cu)
9787 {
9788 if (signature == dwo_file->cu->signature)
9789 dwo_cutu = dwo_file->cu;
9790 }
9791
9792 if (dwo_cutu != NULL)
9793 {
9794 if (dwarf2_read_debug)
9795 {
9796 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9797 kind, dwo_name, hex_string (signature),
9798 host_address_to_string (dwo_cutu));
9799 }
9800 return dwo_cutu;
9801 }
9802 }
9803 }
9804
9805 /* We didn't find it. This could mean a dwo_id mismatch, or
9806 someone deleted the DWO/DWP file, or the search path isn't set up
9807 correctly to find the file. */
9808
9809 if (dwarf2_read_debug)
9810 {
9811 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9812 kind, dwo_name, hex_string (signature));
9813 }
9814
9815 /* This is a warning and not a complaint because it can be caused by
9816 pilot error (e.g., user accidentally deleting the DWO). */
9817 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9818 " [in module %s]"),
9819 kind, dwo_name, hex_string (signature),
9820 this_unit->is_debug_types ? "TU" : "CU",
9821 this_unit->offset.sect_off, objfile->name);
9822 return NULL;
9823 }
9824
9825 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9826 See lookup_dwo_cutu_unit for details. */
9827
9828 static struct dwo_unit *
9829 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9830 const char *dwo_name, const char *comp_dir,
9831 ULONGEST signature)
9832 {
9833 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9834 }
9835
9836 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9837 See lookup_dwo_cutu_unit for details. */
9838
9839 static struct dwo_unit *
9840 lookup_dwo_type_unit (struct signatured_type *this_tu,
9841 const char *dwo_name, const char *comp_dir)
9842 {
9843 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9844 }
9845
9846 /* Traversal function for queue_and_load_all_dwo_tus. */
9847
9848 static int
9849 queue_and_load_dwo_tu (void **slot, void *info)
9850 {
9851 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9852 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
9853 ULONGEST signature = dwo_unit->signature;
9854 struct signatured_type *sig_type =
9855 lookup_dwo_signatured_type (per_cu->cu, signature);
9856
9857 if (sig_type != NULL)
9858 {
9859 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
9860
9861 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
9862 a real dependency of PER_CU on SIG_TYPE. That is detected later
9863 while processing PER_CU. */
9864 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
9865 load_full_type_unit (sig_cu);
9866 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
9867 }
9868
9869 return 1;
9870 }
9871
9872 /* Queue all TUs contained in the DWO of PER_CU to be read in.
9873 The DWO may have the only definition of the type, though it may not be
9874 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
9875 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
9876
9877 static void
9878 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
9879 {
9880 struct dwo_unit *dwo_unit;
9881 struct dwo_file *dwo_file;
9882
9883 gdb_assert (!per_cu->is_debug_types);
9884 gdb_assert (get_dwp_file () == NULL);
9885 gdb_assert (per_cu->cu != NULL);
9886
9887 dwo_unit = per_cu->cu->dwo_unit;
9888 gdb_assert (dwo_unit != NULL);
9889
9890 dwo_file = dwo_unit->dwo_file;
9891 if (dwo_file->tus != NULL)
9892 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
9893 }
9894
9895 /* Free all resources associated with DWO_FILE.
9896 Close the DWO file and munmap the sections.
9897 All memory should be on the objfile obstack. */
9898
9899 static void
9900 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9901 {
9902 int ix;
9903 struct dwarf2_section_info *section;
9904
9905 /* Note: dbfd is NULL for virtual DWO files. */
9906 gdb_bfd_unref (dwo_file->dbfd);
9907
9908 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9909 }
9910
9911 /* Wrapper for free_dwo_file for use in cleanups. */
9912
9913 static void
9914 free_dwo_file_cleanup (void *arg)
9915 {
9916 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9917 struct objfile *objfile = dwarf2_per_objfile->objfile;
9918
9919 free_dwo_file (dwo_file, objfile);
9920 }
9921
9922 /* Traversal function for free_dwo_files. */
9923
9924 static int
9925 free_dwo_file_from_slot (void **slot, void *info)
9926 {
9927 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9928 struct objfile *objfile = (struct objfile *) info;
9929
9930 free_dwo_file (dwo_file, objfile);
9931
9932 return 1;
9933 }
9934
9935 /* Free all resources associated with DWO_FILES. */
9936
9937 static void
9938 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9939 {
9940 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9941 }
9942 \f
9943 /* Read in various DIEs. */
9944
9945 /* qsort helper for inherit_abstract_dies. */
9946
9947 static int
9948 unsigned_int_compar (const void *ap, const void *bp)
9949 {
9950 unsigned int a = *(unsigned int *) ap;
9951 unsigned int b = *(unsigned int *) bp;
9952
9953 return (a > b) - (b > a);
9954 }
9955
9956 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9957 Inherit only the children of the DW_AT_abstract_origin DIE not being
9958 already referenced by DW_AT_abstract_origin from the children of the
9959 current DIE. */
9960
9961 static void
9962 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9963 {
9964 struct die_info *child_die;
9965 unsigned die_children_count;
9966 /* CU offsets which were referenced by children of the current DIE. */
9967 sect_offset *offsets;
9968 sect_offset *offsets_end, *offsetp;
9969 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9970 struct die_info *origin_die;
9971 /* Iterator of the ORIGIN_DIE children. */
9972 struct die_info *origin_child_die;
9973 struct cleanup *cleanups;
9974 struct attribute *attr;
9975 struct dwarf2_cu *origin_cu;
9976 struct pending **origin_previous_list_in_scope;
9977
9978 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9979 if (!attr)
9980 return;
9981
9982 /* Note that following die references may follow to a die in a
9983 different cu. */
9984
9985 origin_cu = cu;
9986 origin_die = follow_die_ref (die, attr, &origin_cu);
9987
9988 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9989 symbols in. */
9990 origin_previous_list_in_scope = origin_cu->list_in_scope;
9991 origin_cu->list_in_scope = cu->list_in_scope;
9992
9993 if (die->tag != origin_die->tag
9994 && !(die->tag == DW_TAG_inlined_subroutine
9995 && origin_die->tag == DW_TAG_subprogram))
9996 complaint (&symfile_complaints,
9997 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9998 die->offset.sect_off, origin_die->offset.sect_off);
9999
10000 child_die = die->child;
10001 die_children_count = 0;
10002 while (child_die && child_die->tag)
10003 {
10004 child_die = sibling_die (child_die);
10005 die_children_count++;
10006 }
10007 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10008 cleanups = make_cleanup (xfree, offsets);
10009
10010 offsets_end = offsets;
10011 child_die = die->child;
10012 while (child_die && child_die->tag)
10013 {
10014 /* For each CHILD_DIE, find the corresponding child of
10015 ORIGIN_DIE. If there is more than one layer of
10016 DW_AT_abstract_origin, follow them all; there shouldn't be,
10017 but GCC versions at least through 4.4 generate this (GCC PR
10018 40573). */
10019 struct die_info *child_origin_die = child_die;
10020 struct dwarf2_cu *child_origin_cu = cu;
10021
10022 while (1)
10023 {
10024 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10025 child_origin_cu);
10026 if (attr == NULL)
10027 break;
10028 child_origin_die = follow_die_ref (child_origin_die, attr,
10029 &child_origin_cu);
10030 }
10031
10032 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10033 counterpart may exist. */
10034 if (child_origin_die != child_die)
10035 {
10036 if (child_die->tag != child_origin_die->tag
10037 && !(child_die->tag == DW_TAG_inlined_subroutine
10038 && child_origin_die->tag == DW_TAG_subprogram))
10039 complaint (&symfile_complaints,
10040 _("Child DIE 0x%x and its abstract origin 0x%x have "
10041 "different tags"), child_die->offset.sect_off,
10042 child_origin_die->offset.sect_off);
10043 if (child_origin_die->parent != origin_die)
10044 complaint (&symfile_complaints,
10045 _("Child DIE 0x%x and its abstract origin 0x%x have "
10046 "different parents"), child_die->offset.sect_off,
10047 child_origin_die->offset.sect_off);
10048 else
10049 *offsets_end++ = child_origin_die->offset;
10050 }
10051 child_die = sibling_die (child_die);
10052 }
10053 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10054 unsigned_int_compar);
10055 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10056 if (offsetp[-1].sect_off == offsetp->sect_off)
10057 complaint (&symfile_complaints,
10058 _("Multiple children of DIE 0x%x refer "
10059 "to DIE 0x%x as their abstract origin"),
10060 die->offset.sect_off, offsetp->sect_off);
10061
10062 offsetp = offsets;
10063 origin_child_die = origin_die->child;
10064 while (origin_child_die && origin_child_die->tag)
10065 {
10066 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10067 while (offsetp < offsets_end
10068 && offsetp->sect_off < origin_child_die->offset.sect_off)
10069 offsetp++;
10070 if (offsetp >= offsets_end
10071 || offsetp->sect_off > origin_child_die->offset.sect_off)
10072 {
10073 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10074 process_die (origin_child_die, origin_cu);
10075 }
10076 origin_child_die = sibling_die (origin_child_die);
10077 }
10078 origin_cu->list_in_scope = origin_previous_list_in_scope;
10079
10080 do_cleanups (cleanups);
10081 }
10082
10083 static void
10084 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10085 {
10086 struct objfile *objfile = cu->objfile;
10087 struct context_stack *new;
10088 CORE_ADDR lowpc;
10089 CORE_ADDR highpc;
10090 struct die_info *child_die;
10091 struct attribute *attr, *call_line, *call_file;
10092 const char *name;
10093 CORE_ADDR baseaddr;
10094 struct block *block;
10095 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10096 VEC (symbolp) *template_args = NULL;
10097 struct template_symbol *templ_func = NULL;
10098
10099 if (inlined_func)
10100 {
10101 /* If we do not have call site information, we can't show the
10102 caller of this inlined function. That's too confusing, so
10103 only use the scope for local variables. */
10104 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10105 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10106 if (call_line == NULL || call_file == NULL)
10107 {
10108 read_lexical_block_scope (die, cu);
10109 return;
10110 }
10111 }
10112
10113 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10114
10115 name = dwarf2_name (die, cu);
10116
10117 /* Ignore functions with missing or empty names. These are actually
10118 illegal according to the DWARF standard. */
10119 if (name == NULL)
10120 {
10121 complaint (&symfile_complaints,
10122 _("missing name for subprogram DIE at %d"),
10123 die->offset.sect_off);
10124 return;
10125 }
10126
10127 /* Ignore functions with missing or invalid low and high pc attributes. */
10128 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10129 {
10130 attr = dwarf2_attr (die, DW_AT_external, cu);
10131 if (!attr || !DW_UNSND (attr))
10132 complaint (&symfile_complaints,
10133 _("cannot get low and high bounds "
10134 "for subprogram DIE at %d"),
10135 die->offset.sect_off);
10136 return;
10137 }
10138
10139 lowpc += baseaddr;
10140 highpc += baseaddr;
10141
10142 /* If we have any template arguments, then we must allocate a
10143 different sort of symbol. */
10144 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10145 {
10146 if (child_die->tag == DW_TAG_template_type_param
10147 || child_die->tag == DW_TAG_template_value_param)
10148 {
10149 templ_func = allocate_template_symbol (objfile);
10150 templ_func->base.is_cplus_template_function = 1;
10151 break;
10152 }
10153 }
10154
10155 new = push_context (0, lowpc);
10156 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10157 (struct symbol *) templ_func);
10158
10159 /* If there is a location expression for DW_AT_frame_base, record
10160 it. */
10161 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10162 if (attr)
10163 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10164
10165 cu->list_in_scope = &local_symbols;
10166
10167 if (die->child != NULL)
10168 {
10169 child_die = die->child;
10170 while (child_die && child_die->tag)
10171 {
10172 if (child_die->tag == DW_TAG_template_type_param
10173 || child_die->tag == DW_TAG_template_value_param)
10174 {
10175 struct symbol *arg = new_symbol (child_die, NULL, cu);
10176
10177 if (arg != NULL)
10178 VEC_safe_push (symbolp, template_args, arg);
10179 }
10180 else
10181 process_die (child_die, cu);
10182 child_die = sibling_die (child_die);
10183 }
10184 }
10185
10186 inherit_abstract_dies (die, cu);
10187
10188 /* If we have a DW_AT_specification, we might need to import using
10189 directives from the context of the specification DIE. See the
10190 comment in determine_prefix. */
10191 if (cu->language == language_cplus
10192 && dwarf2_attr (die, DW_AT_specification, cu))
10193 {
10194 struct dwarf2_cu *spec_cu = cu;
10195 struct die_info *spec_die = die_specification (die, &spec_cu);
10196
10197 while (spec_die)
10198 {
10199 child_die = spec_die->child;
10200 while (child_die && child_die->tag)
10201 {
10202 if (child_die->tag == DW_TAG_imported_module)
10203 process_die (child_die, spec_cu);
10204 child_die = sibling_die (child_die);
10205 }
10206
10207 /* In some cases, GCC generates specification DIEs that
10208 themselves contain DW_AT_specification attributes. */
10209 spec_die = die_specification (spec_die, &spec_cu);
10210 }
10211 }
10212
10213 new = pop_context ();
10214 /* Make a block for the local symbols within. */
10215 block = finish_block (new->name, &local_symbols, new->old_blocks,
10216 lowpc, highpc, objfile);
10217
10218 /* For C++, set the block's scope. */
10219 if ((cu->language == language_cplus || cu->language == language_fortran)
10220 && cu->processing_has_namespace_info)
10221 block_set_scope (block, determine_prefix (die, cu),
10222 &objfile->objfile_obstack);
10223
10224 /* If we have address ranges, record them. */
10225 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10226
10227 /* Attach template arguments to function. */
10228 if (! VEC_empty (symbolp, template_args))
10229 {
10230 gdb_assert (templ_func != NULL);
10231
10232 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10233 templ_func->template_arguments
10234 = obstack_alloc (&objfile->objfile_obstack,
10235 (templ_func->n_template_arguments
10236 * sizeof (struct symbol *)));
10237 memcpy (templ_func->template_arguments,
10238 VEC_address (symbolp, template_args),
10239 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10240 VEC_free (symbolp, template_args);
10241 }
10242
10243 /* In C++, we can have functions nested inside functions (e.g., when
10244 a function declares a class that has methods). This means that
10245 when we finish processing a function scope, we may need to go
10246 back to building a containing block's symbol lists. */
10247 local_symbols = new->locals;
10248 using_directives = new->using_directives;
10249
10250 /* If we've finished processing a top-level function, subsequent
10251 symbols go in the file symbol list. */
10252 if (outermost_context_p ())
10253 cu->list_in_scope = &file_symbols;
10254 }
10255
10256 /* Process all the DIES contained within a lexical block scope. Start
10257 a new scope, process the dies, and then close the scope. */
10258
10259 static void
10260 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10261 {
10262 struct objfile *objfile = cu->objfile;
10263 struct context_stack *new;
10264 CORE_ADDR lowpc, highpc;
10265 struct die_info *child_die;
10266 CORE_ADDR baseaddr;
10267
10268 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10269
10270 /* Ignore blocks with missing or invalid low and high pc attributes. */
10271 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10272 as multiple lexical blocks? Handling children in a sane way would
10273 be nasty. Might be easier to properly extend generic blocks to
10274 describe ranges. */
10275 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10276 return;
10277 lowpc += baseaddr;
10278 highpc += baseaddr;
10279
10280 push_context (0, lowpc);
10281 if (die->child != NULL)
10282 {
10283 child_die = die->child;
10284 while (child_die && child_die->tag)
10285 {
10286 process_die (child_die, cu);
10287 child_die = sibling_die (child_die);
10288 }
10289 }
10290 new = pop_context ();
10291
10292 if (local_symbols != NULL || using_directives != NULL)
10293 {
10294 struct block *block
10295 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10296 highpc, objfile);
10297
10298 /* Note that recording ranges after traversing children, as we
10299 do here, means that recording a parent's ranges entails
10300 walking across all its children's ranges as they appear in
10301 the address map, which is quadratic behavior.
10302
10303 It would be nicer to record the parent's ranges before
10304 traversing its children, simply overriding whatever you find
10305 there. But since we don't even decide whether to create a
10306 block until after we've traversed its children, that's hard
10307 to do. */
10308 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10309 }
10310 local_symbols = new->locals;
10311 using_directives = new->using_directives;
10312 }
10313
10314 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10315
10316 static void
10317 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10318 {
10319 struct objfile *objfile = cu->objfile;
10320 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10321 CORE_ADDR pc, baseaddr;
10322 struct attribute *attr;
10323 struct call_site *call_site, call_site_local;
10324 void **slot;
10325 int nparams;
10326 struct die_info *child_die;
10327
10328 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10329
10330 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10331 if (!attr)
10332 {
10333 complaint (&symfile_complaints,
10334 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10335 "DIE 0x%x [in module %s]"),
10336 die->offset.sect_off, objfile->name);
10337 return;
10338 }
10339 pc = DW_ADDR (attr) + baseaddr;
10340
10341 if (cu->call_site_htab == NULL)
10342 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10343 NULL, &objfile->objfile_obstack,
10344 hashtab_obstack_allocate, NULL);
10345 call_site_local.pc = pc;
10346 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10347 if (*slot != NULL)
10348 {
10349 complaint (&symfile_complaints,
10350 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10351 "DIE 0x%x [in module %s]"),
10352 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
10353 return;
10354 }
10355
10356 /* Count parameters at the caller. */
10357
10358 nparams = 0;
10359 for (child_die = die->child; child_die && child_die->tag;
10360 child_die = sibling_die (child_die))
10361 {
10362 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10363 {
10364 complaint (&symfile_complaints,
10365 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10366 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10367 child_die->tag, child_die->offset.sect_off, objfile->name);
10368 continue;
10369 }
10370
10371 nparams++;
10372 }
10373
10374 call_site = obstack_alloc (&objfile->objfile_obstack,
10375 (sizeof (*call_site)
10376 + (sizeof (*call_site->parameter)
10377 * (nparams - 1))));
10378 *slot = call_site;
10379 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10380 call_site->pc = pc;
10381
10382 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10383 {
10384 struct die_info *func_die;
10385
10386 /* Skip also over DW_TAG_inlined_subroutine. */
10387 for (func_die = die->parent;
10388 func_die && func_die->tag != DW_TAG_subprogram
10389 && func_die->tag != DW_TAG_subroutine_type;
10390 func_die = func_die->parent);
10391
10392 /* DW_AT_GNU_all_call_sites is a superset
10393 of DW_AT_GNU_all_tail_call_sites. */
10394 if (func_die
10395 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10396 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10397 {
10398 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10399 not complete. But keep CALL_SITE for look ups via call_site_htab,
10400 both the initial caller containing the real return address PC and
10401 the final callee containing the current PC of a chain of tail
10402 calls do not need to have the tail call list complete. But any
10403 function candidate for a virtual tail call frame searched via
10404 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10405 determined unambiguously. */
10406 }
10407 else
10408 {
10409 struct type *func_type = NULL;
10410
10411 if (func_die)
10412 func_type = get_die_type (func_die, cu);
10413 if (func_type != NULL)
10414 {
10415 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10416
10417 /* Enlist this call site to the function. */
10418 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10419 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10420 }
10421 else
10422 complaint (&symfile_complaints,
10423 _("Cannot find function owning DW_TAG_GNU_call_site "
10424 "DIE 0x%x [in module %s]"),
10425 die->offset.sect_off, objfile->name);
10426 }
10427 }
10428
10429 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10430 if (attr == NULL)
10431 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10432 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10433 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10434 /* Keep NULL DWARF_BLOCK. */;
10435 else if (attr_form_is_block (attr))
10436 {
10437 struct dwarf2_locexpr_baton *dlbaton;
10438
10439 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10440 dlbaton->data = DW_BLOCK (attr)->data;
10441 dlbaton->size = DW_BLOCK (attr)->size;
10442 dlbaton->per_cu = cu->per_cu;
10443
10444 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10445 }
10446 else if (attr_form_is_ref (attr))
10447 {
10448 struct dwarf2_cu *target_cu = cu;
10449 struct die_info *target_die;
10450
10451 target_die = follow_die_ref (die, attr, &target_cu);
10452 gdb_assert (target_cu->objfile == objfile);
10453 if (die_is_declaration (target_die, target_cu))
10454 {
10455 const char *target_physname = NULL;
10456 struct attribute *target_attr;
10457
10458 /* Prefer the mangled name; otherwise compute the demangled one. */
10459 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10460 if (target_attr == NULL)
10461 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10462 target_cu);
10463 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10464 target_physname = DW_STRING (target_attr);
10465 else
10466 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10467 if (target_physname == NULL)
10468 complaint (&symfile_complaints,
10469 _("DW_AT_GNU_call_site_target target DIE has invalid "
10470 "physname, for referencing DIE 0x%x [in module %s]"),
10471 die->offset.sect_off, objfile->name);
10472 else
10473 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10474 }
10475 else
10476 {
10477 CORE_ADDR lowpc;
10478
10479 /* DW_AT_entry_pc should be preferred. */
10480 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10481 complaint (&symfile_complaints,
10482 _("DW_AT_GNU_call_site_target target DIE has invalid "
10483 "low pc, for referencing DIE 0x%x [in module %s]"),
10484 die->offset.sect_off, objfile->name);
10485 else
10486 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10487 }
10488 }
10489 else
10490 complaint (&symfile_complaints,
10491 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10492 "block nor reference, for DIE 0x%x [in module %s]"),
10493 die->offset.sect_off, objfile->name);
10494
10495 call_site->per_cu = cu->per_cu;
10496
10497 for (child_die = die->child;
10498 child_die && child_die->tag;
10499 child_die = sibling_die (child_die))
10500 {
10501 struct call_site_parameter *parameter;
10502 struct attribute *loc, *origin;
10503
10504 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10505 {
10506 /* Already printed the complaint above. */
10507 continue;
10508 }
10509
10510 gdb_assert (call_site->parameter_count < nparams);
10511 parameter = &call_site->parameter[call_site->parameter_count];
10512
10513 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10514 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10515 register is contained in DW_AT_GNU_call_site_value. */
10516
10517 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10518 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10519 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
10520 {
10521 sect_offset offset;
10522
10523 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10524 offset = dwarf2_get_ref_die_offset (origin);
10525 if (!offset_in_cu_p (&cu->header, offset))
10526 {
10527 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10528 binding can be done only inside one CU. Such referenced DIE
10529 therefore cannot be even moved to DW_TAG_partial_unit. */
10530 complaint (&symfile_complaints,
10531 _("DW_AT_abstract_origin offset is not in CU for "
10532 "DW_TAG_GNU_call_site child DIE 0x%x "
10533 "[in module %s]"),
10534 child_die->offset.sect_off, objfile->name);
10535 continue;
10536 }
10537 parameter->u.param_offset.cu_off = (offset.sect_off
10538 - cu->header.offset.sect_off);
10539 }
10540 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10541 {
10542 complaint (&symfile_complaints,
10543 _("No DW_FORM_block* DW_AT_location for "
10544 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10545 child_die->offset.sect_off, objfile->name);
10546 continue;
10547 }
10548 else
10549 {
10550 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10551 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10552 if (parameter->u.dwarf_reg != -1)
10553 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10554 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10555 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10556 &parameter->u.fb_offset))
10557 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10558 else
10559 {
10560 complaint (&symfile_complaints,
10561 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10562 "for DW_FORM_block* DW_AT_location is supported for "
10563 "DW_TAG_GNU_call_site child DIE 0x%x "
10564 "[in module %s]"),
10565 child_die->offset.sect_off, objfile->name);
10566 continue;
10567 }
10568 }
10569
10570 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10571 if (!attr_form_is_block (attr))
10572 {
10573 complaint (&symfile_complaints,
10574 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10575 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10576 child_die->offset.sect_off, objfile->name);
10577 continue;
10578 }
10579 parameter->value = DW_BLOCK (attr)->data;
10580 parameter->value_size = DW_BLOCK (attr)->size;
10581
10582 /* Parameters are not pre-cleared by memset above. */
10583 parameter->data_value = NULL;
10584 parameter->data_value_size = 0;
10585 call_site->parameter_count++;
10586
10587 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10588 if (attr)
10589 {
10590 if (!attr_form_is_block (attr))
10591 complaint (&symfile_complaints,
10592 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10593 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10594 child_die->offset.sect_off, objfile->name);
10595 else
10596 {
10597 parameter->data_value = DW_BLOCK (attr)->data;
10598 parameter->data_value_size = DW_BLOCK (attr)->size;
10599 }
10600 }
10601 }
10602 }
10603
10604 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10605 Return 1 if the attributes are present and valid, otherwise, return 0.
10606 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10607
10608 static int
10609 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10610 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10611 struct partial_symtab *ranges_pst)
10612 {
10613 struct objfile *objfile = cu->objfile;
10614 struct comp_unit_head *cu_header = &cu->header;
10615 bfd *obfd = objfile->obfd;
10616 unsigned int addr_size = cu_header->addr_size;
10617 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10618 /* Base address selection entry. */
10619 CORE_ADDR base;
10620 int found_base;
10621 unsigned int dummy;
10622 const gdb_byte *buffer;
10623 CORE_ADDR marker;
10624 int low_set;
10625 CORE_ADDR low = 0;
10626 CORE_ADDR high = 0;
10627 CORE_ADDR baseaddr;
10628
10629 found_base = cu->base_known;
10630 base = cu->base_address;
10631
10632 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10633 if (offset >= dwarf2_per_objfile->ranges.size)
10634 {
10635 complaint (&symfile_complaints,
10636 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10637 offset);
10638 return 0;
10639 }
10640 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10641
10642 /* Read in the largest possible address. */
10643 marker = read_address (obfd, buffer, cu, &dummy);
10644 if ((marker & mask) == mask)
10645 {
10646 /* If we found the largest possible address, then
10647 read the base address. */
10648 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10649 buffer += 2 * addr_size;
10650 offset += 2 * addr_size;
10651 found_base = 1;
10652 }
10653
10654 low_set = 0;
10655
10656 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10657
10658 while (1)
10659 {
10660 CORE_ADDR range_beginning, range_end;
10661
10662 range_beginning = read_address (obfd, buffer, cu, &dummy);
10663 buffer += addr_size;
10664 range_end = read_address (obfd, buffer, cu, &dummy);
10665 buffer += addr_size;
10666 offset += 2 * addr_size;
10667
10668 /* An end of list marker is a pair of zero addresses. */
10669 if (range_beginning == 0 && range_end == 0)
10670 /* Found the end of list entry. */
10671 break;
10672
10673 /* Each base address selection entry is a pair of 2 values.
10674 The first is the largest possible address, the second is
10675 the base address. Check for a base address here. */
10676 if ((range_beginning & mask) == mask)
10677 {
10678 /* If we found the largest possible address, then
10679 read the base address. */
10680 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10681 found_base = 1;
10682 continue;
10683 }
10684
10685 if (!found_base)
10686 {
10687 /* We have no valid base address for the ranges
10688 data. */
10689 complaint (&symfile_complaints,
10690 _("Invalid .debug_ranges data (no base address)"));
10691 return 0;
10692 }
10693
10694 if (range_beginning > range_end)
10695 {
10696 /* Inverted range entries are invalid. */
10697 complaint (&symfile_complaints,
10698 _("Invalid .debug_ranges data (inverted range)"));
10699 return 0;
10700 }
10701
10702 /* Empty range entries have no effect. */
10703 if (range_beginning == range_end)
10704 continue;
10705
10706 range_beginning += base;
10707 range_end += base;
10708
10709 /* A not-uncommon case of bad debug info.
10710 Don't pollute the addrmap with bad data. */
10711 if (range_beginning + baseaddr == 0
10712 && !dwarf2_per_objfile->has_section_at_zero)
10713 {
10714 complaint (&symfile_complaints,
10715 _(".debug_ranges entry has start address of zero"
10716 " [in module %s]"), objfile->name);
10717 continue;
10718 }
10719
10720 if (ranges_pst != NULL)
10721 addrmap_set_empty (objfile->psymtabs_addrmap,
10722 range_beginning + baseaddr,
10723 range_end - 1 + baseaddr,
10724 ranges_pst);
10725
10726 /* FIXME: This is recording everything as a low-high
10727 segment of consecutive addresses. We should have a
10728 data structure for discontiguous block ranges
10729 instead. */
10730 if (! low_set)
10731 {
10732 low = range_beginning;
10733 high = range_end;
10734 low_set = 1;
10735 }
10736 else
10737 {
10738 if (range_beginning < low)
10739 low = range_beginning;
10740 if (range_end > high)
10741 high = range_end;
10742 }
10743 }
10744
10745 if (! low_set)
10746 /* If the first entry is an end-of-list marker, the range
10747 describes an empty scope, i.e. no instructions. */
10748 return 0;
10749
10750 if (low_return)
10751 *low_return = low;
10752 if (high_return)
10753 *high_return = high;
10754 return 1;
10755 }
10756
10757 /* Get low and high pc attributes from a die. Return 1 if the attributes
10758 are present and valid, otherwise, return 0. Return -1 if the range is
10759 discontinuous, i.e. derived from DW_AT_ranges information. */
10760
10761 static int
10762 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10763 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10764 struct partial_symtab *pst)
10765 {
10766 struct attribute *attr;
10767 struct attribute *attr_high;
10768 CORE_ADDR low = 0;
10769 CORE_ADDR high = 0;
10770 int ret = 0;
10771
10772 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10773 if (attr_high)
10774 {
10775 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10776 if (attr)
10777 {
10778 low = DW_ADDR (attr);
10779 if (attr_high->form == DW_FORM_addr
10780 || attr_high->form == DW_FORM_GNU_addr_index)
10781 high = DW_ADDR (attr_high);
10782 else
10783 high = low + DW_UNSND (attr_high);
10784 }
10785 else
10786 /* Found high w/o low attribute. */
10787 return 0;
10788
10789 /* Found consecutive range of addresses. */
10790 ret = 1;
10791 }
10792 else
10793 {
10794 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10795 if (attr != NULL)
10796 {
10797 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10798 We take advantage of the fact that DW_AT_ranges does not appear
10799 in DW_TAG_compile_unit of DWO files. */
10800 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10801 unsigned int ranges_offset = (DW_UNSND (attr)
10802 + (need_ranges_base
10803 ? cu->ranges_base
10804 : 0));
10805
10806 /* Value of the DW_AT_ranges attribute is the offset in the
10807 .debug_ranges section. */
10808 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10809 return 0;
10810 /* Found discontinuous range of addresses. */
10811 ret = -1;
10812 }
10813 }
10814
10815 /* read_partial_die has also the strict LOW < HIGH requirement. */
10816 if (high <= low)
10817 return 0;
10818
10819 /* When using the GNU linker, .gnu.linkonce. sections are used to
10820 eliminate duplicate copies of functions and vtables and such.
10821 The linker will arbitrarily choose one and discard the others.
10822 The AT_*_pc values for such functions refer to local labels in
10823 these sections. If the section from that file was discarded, the
10824 labels are not in the output, so the relocs get a value of 0.
10825 If this is a discarded function, mark the pc bounds as invalid,
10826 so that GDB will ignore it. */
10827 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10828 return 0;
10829
10830 *lowpc = low;
10831 if (highpc)
10832 *highpc = high;
10833 return ret;
10834 }
10835
10836 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10837 its low and high PC addresses. Do nothing if these addresses could not
10838 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10839 and HIGHPC to the high address if greater than HIGHPC. */
10840
10841 static void
10842 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10843 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10844 struct dwarf2_cu *cu)
10845 {
10846 CORE_ADDR low, high;
10847 struct die_info *child = die->child;
10848
10849 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10850 {
10851 *lowpc = min (*lowpc, low);
10852 *highpc = max (*highpc, high);
10853 }
10854
10855 /* If the language does not allow nested subprograms (either inside
10856 subprograms or lexical blocks), we're done. */
10857 if (cu->language != language_ada)
10858 return;
10859
10860 /* Check all the children of the given DIE. If it contains nested
10861 subprograms, then check their pc bounds. Likewise, we need to
10862 check lexical blocks as well, as they may also contain subprogram
10863 definitions. */
10864 while (child && child->tag)
10865 {
10866 if (child->tag == DW_TAG_subprogram
10867 || child->tag == DW_TAG_lexical_block)
10868 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10869 child = sibling_die (child);
10870 }
10871 }
10872
10873 /* Get the low and high pc's represented by the scope DIE, and store
10874 them in *LOWPC and *HIGHPC. If the correct values can't be
10875 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10876
10877 static void
10878 get_scope_pc_bounds (struct die_info *die,
10879 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10880 struct dwarf2_cu *cu)
10881 {
10882 CORE_ADDR best_low = (CORE_ADDR) -1;
10883 CORE_ADDR best_high = (CORE_ADDR) 0;
10884 CORE_ADDR current_low, current_high;
10885
10886 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10887 {
10888 best_low = current_low;
10889 best_high = current_high;
10890 }
10891 else
10892 {
10893 struct die_info *child = die->child;
10894
10895 while (child && child->tag)
10896 {
10897 switch (child->tag) {
10898 case DW_TAG_subprogram:
10899 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10900 break;
10901 case DW_TAG_namespace:
10902 case DW_TAG_module:
10903 /* FIXME: carlton/2004-01-16: Should we do this for
10904 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10905 that current GCC's always emit the DIEs corresponding
10906 to definitions of methods of classes as children of a
10907 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10908 the DIEs giving the declarations, which could be
10909 anywhere). But I don't see any reason why the
10910 standards says that they have to be there. */
10911 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10912
10913 if (current_low != ((CORE_ADDR) -1))
10914 {
10915 best_low = min (best_low, current_low);
10916 best_high = max (best_high, current_high);
10917 }
10918 break;
10919 default:
10920 /* Ignore. */
10921 break;
10922 }
10923
10924 child = sibling_die (child);
10925 }
10926 }
10927
10928 *lowpc = best_low;
10929 *highpc = best_high;
10930 }
10931
10932 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10933 in DIE. */
10934
10935 static void
10936 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10937 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10938 {
10939 struct objfile *objfile = cu->objfile;
10940 struct attribute *attr;
10941 struct attribute *attr_high;
10942
10943 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10944 if (attr_high)
10945 {
10946 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10947 if (attr)
10948 {
10949 CORE_ADDR low = DW_ADDR (attr);
10950 CORE_ADDR high;
10951 if (attr_high->form == DW_FORM_addr
10952 || attr_high->form == DW_FORM_GNU_addr_index)
10953 high = DW_ADDR (attr_high);
10954 else
10955 high = low + DW_UNSND (attr_high);
10956
10957 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10958 }
10959 }
10960
10961 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10962 if (attr)
10963 {
10964 bfd *obfd = objfile->obfd;
10965 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10966 We take advantage of the fact that DW_AT_ranges does not appear
10967 in DW_TAG_compile_unit of DWO files. */
10968 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10969
10970 /* The value of the DW_AT_ranges attribute is the offset of the
10971 address range list in the .debug_ranges section. */
10972 unsigned long offset = (DW_UNSND (attr)
10973 + (need_ranges_base ? cu->ranges_base : 0));
10974 const gdb_byte *buffer;
10975
10976 /* For some target architectures, but not others, the
10977 read_address function sign-extends the addresses it returns.
10978 To recognize base address selection entries, we need a
10979 mask. */
10980 unsigned int addr_size = cu->header.addr_size;
10981 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10982
10983 /* The base address, to which the next pair is relative. Note
10984 that this 'base' is a DWARF concept: most entries in a range
10985 list are relative, to reduce the number of relocs against the
10986 debugging information. This is separate from this function's
10987 'baseaddr' argument, which GDB uses to relocate debugging
10988 information from a shared library based on the address at
10989 which the library was loaded. */
10990 CORE_ADDR base = cu->base_address;
10991 int base_known = cu->base_known;
10992
10993 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10994 if (offset >= dwarf2_per_objfile->ranges.size)
10995 {
10996 complaint (&symfile_complaints,
10997 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10998 offset);
10999 return;
11000 }
11001 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11002
11003 for (;;)
11004 {
11005 unsigned int bytes_read;
11006 CORE_ADDR start, end;
11007
11008 start = read_address (obfd, buffer, cu, &bytes_read);
11009 buffer += bytes_read;
11010 end = read_address (obfd, buffer, cu, &bytes_read);
11011 buffer += bytes_read;
11012
11013 /* Did we find the end of the range list? */
11014 if (start == 0 && end == 0)
11015 break;
11016
11017 /* Did we find a base address selection entry? */
11018 else if ((start & base_select_mask) == base_select_mask)
11019 {
11020 base = end;
11021 base_known = 1;
11022 }
11023
11024 /* We found an ordinary address range. */
11025 else
11026 {
11027 if (!base_known)
11028 {
11029 complaint (&symfile_complaints,
11030 _("Invalid .debug_ranges data "
11031 "(no base address)"));
11032 return;
11033 }
11034
11035 if (start > end)
11036 {
11037 /* Inverted range entries are invalid. */
11038 complaint (&symfile_complaints,
11039 _("Invalid .debug_ranges data "
11040 "(inverted range)"));
11041 return;
11042 }
11043
11044 /* Empty range entries have no effect. */
11045 if (start == end)
11046 continue;
11047
11048 start += base + baseaddr;
11049 end += base + baseaddr;
11050
11051 /* A not-uncommon case of bad debug info.
11052 Don't pollute the addrmap with bad data. */
11053 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11054 {
11055 complaint (&symfile_complaints,
11056 _(".debug_ranges entry has start address of zero"
11057 " [in module %s]"), objfile->name);
11058 continue;
11059 }
11060
11061 record_block_range (block, start, end - 1);
11062 }
11063 }
11064 }
11065 }
11066
11067 /* Check whether the producer field indicates either of GCC < 4.6, or the
11068 Intel C/C++ compiler, and cache the result in CU. */
11069
11070 static void
11071 check_producer (struct dwarf2_cu *cu)
11072 {
11073 const char *cs;
11074 int major, minor, release;
11075
11076 if (cu->producer == NULL)
11077 {
11078 /* For unknown compilers expect their behavior is DWARF version
11079 compliant.
11080
11081 GCC started to support .debug_types sections by -gdwarf-4 since
11082 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11083 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11084 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11085 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11086 }
11087 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11088 {
11089 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11090
11091 cs = &cu->producer[strlen ("GNU ")];
11092 while (*cs && !isdigit (*cs))
11093 cs++;
11094 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11095 {
11096 /* Not recognized as GCC. */
11097 }
11098 else
11099 {
11100 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11101 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11102 }
11103 }
11104 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11105 cu->producer_is_icc = 1;
11106 else
11107 {
11108 /* For other non-GCC compilers, expect their behavior is DWARF version
11109 compliant. */
11110 }
11111
11112 cu->checked_producer = 1;
11113 }
11114
11115 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11116 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11117 during 4.6.0 experimental. */
11118
11119 static int
11120 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11121 {
11122 if (!cu->checked_producer)
11123 check_producer (cu);
11124
11125 return cu->producer_is_gxx_lt_4_6;
11126 }
11127
11128 /* Return the default accessibility type if it is not overriden by
11129 DW_AT_accessibility. */
11130
11131 static enum dwarf_access_attribute
11132 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11133 {
11134 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11135 {
11136 /* The default DWARF 2 accessibility for members is public, the default
11137 accessibility for inheritance is private. */
11138
11139 if (die->tag != DW_TAG_inheritance)
11140 return DW_ACCESS_public;
11141 else
11142 return DW_ACCESS_private;
11143 }
11144 else
11145 {
11146 /* DWARF 3+ defines the default accessibility a different way. The same
11147 rules apply now for DW_TAG_inheritance as for the members and it only
11148 depends on the container kind. */
11149
11150 if (die->parent->tag == DW_TAG_class_type)
11151 return DW_ACCESS_private;
11152 else
11153 return DW_ACCESS_public;
11154 }
11155 }
11156
11157 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11158 offset. If the attribute was not found return 0, otherwise return
11159 1. If it was found but could not properly be handled, set *OFFSET
11160 to 0. */
11161
11162 static int
11163 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11164 LONGEST *offset)
11165 {
11166 struct attribute *attr;
11167
11168 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11169 if (attr != NULL)
11170 {
11171 *offset = 0;
11172
11173 /* Note that we do not check for a section offset first here.
11174 This is because DW_AT_data_member_location is new in DWARF 4,
11175 so if we see it, we can assume that a constant form is really
11176 a constant and not a section offset. */
11177 if (attr_form_is_constant (attr))
11178 *offset = dwarf2_get_attr_constant_value (attr, 0);
11179 else if (attr_form_is_section_offset (attr))
11180 dwarf2_complex_location_expr_complaint ();
11181 else if (attr_form_is_block (attr))
11182 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11183 else
11184 dwarf2_complex_location_expr_complaint ();
11185
11186 return 1;
11187 }
11188
11189 return 0;
11190 }
11191
11192 /* Add an aggregate field to the field list. */
11193
11194 static void
11195 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11196 struct dwarf2_cu *cu)
11197 {
11198 struct objfile *objfile = cu->objfile;
11199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11200 struct nextfield *new_field;
11201 struct attribute *attr;
11202 struct field *fp;
11203 const char *fieldname = "";
11204
11205 /* Allocate a new field list entry and link it in. */
11206 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11207 make_cleanup (xfree, new_field);
11208 memset (new_field, 0, sizeof (struct nextfield));
11209
11210 if (die->tag == DW_TAG_inheritance)
11211 {
11212 new_field->next = fip->baseclasses;
11213 fip->baseclasses = new_field;
11214 }
11215 else
11216 {
11217 new_field->next = fip->fields;
11218 fip->fields = new_field;
11219 }
11220 fip->nfields++;
11221
11222 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11223 if (attr)
11224 new_field->accessibility = DW_UNSND (attr);
11225 else
11226 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11227 if (new_field->accessibility != DW_ACCESS_public)
11228 fip->non_public_fields = 1;
11229
11230 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11231 if (attr)
11232 new_field->virtuality = DW_UNSND (attr);
11233 else
11234 new_field->virtuality = DW_VIRTUALITY_none;
11235
11236 fp = &new_field->field;
11237
11238 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11239 {
11240 LONGEST offset;
11241
11242 /* Data member other than a C++ static data member. */
11243
11244 /* Get type of field. */
11245 fp->type = die_type (die, cu);
11246
11247 SET_FIELD_BITPOS (*fp, 0);
11248
11249 /* Get bit size of field (zero if none). */
11250 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11251 if (attr)
11252 {
11253 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11254 }
11255 else
11256 {
11257 FIELD_BITSIZE (*fp) = 0;
11258 }
11259
11260 /* Get bit offset of field. */
11261 if (handle_data_member_location (die, cu, &offset))
11262 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11263 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11264 if (attr)
11265 {
11266 if (gdbarch_bits_big_endian (gdbarch))
11267 {
11268 /* For big endian bits, the DW_AT_bit_offset gives the
11269 additional bit offset from the MSB of the containing
11270 anonymous object to the MSB of the field. We don't
11271 have to do anything special since we don't need to
11272 know the size of the anonymous object. */
11273 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11274 }
11275 else
11276 {
11277 /* For little endian bits, compute the bit offset to the
11278 MSB of the anonymous object, subtract off the number of
11279 bits from the MSB of the field to the MSB of the
11280 object, and then subtract off the number of bits of
11281 the field itself. The result is the bit offset of
11282 the LSB of the field. */
11283 int anonymous_size;
11284 int bit_offset = DW_UNSND (attr);
11285
11286 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11287 if (attr)
11288 {
11289 /* The size of the anonymous object containing
11290 the bit field is explicit, so use the
11291 indicated size (in bytes). */
11292 anonymous_size = DW_UNSND (attr);
11293 }
11294 else
11295 {
11296 /* The size of the anonymous object containing
11297 the bit field must be inferred from the type
11298 attribute of the data member containing the
11299 bit field. */
11300 anonymous_size = TYPE_LENGTH (fp->type);
11301 }
11302 SET_FIELD_BITPOS (*fp,
11303 (FIELD_BITPOS (*fp)
11304 + anonymous_size * bits_per_byte
11305 - bit_offset - FIELD_BITSIZE (*fp)));
11306 }
11307 }
11308
11309 /* Get name of field. */
11310 fieldname = dwarf2_name (die, cu);
11311 if (fieldname == NULL)
11312 fieldname = "";
11313
11314 /* The name is already allocated along with this objfile, so we don't
11315 need to duplicate it for the type. */
11316 fp->name = fieldname;
11317
11318 /* Change accessibility for artificial fields (e.g. virtual table
11319 pointer or virtual base class pointer) to private. */
11320 if (dwarf2_attr (die, DW_AT_artificial, cu))
11321 {
11322 FIELD_ARTIFICIAL (*fp) = 1;
11323 new_field->accessibility = DW_ACCESS_private;
11324 fip->non_public_fields = 1;
11325 }
11326 }
11327 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11328 {
11329 /* C++ static member. */
11330
11331 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11332 is a declaration, but all versions of G++ as of this writing
11333 (so through at least 3.2.1) incorrectly generate
11334 DW_TAG_variable tags. */
11335
11336 const char *physname;
11337
11338 /* Get name of field. */
11339 fieldname = dwarf2_name (die, cu);
11340 if (fieldname == NULL)
11341 return;
11342
11343 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11344 if (attr
11345 /* Only create a symbol if this is an external value.
11346 new_symbol checks this and puts the value in the global symbol
11347 table, which we want. If it is not external, new_symbol
11348 will try to put the value in cu->list_in_scope which is wrong. */
11349 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11350 {
11351 /* A static const member, not much different than an enum as far as
11352 we're concerned, except that we can support more types. */
11353 new_symbol (die, NULL, cu);
11354 }
11355
11356 /* Get physical name. */
11357 physname = dwarf2_physname (fieldname, die, cu);
11358
11359 /* The name is already allocated along with this objfile, so we don't
11360 need to duplicate it for the type. */
11361 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11362 FIELD_TYPE (*fp) = die_type (die, cu);
11363 FIELD_NAME (*fp) = fieldname;
11364 }
11365 else if (die->tag == DW_TAG_inheritance)
11366 {
11367 LONGEST offset;
11368
11369 /* C++ base class field. */
11370 if (handle_data_member_location (die, cu, &offset))
11371 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11372 FIELD_BITSIZE (*fp) = 0;
11373 FIELD_TYPE (*fp) = die_type (die, cu);
11374 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11375 fip->nbaseclasses++;
11376 }
11377 }
11378
11379 /* Add a typedef defined in the scope of the FIP's class. */
11380
11381 static void
11382 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11383 struct dwarf2_cu *cu)
11384 {
11385 struct objfile *objfile = cu->objfile;
11386 struct typedef_field_list *new_field;
11387 struct attribute *attr;
11388 struct typedef_field *fp;
11389 char *fieldname = "";
11390
11391 /* Allocate a new field list entry and link it in. */
11392 new_field = xzalloc (sizeof (*new_field));
11393 make_cleanup (xfree, new_field);
11394
11395 gdb_assert (die->tag == DW_TAG_typedef);
11396
11397 fp = &new_field->field;
11398
11399 /* Get name of field. */
11400 fp->name = dwarf2_name (die, cu);
11401 if (fp->name == NULL)
11402 return;
11403
11404 fp->type = read_type_die (die, cu);
11405
11406 new_field->next = fip->typedef_field_list;
11407 fip->typedef_field_list = new_field;
11408 fip->typedef_field_list_count++;
11409 }
11410
11411 /* Create the vector of fields, and attach it to the type. */
11412
11413 static void
11414 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11415 struct dwarf2_cu *cu)
11416 {
11417 int nfields = fip->nfields;
11418
11419 /* Record the field count, allocate space for the array of fields,
11420 and create blank accessibility bitfields if necessary. */
11421 TYPE_NFIELDS (type) = nfields;
11422 TYPE_FIELDS (type) = (struct field *)
11423 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11424 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11425
11426 if (fip->non_public_fields && cu->language != language_ada)
11427 {
11428 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11429
11430 TYPE_FIELD_PRIVATE_BITS (type) =
11431 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11432 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11433
11434 TYPE_FIELD_PROTECTED_BITS (type) =
11435 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11436 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11437
11438 TYPE_FIELD_IGNORE_BITS (type) =
11439 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11440 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11441 }
11442
11443 /* If the type has baseclasses, allocate and clear a bit vector for
11444 TYPE_FIELD_VIRTUAL_BITS. */
11445 if (fip->nbaseclasses && cu->language != language_ada)
11446 {
11447 int num_bytes = B_BYTES (fip->nbaseclasses);
11448 unsigned char *pointer;
11449
11450 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11451 pointer = TYPE_ALLOC (type, num_bytes);
11452 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11453 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11454 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11455 }
11456
11457 /* Copy the saved-up fields into the field vector. Start from the head of
11458 the list, adding to the tail of the field array, so that they end up in
11459 the same order in the array in which they were added to the list. */
11460 while (nfields-- > 0)
11461 {
11462 struct nextfield *fieldp;
11463
11464 if (fip->fields)
11465 {
11466 fieldp = fip->fields;
11467 fip->fields = fieldp->next;
11468 }
11469 else
11470 {
11471 fieldp = fip->baseclasses;
11472 fip->baseclasses = fieldp->next;
11473 }
11474
11475 TYPE_FIELD (type, nfields) = fieldp->field;
11476 switch (fieldp->accessibility)
11477 {
11478 case DW_ACCESS_private:
11479 if (cu->language != language_ada)
11480 SET_TYPE_FIELD_PRIVATE (type, nfields);
11481 break;
11482
11483 case DW_ACCESS_protected:
11484 if (cu->language != language_ada)
11485 SET_TYPE_FIELD_PROTECTED (type, nfields);
11486 break;
11487
11488 case DW_ACCESS_public:
11489 break;
11490
11491 default:
11492 /* Unknown accessibility. Complain and treat it as public. */
11493 {
11494 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11495 fieldp->accessibility);
11496 }
11497 break;
11498 }
11499 if (nfields < fip->nbaseclasses)
11500 {
11501 switch (fieldp->virtuality)
11502 {
11503 case DW_VIRTUALITY_virtual:
11504 case DW_VIRTUALITY_pure_virtual:
11505 if (cu->language == language_ada)
11506 error (_("unexpected virtuality in component of Ada type"));
11507 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11508 break;
11509 }
11510 }
11511 }
11512 }
11513
11514 /* Return true if this member function is a constructor, false
11515 otherwise. */
11516
11517 static int
11518 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11519 {
11520 const char *fieldname;
11521 const char *typename;
11522 int len;
11523
11524 if (die->parent == NULL)
11525 return 0;
11526
11527 if (die->parent->tag != DW_TAG_structure_type
11528 && die->parent->tag != DW_TAG_union_type
11529 && die->parent->tag != DW_TAG_class_type)
11530 return 0;
11531
11532 fieldname = dwarf2_name (die, cu);
11533 typename = dwarf2_name (die->parent, cu);
11534 if (fieldname == NULL || typename == NULL)
11535 return 0;
11536
11537 len = strlen (fieldname);
11538 return (strncmp (fieldname, typename, len) == 0
11539 && (typename[len] == '\0' || typename[len] == '<'));
11540 }
11541
11542 /* Add a member function to the proper fieldlist. */
11543
11544 static void
11545 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11546 struct type *type, struct dwarf2_cu *cu)
11547 {
11548 struct objfile *objfile = cu->objfile;
11549 struct attribute *attr;
11550 struct fnfieldlist *flp;
11551 int i;
11552 struct fn_field *fnp;
11553 const char *fieldname;
11554 struct nextfnfield *new_fnfield;
11555 struct type *this_type;
11556 enum dwarf_access_attribute accessibility;
11557
11558 if (cu->language == language_ada)
11559 error (_("unexpected member function in Ada type"));
11560
11561 /* Get name of member function. */
11562 fieldname = dwarf2_name (die, cu);
11563 if (fieldname == NULL)
11564 return;
11565
11566 /* Look up member function name in fieldlist. */
11567 for (i = 0; i < fip->nfnfields; i++)
11568 {
11569 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11570 break;
11571 }
11572
11573 /* Create new list element if necessary. */
11574 if (i < fip->nfnfields)
11575 flp = &fip->fnfieldlists[i];
11576 else
11577 {
11578 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11579 {
11580 fip->fnfieldlists = (struct fnfieldlist *)
11581 xrealloc (fip->fnfieldlists,
11582 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11583 * sizeof (struct fnfieldlist));
11584 if (fip->nfnfields == 0)
11585 make_cleanup (free_current_contents, &fip->fnfieldlists);
11586 }
11587 flp = &fip->fnfieldlists[fip->nfnfields];
11588 flp->name = fieldname;
11589 flp->length = 0;
11590 flp->head = NULL;
11591 i = fip->nfnfields++;
11592 }
11593
11594 /* Create a new member function field and chain it to the field list
11595 entry. */
11596 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11597 make_cleanup (xfree, new_fnfield);
11598 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11599 new_fnfield->next = flp->head;
11600 flp->head = new_fnfield;
11601 flp->length++;
11602
11603 /* Fill in the member function field info. */
11604 fnp = &new_fnfield->fnfield;
11605
11606 /* Delay processing of the physname until later. */
11607 if (cu->language == language_cplus || cu->language == language_java)
11608 {
11609 add_to_method_list (type, i, flp->length - 1, fieldname,
11610 die, cu);
11611 }
11612 else
11613 {
11614 const char *physname = dwarf2_physname (fieldname, die, cu);
11615 fnp->physname = physname ? physname : "";
11616 }
11617
11618 fnp->type = alloc_type (objfile);
11619 this_type = read_type_die (die, cu);
11620 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11621 {
11622 int nparams = TYPE_NFIELDS (this_type);
11623
11624 /* TYPE is the domain of this method, and THIS_TYPE is the type
11625 of the method itself (TYPE_CODE_METHOD). */
11626 smash_to_method_type (fnp->type, type,
11627 TYPE_TARGET_TYPE (this_type),
11628 TYPE_FIELDS (this_type),
11629 TYPE_NFIELDS (this_type),
11630 TYPE_VARARGS (this_type));
11631
11632 /* Handle static member functions.
11633 Dwarf2 has no clean way to discern C++ static and non-static
11634 member functions. G++ helps GDB by marking the first
11635 parameter for non-static member functions (which is the this
11636 pointer) as artificial. We obtain this information from
11637 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11638 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11639 fnp->voffset = VOFFSET_STATIC;
11640 }
11641 else
11642 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11643 dwarf2_full_name (fieldname, die, cu));
11644
11645 /* Get fcontext from DW_AT_containing_type if present. */
11646 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11647 fnp->fcontext = die_containing_type (die, cu);
11648
11649 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11650 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11651
11652 /* Get accessibility. */
11653 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11654 if (attr)
11655 accessibility = DW_UNSND (attr);
11656 else
11657 accessibility = dwarf2_default_access_attribute (die, cu);
11658 switch (accessibility)
11659 {
11660 case DW_ACCESS_private:
11661 fnp->is_private = 1;
11662 break;
11663 case DW_ACCESS_protected:
11664 fnp->is_protected = 1;
11665 break;
11666 }
11667
11668 /* Check for artificial methods. */
11669 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11670 if (attr && DW_UNSND (attr) != 0)
11671 fnp->is_artificial = 1;
11672
11673 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11674
11675 /* Get index in virtual function table if it is a virtual member
11676 function. For older versions of GCC, this is an offset in the
11677 appropriate virtual table, as specified by DW_AT_containing_type.
11678 For everyone else, it is an expression to be evaluated relative
11679 to the object address. */
11680
11681 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11682 if (attr)
11683 {
11684 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11685 {
11686 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11687 {
11688 /* Old-style GCC. */
11689 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11690 }
11691 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11692 || (DW_BLOCK (attr)->size > 1
11693 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11694 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11695 {
11696 struct dwarf_block blk;
11697 int offset;
11698
11699 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11700 ? 1 : 2);
11701 blk.size = DW_BLOCK (attr)->size - offset;
11702 blk.data = DW_BLOCK (attr)->data + offset;
11703 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11704 if ((fnp->voffset % cu->header.addr_size) != 0)
11705 dwarf2_complex_location_expr_complaint ();
11706 else
11707 fnp->voffset /= cu->header.addr_size;
11708 fnp->voffset += 2;
11709 }
11710 else
11711 dwarf2_complex_location_expr_complaint ();
11712
11713 if (!fnp->fcontext)
11714 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11715 }
11716 else if (attr_form_is_section_offset (attr))
11717 {
11718 dwarf2_complex_location_expr_complaint ();
11719 }
11720 else
11721 {
11722 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11723 fieldname);
11724 }
11725 }
11726 else
11727 {
11728 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11729 if (attr && DW_UNSND (attr))
11730 {
11731 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11732 complaint (&symfile_complaints,
11733 _("Member function \"%s\" (offset %d) is virtual "
11734 "but the vtable offset is not specified"),
11735 fieldname, die->offset.sect_off);
11736 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11737 TYPE_CPLUS_DYNAMIC (type) = 1;
11738 }
11739 }
11740 }
11741
11742 /* Create the vector of member function fields, and attach it to the type. */
11743
11744 static void
11745 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11746 struct dwarf2_cu *cu)
11747 {
11748 struct fnfieldlist *flp;
11749 int i;
11750
11751 if (cu->language == language_ada)
11752 error (_("unexpected member functions in Ada type"));
11753
11754 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11755 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11756 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11757
11758 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11759 {
11760 struct nextfnfield *nfp = flp->head;
11761 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11762 int k;
11763
11764 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11765 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11766 fn_flp->fn_fields = (struct fn_field *)
11767 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11768 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11769 fn_flp->fn_fields[k] = nfp->fnfield;
11770 }
11771
11772 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11773 }
11774
11775 /* Returns non-zero if NAME is the name of a vtable member in CU's
11776 language, zero otherwise. */
11777 static int
11778 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11779 {
11780 static const char vptr[] = "_vptr";
11781 static const char vtable[] = "vtable";
11782
11783 /* Look for the C++ and Java forms of the vtable. */
11784 if ((cu->language == language_java
11785 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11786 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11787 && is_cplus_marker (name[sizeof (vptr) - 1])))
11788 return 1;
11789
11790 return 0;
11791 }
11792
11793 /* GCC outputs unnamed structures that are really pointers to member
11794 functions, with the ABI-specified layout. If TYPE describes
11795 such a structure, smash it into a member function type.
11796
11797 GCC shouldn't do this; it should just output pointer to member DIEs.
11798 This is GCC PR debug/28767. */
11799
11800 static void
11801 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11802 {
11803 struct type *pfn_type, *domain_type, *new_type;
11804
11805 /* Check for a structure with no name and two children. */
11806 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11807 return;
11808
11809 /* Check for __pfn and __delta members. */
11810 if (TYPE_FIELD_NAME (type, 0) == NULL
11811 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11812 || TYPE_FIELD_NAME (type, 1) == NULL
11813 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11814 return;
11815
11816 /* Find the type of the method. */
11817 pfn_type = TYPE_FIELD_TYPE (type, 0);
11818 if (pfn_type == NULL
11819 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11820 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11821 return;
11822
11823 /* Look for the "this" argument. */
11824 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11825 if (TYPE_NFIELDS (pfn_type) == 0
11826 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11827 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11828 return;
11829
11830 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11831 new_type = alloc_type (objfile);
11832 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11833 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11834 TYPE_VARARGS (pfn_type));
11835 smash_to_methodptr_type (type, new_type);
11836 }
11837
11838 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11839 (icc). */
11840
11841 static int
11842 producer_is_icc (struct dwarf2_cu *cu)
11843 {
11844 if (!cu->checked_producer)
11845 check_producer (cu);
11846
11847 return cu->producer_is_icc;
11848 }
11849
11850 /* Called when we find the DIE that starts a structure or union scope
11851 (definition) to create a type for the structure or union. Fill in
11852 the type's name and general properties; the members will not be
11853 processed until process_structure_scope.
11854
11855 NOTE: we need to call these functions regardless of whether or not the
11856 DIE has a DW_AT_name attribute, since it might be an anonymous
11857 structure or union. This gets the type entered into our set of
11858 user defined types.
11859
11860 However, if the structure is incomplete (an opaque struct/union)
11861 then suppress creating a symbol table entry for it since gdb only
11862 wants to find the one with the complete definition. Note that if
11863 it is complete, we just call new_symbol, which does it's own
11864 checking about whether the struct/union is anonymous or not (and
11865 suppresses creating a symbol table entry itself). */
11866
11867 static struct type *
11868 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11869 {
11870 struct objfile *objfile = cu->objfile;
11871 struct type *type;
11872 struct attribute *attr;
11873 const char *name;
11874
11875 /* If the definition of this type lives in .debug_types, read that type.
11876 Don't follow DW_AT_specification though, that will take us back up
11877 the chain and we want to go down. */
11878 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11879 if (attr)
11880 {
11881 type = get_DW_AT_signature_type (die, attr, cu);
11882
11883 /* The type's CU may not be the same as CU.
11884 Ensure TYPE is recorded with CU in die_type_hash. */
11885 return set_die_type (die, type, cu);
11886 }
11887
11888 type = alloc_type (objfile);
11889 INIT_CPLUS_SPECIFIC (type);
11890
11891 name = dwarf2_name (die, cu);
11892 if (name != NULL)
11893 {
11894 if (cu->language == language_cplus
11895 || cu->language == language_java)
11896 {
11897 const char *full_name = dwarf2_full_name (name, die, cu);
11898
11899 /* dwarf2_full_name might have already finished building the DIE's
11900 type. If so, there is no need to continue. */
11901 if (get_die_type (die, cu) != NULL)
11902 return get_die_type (die, cu);
11903
11904 TYPE_TAG_NAME (type) = full_name;
11905 if (die->tag == DW_TAG_structure_type
11906 || die->tag == DW_TAG_class_type)
11907 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11908 }
11909 else
11910 {
11911 /* The name is already allocated along with this objfile, so
11912 we don't need to duplicate it for the type. */
11913 TYPE_TAG_NAME (type) = name;
11914 if (die->tag == DW_TAG_class_type)
11915 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11916 }
11917 }
11918
11919 if (die->tag == DW_TAG_structure_type)
11920 {
11921 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11922 }
11923 else if (die->tag == DW_TAG_union_type)
11924 {
11925 TYPE_CODE (type) = TYPE_CODE_UNION;
11926 }
11927 else
11928 {
11929 TYPE_CODE (type) = TYPE_CODE_CLASS;
11930 }
11931
11932 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11933 TYPE_DECLARED_CLASS (type) = 1;
11934
11935 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11936 if (attr)
11937 {
11938 TYPE_LENGTH (type) = DW_UNSND (attr);
11939 }
11940 else
11941 {
11942 TYPE_LENGTH (type) = 0;
11943 }
11944
11945 if (producer_is_icc (cu))
11946 {
11947 /* ICC does not output the required DW_AT_declaration
11948 on incomplete types, but gives them a size of zero. */
11949 }
11950 else
11951 TYPE_STUB_SUPPORTED (type) = 1;
11952
11953 if (die_is_declaration (die, cu))
11954 TYPE_STUB (type) = 1;
11955 else if (attr == NULL && die->child == NULL
11956 && producer_is_realview (cu->producer))
11957 /* RealView does not output the required DW_AT_declaration
11958 on incomplete types. */
11959 TYPE_STUB (type) = 1;
11960
11961 /* We need to add the type field to the die immediately so we don't
11962 infinitely recurse when dealing with pointers to the structure
11963 type within the structure itself. */
11964 set_die_type (die, type, cu);
11965
11966 /* set_die_type should be already done. */
11967 set_descriptive_type (type, die, cu);
11968
11969 return type;
11970 }
11971
11972 /* Finish creating a structure or union type, including filling in
11973 its members and creating a symbol for it. */
11974
11975 static void
11976 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11977 {
11978 struct objfile *objfile = cu->objfile;
11979 struct die_info *child_die = die->child;
11980 struct type *type;
11981
11982 type = get_die_type (die, cu);
11983 if (type == NULL)
11984 type = read_structure_type (die, cu);
11985
11986 if (die->child != NULL && ! die_is_declaration (die, cu))
11987 {
11988 struct field_info fi;
11989 struct die_info *child_die;
11990 VEC (symbolp) *template_args = NULL;
11991 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11992
11993 memset (&fi, 0, sizeof (struct field_info));
11994
11995 child_die = die->child;
11996
11997 while (child_die && child_die->tag)
11998 {
11999 if (child_die->tag == DW_TAG_member
12000 || child_die->tag == DW_TAG_variable)
12001 {
12002 /* NOTE: carlton/2002-11-05: A C++ static data member
12003 should be a DW_TAG_member that is a declaration, but
12004 all versions of G++ as of this writing (so through at
12005 least 3.2.1) incorrectly generate DW_TAG_variable
12006 tags for them instead. */
12007 dwarf2_add_field (&fi, child_die, cu);
12008 }
12009 else if (child_die->tag == DW_TAG_subprogram)
12010 {
12011 /* C++ member function. */
12012 dwarf2_add_member_fn (&fi, child_die, type, cu);
12013 }
12014 else if (child_die->tag == DW_TAG_inheritance)
12015 {
12016 /* C++ base class field. */
12017 dwarf2_add_field (&fi, child_die, cu);
12018 }
12019 else if (child_die->tag == DW_TAG_typedef)
12020 dwarf2_add_typedef (&fi, child_die, cu);
12021 else if (child_die->tag == DW_TAG_template_type_param
12022 || child_die->tag == DW_TAG_template_value_param)
12023 {
12024 struct symbol *arg = new_symbol (child_die, NULL, cu);
12025
12026 if (arg != NULL)
12027 VEC_safe_push (symbolp, template_args, arg);
12028 }
12029
12030 child_die = sibling_die (child_die);
12031 }
12032
12033 /* Attach template arguments to type. */
12034 if (! VEC_empty (symbolp, template_args))
12035 {
12036 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12037 TYPE_N_TEMPLATE_ARGUMENTS (type)
12038 = VEC_length (symbolp, template_args);
12039 TYPE_TEMPLATE_ARGUMENTS (type)
12040 = obstack_alloc (&objfile->objfile_obstack,
12041 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12042 * sizeof (struct symbol *)));
12043 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12044 VEC_address (symbolp, template_args),
12045 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12046 * sizeof (struct symbol *)));
12047 VEC_free (symbolp, template_args);
12048 }
12049
12050 /* Attach fields and member functions to the type. */
12051 if (fi.nfields)
12052 dwarf2_attach_fields_to_type (&fi, type, cu);
12053 if (fi.nfnfields)
12054 {
12055 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12056
12057 /* Get the type which refers to the base class (possibly this
12058 class itself) which contains the vtable pointer for the current
12059 class from the DW_AT_containing_type attribute. This use of
12060 DW_AT_containing_type is a GNU extension. */
12061
12062 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12063 {
12064 struct type *t = die_containing_type (die, cu);
12065
12066 TYPE_VPTR_BASETYPE (type) = t;
12067 if (type == t)
12068 {
12069 int i;
12070
12071 /* Our own class provides vtbl ptr. */
12072 for (i = TYPE_NFIELDS (t) - 1;
12073 i >= TYPE_N_BASECLASSES (t);
12074 --i)
12075 {
12076 const char *fieldname = TYPE_FIELD_NAME (t, i);
12077
12078 if (is_vtable_name (fieldname, cu))
12079 {
12080 TYPE_VPTR_FIELDNO (type) = i;
12081 break;
12082 }
12083 }
12084
12085 /* Complain if virtual function table field not found. */
12086 if (i < TYPE_N_BASECLASSES (t))
12087 complaint (&symfile_complaints,
12088 _("virtual function table pointer "
12089 "not found when defining class '%s'"),
12090 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12091 "");
12092 }
12093 else
12094 {
12095 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12096 }
12097 }
12098 else if (cu->producer
12099 && strncmp (cu->producer,
12100 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12101 {
12102 /* The IBM XLC compiler does not provide direct indication
12103 of the containing type, but the vtable pointer is
12104 always named __vfp. */
12105
12106 int i;
12107
12108 for (i = TYPE_NFIELDS (type) - 1;
12109 i >= TYPE_N_BASECLASSES (type);
12110 --i)
12111 {
12112 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12113 {
12114 TYPE_VPTR_FIELDNO (type) = i;
12115 TYPE_VPTR_BASETYPE (type) = type;
12116 break;
12117 }
12118 }
12119 }
12120 }
12121
12122 /* Copy fi.typedef_field_list linked list elements content into the
12123 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12124 if (fi.typedef_field_list)
12125 {
12126 int i = fi.typedef_field_list_count;
12127
12128 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12129 TYPE_TYPEDEF_FIELD_ARRAY (type)
12130 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12131 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12132
12133 /* Reverse the list order to keep the debug info elements order. */
12134 while (--i >= 0)
12135 {
12136 struct typedef_field *dest, *src;
12137
12138 dest = &TYPE_TYPEDEF_FIELD (type, i);
12139 src = &fi.typedef_field_list->field;
12140 fi.typedef_field_list = fi.typedef_field_list->next;
12141 *dest = *src;
12142 }
12143 }
12144
12145 do_cleanups (back_to);
12146
12147 if (HAVE_CPLUS_STRUCT (type))
12148 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12149 }
12150
12151 quirk_gcc_member_function_pointer (type, objfile);
12152
12153 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12154 snapshots) has been known to create a die giving a declaration
12155 for a class that has, as a child, a die giving a definition for a
12156 nested class. So we have to process our children even if the
12157 current die is a declaration. Normally, of course, a declaration
12158 won't have any children at all. */
12159
12160 while (child_die != NULL && child_die->tag)
12161 {
12162 if (child_die->tag == DW_TAG_member
12163 || child_die->tag == DW_TAG_variable
12164 || child_die->tag == DW_TAG_inheritance
12165 || child_die->tag == DW_TAG_template_value_param
12166 || child_die->tag == DW_TAG_template_type_param)
12167 {
12168 /* Do nothing. */
12169 }
12170 else
12171 process_die (child_die, cu);
12172
12173 child_die = sibling_die (child_die);
12174 }
12175
12176 /* Do not consider external references. According to the DWARF standard,
12177 these DIEs are identified by the fact that they have no byte_size
12178 attribute, and a declaration attribute. */
12179 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12180 || !die_is_declaration (die, cu))
12181 new_symbol (die, type, cu);
12182 }
12183
12184 /* Given a DW_AT_enumeration_type die, set its type. We do not
12185 complete the type's fields yet, or create any symbols. */
12186
12187 static struct type *
12188 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12189 {
12190 struct objfile *objfile = cu->objfile;
12191 struct type *type;
12192 struct attribute *attr;
12193 const char *name;
12194
12195 /* If the definition of this type lives in .debug_types, read that type.
12196 Don't follow DW_AT_specification though, that will take us back up
12197 the chain and we want to go down. */
12198 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12199 if (attr)
12200 {
12201 type = get_DW_AT_signature_type (die, attr, cu);
12202
12203 /* The type's CU may not be the same as CU.
12204 Ensure TYPE is recorded with CU in die_type_hash. */
12205 return set_die_type (die, type, cu);
12206 }
12207
12208 type = alloc_type (objfile);
12209
12210 TYPE_CODE (type) = TYPE_CODE_ENUM;
12211 name = dwarf2_full_name (NULL, die, cu);
12212 if (name != NULL)
12213 TYPE_TAG_NAME (type) = name;
12214
12215 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12216 if (attr)
12217 {
12218 TYPE_LENGTH (type) = DW_UNSND (attr);
12219 }
12220 else
12221 {
12222 TYPE_LENGTH (type) = 0;
12223 }
12224
12225 /* The enumeration DIE can be incomplete. In Ada, any type can be
12226 declared as private in the package spec, and then defined only
12227 inside the package body. Such types are known as Taft Amendment
12228 Types. When another package uses such a type, an incomplete DIE
12229 may be generated by the compiler. */
12230 if (die_is_declaration (die, cu))
12231 TYPE_STUB (type) = 1;
12232
12233 return set_die_type (die, type, cu);
12234 }
12235
12236 /* Given a pointer to a die which begins an enumeration, process all
12237 the dies that define the members of the enumeration, and create the
12238 symbol for the enumeration type.
12239
12240 NOTE: We reverse the order of the element list. */
12241
12242 static void
12243 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12244 {
12245 struct type *this_type;
12246
12247 this_type = get_die_type (die, cu);
12248 if (this_type == NULL)
12249 this_type = read_enumeration_type (die, cu);
12250
12251 if (die->child != NULL)
12252 {
12253 struct die_info *child_die;
12254 struct symbol *sym;
12255 struct field *fields = NULL;
12256 int num_fields = 0;
12257 int unsigned_enum = 1;
12258 const char *name;
12259 int flag_enum = 1;
12260 ULONGEST mask = 0;
12261
12262 child_die = die->child;
12263 while (child_die && child_die->tag)
12264 {
12265 if (child_die->tag != DW_TAG_enumerator)
12266 {
12267 process_die (child_die, cu);
12268 }
12269 else
12270 {
12271 name = dwarf2_name (child_die, cu);
12272 if (name)
12273 {
12274 sym = new_symbol (child_die, this_type, cu);
12275 if (SYMBOL_VALUE (sym) < 0)
12276 {
12277 unsigned_enum = 0;
12278 flag_enum = 0;
12279 }
12280 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12281 flag_enum = 0;
12282 else
12283 mask |= SYMBOL_VALUE (sym);
12284
12285 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12286 {
12287 fields = (struct field *)
12288 xrealloc (fields,
12289 (num_fields + DW_FIELD_ALLOC_CHUNK)
12290 * sizeof (struct field));
12291 }
12292
12293 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12294 FIELD_TYPE (fields[num_fields]) = NULL;
12295 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12296 FIELD_BITSIZE (fields[num_fields]) = 0;
12297
12298 num_fields++;
12299 }
12300 }
12301
12302 child_die = sibling_die (child_die);
12303 }
12304
12305 if (num_fields)
12306 {
12307 TYPE_NFIELDS (this_type) = num_fields;
12308 TYPE_FIELDS (this_type) = (struct field *)
12309 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12310 memcpy (TYPE_FIELDS (this_type), fields,
12311 sizeof (struct field) * num_fields);
12312 xfree (fields);
12313 }
12314 if (unsigned_enum)
12315 TYPE_UNSIGNED (this_type) = 1;
12316 if (flag_enum)
12317 TYPE_FLAG_ENUM (this_type) = 1;
12318 }
12319
12320 /* If we are reading an enum from a .debug_types unit, and the enum
12321 is a declaration, and the enum is not the signatured type in the
12322 unit, then we do not want to add a symbol for it. Adding a
12323 symbol would in some cases obscure the true definition of the
12324 enum, giving users an incomplete type when the definition is
12325 actually available. Note that we do not want to do this for all
12326 enums which are just declarations, because C++0x allows forward
12327 enum declarations. */
12328 if (cu->per_cu->is_debug_types
12329 && die_is_declaration (die, cu))
12330 {
12331 struct signatured_type *sig_type;
12332
12333 sig_type = (struct signatured_type *) cu->per_cu;
12334 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12335 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12336 return;
12337 }
12338
12339 new_symbol (die, this_type, cu);
12340 }
12341
12342 /* Extract all information from a DW_TAG_array_type DIE and put it in
12343 the DIE's type field. For now, this only handles one dimensional
12344 arrays. */
12345
12346 static struct type *
12347 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12348 {
12349 struct objfile *objfile = cu->objfile;
12350 struct die_info *child_die;
12351 struct type *type;
12352 struct type *element_type, *range_type, *index_type;
12353 struct type **range_types = NULL;
12354 struct attribute *attr;
12355 int ndim = 0;
12356 struct cleanup *back_to;
12357 const char *name;
12358
12359 element_type = die_type (die, cu);
12360
12361 /* The die_type call above may have already set the type for this DIE. */
12362 type = get_die_type (die, cu);
12363 if (type)
12364 return type;
12365
12366 /* Irix 6.2 native cc creates array types without children for
12367 arrays with unspecified length. */
12368 if (die->child == NULL)
12369 {
12370 index_type = objfile_type (objfile)->builtin_int;
12371 range_type = create_range_type (NULL, index_type, 0, -1);
12372 type = create_array_type (NULL, element_type, range_type);
12373 return set_die_type (die, type, cu);
12374 }
12375
12376 back_to = make_cleanup (null_cleanup, NULL);
12377 child_die = die->child;
12378 while (child_die && child_die->tag)
12379 {
12380 if (child_die->tag == DW_TAG_subrange_type)
12381 {
12382 struct type *child_type = read_type_die (child_die, cu);
12383
12384 if (child_type != NULL)
12385 {
12386 /* The range type was succesfully read. Save it for the
12387 array type creation. */
12388 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12389 {
12390 range_types = (struct type **)
12391 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12392 * sizeof (struct type *));
12393 if (ndim == 0)
12394 make_cleanup (free_current_contents, &range_types);
12395 }
12396 range_types[ndim++] = child_type;
12397 }
12398 }
12399 child_die = sibling_die (child_die);
12400 }
12401
12402 /* Dwarf2 dimensions are output from left to right, create the
12403 necessary array types in backwards order. */
12404
12405 type = element_type;
12406
12407 if (read_array_order (die, cu) == DW_ORD_col_major)
12408 {
12409 int i = 0;
12410
12411 while (i < ndim)
12412 type = create_array_type (NULL, type, range_types[i++]);
12413 }
12414 else
12415 {
12416 while (ndim-- > 0)
12417 type = create_array_type (NULL, type, range_types[ndim]);
12418 }
12419
12420 /* Understand Dwarf2 support for vector types (like they occur on
12421 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12422 array type. This is not part of the Dwarf2/3 standard yet, but a
12423 custom vendor extension. The main difference between a regular
12424 array and the vector variant is that vectors are passed by value
12425 to functions. */
12426 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12427 if (attr)
12428 make_vector_type (type);
12429
12430 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12431 implementation may choose to implement triple vectors using this
12432 attribute. */
12433 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12434 if (attr)
12435 {
12436 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12437 TYPE_LENGTH (type) = DW_UNSND (attr);
12438 else
12439 complaint (&symfile_complaints,
12440 _("DW_AT_byte_size for array type smaller "
12441 "than the total size of elements"));
12442 }
12443
12444 name = dwarf2_name (die, cu);
12445 if (name)
12446 TYPE_NAME (type) = name;
12447
12448 /* Install the type in the die. */
12449 set_die_type (die, type, cu);
12450
12451 /* set_die_type should be already done. */
12452 set_descriptive_type (type, die, cu);
12453
12454 do_cleanups (back_to);
12455
12456 return type;
12457 }
12458
12459 static enum dwarf_array_dim_ordering
12460 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12461 {
12462 struct attribute *attr;
12463
12464 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12465
12466 if (attr) return DW_SND (attr);
12467
12468 /* GNU F77 is a special case, as at 08/2004 array type info is the
12469 opposite order to the dwarf2 specification, but data is still
12470 laid out as per normal fortran.
12471
12472 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12473 version checking. */
12474
12475 if (cu->language == language_fortran
12476 && cu->producer && strstr (cu->producer, "GNU F77"))
12477 {
12478 return DW_ORD_row_major;
12479 }
12480
12481 switch (cu->language_defn->la_array_ordering)
12482 {
12483 case array_column_major:
12484 return DW_ORD_col_major;
12485 case array_row_major:
12486 default:
12487 return DW_ORD_row_major;
12488 };
12489 }
12490
12491 /* Extract all information from a DW_TAG_set_type DIE and put it in
12492 the DIE's type field. */
12493
12494 static struct type *
12495 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12496 {
12497 struct type *domain_type, *set_type;
12498 struct attribute *attr;
12499
12500 domain_type = die_type (die, cu);
12501
12502 /* The die_type call above may have already set the type for this DIE. */
12503 set_type = get_die_type (die, cu);
12504 if (set_type)
12505 return set_type;
12506
12507 set_type = create_set_type (NULL, domain_type);
12508
12509 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12510 if (attr)
12511 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12512
12513 return set_die_type (die, set_type, cu);
12514 }
12515
12516 /* A helper for read_common_block that creates a locexpr baton.
12517 SYM is the symbol which we are marking as computed.
12518 COMMON_DIE is the DIE for the common block.
12519 COMMON_LOC is the location expression attribute for the common
12520 block itself.
12521 MEMBER_LOC is the location expression attribute for the particular
12522 member of the common block that we are processing.
12523 CU is the CU from which the above come. */
12524
12525 static void
12526 mark_common_block_symbol_computed (struct symbol *sym,
12527 struct die_info *common_die,
12528 struct attribute *common_loc,
12529 struct attribute *member_loc,
12530 struct dwarf2_cu *cu)
12531 {
12532 struct objfile *objfile = dwarf2_per_objfile->objfile;
12533 struct dwarf2_locexpr_baton *baton;
12534 gdb_byte *ptr;
12535 unsigned int cu_off;
12536 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12537 LONGEST offset = 0;
12538
12539 gdb_assert (common_loc && member_loc);
12540 gdb_assert (attr_form_is_block (common_loc));
12541 gdb_assert (attr_form_is_block (member_loc)
12542 || attr_form_is_constant (member_loc));
12543
12544 baton = obstack_alloc (&objfile->objfile_obstack,
12545 sizeof (struct dwarf2_locexpr_baton));
12546 baton->per_cu = cu->per_cu;
12547 gdb_assert (baton->per_cu);
12548
12549 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12550
12551 if (attr_form_is_constant (member_loc))
12552 {
12553 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12554 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12555 }
12556 else
12557 baton->size += DW_BLOCK (member_loc)->size;
12558
12559 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12560 baton->data = ptr;
12561
12562 *ptr++ = DW_OP_call4;
12563 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12564 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12565 ptr += 4;
12566
12567 if (attr_form_is_constant (member_loc))
12568 {
12569 *ptr++ = DW_OP_addr;
12570 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12571 ptr += cu->header.addr_size;
12572 }
12573 else
12574 {
12575 /* We have to copy the data here, because DW_OP_call4 will only
12576 use a DW_AT_location attribute. */
12577 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12578 ptr += DW_BLOCK (member_loc)->size;
12579 }
12580
12581 *ptr++ = DW_OP_plus;
12582 gdb_assert (ptr - baton->data == baton->size);
12583
12584 SYMBOL_LOCATION_BATON (sym) = baton;
12585 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12586 }
12587
12588 /* Create appropriate locally-scoped variables for all the
12589 DW_TAG_common_block entries. Also create a struct common_block
12590 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12591 is used to sepate the common blocks name namespace from regular
12592 variable names. */
12593
12594 static void
12595 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12596 {
12597 struct attribute *attr;
12598
12599 attr = dwarf2_attr (die, DW_AT_location, cu);
12600 if (attr)
12601 {
12602 /* Support the .debug_loc offsets. */
12603 if (attr_form_is_block (attr))
12604 {
12605 /* Ok. */
12606 }
12607 else if (attr_form_is_section_offset (attr))
12608 {
12609 dwarf2_complex_location_expr_complaint ();
12610 attr = NULL;
12611 }
12612 else
12613 {
12614 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12615 "common block member");
12616 attr = NULL;
12617 }
12618 }
12619
12620 if (die->child != NULL)
12621 {
12622 struct objfile *objfile = cu->objfile;
12623 struct die_info *child_die;
12624 size_t n_entries = 0, size;
12625 struct common_block *common_block;
12626 struct symbol *sym;
12627
12628 for (child_die = die->child;
12629 child_die && child_die->tag;
12630 child_die = sibling_die (child_die))
12631 ++n_entries;
12632
12633 size = (sizeof (struct common_block)
12634 + (n_entries - 1) * sizeof (struct symbol *));
12635 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12636 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12637 common_block->n_entries = 0;
12638
12639 for (child_die = die->child;
12640 child_die && child_die->tag;
12641 child_die = sibling_die (child_die))
12642 {
12643 /* Create the symbol in the DW_TAG_common_block block in the current
12644 symbol scope. */
12645 sym = new_symbol (child_die, NULL, cu);
12646 if (sym != NULL)
12647 {
12648 struct attribute *member_loc;
12649
12650 common_block->contents[common_block->n_entries++] = sym;
12651
12652 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12653 cu);
12654 if (member_loc)
12655 {
12656 /* GDB has handled this for a long time, but it is
12657 not specified by DWARF. It seems to have been
12658 emitted by gfortran at least as recently as:
12659 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12660 complaint (&symfile_complaints,
12661 _("Variable in common block has "
12662 "DW_AT_data_member_location "
12663 "- DIE at 0x%x [in module %s]"),
12664 child_die->offset.sect_off, cu->objfile->name);
12665
12666 if (attr_form_is_section_offset (member_loc))
12667 dwarf2_complex_location_expr_complaint ();
12668 else if (attr_form_is_constant (member_loc)
12669 || attr_form_is_block (member_loc))
12670 {
12671 if (attr)
12672 mark_common_block_symbol_computed (sym, die, attr,
12673 member_loc, cu);
12674 }
12675 else
12676 dwarf2_complex_location_expr_complaint ();
12677 }
12678 }
12679 }
12680
12681 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12682 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12683 }
12684 }
12685
12686 /* Create a type for a C++ namespace. */
12687
12688 static struct type *
12689 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12690 {
12691 struct objfile *objfile = cu->objfile;
12692 const char *previous_prefix, *name;
12693 int is_anonymous;
12694 struct type *type;
12695
12696 /* For extensions, reuse the type of the original namespace. */
12697 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12698 {
12699 struct die_info *ext_die;
12700 struct dwarf2_cu *ext_cu = cu;
12701
12702 ext_die = dwarf2_extension (die, &ext_cu);
12703 type = read_type_die (ext_die, ext_cu);
12704
12705 /* EXT_CU may not be the same as CU.
12706 Ensure TYPE is recorded with CU in die_type_hash. */
12707 return set_die_type (die, type, cu);
12708 }
12709
12710 name = namespace_name (die, &is_anonymous, cu);
12711
12712 /* Now build the name of the current namespace. */
12713
12714 previous_prefix = determine_prefix (die, cu);
12715 if (previous_prefix[0] != '\0')
12716 name = typename_concat (&objfile->objfile_obstack,
12717 previous_prefix, name, 0, cu);
12718
12719 /* Create the type. */
12720 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12721 objfile);
12722 TYPE_NAME (type) = name;
12723 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12724
12725 return set_die_type (die, type, cu);
12726 }
12727
12728 /* Read a C++ namespace. */
12729
12730 static void
12731 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12732 {
12733 struct objfile *objfile = cu->objfile;
12734 int is_anonymous;
12735
12736 /* Add a symbol associated to this if we haven't seen the namespace
12737 before. Also, add a using directive if it's an anonymous
12738 namespace. */
12739
12740 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12741 {
12742 struct type *type;
12743
12744 type = read_type_die (die, cu);
12745 new_symbol (die, type, cu);
12746
12747 namespace_name (die, &is_anonymous, cu);
12748 if (is_anonymous)
12749 {
12750 const char *previous_prefix = determine_prefix (die, cu);
12751
12752 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12753 NULL, NULL, 0, &objfile->objfile_obstack);
12754 }
12755 }
12756
12757 if (die->child != NULL)
12758 {
12759 struct die_info *child_die = die->child;
12760
12761 while (child_die && child_die->tag)
12762 {
12763 process_die (child_die, cu);
12764 child_die = sibling_die (child_die);
12765 }
12766 }
12767 }
12768
12769 /* Read a Fortran module as type. This DIE can be only a declaration used for
12770 imported module. Still we need that type as local Fortran "use ... only"
12771 declaration imports depend on the created type in determine_prefix. */
12772
12773 static struct type *
12774 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12775 {
12776 struct objfile *objfile = cu->objfile;
12777 const char *module_name;
12778 struct type *type;
12779
12780 module_name = dwarf2_name (die, cu);
12781 if (!module_name)
12782 complaint (&symfile_complaints,
12783 _("DW_TAG_module has no name, offset 0x%x"),
12784 die->offset.sect_off);
12785 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12786
12787 /* determine_prefix uses TYPE_TAG_NAME. */
12788 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12789
12790 return set_die_type (die, type, cu);
12791 }
12792
12793 /* Read a Fortran module. */
12794
12795 static void
12796 read_module (struct die_info *die, struct dwarf2_cu *cu)
12797 {
12798 struct die_info *child_die = die->child;
12799
12800 while (child_die && child_die->tag)
12801 {
12802 process_die (child_die, cu);
12803 child_die = sibling_die (child_die);
12804 }
12805 }
12806
12807 /* Return the name of the namespace represented by DIE. Set
12808 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12809 namespace. */
12810
12811 static const char *
12812 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12813 {
12814 struct die_info *current_die;
12815 const char *name = NULL;
12816
12817 /* Loop through the extensions until we find a name. */
12818
12819 for (current_die = die;
12820 current_die != NULL;
12821 current_die = dwarf2_extension (die, &cu))
12822 {
12823 name = dwarf2_name (current_die, cu);
12824 if (name != NULL)
12825 break;
12826 }
12827
12828 /* Is it an anonymous namespace? */
12829
12830 *is_anonymous = (name == NULL);
12831 if (*is_anonymous)
12832 name = CP_ANONYMOUS_NAMESPACE_STR;
12833
12834 return name;
12835 }
12836
12837 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12838 the user defined type vector. */
12839
12840 static struct type *
12841 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12842 {
12843 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12844 struct comp_unit_head *cu_header = &cu->header;
12845 struct type *type;
12846 struct attribute *attr_byte_size;
12847 struct attribute *attr_address_class;
12848 int byte_size, addr_class;
12849 struct type *target_type;
12850
12851 target_type = die_type (die, cu);
12852
12853 /* The die_type call above may have already set the type for this DIE. */
12854 type = get_die_type (die, cu);
12855 if (type)
12856 return type;
12857
12858 type = lookup_pointer_type (target_type);
12859
12860 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12861 if (attr_byte_size)
12862 byte_size = DW_UNSND (attr_byte_size);
12863 else
12864 byte_size = cu_header->addr_size;
12865
12866 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12867 if (attr_address_class)
12868 addr_class = DW_UNSND (attr_address_class);
12869 else
12870 addr_class = DW_ADDR_none;
12871
12872 /* If the pointer size or address class is different than the
12873 default, create a type variant marked as such and set the
12874 length accordingly. */
12875 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12876 {
12877 if (gdbarch_address_class_type_flags_p (gdbarch))
12878 {
12879 int type_flags;
12880
12881 type_flags = gdbarch_address_class_type_flags
12882 (gdbarch, byte_size, addr_class);
12883 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12884 == 0);
12885 type = make_type_with_address_space (type, type_flags);
12886 }
12887 else if (TYPE_LENGTH (type) != byte_size)
12888 {
12889 complaint (&symfile_complaints,
12890 _("invalid pointer size %d"), byte_size);
12891 }
12892 else
12893 {
12894 /* Should we also complain about unhandled address classes? */
12895 }
12896 }
12897
12898 TYPE_LENGTH (type) = byte_size;
12899 return set_die_type (die, type, cu);
12900 }
12901
12902 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12903 the user defined type vector. */
12904
12905 static struct type *
12906 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12907 {
12908 struct type *type;
12909 struct type *to_type;
12910 struct type *domain;
12911
12912 to_type = die_type (die, cu);
12913 domain = die_containing_type (die, cu);
12914
12915 /* The calls above may have already set the type for this DIE. */
12916 type = get_die_type (die, cu);
12917 if (type)
12918 return type;
12919
12920 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12921 type = lookup_methodptr_type (to_type);
12922 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12923 {
12924 struct type *new_type = alloc_type (cu->objfile);
12925
12926 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12927 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12928 TYPE_VARARGS (to_type));
12929 type = lookup_methodptr_type (new_type);
12930 }
12931 else
12932 type = lookup_memberptr_type (to_type, domain);
12933
12934 return set_die_type (die, type, cu);
12935 }
12936
12937 /* Extract all information from a DW_TAG_reference_type DIE and add to
12938 the user defined type vector. */
12939
12940 static struct type *
12941 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12942 {
12943 struct comp_unit_head *cu_header = &cu->header;
12944 struct type *type, *target_type;
12945 struct attribute *attr;
12946
12947 target_type = die_type (die, cu);
12948
12949 /* The die_type call above may have already set the type for this DIE. */
12950 type = get_die_type (die, cu);
12951 if (type)
12952 return type;
12953
12954 type = lookup_reference_type (target_type);
12955 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12956 if (attr)
12957 {
12958 TYPE_LENGTH (type) = DW_UNSND (attr);
12959 }
12960 else
12961 {
12962 TYPE_LENGTH (type) = cu_header->addr_size;
12963 }
12964 return set_die_type (die, type, cu);
12965 }
12966
12967 static struct type *
12968 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12969 {
12970 struct type *base_type, *cv_type;
12971
12972 base_type = die_type (die, cu);
12973
12974 /* The die_type call above may have already set the type for this DIE. */
12975 cv_type = get_die_type (die, cu);
12976 if (cv_type)
12977 return cv_type;
12978
12979 /* In case the const qualifier is applied to an array type, the element type
12980 is so qualified, not the array type (section 6.7.3 of C99). */
12981 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12982 {
12983 struct type *el_type, *inner_array;
12984
12985 base_type = copy_type (base_type);
12986 inner_array = base_type;
12987
12988 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12989 {
12990 TYPE_TARGET_TYPE (inner_array) =
12991 copy_type (TYPE_TARGET_TYPE (inner_array));
12992 inner_array = TYPE_TARGET_TYPE (inner_array);
12993 }
12994
12995 el_type = TYPE_TARGET_TYPE (inner_array);
12996 TYPE_TARGET_TYPE (inner_array) =
12997 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12998
12999 return set_die_type (die, base_type, cu);
13000 }
13001
13002 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13003 return set_die_type (die, cv_type, cu);
13004 }
13005
13006 static struct type *
13007 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13008 {
13009 struct type *base_type, *cv_type;
13010
13011 base_type = die_type (die, cu);
13012
13013 /* The die_type call above may have already set the type for this DIE. */
13014 cv_type = get_die_type (die, cu);
13015 if (cv_type)
13016 return cv_type;
13017
13018 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13019 return set_die_type (die, cv_type, cu);
13020 }
13021
13022 /* Handle DW_TAG_restrict_type. */
13023
13024 static struct type *
13025 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13026 {
13027 struct type *base_type, *cv_type;
13028
13029 base_type = die_type (die, cu);
13030
13031 /* The die_type call above may have already set the type for this DIE. */
13032 cv_type = get_die_type (die, cu);
13033 if (cv_type)
13034 return cv_type;
13035
13036 cv_type = make_restrict_type (base_type);
13037 return set_die_type (die, cv_type, cu);
13038 }
13039
13040 /* Extract all information from a DW_TAG_string_type DIE and add to
13041 the user defined type vector. It isn't really a user defined type,
13042 but it behaves like one, with other DIE's using an AT_user_def_type
13043 attribute to reference it. */
13044
13045 static struct type *
13046 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13047 {
13048 struct objfile *objfile = cu->objfile;
13049 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13050 struct type *type, *range_type, *index_type, *char_type;
13051 struct attribute *attr;
13052 unsigned int length;
13053
13054 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13055 if (attr)
13056 {
13057 length = DW_UNSND (attr);
13058 }
13059 else
13060 {
13061 /* Check for the DW_AT_byte_size attribute. */
13062 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13063 if (attr)
13064 {
13065 length = DW_UNSND (attr);
13066 }
13067 else
13068 {
13069 length = 1;
13070 }
13071 }
13072
13073 index_type = objfile_type (objfile)->builtin_int;
13074 range_type = create_range_type (NULL, index_type, 1, length);
13075 char_type = language_string_char_type (cu->language_defn, gdbarch);
13076 type = create_string_type (NULL, char_type, range_type);
13077
13078 return set_die_type (die, type, cu);
13079 }
13080
13081 /* Assuming that DIE corresponds to a function, returns nonzero
13082 if the function is prototyped. */
13083
13084 static int
13085 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13086 {
13087 struct attribute *attr;
13088
13089 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13090 if (attr && (DW_UNSND (attr) != 0))
13091 return 1;
13092
13093 /* The DWARF standard implies that the DW_AT_prototyped attribute
13094 is only meaninful for C, but the concept also extends to other
13095 languages that allow unprototyped functions (Eg: Objective C).
13096 For all other languages, assume that functions are always
13097 prototyped. */
13098 if (cu->language != language_c
13099 && cu->language != language_objc
13100 && cu->language != language_opencl)
13101 return 1;
13102
13103 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13104 prototyped and unprototyped functions; default to prototyped,
13105 since that is more common in modern code (and RealView warns
13106 about unprototyped functions). */
13107 if (producer_is_realview (cu->producer))
13108 return 1;
13109
13110 return 0;
13111 }
13112
13113 /* Handle DIES due to C code like:
13114
13115 struct foo
13116 {
13117 int (*funcp)(int a, long l);
13118 int b;
13119 };
13120
13121 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13122
13123 static struct type *
13124 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13125 {
13126 struct objfile *objfile = cu->objfile;
13127 struct type *type; /* Type that this function returns. */
13128 struct type *ftype; /* Function that returns above type. */
13129 struct attribute *attr;
13130
13131 type = die_type (die, cu);
13132
13133 /* The die_type call above may have already set the type for this DIE. */
13134 ftype = get_die_type (die, cu);
13135 if (ftype)
13136 return ftype;
13137
13138 ftype = lookup_function_type (type);
13139
13140 if (prototyped_function_p (die, cu))
13141 TYPE_PROTOTYPED (ftype) = 1;
13142
13143 /* Store the calling convention in the type if it's available in
13144 the subroutine die. Otherwise set the calling convention to
13145 the default value DW_CC_normal. */
13146 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13147 if (attr)
13148 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13149 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13150 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13151 else
13152 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13153
13154 /* We need to add the subroutine type to the die immediately so
13155 we don't infinitely recurse when dealing with parameters
13156 declared as the same subroutine type. */
13157 set_die_type (die, ftype, cu);
13158
13159 if (die->child != NULL)
13160 {
13161 struct type *void_type = objfile_type (objfile)->builtin_void;
13162 struct die_info *child_die;
13163 int nparams, iparams;
13164
13165 /* Count the number of parameters.
13166 FIXME: GDB currently ignores vararg functions, but knows about
13167 vararg member functions. */
13168 nparams = 0;
13169 child_die = die->child;
13170 while (child_die && child_die->tag)
13171 {
13172 if (child_die->tag == DW_TAG_formal_parameter)
13173 nparams++;
13174 else if (child_die->tag == DW_TAG_unspecified_parameters)
13175 TYPE_VARARGS (ftype) = 1;
13176 child_die = sibling_die (child_die);
13177 }
13178
13179 /* Allocate storage for parameters and fill them in. */
13180 TYPE_NFIELDS (ftype) = nparams;
13181 TYPE_FIELDS (ftype) = (struct field *)
13182 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13183
13184 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13185 even if we error out during the parameters reading below. */
13186 for (iparams = 0; iparams < nparams; iparams++)
13187 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13188
13189 iparams = 0;
13190 child_die = die->child;
13191 while (child_die && child_die->tag)
13192 {
13193 if (child_die->tag == DW_TAG_formal_parameter)
13194 {
13195 struct type *arg_type;
13196
13197 /* DWARF version 2 has no clean way to discern C++
13198 static and non-static member functions. G++ helps
13199 GDB by marking the first parameter for non-static
13200 member functions (which is the this pointer) as
13201 artificial. We pass this information to
13202 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13203
13204 DWARF version 3 added DW_AT_object_pointer, which GCC
13205 4.5 does not yet generate. */
13206 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13207 if (attr)
13208 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13209 else
13210 {
13211 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13212
13213 /* GCC/43521: In java, the formal parameter
13214 "this" is sometimes not marked with DW_AT_artificial. */
13215 if (cu->language == language_java)
13216 {
13217 const char *name = dwarf2_name (child_die, cu);
13218
13219 if (name && !strcmp (name, "this"))
13220 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13221 }
13222 }
13223 arg_type = die_type (child_die, cu);
13224
13225 /* RealView does not mark THIS as const, which the testsuite
13226 expects. GCC marks THIS as const in method definitions,
13227 but not in the class specifications (GCC PR 43053). */
13228 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13229 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13230 {
13231 int is_this = 0;
13232 struct dwarf2_cu *arg_cu = cu;
13233 const char *name = dwarf2_name (child_die, cu);
13234
13235 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13236 if (attr)
13237 {
13238 /* If the compiler emits this, use it. */
13239 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13240 is_this = 1;
13241 }
13242 else if (name && strcmp (name, "this") == 0)
13243 /* Function definitions will have the argument names. */
13244 is_this = 1;
13245 else if (name == NULL && iparams == 0)
13246 /* Declarations may not have the names, so like
13247 elsewhere in GDB, assume an artificial first
13248 argument is "this". */
13249 is_this = 1;
13250
13251 if (is_this)
13252 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13253 arg_type, 0);
13254 }
13255
13256 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13257 iparams++;
13258 }
13259 child_die = sibling_die (child_die);
13260 }
13261 }
13262
13263 return ftype;
13264 }
13265
13266 static struct type *
13267 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13268 {
13269 struct objfile *objfile = cu->objfile;
13270 const char *name = NULL;
13271 struct type *this_type, *target_type;
13272
13273 name = dwarf2_full_name (NULL, die, cu);
13274 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13275 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13276 TYPE_NAME (this_type) = name;
13277 set_die_type (die, this_type, cu);
13278 target_type = die_type (die, cu);
13279 if (target_type != this_type)
13280 TYPE_TARGET_TYPE (this_type) = target_type;
13281 else
13282 {
13283 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13284 spec and cause infinite loops in GDB. */
13285 complaint (&symfile_complaints,
13286 _("Self-referential DW_TAG_typedef "
13287 "- DIE at 0x%x [in module %s]"),
13288 die->offset.sect_off, objfile->name);
13289 TYPE_TARGET_TYPE (this_type) = NULL;
13290 }
13291 return this_type;
13292 }
13293
13294 /* Find a representation of a given base type and install
13295 it in the TYPE field of the die. */
13296
13297 static struct type *
13298 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13299 {
13300 struct objfile *objfile = cu->objfile;
13301 struct type *type;
13302 struct attribute *attr;
13303 int encoding = 0, size = 0;
13304 const char *name;
13305 enum type_code code = TYPE_CODE_INT;
13306 int type_flags = 0;
13307 struct type *target_type = NULL;
13308
13309 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13310 if (attr)
13311 {
13312 encoding = DW_UNSND (attr);
13313 }
13314 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13315 if (attr)
13316 {
13317 size = DW_UNSND (attr);
13318 }
13319 name = dwarf2_name (die, cu);
13320 if (!name)
13321 {
13322 complaint (&symfile_complaints,
13323 _("DW_AT_name missing from DW_TAG_base_type"));
13324 }
13325
13326 switch (encoding)
13327 {
13328 case DW_ATE_address:
13329 /* Turn DW_ATE_address into a void * pointer. */
13330 code = TYPE_CODE_PTR;
13331 type_flags |= TYPE_FLAG_UNSIGNED;
13332 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13333 break;
13334 case DW_ATE_boolean:
13335 code = TYPE_CODE_BOOL;
13336 type_flags |= TYPE_FLAG_UNSIGNED;
13337 break;
13338 case DW_ATE_complex_float:
13339 code = TYPE_CODE_COMPLEX;
13340 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13341 break;
13342 case DW_ATE_decimal_float:
13343 code = TYPE_CODE_DECFLOAT;
13344 break;
13345 case DW_ATE_float:
13346 code = TYPE_CODE_FLT;
13347 break;
13348 case DW_ATE_signed:
13349 break;
13350 case DW_ATE_unsigned:
13351 type_flags |= TYPE_FLAG_UNSIGNED;
13352 if (cu->language == language_fortran
13353 && name
13354 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13355 code = TYPE_CODE_CHAR;
13356 break;
13357 case DW_ATE_signed_char:
13358 if (cu->language == language_ada || cu->language == language_m2
13359 || cu->language == language_pascal
13360 || cu->language == language_fortran)
13361 code = TYPE_CODE_CHAR;
13362 break;
13363 case DW_ATE_unsigned_char:
13364 if (cu->language == language_ada || cu->language == language_m2
13365 || cu->language == language_pascal
13366 || cu->language == language_fortran)
13367 code = TYPE_CODE_CHAR;
13368 type_flags |= TYPE_FLAG_UNSIGNED;
13369 break;
13370 case DW_ATE_UTF:
13371 /* We just treat this as an integer and then recognize the
13372 type by name elsewhere. */
13373 break;
13374
13375 default:
13376 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13377 dwarf_type_encoding_name (encoding));
13378 break;
13379 }
13380
13381 type = init_type (code, size, type_flags, NULL, objfile);
13382 TYPE_NAME (type) = name;
13383 TYPE_TARGET_TYPE (type) = target_type;
13384
13385 if (name && strcmp (name, "char") == 0)
13386 TYPE_NOSIGN (type) = 1;
13387
13388 return set_die_type (die, type, cu);
13389 }
13390
13391 /* Read the given DW_AT_subrange DIE. */
13392
13393 static struct type *
13394 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13395 {
13396 struct type *base_type, *orig_base_type;
13397 struct type *range_type;
13398 struct attribute *attr;
13399 LONGEST low, high;
13400 int low_default_is_valid;
13401 const char *name;
13402 LONGEST negative_mask;
13403
13404 orig_base_type = die_type (die, cu);
13405 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13406 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13407 creating the range type, but we use the result of check_typedef
13408 when examining properties of the type. */
13409 base_type = check_typedef (orig_base_type);
13410
13411 /* The die_type call above may have already set the type for this DIE. */
13412 range_type = get_die_type (die, cu);
13413 if (range_type)
13414 return range_type;
13415
13416 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13417 omitting DW_AT_lower_bound. */
13418 switch (cu->language)
13419 {
13420 case language_c:
13421 case language_cplus:
13422 low = 0;
13423 low_default_is_valid = 1;
13424 break;
13425 case language_fortran:
13426 low = 1;
13427 low_default_is_valid = 1;
13428 break;
13429 case language_d:
13430 case language_java:
13431 case language_objc:
13432 low = 0;
13433 low_default_is_valid = (cu->header.version >= 4);
13434 break;
13435 case language_ada:
13436 case language_m2:
13437 case language_pascal:
13438 low = 1;
13439 low_default_is_valid = (cu->header.version >= 4);
13440 break;
13441 default:
13442 low = 0;
13443 low_default_is_valid = 0;
13444 break;
13445 }
13446
13447 /* FIXME: For variable sized arrays either of these could be
13448 a variable rather than a constant value. We'll allow it,
13449 but we don't know how to handle it. */
13450 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13451 if (attr)
13452 low = dwarf2_get_attr_constant_value (attr, low);
13453 else if (!low_default_is_valid)
13454 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13455 "- DIE at 0x%x [in module %s]"),
13456 die->offset.sect_off, cu->objfile->name);
13457
13458 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13459 if (attr)
13460 {
13461 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
13462 {
13463 /* GCC encodes arrays with unspecified or dynamic length
13464 with a DW_FORM_block1 attribute or a reference attribute.
13465 FIXME: GDB does not yet know how to handle dynamic
13466 arrays properly, treat them as arrays with unspecified
13467 length for now.
13468
13469 FIXME: jimb/2003-09-22: GDB does not really know
13470 how to handle arrays of unspecified length
13471 either; we just represent them as zero-length
13472 arrays. Choose an appropriate upper bound given
13473 the lower bound we've computed above. */
13474 high = low - 1;
13475 }
13476 else
13477 high = dwarf2_get_attr_constant_value (attr, 1);
13478 }
13479 else
13480 {
13481 attr = dwarf2_attr (die, DW_AT_count, cu);
13482 if (attr)
13483 {
13484 int count = dwarf2_get_attr_constant_value (attr, 1);
13485 high = low + count - 1;
13486 }
13487 else
13488 {
13489 /* Unspecified array length. */
13490 high = low - 1;
13491 }
13492 }
13493
13494 /* Dwarf-2 specifications explicitly allows to create subrange types
13495 without specifying a base type.
13496 In that case, the base type must be set to the type of
13497 the lower bound, upper bound or count, in that order, if any of these
13498 three attributes references an object that has a type.
13499 If no base type is found, the Dwarf-2 specifications say that
13500 a signed integer type of size equal to the size of an address should
13501 be used.
13502 For the following C code: `extern char gdb_int [];'
13503 GCC produces an empty range DIE.
13504 FIXME: muller/2010-05-28: Possible references to object for low bound,
13505 high bound or count are not yet handled by this code. */
13506 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13507 {
13508 struct objfile *objfile = cu->objfile;
13509 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13510 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13511 struct type *int_type = objfile_type (objfile)->builtin_int;
13512
13513 /* Test "int", "long int", and "long long int" objfile types,
13514 and select the first one having a size above or equal to the
13515 architecture address size. */
13516 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13517 base_type = int_type;
13518 else
13519 {
13520 int_type = objfile_type (objfile)->builtin_long;
13521 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13522 base_type = int_type;
13523 else
13524 {
13525 int_type = objfile_type (objfile)->builtin_long_long;
13526 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13527 base_type = int_type;
13528 }
13529 }
13530 }
13531
13532 negative_mask =
13533 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13534 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13535 low |= negative_mask;
13536 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13537 high |= negative_mask;
13538
13539 range_type = create_range_type (NULL, orig_base_type, low, high);
13540
13541 /* Mark arrays with dynamic length at least as an array of unspecified
13542 length. GDB could check the boundary but before it gets implemented at
13543 least allow accessing the array elements. */
13544 if (attr && attr_form_is_block (attr))
13545 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13546
13547 /* Ada expects an empty array on no boundary attributes. */
13548 if (attr == NULL && cu->language != language_ada)
13549 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13550
13551 name = dwarf2_name (die, cu);
13552 if (name)
13553 TYPE_NAME (range_type) = name;
13554
13555 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13556 if (attr)
13557 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13558
13559 set_die_type (die, range_type, cu);
13560
13561 /* set_die_type should be already done. */
13562 set_descriptive_type (range_type, die, cu);
13563
13564 return range_type;
13565 }
13566
13567 static struct type *
13568 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13569 {
13570 struct type *type;
13571
13572 /* For now, we only support the C meaning of an unspecified type: void. */
13573
13574 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13575 TYPE_NAME (type) = dwarf2_name (die, cu);
13576
13577 return set_die_type (die, type, cu);
13578 }
13579
13580 /* Read a single die and all its descendents. Set the die's sibling
13581 field to NULL; set other fields in the die correctly, and set all
13582 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13583 location of the info_ptr after reading all of those dies. PARENT
13584 is the parent of the die in question. */
13585
13586 static struct die_info *
13587 read_die_and_children (const struct die_reader_specs *reader,
13588 const gdb_byte *info_ptr,
13589 const gdb_byte **new_info_ptr,
13590 struct die_info *parent)
13591 {
13592 struct die_info *die;
13593 const gdb_byte *cur_ptr;
13594 int has_children;
13595
13596 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13597 if (die == NULL)
13598 {
13599 *new_info_ptr = cur_ptr;
13600 return NULL;
13601 }
13602 store_in_ref_table (die, reader->cu);
13603
13604 if (has_children)
13605 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13606 else
13607 {
13608 die->child = NULL;
13609 *new_info_ptr = cur_ptr;
13610 }
13611
13612 die->sibling = NULL;
13613 die->parent = parent;
13614 return die;
13615 }
13616
13617 /* Read a die, all of its descendents, and all of its siblings; set
13618 all of the fields of all of the dies correctly. Arguments are as
13619 in read_die_and_children. */
13620
13621 static struct die_info *
13622 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13623 const gdb_byte *info_ptr,
13624 const gdb_byte **new_info_ptr,
13625 struct die_info *parent)
13626 {
13627 struct die_info *first_die, *last_sibling;
13628 const gdb_byte *cur_ptr;
13629
13630 cur_ptr = info_ptr;
13631 first_die = last_sibling = NULL;
13632
13633 while (1)
13634 {
13635 struct die_info *die
13636 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13637
13638 if (die == NULL)
13639 {
13640 *new_info_ptr = cur_ptr;
13641 return first_die;
13642 }
13643
13644 if (!first_die)
13645 first_die = die;
13646 else
13647 last_sibling->sibling = die;
13648
13649 last_sibling = die;
13650 }
13651 }
13652
13653 /* Read a die, all of its descendents, and all of its siblings; set
13654 all of the fields of all of the dies correctly. Arguments are as
13655 in read_die_and_children.
13656 This the main entry point for reading a DIE and all its children. */
13657
13658 static struct die_info *
13659 read_die_and_siblings (const struct die_reader_specs *reader,
13660 const gdb_byte *info_ptr,
13661 const gdb_byte **new_info_ptr,
13662 struct die_info *parent)
13663 {
13664 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13665 new_info_ptr, parent);
13666
13667 if (dwarf2_die_debug)
13668 {
13669 fprintf_unfiltered (gdb_stdlog,
13670 "Read die from %s@0x%x of %s:\n",
13671 bfd_section_name (reader->abfd,
13672 reader->die_section->asection),
13673 (unsigned) (info_ptr - reader->die_section->buffer),
13674 bfd_get_filename (reader->abfd));
13675 dump_die (die, dwarf2_die_debug);
13676 }
13677
13678 return die;
13679 }
13680
13681 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13682 attributes.
13683 The caller is responsible for filling in the extra attributes
13684 and updating (*DIEP)->num_attrs.
13685 Set DIEP to point to a newly allocated die with its information,
13686 except for its child, sibling, and parent fields.
13687 Set HAS_CHILDREN to tell whether the die has children or not. */
13688
13689 static const gdb_byte *
13690 read_full_die_1 (const struct die_reader_specs *reader,
13691 struct die_info **diep, const gdb_byte *info_ptr,
13692 int *has_children, int num_extra_attrs)
13693 {
13694 unsigned int abbrev_number, bytes_read, i;
13695 sect_offset offset;
13696 struct abbrev_info *abbrev;
13697 struct die_info *die;
13698 struct dwarf2_cu *cu = reader->cu;
13699 bfd *abfd = reader->abfd;
13700
13701 offset.sect_off = info_ptr - reader->buffer;
13702 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13703 info_ptr += bytes_read;
13704 if (!abbrev_number)
13705 {
13706 *diep = NULL;
13707 *has_children = 0;
13708 return info_ptr;
13709 }
13710
13711 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13712 if (!abbrev)
13713 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13714 abbrev_number,
13715 bfd_get_filename (abfd));
13716
13717 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13718 die->offset = offset;
13719 die->tag = abbrev->tag;
13720 die->abbrev = abbrev_number;
13721
13722 /* Make the result usable.
13723 The caller needs to update num_attrs after adding the extra
13724 attributes. */
13725 die->num_attrs = abbrev->num_attrs;
13726
13727 for (i = 0; i < abbrev->num_attrs; ++i)
13728 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13729 info_ptr);
13730
13731 *diep = die;
13732 *has_children = abbrev->has_children;
13733 return info_ptr;
13734 }
13735
13736 /* Read a die and all its attributes.
13737 Set DIEP to point to a newly allocated die with its information,
13738 except for its child, sibling, and parent fields.
13739 Set HAS_CHILDREN to tell whether the die has children or not. */
13740
13741 static const gdb_byte *
13742 read_full_die (const struct die_reader_specs *reader,
13743 struct die_info **diep, const gdb_byte *info_ptr,
13744 int *has_children)
13745 {
13746 const gdb_byte *result;
13747
13748 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13749
13750 if (dwarf2_die_debug)
13751 {
13752 fprintf_unfiltered (gdb_stdlog,
13753 "Read die from %s@0x%x of %s:\n",
13754 bfd_section_name (reader->abfd,
13755 reader->die_section->asection),
13756 (unsigned) (info_ptr - reader->die_section->buffer),
13757 bfd_get_filename (reader->abfd));
13758 dump_die (*diep, dwarf2_die_debug);
13759 }
13760
13761 return result;
13762 }
13763 \f
13764 /* Abbreviation tables.
13765
13766 In DWARF version 2, the description of the debugging information is
13767 stored in a separate .debug_abbrev section. Before we read any
13768 dies from a section we read in all abbreviations and install them
13769 in a hash table. */
13770
13771 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13772
13773 static struct abbrev_info *
13774 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13775 {
13776 struct abbrev_info *abbrev;
13777
13778 abbrev = (struct abbrev_info *)
13779 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13780 memset (abbrev, 0, sizeof (struct abbrev_info));
13781 return abbrev;
13782 }
13783
13784 /* Add an abbreviation to the table. */
13785
13786 static void
13787 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13788 unsigned int abbrev_number,
13789 struct abbrev_info *abbrev)
13790 {
13791 unsigned int hash_number;
13792
13793 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13794 abbrev->next = abbrev_table->abbrevs[hash_number];
13795 abbrev_table->abbrevs[hash_number] = abbrev;
13796 }
13797
13798 /* Look up an abbrev in the table.
13799 Returns NULL if the abbrev is not found. */
13800
13801 static struct abbrev_info *
13802 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13803 unsigned int abbrev_number)
13804 {
13805 unsigned int hash_number;
13806 struct abbrev_info *abbrev;
13807
13808 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13809 abbrev = abbrev_table->abbrevs[hash_number];
13810
13811 while (abbrev)
13812 {
13813 if (abbrev->number == abbrev_number)
13814 return abbrev;
13815 abbrev = abbrev->next;
13816 }
13817 return NULL;
13818 }
13819
13820 /* Read in an abbrev table. */
13821
13822 static struct abbrev_table *
13823 abbrev_table_read_table (struct dwarf2_section_info *section,
13824 sect_offset offset)
13825 {
13826 struct objfile *objfile = dwarf2_per_objfile->objfile;
13827 bfd *abfd = section->asection->owner;
13828 struct abbrev_table *abbrev_table;
13829 const gdb_byte *abbrev_ptr;
13830 struct abbrev_info *cur_abbrev;
13831 unsigned int abbrev_number, bytes_read, abbrev_name;
13832 unsigned int abbrev_form;
13833 struct attr_abbrev *cur_attrs;
13834 unsigned int allocated_attrs;
13835
13836 abbrev_table = XMALLOC (struct abbrev_table);
13837 abbrev_table->offset = offset;
13838 obstack_init (&abbrev_table->abbrev_obstack);
13839 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13840 (ABBREV_HASH_SIZE
13841 * sizeof (struct abbrev_info *)));
13842 memset (abbrev_table->abbrevs, 0,
13843 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13844
13845 dwarf2_read_section (objfile, section);
13846 abbrev_ptr = section->buffer + offset.sect_off;
13847 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13848 abbrev_ptr += bytes_read;
13849
13850 allocated_attrs = ATTR_ALLOC_CHUNK;
13851 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13852
13853 /* Loop until we reach an abbrev number of 0. */
13854 while (abbrev_number)
13855 {
13856 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13857
13858 /* read in abbrev header */
13859 cur_abbrev->number = abbrev_number;
13860 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13861 abbrev_ptr += bytes_read;
13862 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13863 abbrev_ptr += 1;
13864
13865 /* now read in declarations */
13866 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13867 abbrev_ptr += bytes_read;
13868 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13869 abbrev_ptr += bytes_read;
13870 while (abbrev_name)
13871 {
13872 if (cur_abbrev->num_attrs == allocated_attrs)
13873 {
13874 allocated_attrs += ATTR_ALLOC_CHUNK;
13875 cur_attrs
13876 = xrealloc (cur_attrs, (allocated_attrs
13877 * sizeof (struct attr_abbrev)));
13878 }
13879
13880 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13881 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13882 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13883 abbrev_ptr += bytes_read;
13884 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13885 abbrev_ptr += bytes_read;
13886 }
13887
13888 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13889 (cur_abbrev->num_attrs
13890 * sizeof (struct attr_abbrev)));
13891 memcpy (cur_abbrev->attrs, cur_attrs,
13892 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13893
13894 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13895
13896 /* Get next abbreviation.
13897 Under Irix6 the abbreviations for a compilation unit are not
13898 always properly terminated with an abbrev number of 0.
13899 Exit loop if we encounter an abbreviation which we have
13900 already read (which means we are about to read the abbreviations
13901 for the next compile unit) or if the end of the abbreviation
13902 table is reached. */
13903 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13904 break;
13905 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13906 abbrev_ptr += bytes_read;
13907 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13908 break;
13909 }
13910
13911 xfree (cur_attrs);
13912 return abbrev_table;
13913 }
13914
13915 /* Free the resources held by ABBREV_TABLE. */
13916
13917 static void
13918 abbrev_table_free (struct abbrev_table *abbrev_table)
13919 {
13920 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13921 xfree (abbrev_table);
13922 }
13923
13924 /* Same as abbrev_table_free but as a cleanup.
13925 We pass in a pointer to the pointer to the table so that we can
13926 set the pointer to NULL when we're done. It also simplifies
13927 build_type_unit_groups. */
13928
13929 static void
13930 abbrev_table_free_cleanup (void *table_ptr)
13931 {
13932 struct abbrev_table **abbrev_table_ptr = table_ptr;
13933
13934 if (*abbrev_table_ptr != NULL)
13935 abbrev_table_free (*abbrev_table_ptr);
13936 *abbrev_table_ptr = NULL;
13937 }
13938
13939 /* Read the abbrev table for CU from ABBREV_SECTION. */
13940
13941 static void
13942 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13943 struct dwarf2_section_info *abbrev_section)
13944 {
13945 cu->abbrev_table =
13946 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13947 }
13948
13949 /* Release the memory used by the abbrev table for a compilation unit. */
13950
13951 static void
13952 dwarf2_free_abbrev_table (void *ptr_to_cu)
13953 {
13954 struct dwarf2_cu *cu = ptr_to_cu;
13955
13956 if (cu->abbrev_table != NULL)
13957 abbrev_table_free (cu->abbrev_table);
13958 /* Set this to NULL so that we SEGV if we try to read it later,
13959 and also because free_comp_unit verifies this is NULL. */
13960 cu->abbrev_table = NULL;
13961 }
13962 \f
13963 /* Returns nonzero if TAG represents a type that we might generate a partial
13964 symbol for. */
13965
13966 static int
13967 is_type_tag_for_partial (int tag)
13968 {
13969 switch (tag)
13970 {
13971 #if 0
13972 /* Some types that would be reasonable to generate partial symbols for,
13973 that we don't at present. */
13974 case DW_TAG_array_type:
13975 case DW_TAG_file_type:
13976 case DW_TAG_ptr_to_member_type:
13977 case DW_TAG_set_type:
13978 case DW_TAG_string_type:
13979 case DW_TAG_subroutine_type:
13980 #endif
13981 case DW_TAG_base_type:
13982 case DW_TAG_class_type:
13983 case DW_TAG_interface_type:
13984 case DW_TAG_enumeration_type:
13985 case DW_TAG_structure_type:
13986 case DW_TAG_subrange_type:
13987 case DW_TAG_typedef:
13988 case DW_TAG_union_type:
13989 return 1;
13990 default:
13991 return 0;
13992 }
13993 }
13994
13995 /* Load all DIEs that are interesting for partial symbols into memory. */
13996
13997 static struct partial_die_info *
13998 load_partial_dies (const struct die_reader_specs *reader,
13999 const gdb_byte *info_ptr, int building_psymtab)
14000 {
14001 struct dwarf2_cu *cu = reader->cu;
14002 struct objfile *objfile = cu->objfile;
14003 struct partial_die_info *part_die;
14004 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14005 struct abbrev_info *abbrev;
14006 unsigned int bytes_read;
14007 unsigned int load_all = 0;
14008 int nesting_level = 1;
14009
14010 parent_die = NULL;
14011 last_die = NULL;
14012
14013 gdb_assert (cu->per_cu != NULL);
14014 if (cu->per_cu->load_all_dies)
14015 load_all = 1;
14016
14017 cu->partial_dies
14018 = htab_create_alloc_ex (cu->header.length / 12,
14019 partial_die_hash,
14020 partial_die_eq,
14021 NULL,
14022 &cu->comp_unit_obstack,
14023 hashtab_obstack_allocate,
14024 dummy_obstack_deallocate);
14025
14026 part_die = obstack_alloc (&cu->comp_unit_obstack,
14027 sizeof (struct partial_die_info));
14028
14029 while (1)
14030 {
14031 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14032
14033 /* A NULL abbrev means the end of a series of children. */
14034 if (abbrev == NULL)
14035 {
14036 if (--nesting_level == 0)
14037 {
14038 /* PART_DIE was probably the last thing allocated on the
14039 comp_unit_obstack, so we could call obstack_free
14040 here. We don't do that because the waste is small,
14041 and will be cleaned up when we're done with this
14042 compilation unit. This way, we're also more robust
14043 against other users of the comp_unit_obstack. */
14044 return first_die;
14045 }
14046 info_ptr += bytes_read;
14047 last_die = parent_die;
14048 parent_die = parent_die->die_parent;
14049 continue;
14050 }
14051
14052 /* Check for template arguments. We never save these; if
14053 they're seen, we just mark the parent, and go on our way. */
14054 if (parent_die != NULL
14055 && cu->language == language_cplus
14056 && (abbrev->tag == DW_TAG_template_type_param
14057 || abbrev->tag == DW_TAG_template_value_param))
14058 {
14059 parent_die->has_template_arguments = 1;
14060
14061 if (!load_all)
14062 {
14063 /* We don't need a partial DIE for the template argument. */
14064 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14065 continue;
14066 }
14067 }
14068
14069 /* We only recurse into c++ subprograms looking for template arguments.
14070 Skip their other children. */
14071 if (!load_all
14072 && cu->language == language_cplus
14073 && parent_die != NULL
14074 && parent_die->tag == DW_TAG_subprogram)
14075 {
14076 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14077 continue;
14078 }
14079
14080 /* Check whether this DIE is interesting enough to save. Normally
14081 we would not be interested in members here, but there may be
14082 later variables referencing them via DW_AT_specification (for
14083 static members). */
14084 if (!load_all
14085 && !is_type_tag_for_partial (abbrev->tag)
14086 && abbrev->tag != DW_TAG_constant
14087 && abbrev->tag != DW_TAG_enumerator
14088 && abbrev->tag != DW_TAG_subprogram
14089 && abbrev->tag != DW_TAG_lexical_block
14090 && abbrev->tag != DW_TAG_variable
14091 && abbrev->tag != DW_TAG_namespace
14092 && abbrev->tag != DW_TAG_module
14093 && abbrev->tag != DW_TAG_member
14094 && abbrev->tag != DW_TAG_imported_unit)
14095 {
14096 /* Otherwise we skip to the next sibling, if any. */
14097 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14098 continue;
14099 }
14100
14101 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14102 info_ptr);
14103
14104 /* This two-pass algorithm for processing partial symbols has a
14105 high cost in cache pressure. Thus, handle some simple cases
14106 here which cover the majority of C partial symbols. DIEs
14107 which neither have specification tags in them, nor could have
14108 specification tags elsewhere pointing at them, can simply be
14109 processed and discarded.
14110
14111 This segment is also optional; scan_partial_symbols and
14112 add_partial_symbol will handle these DIEs if we chain
14113 them in normally. When compilers which do not emit large
14114 quantities of duplicate debug information are more common,
14115 this code can probably be removed. */
14116
14117 /* Any complete simple types at the top level (pretty much all
14118 of them, for a language without namespaces), can be processed
14119 directly. */
14120 if (parent_die == NULL
14121 && part_die->has_specification == 0
14122 && part_die->is_declaration == 0
14123 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14124 || part_die->tag == DW_TAG_base_type
14125 || part_die->tag == DW_TAG_subrange_type))
14126 {
14127 if (building_psymtab && part_die->name != NULL)
14128 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14129 VAR_DOMAIN, LOC_TYPEDEF,
14130 &objfile->static_psymbols,
14131 0, (CORE_ADDR) 0, cu->language, objfile);
14132 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14133 continue;
14134 }
14135
14136 /* The exception for DW_TAG_typedef with has_children above is
14137 a workaround of GCC PR debug/47510. In the case of this complaint
14138 type_name_no_tag_or_error will error on such types later.
14139
14140 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14141 it could not find the child DIEs referenced later, this is checked
14142 above. In correct DWARF DW_TAG_typedef should have no children. */
14143
14144 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14145 complaint (&symfile_complaints,
14146 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14147 "- DIE at 0x%x [in module %s]"),
14148 part_die->offset.sect_off, objfile->name);
14149
14150 /* If we're at the second level, and we're an enumerator, and
14151 our parent has no specification (meaning possibly lives in a
14152 namespace elsewhere), then we can add the partial symbol now
14153 instead of queueing it. */
14154 if (part_die->tag == DW_TAG_enumerator
14155 && parent_die != NULL
14156 && parent_die->die_parent == NULL
14157 && parent_die->tag == DW_TAG_enumeration_type
14158 && parent_die->has_specification == 0)
14159 {
14160 if (part_die->name == NULL)
14161 complaint (&symfile_complaints,
14162 _("malformed enumerator DIE ignored"));
14163 else if (building_psymtab)
14164 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14165 VAR_DOMAIN, LOC_CONST,
14166 (cu->language == language_cplus
14167 || cu->language == language_java)
14168 ? &objfile->global_psymbols
14169 : &objfile->static_psymbols,
14170 0, (CORE_ADDR) 0, cu->language, objfile);
14171
14172 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14173 continue;
14174 }
14175
14176 /* We'll save this DIE so link it in. */
14177 part_die->die_parent = parent_die;
14178 part_die->die_sibling = NULL;
14179 part_die->die_child = NULL;
14180
14181 if (last_die && last_die == parent_die)
14182 last_die->die_child = part_die;
14183 else if (last_die)
14184 last_die->die_sibling = part_die;
14185
14186 last_die = part_die;
14187
14188 if (first_die == NULL)
14189 first_die = part_die;
14190
14191 /* Maybe add the DIE to the hash table. Not all DIEs that we
14192 find interesting need to be in the hash table, because we
14193 also have the parent/sibling/child chains; only those that we
14194 might refer to by offset later during partial symbol reading.
14195
14196 For now this means things that might have be the target of a
14197 DW_AT_specification, DW_AT_abstract_origin, or
14198 DW_AT_extension. DW_AT_extension will refer only to
14199 namespaces; DW_AT_abstract_origin refers to functions (and
14200 many things under the function DIE, but we do not recurse
14201 into function DIEs during partial symbol reading) and
14202 possibly variables as well; DW_AT_specification refers to
14203 declarations. Declarations ought to have the DW_AT_declaration
14204 flag. It happens that GCC forgets to put it in sometimes, but
14205 only for functions, not for types.
14206
14207 Adding more things than necessary to the hash table is harmless
14208 except for the performance cost. Adding too few will result in
14209 wasted time in find_partial_die, when we reread the compilation
14210 unit with load_all_dies set. */
14211
14212 if (load_all
14213 || abbrev->tag == DW_TAG_constant
14214 || abbrev->tag == DW_TAG_subprogram
14215 || abbrev->tag == DW_TAG_variable
14216 || abbrev->tag == DW_TAG_namespace
14217 || part_die->is_declaration)
14218 {
14219 void **slot;
14220
14221 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14222 part_die->offset.sect_off, INSERT);
14223 *slot = part_die;
14224 }
14225
14226 part_die = obstack_alloc (&cu->comp_unit_obstack,
14227 sizeof (struct partial_die_info));
14228
14229 /* For some DIEs we want to follow their children (if any). For C
14230 we have no reason to follow the children of structures; for other
14231 languages we have to, so that we can get at method physnames
14232 to infer fully qualified class names, for DW_AT_specification,
14233 and for C++ template arguments. For C++, we also look one level
14234 inside functions to find template arguments (if the name of the
14235 function does not already contain the template arguments).
14236
14237 For Ada, we need to scan the children of subprograms and lexical
14238 blocks as well because Ada allows the definition of nested
14239 entities that could be interesting for the debugger, such as
14240 nested subprograms for instance. */
14241 if (last_die->has_children
14242 && (load_all
14243 || last_die->tag == DW_TAG_namespace
14244 || last_die->tag == DW_TAG_module
14245 || last_die->tag == DW_TAG_enumeration_type
14246 || (cu->language == language_cplus
14247 && last_die->tag == DW_TAG_subprogram
14248 && (last_die->name == NULL
14249 || strchr (last_die->name, '<') == NULL))
14250 || (cu->language != language_c
14251 && (last_die->tag == DW_TAG_class_type
14252 || last_die->tag == DW_TAG_interface_type
14253 || last_die->tag == DW_TAG_structure_type
14254 || last_die->tag == DW_TAG_union_type))
14255 || (cu->language == language_ada
14256 && (last_die->tag == DW_TAG_subprogram
14257 || last_die->tag == DW_TAG_lexical_block))))
14258 {
14259 nesting_level++;
14260 parent_die = last_die;
14261 continue;
14262 }
14263
14264 /* Otherwise we skip to the next sibling, if any. */
14265 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14266
14267 /* Back to the top, do it again. */
14268 }
14269 }
14270
14271 /* Read a minimal amount of information into the minimal die structure. */
14272
14273 static const gdb_byte *
14274 read_partial_die (const struct die_reader_specs *reader,
14275 struct partial_die_info *part_die,
14276 struct abbrev_info *abbrev, unsigned int abbrev_len,
14277 const gdb_byte *info_ptr)
14278 {
14279 struct dwarf2_cu *cu = reader->cu;
14280 struct objfile *objfile = cu->objfile;
14281 const gdb_byte *buffer = reader->buffer;
14282 unsigned int i;
14283 struct attribute attr;
14284 int has_low_pc_attr = 0;
14285 int has_high_pc_attr = 0;
14286 int high_pc_relative = 0;
14287
14288 memset (part_die, 0, sizeof (struct partial_die_info));
14289
14290 part_die->offset.sect_off = info_ptr - buffer;
14291
14292 info_ptr += abbrev_len;
14293
14294 if (abbrev == NULL)
14295 return info_ptr;
14296
14297 part_die->tag = abbrev->tag;
14298 part_die->has_children = abbrev->has_children;
14299
14300 for (i = 0; i < abbrev->num_attrs; ++i)
14301 {
14302 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14303
14304 /* Store the data if it is of an attribute we want to keep in a
14305 partial symbol table. */
14306 switch (attr.name)
14307 {
14308 case DW_AT_name:
14309 switch (part_die->tag)
14310 {
14311 case DW_TAG_compile_unit:
14312 case DW_TAG_partial_unit:
14313 case DW_TAG_type_unit:
14314 /* Compilation units have a DW_AT_name that is a filename, not
14315 a source language identifier. */
14316 case DW_TAG_enumeration_type:
14317 case DW_TAG_enumerator:
14318 /* These tags always have simple identifiers already; no need
14319 to canonicalize them. */
14320 part_die->name = DW_STRING (&attr);
14321 break;
14322 default:
14323 part_die->name
14324 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14325 &objfile->objfile_obstack);
14326 break;
14327 }
14328 break;
14329 case DW_AT_linkage_name:
14330 case DW_AT_MIPS_linkage_name:
14331 /* Note that both forms of linkage name might appear. We
14332 assume they will be the same, and we only store the last
14333 one we see. */
14334 if (cu->language == language_ada)
14335 part_die->name = DW_STRING (&attr);
14336 part_die->linkage_name = DW_STRING (&attr);
14337 break;
14338 case DW_AT_low_pc:
14339 has_low_pc_attr = 1;
14340 part_die->lowpc = DW_ADDR (&attr);
14341 break;
14342 case DW_AT_high_pc:
14343 has_high_pc_attr = 1;
14344 if (attr.form == DW_FORM_addr
14345 || attr.form == DW_FORM_GNU_addr_index)
14346 part_die->highpc = DW_ADDR (&attr);
14347 else
14348 {
14349 high_pc_relative = 1;
14350 part_die->highpc = DW_UNSND (&attr);
14351 }
14352 break;
14353 case DW_AT_location:
14354 /* Support the .debug_loc offsets. */
14355 if (attr_form_is_block (&attr))
14356 {
14357 part_die->d.locdesc = DW_BLOCK (&attr);
14358 }
14359 else if (attr_form_is_section_offset (&attr))
14360 {
14361 dwarf2_complex_location_expr_complaint ();
14362 }
14363 else
14364 {
14365 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14366 "partial symbol information");
14367 }
14368 break;
14369 case DW_AT_external:
14370 part_die->is_external = DW_UNSND (&attr);
14371 break;
14372 case DW_AT_declaration:
14373 part_die->is_declaration = DW_UNSND (&attr);
14374 break;
14375 case DW_AT_type:
14376 part_die->has_type = 1;
14377 break;
14378 case DW_AT_abstract_origin:
14379 case DW_AT_specification:
14380 case DW_AT_extension:
14381 part_die->has_specification = 1;
14382 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14383 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14384 || cu->per_cu->is_dwz);
14385 break;
14386 case DW_AT_sibling:
14387 /* Ignore absolute siblings, they might point outside of
14388 the current compile unit. */
14389 if (attr.form == DW_FORM_ref_addr)
14390 complaint (&symfile_complaints,
14391 _("ignoring absolute DW_AT_sibling"));
14392 else
14393 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14394 break;
14395 case DW_AT_byte_size:
14396 part_die->has_byte_size = 1;
14397 break;
14398 case DW_AT_calling_convention:
14399 /* DWARF doesn't provide a way to identify a program's source-level
14400 entry point. DW_AT_calling_convention attributes are only meant
14401 to describe functions' calling conventions.
14402
14403 However, because it's a necessary piece of information in
14404 Fortran, and because DW_CC_program is the only piece of debugging
14405 information whose definition refers to a 'main program' at all,
14406 several compilers have begun marking Fortran main programs with
14407 DW_CC_program --- even when those functions use the standard
14408 calling conventions.
14409
14410 So until DWARF specifies a way to provide this information and
14411 compilers pick up the new representation, we'll support this
14412 practice. */
14413 if (DW_UNSND (&attr) == DW_CC_program
14414 && cu->language == language_fortran)
14415 {
14416 set_main_name (part_die->name);
14417
14418 /* As this DIE has a static linkage the name would be difficult
14419 to look up later. */
14420 language_of_main = language_fortran;
14421 }
14422 break;
14423 case DW_AT_inline:
14424 if (DW_UNSND (&attr) == DW_INL_inlined
14425 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14426 part_die->may_be_inlined = 1;
14427 break;
14428
14429 case DW_AT_import:
14430 if (part_die->tag == DW_TAG_imported_unit)
14431 {
14432 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14433 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14434 || cu->per_cu->is_dwz);
14435 }
14436 break;
14437
14438 default:
14439 break;
14440 }
14441 }
14442
14443 if (high_pc_relative)
14444 part_die->highpc += part_die->lowpc;
14445
14446 if (has_low_pc_attr && has_high_pc_attr)
14447 {
14448 /* When using the GNU linker, .gnu.linkonce. sections are used to
14449 eliminate duplicate copies of functions and vtables and such.
14450 The linker will arbitrarily choose one and discard the others.
14451 The AT_*_pc values for such functions refer to local labels in
14452 these sections. If the section from that file was discarded, the
14453 labels are not in the output, so the relocs get a value of 0.
14454 If this is a discarded function, mark the pc bounds as invalid,
14455 so that GDB will ignore it. */
14456 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14457 {
14458 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14459
14460 complaint (&symfile_complaints,
14461 _("DW_AT_low_pc %s is zero "
14462 "for DIE at 0x%x [in module %s]"),
14463 paddress (gdbarch, part_die->lowpc),
14464 part_die->offset.sect_off, objfile->name);
14465 }
14466 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14467 else if (part_die->lowpc >= part_die->highpc)
14468 {
14469 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14470
14471 complaint (&symfile_complaints,
14472 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14473 "for DIE at 0x%x [in module %s]"),
14474 paddress (gdbarch, part_die->lowpc),
14475 paddress (gdbarch, part_die->highpc),
14476 part_die->offset.sect_off, objfile->name);
14477 }
14478 else
14479 part_die->has_pc_info = 1;
14480 }
14481
14482 return info_ptr;
14483 }
14484
14485 /* Find a cached partial DIE at OFFSET in CU. */
14486
14487 static struct partial_die_info *
14488 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14489 {
14490 struct partial_die_info *lookup_die = NULL;
14491 struct partial_die_info part_die;
14492
14493 part_die.offset = offset;
14494 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14495 offset.sect_off);
14496
14497 return lookup_die;
14498 }
14499
14500 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14501 except in the case of .debug_types DIEs which do not reference
14502 outside their CU (they do however referencing other types via
14503 DW_FORM_ref_sig8). */
14504
14505 static struct partial_die_info *
14506 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14507 {
14508 struct objfile *objfile = cu->objfile;
14509 struct dwarf2_per_cu_data *per_cu = NULL;
14510 struct partial_die_info *pd = NULL;
14511
14512 if (offset_in_dwz == cu->per_cu->is_dwz
14513 && offset_in_cu_p (&cu->header, offset))
14514 {
14515 pd = find_partial_die_in_comp_unit (offset, cu);
14516 if (pd != NULL)
14517 return pd;
14518 /* We missed recording what we needed.
14519 Load all dies and try again. */
14520 per_cu = cu->per_cu;
14521 }
14522 else
14523 {
14524 /* TUs don't reference other CUs/TUs (except via type signatures). */
14525 if (cu->per_cu->is_debug_types)
14526 {
14527 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14528 " external reference to offset 0x%lx [in module %s].\n"),
14529 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14530 bfd_get_filename (objfile->obfd));
14531 }
14532 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14533 objfile);
14534
14535 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14536 load_partial_comp_unit (per_cu);
14537
14538 per_cu->cu->last_used = 0;
14539 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14540 }
14541
14542 /* If we didn't find it, and not all dies have been loaded,
14543 load them all and try again. */
14544
14545 if (pd == NULL && per_cu->load_all_dies == 0)
14546 {
14547 per_cu->load_all_dies = 1;
14548
14549 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14550 THIS_CU->cu may already be in use. So we can't just free it and
14551 replace its DIEs with the ones we read in. Instead, we leave those
14552 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14553 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14554 set. */
14555 load_partial_comp_unit (per_cu);
14556
14557 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14558 }
14559
14560 if (pd == NULL)
14561 internal_error (__FILE__, __LINE__,
14562 _("could not find partial DIE 0x%x "
14563 "in cache [from module %s]\n"),
14564 offset.sect_off, bfd_get_filename (objfile->obfd));
14565 return pd;
14566 }
14567
14568 /* See if we can figure out if the class lives in a namespace. We do
14569 this by looking for a member function; its demangled name will
14570 contain namespace info, if there is any. */
14571
14572 static void
14573 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14574 struct dwarf2_cu *cu)
14575 {
14576 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14577 what template types look like, because the demangler
14578 frequently doesn't give the same name as the debug info. We
14579 could fix this by only using the demangled name to get the
14580 prefix (but see comment in read_structure_type). */
14581
14582 struct partial_die_info *real_pdi;
14583 struct partial_die_info *child_pdi;
14584
14585 /* If this DIE (this DIE's specification, if any) has a parent, then
14586 we should not do this. We'll prepend the parent's fully qualified
14587 name when we create the partial symbol. */
14588
14589 real_pdi = struct_pdi;
14590 while (real_pdi->has_specification)
14591 real_pdi = find_partial_die (real_pdi->spec_offset,
14592 real_pdi->spec_is_dwz, cu);
14593
14594 if (real_pdi->die_parent != NULL)
14595 return;
14596
14597 for (child_pdi = struct_pdi->die_child;
14598 child_pdi != NULL;
14599 child_pdi = child_pdi->die_sibling)
14600 {
14601 if (child_pdi->tag == DW_TAG_subprogram
14602 && child_pdi->linkage_name != NULL)
14603 {
14604 char *actual_class_name
14605 = language_class_name_from_physname (cu->language_defn,
14606 child_pdi->linkage_name);
14607 if (actual_class_name != NULL)
14608 {
14609 struct_pdi->name
14610 = obstack_copy0 (&cu->objfile->objfile_obstack,
14611 actual_class_name,
14612 strlen (actual_class_name));
14613 xfree (actual_class_name);
14614 }
14615 break;
14616 }
14617 }
14618 }
14619
14620 /* Adjust PART_DIE before generating a symbol for it. This function
14621 may set the is_external flag or change the DIE's name. */
14622
14623 static void
14624 fixup_partial_die (struct partial_die_info *part_die,
14625 struct dwarf2_cu *cu)
14626 {
14627 /* Once we've fixed up a die, there's no point in doing so again.
14628 This also avoids a memory leak if we were to call
14629 guess_partial_die_structure_name multiple times. */
14630 if (part_die->fixup_called)
14631 return;
14632
14633 /* If we found a reference attribute and the DIE has no name, try
14634 to find a name in the referred to DIE. */
14635
14636 if (part_die->name == NULL && part_die->has_specification)
14637 {
14638 struct partial_die_info *spec_die;
14639
14640 spec_die = find_partial_die (part_die->spec_offset,
14641 part_die->spec_is_dwz, cu);
14642
14643 fixup_partial_die (spec_die, cu);
14644
14645 if (spec_die->name)
14646 {
14647 part_die->name = spec_die->name;
14648
14649 /* Copy DW_AT_external attribute if it is set. */
14650 if (spec_die->is_external)
14651 part_die->is_external = spec_die->is_external;
14652 }
14653 }
14654
14655 /* Set default names for some unnamed DIEs. */
14656
14657 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14658 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14659
14660 /* If there is no parent die to provide a namespace, and there are
14661 children, see if we can determine the namespace from their linkage
14662 name. */
14663 if (cu->language == language_cplus
14664 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14665 && part_die->die_parent == NULL
14666 && part_die->has_children
14667 && (part_die->tag == DW_TAG_class_type
14668 || part_die->tag == DW_TAG_structure_type
14669 || part_die->tag == DW_TAG_union_type))
14670 guess_partial_die_structure_name (part_die, cu);
14671
14672 /* GCC might emit a nameless struct or union that has a linkage
14673 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14674 if (part_die->name == NULL
14675 && (part_die->tag == DW_TAG_class_type
14676 || part_die->tag == DW_TAG_interface_type
14677 || part_die->tag == DW_TAG_structure_type
14678 || part_die->tag == DW_TAG_union_type)
14679 && part_die->linkage_name != NULL)
14680 {
14681 char *demangled;
14682
14683 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14684 if (demangled)
14685 {
14686 const char *base;
14687
14688 /* Strip any leading namespaces/classes, keep only the base name.
14689 DW_AT_name for named DIEs does not contain the prefixes. */
14690 base = strrchr (demangled, ':');
14691 if (base && base > demangled && base[-1] == ':')
14692 base++;
14693 else
14694 base = demangled;
14695
14696 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14697 base, strlen (base));
14698 xfree (demangled);
14699 }
14700 }
14701
14702 part_die->fixup_called = 1;
14703 }
14704
14705 /* Read an attribute value described by an attribute form. */
14706
14707 static const gdb_byte *
14708 read_attribute_value (const struct die_reader_specs *reader,
14709 struct attribute *attr, unsigned form,
14710 const gdb_byte *info_ptr)
14711 {
14712 struct dwarf2_cu *cu = reader->cu;
14713 bfd *abfd = reader->abfd;
14714 struct comp_unit_head *cu_header = &cu->header;
14715 unsigned int bytes_read;
14716 struct dwarf_block *blk;
14717
14718 attr->form = form;
14719 switch (form)
14720 {
14721 case DW_FORM_ref_addr:
14722 if (cu->header.version == 2)
14723 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14724 else
14725 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14726 &cu->header, &bytes_read);
14727 info_ptr += bytes_read;
14728 break;
14729 case DW_FORM_GNU_ref_alt:
14730 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14731 info_ptr += bytes_read;
14732 break;
14733 case DW_FORM_addr:
14734 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14735 info_ptr += bytes_read;
14736 break;
14737 case DW_FORM_block2:
14738 blk = dwarf_alloc_block (cu);
14739 blk->size = read_2_bytes (abfd, info_ptr);
14740 info_ptr += 2;
14741 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14742 info_ptr += blk->size;
14743 DW_BLOCK (attr) = blk;
14744 break;
14745 case DW_FORM_block4:
14746 blk = dwarf_alloc_block (cu);
14747 blk->size = read_4_bytes (abfd, info_ptr);
14748 info_ptr += 4;
14749 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14750 info_ptr += blk->size;
14751 DW_BLOCK (attr) = blk;
14752 break;
14753 case DW_FORM_data2:
14754 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14755 info_ptr += 2;
14756 break;
14757 case DW_FORM_data4:
14758 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14759 info_ptr += 4;
14760 break;
14761 case DW_FORM_data8:
14762 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14763 info_ptr += 8;
14764 break;
14765 case DW_FORM_sec_offset:
14766 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14767 info_ptr += bytes_read;
14768 break;
14769 case DW_FORM_string:
14770 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14771 DW_STRING_IS_CANONICAL (attr) = 0;
14772 info_ptr += bytes_read;
14773 break;
14774 case DW_FORM_strp:
14775 if (!cu->per_cu->is_dwz)
14776 {
14777 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14778 &bytes_read);
14779 DW_STRING_IS_CANONICAL (attr) = 0;
14780 info_ptr += bytes_read;
14781 break;
14782 }
14783 /* FALLTHROUGH */
14784 case DW_FORM_GNU_strp_alt:
14785 {
14786 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14787 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14788 &bytes_read);
14789
14790 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14791 DW_STRING_IS_CANONICAL (attr) = 0;
14792 info_ptr += bytes_read;
14793 }
14794 break;
14795 case DW_FORM_exprloc:
14796 case DW_FORM_block:
14797 blk = dwarf_alloc_block (cu);
14798 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14799 info_ptr += bytes_read;
14800 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14801 info_ptr += blk->size;
14802 DW_BLOCK (attr) = blk;
14803 break;
14804 case DW_FORM_block1:
14805 blk = dwarf_alloc_block (cu);
14806 blk->size = read_1_byte (abfd, info_ptr);
14807 info_ptr += 1;
14808 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14809 info_ptr += blk->size;
14810 DW_BLOCK (attr) = blk;
14811 break;
14812 case DW_FORM_data1:
14813 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14814 info_ptr += 1;
14815 break;
14816 case DW_FORM_flag:
14817 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14818 info_ptr += 1;
14819 break;
14820 case DW_FORM_flag_present:
14821 DW_UNSND (attr) = 1;
14822 break;
14823 case DW_FORM_sdata:
14824 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14825 info_ptr += bytes_read;
14826 break;
14827 case DW_FORM_udata:
14828 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14829 info_ptr += bytes_read;
14830 break;
14831 case DW_FORM_ref1:
14832 DW_UNSND (attr) = (cu->header.offset.sect_off
14833 + read_1_byte (abfd, info_ptr));
14834 info_ptr += 1;
14835 break;
14836 case DW_FORM_ref2:
14837 DW_UNSND (attr) = (cu->header.offset.sect_off
14838 + read_2_bytes (abfd, info_ptr));
14839 info_ptr += 2;
14840 break;
14841 case DW_FORM_ref4:
14842 DW_UNSND (attr) = (cu->header.offset.sect_off
14843 + read_4_bytes (abfd, info_ptr));
14844 info_ptr += 4;
14845 break;
14846 case DW_FORM_ref8:
14847 DW_UNSND (attr) = (cu->header.offset.sect_off
14848 + read_8_bytes (abfd, info_ptr));
14849 info_ptr += 8;
14850 break;
14851 case DW_FORM_ref_sig8:
14852 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14853 info_ptr += 8;
14854 break;
14855 case DW_FORM_ref_udata:
14856 DW_UNSND (attr) = (cu->header.offset.sect_off
14857 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14858 info_ptr += bytes_read;
14859 break;
14860 case DW_FORM_indirect:
14861 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14862 info_ptr += bytes_read;
14863 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14864 break;
14865 case DW_FORM_GNU_addr_index:
14866 if (reader->dwo_file == NULL)
14867 {
14868 /* For now flag a hard error.
14869 Later we can turn this into a complaint. */
14870 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14871 dwarf_form_name (form),
14872 bfd_get_filename (abfd));
14873 }
14874 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14875 info_ptr += bytes_read;
14876 break;
14877 case DW_FORM_GNU_str_index:
14878 if (reader->dwo_file == NULL)
14879 {
14880 /* For now flag a hard error.
14881 Later we can turn this into a complaint if warranted. */
14882 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14883 dwarf_form_name (form),
14884 bfd_get_filename (abfd));
14885 }
14886 {
14887 ULONGEST str_index =
14888 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14889
14890 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14891 DW_STRING_IS_CANONICAL (attr) = 0;
14892 info_ptr += bytes_read;
14893 }
14894 break;
14895 default:
14896 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14897 dwarf_form_name (form),
14898 bfd_get_filename (abfd));
14899 }
14900
14901 /* Super hack. */
14902 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
14903 attr->form = DW_FORM_GNU_ref_alt;
14904
14905 /* We have seen instances where the compiler tried to emit a byte
14906 size attribute of -1 which ended up being encoded as an unsigned
14907 0xffffffff. Although 0xffffffff is technically a valid size value,
14908 an object of this size seems pretty unlikely so we can relatively
14909 safely treat these cases as if the size attribute was invalid and
14910 treat them as zero by default. */
14911 if (attr->name == DW_AT_byte_size
14912 && form == DW_FORM_data4
14913 && DW_UNSND (attr) >= 0xffffffff)
14914 {
14915 complaint
14916 (&symfile_complaints,
14917 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14918 hex_string (DW_UNSND (attr)));
14919 DW_UNSND (attr) = 0;
14920 }
14921
14922 return info_ptr;
14923 }
14924
14925 /* Read an attribute described by an abbreviated attribute. */
14926
14927 static const gdb_byte *
14928 read_attribute (const struct die_reader_specs *reader,
14929 struct attribute *attr, struct attr_abbrev *abbrev,
14930 const gdb_byte *info_ptr)
14931 {
14932 attr->name = abbrev->name;
14933 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14934 }
14935
14936 /* Read dwarf information from a buffer. */
14937
14938 static unsigned int
14939 read_1_byte (bfd *abfd, const gdb_byte *buf)
14940 {
14941 return bfd_get_8 (abfd, buf);
14942 }
14943
14944 static int
14945 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14946 {
14947 return bfd_get_signed_8 (abfd, buf);
14948 }
14949
14950 static unsigned int
14951 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14952 {
14953 return bfd_get_16 (abfd, buf);
14954 }
14955
14956 static int
14957 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14958 {
14959 return bfd_get_signed_16 (abfd, buf);
14960 }
14961
14962 static unsigned int
14963 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14964 {
14965 return bfd_get_32 (abfd, buf);
14966 }
14967
14968 static int
14969 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14970 {
14971 return bfd_get_signed_32 (abfd, buf);
14972 }
14973
14974 static ULONGEST
14975 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14976 {
14977 return bfd_get_64 (abfd, buf);
14978 }
14979
14980 static CORE_ADDR
14981 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14982 unsigned int *bytes_read)
14983 {
14984 struct comp_unit_head *cu_header = &cu->header;
14985 CORE_ADDR retval = 0;
14986
14987 if (cu_header->signed_addr_p)
14988 {
14989 switch (cu_header->addr_size)
14990 {
14991 case 2:
14992 retval = bfd_get_signed_16 (abfd, buf);
14993 break;
14994 case 4:
14995 retval = bfd_get_signed_32 (abfd, buf);
14996 break;
14997 case 8:
14998 retval = bfd_get_signed_64 (abfd, buf);
14999 break;
15000 default:
15001 internal_error (__FILE__, __LINE__,
15002 _("read_address: bad switch, signed [in module %s]"),
15003 bfd_get_filename (abfd));
15004 }
15005 }
15006 else
15007 {
15008 switch (cu_header->addr_size)
15009 {
15010 case 2:
15011 retval = bfd_get_16 (abfd, buf);
15012 break;
15013 case 4:
15014 retval = bfd_get_32 (abfd, buf);
15015 break;
15016 case 8:
15017 retval = bfd_get_64 (abfd, buf);
15018 break;
15019 default:
15020 internal_error (__FILE__, __LINE__,
15021 _("read_address: bad switch, "
15022 "unsigned [in module %s]"),
15023 bfd_get_filename (abfd));
15024 }
15025 }
15026
15027 *bytes_read = cu_header->addr_size;
15028 return retval;
15029 }
15030
15031 /* Read the initial length from a section. The (draft) DWARF 3
15032 specification allows the initial length to take up either 4 bytes
15033 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15034 bytes describe the length and all offsets will be 8 bytes in length
15035 instead of 4.
15036
15037 An older, non-standard 64-bit format is also handled by this
15038 function. The older format in question stores the initial length
15039 as an 8-byte quantity without an escape value. Lengths greater
15040 than 2^32 aren't very common which means that the initial 4 bytes
15041 is almost always zero. Since a length value of zero doesn't make
15042 sense for the 32-bit format, this initial zero can be considered to
15043 be an escape value which indicates the presence of the older 64-bit
15044 format. As written, the code can't detect (old format) lengths
15045 greater than 4GB. If it becomes necessary to handle lengths
15046 somewhat larger than 4GB, we could allow other small values (such
15047 as the non-sensical values of 1, 2, and 3) to also be used as
15048 escape values indicating the presence of the old format.
15049
15050 The value returned via bytes_read should be used to increment the
15051 relevant pointer after calling read_initial_length().
15052
15053 [ Note: read_initial_length() and read_offset() are based on the
15054 document entitled "DWARF Debugging Information Format", revision
15055 3, draft 8, dated November 19, 2001. This document was obtained
15056 from:
15057
15058 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15059
15060 This document is only a draft and is subject to change. (So beware.)
15061
15062 Details regarding the older, non-standard 64-bit format were
15063 determined empirically by examining 64-bit ELF files produced by
15064 the SGI toolchain on an IRIX 6.5 machine.
15065
15066 - Kevin, July 16, 2002
15067 ] */
15068
15069 static LONGEST
15070 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15071 {
15072 LONGEST length = bfd_get_32 (abfd, buf);
15073
15074 if (length == 0xffffffff)
15075 {
15076 length = bfd_get_64 (abfd, buf + 4);
15077 *bytes_read = 12;
15078 }
15079 else if (length == 0)
15080 {
15081 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15082 length = bfd_get_64 (abfd, buf);
15083 *bytes_read = 8;
15084 }
15085 else
15086 {
15087 *bytes_read = 4;
15088 }
15089
15090 return length;
15091 }
15092
15093 /* Cover function for read_initial_length.
15094 Returns the length of the object at BUF, and stores the size of the
15095 initial length in *BYTES_READ and stores the size that offsets will be in
15096 *OFFSET_SIZE.
15097 If the initial length size is not equivalent to that specified in
15098 CU_HEADER then issue a complaint.
15099 This is useful when reading non-comp-unit headers. */
15100
15101 static LONGEST
15102 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15103 const struct comp_unit_head *cu_header,
15104 unsigned int *bytes_read,
15105 unsigned int *offset_size)
15106 {
15107 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15108
15109 gdb_assert (cu_header->initial_length_size == 4
15110 || cu_header->initial_length_size == 8
15111 || cu_header->initial_length_size == 12);
15112
15113 if (cu_header->initial_length_size != *bytes_read)
15114 complaint (&symfile_complaints,
15115 _("intermixed 32-bit and 64-bit DWARF sections"));
15116
15117 *offset_size = (*bytes_read == 4) ? 4 : 8;
15118 return length;
15119 }
15120
15121 /* Read an offset from the data stream. The size of the offset is
15122 given by cu_header->offset_size. */
15123
15124 static LONGEST
15125 read_offset (bfd *abfd, const gdb_byte *buf,
15126 const struct comp_unit_head *cu_header,
15127 unsigned int *bytes_read)
15128 {
15129 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15130
15131 *bytes_read = cu_header->offset_size;
15132 return offset;
15133 }
15134
15135 /* Read an offset from the data stream. */
15136
15137 static LONGEST
15138 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15139 {
15140 LONGEST retval = 0;
15141
15142 switch (offset_size)
15143 {
15144 case 4:
15145 retval = bfd_get_32 (abfd, buf);
15146 break;
15147 case 8:
15148 retval = bfd_get_64 (abfd, buf);
15149 break;
15150 default:
15151 internal_error (__FILE__, __LINE__,
15152 _("read_offset_1: bad switch [in module %s]"),
15153 bfd_get_filename (abfd));
15154 }
15155
15156 return retval;
15157 }
15158
15159 static const gdb_byte *
15160 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15161 {
15162 /* If the size of a host char is 8 bits, we can return a pointer
15163 to the buffer, otherwise we have to copy the data to a buffer
15164 allocated on the temporary obstack. */
15165 gdb_assert (HOST_CHAR_BIT == 8);
15166 return buf;
15167 }
15168
15169 static const char *
15170 read_direct_string (bfd *abfd, const gdb_byte *buf,
15171 unsigned int *bytes_read_ptr)
15172 {
15173 /* If the size of a host char is 8 bits, we can return a pointer
15174 to the string, otherwise we have to copy the string to a buffer
15175 allocated on the temporary obstack. */
15176 gdb_assert (HOST_CHAR_BIT == 8);
15177 if (*buf == '\0')
15178 {
15179 *bytes_read_ptr = 1;
15180 return NULL;
15181 }
15182 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15183 return (const char *) buf;
15184 }
15185
15186 static const char *
15187 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15188 {
15189 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15190 if (dwarf2_per_objfile->str.buffer == NULL)
15191 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15192 bfd_get_filename (abfd));
15193 if (str_offset >= dwarf2_per_objfile->str.size)
15194 error (_("DW_FORM_strp pointing outside of "
15195 ".debug_str section [in module %s]"),
15196 bfd_get_filename (abfd));
15197 gdb_assert (HOST_CHAR_BIT == 8);
15198 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15199 return NULL;
15200 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15201 }
15202
15203 /* Read a string at offset STR_OFFSET in the .debug_str section from
15204 the .dwz file DWZ. Throw an error if the offset is too large. If
15205 the string consists of a single NUL byte, return NULL; otherwise
15206 return a pointer to the string. */
15207
15208 static const char *
15209 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15210 {
15211 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15212
15213 if (dwz->str.buffer == NULL)
15214 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15215 "section [in module %s]"),
15216 bfd_get_filename (dwz->dwz_bfd));
15217 if (str_offset >= dwz->str.size)
15218 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15219 ".debug_str section [in module %s]"),
15220 bfd_get_filename (dwz->dwz_bfd));
15221 gdb_assert (HOST_CHAR_BIT == 8);
15222 if (dwz->str.buffer[str_offset] == '\0')
15223 return NULL;
15224 return (const char *) (dwz->str.buffer + str_offset);
15225 }
15226
15227 static const char *
15228 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15229 const struct comp_unit_head *cu_header,
15230 unsigned int *bytes_read_ptr)
15231 {
15232 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15233
15234 return read_indirect_string_at_offset (abfd, str_offset);
15235 }
15236
15237 static ULONGEST
15238 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15239 unsigned int *bytes_read_ptr)
15240 {
15241 ULONGEST result;
15242 unsigned int num_read;
15243 int i, shift;
15244 unsigned char byte;
15245
15246 result = 0;
15247 shift = 0;
15248 num_read = 0;
15249 i = 0;
15250 while (1)
15251 {
15252 byte = bfd_get_8 (abfd, buf);
15253 buf++;
15254 num_read++;
15255 result |= ((ULONGEST) (byte & 127) << shift);
15256 if ((byte & 128) == 0)
15257 {
15258 break;
15259 }
15260 shift += 7;
15261 }
15262 *bytes_read_ptr = num_read;
15263 return result;
15264 }
15265
15266 static LONGEST
15267 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15268 unsigned int *bytes_read_ptr)
15269 {
15270 LONGEST result;
15271 int i, shift, num_read;
15272 unsigned char byte;
15273
15274 result = 0;
15275 shift = 0;
15276 num_read = 0;
15277 i = 0;
15278 while (1)
15279 {
15280 byte = bfd_get_8 (abfd, buf);
15281 buf++;
15282 num_read++;
15283 result |= ((LONGEST) (byte & 127) << shift);
15284 shift += 7;
15285 if ((byte & 128) == 0)
15286 {
15287 break;
15288 }
15289 }
15290 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15291 result |= -(((LONGEST) 1) << shift);
15292 *bytes_read_ptr = num_read;
15293 return result;
15294 }
15295
15296 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15297 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15298 ADDR_SIZE is the size of addresses from the CU header. */
15299
15300 static CORE_ADDR
15301 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15302 {
15303 struct objfile *objfile = dwarf2_per_objfile->objfile;
15304 bfd *abfd = objfile->obfd;
15305 const gdb_byte *info_ptr;
15306
15307 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15308 if (dwarf2_per_objfile->addr.buffer == NULL)
15309 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15310 objfile->name);
15311 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15312 error (_("DW_FORM_addr_index pointing outside of "
15313 ".debug_addr section [in module %s]"),
15314 objfile->name);
15315 info_ptr = (dwarf2_per_objfile->addr.buffer
15316 + addr_base + addr_index * addr_size);
15317 if (addr_size == 4)
15318 return bfd_get_32 (abfd, info_ptr);
15319 else
15320 return bfd_get_64 (abfd, info_ptr);
15321 }
15322
15323 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15324
15325 static CORE_ADDR
15326 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15327 {
15328 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15329 }
15330
15331 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15332
15333 static CORE_ADDR
15334 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15335 unsigned int *bytes_read)
15336 {
15337 bfd *abfd = cu->objfile->obfd;
15338 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15339
15340 return read_addr_index (cu, addr_index);
15341 }
15342
15343 /* Data structure to pass results from dwarf2_read_addr_index_reader
15344 back to dwarf2_read_addr_index. */
15345
15346 struct dwarf2_read_addr_index_data
15347 {
15348 ULONGEST addr_base;
15349 int addr_size;
15350 };
15351
15352 /* die_reader_func for dwarf2_read_addr_index. */
15353
15354 static void
15355 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15356 const gdb_byte *info_ptr,
15357 struct die_info *comp_unit_die,
15358 int has_children,
15359 void *data)
15360 {
15361 struct dwarf2_cu *cu = reader->cu;
15362 struct dwarf2_read_addr_index_data *aidata =
15363 (struct dwarf2_read_addr_index_data *) data;
15364
15365 aidata->addr_base = cu->addr_base;
15366 aidata->addr_size = cu->header.addr_size;
15367 }
15368
15369 /* Given an index in .debug_addr, fetch the value.
15370 NOTE: This can be called during dwarf expression evaluation,
15371 long after the debug information has been read, and thus per_cu->cu
15372 may no longer exist. */
15373
15374 CORE_ADDR
15375 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15376 unsigned int addr_index)
15377 {
15378 struct objfile *objfile = per_cu->objfile;
15379 struct dwarf2_cu *cu = per_cu->cu;
15380 ULONGEST addr_base;
15381 int addr_size;
15382
15383 /* This is intended to be called from outside this file. */
15384 dw2_setup (objfile);
15385
15386 /* We need addr_base and addr_size.
15387 If we don't have PER_CU->cu, we have to get it.
15388 Nasty, but the alternative is storing the needed info in PER_CU,
15389 which at this point doesn't seem justified: it's not clear how frequently
15390 it would get used and it would increase the size of every PER_CU.
15391 Entry points like dwarf2_per_cu_addr_size do a similar thing
15392 so we're not in uncharted territory here.
15393 Alas we need to be a bit more complicated as addr_base is contained
15394 in the DIE.
15395
15396 We don't need to read the entire CU(/TU).
15397 We just need the header and top level die.
15398
15399 IWBN to use the aging mechanism to let us lazily later discard the CU.
15400 For now we skip this optimization. */
15401
15402 if (cu != NULL)
15403 {
15404 addr_base = cu->addr_base;
15405 addr_size = cu->header.addr_size;
15406 }
15407 else
15408 {
15409 struct dwarf2_read_addr_index_data aidata;
15410
15411 /* Note: We can't use init_cutu_and_read_dies_simple here,
15412 we need addr_base. */
15413 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15414 dwarf2_read_addr_index_reader, &aidata);
15415 addr_base = aidata.addr_base;
15416 addr_size = aidata.addr_size;
15417 }
15418
15419 return read_addr_index_1 (addr_index, addr_base, addr_size);
15420 }
15421
15422 /* Given a DW_AT_str_index, fetch the string. */
15423
15424 static const char *
15425 read_str_index (const struct die_reader_specs *reader,
15426 struct dwarf2_cu *cu, ULONGEST str_index)
15427 {
15428 struct objfile *objfile = dwarf2_per_objfile->objfile;
15429 const char *dwo_name = objfile->name;
15430 bfd *abfd = objfile->obfd;
15431 struct dwo_sections *sections = &reader->dwo_file->sections;
15432 const gdb_byte *info_ptr;
15433 ULONGEST str_offset;
15434
15435 dwarf2_read_section (objfile, &sections->str);
15436 dwarf2_read_section (objfile, &sections->str_offsets);
15437 if (sections->str.buffer == NULL)
15438 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15439 " in CU at offset 0x%lx [in module %s]"),
15440 (long) cu->header.offset.sect_off, dwo_name);
15441 if (sections->str_offsets.buffer == NULL)
15442 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15443 " in CU at offset 0x%lx [in module %s]"),
15444 (long) cu->header.offset.sect_off, dwo_name);
15445 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15446 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15447 " section in CU at offset 0x%lx [in module %s]"),
15448 (long) cu->header.offset.sect_off, dwo_name);
15449 info_ptr = (sections->str_offsets.buffer
15450 + str_index * cu->header.offset_size);
15451 if (cu->header.offset_size == 4)
15452 str_offset = bfd_get_32 (abfd, info_ptr);
15453 else
15454 str_offset = bfd_get_64 (abfd, info_ptr);
15455 if (str_offset >= sections->str.size)
15456 error (_("Offset from DW_FORM_str_index pointing outside of"
15457 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15458 (long) cu->header.offset.sect_off, dwo_name);
15459 return (const char *) (sections->str.buffer + str_offset);
15460 }
15461
15462 /* Return the length of an LEB128 number in BUF. */
15463
15464 static int
15465 leb128_size (const gdb_byte *buf)
15466 {
15467 const gdb_byte *begin = buf;
15468 gdb_byte byte;
15469
15470 while (1)
15471 {
15472 byte = *buf++;
15473 if ((byte & 128) == 0)
15474 return buf - begin;
15475 }
15476 }
15477
15478 static void
15479 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15480 {
15481 switch (lang)
15482 {
15483 case DW_LANG_C89:
15484 case DW_LANG_C99:
15485 case DW_LANG_C:
15486 case DW_LANG_UPC:
15487 cu->language = language_c;
15488 break;
15489 case DW_LANG_C_plus_plus:
15490 cu->language = language_cplus;
15491 break;
15492 case DW_LANG_D:
15493 cu->language = language_d;
15494 break;
15495 case DW_LANG_Fortran77:
15496 case DW_LANG_Fortran90:
15497 case DW_LANG_Fortran95:
15498 cu->language = language_fortran;
15499 break;
15500 case DW_LANG_Go:
15501 cu->language = language_go;
15502 break;
15503 case DW_LANG_Mips_Assembler:
15504 cu->language = language_asm;
15505 break;
15506 case DW_LANG_Java:
15507 cu->language = language_java;
15508 break;
15509 case DW_LANG_Ada83:
15510 case DW_LANG_Ada95:
15511 cu->language = language_ada;
15512 break;
15513 case DW_LANG_Modula2:
15514 cu->language = language_m2;
15515 break;
15516 case DW_LANG_Pascal83:
15517 cu->language = language_pascal;
15518 break;
15519 case DW_LANG_ObjC:
15520 cu->language = language_objc;
15521 break;
15522 case DW_LANG_Cobol74:
15523 case DW_LANG_Cobol85:
15524 default:
15525 cu->language = language_minimal;
15526 break;
15527 }
15528 cu->language_defn = language_def (cu->language);
15529 }
15530
15531 /* Return the named attribute or NULL if not there. */
15532
15533 static struct attribute *
15534 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15535 {
15536 for (;;)
15537 {
15538 unsigned int i;
15539 struct attribute *spec = NULL;
15540
15541 for (i = 0; i < die->num_attrs; ++i)
15542 {
15543 if (die->attrs[i].name == name)
15544 return &die->attrs[i];
15545 if (die->attrs[i].name == DW_AT_specification
15546 || die->attrs[i].name == DW_AT_abstract_origin)
15547 spec = &die->attrs[i];
15548 }
15549
15550 if (!spec)
15551 break;
15552
15553 die = follow_die_ref (die, spec, &cu);
15554 }
15555
15556 return NULL;
15557 }
15558
15559 /* Return the named attribute or NULL if not there,
15560 but do not follow DW_AT_specification, etc.
15561 This is for use in contexts where we're reading .debug_types dies.
15562 Following DW_AT_specification, DW_AT_abstract_origin will take us
15563 back up the chain, and we want to go down. */
15564
15565 static struct attribute *
15566 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15567 {
15568 unsigned int i;
15569
15570 for (i = 0; i < die->num_attrs; ++i)
15571 if (die->attrs[i].name == name)
15572 return &die->attrs[i];
15573
15574 return NULL;
15575 }
15576
15577 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15578 and holds a non-zero value. This function should only be used for
15579 DW_FORM_flag or DW_FORM_flag_present attributes. */
15580
15581 static int
15582 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15583 {
15584 struct attribute *attr = dwarf2_attr (die, name, cu);
15585
15586 return (attr && DW_UNSND (attr));
15587 }
15588
15589 static int
15590 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15591 {
15592 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15593 which value is non-zero. However, we have to be careful with
15594 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15595 (via dwarf2_flag_true_p) follows this attribute. So we may
15596 end up accidently finding a declaration attribute that belongs
15597 to a different DIE referenced by the specification attribute,
15598 even though the given DIE does not have a declaration attribute. */
15599 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15600 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15601 }
15602
15603 /* Return the die giving the specification for DIE, if there is
15604 one. *SPEC_CU is the CU containing DIE on input, and the CU
15605 containing the return value on output. If there is no
15606 specification, but there is an abstract origin, that is
15607 returned. */
15608
15609 static struct die_info *
15610 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15611 {
15612 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15613 *spec_cu);
15614
15615 if (spec_attr == NULL)
15616 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15617
15618 if (spec_attr == NULL)
15619 return NULL;
15620 else
15621 return follow_die_ref (die, spec_attr, spec_cu);
15622 }
15623
15624 /* Free the line_header structure *LH, and any arrays and strings it
15625 refers to.
15626 NOTE: This is also used as a "cleanup" function. */
15627
15628 static void
15629 free_line_header (struct line_header *lh)
15630 {
15631 if (lh->standard_opcode_lengths)
15632 xfree (lh->standard_opcode_lengths);
15633
15634 /* Remember that all the lh->file_names[i].name pointers are
15635 pointers into debug_line_buffer, and don't need to be freed. */
15636 if (lh->file_names)
15637 xfree (lh->file_names);
15638
15639 /* Similarly for the include directory names. */
15640 if (lh->include_dirs)
15641 xfree (lh->include_dirs);
15642
15643 xfree (lh);
15644 }
15645
15646 /* Add an entry to LH's include directory table. */
15647
15648 static void
15649 add_include_dir (struct line_header *lh, const char *include_dir)
15650 {
15651 /* Grow the array if necessary. */
15652 if (lh->include_dirs_size == 0)
15653 {
15654 lh->include_dirs_size = 1; /* for testing */
15655 lh->include_dirs = xmalloc (lh->include_dirs_size
15656 * sizeof (*lh->include_dirs));
15657 }
15658 else if (lh->num_include_dirs >= lh->include_dirs_size)
15659 {
15660 lh->include_dirs_size *= 2;
15661 lh->include_dirs = xrealloc (lh->include_dirs,
15662 (lh->include_dirs_size
15663 * sizeof (*lh->include_dirs)));
15664 }
15665
15666 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15667 }
15668
15669 /* Add an entry to LH's file name table. */
15670
15671 static void
15672 add_file_name (struct line_header *lh,
15673 const char *name,
15674 unsigned int dir_index,
15675 unsigned int mod_time,
15676 unsigned int length)
15677 {
15678 struct file_entry *fe;
15679
15680 /* Grow the array if necessary. */
15681 if (lh->file_names_size == 0)
15682 {
15683 lh->file_names_size = 1; /* for testing */
15684 lh->file_names = xmalloc (lh->file_names_size
15685 * sizeof (*lh->file_names));
15686 }
15687 else if (lh->num_file_names >= lh->file_names_size)
15688 {
15689 lh->file_names_size *= 2;
15690 lh->file_names = xrealloc (lh->file_names,
15691 (lh->file_names_size
15692 * sizeof (*lh->file_names)));
15693 }
15694
15695 fe = &lh->file_names[lh->num_file_names++];
15696 fe->name = name;
15697 fe->dir_index = dir_index;
15698 fe->mod_time = mod_time;
15699 fe->length = length;
15700 fe->included_p = 0;
15701 fe->symtab = NULL;
15702 }
15703
15704 /* A convenience function to find the proper .debug_line section for a
15705 CU. */
15706
15707 static struct dwarf2_section_info *
15708 get_debug_line_section (struct dwarf2_cu *cu)
15709 {
15710 struct dwarf2_section_info *section;
15711
15712 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15713 DWO file. */
15714 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15715 section = &cu->dwo_unit->dwo_file->sections.line;
15716 else if (cu->per_cu->is_dwz)
15717 {
15718 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15719
15720 section = &dwz->line;
15721 }
15722 else
15723 section = &dwarf2_per_objfile->line;
15724
15725 return section;
15726 }
15727
15728 /* Read the statement program header starting at OFFSET in
15729 .debug_line, or .debug_line.dwo. Return a pointer
15730 to a struct line_header, allocated using xmalloc.
15731
15732 NOTE: the strings in the include directory and file name tables of
15733 the returned object point into the dwarf line section buffer,
15734 and must not be freed. */
15735
15736 static struct line_header *
15737 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15738 {
15739 struct cleanup *back_to;
15740 struct line_header *lh;
15741 const gdb_byte *line_ptr;
15742 unsigned int bytes_read, offset_size;
15743 int i;
15744 const char *cur_dir, *cur_file;
15745 struct dwarf2_section_info *section;
15746 bfd *abfd;
15747
15748 section = get_debug_line_section (cu);
15749 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15750 if (section->buffer == NULL)
15751 {
15752 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15753 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15754 else
15755 complaint (&symfile_complaints, _("missing .debug_line section"));
15756 return 0;
15757 }
15758
15759 /* We can't do this until we know the section is non-empty.
15760 Only then do we know we have such a section. */
15761 abfd = section->asection->owner;
15762
15763 /* Make sure that at least there's room for the total_length field.
15764 That could be 12 bytes long, but we're just going to fudge that. */
15765 if (offset + 4 >= section->size)
15766 {
15767 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15768 return 0;
15769 }
15770
15771 lh = xmalloc (sizeof (*lh));
15772 memset (lh, 0, sizeof (*lh));
15773 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15774 (void *) lh);
15775
15776 line_ptr = section->buffer + offset;
15777
15778 /* Read in the header. */
15779 lh->total_length =
15780 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15781 &bytes_read, &offset_size);
15782 line_ptr += bytes_read;
15783 if (line_ptr + lh->total_length > (section->buffer + section->size))
15784 {
15785 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15786 do_cleanups (back_to);
15787 return 0;
15788 }
15789 lh->statement_program_end = line_ptr + lh->total_length;
15790 lh->version = read_2_bytes (abfd, line_ptr);
15791 line_ptr += 2;
15792 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15793 line_ptr += offset_size;
15794 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15795 line_ptr += 1;
15796 if (lh->version >= 4)
15797 {
15798 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15799 line_ptr += 1;
15800 }
15801 else
15802 lh->maximum_ops_per_instruction = 1;
15803
15804 if (lh->maximum_ops_per_instruction == 0)
15805 {
15806 lh->maximum_ops_per_instruction = 1;
15807 complaint (&symfile_complaints,
15808 _("invalid maximum_ops_per_instruction "
15809 "in `.debug_line' section"));
15810 }
15811
15812 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15813 line_ptr += 1;
15814 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15815 line_ptr += 1;
15816 lh->line_range = read_1_byte (abfd, line_ptr);
15817 line_ptr += 1;
15818 lh->opcode_base = read_1_byte (abfd, line_ptr);
15819 line_ptr += 1;
15820 lh->standard_opcode_lengths
15821 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15822
15823 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15824 for (i = 1; i < lh->opcode_base; ++i)
15825 {
15826 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15827 line_ptr += 1;
15828 }
15829
15830 /* Read directory table. */
15831 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15832 {
15833 line_ptr += bytes_read;
15834 add_include_dir (lh, cur_dir);
15835 }
15836 line_ptr += bytes_read;
15837
15838 /* Read file name table. */
15839 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15840 {
15841 unsigned int dir_index, mod_time, length;
15842
15843 line_ptr += bytes_read;
15844 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15845 line_ptr += bytes_read;
15846 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15847 line_ptr += bytes_read;
15848 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15849 line_ptr += bytes_read;
15850
15851 add_file_name (lh, cur_file, dir_index, mod_time, length);
15852 }
15853 line_ptr += bytes_read;
15854 lh->statement_program_start = line_ptr;
15855
15856 if (line_ptr > (section->buffer + section->size))
15857 complaint (&symfile_complaints,
15858 _("line number info header doesn't "
15859 "fit in `.debug_line' section"));
15860
15861 discard_cleanups (back_to);
15862 return lh;
15863 }
15864
15865 /* Subroutine of dwarf_decode_lines to simplify it.
15866 Return the file name of the psymtab for included file FILE_INDEX
15867 in line header LH of PST.
15868 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15869 If space for the result is malloc'd, it will be freed by a cleanup.
15870 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15871
15872 The function creates dangling cleanup registration. */
15873
15874 static const char *
15875 psymtab_include_file_name (const struct line_header *lh, int file_index,
15876 const struct partial_symtab *pst,
15877 const char *comp_dir)
15878 {
15879 const struct file_entry fe = lh->file_names [file_index];
15880 const char *include_name = fe.name;
15881 const char *include_name_to_compare = include_name;
15882 const char *dir_name = NULL;
15883 const char *pst_filename;
15884 char *copied_name = NULL;
15885 int file_is_pst;
15886
15887 if (fe.dir_index)
15888 dir_name = lh->include_dirs[fe.dir_index - 1];
15889
15890 if (!IS_ABSOLUTE_PATH (include_name)
15891 && (dir_name != NULL || comp_dir != NULL))
15892 {
15893 /* Avoid creating a duplicate psymtab for PST.
15894 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15895 Before we do the comparison, however, we need to account
15896 for DIR_NAME and COMP_DIR.
15897 First prepend dir_name (if non-NULL). If we still don't
15898 have an absolute path prepend comp_dir (if non-NULL).
15899 However, the directory we record in the include-file's
15900 psymtab does not contain COMP_DIR (to match the
15901 corresponding symtab(s)).
15902
15903 Example:
15904
15905 bash$ cd /tmp
15906 bash$ gcc -g ./hello.c
15907 include_name = "hello.c"
15908 dir_name = "."
15909 DW_AT_comp_dir = comp_dir = "/tmp"
15910 DW_AT_name = "./hello.c" */
15911
15912 if (dir_name != NULL)
15913 {
15914 char *tem = concat (dir_name, SLASH_STRING,
15915 include_name, (char *)NULL);
15916
15917 make_cleanup (xfree, tem);
15918 include_name = tem;
15919 include_name_to_compare = include_name;
15920 }
15921 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15922 {
15923 char *tem = concat (comp_dir, SLASH_STRING,
15924 include_name, (char *)NULL);
15925
15926 make_cleanup (xfree, tem);
15927 include_name_to_compare = tem;
15928 }
15929 }
15930
15931 pst_filename = pst->filename;
15932 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15933 {
15934 copied_name = concat (pst->dirname, SLASH_STRING,
15935 pst_filename, (char *)NULL);
15936 pst_filename = copied_name;
15937 }
15938
15939 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15940
15941 if (copied_name != NULL)
15942 xfree (copied_name);
15943
15944 if (file_is_pst)
15945 return NULL;
15946 return include_name;
15947 }
15948
15949 /* Ignore this record_line request. */
15950
15951 static void
15952 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15953 {
15954 return;
15955 }
15956
15957 /* Subroutine of dwarf_decode_lines to simplify it.
15958 Process the line number information in LH. */
15959
15960 static void
15961 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15962 struct dwarf2_cu *cu, struct partial_symtab *pst)
15963 {
15964 const gdb_byte *line_ptr, *extended_end;
15965 const gdb_byte *line_end;
15966 unsigned int bytes_read, extended_len;
15967 unsigned char op_code, extended_op, adj_opcode;
15968 CORE_ADDR baseaddr;
15969 struct objfile *objfile = cu->objfile;
15970 bfd *abfd = objfile->obfd;
15971 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15972 const int decode_for_pst_p = (pst != NULL);
15973 struct subfile *last_subfile = NULL;
15974 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15975 = record_line;
15976
15977 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15978
15979 line_ptr = lh->statement_program_start;
15980 line_end = lh->statement_program_end;
15981
15982 /* Read the statement sequences until there's nothing left. */
15983 while (line_ptr < line_end)
15984 {
15985 /* state machine registers */
15986 CORE_ADDR address = 0;
15987 unsigned int file = 1;
15988 unsigned int line = 1;
15989 unsigned int column = 0;
15990 int is_stmt = lh->default_is_stmt;
15991 int basic_block = 0;
15992 int end_sequence = 0;
15993 CORE_ADDR addr;
15994 unsigned char op_index = 0;
15995
15996 if (!decode_for_pst_p && lh->num_file_names >= file)
15997 {
15998 /* Start a subfile for the current file of the state machine. */
15999 /* lh->include_dirs and lh->file_names are 0-based, but the
16000 directory and file name numbers in the statement program
16001 are 1-based. */
16002 struct file_entry *fe = &lh->file_names[file - 1];
16003 const char *dir = NULL;
16004
16005 if (fe->dir_index)
16006 dir = lh->include_dirs[fe->dir_index - 1];
16007
16008 dwarf2_start_subfile (fe->name, dir, comp_dir);
16009 }
16010
16011 /* Decode the table. */
16012 while (!end_sequence)
16013 {
16014 op_code = read_1_byte (abfd, line_ptr);
16015 line_ptr += 1;
16016 if (line_ptr > line_end)
16017 {
16018 dwarf2_debug_line_missing_end_sequence_complaint ();
16019 break;
16020 }
16021
16022 if (op_code >= lh->opcode_base)
16023 {
16024 /* Special operand. */
16025 adj_opcode = op_code - lh->opcode_base;
16026 address += (((op_index + (adj_opcode / lh->line_range))
16027 / lh->maximum_ops_per_instruction)
16028 * lh->minimum_instruction_length);
16029 op_index = ((op_index + (adj_opcode / lh->line_range))
16030 % lh->maximum_ops_per_instruction);
16031 line += lh->line_base + (adj_opcode % lh->line_range);
16032 if (lh->num_file_names < file || file == 0)
16033 dwarf2_debug_line_missing_file_complaint ();
16034 /* For now we ignore lines not starting on an
16035 instruction boundary. */
16036 else if (op_index == 0)
16037 {
16038 lh->file_names[file - 1].included_p = 1;
16039 if (!decode_for_pst_p && is_stmt)
16040 {
16041 if (last_subfile != current_subfile)
16042 {
16043 addr = gdbarch_addr_bits_remove (gdbarch, address);
16044 if (last_subfile)
16045 (*p_record_line) (last_subfile, 0, addr);
16046 last_subfile = current_subfile;
16047 }
16048 /* Append row to matrix using current values. */
16049 addr = gdbarch_addr_bits_remove (gdbarch, address);
16050 (*p_record_line) (current_subfile, line, addr);
16051 }
16052 }
16053 basic_block = 0;
16054 }
16055 else switch (op_code)
16056 {
16057 case DW_LNS_extended_op:
16058 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16059 &bytes_read);
16060 line_ptr += bytes_read;
16061 extended_end = line_ptr + extended_len;
16062 extended_op = read_1_byte (abfd, line_ptr);
16063 line_ptr += 1;
16064 switch (extended_op)
16065 {
16066 case DW_LNE_end_sequence:
16067 p_record_line = record_line;
16068 end_sequence = 1;
16069 break;
16070 case DW_LNE_set_address:
16071 address = read_address (abfd, line_ptr, cu, &bytes_read);
16072
16073 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16074 {
16075 /* This line table is for a function which has been
16076 GCd by the linker. Ignore it. PR gdb/12528 */
16077
16078 long line_offset
16079 = line_ptr - get_debug_line_section (cu)->buffer;
16080
16081 complaint (&symfile_complaints,
16082 _(".debug_line address at offset 0x%lx is 0 "
16083 "[in module %s]"),
16084 line_offset, objfile->name);
16085 p_record_line = noop_record_line;
16086 }
16087
16088 op_index = 0;
16089 line_ptr += bytes_read;
16090 address += baseaddr;
16091 break;
16092 case DW_LNE_define_file:
16093 {
16094 const char *cur_file;
16095 unsigned int dir_index, mod_time, length;
16096
16097 cur_file = read_direct_string (abfd, line_ptr,
16098 &bytes_read);
16099 line_ptr += bytes_read;
16100 dir_index =
16101 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16102 line_ptr += bytes_read;
16103 mod_time =
16104 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16105 line_ptr += bytes_read;
16106 length =
16107 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16108 line_ptr += bytes_read;
16109 add_file_name (lh, cur_file, dir_index, mod_time, length);
16110 }
16111 break;
16112 case DW_LNE_set_discriminator:
16113 /* The discriminator is not interesting to the debugger;
16114 just ignore it. */
16115 line_ptr = extended_end;
16116 break;
16117 default:
16118 complaint (&symfile_complaints,
16119 _("mangled .debug_line section"));
16120 return;
16121 }
16122 /* Make sure that we parsed the extended op correctly. If e.g.
16123 we expected a different address size than the producer used,
16124 we may have read the wrong number of bytes. */
16125 if (line_ptr != extended_end)
16126 {
16127 complaint (&symfile_complaints,
16128 _("mangled .debug_line section"));
16129 return;
16130 }
16131 break;
16132 case DW_LNS_copy:
16133 if (lh->num_file_names < file || file == 0)
16134 dwarf2_debug_line_missing_file_complaint ();
16135 else
16136 {
16137 lh->file_names[file - 1].included_p = 1;
16138 if (!decode_for_pst_p && is_stmt)
16139 {
16140 if (last_subfile != current_subfile)
16141 {
16142 addr = gdbarch_addr_bits_remove (gdbarch, address);
16143 if (last_subfile)
16144 (*p_record_line) (last_subfile, 0, addr);
16145 last_subfile = current_subfile;
16146 }
16147 addr = gdbarch_addr_bits_remove (gdbarch, address);
16148 (*p_record_line) (current_subfile, line, addr);
16149 }
16150 }
16151 basic_block = 0;
16152 break;
16153 case DW_LNS_advance_pc:
16154 {
16155 CORE_ADDR adjust
16156 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16157
16158 address += (((op_index + adjust)
16159 / lh->maximum_ops_per_instruction)
16160 * lh->minimum_instruction_length);
16161 op_index = ((op_index + adjust)
16162 % lh->maximum_ops_per_instruction);
16163 line_ptr += bytes_read;
16164 }
16165 break;
16166 case DW_LNS_advance_line:
16167 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16168 line_ptr += bytes_read;
16169 break;
16170 case DW_LNS_set_file:
16171 {
16172 /* The arrays lh->include_dirs and lh->file_names are
16173 0-based, but the directory and file name numbers in
16174 the statement program are 1-based. */
16175 struct file_entry *fe;
16176 const char *dir = NULL;
16177
16178 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16179 line_ptr += bytes_read;
16180 if (lh->num_file_names < file || file == 0)
16181 dwarf2_debug_line_missing_file_complaint ();
16182 else
16183 {
16184 fe = &lh->file_names[file - 1];
16185 if (fe->dir_index)
16186 dir = lh->include_dirs[fe->dir_index - 1];
16187 if (!decode_for_pst_p)
16188 {
16189 last_subfile = current_subfile;
16190 dwarf2_start_subfile (fe->name, dir, comp_dir);
16191 }
16192 }
16193 }
16194 break;
16195 case DW_LNS_set_column:
16196 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16197 line_ptr += bytes_read;
16198 break;
16199 case DW_LNS_negate_stmt:
16200 is_stmt = (!is_stmt);
16201 break;
16202 case DW_LNS_set_basic_block:
16203 basic_block = 1;
16204 break;
16205 /* Add to the address register of the state machine the
16206 address increment value corresponding to special opcode
16207 255. I.e., this value is scaled by the minimum
16208 instruction length since special opcode 255 would have
16209 scaled the increment. */
16210 case DW_LNS_const_add_pc:
16211 {
16212 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16213
16214 address += (((op_index + adjust)
16215 / lh->maximum_ops_per_instruction)
16216 * lh->minimum_instruction_length);
16217 op_index = ((op_index + adjust)
16218 % lh->maximum_ops_per_instruction);
16219 }
16220 break;
16221 case DW_LNS_fixed_advance_pc:
16222 address += read_2_bytes (abfd, line_ptr);
16223 op_index = 0;
16224 line_ptr += 2;
16225 break;
16226 default:
16227 {
16228 /* Unknown standard opcode, ignore it. */
16229 int i;
16230
16231 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16232 {
16233 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16234 line_ptr += bytes_read;
16235 }
16236 }
16237 }
16238 }
16239 if (lh->num_file_names < file || file == 0)
16240 dwarf2_debug_line_missing_file_complaint ();
16241 else
16242 {
16243 lh->file_names[file - 1].included_p = 1;
16244 if (!decode_for_pst_p)
16245 {
16246 addr = gdbarch_addr_bits_remove (gdbarch, address);
16247 (*p_record_line) (current_subfile, 0, addr);
16248 }
16249 }
16250 }
16251 }
16252
16253 /* Decode the Line Number Program (LNP) for the given line_header
16254 structure and CU. The actual information extracted and the type
16255 of structures created from the LNP depends on the value of PST.
16256
16257 1. If PST is NULL, then this procedure uses the data from the program
16258 to create all necessary symbol tables, and their linetables.
16259
16260 2. If PST is not NULL, this procedure reads the program to determine
16261 the list of files included by the unit represented by PST, and
16262 builds all the associated partial symbol tables.
16263
16264 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16265 It is used for relative paths in the line table.
16266 NOTE: When processing partial symtabs (pst != NULL),
16267 comp_dir == pst->dirname.
16268
16269 NOTE: It is important that psymtabs have the same file name (via strcmp)
16270 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16271 symtab we don't use it in the name of the psymtabs we create.
16272 E.g. expand_line_sal requires this when finding psymtabs to expand.
16273 A good testcase for this is mb-inline.exp. */
16274
16275 static void
16276 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16277 struct dwarf2_cu *cu, struct partial_symtab *pst,
16278 int want_line_info)
16279 {
16280 struct objfile *objfile = cu->objfile;
16281 const int decode_for_pst_p = (pst != NULL);
16282 struct subfile *first_subfile = current_subfile;
16283
16284 if (want_line_info)
16285 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16286
16287 if (decode_for_pst_p)
16288 {
16289 int file_index;
16290
16291 /* Now that we're done scanning the Line Header Program, we can
16292 create the psymtab of each included file. */
16293 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16294 if (lh->file_names[file_index].included_p == 1)
16295 {
16296 const char *include_name =
16297 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16298 if (include_name != NULL)
16299 dwarf2_create_include_psymtab (include_name, pst, objfile);
16300 }
16301 }
16302 else
16303 {
16304 /* Make sure a symtab is created for every file, even files
16305 which contain only variables (i.e. no code with associated
16306 line numbers). */
16307 int i;
16308
16309 for (i = 0; i < lh->num_file_names; i++)
16310 {
16311 const char *dir = NULL;
16312 struct file_entry *fe;
16313
16314 fe = &lh->file_names[i];
16315 if (fe->dir_index)
16316 dir = lh->include_dirs[fe->dir_index - 1];
16317 dwarf2_start_subfile (fe->name, dir, comp_dir);
16318
16319 /* Skip the main file; we don't need it, and it must be
16320 allocated last, so that it will show up before the
16321 non-primary symtabs in the objfile's symtab list. */
16322 if (current_subfile == first_subfile)
16323 continue;
16324
16325 if (current_subfile->symtab == NULL)
16326 current_subfile->symtab = allocate_symtab (current_subfile->name,
16327 objfile);
16328 fe->symtab = current_subfile->symtab;
16329 }
16330 }
16331 }
16332
16333 /* Start a subfile for DWARF. FILENAME is the name of the file and
16334 DIRNAME the name of the source directory which contains FILENAME
16335 or NULL if not known. COMP_DIR is the compilation directory for the
16336 linetable's compilation unit or NULL if not known.
16337 This routine tries to keep line numbers from identical absolute and
16338 relative file names in a common subfile.
16339
16340 Using the `list' example from the GDB testsuite, which resides in
16341 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16342 of /srcdir/list0.c yields the following debugging information for list0.c:
16343
16344 DW_AT_name: /srcdir/list0.c
16345 DW_AT_comp_dir: /compdir
16346 files.files[0].name: list0.h
16347 files.files[0].dir: /srcdir
16348 files.files[1].name: list0.c
16349 files.files[1].dir: /srcdir
16350
16351 The line number information for list0.c has to end up in a single
16352 subfile, so that `break /srcdir/list0.c:1' works as expected.
16353 start_subfile will ensure that this happens provided that we pass the
16354 concatenation of files.files[1].dir and files.files[1].name as the
16355 subfile's name. */
16356
16357 static void
16358 dwarf2_start_subfile (const char *filename, const char *dirname,
16359 const char *comp_dir)
16360 {
16361 char *copy = NULL;
16362
16363 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16364 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16365 second argument to start_subfile. To be consistent, we do the
16366 same here. In order not to lose the line information directory,
16367 we concatenate it to the filename when it makes sense.
16368 Note that the Dwarf3 standard says (speaking of filenames in line
16369 information): ``The directory index is ignored for file names
16370 that represent full path names''. Thus ignoring dirname in the
16371 `else' branch below isn't an issue. */
16372
16373 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16374 {
16375 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16376 filename = copy;
16377 }
16378
16379 start_subfile (filename, comp_dir);
16380
16381 if (copy != NULL)
16382 xfree (copy);
16383 }
16384
16385 /* Start a symtab for DWARF.
16386 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16387
16388 static void
16389 dwarf2_start_symtab (struct dwarf2_cu *cu,
16390 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16391 {
16392 start_symtab (name, comp_dir, low_pc);
16393 record_debugformat ("DWARF 2");
16394 record_producer (cu->producer);
16395
16396 /* We assume that we're processing GCC output. */
16397 processing_gcc_compilation = 2;
16398
16399 cu->processing_has_namespace_info = 0;
16400 }
16401
16402 static void
16403 var_decode_location (struct attribute *attr, struct symbol *sym,
16404 struct dwarf2_cu *cu)
16405 {
16406 struct objfile *objfile = cu->objfile;
16407 struct comp_unit_head *cu_header = &cu->header;
16408
16409 /* NOTE drow/2003-01-30: There used to be a comment and some special
16410 code here to turn a symbol with DW_AT_external and a
16411 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16412 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16413 with some versions of binutils) where shared libraries could have
16414 relocations against symbols in their debug information - the
16415 minimal symbol would have the right address, but the debug info
16416 would not. It's no longer necessary, because we will explicitly
16417 apply relocations when we read in the debug information now. */
16418
16419 /* A DW_AT_location attribute with no contents indicates that a
16420 variable has been optimized away. */
16421 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16422 {
16423 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16424 return;
16425 }
16426
16427 /* Handle one degenerate form of location expression specially, to
16428 preserve GDB's previous behavior when section offsets are
16429 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16430 then mark this symbol as LOC_STATIC. */
16431
16432 if (attr_form_is_block (attr)
16433 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16434 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16435 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16436 && (DW_BLOCK (attr)->size
16437 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16438 {
16439 unsigned int dummy;
16440
16441 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16442 SYMBOL_VALUE_ADDRESS (sym) =
16443 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16444 else
16445 SYMBOL_VALUE_ADDRESS (sym) =
16446 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16447 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16448 fixup_symbol_section (sym, objfile);
16449 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16450 SYMBOL_SECTION (sym));
16451 return;
16452 }
16453
16454 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16455 expression evaluator, and use LOC_COMPUTED only when necessary
16456 (i.e. when the value of a register or memory location is
16457 referenced, or a thread-local block, etc.). Then again, it might
16458 not be worthwhile. I'm assuming that it isn't unless performance
16459 or memory numbers show me otherwise. */
16460
16461 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16462
16463 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16464 cu->has_loclist = 1;
16465 }
16466
16467 /* Given a pointer to a DWARF information entry, figure out if we need
16468 to make a symbol table entry for it, and if so, create a new entry
16469 and return a pointer to it.
16470 If TYPE is NULL, determine symbol type from the die, otherwise
16471 used the passed type.
16472 If SPACE is not NULL, use it to hold the new symbol. If it is
16473 NULL, allocate a new symbol on the objfile's obstack. */
16474
16475 static struct symbol *
16476 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16477 struct symbol *space)
16478 {
16479 struct objfile *objfile = cu->objfile;
16480 struct symbol *sym = NULL;
16481 const char *name;
16482 struct attribute *attr = NULL;
16483 struct attribute *attr2 = NULL;
16484 CORE_ADDR baseaddr;
16485 struct pending **list_to_add = NULL;
16486
16487 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16488
16489 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16490
16491 name = dwarf2_name (die, cu);
16492 if (name)
16493 {
16494 const char *linkagename;
16495 int suppress_add = 0;
16496
16497 if (space)
16498 sym = space;
16499 else
16500 sym = allocate_symbol (objfile);
16501 OBJSTAT (objfile, n_syms++);
16502
16503 /* Cache this symbol's name and the name's demangled form (if any). */
16504 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16505 linkagename = dwarf2_physname (name, die, cu);
16506 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16507
16508 /* Fortran does not have mangling standard and the mangling does differ
16509 between gfortran, iFort etc. */
16510 if (cu->language == language_fortran
16511 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16512 symbol_set_demangled_name (&(sym->ginfo),
16513 dwarf2_full_name (name, die, cu),
16514 NULL);
16515
16516 /* Default assumptions.
16517 Use the passed type or decode it from the die. */
16518 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16519 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16520 if (type != NULL)
16521 SYMBOL_TYPE (sym) = type;
16522 else
16523 SYMBOL_TYPE (sym) = die_type (die, cu);
16524 attr = dwarf2_attr (die,
16525 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16526 cu);
16527 if (attr)
16528 {
16529 SYMBOL_LINE (sym) = DW_UNSND (attr);
16530 }
16531
16532 attr = dwarf2_attr (die,
16533 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16534 cu);
16535 if (attr)
16536 {
16537 int file_index = DW_UNSND (attr);
16538
16539 if (cu->line_header == NULL
16540 || file_index > cu->line_header->num_file_names)
16541 complaint (&symfile_complaints,
16542 _("file index out of range"));
16543 else if (file_index > 0)
16544 {
16545 struct file_entry *fe;
16546
16547 fe = &cu->line_header->file_names[file_index - 1];
16548 SYMBOL_SYMTAB (sym) = fe->symtab;
16549 }
16550 }
16551
16552 switch (die->tag)
16553 {
16554 case DW_TAG_label:
16555 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16556 if (attr)
16557 {
16558 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16559 }
16560 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16561 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16562 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16563 add_symbol_to_list (sym, cu->list_in_scope);
16564 break;
16565 case DW_TAG_subprogram:
16566 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16567 finish_block. */
16568 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16569 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16570 if ((attr2 && (DW_UNSND (attr2) != 0))
16571 || cu->language == language_ada)
16572 {
16573 /* Subprograms marked external are stored as a global symbol.
16574 Ada subprograms, whether marked external or not, are always
16575 stored as a global symbol, because we want to be able to
16576 access them globally. For instance, we want to be able
16577 to break on a nested subprogram without having to
16578 specify the context. */
16579 list_to_add = &global_symbols;
16580 }
16581 else
16582 {
16583 list_to_add = cu->list_in_scope;
16584 }
16585 break;
16586 case DW_TAG_inlined_subroutine:
16587 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16588 finish_block. */
16589 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16590 SYMBOL_INLINED (sym) = 1;
16591 list_to_add = cu->list_in_scope;
16592 break;
16593 case DW_TAG_template_value_param:
16594 suppress_add = 1;
16595 /* Fall through. */
16596 case DW_TAG_constant:
16597 case DW_TAG_variable:
16598 case DW_TAG_member:
16599 /* Compilation with minimal debug info may result in
16600 variables with missing type entries. Change the
16601 misleading `void' type to something sensible. */
16602 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16603 SYMBOL_TYPE (sym)
16604 = objfile_type (objfile)->nodebug_data_symbol;
16605
16606 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16607 /* In the case of DW_TAG_member, we should only be called for
16608 static const members. */
16609 if (die->tag == DW_TAG_member)
16610 {
16611 /* dwarf2_add_field uses die_is_declaration,
16612 so we do the same. */
16613 gdb_assert (die_is_declaration (die, cu));
16614 gdb_assert (attr);
16615 }
16616 if (attr)
16617 {
16618 dwarf2_const_value (attr, sym, cu);
16619 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16620 if (!suppress_add)
16621 {
16622 if (attr2 && (DW_UNSND (attr2) != 0))
16623 list_to_add = &global_symbols;
16624 else
16625 list_to_add = cu->list_in_scope;
16626 }
16627 break;
16628 }
16629 attr = dwarf2_attr (die, DW_AT_location, cu);
16630 if (attr)
16631 {
16632 var_decode_location (attr, sym, cu);
16633 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16634
16635 /* Fortran explicitly imports any global symbols to the local
16636 scope by DW_TAG_common_block. */
16637 if (cu->language == language_fortran && die->parent
16638 && die->parent->tag == DW_TAG_common_block)
16639 attr2 = NULL;
16640
16641 if (SYMBOL_CLASS (sym) == LOC_STATIC
16642 && SYMBOL_VALUE_ADDRESS (sym) == 0
16643 && !dwarf2_per_objfile->has_section_at_zero)
16644 {
16645 /* When a static variable is eliminated by the linker,
16646 the corresponding debug information is not stripped
16647 out, but the variable address is set to null;
16648 do not add such variables into symbol table. */
16649 }
16650 else if (attr2 && (DW_UNSND (attr2) != 0))
16651 {
16652 /* Workaround gfortran PR debug/40040 - it uses
16653 DW_AT_location for variables in -fPIC libraries which may
16654 get overriden by other libraries/executable and get
16655 a different address. Resolve it by the minimal symbol
16656 which may come from inferior's executable using copy
16657 relocation. Make this workaround only for gfortran as for
16658 other compilers GDB cannot guess the minimal symbol
16659 Fortran mangling kind. */
16660 if (cu->language == language_fortran && die->parent
16661 && die->parent->tag == DW_TAG_module
16662 && cu->producer
16663 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16664 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16665
16666 /* A variable with DW_AT_external is never static,
16667 but it may be block-scoped. */
16668 list_to_add = (cu->list_in_scope == &file_symbols
16669 ? &global_symbols : cu->list_in_scope);
16670 }
16671 else
16672 list_to_add = cu->list_in_scope;
16673 }
16674 else
16675 {
16676 /* We do not know the address of this symbol.
16677 If it is an external symbol and we have type information
16678 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16679 The address of the variable will then be determined from
16680 the minimal symbol table whenever the variable is
16681 referenced. */
16682 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16683
16684 /* Fortran explicitly imports any global symbols to the local
16685 scope by DW_TAG_common_block. */
16686 if (cu->language == language_fortran && die->parent
16687 && die->parent->tag == DW_TAG_common_block)
16688 {
16689 /* SYMBOL_CLASS doesn't matter here because
16690 read_common_block is going to reset it. */
16691 if (!suppress_add)
16692 list_to_add = cu->list_in_scope;
16693 }
16694 else if (attr2 && (DW_UNSND (attr2) != 0)
16695 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16696 {
16697 /* A variable with DW_AT_external is never static, but it
16698 may be block-scoped. */
16699 list_to_add = (cu->list_in_scope == &file_symbols
16700 ? &global_symbols : cu->list_in_scope);
16701
16702 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16703 }
16704 else if (!die_is_declaration (die, cu))
16705 {
16706 /* Use the default LOC_OPTIMIZED_OUT class. */
16707 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16708 if (!suppress_add)
16709 list_to_add = cu->list_in_scope;
16710 }
16711 }
16712 break;
16713 case DW_TAG_formal_parameter:
16714 /* If we are inside a function, mark this as an argument. If
16715 not, we might be looking at an argument to an inlined function
16716 when we do not have enough information to show inlined frames;
16717 pretend it's a local variable in that case so that the user can
16718 still see it. */
16719 if (context_stack_depth > 0
16720 && context_stack[context_stack_depth - 1].name != NULL)
16721 SYMBOL_IS_ARGUMENT (sym) = 1;
16722 attr = dwarf2_attr (die, DW_AT_location, cu);
16723 if (attr)
16724 {
16725 var_decode_location (attr, sym, cu);
16726 }
16727 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16728 if (attr)
16729 {
16730 dwarf2_const_value (attr, sym, cu);
16731 }
16732
16733 list_to_add = cu->list_in_scope;
16734 break;
16735 case DW_TAG_unspecified_parameters:
16736 /* From varargs functions; gdb doesn't seem to have any
16737 interest in this information, so just ignore it for now.
16738 (FIXME?) */
16739 break;
16740 case DW_TAG_template_type_param:
16741 suppress_add = 1;
16742 /* Fall through. */
16743 case DW_TAG_class_type:
16744 case DW_TAG_interface_type:
16745 case DW_TAG_structure_type:
16746 case DW_TAG_union_type:
16747 case DW_TAG_set_type:
16748 case DW_TAG_enumeration_type:
16749 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16750 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16751
16752 {
16753 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16754 really ever be static objects: otherwise, if you try
16755 to, say, break of a class's method and you're in a file
16756 which doesn't mention that class, it won't work unless
16757 the check for all static symbols in lookup_symbol_aux
16758 saves you. See the OtherFileClass tests in
16759 gdb.c++/namespace.exp. */
16760
16761 if (!suppress_add)
16762 {
16763 list_to_add = (cu->list_in_scope == &file_symbols
16764 && (cu->language == language_cplus
16765 || cu->language == language_java)
16766 ? &global_symbols : cu->list_in_scope);
16767
16768 /* The semantics of C++ state that "struct foo {
16769 ... }" also defines a typedef for "foo". A Java
16770 class declaration also defines a typedef for the
16771 class. */
16772 if (cu->language == language_cplus
16773 || cu->language == language_java
16774 || cu->language == language_ada)
16775 {
16776 /* The symbol's name is already allocated along
16777 with this objfile, so we don't need to
16778 duplicate it for the type. */
16779 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16780 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16781 }
16782 }
16783 }
16784 break;
16785 case DW_TAG_typedef:
16786 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16787 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16788 list_to_add = cu->list_in_scope;
16789 break;
16790 case DW_TAG_base_type:
16791 case DW_TAG_subrange_type:
16792 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16793 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16794 list_to_add = cu->list_in_scope;
16795 break;
16796 case DW_TAG_enumerator:
16797 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16798 if (attr)
16799 {
16800 dwarf2_const_value (attr, sym, cu);
16801 }
16802 {
16803 /* NOTE: carlton/2003-11-10: See comment above in the
16804 DW_TAG_class_type, etc. block. */
16805
16806 list_to_add = (cu->list_in_scope == &file_symbols
16807 && (cu->language == language_cplus
16808 || cu->language == language_java)
16809 ? &global_symbols : cu->list_in_scope);
16810 }
16811 break;
16812 case DW_TAG_namespace:
16813 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16814 list_to_add = &global_symbols;
16815 break;
16816 case DW_TAG_common_block:
16817 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16818 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16819 add_symbol_to_list (sym, cu->list_in_scope);
16820 break;
16821 default:
16822 /* Not a tag we recognize. Hopefully we aren't processing
16823 trash data, but since we must specifically ignore things
16824 we don't recognize, there is nothing else we should do at
16825 this point. */
16826 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16827 dwarf_tag_name (die->tag));
16828 break;
16829 }
16830
16831 if (suppress_add)
16832 {
16833 sym->hash_next = objfile->template_symbols;
16834 objfile->template_symbols = sym;
16835 list_to_add = NULL;
16836 }
16837
16838 if (list_to_add != NULL)
16839 add_symbol_to_list (sym, list_to_add);
16840
16841 /* For the benefit of old versions of GCC, check for anonymous
16842 namespaces based on the demangled name. */
16843 if (!cu->processing_has_namespace_info
16844 && cu->language == language_cplus)
16845 cp_scan_for_anonymous_namespaces (sym, objfile);
16846 }
16847 return (sym);
16848 }
16849
16850 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16851
16852 static struct symbol *
16853 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16854 {
16855 return new_symbol_full (die, type, cu, NULL);
16856 }
16857
16858 /* Given an attr with a DW_FORM_dataN value in host byte order,
16859 zero-extend it as appropriate for the symbol's type. The DWARF
16860 standard (v4) is not entirely clear about the meaning of using
16861 DW_FORM_dataN for a constant with a signed type, where the type is
16862 wider than the data. The conclusion of a discussion on the DWARF
16863 list was that this is unspecified. We choose to always zero-extend
16864 because that is the interpretation long in use by GCC. */
16865
16866 static gdb_byte *
16867 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
16868 struct dwarf2_cu *cu, LONGEST *value, int bits)
16869 {
16870 struct objfile *objfile = cu->objfile;
16871 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16872 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16873 LONGEST l = DW_UNSND (attr);
16874
16875 if (bits < sizeof (*value) * 8)
16876 {
16877 l &= ((LONGEST) 1 << bits) - 1;
16878 *value = l;
16879 }
16880 else if (bits == sizeof (*value) * 8)
16881 *value = l;
16882 else
16883 {
16884 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16885 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16886 return bytes;
16887 }
16888
16889 return NULL;
16890 }
16891
16892 /* Read a constant value from an attribute. Either set *VALUE, or if
16893 the value does not fit in *VALUE, set *BYTES - either already
16894 allocated on the objfile obstack, or newly allocated on OBSTACK,
16895 or, set *BATON, if we translated the constant to a location
16896 expression. */
16897
16898 static void
16899 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
16900 const char *name, struct obstack *obstack,
16901 struct dwarf2_cu *cu,
16902 LONGEST *value, const gdb_byte **bytes,
16903 struct dwarf2_locexpr_baton **baton)
16904 {
16905 struct objfile *objfile = cu->objfile;
16906 struct comp_unit_head *cu_header = &cu->header;
16907 struct dwarf_block *blk;
16908 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16909 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16910
16911 *value = 0;
16912 *bytes = NULL;
16913 *baton = NULL;
16914
16915 switch (attr->form)
16916 {
16917 case DW_FORM_addr:
16918 case DW_FORM_GNU_addr_index:
16919 {
16920 gdb_byte *data;
16921
16922 if (TYPE_LENGTH (type) != cu_header->addr_size)
16923 dwarf2_const_value_length_mismatch_complaint (name,
16924 cu_header->addr_size,
16925 TYPE_LENGTH (type));
16926 /* Symbols of this form are reasonably rare, so we just
16927 piggyback on the existing location code rather than writing
16928 a new implementation of symbol_computed_ops. */
16929 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16930 (*baton)->per_cu = cu->per_cu;
16931 gdb_assert ((*baton)->per_cu);
16932
16933 (*baton)->size = 2 + cu_header->addr_size;
16934 data = obstack_alloc (obstack, (*baton)->size);
16935 (*baton)->data = data;
16936
16937 data[0] = DW_OP_addr;
16938 store_unsigned_integer (&data[1], cu_header->addr_size,
16939 byte_order, DW_ADDR (attr));
16940 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16941 }
16942 break;
16943 case DW_FORM_string:
16944 case DW_FORM_strp:
16945 case DW_FORM_GNU_str_index:
16946 case DW_FORM_GNU_strp_alt:
16947 /* DW_STRING is already allocated on the objfile obstack, point
16948 directly to it. */
16949 *bytes = (const gdb_byte *) DW_STRING (attr);
16950 break;
16951 case DW_FORM_block1:
16952 case DW_FORM_block2:
16953 case DW_FORM_block4:
16954 case DW_FORM_block:
16955 case DW_FORM_exprloc:
16956 blk = DW_BLOCK (attr);
16957 if (TYPE_LENGTH (type) != blk->size)
16958 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16959 TYPE_LENGTH (type));
16960 *bytes = blk->data;
16961 break;
16962
16963 /* The DW_AT_const_value attributes are supposed to carry the
16964 symbol's value "represented as it would be on the target
16965 architecture." By the time we get here, it's already been
16966 converted to host endianness, so we just need to sign- or
16967 zero-extend it as appropriate. */
16968 case DW_FORM_data1:
16969 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16970 break;
16971 case DW_FORM_data2:
16972 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16973 break;
16974 case DW_FORM_data4:
16975 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16976 break;
16977 case DW_FORM_data8:
16978 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16979 break;
16980
16981 case DW_FORM_sdata:
16982 *value = DW_SND (attr);
16983 break;
16984
16985 case DW_FORM_udata:
16986 *value = DW_UNSND (attr);
16987 break;
16988
16989 default:
16990 complaint (&symfile_complaints,
16991 _("unsupported const value attribute form: '%s'"),
16992 dwarf_form_name (attr->form));
16993 *value = 0;
16994 break;
16995 }
16996 }
16997
16998
16999 /* Copy constant value from an attribute to a symbol. */
17000
17001 static void
17002 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17003 struct dwarf2_cu *cu)
17004 {
17005 struct objfile *objfile = cu->objfile;
17006 struct comp_unit_head *cu_header = &cu->header;
17007 LONGEST value;
17008 const gdb_byte *bytes;
17009 struct dwarf2_locexpr_baton *baton;
17010
17011 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17012 SYMBOL_PRINT_NAME (sym),
17013 &objfile->objfile_obstack, cu,
17014 &value, &bytes, &baton);
17015
17016 if (baton != NULL)
17017 {
17018 SYMBOL_LOCATION_BATON (sym) = baton;
17019 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17020 }
17021 else if (bytes != NULL)
17022 {
17023 SYMBOL_VALUE_BYTES (sym) = bytes;
17024 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17025 }
17026 else
17027 {
17028 SYMBOL_VALUE (sym) = value;
17029 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17030 }
17031 }
17032
17033 /* Return the type of the die in question using its DW_AT_type attribute. */
17034
17035 static struct type *
17036 die_type (struct die_info *die, struct dwarf2_cu *cu)
17037 {
17038 struct attribute *type_attr;
17039
17040 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17041 if (!type_attr)
17042 {
17043 /* A missing DW_AT_type represents a void type. */
17044 return objfile_type (cu->objfile)->builtin_void;
17045 }
17046
17047 return lookup_die_type (die, type_attr, cu);
17048 }
17049
17050 /* True iff CU's producer generates GNAT Ada auxiliary information
17051 that allows to find parallel types through that information instead
17052 of having to do expensive parallel lookups by type name. */
17053
17054 static int
17055 need_gnat_info (struct dwarf2_cu *cu)
17056 {
17057 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17058 of GNAT produces this auxiliary information, without any indication
17059 that it is produced. Part of enhancing the FSF version of GNAT
17060 to produce that information will be to put in place an indicator
17061 that we can use in order to determine whether the descriptive type
17062 info is available or not. One suggestion that has been made is
17063 to use a new attribute, attached to the CU die. For now, assume
17064 that the descriptive type info is not available. */
17065 return 0;
17066 }
17067
17068 /* Return the auxiliary type of the die in question using its
17069 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17070 attribute is not present. */
17071
17072 static struct type *
17073 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17074 {
17075 struct attribute *type_attr;
17076
17077 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17078 if (!type_attr)
17079 return NULL;
17080
17081 return lookup_die_type (die, type_attr, cu);
17082 }
17083
17084 /* If DIE has a descriptive_type attribute, then set the TYPE's
17085 descriptive type accordingly. */
17086
17087 static void
17088 set_descriptive_type (struct type *type, struct die_info *die,
17089 struct dwarf2_cu *cu)
17090 {
17091 struct type *descriptive_type = die_descriptive_type (die, cu);
17092
17093 if (descriptive_type)
17094 {
17095 ALLOCATE_GNAT_AUX_TYPE (type);
17096 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17097 }
17098 }
17099
17100 /* Return the containing type of the die in question using its
17101 DW_AT_containing_type attribute. */
17102
17103 static struct type *
17104 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17105 {
17106 struct attribute *type_attr;
17107
17108 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17109 if (!type_attr)
17110 error (_("Dwarf Error: Problem turning containing type into gdb type "
17111 "[in module %s]"), cu->objfile->name);
17112
17113 return lookup_die_type (die, type_attr, cu);
17114 }
17115
17116 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17117
17118 static struct type *
17119 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17120 {
17121 struct objfile *objfile = dwarf2_per_objfile->objfile;
17122 char *message, *saved;
17123
17124 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17125 objfile->name,
17126 cu->header.offset.sect_off,
17127 die->offset.sect_off);
17128 saved = obstack_copy0 (&objfile->objfile_obstack,
17129 message, strlen (message));
17130 xfree (message);
17131
17132 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17133 }
17134
17135 /* Look up the type of DIE in CU using its type attribute ATTR.
17136 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17137 DW_AT_containing_type.
17138 If there is no type substitute an error marker. */
17139
17140 static struct type *
17141 lookup_die_type (struct die_info *die, const struct attribute *attr,
17142 struct dwarf2_cu *cu)
17143 {
17144 struct objfile *objfile = cu->objfile;
17145 struct type *this_type;
17146
17147 gdb_assert (attr->name == DW_AT_type
17148 || attr->name == DW_AT_GNAT_descriptive_type
17149 || attr->name == DW_AT_containing_type);
17150
17151 /* First see if we have it cached. */
17152
17153 if (attr->form == DW_FORM_GNU_ref_alt)
17154 {
17155 struct dwarf2_per_cu_data *per_cu;
17156 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17157
17158 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17159 this_type = get_die_type_at_offset (offset, per_cu);
17160 }
17161 else if (attr_form_is_ref (attr))
17162 {
17163 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17164
17165 this_type = get_die_type_at_offset (offset, cu->per_cu);
17166 }
17167 else if (attr->form == DW_FORM_ref_sig8)
17168 {
17169 ULONGEST signature = DW_SIGNATURE (attr);
17170
17171 return get_signatured_type (die, signature, cu);
17172 }
17173 else
17174 {
17175 complaint (&symfile_complaints,
17176 _("Dwarf Error: Bad type attribute %s in DIE"
17177 " at 0x%x [in module %s]"),
17178 dwarf_attr_name (attr->name), die->offset.sect_off,
17179 objfile->name);
17180 return build_error_marker_type (cu, die);
17181 }
17182
17183 /* If not cached we need to read it in. */
17184
17185 if (this_type == NULL)
17186 {
17187 struct die_info *type_die = NULL;
17188 struct dwarf2_cu *type_cu = cu;
17189
17190 if (attr_form_is_ref (attr))
17191 type_die = follow_die_ref (die, attr, &type_cu);
17192 if (type_die == NULL)
17193 return build_error_marker_type (cu, die);
17194 /* If we find the type now, it's probably because the type came
17195 from an inter-CU reference and the type's CU got expanded before
17196 ours. */
17197 this_type = read_type_die (type_die, type_cu);
17198 }
17199
17200 /* If we still don't have a type use an error marker. */
17201
17202 if (this_type == NULL)
17203 return build_error_marker_type (cu, die);
17204
17205 return this_type;
17206 }
17207
17208 /* Return the type in DIE, CU.
17209 Returns NULL for invalid types.
17210
17211 This first does a lookup in die_type_hash,
17212 and only reads the die in if necessary.
17213
17214 NOTE: This can be called when reading in partial or full symbols. */
17215
17216 static struct type *
17217 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17218 {
17219 struct type *this_type;
17220
17221 this_type = get_die_type (die, cu);
17222 if (this_type)
17223 return this_type;
17224
17225 return read_type_die_1 (die, cu);
17226 }
17227
17228 /* Read the type in DIE, CU.
17229 Returns NULL for invalid types. */
17230
17231 static struct type *
17232 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17233 {
17234 struct type *this_type = NULL;
17235
17236 switch (die->tag)
17237 {
17238 case DW_TAG_class_type:
17239 case DW_TAG_interface_type:
17240 case DW_TAG_structure_type:
17241 case DW_TAG_union_type:
17242 this_type = read_structure_type (die, cu);
17243 break;
17244 case DW_TAG_enumeration_type:
17245 this_type = read_enumeration_type (die, cu);
17246 break;
17247 case DW_TAG_subprogram:
17248 case DW_TAG_subroutine_type:
17249 case DW_TAG_inlined_subroutine:
17250 this_type = read_subroutine_type (die, cu);
17251 break;
17252 case DW_TAG_array_type:
17253 this_type = read_array_type (die, cu);
17254 break;
17255 case DW_TAG_set_type:
17256 this_type = read_set_type (die, cu);
17257 break;
17258 case DW_TAG_pointer_type:
17259 this_type = read_tag_pointer_type (die, cu);
17260 break;
17261 case DW_TAG_ptr_to_member_type:
17262 this_type = read_tag_ptr_to_member_type (die, cu);
17263 break;
17264 case DW_TAG_reference_type:
17265 this_type = read_tag_reference_type (die, cu);
17266 break;
17267 case DW_TAG_const_type:
17268 this_type = read_tag_const_type (die, cu);
17269 break;
17270 case DW_TAG_volatile_type:
17271 this_type = read_tag_volatile_type (die, cu);
17272 break;
17273 case DW_TAG_restrict_type:
17274 this_type = read_tag_restrict_type (die, cu);
17275 break;
17276 case DW_TAG_string_type:
17277 this_type = read_tag_string_type (die, cu);
17278 break;
17279 case DW_TAG_typedef:
17280 this_type = read_typedef (die, cu);
17281 break;
17282 case DW_TAG_subrange_type:
17283 this_type = read_subrange_type (die, cu);
17284 break;
17285 case DW_TAG_base_type:
17286 this_type = read_base_type (die, cu);
17287 break;
17288 case DW_TAG_unspecified_type:
17289 this_type = read_unspecified_type (die, cu);
17290 break;
17291 case DW_TAG_namespace:
17292 this_type = read_namespace_type (die, cu);
17293 break;
17294 case DW_TAG_module:
17295 this_type = read_module_type (die, cu);
17296 break;
17297 default:
17298 complaint (&symfile_complaints,
17299 _("unexpected tag in read_type_die: '%s'"),
17300 dwarf_tag_name (die->tag));
17301 break;
17302 }
17303
17304 return this_type;
17305 }
17306
17307 /* See if we can figure out if the class lives in a namespace. We do
17308 this by looking for a member function; its demangled name will
17309 contain namespace info, if there is any.
17310 Return the computed name or NULL.
17311 Space for the result is allocated on the objfile's obstack.
17312 This is the full-die version of guess_partial_die_structure_name.
17313 In this case we know DIE has no useful parent. */
17314
17315 static char *
17316 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17317 {
17318 struct die_info *spec_die;
17319 struct dwarf2_cu *spec_cu;
17320 struct die_info *child;
17321
17322 spec_cu = cu;
17323 spec_die = die_specification (die, &spec_cu);
17324 if (spec_die != NULL)
17325 {
17326 die = spec_die;
17327 cu = spec_cu;
17328 }
17329
17330 for (child = die->child;
17331 child != NULL;
17332 child = child->sibling)
17333 {
17334 if (child->tag == DW_TAG_subprogram)
17335 {
17336 struct attribute *attr;
17337
17338 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17339 if (attr == NULL)
17340 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17341 if (attr != NULL)
17342 {
17343 char *actual_name
17344 = language_class_name_from_physname (cu->language_defn,
17345 DW_STRING (attr));
17346 char *name = NULL;
17347
17348 if (actual_name != NULL)
17349 {
17350 const char *die_name = dwarf2_name (die, cu);
17351
17352 if (die_name != NULL
17353 && strcmp (die_name, actual_name) != 0)
17354 {
17355 /* Strip off the class name from the full name.
17356 We want the prefix. */
17357 int die_name_len = strlen (die_name);
17358 int actual_name_len = strlen (actual_name);
17359
17360 /* Test for '::' as a sanity check. */
17361 if (actual_name_len > die_name_len + 2
17362 && actual_name[actual_name_len
17363 - die_name_len - 1] == ':')
17364 name =
17365 obstack_copy0 (&cu->objfile->objfile_obstack,
17366 actual_name,
17367 actual_name_len - die_name_len - 2);
17368 }
17369 }
17370 xfree (actual_name);
17371 return name;
17372 }
17373 }
17374 }
17375
17376 return NULL;
17377 }
17378
17379 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17380 prefix part in such case. See
17381 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17382
17383 static char *
17384 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17385 {
17386 struct attribute *attr;
17387 char *base;
17388
17389 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17390 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17391 return NULL;
17392
17393 attr = dwarf2_attr (die, DW_AT_name, cu);
17394 if (attr != NULL && DW_STRING (attr) != NULL)
17395 return NULL;
17396
17397 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17398 if (attr == NULL)
17399 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17400 if (attr == NULL || DW_STRING (attr) == NULL)
17401 return NULL;
17402
17403 /* dwarf2_name had to be already called. */
17404 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17405
17406 /* Strip the base name, keep any leading namespaces/classes. */
17407 base = strrchr (DW_STRING (attr), ':');
17408 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17409 return "";
17410
17411 return obstack_copy0 (&cu->objfile->objfile_obstack,
17412 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17413 }
17414
17415 /* Return the name of the namespace/class that DIE is defined within,
17416 or "" if we can't tell. The caller should not xfree the result.
17417
17418 For example, if we're within the method foo() in the following
17419 code:
17420
17421 namespace N {
17422 class C {
17423 void foo () {
17424 }
17425 };
17426 }
17427
17428 then determine_prefix on foo's die will return "N::C". */
17429
17430 static const char *
17431 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17432 {
17433 struct die_info *parent, *spec_die;
17434 struct dwarf2_cu *spec_cu;
17435 struct type *parent_type;
17436 char *retval;
17437
17438 if (cu->language != language_cplus && cu->language != language_java
17439 && cu->language != language_fortran)
17440 return "";
17441
17442 retval = anonymous_struct_prefix (die, cu);
17443 if (retval)
17444 return retval;
17445
17446 /* We have to be careful in the presence of DW_AT_specification.
17447 For example, with GCC 3.4, given the code
17448
17449 namespace N {
17450 void foo() {
17451 // Definition of N::foo.
17452 }
17453 }
17454
17455 then we'll have a tree of DIEs like this:
17456
17457 1: DW_TAG_compile_unit
17458 2: DW_TAG_namespace // N
17459 3: DW_TAG_subprogram // declaration of N::foo
17460 4: DW_TAG_subprogram // definition of N::foo
17461 DW_AT_specification // refers to die #3
17462
17463 Thus, when processing die #4, we have to pretend that we're in
17464 the context of its DW_AT_specification, namely the contex of die
17465 #3. */
17466 spec_cu = cu;
17467 spec_die = die_specification (die, &spec_cu);
17468 if (spec_die == NULL)
17469 parent = die->parent;
17470 else
17471 {
17472 parent = spec_die->parent;
17473 cu = spec_cu;
17474 }
17475
17476 if (parent == NULL)
17477 return "";
17478 else if (parent->building_fullname)
17479 {
17480 const char *name;
17481 const char *parent_name;
17482
17483 /* It has been seen on RealView 2.2 built binaries,
17484 DW_TAG_template_type_param types actually _defined_ as
17485 children of the parent class:
17486
17487 enum E {};
17488 template class <class Enum> Class{};
17489 Class<enum E> class_e;
17490
17491 1: DW_TAG_class_type (Class)
17492 2: DW_TAG_enumeration_type (E)
17493 3: DW_TAG_enumerator (enum1:0)
17494 3: DW_TAG_enumerator (enum2:1)
17495 ...
17496 2: DW_TAG_template_type_param
17497 DW_AT_type DW_FORM_ref_udata (E)
17498
17499 Besides being broken debug info, it can put GDB into an
17500 infinite loop. Consider:
17501
17502 When we're building the full name for Class<E>, we'll start
17503 at Class, and go look over its template type parameters,
17504 finding E. We'll then try to build the full name of E, and
17505 reach here. We're now trying to build the full name of E,
17506 and look over the parent DIE for containing scope. In the
17507 broken case, if we followed the parent DIE of E, we'd again
17508 find Class, and once again go look at its template type
17509 arguments, etc., etc. Simply don't consider such parent die
17510 as source-level parent of this die (it can't be, the language
17511 doesn't allow it), and break the loop here. */
17512 name = dwarf2_name (die, cu);
17513 parent_name = dwarf2_name (parent, cu);
17514 complaint (&symfile_complaints,
17515 _("template param type '%s' defined within parent '%s'"),
17516 name ? name : "<unknown>",
17517 parent_name ? parent_name : "<unknown>");
17518 return "";
17519 }
17520 else
17521 switch (parent->tag)
17522 {
17523 case DW_TAG_namespace:
17524 parent_type = read_type_die (parent, cu);
17525 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17526 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17527 Work around this problem here. */
17528 if (cu->language == language_cplus
17529 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17530 return "";
17531 /* We give a name to even anonymous namespaces. */
17532 return TYPE_TAG_NAME (parent_type);
17533 case DW_TAG_class_type:
17534 case DW_TAG_interface_type:
17535 case DW_TAG_structure_type:
17536 case DW_TAG_union_type:
17537 case DW_TAG_module:
17538 parent_type = read_type_die (parent, cu);
17539 if (TYPE_TAG_NAME (parent_type) != NULL)
17540 return TYPE_TAG_NAME (parent_type);
17541 else
17542 /* An anonymous structure is only allowed non-static data
17543 members; no typedefs, no member functions, et cetera.
17544 So it does not need a prefix. */
17545 return "";
17546 case DW_TAG_compile_unit:
17547 case DW_TAG_partial_unit:
17548 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17549 if (cu->language == language_cplus
17550 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17551 && die->child != NULL
17552 && (die->tag == DW_TAG_class_type
17553 || die->tag == DW_TAG_structure_type
17554 || die->tag == DW_TAG_union_type))
17555 {
17556 char *name = guess_full_die_structure_name (die, cu);
17557 if (name != NULL)
17558 return name;
17559 }
17560 return "";
17561 default:
17562 return determine_prefix (parent, cu);
17563 }
17564 }
17565
17566 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17567 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17568 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17569 an obconcat, otherwise allocate storage for the result. The CU argument is
17570 used to determine the language and hence, the appropriate separator. */
17571
17572 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17573
17574 static char *
17575 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17576 int physname, struct dwarf2_cu *cu)
17577 {
17578 const char *lead = "";
17579 const char *sep;
17580
17581 if (suffix == NULL || suffix[0] == '\0'
17582 || prefix == NULL || prefix[0] == '\0')
17583 sep = "";
17584 else if (cu->language == language_java)
17585 sep = ".";
17586 else if (cu->language == language_fortran && physname)
17587 {
17588 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17589 DW_AT_MIPS_linkage_name is preferred and used instead. */
17590
17591 lead = "__";
17592 sep = "_MOD_";
17593 }
17594 else
17595 sep = "::";
17596
17597 if (prefix == NULL)
17598 prefix = "";
17599 if (suffix == NULL)
17600 suffix = "";
17601
17602 if (obs == NULL)
17603 {
17604 char *retval
17605 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17606
17607 strcpy (retval, lead);
17608 strcat (retval, prefix);
17609 strcat (retval, sep);
17610 strcat (retval, suffix);
17611 return retval;
17612 }
17613 else
17614 {
17615 /* We have an obstack. */
17616 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17617 }
17618 }
17619
17620 /* Return sibling of die, NULL if no sibling. */
17621
17622 static struct die_info *
17623 sibling_die (struct die_info *die)
17624 {
17625 return die->sibling;
17626 }
17627
17628 /* Get name of a die, return NULL if not found. */
17629
17630 static const char *
17631 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17632 struct obstack *obstack)
17633 {
17634 if (name && cu->language == language_cplus)
17635 {
17636 char *canon_name = cp_canonicalize_string (name);
17637
17638 if (canon_name != NULL)
17639 {
17640 if (strcmp (canon_name, name) != 0)
17641 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17642 xfree (canon_name);
17643 }
17644 }
17645
17646 return name;
17647 }
17648
17649 /* Get name of a die, return NULL if not found. */
17650
17651 static const char *
17652 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17653 {
17654 struct attribute *attr;
17655
17656 attr = dwarf2_attr (die, DW_AT_name, cu);
17657 if ((!attr || !DW_STRING (attr))
17658 && die->tag != DW_TAG_class_type
17659 && die->tag != DW_TAG_interface_type
17660 && die->tag != DW_TAG_structure_type
17661 && die->tag != DW_TAG_union_type)
17662 return NULL;
17663
17664 switch (die->tag)
17665 {
17666 case DW_TAG_compile_unit:
17667 case DW_TAG_partial_unit:
17668 /* Compilation units have a DW_AT_name that is a filename, not
17669 a source language identifier. */
17670 case DW_TAG_enumeration_type:
17671 case DW_TAG_enumerator:
17672 /* These tags always have simple identifiers already; no need
17673 to canonicalize them. */
17674 return DW_STRING (attr);
17675
17676 case DW_TAG_subprogram:
17677 /* Java constructors will all be named "<init>", so return
17678 the class name when we see this special case. */
17679 if (cu->language == language_java
17680 && DW_STRING (attr) != NULL
17681 && strcmp (DW_STRING (attr), "<init>") == 0)
17682 {
17683 struct dwarf2_cu *spec_cu = cu;
17684 struct die_info *spec_die;
17685
17686 /* GCJ will output '<init>' for Java constructor names.
17687 For this special case, return the name of the parent class. */
17688
17689 /* GCJ may output suprogram DIEs with AT_specification set.
17690 If so, use the name of the specified DIE. */
17691 spec_die = die_specification (die, &spec_cu);
17692 if (spec_die != NULL)
17693 return dwarf2_name (spec_die, spec_cu);
17694
17695 do
17696 {
17697 die = die->parent;
17698 if (die->tag == DW_TAG_class_type)
17699 return dwarf2_name (die, cu);
17700 }
17701 while (die->tag != DW_TAG_compile_unit
17702 && die->tag != DW_TAG_partial_unit);
17703 }
17704 break;
17705
17706 case DW_TAG_class_type:
17707 case DW_TAG_interface_type:
17708 case DW_TAG_structure_type:
17709 case DW_TAG_union_type:
17710 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17711 structures or unions. These were of the form "._%d" in GCC 4.1,
17712 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17713 and GCC 4.4. We work around this problem by ignoring these. */
17714 if (attr && DW_STRING (attr)
17715 && (strncmp (DW_STRING (attr), "._", 2) == 0
17716 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17717 return NULL;
17718
17719 /* GCC might emit a nameless typedef that has a linkage name. See
17720 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17721 if (!attr || DW_STRING (attr) == NULL)
17722 {
17723 char *demangled = NULL;
17724
17725 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17726 if (attr == NULL)
17727 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17728
17729 if (attr == NULL || DW_STRING (attr) == NULL)
17730 return NULL;
17731
17732 /* Avoid demangling DW_STRING (attr) the second time on a second
17733 call for the same DIE. */
17734 if (!DW_STRING_IS_CANONICAL (attr))
17735 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17736
17737 if (demangled)
17738 {
17739 char *base;
17740
17741 /* FIXME: we already did this for the partial symbol... */
17742 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17743 demangled, strlen (demangled));
17744 DW_STRING_IS_CANONICAL (attr) = 1;
17745 xfree (demangled);
17746
17747 /* Strip any leading namespaces/classes, keep only the base name.
17748 DW_AT_name for named DIEs does not contain the prefixes. */
17749 base = strrchr (DW_STRING (attr), ':');
17750 if (base && base > DW_STRING (attr) && base[-1] == ':')
17751 return &base[1];
17752 else
17753 return DW_STRING (attr);
17754 }
17755 }
17756 break;
17757
17758 default:
17759 break;
17760 }
17761
17762 if (!DW_STRING_IS_CANONICAL (attr))
17763 {
17764 DW_STRING (attr)
17765 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17766 &cu->objfile->objfile_obstack);
17767 DW_STRING_IS_CANONICAL (attr) = 1;
17768 }
17769 return DW_STRING (attr);
17770 }
17771
17772 /* Return the die that this die in an extension of, or NULL if there
17773 is none. *EXT_CU is the CU containing DIE on input, and the CU
17774 containing the return value on output. */
17775
17776 static struct die_info *
17777 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17778 {
17779 struct attribute *attr;
17780
17781 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17782 if (attr == NULL)
17783 return NULL;
17784
17785 return follow_die_ref (die, attr, ext_cu);
17786 }
17787
17788 /* Convert a DIE tag into its string name. */
17789
17790 static const char *
17791 dwarf_tag_name (unsigned tag)
17792 {
17793 const char *name = get_DW_TAG_name (tag);
17794
17795 if (name == NULL)
17796 return "DW_TAG_<unknown>";
17797
17798 return name;
17799 }
17800
17801 /* Convert a DWARF attribute code into its string name. */
17802
17803 static const char *
17804 dwarf_attr_name (unsigned attr)
17805 {
17806 const char *name;
17807
17808 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17809 if (attr == DW_AT_MIPS_fde)
17810 return "DW_AT_MIPS_fde";
17811 #else
17812 if (attr == DW_AT_HP_block_index)
17813 return "DW_AT_HP_block_index";
17814 #endif
17815
17816 name = get_DW_AT_name (attr);
17817
17818 if (name == NULL)
17819 return "DW_AT_<unknown>";
17820
17821 return name;
17822 }
17823
17824 /* Convert a DWARF value form code into its string name. */
17825
17826 static const char *
17827 dwarf_form_name (unsigned form)
17828 {
17829 const char *name = get_DW_FORM_name (form);
17830
17831 if (name == NULL)
17832 return "DW_FORM_<unknown>";
17833
17834 return name;
17835 }
17836
17837 static char *
17838 dwarf_bool_name (unsigned mybool)
17839 {
17840 if (mybool)
17841 return "TRUE";
17842 else
17843 return "FALSE";
17844 }
17845
17846 /* Convert a DWARF type code into its string name. */
17847
17848 static const char *
17849 dwarf_type_encoding_name (unsigned enc)
17850 {
17851 const char *name = get_DW_ATE_name (enc);
17852
17853 if (name == NULL)
17854 return "DW_ATE_<unknown>";
17855
17856 return name;
17857 }
17858
17859 static void
17860 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17861 {
17862 unsigned int i;
17863
17864 print_spaces (indent, f);
17865 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17866 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17867
17868 if (die->parent != NULL)
17869 {
17870 print_spaces (indent, f);
17871 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17872 die->parent->offset.sect_off);
17873 }
17874
17875 print_spaces (indent, f);
17876 fprintf_unfiltered (f, " has children: %s\n",
17877 dwarf_bool_name (die->child != NULL));
17878
17879 print_spaces (indent, f);
17880 fprintf_unfiltered (f, " attributes:\n");
17881
17882 for (i = 0; i < die->num_attrs; ++i)
17883 {
17884 print_spaces (indent, f);
17885 fprintf_unfiltered (f, " %s (%s) ",
17886 dwarf_attr_name (die->attrs[i].name),
17887 dwarf_form_name (die->attrs[i].form));
17888
17889 switch (die->attrs[i].form)
17890 {
17891 case DW_FORM_addr:
17892 case DW_FORM_GNU_addr_index:
17893 fprintf_unfiltered (f, "address: ");
17894 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17895 break;
17896 case DW_FORM_block2:
17897 case DW_FORM_block4:
17898 case DW_FORM_block:
17899 case DW_FORM_block1:
17900 fprintf_unfiltered (f, "block: size %s",
17901 pulongest (DW_BLOCK (&die->attrs[i])->size));
17902 break;
17903 case DW_FORM_exprloc:
17904 fprintf_unfiltered (f, "expression: size %s",
17905 pulongest (DW_BLOCK (&die->attrs[i])->size));
17906 break;
17907 case DW_FORM_ref_addr:
17908 fprintf_unfiltered (f, "ref address: ");
17909 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17910 break;
17911 case DW_FORM_GNU_ref_alt:
17912 fprintf_unfiltered (f, "alt ref address: ");
17913 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17914 break;
17915 case DW_FORM_ref1:
17916 case DW_FORM_ref2:
17917 case DW_FORM_ref4:
17918 case DW_FORM_ref8:
17919 case DW_FORM_ref_udata:
17920 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17921 (long) (DW_UNSND (&die->attrs[i])));
17922 break;
17923 case DW_FORM_data1:
17924 case DW_FORM_data2:
17925 case DW_FORM_data4:
17926 case DW_FORM_data8:
17927 case DW_FORM_udata:
17928 case DW_FORM_sdata:
17929 fprintf_unfiltered (f, "constant: %s",
17930 pulongest (DW_UNSND (&die->attrs[i])));
17931 break;
17932 case DW_FORM_sec_offset:
17933 fprintf_unfiltered (f, "section offset: %s",
17934 pulongest (DW_UNSND (&die->attrs[i])));
17935 break;
17936 case DW_FORM_ref_sig8:
17937 fprintf_unfiltered (f, "signature: %s",
17938 hex_string (DW_SIGNATURE (&die->attrs[i])));
17939 break;
17940 case DW_FORM_string:
17941 case DW_FORM_strp:
17942 case DW_FORM_GNU_str_index:
17943 case DW_FORM_GNU_strp_alt:
17944 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17945 DW_STRING (&die->attrs[i])
17946 ? DW_STRING (&die->attrs[i]) : "",
17947 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17948 break;
17949 case DW_FORM_flag:
17950 if (DW_UNSND (&die->attrs[i]))
17951 fprintf_unfiltered (f, "flag: TRUE");
17952 else
17953 fprintf_unfiltered (f, "flag: FALSE");
17954 break;
17955 case DW_FORM_flag_present:
17956 fprintf_unfiltered (f, "flag: TRUE");
17957 break;
17958 case DW_FORM_indirect:
17959 /* The reader will have reduced the indirect form to
17960 the "base form" so this form should not occur. */
17961 fprintf_unfiltered (f,
17962 "unexpected attribute form: DW_FORM_indirect");
17963 break;
17964 default:
17965 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17966 die->attrs[i].form);
17967 break;
17968 }
17969 fprintf_unfiltered (f, "\n");
17970 }
17971 }
17972
17973 static void
17974 dump_die_for_error (struct die_info *die)
17975 {
17976 dump_die_shallow (gdb_stderr, 0, die);
17977 }
17978
17979 static void
17980 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17981 {
17982 int indent = level * 4;
17983
17984 gdb_assert (die != NULL);
17985
17986 if (level >= max_level)
17987 return;
17988
17989 dump_die_shallow (f, indent, die);
17990
17991 if (die->child != NULL)
17992 {
17993 print_spaces (indent, f);
17994 fprintf_unfiltered (f, " Children:");
17995 if (level + 1 < max_level)
17996 {
17997 fprintf_unfiltered (f, "\n");
17998 dump_die_1 (f, level + 1, max_level, die->child);
17999 }
18000 else
18001 {
18002 fprintf_unfiltered (f,
18003 " [not printed, max nesting level reached]\n");
18004 }
18005 }
18006
18007 if (die->sibling != NULL && level > 0)
18008 {
18009 dump_die_1 (f, level, max_level, die->sibling);
18010 }
18011 }
18012
18013 /* This is called from the pdie macro in gdbinit.in.
18014 It's not static so gcc will keep a copy callable from gdb. */
18015
18016 void
18017 dump_die (struct die_info *die, int max_level)
18018 {
18019 dump_die_1 (gdb_stdlog, 0, max_level, die);
18020 }
18021
18022 static void
18023 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18024 {
18025 void **slot;
18026
18027 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18028 INSERT);
18029
18030 *slot = die;
18031 }
18032
18033 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18034 required kind. */
18035
18036 static sect_offset
18037 dwarf2_get_ref_die_offset (const struct attribute *attr)
18038 {
18039 sect_offset retval = { DW_UNSND (attr) };
18040
18041 if (attr_form_is_ref (attr))
18042 return retval;
18043
18044 retval.sect_off = 0;
18045 complaint (&symfile_complaints,
18046 _("unsupported die ref attribute form: '%s'"),
18047 dwarf_form_name (attr->form));
18048 return retval;
18049 }
18050
18051 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18052 * the value held by the attribute is not constant. */
18053
18054 static LONGEST
18055 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18056 {
18057 if (attr->form == DW_FORM_sdata)
18058 return DW_SND (attr);
18059 else if (attr->form == DW_FORM_udata
18060 || attr->form == DW_FORM_data1
18061 || attr->form == DW_FORM_data2
18062 || attr->form == DW_FORM_data4
18063 || attr->form == DW_FORM_data8)
18064 return DW_UNSND (attr);
18065 else
18066 {
18067 complaint (&symfile_complaints,
18068 _("Attribute value is not a constant (%s)"),
18069 dwarf_form_name (attr->form));
18070 return default_value;
18071 }
18072 }
18073
18074 /* Follow reference or signature attribute ATTR of SRC_DIE.
18075 On entry *REF_CU is the CU of SRC_DIE.
18076 On exit *REF_CU is the CU of the result. */
18077
18078 static struct die_info *
18079 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18080 struct dwarf2_cu **ref_cu)
18081 {
18082 struct die_info *die;
18083
18084 if (attr_form_is_ref (attr))
18085 die = follow_die_ref (src_die, attr, ref_cu);
18086 else if (attr->form == DW_FORM_ref_sig8)
18087 die = follow_die_sig (src_die, attr, ref_cu);
18088 else
18089 {
18090 dump_die_for_error (src_die);
18091 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18092 (*ref_cu)->objfile->name);
18093 }
18094
18095 return die;
18096 }
18097
18098 /* Follow reference OFFSET.
18099 On entry *REF_CU is the CU of the source die referencing OFFSET.
18100 On exit *REF_CU is the CU of the result.
18101 Returns NULL if OFFSET is invalid. */
18102
18103 static struct die_info *
18104 follow_die_offset (sect_offset offset, int offset_in_dwz,
18105 struct dwarf2_cu **ref_cu)
18106 {
18107 struct die_info temp_die;
18108 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18109
18110 gdb_assert (cu->per_cu != NULL);
18111
18112 target_cu = cu;
18113
18114 if (cu->per_cu->is_debug_types)
18115 {
18116 /* .debug_types CUs cannot reference anything outside their CU.
18117 If they need to, they have to reference a signatured type via
18118 DW_FORM_ref_sig8. */
18119 if (! offset_in_cu_p (&cu->header, offset))
18120 return NULL;
18121 }
18122 else if (offset_in_dwz != cu->per_cu->is_dwz
18123 || ! offset_in_cu_p (&cu->header, offset))
18124 {
18125 struct dwarf2_per_cu_data *per_cu;
18126
18127 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18128 cu->objfile);
18129
18130 /* If necessary, add it to the queue and load its DIEs. */
18131 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18132 load_full_comp_unit (per_cu, cu->language);
18133
18134 target_cu = per_cu->cu;
18135 }
18136 else if (cu->dies == NULL)
18137 {
18138 /* We're loading full DIEs during partial symbol reading. */
18139 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18140 load_full_comp_unit (cu->per_cu, language_minimal);
18141 }
18142
18143 *ref_cu = target_cu;
18144 temp_die.offset = offset;
18145 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18146 }
18147
18148 /* Follow reference attribute ATTR of SRC_DIE.
18149 On entry *REF_CU is the CU of SRC_DIE.
18150 On exit *REF_CU is the CU of the result. */
18151
18152 static struct die_info *
18153 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
18154 struct dwarf2_cu **ref_cu)
18155 {
18156 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18157 struct dwarf2_cu *cu = *ref_cu;
18158 struct die_info *die;
18159
18160 die = follow_die_offset (offset,
18161 (attr->form == DW_FORM_GNU_ref_alt
18162 || cu->per_cu->is_dwz),
18163 ref_cu);
18164 if (!die)
18165 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18166 "at 0x%x [in module %s]"),
18167 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
18168
18169 return die;
18170 }
18171
18172 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18173 Returned value is intended for DW_OP_call*. Returned
18174 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18175
18176 struct dwarf2_locexpr_baton
18177 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18178 struct dwarf2_per_cu_data *per_cu,
18179 CORE_ADDR (*get_frame_pc) (void *baton),
18180 void *baton)
18181 {
18182 struct dwarf2_cu *cu;
18183 struct die_info *die;
18184 struct attribute *attr;
18185 struct dwarf2_locexpr_baton retval;
18186
18187 dw2_setup (per_cu->objfile);
18188
18189 if (per_cu->cu == NULL)
18190 load_cu (per_cu);
18191 cu = per_cu->cu;
18192
18193 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18194 if (!die)
18195 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18196 offset.sect_off, per_cu->objfile->name);
18197
18198 attr = dwarf2_attr (die, DW_AT_location, cu);
18199 if (!attr)
18200 {
18201 /* DWARF: "If there is no such attribute, then there is no effect.".
18202 DATA is ignored if SIZE is 0. */
18203
18204 retval.data = NULL;
18205 retval.size = 0;
18206 }
18207 else if (attr_form_is_section_offset (attr))
18208 {
18209 struct dwarf2_loclist_baton loclist_baton;
18210 CORE_ADDR pc = (*get_frame_pc) (baton);
18211 size_t size;
18212
18213 fill_in_loclist_baton (cu, &loclist_baton, attr);
18214
18215 retval.data = dwarf2_find_location_expression (&loclist_baton,
18216 &size, pc);
18217 retval.size = size;
18218 }
18219 else
18220 {
18221 if (!attr_form_is_block (attr))
18222 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18223 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18224 offset.sect_off, per_cu->objfile->name);
18225
18226 retval.data = DW_BLOCK (attr)->data;
18227 retval.size = DW_BLOCK (attr)->size;
18228 }
18229 retval.per_cu = cu->per_cu;
18230
18231 age_cached_comp_units ();
18232
18233 return retval;
18234 }
18235
18236 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18237 offset. */
18238
18239 struct dwarf2_locexpr_baton
18240 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18241 struct dwarf2_per_cu_data *per_cu,
18242 CORE_ADDR (*get_frame_pc) (void *baton),
18243 void *baton)
18244 {
18245 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18246
18247 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18248 }
18249
18250 /* Write a constant of a given type as target-ordered bytes into
18251 OBSTACK. */
18252
18253 static const gdb_byte *
18254 write_constant_as_bytes (struct obstack *obstack,
18255 enum bfd_endian byte_order,
18256 struct type *type,
18257 ULONGEST value,
18258 LONGEST *len)
18259 {
18260 gdb_byte *result;
18261
18262 *len = TYPE_LENGTH (type);
18263 result = obstack_alloc (obstack, *len);
18264 store_unsigned_integer (result, *len, byte_order, value);
18265
18266 return result;
18267 }
18268
18269 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18270 pointer to the constant bytes and set LEN to the length of the
18271 data. If memory is needed, allocate it on OBSTACK. If the DIE
18272 does not have a DW_AT_const_value, return NULL. */
18273
18274 const gdb_byte *
18275 dwarf2_fetch_constant_bytes (sect_offset offset,
18276 struct dwarf2_per_cu_data *per_cu,
18277 struct obstack *obstack,
18278 LONGEST *len)
18279 {
18280 struct dwarf2_cu *cu;
18281 struct die_info *die;
18282 struct attribute *attr;
18283 const gdb_byte *result = NULL;
18284 struct type *type;
18285 LONGEST value;
18286 enum bfd_endian byte_order;
18287
18288 dw2_setup (per_cu->objfile);
18289
18290 if (per_cu->cu == NULL)
18291 load_cu (per_cu);
18292 cu = per_cu->cu;
18293
18294 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18295 if (!die)
18296 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18297 offset.sect_off, per_cu->objfile->name);
18298
18299
18300 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18301 if (attr == NULL)
18302 return NULL;
18303
18304 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18305 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18306
18307 switch (attr->form)
18308 {
18309 case DW_FORM_addr:
18310 case DW_FORM_GNU_addr_index:
18311 {
18312 gdb_byte *tem;
18313
18314 *len = cu->header.addr_size;
18315 tem = obstack_alloc (obstack, *len);
18316 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18317 result = tem;
18318 }
18319 break;
18320 case DW_FORM_string:
18321 case DW_FORM_strp:
18322 case DW_FORM_GNU_str_index:
18323 case DW_FORM_GNU_strp_alt:
18324 /* DW_STRING is already allocated on the objfile obstack, point
18325 directly to it. */
18326 result = (const gdb_byte *) DW_STRING (attr);
18327 *len = strlen (DW_STRING (attr));
18328 break;
18329 case DW_FORM_block1:
18330 case DW_FORM_block2:
18331 case DW_FORM_block4:
18332 case DW_FORM_block:
18333 case DW_FORM_exprloc:
18334 result = DW_BLOCK (attr)->data;
18335 *len = DW_BLOCK (attr)->size;
18336 break;
18337
18338 /* The DW_AT_const_value attributes are supposed to carry the
18339 symbol's value "represented as it would be on the target
18340 architecture." By the time we get here, it's already been
18341 converted to host endianness, so we just need to sign- or
18342 zero-extend it as appropriate. */
18343 case DW_FORM_data1:
18344 type = die_type (die, cu);
18345 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18346 if (result == NULL)
18347 result = write_constant_as_bytes (obstack, byte_order,
18348 type, value, len);
18349 break;
18350 case DW_FORM_data2:
18351 type = die_type (die, cu);
18352 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18353 if (result == NULL)
18354 result = write_constant_as_bytes (obstack, byte_order,
18355 type, value, len);
18356 break;
18357 case DW_FORM_data4:
18358 type = die_type (die, cu);
18359 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18360 if (result == NULL)
18361 result = write_constant_as_bytes (obstack, byte_order,
18362 type, value, len);
18363 break;
18364 case DW_FORM_data8:
18365 type = die_type (die, cu);
18366 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18367 if (result == NULL)
18368 result = write_constant_as_bytes (obstack, byte_order,
18369 type, value, len);
18370 break;
18371
18372 case DW_FORM_sdata:
18373 type = die_type (die, cu);
18374 result = write_constant_as_bytes (obstack, byte_order,
18375 type, DW_SND (attr), len);
18376 break;
18377
18378 case DW_FORM_udata:
18379 type = die_type (die, cu);
18380 result = write_constant_as_bytes (obstack, byte_order,
18381 type, DW_UNSND (attr), len);
18382 break;
18383
18384 default:
18385 complaint (&symfile_complaints,
18386 _("unsupported const value attribute form: '%s'"),
18387 dwarf_form_name (attr->form));
18388 break;
18389 }
18390
18391 return result;
18392 }
18393
18394 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18395 PER_CU. */
18396
18397 struct type *
18398 dwarf2_get_die_type (cu_offset die_offset,
18399 struct dwarf2_per_cu_data *per_cu)
18400 {
18401 sect_offset die_offset_sect;
18402
18403 dw2_setup (per_cu->objfile);
18404
18405 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18406 return get_die_type_at_offset (die_offset_sect, per_cu);
18407 }
18408
18409 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18410 On entry *REF_CU is the CU of SRC_DIE.
18411 On exit *REF_CU is the CU of the result.
18412 Returns NULL if the referenced DIE isn't found. */
18413
18414 static struct die_info *
18415 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18416 struct dwarf2_cu **ref_cu)
18417 {
18418 struct objfile *objfile = (*ref_cu)->objfile;
18419 struct die_info temp_die;
18420 struct dwarf2_cu *sig_cu;
18421 struct die_info *die;
18422
18423 /* While it might be nice to assert sig_type->type == NULL here,
18424 we can get here for DW_AT_imported_declaration where we need
18425 the DIE not the type. */
18426
18427 /* If necessary, add it to the queue and load its DIEs. */
18428
18429 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18430 read_signatured_type (sig_type);
18431
18432 sig_cu = sig_type->per_cu.cu;
18433 gdb_assert (sig_cu != NULL);
18434 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18435 temp_die.offset = sig_type->type_offset_in_section;
18436 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18437 temp_die.offset.sect_off);
18438 if (die)
18439 {
18440 /* For .gdb_index version 7 keep track of included TUs.
18441 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18442 if (dwarf2_per_objfile->index_table != NULL
18443 && dwarf2_per_objfile->index_table->version <= 7)
18444 {
18445 VEC_safe_push (dwarf2_per_cu_ptr,
18446 (*ref_cu)->per_cu->imported_symtabs,
18447 sig_cu->per_cu);
18448 }
18449
18450 *ref_cu = sig_cu;
18451 return die;
18452 }
18453
18454 return NULL;
18455 }
18456
18457 /* Follow signatured type referenced by ATTR in SRC_DIE.
18458 On entry *REF_CU is the CU of SRC_DIE.
18459 On exit *REF_CU is the CU of the result.
18460 The result is the DIE of the type.
18461 If the referenced type cannot be found an error is thrown. */
18462
18463 static struct die_info *
18464 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
18465 struct dwarf2_cu **ref_cu)
18466 {
18467 ULONGEST signature = DW_SIGNATURE (attr);
18468 struct signatured_type *sig_type;
18469 struct die_info *die;
18470
18471 gdb_assert (attr->form == DW_FORM_ref_sig8);
18472
18473 sig_type = lookup_signatured_type (*ref_cu, signature);
18474 /* sig_type will be NULL if the signatured type is missing from
18475 the debug info. */
18476 if (sig_type == NULL)
18477 {
18478 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18479 " from DIE at 0x%x [in module %s]"),
18480 hex_string (signature), src_die->offset.sect_off,
18481 (*ref_cu)->objfile->name);
18482 }
18483
18484 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18485 if (die == NULL)
18486 {
18487 dump_die_for_error (src_die);
18488 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18489 " from DIE at 0x%x [in module %s]"),
18490 hex_string (signature), src_die->offset.sect_off,
18491 (*ref_cu)->objfile->name);
18492 }
18493
18494 return die;
18495 }
18496
18497 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18498 reading in and processing the type unit if necessary. */
18499
18500 static struct type *
18501 get_signatured_type (struct die_info *die, ULONGEST signature,
18502 struct dwarf2_cu *cu)
18503 {
18504 struct signatured_type *sig_type;
18505 struct dwarf2_cu *type_cu;
18506 struct die_info *type_die;
18507 struct type *type;
18508
18509 sig_type = lookup_signatured_type (cu, signature);
18510 /* sig_type will be NULL if the signatured type is missing from
18511 the debug info. */
18512 if (sig_type == NULL)
18513 {
18514 complaint (&symfile_complaints,
18515 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18516 " from DIE at 0x%x [in module %s]"),
18517 hex_string (signature), die->offset.sect_off,
18518 dwarf2_per_objfile->objfile->name);
18519 return build_error_marker_type (cu, die);
18520 }
18521
18522 /* If we already know the type we're done. */
18523 if (sig_type->type != NULL)
18524 return sig_type->type;
18525
18526 type_cu = cu;
18527 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18528 if (type_die != NULL)
18529 {
18530 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18531 is created. This is important, for example, because for c++ classes
18532 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18533 type = read_type_die (type_die, type_cu);
18534 if (type == NULL)
18535 {
18536 complaint (&symfile_complaints,
18537 _("Dwarf Error: Cannot build signatured type %s"
18538 " referenced from DIE at 0x%x [in module %s]"),
18539 hex_string (signature), die->offset.sect_off,
18540 dwarf2_per_objfile->objfile->name);
18541 type = build_error_marker_type (cu, die);
18542 }
18543 }
18544 else
18545 {
18546 complaint (&symfile_complaints,
18547 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18548 " from DIE at 0x%x [in module %s]"),
18549 hex_string (signature), die->offset.sect_off,
18550 dwarf2_per_objfile->objfile->name);
18551 type = build_error_marker_type (cu, die);
18552 }
18553 sig_type->type = type;
18554
18555 return type;
18556 }
18557
18558 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18559 reading in and processing the type unit if necessary. */
18560
18561 static struct type *
18562 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
18563 struct dwarf2_cu *cu) /* ARI: editCase function */
18564 {
18565 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18566 if (attr_form_is_ref (attr))
18567 {
18568 struct dwarf2_cu *type_cu = cu;
18569 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18570
18571 return read_type_die (type_die, type_cu);
18572 }
18573 else if (attr->form == DW_FORM_ref_sig8)
18574 {
18575 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18576 }
18577 else
18578 {
18579 complaint (&symfile_complaints,
18580 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18581 " at 0x%x [in module %s]"),
18582 dwarf_form_name (attr->form), die->offset.sect_off,
18583 dwarf2_per_objfile->objfile->name);
18584 return build_error_marker_type (cu, die);
18585 }
18586 }
18587
18588 /* Load the DIEs associated with type unit PER_CU into memory. */
18589
18590 static void
18591 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18592 {
18593 struct signatured_type *sig_type;
18594
18595 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18596 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18597
18598 /* We have the per_cu, but we need the signatured_type.
18599 Fortunately this is an easy translation. */
18600 gdb_assert (per_cu->is_debug_types);
18601 sig_type = (struct signatured_type *) per_cu;
18602
18603 gdb_assert (per_cu->cu == NULL);
18604
18605 read_signatured_type (sig_type);
18606
18607 gdb_assert (per_cu->cu != NULL);
18608 }
18609
18610 /* die_reader_func for read_signatured_type.
18611 This is identical to load_full_comp_unit_reader,
18612 but is kept separate for now. */
18613
18614 static void
18615 read_signatured_type_reader (const struct die_reader_specs *reader,
18616 const gdb_byte *info_ptr,
18617 struct die_info *comp_unit_die,
18618 int has_children,
18619 void *data)
18620 {
18621 struct dwarf2_cu *cu = reader->cu;
18622
18623 gdb_assert (cu->die_hash == NULL);
18624 cu->die_hash =
18625 htab_create_alloc_ex (cu->header.length / 12,
18626 die_hash,
18627 die_eq,
18628 NULL,
18629 &cu->comp_unit_obstack,
18630 hashtab_obstack_allocate,
18631 dummy_obstack_deallocate);
18632
18633 if (has_children)
18634 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18635 &info_ptr, comp_unit_die);
18636 cu->dies = comp_unit_die;
18637 /* comp_unit_die is not stored in die_hash, no need. */
18638
18639 /* We try not to read any attributes in this function, because not
18640 all CUs needed for references have been loaded yet, and symbol
18641 table processing isn't initialized. But we have to set the CU language,
18642 or we won't be able to build types correctly.
18643 Similarly, if we do not read the producer, we can not apply
18644 producer-specific interpretation. */
18645 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18646 }
18647
18648 /* Read in a signatured type and build its CU and DIEs.
18649 If the type is a stub for the real type in a DWO file,
18650 read in the real type from the DWO file as well. */
18651
18652 static void
18653 read_signatured_type (struct signatured_type *sig_type)
18654 {
18655 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18656
18657 gdb_assert (per_cu->is_debug_types);
18658 gdb_assert (per_cu->cu == NULL);
18659
18660 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18661 read_signatured_type_reader, NULL);
18662 sig_type->per_cu.tu_read = 1;
18663 }
18664
18665 /* Decode simple location descriptions.
18666 Given a pointer to a dwarf block that defines a location, compute
18667 the location and return the value.
18668
18669 NOTE drow/2003-11-18: This function is called in two situations
18670 now: for the address of static or global variables (partial symbols
18671 only) and for offsets into structures which are expected to be
18672 (more or less) constant. The partial symbol case should go away,
18673 and only the constant case should remain. That will let this
18674 function complain more accurately. A few special modes are allowed
18675 without complaint for global variables (for instance, global
18676 register values and thread-local values).
18677
18678 A location description containing no operations indicates that the
18679 object is optimized out. The return value is 0 for that case.
18680 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18681 callers will only want a very basic result and this can become a
18682 complaint.
18683
18684 Note that stack[0] is unused except as a default error return. */
18685
18686 static CORE_ADDR
18687 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18688 {
18689 struct objfile *objfile = cu->objfile;
18690 size_t i;
18691 size_t size = blk->size;
18692 const gdb_byte *data = blk->data;
18693 CORE_ADDR stack[64];
18694 int stacki;
18695 unsigned int bytes_read, unsnd;
18696 gdb_byte op;
18697
18698 i = 0;
18699 stacki = 0;
18700 stack[stacki] = 0;
18701 stack[++stacki] = 0;
18702
18703 while (i < size)
18704 {
18705 op = data[i++];
18706 switch (op)
18707 {
18708 case DW_OP_lit0:
18709 case DW_OP_lit1:
18710 case DW_OP_lit2:
18711 case DW_OP_lit3:
18712 case DW_OP_lit4:
18713 case DW_OP_lit5:
18714 case DW_OP_lit6:
18715 case DW_OP_lit7:
18716 case DW_OP_lit8:
18717 case DW_OP_lit9:
18718 case DW_OP_lit10:
18719 case DW_OP_lit11:
18720 case DW_OP_lit12:
18721 case DW_OP_lit13:
18722 case DW_OP_lit14:
18723 case DW_OP_lit15:
18724 case DW_OP_lit16:
18725 case DW_OP_lit17:
18726 case DW_OP_lit18:
18727 case DW_OP_lit19:
18728 case DW_OP_lit20:
18729 case DW_OP_lit21:
18730 case DW_OP_lit22:
18731 case DW_OP_lit23:
18732 case DW_OP_lit24:
18733 case DW_OP_lit25:
18734 case DW_OP_lit26:
18735 case DW_OP_lit27:
18736 case DW_OP_lit28:
18737 case DW_OP_lit29:
18738 case DW_OP_lit30:
18739 case DW_OP_lit31:
18740 stack[++stacki] = op - DW_OP_lit0;
18741 break;
18742
18743 case DW_OP_reg0:
18744 case DW_OP_reg1:
18745 case DW_OP_reg2:
18746 case DW_OP_reg3:
18747 case DW_OP_reg4:
18748 case DW_OP_reg5:
18749 case DW_OP_reg6:
18750 case DW_OP_reg7:
18751 case DW_OP_reg8:
18752 case DW_OP_reg9:
18753 case DW_OP_reg10:
18754 case DW_OP_reg11:
18755 case DW_OP_reg12:
18756 case DW_OP_reg13:
18757 case DW_OP_reg14:
18758 case DW_OP_reg15:
18759 case DW_OP_reg16:
18760 case DW_OP_reg17:
18761 case DW_OP_reg18:
18762 case DW_OP_reg19:
18763 case DW_OP_reg20:
18764 case DW_OP_reg21:
18765 case DW_OP_reg22:
18766 case DW_OP_reg23:
18767 case DW_OP_reg24:
18768 case DW_OP_reg25:
18769 case DW_OP_reg26:
18770 case DW_OP_reg27:
18771 case DW_OP_reg28:
18772 case DW_OP_reg29:
18773 case DW_OP_reg30:
18774 case DW_OP_reg31:
18775 stack[++stacki] = op - DW_OP_reg0;
18776 if (i < size)
18777 dwarf2_complex_location_expr_complaint ();
18778 break;
18779
18780 case DW_OP_regx:
18781 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18782 i += bytes_read;
18783 stack[++stacki] = unsnd;
18784 if (i < size)
18785 dwarf2_complex_location_expr_complaint ();
18786 break;
18787
18788 case DW_OP_addr:
18789 stack[++stacki] = read_address (objfile->obfd, &data[i],
18790 cu, &bytes_read);
18791 i += bytes_read;
18792 break;
18793
18794 case DW_OP_const1u:
18795 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18796 i += 1;
18797 break;
18798
18799 case DW_OP_const1s:
18800 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18801 i += 1;
18802 break;
18803
18804 case DW_OP_const2u:
18805 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18806 i += 2;
18807 break;
18808
18809 case DW_OP_const2s:
18810 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18811 i += 2;
18812 break;
18813
18814 case DW_OP_const4u:
18815 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18816 i += 4;
18817 break;
18818
18819 case DW_OP_const4s:
18820 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18821 i += 4;
18822 break;
18823
18824 case DW_OP_const8u:
18825 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18826 i += 8;
18827 break;
18828
18829 case DW_OP_constu:
18830 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18831 &bytes_read);
18832 i += bytes_read;
18833 break;
18834
18835 case DW_OP_consts:
18836 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18837 i += bytes_read;
18838 break;
18839
18840 case DW_OP_dup:
18841 stack[stacki + 1] = stack[stacki];
18842 stacki++;
18843 break;
18844
18845 case DW_OP_plus:
18846 stack[stacki - 1] += stack[stacki];
18847 stacki--;
18848 break;
18849
18850 case DW_OP_plus_uconst:
18851 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18852 &bytes_read);
18853 i += bytes_read;
18854 break;
18855
18856 case DW_OP_minus:
18857 stack[stacki - 1] -= stack[stacki];
18858 stacki--;
18859 break;
18860
18861 case DW_OP_deref:
18862 /* If we're not the last op, then we definitely can't encode
18863 this using GDB's address_class enum. This is valid for partial
18864 global symbols, although the variable's address will be bogus
18865 in the psymtab. */
18866 if (i < size)
18867 dwarf2_complex_location_expr_complaint ();
18868 break;
18869
18870 case DW_OP_GNU_push_tls_address:
18871 /* The top of the stack has the offset from the beginning
18872 of the thread control block at which the variable is located. */
18873 /* Nothing should follow this operator, so the top of stack would
18874 be returned. */
18875 /* This is valid for partial global symbols, but the variable's
18876 address will be bogus in the psymtab. Make it always at least
18877 non-zero to not look as a variable garbage collected by linker
18878 which have DW_OP_addr 0. */
18879 if (i < size)
18880 dwarf2_complex_location_expr_complaint ();
18881 stack[stacki]++;
18882 break;
18883
18884 case DW_OP_GNU_uninit:
18885 break;
18886
18887 case DW_OP_GNU_addr_index:
18888 case DW_OP_GNU_const_index:
18889 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18890 &bytes_read);
18891 i += bytes_read;
18892 break;
18893
18894 default:
18895 {
18896 const char *name = get_DW_OP_name (op);
18897
18898 if (name)
18899 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18900 name);
18901 else
18902 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18903 op);
18904 }
18905
18906 return (stack[stacki]);
18907 }
18908
18909 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18910 outside of the allocated space. Also enforce minimum>0. */
18911 if (stacki >= ARRAY_SIZE (stack) - 1)
18912 {
18913 complaint (&symfile_complaints,
18914 _("location description stack overflow"));
18915 return 0;
18916 }
18917
18918 if (stacki <= 0)
18919 {
18920 complaint (&symfile_complaints,
18921 _("location description stack underflow"));
18922 return 0;
18923 }
18924 }
18925 return (stack[stacki]);
18926 }
18927
18928 /* memory allocation interface */
18929
18930 static struct dwarf_block *
18931 dwarf_alloc_block (struct dwarf2_cu *cu)
18932 {
18933 struct dwarf_block *blk;
18934
18935 blk = (struct dwarf_block *)
18936 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18937 return (blk);
18938 }
18939
18940 static struct die_info *
18941 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18942 {
18943 struct die_info *die;
18944 size_t size = sizeof (struct die_info);
18945
18946 if (num_attrs > 1)
18947 size += (num_attrs - 1) * sizeof (struct attribute);
18948
18949 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18950 memset (die, 0, sizeof (struct die_info));
18951 return (die);
18952 }
18953
18954 \f
18955 /* Macro support. */
18956
18957 /* Return file name relative to the compilation directory of file number I in
18958 *LH's file name table. The result is allocated using xmalloc; the caller is
18959 responsible for freeing it. */
18960
18961 static char *
18962 file_file_name (int file, struct line_header *lh)
18963 {
18964 /* Is the file number a valid index into the line header's file name
18965 table? Remember that file numbers start with one, not zero. */
18966 if (1 <= file && file <= lh->num_file_names)
18967 {
18968 struct file_entry *fe = &lh->file_names[file - 1];
18969
18970 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18971 return xstrdup (fe->name);
18972 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18973 fe->name, NULL);
18974 }
18975 else
18976 {
18977 /* The compiler produced a bogus file number. We can at least
18978 record the macro definitions made in the file, even if we
18979 won't be able to find the file by name. */
18980 char fake_name[80];
18981
18982 xsnprintf (fake_name, sizeof (fake_name),
18983 "<bad macro file number %d>", file);
18984
18985 complaint (&symfile_complaints,
18986 _("bad file number in macro information (%d)"),
18987 file);
18988
18989 return xstrdup (fake_name);
18990 }
18991 }
18992
18993 /* Return the full name of file number I in *LH's file name table.
18994 Use COMP_DIR as the name of the current directory of the
18995 compilation. The result is allocated using xmalloc; the caller is
18996 responsible for freeing it. */
18997 static char *
18998 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18999 {
19000 /* Is the file number a valid index into the line header's file name
19001 table? Remember that file numbers start with one, not zero. */
19002 if (1 <= file && file <= lh->num_file_names)
19003 {
19004 char *relative = file_file_name (file, lh);
19005
19006 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19007 return relative;
19008 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19009 }
19010 else
19011 return file_file_name (file, lh);
19012 }
19013
19014
19015 static struct macro_source_file *
19016 macro_start_file (int file, int line,
19017 struct macro_source_file *current_file,
19018 const char *comp_dir,
19019 struct line_header *lh, struct objfile *objfile)
19020 {
19021 /* File name relative to the compilation directory of this source file. */
19022 char *file_name = file_file_name (file, lh);
19023
19024 if (! current_file)
19025 {
19026 /* Note: We don't create a macro table for this compilation unit
19027 at all until we actually get a filename. */
19028 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19029
19030 /* If we have no current file, then this must be the start_file
19031 directive for the compilation unit's main source file. */
19032 current_file = macro_set_main (macro_table, file_name);
19033 macro_define_special (macro_table);
19034 }
19035 else
19036 current_file = macro_include (current_file, line, file_name);
19037
19038 xfree (file_name);
19039
19040 return current_file;
19041 }
19042
19043
19044 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19045 followed by a null byte. */
19046 static char *
19047 copy_string (const char *buf, int len)
19048 {
19049 char *s = xmalloc (len + 1);
19050
19051 memcpy (s, buf, len);
19052 s[len] = '\0';
19053 return s;
19054 }
19055
19056
19057 static const char *
19058 consume_improper_spaces (const char *p, const char *body)
19059 {
19060 if (*p == ' ')
19061 {
19062 complaint (&symfile_complaints,
19063 _("macro definition contains spaces "
19064 "in formal argument list:\n`%s'"),
19065 body);
19066
19067 while (*p == ' ')
19068 p++;
19069 }
19070
19071 return p;
19072 }
19073
19074
19075 static void
19076 parse_macro_definition (struct macro_source_file *file, int line,
19077 const char *body)
19078 {
19079 const char *p;
19080
19081 /* The body string takes one of two forms. For object-like macro
19082 definitions, it should be:
19083
19084 <macro name> " " <definition>
19085
19086 For function-like macro definitions, it should be:
19087
19088 <macro name> "() " <definition>
19089 or
19090 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19091
19092 Spaces may appear only where explicitly indicated, and in the
19093 <definition>.
19094
19095 The Dwarf 2 spec says that an object-like macro's name is always
19096 followed by a space, but versions of GCC around March 2002 omit
19097 the space when the macro's definition is the empty string.
19098
19099 The Dwarf 2 spec says that there should be no spaces between the
19100 formal arguments in a function-like macro's formal argument list,
19101 but versions of GCC around March 2002 include spaces after the
19102 commas. */
19103
19104
19105 /* Find the extent of the macro name. The macro name is terminated
19106 by either a space or null character (for an object-like macro) or
19107 an opening paren (for a function-like macro). */
19108 for (p = body; *p; p++)
19109 if (*p == ' ' || *p == '(')
19110 break;
19111
19112 if (*p == ' ' || *p == '\0')
19113 {
19114 /* It's an object-like macro. */
19115 int name_len = p - body;
19116 char *name = copy_string (body, name_len);
19117 const char *replacement;
19118
19119 if (*p == ' ')
19120 replacement = body + name_len + 1;
19121 else
19122 {
19123 dwarf2_macro_malformed_definition_complaint (body);
19124 replacement = body + name_len;
19125 }
19126
19127 macro_define_object (file, line, name, replacement);
19128
19129 xfree (name);
19130 }
19131 else if (*p == '(')
19132 {
19133 /* It's a function-like macro. */
19134 char *name = copy_string (body, p - body);
19135 int argc = 0;
19136 int argv_size = 1;
19137 char **argv = xmalloc (argv_size * sizeof (*argv));
19138
19139 p++;
19140
19141 p = consume_improper_spaces (p, body);
19142
19143 /* Parse the formal argument list. */
19144 while (*p && *p != ')')
19145 {
19146 /* Find the extent of the current argument name. */
19147 const char *arg_start = p;
19148
19149 while (*p && *p != ',' && *p != ')' && *p != ' ')
19150 p++;
19151
19152 if (! *p || p == arg_start)
19153 dwarf2_macro_malformed_definition_complaint (body);
19154 else
19155 {
19156 /* Make sure argv has room for the new argument. */
19157 if (argc >= argv_size)
19158 {
19159 argv_size *= 2;
19160 argv = xrealloc (argv, argv_size * sizeof (*argv));
19161 }
19162
19163 argv[argc++] = copy_string (arg_start, p - arg_start);
19164 }
19165
19166 p = consume_improper_spaces (p, body);
19167
19168 /* Consume the comma, if present. */
19169 if (*p == ',')
19170 {
19171 p++;
19172
19173 p = consume_improper_spaces (p, body);
19174 }
19175 }
19176
19177 if (*p == ')')
19178 {
19179 p++;
19180
19181 if (*p == ' ')
19182 /* Perfectly formed definition, no complaints. */
19183 macro_define_function (file, line, name,
19184 argc, (const char **) argv,
19185 p + 1);
19186 else if (*p == '\0')
19187 {
19188 /* Complain, but do define it. */
19189 dwarf2_macro_malformed_definition_complaint (body);
19190 macro_define_function (file, line, name,
19191 argc, (const char **) argv,
19192 p);
19193 }
19194 else
19195 /* Just complain. */
19196 dwarf2_macro_malformed_definition_complaint (body);
19197 }
19198 else
19199 /* Just complain. */
19200 dwarf2_macro_malformed_definition_complaint (body);
19201
19202 xfree (name);
19203 {
19204 int i;
19205
19206 for (i = 0; i < argc; i++)
19207 xfree (argv[i]);
19208 }
19209 xfree (argv);
19210 }
19211 else
19212 dwarf2_macro_malformed_definition_complaint (body);
19213 }
19214
19215 /* Skip some bytes from BYTES according to the form given in FORM.
19216 Returns the new pointer. */
19217
19218 static const gdb_byte *
19219 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19220 enum dwarf_form form,
19221 unsigned int offset_size,
19222 struct dwarf2_section_info *section)
19223 {
19224 unsigned int bytes_read;
19225
19226 switch (form)
19227 {
19228 case DW_FORM_data1:
19229 case DW_FORM_flag:
19230 ++bytes;
19231 break;
19232
19233 case DW_FORM_data2:
19234 bytes += 2;
19235 break;
19236
19237 case DW_FORM_data4:
19238 bytes += 4;
19239 break;
19240
19241 case DW_FORM_data8:
19242 bytes += 8;
19243 break;
19244
19245 case DW_FORM_string:
19246 read_direct_string (abfd, bytes, &bytes_read);
19247 bytes += bytes_read;
19248 break;
19249
19250 case DW_FORM_sec_offset:
19251 case DW_FORM_strp:
19252 case DW_FORM_GNU_strp_alt:
19253 bytes += offset_size;
19254 break;
19255
19256 case DW_FORM_block:
19257 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19258 bytes += bytes_read;
19259 break;
19260
19261 case DW_FORM_block1:
19262 bytes += 1 + read_1_byte (abfd, bytes);
19263 break;
19264 case DW_FORM_block2:
19265 bytes += 2 + read_2_bytes (abfd, bytes);
19266 break;
19267 case DW_FORM_block4:
19268 bytes += 4 + read_4_bytes (abfd, bytes);
19269 break;
19270
19271 case DW_FORM_sdata:
19272 case DW_FORM_udata:
19273 case DW_FORM_GNU_addr_index:
19274 case DW_FORM_GNU_str_index:
19275 bytes = gdb_skip_leb128 (bytes, buffer_end);
19276 if (bytes == NULL)
19277 {
19278 dwarf2_section_buffer_overflow_complaint (section);
19279 return NULL;
19280 }
19281 break;
19282
19283 default:
19284 {
19285 complain:
19286 complaint (&symfile_complaints,
19287 _("invalid form 0x%x in `%s'"),
19288 form,
19289 section->asection->name);
19290 return NULL;
19291 }
19292 }
19293
19294 return bytes;
19295 }
19296
19297 /* A helper for dwarf_decode_macros that handles skipping an unknown
19298 opcode. Returns an updated pointer to the macro data buffer; or,
19299 on error, issues a complaint and returns NULL. */
19300
19301 static const gdb_byte *
19302 skip_unknown_opcode (unsigned int opcode,
19303 const gdb_byte **opcode_definitions,
19304 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19305 bfd *abfd,
19306 unsigned int offset_size,
19307 struct dwarf2_section_info *section)
19308 {
19309 unsigned int bytes_read, i;
19310 unsigned long arg;
19311 const gdb_byte *defn;
19312
19313 if (opcode_definitions[opcode] == NULL)
19314 {
19315 complaint (&symfile_complaints,
19316 _("unrecognized DW_MACFINO opcode 0x%x"),
19317 opcode);
19318 return NULL;
19319 }
19320
19321 defn = opcode_definitions[opcode];
19322 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19323 defn += bytes_read;
19324
19325 for (i = 0; i < arg; ++i)
19326 {
19327 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19328 section);
19329 if (mac_ptr == NULL)
19330 {
19331 /* skip_form_bytes already issued the complaint. */
19332 return NULL;
19333 }
19334 }
19335
19336 return mac_ptr;
19337 }
19338
19339 /* A helper function which parses the header of a macro section.
19340 If the macro section is the extended (for now called "GNU") type,
19341 then this updates *OFFSET_SIZE. Returns a pointer to just after
19342 the header, or issues a complaint and returns NULL on error. */
19343
19344 static const gdb_byte *
19345 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19346 bfd *abfd,
19347 const gdb_byte *mac_ptr,
19348 unsigned int *offset_size,
19349 int section_is_gnu)
19350 {
19351 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19352
19353 if (section_is_gnu)
19354 {
19355 unsigned int version, flags;
19356
19357 version = read_2_bytes (abfd, mac_ptr);
19358 if (version != 4)
19359 {
19360 complaint (&symfile_complaints,
19361 _("unrecognized version `%d' in .debug_macro section"),
19362 version);
19363 return NULL;
19364 }
19365 mac_ptr += 2;
19366
19367 flags = read_1_byte (abfd, mac_ptr);
19368 ++mac_ptr;
19369 *offset_size = (flags & 1) ? 8 : 4;
19370
19371 if ((flags & 2) != 0)
19372 /* We don't need the line table offset. */
19373 mac_ptr += *offset_size;
19374
19375 /* Vendor opcode descriptions. */
19376 if ((flags & 4) != 0)
19377 {
19378 unsigned int i, count;
19379
19380 count = read_1_byte (abfd, mac_ptr);
19381 ++mac_ptr;
19382 for (i = 0; i < count; ++i)
19383 {
19384 unsigned int opcode, bytes_read;
19385 unsigned long arg;
19386
19387 opcode = read_1_byte (abfd, mac_ptr);
19388 ++mac_ptr;
19389 opcode_definitions[opcode] = mac_ptr;
19390 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19391 mac_ptr += bytes_read;
19392 mac_ptr += arg;
19393 }
19394 }
19395 }
19396
19397 return mac_ptr;
19398 }
19399
19400 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19401 including DW_MACRO_GNU_transparent_include. */
19402
19403 static void
19404 dwarf_decode_macro_bytes (bfd *abfd,
19405 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19406 struct macro_source_file *current_file,
19407 struct line_header *lh, const char *comp_dir,
19408 struct dwarf2_section_info *section,
19409 int section_is_gnu, int section_is_dwz,
19410 unsigned int offset_size,
19411 struct objfile *objfile,
19412 htab_t include_hash)
19413 {
19414 enum dwarf_macro_record_type macinfo_type;
19415 int at_commandline;
19416 const gdb_byte *opcode_definitions[256];
19417
19418 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19419 &offset_size, section_is_gnu);
19420 if (mac_ptr == NULL)
19421 {
19422 /* We already issued a complaint. */
19423 return;
19424 }
19425
19426 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19427 GDB is still reading the definitions from command line. First
19428 DW_MACINFO_start_file will need to be ignored as it was already executed
19429 to create CURRENT_FILE for the main source holding also the command line
19430 definitions. On first met DW_MACINFO_start_file this flag is reset to
19431 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19432
19433 at_commandline = 1;
19434
19435 do
19436 {
19437 /* Do we at least have room for a macinfo type byte? */
19438 if (mac_ptr >= mac_end)
19439 {
19440 dwarf2_section_buffer_overflow_complaint (section);
19441 break;
19442 }
19443
19444 macinfo_type = read_1_byte (abfd, mac_ptr);
19445 mac_ptr++;
19446
19447 /* Note that we rely on the fact that the corresponding GNU and
19448 DWARF constants are the same. */
19449 switch (macinfo_type)
19450 {
19451 /* A zero macinfo type indicates the end of the macro
19452 information. */
19453 case 0:
19454 break;
19455
19456 case DW_MACRO_GNU_define:
19457 case DW_MACRO_GNU_undef:
19458 case DW_MACRO_GNU_define_indirect:
19459 case DW_MACRO_GNU_undef_indirect:
19460 case DW_MACRO_GNU_define_indirect_alt:
19461 case DW_MACRO_GNU_undef_indirect_alt:
19462 {
19463 unsigned int bytes_read;
19464 int line;
19465 const char *body;
19466 int is_define;
19467
19468 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19469 mac_ptr += bytes_read;
19470
19471 if (macinfo_type == DW_MACRO_GNU_define
19472 || macinfo_type == DW_MACRO_GNU_undef)
19473 {
19474 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19475 mac_ptr += bytes_read;
19476 }
19477 else
19478 {
19479 LONGEST str_offset;
19480
19481 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19482 mac_ptr += offset_size;
19483
19484 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19485 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19486 || section_is_dwz)
19487 {
19488 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19489
19490 body = read_indirect_string_from_dwz (dwz, str_offset);
19491 }
19492 else
19493 body = read_indirect_string_at_offset (abfd, str_offset);
19494 }
19495
19496 is_define = (macinfo_type == DW_MACRO_GNU_define
19497 || macinfo_type == DW_MACRO_GNU_define_indirect
19498 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19499 if (! current_file)
19500 {
19501 /* DWARF violation as no main source is present. */
19502 complaint (&symfile_complaints,
19503 _("debug info with no main source gives macro %s "
19504 "on line %d: %s"),
19505 is_define ? _("definition") : _("undefinition"),
19506 line, body);
19507 break;
19508 }
19509 if ((line == 0 && !at_commandline)
19510 || (line != 0 && at_commandline))
19511 complaint (&symfile_complaints,
19512 _("debug info gives %s macro %s with %s line %d: %s"),
19513 at_commandline ? _("command-line") : _("in-file"),
19514 is_define ? _("definition") : _("undefinition"),
19515 line == 0 ? _("zero") : _("non-zero"), line, body);
19516
19517 if (is_define)
19518 parse_macro_definition (current_file, line, body);
19519 else
19520 {
19521 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19522 || macinfo_type == DW_MACRO_GNU_undef_indirect
19523 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19524 macro_undef (current_file, line, body);
19525 }
19526 }
19527 break;
19528
19529 case DW_MACRO_GNU_start_file:
19530 {
19531 unsigned int bytes_read;
19532 int line, file;
19533
19534 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19535 mac_ptr += bytes_read;
19536 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19537 mac_ptr += bytes_read;
19538
19539 if ((line == 0 && !at_commandline)
19540 || (line != 0 && at_commandline))
19541 complaint (&symfile_complaints,
19542 _("debug info gives source %d included "
19543 "from %s at %s line %d"),
19544 file, at_commandline ? _("command-line") : _("file"),
19545 line == 0 ? _("zero") : _("non-zero"), line);
19546
19547 if (at_commandline)
19548 {
19549 /* This DW_MACRO_GNU_start_file was executed in the
19550 pass one. */
19551 at_commandline = 0;
19552 }
19553 else
19554 current_file = macro_start_file (file, line,
19555 current_file, comp_dir,
19556 lh, objfile);
19557 }
19558 break;
19559
19560 case DW_MACRO_GNU_end_file:
19561 if (! current_file)
19562 complaint (&symfile_complaints,
19563 _("macro debug info has an unmatched "
19564 "`close_file' directive"));
19565 else
19566 {
19567 current_file = current_file->included_by;
19568 if (! current_file)
19569 {
19570 enum dwarf_macro_record_type next_type;
19571
19572 /* GCC circa March 2002 doesn't produce the zero
19573 type byte marking the end of the compilation
19574 unit. Complain if it's not there, but exit no
19575 matter what. */
19576
19577 /* Do we at least have room for a macinfo type byte? */
19578 if (mac_ptr >= mac_end)
19579 {
19580 dwarf2_section_buffer_overflow_complaint (section);
19581 return;
19582 }
19583
19584 /* We don't increment mac_ptr here, so this is just
19585 a look-ahead. */
19586 next_type = read_1_byte (abfd, mac_ptr);
19587 if (next_type != 0)
19588 complaint (&symfile_complaints,
19589 _("no terminating 0-type entry for "
19590 "macros in `.debug_macinfo' section"));
19591
19592 return;
19593 }
19594 }
19595 break;
19596
19597 case DW_MACRO_GNU_transparent_include:
19598 case DW_MACRO_GNU_transparent_include_alt:
19599 {
19600 LONGEST offset;
19601 void **slot;
19602 bfd *include_bfd = abfd;
19603 struct dwarf2_section_info *include_section = section;
19604 struct dwarf2_section_info alt_section;
19605 const gdb_byte *include_mac_end = mac_end;
19606 int is_dwz = section_is_dwz;
19607 const gdb_byte *new_mac_ptr;
19608
19609 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19610 mac_ptr += offset_size;
19611
19612 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19613 {
19614 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19615
19616 dwarf2_read_section (dwarf2_per_objfile->objfile,
19617 &dwz->macro);
19618
19619 include_bfd = dwz->macro.asection->owner;
19620 include_section = &dwz->macro;
19621 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19622 is_dwz = 1;
19623 }
19624
19625 new_mac_ptr = include_section->buffer + offset;
19626 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19627
19628 if (*slot != NULL)
19629 {
19630 /* This has actually happened; see
19631 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19632 complaint (&symfile_complaints,
19633 _("recursive DW_MACRO_GNU_transparent_include in "
19634 ".debug_macro section"));
19635 }
19636 else
19637 {
19638 *slot = (void *) new_mac_ptr;
19639
19640 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19641 include_mac_end, current_file,
19642 lh, comp_dir,
19643 section, section_is_gnu, is_dwz,
19644 offset_size, objfile, include_hash);
19645
19646 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19647 }
19648 }
19649 break;
19650
19651 case DW_MACINFO_vendor_ext:
19652 if (!section_is_gnu)
19653 {
19654 unsigned int bytes_read;
19655 int constant;
19656
19657 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19658 mac_ptr += bytes_read;
19659 read_direct_string (abfd, mac_ptr, &bytes_read);
19660 mac_ptr += bytes_read;
19661
19662 /* We don't recognize any vendor extensions. */
19663 break;
19664 }
19665 /* FALLTHROUGH */
19666
19667 default:
19668 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19669 mac_ptr, mac_end, abfd, offset_size,
19670 section);
19671 if (mac_ptr == NULL)
19672 return;
19673 break;
19674 }
19675 } while (macinfo_type != 0);
19676 }
19677
19678 static void
19679 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19680 const char *comp_dir, int section_is_gnu)
19681 {
19682 struct objfile *objfile = dwarf2_per_objfile->objfile;
19683 struct line_header *lh = cu->line_header;
19684 bfd *abfd;
19685 const gdb_byte *mac_ptr, *mac_end;
19686 struct macro_source_file *current_file = 0;
19687 enum dwarf_macro_record_type macinfo_type;
19688 unsigned int offset_size = cu->header.offset_size;
19689 const gdb_byte *opcode_definitions[256];
19690 struct cleanup *cleanup;
19691 htab_t include_hash;
19692 void **slot;
19693 struct dwarf2_section_info *section;
19694 const char *section_name;
19695
19696 if (cu->dwo_unit != NULL)
19697 {
19698 if (section_is_gnu)
19699 {
19700 section = &cu->dwo_unit->dwo_file->sections.macro;
19701 section_name = ".debug_macro.dwo";
19702 }
19703 else
19704 {
19705 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19706 section_name = ".debug_macinfo.dwo";
19707 }
19708 }
19709 else
19710 {
19711 if (section_is_gnu)
19712 {
19713 section = &dwarf2_per_objfile->macro;
19714 section_name = ".debug_macro";
19715 }
19716 else
19717 {
19718 section = &dwarf2_per_objfile->macinfo;
19719 section_name = ".debug_macinfo";
19720 }
19721 }
19722
19723 dwarf2_read_section (objfile, section);
19724 if (section->buffer == NULL)
19725 {
19726 complaint (&symfile_complaints, _("missing %s section"), section_name);
19727 return;
19728 }
19729 abfd = section->asection->owner;
19730
19731 /* First pass: Find the name of the base filename.
19732 This filename is needed in order to process all macros whose definition
19733 (or undefinition) comes from the command line. These macros are defined
19734 before the first DW_MACINFO_start_file entry, and yet still need to be
19735 associated to the base file.
19736
19737 To determine the base file name, we scan the macro definitions until we
19738 reach the first DW_MACINFO_start_file entry. We then initialize
19739 CURRENT_FILE accordingly so that any macro definition found before the
19740 first DW_MACINFO_start_file can still be associated to the base file. */
19741
19742 mac_ptr = section->buffer + offset;
19743 mac_end = section->buffer + section->size;
19744
19745 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19746 &offset_size, section_is_gnu);
19747 if (mac_ptr == NULL)
19748 {
19749 /* We already issued a complaint. */
19750 return;
19751 }
19752
19753 do
19754 {
19755 /* Do we at least have room for a macinfo type byte? */
19756 if (mac_ptr >= mac_end)
19757 {
19758 /* Complaint is printed during the second pass as GDB will probably
19759 stop the first pass earlier upon finding
19760 DW_MACINFO_start_file. */
19761 break;
19762 }
19763
19764 macinfo_type = read_1_byte (abfd, mac_ptr);
19765 mac_ptr++;
19766
19767 /* Note that we rely on the fact that the corresponding GNU and
19768 DWARF constants are the same. */
19769 switch (macinfo_type)
19770 {
19771 /* A zero macinfo type indicates the end of the macro
19772 information. */
19773 case 0:
19774 break;
19775
19776 case DW_MACRO_GNU_define:
19777 case DW_MACRO_GNU_undef:
19778 /* Only skip the data by MAC_PTR. */
19779 {
19780 unsigned int bytes_read;
19781
19782 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19783 mac_ptr += bytes_read;
19784 read_direct_string (abfd, mac_ptr, &bytes_read);
19785 mac_ptr += bytes_read;
19786 }
19787 break;
19788
19789 case DW_MACRO_GNU_start_file:
19790 {
19791 unsigned int bytes_read;
19792 int line, file;
19793
19794 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19795 mac_ptr += bytes_read;
19796 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19797 mac_ptr += bytes_read;
19798
19799 current_file = macro_start_file (file, line, current_file,
19800 comp_dir, lh, objfile);
19801 }
19802 break;
19803
19804 case DW_MACRO_GNU_end_file:
19805 /* No data to skip by MAC_PTR. */
19806 break;
19807
19808 case DW_MACRO_GNU_define_indirect:
19809 case DW_MACRO_GNU_undef_indirect:
19810 case DW_MACRO_GNU_define_indirect_alt:
19811 case DW_MACRO_GNU_undef_indirect_alt:
19812 {
19813 unsigned int bytes_read;
19814
19815 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19816 mac_ptr += bytes_read;
19817 mac_ptr += offset_size;
19818 }
19819 break;
19820
19821 case DW_MACRO_GNU_transparent_include:
19822 case DW_MACRO_GNU_transparent_include_alt:
19823 /* Note that, according to the spec, a transparent include
19824 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19825 skip this opcode. */
19826 mac_ptr += offset_size;
19827 break;
19828
19829 case DW_MACINFO_vendor_ext:
19830 /* Only skip the data by MAC_PTR. */
19831 if (!section_is_gnu)
19832 {
19833 unsigned int bytes_read;
19834
19835 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19836 mac_ptr += bytes_read;
19837 read_direct_string (abfd, mac_ptr, &bytes_read);
19838 mac_ptr += bytes_read;
19839 }
19840 /* FALLTHROUGH */
19841
19842 default:
19843 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19844 mac_ptr, mac_end, abfd, offset_size,
19845 section);
19846 if (mac_ptr == NULL)
19847 return;
19848 break;
19849 }
19850 } while (macinfo_type != 0 && current_file == NULL);
19851
19852 /* Second pass: Process all entries.
19853
19854 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19855 command-line macro definitions/undefinitions. This flag is unset when we
19856 reach the first DW_MACINFO_start_file entry. */
19857
19858 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19859 NULL, xcalloc, xfree);
19860 cleanup = make_cleanup_htab_delete (include_hash);
19861 mac_ptr = section->buffer + offset;
19862 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19863 *slot = (void *) mac_ptr;
19864 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19865 current_file, lh, comp_dir, section,
19866 section_is_gnu, 0,
19867 offset_size, objfile, include_hash);
19868 do_cleanups (cleanup);
19869 }
19870
19871 /* Check if the attribute's form is a DW_FORM_block*
19872 if so return true else false. */
19873
19874 static int
19875 attr_form_is_block (const struct attribute *attr)
19876 {
19877 return (attr == NULL ? 0 :
19878 attr->form == DW_FORM_block1
19879 || attr->form == DW_FORM_block2
19880 || attr->form == DW_FORM_block4
19881 || attr->form == DW_FORM_block
19882 || attr->form == DW_FORM_exprloc);
19883 }
19884
19885 /* Return non-zero if ATTR's value is a section offset --- classes
19886 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19887 You may use DW_UNSND (attr) to retrieve such offsets.
19888
19889 Section 7.5.4, "Attribute Encodings", explains that no attribute
19890 may have a value that belongs to more than one of these classes; it
19891 would be ambiguous if we did, because we use the same forms for all
19892 of them. */
19893
19894 static int
19895 attr_form_is_section_offset (const struct attribute *attr)
19896 {
19897 return (attr->form == DW_FORM_data4
19898 || attr->form == DW_FORM_data8
19899 || attr->form == DW_FORM_sec_offset);
19900 }
19901
19902 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19903 zero otherwise. When this function returns true, you can apply
19904 dwarf2_get_attr_constant_value to it.
19905
19906 However, note that for some attributes you must check
19907 attr_form_is_section_offset before using this test. DW_FORM_data4
19908 and DW_FORM_data8 are members of both the constant class, and of
19909 the classes that contain offsets into other debug sections
19910 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19911 that, if an attribute's can be either a constant or one of the
19912 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19913 taken as section offsets, not constants. */
19914
19915 static int
19916 attr_form_is_constant (const struct attribute *attr)
19917 {
19918 switch (attr->form)
19919 {
19920 case DW_FORM_sdata:
19921 case DW_FORM_udata:
19922 case DW_FORM_data1:
19923 case DW_FORM_data2:
19924 case DW_FORM_data4:
19925 case DW_FORM_data8:
19926 return 1;
19927 default:
19928 return 0;
19929 }
19930 }
19931
19932
19933 /* DW_ADDR is always stored already as sect_offset; despite for the forms
19934 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
19935
19936 static int
19937 attr_form_is_ref (const struct attribute *attr)
19938 {
19939 switch (attr->form)
19940 {
19941 case DW_FORM_ref_addr:
19942 case DW_FORM_ref1:
19943 case DW_FORM_ref2:
19944 case DW_FORM_ref4:
19945 case DW_FORM_ref8:
19946 case DW_FORM_ref_udata:
19947 case DW_FORM_GNU_ref_alt:
19948 return 1;
19949 default:
19950 return 0;
19951 }
19952 }
19953
19954 /* Return the .debug_loc section to use for CU.
19955 For DWO files use .debug_loc.dwo. */
19956
19957 static struct dwarf2_section_info *
19958 cu_debug_loc_section (struct dwarf2_cu *cu)
19959 {
19960 if (cu->dwo_unit)
19961 return &cu->dwo_unit->dwo_file->sections.loc;
19962 return &dwarf2_per_objfile->loc;
19963 }
19964
19965 /* A helper function that fills in a dwarf2_loclist_baton. */
19966
19967 static void
19968 fill_in_loclist_baton (struct dwarf2_cu *cu,
19969 struct dwarf2_loclist_baton *baton,
19970 const struct attribute *attr)
19971 {
19972 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19973
19974 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19975
19976 baton->per_cu = cu->per_cu;
19977 gdb_assert (baton->per_cu);
19978 /* We don't know how long the location list is, but make sure we
19979 don't run off the edge of the section. */
19980 baton->size = section->size - DW_UNSND (attr);
19981 baton->data = section->buffer + DW_UNSND (attr);
19982 baton->base_address = cu->base_address;
19983 baton->from_dwo = cu->dwo_unit != NULL;
19984 }
19985
19986 static void
19987 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
19988 struct dwarf2_cu *cu, int is_block)
19989 {
19990 struct objfile *objfile = dwarf2_per_objfile->objfile;
19991 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19992
19993 if (attr_form_is_section_offset (attr)
19994 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19995 the section. If so, fall through to the complaint in the
19996 other branch. */
19997 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19998 {
19999 struct dwarf2_loclist_baton *baton;
20000
20001 baton = obstack_alloc (&objfile->objfile_obstack,
20002 sizeof (struct dwarf2_loclist_baton));
20003
20004 fill_in_loclist_baton (cu, baton, attr);
20005
20006 if (cu->base_known == 0)
20007 complaint (&symfile_complaints,
20008 _("Location list used without "
20009 "specifying the CU base address."));
20010
20011 SYMBOL_ACLASS_INDEX (sym) = (is_block
20012 ? dwarf2_loclist_block_index
20013 : dwarf2_loclist_index);
20014 SYMBOL_LOCATION_BATON (sym) = baton;
20015 }
20016 else
20017 {
20018 struct dwarf2_locexpr_baton *baton;
20019
20020 baton = obstack_alloc (&objfile->objfile_obstack,
20021 sizeof (struct dwarf2_locexpr_baton));
20022 baton->per_cu = cu->per_cu;
20023 gdb_assert (baton->per_cu);
20024
20025 if (attr_form_is_block (attr))
20026 {
20027 /* Note that we're just copying the block's data pointer
20028 here, not the actual data. We're still pointing into the
20029 info_buffer for SYM's objfile; right now we never release
20030 that buffer, but when we do clean up properly this may
20031 need to change. */
20032 baton->size = DW_BLOCK (attr)->size;
20033 baton->data = DW_BLOCK (attr)->data;
20034 }
20035 else
20036 {
20037 dwarf2_invalid_attrib_class_complaint ("location description",
20038 SYMBOL_NATURAL_NAME (sym));
20039 baton->size = 0;
20040 }
20041
20042 SYMBOL_ACLASS_INDEX (sym) = (is_block
20043 ? dwarf2_locexpr_block_index
20044 : dwarf2_locexpr_index);
20045 SYMBOL_LOCATION_BATON (sym) = baton;
20046 }
20047 }
20048
20049 /* Return the OBJFILE associated with the compilation unit CU. If CU
20050 came from a separate debuginfo file, then the master objfile is
20051 returned. */
20052
20053 struct objfile *
20054 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20055 {
20056 struct objfile *objfile = per_cu->objfile;
20057
20058 /* Return the master objfile, so that we can report and look up the
20059 correct file containing this variable. */
20060 if (objfile->separate_debug_objfile_backlink)
20061 objfile = objfile->separate_debug_objfile_backlink;
20062
20063 return objfile;
20064 }
20065
20066 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20067 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20068 CU_HEADERP first. */
20069
20070 static const struct comp_unit_head *
20071 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20072 struct dwarf2_per_cu_data *per_cu)
20073 {
20074 const gdb_byte *info_ptr;
20075
20076 if (per_cu->cu)
20077 return &per_cu->cu->header;
20078
20079 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20080
20081 memset (cu_headerp, 0, sizeof (*cu_headerp));
20082 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20083
20084 return cu_headerp;
20085 }
20086
20087 /* Return the address size given in the compilation unit header for CU. */
20088
20089 int
20090 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20091 {
20092 struct comp_unit_head cu_header_local;
20093 const struct comp_unit_head *cu_headerp;
20094
20095 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20096
20097 return cu_headerp->addr_size;
20098 }
20099
20100 /* Return the offset size given in the compilation unit header for CU. */
20101
20102 int
20103 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20104 {
20105 struct comp_unit_head cu_header_local;
20106 const struct comp_unit_head *cu_headerp;
20107
20108 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20109
20110 return cu_headerp->offset_size;
20111 }
20112
20113 /* See its dwarf2loc.h declaration. */
20114
20115 int
20116 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20117 {
20118 struct comp_unit_head cu_header_local;
20119 const struct comp_unit_head *cu_headerp;
20120
20121 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20122
20123 if (cu_headerp->version == 2)
20124 return cu_headerp->addr_size;
20125 else
20126 return cu_headerp->offset_size;
20127 }
20128
20129 /* Return the text offset of the CU. The returned offset comes from
20130 this CU's objfile. If this objfile came from a separate debuginfo
20131 file, then the offset may be different from the corresponding
20132 offset in the parent objfile. */
20133
20134 CORE_ADDR
20135 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20136 {
20137 struct objfile *objfile = per_cu->objfile;
20138
20139 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20140 }
20141
20142 /* Locate the .debug_info compilation unit from CU's objfile which contains
20143 the DIE at OFFSET. Raises an error on failure. */
20144
20145 static struct dwarf2_per_cu_data *
20146 dwarf2_find_containing_comp_unit (sect_offset offset,
20147 unsigned int offset_in_dwz,
20148 struct objfile *objfile)
20149 {
20150 struct dwarf2_per_cu_data *this_cu;
20151 int low, high;
20152 const sect_offset *cu_off;
20153
20154 low = 0;
20155 high = dwarf2_per_objfile->n_comp_units - 1;
20156 while (high > low)
20157 {
20158 struct dwarf2_per_cu_data *mid_cu;
20159 int mid = low + (high - low) / 2;
20160
20161 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20162 cu_off = &mid_cu->offset;
20163 if (mid_cu->is_dwz > offset_in_dwz
20164 || (mid_cu->is_dwz == offset_in_dwz
20165 && cu_off->sect_off >= offset.sect_off))
20166 high = mid;
20167 else
20168 low = mid + 1;
20169 }
20170 gdb_assert (low == high);
20171 this_cu = dwarf2_per_objfile->all_comp_units[low];
20172 cu_off = &this_cu->offset;
20173 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20174 {
20175 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20176 error (_("Dwarf Error: could not find partial DIE containing "
20177 "offset 0x%lx [in module %s]"),
20178 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20179
20180 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20181 <= offset.sect_off);
20182 return dwarf2_per_objfile->all_comp_units[low-1];
20183 }
20184 else
20185 {
20186 this_cu = dwarf2_per_objfile->all_comp_units[low];
20187 if (low == dwarf2_per_objfile->n_comp_units - 1
20188 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20189 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20190 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20191 return this_cu;
20192 }
20193 }
20194
20195 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20196
20197 static void
20198 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20199 {
20200 memset (cu, 0, sizeof (*cu));
20201 per_cu->cu = cu;
20202 cu->per_cu = per_cu;
20203 cu->objfile = per_cu->objfile;
20204 obstack_init (&cu->comp_unit_obstack);
20205 }
20206
20207 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20208
20209 static void
20210 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20211 enum language pretend_language)
20212 {
20213 struct attribute *attr;
20214
20215 /* Set the language we're debugging. */
20216 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20217 if (attr)
20218 set_cu_language (DW_UNSND (attr), cu);
20219 else
20220 {
20221 cu->language = pretend_language;
20222 cu->language_defn = language_def (cu->language);
20223 }
20224
20225 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20226 if (attr)
20227 cu->producer = DW_STRING (attr);
20228 }
20229
20230 /* Release one cached compilation unit, CU. We unlink it from the tree
20231 of compilation units, but we don't remove it from the read_in_chain;
20232 the caller is responsible for that.
20233 NOTE: DATA is a void * because this function is also used as a
20234 cleanup routine. */
20235
20236 static void
20237 free_heap_comp_unit (void *data)
20238 {
20239 struct dwarf2_cu *cu = data;
20240
20241 gdb_assert (cu->per_cu != NULL);
20242 cu->per_cu->cu = NULL;
20243 cu->per_cu = NULL;
20244
20245 obstack_free (&cu->comp_unit_obstack, NULL);
20246
20247 xfree (cu);
20248 }
20249
20250 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20251 when we're finished with it. We can't free the pointer itself, but be
20252 sure to unlink it from the cache. Also release any associated storage. */
20253
20254 static void
20255 free_stack_comp_unit (void *data)
20256 {
20257 struct dwarf2_cu *cu = data;
20258
20259 gdb_assert (cu->per_cu != NULL);
20260 cu->per_cu->cu = NULL;
20261 cu->per_cu = NULL;
20262
20263 obstack_free (&cu->comp_unit_obstack, NULL);
20264 cu->partial_dies = NULL;
20265 }
20266
20267 /* Free all cached compilation units. */
20268
20269 static void
20270 free_cached_comp_units (void *data)
20271 {
20272 struct dwarf2_per_cu_data *per_cu, **last_chain;
20273
20274 per_cu = dwarf2_per_objfile->read_in_chain;
20275 last_chain = &dwarf2_per_objfile->read_in_chain;
20276 while (per_cu != NULL)
20277 {
20278 struct dwarf2_per_cu_data *next_cu;
20279
20280 next_cu = per_cu->cu->read_in_chain;
20281
20282 free_heap_comp_unit (per_cu->cu);
20283 *last_chain = next_cu;
20284
20285 per_cu = next_cu;
20286 }
20287 }
20288
20289 /* Increase the age counter on each cached compilation unit, and free
20290 any that are too old. */
20291
20292 static void
20293 age_cached_comp_units (void)
20294 {
20295 struct dwarf2_per_cu_data *per_cu, **last_chain;
20296
20297 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20298 per_cu = dwarf2_per_objfile->read_in_chain;
20299 while (per_cu != NULL)
20300 {
20301 per_cu->cu->last_used ++;
20302 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20303 dwarf2_mark (per_cu->cu);
20304 per_cu = per_cu->cu->read_in_chain;
20305 }
20306
20307 per_cu = dwarf2_per_objfile->read_in_chain;
20308 last_chain = &dwarf2_per_objfile->read_in_chain;
20309 while (per_cu != NULL)
20310 {
20311 struct dwarf2_per_cu_data *next_cu;
20312
20313 next_cu = per_cu->cu->read_in_chain;
20314
20315 if (!per_cu->cu->mark)
20316 {
20317 free_heap_comp_unit (per_cu->cu);
20318 *last_chain = next_cu;
20319 }
20320 else
20321 last_chain = &per_cu->cu->read_in_chain;
20322
20323 per_cu = next_cu;
20324 }
20325 }
20326
20327 /* Remove a single compilation unit from the cache. */
20328
20329 static void
20330 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20331 {
20332 struct dwarf2_per_cu_data *per_cu, **last_chain;
20333
20334 per_cu = dwarf2_per_objfile->read_in_chain;
20335 last_chain = &dwarf2_per_objfile->read_in_chain;
20336 while (per_cu != NULL)
20337 {
20338 struct dwarf2_per_cu_data *next_cu;
20339
20340 next_cu = per_cu->cu->read_in_chain;
20341
20342 if (per_cu == target_per_cu)
20343 {
20344 free_heap_comp_unit (per_cu->cu);
20345 per_cu->cu = NULL;
20346 *last_chain = next_cu;
20347 break;
20348 }
20349 else
20350 last_chain = &per_cu->cu->read_in_chain;
20351
20352 per_cu = next_cu;
20353 }
20354 }
20355
20356 /* Release all extra memory associated with OBJFILE. */
20357
20358 void
20359 dwarf2_free_objfile (struct objfile *objfile)
20360 {
20361 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20362
20363 if (dwarf2_per_objfile == NULL)
20364 return;
20365
20366 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20367 free_cached_comp_units (NULL);
20368
20369 if (dwarf2_per_objfile->quick_file_names_table)
20370 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20371
20372 /* Everything else should be on the objfile obstack. */
20373 }
20374
20375 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20376 We store these in a hash table separate from the DIEs, and preserve them
20377 when the DIEs are flushed out of cache.
20378
20379 The CU "per_cu" pointer is needed because offset alone is not enough to
20380 uniquely identify the type. A file may have multiple .debug_types sections,
20381 or the type may come from a DWO file. Furthermore, while it's more logical
20382 to use per_cu->section+offset, with Fission the section with the data is in
20383 the DWO file but we don't know that section at the point we need it.
20384 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20385 because we can enter the lookup routine, get_die_type_at_offset, from
20386 outside this file, and thus won't necessarily have PER_CU->cu.
20387 Fortunately, PER_CU is stable for the life of the objfile. */
20388
20389 struct dwarf2_per_cu_offset_and_type
20390 {
20391 const struct dwarf2_per_cu_data *per_cu;
20392 sect_offset offset;
20393 struct type *type;
20394 };
20395
20396 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20397
20398 static hashval_t
20399 per_cu_offset_and_type_hash (const void *item)
20400 {
20401 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20402
20403 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20404 }
20405
20406 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20407
20408 static int
20409 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20410 {
20411 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20412 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20413
20414 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20415 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20416 }
20417
20418 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20419 table if necessary. For convenience, return TYPE.
20420
20421 The DIEs reading must have careful ordering to:
20422 * Not cause infite loops trying to read in DIEs as a prerequisite for
20423 reading current DIE.
20424 * Not trying to dereference contents of still incompletely read in types
20425 while reading in other DIEs.
20426 * Enable referencing still incompletely read in types just by a pointer to
20427 the type without accessing its fields.
20428
20429 Therefore caller should follow these rules:
20430 * Try to fetch any prerequisite types we may need to build this DIE type
20431 before building the type and calling set_die_type.
20432 * After building type call set_die_type for current DIE as soon as
20433 possible before fetching more types to complete the current type.
20434 * Make the type as complete as possible before fetching more types. */
20435
20436 static struct type *
20437 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20438 {
20439 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20440 struct objfile *objfile = cu->objfile;
20441
20442 /* For Ada types, make sure that the gnat-specific data is always
20443 initialized (if not already set). There are a few types where
20444 we should not be doing so, because the type-specific area is
20445 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20446 where the type-specific area is used to store the floatformat).
20447 But this is not a problem, because the gnat-specific information
20448 is actually not needed for these types. */
20449 if (need_gnat_info (cu)
20450 && TYPE_CODE (type) != TYPE_CODE_FUNC
20451 && TYPE_CODE (type) != TYPE_CODE_FLT
20452 && !HAVE_GNAT_AUX_INFO (type))
20453 INIT_GNAT_SPECIFIC (type);
20454
20455 if (dwarf2_per_objfile->die_type_hash == NULL)
20456 {
20457 dwarf2_per_objfile->die_type_hash =
20458 htab_create_alloc_ex (127,
20459 per_cu_offset_and_type_hash,
20460 per_cu_offset_and_type_eq,
20461 NULL,
20462 &objfile->objfile_obstack,
20463 hashtab_obstack_allocate,
20464 dummy_obstack_deallocate);
20465 }
20466
20467 ofs.per_cu = cu->per_cu;
20468 ofs.offset = die->offset;
20469 ofs.type = type;
20470 slot = (struct dwarf2_per_cu_offset_and_type **)
20471 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20472 if (*slot)
20473 complaint (&symfile_complaints,
20474 _("A problem internal to GDB: DIE 0x%x has type already set"),
20475 die->offset.sect_off);
20476 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20477 **slot = ofs;
20478 return type;
20479 }
20480
20481 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20482 or return NULL if the die does not have a saved type. */
20483
20484 static struct type *
20485 get_die_type_at_offset (sect_offset offset,
20486 struct dwarf2_per_cu_data *per_cu)
20487 {
20488 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20489
20490 if (dwarf2_per_objfile->die_type_hash == NULL)
20491 return NULL;
20492
20493 ofs.per_cu = per_cu;
20494 ofs.offset = offset;
20495 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20496 if (slot)
20497 return slot->type;
20498 else
20499 return NULL;
20500 }
20501
20502 /* Look up the type for DIE in CU in die_type_hash,
20503 or return NULL if DIE does not have a saved type. */
20504
20505 static struct type *
20506 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20507 {
20508 return get_die_type_at_offset (die->offset, cu->per_cu);
20509 }
20510
20511 /* Add a dependence relationship from CU to REF_PER_CU. */
20512
20513 static void
20514 dwarf2_add_dependence (struct dwarf2_cu *cu,
20515 struct dwarf2_per_cu_data *ref_per_cu)
20516 {
20517 void **slot;
20518
20519 if (cu->dependencies == NULL)
20520 cu->dependencies
20521 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20522 NULL, &cu->comp_unit_obstack,
20523 hashtab_obstack_allocate,
20524 dummy_obstack_deallocate);
20525
20526 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20527 if (*slot == NULL)
20528 *slot = ref_per_cu;
20529 }
20530
20531 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20532 Set the mark field in every compilation unit in the
20533 cache that we must keep because we are keeping CU. */
20534
20535 static int
20536 dwarf2_mark_helper (void **slot, void *data)
20537 {
20538 struct dwarf2_per_cu_data *per_cu;
20539
20540 per_cu = (struct dwarf2_per_cu_data *) *slot;
20541
20542 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20543 reading of the chain. As such dependencies remain valid it is not much
20544 useful to track and undo them during QUIT cleanups. */
20545 if (per_cu->cu == NULL)
20546 return 1;
20547
20548 if (per_cu->cu->mark)
20549 return 1;
20550 per_cu->cu->mark = 1;
20551
20552 if (per_cu->cu->dependencies != NULL)
20553 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20554
20555 return 1;
20556 }
20557
20558 /* Set the mark field in CU and in every other compilation unit in the
20559 cache that we must keep because we are keeping CU. */
20560
20561 static void
20562 dwarf2_mark (struct dwarf2_cu *cu)
20563 {
20564 if (cu->mark)
20565 return;
20566 cu->mark = 1;
20567 if (cu->dependencies != NULL)
20568 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20569 }
20570
20571 static void
20572 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20573 {
20574 while (per_cu)
20575 {
20576 per_cu->cu->mark = 0;
20577 per_cu = per_cu->cu->read_in_chain;
20578 }
20579 }
20580
20581 /* Trivial hash function for partial_die_info: the hash value of a DIE
20582 is its offset in .debug_info for this objfile. */
20583
20584 static hashval_t
20585 partial_die_hash (const void *item)
20586 {
20587 const struct partial_die_info *part_die = item;
20588
20589 return part_die->offset.sect_off;
20590 }
20591
20592 /* Trivial comparison function for partial_die_info structures: two DIEs
20593 are equal if they have the same offset. */
20594
20595 static int
20596 partial_die_eq (const void *item_lhs, const void *item_rhs)
20597 {
20598 const struct partial_die_info *part_die_lhs = item_lhs;
20599 const struct partial_die_info *part_die_rhs = item_rhs;
20600
20601 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20602 }
20603
20604 static struct cmd_list_element *set_dwarf2_cmdlist;
20605 static struct cmd_list_element *show_dwarf2_cmdlist;
20606
20607 static void
20608 set_dwarf2_cmd (char *args, int from_tty)
20609 {
20610 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20611 }
20612
20613 static void
20614 show_dwarf2_cmd (char *args, int from_tty)
20615 {
20616 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20617 }
20618
20619 /* Free data associated with OBJFILE, if necessary. */
20620
20621 static void
20622 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20623 {
20624 struct dwarf2_per_objfile *data = d;
20625 int ix;
20626
20627 /* Make sure we don't accidentally use dwarf2_per_objfile while
20628 cleaning up. */
20629 dwarf2_per_objfile = NULL;
20630
20631 for (ix = 0; ix < data->n_comp_units; ++ix)
20632 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
20633
20634 for (ix = 0; ix < data->n_type_units; ++ix)
20635 VEC_free (dwarf2_per_cu_ptr,
20636 data->all_type_units[ix]->per_cu.imported_symtabs);
20637 xfree (data->all_type_units);
20638
20639 VEC_free (dwarf2_section_info_def, data->types);
20640
20641 if (data->dwo_files)
20642 free_dwo_files (data->dwo_files, objfile);
20643 if (data->dwp_file)
20644 gdb_bfd_unref (data->dwp_file->dbfd);
20645
20646 if (data->dwz_file && data->dwz_file->dwz_bfd)
20647 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20648 }
20649
20650 \f
20651 /* The "save gdb-index" command. */
20652
20653 /* The contents of the hash table we create when building the string
20654 table. */
20655 struct strtab_entry
20656 {
20657 offset_type offset;
20658 const char *str;
20659 };
20660
20661 /* Hash function for a strtab_entry.
20662
20663 Function is used only during write_hash_table so no index format backward
20664 compatibility is needed. */
20665
20666 static hashval_t
20667 hash_strtab_entry (const void *e)
20668 {
20669 const struct strtab_entry *entry = e;
20670 return mapped_index_string_hash (INT_MAX, entry->str);
20671 }
20672
20673 /* Equality function for a strtab_entry. */
20674
20675 static int
20676 eq_strtab_entry (const void *a, const void *b)
20677 {
20678 const struct strtab_entry *ea = a;
20679 const struct strtab_entry *eb = b;
20680 return !strcmp (ea->str, eb->str);
20681 }
20682
20683 /* Create a strtab_entry hash table. */
20684
20685 static htab_t
20686 create_strtab (void)
20687 {
20688 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20689 xfree, xcalloc, xfree);
20690 }
20691
20692 /* Add a string to the constant pool. Return the string's offset in
20693 host order. */
20694
20695 static offset_type
20696 add_string (htab_t table, struct obstack *cpool, const char *str)
20697 {
20698 void **slot;
20699 struct strtab_entry entry;
20700 struct strtab_entry *result;
20701
20702 entry.str = str;
20703 slot = htab_find_slot (table, &entry, INSERT);
20704 if (*slot)
20705 result = *slot;
20706 else
20707 {
20708 result = XNEW (struct strtab_entry);
20709 result->offset = obstack_object_size (cpool);
20710 result->str = str;
20711 obstack_grow_str0 (cpool, str);
20712 *slot = result;
20713 }
20714 return result->offset;
20715 }
20716
20717 /* An entry in the symbol table. */
20718 struct symtab_index_entry
20719 {
20720 /* The name of the symbol. */
20721 const char *name;
20722 /* The offset of the name in the constant pool. */
20723 offset_type index_offset;
20724 /* A sorted vector of the indices of all the CUs that hold an object
20725 of this name. */
20726 VEC (offset_type) *cu_indices;
20727 };
20728
20729 /* The symbol table. This is a power-of-2-sized hash table. */
20730 struct mapped_symtab
20731 {
20732 offset_type n_elements;
20733 offset_type size;
20734 struct symtab_index_entry **data;
20735 };
20736
20737 /* Hash function for a symtab_index_entry. */
20738
20739 static hashval_t
20740 hash_symtab_entry (const void *e)
20741 {
20742 const struct symtab_index_entry *entry = e;
20743 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20744 sizeof (offset_type) * VEC_length (offset_type,
20745 entry->cu_indices),
20746 0);
20747 }
20748
20749 /* Equality function for a symtab_index_entry. */
20750
20751 static int
20752 eq_symtab_entry (const void *a, const void *b)
20753 {
20754 const struct symtab_index_entry *ea = a;
20755 const struct symtab_index_entry *eb = b;
20756 int len = VEC_length (offset_type, ea->cu_indices);
20757 if (len != VEC_length (offset_type, eb->cu_indices))
20758 return 0;
20759 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20760 VEC_address (offset_type, eb->cu_indices),
20761 sizeof (offset_type) * len);
20762 }
20763
20764 /* Destroy a symtab_index_entry. */
20765
20766 static void
20767 delete_symtab_entry (void *p)
20768 {
20769 struct symtab_index_entry *entry = p;
20770 VEC_free (offset_type, entry->cu_indices);
20771 xfree (entry);
20772 }
20773
20774 /* Create a hash table holding symtab_index_entry objects. */
20775
20776 static htab_t
20777 create_symbol_hash_table (void)
20778 {
20779 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20780 delete_symtab_entry, xcalloc, xfree);
20781 }
20782
20783 /* Create a new mapped symtab object. */
20784
20785 static struct mapped_symtab *
20786 create_mapped_symtab (void)
20787 {
20788 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20789 symtab->n_elements = 0;
20790 symtab->size = 1024;
20791 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20792 return symtab;
20793 }
20794
20795 /* Destroy a mapped_symtab. */
20796
20797 static void
20798 cleanup_mapped_symtab (void *p)
20799 {
20800 struct mapped_symtab *symtab = p;
20801 /* The contents of the array are freed when the other hash table is
20802 destroyed. */
20803 xfree (symtab->data);
20804 xfree (symtab);
20805 }
20806
20807 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20808 the slot.
20809
20810 Function is used only during write_hash_table so no index format backward
20811 compatibility is needed. */
20812
20813 static struct symtab_index_entry **
20814 find_slot (struct mapped_symtab *symtab, const char *name)
20815 {
20816 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20817
20818 index = hash & (symtab->size - 1);
20819 step = ((hash * 17) & (symtab->size - 1)) | 1;
20820
20821 for (;;)
20822 {
20823 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20824 return &symtab->data[index];
20825 index = (index + step) & (symtab->size - 1);
20826 }
20827 }
20828
20829 /* Expand SYMTAB's hash table. */
20830
20831 static void
20832 hash_expand (struct mapped_symtab *symtab)
20833 {
20834 offset_type old_size = symtab->size;
20835 offset_type i;
20836 struct symtab_index_entry **old_entries = symtab->data;
20837
20838 symtab->size *= 2;
20839 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20840
20841 for (i = 0; i < old_size; ++i)
20842 {
20843 if (old_entries[i])
20844 {
20845 struct symtab_index_entry **slot = find_slot (symtab,
20846 old_entries[i]->name);
20847 *slot = old_entries[i];
20848 }
20849 }
20850
20851 xfree (old_entries);
20852 }
20853
20854 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20855 CU_INDEX is the index of the CU in which the symbol appears.
20856 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20857
20858 static void
20859 add_index_entry (struct mapped_symtab *symtab, const char *name,
20860 int is_static, gdb_index_symbol_kind kind,
20861 offset_type cu_index)
20862 {
20863 struct symtab_index_entry **slot;
20864 offset_type cu_index_and_attrs;
20865
20866 ++symtab->n_elements;
20867 if (4 * symtab->n_elements / 3 >= symtab->size)
20868 hash_expand (symtab);
20869
20870 slot = find_slot (symtab, name);
20871 if (!*slot)
20872 {
20873 *slot = XNEW (struct symtab_index_entry);
20874 (*slot)->name = name;
20875 /* index_offset is set later. */
20876 (*slot)->cu_indices = NULL;
20877 }
20878
20879 cu_index_and_attrs = 0;
20880 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20881 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20882 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20883
20884 /* We don't want to record an index value twice as we want to avoid the
20885 duplication.
20886 We process all global symbols and then all static symbols
20887 (which would allow us to avoid the duplication by only having to check
20888 the last entry pushed), but a symbol could have multiple kinds in one CU.
20889 To keep things simple we don't worry about the duplication here and
20890 sort and uniqufy the list after we've processed all symbols. */
20891 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20892 }
20893
20894 /* qsort helper routine for uniquify_cu_indices. */
20895
20896 static int
20897 offset_type_compare (const void *ap, const void *bp)
20898 {
20899 offset_type a = *(offset_type *) ap;
20900 offset_type b = *(offset_type *) bp;
20901
20902 return (a > b) - (b > a);
20903 }
20904
20905 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20906
20907 static void
20908 uniquify_cu_indices (struct mapped_symtab *symtab)
20909 {
20910 int i;
20911
20912 for (i = 0; i < symtab->size; ++i)
20913 {
20914 struct symtab_index_entry *entry = symtab->data[i];
20915
20916 if (entry
20917 && entry->cu_indices != NULL)
20918 {
20919 unsigned int next_to_insert, next_to_check;
20920 offset_type last_value;
20921
20922 qsort (VEC_address (offset_type, entry->cu_indices),
20923 VEC_length (offset_type, entry->cu_indices),
20924 sizeof (offset_type), offset_type_compare);
20925
20926 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20927 next_to_insert = 1;
20928 for (next_to_check = 1;
20929 next_to_check < VEC_length (offset_type, entry->cu_indices);
20930 ++next_to_check)
20931 {
20932 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20933 != last_value)
20934 {
20935 last_value = VEC_index (offset_type, entry->cu_indices,
20936 next_to_check);
20937 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20938 last_value);
20939 ++next_to_insert;
20940 }
20941 }
20942 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20943 }
20944 }
20945 }
20946
20947 /* Add a vector of indices to the constant pool. */
20948
20949 static offset_type
20950 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20951 struct symtab_index_entry *entry)
20952 {
20953 void **slot;
20954
20955 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20956 if (!*slot)
20957 {
20958 offset_type len = VEC_length (offset_type, entry->cu_indices);
20959 offset_type val = MAYBE_SWAP (len);
20960 offset_type iter;
20961 int i;
20962
20963 *slot = entry;
20964 entry->index_offset = obstack_object_size (cpool);
20965
20966 obstack_grow (cpool, &val, sizeof (val));
20967 for (i = 0;
20968 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20969 ++i)
20970 {
20971 val = MAYBE_SWAP (iter);
20972 obstack_grow (cpool, &val, sizeof (val));
20973 }
20974 }
20975 else
20976 {
20977 struct symtab_index_entry *old_entry = *slot;
20978 entry->index_offset = old_entry->index_offset;
20979 entry = old_entry;
20980 }
20981 return entry->index_offset;
20982 }
20983
20984 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20985 constant pool entries going into the obstack CPOOL. */
20986
20987 static void
20988 write_hash_table (struct mapped_symtab *symtab,
20989 struct obstack *output, struct obstack *cpool)
20990 {
20991 offset_type i;
20992 htab_t symbol_hash_table;
20993 htab_t str_table;
20994
20995 symbol_hash_table = create_symbol_hash_table ();
20996 str_table = create_strtab ();
20997
20998 /* We add all the index vectors to the constant pool first, to
20999 ensure alignment is ok. */
21000 for (i = 0; i < symtab->size; ++i)
21001 {
21002 if (symtab->data[i])
21003 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21004 }
21005
21006 /* Now write out the hash table. */
21007 for (i = 0; i < symtab->size; ++i)
21008 {
21009 offset_type str_off, vec_off;
21010
21011 if (symtab->data[i])
21012 {
21013 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21014 vec_off = symtab->data[i]->index_offset;
21015 }
21016 else
21017 {
21018 /* While 0 is a valid constant pool index, it is not valid
21019 to have 0 for both offsets. */
21020 str_off = 0;
21021 vec_off = 0;
21022 }
21023
21024 str_off = MAYBE_SWAP (str_off);
21025 vec_off = MAYBE_SWAP (vec_off);
21026
21027 obstack_grow (output, &str_off, sizeof (str_off));
21028 obstack_grow (output, &vec_off, sizeof (vec_off));
21029 }
21030
21031 htab_delete (str_table);
21032 htab_delete (symbol_hash_table);
21033 }
21034
21035 /* Struct to map psymtab to CU index in the index file. */
21036 struct psymtab_cu_index_map
21037 {
21038 struct partial_symtab *psymtab;
21039 unsigned int cu_index;
21040 };
21041
21042 static hashval_t
21043 hash_psymtab_cu_index (const void *item)
21044 {
21045 const struct psymtab_cu_index_map *map = item;
21046
21047 return htab_hash_pointer (map->psymtab);
21048 }
21049
21050 static int
21051 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21052 {
21053 const struct psymtab_cu_index_map *lhs = item_lhs;
21054 const struct psymtab_cu_index_map *rhs = item_rhs;
21055
21056 return lhs->psymtab == rhs->psymtab;
21057 }
21058
21059 /* Helper struct for building the address table. */
21060 struct addrmap_index_data
21061 {
21062 struct objfile *objfile;
21063 struct obstack *addr_obstack;
21064 htab_t cu_index_htab;
21065
21066 /* Non-zero if the previous_* fields are valid.
21067 We can't write an entry until we see the next entry (since it is only then
21068 that we know the end of the entry). */
21069 int previous_valid;
21070 /* Index of the CU in the table of all CUs in the index file. */
21071 unsigned int previous_cu_index;
21072 /* Start address of the CU. */
21073 CORE_ADDR previous_cu_start;
21074 };
21075
21076 /* Write an address entry to OBSTACK. */
21077
21078 static void
21079 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21080 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21081 {
21082 offset_type cu_index_to_write;
21083 gdb_byte addr[8];
21084 CORE_ADDR baseaddr;
21085
21086 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21087
21088 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21089 obstack_grow (obstack, addr, 8);
21090 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21091 obstack_grow (obstack, addr, 8);
21092 cu_index_to_write = MAYBE_SWAP (cu_index);
21093 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21094 }
21095
21096 /* Worker function for traversing an addrmap to build the address table. */
21097
21098 static int
21099 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21100 {
21101 struct addrmap_index_data *data = datap;
21102 struct partial_symtab *pst = obj;
21103
21104 if (data->previous_valid)
21105 add_address_entry (data->objfile, data->addr_obstack,
21106 data->previous_cu_start, start_addr,
21107 data->previous_cu_index);
21108
21109 data->previous_cu_start = start_addr;
21110 if (pst != NULL)
21111 {
21112 struct psymtab_cu_index_map find_map, *map;
21113 find_map.psymtab = pst;
21114 map = htab_find (data->cu_index_htab, &find_map);
21115 gdb_assert (map != NULL);
21116 data->previous_cu_index = map->cu_index;
21117 data->previous_valid = 1;
21118 }
21119 else
21120 data->previous_valid = 0;
21121
21122 return 0;
21123 }
21124
21125 /* Write OBJFILE's address map to OBSTACK.
21126 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21127 in the index file. */
21128
21129 static void
21130 write_address_map (struct objfile *objfile, struct obstack *obstack,
21131 htab_t cu_index_htab)
21132 {
21133 struct addrmap_index_data addrmap_index_data;
21134
21135 /* When writing the address table, we have to cope with the fact that
21136 the addrmap iterator only provides the start of a region; we have to
21137 wait until the next invocation to get the start of the next region. */
21138
21139 addrmap_index_data.objfile = objfile;
21140 addrmap_index_data.addr_obstack = obstack;
21141 addrmap_index_data.cu_index_htab = cu_index_htab;
21142 addrmap_index_data.previous_valid = 0;
21143
21144 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21145 &addrmap_index_data);
21146
21147 /* It's highly unlikely the last entry (end address = 0xff...ff)
21148 is valid, but we should still handle it.
21149 The end address is recorded as the start of the next region, but that
21150 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21151 anyway. */
21152 if (addrmap_index_data.previous_valid)
21153 add_address_entry (objfile, obstack,
21154 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21155 addrmap_index_data.previous_cu_index);
21156 }
21157
21158 /* Return the symbol kind of PSYM. */
21159
21160 static gdb_index_symbol_kind
21161 symbol_kind (struct partial_symbol *psym)
21162 {
21163 domain_enum domain = PSYMBOL_DOMAIN (psym);
21164 enum address_class aclass = PSYMBOL_CLASS (psym);
21165
21166 switch (domain)
21167 {
21168 case VAR_DOMAIN:
21169 switch (aclass)
21170 {
21171 case LOC_BLOCK:
21172 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21173 case LOC_TYPEDEF:
21174 return GDB_INDEX_SYMBOL_KIND_TYPE;
21175 case LOC_COMPUTED:
21176 case LOC_CONST_BYTES:
21177 case LOC_OPTIMIZED_OUT:
21178 case LOC_STATIC:
21179 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21180 case LOC_CONST:
21181 /* Note: It's currently impossible to recognize psyms as enum values
21182 short of reading the type info. For now punt. */
21183 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21184 default:
21185 /* There are other LOC_FOO values that one might want to classify
21186 as variables, but dwarf2read.c doesn't currently use them. */
21187 return GDB_INDEX_SYMBOL_KIND_OTHER;
21188 }
21189 case STRUCT_DOMAIN:
21190 return GDB_INDEX_SYMBOL_KIND_TYPE;
21191 default:
21192 return GDB_INDEX_SYMBOL_KIND_OTHER;
21193 }
21194 }
21195
21196 /* Add a list of partial symbols to SYMTAB. */
21197
21198 static void
21199 write_psymbols (struct mapped_symtab *symtab,
21200 htab_t psyms_seen,
21201 struct partial_symbol **psymp,
21202 int count,
21203 offset_type cu_index,
21204 int is_static)
21205 {
21206 for (; count-- > 0; ++psymp)
21207 {
21208 struct partial_symbol *psym = *psymp;
21209 void **slot;
21210
21211 if (SYMBOL_LANGUAGE (psym) == language_ada)
21212 error (_("Ada is not currently supported by the index"));
21213
21214 /* Only add a given psymbol once. */
21215 slot = htab_find_slot (psyms_seen, psym, INSERT);
21216 if (!*slot)
21217 {
21218 gdb_index_symbol_kind kind = symbol_kind (psym);
21219
21220 *slot = psym;
21221 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21222 is_static, kind, cu_index);
21223 }
21224 }
21225 }
21226
21227 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21228 exception if there is an error. */
21229
21230 static void
21231 write_obstack (FILE *file, struct obstack *obstack)
21232 {
21233 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21234 file)
21235 != obstack_object_size (obstack))
21236 error (_("couldn't data write to file"));
21237 }
21238
21239 /* Unlink a file if the argument is not NULL. */
21240
21241 static void
21242 unlink_if_set (void *p)
21243 {
21244 char **filename = p;
21245 if (*filename)
21246 unlink (*filename);
21247 }
21248
21249 /* A helper struct used when iterating over debug_types. */
21250 struct signatured_type_index_data
21251 {
21252 struct objfile *objfile;
21253 struct mapped_symtab *symtab;
21254 struct obstack *types_list;
21255 htab_t psyms_seen;
21256 int cu_index;
21257 };
21258
21259 /* A helper function that writes a single signatured_type to an
21260 obstack. */
21261
21262 static int
21263 write_one_signatured_type (void **slot, void *d)
21264 {
21265 struct signatured_type_index_data *info = d;
21266 struct signatured_type *entry = (struct signatured_type *) *slot;
21267 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21268 gdb_byte val[8];
21269
21270 write_psymbols (info->symtab,
21271 info->psyms_seen,
21272 info->objfile->global_psymbols.list
21273 + psymtab->globals_offset,
21274 psymtab->n_global_syms, info->cu_index,
21275 0);
21276 write_psymbols (info->symtab,
21277 info->psyms_seen,
21278 info->objfile->static_psymbols.list
21279 + psymtab->statics_offset,
21280 psymtab->n_static_syms, info->cu_index,
21281 1);
21282
21283 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21284 entry->per_cu.offset.sect_off);
21285 obstack_grow (info->types_list, val, 8);
21286 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21287 entry->type_offset_in_tu.cu_off);
21288 obstack_grow (info->types_list, val, 8);
21289 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21290 obstack_grow (info->types_list, val, 8);
21291
21292 ++info->cu_index;
21293
21294 return 1;
21295 }
21296
21297 /* Recurse into all "included" dependencies and write their symbols as
21298 if they appeared in this psymtab. */
21299
21300 static void
21301 recursively_write_psymbols (struct objfile *objfile,
21302 struct partial_symtab *psymtab,
21303 struct mapped_symtab *symtab,
21304 htab_t psyms_seen,
21305 offset_type cu_index)
21306 {
21307 int i;
21308
21309 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21310 if (psymtab->dependencies[i]->user != NULL)
21311 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21312 symtab, psyms_seen, cu_index);
21313
21314 write_psymbols (symtab,
21315 psyms_seen,
21316 objfile->global_psymbols.list + psymtab->globals_offset,
21317 psymtab->n_global_syms, cu_index,
21318 0);
21319 write_psymbols (symtab,
21320 psyms_seen,
21321 objfile->static_psymbols.list + psymtab->statics_offset,
21322 psymtab->n_static_syms, cu_index,
21323 1);
21324 }
21325
21326 /* Create an index file for OBJFILE in the directory DIR. */
21327
21328 static void
21329 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21330 {
21331 struct cleanup *cleanup;
21332 char *filename, *cleanup_filename;
21333 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21334 struct obstack cu_list, types_cu_list;
21335 int i;
21336 FILE *out_file;
21337 struct mapped_symtab *symtab;
21338 offset_type val, size_of_contents, total_len;
21339 struct stat st;
21340 htab_t psyms_seen;
21341 htab_t cu_index_htab;
21342 struct psymtab_cu_index_map *psymtab_cu_index_map;
21343
21344 if (dwarf2_per_objfile->using_index)
21345 error (_("Cannot use an index to create the index"));
21346
21347 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21348 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21349
21350 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21351 return;
21352
21353 if (stat (objfile->name, &st) < 0)
21354 perror_with_name (objfile->name);
21355
21356 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21357 INDEX_SUFFIX, (char *) NULL);
21358 cleanup = make_cleanup (xfree, filename);
21359
21360 out_file = gdb_fopen_cloexec (filename, "wb");
21361 if (!out_file)
21362 error (_("Can't open `%s' for writing"), filename);
21363
21364 cleanup_filename = filename;
21365 make_cleanup (unlink_if_set, &cleanup_filename);
21366
21367 symtab = create_mapped_symtab ();
21368 make_cleanup (cleanup_mapped_symtab, symtab);
21369
21370 obstack_init (&addr_obstack);
21371 make_cleanup_obstack_free (&addr_obstack);
21372
21373 obstack_init (&cu_list);
21374 make_cleanup_obstack_free (&cu_list);
21375
21376 obstack_init (&types_cu_list);
21377 make_cleanup_obstack_free (&types_cu_list);
21378
21379 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21380 NULL, xcalloc, xfree);
21381 make_cleanup_htab_delete (psyms_seen);
21382
21383 /* While we're scanning CU's create a table that maps a psymtab pointer
21384 (which is what addrmap records) to its index (which is what is recorded
21385 in the index file). This will later be needed to write the address
21386 table. */
21387 cu_index_htab = htab_create_alloc (100,
21388 hash_psymtab_cu_index,
21389 eq_psymtab_cu_index,
21390 NULL, xcalloc, xfree);
21391 make_cleanup_htab_delete (cu_index_htab);
21392 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21393 xmalloc (sizeof (struct psymtab_cu_index_map)
21394 * dwarf2_per_objfile->n_comp_units);
21395 make_cleanup (xfree, psymtab_cu_index_map);
21396
21397 /* The CU list is already sorted, so we don't need to do additional
21398 work here. Also, the debug_types entries do not appear in
21399 all_comp_units, but only in their own hash table. */
21400 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21401 {
21402 struct dwarf2_per_cu_data *per_cu
21403 = dwarf2_per_objfile->all_comp_units[i];
21404 struct partial_symtab *psymtab = per_cu->v.psymtab;
21405 gdb_byte val[8];
21406 struct psymtab_cu_index_map *map;
21407 void **slot;
21408
21409 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21410 It may be referenced from a local scope but in such case it does not
21411 need to be present in .gdb_index. */
21412 if (psymtab == NULL)
21413 continue;
21414
21415 if (psymtab->user == NULL)
21416 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21417
21418 map = &psymtab_cu_index_map[i];
21419 map->psymtab = psymtab;
21420 map->cu_index = i;
21421 slot = htab_find_slot (cu_index_htab, map, INSERT);
21422 gdb_assert (slot != NULL);
21423 gdb_assert (*slot == NULL);
21424 *slot = map;
21425
21426 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21427 per_cu->offset.sect_off);
21428 obstack_grow (&cu_list, val, 8);
21429 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21430 obstack_grow (&cu_list, val, 8);
21431 }
21432
21433 /* Dump the address map. */
21434 write_address_map (objfile, &addr_obstack, cu_index_htab);
21435
21436 /* Write out the .debug_type entries, if any. */
21437 if (dwarf2_per_objfile->signatured_types)
21438 {
21439 struct signatured_type_index_data sig_data;
21440
21441 sig_data.objfile = objfile;
21442 sig_data.symtab = symtab;
21443 sig_data.types_list = &types_cu_list;
21444 sig_data.psyms_seen = psyms_seen;
21445 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21446 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21447 write_one_signatured_type, &sig_data);
21448 }
21449
21450 /* Now that we've processed all symbols we can shrink their cu_indices
21451 lists. */
21452 uniquify_cu_indices (symtab);
21453
21454 obstack_init (&constant_pool);
21455 make_cleanup_obstack_free (&constant_pool);
21456 obstack_init (&symtab_obstack);
21457 make_cleanup_obstack_free (&symtab_obstack);
21458 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21459
21460 obstack_init (&contents);
21461 make_cleanup_obstack_free (&contents);
21462 size_of_contents = 6 * sizeof (offset_type);
21463 total_len = size_of_contents;
21464
21465 /* The version number. */
21466 val = MAYBE_SWAP (8);
21467 obstack_grow (&contents, &val, sizeof (val));
21468
21469 /* The offset of the CU list from the start of the file. */
21470 val = MAYBE_SWAP (total_len);
21471 obstack_grow (&contents, &val, sizeof (val));
21472 total_len += obstack_object_size (&cu_list);
21473
21474 /* The offset of the types CU list from the start of the file. */
21475 val = MAYBE_SWAP (total_len);
21476 obstack_grow (&contents, &val, sizeof (val));
21477 total_len += obstack_object_size (&types_cu_list);
21478
21479 /* The offset of the address table from the start of the file. */
21480 val = MAYBE_SWAP (total_len);
21481 obstack_grow (&contents, &val, sizeof (val));
21482 total_len += obstack_object_size (&addr_obstack);
21483
21484 /* The offset of the symbol table from the start of the file. */
21485 val = MAYBE_SWAP (total_len);
21486 obstack_grow (&contents, &val, sizeof (val));
21487 total_len += obstack_object_size (&symtab_obstack);
21488
21489 /* The offset of the constant pool from the start of the file. */
21490 val = MAYBE_SWAP (total_len);
21491 obstack_grow (&contents, &val, sizeof (val));
21492 total_len += obstack_object_size (&constant_pool);
21493
21494 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21495
21496 write_obstack (out_file, &contents);
21497 write_obstack (out_file, &cu_list);
21498 write_obstack (out_file, &types_cu_list);
21499 write_obstack (out_file, &addr_obstack);
21500 write_obstack (out_file, &symtab_obstack);
21501 write_obstack (out_file, &constant_pool);
21502
21503 fclose (out_file);
21504
21505 /* We want to keep the file, so we set cleanup_filename to NULL
21506 here. See unlink_if_set. */
21507 cleanup_filename = NULL;
21508
21509 do_cleanups (cleanup);
21510 }
21511
21512 /* Implementation of the `save gdb-index' command.
21513
21514 Note that the file format used by this command is documented in the
21515 GDB manual. Any changes here must be documented there. */
21516
21517 static void
21518 save_gdb_index_command (char *arg, int from_tty)
21519 {
21520 struct objfile *objfile;
21521
21522 if (!arg || !*arg)
21523 error (_("usage: save gdb-index DIRECTORY"));
21524
21525 ALL_OBJFILES (objfile)
21526 {
21527 struct stat st;
21528
21529 /* If the objfile does not correspond to an actual file, skip it. */
21530 if (stat (objfile->name, &st) < 0)
21531 continue;
21532
21533 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21534 if (dwarf2_per_objfile)
21535 {
21536 volatile struct gdb_exception except;
21537
21538 TRY_CATCH (except, RETURN_MASK_ERROR)
21539 {
21540 write_psymtabs_to_index (objfile, arg);
21541 }
21542 if (except.reason < 0)
21543 exception_fprintf (gdb_stderr, except,
21544 _("Error while writing index for `%s': "),
21545 objfile->name);
21546 }
21547 }
21548 }
21549
21550 \f
21551
21552 int dwarf2_always_disassemble;
21553
21554 static void
21555 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21556 struct cmd_list_element *c, const char *value)
21557 {
21558 fprintf_filtered (file,
21559 _("Whether to always disassemble "
21560 "DWARF expressions is %s.\n"),
21561 value);
21562 }
21563
21564 static void
21565 show_check_physname (struct ui_file *file, int from_tty,
21566 struct cmd_list_element *c, const char *value)
21567 {
21568 fprintf_filtered (file,
21569 _("Whether to check \"physname\" is %s.\n"),
21570 value);
21571 }
21572
21573 void _initialize_dwarf2_read (void);
21574
21575 void
21576 _initialize_dwarf2_read (void)
21577 {
21578 struct cmd_list_element *c;
21579
21580 dwarf2_objfile_data_key
21581 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21582
21583 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21584 Set DWARF 2 specific variables.\n\
21585 Configure DWARF 2 variables such as the cache size"),
21586 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21587 0/*allow-unknown*/, &maintenance_set_cmdlist);
21588
21589 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21590 Show DWARF 2 specific variables\n\
21591 Show DWARF 2 variables such as the cache size"),
21592 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21593 0/*allow-unknown*/, &maintenance_show_cmdlist);
21594
21595 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21596 &dwarf2_max_cache_age, _("\
21597 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21598 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21599 A higher limit means that cached compilation units will be stored\n\
21600 in memory longer, and more total memory will be used. Zero disables\n\
21601 caching, which can slow down startup."),
21602 NULL,
21603 show_dwarf2_max_cache_age,
21604 &set_dwarf2_cmdlist,
21605 &show_dwarf2_cmdlist);
21606
21607 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21608 &dwarf2_always_disassemble, _("\
21609 Set whether `info address' always disassembles DWARF expressions."), _("\
21610 Show whether `info address' always disassembles DWARF expressions."), _("\
21611 When enabled, DWARF expressions are always printed in an assembly-like\n\
21612 syntax. When disabled, expressions will be printed in a more\n\
21613 conversational style, when possible."),
21614 NULL,
21615 show_dwarf2_always_disassemble,
21616 &set_dwarf2_cmdlist,
21617 &show_dwarf2_cmdlist);
21618
21619 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21620 Set debugging of the dwarf2 reader."), _("\
21621 Show debugging of the dwarf2 reader."), _("\
21622 When enabled, debugging messages are printed during dwarf2 reading\n\
21623 and symtab expansion."),
21624 NULL,
21625 NULL,
21626 &setdebuglist, &showdebuglist);
21627
21628 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21629 Set debugging of the dwarf2 DIE reader."), _("\
21630 Show debugging of the dwarf2 DIE reader."), _("\
21631 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21632 The value is the maximum depth to print."),
21633 NULL,
21634 NULL,
21635 &setdebuglist, &showdebuglist);
21636
21637 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21638 Set cross-checking of \"physname\" code against demangler."), _("\
21639 Show cross-checking of \"physname\" code against demangler."), _("\
21640 When enabled, GDB's internal \"physname\" code is checked against\n\
21641 the demangler."),
21642 NULL, show_check_physname,
21643 &setdebuglist, &showdebuglist);
21644
21645 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21646 no_class, &use_deprecated_index_sections, _("\
21647 Set whether to use deprecated gdb_index sections."), _("\
21648 Show whether to use deprecated gdb_index sections."), _("\
21649 When enabled, deprecated .gdb_index sections are used anyway.\n\
21650 Normally they are ignored either because of a missing feature or\n\
21651 performance issue.\n\
21652 Warning: This option must be enabled before gdb reads the file."),
21653 NULL,
21654 NULL,
21655 &setlist, &showlist);
21656
21657 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21658 _("\
21659 Save a gdb-index file.\n\
21660 Usage: save gdb-index DIRECTORY"),
21661 &save_cmdlist);
21662 set_cmd_completer (c, filename_completer);
21663
21664 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21665 &dwarf2_locexpr_funcs);
21666 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21667 &dwarf2_loclist_funcs);
21668
21669 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21670 &dwarf2_block_frame_base_locexpr_funcs);
21671 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21672 &dwarf2_block_frame_base_loclist_funcs);
21673 }
This page took 0.6567 seconds and 4 git commands to generate.