gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "elf/dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "expression.h"
40 #include "filenames.h" /* for DOSish file names */
41 #include "macrotab.h"
42 #include "language.h"
43 #include "complaints.h"
44 #include "bcache.h"
45 #include "dwarf2expr.h"
46 #include "dwarf2loc.h"
47 #include "cp-support.h"
48 #include "hashtab.h"
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56
57 /* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71 #ifndef DWARF2_REG_TO_REGNUM
72 #define DWARF2_REG_TO_REGNUM(REG) (REG)
73 #endif
74
75 #if 0
76 /* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79 typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88 _COMP_UNIT_HEADER;
89 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90 #endif
91
92 /* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95 typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105 _PUBNAMES_HEADER;
106 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108 /* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111 typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121 _ARANGES_HEADER;
122 #define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124 /* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127 typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145 _STATEMENT_PROLOGUE;
146
147 static const struct objfile_data *dwarf2_objfile_data_key;
148
149 struct dwarf2_per_objfile
150 {
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 char *info_buffer;
166 char *abbrev_buffer;
167 char *line_buffer;
168 char *str_buffer;
169 char *macinfo_buffer;
170 char *ranges_buffer;
171 char *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183 };
184
185 static struct dwarf2_per_objfile *dwarf2_per_objfile;
186
187 static asection *dwarf_info_section;
188 static asection *dwarf_abbrev_section;
189 static asection *dwarf_line_section;
190 static asection *dwarf_pubnames_section;
191 static asection *dwarf_aranges_section;
192 static asection *dwarf_loc_section;
193 static asection *dwarf_macinfo_section;
194 static asection *dwarf_str_section;
195 static asection *dwarf_ranges_section;
196 asection *dwarf_frame_section;
197 asection *dwarf_eh_frame_section;
198
199 /* names of the debugging sections */
200
201 #define INFO_SECTION ".debug_info"
202 #define ABBREV_SECTION ".debug_abbrev"
203 #define LINE_SECTION ".debug_line"
204 #define PUBNAMES_SECTION ".debug_pubnames"
205 #define ARANGES_SECTION ".debug_aranges"
206 #define LOC_SECTION ".debug_loc"
207 #define MACINFO_SECTION ".debug_macinfo"
208 #define STR_SECTION ".debug_str"
209 #define RANGES_SECTION ".debug_ranges"
210 #define FRAME_SECTION ".debug_frame"
211 #define EH_FRAME_SECTION ".eh_frame"
212
213 /* local data types */
214
215 /* We hold several abbreviation tables in memory at the same time. */
216 #ifndef ABBREV_HASH_SIZE
217 #define ABBREV_HASH_SIZE 121
218 #endif
219
220 /* The data in a compilation unit header, after target2host
221 translation, looks like this. */
222 struct comp_unit_head
223 {
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229
230 /* Size of file offsets; either 4 or 8. */
231 unsigned int offset_size;
232
233 /* Size of the length field; either 4 or 12. */
234 unsigned int initial_length_size;
235
236 /* Offset to the first byte of this compilation unit header in the
237 .debug_info section, for resolving relative reference dies. */
238 unsigned int offset;
239
240 /* Pointer to this compilation unit header in the .debug_info
241 section. */
242 char *cu_head_ptr;
243
244 /* Pointer to the first die of this compilation unit. This will be
245 the first byte following the compilation unit header. */
246 char *first_die_ptr;
247
248 /* Pointer to the next compilation unit header in the program. */
249 struct comp_unit_head *next;
250
251 /* Base address of this compilation unit. */
252 CORE_ADDR base_address;
253
254 /* Non-zero if base_address has been set. */
255 int base_known;
256 };
257
258 /* Fixed size for the DIE hash table. */
259 #ifndef REF_HASH_SIZE
260 #define REF_HASH_SIZE 1021
261 #endif
262
263 /* Internal state when decoding a particular compilation unit. */
264 struct dwarf2_cu
265 {
266 /* The objfile containing this compilation unit. */
267 struct objfile *objfile;
268
269 /* The header of the compilation unit.
270
271 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
272 should logically be moved to the dwarf2_cu structure. */
273 struct comp_unit_head header;
274
275 struct function_range *first_fn, *last_fn, *cached_fn;
276
277 /* The language we are debugging. */
278 enum language language;
279 const struct language_defn *language_defn;
280
281 const char *producer;
282
283 /* The generic symbol table building routines have separate lists for
284 file scope symbols and all all other scopes (local scopes). So
285 we need to select the right one to pass to add_symbol_to_list().
286 We do it by keeping a pointer to the correct list in list_in_scope.
287
288 FIXME: The original dwarf code just treated the file scope as the
289 first local scope, and all other local scopes as nested local
290 scopes, and worked fine. Check to see if we really need to
291 distinguish these in buildsym.c. */
292 struct pending **list_in_scope;
293
294 /* Maintain an array of referenced fundamental types for the current
295 compilation unit being read. For DWARF version 1, we have to construct
296 the fundamental types on the fly, since no information about the
297 fundamental types is supplied. Each such fundamental type is created by
298 calling a language dependent routine to create the type, and then a
299 pointer to that type is then placed in the array at the index specified
300 by it's FT_<TYPENAME> value. The array has a fixed size set by the
301 FT_NUM_MEMBERS compile time constant, which is the number of predefined
302 fundamental types gdb knows how to construct. */
303 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
304
305 /* DWARF abbreviation table associated with this compilation unit. */
306 struct abbrev_info **dwarf2_abbrevs;
307
308 /* Storage for the abbrev table. */
309 struct obstack abbrev_obstack;
310
311 /* Hash table holding all the loaded partial DIEs. */
312 htab_t partial_dies;
313
314 /* Storage for things with the same lifetime as this read-in compilation
315 unit, including partial DIEs. */
316 struct obstack comp_unit_obstack;
317
318 /* When multiple dwarf2_cu structures are living in memory, this field
319 chains them all together, so that they can be released efficiently.
320 We will probably also want a generation counter so that most-recently-used
321 compilation units are cached... */
322 struct dwarf2_per_cu_data *read_in_chain;
323
324 /* Backchain to our per_cu entry if the tree has been built. */
325 struct dwarf2_per_cu_data *per_cu;
326
327 /* How many compilation units ago was this CU last referenced? */
328 int last_used;
329
330 /* A hash table of die offsets for following references. */
331 struct die_info *die_ref_table[REF_HASH_SIZE];
332
333 /* Full DIEs if read in. */
334 struct die_info *dies;
335
336 /* A set of pointers to dwarf2_per_cu_data objects for compilation
337 units referenced by this one. Only set during full symbol processing;
338 partial symbol tables do not have dependencies. */
339 htab_t dependencies;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353 };
354
355 /* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361 struct dwarf2_per_cu_data
362 {
363 /* The start offset and length of this compilation unit. 2**31-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 31;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* Set iff currently read in. */
374 struct dwarf2_cu *cu;
375
376 /* If full symbols for this CU have been read in, then this field
377 holds a map of DIE offsets to types. It isn't always possible
378 to reconstruct this information later, so we have to preserve
379 it. */
380 htab_t type_hash;
381
382 /* The partial symbol table associated with this compilation unit. */
383 struct partial_symtab *psymtab;
384 };
385
386 /* The line number information for a compilation unit (found in the
387 .debug_line section) begins with a "statement program header",
388 which contains the following information. */
389 struct line_header
390 {
391 unsigned int total_length;
392 unsigned short version;
393 unsigned int header_length;
394 unsigned char minimum_instruction_length;
395 unsigned char default_is_stmt;
396 int line_base;
397 unsigned char line_range;
398 unsigned char opcode_base;
399
400 /* standard_opcode_lengths[i] is the number of operands for the
401 standard opcode whose value is i. This means that
402 standard_opcode_lengths[0] is unused, and the last meaningful
403 element is standard_opcode_lengths[opcode_base - 1]. */
404 unsigned char *standard_opcode_lengths;
405
406 /* The include_directories table. NOTE! These strings are not
407 allocated with xmalloc; instead, they are pointers into
408 debug_line_buffer. If you try to free them, `free' will get
409 indigestion. */
410 unsigned int num_include_dirs, include_dirs_size;
411 char **include_dirs;
412
413 /* The file_names table. NOTE! These strings are not allocated
414 with xmalloc; instead, they are pointers into debug_line_buffer.
415 Don't try to free them directly. */
416 unsigned int num_file_names, file_names_size;
417 struct file_entry
418 {
419 char *name;
420 unsigned int dir_index;
421 unsigned int mod_time;
422 unsigned int length;
423 int included_p; /* Non-zero if referenced by the Line Number Program. */
424 } *file_names;
425
426 /* The start and end of the statement program following this
427 header. These point into dwarf2_per_objfile->line_buffer. */
428 char *statement_program_start, *statement_program_end;
429 };
430
431 /* When we construct a partial symbol table entry we only
432 need this much information. */
433 struct partial_die_info
434 {
435 /* Offset of this DIE. */
436 unsigned int offset;
437
438 /* DWARF-2 tag for this DIE. */
439 ENUM_BITFIELD(dwarf_tag) tag : 16;
440
441 /* Language code associated with this DIE. This is only used
442 for the compilation unit DIE. */
443 unsigned int language : 8;
444
445 /* Assorted flags describing the data found in this DIE. */
446 unsigned int has_children : 1;
447 unsigned int is_external : 1;
448 unsigned int is_declaration : 1;
449 unsigned int has_type : 1;
450 unsigned int has_specification : 1;
451 unsigned int has_stmt_list : 1;
452 unsigned int has_pc_info : 1;
453
454 /* Flag set if the SCOPE field of this structure has been
455 computed. */
456 unsigned int scope_set : 1;
457
458 /* The name of this DIE. Normally the value of DW_AT_name, but
459 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
460 other fashion. */
461 char *name;
462 char *dirname;
463
464 /* The scope to prepend to our children. This is generally
465 allocated on the comp_unit_obstack, so will disappear
466 when this compilation unit leaves the cache. */
467 char *scope;
468
469 /* The location description associated with this DIE, if any. */
470 struct dwarf_block *locdesc;
471
472 /* If HAS_PC_INFO, the PC range associated with this DIE. */
473 CORE_ADDR lowpc;
474 CORE_ADDR highpc;
475
476 /* Pointer into the info_buffer pointing at the target of
477 DW_AT_sibling, if any. */
478 char *sibling;
479
480 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
481 DW_AT_specification (or DW_AT_abstract_origin or
482 DW_AT_extension). */
483 unsigned int spec_offset;
484
485 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
486 unsigned int line_offset;
487
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
491 };
492
493 /* This data structure holds the information of an abbrev. */
494 struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504 struct attr_abbrev
505 {
506 enum dwarf_attribute name;
507 enum dwarf_form form;
508 };
509
510 /* This data structure holds a complete die structure. */
511 struct die_info
512 {
513 enum dwarf_tag tag; /* Tag indicating type of die */
514 unsigned int abbrev; /* Abbrev number */
515 unsigned int offset; /* Offset in .debug_info section */
516 unsigned int num_attrs; /* Number of attributes */
517 struct attribute *attrs; /* An array of attributes */
518 struct die_info *next_ref; /* Next die in ref hash table */
519
520 /* The dies in a compilation unit form an n-ary tree. PARENT
521 points to this die's parent; CHILD points to the first child of
522 this node; and all the children of a given node are chained
523 together via their SIBLING fields, terminated by a die whose
524 tag is zero. */
525 struct die_info *child; /* Its first child, if any. */
526 struct die_info *sibling; /* Its next sibling, if any. */
527 struct die_info *parent; /* Its parent, if any. */
528
529 struct type *type; /* Cached type information */
530 };
531
532 /* Attributes have a name and a value */
533 struct attribute
534 {
535 enum dwarf_attribute name;
536 enum dwarf_form form;
537 union
538 {
539 char *str;
540 struct dwarf_block *blk;
541 unsigned long unsnd;
542 long int snd;
543 CORE_ADDR addr;
544 }
545 u;
546 };
547
548 struct function_range
549 {
550 const char *name;
551 CORE_ADDR lowpc, highpc;
552 int seen_line;
553 struct function_range *next;
554 };
555
556 /* Get at parts of an attribute structure */
557
558 #define DW_STRING(attr) ((attr)->u.str)
559 #define DW_UNSND(attr) ((attr)->u.unsnd)
560 #define DW_BLOCK(attr) ((attr)->u.blk)
561 #define DW_SND(attr) ((attr)->u.snd)
562 #define DW_ADDR(attr) ((attr)->u.addr)
563
564 /* Blocks are a bunch of untyped bytes. */
565 struct dwarf_block
566 {
567 unsigned int size;
568 char *data;
569 };
570
571 #ifndef ATTR_ALLOC_CHUNK
572 #define ATTR_ALLOC_CHUNK 4
573 #endif
574
575 /* Allocate fields for structs, unions and enums in this size. */
576 #ifndef DW_FIELD_ALLOC_CHUNK
577 #define DW_FIELD_ALLOC_CHUNK 4
578 #endif
579
580 /* A zeroed version of a partial die for initialization purposes. */
581 static struct partial_die_info zeroed_partial_die;
582
583 /* FIXME: decode_locdesc sets these variables to describe the location
584 to the caller. These ought to be a structure or something. If
585 none of the flags are set, the object lives at the address returned
586 by decode_locdesc. */
587
588 static int isreg; /* Object lives in register.
589 decode_locdesc's return value is
590 the register number. */
591
592 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
593 but this would require a corresponding change in unpack_field_as_long
594 and friends. */
595 static int bits_per_byte = 8;
596
597 /* The routines that read and process dies for a C struct or C++ class
598 pass lists of data member fields and lists of member function fields
599 in an instance of a field_info structure, as defined below. */
600 struct field_info
601 {
602 /* List of data member and baseclasses fields. */
603 struct nextfield
604 {
605 struct nextfield *next;
606 int accessibility;
607 int virtuality;
608 struct field field;
609 }
610 *fields;
611
612 /* Number of fields. */
613 int nfields;
614
615 /* Number of baseclasses. */
616 int nbaseclasses;
617
618 /* Set if the accesibility of one of the fields is not public. */
619 int non_public_fields;
620
621 /* Member function fields array, entries are allocated in the order they
622 are encountered in the object file. */
623 struct nextfnfield
624 {
625 struct nextfnfield *next;
626 struct fn_field fnfield;
627 }
628 *fnfields;
629
630 /* Member function fieldlist array, contains name of possibly overloaded
631 member function, number of overloaded member functions and a pointer
632 to the head of the member function field chain. */
633 struct fnfieldlist
634 {
635 char *name;
636 int length;
637 struct nextfnfield *head;
638 }
639 *fnfieldlists;
640
641 /* Number of entries in the fnfieldlists array. */
642 int nfnfields;
643 };
644
645 /* One item on the queue of compilation units to read in full symbols
646 for. */
647 struct dwarf2_queue_item
648 {
649 struct dwarf2_per_cu_data *per_cu;
650 struct dwarf2_queue_item *next;
651 };
652
653 /* The current queue. */
654 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
655
656 /* Loaded secondary compilation units are kept in memory until they
657 have not been referenced for the processing of this many
658 compilation units. Set this to zero to disable caching. Cache
659 sizes of up to at least twenty will improve startup time for
660 typical inter-CU-reference binaries, at an obvious memory cost. */
661 static int dwarf2_max_cache_age = 5;
662 static void
663 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
664 struct cmd_list_element *c, const char *value)
665 {
666 fprintf_filtered (file, _("\
667 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
668 value);
669 }
670
671
672 /* Various complaints about symbol reading that don't abort the process */
673
674 static void
675 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
676 {
677 complaint (&symfile_complaints,
678 _("statement list doesn't fit in .debug_line section"));
679 }
680
681 static void
682 dwarf2_complex_location_expr_complaint (void)
683 {
684 complaint (&symfile_complaints, _("location expression too complex"));
685 }
686
687 static void
688 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
689 int arg3)
690 {
691 complaint (&symfile_complaints,
692 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
693 arg2, arg3);
694 }
695
696 static void
697 dwarf2_macros_too_long_complaint (void)
698 {
699 complaint (&symfile_complaints,
700 _("macro info runs off end of `.debug_macinfo' section"));
701 }
702
703 static void
704 dwarf2_macro_malformed_definition_complaint (const char *arg1)
705 {
706 complaint (&symfile_complaints,
707 _("macro debug info contains a malformed macro definition:\n`%s'"),
708 arg1);
709 }
710
711 static void
712 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
713 {
714 complaint (&symfile_complaints,
715 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
716 }
717
718 /* local function prototypes */
719
720 static void dwarf2_locate_sections (bfd *, asection *, void *);
721
722 #if 0
723 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
724 #endif
725
726 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
727 struct objfile *);
728
729 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
730 struct partial_die_info *,
731 struct partial_symtab *);
732
733 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
734
735 static void scan_partial_symbols (struct partial_die_info *,
736 CORE_ADDR *, CORE_ADDR *,
737 struct dwarf2_cu *);
738
739 static void add_partial_symbol (struct partial_die_info *,
740 struct dwarf2_cu *);
741
742 static int pdi_needs_namespace (enum dwarf_tag tag);
743
744 static void add_partial_namespace (struct partial_die_info *pdi,
745 CORE_ADDR *lowpc, CORE_ADDR *highpc,
746 struct dwarf2_cu *cu);
747
748 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
749 struct dwarf2_cu *cu);
750
751 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
752 char *info_ptr,
753 bfd *abfd,
754 struct dwarf2_cu *cu);
755
756 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
757
758 static void psymtab_to_symtab_1 (struct partial_symtab *);
759
760 char *dwarf2_read_section (struct objfile *, asection *);
761
762 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
763
764 static void dwarf2_free_abbrev_table (void *);
765
766 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
767
768 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
769 struct dwarf2_cu *);
770
771 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
772 struct dwarf2_cu *);
773
774 static char *read_partial_die (struct partial_die_info *,
775 struct abbrev_info *abbrev, unsigned int,
776 bfd *, char *, struct dwarf2_cu *);
777
778 static struct partial_die_info *find_partial_die (unsigned long,
779 struct dwarf2_cu *);
780
781 static void fixup_partial_die (struct partial_die_info *,
782 struct dwarf2_cu *);
783
784 static char *read_full_die (struct die_info **, bfd *, char *,
785 struct dwarf2_cu *, int *);
786
787 static char *read_attribute (struct attribute *, struct attr_abbrev *,
788 bfd *, char *, struct dwarf2_cu *);
789
790 static char *read_attribute_value (struct attribute *, unsigned,
791 bfd *, char *, struct dwarf2_cu *);
792
793 static unsigned int read_1_byte (bfd *, char *);
794
795 static int read_1_signed_byte (bfd *, char *);
796
797 static unsigned int read_2_bytes (bfd *, char *);
798
799 static unsigned int read_4_bytes (bfd *, char *);
800
801 static unsigned long read_8_bytes (bfd *, char *);
802
803 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
804 int *bytes_read);
805
806 static LONGEST read_initial_length (bfd *, char *,
807 struct comp_unit_head *, int *bytes_read);
808
809 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
810 int *bytes_read);
811
812 static char *read_n_bytes (bfd *, char *, unsigned int);
813
814 static char *read_string (bfd *, char *, unsigned int *);
815
816 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
817 unsigned int *);
818
819 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
820
821 static long read_signed_leb128 (bfd *, char *, unsigned int *);
822
823 static char *skip_leb128 (bfd *, char *);
824
825 static void set_cu_language (unsigned int, struct dwarf2_cu *);
826
827 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
828 struct dwarf2_cu *);
829
830 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
831 struct dwarf2_cu *cu);
832
833 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
834
835 static struct die_info *die_specification (struct die_info *die,
836 struct dwarf2_cu *);
837
838 static void free_line_header (struct line_header *lh);
839
840 static void add_file_name (struct line_header *, char *, unsigned int,
841 unsigned int, unsigned int);
842
843 static struct line_header *(dwarf_decode_line_header
844 (unsigned int offset,
845 bfd *abfd, struct dwarf2_cu *cu));
846
847 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
848 struct dwarf2_cu *, struct partial_symtab *);
849
850 static void dwarf2_start_subfile (char *, char *);
851
852 static struct symbol *new_symbol (struct die_info *, struct type *,
853 struct dwarf2_cu *);
854
855 static void dwarf2_const_value (struct attribute *, struct symbol *,
856 struct dwarf2_cu *);
857
858 static void dwarf2_const_value_data (struct attribute *attr,
859 struct symbol *sym,
860 int bits);
861
862 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
863
864 static struct type *die_containing_type (struct die_info *,
865 struct dwarf2_cu *);
866
867 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
868
869 static void read_type_die (struct die_info *, struct dwarf2_cu *);
870
871 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
872
873 static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
874 struct dwarf2_cu *);
875
876 static void read_typedef (struct die_info *, struct dwarf2_cu *);
877
878 static void read_base_type (struct die_info *, struct dwarf2_cu *);
879
880 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
881
882 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
883
884 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
885
886 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
887
888 static int dwarf2_get_pc_bounds (struct die_info *,
889 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
890
891 static void get_scope_pc_bounds (struct die_info *,
892 CORE_ADDR *, CORE_ADDR *,
893 struct dwarf2_cu *);
894
895 static void dwarf2_add_field (struct field_info *, struct die_info *,
896 struct dwarf2_cu *);
897
898 static void dwarf2_attach_fields_to_type (struct field_info *,
899 struct type *, struct dwarf2_cu *);
900
901 static void dwarf2_add_member_fn (struct field_info *,
902 struct die_info *, struct type *,
903 struct dwarf2_cu *);
904
905 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
906 struct type *, struct dwarf2_cu *);
907
908 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
909
910 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
911
912 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
913
914 static void read_common_block (struct die_info *, struct dwarf2_cu *);
915
916 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
917
918 static const char *namespace_name (struct die_info *die,
919 int *is_anonymous, struct dwarf2_cu *);
920
921 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
922
923 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
924
925 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
926
927 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
928
929 static void read_array_type (struct die_info *, struct dwarf2_cu *);
930
931 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
932 struct dwarf2_cu *);
933
934 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
935
936 static void read_tag_ptr_to_member_type (struct die_info *,
937 struct dwarf2_cu *);
938
939 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
940
941 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
942
943 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
944
945 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
946
947 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
948
949 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
950
951 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
952 struct dwarf2_cu *,
953 char **new_info_ptr,
954 struct die_info *parent);
955
956 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
957 struct dwarf2_cu *,
958 char **new_info_ptr,
959 struct die_info *parent);
960
961 static void free_die_list (struct die_info *);
962
963 static void process_die (struct die_info *, struct dwarf2_cu *);
964
965 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
966
967 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
968
969 static struct die_info *dwarf2_extension (struct die_info *die,
970 struct dwarf2_cu *);
971
972 static char *dwarf_tag_name (unsigned int);
973
974 static char *dwarf_attr_name (unsigned int);
975
976 static char *dwarf_form_name (unsigned int);
977
978 static char *dwarf_stack_op_name (unsigned int);
979
980 static char *dwarf_bool_name (unsigned int);
981
982 static char *dwarf_type_encoding_name (unsigned int);
983
984 #if 0
985 static char *dwarf_cfi_name (unsigned int);
986
987 struct die_info *copy_die (struct die_info *);
988 #endif
989
990 static struct die_info *sibling_die (struct die_info *);
991
992 static void dump_die (struct die_info *);
993
994 static void dump_die_list (struct die_info *);
995
996 static void store_in_ref_table (unsigned int, struct die_info *,
997 struct dwarf2_cu *);
998
999 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1000 struct dwarf2_cu *);
1001
1002 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1003
1004 static struct die_info *follow_die_ref (struct die_info *,
1005 struct attribute *,
1006 struct dwarf2_cu *);
1007
1008 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1009 struct dwarf2_cu *);
1010
1011 /* memory allocation interface */
1012
1013 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1014
1015 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1016
1017 static struct die_info *dwarf_alloc_die (void);
1018
1019 static void initialize_cu_func_list (struct dwarf2_cu *);
1020
1021 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1022 struct dwarf2_cu *);
1023
1024 static void dwarf_decode_macros (struct line_header *, unsigned int,
1025 char *, bfd *, struct dwarf2_cu *);
1026
1027 static int attr_form_is_block (struct attribute *);
1028
1029 static void
1030 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1031 struct dwarf2_cu *cu);
1032
1033 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1034 struct dwarf2_cu *cu);
1035
1036 static void free_stack_comp_unit (void *);
1037
1038 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1039
1040 static void dummy_obstack_deallocate (void *object, void *data);
1041
1042 static hashval_t partial_die_hash (const void *item);
1043
1044 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1045
1046 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1047 (unsigned long offset, struct objfile *objfile);
1048
1049 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1050 (unsigned long offset, struct objfile *objfile);
1051
1052 static void free_one_comp_unit (void *);
1053
1054 static void free_cached_comp_units (void *);
1055
1056 static void age_cached_comp_units (void);
1057
1058 static void free_one_cached_comp_unit (void *);
1059
1060 static void set_die_type (struct die_info *, struct type *,
1061 struct dwarf2_cu *);
1062
1063 static void reset_die_and_siblings_types (struct die_info *,
1064 struct dwarf2_cu *);
1065
1066 static void create_all_comp_units (struct objfile *);
1067
1068 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1069
1070 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1071
1072 static void dwarf2_add_dependence (struct dwarf2_cu *,
1073 struct dwarf2_per_cu_data *);
1074
1075 static void dwarf2_mark (struct dwarf2_cu *);
1076
1077 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1078
1079 /* Try to locate the sections we need for DWARF 2 debugging
1080 information and return true if we have enough to do something. */
1081
1082 int
1083 dwarf2_has_info (struct objfile *objfile)
1084 {
1085 struct dwarf2_per_objfile *data;
1086
1087 /* Initialize per-objfile state. */
1088 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1089 memset (data, 0, sizeof (*data));
1090 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1091 dwarf2_per_objfile = data;
1092
1093 dwarf_info_section = 0;
1094 dwarf_abbrev_section = 0;
1095 dwarf_line_section = 0;
1096 dwarf_str_section = 0;
1097 dwarf_macinfo_section = 0;
1098 dwarf_frame_section = 0;
1099 dwarf_eh_frame_section = 0;
1100 dwarf_ranges_section = 0;
1101 dwarf_loc_section = 0;
1102
1103 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1104 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1105 }
1106
1107 /* This function is mapped across the sections and remembers the
1108 offset and size of each of the debugging sections we are interested
1109 in. */
1110
1111 static void
1112 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1113 {
1114 if (strcmp (sectp->name, INFO_SECTION) == 0)
1115 {
1116 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1117 dwarf_info_section = sectp;
1118 }
1119 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1120 {
1121 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1122 dwarf_abbrev_section = sectp;
1123 }
1124 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1125 {
1126 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1127 dwarf_line_section = sectp;
1128 }
1129 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1130 {
1131 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1132 dwarf_pubnames_section = sectp;
1133 }
1134 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1137 dwarf_aranges_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1142 dwarf_loc_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1147 dwarf_macinfo_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, STR_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1152 dwarf_str_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1157 dwarf_frame_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1160 {
1161 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1162 if (aflag & SEC_HAS_CONTENTS)
1163 {
1164 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1165 dwarf_eh_frame_section = sectp;
1166 }
1167 }
1168 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1169 {
1170 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1171 dwarf_ranges_section = sectp;
1172 }
1173 }
1174
1175 /* Build a partial symbol table. */
1176
1177 void
1178 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1179 {
1180 /* We definitely need the .debug_info and .debug_abbrev sections */
1181
1182 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1183 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1184
1185 if (dwarf_line_section)
1186 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1187 else
1188 dwarf2_per_objfile->line_buffer = NULL;
1189
1190 if (dwarf_str_section)
1191 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1192 else
1193 dwarf2_per_objfile->str_buffer = NULL;
1194
1195 if (dwarf_macinfo_section)
1196 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1197 dwarf_macinfo_section);
1198 else
1199 dwarf2_per_objfile->macinfo_buffer = NULL;
1200
1201 if (dwarf_ranges_section)
1202 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1203 else
1204 dwarf2_per_objfile->ranges_buffer = NULL;
1205
1206 if (dwarf_loc_section)
1207 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1208 else
1209 dwarf2_per_objfile->loc_buffer = NULL;
1210
1211 if (mainline
1212 || (objfile->global_psymbols.size == 0
1213 && objfile->static_psymbols.size == 0))
1214 {
1215 init_psymbol_list (objfile, 1024);
1216 }
1217
1218 #if 0
1219 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1220 {
1221 /* Things are significantly easier if we have .debug_aranges and
1222 .debug_pubnames sections */
1223
1224 dwarf2_build_psymtabs_easy (objfile, mainline);
1225 }
1226 else
1227 #endif
1228 /* only test this case for now */
1229 {
1230 /* In this case we have to work a bit harder */
1231 dwarf2_build_psymtabs_hard (objfile, mainline);
1232 }
1233 }
1234
1235 #if 0
1236 /* Build the partial symbol table from the information in the
1237 .debug_pubnames and .debug_aranges sections. */
1238
1239 static void
1240 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1241 {
1242 bfd *abfd = objfile->obfd;
1243 char *aranges_buffer, *pubnames_buffer;
1244 char *aranges_ptr, *pubnames_ptr;
1245 unsigned int entry_length, version, info_offset, info_size;
1246
1247 pubnames_buffer = dwarf2_read_section (objfile,
1248 dwarf_pubnames_section);
1249 pubnames_ptr = pubnames_buffer;
1250 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1251 {
1252 struct comp_unit_head cu_header;
1253 int bytes_read;
1254
1255 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1256 &bytes_read);
1257 pubnames_ptr += bytes_read;
1258 version = read_1_byte (abfd, pubnames_ptr);
1259 pubnames_ptr += 1;
1260 info_offset = read_4_bytes (abfd, pubnames_ptr);
1261 pubnames_ptr += 4;
1262 info_size = read_4_bytes (abfd, pubnames_ptr);
1263 pubnames_ptr += 4;
1264 }
1265
1266 aranges_buffer = dwarf2_read_section (objfile,
1267 dwarf_aranges_section);
1268
1269 }
1270 #endif
1271
1272 /* Read in the comp unit header information from the debug_info at
1273 info_ptr. */
1274
1275 static char *
1276 read_comp_unit_head (struct comp_unit_head *cu_header,
1277 char *info_ptr, bfd *abfd)
1278 {
1279 int signed_addr;
1280 int bytes_read;
1281 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1282 &bytes_read);
1283 info_ptr += bytes_read;
1284 cu_header->version = read_2_bytes (abfd, info_ptr);
1285 info_ptr += 2;
1286 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1287 &bytes_read);
1288 info_ptr += bytes_read;
1289 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1290 info_ptr += 1;
1291 signed_addr = bfd_get_sign_extend_vma (abfd);
1292 if (signed_addr < 0)
1293 internal_error (__FILE__, __LINE__,
1294 _("read_comp_unit_head: dwarf from non elf file"));
1295 cu_header->signed_addr_p = signed_addr;
1296 return info_ptr;
1297 }
1298
1299 static char *
1300 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1301 bfd *abfd)
1302 {
1303 char *beg_of_comp_unit = info_ptr;
1304
1305 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1306
1307 if (header->version != 2)
1308 error (_("Dwarf Error: wrong version in compilation unit header "
1309 "(is %d, should be %d) [in module %s]"), header->version,
1310 2, bfd_get_filename (abfd));
1311
1312 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1313 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1314 "(offset 0x%lx + 6) [in module %s]"),
1315 (long) header->abbrev_offset,
1316 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1317 bfd_get_filename (abfd));
1318
1319 if (beg_of_comp_unit + header->length + header->initial_length_size
1320 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1321 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1322 "(offset 0x%lx + 0) [in module %s]"),
1323 (long) header->length,
1324 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1325 bfd_get_filename (abfd));
1326
1327 return info_ptr;
1328 }
1329
1330 /* Allocate a new partial symtab for file named NAME and mark this new
1331 partial symtab as being an include of PST. */
1332
1333 static void
1334 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1335 struct objfile *objfile)
1336 {
1337 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1338
1339 subpst->section_offsets = pst->section_offsets;
1340 subpst->textlow = 0;
1341 subpst->texthigh = 0;
1342
1343 subpst->dependencies = (struct partial_symtab **)
1344 obstack_alloc (&objfile->objfile_obstack,
1345 sizeof (struct partial_symtab *));
1346 subpst->dependencies[0] = pst;
1347 subpst->number_of_dependencies = 1;
1348
1349 subpst->globals_offset = 0;
1350 subpst->n_global_syms = 0;
1351 subpst->statics_offset = 0;
1352 subpst->n_static_syms = 0;
1353 subpst->symtab = NULL;
1354 subpst->read_symtab = pst->read_symtab;
1355 subpst->readin = 0;
1356
1357 /* No private part is necessary for include psymtabs. This property
1358 can be used to differentiate between such include psymtabs and
1359 the regular ones. */
1360 subpst->read_symtab_private = NULL;
1361 }
1362
1363 /* Read the Line Number Program data and extract the list of files
1364 included by the source file represented by PST. Build an include
1365 partial symtab for each of these included files.
1366
1367 This procedure assumes that there *is* a Line Number Program in
1368 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1369 before calling this procedure. */
1370
1371 static void
1372 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1373 struct partial_die_info *pdi,
1374 struct partial_symtab *pst)
1375 {
1376 struct objfile *objfile = cu->objfile;
1377 bfd *abfd = objfile->obfd;
1378 struct line_header *lh;
1379
1380 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1381 if (lh == NULL)
1382 return; /* No linetable, so no includes. */
1383
1384 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1385
1386 free_line_header (lh);
1387 }
1388
1389
1390 /* Build the partial symbol table by doing a quick pass through the
1391 .debug_info and .debug_abbrev sections. */
1392
1393 static void
1394 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1395 {
1396 /* Instead of reading this into a big buffer, we should probably use
1397 mmap() on architectures that support it. (FIXME) */
1398 bfd *abfd = objfile->obfd;
1399 char *info_ptr;
1400 char *beg_of_comp_unit;
1401 struct partial_die_info comp_unit_die;
1402 struct partial_symtab *pst;
1403 struct cleanup *back_to;
1404 CORE_ADDR lowpc, highpc, baseaddr;
1405
1406 info_ptr = dwarf2_per_objfile->info_buffer;
1407
1408 /* Any cached compilation units will be linked by the per-objfile
1409 read_in_chain. Make sure to free them when we're done. */
1410 back_to = make_cleanup (free_cached_comp_units, NULL);
1411
1412 create_all_comp_units (objfile);
1413
1414 /* Since the objects we're extracting from .debug_info vary in
1415 length, only the individual functions to extract them (like
1416 read_comp_unit_head and load_partial_die) can really know whether
1417 the buffer is large enough to hold another complete object.
1418
1419 At the moment, they don't actually check that. If .debug_info
1420 holds just one extra byte after the last compilation unit's dies,
1421 then read_comp_unit_head will happily read off the end of the
1422 buffer. read_partial_die is similarly casual. Those functions
1423 should be fixed.
1424
1425 For this loop condition, simply checking whether there's any data
1426 left at all should be sufficient. */
1427 while (info_ptr < (dwarf2_per_objfile->info_buffer
1428 + dwarf2_per_objfile->info_size))
1429 {
1430 struct cleanup *back_to_inner;
1431 struct dwarf2_cu cu;
1432 struct abbrev_info *abbrev;
1433 unsigned int bytes_read;
1434 struct dwarf2_per_cu_data *this_cu;
1435
1436 beg_of_comp_unit = info_ptr;
1437
1438 memset (&cu, 0, sizeof (cu));
1439
1440 obstack_init (&cu.comp_unit_obstack);
1441
1442 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1443
1444 cu.objfile = objfile;
1445 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1446
1447 /* Complete the cu_header */
1448 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1449 cu.header.first_die_ptr = info_ptr;
1450 cu.header.cu_head_ptr = beg_of_comp_unit;
1451
1452 cu.list_in_scope = &file_symbols;
1453
1454 /* Read the abbrevs for this compilation unit into a table */
1455 dwarf2_read_abbrevs (abfd, &cu);
1456 make_cleanup (dwarf2_free_abbrev_table, &cu);
1457
1458 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1459
1460 /* Read the compilation unit die */
1461 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1462 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1463 abfd, info_ptr, &cu);
1464
1465 /* Set the language we're debugging */
1466 set_cu_language (comp_unit_die.language, &cu);
1467
1468 /* Allocate a new partial symbol table structure */
1469 pst = start_psymtab_common (objfile, objfile->section_offsets,
1470 comp_unit_die.name ? comp_unit_die.name : "",
1471 comp_unit_die.lowpc,
1472 objfile->global_psymbols.next,
1473 objfile->static_psymbols.next);
1474
1475 if (comp_unit_die.dirname)
1476 pst->dirname = xstrdup (comp_unit_die.dirname);
1477
1478 pst->read_symtab_private = (char *) this_cu;
1479
1480 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1481
1482 /* Store the function that reads in the rest of the symbol table */
1483 pst->read_symtab = dwarf2_psymtab_to_symtab;
1484
1485 /* If this compilation unit was already read in, free the
1486 cached copy in order to read it in again. This is
1487 necessary because we skipped some symbols when we first
1488 read in the compilation unit (see load_partial_dies).
1489 This problem could be avoided, but the benefit is
1490 unclear. */
1491 if (this_cu->cu != NULL)
1492 free_one_cached_comp_unit (this_cu->cu);
1493
1494 cu.per_cu = this_cu;
1495
1496 /* Note that this is a pointer to our stack frame, being
1497 added to a global data structure. It will be cleaned up
1498 in free_stack_comp_unit when we finish with this
1499 compilation unit. */
1500 this_cu->cu = &cu;
1501
1502 this_cu->psymtab = pst;
1503
1504 /* Check if comp unit has_children.
1505 If so, read the rest of the partial symbols from this comp unit.
1506 If not, there's no more debug_info for this comp unit. */
1507 if (comp_unit_die.has_children)
1508 {
1509 struct partial_die_info *first_die;
1510
1511 lowpc = ((CORE_ADDR) -1);
1512 highpc = ((CORE_ADDR) 0);
1513
1514 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1515
1516 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1517
1518 /* If we didn't find a lowpc, set it to highpc to avoid
1519 complaints from `maint check'. */
1520 if (lowpc == ((CORE_ADDR) -1))
1521 lowpc = highpc;
1522
1523 /* If the compilation unit didn't have an explicit address range,
1524 then use the information extracted from its child dies. */
1525 if (! comp_unit_die.has_pc_info)
1526 {
1527 comp_unit_die.lowpc = lowpc;
1528 comp_unit_die.highpc = highpc;
1529 }
1530 }
1531 pst->textlow = comp_unit_die.lowpc + baseaddr;
1532 pst->texthigh = comp_unit_die.highpc + baseaddr;
1533
1534 pst->n_global_syms = objfile->global_psymbols.next -
1535 (objfile->global_psymbols.list + pst->globals_offset);
1536 pst->n_static_syms = objfile->static_psymbols.next -
1537 (objfile->static_psymbols.list + pst->statics_offset);
1538 sort_pst_symbols (pst);
1539
1540 /* If there is already a psymtab or symtab for a file of this
1541 name, remove it. (If there is a symtab, more drastic things
1542 also happen.) This happens in VxWorks. */
1543 free_named_symtabs (pst->filename);
1544
1545 info_ptr = beg_of_comp_unit + cu.header.length
1546 + cu.header.initial_length_size;
1547
1548 if (comp_unit_die.has_stmt_list)
1549 {
1550 /* Get the list of files included in the current compilation unit,
1551 and build a psymtab for each of them. */
1552 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1553 }
1554
1555 do_cleanups (back_to_inner);
1556 }
1557 do_cleanups (back_to);
1558 }
1559
1560 /* Load the DIEs for a secondary CU into memory. */
1561
1562 static void
1563 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1564 {
1565 bfd *abfd = objfile->obfd;
1566 char *info_ptr, *beg_of_comp_unit;
1567 struct partial_die_info comp_unit_die;
1568 struct dwarf2_cu *cu;
1569 struct abbrev_info *abbrev;
1570 unsigned int bytes_read;
1571 struct cleanup *back_to;
1572
1573 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1574 beg_of_comp_unit = info_ptr;
1575
1576 cu = xmalloc (sizeof (struct dwarf2_cu));
1577 memset (cu, 0, sizeof (struct dwarf2_cu));
1578
1579 obstack_init (&cu->comp_unit_obstack);
1580
1581 cu->objfile = objfile;
1582 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1583
1584 /* Complete the cu_header. */
1585 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1586 cu->header.first_die_ptr = info_ptr;
1587 cu->header.cu_head_ptr = beg_of_comp_unit;
1588
1589 /* Read the abbrevs for this compilation unit into a table. */
1590 dwarf2_read_abbrevs (abfd, cu);
1591 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1592
1593 /* Read the compilation unit die. */
1594 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1595 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1596 abfd, info_ptr, cu);
1597
1598 /* Set the language we're debugging. */
1599 set_cu_language (comp_unit_die.language, cu);
1600
1601 /* Link this compilation unit into the compilation unit tree. */
1602 this_cu->cu = cu;
1603 cu->per_cu = this_cu;
1604
1605 /* Check if comp unit has_children.
1606 If so, read the rest of the partial symbols from this comp unit.
1607 If not, there's no more debug_info for this comp unit. */
1608 if (comp_unit_die.has_children)
1609 load_partial_dies (abfd, info_ptr, 0, cu);
1610
1611 do_cleanups (back_to);
1612 }
1613
1614 /* Create a list of all compilation units in OBJFILE. We do this only
1615 if an inter-comp-unit reference is found; presumably if there is one,
1616 there will be many, and one will occur early in the .debug_info section.
1617 So there's no point in building this list incrementally. */
1618
1619 static void
1620 create_all_comp_units (struct objfile *objfile)
1621 {
1622 int n_allocated;
1623 int n_comp_units;
1624 struct dwarf2_per_cu_data **all_comp_units;
1625 char *info_ptr = dwarf2_per_objfile->info_buffer;
1626
1627 n_comp_units = 0;
1628 n_allocated = 10;
1629 all_comp_units = xmalloc (n_allocated
1630 * sizeof (struct dwarf2_per_cu_data *));
1631
1632 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1633 {
1634 struct comp_unit_head cu_header;
1635 char *beg_of_comp_unit;
1636 struct dwarf2_per_cu_data *this_cu;
1637 unsigned long offset;
1638 int bytes_read;
1639
1640 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1641
1642 /* Read just enough information to find out where the next
1643 compilation unit is. */
1644 cu_header.initial_length_size = 0;
1645 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1646 &cu_header, &bytes_read);
1647
1648 /* Save the compilation unit for later lookup. */
1649 this_cu = obstack_alloc (&objfile->objfile_obstack,
1650 sizeof (struct dwarf2_per_cu_data));
1651 memset (this_cu, 0, sizeof (*this_cu));
1652 this_cu->offset = offset;
1653 this_cu->length = cu_header.length + cu_header.initial_length_size;
1654
1655 if (n_comp_units == n_allocated)
1656 {
1657 n_allocated *= 2;
1658 all_comp_units = xrealloc (all_comp_units,
1659 n_allocated
1660 * sizeof (struct dwarf2_per_cu_data *));
1661 }
1662 all_comp_units[n_comp_units++] = this_cu;
1663
1664 info_ptr = info_ptr + this_cu->length;
1665 }
1666
1667 dwarf2_per_objfile->all_comp_units
1668 = obstack_alloc (&objfile->objfile_obstack,
1669 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1670 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1671 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1672 xfree (all_comp_units);
1673 dwarf2_per_objfile->n_comp_units = n_comp_units;
1674 }
1675
1676 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1677 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1678 in CU. */
1679
1680 static void
1681 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1682 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1683 {
1684 struct objfile *objfile = cu->objfile;
1685 bfd *abfd = objfile->obfd;
1686 struct partial_die_info *pdi;
1687
1688 /* Now, march along the PDI's, descending into ones which have
1689 interesting children but skipping the children of the other ones,
1690 until we reach the end of the compilation unit. */
1691
1692 pdi = first_die;
1693
1694 while (pdi != NULL)
1695 {
1696 fixup_partial_die (pdi, cu);
1697
1698 /* Anonymous namespaces have no name but have interesting
1699 children, so we need to look at them. Ditto for anonymous
1700 enums. */
1701
1702 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1703 || pdi->tag == DW_TAG_enumeration_type)
1704 {
1705 switch (pdi->tag)
1706 {
1707 case DW_TAG_subprogram:
1708 if (pdi->has_pc_info)
1709 {
1710 if (pdi->lowpc < *lowpc)
1711 {
1712 *lowpc = pdi->lowpc;
1713 }
1714 if (pdi->highpc > *highpc)
1715 {
1716 *highpc = pdi->highpc;
1717 }
1718 if (!pdi->is_declaration)
1719 {
1720 add_partial_symbol (pdi, cu);
1721 }
1722 }
1723 break;
1724 case DW_TAG_variable:
1725 case DW_TAG_typedef:
1726 case DW_TAG_union_type:
1727 if (!pdi->is_declaration)
1728 {
1729 add_partial_symbol (pdi, cu);
1730 }
1731 break;
1732 case DW_TAG_class_type:
1733 case DW_TAG_structure_type:
1734 if (!pdi->is_declaration)
1735 {
1736 add_partial_symbol (pdi, cu);
1737 }
1738 break;
1739 case DW_TAG_enumeration_type:
1740 if (!pdi->is_declaration)
1741 add_partial_enumeration (pdi, cu);
1742 break;
1743 case DW_TAG_base_type:
1744 case DW_TAG_subrange_type:
1745 /* File scope base type definitions are added to the partial
1746 symbol table. */
1747 add_partial_symbol (pdi, cu);
1748 break;
1749 case DW_TAG_namespace:
1750 add_partial_namespace (pdi, lowpc, highpc, cu);
1751 break;
1752 default:
1753 break;
1754 }
1755 }
1756
1757 /* If the die has a sibling, skip to the sibling. */
1758
1759 pdi = pdi->die_sibling;
1760 }
1761 }
1762
1763 /* Functions used to compute the fully scoped name of a partial DIE.
1764
1765 Normally, this is simple. For C++, the parent DIE's fully scoped
1766 name is concatenated with "::" and the partial DIE's name. For
1767 Java, the same thing occurs except that "." is used instead of "::".
1768 Enumerators are an exception; they use the scope of their parent
1769 enumeration type, i.e. the name of the enumeration type is not
1770 prepended to the enumerator.
1771
1772 There are two complexities. One is DW_AT_specification; in this
1773 case "parent" means the parent of the target of the specification,
1774 instead of the direct parent of the DIE. The other is compilers
1775 which do not emit DW_TAG_namespace; in this case we try to guess
1776 the fully qualified name of structure types from their members'
1777 linkage names. This must be done using the DIE's children rather
1778 than the children of any DW_AT_specification target. We only need
1779 to do this for structures at the top level, i.e. if the target of
1780 any DW_AT_specification (if any; otherwise the DIE itself) does not
1781 have a parent. */
1782
1783 /* Compute the scope prefix associated with PDI's parent, in
1784 compilation unit CU. The result will be allocated on CU's
1785 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1786 field. NULL is returned if no prefix is necessary. */
1787 static char *
1788 partial_die_parent_scope (struct partial_die_info *pdi,
1789 struct dwarf2_cu *cu)
1790 {
1791 char *grandparent_scope;
1792 struct partial_die_info *parent, *real_pdi;
1793
1794 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1795 then this means the parent of the specification DIE. */
1796
1797 real_pdi = pdi;
1798 while (real_pdi->has_specification)
1799 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1800
1801 parent = real_pdi->die_parent;
1802 if (parent == NULL)
1803 return NULL;
1804
1805 if (parent->scope_set)
1806 return parent->scope;
1807
1808 fixup_partial_die (parent, cu);
1809
1810 grandparent_scope = partial_die_parent_scope (parent, cu);
1811
1812 if (parent->tag == DW_TAG_namespace
1813 || parent->tag == DW_TAG_structure_type
1814 || parent->tag == DW_TAG_class_type
1815 || parent->tag == DW_TAG_union_type)
1816 {
1817 if (grandparent_scope == NULL)
1818 parent->scope = parent->name;
1819 else
1820 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1821 parent->name, cu);
1822 }
1823 else if (parent->tag == DW_TAG_enumeration_type)
1824 /* Enumerators should not get the name of the enumeration as a prefix. */
1825 parent->scope = grandparent_scope;
1826 else
1827 {
1828 /* FIXME drow/2004-04-01: What should we be doing with
1829 function-local names? For partial symbols, we should probably be
1830 ignoring them. */
1831 complaint (&symfile_complaints,
1832 _("unhandled containing DIE tag %d for DIE at %d"),
1833 parent->tag, pdi->offset);
1834 parent->scope = grandparent_scope;
1835 }
1836
1837 parent->scope_set = 1;
1838 return parent->scope;
1839 }
1840
1841 /* Return the fully scoped name associated with PDI, from compilation unit
1842 CU. The result will be allocated with malloc. */
1843 static char *
1844 partial_die_full_name (struct partial_die_info *pdi,
1845 struct dwarf2_cu *cu)
1846 {
1847 char *parent_scope;
1848
1849 parent_scope = partial_die_parent_scope (pdi, cu);
1850 if (parent_scope == NULL)
1851 return NULL;
1852 else
1853 return typename_concat (NULL, parent_scope, pdi->name, cu);
1854 }
1855
1856 static void
1857 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1858 {
1859 struct objfile *objfile = cu->objfile;
1860 CORE_ADDR addr = 0;
1861 char *actual_name;
1862 const char *my_prefix;
1863 const struct partial_symbol *psym = NULL;
1864 CORE_ADDR baseaddr;
1865 int built_actual_name = 0;
1866
1867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1868
1869 actual_name = NULL;
1870
1871 if (pdi_needs_namespace (pdi->tag))
1872 {
1873 actual_name = partial_die_full_name (pdi, cu);
1874 if (actual_name)
1875 built_actual_name = 1;
1876 }
1877
1878 if (actual_name == NULL)
1879 actual_name = pdi->name;
1880
1881 switch (pdi->tag)
1882 {
1883 case DW_TAG_subprogram:
1884 if (pdi->is_external)
1885 {
1886 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1887 mst_text, objfile); */
1888 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1889 VAR_DOMAIN, LOC_BLOCK,
1890 &objfile->global_psymbols,
1891 0, pdi->lowpc + baseaddr,
1892 cu->language, objfile);
1893 }
1894 else
1895 {
1896 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1897 mst_file_text, objfile); */
1898 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1899 VAR_DOMAIN, LOC_BLOCK,
1900 &objfile->static_psymbols,
1901 0, pdi->lowpc + baseaddr,
1902 cu->language, objfile);
1903 }
1904 break;
1905 case DW_TAG_variable:
1906 if (pdi->is_external)
1907 {
1908 /* Global Variable.
1909 Don't enter into the minimal symbol tables as there is
1910 a minimal symbol table entry from the ELF symbols already.
1911 Enter into partial symbol table if it has a location
1912 descriptor or a type.
1913 If the location descriptor is missing, new_symbol will create
1914 a LOC_UNRESOLVED symbol, the address of the variable will then
1915 be determined from the minimal symbol table whenever the variable
1916 is referenced.
1917 The address for the partial symbol table entry is not
1918 used by GDB, but it comes in handy for debugging partial symbol
1919 table building. */
1920
1921 if (pdi->locdesc)
1922 addr = decode_locdesc (pdi->locdesc, cu);
1923 if (pdi->locdesc || pdi->has_type)
1924 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1925 VAR_DOMAIN, LOC_STATIC,
1926 &objfile->global_psymbols,
1927 0, addr + baseaddr,
1928 cu->language, objfile);
1929 }
1930 else
1931 {
1932 /* Static Variable. Skip symbols without location descriptors. */
1933 if (pdi->locdesc == NULL)
1934 return;
1935 addr = decode_locdesc (pdi->locdesc, cu);
1936 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1937 mst_file_data, objfile); */
1938 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1939 VAR_DOMAIN, LOC_STATIC,
1940 &objfile->static_psymbols,
1941 0, addr + baseaddr,
1942 cu->language, objfile);
1943 }
1944 break;
1945 case DW_TAG_typedef:
1946 case DW_TAG_base_type:
1947 case DW_TAG_subrange_type:
1948 add_psymbol_to_list (actual_name, strlen (actual_name),
1949 VAR_DOMAIN, LOC_TYPEDEF,
1950 &objfile->static_psymbols,
1951 0, (CORE_ADDR) 0, cu->language, objfile);
1952 break;
1953 case DW_TAG_namespace:
1954 add_psymbol_to_list (actual_name, strlen (actual_name),
1955 VAR_DOMAIN, LOC_TYPEDEF,
1956 &objfile->global_psymbols,
1957 0, (CORE_ADDR) 0, cu->language, objfile);
1958 break;
1959 case DW_TAG_class_type:
1960 case DW_TAG_structure_type:
1961 case DW_TAG_union_type:
1962 case DW_TAG_enumeration_type:
1963 /* Skip aggregate types without children, these are external
1964 references. */
1965 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1966 static vs. global. */
1967 if (pdi->has_children == 0)
1968 return;
1969 add_psymbol_to_list (actual_name, strlen (actual_name),
1970 STRUCT_DOMAIN, LOC_TYPEDEF,
1971 (cu->language == language_cplus
1972 || cu->language == language_java)
1973 ? &objfile->global_psymbols
1974 : &objfile->static_psymbols,
1975 0, (CORE_ADDR) 0, cu->language, objfile);
1976
1977 if (cu->language == language_cplus
1978 || cu->language == language_java)
1979 {
1980 /* For C++ and Java, these implicitly act as typedefs as well. */
1981 add_psymbol_to_list (actual_name, strlen (actual_name),
1982 VAR_DOMAIN, LOC_TYPEDEF,
1983 &objfile->global_psymbols,
1984 0, (CORE_ADDR) 0, cu->language, objfile);
1985 }
1986 break;
1987 case DW_TAG_enumerator:
1988 add_psymbol_to_list (actual_name, strlen (actual_name),
1989 VAR_DOMAIN, LOC_CONST,
1990 (cu->language == language_cplus
1991 || cu->language == language_java)
1992 ? &objfile->global_psymbols
1993 : &objfile->static_psymbols,
1994 0, (CORE_ADDR) 0, cu->language, objfile);
1995 break;
1996 default:
1997 break;
1998 }
1999
2000 /* Check to see if we should scan the name for possible namespace
2001 info. Only do this if this is C++, if we don't have namespace
2002 debugging info in the file, if the psym is of an appropriate type
2003 (otherwise we'll have psym == NULL), and if we actually had a
2004 mangled name to begin with. */
2005
2006 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2007 cases which do not set PSYM above? */
2008
2009 if (cu->language == language_cplus
2010 && cu->has_namespace_info == 0
2011 && psym != NULL
2012 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2013 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2014 objfile);
2015
2016 if (built_actual_name)
2017 xfree (actual_name);
2018 }
2019
2020 /* Determine whether a die of type TAG living in a C++ class or
2021 namespace needs to have the name of the scope prepended to the
2022 name listed in the die. */
2023
2024 static int
2025 pdi_needs_namespace (enum dwarf_tag tag)
2026 {
2027 switch (tag)
2028 {
2029 case DW_TAG_namespace:
2030 case DW_TAG_typedef:
2031 case DW_TAG_class_type:
2032 case DW_TAG_structure_type:
2033 case DW_TAG_union_type:
2034 case DW_TAG_enumeration_type:
2035 case DW_TAG_enumerator:
2036 return 1;
2037 default:
2038 return 0;
2039 }
2040 }
2041
2042 /* Read a partial die corresponding to a namespace; also, add a symbol
2043 corresponding to that namespace to the symbol table. NAMESPACE is
2044 the name of the enclosing namespace. */
2045
2046 static void
2047 add_partial_namespace (struct partial_die_info *pdi,
2048 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2049 struct dwarf2_cu *cu)
2050 {
2051 struct objfile *objfile = cu->objfile;
2052
2053 /* Add a symbol for the namespace. */
2054
2055 add_partial_symbol (pdi, cu);
2056
2057 /* Now scan partial symbols in that namespace. */
2058
2059 if (pdi->has_children)
2060 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2061 }
2062
2063 /* See if we can figure out if the class lives in a namespace. We do
2064 this by looking for a member function; its demangled name will
2065 contain namespace info, if there is any. */
2066
2067 static void
2068 guess_structure_name (struct partial_die_info *struct_pdi,
2069 struct dwarf2_cu *cu)
2070 {
2071 if ((cu->language == language_cplus
2072 || cu->language == language_java)
2073 && cu->has_namespace_info == 0
2074 && struct_pdi->has_children)
2075 {
2076 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2077 what template types look like, because the demangler
2078 frequently doesn't give the same name as the debug info. We
2079 could fix this by only using the demangled name to get the
2080 prefix (but see comment in read_structure_type). */
2081
2082 struct partial_die_info *child_pdi = struct_pdi->die_child;
2083 struct partial_die_info *real_pdi;
2084
2085 /* If this DIE (this DIE's specification, if any) has a parent, then
2086 we should not do this. We'll prepend the parent's fully qualified
2087 name when we create the partial symbol. */
2088
2089 real_pdi = struct_pdi;
2090 while (real_pdi->has_specification)
2091 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2092
2093 if (real_pdi->die_parent != NULL)
2094 return;
2095
2096 while (child_pdi != NULL)
2097 {
2098 if (child_pdi->tag == DW_TAG_subprogram)
2099 {
2100 char *actual_class_name
2101 = language_class_name_from_physname (cu->language_defn,
2102 child_pdi->name);
2103 if (actual_class_name != NULL)
2104 {
2105 struct_pdi->name
2106 = obsavestring (actual_class_name,
2107 strlen (actual_class_name),
2108 &cu->comp_unit_obstack);
2109 xfree (actual_class_name);
2110 }
2111 break;
2112 }
2113
2114 child_pdi = child_pdi->die_sibling;
2115 }
2116 }
2117 }
2118
2119 /* Read a partial die corresponding to an enumeration type. */
2120
2121 static void
2122 add_partial_enumeration (struct partial_die_info *enum_pdi,
2123 struct dwarf2_cu *cu)
2124 {
2125 struct objfile *objfile = cu->objfile;
2126 bfd *abfd = objfile->obfd;
2127 struct partial_die_info *pdi;
2128
2129 if (enum_pdi->name != NULL)
2130 add_partial_symbol (enum_pdi, cu);
2131
2132 pdi = enum_pdi->die_child;
2133 while (pdi)
2134 {
2135 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2136 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2137 else
2138 add_partial_symbol (pdi, cu);
2139 pdi = pdi->die_sibling;
2140 }
2141 }
2142
2143 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2144 Return the corresponding abbrev, or NULL if the number is zero (indicating
2145 an empty DIE). In either case *BYTES_READ will be set to the length of
2146 the initial number. */
2147
2148 static struct abbrev_info *
2149 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2150 {
2151 bfd *abfd = cu->objfile->obfd;
2152 unsigned int abbrev_number;
2153 struct abbrev_info *abbrev;
2154
2155 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2156
2157 if (abbrev_number == 0)
2158 return NULL;
2159
2160 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2161 if (!abbrev)
2162 {
2163 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2164 bfd_get_filename (abfd));
2165 }
2166
2167 return abbrev;
2168 }
2169
2170 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2171 pointer to the end of a series of DIEs, terminated by an empty
2172 DIE. Any children of the skipped DIEs will also be skipped. */
2173
2174 static char *
2175 skip_children (char *info_ptr, struct dwarf2_cu *cu)
2176 {
2177 struct abbrev_info *abbrev;
2178 unsigned int bytes_read;
2179
2180 while (1)
2181 {
2182 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2183 if (abbrev == NULL)
2184 return info_ptr + bytes_read;
2185 else
2186 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2187 }
2188 }
2189
2190 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2191 should point just after the initial uleb128 of a DIE, and the
2192 abbrev corresponding to that skipped uleb128 should be passed in
2193 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2194 children. */
2195
2196 static char *
2197 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2198 struct dwarf2_cu *cu)
2199 {
2200 unsigned int bytes_read;
2201 struct attribute attr;
2202 bfd *abfd = cu->objfile->obfd;
2203 unsigned int form, i;
2204
2205 for (i = 0; i < abbrev->num_attrs; i++)
2206 {
2207 /* The only abbrev we care about is DW_AT_sibling. */
2208 if (abbrev->attrs[i].name == DW_AT_sibling)
2209 {
2210 read_attribute (&attr, &abbrev->attrs[i],
2211 abfd, info_ptr, cu);
2212 if (attr.form == DW_FORM_ref_addr)
2213 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2214 else
2215 return dwarf2_per_objfile->info_buffer
2216 + dwarf2_get_ref_die_offset (&attr, cu);
2217 }
2218
2219 /* If it isn't DW_AT_sibling, skip this attribute. */
2220 form = abbrev->attrs[i].form;
2221 skip_attribute:
2222 switch (form)
2223 {
2224 case DW_FORM_addr:
2225 case DW_FORM_ref_addr:
2226 info_ptr += cu->header.addr_size;
2227 break;
2228 case DW_FORM_data1:
2229 case DW_FORM_ref1:
2230 case DW_FORM_flag:
2231 info_ptr += 1;
2232 break;
2233 case DW_FORM_data2:
2234 case DW_FORM_ref2:
2235 info_ptr += 2;
2236 break;
2237 case DW_FORM_data4:
2238 case DW_FORM_ref4:
2239 info_ptr += 4;
2240 break;
2241 case DW_FORM_data8:
2242 case DW_FORM_ref8:
2243 info_ptr += 8;
2244 break;
2245 case DW_FORM_string:
2246 read_string (abfd, info_ptr, &bytes_read);
2247 info_ptr += bytes_read;
2248 break;
2249 case DW_FORM_strp:
2250 info_ptr += cu->header.offset_size;
2251 break;
2252 case DW_FORM_block:
2253 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2254 info_ptr += bytes_read;
2255 break;
2256 case DW_FORM_block1:
2257 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2258 break;
2259 case DW_FORM_block2:
2260 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2261 break;
2262 case DW_FORM_block4:
2263 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2264 break;
2265 case DW_FORM_sdata:
2266 case DW_FORM_udata:
2267 case DW_FORM_ref_udata:
2268 info_ptr = skip_leb128 (abfd, info_ptr);
2269 break;
2270 case DW_FORM_indirect:
2271 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2272 info_ptr += bytes_read;
2273 /* We need to continue parsing from here, so just go back to
2274 the top. */
2275 goto skip_attribute;
2276
2277 default:
2278 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2279 dwarf_form_name (form),
2280 bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 if (abbrev->has_children)
2285 return skip_children (info_ptr, cu);
2286 else
2287 return info_ptr;
2288 }
2289
2290 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2291 the next DIE after ORIG_PDI. */
2292
2293 static char *
2294 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2295 bfd *abfd, struct dwarf2_cu *cu)
2296 {
2297 /* Do we know the sibling already? */
2298
2299 if (orig_pdi->sibling)
2300 return orig_pdi->sibling;
2301
2302 /* Are there any children to deal with? */
2303
2304 if (!orig_pdi->has_children)
2305 return info_ptr;
2306
2307 /* Skip the children the long way. */
2308
2309 return skip_children (info_ptr, cu);
2310 }
2311
2312 /* Expand this partial symbol table into a full symbol table. */
2313
2314 static void
2315 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2316 {
2317 /* FIXME: This is barely more than a stub. */
2318 if (pst != NULL)
2319 {
2320 if (pst->readin)
2321 {
2322 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2323 }
2324 else
2325 {
2326 if (info_verbose)
2327 {
2328 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2329 gdb_flush (gdb_stdout);
2330 }
2331
2332 /* Restore our global data. */
2333 dwarf2_per_objfile = objfile_data (pst->objfile,
2334 dwarf2_objfile_data_key);
2335
2336 psymtab_to_symtab_1 (pst);
2337
2338 /* Finish up the debug error message. */
2339 if (info_verbose)
2340 printf_filtered (_("done.\n"));
2341 }
2342 }
2343 }
2344
2345 /* Add PER_CU to the queue. */
2346
2347 static void
2348 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2349 {
2350 struct dwarf2_queue_item *item;
2351
2352 per_cu->queued = 1;
2353 item = xmalloc (sizeof (*item));
2354 item->per_cu = per_cu;
2355 item->next = NULL;
2356
2357 if (dwarf2_queue == NULL)
2358 dwarf2_queue = item;
2359 else
2360 dwarf2_queue_tail->next = item;
2361
2362 dwarf2_queue_tail = item;
2363 }
2364
2365 /* Process the queue. */
2366
2367 static void
2368 process_queue (struct objfile *objfile)
2369 {
2370 struct dwarf2_queue_item *item, *next_item;
2371
2372 /* Initially, there is just one item on the queue. Load its DIEs,
2373 and the DIEs of any other compilation units it requires,
2374 transitively. */
2375
2376 for (item = dwarf2_queue; item != NULL; item = item->next)
2377 {
2378 /* Read in this compilation unit. This may add new items to
2379 the end of the queue. */
2380 load_full_comp_unit (item->per_cu);
2381
2382 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2383 dwarf2_per_objfile->read_in_chain = item->per_cu;
2384
2385 /* If this compilation unit has already had full symbols created,
2386 reset the TYPE fields in each DIE. */
2387 if (item->per_cu->psymtab->readin)
2388 reset_die_and_siblings_types (item->per_cu->cu->dies,
2389 item->per_cu->cu);
2390 }
2391
2392 /* Now everything left on the queue needs to be read in. Process
2393 them, one at a time, removing from the queue as we finish. */
2394 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2395 {
2396 if (!item->per_cu->psymtab->readin)
2397 process_full_comp_unit (item->per_cu);
2398
2399 item->per_cu->queued = 0;
2400 next_item = item->next;
2401 xfree (item);
2402 }
2403
2404 dwarf2_queue_tail = NULL;
2405 }
2406
2407 /* Free all allocated queue entries. This function only releases anything if
2408 an error was thrown; if the queue was processed then it would have been
2409 freed as we went along. */
2410
2411 static void
2412 dwarf2_release_queue (void *dummy)
2413 {
2414 struct dwarf2_queue_item *item, *last;
2415
2416 item = dwarf2_queue;
2417 while (item)
2418 {
2419 /* Anything still marked queued is likely to be in an
2420 inconsistent state, so discard it. */
2421 if (item->per_cu->queued)
2422 {
2423 if (item->per_cu->cu != NULL)
2424 free_one_cached_comp_unit (item->per_cu->cu);
2425 item->per_cu->queued = 0;
2426 }
2427
2428 last = item;
2429 item = item->next;
2430 xfree (last);
2431 }
2432
2433 dwarf2_queue = dwarf2_queue_tail = NULL;
2434 }
2435
2436 /* Read in full symbols for PST, and anything it depends on. */
2437
2438 static void
2439 psymtab_to_symtab_1 (struct partial_symtab *pst)
2440 {
2441 struct dwarf2_per_cu_data *per_cu;
2442 struct cleanup *back_to;
2443 int i;
2444
2445 for (i = 0; i < pst->number_of_dependencies; i++)
2446 if (!pst->dependencies[i]->readin)
2447 {
2448 /* Inform about additional files that need to be read in. */
2449 if (info_verbose)
2450 {
2451 /* FIXME: i18n: Need to make this a single string. */
2452 fputs_filtered (" ", gdb_stdout);
2453 wrap_here ("");
2454 fputs_filtered ("and ", gdb_stdout);
2455 wrap_here ("");
2456 printf_filtered ("%s...", pst->dependencies[i]->filename);
2457 wrap_here (""); /* Flush output */
2458 gdb_flush (gdb_stdout);
2459 }
2460 psymtab_to_symtab_1 (pst->dependencies[i]);
2461 }
2462
2463 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2464
2465 if (per_cu == NULL)
2466 {
2467 /* It's an include file, no symbols to read for it.
2468 Everything is in the parent symtab. */
2469 pst->readin = 1;
2470 return;
2471 }
2472
2473 back_to = make_cleanup (dwarf2_release_queue, NULL);
2474
2475 queue_comp_unit (per_cu);
2476
2477 process_queue (pst->objfile);
2478
2479 /* Age the cache, releasing compilation units that have not
2480 been used recently. */
2481 age_cached_comp_units ();
2482
2483 do_cleanups (back_to);
2484 }
2485
2486 /* Load the DIEs associated with PST and PER_CU into memory. */
2487
2488 static struct dwarf2_cu *
2489 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2490 {
2491 struct partial_symtab *pst = per_cu->psymtab;
2492 bfd *abfd = pst->objfile->obfd;
2493 struct dwarf2_cu *cu;
2494 unsigned long offset;
2495 char *info_ptr;
2496 struct cleanup *back_to, *free_cu_cleanup;
2497 struct attribute *attr;
2498 CORE_ADDR baseaddr;
2499
2500 /* Set local variables from the partial symbol table info. */
2501 offset = per_cu->offset;
2502
2503 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2504
2505 cu = xmalloc (sizeof (struct dwarf2_cu));
2506 memset (cu, 0, sizeof (struct dwarf2_cu));
2507
2508 /* If an error occurs while loading, release our storage. */
2509 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2510
2511 cu->objfile = pst->objfile;
2512
2513 /* read in the comp_unit header */
2514 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2515
2516 /* Read the abbrevs for this compilation unit */
2517 dwarf2_read_abbrevs (abfd, cu);
2518 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2519
2520 cu->header.offset = offset;
2521
2522 cu->per_cu = per_cu;
2523 per_cu->cu = cu;
2524
2525 /* We use this obstack for block values in dwarf_alloc_block. */
2526 obstack_init (&cu->comp_unit_obstack);
2527
2528 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2529
2530 /* We try not to read any attributes in this function, because not
2531 all objfiles needed for references have been loaded yet, and symbol
2532 table processing isn't initialized. But we have to set the CU language,
2533 or we won't be able to build types correctly. */
2534 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2535 if (attr)
2536 set_cu_language (DW_UNSND (attr), cu);
2537 else
2538 set_cu_language (language_minimal, cu);
2539
2540 do_cleanups (back_to);
2541
2542 /* We've successfully allocated this compilation unit. Let our caller
2543 clean it up when finished with it. */
2544 discard_cleanups (free_cu_cleanup);
2545
2546 return cu;
2547 }
2548
2549 /* Generate full symbol information for PST and CU, whose DIEs have
2550 already been loaded into memory. */
2551
2552 static void
2553 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2554 {
2555 struct partial_symtab *pst = per_cu->psymtab;
2556 struct dwarf2_cu *cu = per_cu->cu;
2557 struct objfile *objfile = pst->objfile;
2558 bfd *abfd = objfile->obfd;
2559 CORE_ADDR lowpc, highpc;
2560 struct symtab *symtab;
2561 struct cleanup *back_to;
2562 struct attribute *attr;
2563 CORE_ADDR baseaddr;
2564
2565 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2566
2567 /* We're in the global namespace. */
2568 processing_current_prefix = "";
2569
2570 buildsym_init ();
2571 back_to = make_cleanup (really_free_pendings, NULL);
2572
2573 cu->list_in_scope = &file_symbols;
2574
2575 /* Find the base address of the compilation unit for range lists and
2576 location lists. It will normally be specified by DW_AT_low_pc.
2577 In DWARF-3 draft 4, the base address could be overridden by
2578 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2579 compilation units with discontinuous ranges. */
2580
2581 cu->header.base_known = 0;
2582 cu->header.base_address = 0;
2583
2584 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2585 if (attr)
2586 {
2587 cu->header.base_address = DW_ADDR (attr);
2588 cu->header.base_known = 1;
2589 }
2590 else
2591 {
2592 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2593 if (attr)
2594 {
2595 cu->header.base_address = DW_ADDR (attr);
2596 cu->header.base_known = 1;
2597 }
2598 }
2599
2600 /* Do line number decoding in read_file_scope () */
2601 process_die (cu->dies, cu);
2602
2603 /* Some compilers don't define a DW_AT_high_pc attribute for the
2604 compilation unit. If the DW_AT_high_pc is missing, synthesize
2605 it, by scanning the DIE's below the compilation unit. */
2606 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2607
2608 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2609
2610 /* Set symtab language to language from DW_AT_language.
2611 If the compilation is from a C file generated by language preprocessors,
2612 do not set the language if it was already deduced by start_subfile. */
2613 if (symtab != NULL
2614 && !(cu->language == language_c && symtab->language != language_c))
2615 {
2616 symtab->language = cu->language;
2617 }
2618 pst->symtab = symtab;
2619 pst->readin = 1;
2620
2621 do_cleanups (back_to);
2622 }
2623
2624 /* Process a die and its children. */
2625
2626 static void
2627 process_die (struct die_info *die, struct dwarf2_cu *cu)
2628 {
2629 switch (die->tag)
2630 {
2631 case DW_TAG_padding:
2632 break;
2633 case DW_TAG_compile_unit:
2634 read_file_scope (die, cu);
2635 break;
2636 case DW_TAG_subprogram:
2637 read_subroutine_type (die, cu);
2638 read_func_scope (die, cu);
2639 break;
2640 case DW_TAG_inlined_subroutine:
2641 /* FIXME: These are ignored for now.
2642 They could be used to set breakpoints on all inlined instances
2643 of a function and make GDB `next' properly over inlined functions. */
2644 break;
2645 case DW_TAG_lexical_block:
2646 case DW_TAG_try_block:
2647 case DW_TAG_catch_block:
2648 read_lexical_block_scope (die, cu);
2649 break;
2650 case DW_TAG_class_type:
2651 case DW_TAG_structure_type:
2652 case DW_TAG_union_type:
2653 read_structure_type (die, cu);
2654 process_structure_scope (die, cu);
2655 break;
2656 case DW_TAG_enumeration_type:
2657 read_enumeration_type (die, cu);
2658 process_enumeration_scope (die, cu);
2659 break;
2660
2661 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2662 a symbol or process any children. Therefore it doesn't do anything
2663 that won't be done on-demand by read_type_die. */
2664 case DW_TAG_subroutine_type:
2665 read_subroutine_type (die, cu);
2666 break;
2667 case DW_TAG_array_type:
2668 read_array_type (die, cu);
2669 break;
2670 case DW_TAG_pointer_type:
2671 read_tag_pointer_type (die, cu);
2672 break;
2673 case DW_TAG_ptr_to_member_type:
2674 read_tag_ptr_to_member_type (die, cu);
2675 break;
2676 case DW_TAG_reference_type:
2677 read_tag_reference_type (die, cu);
2678 break;
2679 case DW_TAG_string_type:
2680 read_tag_string_type (die, cu);
2681 break;
2682 /* END FIXME */
2683
2684 case DW_TAG_base_type:
2685 read_base_type (die, cu);
2686 /* Add a typedef symbol for the type definition, if it has a
2687 DW_AT_name. */
2688 new_symbol (die, die->type, cu);
2689 break;
2690 case DW_TAG_subrange_type:
2691 read_subrange_type (die, cu);
2692 /* Add a typedef symbol for the type definition, if it has a
2693 DW_AT_name. */
2694 new_symbol (die, die->type, cu);
2695 break;
2696 case DW_TAG_common_block:
2697 read_common_block (die, cu);
2698 break;
2699 case DW_TAG_common_inclusion:
2700 break;
2701 case DW_TAG_namespace:
2702 processing_has_namespace_info = 1;
2703 read_namespace (die, cu);
2704 break;
2705 case DW_TAG_imported_declaration:
2706 case DW_TAG_imported_module:
2707 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2708 information contained in these. DW_TAG_imported_declaration
2709 dies shouldn't have children; DW_TAG_imported_module dies
2710 shouldn't in the C++ case, but conceivably could in the
2711 Fortran case, so we'll have to replace this gdb_assert if
2712 Fortran compilers start generating that info. */
2713 processing_has_namespace_info = 1;
2714 gdb_assert (die->child == NULL);
2715 break;
2716 default:
2717 new_symbol (die, NULL, cu);
2718 break;
2719 }
2720 }
2721
2722 static void
2723 initialize_cu_func_list (struct dwarf2_cu *cu)
2724 {
2725 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2726 }
2727
2728 static void
2729 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2730 {
2731 struct objfile *objfile = cu->objfile;
2732 struct comp_unit_head *cu_header = &cu->header;
2733 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2734 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2735 CORE_ADDR highpc = ((CORE_ADDR) 0);
2736 struct attribute *attr;
2737 char *name = "<unknown>";
2738 char *comp_dir = NULL;
2739 struct die_info *child_die;
2740 bfd *abfd = objfile->obfd;
2741 struct line_header *line_header = 0;
2742 CORE_ADDR baseaddr;
2743
2744 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2745
2746 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2747
2748 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2749 from finish_block. */
2750 if (lowpc == ((CORE_ADDR) -1))
2751 lowpc = highpc;
2752 lowpc += baseaddr;
2753 highpc += baseaddr;
2754
2755 attr = dwarf2_attr (die, DW_AT_name, cu);
2756 if (attr)
2757 {
2758 name = DW_STRING (attr);
2759 }
2760 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2761 if (attr)
2762 {
2763 comp_dir = DW_STRING (attr);
2764 if (comp_dir)
2765 {
2766 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2767 directory, get rid of it. */
2768 char *cp = strchr (comp_dir, ':');
2769
2770 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2771 comp_dir = cp + 1;
2772 }
2773 }
2774
2775 attr = dwarf2_attr (die, DW_AT_language, cu);
2776 if (attr)
2777 {
2778 set_cu_language (DW_UNSND (attr), cu);
2779 }
2780
2781 attr = dwarf2_attr (die, DW_AT_producer, cu);
2782 if (attr)
2783 cu->producer = DW_STRING (attr);
2784
2785 /* We assume that we're processing GCC output. */
2786 processing_gcc_compilation = 2;
2787 #if 0
2788 /* FIXME:Do something here. */
2789 if (dip->at_producer != NULL)
2790 {
2791 handle_producer (dip->at_producer);
2792 }
2793 #endif
2794
2795 /* The compilation unit may be in a different language or objfile,
2796 zero out all remembered fundamental types. */
2797 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2798
2799 start_symtab (name, comp_dir, lowpc);
2800 record_debugformat ("DWARF 2");
2801
2802 initialize_cu_func_list (cu);
2803
2804 /* Process all dies in compilation unit. */
2805 if (die->child != NULL)
2806 {
2807 child_die = die->child;
2808 while (child_die && child_die->tag)
2809 {
2810 process_die (child_die, cu);
2811 child_die = sibling_die (child_die);
2812 }
2813 }
2814
2815 /* Decode line number information if present. */
2816 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2817 if (attr)
2818 {
2819 unsigned int line_offset = DW_UNSND (attr);
2820 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2821 if (line_header)
2822 {
2823 make_cleanup ((make_cleanup_ftype *) free_line_header,
2824 (void *) line_header);
2825 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2826 }
2827 }
2828
2829 /* Decode macro information, if present. Dwarf 2 macro information
2830 refers to information in the line number info statement program
2831 header, so we can only read it if we've read the header
2832 successfully. */
2833 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2834 if (attr && line_header)
2835 {
2836 unsigned int macro_offset = DW_UNSND (attr);
2837 dwarf_decode_macros (line_header, macro_offset,
2838 comp_dir, abfd, cu);
2839 }
2840 do_cleanups (back_to);
2841 }
2842
2843 static void
2844 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2845 struct dwarf2_cu *cu)
2846 {
2847 struct function_range *thisfn;
2848
2849 thisfn = (struct function_range *)
2850 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2851 thisfn->name = name;
2852 thisfn->lowpc = lowpc;
2853 thisfn->highpc = highpc;
2854 thisfn->seen_line = 0;
2855 thisfn->next = NULL;
2856
2857 if (cu->last_fn == NULL)
2858 cu->first_fn = thisfn;
2859 else
2860 cu->last_fn->next = thisfn;
2861
2862 cu->last_fn = thisfn;
2863 }
2864
2865 static void
2866 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2867 {
2868 struct objfile *objfile = cu->objfile;
2869 struct context_stack *new;
2870 CORE_ADDR lowpc;
2871 CORE_ADDR highpc;
2872 struct die_info *child_die;
2873 struct attribute *attr;
2874 char *name;
2875 const char *previous_prefix = processing_current_prefix;
2876 struct cleanup *back_to = NULL;
2877 CORE_ADDR baseaddr;
2878
2879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2880
2881 name = dwarf2_linkage_name (die, cu);
2882
2883 /* Ignore functions with missing or empty names and functions with
2884 missing or invalid low and high pc attributes. */
2885 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2886 return;
2887
2888 if (cu->language == language_cplus
2889 || cu->language == language_java)
2890 {
2891 struct die_info *spec_die = die_specification (die, cu);
2892
2893 /* NOTE: carlton/2004-01-23: We have to be careful in the
2894 presence of DW_AT_specification. For example, with GCC 3.4,
2895 given the code
2896
2897 namespace N {
2898 void foo() {
2899 // Definition of N::foo.
2900 }
2901 }
2902
2903 then we'll have a tree of DIEs like this:
2904
2905 1: DW_TAG_compile_unit
2906 2: DW_TAG_namespace // N
2907 3: DW_TAG_subprogram // declaration of N::foo
2908 4: DW_TAG_subprogram // definition of N::foo
2909 DW_AT_specification // refers to die #3
2910
2911 Thus, when processing die #4, we have to pretend that we're
2912 in the context of its DW_AT_specification, namely the contex
2913 of die #3. */
2914
2915 if (spec_die != NULL)
2916 {
2917 char *specification_prefix = determine_prefix (spec_die, cu);
2918 processing_current_prefix = specification_prefix;
2919 back_to = make_cleanup (xfree, specification_prefix);
2920 }
2921 }
2922
2923 lowpc += baseaddr;
2924 highpc += baseaddr;
2925
2926 /* Record the function range for dwarf_decode_lines. */
2927 add_to_cu_func_list (name, lowpc, highpc, cu);
2928
2929 new = push_context (0, lowpc);
2930 new->name = new_symbol (die, die->type, cu);
2931
2932 /* If there is a location expression for DW_AT_frame_base, record
2933 it. */
2934 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2935 if (attr)
2936 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2937 expression is being recorded directly in the function's symbol
2938 and not in a separate frame-base object. I guess this hack is
2939 to avoid adding some sort of frame-base adjunct/annex to the
2940 function's symbol :-(. The problem with doing this is that it
2941 results in a function symbol with a location expression that
2942 has nothing to do with the location of the function, ouch! The
2943 relationship should be: a function's symbol has-a frame base; a
2944 frame-base has-a location expression. */
2945 dwarf2_symbol_mark_computed (attr, new->name, cu);
2946
2947 cu->list_in_scope = &local_symbols;
2948
2949 if (die->child != NULL)
2950 {
2951 child_die = die->child;
2952 while (child_die && child_die->tag)
2953 {
2954 process_die (child_die, cu);
2955 child_die = sibling_die (child_die);
2956 }
2957 }
2958
2959 new = pop_context ();
2960 /* Make a block for the local symbols within. */
2961 finish_block (new->name, &local_symbols, new->old_blocks,
2962 lowpc, highpc, objfile);
2963
2964 /* In C++, we can have functions nested inside functions (e.g., when
2965 a function declares a class that has methods). This means that
2966 when we finish processing a function scope, we may need to go
2967 back to building a containing block's symbol lists. */
2968 local_symbols = new->locals;
2969 param_symbols = new->params;
2970
2971 /* If we've finished processing a top-level function, subsequent
2972 symbols go in the file symbol list. */
2973 if (outermost_context_p ())
2974 cu->list_in_scope = &file_symbols;
2975
2976 processing_current_prefix = previous_prefix;
2977 if (back_to != NULL)
2978 do_cleanups (back_to);
2979 }
2980
2981 /* Process all the DIES contained within a lexical block scope. Start
2982 a new scope, process the dies, and then close the scope. */
2983
2984 static void
2985 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2986 {
2987 struct objfile *objfile = cu->objfile;
2988 struct context_stack *new;
2989 CORE_ADDR lowpc, highpc;
2990 struct die_info *child_die;
2991 CORE_ADDR baseaddr;
2992
2993 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2994
2995 /* Ignore blocks with missing or invalid low and high pc attributes. */
2996 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2997 as multiple lexical blocks? Handling children in a sane way would
2998 be nasty. Might be easier to properly extend generic blocks to
2999 describe ranges. */
3000 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3001 return;
3002 lowpc += baseaddr;
3003 highpc += baseaddr;
3004
3005 push_context (0, lowpc);
3006 if (die->child != NULL)
3007 {
3008 child_die = die->child;
3009 while (child_die && child_die->tag)
3010 {
3011 process_die (child_die, cu);
3012 child_die = sibling_die (child_die);
3013 }
3014 }
3015 new = pop_context ();
3016
3017 if (local_symbols != NULL)
3018 {
3019 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3020 highpc, objfile);
3021 }
3022 local_symbols = new->locals;
3023 }
3024
3025 /* Get low and high pc attributes from a die. Return 1 if the attributes
3026 are present and valid, otherwise, return 0. Return -1 if the range is
3027 discontinuous, i.e. derived from DW_AT_ranges information. */
3028 static int
3029 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3030 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3031 {
3032 struct objfile *objfile = cu->objfile;
3033 struct comp_unit_head *cu_header = &cu->header;
3034 struct attribute *attr;
3035 bfd *obfd = objfile->obfd;
3036 CORE_ADDR low = 0;
3037 CORE_ADDR high = 0;
3038 int ret = 0;
3039
3040 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3041 if (attr)
3042 {
3043 high = DW_ADDR (attr);
3044 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3045 if (attr)
3046 low = DW_ADDR (attr);
3047 else
3048 /* Found high w/o low attribute. */
3049 return 0;
3050
3051 /* Found consecutive range of addresses. */
3052 ret = 1;
3053 }
3054 else
3055 {
3056 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3057 if (attr != NULL)
3058 {
3059 unsigned int addr_size = cu_header->addr_size;
3060 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3061 /* Value of the DW_AT_ranges attribute is the offset in the
3062 .debug_ranges section. */
3063 unsigned int offset = DW_UNSND (attr);
3064 /* Base address selection entry. */
3065 CORE_ADDR base;
3066 int found_base;
3067 int dummy;
3068 char *buffer;
3069 CORE_ADDR marker;
3070 int low_set;
3071
3072 found_base = cu_header->base_known;
3073 base = cu_header->base_address;
3074
3075 if (offset >= dwarf2_per_objfile->ranges_size)
3076 {
3077 complaint (&symfile_complaints,
3078 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3079 offset);
3080 return 0;
3081 }
3082 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3083
3084 /* Read in the largest possible address. */
3085 marker = read_address (obfd, buffer, cu, &dummy);
3086 if ((marker & mask) == mask)
3087 {
3088 /* If we found the largest possible address, then
3089 read the base address. */
3090 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3091 buffer += 2 * addr_size;
3092 offset += 2 * addr_size;
3093 found_base = 1;
3094 }
3095
3096 low_set = 0;
3097
3098 while (1)
3099 {
3100 CORE_ADDR range_beginning, range_end;
3101
3102 range_beginning = read_address (obfd, buffer, cu, &dummy);
3103 buffer += addr_size;
3104 range_end = read_address (obfd, buffer, cu, &dummy);
3105 buffer += addr_size;
3106 offset += 2 * addr_size;
3107
3108 /* An end of list marker is a pair of zero addresses. */
3109 if (range_beginning == 0 && range_end == 0)
3110 /* Found the end of list entry. */
3111 break;
3112
3113 /* Each base address selection entry is a pair of 2 values.
3114 The first is the largest possible address, the second is
3115 the base address. Check for a base address here. */
3116 if ((range_beginning & mask) == mask)
3117 {
3118 /* If we found the largest possible address, then
3119 read the base address. */
3120 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3121 found_base = 1;
3122 continue;
3123 }
3124
3125 if (!found_base)
3126 {
3127 /* We have no valid base address for the ranges
3128 data. */
3129 complaint (&symfile_complaints,
3130 _("Invalid .debug_ranges data (no base address)"));
3131 return 0;
3132 }
3133
3134 range_beginning += base;
3135 range_end += base;
3136
3137 /* FIXME: This is recording everything as a low-high
3138 segment of consecutive addresses. We should have a
3139 data structure for discontiguous block ranges
3140 instead. */
3141 if (! low_set)
3142 {
3143 low = range_beginning;
3144 high = range_end;
3145 low_set = 1;
3146 }
3147 else
3148 {
3149 if (range_beginning < low)
3150 low = range_beginning;
3151 if (range_end > high)
3152 high = range_end;
3153 }
3154 }
3155
3156 if (! low_set)
3157 /* If the first entry is an end-of-list marker, the range
3158 describes an empty scope, i.e. no instructions. */
3159 return 0;
3160
3161 ret = -1;
3162 }
3163 }
3164
3165 if (high < low)
3166 return 0;
3167
3168 /* When using the GNU linker, .gnu.linkonce. sections are used to
3169 eliminate duplicate copies of functions and vtables and such.
3170 The linker will arbitrarily choose one and discard the others.
3171 The AT_*_pc values for such functions refer to local labels in
3172 these sections. If the section from that file was discarded, the
3173 labels are not in the output, so the relocs get a value of 0.
3174 If this is a discarded function, mark the pc bounds as invalid,
3175 so that GDB will ignore it. */
3176 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
3177 return 0;
3178
3179 *lowpc = low;
3180 *highpc = high;
3181 return ret;
3182 }
3183
3184 /* Get the low and high pc's represented by the scope DIE, and store
3185 them in *LOWPC and *HIGHPC. If the correct values can't be
3186 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3187
3188 static void
3189 get_scope_pc_bounds (struct die_info *die,
3190 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3191 struct dwarf2_cu *cu)
3192 {
3193 CORE_ADDR best_low = (CORE_ADDR) -1;
3194 CORE_ADDR best_high = (CORE_ADDR) 0;
3195 CORE_ADDR current_low, current_high;
3196
3197 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3198 {
3199 best_low = current_low;
3200 best_high = current_high;
3201 }
3202 else
3203 {
3204 struct die_info *child = die->child;
3205
3206 while (child && child->tag)
3207 {
3208 switch (child->tag) {
3209 case DW_TAG_subprogram:
3210 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3211 {
3212 best_low = min (best_low, current_low);
3213 best_high = max (best_high, current_high);
3214 }
3215 break;
3216 case DW_TAG_namespace:
3217 /* FIXME: carlton/2004-01-16: Should we do this for
3218 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3219 that current GCC's always emit the DIEs corresponding
3220 to definitions of methods of classes as children of a
3221 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3222 the DIEs giving the declarations, which could be
3223 anywhere). But I don't see any reason why the
3224 standards says that they have to be there. */
3225 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3226
3227 if (current_low != ((CORE_ADDR) -1))
3228 {
3229 best_low = min (best_low, current_low);
3230 best_high = max (best_high, current_high);
3231 }
3232 break;
3233 default:
3234 /* Ignore. */
3235 break;
3236 }
3237
3238 child = sibling_die (child);
3239 }
3240 }
3241
3242 *lowpc = best_low;
3243 *highpc = best_high;
3244 }
3245
3246 /* Add an aggregate field to the field list. */
3247
3248 static void
3249 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3250 struct dwarf2_cu *cu)
3251 {
3252 struct objfile *objfile = cu->objfile;
3253 struct nextfield *new_field;
3254 struct attribute *attr;
3255 struct field *fp;
3256 char *fieldname = "";
3257
3258 /* Allocate a new field list entry and link it in. */
3259 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3260 make_cleanup (xfree, new_field);
3261 memset (new_field, 0, sizeof (struct nextfield));
3262 new_field->next = fip->fields;
3263 fip->fields = new_field;
3264 fip->nfields++;
3265
3266 /* Handle accessibility and virtuality of field.
3267 The default accessibility for members is public, the default
3268 accessibility for inheritance is private. */
3269 if (die->tag != DW_TAG_inheritance)
3270 new_field->accessibility = DW_ACCESS_public;
3271 else
3272 new_field->accessibility = DW_ACCESS_private;
3273 new_field->virtuality = DW_VIRTUALITY_none;
3274
3275 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3276 if (attr)
3277 new_field->accessibility = DW_UNSND (attr);
3278 if (new_field->accessibility != DW_ACCESS_public)
3279 fip->non_public_fields = 1;
3280 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3281 if (attr)
3282 new_field->virtuality = DW_UNSND (attr);
3283
3284 fp = &new_field->field;
3285
3286 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3287 {
3288 /* Data member other than a C++ static data member. */
3289
3290 /* Get type of field. */
3291 fp->type = die_type (die, cu);
3292
3293 FIELD_STATIC_KIND (*fp) = 0;
3294
3295 /* Get bit size of field (zero if none). */
3296 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3297 if (attr)
3298 {
3299 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3300 }
3301 else
3302 {
3303 FIELD_BITSIZE (*fp) = 0;
3304 }
3305
3306 /* Get bit offset of field. */
3307 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3308 if (attr)
3309 {
3310 FIELD_BITPOS (*fp) =
3311 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3312 }
3313 else
3314 FIELD_BITPOS (*fp) = 0;
3315 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3316 if (attr)
3317 {
3318 if (BITS_BIG_ENDIAN)
3319 {
3320 /* For big endian bits, the DW_AT_bit_offset gives the
3321 additional bit offset from the MSB of the containing
3322 anonymous object to the MSB of the field. We don't
3323 have to do anything special since we don't need to
3324 know the size of the anonymous object. */
3325 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3326 }
3327 else
3328 {
3329 /* For little endian bits, compute the bit offset to the
3330 MSB of the anonymous object, subtract off the number of
3331 bits from the MSB of the field to the MSB of the
3332 object, and then subtract off the number of bits of
3333 the field itself. The result is the bit offset of
3334 the LSB of the field. */
3335 int anonymous_size;
3336 int bit_offset = DW_UNSND (attr);
3337
3338 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3339 if (attr)
3340 {
3341 /* The size of the anonymous object containing
3342 the bit field is explicit, so use the
3343 indicated size (in bytes). */
3344 anonymous_size = DW_UNSND (attr);
3345 }
3346 else
3347 {
3348 /* The size of the anonymous object containing
3349 the bit field must be inferred from the type
3350 attribute of the data member containing the
3351 bit field. */
3352 anonymous_size = TYPE_LENGTH (fp->type);
3353 }
3354 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3355 - bit_offset - FIELD_BITSIZE (*fp);
3356 }
3357 }
3358
3359 /* Get name of field. */
3360 attr = dwarf2_attr (die, DW_AT_name, cu);
3361 if (attr && DW_STRING (attr))
3362 fieldname = DW_STRING (attr);
3363
3364 /* The name is already allocated along with this objfile, so we don't
3365 need to duplicate it for the type. */
3366 fp->name = fieldname;
3367
3368 /* Change accessibility for artificial fields (e.g. virtual table
3369 pointer or virtual base class pointer) to private. */
3370 if (dwarf2_attr (die, DW_AT_artificial, cu))
3371 {
3372 new_field->accessibility = DW_ACCESS_private;
3373 fip->non_public_fields = 1;
3374 }
3375 }
3376 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3377 {
3378 /* C++ static member. */
3379
3380 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3381 is a declaration, but all versions of G++ as of this writing
3382 (so through at least 3.2.1) incorrectly generate
3383 DW_TAG_variable tags. */
3384
3385 char *physname;
3386
3387 /* Get name of field. */
3388 attr = dwarf2_attr (die, DW_AT_name, cu);
3389 if (attr && DW_STRING (attr))
3390 fieldname = DW_STRING (attr);
3391 else
3392 return;
3393
3394 /* Get physical name. */
3395 physname = dwarf2_linkage_name (die, cu);
3396
3397 /* The name is already allocated along with this objfile, so we don't
3398 need to duplicate it for the type. */
3399 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3400 FIELD_TYPE (*fp) = die_type (die, cu);
3401 FIELD_NAME (*fp) = fieldname;
3402 }
3403 else if (die->tag == DW_TAG_inheritance)
3404 {
3405 /* C++ base class field. */
3406 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3407 if (attr)
3408 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3409 * bits_per_byte);
3410 FIELD_BITSIZE (*fp) = 0;
3411 FIELD_STATIC_KIND (*fp) = 0;
3412 FIELD_TYPE (*fp) = die_type (die, cu);
3413 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3414 fip->nbaseclasses++;
3415 }
3416 }
3417
3418 /* Create the vector of fields, and attach it to the type. */
3419
3420 static void
3421 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3422 struct dwarf2_cu *cu)
3423 {
3424 int nfields = fip->nfields;
3425
3426 /* Record the field count, allocate space for the array of fields,
3427 and create blank accessibility bitfields if necessary. */
3428 TYPE_NFIELDS (type) = nfields;
3429 TYPE_FIELDS (type) = (struct field *)
3430 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3431 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3432
3433 if (fip->non_public_fields)
3434 {
3435 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3436
3437 TYPE_FIELD_PRIVATE_BITS (type) =
3438 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3439 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3440
3441 TYPE_FIELD_PROTECTED_BITS (type) =
3442 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3443 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3444
3445 TYPE_FIELD_IGNORE_BITS (type) =
3446 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3447 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3448 }
3449
3450 /* If the type has baseclasses, allocate and clear a bit vector for
3451 TYPE_FIELD_VIRTUAL_BITS. */
3452 if (fip->nbaseclasses)
3453 {
3454 int num_bytes = B_BYTES (fip->nbaseclasses);
3455 char *pointer;
3456
3457 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3458 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3459 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3460 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3461 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3462 }
3463
3464 /* Copy the saved-up fields into the field vector. Start from the head
3465 of the list, adding to the tail of the field array, so that they end
3466 up in the same order in the array in which they were added to the list. */
3467 while (nfields-- > 0)
3468 {
3469 TYPE_FIELD (type, nfields) = fip->fields->field;
3470 switch (fip->fields->accessibility)
3471 {
3472 case DW_ACCESS_private:
3473 SET_TYPE_FIELD_PRIVATE (type, nfields);
3474 break;
3475
3476 case DW_ACCESS_protected:
3477 SET_TYPE_FIELD_PROTECTED (type, nfields);
3478 break;
3479
3480 case DW_ACCESS_public:
3481 break;
3482
3483 default:
3484 /* Unknown accessibility. Complain and treat it as public. */
3485 {
3486 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3487 fip->fields->accessibility);
3488 }
3489 break;
3490 }
3491 if (nfields < fip->nbaseclasses)
3492 {
3493 switch (fip->fields->virtuality)
3494 {
3495 case DW_VIRTUALITY_virtual:
3496 case DW_VIRTUALITY_pure_virtual:
3497 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3498 break;
3499 }
3500 }
3501 fip->fields = fip->fields->next;
3502 }
3503 }
3504
3505 /* Add a member function to the proper fieldlist. */
3506
3507 static void
3508 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3509 struct type *type, struct dwarf2_cu *cu)
3510 {
3511 struct objfile *objfile = cu->objfile;
3512 struct attribute *attr;
3513 struct fnfieldlist *flp;
3514 int i;
3515 struct fn_field *fnp;
3516 char *fieldname;
3517 char *physname;
3518 struct nextfnfield *new_fnfield;
3519
3520 /* Get name of member function. */
3521 attr = dwarf2_attr (die, DW_AT_name, cu);
3522 if (attr && DW_STRING (attr))
3523 fieldname = DW_STRING (attr);
3524 else
3525 return;
3526
3527 /* Get the mangled name. */
3528 physname = dwarf2_linkage_name (die, cu);
3529
3530 /* Look up member function name in fieldlist. */
3531 for (i = 0; i < fip->nfnfields; i++)
3532 {
3533 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3534 break;
3535 }
3536
3537 /* Create new list element if necessary. */
3538 if (i < fip->nfnfields)
3539 flp = &fip->fnfieldlists[i];
3540 else
3541 {
3542 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3543 {
3544 fip->fnfieldlists = (struct fnfieldlist *)
3545 xrealloc (fip->fnfieldlists,
3546 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3547 * sizeof (struct fnfieldlist));
3548 if (fip->nfnfields == 0)
3549 make_cleanup (free_current_contents, &fip->fnfieldlists);
3550 }
3551 flp = &fip->fnfieldlists[fip->nfnfields];
3552 flp->name = fieldname;
3553 flp->length = 0;
3554 flp->head = NULL;
3555 fip->nfnfields++;
3556 }
3557
3558 /* Create a new member function field and chain it to the field list
3559 entry. */
3560 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3561 make_cleanup (xfree, new_fnfield);
3562 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3563 new_fnfield->next = flp->head;
3564 flp->head = new_fnfield;
3565 flp->length++;
3566
3567 /* Fill in the member function field info. */
3568 fnp = &new_fnfield->fnfield;
3569 /* The name is already allocated along with this objfile, so we don't
3570 need to duplicate it for the type. */
3571 fnp->physname = physname ? physname : "";
3572 fnp->type = alloc_type (objfile);
3573 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3574 {
3575 int nparams = TYPE_NFIELDS (die->type);
3576
3577 /* TYPE is the domain of this method, and DIE->TYPE is the type
3578 of the method itself (TYPE_CODE_METHOD). */
3579 smash_to_method_type (fnp->type, type,
3580 TYPE_TARGET_TYPE (die->type),
3581 TYPE_FIELDS (die->type),
3582 TYPE_NFIELDS (die->type),
3583 TYPE_VARARGS (die->type));
3584
3585 /* Handle static member functions.
3586 Dwarf2 has no clean way to discern C++ static and non-static
3587 member functions. G++ helps GDB by marking the first
3588 parameter for non-static member functions (which is the
3589 this pointer) as artificial. We obtain this information
3590 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3591 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3592 fnp->voffset = VOFFSET_STATIC;
3593 }
3594 else
3595 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3596 physname);
3597
3598 /* Get fcontext from DW_AT_containing_type if present. */
3599 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3600 fnp->fcontext = die_containing_type (die, cu);
3601
3602 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3603 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3604
3605 /* Get accessibility. */
3606 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3607 if (attr)
3608 {
3609 switch (DW_UNSND (attr))
3610 {
3611 case DW_ACCESS_private:
3612 fnp->is_private = 1;
3613 break;
3614 case DW_ACCESS_protected:
3615 fnp->is_protected = 1;
3616 break;
3617 }
3618 }
3619
3620 /* Check for artificial methods. */
3621 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3622 if (attr && DW_UNSND (attr) != 0)
3623 fnp->is_artificial = 1;
3624
3625 /* Get index in virtual function table if it is a virtual member function. */
3626 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3627 if (attr)
3628 {
3629 /* Support the .debug_loc offsets */
3630 if (attr_form_is_block (attr))
3631 {
3632 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3633 }
3634 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3635 {
3636 dwarf2_complex_location_expr_complaint ();
3637 }
3638 else
3639 {
3640 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3641 fieldname);
3642 }
3643 }
3644 }
3645
3646 /* Create the vector of member function fields, and attach it to the type. */
3647
3648 static void
3649 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3650 struct dwarf2_cu *cu)
3651 {
3652 struct fnfieldlist *flp;
3653 int total_length = 0;
3654 int i;
3655
3656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3657 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3658 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3659
3660 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3661 {
3662 struct nextfnfield *nfp = flp->head;
3663 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3664 int k;
3665
3666 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3667 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3668 fn_flp->fn_fields = (struct fn_field *)
3669 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3670 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3671 fn_flp->fn_fields[k] = nfp->fnfield;
3672
3673 total_length += flp->length;
3674 }
3675
3676 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3677 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3678 }
3679
3680
3681 /* Returns non-zero if NAME is the name of a vtable member in CU's
3682 language, zero otherwise. */
3683 static int
3684 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3685 {
3686 static const char vptr[] = "_vptr";
3687 static const char vtable[] = "vtable";
3688
3689 /* Look for the C++ and Java forms of the vtable. */
3690 if ((cu->language == language_java
3691 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3692 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3693 && is_cplus_marker (name[sizeof (vptr) - 1])))
3694 return 1;
3695
3696 return 0;
3697 }
3698
3699
3700 /* Called when we find the DIE that starts a structure or union scope
3701 (definition) to process all dies that define the members of the
3702 structure or union.
3703
3704 NOTE: we need to call struct_type regardless of whether or not the
3705 DIE has an at_name attribute, since it might be an anonymous
3706 structure or union. This gets the type entered into our set of
3707 user defined types.
3708
3709 However, if the structure is incomplete (an opaque struct/union)
3710 then suppress creating a symbol table entry for it since gdb only
3711 wants to find the one with the complete definition. Note that if
3712 it is complete, we just call new_symbol, which does it's own
3713 checking about whether the struct/union is anonymous or not (and
3714 suppresses creating a symbol table entry itself). */
3715
3716 static void
3717 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3718 {
3719 struct objfile *objfile = cu->objfile;
3720 struct type *type;
3721 struct attribute *attr;
3722 const char *previous_prefix = processing_current_prefix;
3723 struct cleanup *back_to = NULL;
3724
3725 if (die->type)
3726 return;
3727
3728 type = alloc_type (objfile);
3729
3730 INIT_CPLUS_SPECIFIC (type);
3731 attr = dwarf2_attr (die, DW_AT_name, cu);
3732 if (attr && DW_STRING (attr))
3733 {
3734 if (cu->language == language_cplus
3735 || cu->language == language_java)
3736 {
3737 char *new_prefix = determine_class_name (die, cu);
3738 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3739 strlen (new_prefix),
3740 &objfile->objfile_obstack);
3741 back_to = make_cleanup (xfree, new_prefix);
3742 processing_current_prefix = new_prefix;
3743 }
3744 else
3745 {
3746 /* The name is already allocated along with this objfile, so
3747 we don't need to duplicate it for the type. */
3748 TYPE_TAG_NAME (type) = DW_STRING (attr);
3749 }
3750 }
3751
3752 if (die->tag == DW_TAG_structure_type)
3753 {
3754 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3755 }
3756 else if (die->tag == DW_TAG_union_type)
3757 {
3758 TYPE_CODE (type) = TYPE_CODE_UNION;
3759 }
3760 else
3761 {
3762 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3763 in gdbtypes.h. */
3764 TYPE_CODE (type) = TYPE_CODE_CLASS;
3765 }
3766
3767 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3768 if (attr)
3769 {
3770 TYPE_LENGTH (type) = DW_UNSND (attr);
3771 }
3772 else
3773 {
3774 TYPE_LENGTH (type) = 0;
3775 }
3776
3777 if (die_is_declaration (die, cu))
3778 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3779
3780 /* We need to add the type field to the die immediately so we don't
3781 infinitely recurse when dealing with pointers to the structure
3782 type within the structure itself. */
3783 set_die_type (die, type, cu);
3784
3785 if (die->child != NULL && ! die_is_declaration (die, cu))
3786 {
3787 struct field_info fi;
3788 struct die_info *child_die;
3789 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3790
3791 memset (&fi, 0, sizeof (struct field_info));
3792
3793 child_die = die->child;
3794
3795 while (child_die && child_die->tag)
3796 {
3797 if (child_die->tag == DW_TAG_member
3798 || child_die->tag == DW_TAG_variable)
3799 {
3800 /* NOTE: carlton/2002-11-05: A C++ static data member
3801 should be a DW_TAG_member that is a declaration, but
3802 all versions of G++ as of this writing (so through at
3803 least 3.2.1) incorrectly generate DW_TAG_variable
3804 tags for them instead. */
3805 dwarf2_add_field (&fi, child_die, cu);
3806 }
3807 else if (child_die->tag == DW_TAG_subprogram)
3808 {
3809 /* C++ member function. */
3810 read_type_die (child_die, cu);
3811 dwarf2_add_member_fn (&fi, child_die, type, cu);
3812 }
3813 else if (child_die->tag == DW_TAG_inheritance)
3814 {
3815 /* C++ base class field. */
3816 dwarf2_add_field (&fi, child_die, cu);
3817 }
3818 child_die = sibling_die (child_die);
3819 }
3820
3821 /* Attach fields and member functions to the type. */
3822 if (fi.nfields)
3823 dwarf2_attach_fields_to_type (&fi, type, cu);
3824 if (fi.nfnfields)
3825 {
3826 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3827
3828 /* Get the type which refers to the base class (possibly this
3829 class itself) which contains the vtable pointer for the current
3830 class from the DW_AT_containing_type attribute. */
3831
3832 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3833 {
3834 struct type *t = die_containing_type (die, cu);
3835
3836 TYPE_VPTR_BASETYPE (type) = t;
3837 if (type == t)
3838 {
3839 int i;
3840
3841 /* Our own class provides vtbl ptr. */
3842 for (i = TYPE_NFIELDS (t) - 1;
3843 i >= TYPE_N_BASECLASSES (t);
3844 --i)
3845 {
3846 char *fieldname = TYPE_FIELD_NAME (t, i);
3847
3848 if (is_vtable_name (fieldname, cu))
3849 {
3850 TYPE_VPTR_FIELDNO (type) = i;
3851 break;
3852 }
3853 }
3854
3855 /* Complain if virtual function table field not found. */
3856 if (i < TYPE_N_BASECLASSES (t))
3857 complaint (&symfile_complaints,
3858 _("virtual function table pointer not found when defining class '%s'"),
3859 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3860 "");
3861 }
3862 else
3863 {
3864 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3865 }
3866 }
3867 }
3868
3869 do_cleanups (back_to);
3870 }
3871
3872 processing_current_prefix = previous_prefix;
3873 if (back_to != NULL)
3874 do_cleanups (back_to);
3875 }
3876
3877 static void
3878 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3879 {
3880 struct objfile *objfile = cu->objfile;
3881 const char *previous_prefix = processing_current_prefix;
3882 struct die_info *child_die = die->child;
3883
3884 if (TYPE_TAG_NAME (die->type) != NULL)
3885 processing_current_prefix = TYPE_TAG_NAME (die->type);
3886
3887 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3888 snapshots) has been known to create a die giving a declaration
3889 for a class that has, as a child, a die giving a definition for a
3890 nested class. So we have to process our children even if the
3891 current die is a declaration. Normally, of course, a declaration
3892 won't have any children at all. */
3893
3894 while (child_die != NULL && child_die->tag)
3895 {
3896 if (child_die->tag == DW_TAG_member
3897 || child_die->tag == DW_TAG_variable
3898 || child_die->tag == DW_TAG_inheritance)
3899 {
3900 /* Do nothing. */
3901 }
3902 else
3903 process_die (child_die, cu);
3904
3905 child_die = sibling_die (child_die);
3906 }
3907
3908 if (die->child != NULL && ! die_is_declaration (die, cu))
3909 new_symbol (die, die->type, cu);
3910
3911 processing_current_prefix = previous_prefix;
3912 }
3913
3914 /* Given a DW_AT_enumeration_type die, set its type. We do not
3915 complete the type's fields yet, or create any symbols. */
3916
3917 static void
3918 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3919 {
3920 struct objfile *objfile = cu->objfile;
3921 struct type *type;
3922 struct attribute *attr;
3923
3924 if (die->type)
3925 return;
3926
3927 type = alloc_type (objfile);
3928
3929 TYPE_CODE (type) = TYPE_CODE_ENUM;
3930 attr = dwarf2_attr (die, DW_AT_name, cu);
3931 if (attr && DW_STRING (attr))
3932 {
3933 char *name = DW_STRING (attr);
3934
3935 if (processing_has_namespace_info)
3936 {
3937 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3938 processing_current_prefix,
3939 name, cu);
3940 }
3941 else
3942 {
3943 /* The name is already allocated along with this objfile, so
3944 we don't need to duplicate it for the type. */
3945 TYPE_TAG_NAME (type) = name;
3946 }
3947 }
3948
3949 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3950 if (attr)
3951 {
3952 TYPE_LENGTH (type) = DW_UNSND (attr);
3953 }
3954 else
3955 {
3956 TYPE_LENGTH (type) = 0;
3957 }
3958
3959 set_die_type (die, type, cu);
3960 }
3961
3962 /* Determine the name of the type represented by DIE, which should be
3963 a named C++ or Java compound type. Return the name in question; the caller
3964 is responsible for xfree()'ing it. */
3965
3966 static char *
3967 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3968 {
3969 struct cleanup *back_to = NULL;
3970 struct die_info *spec_die = die_specification (die, cu);
3971 char *new_prefix = NULL;
3972
3973 /* If this is the definition of a class that is declared by another
3974 die, then processing_current_prefix may not be accurate; see
3975 read_func_scope for a similar example. */
3976 if (spec_die != NULL)
3977 {
3978 char *specification_prefix = determine_prefix (spec_die, cu);
3979 processing_current_prefix = specification_prefix;
3980 back_to = make_cleanup (xfree, specification_prefix);
3981 }
3982
3983 /* If we don't have namespace debug info, guess the name by trying
3984 to demangle the names of members, just like we did in
3985 guess_structure_name. */
3986 if (!processing_has_namespace_info)
3987 {
3988 struct die_info *child;
3989
3990 for (child = die->child;
3991 child != NULL && child->tag != 0;
3992 child = sibling_die (child))
3993 {
3994 if (child->tag == DW_TAG_subprogram)
3995 {
3996 new_prefix
3997 = language_class_name_from_physname (cu->language_defn,
3998 dwarf2_linkage_name
3999 (child, cu));
4000
4001 if (new_prefix != NULL)
4002 break;
4003 }
4004 }
4005 }
4006
4007 if (new_prefix == NULL)
4008 {
4009 const char *name = dwarf2_name (die, cu);
4010 new_prefix = typename_concat (NULL, processing_current_prefix,
4011 name ? name : "<<anonymous>>",
4012 cu);
4013 }
4014
4015 if (back_to != NULL)
4016 do_cleanups (back_to);
4017
4018 return new_prefix;
4019 }
4020
4021 /* Given a pointer to a die which begins an enumeration, process all
4022 the dies that define the members of the enumeration, and create the
4023 symbol for the enumeration type.
4024
4025 NOTE: We reverse the order of the element list. */
4026
4027 static void
4028 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4029 {
4030 struct objfile *objfile = cu->objfile;
4031 struct die_info *child_die;
4032 struct field *fields;
4033 struct attribute *attr;
4034 struct symbol *sym;
4035 int num_fields;
4036 int unsigned_enum = 1;
4037
4038 num_fields = 0;
4039 fields = NULL;
4040 if (die->child != NULL)
4041 {
4042 child_die = die->child;
4043 while (child_die && child_die->tag)
4044 {
4045 if (child_die->tag != DW_TAG_enumerator)
4046 {
4047 process_die (child_die, cu);
4048 }
4049 else
4050 {
4051 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4052 if (attr)
4053 {
4054 sym = new_symbol (child_die, die->type, cu);
4055 if (SYMBOL_VALUE (sym) < 0)
4056 unsigned_enum = 0;
4057
4058 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4059 {
4060 fields = (struct field *)
4061 xrealloc (fields,
4062 (num_fields + DW_FIELD_ALLOC_CHUNK)
4063 * sizeof (struct field));
4064 }
4065
4066 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4067 FIELD_TYPE (fields[num_fields]) = NULL;
4068 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4069 FIELD_BITSIZE (fields[num_fields]) = 0;
4070 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4071
4072 num_fields++;
4073 }
4074 }
4075
4076 child_die = sibling_die (child_die);
4077 }
4078
4079 if (num_fields)
4080 {
4081 TYPE_NFIELDS (die->type) = num_fields;
4082 TYPE_FIELDS (die->type) = (struct field *)
4083 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4084 memcpy (TYPE_FIELDS (die->type), fields,
4085 sizeof (struct field) * num_fields);
4086 xfree (fields);
4087 }
4088 if (unsigned_enum)
4089 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4090 }
4091
4092 new_symbol (die, die->type, cu);
4093 }
4094
4095 /* Extract all information from a DW_TAG_array_type DIE and put it in
4096 the DIE's type field. For now, this only handles one dimensional
4097 arrays. */
4098
4099 static void
4100 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4101 {
4102 struct objfile *objfile = cu->objfile;
4103 struct die_info *child_die;
4104 struct type *type = NULL;
4105 struct type *element_type, *range_type, *index_type;
4106 struct type **range_types = NULL;
4107 struct attribute *attr;
4108 int ndim = 0;
4109 struct cleanup *back_to;
4110
4111 /* Return if we've already decoded this type. */
4112 if (die->type)
4113 {
4114 return;
4115 }
4116
4117 element_type = die_type (die, cu);
4118
4119 /* Irix 6.2 native cc creates array types without children for
4120 arrays with unspecified length. */
4121 if (die->child == NULL)
4122 {
4123 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4124 range_type = create_range_type (NULL, index_type, 0, -1);
4125 set_die_type (die, create_array_type (NULL, element_type, range_type),
4126 cu);
4127 return;
4128 }
4129
4130 back_to = make_cleanup (null_cleanup, NULL);
4131 child_die = die->child;
4132 while (child_die && child_die->tag)
4133 {
4134 if (child_die->tag == DW_TAG_subrange_type)
4135 {
4136 read_subrange_type (child_die, cu);
4137
4138 if (child_die->type != NULL)
4139 {
4140 /* The range type was succesfully read. Save it for
4141 the array type creation. */
4142 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4143 {
4144 range_types = (struct type **)
4145 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4146 * sizeof (struct type *));
4147 if (ndim == 0)
4148 make_cleanup (free_current_contents, &range_types);
4149 }
4150 range_types[ndim++] = child_die->type;
4151 }
4152 }
4153 child_die = sibling_die (child_die);
4154 }
4155
4156 /* Dwarf2 dimensions are output from left to right, create the
4157 necessary array types in backwards order. */
4158
4159 type = element_type;
4160
4161 if (read_array_order (die, cu) == DW_ORD_col_major)
4162 {
4163 int i = 0;
4164 while (i < ndim)
4165 type = create_array_type (NULL, type, range_types[i++]);
4166 }
4167 else
4168 {
4169 while (ndim-- > 0)
4170 type = create_array_type (NULL, type, range_types[ndim]);
4171 }
4172
4173 /* Understand Dwarf2 support for vector types (like they occur on
4174 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4175 array type. This is not part of the Dwarf2/3 standard yet, but a
4176 custom vendor extension. The main difference between a regular
4177 array and the vector variant is that vectors are passed by value
4178 to functions. */
4179 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4180 if (attr)
4181 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4182
4183 do_cleanups (back_to);
4184
4185 /* Install the type in the die. */
4186 set_die_type (die, type, cu);
4187 }
4188
4189 static enum dwarf_array_dim_ordering
4190 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4191 {
4192 struct attribute *attr;
4193
4194 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4195
4196 if (attr) return DW_SND (attr);
4197
4198 /*
4199 GNU F77 is a special case, as at 08/2004 array type info is the
4200 opposite order to the dwarf2 specification, but data is still
4201 laid out as per normal fortran.
4202
4203 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4204 version checking.
4205 */
4206
4207 if (cu->language == language_fortran &&
4208 cu->producer && strstr (cu->producer, "GNU F77"))
4209 {
4210 return DW_ORD_row_major;
4211 }
4212
4213 switch (cu->language_defn->la_array_ordering)
4214 {
4215 case array_column_major:
4216 return DW_ORD_col_major;
4217 case array_row_major:
4218 default:
4219 return DW_ORD_row_major;
4220 };
4221 }
4222
4223
4224 /* First cut: install each common block member as a global variable. */
4225
4226 static void
4227 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4228 {
4229 struct die_info *child_die;
4230 struct attribute *attr;
4231 struct symbol *sym;
4232 CORE_ADDR base = (CORE_ADDR) 0;
4233
4234 attr = dwarf2_attr (die, DW_AT_location, cu);
4235 if (attr)
4236 {
4237 /* Support the .debug_loc offsets */
4238 if (attr_form_is_block (attr))
4239 {
4240 base = decode_locdesc (DW_BLOCK (attr), cu);
4241 }
4242 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4243 {
4244 dwarf2_complex_location_expr_complaint ();
4245 }
4246 else
4247 {
4248 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4249 "common block member");
4250 }
4251 }
4252 if (die->child != NULL)
4253 {
4254 child_die = die->child;
4255 while (child_die && child_die->tag)
4256 {
4257 sym = new_symbol (child_die, NULL, cu);
4258 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4259 if (attr)
4260 {
4261 SYMBOL_VALUE_ADDRESS (sym) =
4262 base + decode_locdesc (DW_BLOCK (attr), cu);
4263 add_symbol_to_list (sym, &global_symbols);
4264 }
4265 child_die = sibling_die (child_die);
4266 }
4267 }
4268 }
4269
4270 /* Read a C++ namespace. */
4271
4272 static void
4273 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4274 {
4275 struct objfile *objfile = cu->objfile;
4276 const char *previous_prefix = processing_current_prefix;
4277 const char *name;
4278 int is_anonymous;
4279 struct die_info *current_die;
4280 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4281
4282 name = namespace_name (die, &is_anonymous, cu);
4283
4284 /* Now build the name of the current namespace. */
4285
4286 if (previous_prefix[0] == '\0')
4287 {
4288 processing_current_prefix = name;
4289 }
4290 else
4291 {
4292 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4293 make_cleanup (xfree, temp_name);
4294 processing_current_prefix = temp_name;
4295 }
4296
4297 /* Add a symbol associated to this if we haven't seen the namespace
4298 before. Also, add a using directive if it's an anonymous
4299 namespace. */
4300
4301 if (dwarf2_extension (die, cu) == NULL)
4302 {
4303 struct type *type;
4304
4305 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4306 this cast will hopefully become unnecessary. */
4307 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4308 (char *) processing_current_prefix,
4309 objfile);
4310 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4311
4312 new_symbol (die, type, cu);
4313 set_die_type (die, type, cu);
4314
4315 if (is_anonymous)
4316 cp_add_using_directive (processing_current_prefix,
4317 strlen (previous_prefix),
4318 strlen (processing_current_prefix));
4319 }
4320
4321 if (die->child != NULL)
4322 {
4323 struct die_info *child_die = die->child;
4324
4325 while (child_die && child_die->tag)
4326 {
4327 process_die (child_die, cu);
4328 child_die = sibling_die (child_die);
4329 }
4330 }
4331
4332 processing_current_prefix = previous_prefix;
4333 do_cleanups (back_to);
4334 }
4335
4336 /* Return the name of the namespace represented by DIE. Set
4337 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4338 namespace. */
4339
4340 static const char *
4341 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4342 {
4343 struct die_info *current_die;
4344 const char *name = NULL;
4345
4346 /* Loop through the extensions until we find a name. */
4347
4348 for (current_die = die;
4349 current_die != NULL;
4350 current_die = dwarf2_extension (die, cu))
4351 {
4352 name = dwarf2_name (current_die, cu);
4353 if (name != NULL)
4354 break;
4355 }
4356
4357 /* Is it an anonymous namespace? */
4358
4359 *is_anonymous = (name == NULL);
4360 if (*is_anonymous)
4361 name = "(anonymous namespace)";
4362
4363 return name;
4364 }
4365
4366 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4367 the user defined type vector. */
4368
4369 static void
4370 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4371 {
4372 struct comp_unit_head *cu_header = &cu->header;
4373 struct type *type;
4374 struct attribute *attr_byte_size;
4375 struct attribute *attr_address_class;
4376 int byte_size, addr_class;
4377
4378 if (die->type)
4379 {
4380 return;
4381 }
4382
4383 type = lookup_pointer_type (die_type (die, cu));
4384
4385 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4386 if (attr_byte_size)
4387 byte_size = DW_UNSND (attr_byte_size);
4388 else
4389 byte_size = cu_header->addr_size;
4390
4391 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4392 if (attr_address_class)
4393 addr_class = DW_UNSND (attr_address_class);
4394 else
4395 addr_class = DW_ADDR_none;
4396
4397 /* If the pointer size or address class is different than the
4398 default, create a type variant marked as such and set the
4399 length accordingly. */
4400 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4401 {
4402 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4403 {
4404 int type_flags;
4405
4406 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4407 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4408 type = make_type_with_address_space (type, type_flags);
4409 }
4410 else if (TYPE_LENGTH (type) != byte_size)
4411 {
4412 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4413 }
4414 else {
4415 /* Should we also complain about unhandled address classes? */
4416 }
4417 }
4418
4419 TYPE_LENGTH (type) = byte_size;
4420 set_die_type (die, type, cu);
4421 }
4422
4423 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4424 the user defined type vector. */
4425
4426 static void
4427 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4428 {
4429 struct objfile *objfile = cu->objfile;
4430 struct type *type;
4431 struct type *to_type;
4432 struct type *domain;
4433
4434 if (die->type)
4435 {
4436 return;
4437 }
4438
4439 type = alloc_type (objfile);
4440 to_type = die_type (die, cu);
4441 domain = die_containing_type (die, cu);
4442 smash_to_member_type (type, domain, to_type);
4443
4444 set_die_type (die, type, cu);
4445 }
4446
4447 /* Extract all information from a DW_TAG_reference_type DIE and add to
4448 the user defined type vector. */
4449
4450 static void
4451 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4452 {
4453 struct comp_unit_head *cu_header = &cu->header;
4454 struct type *type;
4455 struct attribute *attr;
4456
4457 if (die->type)
4458 {
4459 return;
4460 }
4461
4462 type = lookup_reference_type (die_type (die, cu));
4463 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4464 if (attr)
4465 {
4466 TYPE_LENGTH (type) = DW_UNSND (attr);
4467 }
4468 else
4469 {
4470 TYPE_LENGTH (type) = cu_header->addr_size;
4471 }
4472 set_die_type (die, type, cu);
4473 }
4474
4475 static void
4476 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4477 {
4478 struct type *base_type;
4479
4480 if (die->type)
4481 {
4482 return;
4483 }
4484
4485 base_type = die_type (die, cu);
4486 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4487 cu);
4488 }
4489
4490 static void
4491 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4492 {
4493 struct type *base_type;
4494
4495 if (die->type)
4496 {
4497 return;
4498 }
4499
4500 base_type = die_type (die, cu);
4501 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4502 cu);
4503 }
4504
4505 /* Extract all information from a DW_TAG_string_type DIE and add to
4506 the user defined type vector. It isn't really a user defined type,
4507 but it behaves like one, with other DIE's using an AT_user_def_type
4508 attribute to reference it. */
4509
4510 static void
4511 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4512 {
4513 struct objfile *objfile = cu->objfile;
4514 struct type *type, *range_type, *index_type, *char_type;
4515 struct attribute *attr;
4516 unsigned int length;
4517
4518 if (die->type)
4519 {
4520 return;
4521 }
4522
4523 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4524 if (attr)
4525 {
4526 length = DW_UNSND (attr);
4527 }
4528 else
4529 {
4530 /* check for the DW_AT_byte_size attribute */
4531 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4532 if (attr)
4533 {
4534 length = DW_UNSND (attr);
4535 }
4536 else
4537 {
4538 length = 1;
4539 }
4540 }
4541 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4542 range_type = create_range_type (NULL, index_type, 1, length);
4543 if (cu->language == language_fortran)
4544 {
4545 /* Need to create a unique string type for bounds
4546 information */
4547 type = create_string_type (0, range_type);
4548 }
4549 else
4550 {
4551 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4552 type = create_string_type (char_type, range_type);
4553 }
4554 set_die_type (die, type, cu);
4555 }
4556
4557 /* Handle DIES due to C code like:
4558
4559 struct foo
4560 {
4561 int (*funcp)(int a, long l);
4562 int b;
4563 };
4564
4565 ('funcp' generates a DW_TAG_subroutine_type DIE)
4566 */
4567
4568 static void
4569 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4570 {
4571 struct type *type; /* Type that this function returns */
4572 struct type *ftype; /* Function that returns above type */
4573 struct attribute *attr;
4574
4575 /* Decode the type that this subroutine returns */
4576 if (die->type)
4577 {
4578 return;
4579 }
4580 type = die_type (die, cu);
4581 ftype = make_function_type (type, (struct type **) 0);
4582
4583 /* All functions in C++ and Java have prototypes. */
4584 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4585 if ((attr && (DW_UNSND (attr) != 0))
4586 || cu->language == language_cplus
4587 || cu->language == language_java)
4588 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4589
4590 if (die->child != NULL)
4591 {
4592 struct die_info *child_die;
4593 int nparams = 0;
4594 int iparams = 0;
4595
4596 /* Count the number of parameters.
4597 FIXME: GDB currently ignores vararg functions, but knows about
4598 vararg member functions. */
4599 child_die = die->child;
4600 while (child_die && child_die->tag)
4601 {
4602 if (child_die->tag == DW_TAG_formal_parameter)
4603 nparams++;
4604 else if (child_die->tag == DW_TAG_unspecified_parameters)
4605 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4606 child_die = sibling_die (child_die);
4607 }
4608
4609 /* Allocate storage for parameters and fill them in. */
4610 TYPE_NFIELDS (ftype) = nparams;
4611 TYPE_FIELDS (ftype) = (struct field *)
4612 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4613
4614 child_die = die->child;
4615 while (child_die && child_die->tag)
4616 {
4617 if (child_die->tag == DW_TAG_formal_parameter)
4618 {
4619 /* Dwarf2 has no clean way to discern C++ static and non-static
4620 member functions. G++ helps GDB by marking the first
4621 parameter for non-static member functions (which is the
4622 this pointer) as artificial. We pass this information
4623 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4624 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4625 if (attr)
4626 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4627 else
4628 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4629 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4630 iparams++;
4631 }
4632 child_die = sibling_die (child_die);
4633 }
4634 }
4635
4636 set_die_type (die, ftype, cu);
4637 }
4638
4639 static void
4640 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4641 {
4642 struct objfile *objfile = cu->objfile;
4643 struct attribute *attr;
4644 char *name = NULL;
4645
4646 if (!die->type)
4647 {
4648 attr = dwarf2_attr (die, DW_AT_name, cu);
4649 if (attr && DW_STRING (attr))
4650 {
4651 name = DW_STRING (attr);
4652 }
4653 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4654 TYPE_FLAG_TARGET_STUB, name, objfile),
4655 cu);
4656 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4657 }
4658 }
4659
4660 /* Find a representation of a given base type and install
4661 it in the TYPE field of the die. */
4662
4663 static void
4664 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4665 {
4666 struct objfile *objfile = cu->objfile;
4667 struct type *type;
4668 struct attribute *attr;
4669 int encoding = 0, size = 0;
4670
4671 /* If we've already decoded this die, this is a no-op. */
4672 if (die->type)
4673 {
4674 return;
4675 }
4676
4677 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4678 if (attr)
4679 {
4680 encoding = DW_UNSND (attr);
4681 }
4682 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4683 if (attr)
4684 {
4685 size = DW_UNSND (attr);
4686 }
4687 attr = dwarf2_attr (die, DW_AT_name, cu);
4688 if (attr && DW_STRING (attr))
4689 {
4690 enum type_code code = TYPE_CODE_INT;
4691 int type_flags = 0;
4692
4693 switch (encoding)
4694 {
4695 case DW_ATE_address:
4696 /* Turn DW_ATE_address into a void * pointer. */
4697 code = TYPE_CODE_PTR;
4698 type_flags |= TYPE_FLAG_UNSIGNED;
4699 break;
4700 case DW_ATE_boolean:
4701 code = TYPE_CODE_BOOL;
4702 type_flags |= TYPE_FLAG_UNSIGNED;
4703 break;
4704 case DW_ATE_complex_float:
4705 code = TYPE_CODE_COMPLEX;
4706 break;
4707 case DW_ATE_float:
4708 code = TYPE_CODE_FLT;
4709 break;
4710 case DW_ATE_signed:
4711 case DW_ATE_signed_char:
4712 break;
4713 case DW_ATE_unsigned:
4714 case DW_ATE_unsigned_char:
4715 type_flags |= TYPE_FLAG_UNSIGNED;
4716 break;
4717 default:
4718 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4719 dwarf_type_encoding_name (encoding));
4720 break;
4721 }
4722 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4723 if (encoding == DW_ATE_address)
4724 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4725 cu);
4726 else if (encoding == DW_ATE_complex_float)
4727 {
4728 if (size == 32)
4729 TYPE_TARGET_TYPE (type)
4730 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4731 else if (size == 16)
4732 TYPE_TARGET_TYPE (type)
4733 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4734 else if (size == 8)
4735 TYPE_TARGET_TYPE (type)
4736 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4737 }
4738 }
4739 else
4740 {
4741 type = dwarf_base_type (encoding, size, cu);
4742 }
4743 set_die_type (die, type, cu);
4744 }
4745
4746 /* Read the given DW_AT_subrange DIE. */
4747
4748 static void
4749 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4750 {
4751 struct type *base_type;
4752 struct type *range_type;
4753 struct attribute *attr;
4754 int low = 0;
4755 int high = -1;
4756
4757 /* If we have already decoded this die, then nothing more to do. */
4758 if (die->type)
4759 return;
4760
4761 base_type = die_type (die, cu);
4762 if (base_type == NULL)
4763 {
4764 complaint (&symfile_complaints,
4765 _("DW_AT_type missing from DW_TAG_subrange_type"));
4766 return;
4767 }
4768
4769 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4770 base_type = alloc_type (NULL);
4771
4772 if (cu->language == language_fortran)
4773 {
4774 /* FORTRAN implies a lower bound of 1, if not given. */
4775 low = 1;
4776 }
4777
4778 /* FIXME: For variable sized arrays either of these could be
4779 a variable rather than a constant value. We'll allow it,
4780 but we don't know how to handle it. */
4781 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4782 if (attr)
4783 low = dwarf2_get_attr_constant_value (attr, 0);
4784
4785 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4786 if (attr)
4787 {
4788 if (attr->form == DW_FORM_block1)
4789 {
4790 /* GCC encodes arrays with unspecified or dynamic length
4791 with a DW_FORM_block1 attribute.
4792 FIXME: GDB does not yet know how to handle dynamic
4793 arrays properly, treat them as arrays with unspecified
4794 length for now.
4795
4796 FIXME: jimb/2003-09-22: GDB does not really know
4797 how to handle arrays of unspecified length
4798 either; we just represent them as zero-length
4799 arrays. Choose an appropriate upper bound given
4800 the lower bound we've computed above. */
4801 high = low - 1;
4802 }
4803 else
4804 high = dwarf2_get_attr_constant_value (attr, 1);
4805 }
4806
4807 range_type = create_range_type (NULL, base_type, low, high);
4808
4809 attr = dwarf2_attr (die, DW_AT_name, cu);
4810 if (attr && DW_STRING (attr))
4811 TYPE_NAME (range_type) = DW_STRING (attr);
4812
4813 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4814 if (attr)
4815 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4816
4817 set_die_type (die, range_type, cu);
4818 }
4819
4820
4821 /* Read a whole compilation unit into a linked list of dies. */
4822
4823 static struct die_info *
4824 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4825 {
4826 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4827 }
4828
4829 /* Read a single die and all its descendents. Set the die's sibling
4830 field to NULL; set other fields in the die correctly, and set all
4831 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4832 location of the info_ptr after reading all of those dies. PARENT
4833 is the parent of the die in question. */
4834
4835 static struct die_info *
4836 read_die_and_children (char *info_ptr, bfd *abfd,
4837 struct dwarf2_cu *cu,
4838 char **new_info_ptr,
4839 struct die_info *parent)
4840 {
4841 struct die_info *die;
4842 char *cur_ptr;
4843 int has_children;
4844
4845 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4846 store_in_ref_table (die->offset, die, cu);
4847
4848 if (has_children)
4849 {
4850 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4851 new_info_ptr, die);
4852 }
4853 else
4854 {
4855 die->child = NULL;
4856 *new_info_ptr = cur_ptr;
4857 }
4858
4859 die->sibling = NULL;
4860 die->parent = parent;
4861 return die;
4862 }
4863
4864 /* Read a die, all of its descendents, and all of its siblings; set
4865 all of the fields of all of the dies correctly. Arguments are as
4866 in read_die_and_children. */
4867
4868 static struct die_info *
4869 read_die_and_siblings (char *info_ptr, bfd *abfd,
4870 struct dwarf2_cu *cu,
4871 char **new_info_ptr,
4872 struct die_info *parent)
4873 {
4874 struct die_info *first_die, *last_sibling;
4875 char *cur_ptr;
4876
4877 cur_ptr = info_ptr;
4878 first_die = last_sibling = NULL;
4879
4880 while (1)
4881 {
4882 struct die_info *die
4883 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4884
4885 if (!first_die)
4886 {
4887 first_die = die;
4888 }
4889 else
4890 {
4891 last_sibling->sibling = die;
4892 }
4893
4894 if (die->tag == 0)
4895 {
4896 *new_info_ptr = cur_ptr;
4897 return first_die;
4898 }
4899 else
4900 {
4901 last_sibling = die;
4902 }
4903 }
4904 }
4905
4906 /* Free a linked list of dies. */
4907
4908 static void
4909 free_die_list (struct die_info *dies)
4910 {
4911 struct die_info *die, *next;
4912
4913 die = dies;
4914 while (die)
4915 {
4916 if (die->child != NULL)
4917 free_die_list (die->child);
4918 next = die->sibling;
4919 xfree (die->attrs);
4920 xfree (die);
4921 die = next;
4922 }
4923 }
4924
4925 /* Read the contents of the section at OFFSET and of size SIZE from the
4926 object file specified by OBJFILE into the objfile_obstack and return it. */
4927
4928 char *
4929 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4930 {
4931 bfd *abfd = objfile->obfd;
4932 char *buf, *retbuf;
4933 bfd_size_type size = bfd_get_section_size (sectp);
4934
4935 if (size == 0)
4936 return NULL;
4937
4938 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4939 retbuf
4940 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4941 if (retbuf != NULL)
4942 return retbuf;
4943
4944 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4945 || bfd_bread (buf, size, abfd) != size)
4946 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
4947 bfd_get_filename (abfd));
4948
4949 return buf;
4950 }
4951
4952 /* In DWARF version 2, the description of the debugging information is
4953 stored in a separate .debug_abbrev section. Before we read any
4954 dies from a section we read in all abbreviations and install them
4955 in a hash table. This function also sets flags in CU describing
4956 the data found in the abbrev table. */
4957
4958 static void
4959 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4960 {
4961 struct comp_unit_head *cu_header = &cu->header;
4962 char *abbrev_ptr;
4963 struct abbrev_info *cur_abbrev;
4964 unsigned int abbrev_number, bytes_read, abbrev_name;
4965 unsigned int abbrev_form, hash_number;
4966 struct attr_abbrev *cur_attrs;
4967 unsigned int allocated_attrs;
4968
4969 /* Initialize dwarf2 abbrevs */
4970 obstack_init (&cu->abbrev_obstack);
4971 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4972 (ABBREV_HASH_SIZE
4973 * sizeof (struct abbrev_info *)));
4974 memset (cu->dwarf2_abbrevs, 0,
4975 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4976
4977 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4978 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4979 abbrev_ptr += bytes_read;
4980
4981 allocated_attrs = ATTR_ALLOC_CHUNK;
4982 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4983
4984 /* loop until we reach an abbrev number of 0 */
4985 while (abbrev_number)
4986 {
4987 cur_abbrev = dwarf_alloc_abbrev (cu);
4988
4989 /* read in abbrev header */
4990 cur_abbrev->number = abbrev_number;
4991 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4992 abbrev_ptr += bytes_read;
4993 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4994 abbrev_ptr += 1;
4995
4996 if (cur_abbrev->tag == DW_TAG_namespace)
4997 cu->has_namespace_info = 1;
4998
4999 /* now read in declarations */
5000 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5001 abbrev_ptr += bytes_read;
5002 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5003 abbrev_ptr += bytes_read;
5004 while (abbrev_name)
5005 {
5006 if (cur_abbrev->num_attrs == allocated_attrs)
5007 {
5008 allocated_attrs += ATTR_ALLOC_CHUNK;
5009 cur_attrs
5010 = xrealloc (cur_attrs, (allocated_attrs
5011 * sizeof (struct attr_abbrev)));
5012 }
5013
5014 /* Record whether this compilation unit might have
5015 inter-compilation-unit references. If we don't know what form
5016 this attribute will have, then it might potentially be a
5017 DW_FORM_ref_addr, so we conservatively expect inter-CU
5018 references. */
5019
5020 if (abbrev_form == DW_FORM_ref_addr
5021 || abbrev_form == DW_FORM_indirect)
5022 cu->has_form_ref_addr = 1;
5023
5024 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5025 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5026 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5027 abbrev_ptr += bytes_read;
5028 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5029 abbrev_ptr += bytes_read;
5030 }
5031
5032 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5033 (cur_abbrev->num_attrs
5034 * sizeof (struct attr_abbrev)));
5035 memcpy (cur_abbrev->attrs, cur_attrs,
5036 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5037
5038 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5039 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5040 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5041
5042 /* Get next abbreviation.
5043 Under Irix6 the abbreviations for a compilation unit are not
5044 always properly terminated with an abbrev number of 0.
5045 Exit loop if we encounter an abbreviation which we have
5046 already read (which means we are about to read the abbreviations
5047 for the next compile unit) or if the end of the abbreviation
5048 table is reached. */
5049 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5050 >= dwarf2_per_objfile->abbrev_size)
5051 break;
5052 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5053 abbrev_ptr += bytes_read;
5054 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5055 break;
5056 }
5057
5058 xfree (cur_attrs);
5059 }
5060
5061 /* Release the memory used by the abbrev table for a compilation unit. */
5062
5063 static void
5064 dwarf2_free_abbrev_table (void *ptr_to_cu)
5065 {
5066 struct dwarf2_cu *cu = ptr_to_cu;
5067
5068 obstack_free (&cu->abbrev_obstack, NULL);
5069 cu->dwarf2_abbrevs = NULL;
5070 }
5071
5072 /* Lookup an abbrev_info structure in the abbrev hash table. */
5073
5074 static struct abbrev_info *
5075 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5076 {
5077 unsigned int hash_number;
5078 struct abbrev_info *abbrev;
5079
5080 hash_number = number % ABBREV_HASH_SIZE;
5081 abbrev = cu->dwarf2_abbrevs[hash_number];
5082
5083 while (abbrev)
5084 {
5085 if (abbrev->number == number)
5086 return abbrev;
5087 else
5088 abbrev = abbrev->next;
5089 }
5090 return NULL;
5091 }
5092
5093 /* Returns nonzero if TAG represents a type that we might generate a partial
5094 symbol for. */
5095
5096 static int
5097 is_type_tag_for_partial (int tag)
5098 {
5099 switch (tag)
5100 {
5101 #if 0
5102 /* Some types that would be reasonable to generate partial symbols for,
5103 that we don't at present. */
5104 case DW_TAG_array_type:
5105 case DW_TAG_file_type:
5106 case DW_TAG_ptr_to_member_type:
5107 case DW_TAG_set_type:
5108 case DW_TAG_string_type:
5109 case DW_TAG_subroutine_type:
5110 #endif
5111 case DW_TAG_base_type:
5112 case DW_TAG_class_type:
5113 case DW_TAG_enumeration_type:
5114 case DW_TAG_structure_type:
5115 case DW_TAG_subrange_type:
5116 case DW_TAG_typedef:
5117 case DW_TAG_union_type:
5118 return 1;
5119 default:
5120 return 0;
5121 }
5122 }
5123
5124 /* Load all DIEs that are interesting for partial symbols into memory. */
5125
5126 static struct partial_die_info *
5127 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
5128 struct dwarf2_cu *cu)
5129 {
5130 struct partial_die_info *part_die;
5131 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5132 struct abbrev_info *abbrev;
5133 unsigned int bytes_read;
5134
5135 int nesting_level = 1;
5136
5137 parent_die = NULL;
5138 last_die = NULL;
5139
5140 cu->partial_dies
5141 = htab_create_alloc_ex (cu->header.length / 12,
5142 partial_die_hash,
5143 partial_die_eq,
5144 NULL,
5145 &cu->comp_unit_obstack,
5146 hashtab_obstack_allocate,
5147 dummy_obstack_deallocate);
5148
5149 part_die = obstack_alloc (&cu->comp_unit_obstack,
5150 sizeof (struct partial_die_info));
5151
5152 while (1)
5153 {
5154 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5155
5156 /* A NULL abbrev means the end of a series of children. */
5157 if (abbrev == NULL)
5158 {
5159 if (--nesting_level == 0)
5160 {
5161 /* PART_DIE was probably the last thing allocated on the
5162 comp_unit_obstack, so we could call obstack_free
5163 here. We don't do that because the waste is small,
5164 and will be cleaned up when we're done with this
5165 compilation unit. This way, we're also more robust
5166 against other users of the comp_unit_obstack. */
5167 return first_die;
5168 }
5169 info_ptr += bytes_read;
5170 last_die = parent_die;
5171 parent_die = parent_die->die_parent;
5172 continue;
5173 }
5174
5175 /* Check whether this DIE is interesting enough to save. */
5176 if (!is_type_tag_for_partial (abbrev->tag)
5177 && abbrev->tag != DW_TAG_enumerator
5178 && abbrev->tag != DW_TAG_subprogram
5179 && abbrev->tag != DW_TAG_variable
5180 && abbrev->tag != DW_TAG_namespace)
5181 {
5182 /* Otherwise we skip to the next sibling, if any. */
5183 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5184 continue;
5185 }
5186
5187 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5188 abfd, info_ptr, cu);
5189
5190 /* This two-pass algorithm for processing partial symbols has a
5191 high cost in cache pressure. Thus, handle some simple cases
5192 here which cover the majority of C partial symbols. DIEs
5193 which neither have specification tags in them, nor could have
5194 specification tags elsewhere pointing at them, can simply be
5195 processed and discarded.
5196
5197 This segment is also optional; scan_partial_symbols and
5198 add_partial_symbol will handle these DIEs if we chain
5199 them in normally. When compilers which do not emit large
5200 quantities of duplicate debug information are more common,
5201 this code can probably be removed. */
5202
5203 /* Any complete simple types at the top level (pretty much all
5204 of them, for a language without namespaces), can be processed
5205 directly. */
5206 if (parent_die == NULL
5207 && part_die->has_specification == 0
5208 && part_die->is_declaration == 0
5209 && (part_die->tag == DW_TAG_typedef
5210 || part_die->tag == DW_TAG_base_type
5211 || part_die->tag == DW_TAG_subrange_type))
5212 {
5213 if (building_psymtab && part_die->name != NULL)
5214 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5215 VAR_DOMAIN, LOC_TYPEDEF,
5216 &cu->objfile->static_psymbols,
5217 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5218 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5219 continue;
5220 }
5221
5222 /* If we're at the second level, and we're an enumerator, and
5223 our parent has no specification (meaning possibly lives in a
5224 namespace elsewhere), then we can add the partial symbol now
5225 instead of queueing it. */
5226 if (part_die->tag == DW_TAG_enumerator
5227 && parent_die != NULL
5228 && parent_die->die_parent == NULL
5229 && parent_die->tag == DW_TAG_enumeration_type
5230 && parent_die->has_specification == 0)
5231 {
5232 if (part_die->name == NULL)
5233 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5234 else if (building_psymtab)
5235 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5236 VAR_DOMAIN, LOC_CONST,
5237 (cu->language == language_cplus
5238 || cu->language == language_java)
5239 ? &cu->objfile->global_psymbols
5240 : &cu->objfile->static_psymbols,
5241 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5242
5243 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5244 continue;
5245 }
5246
5247 /* We'll save this DIE so link it in. */
5248 part_die->die_parent = parent_die;
5249 part_die->die_sibling = NULL;
5250 part_die->die_child = NULL;
5251
5252 if (last_die && last_die == parent_die)
5253 last_die->die_child = part_die;
5254 else if (last_die)
5255 last_die->die_sibling = part_die;
5256
5257 last_die = part_die;
5258
5259 if (first_die == NULL)
5260 first_die = part_die;
5261
5262 /* Maybe add the DIE to the hash table. Not all DIEs that we
5263 find interesting need to be in the hash table, because we
5264 also have the parent/sibling/child chains; only those that we
5265 might refer to by offset later during partial symbol reading.
5266
5267 For now this means things that might have be the target of a
5268 DW_AT_specification, DW_AT_abstract_origin, or
5269 DW_AT_extension. DW_AT_extension will refer only to
5270 namespaces; DW_AT_abstract_origin refers to functions (and
5271 many things under the function DIE, but we do not recurse
5272 into function DIEs during partial symbol reading) and
5273 possibly variables as well; DW_AT_specification refers to
5274 declarations. Declarations ought to have the DW_AT_declaration
5275 flag. It happens that GCC forgets to put it in sometimes, but
5276 only for functions, not for types.
5277
5278 Adding more things than necessary to the hash table is harmless
5279 except for the performance cost. Adding too few will result in
5280 internal errors in find_partial_die. */
5281
5282 if (abbrev->tag == DW_TAG_subprogram
5283 || abbrev->tag == DW_TAG_variable
5284 || abbrev->tag == DW_TAG_namespace
5285 || part_die->is_declaration)
5286 {
5287 void **slot;
5288
5289 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5290 part_die->offset, INSERT);
5291 *slot = part_die;
5292 }
5293
5294 part_die = obstack_alloc (&cu->comp_unit_obstack,
5295 sizeof (struct partial_die_info));
5296
5297 /* For some DIEs we want to follow their children (if any). For C
5298 we have no reason to follow the children of structures; for other
5299 languages we have to, both so that we can get at method physnames
5300 to infer fully qualified class names, and for DW_AT_specification. */
5301 if (last_die->has_children
5302 && (last_die->tag == DW_TAG_namespace
5303 || last_die->tag == DW_TAG_enumeration_type
5304 || (cu->language != language_c
5305 && (last_die->tag == DW_TAG_class_type
5306 || last_die->tag == DW_TAG_structure_type
5307 || last_die->tag == DW_TAG_union_type))))
5308 {
5309 nesting_level++;
5310 parent_die = last_die;
5311 continue;
5312 }
5313
5314 /* Otherwise we skip to the next sibling, if any. */
5315 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5316
5317 /* Back to the top, do it again. */
5318 }
5319 }
5320
5321 /* Read a minimal amount of information into the minimal die structure. */
5322
5323 static char *
5324 read_partial_die (struct partial_die_info *part_die,
5325 struct abbrev_info *abbrev,
5326 unsigned int abbrev_len, bfd *abfd,
5327 char *info_ptr, struct dwarf2_cu *cu)
5328 {
5329 unsigned int bytes_read, i;
5330 struct attribute attr;
5331 int has_low_pc_attr = 0;
5332 int has_high_pc_attr = 0;
5333
5334 memset (part_die, 0, sizeof (struct partial_die_info));
5335
5336 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5337
5338 info_ptr += abbrev_len;
5339
5340 if (abbrev == NULL)
5341 return info_ptr;
5342
5343 part_die->tag = abbrev->tag;
5344 part_die->has_children = abbrev->has_children;
5345
5346 for (i = 0; i < abbrev->num_attrs; ++i)
5347 {
5348 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5349
5350 /* Store the data if it is of an attribute we want to keep in a
5351 partial symbol table. */
5352 switch (attr.name)
5353 {
5354 case DW_AT_name:
5355
5356 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5357 if (part_die->name == NULL)
5358 part_die->name = DW_STRING (&attr);
5359 break;
5360 case DW_AT_comp_dir:
5361 if (part_die->dirname == NULL)
5362 part_die->dirname = DW_STRING (&attr);
5363 break;
5364 case DW_AT_MIPS_linkage_name:
5365 part_die->name = DW_STRING (&attr);
5366 break;
5367 case DW_AT_low_pc:
5368 has_low_pc_attr = 1;
5369 part_die->lowpc = DW_ADDR (&attr);
5370 break;
5371 case DW_AT_high_pc:
5372 has_high_pc_attr = 1;
5373 part_die->highpc = DW_ADDR (&attr);
5374 break;
5375 case DW_AT_location:
5376 /* Support the .debug_loc offsets */
5377 if (attr_form_is_block (&attr))
5378 {
5379 part_die->locdesc = DW_BLOCK (&attr);
5380 }
5381 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5382 {
5383 dwarf2_complex_location_expr_complaint ();
5384 }
5385 else
5386 {
5387 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5388 "partial symbol information");
5389 }
5390 break;
5391 case DW_AT_language:
5392 part_die->language = DW_UNSND (&attr);
5393 break;
5394 case DW_AT_external:
5395 part_die->is_external = DW_UNSND (&attr);
5396 break;
5397 case DW_AT_declaration:
5398 part_die->is_declaration = DW_UNSND (&attr);
5399 break;
5400 case DW_AT_type:
5401 part_die->has_type = 1;
5402 break;
5403 case DW_AT_abstract_origin:
5404 case DW_AT_specification:
5405 case DW_AT_extension:
5406 part_die->has_specification = 1;
5407 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5408 break;
5409 case DW_AT_sibling:
5410 /* Ignore absolute siblings, they might point outside of
5411 the current compile unit. */
5412 if (attr.form == DW_FORM_ref_addr)
5413 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5414 else
5415 part_die->sibling = dwarf2_per_objfile->info_buffer
5416 + dwarf2_get_ref_die_offset (&attr, cu);
5417 break;
5418 case DW_AT_stmt_list:
5419 part_die->has_stmt_list = 1;
5420 part_die->line_offset = DW_UNSND (&attr);
5421 break;
5422 default:
5423 break;
5424 }
5425 }
5426
5427 /* When using the GNU linker, .gnu.linkonce. sections are used to
5428 eliminate duplicate copies of functions and vtables and such.
5429 The linker will arbitrarily choose one and discard the others.
5430 The AT_*_pc values for such functions refer to local labels in
5431 these sections. If the section from that file was discarded, the
5432 labels are not in the output, so the relocs get a value of 0.
5433 If this is a discarded function, mark the pc bounds as invalid,
5434 so that GDB will ignore it. */
5435 if (has_low_pc_attr && has_high_pc_attr
5436 && part_die->lowpc < part_die->highpc
5437 && (part_die->lowpc != 0
5438 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
5439 part_die->has_pc_info = 1;
5440 return info_ptr;
5441 }
5442
5443 /* Find a cached partial DIE at OFFSET in CU. */
5444
5445 static struct partial_die_info *
5446 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5447 {
5448 struct partial_die_info *lookup_die = NULL;
5449 struct partial_die_info part_die;
5450
5451 part_die.offset = offset;
5452 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5453
5454 if (lookup_die == NULL)
5455 internal_error (__FILE__, __LINE__,
5456 _("could not find partial DIE in cache\n"));
5457
5458 return lookup_die;
5459 }
5460
5461 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5462
5463 static struct partial_die_info *
5464 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5465 {
5466 struct dwarf2_per_cu_data *per_cu;
5467
5468 if (offset >= cu->header.offset
5469 && offset < cu->header.offset + cu->header.length)
5470 return find_partial_die_in_comp_unit (offset, cu);
5471
5472 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5473
5474 if (per_cu->cu == NULL)
5475 {
5476 load_comp_unit (per_cu, cu->objfile);
5477 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5478 dwarf2_per_objfile->read_in_chain = per_cu;
5479 }
5480
5481 per_cu->cu->last_used = 0;
5482 return find_partial_die_in_comp_unit (offset, per_cu->cu);
5483 }
5484
5485 /* Adjust PART_DIE before generating a symbol for it. This function
5486 may set the is_external flag or change the DIE's name. */
5487
5488 static void
5489 fixup_partial_die (struct partial_die_info *part_die,
5490 struct dwarf2_cu *cu)
5491 {
5492 /* If we found a reference attribute and the DIE has no name, try
5493 to find a name in the referred to DIE. */
5494
5495 if (part_die->name == NULL && part_die->has_specification)
5496 {
5497 struct partial_die_info *spec_die;
5498
5499 spec_die = find_partial_die (part_die->spec_offset, cu);
5500
5501 fixup_partial_die (spec_die, cu);
5502
5503 if (spec_die->name)
5504 {
5505 part_die->name = spec_die->name;
5506
5507 /* Copy DW_AT_external attribute if it is set. */
5508 if (spec_die->is_external)
5509 part_die->is_external = spec_die->is_external;
5510 }
5511 }
5512
5513 /* Set default names for some unnamed DIEs. */
5514 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5515 || part_die->tag == DW_TAG_class_type))
5516 part_die->name = "(anonymous class)";
5517
5518 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5519 part_die->name = "(anonymous namespace)";
5520
5521 if (part_die->tag == DW_TAG_structure_type
5522 || part_die->tag == DW_TAG_class_type
5523 || part_die->tag == DW_TAG_union_type)
5524 guess_structure_name (part_die, cu);
5525 }
5526
5527 /* Read the die from the .debug_info section buffer. Set DIEP to
5528 point to a newly allocated die with its information, except for its
5529 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5530 whether the die has children or not. */
5531
5532 static char *
5533 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5534 struct dwarf2_cu *cu, int *has_children)
5535 {
5536 unsigned int abbrev_number, bytes_read, i, offset;
5537 struct abbrev_info *abbrev;
5538 struct die_info *die;
5539
5540 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5541 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5542 info_ptr += bytes_read;
5543 if (!abbrev_number)
5544 {
5545 die = dwarf_alloc_die ();
5546 die->tag = 0;
5547 die->abbrev = abbrev_number;
5548 die->type = NULL;
5549 *diep = die;
5550 *has_children = 0;
5551 return info_ptr;
5552 }
5553
5554 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5555 if (!abbrev)
5556 {
5557 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5558 abbrev_number,
5559 bfd_get_filename (abfd));
5560 }
5561 die = dwarf_alloc_die ();
5562 die->offset = offset;
5563 die->tag = abbrev->tag;
5564 die->abbrev = abbrev_number;
5565 die->type = NULL;
5566
5567 die->num_attrs = abbrev->num_attrs;
5568 die->attrs = (struct attribute *)
5569 xmalloc (die->num_attrs * sizeof (struct attribute));
5570
5571 for (i = 0; i < abbrev->num_attrs; ++i)
5572 {
5573 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5574 abfd, info_ptr, cu);
5575
5576 /* If this attribute is an absolute reference to a different
5577 compilation unit, make sure that compilation unit is loaded
5578 also. */
5579 if (die->attrs[i].form == DW_FORM_ref_addr
5580 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5581 || (DW_ADDR (&die->attrs[i])
5582 >= cu->header.offset + cu->header.length)))
5583 {
5584 struct dwarf2_per_cu_data *per_cu;
5585 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5586 cu->objfile);
5587
5588 /* Mark the dependence relation so that we don't flush PER_CU
5589 too early. */
5590 dwarf2_add_dependence (cu, per_cu);
5591
5592 /* If it's already on the queue, we have nothing to do. */
5593 if (per_cu->queued)
5594 continue;
5595
5596 /* If the compilation unit is already loaded, just mark it as
5597 used. */
5598 if (per_cu->cu != NULL)
5599 {
5600 per_cu->cu->last_used = 0;
5601 continue;
5602 }
5603
5604 /* Add it to the queue. */
5605 queue_comp_unit (per_cu);
5606 }
5607 }
5608
5609 *diep = die;
5610 *has_children = abbrev->has_children;
5611 return info_ptr;
5612 }
5613
5614 /* Read an attribute value described by an attribute form. */
5615
5616 static char *
5617 read_attribute_value (struct attribute *attr, unsigned form,
5618 bfd *abfd, char *info_ptr,
5619 struct dwarf2_cu *cu)
5620 {
5621 struct comp_unit_head *cu_header = &cu->header;
5622 unsigned int bytes_read;
5623 struct dwarf_block *blk;
5624
5625 attr->form = form;
5626 switch (form)
5627 {
5628 case DW_FORM_addr:
5629 case DW_FORM_ref_addr:
5630 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5631 info_ptr += bytes_read;
5632 break;
5633 case DW_FORM_block2:
5634 blk = dwarf_alloc_block (cu);
5635 blk->size = read_2_bytes (abfd, info_ptr);
5636 info_ptr += 2;
5637 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5638 info_ptr += blk->size;
5639 DW_BLOCK (attr) = blk;
5640 break;
5641 case DW_FORM_block4:
5642 blk = dwarf_alloc_block (cu);
5643 blk->size = read_4_bytes (abfd, info_ptr);
5644 info_ptr += 4;
5645 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5646 info_ptr += blk->size;
5647 DW_BLOCK (attr) = blk;
5648 break;
5649 case DW_FORM_data2:
5650 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5651 info_ptr += 2;
5652 break;
5653 case DW_FORM_data4:
5654 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5655 info_ptr += 4;
5656 break;
5657 case DW_FORM_data8:
5658 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5659 info_ptr += 8;
5660 break;
5661 case DW_FORM_string:
5662 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5663 info_ptr += bytes_read;
5664 break;
5665 case DW_FORM_strp:
5666 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5667 &bytes_read);
5668 info_ptr += bytes_read;
5669 break;
5670 case DW_FORM_block:
5671 blk = dwarf_alloc_block (cu);
5672 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5673 info_ptr += bytes_read;
5674 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5675 info_ptr += blk->size;
5676 DW_BLOCK (attr) = blk;
5677 break;
5678 case DW_FORM_block1:
5679 blk = dwarf_alloc_block (cu);
5680 blk->size = read_1_byte (abfd, info_ptr);
5681 info_ptr += 1;
5682 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5683 info_ptr += blk->size;
5684 DW_BLOCK (attr) = blk;
5685 break;
5686 case DW_FORM_data1:
5687 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5688 info_ptr += 1;
5689 break;
5690 case DW_FORM_flag:
5691 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5692 info_ptr += 1;
5693 break;
5694 case DW_FORM_sdata:
5695 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5696 info_ptr += bytes_read;
5697 break;
5698 case DW_FORM_udata:
5699 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5700 info_ptr += bytes_read;
5701 break;
5702 case DW_FORM_ref1:
5703 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5704 info_ptr += 1;
5705 break;
5706 case DW_FORM_ref2:
5707 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5708 info_ptr += 2;
5709 break;
5710 case DW_FORM_ref4:
5711 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5712 info_ptr += 4;
5713 break;
5714 case DW_FORM_ref8:
5715 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5716 info_ptr += 8;
5717 break;
5718 case DW_FORM_ref_udata:
5719 DW_ADDR (attr) = (cu->header.offset
5720 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5721 info_ptr += bytes_read;
5722 break;
5723 case DW_FORM_indirect:
5724 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5725 info_ptr += bytes_read;
5726 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5727 break;
5728 default:
5729 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5730 dwarf_form_name (form),
5731 bfd_get_filename (abfd));
5732 }
5733 return info_ptr;
5734 }
5735
5736 /* Read an attribute described by an abbreviated attribute. */
5737
5738 static char *
5739 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5740 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5741 {
5742 attr->name = abbrev->name;
5743 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5744 }
5745
5746 /* read dwarf information from a buffer */
5747
5748 static unsigned int
5749 read_1_byte (bfd *abfd, char *buf)
5750 {
5751 return bfd_get_8 (abfd, (bfd_byte *) buf);
5752 }
5753
5754 static int
5755 read_1_signed_byte (bfd *abfd, char *buf)
5756 {
5757 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5758 }
5759
5760 static unsigned int
5761 read_2_bytes (bfd *abfd, char *buf)
5762 {
5763 return bfd_get_16 (abfd, (bfd_byte *) buf);
5764 }
5765
5766 static int
5767 read_2_signed_bytes (bfd *abfd, char *buf)
5768 {
5769 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5770 }
5771
5772 static unsigned int
5773 read_4_bytes (bfd *abfd, char *buf)
5774 {
5775 return bfd_get_32 (abfd, (bfd_byte *) buf);
5776 }
5777
5778 static int
5779 read_4_signed_bytes (bfd *abfd, char *buf)
5780 {
5781 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5782 }
5783
5784 static unsigned long
5785 read_8_bytes (bfd *abfd, char *buf)
5786 {
5787 return bfd_get_64 (abfd, (bfd_byte *) buf);
5788 }
5789
5790 static CORE_ADDR
5791 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5792 {
5793 struct comp_unit_head *cu_header = &cu->header;
5794 CORE_ADDR retval = 0;
5795
5796 if (cu_header->signed_addr_p)
5797 {
5798 switch (cu_header->addr_size)
5799 {
5800 case 2:
5801 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5802 break;
5803 case 4:
5804 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5805 break;
5806 case 8:
5807 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5808 break;
5809 default:
5810 internal_error (__FILE__, __LINE__,
5811 _("read_address: bad switch, signed [in module %s]"),
5812 bfd_get_filename (abfd));
5813 }
5814 }
5815 else
5816 {
5817 switch (cu_header->addr_size)
5818 {
5819 case 2:
5820 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5821 break;
5822 case 4:
5823 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5824 break;
5825 case 8:
5826 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5827 break;
5828 default:
5829 internal_error (__FILE__, __LINE__,
5830 _("read_address: bad switch, unsigned [in module %s]"),
5831 bfd_get_filename (abfd));
5832 }
5833 }
5834
5835 *bytes_read = cu_header->addr_size;
5836 return retval;
5837 }
5838
5839 /* Read the initial length from a section. The (draft) DWARF 3
5840 specification allows the initial length to take up either 4 bytes
5841 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5842 bytes describe the length and all offsets will be 8 bytes in length
5843 instead of 4.
5844
5845 An older, non-standard 64-bit format is also handled by this
5846 function. The older format in question stores the initial length
5847 as an 8-byte quantity without an escape value. Lengths greater
5848 than 2^32 aren't very common which means that the initial 4 bytes
5849 is almost always zero. Since a length value of zero doesn't make
5850 sense for the 32-bit format, this initial zero can be considered to
5851 be an escape value which indicates the presence of the older 64-bit
5852 format. As written, the code can't detect (old format) lengths
5853 greater than 4GB. If it becomes necessary to handle lengths
5854 somewhat larger than 4GB, we could allow other small values (such
5855 as the non-sensical values of 1, 2, and 3) to also be used as
5856 escape values indicating the presence of the old format.
5857
5858 The value returned via bytes_read should be used to increment the
5859 relevant pointer after calling read_initial_length().
5860
5861 As a side effect, this function sets the fields initial_length_size
5862 and offset_size in cu_header to the values appropriate for the
5863 length field. (The format of the initial length field determines
5864 the width of file offsets to be fetched later with read_offset().)
5865
5866 [ Note: read_initial_length() and read_offset() are based on the
5867 document entitled "DWARF Debugging Information Format", revision
5868 3, draft 8, dated November 19, 2001. This document was obtained
5869 from:
5870
5871 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5872
5873 This document is only a draft and is subject to change. (So beware.)
5874
5875 Details regarding the older, non-standard 64-bit format were
5876 determined empirically by examining 64-bit ELF files produced by
5877 the SGI toolchain on an IRIX 6.5 machine.
5878
5879 - Kevin, July 16, 2002
5880 ] */
5881
5882 static LONGEST
5883 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5884 int *bytes_read)
5885 {
5886 LONGEST length = bfd_get_32 (abfd, (bfd_byte *) buf);
5887
5888 if (length == 0xffffffff)
5889 {
5890 length = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5891 *bytes_read = 12;
5892 }
5893 else if (length == 0)
5894 {
5895 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
5896 length = bfd_get_64 (abfd, (bfd_byte *) buf);
5897 *bytes_read = 8;
5898 }
5899 else
5900 {
5901 *bytes_read = 4;
5902 }
5903
5904 if (cu_header)
5905 {
5906 gdb_assert (cu_header->initial_length_size == 0
5907 || cu_header->initial_length_size == 4
5908 || cu_header->initial_length_size == 8
5909 || cu_header->initial_length_size == 12);
5910
5911 if (cu_header->initial_length_size != 0
5912 && cu_header->initial_length_size != *bytes_read)
5913 complaint (&symfile_complaints,
5914 _("intermixed 32-bit and 64-bit DWARF sections"));
5915
5916 cu_header->initial_length_size = *bytes_read;
5917 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
5918 }
5919
5920 return length;
5921 }
5922
5923 /* Read an offset from the data stream. The size of the offset is
5924 given by cu_header->offset_size. */
5925
5926 static LONGEST
5927 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5928 int *bytes_read)
5929 {
5930 LONGEST retval = 0;
5931
5932 switch (cu_header->offset_size)
5933 {
5934 case 4:
5935 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5936 *bytes_read = 4;
5937 break;
5938 case 8:
5939 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5940 *bytes_read = 8;
5941 break;
5942 default:
5943 internal_error (__FILE__, __LINE__,
5944 _("read_offset: bad switch [in module %s]"),
5945 bfd_get_filename (abfd));
5946 }
5947
5948 return retval;
5949 }
5950
5951 static char *
5952 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5953 {
5954 /* If the size of a host char is 8 bits, we can return a pointer
5955 to the buffer, otherwise we have to copy the data to a buffer
5956 allocated on the temporary obstack. */
5957 gdb_assert (HOST_CHAR_BIT == 8);
5958 return buf;
5959 }
5960
5961 static char *
5962 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5963 {
5964 /* If the size of a host char is 8 bits, we can return a pointer
5965 to the string, otherwise we have to copy the string to a buffer
5966 allocated on the temporary obstack. */
5967 gdb_assert (HOST_CHAR_BIT == 8);
5968 if (*buf == '\0')
5969 {
5970 *bytes_read_ptr = 1;
5971 return NULL;
5972 }
5973 *bytes_read_ptr = strlen (buf) + 1;
5974 return buf;
5975 }
5976
5977 static char *
5978 read_indirect_string (bfd *abfd, char *buf,
5979 const struct comp_unit_head *cu_header,
5980 unsigned int *bytes_read_ptr)
5981 {
5982 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5983 (int *) bytes_read_ptr);
5984
5985 if (dwarf2_per_objfile->str_buffer == NULL)
5986 {
5987 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
5988 bfd_get_filename (abfd));
5989 return NULL;
5990 }
5991 if (str_offset >= dwarf2_per_objfile->str_size)
5992 {
5993 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
5994 bfd_get_filename (abfd));
5995 return NULL;
5996 }
5997 gdb_assert (HOST_CHAR_BIT == 8);
5998 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5999 return NULL;
6000 return dwarf2_per_objfile->str_buffer + str_offset;
6001 }
6002
6003 static unsigned long
6004 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6005 {
6006 unsigned long result;
6007 unsigned int num_read;
6008 int i, shift;
6009 unsigned char byte;
6010
6011 result = 0;
6012 shift = 0;
6013 num_read = 0;
6014 i = 0;
6015 while (1)
6016 {
6017 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6018 buf++;
6019 num_read++;
6020 result |= ((unsigned long)(byte & 127) << shift);
6021 if ((byte & 128) == 0)
6022 {
6023 break;
6024 }
6025 shift += 7;
6026 }
6027 *bytes_read_ptr = num_read;
6028 return result;
6029 }
6030
6031 static long
6032 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6033 {
6034 long result;
6035 int i, shift, num_read;
6036 unsigned char byte;
6037
6038 result = 0;
6039 shift = 0;
6040 num_read = 0;
6041 i = 0;
6042 while (1)
6043 {
6044 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6045 buf++;
6046 num_read++;
6047 result |= ((long)(byte & 127) << shift);
6048 shift += 7;
6049 if ((byte & 128) == 0)
6050 {
6051 break;
6052 }
6053 }
6054 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6055 result |= -(((long)1) << shift);
6056 *bytes_read_ptr = num_read;
6057 return result;
6058 }
6059
6060 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6061
6062 static char *
6063 skip_leb128 (bfd *abfd, char *buf)
6064 {
6065 int byte;
6066
6067 while (1)
6068 {
6069 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6070 buf++;
6071 if ((byte & 128) == 0)
6072 return buf;
6073 }
6074 }
6075
6076 static void
6077 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6078 {
6079 switch (lang)
6080 {
6081 case DW_LANG_C89:
6082 case DW_LANG_C:
6083 cu->language = language_c;
6084 break;
6085 case DW_LANG_C_plus_plus:
6086 cu->language = language_cplus;
6087 break;
6088 case DW_LANG_Fortran77:
6089 case DW_LANG_Fortran90:
6090 case DW_LANG_Fortran95:
6091 cu->language = language_fortran;
6092 break;
6093 case DW_LANG_Mips_Assembler:
6094 cu->language = language_asm;
6095 break;
6096 case DW_LANG_Java:
6097 cu->language = language_java;
6098 break;
6099 case DW_LANG_Ada83:
6100 case DW_LANG_Ada95:
6101 cu->language = language_ada;
6102 break;
6103 case DW_LANG_Cobol74:
6104 case DW_LANG_Cobol85:
6105 case DW_LANG_Pascal83:
6106 case DW_LANG_Modula2:
6107 default:
6108 cu->language = language_minimal;
6109 break;
6110 }
6111 cu->language_defn = language_def (cu->language);
6112 }
6113
6114 /* Return the named attribute or NULL if not there. */
6115
6116 static struct attribute *
6117 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6118 {
6119 unsigned int i;
6120 struct attribute *spec = NULL;
6121
6122 for (i = 0; i < die->num_attrs; ++i)
6123 {
6124 if (die->attrs[i].name == name)
6125 return &die->attrs[i];
6126 if (die->attrs[i].name == DW_AT_specification
6127 || die->attrs[i].name == DW_AT_abstract_origin)
6128 spec = &die->attrs[i];
6129 }
6130
6131 if (spec)
6132 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6133
6134 return NULL;
6135 }
6136
6137 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6138 and holds a non-zero value. This function should only be used for
6139 DW_FORM_flag attributes. */
6140
6141 static int
6142 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6143 {
6144 struct attribute *attr = dwarf2_attr (die, name, cu);
6145
6146 return (attr && DW_UNSND (attr));
6147 }
6148
6149 static int
6150 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6151 {
6152 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6153 which value is non-zero. However, we have to be careful with
6154 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6155 (via dwarf2_flag_true_p) follows this attribute. So we may
6156 end up accidently finding a declaration attribute that belongs
6157 to a different DIE referenced by the specification attribute,
6158 even though the given DIE does not have a declaration attribute. */
6159 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6160 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6161 }
6162
6163 /* Return the die giving the specification for DIE, if there is
6164 one. */
6165
6166 static struct die_info *
6167 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6168 {
6169 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6170
6171 if (spec_attr == NULL)
6172 return NULL;
6173 else
6174 return follow_die_ref (die, spec_attr, cu);
6175 }
6176
6177 /* Free the line_header structure *LH, and any arrays and strings it
6178 refers to. */
6179 static void
6180 free_line_header (struct line_header *lh)
6181 {
6182 if (lh->standard_opcode_lengths)
6183 xfree (lh->standard_opcode_lengths);
6184
6185 /* Remember that all the lh->file_names[i].name pointers are
6186 pointers into debug_line_buffer, and don't need to be freed. */
6187 if (lh->file_names)
6188 xfree (lh->file_names);
6189
6190 /* Similarly for the include directory names. */
6191 if (lh->include_dirs)
6192 xfree (lh->include_dirs);
6193
6194 xfree (lh);
6195 }
6196
6197
6198 /* Add an entry to LH's include directory table. */
6199 static void
6200 add_include_dir (struct line_header *lh, char *include_dir)
6201 {
6202 /* Grow the array if necessary. */
6203 if (lh->include_dirs_size == 0)
6204 {
6205 lh->include_dirs_size = 1; /* for testing */
6206 lh->include_dirs = xmalloc (lh->include_dirs_size
6207 * sizeof (*lh->include_dirs));
6208 }
6209 else if (lh->num_include_dirs >= lh->include_dirs_size)
6210 {
6211 lh->include_dirs_size *= 2;
6212 lh->include_dirs = xrealloc (lh->include_dirs,
6213 (lh->include_dirs_size
6214 * sizeof (*lh->include_dirs)));
6215 }
6216
6217 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6218 }
6219
6220
6221 /* Add an entry to LH's file name table. */
6222 static void
6223 add_file_name (struct line_header *lh,
6224 char *name,
6225 unsigned int dir_index,
6226 unsigned int mod_time,
6227 unsigned int length)
6228 {
6229 struct file_entry *fe;
6230
6231 /* Grow the array if necessary. */
6232 if (lh->file_names_size == 0)
6233 {
6234 lh->file_names_size = 1; /* for testing */
6235 lh->file_names = xmalloc (lh->file_names_size
6236 * sizeof (*lh->file_names));
6237 }
6238 else if (lh->num_file_names >= lh->file_names_size)
6239 {
6240 lh->file_names_size *= 2;
6241 lh->file_names = xrealloc (lh->file_names,
6242 (lh->file_names_size
6243 * sizeof (*lh->file_names)));
6244 }
6245
6246 fe = &lh->file_names[lh->num_file_names++];
6247 fe->name = name;
6248 fe->dir_index = dir_index;
6249 fe->mod_time = mod_time;
6250 fe->length = length;
6251 fe->included_p = 0;
6252 }
6253
6254
6255 /* Read the statement program header starting at OFFSET in
6256 .debug_line, according to the endianness of ABFD. Return a pointer
6257 to a struct line_header, allocated using xmalloc.
6258
6259 NOTE: the strings in the include directory and file name tables of
6260 the returned object point into debug_line_buffer, and must not be
6261 freed. */
6262 static struct line_header *
6263 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6264 struct dwarf2_cu *cu)
6265 {
6266 struct cleanup *back_to;
6267 struct line_header *lh;
6268 char *line_ptr;
6269 int bytes_read;
6270 int i;
6271 char *cur_dir, *cur_file;
6272
6273 if (dwarf2_per_objfile->line_buffer == NULL)
6274 {
6275 complaint (&symfile_complaints, _("missing .debug_line section"));
6276 return 0;
6277 }
6278
6279 /* Make sure that at least there's room for the total_length field.
6280 That could be 12 bytes long, but we're just going to fudge that. */
6281 if (offset + 4 >= dwarf2_per_objfile->line_size)
6282 {
6283 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6284 return 0;
6285 }
6286
6287 lh = xmalloc (sizeof (*lh));
6288 memset (lh, 0, sizeof (*lh));
6289 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6290 (void *) lh);
6291
6292 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6293
6294 /* Read in the header. */
6295 lh->total_length =
6296 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6297 line_ptr += bytes_read;
6298 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6299 + dwarf2_per_objfile->line_size))
6300 {
6301 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6302 return 0;
6303 }
6304 lh->statement_program_end = line_ptr + lh->total_length;
6305 lh->version = read_2_bytes (abfd, line_ptr);
6306 line_ptr += 2;
6307 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6308 line_ptr += bytes_read;
6309 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6310 line_ptr += 1;
6311 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6312 line_ptr += 1;
6313 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6314 line_ptr += 1;
6315 lh->line_range = read_1_byte (abfd, line_ptr);
6316 line_ptr += 1;
6317 lh->opcode_base = read_1_byte (abfd, line_ptr);
6318 line_ptr += 1;
6319 lh->standard_opcode_lengths
6320 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
6321
6322 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6323 for (i = 1; i < lh->opcode_base; ++i)
6324 {
6325 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6326 line_ptr += 1;
6327 }
6328
6329 /* Read directory table. */
6330 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6331 {
6332 line_ptr += bytes_read;
6333 add_include_dir (lh, cur_dir);
6334 }
6335 line_ptr += bytes_read;
6336
6337 /* Read file name table. */
6338 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6339 {
6340 unsigned int dir_index, mod_time, length;
6341
6342 line_ptr += bytes_read;
6343 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6344 line_ptr += bytes_read;
6345 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6346 line_ptr += bytes_read;
6347 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6348 line_ptr += bytes_read;
6349
6350 add_file_name (lh, cur_file, dir_index, mod_time, length);
6351 }
6352 line_ptr += bytes_read;
6353 lh->statement_program_start = line_ptr;
6354
6355 if (line_ptr > (dwarf2_per_objfile->line_buffer
6356 + dwarf2_per_objfile->line_size))
6357 complaint (&symfile_complaints,
6358 _("line number info header doesn't fit in `.debug_line' section"));
6359
6360 discard_cleanups (back_to);
6361 return lh;
6362 }
6363
6364 /* This function exists to work around a bug in certain compilers
6365 (particularly GCC 2.95), in which the first line number marker of a
6366 function does not show up until after the prologue, right before
6367 the second line number marker. This function shifts ADDRESS down
6368 to the beginning of the function if necessary, and is called on
6369 addresses passed to record_line. */
6370
6371 static CORE_ADDR
6372 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6373 {
6374 struct function_range *fn;
6375
6376 /* Find the function_range containing address. */
6377 if (!cu->first_fn)
6378 return address;
6379
6380 if (!cu->cached_fn)
6381 cu->cached_fn = cu->first_fn;
6382
6383 fn = cu->cached_fn;
6384 while (fn)
6385 if (fn->lowpc <= address && fn->highpc > address)
6386 goto found;
6387 else
6388 fn = fn->next;
6389
6390 fn = cu->first_fn;
6391 while (fn && fn != cu->cached_fn)
6392 if (fn->lowpc <= address && fn->highpc > address)
6393 goto found;
6394 else
6395 fn = fn->next;
6396
6397 return address;
6398
6399 found:
6400 if (fn->seen_line)
6401 return address;
6402 if (address != fn->lowpc)
6403 complaint (&symfile_complaints,
6404 _("misplaced first line number at 0x%lx for '%s'"),
6405 (unsigned long) address, fn->name);
6406 fn->seen_line = 1;
6407 return fn->lowpc;
6408 }
6409
6410 /* Decode the Line Number Program (LNP) for the given line_header
6411 structure and CU. The actual information extracted and the type
6412 of structures created from the LNP depends on the value of PST.
6413
6414 1. If PST is NULL, then this procedure uses the data from the program
6415 to create all necessary symbol tables, and their linetables.
6416 The compilation directory of the file is passed in COMP_DIR,
6417 and must not be NULL.
6418
6419 2. If PST is not NULL, this procedure reads the program to determine
6420 the list of files included by the unit represented by PST, and
6421 builds all the associated partial symbol tables. In this case,
6422 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6423 is not used to compute the full name of the symtab, and therefore
6424 omitting it when building the partial symtab does not introduce
6425 the potential for inconsistency - a partial symtab and its associated
6426 symbtab having a different fullname -). */
6427
6428 static void
6429 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6430 struct dwarf2_cu *cu, struct partial_symtab *pst)
6431 {
6432 char *line_ptr;
6433 char *line_end;
6434 unsigned int bytes_read;
6435 unsigned char op_code, extended_op, adj_opcode;
6436 CORE_ADDR baseaddr;
6437 struct objfile *objfile = cu->objfile;
6438 const int decode_for_pst_p = (pst != NULL);
6439
6440 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6441
6442 line_ptr = lh->statement_program_start;
6443 line_end = lh->statement_program_end;
6444
6445 /* Read the statement sequences until there's nothing left. */
6446 while (line_ptr < line_end)
6447 {
6448 /* state machine registers */
6449 CORE_ADDR address = 0;
6450 unsigned int file = 1;
6451 unsigned int line = 1;
6452 unsigned int column = 0;
6453 int is_stmt = lh->default_is_stmt;
6454 int basic_block = 0;
6455 int end_sequence = 0;
6456
6457 if (!decode_for_pst_p && lh->num_file_names >= file)
6458 {
6459 /* Start a subfile for the current file of the state machine. */
6460 /* lh->include_dirs and lh->file_names are 0-based, but the
6461 directory and file name numbers in the statement program
6462 are 1-based. */
6463 struct file_entry *fe = &lh->file_names[file - 1];
6464 char *dir;
6465
6466 if (fe->dir_index)
6467 dir = lh->include_dirs[fe->dir_index - 1];
6468 else
6469 dir = comp_dir;
6470 dwarf2_start_subfile (fe->name, dir);
6471 }
6472
6473 /* Decode the table. */
6474 while (!end_sequence)
6475 {
6476 op_code = read_1_byte (abfd, line_ptr);
6477 line_ptr += 1;
6478
6479 if (op_code >= lh->opcode_base)
6480 {
6481 /* Special operand. */
6482 adj_opcode = op_code - lh->opcode_base;
6483 address += (adj_opcode / lh->line_range)
6484 * lh->minimum_instruction_length;
6485 line += lh->line_base + (adj_opcode % lh->line_range);
6486 lh->file_names[file - 1].included_p = 1;
6487 if (!decode_for_pst_p)
6488 {
6489 /* Append row to matrix using current values. */
6490 record_line (current_subfile, line,
6491 check_cu_functions (address, cu));
6492 }
6493 basic_block = 1;
6494 }
6495 else switch (op_code)
6496 {
6497 case DW_LNS_extended_op:
6498 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6499 line_ptr += bytes_read;
6500 extended_op = read_1_byte (abfd, line_ptr);
6501 line_ptr += 1;
6502 switch (extended_op)
6503 {
6504 case DW_LNE_end_sequence:
6505 end_sequence = 1;
6506 lh->file_names[file - 1].included_p = 1;
6507 if (!decode_for_pst_p)
6508 record_line (current_subfile, 0, address);
6509 break;
6510 case DW_LNE_set_address:
6511 address = read_address (abfd, line_ptr, cu, &bytes_read);
6512 line_ptr += bytes_read;
6513 address += baseaddr;
6514 break;
6515 case DW_LNE_define_file:
6516 {
6517 char *cur_file;
6518 unsigned int dir_index, mod_time, length;
6519
6520 cur_file = read_string (abfd, line_ptr, &bytes_read);
6521 line_ptr += bytes_read;
6522 dir_index =
6523 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6524 line_ptr += bytes_read;
6525 mod_time =
6526 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6527 line_ptr += bytes_read;
6528 length =
6529 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6530 line_ptr += bytes_read;
6531 add_file_name (lh, cur_file, dir_index, mod_time, length);
6532 }
6533 break;
6534 default:
6535 complaint (&symfile_complaints,
6536 _("mangled .debug_line section"));
6537 return;
6538 }
6539 break;
6540 case DW_LNS_copy:
6541 lh->file_names[file - 1].included_p = 1;
6542 if (!decode_for_pst_p)
6543 record_line (current_subfile, line,
6544 check_cu_functions (address, cu));
6545 basic_block = 0;
6546 break;
6547 case DW_LNS_advance_pc:
6548 address += lh->minimum_instruction_length
6549 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6550 line_ptr += bytes_read;
6551 break;
6552 case DW_LNS_advance_line:
6553 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6554 line_ptr += bytes_read;
6555 break;
6556 case DW_LNS_set_file:
6557 {
6558 /* The arrays lh->include_dirs and lh->file_names are
6559 0-based, but the directory and file name numbers in
6560 the statement program are 1-based. */
6561 struct file_entry *fe;
6562 char *dir;
6563
6564 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6565 line_ptr += bytes_read;
6566 fe = &lh->file_names[file - 1];
6567 if (fe->dir_index)
6568 dir = lh->include_dirs[fe->dir_index - 1];
6569 else
6570 dir = comp_dir;
6571 if (!decode_for_pst_p)
6572 dwarf2_start_subfile (fe->name, dir);
6573 }
6574 break;
6575 case DW_LNS_set_column:
6576 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6577 line_ptr += bytes_read;
6578 break;
6579 case DW_LNS_negate_stmt:
6580 is_stmt = (!is_stmt);
6581 break;
6582 case DW_LNS_set_basic_block:
6583 basic_block = 1;
6584 break;
6585 /* Add to the address register of the state machine the
6586 address increment value corresponding to special opcode
6587 255. I.e., this value is scaled by the minimum
6588 instruction length since special opcode 255 would have
6589 scaled the the increment. */
6590 case DW_LNS_const_add_pc:
6591 address += (lh->minimum_instruction_length
6592 * ((255 - lh->opcode_base) / lh->line_range));
6593 break;
6594 case DW_LNS_fixed_advance_pc:
6595 address += read_2_bytes (abfd, line_ptr);
6596 line_ptr += 2;
6597 break;
6598 default:
6599 {
6600 /* Unknown standard opcode, ignore it. */
6601 int i;
6602
6603 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6604 {
6605 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6606 line_ptr += bytes_read;
6607 }
6608 }
6609 }
6610 }
6611 }
6612
6613 if (decode_for_pst_p)
6614 {
6615 int file_index;
6616
6617 /* Now that we're done scanning the Line Header Program, we can
6618 create the psymtab of each included file. */
6619 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6620 if (lh->file_names[file_index].included_p == 1)
6621 {
6622 const struct file_entry fe = lh->file_names [file_index];
6623 char *include_name = fe.name;
6624 char *dir_name = NULL;
6625 char *pst_filename = pst->filename;
6626
6627 if (fe.dir_index)
6628 dir_name = lh->include_dirs[fe.dir_index - 1];
6629
6630 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6631 {
6632 include_name = concat (dir_name, SLASH_STRING,
6633 include_name, (char *)NULL);
6634 make_cleanup (xfree, include_name);
6635 }
6636
6637 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6638 {
6639 pst_filename = concat (pst->dirname, SLASH_STRING,
6640 pst_filename, (char *)NULL);
6641 make_cleanup (xfree, pst_filename);
6642 }
6643
6644 if (strcmp (include_name, pst_filename) != 0)
6645 dwarf2_create_include_psymtab (include_name, pst, objfile);
6646 }
6647 }
6648 }
6649
6650 /* Start a subfile for DWARF. FILENAME is the name of the file and
6651 DIRNAME the name of the source directory which contains FILENAME
6652 or NULL if not known.
6653 This routine tries to keep line numbers from identical absolute and
6654 relative file names in a common subfile.
6655
6656 Using the `list' example from the GDB testsuite, which resides in
6657 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6658 of /srcdir/list0.c yields the following debugging information for list0.c:
6659
6660 DW_AT_name: /srcdir/list0.c
6661 DW_AT_comp_dir: /compdir
6662 files.files[0].name: list0.h
6663 files.files[0].dir: /srcdir
6664 files.files[1].name: list0.c
6665 files.files[1].dir: /srcdir
6666
6667 The line number information for list0.c has to end up in a single
6668 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6669
6670 static void
6671 dwarf2_start_subfile (char *filename, char *dirname)
6672 {
6673 /* If the filename isn't absolute, try to match an existing subfile
6674 with the full pathname. */
6675
6676 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6677 {
6678 struct subfile *subfile;
6679 char *fullname = concat (dirname, "/", filename, (char *)NULL);
6680
6681 for (subfile = subfiles; subfile; subfile = subfile->next)
6682 {
6683 if (FILENAME_CMP (subfile->name, fullname) == 0)
6684 {
6685 current_subfile = subfile;
6686 xfree (fullname);
6687 return;
6688 }
6689 }
6690 xfree (fullname);
6691 }
6692 start_subfile (filename, dirname);
6693 }
6694
6695 static void
6696 var_decode_location (struct attribute *attr, struct symbol *sym,
6697 struct dwarf2_cu *cu)
6698 {
6699 struct objfile *objfile = cu->objfile;
6700 struct comp_unit_head *cu_header = &cu->header;
6701
6702 /* NOTE drow/2003-01-30: There used to be a comment and some special
6703 code here to turn a symbol with DW_AT_external and a
6704 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6705 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6706 with some versions of binutils) where shared libraries could have
6707 relocations against symbols in their debug information - the
6708 minimal symbol would have the right address, but the debug info
6709 would not. It's no longer necessary, because we will explicitly
6710 apply relocations when we read in the debug information now. */
6711
6712 /* A DW_AT_location attribute with no contents indicates that a
6713 variable has been optimized away. */
6714 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6715 {
6716 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6717 return;
6718 }
6719
6720 /* Handle one degenerate form of location expression specially, to
6721 preserve GDB's previous behavior when section offsets are
6722 specified. If this is just a DW_OP_addr then mark this symbol
6723 as LOC_STATIC. */
6724
6725 if (attr_form_is_block (attr)
6726 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6727 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6728 {
6729 int dummy;
6730
6731 SYMBOL_VALUE_ADDRESS (sym) =
6732 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6733 fixup_symbol_section (sym, objfile);
6734 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6735 SYMBOL_SECTION (sym));
6736 SYMBOL_CLASS (sym) = LOC_STATIC;
6737 return;
6738 }
6739
6740 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6741 expression evaluator, and use LOC_COMPUTED only when necessary
6742 (i.e. when the value of a register or memory location is
6743 referenced, or a thread-local block, etc.). Then again, it might
6744 not be worthwhile. I'm assuming that it isn't unless performance
6745 or memory numbers show me otherwise. */
6746
6747 dwarf2_symbol_mark_computed (attr, sym, cu);
6748 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6749 }
6750
6751 /* Given a pointer to a DWARF information entry, figure out if we need
6752 to make a symbol table entry for it, and if so, create a new entry
6753 and return a pointer to it.
6754 If TYPE is NULL, determine symbol type from the die, otherwise
6755 used the passed type. */
6756
6757 static struct symbol *
6758 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6759 {
6760 struct objfile *objfile = cu->objfile;
6761 struct symbol *sym = NULL;
6762 char *name;
6763 struct attribute *attr = NULL;
6764 struct attribute *attr2 = NULL;
6765 CORE_ADDR baseaddr;
6766
6767 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6768
6769 if (die->tag != DW_TAG_namespace)
6770 name = dwarf2_linkage_name (die, cu);
6771 else
6772 name = TYPE_NAME (type);
6773
6774 if (name)
6775 {
6776 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6777 sizeof (struct symbol));
6778 OBJSTAT (objfile, n_syms++);
6779 memset (sym, 0, sizeof (struct symbol));
6780
6781 /* Cache this symbol's name and the name's demangled form (if any). */
6782 SYMBOL_LANGUAGE (sym) = cu->language;
6783 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6784
6785 /* Default assumptions.
6786 Use the passed type or decode it from the die. */
6787 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6788 SYMBOL_CLASS (sym) = LOC_STATIC;
6789 if (type != NULL)
6790 SYMBOL_TYPE (sym) = type;
6791 else
6792 SYMBOL_TYPE (sym) = die_type (die, cu);
6793 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6794 if (attr)
6795 {
6796 SYMBOL_LINE (sym) = DW_UNSND (attr);
6797 }
6798 switch (die->tag)
6799 {
6800 case DW_TAG_label:
6801 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6802 if (attr)
6803 {
6804 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6805 }
6806 SYMBOL_CLASS (sym) = LOC_LABEL;
6807 break;
6808 case DW_TAG_subprogram:
6809 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6810 finish_block. */
6811 SYMBOL_CLASS (sym) = LOC_BLOCK;
6812 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6813 if (attr2 && (DW_UNSND (attr2) != 0))
6814 {
6815 add_symbol_to_list (sym, &global_symbols);
6816 }
6817 else
6818 {
6819 add_symbol_to_list (sym, cu->list_in_scope);
6820 }
6821 break;
6822 case DW_TAG_variable:
6823 /* Compilation with minimal debug info may result in variables
6824 with missing type entries. Change the misleading `void' type
6825 to something sensible. */
6826 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6827 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6828 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6829 "<variable, no debug info>",
6830 objfile);
6831 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6832 if (attr)
6833 {
6834 dwarf2_const_value (attr, sym, cu);
6835 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6836 if (attr2 && (DW_UNSND (attr2) != 0))
6837 add_symbol_to_list (sym, &global_symbols);
6838 else
6839 add_symbol_to_list (sym, cu->list_in_scope);
6840 break;
6841 }
6842 attr = dwarf2_attr (die, DW_AT_location, cu);
6843 if (attr)
6844 {
6845 var_decode_location (attr, sym, cu);
6846 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6847 if (attr2 && (DW_UNSND (attr2) != 0))
6848 add_symbol_to_list (sym, &global_symbols);
6849 else
6850 add_symbol_to_list (sym, cu->list_in_scope);
6851 }
6852 else
6853 {
6854 /* We do not know the address of this symbol.
6855 If it is an external symbol and we have type information
6856 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6857 The address of the variable will then be determined from
6858 the minimal symbol table whenever the variable is
6859 referenced. */
6860 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6861 if (attr2 && (DW_UNSND (attr2) != 0)
6862 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6863 {
6864 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6865 add_symbol_to_list (sym, &global_symbols);
6866 }
6867 }
6868 break;
6869 case DW_TAG_formal_parameter:
6870 attr = dwarf2_attr (die, DW_AT_location, cu);
6871 if (attr)
6872 {
6873 var_decode_location (attr, sym, cu);
6874 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6875 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6876 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6877 }
6878 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6879 if (attr)
6880 {
6881 dwarf2_const_value (attr, sym, cu);
6882 }
6883 add_symbol_to_list (sym, cu->list_in_scope);
6884 break;
6885 case DW_TAG_unspecified_parameters:
6886 /* From varargs functions; gdb doesn't seem to have any
6887 interest in this information, so just ignore it for now.
6888 (FIXME?) */
6889 break;
6890 case DW_TAG_class_type:
6891 case DW_TAG_structure_type:
6892 case DW_TAG_union_type:
6893 case DW_TAG_enumeration_type:
6894 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6895 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6896
6897 /* Make sure that the symbol includes appropriate enclosing
6898 classes/namespaces in its name. These are calculated in
6899 read_structure_type, and the correct name is saved in
6900 the type. */
6901
6902 if (cu->language == language_cplus
6903 || cu->language == language_java)
6904 {
6905 struct type *type = SYMBOL_TYPE (sym);
6906
6907 if (TYPE_TAG_NAME (type) != NULL)
6908 {
6909 /* FIXME: carlton/2003-11-10: Should this use
6910 SYMBOL_SET_NAMES instead? (The same problem also
6911 arises further down in this function.) */
6912 /* The type's name is already allocated along with
6913 this objfile, so we don't need to duplicate it
6914 for the symbol. */
6915 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6916 }
6917 }
6918
6919 {
6920 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
6921 really ever be static objects: otherwise, if you try
6922 to, say, break of a class's method and you're in a file
6923 which doesn't mention that class, it won't work unless
6924 the check for all static symbols in lookup_symbol_aux
6925 saves you. See the OtherFileClass tests in
6926 gdb.c++/namespace.exp. */
6927
6928 struct pending **list_to_add;
6929
6930 list_to_add = (cu->list_in_scope == &file_symbols
6931 && (cu->language == language_cplus
6932 || cu->language == language_java)
6933 ? &global_symbols : cu->list_in_scope);
6934
6935 add_symbol_to_list (sym, list_to_add);
6936
6937 /* The semantics of C++ state that "struct foo { ... }" also
6938 defines a typedef for "foo". A Java class declaration also
6939 defines a typedef for the class. Synthesize a typedef symbol
6940 so that "ptype foo" works as expected. */
6941 if (cu->language == language_cplus
6942 || cu->language == language_java)
6943 {
6944 struct symbol *typedef_sym = (struct symbol *)
6945 obstack_alloc (&objfile->objfile_obstack,
6946 sizeof (struct symbol));
6947 *typedef_sym = *sym;
6948 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6949 /* The symbol's name is already allocated along with
6950 this objfile, so we don't need to duplicate it for
6951 the type. */
6952 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6953 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
6954 add_symbol_to_list (typedef_sym, list_to_add);
6955 }
6956 }
6957 break;
6958 case DW_TAG_typedef:
6959 if (processing_has_namespace_info
6960 && processing_current_prefix[0] != '\0')
6961 {
6962 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6963 processing_current_prefix,
6964 name, cu);
6965 }
6966 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6967 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6968 add_symbol_to_list (sym, cu->list_in_scope);
6969 break;
6970 case DW_TAG_base_type:
6971 case DW_TAG_subrange_type:
6972 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6973 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6974 add_symbol_to_list (sym, cu->list_in_scope);
6975 break;
6976 case DW_TAG_enumerator:
6977 if (processing_has_namespace_info
6978 && processing_current_prefix[0] != '\0')
6979 {
6980 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6981 processing_current_prefix,
6982 name, cu);
6983 }
6984 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6985 if (attr)
6986 {
6987 dwarf2_const_value (attr, sym, cu);
6988 }
6989 {
6990 /* NOTE: carlton/2003-11-10: See comment above in the
6991 DW_TAG_class_type, etc. block. */
6992
6993 struct pending **list_to_add;
6994
6995 list_to_add = (cu->list_in_scope == &file_symbols
6996 && (cu->language == language_cplus
6997 || cu->language == language_java)
6998 ? &global_symbols : cu->list_in_scope);
6999
7000 add_symbol_to_list (sym, list_to_add);
7001 }
7002 break;
7003 case DW_TAG_namespace:
7004 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7005 add_symbol_to_list (sym, &global_symbols);
7006 break;
7007 default:
7008 /* Not a tag we recognize. Hopefully we aren't processing
7009 trash data, but since we must specifically ignore things
7010 we don't recognize, there is nothing else we should do at
7011 this point. */
7012 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7013 dwarf_tag_name (die->tag));
7014 break;
7015 }
7016 }
7017 return (sym);
7018 }
7019
7020 /* Copy constant value from an attribute to a symbol. */
7021
7022 static void
7023 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7024 struct dwarf2_cu *cu)
7025 {
7026 struct objfile *objfile = cu->objfile;
7027 struct comp_unit_head *cu_header = &cu->header;
7028 struct dwarf_block *blk;
7029
7030 switch (attr->form)
7031 {
7032 case DW_FORM_addr:
7033 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7034 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7035 cu_header->addr_size,
7036 TYPE_LENGTH (SYMBOL_TYPE
7037 (sym)));
7038 SYMBOL_VALUE_BYTES (sym) = (char *)
7039 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7040 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7041 it's body - store_unsigned_integer. */
7042 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7043 DW_ADDR (attr));
7044 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7045 break;
7046 case DW_FORM_block1:
7047 case DW_FORM_block2:
7048 case DW_FORM_block4:
7049 case DW_FORM_block:
7050 blk = DW_BLOCK (attr);
7051 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7052 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7053 blk->size,
7054 TYPE_LENGTH (SYMBOL_TYPE
7055 (sym)));
7056 SYMBOL_VALUE_BYTES (sym) = (char *)
7057 obstack_alloc (&objfile->objfile_obstack, blk->size);
7058 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7059 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7060 break;
7061
7062 /* The DW_AT_const_value attributes are supposed to carry the
7063 symbol's value "represented as it would be on the target
7064 architecture." By the time we get here, it's already been
7065 converted to host endianness, so we just need to sign- or
7066 zero-extend it as appropriate. */
7067 case DW_FORM_data1:
7068 dwarf2_const_value_data (attr, sym, 8);
7069 break;
7070 case DW_FORM_data2:
7071 dwarf2_const_value_data (attr, sym, 16);
7072 break;
7073 case DW_FORM_data4:
7074 dwarf2_const_value_data (attr, sym, 32);
7075 break;
7076 case DW_FORM_data8:
7077 dwarf2_const_value_data (attr, sym, 64);
7078 break;
7079
7080 case DW_FORM_sdata:
7081 SYMBOL_VALUE (sym) = DW_SND (attr);
7082 SYMBOL_CLASS (sym) = LOC_CONST;
7083 break;
7084
7085 case DW_FORM_udata:
7086 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7087 SYMBOL_CLASS (sym) = LOC_CONST;
7088 break;
7089
7090 default:
7091 complaint (&symfile_complaints,
7092 _("unsupported const value attribute form: '%s'"),
7093 dwarf_form_name (attr->form));
7094 SYMBOL_VALUE (sym) = 0;
7095 SYMBOL_CLASS (sym) = LOC_CONST;
7096 break;
7097 }
7098 }
7099
7100
7101 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7102 or zero-extend it as appropriate for the symbol's type. */
7103 static void
7104 dwarf2_const_value_data (struct attribute *attr,
7105 struct symbol *sym,
7106 int bits)
7107 {
7108 LONGEST l = DW_UNSND (attr);
7109
7110 if (bits < sizeof (l) * 8)
7111 {
7112 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7113 l &= ((LONGEST) 1 << bits) - 1;
7114 else
7115 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7116 }
7117
7118 SYMBOL_VALUE (sym) = l;
7119 SYMBOL_CLASS (sym) = LOC_CONST;
7120 }
7121
7122
7123 /* Return the type of the die in question using its DW_AT_type attribute. */
7124
7125 static struct type *
7126 die_type (struct die_info *die, struct dwarf2_cu *cu)
7127 {
7128 struct type *type;
7129 struct attribute *type_attr;
7130 struct die_info *type_die;
7131
7132 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7133 if (!type_attr)
7134 {
7135 /* A missing DW_AT_type represents a void type. */
7136 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7137 }
7138 else
7139 type_die = follow_die_ref (die, type_attr, cu);
7140
7141 type = tag_type_to_type (type_die, cu);
7142 if (!type)
7143 {
7144 dump_die (type_die);
7145 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7146 cu->objfile->name);
7147 }
7148 return type;
7149 }
7150
7151 /* Return the containing type of the die in question using its
7152 DW_AT_containing_type attribute. */
7153
7154 static struct type *
7155 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7156 {
7157 struct type *type = NULL;
7158 struct attribute *type_attr;
7159 struct die_info *type_die = NULL;
7160
7161 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7162 if (type_attr)
7163 {
7164 type_die = follow_die_ref (die, type_attr, cu);
7165 type = tag_type_to_type (type_die, cu);
7166 }
7167 if (!type)
7168 {
7169 if (type_die)
7170 dump_die (type_die);
7171 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7172 cu->objfile->name);
7173 }
7174 return type;
7175 }
7176
7177 static struct type *
7178 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7179 {
7180 if (die->type)
7181 {
7182 return die->type;
7183 }
7184 else
7185 {
7186 read_type_die (die, cu);
7187 if (!die->type)
7188 {
7189 dump_die (die);
7190 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7191 cu->objfile->name);
7192 }
7193 return die->type;
7194 }
7195 }
7196
7197 static void
7198 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7199 {
7200 char *prefix = determine_prefix (die, cu);
7201 const char *old_prefix = processing_current_prefix;
7202 struct cleanup *back_to = make_cleanup (xfree, prefix);
7203 processing_current_prefix = prefix;
7204
7205 switch (die->tag)
7206 {
7207 case DW_TAG_class_type:
7208 case DW_TAG_structure_type:
7209 case DW_TAG_union_type:
7210 read_structure_type (die, cu);
7211 break;
7212 case DW_TAG_enumeration_type:
7213 read_enumeration_type (die, cu);
7214 break;
7215 case DW_TAG_subprogram:
7216 case DW_TAG_subroutine_type:
7217 read_subroutine_type (die, cu);
7218 break;
7219 case DW_TAG_array_type:
7220 read_array_type (die, cu);
7221 break;
7222 case DW_TAG_pointer_type:
7223 read_tag_pointer_type (die, cu);
7224 break;
7225 case DW_TAG_ptr_to_member_type:
7226 read_tag_ptr_to_member_type (die, cu);
7227 break;
7228 case DW_TAG_reference_type:
7229 read_tag_reference_type (die, cu);
7230 break;
7231 case DW_TAG_const_type:
7232 read_tag_const_type (die, cu);
7233 break;
7234 case DW_TAG_volatile_type:
7235 read_tag_volatile_type (die, cu);
7236 break;
7237 case DW_TAG_string_type:
7238 read_tag_string_type (die, cu);
7239 break;
7240 case DW_TAG_typedef:
7241 read_typedef (die, cu);
7242 break;
7243 case DW_TAG_subrange_type:
7244 read_subrange_type (die, cu);
7245 break;
7246 case DW_TAG_base_type:
7247 read_base_type (die, cu);
7248 break;
7249 default:
7250 complaint (&symfile_complaints, _("unexepected tag in read_type_die: '%s'"),
7251 dwarf_tag_name (die->tag));
7252 break;
7253 }
7254
7255 processing_current_prefix = old_prefix;
7256 do_cleanups (back_to);
7257 }
7258
7259 /* Return the name of the namespace/class that DIE is defined within,
7260 or "" if we can't tell. The caller should xfree the result. */
7261
7262 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7263 therein) for an example of how to use this function to deal with
7264 DW_AT_specification. */
7265
7266 static char *
7267 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7268 {
7269 struct die_info *parent;
7270
7271 if (cu->language != language_cplus
7272 && cu->language != language_java)
7273 return NULL;
7274
7275 parent = die->parent;
7276
7277 if (parent == NULL)
7278 {
7279 return xstrdup ("");
7280 }
7281 else
7282 {
7283 switch (parent->tag) {
7284 case DW_TAG_namespace:
7285 {
7286 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7287 before doing this check? */
7288 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7289 {
7290 return xstrdup (TYPE_TAG_NAME (parent->type));
7291 }
7292 else
7293 {
7294 int dummy;
7295 char *parent_prefix = determine_prefix (parent, cu);
7296 char *retval = typename_concat (NULL, parent_prefix,
7297 namespace_name (parent, &dummy,
7298 cu),
7299 cu);
7300 xfree (parent_prefix);
7301 return retval;
7302 }
7303 }
7304 break;
7305 case DW_TAG_class_type:
7306 case DW_TAG_structure_type:
7307 {
7308 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7309 {
7310 return xstrdup (TYPE_TAG_NAME (parent->type));
7311 }
7312 else
7313 {
7314 const char *old_prefix = processing_current_prefix;
7315 char *new_prefix = determine_prefix (parent, cu);
7316 char *retval;
7317
7318 processing_current_prefix = new_prefix;
7319 retval = determine_class_name (parent, cu);
7320 processing_current_prefix = old_prefix;
7321
7322 xfree (new_prefix);
7323 return retval;
7324 }
7325 }
7326 default:
7327 return determine_prefix (parent, cu);
7328 }
7329 }
7330 }
7331
7332 /* Return a newly-allocated string formed by concatenating PREFIX and
7333 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7334 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7335 perform an obconcat, otherwise allocate storage for the result. The CU argument
7336 is used to determine the language and hence, the appropriate separator. */
7337
7338 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7339
7340 static char *
7341 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7342 struct dwarf2_cu *cu)
7343 {
7344 char *sep;
7345
7346 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7347 sep = "";
7348 else if (cu->language == language_java)
7349 sep = ".";
7350 else
7351 sep = "::";
7352
7353 if (obs == NULL)
7354 {
7355 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7356 retval[0] = '\0';
7357
7358 if (prefix)
7359 {
7360 strcpy (retval, prefix);
7361 strcat (retval, sep);
7362 }
7363 if (suffix)
7364 strcat (retval, suffix);
7365
7366 return retval;
7367 }
7368 else
7369 {
7370 /* We have an obstack. */
7371 return obconcat (obs, prefix, sep, suffix);
7372 }
7373 }
7374
7375 static struct type *
7376 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7377 {
7378 struct objfile *objfile = cu->objfile;
7379
7380 /* FIXME - this should not produce a new (struct type *)
7381 every time. It should cache base types. */
7382 struct type *type;
7383 switch (encoding)
7384 {
7385 case DW_ATE_address:
7386 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7387 return type;
7388 case DW_ATE_boolean:
7389 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7390 return type;
7391 case DW_ATE_complex_float:
7392 if (size == 16)
7393 {
7394 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7395 }
7396 else
7397 {
7398 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7399 }
7400 return type;
7401 case DW_ATE_float:
7402 if (size == 8)
7403 {
7404 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7405 }
7406 else
7407 {
7408 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7409 }
7410 return type;
7411 case DW_ATE_signed:
7412 switch (size)
7413 {
7414 case 1:
7415 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7416 break;
7417 case 2:
7418 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7419 break;
7420 default:
7421 case 4:
7422 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7423 break;
7424 }
7425 return type;
7426 case DW_ATE_signed_char:
7427 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7428 return type;
7429 case DW_ATE_unsigned:
7430 switch (size)
7431 {
7432 case 1:
7433 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7434 break;
7435 case 2:
7436 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7437 break;
7438 default:
7439 case 4:
7440 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7441 break;
7442 }
7443 return type;
7444 case DW_ATE_unsigned_char:
7445 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7446 return type;
7447 default:
7448 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7449 return type;
7450 }
7451 }
7452
7453 #if 0
7454 struct die_info *
7455 copy_die (struct die_info *old_die)
7456 {
7457 struct die_info *new_die;
7458 int i, num_attrs;
7459
7460 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7461 memset (new_die, 0, sizeof (struct die_info));
7462
7463 new_die->tag = old_die->tag;
7464 new_die->has_children = old_die->has_children;
7465 new_die->abbrev = old_die->abbrev;
7466 new_die->offset = old_die->offset;
7467 new_die->type = NULL;
7468
7469 num_attrs = old_die->num_attrs;
7470 new_die->num_attrs = num_attrs;
7471 new_die->attrs = (struct attribute *)
7472 xmalloc (num_attrs * sizeof (struct attribute));
7473
7474 for (i = 0; i < old_die->num_attrs; ++i)
7475 {
7476 new_die->attrs[i].name = old_die->attrs[i].name;
7477 new_die->attrs[i].form = old_die->attrs[i].form;
7478 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7479 }
7480
7481 new_die->next = NULL;
7482 return new_die;
7483 }
7484 #endif
7485
7486 /* Return sibling of die, NULL if no sibling. */
7487
7488 static struct die_info *
7489 sibling_die (struct die_info *die)
7490 {
7491 return die->sibling;
7492 }
7493
7494 /* Get linkage name of a die, return NULL if not found. */
7495
7496 static char *
7497 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7498 {
7499 struct attribute *attr;
7500
7501 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7502 if (attr && DW_STRING (attr))
7503 return DW_STRING (attr);
7504 attr = dwarf2_attr (die, DW_AT_name, cu);
7505 if (attr && DW_STRING (attr))
7506 return DW_STRING (attr);
7507 return NULL;
7508 }
7509
7510 /* Get name of a die, return NULL if not found. */
7511
7512 static char *
7513 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7514 {
7515 struct attribute *attr;
7516
7517 attr = dwarf2_attr (die, DW_AT_name, cu);
7518 if (attr && DW_STRING (attr))
7519 return DW_STRING (attr);
7520 return NULL;
7521 }
7522
7523 /* Return the die that this die in an extension of, or NULL if there
7524 is none. */
7525
7526 static struct die_info *
7527 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7528 {
7529 struct attribute *attr;
7530
7531 attr = dwarf2_attr (die, DW_AT_extension, cu);
7532 if (attr == NULL)
7533 return NULL;
7534
7535 return follow_die_ref (die, attr, cu);
7536 }
7537
7538 /* Convert a DIE tag into its string name. */
7539
7540 static char *
7541 dwarf_tag_name (unsigned tag)
7542 {
7543 switch (tag)
7544 {
7545 case DW_TAG_padding:
7546 return "DW_TAG_padding";
7547 case DW_TAG_array_type:
7548 return "DW_TAG_array_type";
7549 case DW_TAG_class_type:
7550 return "DW_TAG_class_type";
7551 case DW_TAG_entry_point:
7552 return "DW_TAG_entry_point";
7553 case DW_TAG_enumeration_type:
7554 return "DW_TAG_enumeration_type";
7555 case DW_TAG_formal_parameter:
7556 return "DW_TAG_formal_parameter";
7557 case DW_TAG_imported_declaration:
7558 return "DW_TAG_imported_declaration";
7559 case DW_TAG_label:
7560 return "DW_TAG_label";
7561 case DW_TAG_lexical_block:
7562 return "DW_TAG_lexical_block";
7563 case DW_TAG_member:
7564 return "DW_TAG_member";
7565 case DW_TAG_pointer_type:
7566 return "DW_TAG_pointer_type";
7567 case DW_TAG_reference_type:
7568 return "DW_TAG_reference_type";
7569 case DW_TAG_compile_unit:
7570 return "DW_TAG_compile_unit";
7571 case DW_TAG_string_type:
7572 return "DW_TAG_string_type";
7573 case DW_TAG_structure_type:
7574 return "DW_TAG_structure_type";
7575 case DW_TAG_subroutine_type:
7576 return "DW_TAG_subroutine_type";
7577 case DW_TAG_typedef:
7578 return "DW_TAG_typedef";
7579 case DW_TAG_union_type:
7580 return "DW_TAG_union_type";
7581 case DW_TAG_unspecified_parameters:
7582 return "DW_TAG_unspecified_parameters";
7583 case DW_TAG_variant:
7584 return "DW_TAG_variant";
7585 case DW_TAG_common_block:
7586 return "DW_TAG_common_block";
7587 case DW_TAG_common_inclusion:
7588 return "DW_TAG_common_inclusion";
7589 case DW_TAG_inheritance:
7590 return "DW_TAG_inheritance";
7591 case DW_TAG_inlined_subroutine:
7592 return "DW_TAG_inlined_subroutine";
7593 case DW_TAG_module:
7594 return "DW_TAG_module";
7595 case DW_TAG_ptr_to_member_type:
7596 return "DW_TAG_ptr_to_member_type";
7597 case DW_TAG_set_type:
7598 return "DW_TAG_set_type";
7599 case DW_TAG_subrange_type:
7600 return "DW_TAG_subrange_type";
7601 case DW_TAG_with_stmt:
7602 return "DW_TAG_with_stmt";
7603 case DW_TAG_access_declaration:
7604 return "DW_TAG_access_declaration";
7605 case DW_TAG_base_type:
7606 return "DW_TAG_base_type";
7607 case DW_TAG_catch_block:
7608 return "DW_TAG_catch_block";
7609 case DW_TAG_const_type:
7610 return "DW_TAG_const_type";
7611 case DW_TAG_constant:
7612 return "DW_TAG_constant";
7613 case DW_TAG_enumerator:
7614 return "DW_TAG_enumerator";
7615 case DW_TAG_file_type:
7616 return "DW_TAG_file_type";
7617 case DW_TAG_friend:
7618 return "DW_TAG_friend";
7619 case DW_TAG_namelist:
7620 return "DW_TAG_namelist";
7621 case DW_TAG_namelist_item:
7622 return "DW_TAG_namelist_item";
7623 case DW_TAG_packed_type:
7624 return "DW_TAG_packed_type";
7625 case DW_TAG_subprogram:
7626 return "DW_TAG_subprogram";
7627 case DW_TAG_template_type_param:
7628 return "DW_TAG_template_type_param";
7629 case DW_TAG_template_value_param:
7630 return "DW_TAG_template_value_param";
7631 case DW_TAG_thrown_type:
7632 return "DW_TAG_thrown_type";
7633 case DW_TAG_try_block:
7634 return "DW_TAG_try_block";
7635 case DW_TAG_variant_part:
7636 return "DW_TAG_variant_part";
7637 case DW_TAG_variable:
7638 return "DW_TAG_variable";
7639 case DW_TAG_volatile_type:
7640 return "DW_TAG_volatile_type";
7641 case DW_TAG_dwarf_procedure:
7642 return "DW_TAG_dwarf_procedure";
7643 case DW_TAG_restrict_type:
7644 return "DW_TAG_restrict_type";
7645 case DW_TAG_interface_type:
7646 return "DW_TAG_interface_type";
7647 case DW_TAG_namespace:
7648 return "DW_TAG_namespace";
7649 case DW_TAG_imported_module:
7650 return "DW_TAG_imported_module";
7651 case DW_TAG_unspecified_type:
7652 return "DW_TAG_unspecified_type";
7653 case DW_TAG_partial_unit:
7654 return "DW_TAG_partial_unit";
7655 case DW_TAG_imported_unit:
7656 return "DW_TAG_imported_unit";
7657 case DW_TAG_MIPS_loop:
7658 return "DW_TAG_MIPS_loop";
7659 case DW_TAG_format_label:
7660 return "DW_TAG_format_label";
7661 case DW_TAG_function_template:
7662 return "DW_TAG_function_template";
7663 case DW_TAG_class_template:
7664 return "DW_TAG_class_template";
7665 default:
7666 return "DW_TAG_<unknown>";
7667 }
7668 }
7669
7670 /* Convert a DWARF attribute code into its string name. */
7671
7672 static char *
7673 dwarf_attr_name (unsigned attr)
7674 {
7675 switch (attr)
7676 {
7677 case DW_AT_sibling:
7678 return "DW_AT_sibling";
7679 case DW_AT_location:
7680 return "DW_AT_location";
7681 case DW_AT_name:
7682 return "DW_AT_name";
7683 case DW_AT_ordering:
7684 return "DW_AT_ordering";
7685 case DW_AT_subscr_data:
7686 return "DW_AT_subscr_data";
7687 case DW_AT_byte_size:
7688 return "DW_AT_byte_size";
7689 case DW_AT_bit_offset:
7690 return "DW_AT_bit_offset";
7691 case DW_AT_bit_size:
7692 return "DW_AT_bit_size";
7693 case DW_AT_element_list:
7694 return "DW_AT_element_list";
7695 case DW_AT_stmt_list:
7696 return "DW_AT_stmt_list";
7697 case DW_AT_low_pc:
7698 return "DW_AT_low_pc";
7699 case DW_AT_high_pc:
7700 return "DW_AT_high_pc";
7701 case DW_AT_language:
7702 return "DW_AT_language";
7703 case DW_AT_member:
7704 return "DW_AT_member";
7705 case DW_AT_discr:
7706 return "DW_AT_discr";
7707 case DW_AT_discr_value:
7708 return "DW_AT_discr_value";
7709 case DW_AT_visibility:
7710 return "DW_AT_visibility";
7711 case DW_AT_import:
7712 return "DW_AT_import";
7713 case DW_AT_string_length:
7714 return "DW_AT_string_length";
7715 case DW_AT_common_reference:
7716 return "DW_AT_common_reference";
7717 case DW_AT_comp_dir:
7718 return "DW_AT_comp_dir";
7719 case DW_AT_const_value:
7720 return "DW_AT_const_value";
7721 case DW_AT_containing_type:
7722 return "DW_AT_containing_type";
7723 case DW_AT_default_value:
7724 return "DW_AT_default_value";
7725 case DW_AT_inline:
7726 return "DW_AT_inline";
7727 case DW_AT_is_optional:
7728 return "DW_AT_is_optional";
7729 case DW_AT_lower_bound:
7730 return "DW_AT_lower_bound";
7731 case DW_AT_producer:
7732 return "DW_AT_producer";
7733 case DW_AT_prototyped:
7734 return "DW_AT_prototyped";
7735 case DW_AT_return_addr:
7736 return "DW_AT_return_addr";
7737 case DW_AT_start_scope:
7738 return "DW_AT_start_scope";
7739 case DW_AT_stride_size:
7740 return "DW_AT_stride_size";
7741 case DW_AT_upper_bound:
7742 return "DW_AT_upper_bound";
7743 case DW_AT_abstract_origin:
7744 return "DW_AT_abstract_origin";
7745 case DW_AT_accessibility:
7746 return "DW_AT_accessibility";
7747 case DW_AT_address_class:
7748 return "DW_AT_address_class";
7749 case DW_AT_artificial:
7750 return "DW_AT_artificial";
7751 case DW_AT_base_types:
7752 return "DW_AT_base_types";
7753 case DW_AT_calling_convention:
7754 return "DW_AT_calling_convention";
7755 case DW_AT_count:
7756 return "DW_AT_count";
7757 case DW_AT_data_member_location:
7758 return "DW_AT_data_member_location";
7759 case DW_AT_decl_column:
7760 return "DW_AT_decl_column";
7761 case DW_AT_decl_file:
7762 return "DW_AT_decl_file";
7763 case DW_AT_decl_line:
7764 return "DW_AT_decl_line";
7765 case DW_AT_declaration:
7766 return "DW_AT_declaration";
7767 case DW_AT_discr_list:
7768 return "DW_AT_discr_list";
7769 case DW_AT_encoding:
7770 return "DW_AT_encoding";
7771 case DW_AT_external:
7772 return "DW_AT_external";
7773 case DW_AT_frame_base:
7774 return "DW_AT_frame_base";
7775 case DW_AT_friend:
7776 return "DW_AT_friend";
7777 case DW_AT_identifier_case:
7778 return "DW_AT_identifier_case";
7779 case DW_AT_macro_info:
7780 return "DW_AT_macro_info";
7781 case DW_AT_namelist_items:
7782 return "DW_AT_namelist_items";
7783 case DW_AT_priority:
7784 return "DW_AT_priority";
7785 case DW_AT_segment:
7786 return "DW_AT_segment";
7787 case DW_AT_specification:
7788 return "DW_AT_specification";
7789 case DW_AT_static_link:
7790 return "DW_AT_static_link";
7791 case DW_AT_type:
7792 return "DW_AT_type";
7793 case DW_AT_use_location:
7794 return "DW_AT_use_location";
7795 case DW_AT_variable_parameter:
7796 return "DW_AT_variable_parameter";
7797 case DW_AT_virtuality:
7798 return "DW_AT_virtuality";
7799 case DW_AT_vtable_elem_location:
7800 return "DW_AT_vtable_elem_location";
7801 case DW_AT_allocated:
7802 return "DW_AT_allocated";
7803 case DW_AT_associated:
7804 return "DW_AT_associated";
7805 case DW_AT_data_location:
7806 return "DW_AT_data_location";
7807 case DW_AT_stride:
7808 return "DW_AT_stride";
7809 case DW_AT_entry_pc:
7810 return "DW_AT_entry_pc";
7811 case DW_AT_use_UTF8:
7812 return "DW_AT_use_UTF8";
7813 case DW_AT_extension:
7814 return "DW_AT_extension";
7815 case DW_AT_ranges:
7816 return "DW_AT_ranges";
7817 case DW_AT_trampoline:
7818 return "DW_AT_trampoline";
7819 case DW_AT_call_column:
7820 return "DW_AT_call_column";
7821 case DW_AT_call_file:
7822 return "DW_AT_call_file";
7823 case DW_AT_call_line:
7824 return "DW_AT_call_line";
7825 #ifdef MIPS
7826 case DW_AT_MIPS_fde:
7827 return "DW_AT_MIPS_fde";
7828 case DW_AT_MIPS_loop_begin:
7829 return "DW_AT_MIPS_loop_begin";
7830 case DW_AT_MIPS_tail_loop_begin:
7831 return "DW_AT_MIPS_tail_loop_begin";
7832 case DW_AT_MIPS_epilog_begin:
7833 return "DW_AT_MIPS_epilog_begin";
7834 case DW_AT_MIPS_loop_unroll_factor:
7835 return "DW_AT_MIPS_loop_unroll_factor";
7836 case DW_AT_MIPS_software_pipeline_depth:
7837 return "DW_AT_MIPS_software_pipeline_depth";
7838 #endif
7839 case DW_AT_MIPS_linkage_name:
7840 return "DW_AT_MIPS_linkage_name";
7841
7842 case DW_AT_sf_names:
7843 return "DW_AT_sf_names";
7844 case DW_AT_src_info:
7845 return "DW_AT_src_info";
7846 case DW_AT_mac_info:
7847 return "DW_AT_mac_info";
7848 case DW_AT_src_coords:
7849 return "DW_AT_src_coords";
7850 case DW_AT_body_begin:
7851 return "DW_AT_body_begin";
7852 case DW_AT_body_end:
7853 return "DW_AT_body_end";
7854 case DW_AT_GNU_vector:
7855 return "DW_AT_GNU_vector";
7856 default:
7857 return "DW_AT_<unknown>";
7858 }
7859 }
7860
7861 /* Convert a DWARF value form code into its string name. */
7862
7863 static char *
7864 dwarf_form_name (unsigned form)
7865 {
7866 switch (form)
7867 {
7868 case DW_FORM_addr:
7869 return "DW_FORM_addr";
7870 case DW_FORM_block2:
7871 return "DW_FORM_block2";
7872 case DW_FORM_block4:
7873 return "DW_FORM_block4";
7874 case DW_FORM_data2:
7875 return "DW_FORM_data2";
7876 case DW_FORM_data4:
7877 return "DW_FORM_data4";
7878 case DW_FORM_data8:
7879 return "DW_FORM_data8";
7880 case DW_FORM_string:
7881 return "DW_FORM_string";
7882 case DW_FORM_block:
7883 return "DW_FORM_block";
7884 case DW_FORM_block1:
7885 return "DW_FORM_block1";
7886 case DW_FORM_data1:
7887 return "DW_FORM_data1";
7888 case DW_FORM_flag:
7889 return "DW_FORM_flag";
7890 case DW_FORM_sdata:
7891 return "DW_FORM_sdata";
7892 case DW_FORM_strp:
7893 return "DW_FORM_strp";
7894 case DW_FORM_udata:
7895 return "DW_FORM_udata";
7896 case DW_FORM_ref_addr:
7897 return "DW_FORM_ref_addr";
7898 case DW_FORM_ref1:
7899 return "DW_FORM_ref1";
7900 case DW_FORM_ref2:
7901 return "DW_FORM_ref2";
7902 case DW_FORM_ref4:
7903 return "DW_FORM_ref4";
7904 case DW_FORM_ref8:
7905 return "DW_FORM_ref8";
7906 case DW_FORM_ref_udata:
7907 return "DW_FORM_ref_udata";
7908 case DW_FORM_indirect:
7909 return "DW_FORM_indirect";
7910 default:
7911 return "DW_FORM_<unknown>";
7912 }
7913 }
7914
7915 /* Convert a DWARF stack opcode into its string name. */
7916
7917 static char *
7918 dwarf_stack_op_name (unsigned op)
7919 {
7920 switch (op)
7921 {
7922 case DW_OP_addr:
7923 return "DW_OP_addr";
7924 case DW_OP_deref:
7925 return "DW_OP_deref";
7926 case DW_OP_const1u:
7927 return "DW_OP_const1u";
7928 case DW_OP_const1s:
7929 return "DW_OP_const1s";
7930 case DW_OP_const2u:
7931 return "DW_OP_const2u";
7932 case DW_OP_const2s:
7933 return "DW_OP_const2s";
7934 case DW_OP_const4u:
7935 return "DW_OP_const4u";
7936 case DW_OP_const4s:
7937 return "DW_OP_const4s";
7938 case DW_OP_const8u:
7939 return "DW_OP_const8u";
7940 case DW_OP_const8s:
7941 return "DW_OP_const8s";
7942 case DW_OP_constu:
7943 return "DW_OP_constu";
7944 case DW_OP_consts:
7945 return "DW_OP_consts";
7946 case DW_OP_dup:
7947 return "DW_OP_dup";
7948 case DW_OP_drop:
7949 return "DW_OP_drop";
7950 case DW_OP_over:
7951 return "DW_OP_over";
7952 case DW_OP_pick:
7953 return "DW_OP_pick";
7954 case DW_OP_swap:
7955 return "DW_OP_swap";
7956 case DW_OP_rot:
7957 return "DW_OP_rot";
7958 case DW_OP_xderef:
7959 return "DW_OP_xderef";
7960 case DW_OP_abs:
7961 return "DW_OP_abs";
7962 case DW_OP_and:
7963 return "DW_OP_and";
7964 case DW_OP_div:
7965 return "DW_OP_div";
7966 case DW_OP_minus:
7967 return "DW_OP_minus";
7968 case DW_OP_mod:
7969 return "DW_OP_mod";
7970 case DW_OP_mul:
7971 return "DW_OP_mul";
7972 case DW_OP_neg:
7973 return "DW_OP_neg";
7974 case DW_OP_not:
7975 return "DW_OP_not";
7976 case DW_OP_or:
7977 return "DW_OP_or";
7978 case DW_OP_plus:
7979 return "DW_OP_plus";
7980 case DW_OP_plus_uconst:
7981 return "DW_OP_plus_uconst";
7982 case DW_OP_shl:
7983 return "DW_OP_shl";
7984 case DW_OP_shr:
7985 return "DW_OP_shr";
7986 case DW_OP_shra:
7987 return "DW_OP_shra";
7988 case DW_OP_xor:
7989 return "DW_OP_xor";
7990 case DW_OP_bra:
7991 return "DW_OP_bra";
7992 case DW_OP_eq:
7993 return "DW_OP_eq";
7994 case DW_OP_ge:
7995 return "DW_OP_ge";
7996 case DW_OP_gt:
7997 return "DW_OP_gt";
7998 case DW_OP_le:
7999 return "DW_OP_le";
8000 case DW_OP_lt:
8001 return "DW_OP_lt";
8002 case DW_OP_ne:
8003 return "DW_OP_ne";
8004 case DW_OP_skip:
8005 return "DW_OP_skip";
8006 case DW_OP_lit0:
8007 return "DW_OP_lit0";
8008 case DW_OP_lit1:
8009 return "DW_OP_lit1";
8010 case DW_OP_lit2:
8011 return "DW_OP_lit2";
8012 case DW_OP_lit3:
8013 return "DW_OP_lit3";
8014 case DW_OP_lit4:
8015 return "DW_OP_lit4";
8016 case DW_OP_lit5:
8017 return "DW_OP_lit5";
8018 case DW_OP_lit6:
8019 return "DW_OP_lit6";
8020 case DW_OP_lit7:
8021 return "DW_OP_lit7";
8022 case DW_OP_lit8:
8023 return "DW_OP_lit8";
8024 case DW_OP_lit9:
8025 return "DW_OP_lit9";
8026 case DW_OP_lit10:
8027 return "DW_OP_lit10";
8028 case DW_OP_lit11:
8029 return "DW_OP_lit11";
8030 case DW_OP_lit12:
8031 return "DW_OP_lit12";
8032 case DW_OP_lit13:
8033 return "DW_OP_lit13";
8034 case DW_OP_lit14:
8035 return "DW_OP_lit14";
8036 case DW_OP_lit15:
8037 return "DW_OP_lit15";
8038 case DW_OP_lit16:
8039 return "DW_OP_lit16";
8040 case DW_OP_lit17:
8041 return "DW_OP_lit17";
8042 case DW_OP_lit18:
8043 return "DW_OP_lit18";
8044 case DW_OP_lit19:
8045 return "DW_OP_lit19";
8046 case DW_OP_lit20:
8047 return "DW_OP_lit20";
8048 case DW_OP_lit21:
8049 return "DW_OP_lit21";
8050 case DW_OP_lit22:
8051 return "DW_OP_lit22";
8052 case DW_OP_lit23:
8053 return "DW_OP_lit23";
8054 case DW_OP_lit24:
8055 return "DW_OP_lit24";
8056 case DW_OP_lit25:
8057 return "DW_OP_lit25";
8058 case DW_OP_lit26:
8059 return "DW_OP_lit26";
8060 case DW_OP_lit27:
8061 return "DW_OP_lit27";
8062 case DW_OP_lit28:
8063 return "DW_OP_lit28";
8064 case DW_OP_lit29:
8065 return "DW_OP_lit29";
8066 case DW_OP_lit30:
8067 return "DW_OP_lit30";
8068 case DW_OP_lit31:
8069 return "DW_OP_lit31";
8070 case DW_OP_reg0:
8071 return "DW_OP_reg0";
8072 case DW_OP_reg1:
8073 return "DW_OP_reg1";
8074 case DW_OP_reg2:
8075 return "DW_OP_reg2";
8076 case DW_OP_reg3:
8077 return "DW_OP_reg3";
8078 case DW_OP_reg4:
8079 return "DW_OP_reg4";
8080 case DW_OP_reg5:
8081 return "DW_OP_reg5";
8082 case DW_OP_reg6:
8083 return "DW_OP_reg6";
8084 case DW_OP_reg7:
8085 return "DW_OP_reg7";
8086 case DW_OP_reg8:
8087 return "DW_OP_reg8";
8088 case DW_OP_reg9:
8089 return "DW_OP_reg9";
8090 case DW_OP_reg10:
8091 return "DW_OP_reg10";
8092 case DW_OP_reg11:
8093 return "DW_OP_reg11";
8094 case DW_OP_reg12:
8095 return "DW_OP_reg12";
8096 case DW_OP_reg13:
8097 return "DW_OP_reg13";
8098 case DW_OP_reg14:
8099 return "DW_OP_reg14";
8100 case DW_OP_reg15:
8101 return "DW_OP_reg15";
8102 case DW_OP_reg16:
8103 return "DW_OP_reg16";
8104 case DW_OP_reg17:
8105 return "DW_OP_reg17";
8106 case DW_OP_reg18:
8107 return "DW_OP_reg18";
8108 case DW_OP_reg19:
8109 return "DW_OP_reg19";
8110 case DW_OP_reg20:
8111 return "DW_OP_reg20";
8112 case DW_OP_reg21:
8113 return "DW_OP_reg21";
8114 case DW_OP_reg22:
8115 return "DW_OP_reg22";
8116 case DW_OP_reg23:
8117 return "DW_OP_reg23";
8118 case DW_OP_reg24:
8119 return "DW_OP_reg24";
8120 case DW_OP_reg25:
8121 return "DW_OP_reg25";
8122 case DW_OP_reg26:
8123 return "DW_OP_reg26";
8124 case DW_OP_reg27:
8125 return "DW_OP_reg27";
8126 case DW_OP_reg28:
8127 return "DW_OP_reg28";
8128 case DW_OP_reg29:
8129 return "DW_OP_reg29";
8130 case DW_OP_reg30:
8131 return "DW_OP_reg30";
8132 case DW_OP_reg31:
8133 return "DW_OP_reg31";
8134 case DW_OP_breg0:
8135 return "DW_OP_breg0";
8136 case DW_OP_breg1:
8137 return "DW_OP_breg1";
8138 case DW_OP_breg2:
8139 return "DW_OP_breg2";
8140 case DW_OP_breg3:
8141 return "DW_OP_breg3";
8142 case DW_OP_breg4:
8143 return "DW_OP_breg4";
8144 case DW_OP_breg5:
8145 return "DW_OP_breg5";
8146 case DW_OP_breg6:
8147 return "DW_OP_breg6";
8148 case DW_OP_breg7:
8149 return "DW_OP_breg7";
8150 case DW_OP_breg8:
8151 return "DW_OP_breg8";
8152 case DW_OP_breg9:
8153 return "DW_OP_breg9";
8154 case DW_OP_breg10:
8155 return "DW_OP_breg10";
8156 case DW_OP_breg11:
8157 return "DW_OP_breg11";
8158 case DW_OP_breg12:
8159 return "DW_OP_breg12";
8160 case DW_OP_breg13:
8161 return "DW_OP_breg13";
8162 case DW_OP_breg14:
8163 return "DW_OP_breg14";
8164 case DW_OP_breg15:
8165 return "DW_OP_breg15";
8166 case DW_OP_breg16:
8167 return "DW_OP_breg16";
8168 case DW_OP_breg17:
8169 return "DW_OP_breg17";
8170 case DW_OP_breg18:
8171 return "DW_OP_breg18";
8172 case DW_OP_breg19:
8173 return "DW_OP_breg19";
8174 case DW_OP_breg20:
8175 return "DW_OP_breg20";
8176 case DW_OP_breg21:
8177 return "DW_OP_breg21";
8178 case DW_OP_breg22:
8179 return "DW_OP_breg22";
8180 case DW_OP_breg23:
8181 return "DW_OP_breg23";
8182 case DW_OP_breg24:
8183 return "DW_OP_breg24";
8184 case DW_OP_breg25:
8185 return "DW_OP_breg25";
8186 case DW_OP_breg26:
8187 return "DW_OP_breg26";
8188 case DW_OP_breg27:
8189 return "DW_OP_breg27";
8190 case DW_OP_breg28:
8191 return "DW_OP_breg28";
8192 case DW_OP_breg29:
8193 return "DW_OP_breg29";
8194 case DW_OP_breg30:
8195 return "DW_OP_breg30";
8196 case DW_OP_breg31:
8197 return "DW_OP_breg31";
8198 case DW_OP_regx:
8199 return "DW_OP_regx";
8200 case DW_OP_fbreg:
8201 return "DW_OP_fbreg";
8202 case DW_OP_bregx:
8203 return "DW_OP_bregx";
8204 case DW_OP_piece:
8205 return "DW_OP_piece";
8206 case DW_OP_deref_size:
8207 return "DW_OP_deref_size";
8208 case DW_OP_xderef_size:
8209 return "DW_OP_xderef_size";
8210 case DW_OP_nop:
8211 return "DW_OP_nop";
8212 /* DWARF 3 extensions. */
8213 case DW_OP_push_object_address:
8214 return "DW_OP_push_object_address";
8215 case DW_OP_call2:
8216 return "DW_OP_call2";
8217 case DW_OP_call4:
8218 return "DW_OP_call4";
8219 case DW_OP_call_ref:
8220 return "DW_OP_call_ref";
8221 /* GNU extensions. */
8222 case DW_OP_GNU_push_tls_address:
8223 return "DW_OP_GNU_push_tls_address";
8224 default:
8225 return "OP_<unknown>";
8226 }
8227 }
8228
8229 static char *
8230 dwarf_bool_name (unsigned mybool)
8231 {
8232 if (mybool)
8233 return "TRUE";
8234 else
8235 return "FALSE";
8236 }
8237
8238 /* Convert a DWARF type code into its string name. */
8239
8240 static char *
8241 dwarf_type_encoding_name (unsigned enc)
8242 {
8243 switch (enc)
8244 {
8245 case DW_ATE_address:
8246 return "DW_ATE_address";
8247 case DW_ATE_boolean:
8248 return "DW_ATE_boolean";
8249 case DW_ATE_complex_float:
8250 return "DW_ATE_complex_float";
8251 case DW_ATE_float:
8252 return "DW_ATE_float";
8253 case DW_ATE_signed:
8254 return "DW_ATE_signed";
8255 case DW_ATE_signed_char:
8256 return "DW_ATE_signed_char";
8257 case DW_ATE_unsigned:
8258 return "DW_ATE_unsigned";
8259 case DW_ATE_unsigned_char:
8260 return "DW_ATE_unsigned_char";
8261 case DW_ATE_imaginary_float:
8262 return "DW_ATE_imaginary_float";
8263 default:
8264 return "DW_ATE_<unknown>";
8265 }
8266 }
8267
8268 /* Convert a DWARF call frame info operation to its string name. */
8269
8270 #if 0
8271 static char *
8272 dwarf_cfi_name (unsigned cfi_opc)
8273 {
8274 switch (cfi_opc)
8275 {
8276 case DW_CFA_advance_loc:
8277 return "DW_CFA_advance_loc";
8278 case DW_CFA_offset:
8279 return "DW_CFA_offset";
8280 case DW_CFA_restore:
8281 return "DW_CFA_restore";
8282 case DW_CFA_nop:
8283 return "DW_CFA_nop";
8284 case DW_CFA_set_loc:
8285 return "DW_CFA_set_loc";
8286 case DW_CFA_advance_loc1:
8287 return "DW_CFA_advance_loc1";
8288 case DW_CFA_advance_loc2:
8289 return "DW_CFA_advance_loc2";
8290 case DW_CFA_advance_loc4:
8291 return "DW_CFA_advance_loc4";
8292 case DW_CFA_offset_extended:
8293 return "DW_CFA_offset_extended";
8294 case DW_CFA_restore_extended:
8295 return "DW_CFA_restore_extended";
8296 case DW_CFA_undefined:
8297 return "DW_CFA_undefined";
8298 case DW_CFA_same_value:
8299 return "DW_CFA_same_value";
8300 case DW_CFA_register:
8301 return "DW_CFA_register";
8302 case DW_CFA_remember_state:
8303 return "DW_CFA_remember_state";
8304 case DW_CFA_restore_state:
8305 return "DW_CFA_restore_state";
8306 case DW_CFA_def_cfa:
8307 return "DW_CFA_def_cfa";
8308 case DW_CFA_def_cfa_register:
8309 return "DW_CFA_def_cfa_register";
8310 case DW_CFA_def_cfa_offset:
8311 return "DW_CFA_def_cfa_offset";
8312
8313 /* DWARF 3 */
8314 case DW_CFA_def_cfa_expression:
8315 return "DW_CFA_def_cfa_expression";
8316 case DW_CFA_expression:
8317 return "DW_CFA_expression";
8318 case DW_CFA_offset_extended_sf:
8319 return "DW_CFA_offset_extended_sf";
8320 case DW_CFA_def_cfa_sf:
8321 return "DW_CFA_def_cfa_sf";
8322 case DW_CFA_def_cfa_offset_sf:
8323 return "DW_CFA_def_cfa_offset_sf";
8324
8325 /* SGI/MIPS specific */
8326 case DW_CFA_MIPS_advance_loc8:
8327 return "DW_CFA_MIPS_advance_loc8";
8328
8329 /* GNU extensions */
8330 case DW_CFA_GNU_window_save:
8331 return "DW_CFA_GNU_window_save";
8332 case DW_CFA_GNU_args_size:
8333 return "DW_CFA_GNU_args_size";
8334 case DW_CFA_GNU_negative_offset_extended:
8335 return "DW_CFA_GNU_negative_offset_extended";
8336
8337 default:
8338 return "DW_CFA_<unknown>";
8339 }
8340 }
8341 #endif
8342
8343 static void
8344 dump_die (struct die_info *die)
8345 {
8346 unsigned int i;
8347
8348 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8349 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8350 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8351 dwarf_bool_name (die->child != NULL));
8352
8353 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8354 for (i = 0; i < die->num_attrs; ++i)
8355 {
8356 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8357 dwarf_attr_name (die->attrs[i].name),
8358 dwarf_form_name (die->attrs[i].form));
8359 switch (die->attrs[i].form)
8360 {
8361 case DW_FORM_ref_addr:
8362 case DW_FORM_addr:
8363 fprintf_unfiltered (gdb_stderr, "address: ");
8364 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8365 break;
8366 case DW_FORM_block2:
8367 case DW_FORM_block4:
8368 case DW_FORM_block:
8369 case DW_FORM_block1:
8370 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8371 break;
8372 case DW_FORM_ref1:
8373 case DW_FORM_ref2:
8374 case DW_FORM_ref4:
8375 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8376 (long) (DW_ADDR (&die->attrs[i])));
8377 break;
8378 case DW_FORM_data1:
8379 case DW_FORM_data2:
8380 case DW_FORM_data4:
8381 case DW_FORM_data8:
8382 case DW_FORM_udata:
8383 case DW_FORM_sdata:
8384 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8385 break;
8386 case DW_FORM_string:
8387 case DW_FORM_strp:
8388 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8389 DW_STRING (&die->attrs[i])
8390 ? DW_STRING (&die->attrs[i]) : "");
8391 break;
8392 case DW_FORM_flag:
8393 if (DW_UNSND (&die->attrs[i]))
8394 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8395 else
8396 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8397 break;
8398 case DW_FORM_indirect:
8399 /* the reader will have reduced the indirect form to
8400 the "base form" so this form should not occur */
8401 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8402 break;
8403 default:
8404 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8405 die->attrs[i].form);
8406 }
8407 fprintf_unfiltered (gdb_stderr, "\n");
8408 }
8409 }
8410
8411 static void
8412 dump_die_list (struct die_info *die)
8413 {
8414 while (die)
8415 {
8416 dump_die (die);
8417 if (die->child != NULL)
8418 dump_die_list (die->child);
8419 if (die->sibling != NULL)
8420 dump_die_list (die->sibling);
8421 }
8422 }
8423
8424 static void
8425 store_in_ref_table (unsigned int offset, struct die_info *die,
8426 struct dwarf2_cu *cu)
8427 {
8428 int h;
8429 struct die_info *old;
8430
8431 h = (offset % REF_HASH_SIZE);
8432 old = cu->die_ref_table[h];
8433 die->next_ref = old;
8434 cu->die_ref_table[h] = die;
8435 }
8436
8437 static unsigned int
8438 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8439 {
8440 unsigned int result = 0;
8441
8442 switch (attr->form)
8443 {
8444 case DW_FORM_ref_addr:
8445 case DW_FORM_ref1:
8446 case DW_FORM_ref2:
8447 case DW_FORM_ref4:
8448 case DW_FORM_ref8:
8449 case DW_FORM_ref_udata:
8450 result = DW_ADDR (attr);
8451 break;
8452 default:
8453 complaint (&symfile_complaints,
8454 _("unsupported die ref attribute form: '%s'"),
8455 dwarf_form_name (attr->form));
8456 }
8457 return result;
8458 }
8459
8460 /* Return the constant value held by the given attribute. Return -1
8461 if the value held by the attribute is not constant. */
8462
8463 static int
8464 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8465 {
8466 if (attr->form == DW_FORM_sdata)
8467 return DW_SND (attr);
8468 else if (attr->form == DW_FORM_udata
8469 || attr->form == DW_FORM_data1
8470 || attr->form == DW_FORM_data2
8471 || attr->form == DW_FORM_data4
8472 || attr->form == DW_FORM_data8)
8473 return DW_UNSND (attr);
8474 else
8475 {
8476 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8477 dwarf_form_name (attr->form));
8478 return default_value;
8479 }
8480 }
8481
8482 static struct die_info *
8483 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8484 struct dwarf2_cu *cu)
8485 {
8486 struct die_info *die;
8487 unsigned int offset;
8488 int h;
8489 struct die_info temp_die;
8490 struct dwarf2_cu *target_cu;
8491
8492 offset = dwarf2_get_ref_die_offset (attr, cu);
8493
8494 if (DW_ADDR (attr) < cu->header.offset
8495 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8496 {
8497 struct dwarf2_per_cu_data *per_cu;
8498 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8499 cu->objfile);
8500 target_cu = per_cu->cu;
8501 }
8502 else
8503 target_cu = cu;
8504
8505 h = (offset % REF_HASH_SIZE);
8506 die = target_cu->die_ref_table[h];
8507 while (die)
8508 {
8509 if (die->offset == offset)
8510 return die;
8511 die = die->next_ref;
8512 }
8513
8514 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8515 "at 0x%lx [in module %s]"),
8516 (long) src_die->offset, (long) offset, cu->objfile->name);
8517
8518 return NULL;
8519 }
8520
8521 static struct type *
8522 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8523 struct dwarf2_cu *cu)
8524 {
8525 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8526 {
8527 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
8528 typeid, objfile->name);
8529 }
8530
8531 /* Look for this particular type in the fundamental type vector. If
8532 one is not found, create and install one appropriate for the
8533 current language and the current target machine. */
8534
8535 if (cu->ftypes[typeid] == NULL)
8536 {
8537 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8538 }
8539
8540 return (cu->ftypes[typeid]);
8541 }
8542
8543 /* Decode simple location descriptions.
8544 Given a pointer to a dwarf block that defines a location, compute
8545 the location and return the value.
8546
8547 NOTE drow/2003-11-18: This function is called in two situations
8548 now: for the address of static or global variables (partial symbols
8549 only) and for offsets into structures which are expected to be
8550 (more or less) constant. The partial symbol case should go away,
8551 and only the constant case should remain. That will let this
8552 function complain more accurately. A few special modes are allowed
8553 without complaint for global variables (for instance, global
8554 register values and thread-local values).
8555
8556 A location description containing no operations indicates that the
8557 object is optimized out. The return value is 0 for that case.
8558 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8559 callers will only want a very basic result and this can become a
8560 complaint.
8561
8562 When the result is a register number, the global isreg flag is set,
8563 otherwise it is cleared.
8564
8565 Note that stack[0] is unused except as a default error return.
8566 Note that stack overflow is not yet handled. */
8567
8568 static CORE_ADDR
8569 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8570 {
8571 struct objfile *objfile = cu->objfile;
8572 struct comp_unit_head *cu_header = &cu->header;
8573 int i;
8574 int size = blk->size;
8575 char *data = blk->data;
8576 CORE_ADDR stack[64];
8577 int stacki;
8578 unsigned int bytes_read, unsnd;
8579 unsigned char op;
8580
8581 i = 0;
8582 stacki = 0;
8583 stack[stacki] = 0;
8584 isreg = 0;
8585
8586 while (i < size)
8587 {
8588 op = data[i++];
8589 switch (op)
8590 {
8591 case DW_OP_lit0:
8592 case DW_OP_lit1:
8593 case DW_OP_lit2:
8594 case DW_OP_lit3:
8595 case DW_OP_lit4:
8596 case DW_OP_lit5:
8597 case DW_OP_lit6:
8598 case DW_OP_lit7:
8599 case DW_OP_lit8:
8600 case DW_OP_lit9:
8601 case DW_OP_lit10:
8602 case DW_OP_lit11:
8603 case DW_OP_lit12:
8604 case DW_OP_lit13:
8605 case DW_OP_lit14:
8606 case DW_OP_lit15:
8607 case DW_OP_lit16:
8608 case DW_OP_lit17:
8609 case DW_OP_lit18:
8610 case DW_OP_lit19:
8611 case DW_OP_lit20:
8612 case DW_OP_lit21:
8613 case DW_OP_lit22:
8614 case DW_OP_lit23:
8615 case DW_OP_lit24:
8616 case DW_OP_lit25:
8617 case DW_OP_lit26:
8618 case DW_OP_lit27:
8619 case DW_OP_lit28:
8620 case DW_OP_lit29:
8621 case DW_OP_lit30:
8622 case DW_OP_lit31:
8623 stack[++stacki] = op - DW_OP_lit0;
8624 break;
8625
8626 case DW_OP_reg0:
8627 case DW_OP_reg1:
8628 case DW_OP_reg2:
8629 case DW_OP_reg3:
8630 case DW_OP_reg4:
8631 case DW_OP_reg5:
8632 case DW_OP_reg6:
8633 case DW_OP_reg7:
8634 case DW_OP_reg8:
8635 case DW_OP_reg9:
8636 case DW_OP_reg10:
8637 case DW_OP_reg11:
8638 case DW_OP_reg12:
8639 case DW_OP_reg13:
8640 case DW_OP_reg14:
8641 case DW_OP_reg15:
8642 case DW_OP_reg16:
8643 case DW_OP_reg17:
8644 case DW_OP_reg18:
8645 case DW_OP_reg19:
8646 case DW_OP_reg20:
8647 case DW_OP_reg21:
8648 case DW_OP_reg22:
8649 case DW_OP_reg23:
8650 case DW_OP_reg24:
8651 case DW_OP_reg25:
8652 case DW_OP_reg26:
8653 case DW_OP_reg27:
8654 case DW_OP_reg28:
8655 case DW_OP_reg29:
8656 case DW_OP_reg30:
8657 case DW_OP_reg31:
8658 isreg = 1;
8659 stack[++stacki] = op - DW_OP_reg0;
8660 if (i < size)
8661 dwarf2_complex_location_expr_complaint ();
8662 break;
8663
8664 case DW_OP_regx:
8665 isreg = 1;
8666 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8667 i += bytes_read;
8668 stack[++stacki] = unsnd;
8669 if (i < size)
8670 dwarf2_complex_location_expr_complaint ();
8671 break;
8672
8673 case DW_OP_addr:
8674 stack[++stacki] = read_address (objfile->obfd, &data[i],
8675 cu, &bytes_read);
8676 i += bytes_read;
8677 break;
8678
8679 case DW_OP_const1u:
8680 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8681 i += 1;
8682 break;
8683
8684 case DW_OP_const1s:
8685 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8686 i += 1;
8687 break;
8688
8689 case DW_OP_const2u:
8690 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8691 i += 2;
8692 break;
8693
8694 case DW_OP_const2s:
8695 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8696 i += 2;
8697 break;
8698
8699 case DW_OP_const4u:
8700 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8701 i += 4;
8702 break;
8703
8704 case DW_OP_const4s:
8705 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8706 i += 4;
8707 break;
8708
8709 case DW_OP_constu:
8710 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8711 &bytes_read);
8712 i += bytes_read;
8713 break;
8714
8715 case DW_OP_consts:
8716 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8717 i += bytes_read;
8718 break;
8719
8720 case DW_OP_dup:
8721 stack[stacki + 1] = stack[stacki];
8722 stacki++;
8723 break;
8724
8725 case DW_OP_plus:
8726 stack[stacki - 1] += stack[stacki];
8727 stacki--;
8728 break;
8729
8730 case DW_OP_plus_uconst:
8731 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8732 i += bytes_read;
8733 break;
8734
8735 case DW_OP_minus:
8736 stack[stacki - 1] -= stack[stacki];
8737 stacki--;
8738 break;
8739
8740 case DW_OP_deref:
8741 /* If we're not the last op, then we definitely can't encode
8742 this using GDB's address_class enum. This is valid for partial
8743 global symbols, although the variable's address will be bogus
8744 in the psymtab. */
8745 if (i < size)
8746 dwarf2_complex_location_expr_complaint ();
8747 break;
8748
8749 case DW_OP_GNU_push_tls_address:
8750 /* The top of the stack has the offset from the beginning
8751 of the thread control block at which the variable is located. */
8752 /* Nothing should follow this operator, so the top of stack would
8753 be returned. */
8754 /* This is valid for partial global symbols, but the variable's
8755 address will be bogus in the psymtab. */
8756 if (i < size)
8757 dwarf2_complex_location_expr_complaint ();
8758 break;
8759
8760 default:
8761 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
8762 dwarf_stack_op_name (op));
8763 return (stack[stacki]);
8764 }
8765 }
8766 return (stack[stacki]);
8767 }
8768
8769 /* memory allocation interface */
8770
8771 static struct dwarf_block *
8772 dwarf_alloc_block (struct dwarf2_cu *cu)
8773 {
8774 struct dwarf_block *blk;
8775
8776 blk = (struct dwarf_block *)
8777 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8778 return (blk);
8779 }
8780
8781 static struct abbrev_info *
8782 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8783 {
8784 struct abbrev_info *abbrev;
8785
8786 abbrev = (struct abbrev_info *)
8787 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8788 memset (abbrev, 0, sizeof (struct abbrev_info));
8789 return (abbrev);
8790 }
8791
8792 static struct die_info *
8793 dwarf_alloc_die (void)
8794 {
8795 struct die_info *die;
8796
8797 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8798 memset (die, 0, sizeof (struct die_info));
8799 return (die);
8800 }
8801
8802 \f
8803 /* Macro support. */
8804
8805
8806 /* Return the full name of file number I in *LH's file name table.
8807 Use COMP_DIR as the name of the current directory of the
8808 compilation. The result is allocated using xmalloc; the caller is
8809 responsible for freeing it. */
8810 static char *
8811 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8812 {
8813 struct file_entry *fe = &lh->file_names[file - 1];
8814
8815 if (IS_ABSOLUTE_PATH (fe->name))
8816 return xstrdup (fe->name);
8817 else
8818 {
8819 const char *dir;
8820 int dir_len;
8821 char *full_name;
8822
8823 if (fe->dir_index)
8824 dir = lh->include_dirs[fe->dir_index - 1];
8825 else
8826 dir = comp_dir;
8827
8828 if (dir)
8829 {
8830 dir_len = strlen (dir);
8831 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8832 strcpy (full_name, dir);
8833 full_name[dir_len] = '/';
8834 strcpy (full_name + dir_len + 1, fe->name);
8835 return full_name;
8836 }
8837 else
8838 return xstrdup (fe->name);
8839 }
8840 }
8841
8842
8843 static struct macro_source_file *
8844 macro_start_file (int file, int line,
8845 struct macro_source_file *current_file,
8846 const char *comp_dir,
8847 struct line_header *lh, struct objfile *objfile)
8848 {
8849 /* The full name of this source file. */
8850 char *full_name = file_full_name (file, lh, comp_dir);
8851
8852 /* We don't create a macro table for this compilation unit
8853 at all until we actually get a filename. */
8854 if (! pending_macros)
8855 pending_macros = new_macro_table (&objfile->objfile_obstack,
8856 objfile->macro_cache);
8857
8858 if (! current_file)
8859 /* If we have no current file, then this must be the start_file
8860 directive for the compilation unit's main source file. */
8861 current_file = macro_set_main (pending_macros, full_name);
8862 else
8863 current_file = macro_include (current_file, line, full_name);
8864
8865 xfree (full_name);
8866
8867 return current_file;
8868 }
8869
8870
8871 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8872 followed by a null byte. */
8873 static char *
8874 copy_string (const char *buf, int len)
8875 {
8876 char *s = xmalloc (len + 1);
8877 memcpy (s, buf, len);
8878 s[len] = '\0';
8879
8880 return s;
8881 }
8882
8883
8884 static const char *
8885 consume_improper_spaces (const char *p, const char *body)
8886 {
8887 if (*p == ' ')
8888 {
8889 complaint (&symfile_complaints,
8890 _("macro definition contains spaces in formal argument list:\n`%s'"),
8891 body);
8892
8893 while (*p == ' ')
8894 p++;
8895 }
8896
8897 return p;
8898 }
8899
8900
8901 static void
8902 parse_macro_definition (struct macro_source_file *file, int line,
8903 const char *body)
8904 {
8905 const char *p;
8906
8907 /* The body string takes one of two forms. For object-like macro
8908 definitions, it should be:
8909
8910 <macro name> " " <definition>
8911
8912 For function-like macro definitions, it should be:
8913
8914 <macro name> "() " <definition>
8915 or
8916 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8917
8918 Spaces may appear only where explicitly indicated, and in the
8919 <definition>.
8920
8921 The Dwarf 2 spec says that an object-like macro's name is always
8922 followed by a space, but versions of GCC around March 2002 omit
8923 the space when the macro's definition is the empty string.
8924
8925 The Dwarf 2 spec says that there should be no spaces between the
8926 formal arguments in a function-like macro's formal argument list,
8927 but versions of GCC around March 2002 include spaces after the
8928 commas. */
8929
8930
8931 /* Find the extent of the macro name. The macro name is terminated
8932 by either a space or null character (for an object-like macro) or
8933 an opening paren (for a function-like macro). */
8934 for (p = body; *p; p++)
8935 if (*p == ' ' || *p == '(')
8936 break;
8937
8938 if (*p == ' ' || *p == '\0')
8939 {
8940 /* It's an object-like macro. */
8941 int name_len = p - body;
8942 char *name = copy_string (body, name_len);
8943 const char *replacement;
8944
8945 if (*p == ' ')
8946 replacement = body + name_len + 1;
8947 else
8948 {
8949 dwarf2_macro_malformed_definition_complaint (body);
8950 replacement = body + name_len;
8951 }
8952
8953 macro_define_object (file, line, name, replacement);
8954
8955 xfree (name);
8956 }
8957 else if (*p == '(')
8958 {
8959 /* It's a function-like macro. */
8960 char *name = copy_string (body, p - body);
8961 int argc = 0;
8962 int argv_size = 1;
8963 char **argv = xmalloc (argv_size * sizeof (*argv));
8964
8965 p++;
8966
8967 p = consume_improper_spaces (p, body);
8968
8969 /* Parse the formal argument list. */
8970 while (*p && *p != ')')
8971 {
8972 /* Find the extent of the current argument name. */
8973 const char *arg_start = p;
8974
8975 while (*p && *p != ',' && *p != ')' && *p != ' ')
8976 p++;
8977
8978 if (! *p || p == arg_start)
8979 dwarf2_macro_malformed_definition_complaint (body);
8980 else
8981 {
8982 /* Make sure argv has room for the new argument. */
8983 if (argc >= argv_size)
8984 {
8985 argv_size *= 2;
8986 argv = xrealloc (argv, argv_size * sizeof (*argv));
8987 }
8988
8989 argv[argc++] = copy_string (arg_start, p - arg_start);
8990 }
8991
8992 p = consume_improper_spaces (p, body);
8993
8994 /* Consume the comma, if present. */
8995 if (*p == ',')
8996 {
8997 p++;
8998
8999 p = consume_improper_spaces (p, body);
9000 }
9001 }
9002
9003 if (*p == ')')
9004 {
9005 p++;
9006
9007 if (*p == ' ')
9008 /* Perfectly formed definition, no complaints. */
9009 macro_define_function (file, line, name,
9010 argc, (const char **) argv,
9011 p + 1);
9012 else if (*p == '\0')
9013 {
9014 /* Complain, but do define it. */
9015 dwarf2_macro_malformed_definition_complaint (body);
9016 macro_define_function (file, line, name,
9017 argc, (const char **) argv,
9018 p);
9019 }
9020 else
9021 /* Just complain. */
9022 dwarf2_macro_malformed_definition_complaint (body);
9023 }
9024 else
9025 /* Just complain. */
9026 dwarf2_macro_malformed_definition_complaint (body);
9027
9028 xfree (name);
9029 {
9030 int i;
9031
9032 for (i = 0; i < argc; i++)
9033 xfree (argv[i]);
9034 }
9035 xfree (argv);
9036 }
9037 else
9038 dwarf2_macro_malformed_definition_complaint (body);
9039 }
9040
9041
9042 static void
9043 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9044 char *comp_dir, bfd *abfd,
9045 struct dwarf2_cu *cu)
9046 {
9047 char *mac_ptr, *mac_end;
9048 struct macro_source_file *current_file = 0;
9049
9050 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9051 {
9052 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9053 return;
9054 }
9055
9056 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9057 mac_end = dwarf2_per_objfile->macinfo_buffer
9058 + dwarf2_per_objfile->macinfo_size;
9059
9060 for (;;)
9061 {
9062 enum dwarf_macinfo_record_type macinfo_type;
9063
9064 /* Do we at least have room for a macinfo type byte? */
9065 if (mac_ptr >= mac_end)
9066 {
9067 dwarf2_macros_too_long_complaint ();
9068 return;
9069 }
9070
9071 macinfo_type = read_1_byte (abfd, mac_ptr);
9072 mac_ptr++;
9073
9074 switch (macinfo_type)
9075 {
9076 /* A zero macinfo type indicates the end of the macro
9077 information. */
9078 case 0:
9079 return;
9080
9081 case DW_MACINFO_define:
9082 case DW_MACINFO_undef:
9083 {
9084 int bytes_read;
9085 int line;
9086 char *body;
9087
9088 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9089 mac_ptr += bytes_read;
9090 body = read_string (abfd, mac_ptr, &bytes_read);
9091 mac_ptr += bytes_read;
9092
9093 if (! current_file)
9094 complaint (&symfile_complaints,
9095 _("debug info gives macro %s outside of any file: %s"),
9096 macinfo_type ==
9097 DW_MACINFO_define ? "definition" : macinfo_type ==
9098 DW_MACINFO_undef ? "undefinition" :
9099 "something-or-other", body);
9100 else
9101 {
9102 if (macinfo_type == DW_MACINFO_define)
9103 parse_macro_definition (current_file, line, body);
9104 else if (macinfo_type == DW_MACINFO_undef)
9105 macro_undef (current_file, line, body);
9106 }
9107 }
9108 break;
9109
9110 case DW_MACINFO_start_file:
9111 {
9112 int bytes_read;
9113 int line, file;
9114
9115 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9116 mac_ptr += bytes_read;
9117 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9118 mac_ptr += bytes_read;
9119
9120 current_file = macro_start_file (file, line,
9121 current_file, comp_dir,
9122 lh, cu->objfile);
9123 }
9124 break;
9125
9126 case DW_MACINFO_end_file:
9127 if (! current_file)
9128 complaint (&symfile_complaints,
9129 _("macro debug info has an unmatched `close_file' directive"));
9130 else
9131 {
9132 current_file = current_file->included_by;
9133 if (! current_file)
9134 {
9135 enum dwarf_macinfo_record_type next_type;
9136
9137 /* GCC circa March 2002 doesn't produce the zero
9138 type byte marking the end of the compilation
9139 unit. Complain if it's not there, but exit no
9140 matter what. */
9141
9142 /* Do we at least have room for a macinfo type byte? */
9143 if (mac_ptr >= mac_end)
9144 {
9145 dwarf2_macros_too_long_complaint ();
9146 return;
9147 }
9148
9149 /* We don't increment mac_ptr here, so this is just
9150 a look-ahead. */
9151 next_type = read_1_byte (abfd, mac_ptr);
9152 if (next_type != 0)
9153 complaint (&symfile_complaints,
9154 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9155
9156 return;
9157 }
9158 }
9159 break;
9160
9161 case DW_MACINFO_vendor_ext:
9162 {
9163 int bytes_read;
9164 int constant;
9165 char *string;
9166
9167 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9168 mac_ptr += bytes_read;
9169 string = read_string (abfd, mac_ptr, &bytes_read);
9170 mac_ptr += bytes_read;
9171
9172 /* We don't recognize any vendor extensions. */
9173 }
9174 break;
9175 }
9176 }
9177 }
9178
9179 /* Check if the attribute's form is a DW_FORM_block*
9180 if so return true else false. */
9181 static int
9182 attr_form_is_block (struct attribute *attr)
9183 {
9184 return (attr == NULL ? 0 :
9185 attr->form == DW_FORM_block1
9186 || attr->form == DW_FORM_block2
9187 || attr->form == DW_FORM_block4
9188 || attr->form == DW_FORM_block);
9189 }
9190
9191 static void
9192 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9193 struct dwarf2_cu *cu)
9194 {
9195 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9196 {
9197 struct dwarf2_loclist_baton *baton;
9198
9199 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9200 sizeof (struct dwarf2_loclist_baton));
9201 baton->objfile = cu->objfile;
9202
9203 /* We don't know how long the location list is, but make sure we
9204 don't run off the edge of the section. */
9205 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9206 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9207 baton->base_address = cu->header.base_address;
9208 if (cu->header.base_known == 0)
9209 complaint (&symfile_complaints,
9210 _("Location list used without specifying the CU base address."));
9211
9212 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9213 SYMBOL_LOCATION_BATON (sym) = baton;
9214 }
9215 else
9216 {
9217 struct dwarf2_locexpr_baton *baton;
9218
9219 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9220 sizeof (struct dwarf2_locexpr_baton));
9221 baton->objfile = cu->objfile;
9222
9223 if (attr_form_is_block (attr))
9224 {
9225 /* Note that we're just copying the block's data pointer
9226 here, not the actual data. We're still pointing into the
9227 info_buffer for SYM's objfile; right now we never release
9228 that buffer, but when we do clean up properly this may
9229 need to change. */
9230 baton->size = DW_BLOCK (attr)->size;
9231 baton->data = DW_BLOCK (attr)->data;
9232 }
9233 else
9234 {
9235 dwarf2_invalid_attrib_class_complaint ("location description",
9236 SYMBOL_NATURAL_NAME (sym));
9237 baton->size = 0;
9238 baton->data = NULL;
9239 }
9240
9241 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9242 SYMBOL_LOCATION_BATON (sym) = baton;
9243 }
9244 }
9245
9246 /* Locate the compilation unit from CU's objfile which contains the
9247 DIE at OFFSET. Raises an error on failure. */
9248
9249 static struct dwarf2_per_cu_data *
9250 dwarf2_find_containing_comp_unit (unsigned long offset,
9251 struct objfile *objfile)
9252 {
9253 struct dwarf2_per_cu_data *this_cu;
9254 int low, high;
9255
9256 low = 0;
9257 high = dwarf2_per_objfile->n_comp_units - 1;
9258 while (high > low)
9259 {
9260 int mid = low + (high - low) / 2;
9261 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9262 high = mid;
9263 else
9264 low = mid + 1;
9265 }
9266 gdb_assert (low == high);
9267 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9268 {
9269 if (low == 0)
9270 error (_("Dwarf Error: could not find partial DIE containing "
9271 "offset 0x%lx [in module %s]"),
9272 (long) offset, bfd_get_filename (objfile->obfd));
9273
9274 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9275 return dwarf2_per_objfile->all_comp_units[low-1];
9276 }
9277 else
9278 {
9279 this_cu = dwarf2_per_objfile->all_comp_units[low];
9280 if (low == dwarf2_per_objfile->n_comp_units - 1
9281 && offset >= this_cu->offset + this_cu->length)
9282 error (_("invalid dwarf2 offset %ld"), offset);
9283 gdb_assert (offset < this_cu->offset + this_cu->length);
9284 return this_cu;
9285 }
9286 }
9287
9288 /* Locate the compilation unit from OBJFILE which is located at exactly
9289 OFFSET. Raises an error on failure. */
9290
9291 static struct dwarf2_per_cu_data *
9292 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9293 {
9294 struct dwarf2_per_cu_data *this_cu;
9295 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9296 if (this_cu->offset != offset)
9297 error (_("no compilation unit with offset %ld."), offset);
9298 return this_cu;
9299 }
9300
9301 /* Release one cached compilation unit, CU. We unlink it from the tree
9302 of compilation units, but we don't remove it from the read_in_chain;
9303 the caller is responsible for that. */
9304
9305 static void
9306 free_one_comp_unit (void *data)
9307 {
9308 struct dwarf2_cu *cu = data;
9309
9310 if (cu->per_cu != NULL)
9311 cu->per_cu->cu = NULL;
9312 cu->per_cu = NULL;
9313
9314 obstack_free (&cu->comp_unit_obstack, NULL);
9315 if (cu->dies)
9316 free_die_list (cu->dies);
9317
9318 xfree (cu);
9319 }
9320
9321 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9322 when we're finished with it. We can't free the pointer itself, but be
9323 sure to unlink it from the cache. Also release any associated storage
9324 and perform cache maintenance.
9325
9326 Only used during partial symbol parsing. */
9327
9328 static void
9329 free_stack_comp_unit (void *data)
9330 {
9331 struct dwarf2_cu *cu = data;
9332
9333 obstack_free (&cu->comp_unit_obstack, NULL);
9334 cu->partial_dies = NULL;
9335
9336 if (cu->per_cu != NULL)
9337 {
9338 /* This compilation unit is on the stack in our caller, so we
9339 should not xfree it. Just unlink it. */
9340 cu->per_cu->cu = NULL;
9341 cu->per_cu = NULL;
9342
9343 /* If we had a per-cu pointer, then we may have other compilation
9344 units loaded, so age them now. */
9345 age_cached_comp_units ();
9346 }
9347 }
9348
9349 /* Free all cached compilation units. */
9350
9351 static void
9352 free_cached_comp_units (void *data)
9353 {
9354 struct dwarf2_per_cu_data *per_cu, **last_chain;
9355
9356 per_cu = dwarf2_per_objfile->read_in_chain;
9357 last_chain = &dwarf2_per_objfile->read_in_chain;
9358 while (per_cu != NULL)
9359 {
9360 struct dwarf2_per_cu_data *next_cu;
9361
9362 next_cu = per_cu->cu->read_in_chain;
9363
9364 free_one_comp_unit (per_cu->cu);
9365 *last_chain = next_cu;
9366
9367 per_cu = next_cu;
9368 }
9369 }
9370
9371 /* Increase the age counter on each cached compilation unit, and free
9372 any that are too old. */
9373
9374 static void
9375 age_cached_comp_units (void)
9376 {
9377 struct dwarf2_per_cu_data *per_cu, **last_chain;
9378
9379 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9380 per_cu = dwarf2_per_objfile->read_in_chain;
9381 while (per_cu != NULL)
9382 {
9383 per_cu->cu->last_used ++;
9384 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9385 dwarf2_mark (per_cu->cu);
9386 per_cu = per_cu->cu->read_in_chain;
9387 }
9388
9389 per_cu = dwarf2_per_objfile->read_in_chain;
9390 last_chain = &dwarf2_per_objfile->read_in_chain;
9391 while (per_cu != NULL)
9392 {
9393 struct dwarf2_per_cu_data *next_cu;
9394
9395 next_cu = per_cu->cu->read_in_chain;
9396
9397 if (!per_cu->cu->mark)
9398 {
9399 free_one_comp_unit (per_cu->cu);
9400 *last_chain = next_cu;
9401 }
9402 else
9403 last_chain = &per_cu->cu->read_in_chain;
9404
9405 per_cu = next_cu;
9406 }
9407 }
9408
9409 /* Remove a single compilation unit from the cache. */
9410
9411 static void
9412 free_one_cached_comp_unit (void *target_cu)
9413 {
9414 struct dwarf2_per_cu_data *per_cu, **last_chain;
9415
9416 per_cu = dwarf2_per_objfile->read_in_chain;
9417 last_chain = &dwarf2_per_objfile->read_in_chain;
9418 while (per_cu != NULL)
9419 {
9420 struct dwarf2_per_cu_data *next_cu;
9421
9422 next_cu = per_cu->cu->read_in_chain;
9423
9424 if (per_cu->cu == target_cu)
9425 {
9426 free_one_comp_unit (per_cu->cu);
9427 *last_chain = next_cu;
9428 break;
9429 }
9430 else
9431 last_chain = &per_cu->cu->read_in_chain;
9432
9433 per_cu = next_cu;
9434 }
9435 }
9436
9437 /* A pair of DIE offset and GDB type pointer. We store these
9438 in a hash table separate from the DIEs, and preserve them
9439 when the DIEs are flushed out of cache. */
9440
9441 struct dwarf2_offset_and_type
9442 {
9443 unsigned int offset;
9444 struct type *type;
9445 };
9446
9447 /* Hash function for a dwarf2_offset_and_type. */
9448
9449 static hashval_t
9450 offset_and_type_hash (const void *item)
9451 {
9452 const struct dwarf2_offset_and_type *ofs = item;
9453 return ofs->offset;
9454 }
9455
9456 /* Equality function for a dwarf2_offset_and_type. */
9457
9458 static int
9459 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9460 {
9461 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9462 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9463 return ofs_lhs->offset == ofs_rhs->offset;
9464 }
9465
9466 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9467 table if necessary. */
9468
9469 static void
9470 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9471 {
9472 struct dwarf2_offset_and_type **slot, ofs;
9473
9474 die->type = type;
9475
9476 if (cu->per_cu == NULL)
9477 return;
9478
9479 if (cu->per_cu->type_hash == NULL)
9480 cu->per_cu->type_hash
9481 = htab_create_alloc_ex (cu->header.length / 24,
9482 offset_and_type_hash,
9483 offset_and_type_eq,
9484 NULL,
9485 &cu->objfile->objfile_obstack,
9486 hashtab_obstack_allocate,
9487 dummy_obstack_deallocate);
9488
9489 ofs.offset = die->offset;
9490 ofs.type = type;
9491 slot = (struct dwarf2_offset_and_type **)
9492 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9493 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9494 **slot = ofs;
9495 }
9496
9497 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9498 have a saved type. */
9499
9500 static struct type *
9501 get_die_type (struct die_info *die, htab_t type_hash)
9502 {
9503 struct dwarf2_offset_and_type *slot, ofs;
9504
9505 ofs.offset = die->offset;
9506 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9507 if (slot)
9508 return slot->type;
9509 else
9510 return NULL;
9511 }
9512
9513 /* Restore the types of the DIE tree starting at START_DIE from the hash
9514 table saved in CU. */
9515
9516 static void
9517 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9518 {
9519 struct die_info *die;
9520
9521 if (cu->per_cu->type_hash == NULL)
9522 return;
9523
9524 for (die = start_die; die != NULL; die = die->sibling)
9525 {
9526 die->type = get_die_type (die, cu->per_cu->type_hash);
9527 if (die->child != NULL)
9528 reset_die_and_siblings_types (die->child, cu);
9529 }
9530 }
9531
9532 /* Set the mark field in CU and in every other compilation unit in the
9533 cache that we must keep because we are keeping CU. */
9534
9535 /* Add a dependence relationship from CU to REF_PER_CU. */
9536
9537 static void
9538 dwarf2_add_dependence (struct dwarf2_cu *cu,
9539 struct dwarf2_per_cu_data *ref_per_cu)
9540 {
9541 void **slot;
9542
9543 if (cu->dependencies == NULL)
9544 cu->dependencies
9545 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9546 NULL, &cu->comp_unit_obstack,
9547 hashtab_obstack_allocate,
9548 dummy_obstack_deallocate);
9549
9550 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9551 if (*slot == NULL)
9552 *slot = ref_per_cu;
9553 }
9554
9555 /* Set the mark field in CU and in every other compilation unit in the
9556 cache that we must keep because we are keeping CU. */
9557
9558 static int
9559 dwarf2_mark_helper (void **slot, void *data)
9560 {
9561 struct dwarf2_per_cu_data *per_cu;
9562
9563 per_cu = (struct dwarf2_per_cu_data *) *slot;
9564 if (per_cu->cu->mark)
9565 return 1;
9566 per_cu->cu->mark = 1;
9567
9568 if (per_cu->cu->dependencies != NULL)
9569 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9570
9571 return 1;
9572 }
9573
9574 static void
9575 dwarf2_mark (struct dwarf2_cu *cu)
9576 {
9577 if (cu->mark)
9578 return;
9579 cu->mark = 1;
9580 if (cu->dependencies != NULL)
9581 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9582 }
9583
9584 static void
9585 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9586 {
9587 while (per_cu)
9588 {
9589 per_cu->cu->mark = 0;
9590 per_cu = per_cu->cu->read_in_chain;
9591 }
9592 }
9593
9594 /* Allocation function for the libiberty hash table which uses an
9595 obstack. */
9596
9597 static void *
9598 hashtab_obstack_allocate (void *data, size_t size, size_t count)
9599 {
9600 unsigned int total = size * count;
9601 void *ptr = obstack_alloc ((struct obstack *) data, total);
9602 memset (ptr, 0, total);
9603 return ptr;
9604 }
9605
9606 /* Trivial deallocation function for the libiberty splay tree and hash
9607 table - don't deallocate anything. Rely on later deletion of the
9608 obstack. */
9609
9610 static void
9611 dummy_obstack_deallocate (void *object, void *data)
9612 {
9613 return;
9614 }
9615
9616 /* Trivial hash function for partial_die_info: the hash value of a DIE
9617 is its offset in .debug_info for this objfile. */
9618
9619 static hashval_t
9620 partial_die_hash (const void *item)
9621 {
9622 const struct partial_die_info *part_die = item;
9623 return part_die->offset;
9624 }
9625
9626 /* Trivial comparison function for partial_die_info structures: two DIEs
9627 are equal if they have the same offset. */
9628
9629 static int
9630 partial_die_eq (const void *item_lhs, const void *item_rhs)
9631 {
9632 const struct partial_die_info *part_die_lhs = item_lhs;
9633 const struct partial_die_info *part_die_rhs = item_rhs;
9634 return part_die_lhs->offset == part_die_rhs->offset;
9635 }
9636
9637 static struct cmd_list_element *set_dwarf2_cmdlist;
9638 static struct cmd_list_element *show_dwarf2_cmdlist;
9639
9640 static void
9641 set_dwarf2_cmd (char *args, int from_tty)
9642 {
9643 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9644 }
9645
9646 static void
9647 show_dwarf2_cmd (char *args, int from_tty)
9648 {
9649 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9650 }
9651
9652 void _initialize_dwarf2_read (void);
9653
9654 void
9655 _initialize_dwarf2_read (void)
9656 {
9657 dwarf2_objfile_data_key = register_objfile_data ();
9658
9659 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
9660 Set DWARF 2 specific variables.\n\
9661 Configure DWARF 2 variables such as the cache size"),
9662 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9663 0/*allow-unknown*/, &maintenance_set_cmdlist);
9664
9665 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
9666 Show DWARF 2 specific variables\n\
9667 Show DWARF 2 variables such as the cache size"),
9668 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9669 0/*allow-unknown*/, &maintenance_show_cmdlist);
9670
9671 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9672 &dwarf2_max_cache_age, _("\
9673 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
9674 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
9675 A higher limit means that cached compilation units will be stored\n\
9676 in memory longer, and more total memory will be used. Zero disables\n\
9677 caching, which can slow down startup."),
9678 NULL,
9679 show_dwarf2_max_cache_age,
9680 &set_dwarf2_cmdlist,
9681 &show_dwarf2_cmdlist);
9682 }
This page took 0.230264 seconds and 4 git commands to generate.