Remove some checks of .empty()
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "gdbsupport/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
708
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
714
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
717
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
721
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
726
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
731 htab_t cus {};
732
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
735 htab_t tus {};
736 };
737
738 /* These sections are what may appear in a DWP file. */
739
740 struct dwp_sections
741 {
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
746
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
763 };
764
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
767
768 struct virtual_v1_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
785
786 struct virtual_v2_dwo_sections
787 {
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
790
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
793
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
796
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
799
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
802
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
805
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
819 union
820 {
821 struct
822 {
823 const gdb_byte *indices;
824 } v1;
825 struct
826 {
827 /* This is indexed by column number and gives the id of the section
828 in that column. */
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
839 } v2;
840 } section_pool;
841 };
842
843 /* Data for one DWP file. */
844
845 struct dwp_file
846 {
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 : name (name_),
849 dbfd (std::move (abfd))
850 {
851 }
852
853 /* Name of the file. */
854 const char *name;
855
856 /* File format version. */
857 int version = 0;
858
859 /* The bfd. */
860 gdb_bfd_ref_ptr dbfd;
861
862 /* Section info for this file. */
863 struct dwp_sections sections {};
864
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
867
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
870
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
874
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
879 };
880
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
885
886 struct die_reader_specs
887 {
888 /* The bfd of die_section. */
889 bfd* abfd;
890
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
893
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
896
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
900
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
903
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
906
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
909
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
912 };
913
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
918 int has_children,
919 void *data);
920
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
923 array/vector. */
924 enum class dir_index : unsigned int {};
925
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
928
929 struct file_entry
930 {
931 file_entry () = default;
932
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
935 : name (name_),
936 d_index (d_index_),
937 mod_time (mod_time_),
938 length (length_)
939 {}
940
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
944
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
947 const char *name {};
948
949 /* The directory index (1-based). */
950 dir_index d_index {};
951
952 unsigned int mod_time {};
953
954 unsigned int length {};
955
956 /* True if referenced by the Line Number Program. */
957 bool included_p {};
958
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
961 };
962
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
966 struct line_header
967 {
968 line_header ()
969 : offset_in_dwz {}
970 {}
971
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
974
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
978
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
980 is out of bounds. */
981 const char *include_dir_at (dir_index index) const
982 {
983 /* Convert directory index number (1-based) to vector index
984 (0-based). */
985 size_t vec_index = to_underlying (index) - 1;
986
987 if (vec_index >= include_dirs.size ())
988 return NULL;
989 return include_dirs[vec_index];
990 }
991
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
993 is out of bounds. */
994 file_entry *file_name_at (file_name_index index)
995 {
996 /* Convert file name index number (1-based) to vector index
997 (0-based). */
998 size_t vec_index = to_underlying (index) - 1;
999
1000 if (vec_index >= file_names.size ())
1001 return NULL;
1002 return &file_names[vec_index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1489 {
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1494
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1496 : cu (cu),
1497 pdi (pdi)
1498 { /* Nothhing. */ }
1499
1500 private:
1501 cu_partial_die_info () = delete;
1502 };
1503
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1506
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1509 const gdb_byte *);
1510
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1512
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1514
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1516
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1519
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1521
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1523
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1525 unsigned int *);
1526
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1532
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1535 unsigned int *);
1536
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1538
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1542
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1544
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1546
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1550
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1558
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1561
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1565 const gdb_byte *,
1566 unsigned int *);
1567
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1570
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1577 unsigned int);
1578
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1581
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1584
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1586
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1589
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1592
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1596
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1598 const char *);
1599
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1602
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1605
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1607 struct type *type,
1608 const char *name,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1613
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1615
1616 static int need_gnat_info (struct dwarf2_cu *);
1617
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1631
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1633
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1635
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1639
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1649
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1651
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1654
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1657 enum pc_bounds_kind
1658 {
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1661
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1664 PC_BOUNDS_INVALID,
1665
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1667 PC_BOUNDS_RANGES,
1668
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1670 PC_BOUNDS_HIGH_LOW,
1671 };
1672
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *,
1676 struct partial_symtab *);
1677
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1694
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1696 struct type *,
1697 struct dwarf2_cu *);
1698
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1700
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1702
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1704
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1708
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1710
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1715
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1718
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1720
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1722
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1725
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1728 struct die_info *);
1729
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1734
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1737 int *, int);
1738
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1741 int *);
1742
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1744
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1746 struct obstack *);
1747
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1756
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1759
1760 static const char *dwarf_tag_name (unsigned int);
1761
1762 static const char *dwarf_attr_name (unsigned int);
1763
1764 static const char *dwarf_form_name (unsigned int);
1765
1766 static const char *dwarf_bool_name (unsigned int);
1767
1768 static const char *dwarf_type_encoding_name (unsigned int);
1769
1770 static struct die_info *sibling_die (struct die_info *);
1771
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1773
1774 static void dump_die_for_error (struct die_info *);
1775
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1777 struct die_info *);
1778
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1780
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1783
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1785
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1787
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1802
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1806
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1808
1809 static void read_signatured_type (struct signatured_type *);
1810
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop, struct type *type);
1814
1815 /* memory allocation interface */
1816
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1818
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1820
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1822
1823 static int attr_form_is_block (const struct attribute *);
1824
1825 static int attr_form_is_section_offset (const struct attribute *);
1826
1827 static int attr_form_is_constant (const struct attribute *);
1828
1829 static int attr_form_is_ref (const struct attribute *);
1830
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1834
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1836 struct symbol *sym,
1837 struct dwarf2_cu *cu,
1838 int is_block);
1839
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1843
1844 static hashval_t partial_die_hash (const void *item);
1845
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1847
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1851
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1855
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1859
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1868 enum language);
1869
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1874 enum language);
1875
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1878
1879 static void dwarf2_mark (struct dwarf2_cu *);
1880
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1885
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1890
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892
1893 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1894 static struct type *dwarf2_per_cu_addr_sized_int_type
1895 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1896
1897 /* Class, the destructor of which frees all allocated queue entries. This
1898 will only have work to do if an error was thrown while processing the
1899 dwarf. If no error was thrown then the queue entries should have all
1900 been processed, and freed, as we went along. */
1901
1902 class dwarf2_queue_guard
1903 {
1904 public:
1905 dwarf2_queue_guard () = default;
1906
1907 /* Free any entries remaining on the queue. There should only be
1908 entries left if we hit an error while processing the dwarf. */
1909 ~dwarf2_queue_guard ()
1910 {
1911 struct dwarf2_queue_item *item, *last;
1912
1913 item = dwarf2_queue;
1914 while (item)
1915 {
1916 /* Anything still marked queued is likely to be in an
1917 inconsistent state, so discard it. */
1918 if (item->per_cu->queued)
1919 {
1920 if (item->per_cu->cu != NULL)
1921 free_one_cached_comp_unit (item->per_cu);
1922 item->per_cu->queued = 0;
1923 }
1924
1925 last = item;
1926 item = item->next;
1927 xfree (last);
1928 }
1929
1930 dwarf2_queue = dwarf2_queue_tail = NULL;
1931 }
1932 };
1933
1934 /* The return type of find_file_and_directory. Note, the enclosed
1935 string pointers are only valid while this object is valid. */
1936
1937 struct file_and_directory
1938 {
1939 /* The filename. This is never NULL. */
1940 const char *name;
1941
1942 /* The compilation directory. NULL if not known. If we needed to
1943 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1944 points directly to the DW_AT_comp_dir string attribute owned by
1945 the obstack that owns the DIE. */
1946 const char *comp_dir;
1947
1948 /* If we needed to build a new string for comp_dir, this is what
1949 owns the storage. */
1950 std::string comp_dir_storage;
1951 };
1952
1953 static file_and_directory find_file_and_directory (struct die_info *die,
1954 struct dwarf2_cu *cu);
1955
1956 static char *file_full_name (int file, struct line_header *lh,
1957 const char *comp_dir);
1958
1959 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1960 enum class rcuh_kind { COMPILE, TYPE };
1961
1962 static const gdb_byte *read_and_check_comp_unit_head
1963 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1964 struct comp_unit_head *header,
1965 struct dwarf2_section_info *section,
1966 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1967 rcuh_kind section_kind);
1968
1969 static void init_cutu_and_read_dies
1970 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1971 int use_existing_cu, int keep, bool skip_partial,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static void init_cutu_and_read_dies_simple
1975 (struct dwarf2_per_cu_data *this_cu,
1976 die_reader_func_ftype *die_reader_func, void *data);
1977
1978 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1979
1980 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1981
1982 static struct dwo_unit *lookup_dwo_unit_in_dwp
1983 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1984 struct dwp_file *dwp_file, const char *comp_dir,
1985 ULONGEST signature, int is_debug_types);
1986
1987 static struct dwp_file *get_dwp_file
1988 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1989
1990 static struct dwo_unit *lookup_dwo_comp_unit
1991 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1992
1993 static struct dwo_unit *lookup_dwo_type_unit
1994 (struct signatured_type *, const char *, const char *);
1995
1996 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1997
1998 /* A unique pointer to a dwo_file. */
1999
2000 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2001
2002 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2003
2004 static void check_producer (struct dwarf2_cu *cu);
2005
2006 static void free_line_header_voidp (void *arg);
2007 \f
2008 /* Various complaints about symbol reading that don't abort the process. */
2009
2010 static void
2011 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2012 {
2013 complaint (_("statement list doesn't fit in .debug_line section"));
2014 }
2015
2016 static void
2017 dwarf2_debug_line_missing_file_complaint (void)
2018 {
2019 complaint (_(".debug_line section has line data without a file"));
2020 }
2021
2022 static void
2023 dwarf2_debug_line_missing_end_sequence_complaint (void)
2024 {
2025 complaint (_(".debug_line section has line "
2026 "program sequence without an end"));
2027 }
2028
2029 static void
2030 dwarf2_complex_location_expr_complaint (void)
2031 {
2032 complaint (_("location expression too complex"));
2033 }
2034
2035 static void
2036 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2037 int arg3)
2038 {
2039 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2040 arg1, arg2, arg3);
2041 }
2042
2043 static void
2044 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2045 {
2046 complaint (_("debug info runs off end of %s section"
2047 " [in module %s]"),
2048 get_section_name (section),
2049 get_section_file_name (section));
2050 }
2051
2052 static void
2053 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2054 {
2055 complaint (_("macro debug info contains a "
2056 "malformed macro definition:\n`%s'"),
2057 arg1);
2058 }
2059
2060 static void
2061 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2062 {
2063 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2064 arg1, arg2);
2065 }
2066
2067 /* Hash function for line_header_hash. */
2068
2069 static hashval_t
2070 line_header_hash (const struct line_header *ofs)
2071 {
2072 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2073 }
2074
2075 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2076
2077 static hashval_t
2078 line_header_hash_voidp (const void *item)
2079 {
2080 const struct line_header *ofs = (const struct line_header *) item;
2081
2082 return line_header_hash (ofs);
2083 }
2084
2085 /* Equality function for line_header_hash. */
2086
2087 static int
2088 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2089 {
2090 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2091 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2092
2093 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2094 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2095 }
2096
2097 \f
2098
2099 /* Read the given attribute value as an address, taking the attribute's
2100 form into account. */
2101
2102 static CORE_ADDR
2103 attr_value_as_address (struct attribute *attr)
2104 {
2105 CORE_ADDR addr;
2106
2107 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2108 && attr->form != DW_FORM_GNU_addr_index)
2109 {
2110 /* Aside from a few clearly defined exceptions, attributes that
2111 contain an address must always be in DW_FORM_addr form.
2112 Unfortunately, some compilers happen to be violating this
2113 requirement by encoding addresses using other forms, such
2114 as DW_FORM_data4 for example. For those broken compilers,
2115 we try to do our best, without any guarantee of success,
2116 to interpret the address correctly. It would also be nice
2117 to generate a complaint, but that would require us to maintain
2118 a list of legitimate cases where a non-address form is allowed,
2119 as well as update callers to pass in at least the CU's DWARF
2120 version. This is more overhead than what we're willing to
2121 expand for a pretty rare case. */
2122 addr = DW_UNSND (attr);
2123 }
2124 else
2125 addr = DW_ADDR (attr);
2126
2127 return addr;
2128 }
2129
2130 /* See declaration. */
2131
2132 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2133 const dwarf2_debug_sections *names)
2134 : objfile (objfile_)
2135 {
2136 if (names == NULL)
2137 names = &dwarf2_elf_names;
2138
2139 bfd *obfd = objfile->obfd;
2140
2141 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2142 locate_sections (obfd, sec, *names);
2143 }
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 /* Everything else should be on the objfile obstack. */
2163 }
2164
2165 /* See declaration. */
2166
2167 void
2168 dwarf2_per_objfile::free_cached_comp_units ()
2169 {
2170 dwarf2_per_cu_data *per_cu = read_in_chain;
2171 dwarf2_per_cu_data **last_chain = &read_in_chain;
2172 while (per_cu != NULL)
2173 {
2174 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2175
2176 delete per_cu->cu;
2177 *last_chain = next_cu;
2178 per_cu = next_cu;
2179 }
2180 }
2181
2182 /* A helper class that calls free_cached_comp_units on
2183 destruction. */
2184
2185 class free_cached_comp_units
2186 {
2187 public:
2188
2189 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2190 : m_per_objfile (per_objfile)
2191 {
2192 }
2193
2194 ~free_cached_comp_units ()
2195 {
2196 m_per_objfile->free_cached_comp_units ();
2197 }
2198
2199 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2200
2201 private:
2202
2203 dwarf2_per_objfile *m_per_objfile;
2204 };
2205
2206 /* Try to locate the sections we need for DWARF 2 debugging
2207 information and return true if we have enough to do something.
2208 NAMES points to the dwarf2 section names, or is NULL if the standard
2209 ELF names are used. */
2210
2211 int
2212 dwarf2_has_info (struct objfile *objfile,
2213 const struct dwarf2_debug_sections *names)
2214 {
2215 if (objfile->flags & OBJF_READNEVER)
2216 return 0;
2217
2218 struct dwarf2_per_objfile *dwarf2_per_objfile
2219 = get_dwarf2_per_objfile (objfile);
2220
2221 if (dwarf2_per_objfile == NULL)
2222 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2223 names);
2224
2225 return (!dwarf2_per_objfile->info.is_virtual
2226 && dwarf2_per_objfile->info.s.section != NULL
2227 && !dwarf2_per_objfile->abbrev.is_virtual
2228 && dwarf2_per_objfile->abbrev.s.section != NULL);
2229 }
2230
2231 /* Return the containing section of virtual section SECTION. */
2232
2233 static struct dwarf2_section_info *
2234 get_containing_section (const struct dwarf2_section_info *section)
2235 {
2236 gdb_assert (section->is_virtual);
2237 return section->s.containing_section;
2238 }
2239
2240 /* Return the bfd owner of SECTION. */
2241
2242 static struct bfd *
2243 get_section_bfd_owner (const struct dwarf2_section_info *section)
2244 {
2245 if (section->is_virtual)
2246 {
2247 section = get_containing_section (section);
2248 gdb_assert (!section->is_virtual);
2249 }
2250 return section->s.section->owner;
2251 }
2252
2253 /* Return the bfd section of SECTION.
2254 Returns NULL if the section is not present. */
2255
2256 static asection *
2257 get_section_bfd_section (const struct dwarf2_section_info *section)
2258 {
2259 if (section->is_virtual)
2260 {
2261 section = get_containing_section (section);
2262 gdb_assert (!section->is_virtual);
2263 }
2264 return section->s.section;
2265 }
2266
2267 /* Return the name of SECTION. */
2268
2269 static const char *
2270 get_section_name (const struct dwarf2_section_info *section)
2271 {
2272 asection *sectp = get_section_bfd_section (section);
2273
2274 gdb_assert (sectp != NULL);
2275 return bfd_section_name (get_section_bfd_owner (section), sectp);
2276 }
2277
2278 /* Return the name of the file SECTION is in. */
2279
2280 static const char *
2281 get_section_file_name (const struct dwarf2_section_info *section)
2282 {
2283 bfd *abfd = get_section_bfd_owner (section);
2284
2285 return bfd_get_filename (abfd);
2286 }
2287
2288 /* Return the id of SECTION.
2289 Returns 0 if SECTION doesn't exist. */
2290
2291 static int
2292 get_section_id (const struct dwarf2_section_info *section)
2293 {
2294 asection *sectp = get_section_bfd_section (section);
2295
2296 if (sectp == NULL)
2297 return 0;
2298 return sectp->id;
2299 }
2300
2301 /* Return the flags of SECTION.
2302 SECTION (or containing section if this is a virtual section) must exist. */
2303
2304 static int
2305 get_section_flags (const struct dwarf2_section_info *section)
2306 {
2307 asection *sectp = get_section_bfd_section (section);
2308
2309 gdb_assert (sectp != NULL);
2310 return bfd_get_section_flags (sectp->owner, sectp);
2311 }
2312
2313 /* When loading sections, we look either for uncompressed section or for
2314 compressed section names. */
2315
2316 static int
2317 section_is_p (const char *section_name,
2318 const struct dwarf2_section_names *names)
2319 {
2320 if (names->normal != NULL
2321 && strcmp (section_name, names->normal) == 0)
2322 return 1;
2323 if (names->compressed != NULL
2324 && strcmp (section_name, names->compressed) == 0)
2325 return 1;
2326 return 0;
2327 }
2328
2329 /* See declaration. */
2330
2331 void
2332 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2333 const dwarf2_debug_sections &names)
2334 {
2335 flagword aflag = bfd_get_section_flags (abfd, sectp);
2336
2337 if ((aflag & SEC_HAS_CONTENTS) == 0)
2338 {
2339 }
2340 else if (section_is_p (sectp->name, &names.info))
2341 {
2342 this->info.s.section = sectp;
2343 this->info.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &names.abbrev))
2346 {
2347 this->abbrev.s.section = sectp;
2348 this->abbrev.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &names.line))
2351 {
2352 this->line.s.section = sectp;
2353 this->line.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &names.loc))
2356 {
2357 this->loc.s.section = sectp;
2358 this->loc.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &names.loclists))
2361 {
2362 this->loclists.s.section = sectp;
2363 this->loclists.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &names.macinfo))
2366 {
2367 this->macinfo.s.section = sectp;
2368 this->macinfo.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &names.macro))
2371 {
2372 this->macro.s.section = sectp;
2373 this->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &names.str))
2376 {
2377 this->str.s.section = sectp;
2378 this->str.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &names.line_str))
2381 {
2382 this->line_str.s.section = sectp;
2383 this->line_str.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names.addr))
2386 {
2387 this->addr.s.section = sectp;
2388 this->addr.size = bfd_get_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names.frame))
2391 {
2392 this->frame.s.section = sectp;
2393 this->frame.size = bfd_get_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names.eh_frame))
2396 {
2397 this->eh_frame.s.section = sectp;
2398 this->eh_frame.size = bfd_get_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names.ranges))
2401 {
2402 this->ranges.s.section = sectp;
2403 this->ranges.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names.rnglists))
2406 {
2407 this->rnglists.s.section = sectp;
2408 this->rnglists.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &names.types))
2411 {
2412 struct dwarf2_section_info type_section;
2413
2414 memset (&type_section, 0, sizeof (type_section));
2415 type_section.s.section = sectp;
2416 type_section.size = bfd_get_section_size (sectp);
2417
2418 this->types.push_back (type_section);
2419 }
2420 else if (section_is_p (sectp->name, &names.gdb_index))
2421 {
2422 this->gdb_index.s.section = sectp;
2423 this->gdb_index.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &names.debug_names))
2426 {
2427 this->debug_names.s.section = sectp;
2428 this->debug_names.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &names.debug_aranges))
2431 {
2432 this->debug_aranges.s.section = sectp;
2433 this->debug_aranges.size = bfd_get_section_size (sectp);
2434 }
2435
2436 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2437 && bfd_section_vma (abfd, sectp) == 0)
2438 this->has_section_at_zero = true;
2439 }
2440
2441 /* A helper function that decides whether a section is empty,
2442 or not present. */
2443
2444 static int
2445 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2446 {
2447 if (section->is_virtual)
2448 return section->size == 0;
2449 return section->s.section == NULL || section->size == 0;
2450 }
2451
2452 /* See dwarf2read.h. */
2453
2454 void
2455 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2456 {
2457 asection *sectp;
2458 bfd *abfd;
2459 gdb_byte *buf, *retbuf;
2460
2461 if (info->readin)
2462 return;
2463 info->buffer = NULL;
2464 info->readin = true;
2465
2466 if (dwarf2_section_empty_p (info))
2467 return;
2468
2469 sectp = get_section_bfd_section (info);
2470
2471 /* If this is a virtual section we need to read in the real one first. */
2472 if (info->is_virtual)
2473 {
2474 struct dwarf2_section_info *containing_section =
2475 get_containing_section (info);
2476
2477 gdb_assert (sectp != NULL);
2478 if ((sectp->flags & SEC_RELOC) != 0)
2479 {
2480 error (_("Dwarf Error: DWP format V2 with relocations is not"
2481 " supported in section %s [in module %s]"),
2482 get_section_name (info), get_section_file_name (info));
2483 }
2484 dwarf2_read_section (objfile, containing_section);
2485 /* Other code should have already caught virtual sections that don't
2486 fit. */
2487 gdb_assert (info->virtual_offset + info->size
2488 <= containing_section->size);
2489 /* If the real section is empty or there was a problem reading the
2490 section we shouldn't get here. */
2491 gdb_assert (containing_section->buffer != NULL);
2492 info->buffer = containing_section->buffer + info->virtual_offset;
2493 return;
2494 }
2495
2496 /* If the section has relocations, we must read it ourselves.
2497 Otherwise we attach it to the BFD. */
2498 if ((sectp->flags & SEC_RELOC) == 0)
2499 {
2500 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2501 return;
2502 }
2503
2504 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2505 info->buffer = buf;
2506
2507 /* When debugging .o files, we may need to apply relocations; see
2508 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2509 We never compress sections in .o files, so we only need to
2510 try this when the section is not compressed. */
2511 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2512 if (retbuf != NULL)
2513 {
2514 info->buffer = retbuf;
2515 return;
2516 }
2517
2518 abfd = get_section_bfd_owner (info);
2519 gdb_assert (abfd != NULL);
2520
2521 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2522 || bfd_bread (buf, info->size, abfd) != info->size)
2523 {
2524 error (_("Dwarf Error: Can't read DWARF data"
2525 " in section %s [in module %s]"),
2526 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2527 }
2528 }
2529
2530 /* A helper function that returns the size of a section in a safe way.
2531 If you are positive that the section has been read before using the
2532 size, then it is safe to refer to the dwarf2_section_info object's
2533 "size" field directly. In other cases, you must call this
2534 function, because for compressed sections the size field is not set
2535 correctly until the section has been read. */
2536
2537 static bfd_size_type
2538 dwarf2_section_size (struct objfile *objfile,
2539 struct dwarf2_section_info *info)
2540 {
2541 if (!info->readin)
2542 dwarf2_read_section (objfile, info);
2543 return info->size;
2544 }
2545
2546 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2547 SECTION_NAME. */
2548
2549 void
2550 dwarf2_get_section_info (struct objfile *objfile,
2551 enum dwarf2_section_enum sect,
2552 asection **sectp, const gdb_byte **bufp,
2553 bfd_size_type *sizep)
2554 {
2555 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* See dwarf2read.h. */
2633
2634 struct dwz_file *
2635 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2636 {
2637 const char *filename;
2638 bfd_size_type buildid_len_arg;
2639 size_t buildid_len;
2640 bfd_byte *buildid;
2641
2642 if (dwarf2_per_objfile->dwz_file != NULL)
2643 return dwarf2_per_objfile->dwz_file.get ();
2644
2645 bfd_set_error (bfd_error_no_error);
2646 gdb::unique_xmalloc_ptr<char> data
2647 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2648 &buildid_len_arg, &buildid));
2649 if (data == NULL)
2650 {
2651 if (bfd_get_error () == bfd_error_no_error)
2652 return NULL;
2653 error (_("could not read '.gnu_debugaltlink' section: %s"),
2654 bfd_errmsg (bfd_get_error ()));
2655 }
2656
2657 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2658
2659 buildid_len = (size_t) buildid_len_arg;
2660
2661 filename = data.get ();
2662
2663 std::string abs_storage;
2664 if (!IS_ABSOLUTE_PATH (filename))
2665 {
2666 gdb::unique_xmalloc_ptr<char> abs
2667 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2668
2669 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2670 filename = abs_storage.c_str ();
2671 }
2672
2673 /* First try the file name given in the section. If that doesn't
2674 work, try to use the build-id instead. */
2675 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2676 if (dwz_bfd != NULL)
2677 {
2678 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2679 dwz_bfd.reset (nullptr);
2680 }
2681
2682 if (dwz_bfd == NULL)
2683 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2684
2685 if (dwz_bfd == NULL)
2686 error (_("could not find '.gnu_debugaltlink' file for %s"),
2687 objfile_name (dwarf2_per_objfile->objfile));
2688
2689 std::unique_ptr<struct dwz_file> result
2690 (new struct dwz_file (std::move (dwz_bfd)));
2691
2692 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2693 result.get ());
2694
2695 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2696 result->dwz_bfd.get ());
2697 dwarf2_per_objfile->dwz_file = std::move (result);
2698 return dwarf2_per_objfile->dwz_file.get ();
2699 }
2700 \f
2701 /* DWARF quick_symbols_functions support. */
2702
2703 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2704 unique line tables, so we maintain a separate table of all .debug_line
2705 derived entries to support the sharing.
2706 All the quick functions need is the list of file names. We discard the
2707 line_header when we're done and don't need to record it here. */
2708 struct quick_file_names
2709 {
2710 /* The data used to construct the hash key. */
2711 struct stmt_list_hash hash;
2712
2713 /* The number of entries in file_names, real_names. */
2714 unsigned int num_file_names;
2715
2716 /* The file names from the line table, after being run through
2717 file_full_name. */
2718 const char **file_names;
2719
2720 /* The file names from the line table after being run through
2721 gdb_realpath. These are computed lazily. */
2722 const char **real_names;
2723 };
2724
2725 /* When using the index (and thus not using psymtabs), each CU has an
2726 object of this type. This is used to hold information needed by
2727 the various "quick" methods. */
2728 struct dwarf2_per_cu_quick_data
2729 {
2730 /* The file table. This can be NULL if there was no file table
2731 or it's currently not read in.
2732 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2733 struct quick_file_names *file_names;
2734
2735 /* The corresponding symbol table. This is NULL if symbols for this
2736 CU have not yet been read. */
2737 struct compunit_symtab *compunit_symtab;
2738
2739 /* A temporary mark bit used when iterating over all CUs in
2740 expand_symtabs_matching. */
2741 unsigned int mark : 1;
2742
2743 /* True if we've tried to read the file table and found there isn't one.
2744 There will be no point in trying to read it again next time. */
2745 unsigned int no_file_data : 1;
2746 };
2747
2748 /* Utility hash function for a stmt_list_hash. */
2749
2750 static hashval_t
2751 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2752 {
2753 hashval_t v = 0;
2754
2755 if (stmt_list_hash->dwo_unit != NULL)
2756 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2757 v += to_underlying (stmt_list_hash->line_sect_off);
2758 return v;
2759 }
2760
2761 /* Utility equality function for a stmt_list_hash. */
2762
2763 static int
2764 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2765 const struct stmt_list_hash *rhs)
2766 {
2767 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2768 return 0;
2769 if (lhs->dwo_unit != NULL
2770 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2771 return 0;
2772
2773 return lhs->line_sect_off == rhs->line_sect_off;
2774 }
2775
2776 /* Hash function for a quick_file_names. */
2777
2778 static hashval_t
2779 hash_file_name_entry (const void *e)
2780 {
2781 const struct quick_file_names *file_data
2782 = (const struct quick_file_names *) e;
2783
2784 return hash_stmt_list_entry (&file_data->hash);
2785 }
2786
2787 /* Equality function for a quick_file_names. */
2788
2789 static int
2790 eq_file_name_entry (const void *a, const void *b)
2791 {
2792 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2793 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2794
2795 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2796 }
2797
2798 /* Delete function for a quick_file_names. */
2799
2800 static void
2801 delete_file_name_entry (void *e)
2802 {
2803 struct quick_file_names *file_data = (struct quick_file_names *) e;
2804 int i;
2805
2806 for (i = 0; i < file_data->num_file_names; ++i)
2807 {
2808 xfree ((void*) file_data->file_names[i]);
2809 if (file_data->real_names)
2810 xfree ((void*) file_data->real_names[i]);
2811 }
2812
2813 /* The space for the struct itself lives on objfile_obstack,
2814 so we don't free it here. */
2815 }
2816
2817 /* Create a quick_file_names hash table. */
2818
2819 static htab_t
2820 create_quick_file_names_table (unsigned int nr_initial_entries)
2821 {
2822 return htab_create_alloc (nr_initial_entries,
2823 hash_file_name_entry, eq_file_name_entry,
2824 delete_file_name_entry, xcalloc, xfree);
2825 }
2826
2827 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2828 have to be created afterwards. You should call age_cached_comp_units after
2829 processing PER_CU->CU. dw2_setup must have been already called. */
2830
2831 static void
2832 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2833 {
2834 if (per_cu->is_debug_types)
2835 load_full_type_unit (per_cu);
2836 else
2837 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2838
2839 if (per_cu->cu == NULL)
2840 return; /* Dummy CU. */
2841
2842 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2843 }
2844
2845 /* Read in the symbols for PER_CU. */
2846
2847 static void
2848 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2849 {
2850 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2851
2852 /* Skip type_unit_groups, reading the type units they contain
2853 is handled elsewhere. */
2854 if (IS_TYPE_UNIT_GROUP (per_cu))
2855 return;
2856
2857 /* The destructor of dwarf2_queue_guard frees any entries left on
2858 the queue. After this point we're guaranteed to leave this function
2859 with the dwarf queue empty. */
2860 dwarf2_queue_guard q_guard;
2861
2862 if (dwarf2_per_objfile->using_index
2863 ? per_cu->v.quick->compunit_symtab == NULL
2864 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2865 {
2866 queue_comp_unit (per_cu, language_minimal);
2867 load_cu (per_cu, skip_partial);
2868
2869 /* If we just loaded a CU from a DWO, and we're working with an index
2870 that may badly handle TUs, load all the TUs in that DWO as well.
2871 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2872 if (!per_cu->is_debug_types
2873 && per_cu->cu != NULL
2874 && per_cu->cu->dwo_unit != NULL
2875 && dwarf2_per_objfile->index_table != NULL
2876 && dwarf2_per_objfile->index_table->version <= 7
2877 /* DWP files aren't supported yet. */
2878 && get_dwp_file (dwarf2_per_objfile) == NULL)
2879 queue_and_load_all_dwo_tus (per_cu);
2880 }
2881
2882 process_queue (dwarf2_per_objfile);
2883
2884 /* Age the cache, releasing compilation units that have not
2885 been used recently. */
2886 age_cached_comp_units (dwarf2_per_objfile);
2887 }
2888
2889 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2890 the objfile from which this CU came. Returns the resulting symbol
2891 table. */
2892
2893 static struct compunit_symtab *
2894 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 gdb_assert (dwarf2_per_objfile->using_index);
2899 if (!per_cu->v.quick->compunit_symtab)
2900 {
2901 free_cached_comp_units freer (dwarf2_per_objfile);
2902 scoped_restore decrementer = increment_reading_symtab ();
2903 dw2_do_instantiate_symtab (per_cu, skip_partial);
2904 process_cu_includes (dwarf2_per_objfile);
2905 }
2906
2907 return per_cu->v.quick->compunit_symtab;
2908 }
2909
2910 /* See declaration. */
2911
2912 dwarf2_per_cu_data *
2913 dwarf2_per_objfile::get_cutu (int index)
2914 {
2915 if (index >= this->all_comp_units.size ())
2916 {
2917 index -= this->all_comp_units.size ();
2918 gdb_assert (index < this->all_type_units.size ());
2919 return &this->all_type_units[index]->per_cu;
2920 }
2921
2922 return this->all_comp_units[index];
2923 }
2924
2925 /* See declaration. */
2926
2927 dwarf2_per_cu_data *
2928 dwarf2_per_objfile::get_cu (int index)
2929 {
2930 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2931
2932 return this->all_comp_units[index];
2933 }
2934
2935 /* See declaration. */
2936
2937 signatured_type *
2938 dwarf2_per_objfile::get_tu (int index)
2939 {
2940 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2941
2942 return this->all_type_units[index];
2943 }
2944
2945 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2946 objfile_obstack, and constructed with the specified field
2947 values. */
2948
2949 static dwarf2_per_cu_data *
2950 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2951 struct dwarf2_section_info *section,
2952 int is_dwz,
2953 sect_offset sect_off, ULONGEST length)
2954 {
2955 struct objfile *objfile = dwarf2_per_objfile->objfile;
2956 dwarf2_per_cu_data *the_cu
2957 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2958 struct dwarf2_per_cu_data);
2959 the_cu->sect_off = sect_off;
2960 the_cu->length = length;
2961 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2962 the_cu->section = section;
2963 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_quick_data);
2965 the_cu->is_dwz = is_dwz;
2966 return the_cu;
2967 }
2968
2969 /* A helper for create_cus_from_index that handles a given list of
2970 CUs. */
2971
2972 static void
2973 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2974 const gdb_byte *cu_list, offset_type n_elements,
2975 struct dwarf2_section_info *section,
2976 int is_dwz)
2977 {
2978 for (offset_type i = 0; i < n_elements; i += 2)
2979 {
2980 gdb_static_assert (sizeof (ULONGEST) >= 8);
2981
2982 sect_offset sect_off
2983 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2984 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2985 cu_list += 2 * 8;
2986
2987 dwarf2_per_cu_data *per_cu
2988 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2989 sect_off, length);
2990 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2991 }
2992 }
2993
2994 /* Read the CU list from the mapped index, and use it to create all
2995 the CU objects for this objfile. */
2996
2997 static void
2998 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2999 const gdb_byte *cu_list, offset_type cu_list_elements,
3000 const gdb_byte *dwz_list, offset_type dwz_elements)
3001 {
3002 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3003 dwarf2_per_objfile->all_comp_units.reserve
3004 ((cu_list_elements + dwz_elements) / 2);
3005
3006 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3007 &dwarf2_per_objfile->info, 0);
3008
3009 if (dwz_elements == 0)
3010 return;
3011
3012 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3013 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3014 &dwz->info, 1);
3015 }
3016
3017 /* Create the signatured type hash table from the index. */
3018
3019 static void
3020 create_signatured_type_table_from_index
3021 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3022 struct dwarf2_section_info *section,
3023 const gdb_byte *bytes,
3024 offset_type elements)
3025 {
3026 struct objfile *objfile = dwarf2_per_objfile->objfile;
3027
3028 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3029 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3030
3031 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3032
3033 for (offset_type i = 0; i < elements; i += 3)
3034 {
3035 struct signatured_type *sig_type;
3036 ULONGEST signature;
3037 void **slot;
3038 cu_offset type_offset_in_tu;
3039
3040 gdb_static_assert (sizeof (ULONGEST) >= 8);
3041 sect_offset sect_off
3042 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3043 type_offset_in_tu
3044 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3045 BFD_ENDIAN_LITTLE);
3046 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3047 bytes += 3 * 8;
3048
3049 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3050 struct signatured_type);
3051 sig_type->signature = signature;
3052 sig_type->type_offset_in_tu = type_offset_in_tu;
3053 sig_type->per_cu.is_debug_types = 1;
3054 sig_type->per_cu.section = section;
3055 sig_type->per_cu.sect_off = sect_off;
3056 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3057 sig_type->per_cu.v.quick
3058 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3059 struct dwarf2_per_cu_quick_data);
3060
3061 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3062 *slot = sig_type;
3063
3064 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3065 }
3066
3067 dwarf2_per_objfile->signatured_types = sig_types_hash;
3068 }
3069
3070 /* Create the signatured type hash table from .debug_names. */
3071
3072 static void
3073 create_signatured_type_table_from_debug_names
3074 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3075 const mapped_debug_names &map,
3076 struct dwarf2_section_info *section,
3077 struct dwarf2_section_info *abbrev_section)
3078 {
3079 struct objfile *objfile = dwarf2_per_objfile->objfile;
3080
3081 dwarf2_read_section (objfile, section);
3082 dwarf2_read_section (objfile, abbrev_section);
3083
3084 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3085 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3086
3087 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3088
3089 for (uint32_t i = 0; i < map.tu_count; ++i)
3090 {
3091 struct signatured_type *sig_type;
3092 void **slot;
3093
3094 sect_offset sect_off
3095 = (sect_offset) (extract_unsigned_integer
3096 (map.tu_table_reordered + i * map.offset_size,
3097 map.offset_size,
3098 map.dwarf5_byte_order));
3099
3100 comp_unit_head cu_header;
3101 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3102 abbrev_section,
3103 section->buffer + to_underlying (sect_off),
3104 rcuh_kind::TYPE);
3105
3106 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct signatured_type);
3108 sig_type->signature = cu_header.signature;
3109 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3110 sig_type->per_cu.is_debug_types = 1;
3111 sig_type->per_cu.section = section;
3112 sig_type->per_cu.sect_off = sect_off;
3113 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3114 sig_type->per_cu.v.quick
3115 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3116 struct dwarf2_per_cu_quick_data);
3117
3118 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3119 *slot = sig_type;
3120
3121 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3122 }
3123
3124 dwarf2_per_objfile->signatured_types = sig_types_hash;
3125 }
3126
3127 /* Read the address map data from the mapped index, and use it to
3128 populate the objfile's psymtabs_addrmap. */
3129
3130 static void
3131 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3132 struct mapped_index *index)
3133 {
3134 struct objfile *objfile = dwarf2_per_objfile->objfile;
3135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3136 const gdb_byte *iter, *end;
3137 struct addrmap *mutable_map;
3138 CORE_ADDR baseaddr;
3139
3140 auto_obstack temp_obstack;
3141
3142 mutable_map = addrmap_create_mutable (&temp_obstack);
3143
3144 iter = index->address_table.data ();
3145 end = iter + index->address_table.size ();
3146
3147 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3148
3149 while (iter < end)
3150 {
3151 ULONGEST hi, lo, cu_index;
3152 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3153 iter += 8;
3154 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3157 iter += 4;
3158
3159 if (lo > hi)
3160 {
3161 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3162 hex_string (lo), hex_string (hi));
3163 continue;
3164 }
3165
3166 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3167 {
3168 complaint (_(".gdb_index address table has invalid CU number %u"),
3169 (unsigned) cu_index);
3170 continue;
3171 }
3172
3173 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3174 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3175 addrmap_set_empty (mutable_map, lo, hi - 1,
3176 dwarf2_per_objfile->get_cu (cu_index));
3177 }
3178
3179 objfile->partial_symtabs->psymtabs_addrmap
3180 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3181 }
3182
3183 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3184 populate the objfile's psymtabs_addrmap. */
3185
3186 static void
3187 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3188 struct dwarf2_section_info *section)
3189 {
3190 struct objfile *objfile = dwarf2_per_objfile->objfile;
3191 bfd *abfd = objfile->obfd;
3192 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3193 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3194 SECT_OFF_TEXT (objfile));
3195
3196 auto_obstack temp_obstack;
3197 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3198
3199 std::unordered_map<sect_offset,
3200 dwarf2_per_cu_data *,
3201 gdb::hash_enum<sect_offset>>
3202 debug_info_offset_to_per_cu;
3203 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3204 {
3205 const auto insertpair
3206 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3207 if (!insertpair.second)
3208 {
3209 warning (_("Section .debug_aranges in %s has duplicate "
3210 "debug_info_offset %s, ignoring .debug_aranges."),
3211 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3212 return;
3213 }
3214 }
3215
3216 dwarf2_read_section (objfile, section);
3217
3218 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3219
3220 const gdb_byte *addr = section->buffer;
3221
3222 while (addr < section->buffer + section->size)
3223 {
3224 const gdb_byte *const entry_addr = addr;
3225 unsigned int bytes_read;
3226
3227 const LONGEST entry_length = read_initial_length (abfd, addr,
3228 &bytes_read);
3229 addr += bytes_read;
3230
3231 const gdb_byte *const entry_end = addr + entry_length;
3232 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3233 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3234 if (addr + entry_length > section->buffer + section->size)
3235 {
3236 warning (_("Section .debug_aranges in %s entry at offset %s "
3237 "length %s exceeds section length %s, "
3238 "ignoring .debug_aranges."),
3239 objfile_name (objfile),
3240 plongest (entry_addr - section->buffer),
3241 plongest (bytes_read + entry_length),
3242 pulongest (section->size));
3243 return;
3244 }
3245
3246 /* The version number. */
3247 const uint16_t version = read_2_bytes (abfd, addr);
3248 addr += 2;
3249 if (version != 2)
3250 {
3251 warning (_("Section .debug_aranges in %s entry at offset %s "
3252 "has unsupported version %d, ignoring .debug_aranges."),
3253 objfile_name (objfile),
3254 plongest (entry_addr - section->buffer), version);
3255 return;
3256 }
3257
3258 const uint64_t debug_info_offset
3259 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3260 addr += offset_size;
3261 const auto per_cu_it
3262 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3263 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3264 {
3265 warning (_("Section .debug_aranges in %s entry at offset %s "
3266 "debug_info_offset %s does not exists, "
3267 "ignoring .debug_aranges."),
3268 objfile_name (objfile),
3269 plongest (entry_addr - section->buffer),
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %s "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile),
3281 plongest (entry_addr - section->buffer), address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %s "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile),
3292 plongest (entry_addr - section->buffer),
3293 segment_selector_size);
3294 return;
3295 }
3296
3297 /* Must pad to an alignment boundary that is twice the address
3298 size. It is undocumented by the DWARF standard but GCC does
3299 use it. */
3300 for (size_t padding = ((-(addr - section->buffer))
3301 & (2 * address_size - 1));
3302 padding > 0; padding--)
3303 if (*addr++ != 0)
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %s "
3306 "padding is not zero, ignoring .debug_aranges."),
3307 objfile_name (objfile),
3308 plongest (entry_addr - section->buffer));
3309 return;
3310 }
3311
3312 for (;;)
3313 {
3314 if (addr + 2 * address_size > entry_end)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %s "
3317 "address list is not properly terminated, "
3318 "ignoring .debug_aranges."),
3319 objfile_name (objfile),
3320 plongest (entry_addr - section->buffer));
3321 return;
3322 }
3323 ULONGEST start = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 ULONGEST length = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 if (start == 0 && length == 0)
3330 break;
3331 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3332 {
3333 /* Symbol was eliminated due to a COMDAT group. */
3334 continue;
3335 }
3336 ULONGEST end = start + length;
3337 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3338 - baseaddr);
3339 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3340 - baseaddr);
3341 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3342 }
3343 }
3344
3345 objfile->partial_symtabs->psymtabs_addrmap
3346 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3347 }
3348
3349 /* Find a slot in the mapped index INDEX for the object named NAME.
3350 If NAME is found, set *VEC_OUT to point to the CU vector in the
3351 constant pool and return true. If NAME cannot be found, return
3352 false. */
3353
3354 static bool
3355 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3356 offset_type **vec_out)
3357 {
3358 offset_type hash;
3359 offset_type slot, step;
3360 int (*cmp) (const char *, const char *);
3361
3362 gdb::unique_xmalloc_ptr<char> without_params;
3363 if (current_language->la_language == language_cplus
3364 || current_language->la_language == language_fortran
3365 || current_language->la_language == language_d)
3366 {
3367 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3368 not contain any. */
3369
3370 if (strchr (name, '(') != NULL)
3371 {
3372 without_params = cp_remove_params (name);
3373
3374 if (without_params != NULL)
3375 name = without_params.get ();
3376 }
3377 }
3378
3379 /* Index version 4 did not support case insensitive searches. But the
3380 indices for case insensitive languages are built in lowercase, therefore
3381 simulate our NAME being searched is also lowercased. */
3382 hash = mapped_index_string_hash ((index->version == 4
3383 && case_sensitivity == case_sensitive_off
3384 ? 5 : index->version),
3385 name);
3386
3387 slot = hash & (index->symbol_table.size () - 1);
3388 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3389 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390
3391 for (;;)
3392 {
3393 const char *str;
3394
3395 const auto &bucket = index->symbol_table[slot];
3396 if (bucket.name == 0 && bucket.vec == 0)
3397 return false;
3398
3399 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3400 if (!cmp (name, str))
3401 {
3402 *vec_out = (offset_type *) (index->constant_pool
3403 + MAYBE_SWAP (bucket.vec));
3404 return true;
3405 }
3406
3407 slot = (slot + step) & (index->symbol_table.size () - 1);
3408 }
3409 }
3410
3411 /* A helper function that reads the .gdb_index from BUFFER and fills
3412 in MAP. FILENAME is the name of the file containing the data;
3413 it is used for error reporting. DEPRECATED_OK is true if it is
3414 ok to use deprecated sections.
3415
3416 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3417 out parameters that are filled in with information about the CU and
3418 TU lists in the section.
3419
3420 Returns true if all went well, false otherwise. */
3421
3422 static bool
3423 read_gdb_index_from_buffer (struct objfile *objfile,
3424 const char *filename,
3425 bool deprecated_ok,
3426 gdb::array_view<const gdb_byte> buffer,
3427 struct mapped_index *map,
3428 const gdb_byte **cu_list,
3429 offset_type *cu_list_elements,
3430 const gdb_byte **types_list,
3431 offset_type *types_list_elements)
3432 {
3433 const gdb_byte *addr = &buffer[0];
3434
3435 /* Version check. */
3436 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3437 /* Versions earlier than 3 emitted every copy of a psymbol. This
3438 causes the index to behave very poorly for certain requests. Version 3
3439 contained incomplete addrmap. So, it seems better to just ignore such
3440 indices. */
3441 if (version < 4)
3442 {
3443 static int warning_printed = 0;
3444 if (!warning_printed)
3445 {
3446 warning (_("Skipping obsolete .gdb_index section in %s."),
3447 filename);
3448 warning_printed = 1;
3449 }
3450 return 0;
3451 }
3452 /* Index version 4 uses a different hash function than index version
3453 5 and later.
3454
3455 Versions earlier than 6 did not emit psymbols for inlined
3456 functions. Using these files will cause GDB not to be able to
3457 set breakpoints on inlined functions by name, so we ignore these
3458 indices unless the user has done
3459 "set use-deprecated-index-sections on". */
3460 if (version < 6 && !deprecated_ok)
3461 {
3462 static int warning_printed = 0;
3463 if (!warning_printed)
3464 {
3465 warning (_("\
3466 Skipping deprecated .gdb_index section in %s.\n\
3467 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3468 to use the section anyway."),
3469 filename);
3470 warning_printed = 1;
3471 }
3472 return 0;
3473 }
3474 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3475 of the TU (for symbols coming from TUs),
3476 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3477 Plus gold-generated indices can have duplicate entries for global symbols,
3478 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3479 These are just performance bugs, and we can't distinguish gdb-generated
3480 indices from gold-generated ones, so issue no warning here. */
3481
3482 /* Indexes with higher version than the one supported by GDB may be no
3483 longer backward compatible. */
3484 if (version > 8)
3485 return 0;
3486
3487 map->version = version;
3488
3489 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3490
3491 int i = 0;
3492 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3493 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3494 / 8);
3495 ++i;
3496
3497 *types_list = addr + MAYBE_SWAP (metadata[i]);
3498 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3499 - MAYBE_SWAP (metadata[i]))
3500 / 8);
3501 ++i;
3502
3503 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3504 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3505 map->address_table
3506 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3507 ++i;
3508
3509 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3510 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3511 map->symbol_table
3512 = gdb::array_view<mapped_index::symbol_table_slot>
3513 ((mapped_index::symbol_table_slot *) symbol_table,
3514 (mapped_index::symbol_table_slot *) symbol_table_end);
3515
3516 ++i;
3517 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3518
3519 return 1;
3520 }
3521
3522 /* Callback types for dwarf2_read_gdb_index. */
3523
3524 typedef gdb::function_view
3525 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3526 get_gdb_index_contents_ftype;
3527 typedef gdb::function_view
3528 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3529 get_gdb_index_contents_dwz_ftype;
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index
3536 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3537 get_gdb_index_contents_ftype get_gdb_index_contents,
3538 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3539 {
3540 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3541 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3542 struct dwz_file *dwz;
3543 struct objfile *objfile = dwarf2_per_objfile->objfile;
3544
3545 gdb::array_view<const gdb_byte> main_index_contents
3546 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3547
3548 if (main_index_contents.empty ())
3549 return 0;
3550
3551 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3552 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3553 use_deprecated_index_sections,
3554 main_index_contents, map.get (), &cu_list,
3555 &cu_list_elements, &types_list,
3556 &types_list_elements))
3557 return 0;
3558
3559 /* Don't use the index if it's empty. */
3560 if (map->symbol_table.empty ())
3561 return 0;
3562
3563 /* If there is a .dwz file, read it so we can get its CU list as
3564 well. */
3565 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3566 if (dwz != NULL)
3567 {
3568 struct mapped_index dwz_map;
3569 const gdb_byte *dwz_types_ignore;
3570 offset_type dwz_types_elements_ignore;
3571
3572 gdb::array_view<const gdb_byte> dwz_index_content
3573 = get_gdb_index_contents_dwz (objfile, dwz);
3574
3575 if (dwz_index_content.empty ())
3576 return 0;
3577
3578 if (!read_gdb_index_from_buffer (objfile,
3579 bfd_get_filename (dwz->dwz_bfd), 1,
3580 dwz_index_content, &dwz_map,
3581 &dwz_list, &dwz_list_elements,
3582 &dwz_types_ignore,
3583 &dwz_types_elements_ignore))
3584 {
3585 warning (_("could not read '.gdb_index' section from %s; skipping"),
3586 bfd_get_filename (dwz->dwz_bfd));
3587 return 0;
3588 }
3589 }
3590
3591 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3592 dwz_list, dwz_list_elements);
3593
3594 if (types_list_elements)
3595 {
3596 /* We can only handle a single .debug_types when we have an
3597 index. */
3598 if (dwarf2_per_objfile->types.size () != 1)
3599 return 0;
3600
3601 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3602
3603 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3604 types_list, types_list_elements);
3605 }
3606
3607 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3608
3609 dwarf2_per_objfile->index_table = std::move (map);
3610 dwarf2_per_objfile->using_index = 1;
3611 dwarf2_per_objfile->quick_file_names_table =
3612 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3613
3614 return 1;
3615 }
3616
3617 /* die_reader_func for dw2_get_file_names. */
3618
3619 static void
3620 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3621 const gdb_byte *info_ptr,
3622 struct die_info *comp_unit_die,
3623 int has_children,
3624 void *data)
3625 {
3626 struct dwarf2_cu *cu = reader->cu;
3627 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3628 struct dwarf2_per_objfile *dwarf2_per_objfile
3629 = cu->per_cu->dwarf2_per_objfile;
3630 struct objfile *objfile = dwarf2_per_objfile->objfile;
3631 struct dwarf2_per_cu_data *lh_cu;
3632 struct attribute *attr;
3633 int i;
3634 void **slot;
3635 struct quick_file_names *qfn;
3636
3637 gdb_assert (! this_cu->is_debug_types);
3638
3639 /* Our callers never want to match partial units -- instead they
3640 will match the enclosing full CU. */
3641 if (comp_unit_die->tag == DW_TAG_partial_unit)
3642 {
3643 this_cu->v.quick->no_file_data = 1;
3644 return;
3645 }
3646
3647 lh_cu = this_cu;
3648 slot = NULL;
3649
3650 line_header_up lh;
3651 sect_offset line_offset {};
3652
3653 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3654 if (attr)
3655 {
3656 struct quick_file_names find_entry;
3657
3658 line_offset = (sect_offset) DW_UNSND (attr);
3659
3660 /* We may have already read in this line header (TU line header sharing).
3661 If we have we're done. */
3662 find_entry.hash.dwo_unit = cu->dwo_unit;
3663 find_entry.hash.line_sect_off = line_offset;
3664 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3665 &find_entry, INSERT);
3666 if (*slot != NULL)
3667 {
3668 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3669 return;
3670 }
3671
3672 lh = dwarf_decode_line_header (line_offset, cu);
3673 }
3674 if (lh == NULL)
3675 {
3676 lh_cu->v.quick->no_file_data = 1;
3677 return;
3678 }
3679
3680 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3681 qfn->hash.dwo_unit = cu->dwo_unit;
3682 qfn->hash.line_sect_off = line_offset;
3683 gdb_assert (slot != NULL);
3684 *slot = qfn;
3685
3686 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3687
3688 qfn->num_file_names = lh->file_names.size ();
3689 qfn->file_names =
3690 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3691 for (i = 0; i < lh->file_names.size (); ++i)
3692 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3693 qfn->real_names = NULL;
3694
3695 lh_cu->v.quick->file_names = qfn;
3696 }
3697
3698 /* A helper for the "quick" functions which attempts to read the line
3699 table for THIS_CU. */
3700
3701 static struct quick_file_names *
3702 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3703 {
3704 /* This should never be called for TUs. */
3705 gdb_assert (! this_cu->is_debug_types);
3706 /* Nor type unit groups. */
3707 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3708
3709 if (this_cu->v.quick->file_names != NULL)
3710 return this_cu->v.quick->file_names;
3711 /* If we know there is no line data, no point in looking again. */
3712 if (this_cu->v.quick->no_file_data)
3713 return NULL;
3714
3715 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3716
3717 if (this_cu->v.quick->no_file_data)
3718 return NULL;
3719 return this_cu->v.quick->file_names;
3720 }
3721
3722 /* A helper for the "quick" functions which computes and caches the
3723 real path for a given file name from the line table. */
3724
3725 static const char *
3726 dw2_get_real_path (struct objfile *objfile,
3727 struct quick_file_names *qfn, int index)
3728 {
3729 if (qfn->real_names == NULL)
3730 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3731 qfn->num_file_names, const char *);
3732
3733 if (qfn->real_names[index] == NULL)
3734 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3735
3736 return qfn->real_names[index];
3737 }
3738
3739 static struct symtab *
3740 dw2_find_last_source_symtab (struct objfile *objfile)
3741 {
3742 struct dwarf2_per_objfile *dwarf2_per_objfile
3743 = get_dwarf2_per_objfile (objfile);
3744 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3745 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3746
3747 if (cust == NULL)
3748 return NULL;
3749
3750 return compunit_primary_filetab (cust);
3751 }
3752
3753 /* Traversal function for dw2_forget_cached_source_info. */
3754
3755 static int
3756 dw2_free_cached_file_names (void **slot, void *info)
3757 {
3758 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3759
3760 if (file_data->real_names)
3761 {
3762 int i;
3763
3764 for (i = 0; i < file_data->num_file_names; ++i)
3765 {
3766 xfree ((void*) file_data->real_names[i]);
3767 file_data->real_names[i] = NULL;
3768 }
3769 }
3770
3771 return 1;
3772 }
3773
3774 static void
3775 dw2_forget_cached_source_info (struct objfile *objfile)
3776 {
3777 struct dwarf2_per_objfile *dwarf2_per_objfile
3778 = get_dwarf2_per_objfile (objfile);
3779
3780 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3781 dw2_free_cached_file_names, NULL);
3782 }
3783
3784 /* Helper function for dw2_map_symtabs_matching_filename that expands
3785 the symtabs and calls the iterator. */
3786
3787 static int
3788 dw2_map_expand_apply (struct objfile *objfile,
3789 struct dwarf2_per_cu_data *per_cu,
3790 const char *name, const char *real_path,
3791 gdb::function_view<bool (symtab *)> callback)
3792 {
3793 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3794
3795 /* Don't visit already-expanded CUs. */
3796 if (per_cu->v.quick->compunit_symtab)
3797 return 0;
3798
3799 /* This may expand more than one symtab, and we want to iterate over
3800 all of them. */
3801 dw2_instantiate_symtab (per_cu, false);
3802
3803 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3804 last_made, callback);
3805 }
3806
3807 /* Implementation of the map_symtabs_matching_filename method. */
3808
3809 static bool
3810 dw2_map_symtabs_matching_filename
3811 (struct objfile *objfile, const char *name, const char *real_path,
3812 gdb::function_view<bool (symtab *)> callback)
3813 {
3814 const char *name_basename = lbasename (name);
3815 struct dwarf2_per_objfile *dwarf2_per_objfile
3816 = get_dwarf2_per_objfile (objfile);
3817
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3822 {
3823 /* We only need to look at symtabs not already expanded. */
3824 if (per_cu->v.quick->compunit_symtab)
3825 continue;
3826
3827 quick_file_names *file_data = dw2_get_file_names (per_cu);
3828 if (file_data == NULL)
3829 continue;
3830
3831 for (int j = 0; j < file_data->num_file_names; ++j)
3832 {
3833 const char *this_name = file_data->file_names[j];
3834 const char *this_real_name;
3835
3836 if (compare_filenames_for_search (this_name, name))
3837 {
3838 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3839 callback))
3840 return true;
3841 continue;
3842 }
3843
3844 /* Before we invoke realpath, which can get expensive when many
3845 files are involved, do a quick comparison of the basenames. */
3846 if (! basenames_may_differ
3847 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3848 continue;
3849
3850 this_real_name = dw2_get_real_path (objfile, file_data, j);
3851 if (compare_filenames_for_search (this_real_name, name))
3852 {
3853 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3854 callback))
3855 return true;
3856 continue;
3857 }
3858
3859 if (real_path != NULL)
3860 {
3861 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3862 gdb_assert (IS_ABSOLUTE_PATH (name));
3863 if (this_real_name != NULL
3864 && FILENAME_CMP (real_path, this_real_name) == 0)
3865 {
3866 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3867 callback))
3868 return true;
3869 continue;
3870 }
3871 }
3872 }
3873 }
3874
3875 return false;
3876 }
3877
3878 /* Struct used to manage iterating over all CUs looking for a symbol. */
3879
3880 struct dw2_symtab_iterator
3881 {
3882 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3883 struct dwarf2_per_objfile *dwarf2_per_objfile;
3884 /* If set, only look for symbols that match that block. Valid values are
3885 GLOBAL_BLOCK and STATIC_BLOCK. */
3886 gdb::optional<int> block_index;
3887 /* The kind of symbol we're looking for. */
3888 domain_enum domain;
3889 /* The list of CUs from the index entry of the symbol,
3890 or NULL if not found. */
3891 offset_type *vec;
3892 /* The next element in VEC to look at. */
3893 int next;
3894 /* The number of elements in VEC, or zero if there is no match. */
3895 int length;
3896 /* Have we seen a global version of the symbol?
3897 If so we can ignore all further global instances.
3898 This is to work around gold/15646, inefficient gold-generated
3899 indices. */
3900 int global_seen;
3901 };
3902
3903 /* Initialize the index symtab iterator ITER. */
3904
3905 static void
3906 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3907 struct dwarf2_per_objfile *dwarf2_per_objfile,
3908 gdb::optional<int> block_index,
3909 domain_enum domain,
3910 const char *name)
3911 {
3912 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3913 iter->block_index = block_index;
3914 iter->domain = domain;
3915 iter->next = 0;
3916 iter->global_seen = 0;
3917
3918 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3919
3920 /* index is NULL if OBJF_READNOW. */
3921 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3922 iter->length = MAYBE_SWAP (*iter->vec);
3923 else
3924 {
3925 iter->vec = NULL;
3926 iter->length = 0;
3927 }
3928 }
3929
3930 /* Return the next matching CU or NULL if there are no more. */
3931
3932 static struct dwarf2_per_cu_data *
3933 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3934 {
3935 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3936
3937 for ( ; iter->next < iter->length; ++iter->next)
3938 {
3939 offset_type cu_index_and_attrs =
3940 MAYBE_SWAP (iter->vec[iter->next + 1]);
3941 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3942 gdb_index_symbol_kind symbol_kind =
3943 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3944 /* Only check the symbol attributes if they're present.
3945 Indices prior to version 7 don't record them,
3946 and indices >= 7 may elide them for certain symbols
3947 (gold does this). */
3948 int attrs_valid =
3949 (dwarf2_per_objfile->index_table->version >= 7
3950 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3951
3952 /* Don't crash on bad data. */
3953 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3954 + dwarf2_per_objfile->all_type_units.size ()))
3955 {
3956 complaint (_(".gdb_index entry has bad CU index"
3957 " [in module %s]"),
3958 objfile_name (dwarf2_per_objfile->objfile));
3959 continue;
3960 }
3961
3962 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3963
3964 /* Skip if already read in. */
3965 if (per_cu->v.quick->compunit_symtab)
3966 continue;
3967
3968 /* Check static vs global. */
3969 if (attrs_valid)
3970 {
3971 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3972
3973 if (iter->block_index.has_value ())
3974 {
3975 bool want_static = *iter->block_index == STATIC_BLOCK;
3976
3977 if (is_static != want_static)
3978 continue;
3979 }
3980
3981 /* Work around gold/15646. */
3982 if (!is_static && iter->global_seen)
3983 continue;
3984 if (!is_static)
3985 iter->global_seen = 1;
3986 }
3987
3988 /* Only check the symbol's kind if it has one. */
3989 if (attrs_valid)
3990 {
3991 switch (iter->domain)
3992 {
3993 case VAR_DOMAIN:
3994 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3995 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3996 /* Some types are also in VAR_DOMAIN. */
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3998 continue;
3999 break;
4000 case STRUCT_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4002 continue;
4003 break;
4004 case LABEL_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4006 continue;
4007 break;
4008 default:
4009 break;
4010 }
4011 }
4012
4013 ++iter->next;
4014 return per_cu;
4015 }
4016
4017 return NULL;
4018 }
4019
4020 static struct compunit_symtab *
4021 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4022 const char *name, domain_enum domain)
4023 {
4024 struct compunit_symtab *stab_best = NULL;
4025 struct dwarf2_per_objfile *dwarf2_per_objfile
4026 = get_dwarf2_per_objfile (objfile);
4027
4028 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4029
4030 struct dw2_symtab_iterator iter;
4031 struct dwarf2_per_cu_data *per_cu;
4032
4033 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4034
4035 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4036 {
4037 struct symbol *sym, *with_opaque = NULL;
4038 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4039 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4040 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4041
4042 sym = block_find_symbol (block, name, domain,
4043 block_find_non_opaque_type_preferred,
4044 &with_opaque);
4045
4046 /* Some caution must be observed with overloaded functions
4047 and methods, since the index will not contain any overload
4048 information (but NAME might contain it). */
4049
4050 if (sym != NULL
4051 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4052 return stab;
4053 if (with_opaque != NULL
4054 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4055 stab_best = stab;
4056
4057 /* Keep looking through other CUs. */
4058 }
4059
4060 return stab_best;
4061 }
4062
4063 static void
4064 dw2_print_stats (struct objfile *objfile)
4065 {
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068 int total = (dwarf2_per_objfile->all_comp_units.size ()
4069 + dwarf2_per_objfile->all_type_units.size ());
4070 int count = 0;
4071
4072 for (int i = 0; i < total; ++i)
4073 {
4074 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4075
4076 if (!per_cu->v.quick->compunit_symtab)
4077 ++count;
4078 }
4079 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4080 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4081 }
4082
4083 /* This dumps minimal information about the index.
4084 It is called via "mt print objfiles".
4085 One use is to verify .gdb_index has been loaded by the
4086 gdb.dwarf2/gdb-index.exp testcase. */
4087
4088 static void
4089 dw2_dump (struct objfile *objfile)
4090 {
4091 struct dwarf2_per_objfile *dwarf2_per_objfile
4092 = get_dwarf2_per_objfile (objfile);
4093
4094 gdb_assert (dwarf2_per_objfile->using_index);
4095 printf_filtered (".gdb_index:");
4096 if (dwarf2_per_objfile->index_table != NULL)
4097 {
4098 printf_filtered (" version %d\n",
4099 dwarf2_per_objfile->index_table->version);
4100 }
4101 else
4102 printf_filtered (" faked for \"readnow\"\n");
4103 printf_filtered ("\n");
4104 }
4105
4106 static void
4107 dw2_expand_symtabs_for_function (struct objfile *objfile,
4108 const char *func_name)
4109 {
4110 struct dwarf2_per_objfile *dwarf2_per_objfile
4111 = get_dwarf2_per_objfile (objfile);
4112
4113 struct dw2_symtab_iterator iter;
4114 struct dwarf2_per_cu_data *per_cu;
4115
4116 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (const struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->partial_symtabs->psymtabs_addrmap)
5233 return NULL;
5234
5235 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5236 SECT_OFF_TEXT (objfile));
5237 data = (struct dwarf2_per_cu_data *) addrmap_find
5238 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5239 if (!data)
5240 return NULL;
5241
5242 if (warn_if_readin && data->v.quick->compunit_symtab)
5243 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5244 paddress (get_objfile_arch (objfile), pc));
5245
5246 result
5247 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5248 false),
5249 pc);
5250 gdb_assert (result != NULL);
5251 return result;
5252 }
5253
5254 static void
5255 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5256 void *data, int need_fullname)
5257 {
5258 struct dwarf2_per_objfile *dwarf2_per_objfile
5259 = get_dwarf2_per_objfile (objfile);
5260
5261 if (!dwarf2_per_objfile->filenames_cache)
5262 {
5263 dwarf2_per_objfile->filenames_cache.emplace ();
5264
5265 htab_up visited (htab_create_alloc (10,
5266 htab_hash_pointer, htab_eq_pointer,
5267 NULL, xcalloc, xfree));
5268
5269 /* The rule is CUs specify all the files, including those used
5270 by any TU, so there's no need to scan TUs here. We can
5271 ignore file names coming from already-expanded CUs. */
5272
5273 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5274 {
5275 if (per_cu->v.quick->compunit_symtab)
5276 {
5277 void **slot = htab_find_slot (visited.get (),
5278 per_cu->v.quick->file_names,
5279 INSERT);
5280
5281 *slot = per_cu->v.quick->file_names;
5282 }
5283 }
5284
5285 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5286 {
5287 /* We only need to look at symtabs not already expanded. */
5288 if (per_cu->v.quick->compunit_symtab)
5289 continue;
5290
5291 quick_file_names *file_data = dw2_get_file_names (per_cu);
5292 if (file_data == NULL)
5293 continue;
5294
5295 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5296 if (*slot)
5297 {
5298 /* Already visited. */
5299 continue;
5300 }
5301 *slot = file_data;
5302
5303 for (int j = 0; j < file_data->num_file_names; ++j)
5304 {
5305 const char *filename = file_data->file_names[j];
5306 dwarf2_per_objfile->filenames_cache->seen (filename);
5307 }
5308 }
5309 }
5310
5311 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5312 {
5313 gdb::unique_xmalloc_ptr<char> this_real_name;
5314
5315 if (need_fullname)
5316 this_real_name = gdb_realpath (filename);
5317 (*fun) (filename, this_real_name.get (), data);
5318 });
5319 }
5320
5321 static int
5322 dw2_has_symbols (struct objfile *objfile)
5323 {
5324 return 1;
5325 }
5326
5327 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5328 {
5329 dw2_has_symbols,
5330 dw2_find_last_source_symtab,
5331 dw2_forget_cached_source_info,
5332 dw2_map_symtabs_matching_filename,
5333 dw2_lookup_symbol,
5334 dw2_print_stats,
5335 dw2_dump,
5336 dw2_expand_symtabs_for_function,
5337 dw2_expand_all_symtabs,
5338 dw2_expand_symtabs_with_fullname,
5339 dw2_map_matching_symbols,
5340 dw2_expand_symtabs_matching,
5341 dw2_find_pc_sect_compunit_symtab,
5342 NULL,
5343 dw2_map_symbol_filenames
5344 };
5345
5346 /* DWARF-5 debug_names reader. */
5347
5348 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5349 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5350
5351 /* A helper function that reads the .debug_names section in SECTION
5352 and fills in MAP. FILENAME is the name of the file containing the
5353 section; it is used for error reporting.
5354
5355 Returns true if all went well, false otherwise. */
5356
5357 static bool
5358 read_debug_names_from_section (struct objfile *objfile,
5359 const char *filename,
5360 struct dwarf2_section_info *section,
5361 mapped_debug_names &map)
5362 {
5363 if (dwarf2_section_empty_p (section))
5364 return false;
5365
5366 /* Older elfutils strip versions could keep the section in the main
5367 executable while splitting it for the separate debug info file. */
5368 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5369 return false;
5370
5371 dwarf2_read_section (objfile, section);
5372
5373 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5374
5375 const gdb_byte *addr = section->buffer;
5376
5377 bfd *const abfd = get_section_bfd_owner (section);
5378
5379 unsigned int bytes_read;
5380 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5381 addr += bytes_read;
5382
5383 map.dwarf5_is_dwarf64 = bytes_read != 4;
5384 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5385 if (bytes_read + length != section->size)
5386 {
5387 /* There may be multiple per-CU indices. */
5388 warning (_("Section .debug_names in %s length %s does not match "
5389 "section length %s, ignoring .debug_names."),
5390 filename, plongest (bytes_read + length),
5391 pulongest (section->size));
5392 return false;
5393 }
5394
5395 /* The version number. */
5396 uint16_t version = read_2_bytes (abfd, addr);
5397 addr += 2;
5398 if (version != 5)
5399 {
5400 warning (_("Section .debug_names in %s has unsupported version %d, "
5401 "ignoring .debug_names."),
5402 filename, version);
5403 return false;
5404 }
5405
5406 /* Padding. */
5407 uint16_t padding = read_2_bytes (abfd, addr);
5408 addr += 2;
5409 if (padding != 0)
5410 {
5411 warning (_("Section .debug_names in %s has unsupported padding %d, "
5412 "ignoring .debug_names."),
5413 filename, padding);
5414 return false;
5415 }
5416
5417 /* comp_unit_count - The number of CUs in the CU list. */
5418 map.cu_count = read_4_bytes (abfd, addr);
5419 addr += 4;
5420
5421 /* local_type_unit_count - The number of TUs in the local TU
5422 list. */
5423 map.tu_count = read_4_bytes (abfd, addr);
5424 addr += 4;
5425
5426 /* foreign_type_unit_count - The number of TUs in the foreign TU
5427 list. */
5428 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5429 addr += 4;
5430 if (foreign_tu_count != 0)
5431 {
5432 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5433 "ignoring .debug_names."),
5434 filename, static_cast<unsigned long> (foreign_tu_count));
5435 return false;
5436 }
5437
5438 /* bucket_count - The number of hash buckets in the hash lookup
5439 table. */
5440 map.bucket_count = read_4_bytes (abfd, addr);
5441 addr += 4;
5442
5443 /* name_count - The number of unique names in the index. */
5444 map.name_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* abbrev_table_size - The size in bytes of the abbreviations
5448 table. */
5449 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5450 addr += 4;
5451
5452 /* augmentation_string_size - The size in bytes of the augmentation
5453 string. This value is rounded up to a multiple of 4. */
5454 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5455 addr += 4;
5456 map.augmentation_is_gdb = ((augmentation_string_size
5457 == sizeof (dwarf5_augmentation))
5458 && memcmp (addr, dwarf5_augmentation,
5459 sizeof (dwarf5_augmentation)) == 0);
5460 augmentation_string_size += (-augmentation_string_size) & 3;
5461 addr += augmentation_string_size;
5462
5463 /* List of CUs */
5464 map.cu_table_reordered = addr;
5465 addr += map.cu_count * map.offset_size;
5466
5467 /* List of Local TUs */
5468 map.tu_table_reordered = addr;
5469 addr += map.tu_count * map.offset_size;
5470
5471 /* Hash Lookup Table */
5472 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5473 addr += map.bucket_count * 4;
5474 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5475 addr += map.name_count * 4;
5476
5477 /* Name Table */
5478 map.name_table_string_offs_reordered = addr;
5479 addr += map.name_count * map.offset_size;
5480 map.name_table_entry_offs_reordered = addr;
5481 addr += map.name_count * map.offset_size;
5482
5483 const gdb_byte *abbrev_table_start = addr;
5484 for (;;)
5485 {
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %s vs. written as %u, ignoring .debug_names."),
5526 filename, plongest (addr - abbrev_table_start),
5527 abbrev_table_size);
5528 return false;
5529 }
5530 map.entry_pool = addr;
5531
5532 return true;
5533 }
5534
5535 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5536 list. */
5537
5538 static void
5539 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5540 const mapped_debug_names &map,
5541 dwarf2_section_info &section,
5542 bool is_dwz)
5543 {
5544 sect_offset sect_off_prev;
5545 for (uint32_t i = 0; i <= map.cu_count; ++i)
5546 {
5547 sect_offset sect_off_next;
5548 if (i < map.cu_count)
5549 {
5550 sect_off_next
5551 = (sect_offset) (extract_unsigned_integer
5552 (map.cu_table_reordered + i * map.offset_size,
5553 map.offset_size,
5554 map.dwarf5_byte_order));
5555 }
5556 else
5557 sect_off_next = (sect_offset) section.size;
5558 if (i >= 1)
5559 {
5560 const ULONGEST length = sect_off_next - sect_off_prev;
5561 dwarf2_per_cu_data *per_cu
5562 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5563 sect_off_prev, length);
5564 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5565 }
5566 sect_off_prev = sect_off_next;
5567 }
5568 }
5569
5570 /* Read the CU list from the mapped index, and use it to create all
5571 the CU objects for this dwarf2_per_objfile. */
5572
5573 static void
5574 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5575 const mapped_debug_names &map,
5576 const mapped_debug_names &dwz_map)
5577 {
5578 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5579 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5580
5581 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5582 dwarf2_per_objfile->info,
5583 false /* is_dwz */);
5584
5585 if (dwz_map.cu_count == 0)
5586 return;
5587
5588 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5589 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5590 true /* is_dwz */);
5591 }
5592
5593 /* Read .debug_names. If everything went ok, initialize the "quick"
5594 elements of all the CUs and return true. Otherwise, return false. */
5595
5596 static bool
5597 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5598 {
5599 std::unique_ptr<mapped_debug_names> map
5600 (new mapped_debug_names (dwarf2_per_objfile));
5601 mapped_debug_names dwz_map (dwarf2_per_objfile);
5602 struct objfile *objfile = dwarf2_per_objfile->objfile;
5603
5604 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5605 &dwarf2_per_objfile->debug_names,
5606 *map))
5607 return false;
5608
5609 /* Don't use the index if it's empty. */
5610 if (map->name_count == 0)
5611 return false;
5612
5613 /* If there is a .dwz file, read it so we can get its CU list as
5614 well. */
5615 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5616 if (dwz != NULL)
5617 {
5618 if (!read_debug_names_from_section (objfile,
5619 bfd_get_filename (dwz->dwz_bfd),
5620 &dwz->debug_names, dwz_map))
5621 {
5622 warning (_("could not read '.debug_names' section from %s; skipping"),
5623 bfd_get_filename (dwz->dwz_bfd));
5624 return false;
5625 }
5626 }
5627
5628 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5629
5630 if (map->tu_count != 0)
5631 {
5632 /* We can only handle a single .debug_types when we have an
5633 index. */
5634 if (dwarf2_per_objfile->types.size () != 1)
5635 return false;
5636
5637 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 dw2_debug_names_iterator (const mapped_debug_names &map,
5661 gdb::optional<block_enum> block_index,
5662 domain_enum domain,
5663 const char *name)
5664 : m_map (map), m_block_index (block_index), m_domain (domain),
5665 m_addr (find_vec_in_debug_names (map, name))
5666 {}
5667
5668 dw2_debug_names_iterator (const mapped_debug_names &map,
5669 search_domain search, uint32_t namei)
5670 : m_map (map),
5671 m_search (search),
5672 m_addr (find_vec_in_debug_names (map, namei))
5673 {}
5674
5675 /* Return the next matching CU or NULL if there are no more. */
5676 dwarf2_per_cu_data *next ();
5677
5678 private:
5679 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5680 const char *name);
5681 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5682 uint32_t namei);
5683
5684 /* The internalized form of .debug_names. */
5685 const mapped_debug_names &m_map;
5686
5687 /* If set, only look for symbols that match that block. Valid values are
5688 GLOBAL_BLOCK and STATIC_BLOCK. */
5689 const gdb::optional<block_enum> m_block_index;
5690
5691 /* The kind of symbol we're looking for. */
5692 const domain_enum m_domain = UNDEF_DOMAIN;
5693 const search_domain m_search = ALL_DOMAIN;
5694
5695 /* The list of CUs from the index entry of the symbol, or NULL if
5696 not found. */
5697 const gdb_byte *m_addr;
5698 };
5699
5700 const char *
5701 mapped_debug_names::namei_to_name (uint32_t namei) const
5702 {
5703 const ULONGEST namei_string_offs
5704 = extract_unsigned_integer ((name_table_string_offs_reordered
5705 + namei * offset_size),
5706 offset_size,
5707 dwarf5_byte_order);
5708 return read_indirect_string_at_offset
5709 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5710 }
5711
5712 /* Find a slot in .debug_names for the object named NAME. If NAME is
5713 found, return pointer to its pool data. If NAME cannot be found,
5714 return NULL. */
5715
5716 const gdb_byte *
5717 dw2_debug_names_iterator::find_vec_in_debug_names
5718 (const mapped_debug_names &map, const char *name)
5719 {
5720 int (*cmp) (const char *, const char *);
5721
5722 gdb::unique_xmalloc_ptr<char> without_params;
5723 if (current_language->la_language == language_cplus
5724 || current_language->la_language == language_fortran
5725 || current_language->la_language == language_d)
5726 {
5727 /* NAME is already canonical. Drop any qualifiers as
5728 .debug_names does not contain any. */
5729
5730 if (strchr (name, '(') != NULL)
5731 {
5732 without_params = cp_remove_params (name);
5733 if (without_params != NULL)
5734 name = without_params.get ();
5735 }
5736 }
5737
5738 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5739
5740 const uint32_t full_hash = dwarf5_djb_hash (name);
5741 uint32_t namei
5742 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5743 (map.bucket_table_reordered
5744 + (full_hash % map.bucket_count)), 4,
5745 map.dwarf5_byte_order);
5746 if (namei == 0)
5747 return NULL;
5748 --namei;
5749 if (namei >= map.name_count)
5750 {
5751 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5752 "[in module %s]"),
5753 namei, map.name_count,
5754 objfile_name (map.dwarf2_per_objfile->objfile));
5755 return NULL;
5756 }
5757
5758 for (;;)
5759 {
5760 const uint32_t namei_full_hash
5761 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5762 (map.hash_table_reordered + namei), 4,
5763 map.dwarf5_byte_order);
5764 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5765 return NULL;
5766
5767 if (full_hash == namei_full_hash)
5768 {
5769 const char *const namei_string = map.namei_to_name (namei);
5770
5771 #if 0 /* An expensive sanity check. */
5772 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5773 {
5774 complaint (_("Wrong .debug_names hash for string at index %u "
5775 "[in module %s]"),
5776 namei, objfile_name (dwarf2_per_objfile->objfile));
5777 return NULL;
5778 }
5779 #endif
5780
5781 if (cmp (namei_string, name) == 0)
5782 {
5783 const ULONGEST namei_entry_offs
5784 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5785 + namei * map.offset_size),
5786 map.offset_size, map.dwarf5_byte_order);
5787 return map.entry_pool + namei_entry_offs;
5788 }
5789 }
5790
5791 ++namei;
5792 if (namei >= map.name_count)
5793 return NULL;
5794 }
5795 }
5796
5797 const gdb_byte *
5798 dw2_debug_names_iterator::find_vec_in_debug_names
5799 (const mapped_debug_names &map, uint32_t namei)
5800 {
5801 if (namei >= map.name_count)
5802 {
5803 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5804 "[in module %s]"),
5805 namei, map.name_count,
5806 objfile_name (map.dwarf2_per_objfile->objfile));
5807 return NULL;
5808 }
5809
5810 const ULONGEST namei_entry_offs
5811 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5812 + namei * map.offset_size),
5813 map.offset_size, map.dwarf5_byte_order);
5814 return map.entry_pool + namei_entry_offs;
5815 }
5816
5817 /* See dw2_debug_names_iterator. */
5818
5819 dwarf2_per_cu_data *
5820 dw2_debug_names_iterator::next ()
5821 {
5822 if (m_addr == NULL)
5823 return NULL;
5824
5825 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5826 struct objfile *objfile = dwarf2_per_objfile->objfile;
5827 bfd *const abfd = objfile->obfd;
5828
5829 again:
5830
5831 unsigned int bytes_read;
5832 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5833 m_addr += bytes_read;
5834 if (abbrev == 0)
5835 return NULL;
5836
5837 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5838 if (indexval_it == m_map.abbrev_map.cend ())
5839 {
5840 complaint (_("Wrong .debug_names undefined abbrev code %s "
5841 "[in module %s]"),
5842 pulongest (abbrev), objfile_name (objfile));
5843 return NULL;
5844 }
5845 const mapped_debug_names::index_val &indexval = indexval_it->second;
5846 enum class symbol_linkage {
5847 unknown,
5848 static_,
5849 extern_,
5850 } symbol_linkage_ = symbol_linkage::unknown;
5851 dwarf2_per_cu_data *per_cu = NULL;
5852 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5853 {
5854 ULONGEST ull;
5855 switch (attr.form)
5856 {
5857 case DW_FORM_implicit_const:
5858 ull = attr.implicit_const;
5859 break;
5860 case DW_FORM_flag_present:
5861 ull = 1;
5862 break;
5863 case DW_FORM_udata:
5864 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5865 m_addr += bytes_read;
5866 break;
5867 default:
5868 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5869 dwarf_form_name (attr.form),
5870 objfile_name (objfile));
5871 return NULL;
5872 }
5873 switch (attr.dw_idx)
5874 {
5875 case DW_IDX_compile_unit:
5876 /* Don't crash on bad data. */
5877 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5878 {
5879 complaint (_(".debug_names entry has bad CU index %s"
5880 " [in module %s]"),
5881 pulongest (ull),
5882 objfile_name (dwarf2_per_objfile->objfile));
5883 continue;
5884 }
5885 per_cu = dwarf2_per_objfile->get_cutu (ull);
5886 break;
5887 case DW_IDX_type_unit:
5888 /* Don't crash on bad data. */
5889 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5890 {
5891 complaint (_(".debug_names entry has bad TU index %s"
5892 " [in module %s]"),
5893 pulongest (ull),
5894 objfile_name (dwarf2_per_objfile->objfile));
5895 continue;
5896 }
5897 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5898 break;
5899 case DW_IDX_GNU_internal:
5900 if (!m_map.augmentation_is_gdb)
5901 break;
5902 symbol_linkage_ = symbol_linkage::static_;
5903 break;
5904 case DW_IDX_GNU_external:
5905 if (!m_map.augmentation_is_gdb)
5906 break;
5907 symbol_linkage_ = symbol_linkage::extern_;
5908 break;
5909 }
5910 }
5911
5912 /* Skip if already read in. */
5913 if (per_cu->v.quick->compunit_symtab)
5914 goto again;
5915
5916 /* Check static vs global. */
5917 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5918 {
5919 const bool want_static = *m_block_index == STATIC_BLOCK;
5920 const bool symbol_is_static =
5921 symbol_linkage_ == symbol_linkage::static_;
5922 if (want_static != symbol_is_static)
5923 goto again;
5924 }
5925
5926 /* Match dw2_symtab_iter_next, symbol_kind
5927 and debug_names::psymbol_tag. */
5928 switch (m_domain)
5929 {
5930 case VAR_DOMAIN:
5931 switch (indexval.dwarf_tag)
5932 {
5933 case DW_TAG_variable:
5934 case DW_TAG_subprogram:
5935 /* Some types are also in VAR_DOMAIN. */
5936 case DW_TAG_typedef:
5937 case DW_TAG_structure_type:
5938 break;
5939 default:
5940 goto again;
5941 }
5942 break;
5943 case STRUCT_DOMAIN:
5944 switch (indexval.dwarf_tag)
5945 {
5946 case DW_TAG_typedef:
5947 case DW_TAG_structure_type:
5948 break;
5949 default:
5950 goto again;
5951 }
5952 break;
5953 case LABEL_DOMAIN:
5954 switch (indexval.dwarf_tag)
5955 {
5956 case 0:
5957 case DW_TAG_variable:
5958 break;
5959 default:
5960 goto again;
5961 }
5962 break;
5963 default:
5964 break;
5965 }
5966
5967 /* Match dw2_expand_symtabs_matching, symbol_kind and
5968 debug_names::psymbol_tag. */
5969 switch (m_search)
5970 {
5971 case VARIABLES_DOMAIN:
5972 switch (indexval.dwarf_tag)
5973 {
5974 case DW_TAG_variable:
5975 break;
5976 default:
5977 goto again;
5978 }
5979 break;
5980 case FUNCTIONS_DOMAIN:
5981 switch (indexval.dwarf_tag)
5982 {
5983 case DW_TAG_subprogram:
5984 break;
5985 default:
5986 goto again;
5987 }
5988 break;
5989 case TYPES_DOMAIN:
5990 switch (indexval.dwarf_tag)
5991 {
5992 case DW_TAG_typedef:
5993 case DW_TAG_structure_type:
5994 break;
5995 default:
5996 goto again;
5997 }
5998 break;
5999 default:
6000 break;
6001 }
6002
6003 return per_cu;
6004 }
6005
6006 static struct compunit_symtab *
6007 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6008 const char *name, domain_enum domain)
6009 {
6010 const block_enum block_index = static_cast<block_enum> (block_index_int);
6011 struct dwarf2_per_objfile *dwarf2_per_objfile
6012 = get_dwarf2_per_objfile (objfile);
6013
6014 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6015 if (!mapp)
6016 {
6017 /* index is NULL if OBJF_READNOW. */
6018 return NULL;
6019 }
6020 const auto &map = *mapp;
6021
6022 dw2_debug_names_iterator iter (map, block_index, domain, name);
6023
6024 struct compunit_symtab *stab_best = NULL;
6025 struct dwarf2_per_cu_data *per_cu;
6026 while ((per_cu = iter.next ()) != NULL)
6027 {
6028 struct symbol *sym, *with_opaque = NULL;
6029 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6030 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6031 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6032
6033 sym = block_find_symbol (block, name, domain,
6034 block_find_non_opaque_type_preferred,
6035 &with_opaque);
6036
6037 /* Some caution must be observed with overloaded functions and
6038 methods, since the index will not contain any overload
6039 information (but NAME might contain it). */
6040
6041 if (sym != NULL
6042 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6043 return stab;
6044 if (with_opaque != NULL
6045 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6046 stab_best = stab;
6047
6048 /* Keep looking through other CUs. */
6049 }
6050
6051 return stab_best;
6052 }
6053
6054 /* This dumps minimal information about .debug_names. It is called
6055 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6056 uses this to verify that .debug_names has been loaded. */
6057
6058 static void
6059 dw2_debug_names_dump (struct objfile *objfile)
6060 {
6061 struct dwarf2_per_objfile *dwarf2_per_objfile
6062 = get_dwarf2_per_objfile (objfile);
6063
6064 gdb_assert (dwarf2_per_objfile->using_index);
6065 printf_filtered (".debug_names:");
6066 if (dwarf2_per_objfile->debug_names_table)
6067 printf_filtered (" exists\n");
6068 else
6069 printf_filtered (" faked for \"readnow\"\n");
6070 printf_filtered ("\n");
6071 }
6072
6073 static void
6074 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6075 const char *func_name)
6076 {
6077 struct dwarf2_per_objfile *dwarf2_per_objfile
6078 = get_dwarf2_per_objfile (objfile);
6079
6080 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6081 if (dwarf2_per_objfile->debug_names_table)
6082 {
6083 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6084
6085 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6086
6087 struct dwarf2_per_cu_data *per_cu;
6088 while ((per_cu = iter.next ()) != NULL)
6089 dw2_instantiate_symtab (per_cu, false);
6090 }
6091 }
6092
6093 static void
6094 dw2_debug_names_expand_symtabs_matching
6095 (struct objfile *objfile,
6096 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6097 const lookup_name_info &lookup_name,
6098 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6099 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6100 enum search_domain kind)
6101 {
6102 struct dwarf2_per_objfile *dwarf2_per_objfile
6103 = get_dwarf2_per_objfile (objfile);
6104
6105 /* debug_names_table is NULL if OBJF_READNOW. */
6106 if (!dwarf2_per_objfile->debug_names_table)
6107 return;
6108
6109 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6110
6111 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6112
6113 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6114 symbol_matcher,
6115 kind, [&] (offset_type namei)
6116 {
6117 /* The name was matched, now expand corresponding CUs that were
6118 marked. */
6119 dw2_debug_names_iterator iter (map, kind, namei);
6120
6121 struct dwarf2_per_cu_data *per_cu;
6122 while ((per_cu = iter.next ()) != NULL)
6123 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6124 expansion_notify);
6125 });
6126 }
6127
6128 const struct quick_symbol_functions dwarf2_debug_names_functions =
6129 {
6130 dw2_has_symbols,
6131 dw2_find_last_source_symtab,
6132 dw2_forget_cached_source_info,
6133 dw2_map_symtabs_matching_filename,
6134 dw2_debug_names_lookup_symbol,
6135 dw2_print_stats,
6136 dw2_debug_names_dump,
6137 dw2_debug_names_expand_symtabs_for_function,
6138 dw2_expand_all_symtabs,
6139 dw2_expand_symtabs_with_fullname,
6140 dw2_map_matching_symbols,
6141 dw2_debug_names_expand_symtabs_matching,
6142 dw2_find_pc_sect_compunit_symtab,
6143 NULL,
6144 dw2_map_symbol_filenames
6145 };
6146
6147 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6148 to either a dwarf2_per_objfile or dwz_file object. */
6149
6150 template <typename T>
6151 static gdb::array_view<const gdb_byte>
6152 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6153 {
6154 dwarf2_section_info *section = &section_owner->gdb_index;
6155
6156 if (dwarf2_section_empty_p (section))
6157 return {};
6158
6159 /* Older elfutils strip versions could keep the section in the main
6160 executable while splitting it for the separate debug info file. */
6161 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6162 return {};
6163
6164 dwarf2_read_section (obj, section);
6165
6166 /* dwarf2_section_info::size is a bfd_size_type, while
6167 gdb::array_view works with size_t. On 32-bit hosts, with
6168 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6169 is 32-bit. So we need an explicit narrowing conversion here.
6170 This is fine, because it's impossible to allocate or mmap an
6171 array/buffer larger than what size_t can represent. */
6172 return gdb::make_array_view (section->buffer, section->size);
6173 }
6174
6175 /* Lookup the index cache for the contents of the index associated to
6176 DWARF2_OBJ. */
6177
6178 static gdb::array_view<const gdb_byte>
6179 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6180 {
6181 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6182 if (build_id == nullptr)
6183 return {};
6184
6185 return global_index_cache.lookup_gdb_index (build_id,
6186 &dwarf2_obj->index_cache_res);
6187 }
6188
6189 /* Same as the above, but for DWZ. */
6190
6191 static gdb::array_view<const gdb_byte>
6192 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6193 {
6194 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6195 if (build_id == nullptr)
6196 return {};
6197
6198 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6199 }
6200
6201 /* See symfile.h. */
6202
6203 bool
6204 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6205 {
6206 struct dwarf2_per_objfile *dwarf2_per_objfile
6207 = get_dwarf2_per_objfile (objfile);
6208
6209 /* If we're about to read full symbols, don't bother with the
6210 indices. In this case we also don't care if some other debug
6211 format is making psymtabs, because they are all about to be
6212 expanded anyway. */
6213 if ((objfile->flags & OBJF_READNOW))
6214 {
6215 dwarf2_per_objfile->using_index = 1;
6216 create_all_comp_units (dwarf2_per_objfile);
6217 create_all_type_units (dwarf2_per_objfile);
6218 dwarf2_per_objfile->quick_file_names_table
6219 = create_quick_file_names_table
6220 (dwarf2_per_objfile->all_comp_units.size ());
6221
6222 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6223 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6224 {
6225 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6226
6227 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6228 struct dwarf2_per_cu_quick_data);
6229 }
6230
6231 /* Return 1 so that gdb sees the "quick" functions. However,
6232 these functions will be no-ops because we will have expanded
6233 all symtabs. */
6234 *index_kind = dw_index_kind::GDB_INDEX;
6235 return true;
6236 }
6237
6238 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6239 {
6240 *index_kind = dw_index_kind::DEBUG_NAMES;
6241 return true;
6242 }
6243
6244 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6245 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6246 get_gdb_index_contents_from_section<dwz_file>))
6247 {
6248 *index_kind = dw_index_kind::GDB_INDEX;
6249 return true;
6250 }
6251
6252 /* ... otherwise, try to find the index in the index cache. */
6253 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6254 get_gdb_index_contents_from_cache,
6255 get_gdb_index_contents_from_cache_dwz))
6256 {
6257 global_index_cache.hit ();
6258 *index_kind = dw_index_kind::GDB_INDEX;
6259 return true;
6260 }
6261
6262 global_index_cache.miss ();
6263 return false;
6264 }
6265
6266 \f
6267
6268 /* Build a partial symbol table. */
6269
6270 void
6271 dwarf2_build_psymtabs (struct objfile *objfile)
6272 {
6273 struct dwarf2_per_objfile *dwarf2_per_objfile
6274 = get_dwarf2_per_objfile (objfile);
6275
6276 init_psymbol_list (objfile, 1024);
6277
6278 try
6279 {
6280 /* This isn't really ideal: all the data we allocate on the
6281 objfile's obstack is still uselessly kept around. However,
6282 freeing it seems unsafe. */
6283 psymtab_discarder psymtabs (objfile);
6284 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6285 psymtabs.keep ();
6286
6287 /* (maybe) store an index in the cache. */
6288 global_index_cache.store (dwarf2_per_objfile);
6289 }
6290 catch (const gdb_exception_error &except)
6291 {
6292 exception_print (gdb_stderr, except);
6293 }
6294 }
6295
6296 /* Return the total length of the CU described by HEADER. */
6297
6298 static unsigned int
6299 get_cu_length (const struct comp_unit_head *header)
6300 {
6301 return header->initial_length_size + header->length;
6302 }
6303
6304 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6305
6306 static inline bool
6307 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6308 {
6309 sect_offset bottom = cu_header->sect_off;
6310 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6311
6312 return sect_off >= bottom && sect_off < top;
6313 }
6314
6315 /* Find the base address of the compilation unit for range lists and
6316 location lists. It will normally be specified by DW_AT_low_pc.
6317 In DWARF-3 draft 4, the base address could be overridden by
6318 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6319 compilation units with discontinuous ranges. */
6320
6321 static void
6322 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6323 {
6324 struct attribute *attr;
6325
6326 cu->base_known = 0;
6327 cu->base_address = 0;
6328
6329 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6330 if (attr)
6331 {
6332 cu->base_address = attr_value_as_address (attr);
6333 cu->base_known = 1;
6334 }
6335 else
6336 {
6337 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6338 if (attr)
6339 {
6340 cu->base_address = attr_value_as_address (attr);
6341 cu->base_known = 1;
6342 }
6343 }
6344 }
6345
6346 /* Read in the comp unit header information from the debug_info at info_ptr.
6347 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6348 NOTE: This leaves members offset, first_die_offset to be filled in
6349 by the caller. */
6350
6351 static const gdb_byte *
6352 read_comp_unit_head (struct comp_unit_head *cu_header,
6353 const gdb_byte *info_ptr,
6354 struct dwarf2_section_info *section,
6355 rcuh_kind section_kind)
6356 {
6357 int signed_addr;
6358 unsigned int bytes_read;
6359 const char *filename = get_section_file_name (section);
6360 bfd *abfd = get_section_bfd_owner (section);
6361
6362 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6363 cu_header->initial_length_size = bytes_read;
6364 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6365 info_ptr += bytes_read;
6366 cu_header->version = read_2_bytes (abfd, info_ptr);
6367 if (cu_header->version < 2 || cu_header->version > 5)
6368 error (_("Dwarf Error: wrong version in compilation unit header "
6369 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6370 cu_header->version, filename);
6371 info_ptr += 2;
6372 if (cu_header->version < 5)
6373 switch (section_kind)
6374 {
6375 case rcuh_kind::COMPILE:
6376 cu_header->unit_type = DW_UT_compile;
6377 break;
6378 case rcuh_kind::TYPE:
6379 cu_header->unit_type = DW_UT_type;
6380 break;
6381 default:
6382 internal_error (__FILE__, __LINE__,
6383 _("read_comp_unit_head: invalid section_kind"));
6384 }
6385 else
6386 {
6387 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6388 (read_1_byte (abfd, info_ptr));
6389 info_ptr += 1;
6390 switch (cu_header->unit_type)
6391 {
6392 case DW_UT_compile:
6393 if (section_kind != rcuh_kind::COMPILE)
6394 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6395 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6396 filename);
6397 break;
6398 case DW_UT_type:
6399 section_kind = rcuh_kind::TYPE;
6400 break;
6401 default:
6402 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6403 "(is %d, should be %d or %d) [in module %s]"),
6404 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6405 }
6406
6407 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6408 info_ptr += 1;
6409 }
6410 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6411 cu_header,
6412 &bytes_read);
6413 info_ptr += bytes_read;
6414 if (cu_header->version < 5)
6415 {
6416 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6417 info_ptr += 1;
6418 }
6419 signed_addr = bfd_get_sign_extend_vma (abfd);
6420 if (signed_addr < 0)
6421 internal_error (__FILE__, __LINE__,
6422 _("read_comp_unit_head: dwarf from non elf file"));
6423 cu_header->signed_addr_p = signed_addr;
6424
6425 if (section_kind == rcuh_kind::TYPE)
6426 {
6427 LONGEST type_offset;
6428
6429 cu_header->signature = read_8_bytes (abfd, info_ptr);
6430 info_ptr += 8;
6431
6432 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6433 info_ptr += bytes_read;
6434 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6435 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6436 error (_("Dwarf Error: Too big type_offset in compilation unit "
6437 "header (is %s) [in module %s]"), plongest (type_offset),
6438 filename);
6439 }
6440
6441 return info_ptr;
6442 }
6443
6444 /* Helper function that returns the proper abbrev section for
6445 THIS_CU. */
6446
6447 static struct dwarf2_section_info *
6448 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6449 {
6450 struct dwarf2_section_info *abbrev;
6451 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6452
6453 if (this_cu->is_dwz)
6454 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6455 else
6456 abbrev = &dwarf2_per_objfile->abbrev;
6457
6458 return abbrev;
6459 }
6460
6461 /* Subroutine of read_and_check_comp_unit_head and
6462 read_and_check_type_unit_head to simplify them.
6463 Perform various error checking on the header. */
6464
6465 static void
6466 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6467 struct comp_unit_head *header,
6468 struct dwarf2_section_info *section,
6469 struct dwarf2_section_info *abbrev_section)
6470 {
6471 const char *filename = get_section_file_name (section);
6472
6473 if (to_underlying (header->abbrev_sect_off)
6474 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6475 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6476 "(offset %s + 6) [in module %s]"),
6477 sect_offset_str (header->abbrev_sect_off),
6478 sect_offset_str (header->sect_off),
6479 filename);
6480
6481 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6482 avoid potential 32-bit overflow. */
6483 if (((ULONGEST) header->sect_off + get_cu_length (header))
6484 > section->size)
6485 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6486 "(offset %s + 0) [in module %s]"),
6487 header->length, sect_offset_str (header->sect_off),
6488 filename);
6489 }
6490
6491 /* Read in a CU/TU header and perform some basic error checking.
6492 The contents of the header are stored in HEADER.
6493 The result is a pointer to the start of the first DIE. */
6494
6495 static const gdb_byte *
6496 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6497 struct comp_unit_head *header,
6498 struct dwarf2_section_info *section,
6499 struct dwarf2_section_info *abbrev_section,
6500 const gdb_byte *info_ptr,
6501 rcuh_kind section_kind)
6502 {
6503 const gdb_byte *beg_of_comp_unit = info_ptr;
6504
6505 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6506
6507 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6508
6509 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6510
6511 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6512 abbrev_section);
6513
6514 return info_ptr;
6515 }
6516
6517 /* Fetch the abbreviation table offset from a comp or type unit header. */
6518
6519 static sect_offset
6520 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6521 struct dwarf2_section_info *section,
6522 sect_offset sect_off)
6523 {
6524 bfd *abfd = get_section_bfd_owner (section);
6525 const gdb_byte *info_ptr;
6526 unsigned int initial_length_size, offset_size;
6527 uint16_t version;
6528
6529 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6530 info_ptr = section->buffer + to_underlying (sect_off);
6531 read_initial_length (abfd, info_ptr, &initial_length_size);
6532 offset_size = initial_length_size == 4 ? 4 : 8;
6533 info_ptr += initial_length_size;
6534
6535 version = read_2_bytes (abfd, info_ptr);
6536 info_ptr += 2;
6537 if (version >= 5)
6538 {
6539 /* Skip unit type and address size. */
6540 info_ptr += 2;
6541 }
6542
6543 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6544 }
6545
6546 /* Allocate a new partial symtab for file named NAME and mark this new
6547 partial symtab as being an include of PST. */
6548
6549 static void
6550 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6551 struct objfile *objfile)
6552 {
6553 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6554
6555 if (!IS_ABSOLUTE_PATH (subpst->filename))
6556 {
6557 /* It shares objfile->objfile_obstack. */
6558 subpst->dirname = pst->dirname;
6559 }
6560
6561 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6562 subpst->dependencies[0] = pst;
6563 subpst->number_of_dependencies = 1;
6564
6565 subpst->read_symtab = pst->read_symtab;
6566
6567 /* No private part is necessary for include psymtabs. This property
6568 can be used to differentiate between such include psymtabs and
6569 the regular ones. */
6570 subpst->read_symtab_private = NULL;
6571 }
6572
6573 /* Read the Line Number Program data and extract the list of files
6574 included by the source file represented by PST. Build an include
6575 partial symtab for each of these included files. */
6576
6577 static void
6578 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6579 struct die_info *die,
6580 struct partial_symtab *pst)
6581 {
6582 line_header_up lh;
6583 struct attribute *attr;
6584
6585 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6586 if (attr)
6587 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6588 if (lh == NULL)
6589 return; /* No linetable, so no includes. */
6590
6591 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6592 that we pass in the raw text_low here; that is ok because we're
6593 only decoding the line table to make include partial symtabs, and
6594 so the addresses aren't really used. */
6595 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6596 pst->raw_text_low (), 1);
6597 }
6598
6599 static hashval_t
6600 hash_signatured_type (const void *item)
6601 {
6602 const struct signatured_type *sig_type
6603 = (const struct signatured_type *) item;
6604
6605 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6606 return sig_type->signature;
6607 }
6608
6609 static int
6610 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6611 {
6612 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6613 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6614
6615 return lhs->signature == rhs->signature;
6616 }
6617
6618 /* Allocate a hash table for signatured types. */
6619
6620 static htab_t
6621 allocate_signatured_type_table (struct objfile *objfile)
6622 {
6623 return htab_create_alloc_ex (41,
6624 hash_signatured_type,
6625 eq_signatured_type,
6626 NULL,
6627 &objfile->objfile_obstack,
6628 hashtab_obstack_allocate,
6629 dummy_obstack_deallocate);
6630 }
6631
6632 /* A helper function to add a signatured type CU to a table. */
6633
6634 static int
6635 add_signatured_type_cu_to_table (void **slot, void *datum)
6636 {
6637 struct signatured_type *sigt = (struct signatured_type *) *slot;
6638 std::vector<signatured_type *> *all_type_units
6639 = (std::vector<signatured_type *> *) datum;
6640
6641 all_type_units->push_back (sigt);
6642
6643 return 1;
6644 }
6645
6646 /* A helper for create_debug_types_hash_table. Read types from SECTION
6647 and fill them into TYPES_HTAB. It will process only type units,
6648 therefore DW_UT_type. */
6649
6650 static void
6651 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6652 struct dwo_file *dwo_file,
6653 dwarf2_section_info *section, htab_t &types_htab,
6654 rcuh_kind section_kind)
6655 {
6656 struct objfile *objfile = dwarf2_per_objfile->objfile;
6657 struct dwarf2_section_info *abbrev_section;
6658 bfd *abfd;
6659 const gdb_byte *info_ptr, *end_ptr;
6660
6661 abbrev_section = (dwo_file != NULL
6662 ? &dwo_file->sections.abbrev
6663 : &dwarf2_per_objfile->abbrev);
6664
6665 if (dwarf_read_debug)
6666 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6667 get_section_name (section),
6668 get_section_file_name (abbrev_section));
6669
6670 dwarf2_read_section (objfile, section);
6671 info_ptr = section->buffer;
6672
6673 if (info_ptr == NULL)
6674 return;
6675
6676 /* We can't set abfd until now because the section may be empty or
6677 not present, in which case the bfd is unknown. */
6678 abfd = get_section_bfd_owner (section);
6679
6680 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6681 because we don't need to read any dies: the signature is in the
6682 header. */
6683
6684 end_ptr = info_ptr + section->size;
6685 while (info_ptr < end_ptr)
6686 {
6687 struct signatured_type *sig_type;
6688 struct dwo_unit *dwo_tu;
6689 void **slot;
6690 const gdb_byte *ptr = info_ptr;
6691 struct comp_unit_head header;
6692 unsigned int length;
6693
6694 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6695
6696 /* Initialize it due to a false compiler warning. */
6697 header.signature = -1;
6698 header.type_cu_offset_in_tu = (cu_offset) -1;
6699
6700 /* We need to read the type's signature in order to build the hash
6701 table, but we don't need anything else just yet. */
6702
6703 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6704 abbrev_section, ptr, section_kind);
6705
6706 length = get_cu_length (&header);
6707
6708 /* Skip dummy type units. */
6709 if (ptr >= info_ptr + length
6710 || peek_abbrev_code (abfd, ptr) == 0
6711 || header.unit_type != DW_UT_type)
6712 {
6713 info_ptr += length;
6714 continue;
6715 }
6716
6717 if (types_htab == NULL)
6718 {
6719 if (dwo_file)
6720 types_htab = allocate_dwo_unit_table (objfile);
6721 else
6722 types_htab = allocate_signatured_type_table (objfile);
6723 }
6724
6725 if (dwo_file)
6726 {
6727 sig_type = NULL;
6728 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6729 struct dwo_unit);
6730 dwo_tu->dwo_file = dwo_file;
6731 dwo_tu->signature = header.signature;
6732 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6733 dwo_tu->section = section;
6734 dwo_tu->sect_off = sect_off;
6735 dwo_tu->length = length;
6736 }
6737 else
6738 {
6739 /* N.B.: type_offset is not usable if this type uses a DWO file.
6740 The real type_offset is in the DWO file. */
6741 dwo_tu = NULL;
6742 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6743 struct signatured_type);
6744 sig_type->signature = header.signature;
6745 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6746 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6747 sig_type->per_cu.is_debug_types = 1;
6748 sig_type->per_cu.section = section;
6749 sig_type->per_cu.sect_off = sect_off;
6750 sig_type->per_cu.length = length;
6751 }
6752
6753 slot = htab_find_slot (types_htab,
6754 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6755 INSERT);
6756 gdb_assert (slot != NULL);
6757 if (*slot != NULL)
6758 {
6759 sect_offset dup_sect_off;
6760
6761 if (dwo_file)
6762 {
6763 const struct dwo_unit *dup_tu
6764 = (const struct dwo_unit *) *slot;
6765
6766 dup_sect_off = dup_tu->sect_off;
6767 }
6768 else
6769 {
6770 const struct signatured_type *dup_tu
6771 = (const struct signatured_type *) *slot;
6772
6773 dup_sect_off = dup_tu->per_cu.sect_off;
6774 }
6775
6776 complaint (_("debug type entry at offset %s is duplicate to"
6777 " the entry at offset %s, signature %s"),
6778 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6779 hex_string (header.signature));
6780 }
6781 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6782
6783 if (dwarf_read_debug > 1)
6784 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6785 sect_offset_str (sect_off),
6786 hex_string (header.signature));
6787
6788 info_ptr += length;
6789 }
6790 }
6791
6792 /* Create the hash table of all entries in the .debug_types
6793 (or .debug_types.dwo) section(s).
6794 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6795 otherwise it is NULL.
6796
6797 The result is a pointer to the hash table or NULL if there are no types.
6798
6799 Note: This function processes DWO files only, not DWP files. */
6800
6801 static void
6802 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6803 struct dwo_file *dwo_file,
6804 gdb::array_view<dwarf2_section_info> type_sections,
6805 htab_t &types_htab)
6806 {
6807 for (dwarf2_section_info &section : type_sections)
6808 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6809 types_htab, rcuh_kind::TYPE);
6810 }
6811
6812 /* Create the hash table of all entries in the .debug_types section,
6813 and initialize all_type_units.
6814 The result is zero if there is an error (e.g. missing .debug_types section),
6815 otherwise non-zero. */
6816
6817 static int
6818 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6819 {
6820 htab_t types_htab = NULL;
6821
6822 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6823 &dwarf2_per_objfile->info, types_htab,
6824 rcuh_kind::COMPILE);
6825 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6826 dwarf2_per_objfile->types, types_htab);
6827 if (types_htab == NULL)
6828 {
6829 dwarf2_per_objfile->signatured_types = NULL;
6830 return 0;
6831 }
6832
6833 dwarf2_per_objfile->signatured_types = types_htab;
6834
6835 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6836 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6837
6838 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6839 &dwarf2_per_objfile->all_type_units);
6840
6841 return 1;
6842 }
6843
6844 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6845 If SLOT is non-NULL, it is the entry to use in the hash table.
6846 Otherwise we find one. */
6847
6848 static struct signatured_type *
6849 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6850 void **slot)
6851 {
6852 struct objfile *objfile = dwarf2_per_objfile->objfile;
6853
6854 if (dwarf2_per_objfile->all_type_units.size ()
6855 == dwarf2_per_objfile->all_type_units.capacity ())
6856 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6857
6858 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6859 struct signatured_type);
6860
6861 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6862 sig_type->signature = sig;
6863 sig_type->per_cu.is_debug_types = 1;
6864 if (dwarf2_per_objfile->using_index)
6865 {
6866 sig_type->per_cu.v.quick =
6867 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6868 struct dwarf2_per_cu_quick_data);
6869 }
6870
6871 if (slot == NULL)
6872 {
6873 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6874 sig_type, INSERT);
6875 }
6876 gdb_assert (*slot == NULL);
6877 *slot = sig_type;
6878 /* The rest of sig_type must be filled in by the caller. */
6879 return sig_type;
6880 }
6881
6882 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6883 Fill in SIG_ENTRY with DWO_ENTRY. */
6884
6885 static void
6886 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6887 struct signatured_type *sig_entry,
6888 struct dwo_unit *dwo_entry)
6889 {
6890 /* Make sure we're not clobbering something we don't expect to. */
6891 gdb_assert (! sig_entry->per_cu.queued);
6892 gdb_assert (sig_entry->per_cu.cu == NULL);
6893 if (dwarf2_per_objfile->using_index)
6894 {
6895 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6896 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6897 }
6898 else
6899 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6900 gdb_assert (sig_entry->signature == dwo_entry->signature);
6901 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6902 gdb_assert (sig_entry->type_unit_group == NULL);
6903 gdb_assert (sig_entry->dwo_unit == NULL);
6904
6905 sig_entry->per_cu.section = dwo_entry->section;
6906 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6907 sig_entry->per_cu.length = dwo_entry->length;
6908 sig_entry->per_cu.reading_dwo_directly = 1;
6909 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6910 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6911 sig_entry->dwo_unit = dwo_entry;
6912 }
6913
6914 /* Subroutine of lookup_signatured_type.
6915 If we haven't read the TU yet, create the signatured_type data structure
6916 for a TU to be read in directly from a DWO file, bypassing the stub.
6917 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6918 using .gdb_index, then when reading a CU we want to stay in the DWO file
6919 containing that CU. Otherwise we could end up reading several other DWO
6920 files (due to comdat folding) to process the transitive closure of all the
6921 mentioned TUs, and that can be slow. The current DWO file will have every
6922 type signature that it needs.
6923 We only do this for .gdb_index because in the psymtab case we already have
6924 to read all the DWOs to build the type unit groups. */
6925
6926 static struct signatured_type *
6927 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6928 {
6929 struct dwarf2_per_objfile *dwarf2_per_objfile
6930 = cu->per_cu->dwarf2_per_objfile;
6931 struct objfile *objfile = dwarf2_per_objfile->objfile;
6932 struct dwo_file *dwo_file;
6933 struct dwo_unit find_dwo_entry, *dwo_entry;
6934 struct signatured_type find_sig_entry, *sig_entry;
6935 void **slot;
6936
6937 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6938
6939 /* If TU skeletons have been removed then we may not have read in any
6940 TUs yet. */
6941 if (dwarf2_per_objfile->signatured_types == NULL)
6942 {
6943 dwarf2_per_objfile->signatured_types
6944 = allocate_signatured_type_table (objfile);
6945 }
6946
6947 /* We only ever need to read in one copy of a signatured type.
6948 Use the global signatured_types array to do our own comdat-folding
6949 of types. If this is the first time we're reading this TU, and
6950 the TU has an entry in .gdb_index, replace the recorded data from
6951 .gdb_index with this TU. */
6952
6953 find_sig_entry.signature = sig;
6954 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6955 &find_sig_entry, INSERT);
6956 sig_entry = (struct signatured_type *) *slot;
6957
6958 /* We can get here with the TU already read, *or* in the process of being
6959 read. Don't reassign the global entry to point to this DWO if that's
6960 the case. Also note that if the TU is already being read, it may not
6961 have come from a DWO, the program may be a mix of Fission-compiled
6962 code and non-Fission-compiled code. */
6963
6964 /* Have we already tried to read this TU?
6965 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6966 needn't exist in the global table yet). */
6967 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6968 return sig_entry;
6969
6970 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6971 dwo_unit of the TU itself. */
6972 dwo_file = cu->dwo_unit->dwo_file;
6973
6974 /* Ok, this is the first time we're reading this TU. */
6975 if (dwo_file->tus == NULL)
6976 return NULL;
6977 find_dwo_entry.signature = sig;
6978 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6979 if (dwo_entry == NULL)
6980 return NULL;
6981
6982 /* If the global table doesn't have an entry for this TU, add one. */
6983 if (sig_entry == NULL)
6984 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6985
6986 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6987 sig_entry->per_cu.tu_read = 1;
6988 return sig_entry;
6989 }
6990
6991 /* Subroutine of lookup_signatured_type.
6992 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6993 then try the DWP file. If the TU stub (skeleton) has been removed then
6994 it won't be in .gdb_index. */
6995
6996 static struct signatured_type *
6997 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6998 {
6999 struct dwarf2_per_objfile *dwarf2_per_objfile
7000 = cu->per_cu->dwarf2_per_objfile;
7001 struct objfile *objfile = dwarf2_per_objfile->objfile;
7002 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7003 struct dwo_unit *dwo_entry;
7004 struct signatured_type find_sig_entry, *sig_entry;
7005 void **slot;
7006
7007 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7008 gdb_assert (dwp_file != NULL);
7009
7010 /* If TU skeletons have been removed then we may not have read in any
7011 TUs yet. */
7012 if (dwarf2_per_objfile->signatured_types == NULL)
7013 {
7014 dwarf2_per_objfile->signatured_types
7015 = allocate_signatured_type_table (objfile);
7016 }
7017
7018 find_sig_entry.signature = sig;
7019 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7020 &find_sig_entry, INSERT);
7021 sig_entry = (struct signatured_type *) *slot;
7022
7023 /* Have we already tried to read this TU?
7024 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7025 needn't exist in the global table yet). */
7026 if (sig_entry != NULL)
7027 return sig_entry;
7028
7029 if (dwp_file->tus == NULL)
7030 return NULL;
7031 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7032 sig, 1 /* is_debug_types */);
7033 if (dwo_entry == NULL)
7034 return NULL;
7035
7036 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7037 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7038
7039 return sig_entry;
7040 }
7041
7042 /* Lookup a signature based type for DW_FORM_ref_sig8.
7043 Returns NULL if signature SIG is not present in the table.
7044 It is up to the caller to complain about this. */
7045
7046 static struct signatured_type *
7047 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7048 {
7049 struct dwarf2_per_objfile *dwarf2_per_objfile
7050 = cu->per_cu->dwarf2_per_objfile;
7051
7052 if (cu->dwo_unit
7053 && dwarf2_per_objfile->using_index)
7054 {
7055 /* We're in a DWO/DWP file, and we're using .gdb_index.
7056 These cases require special processing. */
7057 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7058 return lookup_dwo_signatured_type (cu, sig);
7059 else
7060 return lookup_dwp_signatured_type (cu, sig);
7061 }
7062 else
7063 {
7064 struct signatured_type find_entry, *entry;
7065
7066 if (dwarf2_per_objfile->signatured_types == NULL)
7067 return NULL;
7068 find_entry.signature = sig;
7069 entry = ((struct signatured_type *)
7070 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7071 return entry;
7072 }
7073 }
7074 \f
7075 /* Low level DIE reading support. */
7076
7077 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7078
7079 static void
7080 init_cu_die_reader (struct die_reader_specs *reader,
7081 struct dwarf2_cu *cu,
7082 struct dwarf2_section_info *section,
7083 struct dwo_file *dwo_file,
7084 struct abbrev_table *abbrev_table)
7085 {
7086 gdb_assert (section->readin && section->buffer != NULL);
7087 reader->abfd = get_section_bfd_owner (section);
7088 reader->cu = cu;
7089 reader->dwo_file = dwo_file;
7090 reader->die_section = section;
7091 reader->buffer = section->buffer;
7092 reader->buffer_end = section->buffer + section->size;
7093 reader->comp_dir = NULL;
7094 reader->abbrev_table = abbrev_table;
7095 }
7096
7097 /* Subroutine of init_cutu_and_read_dies to simplify it.
7098 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7099 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7100 already.
7101
7102 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7103 from it to the DIE in the DWO. If NULL we are skipping the stub.
7104 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7105 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7106 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7107 STUB_COMP_DIR may be non-NULL.
7108 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7109 are filled in with the info of the DIE from the DWO file.
7110 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7111 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7112 kept around for at least as long as *RESULT_READER.
7113
7114 The result is non-zero if a valid (non-dummy) DIE was found. */
7115
7116 static int
7117 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7118 struct dwo_unit *dwo_unit,
7119 struct die_info *stub_comp_unit_die,
7120 const char *stub_comp_dir,
7121 struct die_reader_specs *result_reader,
7122 const gdb_byte **result_info_ptr,
7123 struct die_info **result_comp_unit_die,
7124 int *result_has_children,
7125 abbrev_table_up *result_dwo_abbrev_table)
7126 {
7127 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7128 struct objfile *objfile = dwarf2_per_objfile->objfile;
7129 struct dwarf2_cu *cu = this_cu->cu;
7130 bfd *abfd;
7131 const gdb_byte *begin_info_ptr, *info_ptr;
7132 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7133 int i,num_extra_attrs;
7134 struct dwarf2_section_info *dwo_abbrev_section;
7135 struct attribute *attr;
7136 struct die_info *comp_unit_die;
7137
7138 /* At most one of these may be provided. */
7139 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7140
7141 /* These attributes aren't processed until later:
7142 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7143 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7144 referenced later. However, these attributes are found in the stub
7145 which we won't have later. In order to not impose this complication
7146 on the rest of the code, we read them here and copy them to the
7147 DWO CU/TU die. */
7148
7149 stmt_list = NULL;
7150 low_pc = NULL;
7151 high_pc = NULL;
7152 ranges = NULL;
7153 comp_dir = NULL;
7154
7155 if (stub_comp_unit_die != NULL)
7156 {
7157 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7158 DWO file. */
7159 if (! this_cu->is_debug_types)
7160 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7161 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7162 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7163 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7164 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7165
7166 /* There should be a DW_AT_addr_base attribute here (if needed).
7167 We need the value before we can process DW_FORM_GNU_addr_index
7168 or DW_FORM_addrx. */
7169 cu->addr_base = 0;
7170 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7171 if (attr)
7172 cu->addr_base = DW_UNSND (attr);
7173
7174 /* There should be a DW_AT_ranges_base attribute here (if needed).
7175 We need the value before we can process DW_AT_ranges. */
7176 cu->ranges_base = 0;
7177 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7178 if (attr)
7179 cu->ranges_base = DW_UNSND (attr);
7180 }
7181 else if (stub_comp_dir != NULL)
7182 {
7183 /* Reconstruct the comp_dir attribute to simplify the code below. */
7184 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7185 comp_dir->name = DW_AT_comp_dir;
7186 comp_dir->form = DW_FORM_string;
7187 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7188 DW_STRING (comp_dir) = stub_comp_dir;
7189 }
7190
7191 /* Set up for reading the DWO CU/TU. */
7192 cu->dwo_unit = dwo_unit;
7193 dwarf2_section_info *section = dwo_unit->section;
7194 dwarf2_read_section (objfile, section);
7195 abfd = get_section_bfd_owner (section);
7196 begin_info_ptr = info_ptr = (section->buffer
7197 + to_underlying (dwo_unit->sect_off));
7198 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7199
7200 if (this_cu->is_debug_types)
7201 {
7202 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7203
7204 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7205 &cu->header, section,
7206 dwo_abbrev_section,
7207 info_ptr, rcuh_kind::TYPE);
7208 /* This is not an assert because it can be caused by bad debug info. */
7209 if (sig_type->signature != cu->header.signature)
7210 {
7211 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7212 " TU at offset %s [in module %s]"),
7213 hex_string (sig_type->signature),
7214 hex_string (cu->header.signature),
7215 sect_offset_str (dwo_unit->sect_off),
7216 bfd_get_filename (abfd));
7217 }
7218 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7219 /* For DWOs coming from DWP files, we don't know the CU length
7220 nor the type's offset in the TU until now. */
7221 dwo_unit->length = get_cu_length (&cu->header);
7222 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7223
7224 /* Establish the type offset that can be used to lookup the type.
7225 For DWO files, we don't know it until now. */
7226 sig_type->type_offset_in_section
7227 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7228 }
7229 else
7230 {
7231 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7232 &cu->header, section,
7233 dwo_abbrev_section,
7234 info_ptr, rcuh_kind::COMPILE);
7235 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7236 /* For DWOs coming from DWP files, we don't know the CU length
7237 until now. */
7238 dwo_unit->length = get_cu_length (&cu->header);
7239 }
7240
7241 *result_dwo_abbrev_table
7242 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7243 cu->header.abbrev_sect_off);
7244 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7245 result_dwo_abbrev_table->get ());
7246
7247 /* Read in the die, but leave space to copy over the attributes
7248 from the stub. This has the benefit of simplifying the rest of
7249 the code - all the work to maintain the illusion of a single
7250 DW_TAG_{compile,type}_unit DIE is done here. */
7251 num_extra_attrs = ((stmt_list != NULL)
7252 + (low_pc != NULL)
7253 + (high_pc != NULL)
7254 + (ranges != NULL)
7255 + (comp_dir != NULL));
7256 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7257 result_has_children, num_extra_attrs);
7258
7259 /* Copy over the attributes from the stub to the DIE we just read in. */
7260 comp_unit_die = *result_comp_unit_die;
7261 i = comp_unit_die->num_attrs;
7262 if (stmt_list != NULL)
7263 comp_unit_die->attrs[i++] = *stmt_list;
7264 if (low_pc != NULL)
7265 comp_unit_die->attrs[i++] = *low_pc;
7266 if (high_pc != NULL)
7267 comp_unit_die->attrs[i++] = *high_pc;
7268 if (ranges != NULL)
7269 comp_unit_die->attrs[i++] = *ranges;
7270 if (comp_dir != NULL)
7271 comp_unit_die->attrs[i++] = *comp_dir;
7272 comp_unit_die->num_attrs += num_extra_attrs;
7273
7274 if (dwarf_die_debug)
7275 {
7276 fprintf_unfiltered (gdb_stdlog,
7277 "Read die from %s@0x%x of %s:\n",
7278 get_section_name (section),
7279 (unsigned) (begin_info_ptr - section->buffer),
7280 bfd_get_filename (abfd));
7281 dump_die (comp_unit_die, dwarf_die_debug);
7282 }
7283
7284 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7285 TUs by skipping the stub and going directly to the entry in the DWO file.
7286 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7287 to get it via circuitous means. Blech. */
7288 if (comp_dir != NULL)
7289 result_reader->comp_dir = DW_STRING (comp_dir);
7290
7291 /* Skip dummy compilation units. */
7292 if (info_ptr >= begin_info_ptr + dwo_unit->length
7293 || peek_abbrev_code (abfd, info_ptr) == 0)
7294 return 0;
7295
7296 *result_info_ptr = info_ptr;
7297 return 1;
7298 }
7299
7300 /* Subroutine of init_cutu_and_read_dies to simplify it.
7301 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7302 Returns NULL if the specified DWO unit cannot be found. */
7303
7304 static struct dwo_unit *
7305 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7306 struct die_info *comp_unit_die)
7307 {
7308 struct dwarf2_cu *cu = this_cu->cu;
7309 ULONGEST signature;
7310 struct dwo_unit *dwo_unit;
7311 const char *comp_dir, *dwo_name;
7312
7313 gdb_assert (cu != NULL);
7314
7315 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7316 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7317 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7318
7319 if (this_cu->is_debug_types)
7320 {
7321 struct signatured_type *sig_type;
7322
7323 /* Since this_cu is the first member of struct signatured_type,
7324 we can go from a pointer to one to a pointer to the other. */
7325 sig_type = (struct signatured_type *) this_cu;
7326 signature = sig_type->signature;
7327 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7328 }
7329 else
7330 {
7331 struct attribute *attr;
7332
7333 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7334 if (! attr)
7335 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7336 " [in module %s]"),
7337 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7338 signature = DW_UNSND (attr);
7339 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7340 signature);
7341 }
7342
7343 return dwo_unit;
7344 }
7345
7346 /* Subroutine of init_cutu_and_read_dies to simplify it.
7347 See it for a description of the parameters.
7348 Read a TU directly from a DWO file, bypassing the stub. */
7349
7350 static void
7351 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7352 int use_existing_cu, int keep,
7353 die_reader_func_ftype *die_reader_func,
7354 void *data)
7355 {
7356 std::unique_ptr<dwarf2_cu> new_cu;
7357 struct signatured_type *sig_type;
7358 struct die_reader_specs reader;
7359 const gdb_byte *info_ptr;
7360 struct die_info *comp_unit_die;
7361 int has_children;
7362 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7363
7364 /* Verify we can do the following downcast, and that we have the
7365 data we need. */
7366 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7367 sig_type = (struct signatured_type *) this_cu;
7368 gdb_assert (sig_type->dwo_unit != NULL);
7369
7370 if (use_existing_cu && this_cu->cu != NULL)
7371 {
7372 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7373 /* There's no need to do the rereading_dwo_cu handling that
7374 init_cutu_and_read_dies does since we don't read the stub. */
7375 }
7376 else
7377 {
7378 /* If !use_existing_cu, this_cu->cu must be NULL. */
7379 gdb_assert (this_cu->cu == NULL);
7380 new_cu.reset (new dwarf2_cu (this_cu));
7381 }
7382
7383 /* A future optimization, if needed, would be to use an existing
7384 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7385 could share abbrev tables. */
7386
7387 /* The abbreviation table used by READER, this must live at least as long as
7388 READER. */
7389 abbrev_table_up dwo_abbrev_table;
7390
7391 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7392 NULL /* stub_comp_unit_die */,
7393 sig_type->dwo_unit->dwo_file->comp_dir,
7394 &reader, &info_ptr,
7395 &comp_unit_die, &has_children,
7396 &dwo_abbrev_table) == 0)
7397 {
7398 /* Dummy die. */
7399 return;
7400 }
7401
7402 /* All the "real" work is done here. */
7403 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7404
7405 /* This duplicates the code in init_cutu_and_read_dies,
7406 but the alternative is making the latter more complex.
7407 This function is only for the special case of using DWO files directly:
7408 no point in overly complicating the general case just to handle this. */
7409 if (new_cu != NULL && keep)
7410 {
7411 /* Link this CU into read_in_chain. */
7412 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7413 dwarf2_per_objfile->read_in_chain = this_cu;
7414 /* The chain owns it now. */
7415 new_cu.release ();
7416 }
7417 }
7418
7419 /* Initialize a CU (or TU) and read its DIEs.
7420 If the CU defers to a DWO file, read the DWO file as well.
7421
7422 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7423 Otherwise the table specified in the comp unit header is read in and used.
7424 This is an optimization for when we already have the abbrev table.
7425
7426 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7427 Otherwise, a new CU is allocated with xmalloc.
7428
7429 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7430 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7431
7432 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7433 linker) then DIE_READER_FUNC will not get called. */
7434
7435 static void
7436 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7437 struct abbrev_table *abbrev_table,
7438 int use_existing_cu, int keep,
7439 bool skip_partial,
7440 die_reader_func_ftype *die_reader_func,
7441 void *data)
7442 {
7443 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7444 struct objfile *objfile = dwarf2_per_objfile->objfile;
7445 struct dwarf2_section_info *section = this_cu->section;
7446 bfd *abfd = get_section_bfd_owner (section);
7447 struct dwarf2_cu *cu;
7448 const gdb_byte *begin_info_ptr, *info_ptr;
7449 struct die_reader_specs reader;
7450 struct die_info *comp_unit_die;
7451 int has_children;
7452 struct attribute *attr;
7453 struct signatured_type *sig_type = NULL;
7454 struct dwarf2_section_info *abbrev_section;
7455 /* Non-zero if CU currently points to a DWO file and we need to
7456 reread it. When this happens we need to reread the skeleton die
7457 before we can reread the DWO file (this only applies to CUs, not TUs). */
7458 int rereading_dwo_cu = 0;
7459
7460 if (dwarf_die_debug)
7461 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7462 this_cu->is_debug_types ? "type" : "comp",
7463 sect_offset_str (this_cu->sect_off));
7464
7465 if (use_existing_cu)
7466 gdb_assert (keep);
7467
7468 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7469 file (instead of going through the stub), short-circuit all of this. */
7470 if (this_cu->reading_dwo_directly)
7471 {
7472 /* Narrow down the scope of possibilities to have to understand. */
7473 gdb_assert (this_cu->is_debug_types);
7474 gdb_assert (abbrev_table == NULL);
7475 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7476 die_reader_func, data);
7477 return;
7478 }
7479
7480 /* This is cheap if the section is already read in. */
7481 dwarf2_read_section (objfile, section);
7482
7483 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7484
7485 abbrev_section = get_abbrev_section_for_cu (this_cu);
7486
7487 std::unique_ptr<dwarf2_cu> new_cu;
7488 if (use_existing_cu && this_cu->cu != NULL)
7489 {
7490 cu = this_cu->cu;
7491 /* If this CU is from a DWO file we need to start over, we need to
7492 refetch the attributes from the skeleton CU.
7493 This could be optimized by retrieving those attributes from when we
7494 were here the first time: the previous comp_unit_die was stored in
7495 comp_unit_obstack. But there's no data yet that we need this
7496 optimization. */
7497 if (cu->dwo_unit != NULL)
7498 rereading_dwo_cu = 1;
7499 }
7500 else
7501 {
7502 /* If !use_existing_cu, this_cu->cu must be NULL. */
7503 gdb_assert (this_cu->cu == NULL);
7504 new_cu.reset (new dwarf2_cu (this_cu));
7505 cu = new_cu.get ();
7506 }
7507
7508 /* Get the header. */
7509 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7510 {
7511 /* We already have the header, there's no need to read it in again. */
7512 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7513 }
7514 else
7515 {
7516 if (this_cu->is_debug_types)
7517 {
7518 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7519 &cu->header, section,
7520 abbrev_section, info_ptr,
7521 rcuh_kind::TYPE);
7522
7523 /* Since per_cu is the first member of struct signatured_type,
7524 we can go from a pointer to one to a pointer to the other. */
7525 sig_type = (struct signatured_type *) this_cu;
7526 gdb_assert (sig_type->signature == cu->header.signature);
7527 gdb_assert (sig_type->type_offset_in_tu
7528 == cu->header.type_cu_offset_in_tu);
7529 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7530
7531 /* LENGTH has not been set yet for type units if we're
7532 using .gdb_index. */
7533 this_cu->length = get_cu_length (&cu->header);
7534
7535 /* Establish the type offset that can be used to lookup the type. */
7536 sig_type->type_offset_in_section =
7537 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7538
7539 this_cu->dwarf_version = cu->header.version;
7540 }
7541 else
7542 {
7543 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7544 &cu->header, section,
7545 abbrev_section,
7546 info_ptr,
7547 rcuh_kind::COMPILE);
7548
7549 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7550 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7551 this_cu->dwarf_version = cu->header.version;
7552 }
7553 }
7554
7555 /* Skip dummy compilation units. */
7556 if (info_ptr >= begin_info_ptr + this_cu->length
7557 || peek_abbrev_code (abfd, info_ptr) == 0)
7558 return;
7559
7560 /* If we don't have them yet, read the abbrevs for this compilation unit.
7561 And if we need to read them now, make sure they're freed when we're
7562 done (own the table through ABBREV_TABLE_HOLDER). */
7563 abbrev_table_up abbrev_table_holder;
7564 if (abbrev_table != NULL)
7565 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7566 else
7567 {
7568 abbrev_table_holder
7569 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7570 cu->header.abbrev_sect_off);
7571 abbrev_table = abbrev_table_holder.get ();
7572 }
7573
7574 /* Read the top level CU/TU die. */
7575 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7576 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7577
7578 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7579 return;
7580
7581 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7582 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7583 table from the DWO file and pass the ownership over to us. It will be
7584 referenced from READER, so we must make sure to free it after we're done
7585 with READER.
7586
7587 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7588 DWO CU, that this test will fail (the attribute will not be present). */
7589 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7590 abbrev_table_up dwo_abbrev_table;
7591 if (attr)
7592 {
7593 struct dwo_unit *dwo_unit;
7594 struct die_info *dwo_comp_unit_die;
7595
7596 if (has_children)
7597 {
7598 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7599 " has children (offset %s) [in module %s]"),
7600 sect_offset_str (this_cu->sect_off),
7601 bfd_get_filename (abfd));
7602 }
7603 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7604 if (dwo_unit != NULL)
7605 {
7606 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7607 comp_unit_die, NULL,
7608 &reader, &info_ptr,
7609 &dwo_comp_unit_die, &has_children,
7610 &dwo_abbrev_table) == 0)
7611 {
7612 /* Dummy die. */
7613 return;
7614 }
7615 comp_unit_die = dwo_comp_unit_die;
7616 }
7617 else
7618 {
7619 /* Yikes, we couldn't find the rest of the DIE, we only have
7620 the stub. A complaint has already been logged. There's
7621 not much more we can do except pass on the stub DIE to
7622 die_reader_func. We don't want to throw an error on bad
7623 debug info. */
7624 }
7625 }
7626
7627 /* All of the above is setup for this call. Yikes. */
7628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7629
7630 /* Done, clean up. */
7631 if (new_cu != NULL && keep)
7632 {
7633 /* Link this CU into read_in_chain. */
7634 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7635 dwarf2_per_objfile->read_in_chain = this_cu;
7636 /* The chain owns it now. */
7637 new_cu.release ();
7638 }
7639 }
7640
7641 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7642 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7643 to have already done the lookup to find the DWO file).
7644
7645 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7646 THIS_CU->is_debug_types, but nothing else.
7647
7648 We fill in THIS_CU->length.
7649
7650 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7651 linker) then DIE_READER_FUNC will not get called.
7652
7653 THIS_CU->cu is always freed when done.
7654 This is done in order to not leave THIS_CU->cu in a state where we have
7655 to care whether it refers to the "main" CU or the DWO CU. */
7656
7657 static void
7658 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7659 struct dwo_file *dwo_file,
7660 die_reader_func_ftype *die_reader_func,
7661 void *data)
7662 {
7663 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7664 struct objfile *objfile = dwarf2_per_objfile->objfile;
7665 struct dwarf2_section_info *section = this_cu->section;
7666 bfd *abfd = get_section_bfd_owner (section);
7667 struct dwarf2_section_info *abbrev_section;
7668 const gdb_byte *begin_info_ptr, *info_ptr;
7669 struct die_reader_specs reader;
7670 struct die_info *comp_unit_die;
7671 int has_children;
7672
7673 if (dwarf_die_debug)
7674 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7675 this_cu->is_debug_types ? "type" : "comp",
7676 sect_offset_str (this_cu->sect_off));
7677
7678 gdb_assert (this_cu->cu == NULL);
7679
7680 abbrev_section = (dwo_file != NULL
7681 ? &dwo_file->sections.abbrev
7682 : get_abbrev_section_for_cu (this_cu));
7683
7684 /* This is cheap if the section is already read in. */
7685 dwarf2_read_section (objfile, section);
7686
7687 struct dwarf2_cu cu (this_cu);
7688
7689 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7690 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7691 &cu.header, section,
7692 abbrev_section, info_ptr,
7693 (this_cu->is_debug_types
7694 ? rcuh_kind::TYPE
7695 : rcuh_kind::COMPILE));
7696
7697 this_cu->length = get_cu_length (&cu.header);
7698
7699 /* Skip dummy compilation units. */
7700 if (info_ptr >= begin_info_ptr + this_cu->length
7701 || peek_abbrev_code (abfd, info_ptr) == 0)
7702 return;
7703
7704 abbrev_table_up abbrev_table
7705 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7706 cu.header.abbrev_sect_off);
7707
7708 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7709 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7710
7711 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7712 }
7713
7714 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7715 does not lookup the specified DWO file.
7716 This cannot be used to read DWO files.
7717
7718 THIS_CU->cu is always freed when done.
7719 This is done in order to not leave THIS_CU->cu in a state where we have
7720 to care whether it refers to the "main" CU or the DWO CU.
7721 We can revisit this if the data shows there's a performance issue. */
7722
7723 static void
7724 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7725 die_reader_func_ftype *die_reader_func,
7726 void *data)
7727 {
7728 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7729 }
7730 \f
7731 /* Type Unit Groups.
7732
7733 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7734 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7735 so that all types coming from the same compilation (.o file) are grouped
7736 together. A future step could be to put the types in the same symtab as
7737 the CU the types ultimately came from. */
7738
7739 static hashval_t
7740 hash_type_unit_group (const void *item)
7741 {
7742 const struct type_unit_group *tu_group
7743 = (const struct type_unit_group *) item;
7744
7745 return hash_stmt_list_entry (&tu_group->hash);
7746 }
7747
7748 static int
7749 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7750 {
7751 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7752 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7753
7754 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7755 }
7756
7757 /* Allocate a hash table for type unit groups. */
7758
7759 static htab_t
7760 allocate_type_unit_groups_table (struct objfile *objfile)
7761 {
7762 return htab_create_alloc_ex (3,
7763 hash_type_unit_group,
7764 eq_type_unit_group,
7765 NULL,
7766 &objfile->objfile_obstack,
7767 hashtab_obstack_allocate,
7768 dummy_obstack_deallocate);
7769 }
7770
7771 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7772 partial symtabs. We combine several TUs per psymtab to not let the size
7773 of any one psymtab grow too big. */
7774 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7775 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7776
7777 /* Helper routine for get_type_unit_group.
7778 Create the type_unit_group object used to hold one or more TUs. */
7779
7780 static struct type_unit_group *
7781 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7782 {
7783 struct dwarf2_per_objfile *dwarf2_per_objfile
7784 = cu->per_cu->dwarf2_per_objfile;
7785 struct objfile *objfile = dwarf2_per_objfile->objfile;
7786 struct dwarf2_per_cu_data *per_cu;
7787 struct type_unit_group *tu_group;
7788
7789 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7790 struct type_unit_group);
7791 per_cu = &tu_group->per_cu;
7792 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7793
7794 if (dwarf2_per_objfile->using_index)
7795 {
7796 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7797 struct dwarf2_per_cu_quick_data);
7798 }
7799 else
7800 {
7801 unsigned int line_offset = to_underlying (line_offset_struct);
7802 struct partial_symtab *pst;
7803 std::string name;
7804
7805 /* Give the symtab a useful name for debug purposes. */
7806 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7807 name = string_printf ("<type_units_%d>",
7808 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7809 else
7810 name = string_printf ("<type_units_at_0x%x>", line_offset);
7811
7812 pst = create_partial_symtab (per_cu, name.c_str ());
7813 pst->anonymous = 1;
7814 }
7815
7816 tu_group->hash.dwo_unit = cu->dwo_unit;
7817 tu_group->hash.line_sect_off = line_offset_struct;
7818
7819 return tu_group;
7820 }
7821
7822 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7823 STMT_LIST is a DW_AT_stmt_list attribute. */
7824
7825 static struct type_unit_group *
7826 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7827 {
7828 struct dwarf2_per_objfile *dwarf2_per_objfile
7829 = cu->per_cu->dwarf2_per_objfile;
7830 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7831 struct type_unit_group *tu_group;
7832 void **slot;
7833 unsigned int line_offset;
7834 struct type_unit_group type_unit_group_for_lookup;
7835
7836 if (dwarf2_per_objfile->type_unit_groups == NULL)
7837 {
7838 dwarf2_per_objfile->type_unit_groups =
7839 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7840 }
7841
7842 /* Do we need to create a new group, or can we use an existing one? */
7843
7844 if (stmt_list)
7845 {
7846 line_offset = DW_UNSND (stmt_list);
7847 ++tu_stats->nr_symtab_sharers;
7848 }
7849 else
7850 {
7851 /* Ugh, no stmt_list. Rare, but we have to handle it.
7852 We can do various things here like create one group per TU or
7853 spread them over multiple groups to split up the expansion work.
7854 To avoid worst case scenarios (too many groups or too large groups)
7855 we, umm, group them in bunches. */
7856 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7857 | (tu_stats->nr_stmt_less_type_units
7858 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7859 ++tu_stats->nr_stmt_less_type_units;
7860 }
7861
7862 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7863 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7864 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7865 &type_unit_group_for_lookup, INSERT);
7866 if (*slot != NULL)
7867 {
7868 tu_group = (struct type_unit_group *) *slot;
7869 gdb_assert (tu_group != NULL);
7870 }
7871 else
7872 {
7873 sect_offset line_offset_struct = (sect_offset) line_offset;
7874 tu_group = create_type_unit_group (cu, line_offset_struct);
7875 *slot = tu_group;
7876 ++tu_stats->nr_symtabs;
7877 }
7878
7879 return tu_group;
7880 }
7881 \f
7882 /* Partial symbol tables. */
7883
7884 /* Create a psymtab named NAME and assign it to PER_CU.
7885
7886 The caller must fill in the following details:
7887 dirname, textlow, texthigh. */
7888
7889 static struct partial_symtab *
7890 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7891 {
7892 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7893 struct partial_symtab *pst;
7894
7895 pst = start_psymtab_common (objfile, name, 0);
7896
7897 pst->psymtabs_addrmap_supported = 1;
7898
7899 /* This is the glue that links PST into GDB's symbol API. */
7900 pst->read_symtab_private = per_cu;
7901 pst->read_symtab = dwarf2_read_symtab;
7902 per_cu->v.psymtab = pst;
7903
7904 return pst;
7905 }
7906
7907 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7908 type. */
7909
7910 struct process_psymtab_comp_unit_data
7911 {
7912 /* True if we are reading a DW_TAG_partial_unit. */
7913
7914 int want_partial_unit;
7915
7916 /* The "pretend" language that is used if the CU doesn't declare a
7917 language. */
7918
7919 enum language pretend_language;
7920 };
7921
7922 /* die_reader_func for process_psymtab_comp_unit. */
7923
7924 static void
7925 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7926 const gdb_byte *info_ptr,
7927 struct die_info *comp_unit_die,
7928 int has_children,
7929 void *data)
7930 {
7931 struct dwarf2_cu *cu = reader->cu;
7932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7934 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7935 CORE_ADDR baseaddr;
7936 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7937 struct partial_symtab *pst;
7938 enum pc_bounds_kind cu_bounds_kind;
7939 const char *filename;
7940 struct process_psymtab_comp_unit_data *info
7941 = (struct process_psymtab_comp_unit_data *) data;
7942
7943 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7944 return;
7945
7946 gdb_assert (! per_cu->is_debug_types);
7947
7948 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7949
7950 /* Allocate a new partial symbol table structure. */
7951 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7952 if (filename == NULL)
7953 filename = "";
7954
7955 pst = create_partial_symtab (per_cu, filename);
7956
7957 /* This must be done before calling dwarf2_build_include_psymtabs. */
7958 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7959
7960 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7961
7962 dwarf2_find_base_address (comp_unit_die, cu);
7963
7964 /* Possibly set the default values of LOWPC and HIGHPC from
7965 `DW_AT_ranges'. */
7966 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7967 &best_highpc, cu, pst);
7968 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7969 {
7970 CORE_ADDR low
7971 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7972 - baseaddr);
7973 CORE_ADDR high
7974 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7975 - baseaddr - 1);
7976 /* Store the contiguous range if it is not empty; it can be
7977 empty for CUs with no code. */
7978 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7979 low, high, pst);
7980 }
7981
7982 /* Check if comp unit has_children.
7983 If so, read the rest of the partial symbols from this comp unit.
7984 If not, there's no more debug_info for this comp unit. */
7985 if (has_children)
7986 {
7987 struct partial_die_info *first_die;
7988 CORE_ADDR lowpc, highpc;
7989
7990 lowpc = ((CORE_ADDR) -1);
7991 highpc = ((CORE_ADDR) 0);
7992
7993 first_die = load_partial_dies (reader, info_ptr, 1);
7994
7995 scan_partial_symbols (first_die, &lowpc, &highpc,
7996 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7997
7998 /* If we didn't find a lowpc, set it to highpc to avoid
7999 complaints from `maint check'. */
8000 if (lowpc == ((CORE_ADDR) -1))
8001 lowpc = highpc;
8002
8003 /* If the compilation unit didn't have an explicit address range,
8004 then use the information extracted from its child dies. */
8005 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8006 {
8007 best_lowpc = lowpc;
8008 best_highpc = highpc;
8009 }
8010 }
8011 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8012 best_lowpc + baseaddr)
8013 - baseaddr);
8014 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8015 best_highpc + baseaddr)
8016 - baseaddr);
8017
8018 end_psymtab_common (objfile, pst);
8019
8020 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8021 {
8022 int i;
8023 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8024 struct dwarf2_per_cu_data *iter;
8025
8026 /* Fill in 'dependencies' here; we fill in 'users' in a
8027 post-pass. */
8028 pst->number_of_dependencies = len;
8029 pst->dependencies
8030 = objfile->partial_symtabs->allocate_dependencies (len);
8031 for (i = 0;
8032 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8033 i, iter);
8034 ++i)
8035 pst->dependencies[i] = iter->v.psymtab;
8036
8037 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8038 }
8039
8040 /* Get the list of files included in the current compilation unit,
8041 and build a psymtab for each of them. */
8042 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8043
8044 if (dwarf_read_debug)
8045 fprintf_unfiltered (gdb_stdlog,
8046 "Psymtab for %s unit @%s: %s - %s"
8047 ", %d global, %d static syms\n",
8048 per_cu->is_debug_types ? "type" : "comp",
8049 sect_offset_str (per_cu->sect_off),
8050 paddress (gdbarch, pst->text_low (objfile)),
8051 paddress (gdbarch, pst->text_high (objfile)),
8052 pst->n_global_syms, pst->n_static_syms);
8053 }
8054
8055 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8056 Process compilation unit THIS_CU for a psymtab. */
8057
8058 static void
8059 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8060 int want_partial_unit,
8061 enum language pretend_language)
8062 {
8063 /* If this compilation unit was already read in, free the
8064 cached copy in order to read it in again. This is
8065 necessary because we skipped some symbols when we first
8066 read in the compilation unit (see load_partial_dies).
8067 This problem could be avoided, but the benefit is unclear. */
8068 if (this_cu->cu != NULL)
8069 free_one_cached_comp_unit (this_cu);
8070
8071 if (this_cu->is_debug_types)
8072 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8073 build_type_psymtabs_reader, NULL);
8074 else
8075 {
8076 process_psymtab_comp_unit_data info;
8077 info.want_partial_unit = want_partial_unit;
8078 info.pretend_language = pretend_language;
8079 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8080 process_psymtab_comp_unit_reader, &info);
8081 }
8082
8083 /* Age out any secondary CUs. */
8084 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8085 }
8086
8087 /* Reader function for build_type_psymtabs. */
8088
8089 static void
8090 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8091 const gdb_byte *info_ptr,
8092 struct die_info *type_unit_die,
8093 int has_children,
8094 void *data)
8095 {
8096 struct dwarf2_per_objfile *dwarf2_per_objfile
8097 = reader->cu->per_cu->dwarf2_per_objfile;
8098 struct objfile *objfile = dwarf2_per_objfile->objfile;
8099 struct dwarf2_cu *cu = reader->cu;
8100 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8101 struct signatured_type *sig_type;
8102 struct type_unit_group *tu_group;
8103 struct attribute *attr;
8104 struct partial_die_info *first_die;
8105 CORE_ADDR lowpc, highpc;
8106 struct partial_symtab *pst;
8107
8108 gdb_assert (data == NULL);
8109 gdb_assert (per_cu->is_debug_types);
8110 sig_type = (struct signatured_type *) per_cu;
8111
8112 if (! has_children)
8113 return;
8114
8115 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8116 tu_group = get_type_unit_group (cu, attr);
8117
8118 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8119
8120 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8121 pst = create_partial_symtab (per_cu, "");
8122 pst->anonymous = 1;
8123
8124 first_die = load_partial_dies (reader, info_ptr, 1);
8125
8126 lowpc = (CORE_ADDR) -1;
8127 highpc = (CORE_ADDR) 0;
8128 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8129
8130 end_psymtab_common (objfile, pst);
8131 }
8132
8133 /* Struct used to sort TUs by their abbreviation table offset. */
8134
8135 struct tu_abbrev_offset
8136 {
8137 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8138 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8139 {}
8140
8141 signatured_type *sig_type;
8142 sect_offset abbrev_offset;
8143 };
8144
8145 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8146
8147 static bool
8148 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8149 const struct tu_abbrev_offset &b)
8150 {
8151 return a.abbrev_offset < b.abbrev_offset;
8152 }
8153
8154 /* Efficiently read all the type units.
8155 This does the bulk of the work for build_type_psymtabs.
8156
8157 The efficiency is because we sort TUs by the abbrev table they use and
8158 only read each abbrev table once. In one program there are 200K TUs
8159 sharing 8K abbrev tables.
8160
8161 The main purpose of this function is to support building the
8162 dwarf2_per_objfile->type_unit_groups table.
8163 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8164 can collapse the search space by grouping them by stmt_list.
8165 The savings can be significant, in the same program from above the 200K TUs
8166 share 8K stmt_list tables.
8167
8168 FUNC is expected to call get_type_unit_group, which will create the
8169 struct type_unit_group if necessary and add it to
8170 dwarf2_per_objfile->type_unit_groups. */
8171
8172 static void
8173 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8174 {
8175 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8176 abbrev_table_up abbrev_table;
8177 sect_offset abbrev_offset;
8178
8179 /* It's up to the caller to not call us multiple times. */
8180 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8181
8182 if (dwarf2_per_objfile->all_type_units.empty ())
8183 return;
8184
8185 /* TUs typically share abbrev tables, and there can be way more TUs than
8186 abbrev tables. Sort by abbrev table to reduce the number of times we
8187 read each abbrev table in.
8188 Alternatives are to punt or to maintain a cache of abbrev tables.
8189 This is simpler and efficient enough for now.
8190
8191 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8192 symtab to use). Typically TUs with the same abbrev offset have the same
8193 stmt_list value too so in practice this should work well.
8194
8195 The basic algorithm here is:
8196
8197 sort TUs by abbrev table
8198 for each TU with same abbrev table:
8199 read abbrev table if first user
8200 read TU top level DIE
8201 [IWBN if DWO skeletons had DW_AT_stmt_list]
8202 call FUNC */
8203
8204 if (dwarf_read_debug)
8205 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8206
8207 /* Sort in a separate table to maintain the order of all_type_units
8208 for .gdb_index: TU indices directly index all_type_units. */
8209 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8210 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8211
8212 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8213 sorted_by_abbrev.emplace_back
8214 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8215 sig_type->per_cu.section,
8216 sig_type->per_cu.sect_off));
8217
8218 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8219 sort_tu_by_abbrev_offset);
8220
8221 abbrev_offset = (sect_offset) ~(unsigned) 0;
8222
8223 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8224 {
8225 /* Switch to the next abbrev table if necessary. */
8226 if (abbrev_table == NULL
8227 || tu.abbrev_offset != abbrev_offset)
8228 {
8229 abbrev_offset = tu.abbrev_offset;
8230 abbrev_table =
8231 abbrev_table_read_table (dwarf2_per_objfile,
8232 &dwarf2_per_objfile->abbrev,
8233 abbrev_offset);
8234 ++tu_stats->nr_uniq_abbrev_tables;
8235 }
8236
8237 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8238 0, 0, false, build_type_psymtabs_reader, NULL);
8239 }
8240 }
8241
8242 /* Print collected type unit statistics. */
8243
8244 static void
8245 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8246 {
8247 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8248
8249 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8250 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8251 dwarf2_per_objfile->all_type_units.size ());
8252 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8253 tu_stats->nr_uniq_abbrev_tables);
8254 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8255 tu_stats->nr_symtabs);
8256 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8257 tu_stats->nr_symtab_sharers);
8258 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8259 tu_stats->nr_stmt_less_type_units);
8260 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8261 tu_stats->nr_all_type_units_reallocs);
8262 }
8263
8264 /* Traversal function for build_type_psymtabs. */
8265
8266 static int
8267 build_type_psymtab_dependencies (void **slot, void *info)
8268 {
8269 struct dwarf2_per_objfile *dwarf2_per_objfile
8270 = (struct dwarf2_per_objfile *) info;
8271 struct objfile *objfile = dwarf2_per_objfile->objfile;
8272 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8273 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8274 struct partial_symtab *pst = per_cu->v.psymtab;
8275 int len = VEC_length (sig_type_ptr, tu_group->tus);
8276 struct signatured_type *iter;
8277 int i;
8278
8279 gdb_assert (len > 0);
8280 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8281
8282 pst->number_of_dependencies = len;
8283 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8284 for (i = 0;
8285 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8286 ++i)
8287 {
8288 gdb_assert (iter->per_cu.is_debug_types);
8289 pst->dependencies[i] = iter->per_cu.v.psymtab;
8290 iter->type_unit_group = tu_group;
8291 }
8292
8293 VEC_free (sig_type_ptr, tu_group->tus);
8294
8295 return 1;
8296 }
8297
8298 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8299 Build partial symbol tables for the .debug_types comp-units. */
8300
8301 static void
8302 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8303 {
8304 if (! create_all_type_units (dwarf2_per_objfile))
8305 return;
8306
8307 build_type_psymtabs_1 (dwarf2_per_objfile);
8308 }
8309
8310 /* Traversal function for process_skeletonless_type_unit.
8311 Read a TU in a DWO file and build partial symbols for it. */
8312
8313 static int
8314 process_skeletonless_type_unit (void **slot, void *info)
8315 {
8316 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8317 struct dwarf2_per_objfile *dwarf2_per_objfile
8318 = (struct dwarf2_per_objfile *) info;
8319 struct signatured_type find_entry, *entry;
8320
8321 /* If this TU doesn't exist in the global table, add it and read it in. */
8322
8323 if (dwarf2_per_objfile->signatured_types == NULL)
8324 {
8325 dwarf2_per_objfile->signatured_types
8326 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8327 }
8328
8329 find_entry.signature = dwo_unit->signature;
8330 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8331 INSERT);
8332 /* If we've already seen this type there's nothing to do. What's happening
8333 is we're doing our own version of comdat-folding here. */
8334 if (*slot != NULL)
8335 return 1;
8336
8337 /* This does the job that create_all_type_units would have done for
8338 this TU. */
8339 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8340 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8341 *slot = entry;
8342
8343 /* This does the job that build_type_psymtabs_1 would have done. */
8344 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8345 build_type_psymtabs_reader, NULL);
8346
8347 return 1;
8348 }
8349
8350 /* Traversal function for process_skeletonless_type_units. */
8351
8352 static int
8353 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8354 {
8355 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8356
8357 if (dwo_file->tus != NULL)
8358 {
8359 htab_traverse_noresize (dwo_file->tus,
8360 process_skeletonless_type_unit, info);
8361 }
8362
8363 return 1;
8364 }
8365
8366 /* Scan all TUs of DWO files, verifying we've processed them.
8367 This is needed in case a TU was emitted without its skeleton.
8368 Note: This can't be done until we know what all the DWO files are. */
8369
8370 static void
8371 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8372 {
8373 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8374 if (get_dwp_file (dwarf2_per_objfile) == NULL
8375 && dwarf2_per_objfile->dwo_files != NULL)
8376 {
8377 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8378 process_dwo_file_for_skeletonless_type_units,
8379 dwarf2_per_objfile);
8380 }
8381 }
8382
8383 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8384
8385 static void
8386 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8387 {
8388 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8389 {
8390 struct partial_symtab *pst = per_cu->v.psymtab;
8391
8392 if (pst == NULL)
8393 continue;
8394
8395 for (int j = 0; j < pst->number_of_dependencies; ++j)
8396 {
8397 /* Set the 'user' field only if it is not already set. */
8398 if (pst->dependencies[j]->user == NULL)
8399 pst->dependencies[j]->user = pst;
8400 }
8401 }
8402 }
8403
8404 /* Build the partial symbol table by doing a quick pass through the
8405 .debug_info and .debug_abbrev sections. */
8406
8407 static void
8408 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8409 {
8410 struct objfile *objfile = dwarf2_per_objfile->objfile;
8411
8412 if (dwarf_read_debug)
8413 {
8414 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8415 objfile_name (objfile));
8416 }
8417
8418 dwarf2_per_objfile->reading_partial_symbols = 1;
8419
8420 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8421
8422 /* Any cached compilation units will be linked by the per-objfile
8423 read_in_chain. Make sure to free them when we're done. */
8424 free_cached_comp_units freer (dwarf2_per_objfile);
8425
8426 build_type_psymtabs (dwarf2_per_objfile);
8427
8428 create_all_comp_units (dwarf2_per_objfile);
8429
8430 /* Create a temporary address map on a temporary obstack. We later
8431 copy this to the final obstack. */
8432 auto_obstack temp_obstack;
8433
8434 scoped_restore save_psymtabs_addrmap
8435 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8436 addrmap_create_mutable (&temp_obstack));
8437
8438 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8439 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8440
8441 /* This has to wait until we read the CUs, we need the list of DWOs. */
8442 process_skeletonless_type_units (dwarf2_per_objfile);
8443
8444 /* Now that all TUs have been processed we can fill in the dependencies. */
8445 if (dwarf2_per_objfile->type_unit_groups != NULL)
8446 {
8447 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8448 build_type_psymtab_dependencies, dwarf2_per_objfile);
8449 }
8450
8451 if (dwarf_read_debug)
8452 print_tu_stats (dwarf2_per_objfile);
8453
8454 set_partial_user (dwarf2_per_objfile);
8455
8456 objfile->partial_symtabs->psymtabs_addrmap
8457 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8458 objfile->partial_symtabs->obstack ());
8459 /* At this point we want to keep the address map. */
8460 save_psymtabs_addrmap.release ();
8461
8462 if (dwarf_read_debug)
8463 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8464 objfile_name (objfile));
8465 }
8466
8467 /* die_reader_func for load_partial_comp_unit. */
8468
8469 static void
8470 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8471 const gdb_byte *info_ptr,
8472 struct die_info *comp_unit_die,
8473 int has_children,
8474 void *data)
8475 {
8476 struct dwarf2_cu *cu = reader->cu;
8477
8478 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8479
8480 /* Check if comp unit has_children.
8481 If so, read the rest of the partial symbols from this comp unit.
8482 If not, there's no more debug_info for this comp unit. */
8483 if (has_children)
8484 load_partial_dies (reader, info_ptr, 0);
8485 }
8486
8487 /* Load the partial DIEs for a secondary CU into memory.
8488 This is also used when rereading a primary CU with load_all_dies. */
8489
8490 static void
8491 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8492 {
8493 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8494 load_partial_comp_unit_reader, NULL);
8495 }
8496
8497 static void
8498 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8499 struct dwarf2_section_info *section,
8500 struct dwarf2_section_info *abbrev_section,
8501 unsigned int is_dwz)
8502 {
8503 const gdb_byte *info_ptr;
8504 struct objfile *objfile = dwarf2_per_objfile->objfile;
8505
8506 if (dwarf_read_debug)
8507 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8508 get_section_name (section),
8509 get_section_file_name (section));
8510
8511 dwarf2_read_section (objfile, section);
8512
8513 info_ptr = section->buffer;
8514
8515 while (info_ptr < section->buffer + section->size)
8516 {
8517 struct dwarf2_per_cu_data *this_cu;
8518
8519 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8520
8521 comp_unit_head cu_header;
8522 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8523 abbrev_section, info_ptr,
8524 rcuh_kind::COMPILE);
8525
8526 /* Save the compilation unit for later lookup. */
8527 if (cu_header.unit_type != DW_UT_type)
8528 {
8529 this_cu = XOBNEW (&objfile->objfile_obstack,
8530 struct dwarf2_per_cu_data);
8531 memset (this_cu, 0, sizeof (*this_cu));
8532 }
8533 else
8534 {
8535 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8536 struct signatured_type);
8537 memset (sig_type, 0, sizeof (*sig_type));
8538 sig_type->signature = cu_header.signature;
8539 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8540 this_cu = &sig_type->per_cu;
8541 }
8542 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8543 this_cu->sect_off = sect_off;
8544 this_cu->length = cu_header.length + cu_header.initial_length_size;
8545 this_cu->is_dwz = is_dwz;
8546 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8547 this_cu->section = section;
8548
8549 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8550
8551 info_ptr = info_ptr + this_cu->length;
8552 }
8553 }
8554
8555 /* Create a list of all compilation units in OBJFILE.
8556 This is only done for -readnow and building partial symtabs. */
8557
8558 static void
8559 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8560 {
8561 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8562 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8563 &dwarf2_per_objfile->abbrev, 0);
8564
8565 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8566 if (dwz != NULL)
8567 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8568 1);
8569 }
8570
8571 /* Process all loaded DIEs for compilation unit CU, starting at
8572 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8573 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8574 DW_AT_ranges). See the comments of add_partial_subprogram on how
8575 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8576
8577 static void
8578 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8579 CORE_ADDR *highpc, int set_addrmap,
8580 struct dwarf2_cu *cu)
8581 {
8582 struct partial_die_info *pdi;
8583
8584 /* Now, march along the PDI's, descending into ones which have
8585 interesting children but skipping the children of the other ones,
8586 until we reach the end of the compilation unit. */
8587
8588 pdi = first_die;
8589
8590 while (pdi != NULL)
8591 {
8592 pdi->fixup (cu);
8593
8594 /* Anonymous namespaces or modules have no name but have interesting
8595 children, so we need to look at them. Ditto for anonymous
8596 enums. */
8597
8598 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8599 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8600 || pdi->tag == DW_TAG_imported_unit
8601 || pdi->tag == DW_TAG_inlined_subroutine)
8602 {
8603 switch (pdi->tag)
8604 {
8605 case DW_TAG_subprogram:
8606 case DW_TAG_inlined_subroutine:
8607 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8608 break;
8609 case DW_TAG_constant:
8610 case DW_TAG_variable:
8611 case DW_TAG_typedef:
8612 case DW_TAG_union_type:
8613 if (!pdi->is_declaration)
8614 {
8615 add_partial_symbol (pdi, cu);
8616 }
8617 break;
8618 case DW_TAG_class_type:
8619 case DW_TAG_interface_type:
8620 case DW_TAG_structure_type:
8621 if (!pdi->is_declaration)
8622 {
8623 add_partial_symbol (pdi, cu);
8624 }
8625 if ((cu->language == language_rust
8626 || cu->language == language_cplus) && pdi->has_children)
8627 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8628 set_addrmap, cu);
8629 break;
8630 case DW_TAG_enumeration_type:
8631 if (!pdi->is_declaration)
8632 add_partial_enumeration (pdi, cu);
8633 break;
8634 case DW_TAG_base_type:
8635 case DW_TAG_subrange_type:
8636 /* File scope base type definitions are added to the partial
8637 symbol table. */
8638 add_partial_symbol (pdi, cu);
8639 break;
8640 case DW_TAG_namespace:
8641 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8642 break;
8643 case DW_TAG_module:
8644 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8645 break;
8646 case DW_TAG_imported_unit:
8647 {
8648 struct dwarf2_per_cu_data *per_cu;
8649
8650 /* For now we don't handle imported units in type units. */
8651 if (cu->per_cu->is_debug_types)
8652 {
8653 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8654 " supported in type units [in module %s]"),
8655 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8656 }
8657
8658 per_cu = dwarf2_find_containing_comp_unit
8659 (pdi->d.sect_off, pdi->is_dwz,
8660 cu->per_cu->dwarf2_per_objfile);
8661
8662 /* Go read the partial unit, if needed. */
8663 if (per_cu->v.psymtab == NULL)
8664 process_psymtab_comp_unit (per_cu, 1, cu->language);
8665
8666 VEC_safe_push (dwarf2_per_cu_ptr,
8667 cu->per_cu->imported_symtabs, per_cu);
8668 }
8669 break;
8670 case DW_TAG_imported_declaration:
8671 add_partial_symbol (pdi, cu);
8672 break;
8673 default:
8674 break;
8675 }
8676 }
8677
8678 /* If the die has a sibling, skip to the sibling. */
8679
8680 pdi = pdi->die_sibling;
8681 }
8682 }
8683
8684 /* Functions used to compute the fully scoped name of a partial DIE.
8685
8686 Normally, this is simple. For C++, the parent DIE's fully scoped
8687 name is concatenated with "::" and the partial DIE's name.
8688 Enumerators are an exception; they use the scope of their parent
8689 enumeration type, i.e. the name of the enumeration type is not
8690 prepended to the enumerator.
8691
8692 There are two complexities. One is DW_AT_specification; in this
8693 case "parent" means the parent of the target of the specification,
8694 instead of the direct parent of the DIE. The other is compilers
8695 which do not emit DW_TAG_namespace; in this case we try to guess
8696 the fully qualified name of structure types from their members'
8697 linkage names. This must be done using the DIE's children rather
8698 than the children of any DW_AT_specification target. We only need
8699 to do this for structures at the top level, i.e. if the target of
8700 any DW_AT_specification (if any; otherwise the DIE itself) does not
8701 have a parent. */
8702
8703 /* Compute the scope prefix associated with PDI's parent, in
8704 compilation unit CU. The result will be allocated on CU's
8705 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8706 field. NULL is returned if no prefix is necessary. */
8707 static const char *
8708 partial_die_parent_scope (struct partial_die_info *pdi,
8709 struct dwarf2_cu *cu)
8710 {
8711 const char *grandparent_scope;
8712 struct partial_die_info *parent, *real_pdi;
8713
8714 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8715 then this means the parent of the specification DIE. */
8716
8717 real_pdi = pdi;
8718 while (real_pdi->has_specification)
8719 {
8720 auto res = find_partial_die (real_pdi->spec_offset,
8721 real_pdi->spec_is_dwz, cu);
8722 real_pdi = res.pdi;
8723 cu = res.cu;
8724 }
8725
8726 parent = real_pdi->die_parent;
8727 if (parent == NULL)
8728 return NULL;
8729
8730 if (parent->scope_set)
8731 return parent->scope;
8732
8733 parent->fixup (cu);
8734
8735 grandparent_scope = partial_die_parent_scope (parent, cu);
8736
8737 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8738 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8739 Work around this problem here. */
8740 if (cu->language == language_cplus
8741 && parent->tag == DW_TAG_namespace
8742 && strcmp (parent->name, "::") == 0
8743 && grandparent_scope == NULL)
8744 {
8745 parent->scope = NULL;
8746 parent->scope_set = 1;
8747 return NULL;
8748 }
8749
8750 if (pdi->tag == DW_TAG_enumerator)
8751 /* Enumerators should not get the name of the enumeration as a prefix. */
8752 parent->scope = grandparent_scope;
8753 else if (parent->tag == DW_TAG_namespace
8754 || parent->tag == DW_TAG_module
8755 || parent->tag == DW_TAG_structure_type
8756 || parent->tag == DW_TAG_class_type
8757 || parent->tag == DW_TAG_interface_type
8758 || parent->tag == DW_TAG_union_type
8759 || parent->tag == DW_TAG_enumeration_type)
8760 {
8761 if (grandparent_scope == NULL)
8762 parent->scope = parent->name;
8763 else
8764 parent->scope = typename_concat (&cu->comp_unit_obstack,
8765 grandparent_scope,
8766 parent->name, 0, cu);
8767 }
8768 else
8769 {
8770 /* FIXME drow/2004-04-01: What should we be doing with
8771 function-local names? For partial symbols, we should probably be
8772 ignoring them. */
8773 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8774 dwarf_tag_name (parent->tag),
8775 sect_offset_str (pdi->sect_off));
8776 parent->scope = grandparent_scope;
8777 }
8778
8779 parent->scope_set = 1;
8780 return parent->scope;
8781 }
8782
8783 /* Return the fully scoped name associated with PDI, from compilation unit
8784 CU. The result will be allocated with malloc. */
8785
8786 static char *
8787 partial_die_full_name (struct partial_die_info *pdi,
8788 struct dwarf2_cu *cu)
8789 {
8790 const char *parent_scope;
8791
8792 /* If this is a template instantiation, we can not work out the
8793 template arguments from partial DIEs. So, unfortunately, we have
8794 to go through the full DIEs. At least any work we do building
8795 types here will be reused if full symbols are loaded later. */
8796 if (pdi->has_template_arguments)
8797 {
8798 pdi->fixup (cu);
8799
8800 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8801 {
8802 struct die_info *die;
8803 struct attribute attr;
8804 struct dwarf2_cu *ref_cu = cu;
8805
8806 /* DW_FORM_ref_addr is using section offset. */
8807 attr.name = (enum dwarf_attribute) 0;
8808 attr.form = DW_FORM_ref_addr;
8809 attr.u.unsnd = to_underlying (pdi->sect_off);
8810 die = follow_die_ref (NULL, &attr, &ref_cu);
8811
8812 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8813 }
8814 }
8815
8816 parent_scope = partial_die_parent_scope (pdi, cu);
8817 if (parent_scope == NULL)
8818 return NULL;
8819 else
8820 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8821 }
8822
8823 static void
8824 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8825 {
8826 struct dwarf2_per_objfile *dwarf2_per_objfile
8827 = cu->per_cu->dwarf2_per_objfile;
8828 struct objfile *objfile = dwarf2_per_objfile->objfile;
8829 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8830 CORE_ADDR addr = 0;
8831 const char *actual_name = NULL;
8832 CORE_ADDR baseaddr;
8833 char *built_actual_name;
8834
8835 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8836
8837 built_actual_name = partial_die_full_name (pdi, cu);
8838 if (built_actual_name != NULL)
8839 actual_name = built_actual_name;
8840
8841 if (actual_name == NULL)
8842 actual_name = pdi->name;
8843
8844 switch (pdi->tag)
8845 {
8846 case DW_TAG_inlined_subroutine:
8847 case DW_TAG_subprogram:
8848 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8849 - baseaddr);
8850 if (pdi->is_external || cu->language == language_ada)
8851 {
8852 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8853 of the global scope. But in Ada, we want to be able to access
8854 nested procedures globally. So all Ada subprograms are stored
8855 in the global scope. */
8856 add_psymbol_to_list (actual_name, strlen (actual_name),
8857 built_actual_name != NULL,
8858 VAR_DOMAIN, LOC_BLOCK,
8859 SECT_OFF_TEXT (objfile),
8860 psymbol_placement::GLOBAL,
8861 addr,
8862 cu->language, objfile);
8863 }
8864 else
8865 {
8866 add_psymbol_to_list (actual_name, strlen (actual_name),
8867 built_actual_name != NULL,
8868 VAR_DOMAIN, LOC_BLOCK,
8869 SECT_OFF_TEXT (objfile),
8870 psymbol_placement::STATIC,
8871 addr, cu->language, objfile);
8872 }
8873
8874 if (pdi->main_subprogram && actual_name != NULL)
8875 set_objfile_main_name (objfile, actual_name, cu->language);
8876 break;
8877 case DW_TAG_constant:
8878 add_psymbol_to_list (actual_name, strlen (actual_name),
8879 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8880 -1, (pdi->is_external
8881 ? psymbol_placement::GLOBAL
8882 : psymbol_placement::STATIC),
8883 0, cu->language, objfile);
8884 break;
8885 case DW_TAG_variable:
8886 if (pdi->d.locdesc)
8887 addr = decode_locdesc (pdi->d.locdesc, cu);
8888
8889 if (pdi->d.locdesc
8890 && addr == 0
8891 && !dwarf2_per_objfile->has_section_at_zero)
8892 {
8893 /* A global or static variable may also have been stripped
8894 out by the linker if unused, in which case its address
8895 will be nullified; do not add such variables into partial
8896 symbol table then. */
8897 }
8898 else if (pdi->is_external)
8899 {
8900 /* Global Variable.
8901 Don't enter into the minimal symbol tables as there is
8902 a minimal symbol table entry from the ELF symbols already.
8903 Enter into partial symbol table if it has a location
8904 descriptor or a type.
8905 If the location descriptor is missing, new_symbol will create
8906 a LOC_UNRESOLVED symbol, the address of the variable will then
8907 be determined from the minimal symbol table whenever the variable
8908 is referenced.
8909 The address for the partial symbol table entry is not
8910 used by GDB, but it comes in handy for debugging partial symbol
8911 table building. */
8912
8913 if (pdi->d.locdesc || pdi->has_type)
8914 add_psymbol_to_list (actual_name, strlen (actual_name),
8915 built_actual_name != NULL,
8916 VAR_DOMAIN, LOC_STATIC,
8917 SECT_OFF_TEXT (objfile),
8918 psymbol_placement::GLOBAL,
8919 addr, cu->language, objfile);
8920 }
8921 else
8922 {
8923 int has_loc = pdi->d.locdesc != NULL;
8924
8925 /* Static Variable. Skip symbols whose value we cannot know (those
8926 without location descriptors or constant values). */
8927 if (!has_loc && !pdi->has_const_value)
8928 {
8929 xfree (built_actual_name);
8930 return;
8931 }
8932
8933 add_psymbol_to_list (actual_name, strlen (actual_name),
8934 built_actual_name != NULL,
8935 VAR_DOMAIN, LOC_STATIC,
8936 SECT_OFF_TEXT (objfile),
8937 psymbol_placement::STATIC,
8938 has_loc ? addr : 0,
8939 cu->language, objfile);
8940 }
8941 break;
8942 case DW_TAG_typedef:
8943 case DW_TAG_base_type:
8944 case DW_TAG_subrange_type:
8945 add_psymbol_to_list (actual_name, strlen (actual_name),
8946 built_actual_name != NULL,
8947 VAR_DOMAIN, LOC_TYPEDEF, -1,
8948 psymbol_placement::STATIC,
8949 0, cu->language, objfile);
8950 break;
8951 case DW_TAG_imported_declaration:
8952 case DW_TAG_namespace:
8953 add_psymbol_to_list (actual_name, strlen (actual_name),
8954 built_actual_name != NULL,
8955 VAR_DOMAIN, LOC_TYPEDEF, -1,
8956 psymbol_placement::GLOBAL,
8957 0, cu->language, objfile);
8958 break;
8959 case DW_TAG_module:
8960 /* With Fortran 77 there might be a "BLOCK DATA" module
8961 available without any name. If so, we skip the module as it
8962 doesn't bring any value. */
8963 if (actual_name != nullptr)
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8967 psymbol_placement::GLOBAL,
8968 0, cu->language, objfile);
8969 break;
8970 case DW_TAG_class_type:
8971 case DW_TAG_interface_type:
8972 case DW_TAG_structure_type:
8973 case DW_TAG_union_type:
8974 case DW_TAG_enumeration_type:
8975 /* Skip external references. The DWARF standard says in the section
8976 about "Structure, Union, and Class Type Entries": "An incomplete
8977 structure, union or class type is represented by a structure,
8978 union or class entry that does not have a byte size attribute
8979 and that has a DW_AT_declaration attribute." */
8980 if (!pdi->has_byte_size && pdi->is_declaration)
8981 {
8982 xfree (built_actual_name);
8983 return;
8984 }
8985
8986 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8987 static vs. global. */
8988 add_psymbol_to_list (actual_name, strlen (actual_name),
8989 built_actual_name != NULL,
8990 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8991 cu->language == language_cplus
8992 ? psymbol_placement::GLOBAL
8993 : psymbol_placement::STATIC,
8994 0, cu->language, objfile);
8995
8996 break;
8997 case DW_TAG_enumerator:
8998 add_psymbol_to_list (actual_name, strlen (actual_name),
8999 built_actual_name != NULL,
9000 VAR_DOMAIN, LOC_CONST, -1,
9001 cu->language == language_cplus
9002 ? psymbol_placement::GLOBAL
9003 : psymbol_placement::STATIC,
9004 0, cu->language, objfile);
9005 break;
9006 default:
9007 break;
9008 }
9009
9010 xfree (built_actual_name);
9011 }
9012
9013 /* Read a partial die corresponding to a namespace; also, add a symbol
9014 corresponding to that namespace to the symbol table. NAMESPACE is
9015 the name of the enclosing namespace. */
9016
9017 static void
9018 add_partial_namespace (struct partial_die_info *pdi,
9019 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9020 int set_addrmap, struct dwarf2_cu *cu)
9021 {
9022 /* Add a symbol for the namespace. */
9023
9024 add_partial_symbol (pdi, cu);
9025
9026 /* Now scan partial symbols in that namespace. */
9027
9028 if (pdi->has_children)
9029 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9030 }
9031
9032 /* Read a partial die corresponding to a Fortran module. */
9033
9034 static void
9035 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9036 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9037 {
9038 /* Add a symbol for the namespace. */
9039
9040 add_partial_symbol (pdi, cu);
9041
9042 /* Now scan partial symbols in that module. */
9043
9044 if (pdi->has_children)
9045 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9046 }
9047
9048 /* Read a partial die corresponding to a subprogram or an inlined
9049 subprogram and create a partial symbol for that subprogram.
9050 When the CU language allows it, this routine also defines a partial
9051 symbol for each nested subprogram that this subprogram contains.
9052 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9053 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9054
9055 PDI may also be a lexical block, in which case we simply search
9056 recursively for subprograms defined inside that lexical block.
9057 Again, this is only performed when the CU language allows this
9058 type of definitions. */
9059
9060 static void
9061 add_partial_subprogram (struct partial_die_info *pdi,
9062 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9063 int set_addrmap, struct dwarf2_cu *cu)
9064 {
9065 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9066 {
9067 if (pdi->has_pc_info)
9068 {
9069 if (pdi->lowpc < *lowpc)
9070 *lowpc = pdi->lowpc;
9071 if (pdi->highpc > *highpc)
9072 *highpc = pdi->highpc;
9073 if (set_addrmap)
9074 {
9075 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9076 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9077 CORE_ADDR baseaddr;
9078 CORE_ADDR this_highpc;
9079 CORE_ADDR this_lowpc;
9080
9081 baseaddr = ANOFFSET (objfile->section_offsets,
9082 SECT_OFF_TEXT (objfile));
9083 this_lowpc
9084 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9085 pdi->lowpc + baseaddr)
9086 - baseaddr);
9087 this_highpc
9088 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9089 pdi->highpc + baseaddr)
9090 - baseaddr);
9091 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9092 this_lowpc, this_highpc - 1,
9093 cu->per_cu->v.psymtab);
9094 }
9095 }
9096
9097 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9098 {
9099 if (!pdi->is_declaration)
9100 /* Ignore subprogram DIEs that do not have a name, they are
9101 illegal. Do not emit a complaint at this point, we will
9102 do so when we convert this psymtab into a symtab. */
9103 if (pdi->name)
9104 add_partial_symbol (pdi, cu);
9105 }
9106 }
9107
9108 if (! pdi->has_children)
9109 return;
9110
9111 if (cu->language == language_ada)
9112 {
9113 pdi = pdi->die_child;
9114 while (pdi != NULL)
9115 {
9116 pdi->fixup (cu);
9117 if (pdi->tag == DW_TAG_subprogram
9118 || pdi->tag == DW_TAG_inlined_subroutine
9119 || pdi->tag == DW_TAG_lexical_block)
9120 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9121 pdi = pdi->die_sibling;
9122 }
9123 }
9124 }
9125
9126 /* Read a partial die corresponding to an enumeration type. */
9127
9128 static void
9129 add_partial_enumeration (struct partial_die_info *enum_pdi,
9130 struct dwarf2_cu *cu)
9131 {
9132 struct partial_die_info *pdi;
9133
9134 if (enum_pdi->name != NULL)
9135 add_partial_symbol (enum_pdi, cu);
9136
9137 pdi = enum_pdi->die_child;
9138 while (pdi)
9139 {
9140 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9141 complaint (_("malformed enumerator DIE ignored"));
9142 else
9143 add_partial_symbol (pdi, cu);
9144 pdi = pdi->die_sibling;
9145 }
9146 }
9147
9148 /* Return the initial uleb128 in the die at INFO_PTR. */
9149
9150 static unsigned int
9151 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9152 {
9153 unsigned int bytes_read;
9154
9155 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9156 }
9157
9158 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9159 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9160
9161 Return the corresponding abbrev, or NULL if the number is zero (indicating
9162 an empty DIE). In either case *BYTES_READ will be set to the length of
9163 the initial number. */
9164
9165 static struct abbrev_info *
9166 peek_die_abbrev (const die_reader_specs &reader,
9167 const gdb_byte *info_ptr, unsigned int *bytes_read)
9168 {
9169 dwarf2_cu *cu = reader.cu;
9170 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9171 unsigned int abbrev_number
9172 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9173
9174 if (abbrev_number == 0)
9175 return NULL;
9176
9177 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9178 if (!abbrev)
9179 {
9180 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9181 " at offset %s [in module %s]"),
9182 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9183 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9184 }
9185
9186 return abbrev;
9187 }
9188
9189 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9190 Returns a pointer to the end of a series of DIEs, terminated by an empty
9191 DIE. Any children of the skipped DIEs will also be skipped. */
9192
9193 static const gdb_byte *
9194 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9195 {
9196 while (1)
9197 {
9198 unsigned int bytes_read;
9199 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9200
9201 if (abbrev == NULL)
9202 return info_ptr + bytes_read;
9203 else
9204 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9205 }
9206 }
9207
9208 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9209 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9210 abbrev corresponding to that skipped uleb128 should be passed in
9211 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9212 children. */
9213
9214 static const gdb_byte *
9215 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9216 struct abbrev_info *abbrev)
9217 {
9218 unsigned int bytes_read;
9219 struct attribute attr;
9220 bfd *abfd = reader->abfd;
9221 struct dwarf2_cu *cu = reader->cu;
9222 const gdb_byte *buffer = reader->buffer;
9223 const gdb_byte *buffer_end = reader->buffer_end;
9224 unsigned int form, i;
9225
9226 for (i = 0; i < abbrev->num_attrs; i++)
9227 {
9228 /* The only abbrev we care about is DW_AT_sibling. */
9229 if (abbrev->attrs[i].name == DW_AT_sibling)
9230 {
9231 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9232 if (attr.form == DW_FORM_ref_addr)
9233 complaint (_("ignoring absolute DW_AT_sibling"));
9234 else
9235 {
9236 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9237 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9238
9239 if (sibling_ptr < info_ptr)
9240 complaint (_("DW_AT_sibling points backwards"));
9241 else if (sibling_ptr > reader->buffer_end)
9242 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9243 else
9244 return sibling_ptr;
9245 }
9246 }
9247
9248 /* If it isn't DW_AT_sibling, skip this attribute. */
9249 form = abbrev->attrs[i].form;
9250 skip_attribute:
9251 switch (form)
9252 {
9253 case DW_FORM_ref_addr:
9254 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9255 and later it is offset sized. */
9256 if (cu->header.version == 2)
9257 info_ptr += cu->header.addr_size;
9258 else
9259 info_ptr += cu->header.offset_size;
9260 break;
9261 case DW_FORM_GNU_ref_alt:
9262 info_ptr += cu->header.offset_size;
9263 break;
9264 case DW_FORM_addr:
9265 info_ptr += cu->header.addr_size;
9266 break;
9267 case DW_FORM_data1:
9268 case DW_FORM_ref1:
9269 case DW_FORM_flag:
9270 info_ptr += 1;
9271 break;
9272 case DW_FORM_flag_present:
9273 case DW_FORM_implicit_const:
9274 break;
9275 case DW_FORM_data2:
9276 case DW_FORM_ref2:
9277 info_ptr += 2;
9278 break;
9279 case DW_FORM_data4:
9280 case DW_FORM_ref4:
9281 info_ptr += 4;
9282 break;
9283 case DW_FORM_data8:
9284 case DW_FORM_ref8:
9285 case DW_FORM_ref_sig8:
9286 info_ptr += 8;
9287 break;
9288 case DW_FORM_data16:
9289 info_ptr += 16;
9290 break;
9291 case DW_FORM_string:
9292 read_direct_string (abfd, info_ptr, &bytes_read);
9293 info_ptr += bytes_read;
9294 break;
9295 case DW_FORM_sec_offset:
9296 case DW_FORM_strp:
9297 case DW_FORM_GNU_strp_alt:
9298 info_ptr += cu->header.offset_size;
9299 break;
9300 case DW_FORM_exprloc:
9301 case DW_FORM_block:
9302 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9303 info_ptr += bytes_read;
9304 break;
9305 case DW_FORM_block1:
9306 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9307 break;
9308 case DW_FORM_block2:
9309 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9310 break;
9311 case DW_FORM_block4:
9312 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9313 break;
9314 case DW_FORM_addrx:
9315 case DW_FORM_strx:
9316 case DW_FORM_sdata:
9317 case DW_FORM_udata:
9318 case DW_FORM_ref_udata:
9319 case DW_FORM_GNU_addr_index:
9320 case DW_FORM_GNU_str_index:
9321 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9322 break;
9323 case DW_FORM_indirect:
9324 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9325 info_ptr += bytes_read;
9326 /* We need to continue parsing from here, so just go back to
9327 the top. */
9328 goto skip_attribute;
9329
9330 default:
9331 error (_("Dwarf Error: Cannot handle %s "
9332 "in DWARF reader [in module %s]"),
9333 dwarf_form_name (form),
9334 bfd_get_filename (abfd));
9335 }
9336 }
9337
9338 if (abbrev->has_children)
9339 return skip_children (reader, info_ptr);
9340 else
9341 return info_ptr;
9342 }
9343
9344 /* Locate ORIG_PDI's sibling.
9345 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9346
9347 static const gdb_byte *
9348 locate_pdi_sibling (const struct die_reader_specs *reader,
9349 struct partial_die_info *orig_pdi,
9350 const gdb_byte *info_ptr)
9351 {
9352 /* Do we know the sibling already? */
9353
9354 if (orig_pdi->sibling)
9355 return orig_pdi->sibling;
9356
9357 /* Are there any children to deal with? */
9358
9359 if (!orig_pdi->has_children)
9360 return info_ptr;
9361
9362 /* Skip the children the long way. */
9363
9364 return skip_children (reader, info_ptr);
9365 }
9366
9367 /* Expand this partial symbol table into a full symbol table. SELF is
9368 not NULL. */
9369
9370 static void
9371 dwarf2_read_symtab (struct partial_symtab *self,
9372 struct objfile *objfile)
9373 {
9374 struct dwarf2_per_objfile *dwarf2_per_objfile
9375 = get_dwarf2_per_objfile (objfile);
9376
9377 if (self->readin)
9378 {
9379 warning (_("bug: psymtab for %s is already read in."),
9380 self->filename);
9381 }
9382 else
9383 {
9384 if (info_verbose)
9385 {
9386 printf_filtered (_("Reading in symbols for %s..."),
9387 self->filename);
9388 gdb_flush (gdb_stdout);
9389 }
9390
9391 /* If this psymtab is constructed from a debug-only objfile, the
9392 has_section_at_zero flag will not necessarily be correct. We
9393 can get the correct value for this flag by looking at the data
9394 associated with the (presumably stripped) associated objfile. */
9395 if (objfile->separate_debug_objfile_backlink)
9396 {
9397 struct dwarf2_per_objfile *dpo_backlink
9398 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9399
9400 dwarf2_per_objfile->has_section_at_zero
9401 = dpo_backlink->has_section_at_zero;
9402 }
9403
9404 dwarf2_per_objfile->reading_partial_symbols = 0;
9405
9406 psymtab_to_symtab_1 (self);
9407
9408 /* Finish up the debug error message. */
9409 if (info_verbose)
9410 printf_filtered (_("done.\n"));
9411 }
9412
9413 process_cu_includes (dwarf2_per_objfile);
9414 }
9415 \f
9416 /* Reading in full CUs. */
9417
9418 /* Add PER_CU to the queue. */
9419
9420 static void
9421 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9422 enum language pretend_language)
9423 {
9424 struct dwarf2_queue_item *item;
9425
9426 per_cu->queued = 1;
9427 item = XNEW (struct dwarf2_queue_item);
9428 item->per_cu = per_cu;
9429 item->pretend_language = pretend_language;
9430 item->next = NULL;
9431
9432 if (dwarf2_queue == NULL)
9433 dwarf2_queue = item;
9434 else
9435 dwarf2_queue_tail->next = item;
9436
9437 dwarf2_queue_tail = item;
9438 }
9439
9440 /* If PER_CU is not yet queued, add it to the queue.
9441 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9442 dependency.
9443 The result is non-zero if PER_CU was queued, otherwise the result is zero
9444 meaning either PER_CU is already queued or it is already loaded.
9445
9446 N.B. There is an invariant here that if a CU is queued then it is loaded.
9447 The caller is required to load PER_CU if we return non-zero. */
9448
9449 static int
9450 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9451 struct dwarf2_per_cu_data *per_cu,
9452 enum language pretend_language)
9453 {
9454 /* We may arrive here during partial symbol reading, if we need full
9455 DIEs to process an unusual case (e.g. template arguments). Do
9456 not queue PER_CU, just tell our caller to load its DIEs. */
9457 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9458 {
9459 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9460 return 1;
9461 return 0;
9462 }
9463
9464 /* Mark the dependence relation so that we don't flush PER_CU
9465 too early. */
9466 if (dependent_cu != NULL)
9467 dwarf2_add_dependence (dependent_cu, per_cu);
9468
9469 /* If it's already on the queue, we have nothing to do. */
9470 if (per_cu->queued)
9471 return 0;
9472
9473 /* If the compilation unit is already loaded, just mark it as
9474 used. */
9475 if (per_cu->cu != NULL)
9476 {
9477 per_cu->cu->last_used = 0;
9478 return 0;
9479 }
9480
9481 /* Add it to the queue. */
9482 queue_comp_unit (per_cu, pretend_language);
9483
9484 return 1;
9485 }
9486
9487 /* Process the queue. */
9488
9489 static void
9490 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9491 {
9492 struct dwarf2_queue_item *item, *next_item;
9493
9494 if (dwarf_read_debug)
9495 {
9496 fprintf_unfiltered (gdb_stdlog,
9497 "Expanding one or more symtabs of objfile %s ...\n",
9498 objfile_name (dwarf2_per_objfile->objfile));
9499 }
9500
9501 /* The queue starts out with one item, but following a DIE reference
9502 may load a new CU, adding it to the end of the queue. */
9503 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9504 {
9505 if ((dwarf2_per_objfile->using_index
9506 ? !item->per_cu->v.quick->compunit_symtab
9507 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9508 /* Skip dummy CUs. */
9509 && item->per_cu->cu != NULL)
9510 {
9511 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9512 unsigned int debug_print_threshold;
9513 char buf[100];
9514
9515 if (per_cu->is_debug_types)
9516 {
9517 struct signatured_type *sig_type =
9518 (struct signatured_type *) per_cu;
9519
9520 sprintf (buf, "TU %s at offset %s",
9521 hex_string (sig_type->signature),
9522 sect_offset_str (per_cu->sect_off));
9523 /* There can be 100s of TUs.
9524 Only print them in verbose mode. */
9525 debug_print_threshold = 2;
9526 }
9527 else
9528 {
9529 sprintf (buf, "CU at offset %s",
9530 sect_offset_str (per_cu->sect_off));
9531 debug_print_threshold = 1;
9532 }
9533
9534 if (dwarf_read_debug >= debug_print_threshold)
9535 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9536
9537 if (per_cu->is_debug_types)
9538 process_full_type_unit (per_cu, item->pretend_language);
9539 else
9540 process_full_comp_unit (per_cu, item->pretend_language);
9541
9542 if (dwarf_read_debug >= debug_print_threshold)
9543 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9544 }
9545
9546 item->per_cu->queued = 0;
9547 next_item = item->next;
9548 xfree (item);
9549 }
9550
9551 dwarf2_queue_tail = NULL;
9552
9553 if (dwarf_read_debug)
9554 {
9555 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9556 objfile_name (dwarf2_per_objfile->objfile));
9557 }
9558 }
9559
9560 /* Read in full symbols for PST, and anything it depends on. */
9561
9562 static void
9563 psymtab_to_symtab_1 (struct partial_symtab *pst)
9564 {
9565 struct dwarf2_per_cu_data *per_cu;
9566 int i;
9567
9568 if (pst->readin)
9569 return;
9570
9571 for (i = 0; i < pst->number_of_dependencies; i++)
9572 if (!pst->dependencies[i]->readin
9573 && pst->dependencies[i]->user == NULL)
9574 {
9575 /* Inform about additional files that need to be read in. */
9576 if (info_verbose)
9577 {
9578 /* FIXME: i18n: Need to make this a single string. */
9579 fputs_filtered (" ", gdb_stdout);
9580 wrap_here ("");
9581 fputs_filtered ("and ", gdb_stdout);
9582 wrap_here ("");
9583 printf_filtered ("%s...", pst->dependencies[i]->filename);
9584 wrap_here (""); /* Flush output. */
9585 gdb_flush (gdb_stdout);
9586 }
9587 psymtab_to_symtab_1 (pst->dependencies[i]);
9588 }
9589
9590 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9591
9592 if (per_cu == NULL)
9593 {
9594 /* It's an include file, no symbols to read for it.
9595 Everything is in the parent symtab. */
9596 pst->readin = 1;
9597 return;
9598 }
9599
9600 dw2_do_instantiate_symtab (per_cu, false);
9601 }
9602
9603 /* Trivial hash function for die_info: the hash value of a DIE
9604 is its offset in .debug_info for this objfile. */
9605
9606 static hashval_t
9607 die_hash (const void *item)
9608 {
9609 const struct die_info *die = (const struct die_info *) item;
9610
9611 return to_underlying (die->sect_off);
9612 }
9613
9614 /* Trivial comparison function for die_info structures: two DIEs
9615 are equal if they have the same offset. */
9616
9617 static int
9618 die_eq (const void *item_lhs, const void *item_rhs)
9619 {
9620 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9621 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9622
9623 return die_lhs->sect_off == die_rhs->sect_off;
9624 }
9625
9626 /* die_reader_func for load_full_comp_unit.
9627 This is identical to read_signatured_type_reader,
9628 but is kept separate for now. */
9629
9630 static void
9631 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9632 const gdb_byte *info_ptr,
9633 struct die_info *comp_unit_die,
9634 int has_children,
9635 void *data)
9636 {
9637 struct dwarf2_cu *cu = reader->cu;
9638 enum language *language_ptr = (enum language *) data;
9639
9640 gdb_assert (cu->die_hash == NULL);
9641 cu->die_hash =
9642 htab_create_alloc_ex (cu->header.length / 12,
9643 die_hash,
9644 die_eq,
9645 NULL,
9646 &cu->comp_unit_obstack,
9647 hashtab_obstack_allocate,
9648 dummy_obstack_deallocate);
9649
9650 if (has_children)
9651 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9652 &info_ptr, comp_unit_die);
9653 cu->dies = comp_unit_die;
9654 /* comp_unit_die is not stored in die_hash, no need. */
9655
9656 /* We try not to read any attributes in this function, because not
9657 all CUs needed for references have been loaded yet, and symbol
9658 table processing isn't initialized. But we have to set the CU language,
9659 or we won't be able to build types correctly.
9660 Similarly, if we do not read the producer, we can not apply
9661 producer-specific interpretation. */
9662 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9663 }
9664
9665 /* Load the DIEs associated with PER_CU into memory. */
9666
9667 static void
9668 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9669 bool skip_partial,
9670 enum language pretend_language)
9671 {
9672 gdb_assert (! this_cu->is_debug_types);
9673
9674 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9675 load_full_comp_unit_reader, &pretend_language);
9676 }
9677
9678 /* Add a DIE to the delayed physname list. */
9679
9680 static void
9681 add_to_method_list (struct type *type, int fnfield_index, int index,
9682 const char *name, struct die_info *die,
9683 struct dwarf2_cu *cu)
9684 {
9685 struct delayed_method_info mi;
9686 mi.type = type;
9687 mi.fnfield_index = fnfield_index;
9688 mi.index = index;
9689 mi.name = name;
9690 mi.die = die;
9691 cu->method_list.push_back (mi);
9692 }
9693
9694 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9695 "const" / "volatile". If so, decrements LEN by the length of the
9696 modifier and return true. Otherwise return false. */
9697
9698 template<size_t N>
9699 static bool
9700 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9701 {
9702 size_t mod_len = sizeof (mod) - 1;
9703 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9704 {
9705 len -= mod_len;
9706 return true;
9707 }
9708 return false;
9709 }
9710
9711 /* Compute the physnames of any methods on the CU's method list.
9712
9713 The computation of method physnames is delayed in order to avoid the
9714 (bad) condition that one of the method's formal parameters is of an as yet
9715 incomplete type. */
9716
9717 static void
9718 compute_delayed_physnames (struct dwarf2_cu *cu)
9719 {
9720 /* Only C++ delays computing physnames. */
9721 if (cu->method_list.empty ())
9722 return;
9723 gdb_assert (cu->language == language_cplus);
9724
9725 for (const delayed_method_info &mi : cu->method_list)
9726 {
9727 const char *physname;
9728 struct fn_fieldlist *fn_flp
9729 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9730 physname = dwarf2_physname (mi.name, mi.die, cu);
9731 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9732 = physname ? physname : "";
9733
9734 /* Since there's no tag to indicate whether a method is a
9735 const/volatile overload, extract that information out of the
9736 demangled name. */
9737 if (physname != NULL)
9738 {
9739 size_t len = strlen (physname);
9740
9741 while (1)
9742 {
9743 if (physname[len] == ')') /* shortcut */
9744 break;
9745 else if (check_modifier (physname, len, " const"))
9746 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9747 else if (check_modifier (physname, len, " volatile"))
9748 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9749 else
9750 break;
9751 }
9752 }
9753 }
9754
9755 /* The list is no longer needed. */
9756 cu->method_list.clear ();
9757 }
9758
9759 /* Go objects should be embedded in a DW_TAG_module DIE,
9760 and it's not clear if/how imported objects will appear.
9761 To keep Go support simple until that's worked out,
9762 go back through what we've read and create something usable.
9763 We could do this while processing each DIE, and feels kinda cleaner,
9764 but that way is more invasive.
9765 This is to, for example, allow the user to type "p var" or "b main"
9766 without having to specify the package name, and allow lookups
9767 of module.object to work in contexts that use the expression
9768 parser. */
9769
9770 static void
9771 fixup_go_packaging (struct dwarf2_cu *cu)
9772 {
9773 char *package_name = NULL;
9774 struct pending *list;
9775 int i;
9776
9777 for (list = *cu->get_builder ()->get_global_symbols ();
9778 list != NULL;
9779 list = list->next)
9780 {
9781 for (i = 0; i < list->nsyms; ++i)
9782 {
9783 struct symbol *sym = list->symbol[i];
9784
9785 if (SYMBOL_LANGUAGE (sym) == language_go
9786 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9787 {
9788 char *this_package_name = go_symbol_package_name (sym);
9789
9790 if (this_package_name == NULL)
9791 continue;
9792 if (package_name == NULL)
9793 package_name = this_package_name;
9794 else
9795 {
9796 struct objfile *objfile
9797 = cu->per_cu->dwarf2_per_objfile->objfile;
9798 if (strcmp (package_name, this_package_name) != 0)
9799 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9800 (symbol_symtab (sym) != NULL
9801 ? symtab_to_filename_for_display
9802 (symbol_symtab (sym))
9803 : objfile_name (objfile)),
9804 this_package_name, package_name);
9805 xfree (this_package_name);
9806 }
9807 }
9808 }
9809 }
9810
9811 if (package_name != NULL)
9812 {
9813 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9814 const char *saved_package_name
9815 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9816 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9817 saved_package_name);
9818 struct symbol *sym;
9819
9820 sym = allocate_symbol (objfile);
9821 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9822 SYMBOL_SET_NAMES (sym, saved_package_name,
9823 strlen (saved_package_name), 0, objfile);
9824 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9825 e.g., "main" finds the "main" module and not C's main(). */
9826 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9827 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9828 SYMBOL_TYPE (sym) = type;
9829
9830 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9831
9832 xfree (package_name);
9833 }
9834 }
9835
9836 /* Allocate a fully-qualified name consisting of the two parts on the
9837 obstack. */
9838
9839 static const char *
9840 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9841 {
9842 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9843 }
9844
9845 /* A helper that allocates a struct discriminant_info to attach to a
9846 union type. */
9847
9848 static struct discriminant_info *
9849 alloc_discriminant_info (struct type *type, int discriminant_index,
9850 int default_index)
9851 {
9852 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9853 gdb_assert (discriminant_index == -1
9854 || (discriminant_index >= 0
9855 && discriminant_index < TYPE_NFIELDS (type)));
9856 gdb_assert (default_index == -1
9857 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9858
9859 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9860
9861 struct discriminant_info *disc
9862 = ((struct discriminant_info *)
9863 TYPE_ZALLOC (type,
9864 offsetof (struct discriminant_info, discriminants)
9865 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9866 disc->default_index = default_index;
9867 disc->discriminant_index = discriminant_index;
9868
9869 struct dynamic_prop prop;
9870 prop.kind = PROP_UNDEFINED;
9871 prop.data.baton = disc;
9872
9873 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9874
9875 return disc;
9876 }
9877
9878 /* Some versions of rustc emitted enums in an unusual way.
9879
9880 Ordinary enums were emitted as unions. The first element of each
9881 structure in the union was named "RUST$ENUM$DISR". This element
9882 held the discriminant.
9883
9884 These versions of Rust also implemented the "non-zero"
9885 optimization. When the enum had two values, and one is empty and
9886 the other holds a pointer that cannot be zero, the pointer is used
9887 as the discriminant, with a zero value meaning the empty variant.
9888 Here, the union's first member is of the form
9889 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9890 where the fieldnos are the indices of the fields that should be
9891 traversed in order to find the field (which may be several fields deep)
9892 and the variantname is the name of the variant of the case when the
9893 field is zero.
9894
9895 This function recognizes whether TYPE is of one of these forms,
9896 and, if so, smashes it to be a variant type. */
9897
9898 static void
9899 quirk_rust_enum (struct type *type, struct objfile *objfile)
9900 {
9901 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9902
9903 /* We don't need to deal with empty enums. */
9904 if (TYPE_NFIELDS (type) == 0)
9905 return;
9906
9907 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9908 if (TYPE_NFIELDS (type) == 1
9909 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9910 {
9911 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9912
9913 /* Decode the field name to find the offset of the
9914 discriminant. */
9915 ULONGEST bit_offset = 0;
9916 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9917 while (name[0] >= '0' && name[0] <= '9')
9918 {
9919 char *tail;
9920 unsigned long index = strtoul (name, &tail, 10);
9921 name = tail;
9922 if (*name != '$'
9923 || index >= TYPE_NFIELDS (field_type)
9924 || (TYPE_FIELD_LOC_KIND (field_type, index)
9925 != FIELD_LOC_KIND_BITPOS))
9926 {
9927 complaint (_("Could not parse Rust enum encoding string \"%s\""
9928 "[in module %s]"),
9929 TYPE_FIELD_NAME (type, 0),
9930 objfile_name (objfile));
9931 return;
9932 }
9933 ++name;
9934
9935 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9936 field_type = TYPE_FIELD_TYPE (field_type, index);
9937 }
9938
9939 /* Make a union to hold the variants. */
9940 struct type *union_type = alloc_type (objfile);
9941 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9942 TYPE_NFIELDS (union_type) = 3;
9943 TYPE_FIELDS (union_type)
9944 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9945 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9946 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9947
9948 /* Put the discriminant must at index 0. */
9949 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9950 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9951 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9952 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9953
9954 /* The order of fields doesn't really matter, so put the real
9955 field at index 1 and the data-less field at index 2. */
9956 struct discriminant_info *disc
9957 = alloc_discriminant_info (union_type, 0, 1);
9958 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9959 TYPE_FIELD_NAME (union_type, 1)
9960 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9961 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9962 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9963 TYPE_FIELD_NAME (union_type, 1));
9964
9965 const char *dataless_name
9966 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9967 name);
9968 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9969 dataless_name);
9970 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9971 /* NAME points into the original discriminant name, which
9972 already has the correct lifetime. */
9973 TYPE_FIELD_NAME (union_type, 2) = name;
9974 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9975 disc->discriminants[2] = 0;
9976
9977 /* Smash this type to be a structure type. We have to do this
9978 because the type has already been recorded. */
9979 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9980 TYPE_NFIELDS (type) = 1;
9981 TYPE_FIELDS (type)
9982 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9983
9984 /* Install the variant part. */
9985 TYPE_FIELD_TYPE (type, 0) = union_type;
9986 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9987 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9988 }
9989 else if (TYPE_NFIELDS (type) == 1)
9990 {
9991 /* We assume that a union with a single field is a univariant
9992 enum. */
9993 /* Smash this type to be a structure type. We have to do this
9994 because the type has already been recorded. */
9995 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9996
9997 /* Make a union to hold the variants. */
9998 struct type *union_type = alloc_type (objfile);
9999 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10000 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10001 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10002 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10003 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10004
10005 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10006 const char *variant_name
10007 = rust_last_path_segment (TYPE_NAME (field_type));
10008 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10009 TYPE_NAME (field_type)
10010 = rust_fully_qualify (&objfile->objfile_obstack,
10011 TYPE_NAME (type), variant_name);
10012
10013 /* Install the union in the outer struct type. */
10014 TYPE_NFIELDS (type) = 1;
10015 TYPE_FIELDS (type)
10016 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10017 TYPE_FIELD_TYPE (type, 0) = union_type;
10018 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10019 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10020
10021 alloc_discriminant_info (union_type, -1, 0);
10022 }
10023 else
10024 {
10025 struct type *disr_type = nullptr;
10026 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10027 {
10028 disr_type = TYPE_FIELD_TYPE (type, i);
10029
10030 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10031 {
10032 /* All fields of a true enum will be structs. */
10033 return;
10034 }
10035 else if (TYPE_NFIELDS (disr_type) == 0)
10036 {
10037 /* Could be data-less variant, so keep going. */
10038 disr_type = nullptr;
10039 }
10040 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10041 "RUST$ENUM$DISR") != 0)
10042 {
10043 /* Not a Rust enum. */
10044 return;
10045 }
10046 else
10047 {
10048 /* Found one. */
10049 break;
10050 }
10051 }
10052
10053 /* If we got here without a discriminant, then it's probably
10054 just a union. */
10055 if (disr_type == nullptr)
10056 return;
10057
10058 /* Smash this type to be a structure type. We have to do this
10059 because the type has already been recorded. */
10060 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10061
10062 /* Make a union to hold the variants. */
10063 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10064 struct type *union_type = alloc_type (objfile);
10065 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10066 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10067 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10068 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10069 TYPE_FIELDS (union_type)
10070 = (struct field *) TYPE_ZALLOC (union_type,
10071 (TYPE_NFIELDS (union_type)
10072 * sizeof (struct field)));
10073
10074 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10075 TYPE_NFIELDS (type) * sizeof (struct field));
10076
10077 /* Install the discriminant at index 0 in the union. */
10078 TYPE_FIELD (union_type, 0) = *disr_field;
10079 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10080 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10081
10082 /* Install the union in the outer struct type. */
10083 TYPE_FIELD_TYPE (type, 0) = union_type;
10084 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10085 TYPE_NFIELDS (type) = 1;
10086
10087 /* Set the size and offset of the union type. */
10088 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10089
10090 /* We need a way to find the correct discriminant given a
10091 variant name. For convenience we build a map here. */
10092 struct type *enum_type = FIELD_TYPE (*disr_field);
10093 std::unordered_map<std::string, ULONGEST> discriminant_map;
10094 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10095 {
10096 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10097 {
10098 const char *name
10099 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10100 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10101 }
10102 }
10103
10104 int n_fields = TYPE_NFIELDS (union_type);
10105 struct discriminant_info *disc
10106 = alloc_discriminant_info (union_type, 0, -1);
10107 /* Skip the discriminant here. */
10108 for (int i = 1; i < n_fields; ++i)
10109 {
10110 /* Find the final word in the name of this variant's type.
10111 That name can be used to look up the correct
10112 discriminant. */
10113 const char *variant_name
10114 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10115 i)));
10116
10117 auto iter = discriminant_map.find (variant_name);
10118 if (iter != discriminant_map.end ())
10119 disc->discriminants[i] = iter->second;
10120
10121 /* Remove the discriminant field, if it exists. */
10122 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10123 if (TYPE_NFIELDS (sub_type) > 0)
10124 {
10125 --TYPE_NFIELDS (sub_type);
10126 ++TYPE_FIELDS (sub_type);
10127 }
10128 TYPE_FIELD_NAME (union_type, i) = variant_name;
10129 TYPE_NAME (sub_type)
10130 = rust_fully_qualify (&objfile->objfile_obstack,
10131 TYPE_NAME (type), variant_name);
10132 }
10133 }
10134 }
10135
10136 /* Rewrite some Rust unions to be structures with variants parts. */
10137
10138 static void
10139 rust_union_quirks (struct dwarf2_cu *cu)
10140 {
10141 gdb_assert (cu->language == language_rust);
10142 for (type *type_ : cu->rust_unions)
10143 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10144 /* We don't need this any more. */
10145 cu->rust_unions.clear ();
10146 }
10147
10148 /* Return the symtab for PER_CU. This works properly regardless of
10149 whether we're using the index or psymtabs. */
10150
10151 static struct compunit_symtab *
10152 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10153 {
10154 return (per_cu->dwarf2_per_objfile->using_index
10155 ? per_cu->v.quick->compunit_symtab
10156 : per_cu->v.psymtab->compunit_symtab);
10157 }
10158
10159 /* A helper function for computing the list of all symbol tables
10160 included by PER_CU. */
10161
10162 static void
10163 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10164 htab_t all_children, htab_t all_type_symtabs,
10165 struct dwarf2_per_cu_data *per_cu,
10166 struct compunit_symtab *immediate_parent)
10167 {
10168 void **slot;
10169 int ix;
10170 struct compunit_symtab *cust;
10171 struct dwarf2_per_cu_data *iter;
10172
10173 slot = htab_find_slot (all_children, per_cu, INSERT);
10174 if (*slot != NULL)
10175 {
10176 /* This inclusion and its children have been processed. */
10177 return;
10178 }
10179
10180 *slot = per_cu;
10181 /* Only add a CU if it has a symbol table. */
10182 cust = get_compunit_symtab (per_cu);
10183 if (cust != NULL)
10184 {
10185 /* If this is a type unit only add its symbol table if we haven't
10186 seen it yet (type unit per_cu's can share symtabs). */
10187 if (per_cu->is_debug_types)
10188 {
10189 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10190 if (*slot == NULL)
10191 {
10192 *slot = cust;
10193 result->push_back (cust);
10194 if (cust->user == NULL)
10195 cust->user = immediate_parent;
10196 }
10197 }
10198 else
10199 {
10200 result->push_back (cust);
10201 if (cust->user == NULL)
10202 cust->user = immediate_parent;
10203 }
10204 }
10205
10206 for (ix = 0;
10207 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10208 ++ix)
10209 {
10210 recursively_compute_inclusions (result, all_children,
10211 all_type_symtabs, iter, cust);
10212 }
10213 }
10214
10215 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10216 PER_CU. */
10217
10218 static void
10219 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10220 {
10221 gdb_assert (! per_cu->is_debug_types);
10222
10223 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10224 {
10225 int ix, len;
10226 struct dwarf2_per_cu_data *per_cu_iter;
10227 std::vector<compunit_symtab *> result_symtabs;
10228 htab_t all_children, all_type_symtabs;
10229 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10230
10231 /* If we don't have a symtab, we can just skip this case. */
10232 if (cust == NULL)
10233 return;
10234
10235 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10236 NULL, xcalloc, xfree);
10237 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10238 NULL, xcalloc, xfree);
10239
10240 for (ix = 0;
10241 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10242 ix, per_cu_iter);
10243 ++ix)
10244 {
10245 recursively_compute_inclusions (&result_symtabs, all_children,
10246 all_type_symtabs, per_cu_iter,
10247 cust);
10248 }
10249
10250 /* Now we have a transitive closure of all the included symtabs. */
10251 len = result_symtabs.size ();
10252 cust->includes
10253 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10254 struct compunit_symtab *, len + 1);
10255 memcpy (cust->includes, result_symtabs.data (),
10256 len * sizeof (compunit_symtab *));
10257 cust->includes[len] = NULL;
10258
10259 htab_delete (all_children);
10260 htab_delete (all_type_symtabs);
10261 }
10262 }
10263
10264 /* Compute the 'includes' field for the symtabs of all the CUs we just
10265 read. */
10266
10267 static void
10268 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10269 {
10270 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10271 {
10272 if (! iter->is_debug_types)
10273 compute_compunit_symtab_includes (iter);
10274 }
10275
10276 dwarf2_per_objfile->just_read_cus.clear ();
10277 }
10278
10279 /* Generate full symbol information for PER_CU, whose DIEs have
10280 already been loaded into memory. */
10281
10282 static void
10283 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10284 enum language pretend_language)
10285 {
10286 struct dwarf2_cu *cu = per_cu->cu;
10287 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10288 struct objfile *objfile = dwarf2_per_objfile->objfile;
10289 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10290 CORE_ADDR lowpc, highpc;
10291 struct compunit_symtab *cust;
10292 CORE_ADDR baseaddr;
10293 struct block *static_block;
10294 CORE_ADDR addr;
10295
10296 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10297
10298 /* Clear the list here in case something was left over. */
10299 cu->method_list.clear ();
10300
10301 cu->language = pretend_language;
10302 cu->language_defn = language_def (cu->language);
10303
10304 /* Do line number decoding in read_file_scope () */
10305 process_die (cu->dies, cu);
10306
10307 /* For now fudge the Go package. */
10308 if (cu->language == language_go)
10309 fixup_go_packaging (cu);
10310
10311 /* Now that we have processed all the DIEs in the CU, all the types
10312 should be complete, and it should now be safe to compute all of the
10313 physnames. */
10314 compute_delayed_physnames (cu);
10315
10316 if (cu->language == language_rust)
10317 rust_union_quirks (cu);
10318
10319 /* Some compilers don't define a DW_AT_high_pc attribute for the
10320 compilation unit. If the DW_AT_high_pc is missing, synthesize
10321 it, by scanning the DIE's below the compilation unit. */
10322 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10323
10324 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10325 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10326
10327 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10328 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10329 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10330 addrmap to help ensure it has an accurate map of pc values belonging to
10331 this comp unit. */
10332 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10333
10334 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10335 SECT_OFF_TEXT (objfile),
10336 0);
10337
10338 if (cust != NULL)
10339 {
10340 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10341
10342 /* Set symtab language to language from DW_AT_language. If the
10343 compilation is from a C file generated by language preprocessors, do
10344 not set the language if it was already deduced by start_subfile. */
10345 if (!(cu->language == language_c
10346 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10347 COMPUNIT_FILETABS (cust)->language = cu->language;
10348
10349 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10350 produce DW_AT_location with location lists but it can be possibly
10351 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10352 there were bugs in prologue debug info, fixed later in GCC-4.5
10353 by "unwind info for epilogues" patch (which is not directly related).
10354
10355 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10356 needed, it would be wrong due to missing DW_AT_producer there.
10357
10358 Still one can confuse GDB by using non-standard GCC compilation
10359 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10360 */
10361 if (cu->has_loclist && gcc_4_minor >= 5)
10362 cust->locations_valid = 1;
10363
10364 if (gcc_4_minor >= 5)
10365 cust->epilogue_unwind_valid = 1;
10366
10367 cust->call_site_htab = cu->call_site_htab;
10368 }
10369
10370 if (dwarf2_per_objfile->using_index)
10371 per_cu->v.quick->compunit_symtab = cust;
10372 else
10373 {
10374 struct partial_symtab *pst = per_cu->v.psymtab;
10375 pst->compunit_symtab = cust;
10376 pst->readin = 1;
10377 }
10378
10379 /* Push it for inclusion processing later. */
10380 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10381
10382 /* Not needed any more. */
10383 cu->reset_builder ();
10384 }
10385
10386 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10387 already been loaded into memory. */
10388
10389 static void
10390 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10391 enum language pretend_language)
10392 {
10393 struct dwarf2_cu *cu = per_cu->cu;
10394 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10395 struct objfile *objfile = dwarf2_per_objfile->objfile;
10396 struct compunit_symtab *cust;
10397 struct signatured_type *sig_type;
10398
10399 gdb_assert (per_cu->is_debug_types);
10400 sig_type = (struct signatured_type *) per_cu;
10401
10402 /* Clear the list here in case something was left over. */
10403 cu->method_list.clear ();
10404
10405 cu->language = pretend_language;
10406 cu->language_defn = language_def (cu->language);
10407
10408 /* The symbol tables are set up in read_type_unit_scope. */
10409 process_die (cu->dies, cu);
10410
10411 /* For now fudge the Go package. */
10412 if (cu->language == language_go)
10413 fixup_go_packaging (cu);
10414
10415 /* Now that we have processed all the DIEs in the CU, all the types
10416 should be complete, and it should now be safe to compute all of the
10417 physnames. */
10418 compute_delayed_physnames (cu);
10419
10420 if (cu->language == language_rust)
10421 rust_union_quirks (cu);
10422
10423 /* TUs share symbol tables.
10424 If this is the first TU to use this symtab, complete the construction
10425 of it with end_expandable_symtab. Otherwise, complete the addition of
10426 this TU's symbols to the existing symtab. */
10427 if (sig_type->type_unit_group->compunit_symtab == NULL)
10428 {
10429 buildsym_compunit *builder = cu->get_builder ();
10430 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10431 sig_type->type_unit_group->compunit_symtab = cust;
10432
10433 if (cust != NULL)
10434 {
10435 /* Set symtab language to language from DW_AT_language. If the
10436 compilation is from a C file generated by language preprocessors,
10437 do not set the language if it was already deduced by
10438 start_subfile. */
10439 if (!(cu->language == language_c
10440 && COMPUNIT_FILETABS (cust)->language != language_c))
10441 COMPUNIT_FILETABS (cust)->language = cu->language;
10442 }
10443 }
10444 else
10445 {
10446 cu->get_builder ()->augment_type_symtab ();
10447 cust = sig_type->type_unit_group->compunit_symtab;
10448 }
10449
10450 if (dwarf2_per_objfile->using_index)
10451 per_cu->v.quick->compunit_symtab = cust;
10452 else
10453 {
10454 struct partial_symtab *pst = per_cu->v.psymtab;
10455 pst->compunit_symtab = cust;
10456 pst->readin = 1;
10457 }
10458
10459 /* Not needed any more. */
10460 cu->reset_builder ();
10461 }
10462
10463 /* Process an imported unit DIE. */
10464
10465 static void
10466 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10467 {
10468 struct attribute *attr;
10469
10470 /* For now we don't handle imported units in type units. */
10471 if (cu->per_cu->is_debug_types)
10472 {
10473 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10474 " supported in type units [in module %s]"),
10475 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10476 }
10477
10478 attr = dwarf2_attr (die, DW_AT_import, cu);
10479 if (attr != NULL)
10480 {
10481 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10482 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10483 dwarf2_per_cu_data *per_cu
10484 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10485 cu->per_cu->dwarf2_per_objfile);
10486
10487 /* If necessary, add it to the queue and load its DIEs. */
10488 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10489 load_full_comp_unit (per_cu, false, cu->language);
10490
10491 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10492 per_cu);
10493 }
10494 }
10495
10496 /* RAII object that represents a process_die scope: i.e.,
10497 starts/finishes processing a DIE. */
10498 class process_die_scope
10499 {
10500 public:
10501 process_die_scope (die_info *die, dwarf2_cu *cu)
10502 : m_die (die), m_cu (cu)
10503 {
10504 /* We should only be processing DIEs not already in process. */
10505 gdb_assert (!m_die->in_process);
10506 m_die->in_process = true;
10507 }
10508
10509 ~process_die_scope ()
10510 {
10511 m_die->in_process = false;
10512
10513 /* If we're done processing the DIE for the CU that owns the line
10514 header, we don't need the line header anymore. */
10515 if (m_cu->line_header_die_owner == m_die)
10516 {
10517 delete m_cu->line_header;
10518 m_cu->line_header = NULL;
10519 m_cu->line_header_die_owner = NULL;
10520 }
10521 }
10522
10523 private:
10524 die_info *m_die;
10525 dwarf2_cu *m_cu;
10526 };
10527
10528 /* Process a die and its children. */
10529
10530 static void
10531 process_die (struct die_info *die, struct dwarf2_cu *cu)
10532 {
10533 process_die_scope scope (die, cu);
10534
10535 switch (die->tag)
10536 {
10537 case DW_TAG_padding:
10538 break;
10539 case DW_TAG_compile_unit:
10540 case DW_TAG_partial_unit:
10541 read_file_scope (die, cu);
10542 break;
10543 case DW_TAG_type_unit:
10544 read_type_unit_scope (die, cu);
10545 break;
10546 case DW_TAG_subprogram:
10547 case DW_TAG_inlined_subroutine:
10548 read_func_scope (die, cu);
10549 break;
10550 case DW_TAG_lexical_block:
10551 case DW_TAG_try_block:
10552 case DW_TAG_catch_block:
10553 read_lexical_block_scope (die, cu);
10554 break;
10555 case DW_TAG_call_site:
10556 case DW_TAG_GNU_call_site:
10557 read_call_site_scope (die, cu);
10558 break;
10559 case DW_TAG_class_type:
10560 case DW_TAG_interface_type:
10561 case DW_TAG_structure_type:
10562 case DW_TAG_union_type:
10563 process_structure_scope (die, cu);
10564 break;
10565 case DW_TAG_enumeration_type:
10566 process_enumeration_scope (die, cu);
10567 break;
10568
10569 /* These dies have a type, but processing them does not create
10570 a symbol or recurse to process the children. Therefore we can
10571 read them on-demand through read_type_die. */
10572 case DW_TAG_subroutine_type:
10573 case DW_TAG_set_type:
10574 case DW_TAG_array_type:
10575 case DW_TAG_pointer_type:
10576 case DW_TAG_ptr_to_member_type:
10577 case DW_TAG_reference_type:
10578 case DW_TAG_rvalue_reference_type:
10579 case DW_TAG_string_type:
10580 break;
10581
10582 case DW_TAG_base_type:
10583 case DW_TAG_subrange_type:
10584 case DW_TAG_typedef:
10585 /* Add a typedef symbol for the type definition, if it has a
10586 DW_AT_name. */
10587 new_symbol (die, read_type_die (die, cu), cu);
10588 break;
10589 case DW_TAG_common_block:
10590 read_common_block (die, cu);
10591 break;
10592 case DW_TAG_common_inclusion:
10593 break;
10594 case DW_TAG_namespace:
10595 cu->processing_has_namespace_info = true;
10596 read_namespace (die, cu);
10597 break;
10598 case DW_TAG_module:
10599 cu->processing_has_namespace_info = true;
10600 read_module (die, cu);
10601 break;
10602 case DW_TAG_imported_declaration:
10603 cu->processing_has_namespace_info = true;
10604 if (read_namespace_alias (die, cu))
10605 break;
10606 /* The declaration is not a global namespace alias. */
10607 /* Fall through. */
10608 case DW_TAG_imported_module:
10609 cu->processing_has_namespace_info = true;
10610 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10611 || cu->language != language_fortran))
10612 complaint (_("Tag '%s' has unexpected children"),
10613 dwarf_tag_name (die->tag));
10614 read_import_statement (die, cu);
10615 break;
10616
10617 case DW_TAG_imported_unit:
10618 process_imported_unit_die (die, cu);
10619 break;
10620
10621 case DW_TAG_variable:
10622 read_variable (die, cu);
10623 break;
10624
10625 default:
10626 new_symbol (die, NULL, cu);
10627 break;
10628 }
10629 }
10630 \f
10631 /* DWARF name computation. */
10632
10633 /* A helper function for dwarf2_compute_name which determines whether DIE
10634 needs to have the name of the scope prepended to the name listed in the
10635 die. */
10636
10637 static int
10638 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10639 {
10640 struct attribute *attr;
10641
10642 switch (die->tag)
10643 {
10644 case DW_TAG_namespace:
10645 case DW_TAG_typedef:
10646 case DW_TAG_class_type:
10647 case DW_TAG_interface_type:
10648 case DW_TAG_structure_type:
10649 case DW_TAG_union_type:
10650 case DW_TAG_enumeration_type:
10651 case DW_TAG_enumerator:
10652 case DW_TAG_subprogram:
10653 case DW_TAG_inlined_subroutine:
10654 case DW_TAG_member:
10655 case DW_TAG_imported_declaration:
10656 return 1;
10657
10658 case DW_TAG_variable:
10659 case DW_TAG_constant:
10660 /* We only need to prefix "globally" visible variables. These include
10661 any variable marked with DW_AT_external or any variable that
10662 lives in a namespace. [Variables in anonymous namespaces
10663 require prefixing, but they are not DW_AT_external.] */
10664
10665 if (dwarf2_attr (die, DW_AT_specification, cu))
10666 {
10667 struct dwarf2_cu *spec_cu = cu;
10668
10669 return die_needs_namespace (die_specification (die, &spec_cu),
10670 spec_cu);
10671 }
10672
10673 attr = dwarf2_attr (die, DW_AT_external, cu);
10674 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10675 && die->parent->tag != DW_TAG_module)
10676 return 0;
10677 /* A variable in a lexical block of some kind does not need a
10678 namespace, even though in C++ such variables may be external
10679 and have a mangled name. */
10680 if (die->parent->tag == DW_TAG_lexical_block
10681 || die->parent->tag == DW_TAG_try_block
10682 || die->parent->tag == DW_TAG_catch_block
10683 || die->parent->tag == DW_TAG_subprogram)
10684 return 0;
10685 return 1;
10686
10687 default:
10688 return 0;
10689 }
10690 }
10691
10692 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10693 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10694 defined for the given DIE. */
10695
10696 static struct attribute *
10697 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10698 {
10699 struct attribute *attr;
10700
10701 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10702 if (attr == NULL)
10703 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10704
10705 return attr;
10706 }
10707
10708 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10709 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10710 defined for the given DIE. */
10711
10712 static const char *
10713 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10714 {
10715 const char *linkage_name;
10716
10717 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10718 if (linkage_name == NULL)
10719 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10720
10721 return linkage_name;
10722 }
10723
10724 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10725 compute the physname for the object, which include a method's:
10726 - formal parameters (C++),
10727 - receiver type (Go),
10728
10729 The term "physname" is a bit confusing.
10730 For C++, for example, it is the demangled name.
10731 For Go, for example, it's the mangled name.
10732
10733 For Ada, return the DIE's linkage name rather than the fully qualified
10734 name. PHYSNAME is ignored..
10735
10736 The result is allocated on the objfile_obstack and canonicalized. */
10737
10738 static const char *
10739 dwarf2_compute_name (const char *name,
10740 struct die_info *die, struct dwarf2_cu *cu,
10741 int physname)
10742 {
10743 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10744
10745 if (name == NULL)
10746 name = dwarf2_name (die, cu);
10747
10748 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10749 but otherwise compute it by typename_concat inside GDB.
10750 FIXME: Actually this is not really true, or at least not always true.
10751 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10752 Fortran names because there is no mangling standard. So new_symbol
10753 will set the demangled name to the result of dwarf2_full_name, and it is
10754 the demangled name that GDB uses if it exists. */
10755 if (cu->language == language_ada
10756 || (cu->language == language_fortran && physname))
10757 {
10758 /* For Ada unit, we prefer the linkage name over the name, as
10759 the former contains the exported name, which the user expects
10760 to be able to reference. Ideally, we want the user to be able
10761 to reference this entity using either natural or linkage name,
10762 but we haven't started looking at this enhancement yet. */
10763 const char *linkage_name = dw2_linkage_name (die, cu);
10764
10765 if (linkage_name != NULL)
10766 return linkage_name;
10767 }
10768
10769 /* These are the only languages we know how to qualify names in. */
10770 if (name != NULL
10771 && (cu->language == language_cplus
10772 || cu->language == language_fortran || cu->language == language_d
10773 || cu->language == language_rust))
10774 {
10775 if (die_needs_namespace (die, cu))
10776 {
10777 const char *prefix;
10778 const char *canonical_name = NULL;
10779
10780 string_file buf;
10781
10782 prefix = determine_prefix (die, cu);
10783 if (*prefix != '\0')
10784 {
10785 char *prefixed_name = typename_concat (NULL, prefix, name,
10786 physname, cu);
10787
10788 buf.puts (prefixed_name);
10789 xfree (prefixed_name);
10790 }
10791 else
10792 buf.puts (name);
10793
10794 /* Template parameters may be specified in the DIE's DW_AT_name, or
10795 as children with DW_TAG_template_type_param or
10796 DW_TAG_value_type_param. If the latter, add them to the name
10797 here. If the name already has template parameters, then
10798 skip this step; some versions of GCC emit both, and
10799 it is more efficient to use the pre-computed name.
10800
10801 Something to keep in mind about this process: it is very
10802 unlikely, or in some cases downright impossible, to produce
10803 something that will match the mangled name of a function.
10804 If the definition of the function has the same debug info,
10805 we should be able to match up with it anyway. But fallbacks
10806 using the minimal symbol, for instance to find a method
10807 implemented in a stripped copy of libstdc++, will not work.
10808 If we do not have debug info for the definition, we will have to
10809 match them up some other way.
10810
10811 When we do name matching there is a related problem with function
10812 templates; two instantiated function templates are allowed to
10813 differ only by their return types, which we do not add here. */
10814
10815 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10816 {
10817 struct attribute *attr;
10818 struct die_info *child;
10819 int first = 1;
10820
10821 die->building_fullname = 1;
10822
10823 for (child = die->child; child != NULL; child = child->sibling)
10824 {
10825 struct type *type;
10826 LONGEST value;
10827 const gdb_byte *bytes;
10828 struct dwarf2_locexpr_baton *baton;
10829 struct value *v;
10830
10831 if (child->tag != DW_TAG_template_type_param
10832 && child->tag != DW_TAG_template_value_param)
10833 continue;
10834
10835 if (first)
10836 {
10837 buf.puts ("<");
10838 first = 0;
10839 }
10840 else
10841 buf.puts (", ");
10842
10843 attr = dwarf2_attr (child, DW_AT_type, cu);
10844 if (attr == NULL)
10845 {
10846 complaint (_("template parameter missing DW_AT_type"));
10847 buf.puts ("UNKNOWN_TYPE");
10848 continue;
10849 }
10850 type = die_type (child, cu);
10851
10852 if (child->tag == DW_TAG_template_type_param)
10853 {
10854 c_print_type (type, "", &buf, -1, 0, cu->language,
10855 &type_print_raw_options);
10856 continue;
10857 }
10858
10859 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10860 if (attr == NULL)
10861 {
10862 complaint (_("template parameter missing "
10863 "DW_AT_const_value"));
10864 buf.puts ("UNKNOWN_VALUE");
10865 continue;
10866 }
10867
10868 dwarf2_const_value_attr (attr, type, name,
10869 &cu->comp_unit_obstack, cu,
10870 &value, &bytes, &baton);
10871
10872 if (TYPE_NOSIGN (type))
10873 /* GDB prints characters as NUMBER 'CHAR'. If that's
10874 changed, this can use value_print instead. */
10875 c_printchar (value, type, &buf);
10876 else
10877 {
10878 struct value_print_options opts;
10879
10880 if (baton != NULL)
10881 v = dwarf2_evaluate_loc_desc (type, NULL,
10882 baton->data,
10883 baton->size,
10884 baton->per_cu);
10885 else if (bytes != NULL)
10886 {
10887 v = allocate_value (type);
10888 memcpy (value_contents_writeable (v), bytes,
10889 TYPE_LENGTH (type));
10890 }
10891 else
10892 v = value_from_longest (type, value);
10893
10894 /* Specify decimal so that we do not depend on
10895 the radix. */
10896 get_formatted_print_options (&opts, 'd');
10897 opts.raw = 1;
10898 value_print (v, &buf, &opts);
10899 release_value (v);
10900 }
10901 }
10902
10903 die->building_fullname = 0;
10904
10905 if (!first)
10906 {
10907 /* Close the argument list, with a space if necessary
10908 (nested templates). */
10909 if (!buf.empty () && buf.string ().back () == '>')
10910 buf.puts (" >");
10911 else
10912 buf.puts (">");
10913 }
10914 }
10915
10916 /* For C++ methods, append formal parameter type
10917 information, if PHYSNAME. */
10918
10919 if (physname && die->tag == DW_TAG_subprogram
10920 && cu->language == language_cplus)
10921 {
10922 struct type *type = read_type_die (die, cu);
10923
10924 c_type_print_args (type, &buf, 1, cu->language,
10925 &type_print_raw_options);
10926
10927 if (cu->language == language_cplus)
10928 {
10929 /* Assume that an artificial first parameter is
10930 "this", but do not crash if it is not. RealView
10931 marks unnamed (and thus unused) parameters as
10932 artificial; there is no way to differentiate
10933 the two cases. */
10934 if (TYPE_NFIELDS (type) > 0
10935 && TYPE_FIELD_ARTIFICIAL (type, 0)
10936 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10937 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10938 0))))
10939 buf.puts (" const");
10940 }
10941 }
10942
10943 const std::string &intermediate_name = buf.string ();
10944
10945 if (cu->language == language_cplus)
10946 canonical_name
10947 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10948 &objfile->per_bfd->storage_obstack);
10949
10950 /* If we only computed INTERMEDIATE_NAME, or if
10951 INTERMEDIATE_NAME is already canonical, then we need to
10952 copy it to the appropriate obstack. */
10953 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10954 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10955 intermediate_name);
10956 else
10957 name = canonical_name;
10958 }
10959 }
10960
10961 return name;
10962 }
10963
10964 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10965 If scope qualifiers are appropriate they will be added. The result
10966 will be allocated on the storage_obstack, or NULL if the DIE does
10967 not have a name. NAME may either be from a previous call to
10968 dwarf2_name or NULL.
10969
10970 The output string will be canonicalized (if C++). */
10971
10972 static const char *
10973 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10974 {
10975 return dwarf2_compute_name (name, die, cu, 0);
10976 }
10977
10978 /* Construct a physname for the given DIE in CU. NAME may either be
10979 from a previous call to dwarf2_name or NULL. The result will be
10980 allocated on the objfile_objstack or NULL if the DIE does not have a
10981 name.
10982
10983 The output string will be canonicalized (if C++). */
10984
10985 static const char *
10986 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10987 {
10988 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10989 const char *retval, *mangled = NULL, *canon = NULL;
10990 int need_copy = 1;
10991
10992 /* In this case dwarf2_compute_name is just a shortcut not building anything
10993 on its own. */
10994 if (!die_needs_namespace (die, cu))
10995 return dwarf2_compute_name (name, die, cu, 1);
10996
10997 mangled = dw2_linkage_name (die, cu);
10998
10999 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11000 See https://github.com/rust-lang/rust/issues/32925. */
11001 if (cu->language == language_rust && mangled != NULL
11002 && strchr (mangled, '{') != NULL)
11003 mangled = NULL;
11004
11005 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11006 has computed. */
11007 gdb::unique_xmalloc_ptr<char> demangled;
11008 if (mangled != NULL)
11009 {
11010
11011 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11012 {
11013 /* Do nothing (do not demangle the symbol name). */
11014 }
11015 else if (cu->language == language_go)
11016 {
11017 /* This is a lie, but we already lie to the caller new_symbol.
11018 new_symbol assumes we return the mangled name.
11019 This just undoes that lie until things are cleaned up. */
11020 }
11021 else
11022 {
11023 /* Use DMGL_RET_DROP for C++ template functions to suppress
11024 their return type. It is easier for GDB users to search
11025 for such functions as `name(params)' than `long name(params)'.
11026 In such case the minimal symbol names do not match the full
11027 symbol names but for template functions there is never a need
11028 to look up their definition from their declaration so
11029 the only disadvantage remains the minimal symbol variant
11030 `long name(params)' does not have the proper inferior type. */
11031 demangled.reset (gdb_demangle (mangled,
11032 (DMGL_PARAMS | DMGL_ANSI
11033 | DMGL_RET_DROP)));
11034 }
11035 if (demangled)
11036 canon = demangled.get ();
11037 else
11038 {
11039 canon = mangled;
11040 need_copy = 0;
11041 }
11042 }
11043
11044 if (canon == NULL || check_physname)
11045 {
11046 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11047
11048 if (canon != NULL && strcmp (physname, canon) != 0)
11049 {
11050 /* It may not mean a bug in GDB. The compiler could also
11051 compute DW_AT_linkage_name incorrectly. But in such case
11052 GDB would need to be bug-to-bug compatible. */
11053
11054 complaint (_("Computed physname <%s> does not match demangled <%s> "
11055 "(from linkage <%s>) - DIE at %s [in module %s]"),
11056 physname, canon, mangled, sect_offset_str (die->sect_off),
11057 objfile_name (objfile));
11058
11059 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11060 is available here - over computed PHYSNAME. It is safer
11061 against both buggy GDB and buggy compilers. */
11062
11063 retval = canon;
11064 }
11065 else
11066 {
11067 retval = physname;
11068 need_copy = 0;
11069 }
11070 }
11071 else
11072 retval = canon;
11073
11074 if (need_copy)
11075 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11076
11077 return retval;
11078 }
11079
11080 /* Inspect DIE in CU for a namespace alias. If one exists, record
11081 a new symbol for it.
11082
11083 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11084
11085 static int
11086 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11087 {
11088 struct attribute *attr;
11089
11090 /* If the die does not have a name, this is not a namespace
11091 alias. */
11092 attr = dwarf2_attr (die, DW_AT_name, cu);
11093 if (attr != NULL)
11094 {
11095 int num;
11096 struct die_info *d = die;
11097 struct dwarf2_cu *imported_cu = cu;
11098
11099 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11100 keep inspecting DIEs until we hit the underlying import. */
11101 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11102 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11103 {
11104 attr = dwarf2_attr (d, DW_AT_import, cu);
11105 if (attr == NULL)
11106 break;
11107
11108 d = follow_die_ref (d, attr, &imported_cu);
11109 if (d->tag != DW_TAG_imported_declaration)
11110 break;
11111 }
11112
11113 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11114 {
11115 complaint (_("DIE at %s has too many recursively imported "
11116 "declarations"), sect_offset_str (d->sect_off));
11117 return 0;
11118 }
11119
11120 if (attr != NULL)
11121 {
11122 struct type *type;
11123 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11124
11125 type = get_die_type_at_offset (sect_off, cu->per_cu);
11126 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11127 {
11128 /* This declaration is a global namespace alias. Add
11129 a symbol for it whose type is the aliased namespace. */
11130 new_symbol (die, type, cu);
11131 return 1;
11132 }
11133 }
11134 }
11135
11136 return 0;
11137 }
11138
11139 /* Return the using directives repository (global or local?) to use in the
11140 current context for CU.
11141
11142 For Ada, imported declarations can materialize renamings, which *may* be
11143 global. However it is impossible (for now?) in DWARF to distinguish
11144 "external" imported declarations and "static" ones. As all imported
11145 declarations seem to be static in all other languages, make them all CU-wide
11146 global only in Ada. */
11147
11148 static struct using_direct **
11149 using_directives (struct dwarf2_cu *cu)
11150 {
11151 if (cu->language == language_ada
11152 && cu->get_builder ()->outermost_context_p ())
11153 return cu->get_builder ()->get_global_using_directives ();
11154 else
11155 return cu->get_builder ()->get_local_using_directives ();
11156 }
11157
11158 /* Read the import statement specified by the given die and record it. */
11159
11160 static void
11161 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11162 {
11163 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11164 struct attribute *import_attr;
11165 struct die_info *imported_die, *child_die;
11166 struct dwarf2_cu *imported_cu;
11167 const char *imported_name;
11168 const char *imported_name_prefix;
11169 const char *canonical_name;
11170 const char *import_alias;
11171 const char *imported_declaration = NULL;
11172 const char *import_prefix;
11173 std::vector<const char *> excludes;
11174
11175 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11176 if (import_attr == NULL)
11177 {
11178 complaint (_("Tag '%s' has no DW_AT_import"),
11179 dwarf_tag_name (die->tag));
11180 return;
11181 }
11182
11183 imported_cu = cu;
11184 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11185 imported_name = dwarf2_name (imported_die, imported_cu);
11186 if (imported_name == NULL)
11187 {
11188 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11189
11190 The import in the following code:
11191 namespace A
11192 {
11193 typedef int B;
11194 }
11195
11196 int main ()
11197 {
11198 using A::B;
11199 B b;
11200 return b;
11201 }
11202
11203 ...
11204 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11205 <52> DW_AT_decl_file : 1
11206 <53> DW_AT_decl_line : 6
11207 <54> DW_AT_import : <0x75>
11208 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11209 <59> DW_AT_name : B
11210 <5b> DW_AT_decl_file : 1
11211 <5c> DW_AT_decl_line : 2
11212 <5d> DW_AT_type : <0x6e>
11213 ...
11214 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11215 <76> DW_AT_byte_size : 4
11216 <77> DW_AT_encoding : 5 (signed)
11217
11218 imports the wrong die ( 0x75 instead of 0x58 ).
11219 This case will be ignored until the gcc bug is fixed. */
11220 return;
11221 }
11222
11223 /* Figure out the local name after import. */
11224 import_alias = dwarf2_name (die, cu);
11225
11226 /* Figure out where the statement is being imported to. */
11227 import_prefix = determine_prefix (die, cu);
11228
11229 /* Figure out what the scope of the imported die is and prepend it
11230 to the name of the imported die. */
11231 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11232
11233 if (imported_die->tag != DW_TAG_namespace
11234 && imported_die->tag != DW_TAG_module)
11235 {
11236 imported_declaration = imported_name;
11237 canonical_name = imported_name_prefix;
11238 }
11239 else if (strlen (imported_name_prefix) > 0)
11240 canonical_name = obconcat (&objfile->objfile_obstack,
11241 imported_name_prefix,
11242 (cu->language == language_d ? "." : "::"),
11243 imported_name, (char *) NULL);
11244 else
11245 canonical_name = imported_name;
11246
11247 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11248 for (child_die = die->child; child_die && child_die->tag;
11249 child_die = sibling_die (child_die))
11250 {
11251 /* DWARF-4: A Fortran use statement with a “rename list” may be
11252 represented by an imported module entry with an import attribute
11253 referring to the module and owned entries corresponding to those
11254 entities that are renamed as part of being imported. */
11255
11256 if (child_die->tag != DW_TAG_imported_declaration)
11257 {
11258 complaint (_("child DW_TAG_imported_declaration expected "
11259 "- DIE at %s [in module %s]"),
11260 sect_offset_str (child_die->sect_off),
11261 objfile_name (objfile));
11262 continue;
11263 }
11264
11265 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11266 if (import_attr == NULL)
11267 {
11268 complaint (_("Tag '%s' has no DW_AT_import"),
11269 dwarf_tag_name (child_die->tag));
11270 continue;
11271 }
11272
11273 imported_cu = cu;
11274 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11275 &imported_cu);
11276 imported_name = dwarf2_name (imported_die, imported_cu);
11277 if (imported_name == NULL)
11278 {
11279 complaint (_("child DW_TAG_imported_declaration has unknown "
11280 "imported name - DIE at %s [in module %s]"),
11281 sect_offset_str (child_die->sect_off),
11282 objfile_name (objfile));
11283 continue;
11284 }
11285
11286 excludes.push_back (imported_name);
11287
11288 process_die (child_die, cu);
11289 }
11290
11291 add_using_directive (using_directives (cu),
11292 import_prefix,
11293 canonical_name,
11294 import_alias,
11295 imported_declaration,
11296 excludes,
11297 0,
11298 &objfile->objfile_obstack);
11299 }
11300
11301 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11302 types, but gives them a size of zero. Starting with version 14,
11303 ICC is compatible with GCC. */
11304
11305 static bool
11306 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11307 {
11308 if (!cu->checked_producer)
11309 check_producer (cu);
11310
11311 return cu->producer_is_icc_lt_14;
11312 }
11313
11314 /* ICC generates a DW_AT_type for C void functions. This was observed on
11315 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11316 which says that void functions should not have a DW_AT_type. */
11317
11318 static bool
11319 producer_is_icc (struct dwarf2_cu *cu)
11320 {
11321 if (!cu->checked_producer)
11322 check_producer (cu);
11323
11324 return cu->producer_is_icc;
11325 }
11326
11327 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11328 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11329 this, it was first present in GCC release 4.3.0. */
11330
11331 static bool
11332 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11333 {
11334 if (!cu->checked_producer)
11335 check_producer (cu);
11336
11337 return cu->producer_is_gcc_lt_4_3;
11338 }
11339
11340 static file_and_directory
11341 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11342 {
11343 file_and_directory res;
11344
11345 /* Find the filename. Do not use dwarf2_name here, since the filename
11346 is not a source language identifier. */
11347 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11348 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11349
11350 if (res.comp_dir == NULL
11351 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11352 && IS_ABSOLUTE_PATH (res.name))
11353 {
11354 res.comp_dir_storage = ldirname (res.name);
11355 if (!res.comp_dir_storage.empty ())
11356 res.comp_dir = res.comp_dir_storage.c_str ();
11357 }
11358 if (res.comp_dir != NULL)
11359 {
11360 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11361 directory, get rid of it. */
11362 const char *cp = strchr (res.comp_dir, ':');
11363
11364 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11365 res.comp_dir = cp + 1;
11366 }
11367
11368 if (res.name == NULL)
11369 res.name = "<unknown>";
11370
11371 return res;
11372 }
11373
11374 /* Handle DW_AT_stmt_list for a compilation unit.
11375 DIE is the DW_TAG_compile_unit die for CU.
11376 COMP_DIR is the compilation directory. LOWPC is passed to
11377 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11378
11379 static void
11380 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11381 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11382 {
11383 struct dwarf2_per_objfile *dwarf2_per_objfile
11384 = cu->per_cu->dwarf2_per_objfile;
11385 struct objfile *objfile = dwarf2_per_objfile->objfile;
11386 struct attribute *attr;
11387 struct line_header line_header_local;
11388 hashval_t line_header_local_hash;
11389 void **slot;
11390 int decode_mapping;
11391
11392 gdb_assert (! cu->per_cu->is_debug_types);
11393
11394 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11395 if (attr == NULL)
11396 return;
11397
11398 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11399
11400 /* The line header hash table is only created if needed (it exists to
11401 prevent redundant reading of the line table for partial_units).
11402 If we're given a partial_unit, we'll need it. If we're given a
11403 compile_unit, then use the line header hash table if it's already
11404 created, but don't create one just yet. */
11405
11406 if (dwarf2_per_objfile->line_header_hash == NULL
11407 && die->tag == DW_TAG_partial_unit)
11408 {
11409 dwarf2_per_objfile->line_header_hash
11410 = htab_create_alloc_ex (127, line_header_hash_voidp,
11411 line_header_eq_voidp,
11412 free_line_header_voidp,
11413 &objfile->objfile_obstack,
11414 hashtab_obstack_allocate,
11415 dummy_obstack_deallocate);
11416 }
11417
11418 line_header_local.sect_off = line_offset;
11419 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11420 line_header_local_hash = line_header_hash (&line_header_local);
11421 if (dwarf2_per_objfile->line_header_hash != NULL)
11422 {
11423 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11424 &line_header_local,
11425 line_header_local_hash, NO_INSERT);
11426
11427 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11428 is not present in *SLOT (since if there is something in *SLOT then
11429 it will be for a partial_unit). */
11430 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11431 {
11432 gdb_assert (*slot != NULL);
11433 cu->line_header = (struct line_header *) *slot;
11434 return;
11435 }
11436 }
11437
11438 /* dwarf_decode_line_header does not yet provide sufficient information.
11439 We always have to call also dwarf_decode_lines for it. */
11440 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11441 if (lh == NULL)
11442 return;
11443
11444 cu->line_header = lh.release ();
11445 cu->line_header_die_owner = die;
11446
11447 if (dwarf2_per_objfile->line_header_hash == NULL)
11448 slot = NULL;
11449 else
11450 {
11451 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11452 &line_header_local,
11453 line_header_local_hash, INSERT);
11454 gdb_assert (slot != NULL);
11455 }
11456 if (slot != NULL && *slot == NULL)
11457 {
11458 /* This newly decoded line number information unit will be owned
11459 by line_header_hash hash table. */
11460 *slot = cu->line_header;
11461 cu->line_header_die_owner = NULL;
11462 }
11463 else
11464 {
11465 /* We cannot free any current entry in (*slot) as that struct line_header
11466 may be already used by multiple CUs. Create only temporary decoded
11467 line_header for this CU - it may happen at most once for each line
11468 number information unit. And if we're not using line_header_hash
11469 then this is what we want as well. */
11470 gdb_assert (die->tag != DW_TAG_partial_unit);
11471 }
11472 decode_mapping = (die->tag != DW_TAG_partial_unit);
11473 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11474 decode_mapping);
11475
11476 }
11477
11478 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11479
11480 static void
11481 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11482 {
11483 struct dwarf2_per_objfile *dwarf2_per_objfile
11484 = cu->per_cu->dwarf2_per_objfile;
11485 struct objfile *objfile = dwarf2_per_objfile->objfile;
11486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11487 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11488 CORE_ADDR highpc = ((CORE_ADDR) 0);
11489 struct attribute *attr;
11490 struct die_info *child_die;
11491 CORE_ADDR baseaddr;
11492
11493 prepare_one_comp_unit (cu, die, cu->language);
11494 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11495
11496 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11497
11498 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11499 from finish_block. */
11500 if (lowpc == ((CORE_ADDR) -1))
11501 lowpc = highpc;
11502 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11503
11504 file_and_directory fnd = find_file_and_directory (die, cu);
11505
11506 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11507 standardised yet. As a workaround for the language detection we fall
11508 back to the DW_AT_producer string. */
11509 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11510 cu->language = language_opencl;
11511
11512 /* Similar hack for Go. */
11513 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11514 set_cu_language (DW_LANG_Go, cu);
11515
11516 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11517
11518 /* Decode line number information if present. We do this before
11519 processing child DIEs, so that the line header table is available
11520 for DW_AT_decl_file. */
11521 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11522
11523 /* Process all dies in compilation unit. */
11524 if (die->child != NULL)
11525 {
11526 child_die = die->child;
11527 while (child_die && child_die->tag)
11528 {
11529 process_die (child_die, cu);
11530 child_die = sibling_die (child_die);
11531 }
11532 }
11533
11534 /* Decode macro information, if present. Dwarf 2 macro information
11535 refers to information in the line number info statement program
11536 header, so we can only read it if we've read the header
11537 successfully. */
11538 attr = dwarf2_attr (die, DW_AT_macros, cu);
11539 if (attr == NULL)
11540 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11541 if (attr && cu->line_header)
11542 {
11543 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11544 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11545
11546 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11547 }
11548 else
11549 {
11550 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11551 if (attr && cu->line_header)
11552 {
11553 unsigned int macro_offset = DW_UNSND (attr);
11554
11555 dwarf_decode_macros (cu, macro_offset, 0);
11556 }
11557 }
11558 }
11559
11560 void
11561 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11562 {
11563 struct type_unit_group *tu_group;
11564 int first_time;
11565 struct attribute *attr;
11566 unsigned int i;
11567 struct signatured_type *sig_type;
11568
11569 gdb_assert (per_cu->is_debug_types);
11570 sig_type = (struct signatured_type *) per_cu;
11571
11572 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11573
11574 /* If we're using .gdb_index (includes -readnow) then
11575 per_cu->type_unit_group may not have been set up yet. */
11576 if (sig_type->type_unit_group == NULL)
11577 sig_type->type_unit_group = get_type_unit_group (this, attr);
11578 tu_group = sig_type->type_unit_group;
11579
11580 /* If we've already processed this stmt_list there's no real need to
11581 do it again, we could fake it and just recreate the part we need
11582 (file name,index -> symtab mapping). If data shows this optimization
11583 is useful we can do it then. */
11584 first_time = tu_group->compunit_symtab == NULL;
11585
11586 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11587 debug info. */
11588 line_header_up lh;
11589 if (attr != NULL)
11590 {
11591 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11592 lh = dwarf_decode_line_header (line_offset, this);
11593 }
11594 if (lh == NULL)
11595 {
11596 if (first_time)
11597 start_symtab ("", NULL, 0);
11598 else
11599 {
11600 gdb_assert (tu_group->symtabs == NULL);
11601 gdb_assert (m_builder == nullptr);
11602 struct compunit_symtab *cust = tu_group->compunit_symtab;
11603 m_builder.reset (new struct buildsym_compunit
11604 (COMPUNIT_OBJFILE (cust), "",
11605 COMPUNIT_DIRNAME (cust),
11606 compunit_language (cust),
11607 0, cust));
11608 }
11609 return;
11610 }
11611
11612 line_header = lh.release ();
11613 line_header_die_owner = die;
11614
11615 if (first_time)
11616 {
11617 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11618
11619 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11620 still initializing it, and our caller (a few levels up)
11621 process_full_type_unit still needs to know if this is the first
11622 time. */
11623
11624 tu_group->num_symtabs = line_header->file_names.size ();
11625 tu_group->symtabs = XNEWVEC (struct symtab *,
11626 line_header->file_names.size ());
11627
11628 for (i = 0; i < line_header->file_names.size (); ++i)
11629 {
11630 file_entry &fe = line_header->file_names[i];
11631
11632 dwarf2_start_subfile (this, fe.name,
11633 fe.include_dir (line_header));
11634 buildsym_compunit *b = get_builder ();
11635 if (b->get_current_subfile ()->symtab == NULL)
11636 {
11637 /* NOTE: start_subfile will recognize when it's been
11638 passed a file it has already seen. So we can't
11639 assume there's a simple mapping from
11640 cu->line_header->file_names to subfiles, plus
11641 cu->line_header->file_names may contain dups. */
11642 b->get_current_subfile ()->symtab
11643 = allocate_symtab (cust, b->get_current_subfile ()->name);
11644 }
11645
11646 fe.symtab = b->get_current_subfile ()->symtab;
11647 tu_group->symtabs[i] = fe.symtab;
11648 }
11649 }
11650 else
11651 {
11652 gdb_assert (m_builder == nullptr);
11653 struct compunit_symtab *cust = tu_group->compunit_symtab;
11654 m_builder.reset (new struct buildsym_compunit
11655 (COMPUNIT_OBJFILE (cust), "",
11656 COMPUNIT_DIRNAME (cust),
11657 compunit_language (cust),
11658 0, cust));
11659
11660 for (i = 0; i < line_header->file_names.size (); ++i)
11661 {
11662 file_entry &fe = line_header->file_names[i];
11663
11664 fe.symtab = tu_group->symtabs[i];
11665 }
11666 }
11667
11668 /* The main symtab is allocated last. Type units don't have DW_AT_name
11669 so they don't have a "real" (so to speak) symtab anyway.
11670 There is later code that will assign the main symtab to all symbols
11671 that don't have one. We need to handle the case of a symbol with a
11672 missing symtab (DW_AT_decl_file) anyway. */
11673 }
11674
11675 /* Process DW_TAG_type_unit.
11676 For TUs we want to skip the first top level sibling if it's not the
11677 actual type being defined by this TU. In this case the first top
11678 level sibling is there to provide context only. */
11679
11680 static void
11681 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11682 {
11683 struct die_info *child_die;
11684
11685 prepare_one_comp_unit (cu, die, language_minimal);
11686
11687 /* Initialize (or reinitialize) the machinery for building symtabs.
11688 We do this before processing child DIEs, so that the line header table
11689 is available for DW_AT_decl_file. */
11690 cu->setup_type_unit_groups (die);
11691
11692 if (die->child != NULL)
11693 {
11694 child_die = die->child;
11695 while (child_die && child_die->tag)
11696 {
11697 process_die (child_die, cu);
11698 child_die = sibling_die (child_die);
11699 }
11700 }
11701 }
11702 \f
11703 /* DWO/DWP files.
11704
11705 http://gcc.gnu.org/wiki/DebugFission
11706 http://gcc.gnu.org/wiki/DebugFissionDWP
11707
11708 To simplify handling of both DWO files ("object" files with the DWARF info)
11709 and DWP files (a file with the DWOs packaged up into one file), we treat
11710 DWP files as having a collection of virtual DWO files. */
11711
11712 static hashval_t
11713 hash_dwo_file (const void *item)
11714 {
11715 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11716 hashval_t hash;
11717
11718 hash = htab_hash_string (dwo_file->dwo_name);
11719 if (dwo_file->comp_dir != NULL)
11720 hash += htab_hash_string (dwo_file->comp_dir);
11721 return hash;
11722 }
11723
11724 static int
11725 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11726 {
11727 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11728 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11729
11730 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11731 return 0;
11732 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11733 return lhs->comp_dir == rhs->comp_dir;
11734 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11735 }
11736
11737 /* Allocate a hash table for DWO files. */
11738
11739 static htab_up
11740 allocate_dwo_file_hash_table (struct objfile *objfile)
11741 {
11742 auto delete_dwo_file = [] (void *item)
11743 {
11744 struct dwo_file *dwo_file = (struct dwo_file *) item;
11745
11746 delete dwo_file;
11747 };
11748
11749 return htab_up (htab_create_alloc_ex (41,
11750 hash_dwo_file,
11751 eq_dwo_file,
11752 delete_dwo_file,
11753 &objfile->objfile_obstack,
11754 hashtab_obstack_allocate,
11755 dummy_obstack_deallocate));
11756 }
11757
11758 /* Lookup DWO file DWO_NAME. */
11759
11760 static void **
11761 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11762 const char *dwo_name,
11763 const char *comp_dir)
11764 {
11765 struct dwo_file find_entry;
11766 void **slot;
11767
11768 if (dwarf2_per_objfile->dwo_files == NULL)
11769 dwarf2_per_objfile->dwo_files
11770 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11771
11772 find_entry.dwo_name = dwo_name;
11773 find_entry.comp_dir = comp_dir;
11774 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11775 INSERT);
11776
11777 return slot;
11778 }
11779
11780 static hashval_t
11781 hash_dwo_unit (const void *item)
11782 {
11783 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11784
11785 /* This drops the top 32 bits of the id, but is ok for a hash. */
11786 return dwo_unit->signature;
11787 }
11788
11789 static int
11790 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11791 {
11792 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11793 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11794
11795 /* The signature is assumed to be unique within the DWO file.
11796 So while object file CU dwo_id's always have the value zero,
11797 that's OK, assuming each object file DWO file has only one CU,
11798 and that's the rule for now. */
11799 return lhs->signature == rhs->signature;
11800 }
11801
11802 /* Allocate a hash table for DWO CUs,TUs.
11803 There is one of these tables for each of CUs,TUs for each DWO file. */
11804
11805 static htab_t
11806 allocate_dwo_unit_table (struct objfile *objfile)
11807 {
11808 /* Start out with a pretty small number.
11809 Generally DWO files contain only one CU and maybe some TUs. */
11810 return htab_create_alloc_ex (3,
11811 hash_dwo_unit,
11812 eq_dwo_unit,
11813 NULL,
11814 &objfile->objfile_obstack,
11815 hashtab_obstack_allocate,
11816 dummy_obstack_deallocate);
11817 }
11818
11819 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11820
11821 struct create_dwo_cu_data
11822 {
11823 struct dwo_file *dwo_file;
11824 struct dwo_unit dwo_unit;
11825 };
11826
11827 /* die_reader_func for create_dwo_cu. */
11828
11829 static void
11830 create_dwo_cu_reader (const struct die_reader_specs *reader,
11831 const gdb_byte *info_ptr,
11832 struct die_info *comp_unit_die,
11833 int has_children,
11834 void *datap)
11835 {
11836 struct dwarf2_cu *cu = reader->cu;
11837 sect_offset sect_off = cu->per_cu->sect_off;
11838 struct dwarf2_section_info *section = cu->per_cu->section;
11839 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11840 struct dwo_file *dwo_file = data->dwo_file;
11841 struct dwo_unit *dwo_unit = &data->dwo_unit;
11842 struct attribute *attr;
11843
11844 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11845 if (attr == NULL)
11846 {
11847 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11848 " its dwo_id [in module %s]"),
11849 sect_offset_str (sect_off), dwo_file->dwo_name);
11850 return;
11851 }
11852
11853 dwo_unit->dwo_file = dwo_file;
11854 dwo_unit->signature = DW_UNSND (attr);
11855 dwo_unit->section = section;
11856 dwo_unit->sect_off = sect_off;
11857 dwo_unit->length = cu->per_cu->length;
11858
11859 if (dwarf_read_debug)
11860 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11861 sect_offset_str (sect_off),
11862 hex_string (dwo_unit->signature));
11863 }
11864
11865 /* Create the dwo_units for the CUs in a DWO_FILE.
11866 Note: This function processes DWO files only, not DWP files. */
11867
11868 static void
11869 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11870 struct dwo_file &dwo_file, dwarf2_section_info &section,
11871 htab_t &cus_htab)
11872 {
11873 struct objfile *objfile = dwarf2_per_objfile->objfile;
11874 const gdb_byte *info_ptr, *end_ptr;
11875
11876 dwarf2_read_section (objfile, &section);
11877 info_ptr = section.buffer;
11878
11879 if (info_ptr == NULL)
11880 return;
11881
11882 if (dwarf_read_debug)
11883 {
11884 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11885 get_section_name (&section),
11886 get_section_file_name (&section));
11887 }
11888
11889 end_ptr = info_ptr + section.size;
11890 while (info_ptr < end_ptr)
11891 {
11892 struct dwarf2_per_cu_data per_cu;
11893 struct create_dwo_cu_data create_dwo_cu_data;
11894 struct dwo_unit *dwo_unit;
11895 void **slot;
11896 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11897
11898 memset (&create_dwo_cu_data.dwo_unit, 0,
11899 sizeof (create_dwo_cu_data.dwo_unit));
11900 memset (&per_cu, 0, sizeof (per_cu));
11901 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11902 per_cu.is_debug_types = 0;
11903 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11904 per_cu.section = &section;
11905 create_dwo_cu_data.dwo_file = &dwo_file;
11906
11907 init_cutu_and_read_dies_no_follow (
11908 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11909 info_ptr += per_cu.length;
11910
11911 // If the unit could not be parsed, skip it.
11912 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11913 continue;
11914
11915 if (cus_htab == NULL)
11916 cus_htab = allocate_dwo_unit_table (objfile);
11917
11918 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11919 *dwo_unit = create_dwo_cu_data.dwo_unit;
11920 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11921 gdb_assert (slot != NULL);
11922 if (*slot != NULL)
11923 {
11924 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11925 sect_offset dup_sect_off = dup_cu->sect_off;
11926
11927 complaint (_("debug cu entry at offset %s is duplicate to"
11928 " the entry at offset %s, signature %s"),
11929 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11930 hex_string (dwo_unit->signature));
11931 }
11932 *slot = (void *)dwo_unit;
11933 }
11934 }
11935
11936 /* DWP file .debug_{cu,tu}_index section format:
11937 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11938
11939 DWP Version 1:
11940
11941 Both index sections have the same format, and serve to map a 64-bit
11942 signature to a set of section numbers. Each section begins with a header,
11943 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11944 indexes, and a pool of 32-bit section numbers. The index sections will be
11945 aligned at 8-byte boundaries in the file.
11946
11947 The index section header consists of:
11948
11949 V, 32 bit version number
11950 -, 32 bits unused
11951 N, 32 bit number of compilation units or type units in the index
11952 M, 32 bit number of slots in the hash table
11953
11954 Numbers are recorded using the byte order of the application binary.
11955
11956 The hash table begins at offset 16 in the section, and consists of an array
11957 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11958 order of the application binary). Unused slots in the hash table are 0.
11959 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11960
11961 The parallel table begins immediately after the hash table
11962 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11963 array of 32-bit indexes (using the byte order of the application binary),
11964 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11965 table contains a 32-bit index into the pool of section numbers. For unused
11966 hash table slots, the corresponding entry in the parallel table will be 0.
11967
11968 The pool of section numbers begins immediately following the hash table
11969 (at offset 16 + 12 * M from the beginning of the section). The pool of
11970 section numbers consists of an array of 32-bit words (using the byte order
11971 of the application binary). Each item in the array is indexed starting
11972 from 0. The hash table entry provides the index of the first section
11973 number in the set. Additional section numbers in the set follow, and the
11974 set is terminated by a 0 entry (section number 0 is not used in ELF).
11975
11976 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11977 section must be the first entry in the set, and the .debug_abbrev.dwo must
11978 be the second entry. Other members of the set may follow in any order.
11979
11980 ---
11981
11982 DWP Version 2:
11983
11984 DWP Version 2 combines all the .debug_info, etc. sections into one,
11985 and the entries in the index tables are now offsets into these sections.
11986 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11987 section.
11988
11989 Index Section Contents:
11990 Header
11991 Hash Table of Signatures dwp_hash_table.hash_table
11992 Parallel Table of Indices dwp_hash_table.unit_table
11993 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11994 Table of Section Sizes dwp_hash_table.v2.sizes
11995
11996 The index section header consists of:
11997
11998 V, 32 bit version number
11999 L, 32 bit number of columns in the table of section offsets
12000 N, 32 bit number of compilation units or type units in the index
12001 M, 32 bit number of slots in the hash table
12002
12003 Numbers are recorded using the byte order of the application binary.
12004
12005 The hash table has the same format as version 1.
12006 The parallel table of indices has the same format as version 1,
12007 except that the entries are origin-1 indices into the table of sections
12008 offsets and the table of section sizes.
12009
12010 The table of offsets begins immediately following the parallel table
12011 (at offset 16 + 12 * M from the beginning of the section). The table is
12012 a two-dimensional array of 32-bit words (using the byte order of the
12013 application binary), with L columns and N+1 rows, in row-major order.
12014 Each row in the array is indexed starting from 0. The first row provides
12015 a key to the remaining rows: each column in this row provides an identifier
12016 for a debug section, and the offsets in the same column of subsequent rows
12017 refer to that section. The section identifiers are:
12018
12019 DW_SECT_INFO 1 .debug_info.dwo
12020 DW_SECT_TYPES 2 .debug_types.dwo
12021 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12022 DW_SECT_LINE 4 .debug_line.dwo
12023 DW_SECT_LOC 5 .debug_loc.dwo
12024 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12025 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12026 DW_SECT_MACRO 8 .debug_macro.dwo
12027
12028 The offsets provided by the CU and TU index sections are the base offsets
12029 for the contributions made by each CU or TU to the corresponding section
12030 in the package file. Each CU and TU header contains an abbrev_offset
12031 field, used to find the abbreviations table for that CU or TU within the
12032 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12033 be interpreted as relative to the base offset given in the index section.
12034 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12035 should be interpreted as relative to the base offset for .debug_line.dwo,
12036 and offsets into other debug sections obtained from DWARF attributes should
12037 also be interpreted as relative to the corresponding base offset.
12038
12039 The table of sizes begins immediately following the table of offsets.
12040 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12041 with L columns and N rows, in row-major order. Each row in the array is
12042 indexed starting from 1 (row 0 is shared by the two tables).
12043
12044 ---
12045
12046 Hash table lookup is handled the same in version 1 and 2:
12047
12048 We assume that N and M will not exceed 2^32 - 1.
12049 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12050
12051 Given a 64-bit compilation unit signature or a type signature S, an entry
12052 in the hash table is located as follows:
12053
12054 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12055 the low-order k bits all set to 1.
12056
12057 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12058
12059 3) If the hash table entry at index H matches the signature, use that
12060 entry. If the hash table entry at index H is unused (all zeroes),
12061 terminate the search: the signature is not present in the table.
12062
12063 4) Let H = (H + H') modulo M. Repeat at Step 3.
12064
12065 Because M > N and H' and M are relatively prime, the search is guaranteed
12066 to stop at an unused slot or find the match. */
12067
12068 /* Create a hash table to map DWO IDs to their CU/TU entry in
12069 .debug_{info,types}.dwo in DWP_FILE.
12070 Returns NULL if there isn't one.
12071 Note: This function processes DWP files only, not DWO files. */
12072
12073 static struct dwp_hash_table *
12074 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12075 struct dwp_file *dwp_file, int is_debug_types)
12076 {
12077 struct objfile *objfile = dwarf2_per_objfile->objfile;
12078 bfd *dbfd = dwp_file->dbfd.get ();
12079 const gdb_byte *index_ptr, *index_end;
12080 struct dwarf2_section_info *index;
12081 uint32_t version, nr_columns, nr_units, nr_slots;
12082 struct dwp_hash_table *htab;
12083
12084 if (is_debug_types)
12085 index = &dwp_file->sections.tu_index;
12086 else
12087 index = &dwp_file->sections.cu_index;
12088
12089 if (dwarf2_section_empty_p (index))
12090 return NULL;
12091 dwarf2_read_section (objfile, index);
12092
12093 index_ptr = index->buffer;
12094 index_end = index_ptr + index->size;
12095
12096 version = read_4_bytes (dbfd, index_ptr);
12097 index_ptr += 4;
12098 if (version == 2)
12099 nr_columns = read_4_bytes (dbfd, index_ptr);
12100 else
12101 nr_columns = 0;
12102 index_ptr += 4;
12103 nr_units = read_4_bytes (dbfd, index_ptr);
12104 index_ptr += 4;
12105 nr_slots = read_4_bytes (dbfd, index_ptr);
12106 index_ptr += 4;
12107
12108 if (version != 1 && version != 2)
12109 {
12110 error (_("Dwarf Error: unsupported DWP file version (%s)"
12111 " [in module %s]"),
12112 pulongest (version), dwp_file->name);
12113 }
12114 if (nr_slots != (nr_slots & -nr_slots))
12115 {
12116 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12117 " is not power of 2 [in module %s]"),
12118 pulongest (nr_slots), dwp_file->name);
12119 }
12120
12121 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12122 htab->version = version;
12123 htab->nr_columns = nr_columns;
12124 htab->nr_units = nr_units;
12125 htab->nr_slots = nr_slots;
12126 htab->hash_table = index_ptr;
12127 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12128
12129 /* Exit early if the table is empty. */
12130 if (nr_slots == 0 || nr_units == 0
12131 || (version == 2 && nr_columns == 0))
12132 {
12133 /* All must be zero. */
12134 if (nr_slots != 0 || nr_units != 0
12135 || (version == 2 && nr_columns != 0))
12136 {
12137 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12138 " all zero [in modules %s]"),
12139 dwp_file->name);
12140 }
12141 return htab;
12142 }
12143
12144 if (version == 1)
12145 {
12146 htab->section_pool.v1.indices =
12147 htab->unit_table + sizeof (uint32_t) * nr_slots;
12148 /* It's harder to decide whether the section is too small in v1.
12149 V1 is deprecated anyway so we punt. */
12150 }
12151 else
12152 {
12153 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12154 int *ids = htab->section_pool.v2.section_ids;
12155 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12156 /* Reverse map for error checking. */
12157 int ids_seen[DW_SECT_MAX + 1];
12158 int i;
12159
12160 if (nr_columns < 2)
12161 {
12162 error (_("Dwarf Error: bad DWP hash table, too few columns"
12163 " in section table [in module %s]"),
12164 dwp_file->name);
12165 }
12166 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12167 {
12168 error (_("Dwarf Error: bad DWP hash table, too many columns"
12169 " in section table [in module %s]"),
12170 dwp_file->name);
12171 }
12172 memset (ids, 255, sizeof_ids);
12173 memset (ids_seen, 255, sizeof (ids_seen));
12174 for (i = 0; i < nr_columns; ++i)
12175 {
12176 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12177
12178 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12179 {
12180 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12181 " in section table [in module %s]"),
12182 id, dwp_file->name);
12183 }
12184 if (ids_seen[id] != -1)
12185 {
12186 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12187 " id %d in section table [in module %s]"),
12188 id, dwp_file->name);
12189 }
12190 ids_seen[id] = i;
12191 ids[i] = id;
12192 }
12193 /* Must have exactly one info or types section. */
12194 if (((ids_seen[DW_SECT_INFO] != -1)
12195 + (ids_seen[DW_SECT_TYPES] != -1))
12196 != 1)
12197 {
12198 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12199 " DWO info/types section [in module %s]"),
12200 dwp_file->name);
12201 }
12202 /* Must have an abbrev section. */
12203 if (ids_seen[DW_SECT_ABBREV] == -1)
12204 {
12205 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12206 " section [in module %s]"),
12207 dwp_file->name);
12208 }
12209 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12210 htab->section_pool.v2.sizes =
12211 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12212 * nr_units * nr_columns);
12213 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12214 * nr_units * nr_columns))
12215 > index_end)
12216 {
12217 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12218 " [in module %s]"),
12219 dwp_file->name);
12220 }
12221 }
12222
12223 return htab;
12224 }
12225
12226 /* Update SECTIONS with the data from SECTP.
12227
12228 This function is like the other "locate" section routines that are
12229 passed to bfd_map_over_sections, but in this context the sections to
12230 read comes from the DWP V1 hash table, not the full ELF section table.
12231
12232 The result is non-zero for success, or zero if an error was found. */
12233
12234 static int
12235 locate_v1_virtual_dwo_sections (asection *sectp,
12236 struct virtual_v1_dwo_sections *sections)
12237 {
12238 const struct dwop_section_names *names = &dwop_section_names;
12239
12240 if (section_is_p (sectp->name, &names->abbrev_dwo))
12241 {
12242 /* There can be only one. */
12243 if (sections->abbrev.s.section != NULL)
12244 return 0;
12245 sections->abbrev.s.section = sectp;
12246 sections->abbrev.size = bfd_get_section_size (sectp);
12247 }
12248 else if (section_is_p (sectp->name, &names->info_dwo)
12249 || section_is_p (sectp->name, &names->types_dwo))
12250 {
12251 /* There can be only one. */
12252 if (sections->info_or_types.s.section != NULL)
12253 return 0;
12254 sections->info_or_types.s.section = sectp;
12255 sections->info_or_types.size = bfd_get_section_size (sectp);
12256 }
12257 else if (section_is_p (sectp->name, &names->line_dwo))
12258 {
12259 /* There can be only one. */
12260 if (sections->line.s.section != NULL)
12261 return 0;
12262 sections->line.s.section = sectp;
12263 sections->line.size = bfd_get_section_size (sectp);
12264 }
12265 else if (section_is_p (sectp->name, &names->loc_dwo))
12266 {
12267 /* There can be only one. */
12268 if (sections->loc.s.section != NULL)
12269 return 0;
12270 sections->loc.s.section = sectp;
12271 sections->loc.size = bfd_get_section_size (sectp);
12272 }
12273 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12274 {
12275 /* There can be only one. */
12276 if (sections->macinfo.s.section != NULL)
12277 return 0;
12278 sections->macinfo.s.section = sectp;
12279 sections->macinfo.size = bfd_get_section_size (sectp);
12280 }
12281 else if (section_is_p (sectp->name, &names->macro_dwo))
12282 {
12283 /* There can be only one. */
12284 if (sections->macro.s.section != NULL)
12285 return 0;
12286 sections->macro.s.section = sectp;
12287 sections->macro.size = bfd_get_section_size (sectp);
12288 }
12289 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12290 {
12291 /* There can be only one. */
12292 if (sections->str_offsets.s.section != NULL)
12293 return 0;
12294 sections->str_offsets.s.section = sectp;
12295 sections->str_offsets.size = bfd_get_section_size (sectp);
12296 }
12297 else
12298 {
12299 /* No other kind of section is valid. */
12300 return 0;
12301 }
12302
12303 return 1;
12304 }
12305
12306 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12307 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12308 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12309 This is for DWP version 1 files. */
12310
12311 static struct dwo_unit *
12312 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12313 struct dwp_file *dwp_file,
12314 uint32_t unit_index,
12315 const char *comp_dir,
12316 ULONGEST signature, int is_debug_types)
12317 {
12318 struct objfile *objfile = dwarf2_per_objfile->objfile;
12319 const struct dwp_hash_table *dwp_htab =
12320 is_debug_types ? dwp_file->tus : dwp_file->cus;
12321 bfd *dbfd = dwp_file->dbfd.get ();
12322 const char *kind = is_debug_types ? "TU" : "CU";
12323 struct dwo_file *dwo_file;
12324 struct dwo_unit *dwo_unit;
12325 struct virtual_v1_dwo_sections sections;
12326 void **dwo_file_slot;
12327 int i;
12328
12329 gdb_assert (dwp_file->version == 1);
12330
12331 if (dwarf_read_debug)
12332 {
12333 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12334 kind,
12335 pulongest (unit_index), hex_string (signature),
12336 dwp_file->name);
12337 }
12338
12339 /* Fetch the sections of this DWO unit.
12340 Put a limit on the number of sections we look for so that bad data
12341 doesn't cause us to loop forever. */
12342
12343 #define MAX_NR_V1_DWO_SECTIONS \
12344 (1 /* .debug_info or .debug_types */ \
12345 + 1 /* .debug_abbrev */ \
12346 + 1 /* .debug_line */ \
12347 + 1 /* .debug_loc */ \
12348 + 1 /* .debug_str_offsets */ \
12349 + 1 /* .debug_macro or .debug_macinfo */ \
12350 + 1 /* trailing zero */)
12351
12352 memset (&sections, 0, sizeof (sections));
12353
12354 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12355 {
12356 asection *sectp;
12357 uint32_t section_nr =
12358 read_4_bytes (dbfd,
12359 dwp_htab->section_pool.v1.indices
12360 + (unit_index + i) * sizeof (uint32_t));
12361
12362 if (section_nr == 0)
12363 break;
12364 if (section_nr >= dwp_file->num_sections)
12365 {
12366 error (_("Dwarf Error: bad DWP hash table, section number too large"
12367 " [in module %s]"),
12368 dwp_file->name);
12369 }
12370
12371 sectp = dwp_file->elf_sections[section_nr];
12372 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12373 {
12374 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12375 " [in module %s]"),
12376 dwp_file->name);
12377 }
12378 }
12379
12380 if (i < 2
12381 || dwarf2_section_empty_p (&sections.info_or_types)
12382 || dwarf2_section_empty_p (&sections.abbrev))
12383 {
12384 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12385 " [in module %s]"),
12386 dwp_file->name);
12387 }
12388 if (i == MAX_NR_V1_DWO_SECTIONS)
12389 {
12390 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12391 " [in module %s]"),
12392 dwp_file->name);
12393 }
12394
12395 /* It's easier for the rest of the code if we fake a struct dwo_file and
12396 have dwo_unit "live" in that. At least for now.
12397
12398 The DWP file can be made up of a random collection of CUs and TUs.
12399 However, for each CU + set of TUs that came from the same original DWO
12400 file, we can combine them back into a virtual DWO file to save space
12401 (fewer struct dwo_file objects to allocate). Remember that for really
12402 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12403
12404 std::string virtual_dwo_name =
12405 string_printf ("virtual-dwo/%d-%d-%d-%d",
12406 get_section_id (&sections.abbrev),
12407 get_section_id (&sections.line),
12408 get_section_id (&sections.loc),
12409 get_section_id (&sections.str_offsets));
12410 /* Can we use an existing virtual DWO file? */
12411 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12412 virtual_dwo_name.c_str (),
12413 comp_dir);
12414 /* Create one if necessary. */
12415 if (*dwo_file_slot == NULL)
12416 {
12417 if (dwarf_read_debug)
12418 {
12419 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12420 virtual_dwo_name.c_str ());
12421 }
12422 dwo_file = new struct dwo_file;
12423 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12424 virtual_dwo_name);
12425 dwo_file->comp_dir = comp_dir;
12426 dwo_file->sections.abbrev = sections.abbrev;
12427 dwo_file->sections.line = sections.line;
12428 dwo_file->sections.loc = sections.loc;
12429 dwo_file->sections.macinfo = sections.macinfo;
12430 dwo_file->sections.macro = sections.macro;
12431 dwo_file->sections.str_offsets = sections.str_offsets;
12432 /* The "str" section is global to the entire DWP file. */
12433 dwo_file->sections.str = dwp_file->sections.str;
12434 /* The info or types section is assigned below to dwo_unit,
12435 there's no need to record it in dwo_file.
12436 Also, we can't simply record type sections in dwo_file because
12437 we record a pointer into the vector in dwo_unit. As we collect more
12438 types we'll grow the vector and eventually have to reallocate space
12439 for it, invalidating all copies of pointers into the previous
12440 contents. */
12441 *dwo_file_slot = dwo_file;
12442 }
12443 else
12444 {
12445 if (dwarf_read_debug)
12446 {
12447 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12448 virtual_dwo_name.c_str ());
12449 }
12450 dwo_file = (struct dwo_file *) *dwo_file_slot;
12451 }
12452
12453 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12454 dwo_unit->dwo_file = dwo_file;
12455 dwo_unit->signature = signature;
12456 dwo_unit->section =
12457 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12458 *dwo_unit->section = sections.info_or_types;
12459 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12460
12461 return dwo_unit;
12462 }
12463
12464 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12465 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12466 piece within that section used by a TU/CU, return a virtual section
12467 of just that piece. */
12468
12469 static struct dwarf2_section_info
12470 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12471 struct dwarf2_section_info *section,
12472 bfd_size_type offset, bfd_size_type size)
12473 {
12474 struct dwarf2_section_info result;
12475 asection *sectp;
12476
12477 gdb_assert (section != NULL);
12478 gdb_assert (!section->is_virtual);
12479
12480 memset (&result, 0, sizeof (result));
12481 result.s.containing_section = section;
12482 result.is_virtual = true;
12483
12484 if (size == 0)
12485 return result;
12486
12487 sectp = get_section_bfd_section (section);
12488
12489 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12490 bounds of the real section. This is a pretty-rare event, so just
12491 flag an error (easier) instead of a warning and trying to cope. */
12492 if (sectp == NULL
12493 || offset + size > bfd_get_section_size (sectp))
12494 {
12495 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12496 " in section %s [in module %s]"),
12497 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12498 objfile_name (dwarf2_per_objfile->objfile));
12499 }
12500
12501 result.virtual_offset = offset;
12502 result.size = size;
12503 return result;
12504 }
12505
12506 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12507 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12508 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12509 This is for DWP version 2 files. */
12510
12511 static struct dwo_unit *
12512 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12513 struct dwp_file *dwp_file,
12514 uint32_t unit_index,
12515 const char *comp_dir,
12516 ULONGEST signature, int is_debug_types)
12517 {
12518 struct objfile *objfile = dwarf2_per_objfile->objfile;
12519 const struct dwp_hash_table *dwp_htab =
12520 is_debug_types ? dwp_file->tus : dwp_file->cus;
12521 bfd *dbfd = dwp_file->dbfd.get ();
12522 const char *kind = is_debug_types ? "TU" : "CU";
12523 struct dwo_file *dwo_file;
12524 struct dwo_unit *dwo_unit;
12525 struct virtual_v2_dwo_sections sections;
12526 void **dwo_file_slot;
12527 int i;
12528
12529 gdb_assert (dwp_file->version == 2);
12530
12531 if (dwarf_read_debug)
12532 {
12533 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12534 kind,
12535 pulongest (unit_index), hex_string (signature),
12536 dwp_file->name);
12537 }
12538
12539 /* Fetch the section offsets of this DWO unit. */
12540
12541 memset (&sections, 0, sizeof (sections));
12542
12543 for (i = 0; i < dwp_htab->nr_columns; ++i)
12544 {
12545 uint32_t offset = read_4_bytes (dbfd,
12546 dwp_htab->section_pool.v2.offsets
12547 + (((unit_index - 1) * dwp_htab->nr_columns
12548 + i)
12549 * sizeof (uint32_t)));
12550 uint32_t size = read_4_bytes (dbfd,
12551 dwp_htab->section_pool.v2.sizes
12552 + (((unit_index - 1) * dwp_htab->nr_columns
12553 + i)
12554 * sizeof (uint32_t)));
12555
12556 switch (dwp_htab->section_pool.v2.section_ids[i])
12557 {
12558 case DW_SECT_INFO:
12559 case DW_SECT_TYPES:
12560 sections.info_or_types_offset = offset;
12561 sections.info_or_types_size = size;
12562 break;
12563 case DW_SECT_ABBREV:
12564 sections.abbrev_offset = offset;
12565 sections.abbrev_size = size;
12566 break;
12567 case DW_SECT_LINE:
12568 sections.line_offset = offset;
12569 sections.line_size = size;
12570 break;
12571 case DW_SECT_LOC:
12572 sections.loc_offset = offset;
12573 sections.loc_size = size;
12574 break;
12575 case DW_SECT_STR_OFFSETS:
12576 sections.str_offsets_offset = offset;
12577 sections.str_offsets_size = size;
12578 break;
12579 case DW_SECT_MACINFO:
12580 sections.macinfo_offset = offset;
12581 sections.macinfo_size = size;
12582 break;
12583 case DW_SECT_MACRO:
12584 sections.macro_offset = offset;
12585 sections.macro_size = size;
12586 break;
12587 }
12588 }
12589
12590 /* It's easier for the rest of the code if we fake a struct dwo_file and
12591 have dwo_unit "live" in that. At least for now.
12592
12593 The DWP file can be made up of a random collection of CUs and TUs.
12594 However, for each CU + set of TUs that came from the same original DWO
12595 file, we can combine them back into a virtual DWO file to save space
12596 (fewer struct dwo_file objects to allocate). Remember that for really
12597 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12598
12599 std::string virtual_dwo_name =
12600 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12601 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12602 (long) (sections.line_size ? sections.line_offset : 0),
12603 (long) (sections.loc_size ? sections.loc_offset : 0),
12604 (long) (sections.str_offsets_size
12605 ? sections.str_offsets_offset : 0));
12606 /* Can we use an existing virtual DWO file? */
12607 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12608 virtual_dwo_name.c_str (),
12609 comp_dir);
12610 /* Create one if necessary. */
12611 if (*dwo_file_slot == NULL)
12612 {
12613 if (dwarf_read_debug)
12614 {
12615 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12616 virtual_dwo_name.c_str ());
12617 }
12618 dwo_file = new struct dwo_file;
12619 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12620 virtual_dwo_name);
12621 dwo_file->comp_dir = comp_dir;
12622 dwo_file->sections.abbrev =
12623 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12624 sections.abbrev_offset, sections.abbrev_size);
12625 dwo_file->sections.line =
12626 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12627 sections.line_offset, sections.line_size);
12628 dwo_file->sections.loc =
12629 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12630 sections.loc_offset, sections.loc_size);
12631 dwo_file->sections.macinfo =
12632 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12633 sections.macinfo_offset, sections.macinfo_size);
12634 dwo_file->sections.macro =
12635 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12636 sections.macro_offset, sections.macro_size);
12637 dwo_file->sections.str_offsets =
12638 create_dwp_v2_section (dwarf2_per_objfile,
12639 &dwp_file->sections.str_offsets,
12640 sections.str_offsets_offset,
12641 sections.str_offsets_size);
12642 /* The "str" section is global to the entire DWP file. */
12643 dwo_file->sections.str = dwp_file->sections.str;
12644 /* The info or types section is assigned below to dwo_unit,
12645 there's no need to record it in dwo_file.
12646 Also, we can't simply record type sections in dwo_file because
12647 we record a pointer into the vector in dwo_unit. As we collect more
12648 types we'll grow the vector and eventually have to reallocate space
12649 for it, invalidating all copies of pointers into the previous
12650 contents. */
12651 *dwo_file_slot = dwo_file;
12652 }
12653 else
12654 {
12655 if (dwarf_read_debug)
12656 {
12657 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12658 virtual_dwo_name.c_str ());
12659 }
12660 dwo_file = (struct dwo_file *) *dwo_file_slot;
12661 }
12662
12663 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12664 dwo_unit->dwo_file = dwo_file;
12665 dwo_unit->signature = signature;
12666 dwo_unit->section =
12667 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12668 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12669 is_debug_types
12670 ? &dwp_file->sections.types
12671 : &dwp_file->sections.info,
12672 sections.info_or_types_offset,
12673 sections.info_or_types_size);
12674 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12675
12676 return dwo_unit;
12677 }
12678
12679 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12680 Returns NULL if the signature isn't found. */
12681
12682 static struct dwo_unit *
12683 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12684 struct dwp_file *dwp_file, const char *comp_dir,
12685 ULONGEST signature, int is_debug_types)
12686 {
12687 const struct dwp_hash_table *dwp_htab =
12688 is_debug_types ? dwp_file->tus : dwp_file->cus;
12689 bfd *dbfd = dwp_file->dbfd.get ();
12690 uint32_t mask = dwp_htab->nr_slots - 1;
12691 uint32_t hash = signature & mask;
12692 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12693 unsigned int i;
12694 void **slot;
12695 struct dwo_unit find_dwo_cu;
12696
12697 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12698 find_dwo_cu.signature = signature;
12699 slot = htab_find_slot (is_debug_types
12700 ? dwp_file->loaded_tus
12701 : dwp_file->loaded_cus,
12702 &find_dwo_cu, INSERT);
12703
12704 if (*slot != NULL)
12705 return (struct dwo_unit *) *slot;
12706
12707 /* Use a for loop so that we don't loop forever on bad debug info. */
12708 for (i = 0; i < dwp_htab->nr_slots; ++i)
12709 {
12710 ULONGEST signature_in_table;
12711
12712 signature_in_table =
12713 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12714 if (signature_in_table == signature)
12715 {
12716 uint32_t unit_index =
12717 read_4_bytes (dbfd,
12718 dwp_htab->unit_table + hash * sizeof (uint32_t));
12719
12720 if (dwp_file->version == 1)
12721 {
12722 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12723 dwp_file, unit_index,
12724 comp_dir, signature,
12725 is_debug_types);
12726 }
12727 else
12728 {
12729 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12730 dwp_file, unit_index,
12731 comp_dir, signature,
12732 is_debug_types);
12733 }
12734 return (struct dwo_unit *) *slot;
12735 }
12736 if (signature_in_table == 0)
12737 return NULL;
12738 hash = (hash + hash2) & mask;
12739 }
12740
12741 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12742 " [in module %s]"),
12743 dwp_file->name);
12744 }
12745
12746 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12747 Open the file specified by FILE_NAME and hand it off to BFD for
12748 preliminary analysis. Return a newly initialized bfd *, which
12749 includes a canonicalized copy of FILE_NAME.
12750 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12751 SEARCH_CWD is true if the current directory is to be searched.
12752 It will be searched before debug-file-directory.
12753 If successful, the file is added to the bfd include table of the
12754 objfile's bfd (see gdb_bfd_record_inclusion).
12755 If unable to find/open the file, return NULL.
12756 NOTE: This function is derived from symfile_bfd_open. */
12757
12758 static gdb_bfd_ref_ptr
12759 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12760 const char *file_name, int is_dwp, int search_cwd)
12761 {
12762 int desc;
12763 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12764 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12765 to debug_file_directory. */
12766 const char *search_path;
12767 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12768
12769 gdb::unique_xmalloc_ptr<char> search_path_holder;
12770 if (search_cwd)
12771 {
12772 if (*debug_file_directory != '\0')
12773 {
12774 search_path_holder.reset (concat (".", dirname_separator_string,
12775 debug_file_directory,
12776 (char *) NULL));
12777 search_path = search_path_holder.get ();
12778 }
12779 else
12780 search_path = ".";
12781 }
12782 else
12783 search_path = debug_file_directory;
12784
12785 openp_flags flags = OPF_RETURN_REALPATH;
12786 if (is_dwp)
12787 flags |= OPF_SEARCH_IN_PATH;
12788
12789 gdb::unique_xmalloc_ptr<char> absolute_name;
12790 desc = openp (search_path, flags, file_name,
12791 O_RDONLY | O_BINARY, &absolute_name);
12792 if (desc < 0)
12793 return NULL;
12794
12795 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12796 gnutarget, desc));
12797 if (sym_bfd == NULL)
12798 return NULL;
12799 bfd_set_cacheable (sym_bfd.get (), 1);
12800
12801 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12802 return NULL;
12803
12804 /* Success. Record the bfd as having been included by the objfile's bfd.
12805 This is important because things like demangled_names_hash lives in the
12806 objfile's per_bfd space and may have references to things like symbol
12807 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12808 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12809
12810 return sym_bfd;
12811 }
12812
12813 /* Try to open DWO file FILE_NAME.
12814 COMP_DIR is the DW_AT_comp_dir attribute.
12815 The result is the bfd handle of the file.
12816 If there is a problem finding or opening the file, return NULL.
12817 Upon success, the canonicalized path of the file is stored in the bfd,
12818 same as symfile_bfd_open. */
12819
12820 static gdb_bfd_ref_ptr
12821 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12822 const char *file_name, const char *comp_dir)
12823 {
12824 if (IS_ABSOLUTE_PATH (file_name))
12825 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12826 0 /*is_dwp*/, 0 /*search_cwd*/);
12827
12828 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12829
12830 if (comp_dir != NULL)
12831 {
12832 char *path_to_try = concat (comp_dir, SLASH_STRING,
12833 file_name, (char *) NULL);
12834
12835 /* NOTE: If comp_dir is a relative path, this will also try the
12836 search path, which seems useful. */
12837 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12838 path_to_try,
12839 0 /*is_dwp*/,
12840 1 /*search_cwd*/));
12841 xfree (path_to_try);
12842 if (abfd != NULL)
12843 return abfd;
12844 }
12845
12846 /* That didn't work, try debug-file-directory, which, despite its name,
12847 is a list of paths. */
12848
12849 if (*debug_file_directory == '\0')
12850 return NULL;
12851
12852 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12853 0 /*is_dwp*/, 1 /*search_cwd*/);
12854 }
12855
12856 /* This function is mapped across the sections and remembers the offset and
12857 size of each of the DWO debugging sections we are interested in. */
12858
12859 static void
12860 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12861 {
12862 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12863 const struct dwop_section_names *names = &dwop_section_names;
12864
12865 if (section_is_p (sectp->name, &names->abbrev_dwo))
12866 {
12867 dwo_sections->abbrev.s.section = sectp;
12868 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12869 }
12870 else if (section_is_p (sectp->name, &names->info_dwo))
12871 {
12872 dwo_sections->info.s.section = sectp;
12873 dwo_sections->info.size = bfd_get_section_size (sectp);
12874 }
12875 else if (section_is_p (sectp->name, &names->line_dwo))
12876 {
12877 dwo_sections->line.s.section = sectp;
12878 dwo_sections->line.size = bfd_get_section_size (sectp);
12879 }
12880 else if (section_is_p (sectp->name, &names->loc_dwo))
12881 {
12882 dwo_sections->loc.s.section = sectp;
12883 dwo_sections->loc.size = bfd_get_section_size (sectp);
12884 }
12885 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12886 {
12887 dwo_sections->macinfo.s.section = sectp;
12888 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12889 }
12890 else if (section_is_p (sectp->name, &names->macro_dwo))
12891 {
12892 dwo_sections->macro.s.section = sectp;
12893 dwo_sections->macro.size = bfd_get_section_size (sectp);
12894 }
12895 else if (section_is_p (sectp->name, &names->str_dwo))
12896 {
12897 dwo_sections->str.s.section = sectp;
12898 dwo_sections->str.size = bfd_get_section_size (sectp);
12899 }
12900 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12901 {
12902 dwo_sections->str_offsets.s.section = sectp;
12903 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12904 }
12905 else if (section_is_p (sectp->name, &names->types_dwo))
12906 {
12907 struct dwarf2_section_info type_section;
12908
12909 memset (&type_section, 0, sizeof (type_section));
12910 type_section.s.section = sectp;
12911 type_section.size = bfd_get_section_size (sectp);
12912 dwo_sections->types.push_back (type_section);
12913 }
12914 }
12915
12916 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12917 by PER_CU. This is for the non-DWP case.
12918 The result is NULL if DWO_NAME can't be found. */
12919
12920 static struct dwo_file *
12921 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12922 const char *dwo_name, const char *comp_dir)
12923 {
12924 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12925
12926 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12927 if (dbfd == NULL)
12928 {
12929 if (dwarf_read_debug)
12930 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12931 return NULL;
12932 }
12933
12934 dwo_file_up dwo_file (new struct dwo_file);
12935 dwo_file->dwo_name = dwo_name;
12936 dwo_file->comp_dir = comp_dir;
12937 dwo_file->dbfd = std::move (dbfd);
12938
12939 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12940 &dwo_file->sections);
12941
12942 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12943 dwo_file->cus);
12944
12945 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12946 dwo_file->sections.types, dwo_file->tus);
12947
12948 if (dwarf_read_debug)
12949 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12950
12951 return dwo_file.release ();
12952 }
12953
12954 /* This function is mapped across the sections and remembers the offset and
12955 size of each of the DWP debugging sections common to version 1 and 2 that
12956 we are interested in. */
12957
12958 static void
12959 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12960 void *dwp_file_ptr)
12961 {
12962 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12963 const struct dwop_section_names *names = &dwop_section_names;
12964 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12965
12966 /* Record the ELF section number for later lookup: this is what the
12967 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12968 gdb_assert (elf_section_nr < dwp_file->num_sections);
12969 dwp_file->elf_sections[elf_section_nr] = sectp;
12970
12971 /* Look for specific sections that we need. */
12972 if (section_is_p (sectp->name, &names->str_dwo))
12973 {
12974 dwp_file->sections.str.s.section = sectp;
12975 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12976 }
12977 else if (section_is_p (sectp->name, &names->cu_index))
12978 {
12979 dwp_file->sections.cu_index.s.section = sectp;
12980 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12981 }
12982 else if (section_is_p (sectp->name, &names->tu_index))
12983 {
12984 dwp_file->sections.tu_index.s.section = sectp;
12985 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12986 }
12987 }
12988
12989 /* This function is mapped across the sections and remembers the offset and
12990 size of each of the DWP version 2 debugging sections that we are interested
12991 in. This is split into a separate function because we don't know if we
12992 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12993
12994 static void
12995 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12996 {
12997 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12998 const struct dwop_section_names *names = &dwop_section_names;
12999 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13000
13001 /* Record the ELF section number for later lookup: this is what the
13002 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13003 gdb_assert (elf_section_nr < dwp_file->num_sections);
13004 dwp_file->elf_sections[elf_section_nr] = sectp;
13005
13006 /* Look for specific sections that we need. */
13007 if (section_is_p (sectp->name, &names->abbrev_dwo))
13008 {
13009 dwp_file->sections.abbrev.s.section = sectp;
13010 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13011 }
13012 else if (section_is_p (sectp->name, &names->info_dwo))
13013 {
13014 dwp_file->sections.info.s.section = sectp;
13015 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13016 }
13017 else if (section_is_p (sectp->name, &names->line_dwo))
13018 {
13019 dwp_file->sections.line.s.section = sectp;
13020 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13021 }
13022 else if (section_is_p (sectp->name, &names->loc_dwo))
13023 {
13024 dwp_file->sections.loc.s.section = sectp;
13025 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13026 }
13027 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13028 {
13029 dwp_file->sections.macinfo.s.section = sectp;
13030 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13031 }
13032 else if (section_is_p (sectp->name, &names->macro_dwo))
13033 {
13034 dwp_file->sections.macro.s.section = sectp;
13035 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13036 }
13037 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13038 {
13039 dwp_file->sections.str_offsets.s.section = sectp;
13040 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13041 }
13042 else if (section_is_p (sectp->name, &names->types_dwo))
13043 {
13044 dwp_file->sections.types.s.section = sectp;
13045 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13046 }
13047 }
13048
13049 /* Hash function for dwp_file loaded CUs/TUs. */
13050
13051 static hashval_t
13052 hash_dwp_loaded_cutus (const void *item)
13053 {
13054 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13055
13056 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13057 return dwo_unit->signature;
13058 }
13059
13060 /* Equality function for dwp_file loaded CUs/TUs. */
13061
13062 static int
13063 eq_dwp_loaded_cutus (const void *a, const void *b)
13064 {
13065 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13066 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13067
13068 return dua->signature == dub->signature;
13069 }
13070
13071 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13072
13073 static htab_t
13074 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13075 {
13076 return htab_create_alloc_ex (3,
13077 hash_dwp_loaded_cutus,
13078 eq_dwp_loaded_cutus,
13079 NULL,
13080 &objfile->objfile_obstack,
13081 hashtab_obstack_allocate,
13082 dummy_obstack_deallocate);
13083 }
13084
13085 /* Try to open DWP file FILE_NAME.
13086 The result is the bfd handle of the file.
13087 If there is a problem finding or opening the file, return NULL.
13088 Upon success, the canonicalized path of the file is stored in the bfd,
13089 same as symfile_bfd_open. */
13090
13091 static gdb_bfd_ref_ptr
13092 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13093 const char *file_name)
13094 {
13095 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13096 1 /*is_dwp*/,
13097 1 /*search_cwd*/));
13098 if (abfd != NULL)
13099 return abfd;
13100
13101 /* Work around upstream bug 15652.
13102 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13103 [Whether that's a "bug" is debatable, but it is getting in our way.]
13104 We have no real idea where the dwp file is, because gdb's realpath-ing
13105 of the executable's path may have discarded the needed info.
13106 [IWBN if the dwp file name was recorded in the executable, akin to
13107 .gnu_debuglink, but that doesn't exist yet.]
13108 Strip the directory from FILE_NAME and search again. */
13109 if (*debug_file_directory != '\0')
13110 {
13111 /* Don't implicitly search the current directory here.
13112 If the user wants to search "." to handle this case,
13113 it must be added to debug-file-directory. */
13114 return try_open_dwop_file (dwarf2_per_objfile,
13115 lbasename (file_name), 1 /*is_dwp*/,
13116 0 /*search_cwd*/);
13117 }
13118
13119 return NULL;
13120 }
13121
13122 /* Initialize the use of the DWP file for the current objfile.
13123 By convention the name of the DWP file is ${objfile}.dwp.
13124 The result is NULL if it can't be found. */
13125
13126 static std::unique_ptr<struct dwp_file>
13127 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13128 {
13129 struct objfile *objfile = dwarf2_per_objfile->objfile;
13130
13131 /* Try to find first .dwp for the binary file before any symbolic links
13132 resolving. */
13133
13134 /* If the objfile is a debug file, find the name of the real binary
13135 file and get the name of dwp file from there. */
13136 std::string dwp_name;
13137 if (objfile->separate_debug_objfile_backlink != NULL)
13138 {
13139 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13140 const char *backlink_basename = lbasename (backlink->original_name);
13141
13142 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13143 }
13144 else
13145 dwp_name = objfile->original_name;
13146
13147 dwp_name += ".dwp";
13148
13149 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13150 if (dbfd == NULL
13151 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13152 {
13153 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13154 dwp_name = objfile_name (objfile);
13155 dwp_name += ".dwp";
13156 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13157 }
13158
13159 if (dbfd == NULL)
13160 {
13161 if (dwarf_read_debug)
13162 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13163 return std::unique_ptr<dwp_file> ();
13164 }
13165
13166 const char *name = bfd_get_filename (dbfd.get ());
13167 std::unique_ptr<struct dwp_file> dwp_file
13168 (new struct dwp_file (name, std::move (dbfd)));
13169
13170 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13171 dwp_file->elf_sections =
13172 OBSTACK_CALLOC (&objfile->objfile_obstack,
13173 dwp_file->num_sections, asection *);
13174
13175 bfd_map_over_sections (dwp_file->dbfd.get (),
13176 dwarf2_locate_common_dwp_sections,
13177 dwp_file.get ());
13178
13179 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13180 0);
13181
13182 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13183 1);
13184
13185 /* The DWP file version is stored in the hash table. Oh well. */
13186 if (dwp_file->cus && dwp_file->tus
13187 && dwp_file->cus->version != dwp_file->tus->version)
13188 {
13189 /* Technically speaking, we should try to limp along, but this is
13190 pretty bizarre. We use pulongest here because that's the established
13191 portability solution (e.g, we cannot use %u for uint32_t). */
13192 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13193 " TU version %s [in DWP file %s]"),
13194 pulongest (dwp_file->cus->version),
13195 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13196 }
13197
13198 if (dwp_file->cus)
13199 dwp_file->version = dwp_file->cus->version;
13200 else if (dwp_file->tus)
13201 dwp_file->version = dwp_file->tus->version;
13202 else
13203 dwp_file->version = 2;
13204
13205 if (dwp_file->version == 2)
13206 bfd_map_over_sections (dwp_file->dbfd.get (),
13207 dwarf2_locate_v2_dwp_sections,
13208 dwp_file.get ());
13209
13210 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13211 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13212
13213 if (dwarf_read_debug)
13214 {
13215 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13216 fprintf_unfiltered (gdb_stdlog,
13217 " %s CUs, %s TUs\n",
13218 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13219 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13220 }
13221
13222 return dwp_file;
13223 }
13224
13225 /* Wrapper around open_and_init_dwp_file, only open it once. */
13226
13227 static struct dwp_file *
13228 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13229 {
13230 if (! dwarf2_per_objfile->dwp_checked)
13231 {
13232 dwarf2_per_objfile->dwp_file
13233 = open_and_init_dwp_file (dwarf2_per_objfile);
13234 dwarf2_per_objfile->dwp_checked = 1;
13235 }
13236 return dwarf2_per_objfile->dwp_file.get ();
13237 }
13238
13239 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13240 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13241 or in the DWP file for the objfile, referenced by THIS_UNIT.
13242 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13243 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13244
13245 This is called, for example, when wanting to read a variable with a
13246 complex location. Therefore we don't want to do file i/o for every call.
13247 Therefore we don't want to look for a DWO file on every call.
13248 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13249 then we check if we've already seen DWO_NAME, and only THEN do we check
13250 for a DWO file.
13251
13252 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13253 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13254
13255 static struct dwo_unit *
13256 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13257 const char *dwo_name, const char *comp_dir,
13258 ULONGEST signature, int is_debug_types)
13259 {
13260 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13261 struct objfile *objfile = dwarf2_per_objfile->objfile;
13262 const char *kind = is_debug_types ? "TU" : "CU";
13263 void **dwo_file_slot;
13264 struct dwo_file *dwo_file;
13265 struct dwp_file *dwp_file;
13266
13267 /* First see if there's a DWP file.
13268 If we have a DWP file but didn't find the DWO inside it, don't
13269 look for the original DWO file. It makes gdb behave differently
13270 depending on whether one is debugging in the build tree. */
13271
13272 dwp_file = get_dwp_file (dwarf2_per_objfile);
13273 if (dwp_file != NULL)
13274 {
13275 const struct dwp_hash_table *dwp_htab =
13276 is_debug_types ? dwp_file->tus : dwp_file->cus;
13277
13278 if (dwp_htab != NULL)
13279 {
13280 struct dwo_unit *dwo_cutu =
13281 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13282 signature, is_debug_types);
13283
13284 if (dwo_cutu != NULL)
13285 {
13286 if (dwarf_read_debug)
13287 {
13288 fprintf_unfiltered (gdb_stdlog,
13289 "Virtual DWO %s %s found: @%s\n",
13290 kind, hex_string (signature),
13291 host_address_to_string (dwo_cutu));
13292 }
13293 return dwo_cutu;
13294 }
13295 }
13296 }
13297 else
13298 {
13299 /* No DWP file, look for the DWO file. */
13300
13301 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13302 dwo_name, comp_dir);
13303 if (*dwo_file_slot == NULL)
13304 {
13305 /* Read in the file and build a table of the CUs/TUs it contains. */
13306 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13307 }
13308 /* NOTE: This will be NULL if unable to open the file. */
13309 dwo_file = (struct dwo_file *) *dwo_file_slot;
13310
13311 if (dwo_file != NULL)
13312 {
13313 struct dwo_unit *dwo_cutu = NULL;
13314
13315 if (is_debug_types && dwo_file->tus)
13316 {
13317 struct dwo_unit find_dwo_cutu;
13318
13319 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13320 find_dwo_cutu.signature = signature;
13321 dwo_cutu
13322 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13323 }
13324 else if (!is_debug_types && dwo_file->cus)
13325 {
13326 struct dwo_unit find_dwo_cutu;
13327
13328 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13329 find_dwo_cutu.signature = signature;
13330 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13331 &find_dwo_cutu);
13332 }
13333
13334 if (dwo_cutu != NULL)
13335 {
13336 if (dwarf_read_debug)
13337 {
13338 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13339 kind, dwo_name, hex_string (signature),
13340 host_address_to_string (dwo_cutu));
13341 }
13342 return dwo_cutu;
13343 }
13344 }
13345 }
13346
13347 /* We didn't find it. This could mean a dwo_id mismatch, or
13348 someone deleted the DWO/DWP file, or the search path isn't set up
13349 correctly to find the file. */
13350
13351 if (dwarf_read_debug)
13352 {
13353 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13354 kind, dwo_name, hex_string (signature));
13355 }
13356
13357 /* This is a warning and not a complaint because it can be caused by
13358 pilot error (e.g., user accidentally deleting the DWO). */
13359 {
13360 /* Print the name of the DWP file if we looked there, helps the user
13361 better diagnose the problem. */
13362 std::string dwp_text;
13363
13364 if (dwp_file != NULL)
13365 dwp_text = string_printf (" [in DWP file %s]",
13366 lbasename (dwp_file->name));
13367
13368 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13369 " [in module %s]"),
13370 kind, dwo_name, hex_string (signature),
13371 dwp_text.c_str (),
13372 this_unit->is_debug_types ? "TU" : "CU",
13373 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13374 }
13375 return NULL;
13376 }
13377
13378 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13379 See lookup_dwo_cutu_unit for details. */
13380
13381 static struct dwo_unit *
13382 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13383 const char *dwo_name, const char *comp_dir,
13384 ULONGEST signature)
13385 {
13386 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13387 }
13388
13389 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13390 See lookup_dwo_cutu_unit for details. */
13391
13392 static struct dwo_unit *
13393 lookup_dwo_type_unit (struct signatured_type *this_tu,
13394 const char *dwo_name, const char *comp_dir)
13395 {
13396 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13397 }
13398
13399 /* Traversal function for queue_and_load_all_dwo_tus. */
13400
13401 static int
13402 queue_and_load_dwo_tu (void **slot, void *info)
13403 {
13404 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13405 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13406 ULONGEST signature = dwo_unit->signature;
13407 struct signatured_type *sig_type =
13408 lookup_dwo_signatured_type (per_cu->cu, signature);
13409
13410 if (sig_type != NULL)
13411 {
13412 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13413
13414 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13415 a real dependency of PER_CU on SIG_TYPE. That is detected later
13416 while processing PER_CU. */
13417 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13418 load_full_type_unit (sig_cu);
13419 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13420 }
13421
13422 return 1;
13423 }
13424
13425 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13426 The DWO may have the only definition of the type, though it may not be
13427 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13428 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13429
13430 static void
13431 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13432 {
13433 struct dwo_unit *dwo_unit;
13434 struct dwo_file *dwo_file;
13435
13436 gdb_assert (!per_cu->is_debug_types);
13437 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13438 gdb_assert (per_cu->cu != NULL);
13439
13440 dwo_unit = per_cu->cu->dwo_unit;
13441 gdb_assert (dwo_unit != NULL);
13442
13443 dwo_file = dwo_unit->dwo_file;
13444 if (dwo_file->tus != NULL)
13445 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13446 }
13447
13448 /* Read in various DIEs. */
13449
13450 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13451 Inherit only the children of the DW_AT_abstract_origin DIE not being
13452 already referenced by DW_AT_abstract_origin from the children of the
13453 current DIE. */
13454
13455 static void
13456 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13457 {
13458 struct die_info *child_die;
13459 sect_offset *offsetp;
13460 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13461 struct die_info *origin_die;
13462 /* Iterator of the ORIGIN_DIE children. */
13463 struct die_info *origin_child_die;
13464 struct attribute *attr;
13465 struct dwarf2_cu *origin_cu;
13466 struct pending **origin_previous_list_in_scope;
13467
13468 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13469 if (!attr)
13470 return;
13471
13472 /* Note that following die references may follow to a die in a
13473 different cu. */
13474
13475 origin_cu = cu;
13476 origin_die = follow_die_ref (die, attr, &origin_cu);
13477
13478 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13479 symbols in. */
13480 origin_previous_list_in_scope = origin_cu->list_in_scope;
13481 origin_cu->list_in_scope = cu->list_in_scope;
13482
13483 if (die->tag != origin_die->tag
13484 && !(die->tag == DW_TAG_inlined_subroutine
13485 && origin_die->tag == DW_TAG_subprogram))
13486 complaint (_("DIE %s and its abstract origin %s have different tags"),
13487 sect_offset_str (die->sect_off),
13488 sect_offset_str (origin_die->sect_off));
13489
13490 std::vector<sect_offset> offsets;
13491
13492 for (child_die = die->child;
13493 child_die && child_die->tag;
13494 child_die = sibling_die (child_die))
13495 {
13496 struct die_info *child_origin_die;
13497 struct dwarf2_cu *child_origin_cu;
13498
13499 /* We are trying to process concrete instance entries:
13500 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13501 it's not relevant to our analysis here. i.e. detecting DIEs that are
13502 present in the abstract instance but not referenced in the concrete
13503 one. */
13504 if (child_die->tag == DW_TAG_call_site
13505 || child_die->tag == DW_TAG_GNU_call_site)
13506 continue;
13507
13508 /* For each CHILD_DIE, find the corresponding child of
13509 ORIGIN_DIE. If there is more than one layer of
13510 DW_AT_abstract_origin, follow them all; there shouldn't be,
13511 but GCC versions at least through 4.4 generate this (GCC PR
13512 40573). */
13513 child_origin_die = child_die;
13514 child_origin_cu = cu;
13515 while (1)
13516 {
13517 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13518 child_origin_cu);
13519 if (attr == NULL)
13520 break;
13521 child_origin_die = follow_die_ref (child_origin_die, attr,
13522 &child_origin_cu);
13523 }
13524
13525 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13526 counterpart may exist. */
13527 if (child_origin_die != child_die)
13528 {
13529 if (child_die->tag != child_origin_die->tag
13530 && !(child_die->tag == DW_TAG_inlined_subroutine
13531 && child_origin_die->tag == DW_TAG_subprogram))
13532 complaint (_("Child DIE %s and its abstract origin %s have "
13533 "different tags"),
13534 sect_offset_str (child_die->sect_off),
13535 sect_offset_str (child_origin_die->sect_off));
13536 if (child_origin_die->parent != origin_die)
13537 complaint (_("Child DIE %s and its abstract origin %s have "
13538 "different parents"),
13539 sect_offset_str (child_die->sect_off),
13540 sect_offset_str (child_origin_die->sect_off));
13541 else
13542 offsets.push_back (child_origin_die->sect_off);
13543 }
13544 }
13545 std::sort (offsets.begin (), offsets.end ());
13546 sect_offset *offsets_end = offsets.data () + offsets.size ();
13547 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13548 if (offsetp[-1] == *offsetp)
13549 complaint (_("Multiple children of DIE %s refer "
13550 "to DIE %s as their abstract origin"),
13551 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13552
13553 offsetp = offsets.data ();
13554 origin_child_die = origin_die->child;
13555 while (origin_child_die && origin_child_die->tag)
13556 {
13557 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13558 while (offsetp < offsets_end
13559 && *offsetp < origin_child_die->sect_off)
13560 offsetp++;
13561 if (offsetp >= offsets_end
13562 || *offsetp > origin_child_die->sect_off)
13563 {
13564 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13565 Check whether we're already processing ORIGIN_CHILD_DIE.
13566 This can happen with mutually referenced abstract_origins.
13567 PR 16581. */
13568 if (!origin_child_die->in_process)
13569 process_die (origin_child_die, origin_cu);
13570 }
13571 origin_child_die = sibling_die (origin_child_die);
13572 }
13573 origin_cu->list_in_scope = origin_previous_list_in_scope;
13574 }
13575
13576 static void
13577 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13578 {
13579 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13580 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13581 struct context_stack *newobj;
13582 CORE_ADDR lowpc;
13583 CORE_ADDR highpc;
13584 struct die_info *child_die;
13585 struct attribute *attr, *call_line, *call_file;
13586 const char *name;
13587 CORE_ADDR baseaddr;
13588 struct block *block;
13589 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13590 std::vector<struct symbol *> template_args;
13591 struct template_symbol *templ_func = NULL;
13592
13593 if (inlined_func)
13594 {
13595 /* If we do not have call site information, we can't show the
13596 caller of this inlined function. That's too confusing, so
13597 only use the scope for local variables. */
13598 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13599 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13600 if (call_line == NULL || call_file == NULL)
13601 {
13602 read_lexical_block_scope (die, cu);
13603 return;
13604 }
13605 }
13606
13607 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13608
13609 name = dwarf2_name (die, cu);
13610
13611 /* Ignore functions with missing or empty names. These are actually
13612 illegal according to the DWARF standard. */
13613 if (name == NULL)
13614 {
13615 complaint (_("missing name for subprogram DIE at %s"),
13616 sect_offset_str (die->sect_off));
13617 return;
13618 }
13619
13620 /* Ignore functions with missing or invalid low and high pc attributes. */
13621 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13622 <= PC_BOUNDS_INVALID)
13623 {
13624 attr = dwarf2_attr (die, DW_AT_external, cu);
13625 if (!attr || !DW_UNSND (attr))
13626 complaint (_("cannot get low and high bounds "
13627 "for subprogram DIE at %s"),
13628 sect_offset_str (die->sect_off));
13629 return;
13630 }
13631
13632 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13633 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13634
13635 /* If we have any template arguments, then we must allocate a
13636 different sort of symbol. */
13637 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13638 {
13639 if (child_die->tag == DW_TAG_template_type_param
13640 || child_die->tag == DW_TAG_template_value_param)
13641 {
13642 templ_func = allocate_template_symbol (objfile);
13643 templ_func->subclass = SYMBOL_TEMPLATE;
13644 break;
13645 }
13646 }
13647
13648 newobj = cu->get_builder ()->push_context (0, lowpc);
13649 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13650 (struct symbol *) templ_func);
13651
13652 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13653 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13654 cu->language);
13655
13656 /* If there is a location expression for DW_AT_frame_base, record
13657 it. */
13658 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13659 if (attr)
13660 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13661
13662 /* If there is a location for the static link, record it. */
13663 newobj->static_link = NULL;
13664 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13665 if (attr)
13666 {
13667 newobj->static_link
13668 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13669 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13670 dwarf2_per_cu_addr_type (cu->per_cu));
13671 }
13672
13673 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13674
13675 if (die->child != NULL)
13676 {
13677 child_die = die->child;
13678 while (child_die && child_die->tag)
13679 {
13680 if (child_die->tag == DW_TAG_template_type_param
13681 || child_die->tag == DW_TAG_template_value_param)
13682 {
13683 struct symbol *arg = new_symbol (child_die, NULL, cu);
13684
13685 if (arg != NULL)
13686 template_args.push_back (arg);
13687 }
13688 else
13689 process_die (child_die, cu);
13690 child_die = sibling_die (child_die);
13691 }
13692 }
13693
13694 inherit_abstract_dies (die, cu);
13695
13696 /* If we have a DW_AT_specification, we might need to import using
13697 directives from the context of the specification DIE. See the
13698 comment in determine_prefix. */
13699 if (cu->language == language_cplus
13700 && dwarf2_attr (die, DW_AT_specification, cu))
13701 {
13702 struct dwarf2_cu *spec_cu = cu;
13703 struct die_info *spec_die = die_specification (die, &spec_cu);
13704
13705 while (spec_die)
13706 {
13707 child_die = spec_die->child;
13708 while (child_die && child_die->tag)
13709 {
13710 if (child_die->tag == DW_TAG_imported_module)
13711 process_die (child_die, spec_cu);
13712 child_die = sibling_die (child_die);
13713 }
13714
13715 /* In some cases, GCC generates specification DIEs that
13716 themselves contain DW_AT_specification attributes. */
13717 spec_die = die_specification (spec_die, &spec_cu);
13718 }
13719 }
13720
13721 struct context_stack cstk = cu->get_builder ()->pop_context ();
13722 /* Make a block for the local symbols within. */
13723 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13724 cstk.static_link, lowpc, highpc);
13725
13726 /* For C++, set the block's scope. */
13727 if ((cu->language == language_cplus
13728 || cu->language == language_fortran
13729 || cu->language == language_d
13730 || cu->language == language_rust)
13731 && cu->processing_has_namespace_info)
13732 block_set_scope (block, determine_prefix (die, cu),
13733 &objfile->objfile_obstack);
13734
13735 /* If we have address ranges, record them. */
13736 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13737
13738 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13739
13740 /* Attach template arguments to function. */
13741 if (!template_args.empty ())
13742 {
13743 gdb_assert (templ_func != NULL);
13744
13745 templ_func->n_template_arguments = template_args.size ();
13746 templ_func->template_arguments
13747 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13748 templ_func->n_template_arguments);
13749 memcpy (templ_func->template_arguments,
13750 template_args.data (),
13751 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13752
13753 /* Make sure that the symtab is set on the new symbols. Even
13754 though they don't appear in this symtab directly, other parts
13755 of gdb assume that symbols do, and this is reasonably
13756 true. */
13757 for (symbol *sym : template_args)
13758 symbol_set_symtab (sym, symbol_symtab (templ_func));
13759 }
13760
13761 /* In C++, we can have functions nested inside functions (e.g., when
13762 a function declares a class that has methods). This means that
13763 when we finish processing a function scope, we may need to go
13764 back to building a containing block's symbol lists. */
13765 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13766 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13767
13768 /* If we've finished processing a top-level function, subsequent
13769 symbols go in the file symbol list. */
13770 if (cu->get_builder ()->outermost_context_p ())
13771 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13772 }
13773
13774 /* Process all the DIES contained within a lexical block scope. Start
13775 a new scope, process the dies, and then close the scope. */
13776
13777 static void
13778 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13779 {
13780 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13781 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13782 CORE_ADDR lowpc, highpc;
13783 struct die_info *child_die;
13784 CORE_ADDR baseaddr;
13785
13786 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13787
13788 /* Ignore blocks with missing or invalid low and high pc attributes. */
13789 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13790 as multiple lexical blocks? Handling children in a sane way would
13791 be nasty. Might be easier to properly extend generic blocks to
13792 describe ranges. */
13793 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13794 {
13795 case PC_BOUNDS_NOT_PRESENT:
13796 /* DW_TAG_lexical_block has no attributes, process its children as if
13797 there was no wrapping by that DW_TAG_lexical_block.
13798 GCC does no longer produces such DWARF since GCC r224161. */
13799 for (child_die = die->child;
13800 child_die != NULL && child_die->tag;
13801 child_die = sibling_die (child_die))
13802 process_die (child_die, cu);
13803 return;
13804 case PC_BOUNDS_INVALID:
13805 return;
13806 }
13807 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13808 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13809
13810 cu->get_builder ()->push_context (0, lowpc);
13811 if (die->child != NULL)
13812 {
13813 child_die = die->child;
13814 while (child_die && child_die->tag)
13815 {
13816 process_die (child_die, cu);
13817 child_die = sibling_die (child_die);
13818 }
13819 }
13820 inherit_abstract_dies (die, cu);
13821 struct context_stack cstk = cu->get_builder ()->pop_context ();
13822
13823 if (*cu->get_builder ()->get_local_symbols () != NULL
13824 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13825 {
13826 struct block *block
13827 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13828 cstk.start_addr, highpc);
13829
13830 /* Note that recording ranges after traversing children, as we
13831 do here, means that recording a parent's ranges entails
13832 walking across all its children's ranges as they appear in
13833 the address map, which is quadratic behavior.
13834
13835 It would be nicer to record the parent's ranges before
13836 traversing its children, simply overriding whatever you find
13837 there. But since we don't even decide whether to create a
13838 block until after we've traversed its children, that's hard
13839 to do. */
13840 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13841 }
13842 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13843 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13844 }
13845
13846 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13847
13848 static void
13849 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13850 {
13851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13853 CORE_ADDR pc, baseaddr;
13854 struct attribute *attr;
13855 struct call_site *call_site, call_site_local;
13856 void **slot;
13857 int nparams;
13858 struct die_info *child_die;
13859
13860 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13861
13862 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13863 if (attr == NULL)
13864 {
13865 /* This was a pre-DWARF-5 GNU extension alias
13866 for DW_AT_call_return_pc. */
13867 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13868 }
13869 if (!attr)
13870 {
13871 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13872 "DIE %s [in module %s]"),
13873 sect_offset_str (die->sect_off), objfile_name (objfile));
13874 return;
13875 }
13876 pc = attr_value_as_address (attr) + baseaddr;
13877 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13878
13879 if (cu->call_site_htab == NULL)
13880 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13881 NULL, &objfile->objfile_obstack,
13882 hashtab_obstack_allocate, NULL);
13883 call_site_local.pc = pc;
13884 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13885 if (*slot != NULL)
13886 {
13887 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13888 "DIE %s [in module %s]"),
13889 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13890 objfile_name (objfile));
13891 return;
13892 }
13893
13894 /* Count parameters at the caller. */
13895
13896 nparams = 0;
13897 for (child_die = die->child; child_die && child_die->tag;
13898 child_die = sibling_die (child_die))
13899 {
13900 if (child_die->tag != DW_TAG_call_site_parameter
13901 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13902 {
13903 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13904 "DW_TAG_call_site child DIE %s [in module %s]"),
13905 child_die->tag, sect_offset_str (child_die->sect_off),
13906 objfile_name (objfile));
13907 continue;
13908 }
13909
13910 nparams++;
13911 }
13912
13913 call_site
13914 = ((struct call_site *)
13915 obstack_alloc (&objfile->objfile_obstack,
13916 sizeof (*call_site)
13917 + (sizeof (*call_site->parameter) * (nparams - 1))));
13918 *slot = call_site;
13919 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13920 call_site->pc = pc;
13921
13922 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13923 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13924 {
13925 struct die_info *func_die;
13926
13927 /* Skip also over DW_TAG_inlined_subroutine. */
13928 for (func_die = die->parent;
13929 func_die && func_die->tag != DW_TAG_subprogram
13930 && func_die->tag != DW_TAG_subroutine_type;
13931 func_die = func_die->parent);
13932
13933 /* DW_AT_call_all_calls is a superset
13934 of DW_AT_call_all_tail_calls. */
13935 if (func_die
13936 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13937 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13938 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13939 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13940 {
13941 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13942 not complete. But keep CALL_SITE for look ups via call_site_htab,
13943 both the initial caller containing the real return address PC and
13944 the final callee containing the current PC of a chain of tail
13945 calls do not need to have the tail call list complete. But any
13946 function candidate for a virtual tail call frame searched via
13947 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13948 determined unambiguously. */
13949 }
13950 else
13951 {
13952 struct type *func_type = NULL;
13953
13954 if (func_die)
13955 func_type = get_die_type (func_die, cu);
13956 if (func_type != NULL)
13957 {
13958 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13959
13960 /* Enlist this call site to the function. */
13961 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13962 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13963 }
13964 else
13965 complaint (_("Cannot find function owning DW_TAG_call_site "
13966 "DIE %s [in module %s]"),
13967 sect_offset_str (die->sect_off), objfile_name (objfile));
13968 }
13969 }
13970
13971 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13972 if (attr == NULL)
13973 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13974 if (attr == NULL)
13975 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13976 if (attr == NULL)
13977 {
13978 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13979 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13980 }
13981 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13982 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13983 /* Keep NULL DWARF_BLOCK. */;
13984 else if (attr_form_is_block (attr))
13985 {
13986 struct dwarf2_locexpr_baton *dlbaton;
13987
13988 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13989 dlbaton->data = DW_BLOCK (attr)->data;
13990 dlbaton->size = DW_BLOCK (attr)->size;
13991 dlbaton->per_cu = cu->per_cu;
13992
13993 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13994 }
13995 else if (attr_form_is_ref (attr))
13996 {
13997 struct dwarf2_cu *target_cu = cu;
13998 struct die_info *target_die;
13999
14000 target_die = follow_die_ref (die, attr, &target_cu);
14001 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14002 if (die_is_declaration (target_die, target_cu))
14003 {
14004 const char *target_physname;
14005
14006 /* Prefer the mangled name; otherwise compute the demangled one. */
14007 target_physname = dw2_linkage_name (target_die, target_cu);
14008 if (target_physname == NULL)
14009 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14010 if (target_physname == NULL)
14011 complaint (_("DW_AT_call_target target DIE has invalid "
14012 "physname, for referencing DIE %s [in module %s]"),
14013 sect_offset_str (die->sect_off), objfile_name (objfile));
14014 else
14015 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14016 }
14017 else
14018 {
14019 CORE_ADDR lowpc;
14020
14021 /* DW_AT_entry_pc should be preferred. */
14022 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14023 <= PC_BOUNDS_INVALID)
14024 complaint (_("DW_AT_call_target target DIE has invalid "
14025 "low pc, for referencing DIE %s [in module %s]"),
14026 sect_offset_str (die->sect_off), objfile_name (objfile));
14027 else
14028 {
14029 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14030 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14031 }
14032 }
14033 }
14034 else
14035 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14036 "block nor reference, for DIE %s [in module %s]"),
14037 sect_offset_str (die->sect_off), objfile_name (objfile));
14038
14039 call_site->per_cu = cu->per_cu;
14040
14041 for (child_die = die->child;
14042 child_die && child_die->tag;
14043 child_die = sibling_die (child_die))
14044 {
14045 struct call_site_parameter *parameter;
14046 struct attribute *loc, *origin;
14047
14048 if (child_die->tag != DW_TAG_call_site_parameter
14049 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14050 {
14051 /* Already printed the complaint above. */
14052 continue;
14053 }
14054
14055 gdb_assert (call_site->parameter_count < nparams);
14056 parameter = &call_site->parameter[call_site->parameter_count];
14057
14058 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14059 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14060 register is contained in DW_AT_call_value. */
14061
14062 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14063 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14064 if (origin == NULL)
14065 {
14066 /* This was a pre-DWARF-5 GNU extension alias
14067 for DW_AT_call_parameter. */
14068 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14069 }
14070 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14071 {
14072 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14073
14074 sect_offset sect_off
14075 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14076 if (!offset_in_cu_p (&cu->header, sect_off))
14077 {
14078 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14079 binding can be done only inside one CU. Such referenced DIE
14080 therefore cannot be even moved to DW_TAG_partial_unit. */
14081 complaint (_("DW_AT_call_parameter offset is not in CU for "
14082 "DW_TAG_call_site child DIE %s [in module %s]"),
14083 sect_offset_str (child_die->sect_off),
14084 objfile_name (objfile));
14085 continue;
14086 }
14087 parameter->u.param_cu_off
14088 = (cu_offset) (sect_off - cu->header.sect_off);
14089 }
14090 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14091 {
14092 complaint (_("No DW_FORM_block* DW_AT_location for "
14093 "DW_TAG_call_site child DIE %s [in module %s]"),
14094 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14095 continue;
14096 }
14097 else
14098 {
14099 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14100 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14101 if (parameter->u.dwarf_reg != -1)
14102 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14103 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14104 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14105 &parameter->u.fb_offset))
14106 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14107 else
14108 {
14109 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14110 "for DW_FORM_block* DW_AT_location is supported for "
14111 "DW_TAG_call_site child DIE %s "
14112 "[in module %s]"),
14113 sect_offset_str (child_die->sect_off),
14114 objfile_name (objfile));
14115 continue;
14116 }
14117 }
14118
14119 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14120 if (attr == NULL)
14121 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14122 if (!attr_form_is_block (attr))
14123 {
14124 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14125 "DW_TAG_call_site child DIE %s [in module %s]"),
14126 sect_offset_str (child_die->sect_off),
14127 objfile_name (objfile));
14128 continue;
14129 }
14130 parameter->value = DW_BLOCK (attr)->data;
14131 parameter->value_size = DW_BLOCK (attr)->size;
14132
14133 /* Parameters are not pre-cleared by memset above. */
14134 parameter->data_value = NULL;
14135 parameter->data_value_size = 0;
14136 call_site->parameter_count++;
14137
14138 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14139 if (attr == NULL)
14140 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14141 if (attr)
14142 {
14143 if (!attr_form_is_block (attr))
14144 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14145 "DW_TAG_call_site child DIE %s [in module %s]"),
14146 sect_offset_str (child_die->sect_off),
14147 objfile_name (objfile));
14148 else
14149 {
14150 parameter->data_value = DW_BLOCK (attr)->data;
14151 parameter->data_value_size = DW_BLOCK (attr)->size;
14152 }
14153 }
14154 }
14155 }
14156
14157 /* Helper function for read_variable. If DIE represents a virtual
14158 table, then return the type of the concrete object that is
14159 associated with the virtual table. Otherwise, return NULL. */
14160
14161 static struct type *
14162 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14163 {
14164 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14165 if (attr == NULL)
14166 return NULL;
14167
14168 /* Find the type DIE. */
14169 struct die_info *type_die = NULL;
14170 struct dwarf2_cu *type_cu = cu;
14171
14172 if (attr_form_is_ref (attr))
14173 type_die = follow_die_ref (die, attr, &type_cu);
14174 if (type_die == NULL)
14175 return NULL;
14176
14177 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14178 return NULL;
14179 return die_containing_type (type_die, type_cu);
14180 }
14181
14182 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14183
14184 static void
14185 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14186 {
14187 struct rust_vtable_symbol *storage = NULL;
14188
14189 if (cu->language == language_rust)
14190 {
14191 struct type *containing_type = rust_containing_type (die, cu);
14192
14193 if (containing_type != NULL)
14194 {
14195 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14196
14197 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14198 struct rust_vtable_symbol);
14199 initialize_objfile_symbol (storage);
14200 storage->concrete_type = containing_type;
14201 storage->subclass = SYMBOL_RUST_VTABLE;
14202 }
14203 }
14204
14205 struct symbol *res = new_symbol (die, NULL, cu, storage);
14206 struct attribute *abstract_origin
14207 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14208 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14209 if (res == NULL && loc && abstract_origin)
14210 {
14211 /* We have a variable without a name, but with a location and an abstract
14212 origin. This may be a concrete instance of an abstract variable
14213 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14214 later. */
14215 struct dwarf2_cu *origin_cu = cu;
14216 struct die_info *origin_die
14217 = follow_die_ref (die, abstract_origin, &origin_cu);
14218 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14219 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14220 }
14221 }
14222
14223 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14224 reading .debug_rnglists.
14225 Callback's type should be:
14226 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14227 Return true if the attributes are present and valid, otherwise,
14228 return false. */
14229
14230 template <typename Callback>
14231 static bool
14232 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14233 Callback &&callback)
14234 {
14235 struct dwarf2_per_objfile *dwarf2_per_objfile
14236 = cu->per_cu->dwarf2_per_objfile;
14237 struct objfile *objfile = dwarf2_per_objfile->objfile;
14238 bfd *obfd = objfile->obfd;
14239 /* Base address selection entry. */
14240 CORE_ADDR base;
14241 int found_base;
14242 const gdb_byte *buffer;
14243 CORE_ADDR baseaddr;
14244 bool overflow = false;
14245
14246 found_base = cu->base_known;
14247 base = cu->base_address;
14248
14249 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14250 if (offset >= dwarf2_per_objfile->rnglists.size)
14251 {
14252 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14253 offset);
14254 return false;
14255 }
14256 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14257
14258 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14259
14260 while (1)
14261 {
14262 /* Initialize it due to a false compiler warning. */
14263 CORE_ADDR range_beginning = 0, range_end = 0;
14264 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14265 + dwarf2_per_objfile->rnglists.size);
14266 unsigned int bytes_read;
14267
14268 if (buffer == buf_end)
14269 {
14270 overflow = true;
14271 break;
14272 }
14273 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14274 switch (rlet)
14275 {
14276 case DW_RLE_end_of_list:
14277 break;
14278 case DW_RLE_base_address:
14279 if (buffer + cu->header.addr_size > buf_end)
14280 {
14281 overflow = true;
14282 break;
14283 }
14284 base = read_address (obfd, buffer, cu, &bytes_read);
14285 found_base = 1;
14286 buffer += bytes_read;
14287 break;
14288 case DW_RLE_start_length:
14289 if (buffer + cu->header.addr_size > buf_end)
14290 {
14291 overflow = true;
14292 break;
14293 }
14294 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14295 buffer += bytes_read;
14296 range_end = (range_beginning
14297 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14298 buffer += bytes_read;
14299 if (buffer > buf_end)
14300 {
14301 overflow = true;
14302 break;
14303 }
14304 break;
14305 case DW_RLE_offset_pair:
14306 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14307 buffer += bytes_read;
14308 if (buffer > buf_end)
14309 {
14310 overflow = true;
14311 break;
14312 }
14313 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14314 buffer += bytes_read;
14315 if (buffer > buf_end)
14316 {
14317 overflow = true;
14318 break;
14319 }
14320 break;
14321 case DW_RLE_start_end:
14322 if (buffer + 2 * cu->header.addr_size > buf_end)
14323 {
14324 overflow = true;
14325 break;
14326 }
14327 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14328 buffer += bytes_read;
14329 range_end = read_address (obfd, buffer, cu, &bytes_read);
14330 buffer += bytes_read;
14331 break;
14332 default:
14333 complaint (_("Invalid .debug_rnglists data (no base address)"));
14334 return false;
14335 }
14336 if (rlet == DW_RLE_end_of_list || overflow)
14337 break;
14338 if (rlet == DW_RLE_base_address)
14339 continue;
14340
14341 if (!found_base)
14342 {
14343 /* We have no valid base address for the ranges
14344 data. */
14345 complaint (_("Invalid .debug_rnglists data (no base address)"));
14346 return false;
14347 }
14348
14349 if (range_beginning > range_end)
14350 {
14351 /* Inverted range entries are invalid. */
14352 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14353 return false;
14354 }
14355
14356 /* Empty range entries have no effect. */
14357 if (range_beginning == range_end)
14358 continue;
14359
14360 range_beginning += base;
14361 range_end += base;
14362
14363 /* A not-uncommon case of bad debug info.
14364 Don't pollute the addrmap with bad data. */
14365 if (range_beginning + baseaddr == 0
14366 && !dwarf2_per_objfile->has_section_at_zero)
14367 {
14368 complaint (_(".debug_rnglists entry has start address of zero"
14369 " [in module %s]"), objfile_name (objfile));
14370 continue;
14371 }
14372
14373 callback (range_beginning, range_end);
14374 }
14375
14376 if (overflow)
14377 {
14378 complaint (_("Offset %d is not terminated "
14379 "for DW_AT_ranges attribute"),
14380 offset);
14381 return false;
14382 }
14383
14384 return true;
14385 }
14386
14387 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14388 Callback's type should be:
14389 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14390 Return 1 if the attributes are present and valid, otherwise, return 0. */
14391
14392 template <typename Callback>
14393 static int
14394 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14395 Callback &&callback)
14396 {
14397 struct dwarf2_per_objfile *dwarf2_per_objfile
14398 = cu->per_cu->dwarf2_per_objfile;
14399 struct objfile *objfile = dwarf2_per_objfile->objfile;
14400 struct comp_unit_head *cu_header = &cu->header;
14401 bfd *obfd = objfile->obfd;
14402 unsigned int addr_size = cu_header->addr_size;
14403 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14404 /* Base address selection entry. */
14405 CORE_ADDR base;
14406 int found_base;
14407 unsigned int dummy;
14408 const gdb_byte *buffer;
14409 CORE_ADDR baseaddr;
14410
14411 if (cu_header->version >= 5)
14412 return dwarf2_rnglists_process (offset, cu, callback);
14413
14414 found_base = cu->base_known;
14415 base = cu->base_address;
14416
14417 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14418 if (offset >= dwarf2_per_objfile->ranges.size)
14419 {
14420 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14421 offset);
14422 return 0;
14423 }
14424 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14425
14426 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14427
14428 while (1)
14429 {
14430 CORE_ADDR range_beginning, range_end;
14431
14432 range_beginning = read_address (obfd, buffer, cu, &dummy);
14433 buffer += addr_size;
14434 range_end = read_address (obfd, buffer, cu, &dummy);
14435 buffer += addr_size;
14436 offset += 2 * addr_size;
14437
14438 /* An end of list marker is a pair of zero addresses. */
14439 if (range_beginning == 0 && range_end == 0)
14440 /* Found the end of list entry. */
14441 break;
14442
14443 /* Each base address selection entry is a pair of 2 values.
14444 The first is the largest possible address, the second is
14445 the base address. Check for a base address here. */
14446 if ((range_beginning & mask) == mask)
14447 {
14448 /* If we found the largest possible address, then we already
14449 have the base address in range_end. */
14450 base = range_end;
14451 found_base = 1;
14452 continue;
14453 }
14454
14455 if (!found_base)
14456 {
14457 /* We have no valid base address for the ranges
14458 data. */
14459 complaint (_("Invalid .debug_ranges data (no base address)"));
14460 return 0;
14461 }
14462
14463 if (range_beginning > range_end)
14464 {
14465 /* Inverted range entries are invalid. */
14466 complaint (_("Invalid .debug_ranges data (inverted range)"));
14467 return 0;
14468 }
14469
14470 /* Empty range entries have no effect. */
14471 if (range_beginning == range_end)
14472 continue;
14473
14474 range_beginning += base;
14475 range_end += base;
14476
14477 /* A not-uncommon case of bad debug info.
14478 Don't pollute the addrmap with bad data. */
14479 if (range_beginning + baseaddr == 0
14480 && !dwarf2_per_objfile->has_section_at_zero)
14481 {
14482 complaint (_(".debug_ranges entry has start address of zero"
14483 " [in module %s]"), objfile_name (objfile));
14484 continue;
14485 }
14486
14487 callback (range_beginning, range_end);
14488 }
14489
14490 return 1;
14491 }
14492
14493 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14494 Return 1 if the attributes are present and valid, otherwise, return 0.
14495 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14496
14497 static int
14498 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14499 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14500 struct partial_symtab *ranges_pst)
14501 {
14502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14503 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14504 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14505 SECT_OFF_TEXT (objfile));
14506 int low_set = 0;
14507 CORE_ADDR low = 0;
14508 CORE_ADDR high = 0;
14509 int retval;
14510
14511 retval = dwarf2_ranges_process (offset, cu,
14512 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14513 {
14514 if (ranges_pst != NULL)
14515 {
14516 CORE_ADDR lowpc;
14517 CORE_ADDR highpc;
14518
14519 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14520 range_beginning + baseaddr)
14521 - baseaddr);
14522 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14523 range_end + baseaddr)
14524 - baseaddr);
14525 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14526 lowpc, highpc - 1, ranges_pst);
14527 }
14528
14529 /* FIXME: This is recording everything as a low-high
14530 segment of consecutive addresses. We should have a
14531 data structure for discontiguous block ranges
14532 instead. */
14533 if (! low_set)
14534 {
14535 low = range_beginning;
14536 high = range_end;
14537 low_set = 1;
14538 }
14539 else
14540 {
14541 if (range_beginning < low)
14542 low = range_beginning;
14543 if (range_end > high)
14544 high = range_end;
14545 }
14546 });
14547 if (!retval)
14548 return 0;
14549
14550 if (! low_set)
14551 /* If the first entry is an end-of-list marker, the range
14552 describes an empty scope, i.e. no instructions. */
14553 return 0;
14554
14555 if (low_return)
14556 *low_return = low;
14557 if (high_return)
14558 *high_return = high;
14559 return 1;
14560 }
14561
14562 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14563 definition for the return value. *LOWPC and *HIGHPC are set iff
14564 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14565
14566 static enum pc_bounds_kind
14567 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14568 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14569 struct partial_symtab *pst)
14570 {
14571 struct dwarf2_per_objfile *dwarf2_per_objfile
14572 = cu->per_cu->dwarf2_per_objfile;
14573 struct attribute *attr;
14574 struct attribute *attr_high;
14575 CORE_ADDR low = 0;
14576 CORE_ADDR high = 0;
14577 enum pc_bounds_kind ret;
14578
14579 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14580 if (attr_high)
14581 {
14582 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14583 if (attr)
14584 {
14585 low = attr_value_as_address (attr);
14586 high = attr_value_as_address (attr_high);
14587 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14588 high += low;
14589 }
14590 else
14591 /* Found high w/o low attribute. */
14592 return PC_BOUNDS_INVALID;
14593
14594 /* Found consecutive range of addresses. */
14595 ret = PC_BOUNDS_HIGH_LOW;
14596 }
14597 else
14598 {
14599 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14600 if (attr != NULL)
14601 {
14602 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14603 We take advantage of the fact that DW_AT_ranges does not appear
14604 in DW_TAG_compile_unit of DWO files. */
14605 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14606 unsigned int ranges_offset = (DW_UNSND (attr)
14607 + (need_ranges_base
14608 ? cu->ranges_base
14609 : 0));
14610
14611 /* Value of the DW_AT_ranges attribute is the offset in the
14612 .debug_ranges section. */
14613 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14614 return PC_BOUNDS_INVALID;
14615 /* Found discontinuous range of addresses. */
14616 ret = PC_BOUNDS_RANGES;
14617 }
14618 else
14619 return PC_BOUNDS_NOT_PRESENT;
14620 }
14621
14622 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14623 if (high <= low)
14624 return PC_BOUNDS_INVALID;
14625
14626 /* When using the GNU linker, .gnu.linkonce. sections are used to
14627 eliminate duplicate copies of functions and vtables and such.
14628 The linker will arbitrarily choose one and discard the others.
14629 The AT_*_pc values for such functions refer to local labels in
14630 these sections. If the section from that file was discarded, the
14631 labels are not in the output, so the relocs get a value of 0.
14632 If this is a discarded function, mark the pc bounds as invalid,
14633 so that GDB will ignore it. */
14634 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14635 return PC_BOUNDS_INVALID;
14636
14637 *lowpc = low;
14638 if (highpc)
14639 *highpc = high;
14640 return ret;
14641 }
14642
14643 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14644 its low and high PC addresses. Do nothing if these addresses could not
14645 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14646 and HIGHPC to the high address if greater than HIGHPC. */
14647
14648 static void
14649 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14650 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14651 struct dwarf2_cu *cu)
14652 {
14653 CORE_ADDR low, high;
14654 struct die_info *child = die->child;
14655
14656 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14657 {
14658 *lowpc = std::min (*lowpc, low);
14659 *highpc = std::max (*highpc, high);
14660 }
14661
14662 /* If the language does not allow nested subprograms (either inside
14663 subprograms or lexical blocks), we're done. */
14664 if (cu->language != language_ada)
14665 return;
14666
14667 /* Check all the children of the given DIE. If it contains nested
14668 subprograms, then check their pc bounds. Likewise, we need to
14669 check lexical blocks as well, as they may also contain subprogram
14670 definitions. */
14671 while (child && child->tag)
14672 {
14673 if (child->tag == DW_TAG_subprogram
14674 || child->tag == DW_TAG_lexical_block)
14675 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14676 child = sibling_die (child);
14677 }
14678 }
14679
14680 /* Get the low and high pc's represented by the scope DIE, and store
14681 them in *LOWPC and *HIGHPC. If the correct values can't be
14682 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14683
14684 static void
14685 get_scope_pc_bounds (struct die_info *die,
14686 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14687 struct dwarf2_cu *cu)
14688 {
14689 CORE_ADDR best_low = (CORE_ADDR) -1;
14690 CORE_ADDR best_high = (CORE_ADDR) 0;
14691 CORE_ADDR current_low, current_high;
14692
14693 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14694 >= PC_BOUNDS_RANGES)
14695 {
14696 best_low = current_low;
14697 best_high = current_high;
14698 }
14699 else
14700 {
14701 struct die_info *child = die->child;
14702
14703 while (child && child->tag)
14704 {
14705 switch (child->tag) {
14706 case DW_TAG_subprogram:
14707 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14708 break;
14709 case DW_TAG_namespace:
14710 case DW_TAG_module:
14711 /* FIXME: carlton/2004-01-16: Should we do this for
14712 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14713 that current GCC's always emit the DIEs corresponding
14714 to definitions of methods of classes as children of a
14715 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14716 the DIEs giving the declarations, which could be
14717 anywhere). But I don't see any reason why the
14718 standards says that they have to be there. */
14719 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14720
14721 if (current_low != ((CORE_ADDR) -1))
14722 {
14723 best_low = std::min (best_low, current_low);
14724 best_high = std::max (best_high, current_high);
14725 }
14726 break;
14727 default:
14728 /* Ignore. */
14729 break;
14730 }
14731
14732 child = sibling_die (child);
14733 }
14734 }
14735
14736 *lowpc = best_low;
14737 *highpc = best_high;
14738 }
14739
14740 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14741 in DIE. */
14742
14743 static void
14744 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14745 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14746 {
14747 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14748 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14749 struct attribute *attr;
14750 struct attribute *attr_high;
14751
14752 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14753 if (attr_high)
14754 {
14755 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14756 if (attr)
14757 {
14758 CORE_ADDR low = attr_value_as_address (attr);
14759 CORE_ADDR high = attr_value_as_address (attr_high);
14760
14761 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14762 high += low;
14763
14764 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14765 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14766 cu->get_builder ()->record_block_range (block, low, high - 1);
14767 }
14768 }
14769
14770 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14771 if (attr)
14772 {
14773 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14774 We take advantage of the fact that DW_AT_ranges does not appear
14775 in DW_TAG_compile_unit of DWO files. */
14776 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14777
14778 /* The value of the DW_AT_ranges attribute is the offset of the
14779 address range list in the .debug_ranges section. */
14780 unsigned long offset = (DW_UNSND (attr)
14781 + (need_ranges_base ? cu->ranges_base : 0));
14782
14783 std::vector<blockrange> blockvec;
14784 dwarf2_ranges_process (offset, cu,
14785 [&] (CORE_ADDR start, CORE_ADDR end)
14786 {
14787 start += baseaddr;
14788 end += baseaddr;
14789 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14790 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14791 cu->get_builder ()->record_block_range (block, start, end - 1);
14792 blockvec.emplace_back (start, end);
14793 });
14794
14795 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14796 }
14797 }
14798
14799 /* Check whether the producer field indicates either of GCC < 4.6, or the
14800 Intel C/C++ compiler, and cache the result in CU. */
14801
14802 static void
14803 check_producer (struct dwarf2_cu *cu)
14804 {
14805 int major, minor;
14806
14807 if (cu->producer == NULL)
14808 {
14809 /* For unknown compilers expect their behavior is DWARF version
14810 compliant.
14811
14812 GCC started to support .debug_types sections by -gdwarf-4 since
14813 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14814 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14815 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14816 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14817 }
14818 else if (producer_is_gcc (cu->producer, &major, &minor))
14819 {
14820 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14821 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14822 }
14823 else if (producer_is_icc (cu->producer, &major, &minor))
14824 {
14825 cu->producer_is_icc = true;
14826 cu->producer_is_icc_lt_14 = major < 14;
14827 }
14828 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14829 cu->producer_is_codewarrior = true;
14830 else
14831 {
14832 /* For other non-GCC compilers, expect their behavior is DWARF version
14833 compliant. */
14834 }
14835
14836 cu->checked_producer = true;
14837 }
14838
14839 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14840 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14841 during 4.6.0 experimental. */
14842
14843 static bool
14844 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14845 {
14846 if (!cu->checked_producer)
14847 check_producer (cu);
14848
14849 return cu->producer_is_gxx_lt_4_6;
14850 }
14851
14852
14853 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14854 with incorrect is_stmt attributes. */
14855
14856 static bool
14857 producer_is_codewarrior (struct dwarf2_cu *cu)
14858 {
14859 if (!cu->checked_producer)
14860 check_producer (cu);
14861
14862 return cu->producer_is_codewarrior;
14863 }
14864
14865 /* Return the default accessibility type if it is not overriden by
14866 DW_AT_accessibility. */
14867
14868 static enum dwarf_access_attribute
14869 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14870 {
14871 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14872 {
14873 /* The default DWARF 2 accessibility for members is public, the default
14874 accessibility for inheritance is private. */
14875
14876 if (die->tag != DW_TAG_inheritance)
14877 return DW_ACCESS_public;
14878 else
14879 return DW_ACCESS_private;
14880 }
14881 else
14882 {
14883 /* DWARF 3+ defines the default accessibility a different way. The same
14884 rules apply now for DW_TAG_inheritance as for the members and it only
14885 depends on the container kind. */
14886
14887 if (die->parent->tag == DW_TAG_class_type)
14888 return DW_ACCESS_private;
14889 else
14890 return DW_ACCESS_public;
14891 }
14892 }
14893
14894 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14895 offset. If the attribute was not found return 0, otherwise return
14896 1. If it was found but could not properly be handled, set *OFFSET
14897 to 0. */
14898
14899 static int
14900 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14901 LONGEST *offset)
14902 {
14903 struct attribute *attr;
14904
14905 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14906 if (attr != NULL)
14907 {
14908 *offset = 0;
14909
14910 /* Note that we do not check for a section offset first here.
14911 This is because DW_AT_data_member_location is new in DWARF 4,
14912 so if we see it, we can assume that a constant form is really
14913 a constant and not a section offset. */
14914 if (attr_form_is_constant (attr))
14915 *offset = dwarf2_get_attr_constant_value (attr, 0);
14916 else if (attr_form_is_section_offset (attr))
14917 dwarf2_complex_location_expr_complaint ();
14918 else if (attr_form_is_block (attr))
14919 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14920 else
14921 dwarf2_complex_location_expr_complaint ();
14922
14923 return 1;
14924 }
14925
14926 return 0;
14927 }
14928
14929 /* Add an aggregate field to the field list. */
14930
14931 static void
14932 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14933 struct dwarf2_cu *cu)
14934 {
14935 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14937 struct nextfield *new_field;
14938 struct attribute *attr;
14939 struct field *fp;
14940 const char *fieldname = "";
14941
14942 if (die->tag == DW_TAG_inheritance)
14943 {
14944 fip->baseclasses.emplace_back ();
14945 new_field = &fip->baseclasses.back ();
14946 }
14947 else
14948 {
14949 fip->fields.emplace_back ();
14950 new_field = &fip->fields.back ();
14951 }
14952
14953 fip->nfields++;
14954
14955 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14956 if (attr)
14957 new_field->accessibility = DW_UNSND (attr);
14958 else
14959 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14960 if (new_field->accessibility != DW_ACCESS_public)
14961 fip->non_public_fields = 1;
14962
14963 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14964 if (attr)
14965 new_field->virtuality = DW_UNSND (attr);
14966 else
14967 new_field->virtuality = DW_VIRTUALITY_none;
14968
14969 fp = &new_field->field;
14970
14971 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14972 {
14973 LONGEST offset;
14974
14975 /* Data member other than a C++ static data member. */
14976
14977 /* Get type of field. */
14978 fp->type = die_type (die, cu);
14979
14980 SET_FIELD_BITPOS (*fp, 0);
14981
14982 /* Get bit size of field (zero if none). */
14983 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14984 if (attr)
14985 {
14986 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14987 }
14988 else
14989 {
14990 FIELD_BITSIZE (*fp) = 0;
14991 }
14992
14993 /* Get bit offset of field. */
14994 if (handle_data_member_location (die, cu, &offset))
14995 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14996 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14997 if (attr)
14998 {
14999 if (gdbarch_bits_big_endian (gdbarch))
15000 {
15001 /* For big endian bits, the DW_AT_bit_offset gives the
15002 additional bit offset from the MSB of the containing
15003 anonymous object to the MSB of the field. We don't
15004 have to do anything special since we don't need to
15005 know the size of the anonymous object. */
15006 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15007 }
15008 else
15009 {
15010 /* For little endian bits, compute the bit offset to the
15011 MSB of the anonymous object, subtract off the number of
15012 bits from the MSB of the field to the MSB of the
15013 object, and then subtract off the number of bits of
15014 the field itself. The result is the bit offset of
15015 the LSB of the field. */
15016 int anonymous_size;
15017 int bit_offset = DW_UNSND (attr);
15018
15019 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15020 if (attr)
15021 {
15022 /* The size of the anonymous object containing
15023 the bit field is explicit, so use the
15024 indicated size (in bytes). */
15025 anonymous_size = DW_UNSND (attr);
15026 }
15027 else
15028 {
15029 /* The size of the anonymous object containing
15030 the bit field must be inferred from the type
15031 attribute of the data member containing the
15032 bit field. */
15033 anonymous_size = TYPE_LENGTH (fp->type);
15034 }
15035 SET_FIELD_BITPOS (*fp,
15036 (FIELD_BITPOS (*fp)
15037 + anonymous_size * bits_per_byte
15038 - bit_offset - FIELD_BITSIZE (*fp)));
15039 }
15040 }
15041 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15042 if (attr != NULL)
15043 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15044 + dwarf2_get_attr_constant_value (attr, 0)));
15045
15046 /* Get name of field. */
15047 fieldname = dwarf2_name (die, cu);
15048 if (fieldname == NULL)
15049 fieldname = "";
15050
15051 /* The name is already allocated along with this objfile, so we don't
15052 need to duplicate it for the type. */
15053 fp->name = fieldname;
15054
15055 /* Change accessibility for artificial fields (e.g. virtual table
15056 pointer or virtual base class pointer) to private. */
15057 if (dwarf2_attr (die, DW_AT_artificial, cu))
15058 {
15059 FIELD_ARTIFICIAL (*fp) = 1;
15060 new_field->accessibility = DW_ACCESS_private;
15061 fip->non_public_fields = 1;
15062 }
15063 }
15064 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15065 {
15066 /* C++ static member. */
15067
15068 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15069 is a declaration, but all versions of G++ as of this writing
15070 (so through at least 3.2.1) incorrectly generate
15071 DW_TAG_variable tags. */
15072
15073 const char *physname;
15074
15075 /* Get name of field. */
15076 fieldname = dwarf2_name (die, cu);
15077 if (fieldname == NULL)
15078 return;
15079
15080 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15081 if (attr
15082 /* Only create a symbol if this is an external value.
15083 new_symbol checks this and puts the value in the global symbol
15084 table, which we want. If it is not external, new_symbol
15085 will try to put the value in cu->list_in_scope which is wrong. */
15086 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15087 {
15088 /* A static const member, not much different than an enum as far as
15089 we're concerned, except that we can support more types. */
15090 new_symbol (die, NULL, cu);
15091 }
15092
15093 /* Get physical name. */
15094 physname = dwarf2_physname (fieldname, die, cu);
15095
15096 /* The name is already allocated along with this objfile, so we don't
15097 need to duplicate it for the type. */
15098 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15099 FIELD_TYPE (*fp) = die_type (die, cu);
15100 FIELD_NAME (*fp) = fieldname;
15101 }
15102 else if (die->tag == DW_TAG_inheritance)
15103 {
15104 LONGEST offset;
15105
15106 /* C++ base class field. */
15107 if (handle_data_member_location (die, cu, &offset))
15108 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15109 FIELD_BITSIZE (*fp) = 0;
15110 FIELD_TYPE (*fp) = die_type (die, cu);
15111 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15112 }
15113 else if (die->tag == DW_TAG_variant_part)
15114 {
15115 /* process_structure_scope will treat this DIE as a union. */
15116 process_structure_scope (die, cu);
15117
15118 /* The variant part is relative to the start of the enclosing
15119 structure. */
15120 SET_FIELD_BITPOS (*fp, 0);
15121 fp->type = get_die_type (die, cu);
15122 fp->artificial = 1;
15123 fp->name = "<<variant>>";
15124
15125 /* Normally a DW_TAG_variant_part won't have a size, but our
15126 representation requires one, so set it to the maximum of the
15127 child sizes. */
15128 if (TYPE_LENGTH (fp->type) == 0)
15129 {
15130 unsigned max = 0;
15131 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15132 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15133 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15134 TYPE_LENGTH (fp->type) = max;
15135 }
15136 }
15137 else
15138 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15139 }
15140
15141 /* Can the type given by DIE define another type? */
15142
15143 static bool
15144 type_can_define_types (const struct die_info *die)
15145 {
15146 switch (die->tag)
15147 {
15148 case DW_TAG_typedef:
15149 case DW_TAG_class_type:
15150 case DW_TAG_structure_type:
15151 case DW_TAG_union_type:
15152 case DW_TAG_enumeration_type:
15153 return true;
15154
15155 default:
15156 return false;
15157 }
15158 }
15159
15160 /* Add a type definition defined in the scope of the FIP's class. */
15161
15162 static void
15163 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15164 struct dwarf2_cu *cu)
15165 {
15166 struct decl_field fp;
15167 memset (&fp, 0, sizeof (fp));
15168
15169 gdb_assert (type_can_define_types (die));
15170
15171 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15172 fp.name = dwarf2_name (die, cu);
15173 fp.type = read_type_die (die, cu);
15174
15175 /* Save accessibility. */
15176 enum dwarf_access_attribute accessibility;
15177 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15178 if (attr != NULL)
15179 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15180 else
15181 accessibility = dwarf2_default_access_attribute (die, cu);
15182 switch (accessibility)
15183 {
15184 case DW_ACCESS_public:
15185 /* The assumed value if neither private nor protected. */
15186 break;
15187 case DW_ACCESS_private:
15188 fp.is_private = 1;
15189 break;
15190 case DW_ACCESS_protected:
15191 fp.is_protected = 1;
15192 break;
15193 default:
15194 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15195 }
15196
15197 if (die->tag == DW_TAG_typedef)
15198 fip->typedef_field_list.push_back (fp);
15199 else
15200 fip->nested_types_list.push_back (fp);
15201 }
15202
15203 /* Create the vector of fields, and attach it to the type. */
15204
15205 static void
15206 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15207 struct dwarf2_cu *cu)
15208 {
15209 int nfields = fip->nfields;
15210
15211 /* Record the field count, allocate space for the array of fields,
15212 and create blank accessibility bitfields if necessary. */
15213 TYPE_NFIELDS (type) = nfields;
15214 TYPE_FIELDS (type) = (struct field *)
15215 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15216
15217 if (fip->non_public_fields && cu->language != language_ada)
15218 {
15219 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15220
15221 TYPE_FIELD_PRIVATE_BITS (type) =
15222 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15223 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15224
15225 TYPE_FIELD_PROTECTED_BITS (type) =
15226 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15227 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15228
15229 TYPE_FIELD_IGNORE_BITS (type) =
15230 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15231 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15232 }
15233
15234 /* If the type has baseclasses, allocate and clear a bit vector for
15235 TYPE_FIELD_VIRTUAL_BITS. */
15236 if (!fip->baseclasses.empty () && cu->language != language_ada)
15237 {
15238 int num_bytes = B_BYTES (fip->baseclasses.size ());
15239 unsigned char *pointer;
15240
15241 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15242 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15243 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15244 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15245 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15246 }
15247
15248 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15249 {
15250 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15251
15252 for (int index = 0; index < nfields; ++index)
15253 {
15254 struct nextfield &field = fip->fields[index];
15255
15256 if (field.variant.is_discriminant)
15257 di->discriminant_index = index;
15258 else if (field.variant.default_branch)
15259 di->default_index = index;
15260 else
15261 di->discriminants[index] = field.variant.discriminant_value;
15262 }
15263 }
15264
15265 /* Copy the saved-up fields into the field vector. */
15266 for (int i = 0; i < nfields; ++i)
15267 {
15268 struct nextfield &field
15269 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15270 : fip->fields[i - fip->baseclasses.size ()]);
15271
15272 TYPE_FIELD (type, i) = field.field;
15273 switch (field.accessibility)
15274 {
15275 case DW_ACCESS_private:
15276 if (cu->language != language_ada)
15277 SET_TYPE_FIELD_PRIVATE (type, i);
15278 break;
15279
15280 case DW_ACCESS_protected:
15281 if (cu->language != language_ada)
15282 SET_TYPE_FIELD_PROTECTED (type, i);
15283 break;
15284
15285 case DW_ACCESS_public:
15286 break;
15287
15288 default:
15289 /* Unknown accessibility. Complain and treat it as public. */
15290 {
15291 complaint (_("unsupported accessibility %d"),
15292 field.accessibility);
15293 }
15294 break;
15295 }
15296 if (i < fip->baseclasses.size ())
15297 {
15298 switch (field.virtuality)
15299 {
15300 case DW_VIRTUALITY_virtual:
15301 case DW_VIRTUALITY_pure_virtual:
15302 if (cu->language == language_ada)
15303 error (_("unexpected virtuality in component of Ada type"));
15304 SET_TYPE_FIELD_VIRTUAL (type, i);
15305 break;
15306 }
15307 }
15308 }
15309 }
15310
15311 /* Return true if this member function is a constructor, false
15312 otherwise. */
15313
15314 static int
15315 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15316 {
15317 const char *fieldname;
15318 const char *type_name;
15319 int len;
15320
15321 if (die->parent == NULL)
15322 return 0;
15323
15324 if (die->parent->tag != DW_TAG_structure_type
15325 && die->parent->tag != DW_TAG_union_type
15326 && die->parent->tag != DW_TAG_class_type)
15327 return 0;
15328
15329 fieldname = dwarf2_name (die, cu);
15330 type_name = dwarf2_name (die->parent, cu);
15331 if (fieldname == NULL || type_name == NULL)
15332 return 0;
15333
15334 len = strlen (fieldname);
15335 return (strncmp (fieldname, type_name, len) == 0
15336 && (type_name[len] == '\0' || type_name[len] == '<'));
15337 }
15338
15339 /* Add a member function to the proper fieldlist. */
15340
15341 static void
15342 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15343 struct type *type, struct dwarf2_cu *cu)
15344 {
15345 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15346 struct attribute *attr;
15347 int i;
15348 struct fnfieldlist *flp = nullptr;
15349 struct fn_field *fnp;
15350 const char *fieldname;
15351 struct type *this_type;
15352 enum dwarf_access_attribute accessibility;
15353
15354 if (cu->language == language_ada)
15355 error (_("unexpected member function in Ada type"));
15356
15357 /* Get name of member function. */
15358 fieldname = dwarf2_name (die, cu);
15359 if (fieldname == NULL)
15360 return;
15361
15362 /* Look up member function name in fieldlist. */
15363 for (i = 0; i < fip->fnfieldlists.size (); i++)
15364 {
15365 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15366 {
15367 flp = &fip->fnfieldlists[i];
15368 break;
15369 }
15370 }
15371
15372 /* Create a new fnfieldlist if necessary. */
15373 if (flp == nullptr)
15374 {
15375 fip->fnfieldlists.emplace_back ();
15376 flp = &fip->fnfieldlists.back ();
15377 flp->name = fieldname;
15378 i = fip->fnfieldlists.size () - 1;
15379 }
15380
15381 /* Create a new member function field and add it to the vector of
15382 fnfieldlists. */
15383 flp->fnfields.emplace_back ();
15384 fnp = &flp->fnfields.back ();
15385
15386 /* Delay processing of the physname until later. */
15387 if (cu->language == language_cplus)
15388 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15389 die, cu);
15390 else
15391 {
15392 const char *physname = dwarf2_physname (fieldname, die, cu);
15393 fnp->physname = physname ? physname : "";
15394 }
15395
15396 fnp->type = alloc_type (objfile);
15397 this_type = read_type_die (die, cu);
15398 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15399 {
15400 int nparams = TYPE_NFIELDS (this_type);
15401
15402 /* TYPE is the domain of this method, and THIS_TYPE is the type
15403 of the method itself (TYPE_CODE_METHOD). */
15404 smash_to_method_type (fnp->type, type,
15405 TYPE_TARGET_TYPE (this_type),
15406 TYPE_FIELDS (this_type),
15407 TYPE_NFIELDS (this_type),
15408 TYPE_VARARGS (this_type));
15409
15410 /* Handle static member functions.
15411 Dwarf2 has no clean way to discern C++ static and non-static
15412 member functions. G++ helps GDB by marking the first
15413 parameter for non-static member functions (which is the this
15414 pointer) as artificial. We obtain this information from
15415 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15416 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15417 fnp->voffset = VOFFSET_STATIC;
15418 }
15419 else
15420 complaint (_("member function type missing for '%s'"),
15421 dwarf2_full_name (fieldname, die, cu));
15422
15423 /* Get fcontext from DW_AT_containing_type if present. */
15424 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15425 fnp->fcontext = die_containing_type (die, cu);
15426
15427 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15428 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15429
15430 /* Get accessibility. */
15431 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15432 if (attr)
15433 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15434 else
15435 accessibility = dwarf2_default_access_attribute (die, cu);
15436 switch (accessibility)
15437 {
15438 case DW_ACCESS_private:
15439 fnp->is_private = 1;
15440 break;
15441 case DW_ACCESS_protected:
15442 fnp->is_protected = 1;
15443 break;
15444 }
15445
15446 /* Check for artificial methods. */
15447 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15448 if (attr && DW_UNSND (attr) != 0)
15449 fnp->is_artificial = 1;
15450
15451 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15452
15453 /* Get index in virtual function table if it is a virtual member
15454 function. For older versions of GCC, this is an offset in the
15455 appropriate virtual table, as specified by DW_AT_containing_type.
15456 For everyone else, it is an expression to be evaluated relative
15457 to the object address. */
15458
15459 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15460 if (attr)
15461 {
15462 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15463 {
15464 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15465 {
15466 /* Old-style GCC. */
15467 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15468 }
15469 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15470 || (DW_BLOCK (attr)->size > 1
15471 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15472 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15473 {
15474 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15475 if ((fnp->voffset % cu->header.addr_size) != 0)
15476 dwarf2_complex_location_expr_complaint ();
15477 else
15478 fnp->voffset /= cu->header.addr_size;
15479 fnp->voffset += 2;
15480 }
15481 else
15482 dwarf2_complex_location_expr_complaint ();
15483
15484 if (!fnp->fcontext)
15485 {
15486 /* If there is no `this' field and no DW_AT_containing_type,
15487 we cannot actually find a base class context for the
15488 vtable! */
15489 if (TYPE_NFIELDS (this_type) == 0
15490 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15491 {
15492 complaint (_("cannot determine context for virtual member "
15493 "function \"%s\" (offset %s)"),
15494 fieldname, sect_offset_str (die->sect_off));
15495 }
15496 else
15497 {
15498 fnp->fcontext
15499 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15500 }
15501 }
15502 }
15503 else if (attr_form_is_section_offset (attr))
15504 {
15505 dwarf2_complex_location_expr_complaint ();
15506 }
15507 else
15508 {
15509 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15510 fieldname);
15511 }
15512 }
15513 else
15514 {
15515 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15516 if (attr && DW_UNSND (attr))
15517 {
15518 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15519 complaint (_("Member function \"%s\" (offset %s) is virtual "
15520 "but the vtable offset is not specified"),
15521 fieldname, sect_offset_str (die->sect_off));
15522 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15523 TYPE_CPLUS_DYNAMIC (type) = 1;
15524 }
15525 }
15526 }
15527
15528 /* Create the vector of member function fields, and attach it to the type. */
15529
15530 static void
15531 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15532 struct dwarf2_cu *cu)
15533 {
15534 if (cu->language == language_ada)
15535 error (_("unexpected member functions in Ada type"));
15536
15537 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15538 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15539 TYPE_ALLOC (type,
15540 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15541
15542 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15543 {
15544 struct fnfieldlist &nf = fip->fnfieldlists[i];
15545 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15546
15547 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15548 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15549 fn_flp->fn_fields = (struct fn_field *)
15550 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15551
15552 for (int k = 0; k < nf.fnfields.size (); ++k)
15553 fn_flp->fn_fields[k] = nf.fnfields[k];
15554 }
15555
15556 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15557 }
15558
15559 /* Returns non-zero if NAME is the name of a vtable member in CU's
15560 language, zero otherwise. */
15561 static int
15562 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15563 {
15564 static const char vptr[] = "_vptr";
15565
15566 /* Look for the C++ form of the vtable. */
15567 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15568 return 1;
15569
15570 return 0;
15571 }
15572
15573 /* GCC outputs unnamed structures that are really pointers to member
15574 functions, with the ABI-specified layout. If TYPE describes
15575 such a structure, smash it into a member function type.
15576
15577 GCC shouldn't do this; it should just output pointer to member DIEs.
15578 This is GCC PR debug/28767. */
15579
15580 static void
15581 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15582 {
15583 struct type *pfn_type, *self_type, *new_type;
15584
15585 /* Check for a structure with no name and two children. */
15586 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15587 return;
15588
15589 /* Check for __pfn and __delta members. */
15590 if (TYPE_FIELD_NAME (type, 0) == NULL
15591 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15592 || TYPE_FIELD_NAME (type, 1) == NULL
15593 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15594 return;
15595
15596 /* Find the type of the method. */
15597 pfn_type = TYPE_FIELD_TYPE (type, 0);
15598 if (pfn_type == NULL
15599 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15600 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15601 return;
15602
15603 /* Look for the "this" argument. */
15604 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15605 if (TYPE_NFIELDS (pfn_type) == 0
15606 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15607 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15608 return;
15609
15610 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15611 new_type = alloc_type (objfile);
15612 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15613 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15614 TYPE_VARARGS (pfn_type));
15615 smash_to_methodptr_type (type, new_type);
15616 }
15617
15618 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15619 appropriate error checking and issuing complaints if there is a
15620 problem. */
15621
15622 static ULONGEST
15623 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15624 {
15625 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15626
15627 if (attr == nullptr)
15628 return 0;
15629
15630 if (!attr_form_is_constant (attr))
15631 {
15632 complaint (_("DW_AT_alignment must have constant form"
15633 " - DIE at %s [in module %s]"),
15634 sect_offset_str (die->sect_off),
15635 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15636 return 0;
15637 }
15638
15639 ULONGEST align;
15640 if (attr->form == DW_FORM_sdata)
15641 {
15642 LONGEST val = DW_SND (attr);
15643 if (val < 0)
15644 {
15645 complaint (_("DW_AT_alignment value must not be negative"
15646 " - DIE at %s [in module %s]"),
15647 sect_offset_str (die->sect_off),
15648 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15649 return 0;
15650 }
15651 align = val;
15652 }
15653 else
15654 align = DW_UNSND (attr);
15655
15656 if (align == 0)
15657 {
15658 complaint (_("DW_AT_alignment value must not be zero"
15659 " - DIE at %s [in module %s]"),
15660 sect_offset_str (die->sect_off),
15661 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15662 return 0;
15663 }
15664 if ((align & (align - 1)) != 0)
15665 {
15666 complaint (_("DW_AT_alignment value must be a power of 2"
15667 " - DIE at %s [in module %s]"),
15668 sect_offset_str (die->sect_off),
15669 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15670 return 0;
15671 }
15672
15673 return align;
15674 }
15675
15676 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15677 the alignment for TYPE. */
15678
15679 static void
15680 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15681 struct type *type)
15682 {
15683 if (!set_type_align (type, get_alignment (cu, die)))
15684 complaint (_("DW_AT_alignment value too large"
15685 " - DIE at %s [in module %s]"),
15686 sect_offset_str (die->sect_off),
15687 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15688 }
15689
15690 /* Called when we find the DIE that starts a structure or union scope
15691 (definition) to create a type for the structure or union. Fill in
15692 the type's name and general properties; the members will not be
15693 processed until process_structure_scope. A symbol table entry for
15694 the type will also not be done until process_structure_scope (assuming
15695 the type has a name).
15696
15697 NOTE: we need to call these functions regardless of whether or not the
15698 DIE has a DW_AT_name attribute, since it might be an anonymous
15699 structure or union. This gets the type entered into our set of
15700 user defined types. */
15701
15702 static struct type *
15703 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15704 {
15705 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15706 struct type *type;
15707 struct attribute *attr;
15708 const char *name;
15709
15710 /* If the definition of this type lives in .debug_types, read that type.
15711 Don't follow DW_AT_specification though, that will take us back up
15712 the chain and we want to go down. */
15713 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15714 if (attr)
15715 {
15716 type = get_DW_AT_signature_type (die, attr, cu);
15717
15718 /* The type's CU may not be the same as CU.
15719 Ensure TYPE is recorded with CU in die_type_hash. */
15720 return set_die_type (die, type, cu);
15721 }
15722
15723 type = alloc_type (objfile);
15724 INIT_CPLUS_SPECIFIC (type);
15725
15726 name = dwarf2_name (die, cu);
15727 if (name != NULL)
15728 {
15729 if (cu->language == language_cplus
15730 || cu->language == language_d
15731 || cu->language == language_rust)
15732 {
15733 const char *full_name = dwarf2_full_name (name, die, cu);
15734
15735 /* dwarf2_full_name might have already finished building the DIE's
15736 type. If so, there is no need to continue. */
15737 if (get_die_type (die, cu) != NULL)
15738 return get_die_type (die, cu);
15739
15740 TYPE_NAME (type) = full_name;
15741 }
15742 else
15743 {
15744 /* The name is already allocated along with this objfile, so
15745 we don't need to duplicate it for the type. */
15746 TYPE_NAME (type) = name;
15747 }
15748 }
15749
15750 if (die->tag == DW_TAG_structure_type)
15751 {
15752 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15753 }
15754 else if (die->tag == DW_TAG_union_type)
15755 {
15756 TYPE_CODE (type) = TYPE_CODE_UNION;
15757 }
15758 else if (die->tag == DW_TAG_variant_part)
15759 {
15760 TYPE_CODE (type) = TYPE_CODE_UNION;
15761 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15762 }
15763 else
15764 {
15765 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15766 }
15767
15768 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15769 TYPE_DECLARED_CLASS (type) = 1;
15770
15771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15772 if (attr)
15773 {
15774 if (attr_form_is_constant (attr))
15775 TYPE_LENGTH (type) = DW_UNSND (attr);
15776 else
15777 {
15778 /* For the moment, dynamic type sizes are not supported
15779 by GDB's struct type. The actual size is determined
15780 on-demand when resolving the type of a given object,
15781 so set the type's length to zero for now. Otherwise,
15782 we record an expression as the length, and that expression
15783 could lead to a very large value, which could eventually
15784 lead to us trying to allocate that much memory when creating
15785 a value of that type. */
15786 TYPE_LENGTH (type) = 0;
15787 }
15788 }
15789 else
15790 {
15791 TYPE_LENGTH (type) = 0;
15792 }
15793
15794 maybe_set_alignment (cu, die, type);
15795
15796 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15797 {
15798 /* ICC<14 does not output the required DW_AT_declaration on
15799 incomplete types, but gives them a size of zero. */
15800 TYPE_STUB (type) = 1;
15801 }
15802 else
15803 TYPE_STUB_SUPPORTED (type) = 1;
15804
15805 if (die_is_declaration (die, cu))
15806 TYPE_STUB (type) = 1;
15807 else if (attr == NULL && die->child == NULL
15808 && producer_is_realview (cu->producer))
15809 /* RealView does not output the required DW_AT_declaration
15810 on incomplete types. */
15811 TYPE_STUB (type) = 1;
15812
15813 /* We need to add the type field to the die immediately so we don't
15814 infinitely recurse when dealing with pointers to the structure
15815 type within the structure itself. */
15816 set_die_type (die, type, cu);
15817
15818 /* set_die_type should be already done. */
15819 set_descriptive_type (type, die, cu);
15820
15821 return type;
15822 }
15823
15824 /* A helper for process_structure_scope that handles a single member
15825 DIE. */
15826
15827 static void
15828 handle_struct_member_die (struct die_info *child_die, struct type *type,
15829 struct field_info *fi,
15830 std::vector<struct symbol *> *template_args,
15831 struct dwarf2_cu *cu)
15832 {
15833 if (child_die->tag == DW_TAG_member
15834 || child_die->tag == DW_TAG_variable
15835 || child_die->tag == DW_TAG_variant_part)
15836 {
15837 /* NOTE: carlton/2002-11-05: A C++ static data member
15838 should be a DW_TAG_member that is a declaration, but
15839 all versions of G++ as of this writing (so through at
15840 least 3.2.1) incorrectly generate DW_TAG_variable
15841 tags for them instead. */
15842 dwarf2_add_field (fi, child_die, cu);
15843 }
15844 else if (child_die->tag == DW_TAG_subprogram)
15845 {
15846 /* Rust doesn't have member functions in the C++ sense.
15847 However, it does emit ordinary functions as children
15848 of a struct DIE. */
15849 if (cu->language == language_rust)
15850 read_func_scope (child_die, cu);
15851 else
15852 {
15853 /* C++ member function. */
15854 dwarf2_add_member_fn (fi, child_die, type, cu);
15855 }
15856 }
15857 else if (child_die->tag == DW_TAG_inheritance)
15858 {
15859 /* C++ base class field. */
15860 dwarf2_add_field (fi, child_die, cu);
15861 }
15862 else if (type_can_define_types (child_die))
15863 dwarf2_add_type_defn (fi, child_die, cu);
15864 else if (child_die->tag == DW_TAG_template_type_param
15865 || child_die->tag == DW_TAG_template_value_param)
15866 {
15867 struct symbol *arg = new_symbol (child_die, NULL, cu);
15868
15869 if (arg != NULL)
15870 template_args->push_back (arg);
15871 }
15872 else if (child_die->tag == DW_TAG_variant)
15873 {
15874 /* In a variant we want to get the discriminant and also add a
15875 field for our sole member child. */
15876 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15877
15878 for (die_info *variant_child = child_die->child;
15879 variant_child != NULL;
15880 variant_child = sibling_die (variant_child))
15881 {
15882 if (variant_child->tag == DW_TAG_member)
15883 {
15884 handle_struct_member_die (variant_child, type, fi,
15885 template_args, cu);
15886 /* Only handle the one. */
15887 break;
15888 }
15889 }
15890
15891 /* We don't handle this but we might as well report it if we see
15892 it. */
15893 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15894 complaint (_("DW_AT_discr_list is not supported yet"
15895 " - DIE at %s [in module %s]"),
15896 sect_offset_str (child_die->sect_off),
15897 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15898
15899 /* The first field was just added, so we can stash the
15900 discriminant there. */
15901 gdb_assert (!fi->fields.empty ());
15902 if (discr == NULL)
15903 fi->fields.back ().variant.default_branch = true;
15904 else
15905 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15906 }
15907 }
15908
15909 /* Finish creating a structure or union type, including filling in
15910 its members and creating a symbol for it. */
15911
15912 static void
15913 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15914 {
15915 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15916 struct die_info *child_die;
15917 struct type *type;
15918
15919 type = get_die_type (die, cu);
15920 if (type == NULL)
15921 type = read_structure_type (die, cu);
15922
15923 /* When reading a DW_TAG_variant_part, we need to notice when we
15924 read the discriminant member, so we can record it later in the
15925 discriminant_info. */
15926 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15927 sect_offset discr_offset;
15928 bool has_template_parameters = false;
15929
15930 if (is_variant_part)
15931 {
15932 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15933 if (discr == NULL)
15934 {
15935 /* Maybe it's a univariant form, an extension we support.
15936 In this case arrange not to check the offset. */
15937 is_variant_part = false;
15938 }
15939 else if (attr_form_is_ref (discr))
15940 {
15941 struct dwarf2_cu *target_cu = cu;
15942 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15943
15944 discr_offset = target_die->sect_off;
15945 }
15946 else
15947 {
15948 complaint (_("DW_AT_discr does not have DIE reference form"
15949 " - DIE at %s [in module %s]"),
15950 sect_offset_str (die->sect_off),
15951 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15952 is_variant_part = false;
15953 }
15954 }
15955
15956 if (die->child != NULL && ! die_is_declaration (die, cu))
15957 {
15958 struct field_info fi;
15959 std::vector<struct symbol *> template_args;
15960
15961 child_die = die->child;
15962
15963 while (child_die && child_die->tag)
15964 {
15965 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15966
15967 if (is_variant_part && discr_offset == child_die->sect_off)
15968 fi.fields.back ().variant.is_discriminant = true;
15969
15970 child_die = sibling_die (child_die);
15971 }
15972
15973 /* Attach template arguments to type. */
15974 if (!template_args.empty ())
15975 {
15976 has_template_parameters = true;
15977 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15978 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15979 TYPE_TEMPLATE_ARGUMENTS (type)
15980 = XOBNEWVEC (&objfile->objfile_obstack,
15981 struct symbol *,
15982 TYPE_N_TEMPLATE_ARGUMENTS (type));
15983 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15984 template_args.data (),
15985 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15986 * sizeof (struct symbol *)));
15987 }
15988
15989 /* Attach fields and member functions to the type. */
15990 if (fi.nfields)
15991 dwarf2_attach_fields_to_type (&fi, type, cu);
15992 if (!fi.fnfieldlists.empty ())
15993 {
15994 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15995
15996 /* Get the type which refers to the base class (possibly this
15997 class itself) which contains the vtable pointer for the current
15998 class from the DW_AT_containing_type attribute. This use of
15999 DW_AT_containing_type is a GNU extension. */
16000
16001 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16002 {
16003 struct type *t = die_containing_type (die, cu);
16004
16005 set_type_vptr_basetype (type, t);
16006 if (type == t)
16007 {
16008 int i;
16009
16010 /* Our own class provides vtbl ptr. */
16011 for (i = TYPE_NFIELDS (t) - 1;
16012 i >= TYPE_N_BASECLASSES (t);
16013 --i)
16014 {
16015 const char *fieldname = TYPE_FIELD_NAME (t, i);
16016
16017 if (is_vtable_name (fieldname, cu))
16018 {
16019 set_type_vptr_fieldno (type, i);
16020 break;
16021 }
16022 }
16023
16024 /* Complain if virtual function table field not found. */
16025 if (i < TYPE_N_BASECLASSES (t))
16026 complaint (_("virtual function table pointer "
16027 "not found when defining class '%s'"),
16028 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16029 }
16030 else
16031 {
16032 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16033 }
16034 }
16035 else if (cu->producer
16036 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16037 {
16038 /* The IBM XLC compiler does not provide direct indication
16039 of the containing type, but the vtable pointer is
16040 always named __vfp. */
16041
16042 int i;
16043
16044 for (i = TYPE_NFIELDS (type) - 1;
16045 i >= TYPE_N_BASECLASSES (type);
16046 --i)
16047 {
16048 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16049 {
16050 set_type_vptr_fieldno (type, i);
16051 set_type_vptr_basetype (type, type);
16052 break;
16053 }
16054 }
16055 }
16056 }
16057
16058 /* Copy fi.typedef_field_list linked list elements content into the
16059 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16060 if (!fi.typedef_field_list.empty ())
16061 {
16062 int count = fi.typedef_field_list.size ();
16063
16064 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16065 TYPE_TYPEDEF_FIELD_ARRAY (type)
16066 = ((struct decl_field *)
16067 TYPE_ALLOC (type,
16068 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16069 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16070
16071 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16072 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16073 }
16074
16075 /* Copy fi.nested_types_list linked list elements content into the
16076 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16077 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16078 {
16079 int count = fi.nested_types_list.size ();
16080
16081 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16082 TYPE_NESTED_TYPES_ARRAY (type)
16083 = ((struct decl_field *)
16084 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16085 TYPE_NESTED_TYPES_COUNT (type) = count;
16086
16087 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16088 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16089 }
16090 }
16091
16092 quirk_gcc_member_function_pointer (type, objfile);
16093 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16094 cu->rust_unions.push_back (type);
16095
16096 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16097 snapshots) has been known to create a die giving a declaration
16098 for a class that has, as a child, a die giving a definition for a
16099 nested class. So we have to process our children even if the
16100 current die is a declaration. Normally, of course, a declaration
16101 won't have any children at all. */
16102
16103 child_die = die->child;
16104
16105 while (child_die != NULL && child_die->tag)
16106 {
16107 if (child_die->tag == DW_TAG_member
16108 || child_die->tag == DW_TAG_variable
16109 || child_die->tag == DW_TAG_inheritance
16110 || child_die->tag == DW_TAG_template_value_param
16111 || child_die->tag == DW_TAG_template_type_param)
16112 {
16113 /* Do nothing. */
16114 }
16115 else
16116 process_die (child_die, cu);
16117
16118 child_die = sibling_die (child_die);
16119 }
16120
16121 /* Do not consider external references. According to the DWARF standard,
16122 these DIEs are identified by the fact that they have no byte_size
16123 attribute, and a declaration attribute. */
16124 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16125 || !die_is_declaration (die, cu))
16126 {
16127 struct symbol *sym = new_symbol (die, type, cu);
16128
16129 if (has_template_parameters)
16130 {
16131 struct symtab *symtab;
16132 if (sym != nullptr)
16133 symtab = symbol_symtab (sym);
16134 else if (cu->line_header != nullptr)
16135 {
16136 /* Any related symtab will do. */
16137 symtab
16138 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16139 }
16140 else
16141 {
16142 symtab = nullptr;
16143 complaint (_("could not find suitable "
16144 "symtab for template parameter"
16145 " - DIE at %s [in module %s]"),
16146 sect_offset_str (die->sect_off),
16147 objfile_name (objfile));
16148 }
16149
16150 if (symtab != nullptr)
16151 {
16152 /* Make sure that the symtab is set on the new symbols.
16153 Even though they don't appear in this symtab directly,
16154 other parts of gdb assume that symbols do, and this is
16155 reasonably true. */
16156 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16157 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16158 }
16159 }
16160 }
16161 }
16162
16163 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16164 update TYPE using some information only available in DIE's children. */
16165
16166 static void
16167 update_enumeration_type_from_children (struct die_info *die,
16168 struct type *type,
16169 struct dwarf2_cu *cu)
16170 {
16171 struct die_info *child_die;
16172 int unsigned_enum = 1;
16173 int flag_enum = 1;
16174 ULONGEST mask = 0;
16175
16176 auto_obstack obstack;
16177
16178 for (child_die = die->child;
16179 child_die != NULL && child_die->tag;
16180 child_die = sibling_die (child_die))
16181 {
16182 struct attribute *attr;
16183 LONGEST value;
16184 const gdb_byte *bytes;
16185 struct dwarf2_locexpr_baton *baton;
16186 const char *name;
16187
16188 if (child_die->tag != DW_TAG_enumerator)
16189 continue;
16190
16191 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16192 if (attr == NULL)
16193 continue;
16194
16195 name = dwarf2_name (child_die, cu);
16196 if (name == NULL)
16197 name = "<anonymous enumerator>";
16198
16199 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16200 &value, &bytes, &baton);
16201 if (value < 0)
16202 {
16203 unsigned_enum = 0;
16204 flag_enum = 0;
16205 }
16206 else if ((mask & value) != 0)
16207 flag_enum = 0;
16208 else
16209 mask |= value;
16210
16211 /* If we already know that the enum type is neither unsigned, nor
16212 a flag type, no need to look at the rest of the enumerates. */
16213 if (!unsigned_enum && !flag_enum)
16214 break;
16215 }
16216
16217 if (unsigned_enum)
16218 TYPE_UNSIGNED (type) = 1;
16219 if (flag_enum)
16220 TYPE_FLAG_ENUM (type) = 1;
16221 }
16222
16223 /* Given a DW_AT_enumeration_type die, set its type. We do not
16224 complete the type's fields yet, or create any symbols. */
16225
16226 static struct type *
16227 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16228 {
16229 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16230 struct type *type;
16231 struct attribute *attr;
16232 const char *name;
16233
16234 /* If the definition of this type lives in .debug_types, read that type.
16235 Don't follow DW_AT_specification though, that will take us back up
16236 the chain and we want to go down. */
16237 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16238 if (attr)
16239 {
16240 type = get_DW_AT_signature_type (die, attr, cu);
16241
16242 /* The type's CU may not be the same as CU.
16243 Ensure TYPE is recorded with CU in die_type_hash. */
16244 return set_die_type (die, type, cu);
16245 }
16246
16247 type = alloc_type (objfile);
16248
16249 TYPE_CODE (type) = TYPE_CODE_ENUM;
16250 name = dwarf2_full_name (NULL, die, cu);
16251 if (name != NULL)
16252 TYPE_NAME (type) = name;
16253
16254 attr = dwarf2_attr (die, DW_AT_type, cu);
16255 if (attr != NULL)
16256 {
16257 struct type *underlying_type = die_type (die, cu);
16258
16259 TYPE_TARGET_TYPE (type) = underlying_type;
16260 }
16261
16262 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16263 if (attr)
16264 {
16265 TYPE_LENGTH (type) = DW_UNSND (attr);
16266 }
16267 else
16268 {
16269 TYPE_LENGTH (type) = 0;
16270 }
16271
16272 maybe_set_alignment (cu, die, type);
16273
16274 /* The enumeration DIE can be incomplete. In Ada, any type can be
16275 declared as private in the package spec, and then defined only
16276 inside the package body. Such types are known as Taft Amendment
16277 Types. When another package uses such a type, an incomplete DIE
16278 may be generated by the compiler. */
16279 if (die_is_declaration (die, cu))
16280 TYPE_STUB (type) = 1;
16281
16282 /* Finish the creation of this type by using the enum's children.
16283 We must call this even when the underlying type has been provided
16284 so that we can determine if we're looking at a "flag" enum. */
16285 update_enumeration_type_from_children (die, type, cu);
16286
16287 /* If this type has an underlying type that is not a stub, then we
16288 may use its attributes. We always use the "unsigned" attribute
16289 in this situation, because ordinarily we guess whether the type
16290 is unsigned -- but the guess can be wrong and the underlying type
16291 can tell us the reality. However, we defer to a local size
16292 attribute if one exists, because this lets the compiler override
16293 the underlying type if needed. */
16294 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16295 {
16296 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16297 if (TYPE_LENGTH (type) == 0)
16298 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16299 if (TYPE_RAW_ALIGN (type) == 0
16300 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16301 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16302 }
16303
16304 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16305
16306 return set_die_type (die, type, cu);
16307 }
16308
16309 /* Given a pointer to a die which begins an enumeration, process all
16310 the dies that define the members of the enumeration, and create the
16311 symbol for the enumeration type.
16312
16313 NOTE: We reverse the order of the element list. */
16314
16315 static void
16316 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16317 {
16318 struct type *this_type;
16319
16320 this_type = get_die_type (die, cu);
16321 if (this_type == NULL)
16322 this_type = read_enumeration_type (die, cu);
16323
16324 if (die->child != NULL)
16325 {
16326 struct die_info *child_die;
16327 struct symbol *sym;
16328 struct field *fields = NULL;
16329 int num_fields = 0;
16330 const char *name;
16331
16332 child_die = die->child;
16333 while (child_die && child_die->tag)
16334 {
16335 if (child_die->tag != DW_TAG_enumerator)
16336 {
16337 process_die (child_die, cu);
16338 }
16339 else
16340 {
16341 name = dwarf2_name (child_die, cu);
16342 if (name)
16343 {
16344 sym = new_symbol (child_die, this_type, cu);
16345
16346 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16347 {
16348 fields = (struct field *)
16349 xrealloc (fields,
16350 (num_fields + DW_FIELD_ALLOC_CHUNK)
16351 * sizeof (struct field));
16352 }
16353
16354 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16355 FIELD_TYPE (fields[num_fields]) = NULL;
16356 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16357 FIELD_BITSIZE (fields[num_fields]) = 0;
16358
16359 num_fields++;
16360 }
16361 }
16362
16363 child_die = sibling_die (child_die);
16364 }
16365
16366 if (num_fields)
16367 {
16368 TYPE_NFIELDS (this_type) = num_fields;
16369 TYPE_FIELDS (this_type) = (struct field *)
16370 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16371 memcpy (TYPE_FIELDS (this_type), fields,
16372 sizeof (struct field) * num_fields);
16373 xfree (fields);
16374 }
16375 }
16376
16377 /* If we are reading an enum from a .debug_types unit, and the enum
16378 is a declaration, and the enum is not the signatured type in the
16379 unit, then we do not want to add a symbol for it. Adding a
16380 symbol would in some cases obscure the true definition of the
16381 enum, giving users an incomplete type when the definition is
16382 actually available. Note that we do not want to do this for all
16383 enums which are just declarations, because C++0x allows forward
16384 enum declarations. */
16385 if (cu->per_cu->is_debug_types
16386 && die_is_declaration (die, cu))
16387 {
16388 struct signatured_type *sig_type;
16389
16390 sig_type = (struct signatured_type *) cu->per_cu;
16391 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16392 if (sig_type->type_offset_in_section != die->sect_off)
16393 return;
16394 }
16395
16396 new_symbol (die, this_type, cu);
16397 }
16398
16399 /* Extract all information from a DW_TAG_array_type DIE and put it in
16400 the DIE's type field. For now, this only handles one dimensional
16401 arrays. */
16402
16403 static struct type *
16404 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16405 {
16406 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16407 struct die_info *child_die;
16408 struct type *type;
16409 struct type *element_type, *range_type, *index_type;
16410 struct attribute *attr;
16411 const char *name;
16412 struct dynamic_prop *byte_stride_prop = NULL;
16413 unsigned int bit_stride = 0;
16414
16415 element_type = die_type (die, cu);
16416
16417 /* The die_type call above may have already set the type for this DIE. */
16418 type = get_die_type (die, cu);
16419 if (type)
16420 return type;
16421
16422 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16423 if (attr != NULL)
16424 {
16425 int stride_ok;
16426 struct type *prop_type
16427 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16428
16429 byte_stride_prop
16430 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16431 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16432 prop_type);
16433 if (!stride_ok)
16434 {
16435 complaint (_("unable to read array DW_AT_byte_stride "
16436 " - DIE at %s [in module %s]"),
16437 sect_offset_str (die->sect_off),
16438 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16439 /* Ignore this attribute. We will likely not be able to print
16440 arrays of this type correctly, but there is little we can do
16441 to help if we cannot read the attribute's value. */
16442 byte_stride_prop = NULL;
16443 }
16444 }
16445
16446 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16447 if (attr != NULL)
16448 bit_stride = DW_UNSND (attr);
16449
16450 /* Irix 6.2 native cc creates array types without children for
16451 arrays with unspecified length. */
16452 if (die->child == NULL)
16453 {
16454 index_type = objfile_type (objfile)->builtin_int;
16455 range_type = create_static_range_type (NULL, index_type, 0, -1);
16456 type = create_array_type_with_stride (NULL, element_type, range_type,
16457 byte_stride_prop, bit_stride);
16458 return set_die_type (die, type, cu);
16459 }
16460
16461 std::vector<struct type *> range_types;
16462 child_die = die->child;
16463 while (child_die && child_die->tag)
16464 {
16465 if (child_die->tag == DW_TAG_subrange_type)
16466 {
16467 struct type *child_type = read_type_die (child_die, cu);
16468
16469 if (child_type != NULL)
16470 {
16471 /* The range type was succesfully read. Save it for the
16472 array type creation. */
16473 range_types.push_back (child_type);
16474 }
16475 }
16476 child_die = sibling_die (child_die);
16477 }
16478
16479 /* Dwarf2 dimensions are output from left to right, create the
16480 necessary array types in backwards order. */
16481
16482 type = element_type;
16483
16484 if (read_array_order (die, cu) == DW_ORD_col_major)
16485 {
16486 int i = 0;
16487
16488 while (i < range_types.size ())
16489 type = create_array_type_with_stride (NULL, type, range_types[i++],
16490 byte_stride_prop, bit_stride);
16491 }
16492 else
16493 {
16494 size_t ndim = range_types.size ();
16495 while (ndim-- > 0)
16496 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16497 byte_stride_prop, bit_stride);
16498 }
16499
16500 /* Understand Dwarf2 support for vector types (like they occur on
16501 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16502 array type. This is not part of the Dwarf2/3 standard yet, but a
16503 custom vendor extension. The main difference between a regular
16504 array and the vector variant is that vectors are passed by value
16505 to functions. */
16506 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16507 if (attr)
16508 make_vector_type (type);
16509
16510 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16511 implementation may choose to implement triple vectors using this
16512 attribute. */
16513 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16514 if (attr)
16515 {
16516 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16517 TYPE_LENGTH (type) = DW_UNSND (attr);
16518 else
16519 complaint (_("DW_AT_byte_size for array type smaller "
16520 "than the total size of elements"));
16521 }
16522
16523 name = dwarf2_name (die, cu);
16524 if (name)
16525 TYPE_NAME (type) = name;
16526
16527 maybe_set_alignment (cu, die, type);
16528
16529 /* Install the type in the die. */
16530 set_die_type (die, type, cu);
16531
16532 /* set_die_type should be already done. */
16533 set_descriptive_type (type, die, cu);
16534
16535 return type;
16536 }
16537
16538 static enum dwarf_array_dim_ordering
16539 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16540 {
16541 struct attribute *attr;
16542
16543 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16544
16545 if (attr)
16546 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16547
16548 /* GNU F77 is a special case, as at 08/2004 array type info is the
16549 opposite order to the dwarf2 specification, but data is still
16550 laid out as per normal fortran.
16551
16552 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16553 version checking. */
16554
16555 if (cu->language == language_fortran
16556 && cu->producer && strstr (cu->producer, "GNU F77"))
16557 {
16558 return DW_ORD_row_major;
16559 }
16560
16561 switch (cu->language_defn->la_array_ordering)
16562 {
16563 case array_column_major:
16564 return DW_ORD_col_major;
16565 case array_row_major:
16566 default:
16567 return DW_ORD_row_major;
16568 };
16569 }
16570
16571 /* Extract all information from a DW_TAG_set_type DIE and put it in
16572 the DIE's type field. */
16573
16574 static struct type *
16575 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16576 {
16577 struct type *domain_type, *set_type;
16578 struct attribute *attr;
16579
16580 domain_type = die_type (die, cu);
16581
16582 /* The die_type call above may have already set the type for this DIE. */
16583 set_type = get_die_type (die, cu);
16584 if (set_type)
16585 return set_type;
16586
16587 set_type = create_set_type (NULL, domain_type);
16588
16589 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16590 if (attr)
16591 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16592
16593 maybe_set_alignment (cu, die, set_type);
16594
16595 return set_die_type (die, set_type, cu);
16596 }
16597
16598 /* A helper for read_common_block that creates a locexpr baton.
16599 SYM is the symbol which we are marking as computed.
16600 COMMON_DIE is the DIE for the common block.
16601 COMMON_LOC is the location expression attribute for the common
16602 block itself.
16603 MEMBER_LOC is the location expression attribute for the particular
16604 member of the common block that we are processing.
16605 CU is the CU from which the above come. */
16606
16607 static void
16608 mark_common_block_symbol_computed (struct symbol *sym,
16609 struct die_info *common_die,
16610 struct attribute *common_loc,
16611 struct attribute *member_loc,
16612 struct dwarf2_cu *cu)
16613 {
16614 struct dwarf2_per_objfile *dwarf2_per_objfile
16615 = cu->per_cu->dwarf2_per_objfile;
16616 struct objfile *objfile = dwarf2_per_objfile->objfile;
16617 struct dwarf2_locexpr_baton *baton;
16618 gdb_byte *ptr;
16619 unsigned int cu_off;
16620 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16621 LONGEST offset = 0;
16622
16623 gdb_assert (common_loc && member_loc);
16624 gdb_assert (attr_form_is_block (common_loc));
16625 gdb_assert (attr_form_is_block (member_loc)
16626 || attr_form_is_constant (member_loc));
16627
16628 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16629 baton->per_cu = cu->per_cu;
16630 gdb_assert (baton->per_cu);
16631
16632 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16633
16634 if (attr_form_is_constant (member_loc))
16635 {
16636 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16637 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16638 }
16639 else
16640 baton->size += DW_BLOCK (member_loc)->size;
16641
16642 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16643 baton->data = ptr;
16644
16645 *ptr++ = DW_OP_call4;
16646 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16647 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16648 ptr += 4;
16649
16650 if (attr_form_is_constant (member_loc))
16651 {
16652 *ptr++ = DW_OP_addr;
16653 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16654 ptr += cu->header.addr_size;
16655 }
16656 else
16657 {
16658 /* We have to copy the data here, because DW_OP_call4 will only
16659 use a DW_AT_location attribute. */
16660 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16661 ptr += DW_BLOCK (member_loc)->size;
16662 }
16663
16664 *ptr++ = DW_OP_plus;
16665 gdb_assert (ptr - baton->data == baton->size);
16666
16667 SYMBOL_LOCATION_BATON (sym) = baton;
16668 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16669 }
16670
16671 /* Create appropriate locally-scoped variables for all the
16672 DW_TAG_common_block entries. Also create a struct common_block
16673 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16674 is used to sepate the common blocks name namespace from regular
16675 variable names. */
16676
16677 static void
16678 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16679 {
16680 struct attribute *attr;
16681
16682 attr = dwarf2_attr (die, DW_AT_location, cu);
16683 if (attr)
16684 {
16685 /* Support the .debug_loc offsets. */
16686 if (attr_form_is_block (attr))
16687 {
16688 /* Ok. */
16689 }
16690 else if (attr_form_is_section_offset (attr))
16691 {
16692 dwarf2_complex_location_expr_complaint ();
16693 attr = NULL;
16694 }
16695 else
16696 {
16697 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16698 "common block member");
16699 attr = NULL;
16700 }
16701 }
16702
16703 if (die->child != NULL)
16704 {
16705 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16706 struct die_info *child_die;
16707 size_t n_entries = 0, size;
16708 struct common_block *common_block;
16709 struct symbol *sym;
16710
16711 for (child_die = die->child;
16712 child_die && child_die->tag;
16713 child_die = sibling_die (child_die))
16714 ++n_entries;
16715
16716 size = (sizeof (struct common_block)
16717 + (n_entries - 1) * sizeof (struct symbol *));
16718 common_block
16719 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16720 size);
16721 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16722 common_block->n_entries = 0;
16723
16724 for (child_die = die->child;
16725 child_die && child_die->tag;
16726 child_die = sibling_die (child_die))
16727 {
16728 /* Create the symbol in the DW_TAG_common_block block in the current
16729 symbol scope. */
16730 sym = new_symbol (child_die, NULL, cu);
16731 if (sym != NULL)
16732 {
16733 struct attribute *member_loc;
16734
16735 common_block->contents[common_block->n_entries++] = sym;
16736
16737 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16738 cu);
16739 if (member_loc)
16740 {
16741 /* GDB has handled this for a long time, but it is
16742 not specified by DWARF. It seems to have been
16743 emitted by gfortran at least as recently as:
16744 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16745 complaint (_("Variable in common block has "
16746 "DW_AT_data_member_location "
16747 "- DIE at %s [in module %s]"),
16748 sect_offset_str (child_die->sect_off),
16749 objfile_name (objfile));
16750
16751 if (attr_form_is_section_offset (member_loc))
16752 dwarf2_complex_location_expr_complaint ();
16753 else if (attr_form_is_constant (member_loc)
16754 || attr_form_is_block (member_loc))
16755 {
16756 if (attr)
16757 mark_common_block_symbol_computed (sym, die, attr,
16758 member_loc, cu);
16759 }
16760 else
16761 dwarf2_complex_location_expr_complaint ();
16762 }
16763 }
16764 }
16765
16766 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16767 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16768 }
16769 }
16770
16771 /* Create a type for a C++ namespace. */
16772
16773 static struct type *
16774 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16775 {
16776 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16777 const char *previous_prefix, *name;
16778 int is_anonymous;
16779 struct type *type;
16780
16781 /* For extensions, reuse the type of the original namespace. */
16782 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16783 {
16784 struct die_info *ext_die;
16785 struct dwarf2_cu *ext_cu = cu;
16786
16787 ext_die = dwarf2_extension (die, &ext_cu);
16788 type = read_type_die (ext_die, ext_cu);
16789
16790 /* EXT_CU may not be the same as CU.
16791 Ensure TYPE is recorded with CU in die_type_hash. */
16792 return set_die_type (die, type, cu);
16793 }
16794
16795 name = namespace_name (die, &is_anonymous, cu);
16796
16797 /* Now build the name of the current namespace. */
16798
16799 previous_prefix = determine_prefix (die, cu);
16800 if (previous_prefix[0] != '\0')
16801 name = typename_concat (&objfile->objfile_obstack,
16802 previous_prefix, name, 0, cu);
16803
16804 /* Create the type. */
16805 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16806
16807 return set_die_type (die, type, cu);
16808 }
16809
16810 /* Read a namespace scope. */
16811
16812 static void
16813 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16814 {
16815 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16816 int is_anonymous;
16817
16818 /* Add a symbol associated to this if we haven't seen the namespace
16819 before. Also, add a using directive if it's an anonymous
16820 namespace. */
16821
16822 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16823 {
16824 struct type *type;
16825
16826 type = read_type_die (die, cu);
16827 new_symbol (die, type, cu);
16828
16829 namespace_name (die, &is_anonymous, cu);
16830 if (is_anonymous)
16831 {
16832 const char *previous_prefix = determine_prefix (die, cu);
16833
16834 std::vector<const char *> excludes;
16835 add_using_directive (using_directives (cu),
16836 previous_prefix, TYPE_NAME (type), NULL,
16837 NULL, excludes, 0, &objfile->objfile_obstack);
16838 }
16839 }
16840
16841 if (die->child != NULL)
16842 {
16843 struct die_info *child_die = die->child;
16844
16845 while (child_die && child_die->tag)
16846 {
16847 process_die (child_die, cu);
16848 child_die = sibling_die (child_die);
16849 }
16850 }
16851 }
16852
16853 /* Read a Fortran module as type. This DIE can be only a declaration used for
16854 imported module. Still we need that type as local Fortran "use ... only"
16855 declaration imports depend on the created type in determine_prefix. */
16856
16857 static struct type *
16858 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16859 {
16860 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16861 const char *module_name;
16862 struct type *type;
16863
16864 module_name = dwarf2_name (die, cu);
16865 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16866
16867 return set_die_type (die, type, cu);
16868 }
16869
16870 /* Read a Fortran module. */
16871
16872 static void
16873 read_module (struct die_info *die, struct dwarf2_cu *cu)
16874 {
16875 struct die_info *child_die = die->child;
16876 struct type *type;
16877
16878 type = read_type_die (die, cu);
16879 new_symbol (die, type, cu);
16880
16881 while (child_die && child_die->tag)
16882 {
16883 process_die (child_die, cu);
16884 child_die = sibling_die (child_die);
16885 }
16886 }
16887
16888 /* Return the name of the namespace represented by DIE. Set
16889 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16890 namespace. */
16891
16892 static const char *
16893 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16894 {
16895 struct die_info *current_die;
16896 const char *name = NULL;
16897
16898 /* Loop through the extensions until we find a name. */
16899
16900 for (current_die = die;
16901 current_die != NULL;
16902 current_die = dwarf2_extension (die, &cu))
16903 {
16904 /* We don't use dwarf2_name here so that we can detect the absence
16905 of a name -> anonymous namespace. */
16906 name = dwarf2_string_attr (die, DW_AT_name, cu);
16907
16908 if (name != NULL)
16909 break;
16910 }
16911
16912 /* Is it an anonymous namespace? */
16913
16914 *is_anonymous = (name == NULL);
16915 if (*is_anonymous)
16916 name = CP_ANONYMOUS_NAMESPACE_STR;
16917
16918 return name;
16919 }
16920
16921 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16922 the user defined type vector. */
16923
16924 static struct type *
16925 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16926 {
16927 struct gdbarch *gdbarch
16928 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16929 struct comp_unit_head *cu_header = &cu->header;
16930 struct type *type;
16931 struct attribute *attr_byte_size;
16932 struct attribute *attr_address_class;
16933 int byte_size, addr_class;
16934 struct type *target_type;
16935
16936 target_type = die_type (die, cu);
16937
16938 /* The die_type call above may have already set the type for this DIE. */
16939 type = get_die_type (die, cu);
16940 if (type)
16941 return type;
16942
16943 type = lookup_pointer_type (target_type);
16944
16945 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16946 if (attr_byte_size)
16947 byte_size = DW_UNSND (attr_byte_size);
16948 else
16949 byte_size = cu_header->addr_size;
16950
16951 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16952 if (attr_address_class)
16953 addr_class = DW_UNSND (attr_address_class);
16954 else
16955 addr_class = DW_ADDR_none;
16956
16957 ULONGEST alignment = get_alignment (cu, die);
16958
16959 /* If the pointer size, alignment, or address class is different
16960 than the default, create a type variant marked as such and set
16961 the length accordingly. */
16962 if (TYPE_LENGTH (type) != byte_size
16963 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16964 && alignment != TYPE_RAW_ALIGN (type))
16965 || addr_class != DW_ADDR_none)
16966 {
16967 if (gdbarch_address_class_type_flags_p (gdbarch))
16968 {
16969 int type_flags;
16970
16971 type_flags = gdbarch_address_class_type_flags
16972 (gdbarch, byte_size, addr_class);
16973 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16974 == 0);
16975 type = make_type_with_address_space (type, type_flags);
16976 }
16977 else if (TYPE_LENGTH (type) != byte_size)
16978 {
16979 complaint (_("invalid pointer size %d"), byte_size);
16980 }
16981 else if (TYPE_RAW_ALIGN (type) != alignment)
16982 {
16983 complaint (_("Invalid DW_AT_alignment"
16984 " - DIE at %s [in module %s]"),
16985 sect_offset_str (die->sect_off),
16986 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16987 }
16988 else
16989 {
16990 /* Should we also complain about unhandled address classes? */
16991 }
16992 }
16993
16994 TYPE_LENGTH (type) = byte_size;
16995 set_type_align (type, alignment);
16996 return set_die_type (die, type, cu);
16997 }
16998
16999 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17000 the user defined type vector. */
17001
17002 static struct type *
17003 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17004 {
17005 struct type *type;
17006 struct type *to_type;
17007 struct type *domain;
17008
17009 to_type = die_type (die, cu);
17010 domain = die_containing_type (die, cu);
17011
17012 /* The calls above may have already set the type for this DIE. */
17013 type = get_die_type (die, cu);
17014 if (type)
17015 return type;
17016
17017 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17018 type = lookup_methodptr_type (to_type);
17019 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17020 {
17021 struct type *new_type
17022 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17023
17024 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17025 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17026 TYPE_VARARGS (to_type));
17027 type = lookup_methodptr_type (new_type);
17028 }
17029 else
17030 type = lookup_memberptr_type (to_type, domain);
17031
17032 return set_die_type (die, type, cu);
17033 }
17034
17035 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17036 the user defined type vector. */
17037
17038 static struct type *
17039 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17040 enum type_code refcode)
17041 {
17042 struct comp_unit_head *cu_header = &cu->header;
17043 struct type *type, *target_type;
17044 struct attribute *attr;
17045
17046 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17047
17048 target_type = die_type (die, cu);
17049
17050 /* The die_type call above may have already set the type for this DIE. */
17051 type = get_die_type (die, cu);
17052 if (type)
17053 return type;
17054
17055 type = lookup_reference_type (target_type, refcode);
17056 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17057 if (attr)
17058 {
17059 TYPE_LENGTH (type) = DW_UNSND (attr);
17060 }
17061 else
17062 {
17063 TYPE_LENGTH (type) = cu_header->addr_size;
17064 }
17065 maybe_set_alignment (cu, die, type);
17066 return set_die_type (die, type, cu);
17067 }
17068
17069 /* Add the given cv-qualifiers to the element type of the array. GCC
17070 outputs DWARF type qualifiers that apply to an array, not the
17071 element type. But GDB relies on the array element type to carry
17072 the cv-qualifiers. This mimics section 6.7.3 of the C99
17073 specification. */
17074
17075 static struct type *
17076 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17077 struct type *base_type, int cnst, int voltl)
17078 {
17079 struct type *el_type, *inner_array;
17080
17081 base_type = copy_type (base_type);
17082 inner_array = base_type;
17083
17084 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17085 {
17086 TYPE_TARGET_TYPE (inner_array) =
17087 copy_type (TYPE_TARGET_TYPE (inner_array));
17088 inner_array = TYPE_TARGET_TYPE (inner_array);
17089 }
17090
17091 el_type = TYPE_TARGET_TYPE (inner_array);
17092 cnst |= TYPE_CONST (el_type);
17093 voltl |= TYPE_VOLATILE (el_type);
17094 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17095
17096 return set_die_type (die, base_type, cu);
17097 }
17098
17099 static struct type *
17100 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17101 {
17102 struct type *base_type, *cv_type;
17103
17104 base_type = die_type (die, cu);
17105
17106 /* The die_type call above may have already set the type for this DIE. */
17107 cv_type = get_die_type (die, cu);
17108 if (cv_type)
17109 return cv_type;
17110
17111 /* In case the const qualifier is applied to an array type, the element type
17112 is so qualified, not the array type (section 6.7.3 of C99). */
17113 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17114 return add_array_cv_type (die, cu, base_type, 1, 0);
17115
17116 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17117 return set_die_type (die, cv_type, cu);
17118 }
17119
17120 static struct type *
17121 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17122 {
17123 struct type *base_type, *cv_type;
17124
17125 base_type = die_type (die, cu);
17126
17127 /* The die_type call above may have already set the type for this DIE. */
17128 cv_type = get_die_type (die, cu);
17129 if (cv_type)
17130 return cv_type;
17131
17132 /* In case the volatile qualifier is applied to an array type, the
17133 element type is so qualified, not the array type (section 6.7.3
17134 of C99). */
17135 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17136 return add_array_cv_type (die, cu, base_type, 0, 1);
17137
17138 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17139 return set_die_type (die, cv_type, cu);
17140 }
17141
17142 /* Handle DW_TAG_restrict_type. */
17143
17144 static struct type *
17145 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17146 {
17147 struct type *base_type, *cv_type;
17148
17149 base_type = die_type (die, cu);
17150
17151 /* The die_type call above may have already set the type for this DIE. */
17152 cv_type = get_die_type (die, cu);
17153 if (cv_type)
17154 return cv_type;
17155
17156 cv_type = make_restrict_type (base_type);
17157 return set_die_type (die, cv_type, cu);
17158 }
17159
17160 /* Handle DW_TAG_atomic_type. */
17161
17162 static struct type *
17163 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17164 {
17165 struct type *base_type, *cv_type;
17166
17167 base_type = die_type (die, cu);
17168
17169 /* The die_type call above may have already set the type for this DIE. */
17170 cv_type = get_die_type (die, cu);
17171 if (cv_type)
17172 return cv_type;
17173
17174 cv_type = make_atomic_type (base_type);
17175 return set_die_type (die, cv_type, cu);
17176 }
17177
17178 /* Extract all information from a DW_TAG_string_type DIE and add to
17179 the user defined type vector. It isn't really a user defined type,
17180 but it behaves like one, with other DIE's using an AT_user_def_type
17181 attribute to reference it. */
17182
17183 static struct type *
17184 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17185 {
17186 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17187 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17188 struct type *type, *range_type, *index_type, *char_type;
17189 struct attribute *attr;
17190 unsigned int length;
17191
17192 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17193 if (attr)
17194 {
17195 length = DW_UNSND (attr);
17196 }
17197 else
17198 {
17199 /* Check for the DW_AT_byte_size attribute. */
17200 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17201 if (attr)
17202 {
17203 length = DW_UNSND (attr);
17204 }
17205 else
17206 {
17207 length = 1;
17208 }
17209 }
17210
17211 index_type = objfile_type (objfile)->builtin_int;
17212 range_type = create_static_range_type (NULL, index_type, 1, length);
17213 char_type = language_string_char_type (cu->language_defn, gdbarch);
17214 type = create_string_type (NULL, char_type, range_type);
17215
17216 return set_die_type (die, type, cu);
17217 }
17218
17219 /* Assuming that DIE corresponds to a function, returns nonzero
17220 if the function is prototyped. */
17221
17222 static int
17223 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17224 {
17225 struct attribute *attr;
17226
17227 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17228 if (attr && (DW_UNSND (attr) != 0))
17229 return 1;
17230
17231 /* The DWARF standard implies that the DW_AT_prototyped attribute
17232 is only meaninful for C, but the concept also extends to other
17233 languages that allow unprototyped functions (Eg: Objective C).
17234 For all other languages, assume that functions are always
17235 prototyped. */
17236 if (cu->language != language_c
17237 && cu->language != language_objc
17238 && cu->language != language_opencl)
17239 return 1;
17240
17241 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17242 prototyped and unprototyped functions; default to prototyped,
17243 since that is more common in modern code (and RealView warns
17244 about unprototyped functions). */
17245 if (producer_is_realview (cu->producer))
17246 return 1;
17247
17248 return 0;
17249 }
17250
17251 /* Handle DIES due to C code like:
17252
17253 struct foo
17254 {
17255 int (*funcp)(int a, long l);
17256 int b;
17257 };
17258
17259 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17260
17261 static struct type *
17262 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17263 {
17264 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17265 struct type *type; /* Type that this function returns. */
17266 struct type *ftype; /* Function that returns above type. */
17267 struct attribute *attr;
17268
17269 type = die_type (die, cu);
17270
17271 /* The die_type call above may have already set the type for this DIE. */
17272 ftype = get_die_type (die, cu);
17273 if (ftype)
17274 return ftype;
17275
17276 ftype = lookup_function_type (type);
17277
17278 if (prototyped_function_p (die, cu))
17279 TYPE_PROTOTYPED (ftype) = 1;
17280
17281 /* Store the calling convention in the type if it's available in
17282 the subroutine die. Otherwise set the calling convention to
17283 the default value DW_CC_normal. */
17284 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17285 if (attr)
17286 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17287 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17288 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17289 else
17290 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17291
17292 /* Record whether the function returns normally to its caller or not
17293 if the DWARF producer set that information. */
17294 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17295 if (attr && (DW_UNSND (attr) != 0))
17296 TYPE_NO_RETURN (ftype) = 1;
17297
17298 /* We need to add the subroutine type to the die immediately so
17299 we don't infinitely recurse when dealing with parameters
17300 declared as the same subroutine type. */
17301 set_die_type (die, ftype, cu);
17302
17303 if (die->child != NULL)
17304 {
17305 struct type *void_type = objfile_type (objfile)->builtin_void;
17306 struct die_info *child_die;
17307 int nparams, iparams;
17308
17309 /* Count the number of parameters.
17310 FIXME: GDB currently ignores vararg functions, but knows about
17311 vararg member functions. */
17312 nparams = 0;
17313 child_die = die->child;
17314 while (child_die && child_die->tag)
17315 {
17316 if (child_die->tag == DW_TAG_formal_parameter)
17317 nparams++;
17318 else if (child_die->tag == DW_TAG_unspecified_parameters)
17319 TYPE_VARARGS (ftype) = 1;
17320 child_die = sibling_die (child_die);
17321 }
17322
17323 /* Allocate storage for parameters and fill them in. */
17324 TYPE_NFIELDS (ftype) = nparams;
17325 TYPE_FIELDS (ftype) = (struct field *)
17326 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17327
17328 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17329 even if we error out during the parameters reading below. */
17330 for (iparams = 0; iparams < nparams; iparams++)
17331 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17332
17333 iparams = 0;
17334 child_die = die->child;
17335 while (child_die && child_die->tag)
17336 {
17337 if (child_die->tag == DW_TAG_formal_parameter)
17338 {
17339 struct type *arg_type;
17340
17341 /* DWARF version 2 has no clean way to discern C++
17342 static and non-static member functions. G++ helps
17343 GDB by marking the first parameter for non-static
17344 member functions (which is the this pointer) as
17345 artificial. We pass this information to
17346 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17347
17348 DWARF version 3 added DW_AT_object_pointer, which GCC
17349 4.5 does not yet generate. */
17350 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17351 if (attr)
17352 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17353 else
17354 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17355 arg_type = die_type (child_die, cu);
17356
17357 /* RealView does not mark THIS as const, which the testsuite
17358 expects. GCC marks THIS as const in method definitions,
17359 but not in the class specifications (GCC PR 43053). */
17360 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17361 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17362 {
17363 int is_this = 0;
17364 struct dwarf2_cu *arg_cu = cu;
17365 const char *name = dwarf2_name (child_die, cu);
17366
17367 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17368 if (attr)
17369 {
17370 /* If the compiler emits this, use it. */
17371 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17372 is_this = 1;
17373 }
17374 else if (name && strcmp (name, "this") == 0)
17375 /* Function definitions will have the argument names. */
17376 is_this = 1;
17377 else if (name == NULL && iparams == 0)
17378 /* Declarations may not have the names, so like
17379 elsewhere in GDB, assume an artificial first
17380 argument is "this". */
17381 is_this = 1;
17382
17383 if (is_this)
17384 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17385 arg_type, 0);
17386 }
17387
17388 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17389 iparams++;
17390 }
17391 child_die = sibling_die (child_die);
17392 }
17393 }
17394
17395 return ftype;
17396 }
17397
17398 static struct type *
17399 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17400 {
17401 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17402 const char *name = NULL;
17403 struct type *this_type, *target_type;
17404
17405 name = dwarf2_full_name (NULL, die, cu);
17406 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17407 TYPE_TARGET_STUB (this_type) = 1;
17408 set_die_type (die, this_type, cu);
17409 target_type = die_type (die, cu);
17410 if (target_type != this_type)
17411 TYPE_TARGET_TYPE (this_type) = target_type;
17412 else
17413 {
17414 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17415 spec and cause infinite loops in GDB. */
17416 complaint (_("Self-referential DW_TAG_typedef "
17417 "- DIE at %s [in module %s]"),
17418 sect_offset_str (die->sect_off), objfile_name (objfile));
17419 TYPE_TARGET_TYPE (this_type) = NULL;
17420 }
17421 return this_type;
17422 }
17423
17424 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17425 (which may be different from NAME) to the architecture back-end to allow
17426 it to guess the correct format if necessary. */
17427
17428 static struct type *
17429 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17430 const char *name_hint)
17431 {
17432 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17433 const struct floatformat **format;
17434 struct type *type;
17435
17436 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17437 if (format)
17438 type = init_float_type (objfile, bits, name, format);
17439 else
17440 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17441
17442 return type;
17443 }
17444
17445 /* Allocate an integer type of size BITS and name NAME. */
17446
17447 static struct type *
17448 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17449 int bits, int unsigned_p, const char *name)
17450 {
17451 struct type *type;
17452
17453 /* Versions of Intel's C Compiler generate an integer type called "void"
17454 instead of using DW_TAG_unspecified_type. This has been seen on
17455 at least versions 14, 17, and 18. */
17456 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17457 && strcmp (name, "void") == 0)
17458 type = objfile_type (objfile)->builtin_void;
17459 else
17460 type = init_integer_type (objfile, bits, unsigned_p, name);
17461
17462 return type;
17463 }
17464
17465 /* Initialise and return a floating point type of size BITS suitable for
17466 use as a component of a complex number. The NAME_HINT is passed through
17467 when initialising the floating point type and is the name of the complex
17468 type.
17469
17470 As DWARF doesn't currently provide an explicit name for the components
17471 of a complex number, but it can be helpful to have these components
17472 named, we try to select a suitable name based on the size of the
17473 component. */
17474 static struct type *
17475 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17476 struct objfile *objfile,
17477 int bits, const char *name_hint)
17478 {
17479 gdbarch *gdbarch = get_objfile_arch (objfile);
17480 struct type *tt = nullptr;
17481
17482 /* Try to find a suitable floating point builtin type of size BITS.
17483 We're going to use the name of this type as the name for the complex
17484 target type that we are about to create. */
17485 switch (cu->language)
17486 {
17487 case language_fortran:
17488 switch (bits)
17489 {
17490 case 32:
17491 tt = builtin_f_type (gdbarch)->builtin_real;
17492 break;
17493 case 64:
17494 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17495 break;
17496 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17497 case 128:
17498 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17499 break;
17500 }
17501 break;
17502 default:
17503 switch (bits)
17504 {
17505 case 32:
17506 tt = builtin_type (gdbarch)->builtin_float;
17507 break;
17508 case 64:
17509 tt = builtin_type (gdbarch)->builtin_double;
17510 break;
17511 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17512 case 128:
17513 tt = builtin_type (gdbarch)->builtin_long_double;
17514 break;
17515 }
17516 break;
17517 }
17518
17519 /* If the type we found doesn't match the size we were looking for, then
17520 pretend we didn't find a type at all, the complex target type we
17521 create will then be nameless. */
17522 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17523 tt = nullptr;
17524
17525 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17526 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17527 }
17528
17529 /* Find a representation of a given base type and install
17530 it in the TYPE field of the die. */
17531
17532 static struct type *
17533 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17534 {
17535 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17536 struct type *type;
17537 struct attribute *attr;
17538 int encoding = 0, bits = 0;
17539 const char *name;
17540
17541 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17542 if (attr)
17543 {
17544 encoding = DW_UNSND (attr);
17545 }
17546 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17547 if (attr)
17548 {
17549 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17550 }
17551 name = dwarf2_name (die, cu);
17552 if (!name)
17553 {
17554 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17555 }
17556
17557 switch (encoding)
17558 {
17559 case DW_ATE_address:
17560 /* Turn DW_ATE_address into a void * pointer. */
17561 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17562 type = init_pointer_type (objfile, bits, name, type);
17563 break;
17564 case DW_ATE_boolean:
17565 type = init_boolean_type (objfile, bits, 1, name);
17566 break;
17567 case DW_ATE_complex_float:
17568 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17569 type = init_complex_type (objfile, name, type);
17570 break;
17571 case DW_ATE_decimal_float:
17572 type = init_decfloat_type (objfile, bits, name);
17573 break;
17574 case DW_ATE_float:
17575 type = dwarf2_init_float_type (objfile, bits, name, name);
17576 break;
17577 case DW_ATE_signed:
17578 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17579 break;
17580 case DW_ATE_unsigned:
17581 if (cu->language == language_fortran
17582 && name
17583 && startswith (name, "character("))
17584 type = init_character_type (objfile, bits, 1, name);
17585 else
17586 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17587 break;
17588 case DW_ATE_signed_char:
17589 if (cu->language == language_ada || cu->language == language_m2
17590 || cu->language == language_pascal
17591 || cu->language == language_fortran)
17592 type = init_character_type (objfile, bits, 0, name);
17593 else
17594 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17595 break;
17596 case DW_ATE_unsigned_char:
17597 if (cu->language == language_ada || cu->language == language_m2
17598 || cu->language == language_pascal
17599 || cu->language == language_fortran
17600 || cu->language == language_rust)
17601 type = init_character_type (objfile, bits, 1, name);
17602 else
17603 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17604 break;
17605 case DW_ATE_UTF:
17606 {
17607 gdbarch *arch = get_objfile_arch (objfile);
17608
17609 if (bits == 16)
17610 type = builtin_type (arch)->builtin_char16;
17611 else if (bits == 32)
17612 type = builtin_type (arch)->builtin_char32;
17613 else
17614 {
17615 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17616 bits);
17617 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17618 }
17619 return set_die_type (die, type, cu);
17620 }
17621 break;
17622
17623 default:
17624 complaint (_("unsupported DW_AT_encoding: '%s'"),
17625 dwarf_type_encoding_name (encoding));
17626 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17627 break;
17628 }
17629
17630 if (name && strcmp (name, "char") == 0)
17631 TYPE_NOSIGN (type) = 1;
17632
17633 maybe_set_alignment (cu, die, type);
17634
17635 return set_die_type (die, type, cu);
17636 }
17637
17638 /* Parse dwarf attribute if it's a block, reference or constant and put the
17639 resulting value of the attribute into struct bound_prop.
17640 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17641
17642 static int
17643 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17644 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17645 struct type *default_type)
17646 {
17647 struct dwarf2_property_baton *baton;
17648 struct obstack *obstack
17649 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17650
17651 gdb_assert (default_type != NULL);
17652
17653 if (attr == NULL || prop == NULL)
17654 return 0;
17655
17656 if (attr_form_is_block (attr))
17657 {
17658 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17659 baton->property_type = default_type;
17660 baton->locexpr.per_cu = cu->per_cu;
17661 baton->locexpr.size = DW_BLOCK (attr)->size;
17662 baton->locexpr.data = DW_BLOCK (attr)->data;
17663 baton->locexpr.is_reference = false;
17664 prop->data.baton = baton;
17665 prop->kind = PROP_LOCEXPR;
17666 gdb_assert (prop->data.baton != NULL);
17667 }
17668 else if (attr_form_is_ref (attr))
17669 {
17670 struct dwarf2_cu *target_cu = cu;
17671 struct die_info *target_die;
17672 struct attribute *target_attr;
17673
17674 target_die = follow_die_ref (die, attr, &target_cu);
17675 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17676 if (target_attr == NULL)
17677 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17678 target_cu);
17679 if (target_attr == NULL)
17680 return 0;
17681
17682 switch (target_attr->name)
17683 {
17684 case DW_AT_location:
17685 if (attr_form_is_section_offset (target_attr))
17686 {
17687 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17688 baton->property_type = die_type (target_die, target_cu);
17689 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17690 prop->data.baton = baton;
17691 prop->kind = PROP_LOCLIST;
17692 gdb_assert (prop->data.baton != NULL);
17693 }
17694 else if (attr_form_is_block (target_attr))
17695 {
17696 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17697 baton->property_type = die_type (target_die, target_cu);
17698 baton->locexpr.per_cu = cu->per_cu;
17699 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17700 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17701 baton->locexpr.is_reference = true;
17702 prop->data.baton = baton;
17703 prop->kind = PROP_LOCEXPR;
17704 gdb_assert (prop->data.baton != NULL);
17705 }
17706 else
17707 {
17708 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17709 "dynamic property");
17710 return 0;
17711 }
17712 break;
17713 case DW_AT_data_member_location:
17714 {
17715 LONGEST offset;
17716
17717 if (!handle_data_member_location (target_die, target_cu,
17718 &offset))
17719 return 0;
17720
17721 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17722 baton->property_type = read_type_die (target_die->parent,
17723 target_cu);
17724 baton->offset_info.offset = offset;
17725 baton->offset_info.type = die_type (target_die, target_cu);
17726 prop->data.baton = baton;
17727 prop->kind = PROP_ADDR_OFFSET;
17728 break;
17729 }
17730 }
17731 }
17732 else if (attr_form_is_constant (attr))
17733 {
17734 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17735 prop->kind = PROP_CONST;
17736 }
17737 else
17738 {
17739 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17740 dwarf2_name (die, cu));
17741 return 0;
17742 }
17743
17744 return 1;
17745 }
17746
17747 /* Find an integer type the same size as the address size given in the
17748 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17749 is unsigned or not. */
17750
17751 static struct type *
17752 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17753 bool unsigned_p)
17754 {
17755 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17756 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17757 struct type *int_type;
17758
17759 /* Helper macro to examine the various builtin types. */
17760 #define TRY_TYPE(F) \
17761 int_type = (unsigned_p \
17762 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17763 : objfile_type (objfile)->builtin_ ## F); \
17764 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17765 return int_type
17766
17767 TRY_TYPE (char);
17768 TRY_TYPE (short);
17769 TRY_TYPE (int);
17770 TRY_TYPE (long);
17771 TRY_TYPE (long_long);
17772
17773 #undef TRY_TYPE
17774
17775 gdb_assert_not_reached ("unable to find suitable integer type");
17776 }
17777
17778 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17779 present (which is valid) then compute the default type based on the
17780 compilation units address size. */
17781
17782 static struct type *
17783 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17784 {
17785 struct type *index_type = die_type (die, cu);
17786
17787 /* Dwarf-2 specifications explicitly allows to create subrange types
17788 without specifying a base type.
17789 In that case, the base type must be set to the type of
17790 the lower bound, upper bound or count, in that order, if any of these
17791 three attributes references an object that has a type.
17792 If no base type is found, the Dwarf-2 specifications say that
17793 a signed integer type of size equal to the size of an address should
17794 be used.
17795 For the following C code: `extern char gdb_int [];'
17796 GCC produces an empty range DIE.
17797 FIXME: muller/2010-05-28: Possible references to object for low bound,
17798 high bound or count are not yet handled by this code. */
17799 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17800 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17801
17802 return index_type;
17803 }
17804
17805 /* Read the given DW_AT_subrange DIE. */
17806
17807 static struct type *
17808 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17809 {
17810 struct type *base_type, *orig_base_type;
17811 struct type *range_type;
17812 struct attribute *attr;
17813 struct dynamic_prop low, high;
17814 int low_default_is_valid;
17815 int high_bound_is_count = 0;
17816 const char *name;
17817 ULONGEST negative_mask;
17818
17819 orig_base_type = read_subrange_index_type (die, cu);
17820
17821 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17822 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17823 creating the range type, but we use the result of check_typedef
17824 when examining properties of the type. */
17825 base_type = check_typedef (orig_base_type);
17826
17827 /* The die_type call above may have already set the type for this DIE. */
17828 range_type = get_die_type (die, cu);
17829 if (range_type)
17830 return range_type;
17831
17832 low.kind = PROP_CONST;
17833 high.kind = PROP_CONST;
17834 high.data.const_val = 0;
17835
17836 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17837 omitting DW_AT_lower_bound. */
17838 switch (cu->language)
17839 {
17840 case language_c:
17841 case language_cplus:
17842 low.data.const_val = 0;
17843 low_default_is_valid = 1;
17844 break;
17845 case language_fortran:
17846 low.data.const_val = 1;
17847 low_default_is_valid = 1;
17848 break;
17849 case language_d:
17850 case language_objc:
17851 case language_rust:
17852 low.data.const_val = 0;
17853 low_default_is_valid = (cu->header.version >= 4);
17854 break;
17855 case language_ada:
17856 case language_m2:
17857 case language_pascal:
17858 low.data.const_val = 1;
17859 low_default_is_valid = (cu->header.version >= 4);
17860 break;
17861 default:
17862 low.data.const_val = 0;
17863 low_default_is_valid = 0;
17864 break;
17865 }
17866
17867 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17868 if (attr)
17869 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17870 else if (!low_default_is_valid)
17871 complaint (_("Missing DW_AT_lower_bound "
17872 "- DIE at %s [in module %s]"),
17873 sect_offset_str (die->sect_off),
17874 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17875
17876 struct attribute *attr_ub, *attr_count;
17877 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17878 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17879 {
17880 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17881 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17882 {
17883 /* If bounds are constant do the final calculation here. */
17884 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17885 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17886 else
17887 high_bound_is_count = 1;
17888 }
17889 else
17890 {
17891 if (attr_ub != NULL)
17892 complaint (_("Unresolved DW_AT_upper_bound "
17893 "- DIE at %s [in module %s]"),
17894 sect_offset_str (die->sect_off),
17895 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17896 if (attr_count != NULL)
17897 complaint (_("Unresolved DW_AT_count "
17898 "- DIE at %s [in module %s]"),
17899 sect_offset_str (die->sect_off),
17900 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17901 }
17902 }
17903
17904 /* Normally, the DWARF producers are expected to use a signed
17905 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17906 But this is unfortunately not always the case, as witnessed
17907 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17908 is used instead. To work around that ambiguity, we treat
17909 the bounds as signed, and thus sign-extend their values, when
17910 the base type is signed. */
17911 negative_mask =
17912 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17913 if (low.kind == PROP_CONST
17914 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17915 low.data.const_val |= negative_mask;
17916 if (high.kind == PROP_CONST
17917 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17918 high.data.const_val |= negative_mask;
17919
17920 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17921
17922 if (high_bound_is_count)
17923 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17924
17925 /* Ada expects an empty array on no boundary attributes. */
17926 if (attr == NULL && cu->language != language_ada)
17927 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17928
17929 name = dwarf2_name (die, cu);
17930 if (name)
17931 TYPE_NAME (range_type) = name;
17932
17933 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17934 if (attr)
17935 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17936
17937 maybe_set_alignment (cu, die, range_type);
17938
17939 set_die_type (die, range_type, cu);
17940
17941 /* set_die_type should be already done. */
17942 set_descriptive_type (range_type, die, cu);
17943
17944 return range_type;
17945 }
17946
17947 static struct type *
17948 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17949 {
17950 struct type *type;
17951
17952 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17953 NULL);
17954 TYPE_NAME (type) = dwarf2_name (die, cu);
17955
17956 /* In Ada, an unspecified type is typically used when the description
17957 of the type is defered to a different unit. When encountering
17958 such a type, we treat it as a stub, and try to resolve it later on,
17959 when needed. */
17960 if (cu->language == language_ada)
17961 TYPE_STUB (type) = 1;
17962
17963 return set_die_type (die, type, cu);
17964 }
17965
17966 /* Read a single die and all its descendents. Set the die's sibling
17967 field to NULL; set other fields in the die correctly, and set all
17968 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17969 location of the info_ptr after reading all of those dies. PARENT
17970 is the parent of the die in question. */
17971
17972 static struct die_info *
17973 read_die_and_children (const struct die_reader_specs *reader,
17974 const gdb_byte *info_ptr,
17975 const gdb_byte **new_info_ptr,
17976 struct die_info *parent)
17977 {
17978 struct die_info *die;
17979 const gdb_byte *cur_ptr;
17980 int has_children;
17981
17982 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17983 if (die == NULL)
17984 {
17985 *new_info_ptr = cur_ptr;
17986 return NULL;
17987 }
17988 store_in_ref_table (die, reader->cu);
17989
17990 if (has_children)
17991 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17992 else
17993 {
17994 die->child = NULL;
17995 *new_info_ptr = cur_ptr;
17996 }
17997
17998 die->sibling = NULL;
17999 die->parent = parent;
18000 return die;
18001 }
18002
18003 /* Read a die, all of its descendents, and all of its siblings; set
18004 all of the fields of all of the dies correctly. Arguments are as
18005 in read_die_and_children. */
18006
18007 static struct die_info *
18008 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18009 const gdb_byte *info_ptr,
18010 const gdb_byte **new_info_ptr,
18011 struct die_info *parent)
18012 {
18013 struct die_info *first_die, *last_sibling;
18014 const gdb_byte *cur_ptr;
18015
18016 cur_ptr = info_ptr;
18017 first_die = last_sibling = NULL;
18018
18019 while (1)
18020 {
18021 struct die_info *die
18022 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18023
18024 if (die == NULL)
18025 {
18026 *new_info_ptr = cur_ptr;
18027 return first_die;
18028 }
18029
18030 if (!first_die)
18031 first_die = die;
18032 else
18033 last_sibling->sibling = die;
18034
18035 last_sibling = die;
18036 }
18037 }
18038
18039 /* Read a die, all of its descendents, and all of its siblings; set
18040 all of the fields of all of the dies correctly. Arguments are as
18041 in read_die_and_children.
18042 This the main entry point for reading a DIE and all its children. */
18043
18044 static struct die_info *
18045 read_die_and_siblings (const struct die_reader_specs *reader,
18046 const gdb_byte *info_ptr,
18047 const gdb_byte **new_info_ptr,
18048 struct die_info *parent)
18049 {
18050 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18051 new_info_ptr, parent);
18052
18053 if (dwarf_die_debug)
18054 {
18055 fprintf_unfiltered (gdb_stdlog,
18056 "Read die from %s@0x%x of %s:\n",
18057 get_section_name (reader->die_section),
18058 (unsigned) (info_ptr - reader->die_section->buffer),
18059 bfd_get_filename (reader->abfd));
18060 dump_die (die, dwarf_die_debug);
18061 }
18062
18063 return die;
18064 }
18065
18066 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18067 attributes.
18068 The caller is responsible for filling in the extra attributes
18069 and updating (*DIEP)->num_attrs.
18070 Set DIEP to point to a newly allocated die with its information,
18071 except for its child, sibling, and parent fields.
18072 Set HAS_CHILDREN to tell whether the die has children or not. */
18073
18074 static const gdb_byte *
18075 read_full_die_1 (const struct die_reader_specs *reader,
18076 struct die_info **diep, const gdb_byte *info_ptr,
18077 int *has_children, int num_extra_attrs)
18078 {
18079 unsigned int abbrev_number, bytes_read, i;
18080 struct abbrev_info *abbrev;
18081 struct die_info *die;
18082 struct dwarf2_cu *cu = reader->cu;
18083 bfd *abfd = reader->abfd;
18084
18085 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18086 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18087 info_ptr += bytes_read;
18088 if (!abbrev_number)
18089 {
18090 *diep = NULL;
18091 *has_children = 0;
18092 return info_ptr;
18093 }
18094
18095 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18096 if (!abbrev)
18097 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18098 abbrev_number,
18099 bfd_get_filename (abfd));
18100
18101 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18102 die->sect_off = sect_off;
18103 die->tag = abbrev->tag;
18104 die->abbrev = abbrev_number;
18105
18106 /* Make the result usable.
18107 The caller needs to update num_attrs after adding the extra
18108 attributes. */
18109 die->num_attrs = abbrev->num_attrs;
18110
18111 for (i = 0; i < abbrev->num_attrs; ++i)
18112 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18113 info_ptr);
18114
18115 *diep = die;
18116 *has_children = abbrev->has_children;
18117 return info_ptr;
18118 }
18119
18120 /* Read a die and all its attributes.
18121 Set DIEP to point to a newly allocated die with its information,
18122 except for its child, sibling, and parent fields.
18123 Set HAS_CHILDREN to tell whether the die has children or not. */
18124
18125 static const gdb_byte *
18126 read_full_die (const struct die_reader_specs *reader,
18127 struct die_info **diep, const gdb_byte *info_ptr,
18128 int *has_children)
18129 {
18130 const gdb_byte *result;
18131
18132 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18133
18134 if (dwarf_die_debug)
18135 {
18136 fprintf_unfiltered (gdb_stdlog,
18137 "Read die from %s@0x%x of %s:\n",
18138 get_section_name (reader->die_section),
18139 (unsigned) (info_ptr - reader->die_section->buffer),
18140 bfd_get_filename (reader->abfd));
18141 dump_die (*diep, dwarf_die_debug);
18142 }
18143
18144 return result;
18145 }
18146 \f
18147 /* Abbreviation tables.
18148
18149 In DWARF version 2, the description of the debugging information is
18150 stored in a separate .debug_abbrev section. Before we read any
18151 dies from a section we read in all abbreviations and install them
18152 in a hash table. */
18153
18154 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18155
18156 struct abbrev_info *
18157 abbrev_table::alloc_abbrev ()
18158 {
18159 struct abbrev_info *abbrev;
18160
18161 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18162 memset (abbrev, 0, sizeof (struct abbrev_info));
18163
18164 return abbrev;
18165 }
18166
18167 /* Add an abbreviation to the table. */
18168
18169 void
18170 abbrev_table::add_abbrev (unsigned int abbrev_number,
18171 struct abbrev_info *abbrev)
18172 {
18173 unsigned int hash_number;
18174
18175 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18176 abbrev->next = m_abbrevs[hash_number];
18177 m_abbrevs[hash_number] = abbrev;
18178 }
18179
18180 /* Look up an abbrev in the table.
18181 Returns NULL if the abbrev is not found. */
18182
18183 struct abbrev_info *
18184 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18185 {
18186 unsigned int hash_number;
18187 struct abbrev_info *abbrev;
18188
18189 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18190 abbrev = m_abbrevs[hash_number];
18191
18192 while (abbrev)
18193 {
18194 if (abbrev->number == abbrev_number)
18195 return abbrev;
18196 abbrev = abbrev->next;
18197 }
18198 return NULL;
18199 }
18200
18201 /* Read in an abbrev table. */
18202
18203 static abbrev_table_up
18204 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18205 struct dwarf2_section_info *section,
18206 sect_offset sect_off)
18207 {
18208 struct objfile *objfile = dwarf2_per_objfile->objfile;
18209 bfd *abfd = get_section_bfd_owner (section);
18210 const gdb_byte *abbrev_ptr;
18211 struct abbrev_info *cur_abbrev;
18212 unsigned int abbrev_number, bytes_read, abbrev_name;
18213 unsigned int abbrev_form;
18214 struct attr_abbrev *cur_attrs;
18215 unsigned int allocated_attrs;
18216
18217 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18218
18219 dwarf2_read_section (objfile, section);
18220 abbrev_ptr = section->buffer + to_underlying (sect_off);
18221 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18222 abbrev_ptr += bytes_read;
18223
18224 allocated_attrs = ATTR_ALLOC_CHUNK;
18225 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18226
18227 /* Loop until we reach an abbrev number of 0. */
18228 while (abbrev_number)
18229 {
18230 cur_abbrev = abbrev_table->alloc_abbrev ();
18231
18232 /* read in abbrev header */
18233 cur_abbrev->number = abbrev_number;
18234 cur_abbrev->tag
18235 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18236 abbrev_ptr += bytes_read;
18237 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18238 abbrev_ptr += 1;
18239
18240 /* now read in declarations */
18241 for (;;)
18242 {
18243 LONGEST implicit_const;
18244
18245 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18246 abbrev_ptr += bytes_read;
18247 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18248 abbrev_ptr += bytes_read;
18249 if (abbrev_form == DW_FORM_implicit_const)
18250 {
18251 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18252 &bytes_read);
18253 abbrev_ptr += bytes_read;
18254 }
18255 else
18256 {
18257 /* Initialize it due to a false compiler warning. */
18258 implicit_const = -1;
18259 }
18260
18261 if (abbrev_name == 0)
18262 break;
18263
18264 if (cur_abbrev->num_attrs == allocated_attrs)
18265 {
18266 allocated_attrs += ATTR_ALLOC_CHUNK;
18267 cur_attrs
18268 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18269 }
18270
18271 cur_attrs[cur_abbrev->num_attrs].name
18272 = (enum dwarf_attribute) abbrev_name;
18273 cur_attrs[cur_abbrev->num_attrs].form
18274 = (enum dwarf_form) abbrev_form;
18275 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18276 ++cur_abbrev->num_attrs;
18277 }
18278
18279 cur_abbrev->attrs =
18280 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18281 cur_abbrev->num_attrs);
18282 memcpy (cur_abbrev->attrs, cur_attrs,
18283 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18284
18285 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18286
18287 /* Get next abbreviation.
18288 Under Irix6 the abbreviations for a compilation unit are not
18289 always properly terminated with an abbrev number of 0.
18290 Exit loop if we encounter an abbreviation which we have
18291 already read (which means we are about to read the abbreviations
18292 for the next compile unit) or if the end of the abbreviation
18293 table is reached. */
18294 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18295 break;
18296 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18297 abbrev_ptr += bytes_read;
18298 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18299 break;
18300 }
18301
18302 xfree (cur_attrs);
18303 return abbrev_table;
18304 }
18305
18306 /* Returns nonzero if TAG represents a type that we might generate a partial
18307 symbol for. */
18308
18309 static int
18310 is_type_tag_for_partial (int tag)
18311 {
18312 switch (tag)
18313 {
18314 #if 0
18315 /* Some types that would be reasonable to generate partial symbols for,
18316 that we don't at present. */
18317 case DW_TAG_array_type:
18318 case DW_TAG_file_type:
18319 case DW_TAG_ptr_to_member_type:
18320 case DW_TAG_set_type:
18321 case DW_TAG_string_type:
18322 case DW_TAG_subroutine_type:
18323 #endif
18324 case DW_TAG_base_type:
18325 case DW_TAG_class_type:
18326 case DW_TAG_interface_type:
18327 case DW_TAG_enumeration_type:
18328 case DW_TAG_structure_type:
18329 case DW_TAG_subrange_type:
18330 case DW_TAG_typedef:
18331 case DW_TAG_union_type:
18332 return 1;
18333 default:
18334 return 0;
18335 }
18336 }
18337
18338 /* Load all DIEs that are interesting for partial symbols into memory. */
18339
18340 static struct partial_die_info *
18341 load_partial_dies (const struct die_reader_specs *reader,
18342 const gdb_byte *info_ptr, int building_psymtab)
18343 {
18344 struct dwarf2_cu *cu = reader->cu;
18345 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18346 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18347 unsigned int bytes_read;
18348 unsigned int load_all = 0;
18349 int nesting_level = 1;
18350
18351 parent_die = NULL;
18352 last_die = NULL;
18353
18354 gdb_assert (cu->per_cu != NULL);
18355 if (cu->per_cu->load_all_dies)
18356 load_all = 1;
18357
18358 cu->partial_dies
18359 = htab_create_alloc_ex (cu->header.length / 12,
18360 partial_die_hash,
18361 partial_die_eq,
18362 NULL,
18363 &cu->comp_unit_obstack,
18364 hashtab_obstack_allocate,
18365 dummy_obstack_deallocate);
18366
18367 while (1)
18368 {
18369 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18370
18371 /* A NULL abbrev means the end of a series of children. */
18372 if (abbrev == NULL)
18373 {
18374 if (--nesting_level == 0)
18375 return first_die;
18376
18377 info_ptr += bytes_read;
18378 last_die = parent_die;
18379 parent_die = parent_die->die_parent;
18380 continue;
18381 }
18382
18383 /* Check for template arguments. We never save these; if
18384 they're seen, we just mark the parent, and go on our way. */
18385 if (parent_die != NULL
18386 && cu->language == language_cplus
18387 && (abbrev->tag == DW_TAG_template_type_param
18388 || abbrev->tag == DW_TAG_template_value_param))
18389 {
18390 parent_die->has_template_arguments = 1;
18391
18392 if (!load_all)
18393 {
18394 /* We don't need a partial DIE for the template argument. */
18395 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18396 continue;
18397 }
18398 }
18399
18400 /* We only recurse into c++ subprograms looking for template arguments.
18401 Skip their other children. */
18402 if (!load_all
18403 && cu->language == language_cplus
18404 && parent_die != NULL
18405 && parent_die->tag == DW_TAG_subprogram)
18406 {
18407 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18408 continue;
18409 }
18410
18411 /* Check whether this DIE is interesting enough to save. Normally
18412 we would not be interested in members here, but there may be
18413 later variables referencing them via DW_AT_specification (for
18414 static members). */
18415 if (!load_all
18416 && !is_type_tag_for_partial (abbrev->tag)
18417 && abbrev->tag != DW_TAG_constant
18418 && abbrev->tag != DW_TAG_enumerator
18419 && abbrev->tag != DW_TAG_subprogram
18420 && abbrev->tag != DW_TAG_inlined_subroutine
18421 && abbrev->tag != DW_TAG_lexical_block
18422 && abbrev->tag != DW_TAG_variable
18423 && abbrev->tag != DW_TAG_namespace
18424 && abbrev->tag != DW_TAG_module
18425 && abbrev->tag != DW_TAG_member
18426 && abbrev->tag != DW_TAG_imported_unit
18427 && abbrev->tag != DW_TAG_imported_declaration)
18428 {
18429 /* Otherwise we skip to the next sibling, if any. */
18430 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18431 continue;
18432 }
18433
18434 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18435 abbrev);
18436
18437 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18438
18439 /* This two-pass algorithm for processing partial symbols has a
18440 high cost in cache pressure. Thus, handle some simple cases
18441 here which cover the majority of C partial symbols. DIEs
18442 which neither have specification tags in them, nor could have
18443 specification tags elsewhere pointing at them, can simply be
18444 processed and discarded.
18445
18446 This segment is also optional; scan_partial_symbols and
18447 add_partial_symbol will handle these DIEs if we chain
18448 them in normally. When compilers which do not emit large
18449 quantities of duplicate debug information are more common,
18450 this code can probably be removed. */
18451
18452 /* Any complete simple types at the top level (pretty much all
18453 of them, for a language without namespaces), can be processed
18454 directly. */
18455 if (parent_die == NULL
18456 && pdi.has_specification == 0
18457 && pdi.is_declaration == 0
18458 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18459 || pdi.tag == DW_TAG_base_type
18460 || pdi.tag == DW_TAG_subrange_type))
18461 {
18462 if (building_psymtab && pdi.name != NULL)
18463 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18464 VAR_DOMAIN, LOC_TYPEDEF, -1,
18465 psymbol_placement::STATIC,
18466 0, cu->language, objfile);
18467 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18468 continue;
18469 }
18470
18471 /* The exception for DW_TAG_typedef with has_children above is
18472 a workaround of GCC PR debug/47510. In the case of this complaint
18473 type_name_or_error will error on such types later.
18474
18475 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18476 it could not find the child DIEs referenced later, this is checked
18477 above. In correct DWARF DW_TAG_typedef should have no children. */
18478
18479 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18480 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18481 "- DIE at %s [in module %s]"),
18482 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18483
18484 /* If we're at the second level, and we're an enumerator, and
18485 our parent has no specification (meaning possibly lives in a
18486 namespace elsewhere), then we can add the partial symbol now
18487 instead of queueing it. */
18488 if (pdi.tag == DW_TAG_enumerator
18489 && parent_die != NULL
18490 && parent_die->die_parent == NULL
18491 && parent_die->tag == DW_TAG_enumeration_type
18492 && parent_die->has_specification == 0)
18493 {
18494 if (pdi.name == NULL)
18495 complaint (_("malformed enumerator DIE ignored"));
18496 else if (building_psymtab)
18497 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18498 VAR_DOMAIN, LOC_CONST, -1,
18499 cu->language == language_cplus
18500 ? psymbol_placement::GLOBAL
18501 : psymbol_placement::STATIC,
18502 0, cu->language, objfile);
18503
18504 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18505 continue;
18506 }
18507
18508 struct partial_die_info *part_die
18509 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18510
18511 /* We'll save this DIE so link it in. */
18512 part_die->die_parent = parent_die;
18513 part_die->die_sibling = NULL;
18514 part_die->die_child = NULL;
18515
18516 if (last_die && last_die == parent_die)
18517 last_die->die_child = part_die;
18518 else if (last_die)
18519 last_die->die_sibling = part_die;
18520
18521 last_die = part_die;
18522
18523 if (first_die == NULL)
18524 first_die = part_die;
18525
18526 /* Maybe add the DIE to the hash table. Not all DIEs that we
18527 find interesting need to be in the hash table, because we
18528 also have the parent/sibling/child chains; only those that we
18529 might refer to by offset later during partial symbol reading.
18530
18531 For now this means things that might have be the target of a
18532 DW_AT_specification, DW_AT_abstract_origin, or
18533 DW_AT_extension. DW_AT_extension will refer only to
18534 namespaces; DW_AT_abstract_origin refers to functions (and
18535 many things under the function DIE, but we do not recurse
18536 into function DIEs during partial symbol reading) and
18537 possibly variables as well; DW_AT_specification refers to
18538 declarations. Declarations ought to have the DW_AT_declaration
18539 flag. It happens that GCC forgets to put it in sometimes, but
18540 only for functions, not for types.
18541
18542 Adding more things than necessary to the hash table is harmless
18543 except for the performance cost. Adding too few will result in
18544 wasted time in find_partial_die, when we reread the compilation
18545 unit with load_all_dies set. */
18546
18547 if (load_all
18548 || abbrev->tag == DW_TAG_constant
18549 || abbrev->tag == DW_TAG_subprogram
18550 || abbrev->tag == DW_TAG_variable
18551 || abbrev->tag == DW_TAG_namespace
18552 || part_die->is_declaration)
18553 {
18554 void **slot;
18555
18556 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18557 to_underlying (part_die->sect_off),
18558 INSERT);
18559 *slot = part_die;
18560 }
18561
18562 /* For some DIEs we want to follow their children (if any). For C
18563 we have no reason to follow the children of structures; for other
18564 languages we have to, so that we can get at method physnames
18565 to infer fully qualified class names, for DW_AT_specification,
18566 and for C++ template arguments. For C++, we also look one level
18567 inside functions to find template arguments (if the name of the
18568 function does not already contain the template arguments).
18569
18570 For Ada, we need to scan the children of subprograms and lexical
18571 blocks as well because Ada allows the definition of nested
18572 entities that could be interesting for the debugger, such as
18573 nested subprograms for instance. */
18574 if (last_die->has_children
18575 && (load_all
18576 || last_die->tag == DW_TAG_namespace
18577 || last_die->tag == DW_TAG_module
18578 || last_die->tag == DW_TAG_enumeration_type
18579 || (cu->language == language_cplus
18580 && last_die->tag == DW_TAG_subprogram
18581 && (last_die->name == NULL
18582 || strchr (last_die->name, '<') == NULL))
18583 || (cu->language != language_c
18584 && (last_die->tag == DW_TAG_class_type
18585 || last_die->tag == DW_TAG_interface_type
18586 || last_die->tag == DW_TAG_structure_type
18587 || last_die->tag == DW_TAG_union_type))
18588 || (cu->language == language_ada
18589 && (last_die->tag == DW_TAG_subprogram
18590 || last_die->tag == DW_TAG_lexical_block))))
18591 {
18592 nesting_level++;
18593 parent_die = last_die;
18594 continue;
18595 }
18596
18597 /* Otherwise we skip to the next sibling, if any. */
18598 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18599
18600 /* Back to the top, do it again. */
18601 }
18602 }
18603
18604 partial_die_info::partial_die_info (sect_offset sect_off_,
18605 struct abbrev_info *abbrev)
18606 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18607 {
18608 }
18609
18610 /* Read a minimal amount of information into the minimal die structure.
18611 INFO_PTR should point just after the initial uleb128 of a DIE. */
18612
18613 const gdb_byte *
18614 partial_die_info::read (const struct die_reader_specs *reader,
18615 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18616 {
18617 struct dwarf2_cu *cu = reader->cu;
18618 struct dwarf2_per_objfile *dwarf2_per_objfile
18619 = cu->per_cu->dwarf2_per_objfile;
18620 unsigned int i;
18621 int has_low_pc_attr = 0;
18622 int has_high_pc_attr = 0;
18623 int high_pc_relative = 0;
18624
18625 for (i = 0; i < abbrev.num_attrs; ++i)
18626 {
18627 struct attribute attr;
18628
18629 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18630
18631 /* Store the data if it is of an attribute we want to keep in a
18632 partial symbol table. */
18633 switch (attr.name)
18634 {
18635 case DW_AT_name:
18636 switch (tag)
18637 {
18638 case DW_TAG_compile_unit:
18639 case DW_TAG_partial_unit:
18640 case DW_TAG_type_unit:
18641 /* Compilation units have a DW_AT_name that is a filename, not
18642 a source language identifier. */
18643 case DW_TAG_enumeration_type:
18644 case DW_TAG_enumerator:
18645 /* These tags always have simple identifiers already; no need
18646 to canonicalize them. */
18647 name = DW_STRING (&attr);
18648 break;
18649 default:
18650 {
18651 struct objfile *objfile = dwarf2_per_objfile->objfile;
18652
18653 name
18654 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18655 &objfile->per_bfd->storage_obstack);
18656 }
18657 break;
18658 }
18659 break;
18660 case DW_AT_linkage_name:
18661 case DW_AT_MIPS_linkage_name:
18662 /* Note that both forms of linkage name might appear. We
18663 assume they will be the same, and we only store the last
18664 one we see. */
18665 linkage_name = DW_STRING (&attr);
18666 break;
18667 case DW_AT_low_pc:
18668 has_low_pc_attr = 1;
18669 lowpc = attr_value_as_address (&attr);
18670 break;
18671 case DW_AT_high_pc:
18672 has_high_pc_attr = 1;
18673 highpc = attr_value_as_address (&attr);
18674 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18675 high_pc_relative = 1;
18676 break;
18677 case DW_AT_location:
18678 /* Support the .debug_loc offsets. */
18679 if (attr_form_is_block (&attr))
18680 {
18681 d.locdesc = DW_BLOCK (&attr);
18682 }
18683 else if (attr_form_is_section_offset (&attr))
18684 {
18685 dwarf2_complex_location_expr_complaint ();
18686 }
18687 else
18688 {
18689 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18690 "partial symbol information");
18691 }
18692 break;
18693 case DW_AT_external:
18694 is_external = DW_UNSND (&attr);
18695 break;
18696 case DW_AT_declaration:
18697 is_declaration = DW_UNSND (&attr);
18698 break;
18699 case DW_AT_type:
18700 has_type = 1;
18701 break;
18702 case DW_AT_abstract_origin:
18703 case DW_AT_specification:
18704 case DW_AT_extension:
18705 has_specification = 1;
18706 spec_offset = dwarf2_get_ref_die_offset (&attr);
18707 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18708 || cu->per_cu->is_dwz);
18709 break;
18710 case DW_AT_sibling:
18711 /* Ignore absolute siblings, they might point outside of
18712 the current compile unit. */
18713 if (attr.form == DW_FORM_ref_addr)
18714 complaint (_("ignoring absolute DW_AT_sibling"));
18715 else
18716 {
18717 const gdb_byte *buffer = reader->buffer;
18718 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18719 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18720
18721 if (sibling_ptr < info_ptr)
18722 complaint (_("DW_AT_sibling points backwards"));
18723 else if (sibling_ptr > reader->buffer_end)
18724 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18725 else
18726 sibling = sibling_ptr;
18727 }
18728 break;
18729 case DW_AT_byte_size:
18730 has_byte_size = 1;
18731 break;
18732 case DW_AT_const_value:
18733 has_const_value = 1;
18734 break;
18735 case DW_AT_calling_convention:
18736 /* DWARF doesn't provide a way to identify a program's source-level
18737 entry point. DW_AT_calling_convention attributes are only meant
18738 to describe functions' calling conventions.
18739
18740 However, because it's a necessary piece of information in
18741 Fortran, and before DWARF 4 DW_CC_program was the only
18742 piece of debugging information whose definition refers to
18743 a 'main program' at all, several compilers marked Fortran
18744 main programs with DW_CC_program --- even when those
18745 functions use the standard calling conventions.
18746
18747 Although DWARF now specifies a way to provide this
18748 information, we support this practice for backward
18749 compatibility. */
18750 if (DW_UNSND (&attr) == DW_CC_program
18751 && cu->language == language_fortran)
18752 main_subprogram = 1;
18753 break;
18754 case DW_AT_inline:
18755 if (DW_UNSND (&attr) == DW_INL_inlined
18756 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18757 may_be_inlined = 1;
18758 break;
18759
18760 case DW_AT_import:
18761 if (tag == DW_TAG_imported_unit)
18762 {
18763 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18764 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18765 || cu->per_cu->is_dwz);
18766 }
18767 break;
18768
18769 case DW_AT_main_subprogram:
18770 main_subprogram = DW_UNSND (&attr);
18771 break;
18772
18773 case DW_AT_ranges:
18774 {
18775 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18776 but that requires a full DIE, so instead we just
18777 reimplement it. */
18778 int need_ranges_base = tag != DW_TAG_compile_unit;
18779 unsigned int ranges_offset = (DW_UNSND (&attr)
18780 + (need_ranges_base
18781 ? cu->ranges_base
18782 : 0));
18783
18784 /* Value of the DW_AT_ranges attribute is the offset in the
18785 .debug_ranges section. */
18786 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18787 nullptr))
18788 has_pc_info = 1;
18789 }
18790 break;
18791
18792 default:
18793 break;
18794 }
18795 }
18796
18797 /* For Ada, if both the name and the linkage name appear, we prefer
18798 the latter. This lets "catch exception" work better, regardless
18799 of the order in which the name and linkage name were emitted.
18800 Really, though, this is just a workaround for the fact that gdb
18801 doesn't store both the name and the linkage name. */
18802 if (cu->language == language_ada && linkage_name != nullptr)
18803 name = linkage_name;
18804
18805 if (high_pc_relative)
18806 highpc += lowpc;
18807
18808 if (has_low_pc_attr && has_high_pc_attr)
18809 {
18810 /* When using the GNU linker, .gnu.linkonce. sections are used to
18811 eliminate duplicate copies of functions and vtables and such.
18812 The linker will arbitrarily choose one and discard the others.
18813 The AT_*_pc values for such functions refer to local labels in
18814 these sections. If the section from that file was discarded, the
18815 labels are not in the output, so the relocs get a value of 0.
18816 If this is a discarded function, mark the pc bounds as invalid,
18817 so that GDB will ignore it. */
18818 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18819 {
18820 struct objfile *objfile = dwarf2_per_objfile->objfile;
18821 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18822
18823 complaint (_("DW_AT_low_pc %s is zero "
18824 "for DIE at %s [in module %s]"),
18825 paddress (gdbarch, lowpc),
18826 sect_offset_str (sect_off),
18827 objfile_name (objfile));
18828 }
18829 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18830 else if (lowpc >= highpc)
18831 {
18832 struct objfile *objfile = dwarf2_per_objfile->objfile;
18833 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18834
18835 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18836 "for DIE at %s [in module %s]"),
18837 paddress (gdbarch, lowpc),
18838 paddress (gdbarch, highpc),
18839 sect_offset_str (sect_off),
18840 objfile_name (objfile));
18841 }
18842 else
18843 has_pc_info = 1;
18844 }
18845
18846 return info_ptr;
18847 }
18848
18849 /* Find a cached partial DIE at OFFSET in CU. */
18850
18851 struct partial_die_info *
18852 dwarf2_cu::find_partial_die (sect_offset sect_off)
18853 {
18854 struct partial_die_info *lookup_die = NULL;
18855 struct partial_die_info part_die (sect_off);
18856
18857 lookup_die = ((struct partial_die_info *)
18858 htab_find_with_hash (partial_dies, &part_die,
18859 to_underlying (sect_off)));
18860
18861 return lookup_die;
18862 }
18863
18864 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18865 except in the case of .debug_types DIEs which do not reference
18866 outside their CU (they do however referencing other types via
18867 DW_FORM_ref_sig8). */
18868
18869 static const struct cu_partial_die_info
18870 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18871 {
18872 struct dwarf2_per_objfile *dwarf2_per_objfile
18873 = cu->per_cu->dwarf2_per_objfile;
18874 struct objfile *objfile = dwarf2_per_objfile->objfile;
18875 struct dwarf2_per_cu_data *per_cu = NULL;
18876 struct partial_die_info *pd = NULL;
18877
18878 if (offset_in_dwz == cu->per_cu->is_dwz
18879 && offset_in_cu_p (&cu->header, sect_off))
18880 {
18881 pd = cu->find_partial_die (sect_off);
18882 if (pd != NULL)
18883 return { cu, pd };
18884 /* We missed recording what we needed.
18885 Load all dies and try again. */
18886 per_cu = cu->per_cu;
18887 }
18888 else
18889 {
18890 /* TUs don't reference other CUs/TUs (except via type signatures). */
18891 if (cu->per_cu->is_debug_types)
18892 {
18893 error (_("Dwarf Error: Type Unit at offset %s contains"
18894 " external reference to offset %s [in module %s].\n"),
18895 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18896 bfd_get_filename (objfile->obfd));
18897 }
18898 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18899 dwarf2_per_objfile);
18900
18901 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18902 load_partial_comp_unit (per_cu);
18903
18904 per_cu->cu->last_used = 0;
18905 pd = per_cu->cu->find_partial_die (sect_off);
18906 }
18907
18908 /* If we didn't find it, and not all dies have been loaded,
18909 load them all and try again. */
18910
18911 if (pd == NULL && per_cu->load_all_dies == 0)
18912 {
18913 per_cu->load_all_dies = 1;
18914
18915 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18916 THIS_CU->cu may already be in use. So we can't just free it and
18917 replace its DIEs with the ones we read in. Instead, we leave those
18918 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18919 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18920 set. */
18921 load_partial_comp_unit (per_cu);
18922
18923 pd = per_cu->cu->find_partial_die (sect_off);
18924 }
18925
18926 if (pd == NULL)
18927 internal_error (__FILE__, __LINE__,
18928 _("could not find partial DIE %s "
18929 "in cache [from module %s]\n"),
18930 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18931 return { per_cu->cu, pd };
18932 }
18933
18934 /* See if we can figure out if the class lives in a namespace. We do
18935 this by looking for a member function; its demangled name will
18936 contain namespace info, if there is any. */
18937
18938 static void
18939 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18940 struct dwarf2_cu *cu)
18941 {
18942 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18943 what template types look like, because the demangler
18944 frequently doesn't give the same name as the debug info. We
18945 could fix this by only using the demangled name to get the
18946 prefix (but see comment in read_structure_type). */
18947
18948 struct partial_die_info *real_pdi;
18949 struct partial_die_info *child_pdi;
18950
18951 /* If this DIE (this DIE's specification, if any) has a parent, then
18952 we should not do this. We'll prepend the parent's fully qualified
18953 name when we create the partial symbol. */
18954
18955 real_pdi = struct_pdi;
18956 while (real_pdi->has_specification)
18957 {
18958 auto res = find_partial_die (real_pdi->spec_offset,
18959 real_pdi->spec_is_dwz, cu);
18960 real_pdi = res.pdi;
18961 cu = res.cu;
18962 }
18963
18964 if (real_pdi->die_parent != NULL)
18965 return;
18966
18967 for (child_pdi = struct_pdi->die_child;
18968 child_pdi != NULL;
18969 child_pdi = child_pdi->die_sibling)
18970 {
18971 if (child_pdi->tag == DW_TAG_subprogram
18972 && child_pdi->linkage_name != NULL)
18973 {
18974 char *actual_class_name
18975 = language_class_name_from_physname (cu->language_defn,
18976 child_pdi->linkage_name);
18977 if (actual_class_name != NULL)
18978 {
18979 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18980 struct_pdi->name
18981 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18982 actual_class_name);
18983 xfree (actual_class_name);
18984 }
18985 break;
18986 }
18987 }
18988 }
18989
18990 void
18991 partial_die_info::fixup (struct dwarf2_cu *cu)
18992 {
18993 /* Once we've fixed up a die, there's no point in doing so again.
18994 This also avoids a memory leak if we were to call
18995 guess_partial_die_structure_name multiple times. */
18996 if (fixup_called)
18997 return;
18998
18999 /* If we found a reference attribute and the DIE has no name, try
19000 to find a name in the referred to DIE. */
19001
19002 if (name == NULL && has_specification)
19003 {
19004 struct partial_die_info *spec_die;
19005
19006 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19007 spec_die = res.pdi;
19008 cu = res.cu;
19009
19010 spec_die->fixup (cu);
19011
19012 if (spec_die->name)
19013 {
19014 name = spec_die->name;
19015
19016 /* Copy DW_AT_external attribute if it is set. */
19017 if (spec_die->is_external)
19018 is_external = spec_die->is_external;
19019 }
19020 }
19021
19022 /* Set default names for some unnamed DIEs. */
19023
19024 if (name == NULL && tag == DW_TAG_namespace)
19025 name = CP_ANONYMOUS_NAMESPACE_STR;
19026
19027 /* If there is no parent die to provide a namespace, and there are
19028 children, see if we can determine the namespace from their linkage
19029 name. */
19030 if (cu->language == language_cplus
19031 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19032 && die_parent == NULL
19033 && has_children
19034 && (tag == DW_TAG_class_type
19035 || tag == DW_TAG_structure_type
19036 || tag == DW_TAG_union_type))
19037 guess_partial_die_structure_name (this, cu);
19038
19039 /* GCC might emit a nameless struct or union that has a linkage
19040 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19041 if (name == NULL
19042 && (tag == DW_TAG_class_type
19043 || tag == DW_TAG_interface_type
19044 || tag == DW_TAG_structure_type
19045 || tag == DW_TAG_union_type)
19046 && linkage_name != NULL)
19047 {
19048 char *demangled;
19049
19050 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19051 if (demangled)
19052 {
19053 const char *base;
19054
19055 /* Strip any leading namespaces/classes, keep only the base name.
19056 DW_AT_name for named DIEs does not contain the prefixes. */
19057 base = strrchr (demangled, ':');
19058 if (base && base > demangled && base[-1] == ':')
19059 base++;
19060 else
19061 base = demangled;
19062
19063 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19064 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19065 xfree (demangled);
19066 }
19067 }
19068
19069 fixup_called = 1;
19070 }
19071
19072 /* Read an attribute value described by an attribute form. */
19073
19074 static const gdb_byte *
19075 read_attribute_value (const struct die_reader_specs *reader,
19076 struct attribute *attr, unsigned form,
19077 LONGEST implicit_const, const gdb_byte *info_ptr)
19078 {
19079 struct dwarf2_cu *cu = reader->cu;
19080 struct dwarf2_per_objfile *dwarf2_per_objfile
19081 = cu->per_cu->dwarf2_per_objfile;
19082 struct objfile *objfile = dwarf2_per_objfile->objfile;
19083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19084 bfd *abfd = reader->abfd;
19085 struct comp_unit_head *cu_header = &cu->header;
19086 unsigned int bytes_read;
19087 struct dwarf_block *blk;
19088
19089 attr->form = (enum dwarf_form) form;
19090 switch (form)
19091 {
19092 case DW_FORM_ref_addr:
19093 if (cu->header.version == 2)
19094 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19095 else
19096 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19097 &cu->header, &bytes_read);
19098 info_ptr += bytes_read;
19099 break;
19100 case DW_FORM_GNU_ref_alt:
19101 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19102 info_ptr += bytes_read;
19103 break;
19104 case DW_FORM_addr:
19105 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19106 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19107 info_ptr += bytes_read;
19108 break;
19109 case DW_FORM_block2:
19110 blk = dwarf_alloc_block (cu);
19111 blk->size = read_2_bytes (abfd, info_ptr);
19112 info_ptr += 2;
19113 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19114 info_ptr += blk->size;
19115 DW_BLOCK (attr) = blk;
19116 break;
19117 case DW_FORM_block4:
19118 blk = dwarf_alloc_block (cu);
19119 blk->size = read_4_bytes (abfd, info_ptr);
19120 info_ptr += 4;
19121 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19122 info_ptr += blk->size;
19123 DW_BLOCK (attr) = blk;
19124 break;
19125 case DW_FORM_data2:
19126 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19127 info_ptr += 2;
19128 break;
19129 case DW_FORM_data4:
19130 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19131 info_ptr += 4;
19132 break;
19133 case DW_FORM_data8:
19134 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19135 info_ptr += 8;
19136 break;
19137 case DW_FORM_data16:
19138 blk = dwarf_alloc_block (cu);
19139 blk->size = 16;
19140 blk->data = read_n_bytes (abfd, info_ptr, 16);
19141 info_ptr += 16;
19142 DW_BLOCK (attr) = blk;
19143 break;
19144 case DW_FORM_sec_offset:
19145 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19146 info_ptr += bytes_read;
19147 break;
19148 case DW_FORM_string:
19149 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19150 DW_STRING_IS_CANONICAL (attr) = 0;
19151 info_ptr += bytes_read;
19152 break;
19153 case DW_FORM_strp:
19154 if (!cu->per_cu->is_dwz)
19155 {
19156 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19157 abfd, info_ptr, cu_header,
19158 &bytes_read);
19159 DW_STRING_IS_CANONICAL (attr) = 0;
19160 info_ptr += bytes_read;
19161 break;
19162 }
19163 /* FALLTHROUGH */
19164 case DW_FORM_line_strp:
19165 if (!cu->per_cu->is_dwz)
19166 {
19167 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19168 abfd, info_ptr,
19169 cu_header, &bytes_read);
19170 DW_STRING_IS_CANONICAL (attr) = 0;
19171 info_ptr += bytes_read;
19172 break;
19173 }
19174 /* FALLTHROUGH */
19175 case DW_FORM_GNU_strp_alt:
19176 {
19177 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19178 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19179 &bytes_read);
19180
19181 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19182 dwz, str_offset);
19183 DW_STRING_IS_CANONICAL (attr) = 0;
19184 info_ptr += bytes_read;
19185 }
19186 break;
19187 case DW_FORM_exprloc:
19188 case DW_FORM_block:
19189 blk = dwarf_alloc_block (cu);
19190 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19191 info_ptr += bytes_read;
19192 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19193 info_ptr += blk->size;
19194 DW_BLOCK (attr) = blk;
19195 break;
19196 case DW_FORM_block1:
19197 blk = dwarf_alloc_block (cu);
19198 blk->size = read_1_byte (abfd, info_ptr);
19199 info_ptr += 1;
19200 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19201 info_ptr += blk->size;
19202 DW_BLOCK (attr) = blk;
19203 break;
19204 case DW_FORM_data1:
19205 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19206 info_ptr += 1;
19207 break;
19208 case DW_FORM_flag:
19209 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19210 info_ptr += 1;
19211 break;
19212 case DW_FORM_flag_present:
19213 DW_UNSND (attr) = 1;
19214 break;
19215 case DW_FORM_sdata:
19216 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19217 info_ptr += bytes_read;
19218 break;
19219 case DW_FORM_udata:
19220 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19221 info_ptr += bytes_read;
19222 break;
19223 case DW_FORM_ref1:
19224 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19225 + read_1_byte (abfd, info_ptr));
19226 info_ptr += 1;
19227 break;
19228 case DW_FORM_ref2:
19229 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19230 + read_2_bytes (abfd, info_ptr));
19231 info_ptr += 2;
19232 break;
19233 case DW_FORM_ref4:
19234 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19235 + read_4_bytes (abfd, info_ptr));
19236 info_ptr += 4;
19237 break;
19238 case DW_FORM_ref8:
19239 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19240 + read_8_bytes (abfd, info_ptr));
19241 info_ptr += 8;
19242 break;
19243 case DW_FORM_ref_sig8:
19244 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19245 info_ptr += 8;
19246 break;
19247 case DW_FORM_ref_udata:
19248 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19249 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19250 info_ptr += bytes_read;
19251 break;
19252 case DW_FORM_indirect:
19253 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19254 info_ptr += bytes_read;
19255 if (form == DW_FORM_implicit_const)
19256 {
19257 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19258 info_ptr += bytes_read;
19259 }
19260 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19261 info_ptr);
19262 break;
19263 case DW_FORM_implicit_const:
19264 DW_SND (attr) = implicit_const;
19265 break;
19266 case DW_FORM_addrx:
19267 case DW_FORM_GNU_addr_index:
19268 if (reader->dwo_file == NULL)
19269 {
19270 /* For now flag a hard error.
19271 Later we can turn this into a complaint. */
19272 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19273 dwarf_form_name (form),
19274 bfd_get_filename (abfd));
19275 }
19276 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19277 info_ptr += bytes_read;
19278 break;
19279 case DW_FORM_strx:
19280 case DW_FORM_strx1:
19281 case DW_FORM_strx2:
19282 case DW_FORM_strx3:
19283 case DW_FORM_strx4:
19284 case DW_FORM_GNU_str_index:
19285 if (reader->dwo_file == NULL)
19286 {
19287 /* For now flag a hard error.
19288 Later we can turn this into a complaint if warranted. */
19289 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19290 dwarf_form_name (form),
19291 bfd_get_filename (abfd));
19292 }
19293 {
19294 ULONGEST str_index;
19295 if (form == DW_FORM_strx1)
19296 {
19297 str_index = read_1_byte (abfd, info_ptr);
19298 info_ptr += 1;
19299 }
19300 else if (form == DW_FORM_strx2)
19301 {
19302 str_index = read_2_bytes (abfd, info_ptr);
19303 info_ptr += 2;
19304 }
19305 else if (form == DW_FORM_strx3)
19306 {
19307 str_index = read_3_bytes (abfd, info_ptr);
19308 info_ptr += 3;
19309 }
19310 else if (form == DW_FORM_strx4)
19311 {
19312 str_index = read_4_bytes (abfd, info_ptr);
19313 info_ptr += 4;
19314 }
19315 else
19316 {
19317 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19318 info_ptr += bytes_read;
19319 }
19320 DW_STRING (attr) = read_str_index (reader, str_index);
19321 DW_STRING_IS_CANONICAL (attr) = 0;
19322 }
19323 break;
19324 default:
19325 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19326 dwarf_form_name (form),
19327 bfd_get_filename (abfd));
19328 }
19329
19330 /* Super hack. */
19331 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19332 attr->form = DW_FORM_GNU_ref_alt;
19333
19334 /* We have seen instances where the compiler tried to emit a byte
19335 size attribute of -1 which ended up being encoded as an unsigned
19336 0xffffffff. Although 0xffffffff is technically a valid size value,
19337 an object of this size seems pretty unlikely so we can relatively
19338 safely treat these cases as if the size attribute was invalid and
19339 treat them as zero by default. */
19340 if (attr->name == DW_AT_byte_size
19341 && form == DW_FORM_data4
19342 && DW_UNSND (attr) >= 0xffffffff)
19343 {
19344 complaint
19345 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19346 hex_string (DW_UNSND (attr)));
19347 DW_UNSND (attr) = 0;
19348 }
19349
19350 return info_ptr;
19351 }
19352
19353 /* Read an attribute described by an abbreviated attribute. */
19354
19355 static const gdb_byte *
19356 read_attribute (const struct die_reader_specs *reader,
19357 struct attribute *attr, struct attr_abbrev *abbrev,
19358 const gdb_byte *info_ptr)
19359 {
19360 attr->name = abbrev->name;
19361 return read_attribute_value (reader, attr, abbrev->form,
19362 abbrev->implicit_const, info_ptr);
19363 }
19364
19365 /* Read dwarf information from a buffer. */
19366
19367 static unsigned int
19368 read_1_byte (bfd *abfd, const gdb_byte *buf)
19369 {
19370 return bfd_get_8 (abfd, buf);
19371 }
19372
19373 static int
19374 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19375 {
19376 return bfd_get_signed_8 (abfd, buf);
19377 }
19378
19379 static unsigned int
19380 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19381 {
19382 return bfd_get_16 (abfd, buf);
19383 }
19384
19385 static int
19386 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19387 {
19388 return bfd_get_signed_16 (abfd, buf);
19389 }
19390
19391 static unsigned int
19392 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19393 {
19394 unsigned int result = 0;
19395 for (int i = 0; i < 3; ++i)
19396 {
19397 unsigned char byte = bfd_get_8 (abfd, buf);
19398 buf++;
19399 result |= ((unsigned int) byte << (i * 8));
19400 }
19401 return result;
19402 }
19403
19404 static unsigned int
19405 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19406 {
19407 return bfd_get_32 (abfd, buf);
19408 }
19409
19410 static int
19411 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19412 {
19413 return bfd_get_signed_32 (abfd, buf);
19414 }
19415
19416 static ULONGEST
19417 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19418 {
19419 return bfd_get_64 (abfd, buf);
19420 }
19421
19422 static CORE_ADDR
19423 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19424 unsigned int *bytes_read)
19425 {
19426 struct comp_unit_head *cu_header = &cu->header;
19427 CORE_ADDR retval = 0;
19428
19429 if (cu_header->signed_addr_p)
19430 {
19431 switch (cu_header->addr_size)
19432 {
19433 case 2:
19434 retval = bfd_get_signed_16 (abfd, buf);
19435 break;
19436 case 4:
19437 retval = bfd_get_signed_32 (abfd, buf);
19438 break;
19439 case 8:
19440 retval = bfd_get_signed_64 (abfd, buf);
19441 break;
19442 default:
19443 internal_error (__FILE__, __LINE__,
19444 _("read_address: bad switch, signed [in module %s]"),
19445 bfd_get_filename (abfd));
19446 }
19447 }
19448 else
19449 {
19450 switch (cu_header->addr_size)
19451 {
19452 case 2:
19453 retval = bfd_get_16 (abfd, buf);
19454 break;
19455 case 4:
19456 retval = bfd_get_32 (abfd, buf);
19457 break;
19458 case 8:
19459 retval = bfd_get_64 (abfd, buf);
19460 break;
19461 default:
19462 internal_error (__FILE__, __LINE__,
19463 _("read_address: bad switch, "
19464 "unsigned [in module %s]"),
19465 bfd_get_filename (abfd));
19466 }
19467 }
19468
19469 *bytes_read = cu_header->addr_size;
19470 return retval;
19471 }
19472
19473 /* Read the initial length from a section. The (draft) DWARF 3
19474 specification allows the initial length to take up either 4 bytes
19475 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19476 bytes describe the length and all offsets will be 8 bytes in length
19477 instead of 4.
19478
19479 An older, non-standard 64-bit format is also handled by this
19480 function. The older format in question stores the initial length
19481 as an 8-byte quantity without an escape value. Lengths greater
19482 than 2^32 aren't very common which means that the initial 4 bytes
19483 is almost always zero. Since a length value of zero doesn't make
19484 sense for the 32-bit format, this initial zero can be considered to
19485 be an escape value which indicates the presence of the older 64-bit
19486 format. As written, the code can't detect (old format) lengths
19487 greater than 4GB. If it becomes necessary to handle lengths
19488 somewhat larger than 4GB, we could allow other small values (such
19489 as the non-sensical values of 1, 2, and 3) to also be used as
19490 escape values indicating the presence of the old format.
19491
19492 The value returned via bytes_read should be used to increment the
19493 relevant pointer after calling read_initial_length().
19494
19495 [ Note: read_initial_length() and read_offset() are based on the
19496 document entitled "DWARF Debugging Information Format", revision
19497 3, draft 8, dated November 19, 2001. This document was obtained
19498 from:
19499
19500 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19501
19502 This document is only a draft and is subject to change. (So beware.)
19503
19504 Details regarding the older, non-standard 64-bit format were
19505 determined empirically by examining 64-bit ELF files produced by
19506 the SGI toolchain on an IRIX 6.5 machine.
19507
19508 - Kevin, July 16, 2002
19509 ] */
19510
19511 static LONGEST
19512 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19513 {
19514 LONGEST length = bfd_get_32 (abfd, buf);
19515
19516 if (length == 0xffffffff)
19517 {
19518 length = bfd_get_64 (abfd, buf + 4);
19519 *bytes_read = 12;
19520 }
19521 else if (length == 0)
19522 {
19523 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19524 length = bfd_get_64 (abfd, buf);
19525 *bytes_read = 8;
19526 }
19527 else
19528 {
19529 *bytes_read = 4;
19530 }
19531
19532 return length;
19533 }
19534
19535 /* Cover function for read_initial_length.
19536 Returns the length of the object at BUF, and stores the size of the
19537 initial length in *BYTES_READ and stores the size that offsets will be in
19538 *OFFSET_SIZE.
19539 If the initial length size is not equivalent to that specified in
19540 CU_HEADER then issue a complaint.
19541 This is useful when reading non-comp-unit headers. */
19542
19543 static LONGEST
19544 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19545 const struct comp_unit_head *cu_header,
19546 unsigned int *bytes_read,
19547 unsigned int *offset_size)
19548 {
19549 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19550
19551 gdb_assert (cu_header->initial_length_size == 4
19552 || cu_header->initial_length_size == 8
19553 || cu_header->initial_length_size == 12);
19554
19555 if (cu_header->initial_length_size != *bytes_read)
19556 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19557
19558 *offset_size = (*bytes_read == 4) ? 4 : 8;
19559 return length;
19560 }
19561
19562 /* Read an offset from the data stream. The size of the offset is
19563 given by cu_header->offset_size. */
19564
19565 static LONGEST
19566 read_offset (bfd *abfd, const gdb_byte *buf,
19567 const struct comp_unit_head *cu_header,
19568 unsigned int *bytes_read)
19569 {
19570 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19571
19572 *bytes_read = cu_header->offset_size;
19573 return offset;
19574 }
19575
19576 /* Read an offset from the data stream. */
19577
19578 static LONGEST
19579 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19580 {
19581 LONGEST retval = 0;
19582
19583 switch (offset_size)
19584 {
19585 case 4:
19586 retval = bfd_get_32 (abfd, buf);
19587 break;
19588 case 8:
19589 retval = bfd_get_64 (abfd, buf);
19590 break;
19591 default:
19592 internal_error (__FILE__, __LINE__,
19593 _("read_offset_1: bad switch [in module %s]"),
19594 bfd_get_filename (abfd));
19595 }
19596
19597 return retval;
19598 }
19599
19600 static const gdb_byte *
19601 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19602 {
19603 /* If the size of a host char is 8 bits, we can return a pointer
19604 to the buffer, otherwise we have to copy the data to a buffer
19605 allocated on the temporary obstack. */
19606 gdb_assert (HOST_CHAR_BIT == 8);
19607 return buf;
19608 }
19609
19610 static const char *
19611 read_direct_string (bfd *abfd, const gdb_byte *buf,
19612 unsigned int *bytes_read_ptr)
19613 {
19614 /* If the size of a host char is 8 bits, we can return a pointer
19615 to the string, otherwise we have to copy the string to a buffer
19616 allocated on the temporary obstack. */
19617 gdb_assert (HOST_CHAR_BIT == 8);
19618 if (*buf == '\0')
19619 {
19620 *bytes_read_ptr = 1;
19621 return NULL;
19622 }
19623 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19624 return (const char *) buf;
19625 }
19626
19627 /* Return pointer to string at section SECT offset STR_OFFSET with error
19628 reporting strings FORM_NAME and SECT_NAME. */
19629
19630 static const char *
19631 read_indirect_string_at_offset_from (struct objfile *objfile,
19632 bfd *abfd, LONGEST str_offset,
19633 struct dwarf2_section_info *sect,
19634 const char *form_name,
19635 const char *sect_name)
19636 {
19637 dwarf2_read_section (objfile, sect);
19638 if (sect->buffer == NULL)
19639 error (_("%s used without %s section [in module %s]"),
19640 form_name, sect_name, bfd_get_filename (abfd));
19641 if (str_offset >= sect->size)
19642 error (_("%s pointing outside of %s section [in module %s]"),
19643 form_name, sect_name, bfd_get_filename (abfd));
19644 gdb_assert (HOST_CHAR_BIT == 8);
19645 if (sect->buffer[str_offset] == '\0')
19646 return NULL;
19647 return (const char *) (sect->buffer + str_offset);
19648 }
19649
19650 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19651
19652 static const char *
19653 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19654 bfd *abfd, LONGEST str_offset)
19655 {
19656 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19657 abfd, str_offset,
19658 &dwarf2_per_objfile->str,
19659 "DW_FORM_strp", ".debug_str");
19660 }
19661
19662 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19663
19664 static const char *
19665 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19666 bfd *abfd, LONGEST str_offset)
19667 {
19668 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19669 abfd, str_offset,
19670 &dwarf2_per_objfile->line_str,
19671 "DW_FORM_line_strp",
19672 ".debug_line_str");
19673 }
19674
19675 /* Read a string at offset STR_OFFSET in the .debug_str section from
19676 the .dwz file DWZ. Throw an error if the offset is too large. If
19677 the string consists of a single NUL byte, return NULL; otherwise
19678 return a pointer to the string. */
19679
19680 static const char *
19681 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19682 LONGEST str_offset)
19683 {
19684 dwarf2_read_section (objfile, &dwz->str);
19685
19686 if (dwz->str.buffer == NULL)
19687 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19688 "section [in module %s]"),
19689 bfd_get_filename (dwz->dwz_bfd));
19690 if (str_offset >= dwz->str.size)
19691 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19692 ".debug_str section [in module %s]"),
19693 bfd_get_filename (dwz->dwz_bfd));
19694 gdb_assert (HOST_CHAR_BIT == 8);
19695 if (dwz->str.buffer[str_offset] == '\0')
19696 return NULL;
19697 return (const char *) (dwz->str.buffer + str_offset);
19698 }
19699
19700 /* Return pointer to string at .debug_str offset as read from BUF.
19701 BUF is assumed to be in a compilation unit described by CU_HEADER.
19702 Return *BYTES_READ_PTR count of bytes read from BUF. */
19703
19704 static const char *
19705 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19706 const gdb_byte *buf,
19707 const struct comp_unit_head *cu_header,
19708 unsigned int *bytes_read_ptr)
19709 {
19710 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19711
19712 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19713 }
19714
19715 /* Return pointer to string at .debug_line_str offset as read from BUF.
19716 BUF is assumed to be in a compilation unit described by CU_HEADER.
19717 Return *BYTES_READ_PTR count of bytes read from BUF. */
19718
19719 static const char *
19720 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19721 bfd *abfd, const gdb_byte *buf,
19722 const struct comp_unit_head *cu_header,
19723 unsigned int *bytes_read_ptr)
19724 {
19725 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19726
19727 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19728 str_offset);
19729 }
19730
19731 ULONGEST
19732 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19733 unsigned int *bytes_read_ptr)
19734 {
19735 ULONGEST result;
19736 unsigned int num_read;
19737 int shift;
19738 unsigned char byte;
19739
19740 result = 0;
19741 shift = 0;
19742 num_read = 0;
19743 while (1)
19744 {
19745 byte = bfd_get_8 (abfd, buf);
19746 buf++;
19747 num_read++;
19748 result |= ((ULONGEST) (byte & 127) << shift);
19749 if ((byte & 128) == 0)
19750 {
19751 break;
19752 }
19753 shift += 7;
19754 }
19755 *bytes_read_ptr = num_read;
19756 return result;
19757 }
19758
19759 static LONGEST
19760 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19761 unsigned int *bytes_read_ptr)
19762 {
19763 ULONGEST result;
19764 int shift, num_read;
19765 unsigned char byte;
19766
19767 result = 0;
19768 shift = 0;
19769 num_read = 0;
19770 while (1)
19771 {
19772 byte = bfd_get_8 (abfd, buf);
19773 buf++;
19774 num_read++;
19775 result |= ((ULONGEST) (byte & 127) << shift);
19776 shift += 7;
19777 if ((byte & 128) == 0)
19778 {
19779 break;
19780 }
19781 }
19782 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19783 result |= -(((ULONGEST) 1) << shift);
19784 *bytes_read_ptr = num_read;
19785 return result;
19786 }
19787
19788 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19789 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19790 ADDR_SIZE is the size of addresses from the CU header. */
19791
19792 static CORE_ADDR
19793 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19794 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19795 {
19796 struct objfile *objfile = dwarf2_per_objfile->objfile;
19797 bfd *abfd = objfile->obfd;
19798 const gdb_byte *info_ptr;
19799
19800 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19801 if (dwarf2_per_objfile->addr.buffer == NULL)
19802 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19803 objfile_name (objfile));
19804 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19805 error (_("DW_FORM_addr_index pointing outside of "
19806 ".debug_addr section [in module %s]"),
19807 objfile_name (objfile));
19808 info_ptr = (dwarf2_per_objfile->addr.buffer
19809 + addr_base + addr_index * addr_size);
19810 if (addr_size == 4)
19811 return bfd_get_32 (abfd, info_ptr);
19812 else
19813 return bfd_get_64 (abfd, info_ptr);
19814 }
19815
19816 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19817
19818 static CORE_ADDR
19819 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19820 {
19821 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19822 cu->addr_base, cu->header.addr_size);
19823 }
19824
19825 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19826
19827 static CORE_ADDR
19828 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19829 unsigned int *bytes_read)
19830 {
19831 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19832 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19833
19834 return read_addr_index (cu, addr_index);
19835 }
19836
19837 /* Data structure to pass results from dwarf2_read_addr_index_reader
19838 back to dwarf2_read_addr_index. */
19839
19840 struct dwarf2_read_addr_index_data
19841 {
19842 ULONGEST addr_base;
19843 int addr_size;
19844 };
19845
19846 /* die_reader_func for dwarf2_read_addr_index. */
19847
19848 static void
19849 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19850 const gdb_byte *info_ptr,
19851 struct die_info *comp_unit_die,
19852 int has_children,
19853 void *data)
19854 {
19855 struct dwarf2_cu *cu = reader->cu;
19856 struct dwarf2_read_addr_index_data *aidata =
19857 (struct dwarf2_read_addr_index_data *) data;
19858
19859 aidata->addr_base = cu->addr_base;
19860 aidata->addr_size = cu->header.addr_size;
19861 }
19862
19863 /* Given an index in .debug_addr, fetch the value.
19864 NOTE: This can be called during dwarf expression evaluation,
19865 long after the debug information has been read, and thus per_cu->cu
19866 may no longer exist. */
19867
19868 CORE_ADDR
19869 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19870 unsigned int addr_index)
19871 {
19872 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19873 struct dwarf2_cu *cu = per_cu->cu;
19874 ULONGEST addr_base;
19875 int addr_size;
19876
19877 /* We need addr_base and addr_size.
19878 If we don't have PER_CU->cu, we have to get it.
19879 Nasty, but the alternative is storing the needed info in PER_CU,
19880 which at this point doesn't seem justified: it's not clear how frequently
19881 it would get used and it would increase the size of every PER_CU.
19882 Entry points like dwarf2_per_cu_addr_size do a similar thing
19883 so we're not in uncharted territory here.
19884 Alas we need to be a bit more complicated as addr_base is contained
19885 in the DIE.
19886
19887 We don't need to read the entire CU(/TU).
19888 We just need the header and top level die.
19889
19890 IWBN to use the aging mechanism to let us lazily later discard the CU.
19891 For now we skip this optimization. */
19892
19893 if (cu != NULL)
19894 {
19895 addr_base = cu->addr_base;
19896 addr_size = cu->header.addr_size;
19897 }
19898 else
19899 {
19900 struct dwarf2_read_addr_index_data aidata;
19901
19902 /* Note: We can't use init_cutu_and_read_dies_simple here,
19903 we need addr_base. */
19904 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19905 dwarf2_read_addr_index_reader, &aidata);
19906 addr_base = aidata.addr_base;
19907 addr_size = aidata.addr_size;
19908 }
19909
19910 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19911 addr_size);
19912 }
19913
19914 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19915 This is only used by the Fission support. */
19916
19917 static const char *
19918 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19919 {
19920 struct dwarf2_cu *cu = reader->cu;
19921 struct dwarf2_per_objfile *dwarf2_per_objfile
19922 = cu->per_cu->dwarf2_per_objfile;
19923 struct objfile *objfile = dwarf2_per_objfile->objfile;
19924 const char *objf_name = objfile_name (objfile);
19925 bfd *abfd = objfile->obfd;
19926 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19927 struct dwarf2_section_info *str_offsets_section =
19928 &reader->dwo_file->sections.str_offsets;
19929 const gdb_byte *info_ptr;
19930 ULONGEST str_offset;
19931 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19932
19933 dwarf2_read_section (objfile, str_section);
19934 dwarf2_read_section (objfile, str_offsets_section);
19935 if (str_section->buffer == NULL)
19936 error (_("%s used without .debug_str.dwo section"
19937 " in CU at offset %s [in module %s]"),
19938 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19939 if (str_offsets_section->buffer == NULL)
19940 error (_("%s used without .debug_str_offsets.dwo section"
19941 " in CU at offset %s [in module %s]"),
19942 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19943 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19944 error (_("%s pointing outside of .debug_str_offsets.dwo"
19945 " section in CU at offset %s [in module %s]"),
19946 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19947 info_ptr = (str_offsets_section->buffer
19948 + str_index * cu->header.offset_size);
19949 if (cu->header.offset_size == 4)
19950 str_offset = bfd_get_32 (abfd, info_ptr);
19951 else
19952 str_offset = bfd_get_64 (abfd, info_ptr);
19953 if (str_offset >= str_section->size)
19954 error (_("Offset from %s pointing outside of"
19955 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19956 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19957 return (const char *) (str_section->buffer + str_offset);
19958 }
19959
19960 /* Return the length of an LEB128 number in BUF. */
19961
19962 static int
19963 leb128_size (const gdb_byte *buf)
19964 {
19965 const gdb_byte *begin = buf;
19966 gdb_byte byte;
19967
19968 while (1)
19969 {
19970 byte = *buf++;
19971 if ((byte & 128) == 0)
19972 return buf - begin;
19973 }
19974 }
19975
19976 static void
19977 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19978 {
19979 switch (lang)
19980 {
19981 case DW_LANG_C89:
19982 case DW_LANG_C99:
19983 case DW_LANG_C11:
19984 case DW_LANG_C:
19985 case DW_LANG_UPC:
19986 cu->language = language_c;
19987 break;
19988 case DW_LANG_Java:
19989 case DW_LANG_C_plus_plus:
19990 case DW_LANG_C_plus_plus_11:
19991 case DW_LANG_C_plus_plus_14:
19992 cu->language = language_cplus;
19993 break;
19994 case DW_LANG_D:
19995 cu->language = language_d;
19996 break;
19997 case DW_LANG_Fortran77:
19998 case DW_LANG_Fortran90:
19999 case DW_LANG_Fortran95:
20000 case DW_LANG_Fortran03:
20001 case DW_LANG_Fortran08:
20002 cu->language = language_fortran;
20003 break;
20004 case DW_LANG_Go:
20005 cu->language = language_go;
20006 break;
20007 case DW_LANG_Mips_Assembler:
20008 cu->language = language_asm;
20009 break;
20010 case DW_LANG_Ada83:
20011 case DW_LANG_Ada95:
20012 cu->language = language_ada;
20013 break;
20014 case DW_LANG_Modula2:
20015 cu->language = language_m2;
20016 break;
20017 case DW_LANG_Pascal83:
20018 cu->language = language_pascal;
20019 break;
20020 case DW_LANG_ObjC:
20021 cu->language = language_objc;
20022 break;
20023 case DW_LANG_Rust:
20024 case DW_LANG_Rust_old:
20025 cu->language = language_rust;
20026 break;
20027 case DW_LANG_Cobol74:
20028 case DW_LANG_Cobol85:
20029 default:
20030 cu->language = language_minimal;
20031 break;
20032 }
20033 cu->language_defn = language_def (cu->language);
20034 }
20035
20036 /* Return the named attribute or NULL if not there. */
20037
20038 static struct attribute *
20039 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20040 {
20041 for (;;)
20042 {
20043 unsigned int i;
20044 struct attribute *spec = NULL;
20045
20046 for (i = 0; i < die->num_attrs; ++i)
20047 {
20048 if (die->attrs[i].name == name)
20049 return &die->attrs[i];
20050 if (die->attrs[i].name == DW_AT_specification
20051 || die->attrs[i].name == DW_AT_abstract_origin)
20052 spec = &die->attrs[i];
20053 }
20054
20055 if (!spec)
20056 break;
20057
20058 die = follow_die_ref (die, spec, &cu);
20059 }
20060
20061 return NULL;
20062 }
20063
20064 /* Return the named attribute or NULL if not there,
20065 but do not follow DW_AT_specification, etc.
20066 This is for use in contexts where we're reading .debug_types dies.
20067 Following DW_AT_specification, DW_AT_abstract_origin will take us
20068 back up the chain, and we want to go down. */
20069
20070 static struct attribute *
20071 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20072 {
20073 unsigned int i;
20074
20075 for (i = 0; i < die->num_attrs; ++i)
20076 if (die->attrs[i].name == name)
20077 return &die->attrs[i];
20078
20079 return NULL;
20080 }
20081
20082 /* Return the string associated with a string-typed attribute, or NULL if it
20083 is either not found or is of an incorrect type. */
20084
20085 static const char *
20086 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20087 {
20088 struct attribute *attr;
20089 const char *str = NULL;
20090
20091 attr = dwarf2_attr (die, name, cu);
20092
20093 if (attr != NULL)
20094 {
20095 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20096 || attr->form == DW_FORM_string
20097 || attr->form == DW_FORM_strx
20098 || attr->form == DW_FORM_GNU_str_index
20099 || attr->form == DW_FORM_GNU_strp_alt)
20100 str = DW_STRING (attr);
20101 else
20102 complaint (_("string type expected for attribute %s for "
20103 "DIE at %s in module %s"),
20104 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20105 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20106 }
20107
20108 return str;
20109 }
20110
20111 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20112 and holds a non-zero value. This function should only be used for
20113 DW_FORM_flag or DW_FORM_flag_present attributes. */
20114
20115 static int
20116 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20117 {
20118 struct attribute *attr = dwarf2_attr (die, name, cu);
20119
20120 return (attr && DW_UNSND (attr));
20121 }
20122
20123 static int
20124 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20125 {
20126 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20127 which value is non-zero. However, we have to be careful with
20128 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20129 (via dwarf2_flag_true_p) follows this attribute. So we may
20130 end up accidently finding a declaration attribute that belongs
20131 to a different DIE referenced by the specification attribute,
20132 even though the given DIE does not have a declaration attribute. */
20133 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20134 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20135 }
20136
20137 /* Return the die giving the specification for DIE, if there is
20138 one. *SPEC_CU is the CU containing DIE on input, and the CU
20139 containing the return value on output. If there is no
20140 specification, but there is an abstract origin, that is
20141 returned. */
20142
20143 static struct die_info *
20144 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20145 {
20146 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20147 *spec_cu);
20148
20149 if (spec_attr == NULL)
20150 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20151
20152 if (spec_attr == NULL)
20153 return NULL;
20154 else
20155 return follow_die_ref (die, spec_attr, spec_cu);
20156 }
20157
20158 /* Stub for free_line_header to match void * callback types. */
20159
20160 static void
20161 free_line_header_voidp (void *arg)
20162 {
20163 struct line_header *lh = (struct line_header *) arg;
20164
20165 delete lh;
20166 }
20167
20168 void
20169 line_header::add_include_dir (const char *include_dir)
20170 {
20171 if (dwarf_line_debug >= 2)
20172 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20173 include_dirs.size () + 1, include_dir);
20174
20175 include_dirs.push_back (include_dir);
20176 }
20177
20178 void
20179 line_header::add_file_name (const char *name,
20180 dir_index d_index,
20181 unsigned int mod_time,
20182 unsigned int length)
20183 {
20184 if (dwarf_line_debug >= 2)
20185 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20186 (unsigned) file_names.size () + 1, name);
20187
20188 file_names.emplace_back (name, d_index, mod_time, length);
20189 }
20190
20191 /* A convenience function to find the proper .debug_line section for a CU. */
20192
20193 static struct dwarf2_section_info *
20194 get_debug_line_section (struct dwarf2_cu *cu)
20195 {
20196 struct dwarf2_section_info *section;
20197 struct dwarf2_per_objfile *dwarf2_per_objfile
20198 = cu->per_cu->dwarf2_per_objfile;
20199
20200 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20201 DWO file. */
20202 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20203 section = &cu->dwo_unit->dwo_file->sections.line;
20204 else if (cu->per_cu->is_dwz)
20205 {
20206 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20207
20208 section = &dwz->line;
20209 }
20210 else
20211 section = &dwarf2_per_objfile->line;
20212
20213 return section;
20214 }
20215
20216 /* Read directory or file name entry format, starting with byte of
20217 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20218 entries count and the entries themselves in the described entry
20219 format. */
20220
20221 static void
20222 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20223 bfd *abfd, const gdb_byte **bufp,
20224 struct line_header *lh,
20225 const struct comp_unit_head *cu_header,
20226 void (*callback) (struct line_header *lh,
20227 const char *name,
20228 dir_index d_index,
20229 unsigned int mod_time,
20230 unsigned int length))
20231 {
20232 gdb_byte format_count, formati;
20233 ULONGEST data_count, datai;
20234 const gdb_byte *buf = *bufp;
20235 const gdb_byte *format_header_data;
20236 unsigned int bytes_read;
20237
20238 format_count = read_1_byte (abfd, buf);
20239 buf += 1;
20240 format_header_data = buf;
20241 for (formati = 0; formati < format_count; formati++)
20242 {
20243 read_unsigned_leb128 (abfd, buf, &bytes_read);
20244 buf += bytes_read;
20245 read_unsigned_leb128 (abfd, buf, &bytes_read);
20246 buf += bytes_read;
20247 }
20248
20249 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20250 buf += bytes_read;
20251 for (datai = 0; datai < data_count; datai++)
20252 {
20253 const gdb_byte *format = format_header_data;
20254 struct file_entry fe;
20255
20256 for (formati = 0; formati < format_count; formati++)
20257 {
20258 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20259 format += bytes_read;
20260
20261 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20262 format += bytes_read;
20263
20264 gdb::optional<const char *> string;
20265 gdb::optional<unsigned int> uint;
20266
20267 switch (form)
20268 {
20269 case DW_FORM_string:
20270 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20271 buf += bytes_read;
20272 break;
20273
20274 case DW_FORM_line_strp:
20275 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20276 abfd, buf,
20277 cu_header,
20278 &bytes_read));
20279 buf += bytes_read;
20280 break;
20281
20282 case DW_FORM_data1:
20283 uint.emplace (read_1_byte (abfd, buf));
20284 buf += 1;
20285 break;
20286
20287 case DW_FORM_data2:
20288 uint.emplace (read_2_bytes (abfd, buf));
20289 buf += 2;
20290 break;
20291
20292 case DW_FORM_data4:
20293 uint.emplace (read_4_bytes (abfd, buf));
20294 buf += 4;
20295 break;
20296
20297 case DW_FORM_data8:
20298 uint.emplace (read_8_bytes (abfd, buf));
20299 buf += 8;
20300 break;
20301
20302 case DW_FORM_udata:
20303 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20304 buf += bytes_read;
20305 break;
20306
20307 case DW_FORM_block:
20308 /* It is valid only for DW_LNCT_timestamp which is ignored by
20309 current GDB. */
20310 break;
20311 }
20312
20313 switch (content_type)
20314 {
20315 case DW_LNCT_path:
20316 if (string.has_value ())
20317 fe.name = *string;
20318 break;
20319 case DW_LNCT_directory_index:
20320 if (uint.has_value ())
20321 fe.d_index = (dir_index) *uint;
20322 break;
20323 case DW_LNCT_timestamp:
20324 if (uint.has_value ())
20325 fe.mod_time = *uint;
20326 break;
20327 case DW_LNCT_size:
20328 if (uint.has_value ())
20329 fe.length = *uint;
20330 break;
20331 case DW_LNCT_MD5:
20332 break;
20333 default:
20334 complaint (_("Unknown format content type %s"),
20335 pulongest (content_type));
20336 }
20337 }
20338
20339 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20340 }
20341
20342 *bufp = buf;
20343 }
20344
20345 /* Read the statement program header starting at OFFSET in
20346 .debug_line, or .debug_line.dwo. Return a pointer
20347 to a struct line_header, allocated using xmalloc.
20348 Returns NULL if there is a problem reading the header, e.g., if it
20349 has a version we don't understand.
20350
20351 NOTE: the strings in the include directory and file name tables of
20352 the returned object point into the dwarf line section buffer,
20353 and must not be freed. */
20354
20355 static line_header_up
20356 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20357 {
20358 const gdb_byte *line_ptr;
20359 unsigned int bytes_read, offset_size;
20360 int i;
20361 const char *cur_dir, *cur_file;
20362 struct dwarf2_section_info *section;
20363 bfd *abfd;
20364 struct dwarf2_per_objfile *dwarf2_per_objfile
20365 = cu->per_cu->dwarf2_per_objfile;
20366
20367 section = get_debug_line_section (cu);
20368 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20369 if (section->buffer == NULL)
20370 {
20371 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20372 complaint (_("missing .debug_line.dwo section"));
20373 else
20374 complaint (_("missing .debug_line section"));
20375 return 0;
20376 }
20377
20378 /* We can't do this until we know the section is non-empty.
20379 Only then do we know we have such a section. */
20380 abfd = get_section_bfd_owner (section);
20381
20382 /* Make sure that at least there's room for the total_length field.
20383 That could be 12 bytes long, but we're just going to fudge that. */
20384 if (to_underlying (sect_off) + 4 >= section->size)
20385 {
20386 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20387 return 0;
20388 }
20389
20390 line_header_up lh (new line_header ());
20391
20392 lh->sect_off = sect_off;
20393 lh->offset_in_dwz = cu->per_cu->is_dwz;
20394
20395 line_ptr = section->buffer + to_underlying (sect_off);
20396
20397 /* Read in the header. */
20398 lh->total_length =
20399 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20400 &bytes_read, &offset_size);
20401 line_ptr += bytes_read;
20402 if (line_ptr + lh->total_length > (section->buffer + section->size))
20403 {
20404 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20405 return 0;
20406 }
20407 lh->statement_program_end = line_ptr + lh->total_length;
20408 lh->version = read_2_bytes (abfd, line_ptr);
20409 line_ptr += 2;
20410 if (lh->version > 5)
20411 {
20412 /* This is a version we don't understand. The format could have
20413 changed in ways we don't handle properly so just punt. */
20414 complaint (_("unsupported version in .debug_line section"));
20415 return NULL;
20416 }
20417 if (lh->version >= 5)
20418 {
20419 gdb_byte segment_selector_size;
20420
20421 /* Skip address size. */
20422 read_1_byte (abfd, line_ptr);
20423 line_ptr += 1;
20424
20425 segment_selector_size = read_1_byte (abfd, line_ptr);
20426 line_ptr += 1;
20427 if (segment_selector_size != 0)
20428 {
20429 complaint (_("unsupported segment selector size %u "
20430 "in .debug_line section"),
20431 segment_selector_size);
20432 return NULL;
20433 }
20434 }
20435 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20436 line_ptr += offset_size;
20437 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20438 line_ptr += 1;
20439 if (lh->version >= 4)
20440 {
20441 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20442 line_ptr += 1;
20443 }
20444 else
20445 lh->maximum_ops_per_instruction = 1;
20446
20447 if (lh->maximum_ops_per_instruction == 0)
20448 {
20449 lh->maximum_ops_per_instruction = 1;
20450 complaint (_("invalid maximum_ops_per_instruction "
20451 "in `.debug_line' section"));
20452 }
20453
20454 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20455 line_ptr += 1;
20456 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20457 line_ptr += 1;
20458 lh->line_range = read_1_byte (abfd, line_ptr);
20459 line_ptr += 1;
20460 lh->opcode_base = read_1_byte (abfd, line_ptr);
20461 line_ptr += 1;
20462 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20463
20464 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20465 for (i = 1; i < lh->opcode_base; ++i)
20466 {
20467 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20468 line_ptr += 1;
20469 }
20470
20471 if (lh->version >= 5)
20472 {
20473 /* Read directory table. */
20474 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20475 &cu->header,
20476 [] (struct line_header *header, const char *name,
20477 dir_index d_index, unsigned int mod_time,
20478 unsigned int length)
20479 {
20480 header->add_include_dir (name);
20481 });
20482
20483 /* Read file name table. */
20484 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20485 &cu->header,
20486 [] (struct line_header *header, const char *name,
20487 dir_index d_index, unsigned int mod_time,
20488 unsigned int length)
20489 {
20490 header->add_file_name (name, d_index, mod_time, length);
20491 });
20492 }
20493 else
20494 {
20495 /* Read directory table. */
20496 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20497 {
20498 line_ptr += bytes_read;
20499 lh->add_include_dir (cur_dir);
20500 }
20501 line_ptr += bytes_read;
20502
20503 /* Read file name table. */
20504 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20505 {
20506 unsigned int mod_time, length;
20507 dir_index d_index;
20508
20509 line_ptr += bytes_read;
20510 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20511 line_ptr += bytes_read;
20512 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20513 line_ptr += bytes_read;
20514 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20515 line_ptr += bytes_read;
20516
20517 lh->add_file_name (cur_file, d_index, mod_time, length);
20518 }
20519 line_ptr += bytes_read;
20520 }
20521 lh->statement_program_start = line_ptr;
20522
20523 if (line_ptr > (section->buffer + section->size))
20524 complaint (_("line number info header doesn't "
20525 "fit in `.debug_line' section"));
20526
20527 return lh;
20528 }
20529
20530 /* Subroutine of dwarf_decode_lines to simplify it.
20531 Return the file name of the psymtab for included file FILE_INDEX
20532 in line header LH of PST.
20533 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20534 If space for the result is malloc'd, *NAME_HOLDER will be set.
20535 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20536
20537 static const char *
20538 psymtab_include_file_name (const struct line_header *lh, int file_index,
20539 const struct partial_symtab *pst,
20540 const char *comp_dir,
20541 gdb::unique_xmalloc_ptr<char> *name_holder)
20542 {
20543 const file_entry &fe = lh->file_names[file_index];
20544 const char *include_name = fe.name;
20545 const char *include_name_to_compare = include_name;
20546 const char *pst_filename;
20547 int file_is_pst;
20548
20549 const char *dir_name = fe.include_dir (lh);
20550
20551 gdb::unique_xmalloc_ptr<char> hold_compare;
20552 if (!IS_ABSOLUTE_PATH (include_name)
20553 && (dir_name != NULL || comp_dir != NULL))
20554 {
20555 /* Avoid creating a duplicate psymtab for PST.
20556 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20557 Before we do the comparison, however, we need to account
20558 for DIR_NAME and COMP_DIR.
20559 First prepend dir_name (if non-NULL). If we still don't
20560 have an absolute path prepend comp_dir (if non-NULL).
20561 However, the directory we record in the include-file's
20562 psymtab does not contain COMP_DIR (to match the
20563 corresponding symtab(s)).
20564
20565 Example:
20566
20567 bash$ cd /tmp
20568 bash$ gcc -g ./hello.c
20569 include_name = "hello.c"
20570 dir_name = "."
20571 DW_AT_comp_dir = comp_dir = "/tmp"
20572 DW_AT_name = "./hello.c"
20573
20574 */
20575
20576 if (dir_name != NULL)
20577 {
20578 name_holder->reset (concat (dir_name, SLASH_STRING,
20579 include_name, (char *) NULL));
20580 include_name = name_holder->get ();
20581 include_name_to_compare = include_name;
20582 }
20583 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20584 {
20585 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20586 include_name, (char *) NULL));
20587 include_name_to_compare = hold_compare.get ();
20588 }
20589 }
20590
20591 pst_filename = pst->filename;
20592 gdb::unique_xmalloc_ptr<char> copied_name;
20593 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20594 {
20595 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20596 pst_filename, (char *) NULL));
20597 pst_filename = copied_name.get ();
20598 }
20599
20600 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20601
20602 if (file_is_pst)
20603 return NULL;
20604 return include_name;
20605 }
20606
20607 /* State machine to track the state of the line number program. */
20608
20609 class lnp_state_machine
20610 {
20611 public:
20612 /* Initialize a machine state for the start of a line number
20613 program. */
20614 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20615 bool record_lines_p);
20616
20617 file_entry *current_file ()
20618 {
20619 /* lh->file_names is 0-based, but the file name numbers in the
20620 statement program are 1-based. */
20621 return m_line_header->file_name_at (m_file);
20622 }
20623
20624 /* Record the line in the state machine. END_SEQUENCE is true if
20625 we're processing the end of a sequence. */
20626 void record_line (bool end_sequence);
20627
20628 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20629 nop-out rest of the lines in this sequence. */
20630 void check_line_address (struct dwarf2_cu *cu,
20631 const gdb_byte *line_ptr,
20632 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20633
20634 void handle_set_discriminator (unsigned int discriminator)
20635 {
20636 m_discriminator = discriminator;
20637 m_line_has_non_zero_discriminator |= discriminator != 0;
20638 }
20639
20640 /* Handle DW_LNE_set_address. */
20641 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20642 {
20643 m_op_index = 0;
20644 address += baseaddr;
20645 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20646 }
20647
20648 /* Handle DW_LNS_advance_pc. */
20649 void handle_advance_pc (CORE_ADDR adjust);
20650
20651 /* Handle a special opcode. */
20652 void handle_special_opcode (unsigned char op_code);
20653
20654 /* Handle DW_LNS_advance_line. */
20655 void handle_advance_line (int line_delta)
20656 {
20657 advance_line (line_delta);
20658 }
20659
20660 /* Handle DW_LNS_set_file. */
20661 void handle_set_file (file_name_index file);
20662
20663 /* Handle DW_LNS_negate_stmt. */
20664 void handle_negate_stmt ()
20665 {
20666 m_is_stmt = !m_is_stmt;
20667 }
20668
20669 /* Handle DW_LNS_const_add_pc. */
20670 void handle_const_add_pc ();
20671
20672 /* Handle DW_LNS_fixed_advance_pc. */
20673 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20674 {
20675 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20676 m_op_index = 0;
20677 }
20678
20679 /* Handle DW_LNS_copy. */
20680 void handle_copy ()
20681 {
20682 record_line (false);
20683 m_discriminator = 0;
20684 }
20685
20686 /* Handle DW_LNE_end_sequence. */
20687 void handle_end_sequence ()
20688 {
20689 m_currently_recording_lines = true;
20690 }
20691
20692 private:
20693 /* Advance the line by LINE_DELTA. */
20694 void advance_line (int line_delta)
20695 {
20696 m_line += line_delta;
20697
20698 if (line_delta != 0)
20699 m_line_has_non_zero_discriminator = m_discriminator != 0;
20700 }
20701
20702 struct dwarf2_cu *m_cu;
20703
20704 gdbarch *m_gdbarch;
20705
20706 /* True if we're recording lines.
20707 Otherwise we're building partial symtabs and are just interested in
20708 finding include files mentioned by the line number program. */
20709 bool m_record_lines_p;
20710
20711 /* The line number header. */
20712 line_header *m_line_header;
20713
20714 /* These are part of the standard DWARF line number state machine,
20715 and initialized according to the DWARF spec. */
20716
20717 unsigned char m_op_index = 0;
20718 /* The line table index (1-based) of the current file. */
20719 file_name_index m_file = (file_name_index) 1;
20720 unsigned int m_line = 1;
20721
20722 /* These are initialized in the constructor. */
20723
20724 CORE_ADDR m_address;
20725 bool m_is_stmt;
20726 unsigned int m_discriminator;
20727
20728 /* Additional bits of state we need to track. */
20729
20730 /* The last file that we called dwarf2_start_subfile for.
20731 This is only used for TLLs. */
20732 unsigned int m_last_file = 0;
20733 /* The last file a line number was recorded for. */
20734 struct subfile *m_last_subfile = NULL;
20735
20736 /* When true, record the lines we decode. */
20737 bool m_currently_recording_lines = false;
20738
20739 /* The last line number that was recorded, used to coalesce
20740 consecutive entries for the same line. This can happen, for
20741 example, when discriminators are present. PR 17276. */
20742 unsigned int m_last_line = 0;
20743 bool m_line_has_non_zero_discriminator = false;
20744 };
20745
20746 void
20747 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20748 {
20749 CORE_ADDR addr_adj = (((m_op_index + adjust)
20750 / m_line_header->maximum_ops_per_instruction)
20751 * m_line_header->minimum_instruction_length);
20752 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20753 m_op_index = ((m_op_index + adjust)
20754 % m_line_header->maximum_ops_per_instruction);
20755 }
20756
20757 void
20758 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20759 {
20760 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20761 CORE_ADDR addr_adj = (((m_op_index
20762 + (adj_opcode / m_line_header->line_range))
20763 / m_line_header->maximum_ops_per_instruction)
20764 * m_line_header->minimum_instruction_length);
20765 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20766 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20767 % m_line_header->maximum_ops_per_instruction);
20768
20769 int line_delta = (m_line_header->line_base
20770 + (adj_opcode % m_line_header->line_range));
20771 advance_line (line_delta);
20772 record_line (false);
20773 m_discriminator = 0;
20774 }
20775
20776 void
20777 lnp_state_machine::handle_set_file (file_name_index file)
20778 {
20779 m_file = file;
20780
20781 const file_entry *fe = current_file ();
20782 if (fe == NULL)
20783 dwarf2_debug_line_missing_file_complaint ();
20784 else if (m_record_lines_p)
20785 {
20786 const char *dir = fe->include_dir (m_line_header);
20787
20788 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20789 m_line_has_non_zero_discriminator = m_discriminator != 0;
20790 dwarf2_start_subfile (m_cu, fe->name, dir);
20791 }
20792 }
20793
20794 void
20795 lnp_state_machine::handle_const_add_pc ()
20796 {
20797 CORE_ADDR adjust
20798 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20799
20800 CORE_ADDR addr_adj
20801 = (((m_op_index + adjust)
20802 / m_line_header->maximum_ops_per_instruction)
20803 * m_line_header->minimum_instruction_length);
20804
20805 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20806 m_op_index = ((m_op_index + adjust)
20807 % m_line_header->maximum_ops_per_instruction);
20808 }
20809
20810 /* Return non-zero if we should add LINE to the line number table.
20811 LINE is the line to add, LAST_LINE is the last line that was added,
20812 LAST_SUBFILE is the subfile for LAST_LINE.
20813 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20814 had a non-zero discriminator.
20815
20816 We have to be careful in the presence of discriminators.
20817 E.g., for this line:
20818
20819 for (i = 0; i < 100000; i++);
20820
20821 clang can emit four line number entries for that one line,
20822 each with a different discriminator.
20823 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20824
20825 However, we want gdb to coalesce all four entries into one.
20826 Otherwise the user could stepi into the middle of the line and
20827 gdb would get confused about whether the pc really was in the
20828 middle of the line.
20829
20830 Things are further complicated by the fact that two consecutive
20831 line number entries for the same line is a heuristic used by gcc
20832 to denote the end of the prologue. So we can't just discard duplicate
20833 entries, we have to be selective about it. The heuristic we use is
20834 that we only collapse consecutive entries for the same line if at least
20835 one of those entries has a non-zero discriminator. PR 17276.
20836
20837 Note: Addresses in the line number state machine can never go backwards
20838 within one sequence, thus this coalescing is ok. */
20839
20840 static int
20841 dwarf_record_line_p (struct dwarf2_cu *cu,
20842 unsigned int line, unsigned int last_line,
20843 int line_has_non_zero_discriminator,
20844 struct subfile *last_subfile)
20845 {
20846 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20847 return 1;
20848 if (line != last_line)
20849 return 1;
20850 /* Same line for the same file that we've seen already.
20851 As a last check, for pr 17276, only record the line if the line
20852 has never had a non-zero discriminator. */
20853 if (!line_has_non_zero_discriminator)
20854 return 1;
20855 return 0;
20856 }
20857
20858 /* Use the CU's builder to record line number LINE beginning at
20859 address ADDRESS in the line table of subfile SUBFILE. */
20860
20861 static void
20862 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20863 unsigned int line, CORE_ADDR address,
20864 struct dwarf2_cu *cu)
20865 {
20866 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20867
20868 if (dwarf_line_debug)
20869 {
20870 fprintf_unfiltered (gdb_stdlog,
20871 "Recording line %u, file %s, address %s\n",
20872 line, lbasename (subfile->name),
20873 paddress (gdbarch, address));
20874 }
20875
20876 if (cu != nullptr)
20877 cu->get_builder ()->record_line (subfile, line, addr);
20878 }
20879
20880 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20881 Mark the end of a set of line number records.
20882 The arguments are the same as for dwarf_record_line_1.
20883 If SUBFILE is NULL the request is ignored. */
20884
20885 static void
20886 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20887 CORE_ADDR address, struct dwarf2_cu *cu)
20888 {
20889 if (subfile == NULL)
20890 return;
20891
20892 if (dwarf_line_debug)
20893 {
20894 fprintf_unfiltered (gdb_stdlog,
20895 "Finishing current line, file %s, address %s\n",
20896 lbasename (subfile->name),
20897 paddress (gdbarch, address));
20898 }
20899
20900 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20901 }
20902
20903 void
20904 lnp_state_machine::record_line (bool end_sequence)
20905 {
20906 if (dwarf_line_debug)
20907 {
20908 fprintf_unfiltered (gdb_stdlog,
20909 "Processing actual line %u: file %u,"
20910 " address %s, is_stmt %u, discrim %u\n",
20911 m_line, to_underlying (m_file),
20912 paddress (m_gdbarch, m_address),
20913 m_is_stmt, m_discriminator);
20914 }
20915
20916 file_entry *fe = current_file ();
20917
20918 if (fe == NULL)
20919 dwarf2_debug_line_missing_file_complaint ();
20920 /* For now we ignore lines not starting on an instruction boundary.
20921 But not when processing end_sequence for compatibility with the
20922 previous version of the code. */
20923 else if (m_op_index == 0 || end_sequence)
20924 {
20925 fe->included_p = 1;
20926 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20927 {
20928 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20929 || end_sequence)
20930 {
20931 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20932 m_currently_recording_lines ? m_cu : nullptr);
20933 }
20934
20935 if (!end_sequence)
20936 {
20937 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20938 m_line_has_non_zero_discriminator,
20939 m_last_subfile))
20940 {
20941 buildsym_compunit *builder = m_cu->get_builder ();
20942 dwarf_record_line_1 (m_gdbarch,
20943 builder->get_current_subfile (),
20944 m_line, m_address,
20945 m_currently_recording_lines ? m_cu : nullptr);
20946 }
20947 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20948 m_last_line = m_line;
20949 }
20950 }
20951 }
20952 }
20953
20954 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20955 line_header *lh, bool record_lines_p)
20956 {
20957 m_cu = cu;
20958 m_gdbarch = arch;
20959 m_record_lines_p = record_lines_p;
20960 m_line_header = lh;
20961
20962 m_currently_recording_lines = true;
20963
20964 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20965 was a line entry for it so that the backend has a chance to adjust it
20966 and also record it in case it needs it. This is currently used by MIPS
20967 code, cf. `mips_adjust_dwarf2_line'. */
20968 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20969 m_is_stmt = lh->default_is_stmt;
20970 m_discriminator = 0;
20971 }
20972
20973 void
20974 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20975 const gdb_byte *line_ptr,
20976 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20977 {
20978 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20979 the pc range of the CU. However, we restrict the test to only ADDRESS
20980 values of zero to preserve GDB's previous behaviour which is to handle
20981 the specific case of a function being GC'd by the linker. */
20982
20983 if (address == 0 && address < unrelocated_lowpc)
20984 {
20985 /* This line table is for a function which has been
20986 GCd by the linker. Ignore it. PR gdb/12528 */
20987
20988 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20989 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20990
20991 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20992 line_offset, objfile_name (objfile));
20993 m_currently_recording_lines = false;
20994 /* Note: m_currently_recording_lines is left as false until we see
20995 DW_LNE_end_sequence. */
20996 }
20997 }
20998
20999 /* Subroutine of dwarf_decode_lines to simplify it.
21000 Process the line number information in LH.
21001 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21002 program in order to set included_p for every referenced header. */
21003
21004 static void
21005 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21006 const int decode_for_pst_p, CORE_ADDR lowpc)
21007 {
21008 const gdb_byte *line_ptr, *extended_end;
21009 const gdb_byte *line_end;
21010 unsigned int bytes_read, extended_len;
21011 unsigned char op_code, extended_op;
21012 CORE_ADDR baseaddr;
21013 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21014 bfd *abfd = objfile->obfd;
21015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21016 /* True if we're recording line info (as opposed to building partial
21017 symtabs and just interested in finding include files mentioned by
21018 the line number program). */
21019 bool record_lines_p = !decode_for_pst_p;
21020
21021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21022
21023 line_ptr = lh->statement_program_start;
21024 line_end = lh->statement_program_end;
21025
21026 /* Read the statement sequences until there's nothing left. */
21027 while (line_ptr < line_end)
21028 {
21029 /* The DWARF line number program state machine. Reset the state
21030 machine at the start of each sequence. */
21031 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21032 bool end_sequence = false;
21033
21034 if (record_lines_p)
21035 {
21036 /* Start a subfile for the current file of the state
21037 machine. */
21038 const file_entry *fe = state_machine.current_file ();
21039
21040 if (fe != NULL)
21041 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21042 }
21043
21044 /* Decode the table. */
21045 while (line_ptr < line_end && !end_sequence)
21046 {
21047 op_code = read_1_byte (abfd, line_ptr);
21048 line_ptr += 1;
21049
21050 if (op_code >= lh->opcode_base)
21051 {
21052 /* Special opcode. */
21053 state_machine.handle_special_opcode (op_code);
21054 }
21055 else switch (op_code)
21056 {
21057 case DW_LNS_extended_op:
21058 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21059 &bytes_read);
21060 line_ptr += bytes_read;
21061 extended_end = line_ptr + extended_len;
21062 extended_op = read_1_byte (abfd, line_ptr);
21063 line_ptr += 1;
21064 switch (extended_op)
21065 {
21066 case DW_LNE_end_sequence:
21067 state_machine.handle_end_sequence ();
21068 end_sequence = true;
21069 break;
21070 case DW_LNE_set_address:
21071 {
21072 CORE_ADDR address
21073 = read_address (abfd, line_ptr, cu, &bytes_read);
21074 line_ptr += bytes_read;
21075
21076 state_machine.check_line_address (cu, line_ptr,
21077 lowpc - baseaddr, address);
21078 state_machine.handle_set_address (baseaddr, address);
21079 }
21080 break;
21081 case DW_LNE_define_file:
21082 {
21083 const char *cur_file;
21084 unsigned int mod_time, length;
21085 dir_index dindex;
21086
21087 cur_file = read_direct_string (abfd, line_ptr,
21088 &bytes_read);
21089 line_ptr += bytes_read;
21090 dindex = (dir_index)
21091 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21092 line_ptr += bytes_read;
21093 mod_time =
21094 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21095 line_ptr += bytes_read;
21096 length =
21097 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21098 line_ptr += bytes_read;
21099 lh->add_file_name (cur_file, dindex, mod_time, length);
21100 }
21101 break;
21102 case DW_LNE_set_discriminator:
21103 {
21104 /* The discriminator is not interesting to the
21105 debugger; just ignore it. We still need to
21106 check its value though:
21107 if there are consecutive entries for the same
21108 (non-prologue) line we want to coalesce them.
21109 PR 17276. */
21110 unsigned int discr
21111 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21112 line_ptr += bytes_read;
21113
21114 state_machine.handle_set_discriminator (discr);
21115 }
21116 break;
21117 default:
21118 complaint (_("mangled .debug_line section"));
21119 return;
21120 }
21121 /* Make sure that we parsed the extended op correctly. If e.g.
21122 we expected a different address size than the producer used,
21123 we may have read the wrong number of bytes. */
21124 if (line_ptr != extended_end)
21125 {
21126 complaint (_("mangled .debug_line section"));
21127 return;
21128 }
21129 break;
21130 case DW_LNS_copy:
21131 state_machine.handle_copy ();
21132 break;
21133 case DW_LNS_advance_pc:
21134 {
21135 CORE_ADDR adjust
21136 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21137 line_ptr += bytes_read;
21138
21139 state_machine.handle_advance_pc (adjust);
21140 }
21141 break;
21142 case DW_LNS_advance_line:
21143 {
21144 int line_delta
21145 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21146 line_ptr += bytes_read;
21147
21148 state_machine.handle_advance_line (line_delta);
21149 }
21150 break;
21151 case DW_LNS_set_file:
21152 {
21153 file_name_index file
21154 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21155 &bytes_read);
21156 line_ptr += bytes_read;
21157
21158 state_machine.handle_set_file (file);
21159 }
21160 break;
21161 case DW_LNS_set_column:
21162 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21163 line_ptr += bytes_read;
21164 break;
21165 case DW_LNS_negate_stmt:
21166 state_machine.handle_negate_stmt ();
21167 break;
21168 case DW_LNS_set_basic_block:
21169 break;
21170 /* Add to the address register of the state machine the
21171 address increment value corresponding to special opcode
21172 255. I.e., this value is scaled by the minimum
21173 instruction length since special opcode 255 would have
21174 scaled the increment. */
21175 case DW_LNS_const_add_pc:
21176 state_machine.handle_const_add_pc ();
21177 break;
21178 case DW_LNS_fixed_advance_pc:
21179 {
21180 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21181 line_ptr += 2;
21182
21183 state_machine.handle_fixed_advance_pc (addr_adj);
21184 }
21185 break;
21186 default:
21187 {
21188 /* Unknown standard opcode, ignore it. */
21189 int i;
21190
21191 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21192 {
21193 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21194 line_ptr += bytes_read;
21195 }
21196 }
21197 }
21198 }
21199
21200 if (!end_sequence)
21201 dwarf2_debug_line_missing_end_sequence_complaint ();
21202
21203 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21204 in which case we still finish recording the last line). */
21205 state_machine.record_line (true);
21206 }
21207 }
21208
21209 /* Decode the Line Number Program (LNP) for the given line_header
21210 structure and CU. The actual information extracted and the type
21211 of structures created from the LNP depends on the value of PST.
21212
21213 1. If PST is NULL, then this procedure uses the data from the program
21214 to create all necessary symbol tables, and their linetables.
21215
21216 2. If PST is not NULL, this procedure reads the program to determine
21217 the list of files included by the unit represented by PST, and
21218 builds all the associated partial symbol tables.
21219
21220 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21221 It is used for relative paths in the line table.
21222 NOTE: When processing partial symtabs (pst != NULL),
21223 comp_dir == pst->dirname.
21224
21225 NOTE: It is important that psymtabs have the same file name (via strcmp)
21226 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21227 symtab we don't use it in the name of the psymtabs we create.
21228 E.g. expand_line_sal requires this when finding psymtabs to expand.
21229 A good testcase for this is mb-inline.exp.
21230
21231 LOWPC is the lowest address in CU (or 0 if not known).
21232
21233 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21234 for its PC<->lines mapping information. Otherwise only the filename
21235 table is read in. */
21236
21237 static void
21238 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21239 struct dwarf2_cu *cu, struct partial_symtab *pst,
21240 CORE_ADDR lowpc, int decode_mapping)
21241 {
21242 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21243 const int decode_for_pst_p = (pst != NULL);
21244
21245 if (decode_mapping)
21246 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21247
21248 if (decode_for_pst_p)
21249 {
21250 int file_index;
21251
21252 /* Now that we're done scanning the Line Header Program, we can
21253 create the psymtab of each included file. */
21254 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21255 if (lh->file_names[file_index].included_p == 1)
21256 {
21257 gdb::unique_xmalloc_ptr<char> name_holder;
21258 const char *include_name =
21259 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21260 &name_holder);
21261 if (include_name != NULL)
21262 dwarf2_create_include_psymtab (include_name, pst, objfile);
21263 }
21264 }
21265 else
21266 {
21267 /* Make sure a symtab is created for every file, even files
21268 which contain only variables (i.e. no code with associated
21269 line numbers). */
21270 buildsym_compunit *builder = cu->get_builder ();
21271 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21272 int i;
21273
21274 for (i = 0; i < lh->file_names.size (); i++)
21275 {
21276 file_entry &fe = lh->file_names[i];
21277
21278 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21279
21280 if (builder->get_current_subfile ()->symtab == NULL)
21281 {
21282 builder->get_current_subfile ()->symtab
21283 = allocate_symtab (cust,
21284 builder->get_current_subfile ()->name);
21285 }
21286 fe.symtab = builder->get_current_subfile ()->symtab;
21287 }
21288 }
21289 }
21290
21291 /* Start a subfile for DWARF. FILENAME is the name of the file and
21292 DIRNAME the name of the source directory which contains FILENAME
21293 or NULL if not known.
21294 This routine tries to keep line numbers from identical absolute and
21295 relative file names in a common subfile.
21296
21297 Using the `list' example from the GDB testsuite, which resides in
21298 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21299 of /srcdir/list0.c yields the following debugging information for list0.c:
21300
21301 DW_AT_name: /srcdir/list0.c
21302 DW_AT_comp_dir: /compdir
21303 files.files[0].name: list0.h
21304 files.files[0].dir: /srcdir
21305 files.files[1].name: list0.c
21306 files.files[1].dir: /srcdir
21307
21308 The line number information for list0.c has to end up in a single
21309 subfile, so that `break /srcdir/list0.c:1' works as expected.
21310 start_subfile will ensure that this happens provided that we pass the
21311 concatenation of files.files[1].dir and files.files[1].name as the
21312 subfile's name. */
21313
21314 static void
21315 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21316 const char *dirname)
21317 {
21318 char *copy = NULL;
21319
21320 /* In order not to lose the line information directory,
21321 we concatenate it to the filename when it makes sense.
21322 Note that the Dwarf3 standard says (speaking of filenames in line
21323 information): ``The directory index is ignored for file names
21324 that represent full path names''. Thus ignoring dirname in the
21325 `else' branch below isn't an issue. */
21326
21327 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21328 {
21329 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21330 filename = copy;
21331 }
21332
21333 cu->get_builder ()->start_subfile (filename);
21334
21335 if (copy != NULL)
21336 xfree (copy);
21337 }
21338
21339 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21340 buildsym_compunit constructor. */
21341
21342 struct compunit_symtab *
21343 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21344 CORE_ADDR low_pc)
21345 {
21346 gdb_assert (m_builder == nullptr);
21347
21348 m_builder.reset (new struct buildsym_compunit
21349 (per_cu->dwarf2_per_objfile->objfile,
21350 name, comp_dir, language, low_pc));
21351
21352 list_in_scope = get_builder ()->get_file_symbols ();
21353
21354 get_builder ()->record_debugformat ("DWARF 2");
21355 get_builder ()->record_producer (producer);
21356
21357 processing_has_namespace_info = false;
21358
21359 return get_builder ()->get_compunit_symtab ();
21360 }
21361
21362 static void
21363 var_decode_location (struct attribute *attr, struct symbol *sym,
21364 struct dwarf2_cu *cu)
21365 {
21366 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21367 struct comp_unit_head *cu_header = &cu->header;
21368
21369 /* NOTE drow/2003-01-30: There used to be a comment and some special
21370 code here to turn a symbol with DW_AT_external and a
21371 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21372 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21373 with some versions of binutils) where shared libraries could have
21374 relocations against symbols in their debug information - the
21375 minimal symbol would have the right address, but the debug info
21376 would not. It's no longer necessary, because we will explicitly
21377 apply relocations when we read in the debug information now. */
21378
21379 /* A DW_AT_location attribute with no contents indicates that a
21380 variable has been optimized away. */
21381 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21382 {
21383 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21384 return;
21385 }
21386
21387 /* Handle one degenerate form of location expression specially, to
21388 preserve GDB's previous behavior when section offsets are
21389 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21390 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21391
21392 if (attr_form_is_block (attr)
21393 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21394 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21395 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21396 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21397 && (DW_BLOCK (attr)->size
21398 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21399 {
21400 unsigned int dummy;
21401
21402 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21403 SYMBOL_VALUE_ADDRESS (sym) =
21404 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21405 else
21406 SYMBOL_VALUE_ADDRESS (sym) =
21407 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21408 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21409 fixup_symbol_section (sym, objfile);
21410 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21411 SYMBOL_SECTION (sym));
21412 return;
21413 }
21414
21415 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21416 expression evaluator, and use LOC_COMPUTED only when necessary
21417 (i.e. when the value of a register or memory location is
21418 referenced, or a thread-local block, etc.). Then again, it might
21419 not be worthwhile. I'm assuming that it isn't unless performance
21420 or memory numbers show me otherwise. */
21421
21422 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21423
21424 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21425 cu->has_loclist = true;
21426 }
21427
21428 /* Given a pointer to a DWARF information entry, figure out if we need
21429 to make a symbol table entry for it, and if so, create a new entry
21430 and return a pointer to it.
21431 If TYPE is NULL, determine symbol type from the die, otherwise
21432 used the passed type.
21433 If SPACE is not NULL, use it to hold the new symbol. If it is
21434 NULL, allocate a new symbol on the objfile's obstack. */
21435
21436 static struct symbol *
21437 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21438 struct symbol *space)
21439 {
21440 struct dwarf2_per_objfile *dwarf2_per_objfile
21441 = cu->per_cu->dwarf2_per_objfile;
21442 struct objfile *objfile = dwarf2_per_objfile->objfile;
21443 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21444 struct symbol *sym = NULL;
21445 const char *name;
21446 struct attribute *attr = NULL;
21447 struct attribute *attr2 = NULL;
21448 CORE_ADDR baseaddr;
21449 struct pending **list_to_add = NULL;
21450
21451 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21452
21453 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21454
21455 name = dwarf2_name (die, cu);
21456 if (name)
21457 {
21458 const char *linkagename;
21459 int suppress_add = 0;
21460
21461 if (space)
21462 sym = space;
21463 else
21464 sym = allocate_symbol (objfile);
21465 OBJSTAT (objfile, n_syms++);
21466
21467 /* Cache this symbol's name and the name's demangled form (if any). */
21468 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21469 linkagename = dwarf2_physname (name, die, cu);
21470 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21471
21472 /* Fortran does not have mangling standard and the mangling does differ
21473 between gfortran, iFort etc. */
21474 if (cu->language == language_fortran
21475 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21476 symbol_set_demangled_name (&(sym->ginfo),
21477 dwarf2_full_name (name, die, cu),
21478 NULL);
21479
21480 /* Default assumptions.
21481 Use the passed type or decode it from the die. */
21482 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21483 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21484 if (type != NULL)
21485 SYMBOL_TYPE (sym) = type;
21486 else
21487 SYMBOL_TYPE (sym) = die_type (die, cu);
21488 attr = dwarf2_attr (die,
21489 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21490 cu);
21491 if (attr)
21492 {
21493 SYMBOL_LINE (sym) = DW_UNSND (attr);
21494 }
21495
21496 attr = dwarf2_attr (die,
21497 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21498 cu);
21499 if (attr)
21500 {
21501 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21502 struct file_entry *fe;
21503
21504 if (cu->line_header != NULL)
21505 fe = cu->line_header->file_name_at (file_index);
21506 else
21507 fe = NULL;
21508
21509 if (fe == NULL)
21510 complaint (_("file index out of range"));
21511 else
21512 symbol_set_symtab (sym, fe->symtab);
21513 }
21514
21515 switch (die->tag)
21516 {
21517 case DW_TAG_label:
21518 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21519 if (attr)
21520 {
21521 CORE_ADDR addr;
21522
21523 addr = attr_value_as_address (attr);
21524 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21525 SYMBOL_VALUE_ADDRESS (sym) = addr;
21526 }
21527 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21528 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21529 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21530 add_symbol_to_list (sym, cu->list_in_scope);
21531 break;
21532 case DW_TAG_subprogram:
21533 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21534 finish_block. */
21535 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21536 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21537 if ((attr2 && (DW_UNSND (attr2) != 0))
21538 || cu->language == language_ada)
21539 {
21540 /* Subprograms marked external are stored as a global symbol.
21541 Ada subprograms, whether marked external or not, are always
21542 stored as a global symbol, because we want to be able to
21543 access them globally. For instance, we want to be able
21544 to break on a nested subprogram without having to
21545 specify the context. */
21546 list_to_add = cu->get_builder ()->get_global_symbols ();
21547 }
21548 else
21549 {
21550 list_to_add = cu->list_in_scope;
21551 }
21552 break;
21553 case DW_TAG_inlined_subroutine:
21554 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21555 finish_block. */
21556 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21557 SYMBOL_INLINED (sym) = 1;
21558 list_to_add = cu->list_in_scope;
21559 break;
21560 case DW_TAG_template_value_param:
21561 suppress_add = 1;
21562 /* Fall through. */
21563 case DW_TAG_constant:
21564 case DW_TAG_variable:
21565 case DW_TAG_member:
21566 /* Compilation with minimal debug info may result in
21567 variables with missing type entries. Change the
21568 misleading `void' type to something sensible. */
21569 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21570 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21571
21572 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21573 /* In the case of DW_TAG_member, we should only be called for
21574 static const members. */
21575 if (die->tag == DW_TAG_member)
21576 {
21577 /* dwarf2_add_field uses die_is_declaration,
21578 so we do the same. */
21579 gdb_assert (die_is_declaration (die, cu));
21580 gdb_assert (attr);
21581 }
21582 if (attr)
21583 {
21584 dwarf2_const_value (attr, sym, cu);
21585 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21586 if (!suppress_add)
21587 {
21588 if (attr2 && (DW_UNSND (attr2) != 0))
21589 list_to_add = cu->get_builder ()->get_global_symbols ();
21590 else
21591 list_to_add = cu->list_in_scope;
21592 }
21593 break;
21594 }
21595 attr = dwarf2_attr (die, DW_AT_location, cu);
21596 if (attr)
21597 {
21598 var_decode_location (attr, sym, cu);
21599 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21600
21601 /* Fortran explicitly imports any global symbols to the local
21602 scope by DW_TAG_common_block. */
21603 if (cu->language == language_fortran && die->parent
21604 && die->parent->tag == DW_TAG_common_block)
21605 attr2 = NULL;
21606
21607 if (SYMBOL_CLASS (sym) == LOC_STATIC
21608 && SYMBOL_VALUE_ADDRESS (sym) == 0
21609 && !dwarf2_per_objfile->has_section_at_zero)
21610 {
21611 /* When a static variable is eliminated by the linker,
21612 the corresponding debug information is not stripped
21613 out, but the variable address is set to null;
21614 do not add such variables into symbol table. */
21615 }
21616 else if (attr2 && (DW_UNSND (attr2) != 0))
21617 {
21618 /* Workaround gfortran PR debug/40040 - it uses
21619 DW_AT_location for variables in -fPIC libraries which may
21620 get overriden by other libraries/executable and get
21621 a different address. Resolve it by the minimal symbol
21622 which may come from inferior's executable using copy
21623 relocation. Make this workaround only for gfortran as for
21624 other compilers GDB cannot guess the minimal symbol
21625 Fortran mangling kind. */
21626 if (cu->language == language_fortran && die->parent
21627 && die->parent->tag == DW_TAG_module
21628 && cu->producer
21629 && startswith (cu->producer, "GNU Fortran"))
21630 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21631
21632 /* A variable with DW_AT_external is never static,
21633 but it may be block-scoped. */
21634 list_to_add
21635 = ((cu->list_in_scope
21636 == cu->get_builder ()->get_file_symbols ())
21637 ? cu->get_builder ()->get_global_symbols ()
21638 : cu->list_in_scope);
21639 }
21640 else
21641 list_to_add = cu->list_in_scope;
21642 }
21643 else
21644 {
21645 /* We do not know the address of this symbol.
21646 If it is an external symbol and we have type information
21647 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21648 The address of the variable will then be determined from
21649 the minimal symbol table whenever the variable is
21650 referenced. */
21651 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21652
21653 /* Fortran explicitly imports any global symbols to the local
21654 scope by DW_TAG_common_block. */
21655 if (cu->language == language_fortran && die->parent
21656 && die->parent->tag == DW_TAG_common_block)
21657 {
21658 /* SYMBOL_CLASS doesn't matter here because
21659 read_common_block is going to reset it. */
21660 if (!suppress_add)
21661 list_to_add = cu->list_in_scope;
21662 }
21663 else if (attr2 && (DW_UNSND (attr2) != 0)
21664 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21665 {
21666 /* A variable with DW_AT_external is never static, but it
21667 may be block-scoped. */
21668 list_to_add
21669 = ((cu->list_in_scope
21670 == cu->get_builder ()->get_file_symbols ())
21671 ? cu->get_builder ()->get_global_symbols ()
21672 : cu->list_in_scope);
21673
21674 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21675 }
21676 else if (!die_is_declaration (die, cu))
21677 {
21678 /* Use the default LOC_OPTIMIZED_OUT class. */
21679 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21680 if (!suppress_add)
21681 list_to_add = cu->list_in_scope;
21682 }
21683 }
21684 break;
21685 case DW_TAG_formal_parameter:
21686 {
21687 /* If we are inside a function, mark this as an argument. If
21688 not, we might be looking at an argument to an inlined function
21689 when we do not have enough information to show inlined frames;
21690 pretend it's a local variable in that case so that the user can
21691 still see it. */
21692 struct context_stack *curr
21693 = cu->get_builder ()->get_current_context_stack ();
21694 if (curr != nullptr && curr->name != nullptr)
21695 SYMBOL_IS_ARGUMENT (sym) = 1;
21696 attr = dwarf2_attr (die, DW_AT_location, cu);
21697 if (attr)
21698 {
21699 var_decode_location (attr, sym, cu);
21700 }
21701 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21702 if (attr)
21703 {
21704 dwarf2_const_value (attr, sym, cu);
21705 }
21706
21707 list_to_add = cu->list_in_scope;
21708 }
21709 break;
21710 case DW_TAG_unspecified_parameters:
21711 /* From varargs functions; gdb doesn't seem to have any
21712 interest in this information, so just ignore it for now.
21713 (FIXME?) */
21714 break;
21715 case DW_TAG_template_type_param:
21716 suppress_add = 1;
21717 /* Fall through. */
21718 case DW_TAG_class_type:
21719 case DW_TAG_interface_type:
21720 case DW_TAG_structure_type:
21721 case DW_TAG_union_type:
21722 case DW_TAG_set_type:
21723 case DW_TAG_enumeration_type:
21724 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21725 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21726
21727 {
21728 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21729 really ever be static objects: otherwise, if you try
21730 to, say, break of a class's method and you're in a file
21731 which doesn't mention that class, it won't work unless
21732 the check for all static symbols in lookup_symbol_aux
21733 saves you. See the OtherFileClass tests in
21734 gdb.c++/namespace.exp. */
21735
21736 if (!suppress_add)
21737 {
21738 buildsym_compunit *builder = cu->get_builder ();
21739 list_to_add
21740 = (cu->list_in_scope == builder->get_file_symbols ()
21741 && cu->language == language_cplus
21742 ? builder->get_global_symbols ()
21743 : cu->list_in_scope);
21744
21745 /* The semantics of C++ state that "struct foo {
21746 ... }" also defines a typedef for "foo". */
21747 if (cu->language == language_cplus
21748 || cu->language == language_ada
21749 || cu->language == language_d
21750 || cu->language == language_rust)
21751 {
21752 /* The symbol's name is already allocated along
21753 with this objfile, so we don't need to
21754 duplicate it for the type. */
21755 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21756 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21757 }
21758 }
21759 }
21760 break;
21761 case DW_TAG_typedef:
21762 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21763 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21764 list_to_add = cu->list_in_scope;
21765 break;
21766 case DW_TAG_base_type:
21767 case DW_TAG_subrange_type:
21768 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21769 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21770 list_to_add = cu->list_in_scope;
21771 break;
21772 case DW_TAG_enumerator:
21773 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21774 if (attr)
21775 {
21776 dwarf2_const_value (attr, sym, cu);
21777 }
21778 {
21779 /* NOTE: carlton/2003-11-10: See comment above in the
21780 DW_TAG_class_type, etc. block. */
21781
21782 list_to_add
21783 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21784 && cu->language == language_cplus
21785 ? cu->get_builder ()->get_global_symbols ()
21786 : cu->list_in_scope);
21787 }
21788 break;
21789 case DW_TAG_imported_declaration:
21790 case DW_TAG_namespace:
21791 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21792 list_to_add = cu->get_builder ()->get_global_symbols ();
21793 break;
21794 case DW_TAG_module:
21795 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21796 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21797 list_to_add = cu->get_builder ()->get_global_symbols ();
21798 break;
21799 case DW_TAG_common_block:
21800 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21801 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21802 add_symbol_to_list (sym, cu->list_in_scope);
21803 break;
21804 default:
21805 /* Not a tag we recognize. Hopefully we aren't processing
21806 trash data, but since we must specifically ignore things
21807 we don't recognize, there is nothing else we should do at
21808 this point. */
21809 complaint (_("unsupported tag: '%s'"),
21810 dwarf_tag_name (die->tag));
21811 break;
21812 }
21813
21814 if (suppress_add)
21815 {
21816 sym->hash_next = objfile->template_symbols;
21817 objfile->template_symbols = sym;
21818 list_to_add = NULL;
21819 }
21820
21821 if (list_to_add != NULL)
21822 add_symbol_to_list (sym, list_to_add);
21823
21824 /* For the benefit of old versions of GCC, check for anonymous
21825 namespaces based on the demangled name. */
21826 if (!cu->processing_has_namespace_info
21827 && cu->language == language_cplus)
21828 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21829 }
21830 return (sym);
21831 }
21832
21833 /* Given an attr with a DW_FORM_dataN value in host byte order,
21834 zero-extend it as appropriate for the symbol's type. The DWARF
21835 standard (v4) is not entirely clear about the meaning of using
21836 DW_FORM_dataN for a constant with a signed type, where the type is
21837 wider than the data. The conclusion of a discussion on the DWARF
21838 list was that this is unspecified. We choose to always zero-extend
21839 because that is the interpretation long in use by GCC. */
21840
21841 static gdb_byte *
21842 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21843 struct dwarf2_cu *cu, LONGEST *value, int bits)
21844 {
21845 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21846 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21847 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21848 LONGEST l = DW_UNSND (attr);
21849
21850 if (bits < sizeof (*value) * 8)
21851 {
21852 l &= ((LONGEST) 1 << bits) - 1;
21853 *value = l;
21854 }
21855 else if (bits == sizeof (*value) * 8)
21856 *value = l;
21857 else
21858 {
21859 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21860 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21861 return bytes;
21862 }
21863
21864 return NULL;
21865 }
21866
21867 /* Read a constant value from an attribute. Either set *VALUE, or if
21868 the value does not fit in *VALUE, set *BYTES - either already
21869 allocated on the objfile obstack, or newly allocated on OBSTACK,
21870 or, set *BATON, if we translated the constant to a location
21871 expression. */
21872
21873 static void
21874 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21875 const char *name, struct obstack *obstack,
21876 struct dwarf2_cu *cu,
21877 LONGEST *value, const gdb_byte **bytes,
21878 struct dwarf2_locexpr_baton **baton)
21879 {
21880 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21881 struct comp_unit_head *cu_header = &cu->header;
21882 struct dwarf_block *blk;
21883 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21884 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21885
21886 *value = 0;
21887 *bytes = NULL;
21888 *baton = NULL;
21889
21890 switch (attr->form)
21891 {
21892 case DW_FORM_addr:
21893 case DW_FORM_addrx:
21894 case DW_FORM_GNU_addr_index:
21895 {
21896 gdb_byte *data;
21897
21898 if (TYPE_LENGTH (type) != cu_header->addr_size)
21899 dwarf2_const_value_length_mismatch_complaint (name,
21900 cu_header->addr_size,
21901 TYPE_LENGTH (type));
21902 /* Symbols of this form are reasonably rare, so we just
21903 piggyback on the existing location code rather than writing
21904 a new implementation of symbol_computed_ops. */
21905 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21906 (*baton)->per_cu = cu->per_cu;
21907 gdb_assert ((*baton)->per_cu);
21908
21909 (*baton)->size = 2 + cu_header->addr_size;
21910 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21911 (*baton)->data = data;
21912
21913 data[0] = DW_OP_addr;
21914 store_unsigned_integer (&data[1], cu_header->addr_size,
21915 byte_order, DW_ADDR (attr));
21916 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21917 }
21918 break;
21919 case DW_FORM_string:
21920 case DW_FORM_strp:
21921 case DW_FORM_strx:
21922 case DW_FORM_GNU_str_index:
21923 case DW_FORM_GNU_strp_alt:
21924 /* DW_STRING is already allocated on the objfile obstack, point
21925 directly to it. */
21926 *bytes = (const gdb_byte *) DW_STRING (attr);
21927 break;
21928 case DW_FORM_block1:
21929 case DW_FORM_block2:
21930 case DW_FORM_block4:
21931 case DW_FORM_block:
21932 case DW_FORM_exprloc:
21933 case DW_FORM_data16:
21934 blk = DW_BLOCK (attr);
21935 if (TYPE_LENGTH (type) != blk->size)
21936 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21937 TYPE_LENGTH (type));
21938 *bytes = blk->data;
21939 break;
21940
21941 /* The DW_AT_const_value attributes are supposed to carry the
21942 symbol's value "represented as it would be on the target
21943 architecture." By the time we get here, it's already been
21944 converted to host endianness, so we just need to sign- or
21945 zero-extend it as appropriate. */
21946 case DW_FORM_data1:
21947 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21948 break;
21949 case DW_FORM_data2:
21950 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21951 break;
21952 case DW_FORM_data4:
21953 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21954 break;
21955 case DW_FORM_data8:
21956 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21957 break;
21958
21959 case DW_FORM_sdata:
21960 case DW_FORM_implicit_const:
21961 *value = DW_SND (attr);
21962 break;
21963
21964 case DW_FORM_udata:
21965 *value = DW_UNSND (attr);
21966 break;
21967
21968 default:
21969 complaint (_("unsupported const value attribute form: '%s'"),
21970 dwarf_form_name (attr->form));
21971 *value = 0;
21972 break;
21973 }
21974 }
21975
21976
21977 /* Copy constant value from an attribute to a symbol. */
21978
21979 static void
21980 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21981 struct dwarf2_cu *cu)
21982 {
21983 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21984 LONGEST value;
21985 const gdb_byte *bytes;
21986 struct dwarf2_locexpr_baton *baton;
21987
21988 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21989 SYMBOL_PRINT_NAME (sym),
21990 &objfile->objfile_obstack, cu,
21991 &value, &bytes, &baton);
21992
21993 if (baton != NULL)
21994 {
21995 SYMBOL_LOCATION_BATON (sym) = baton;
21996 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21997 }
21998 else if (bytes != NULL)
21999 {
22000 SYMBOL_VALUE_BYTES (sym) = bytes;
22001 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22002 }
22003 else
22004 {
22005 SYMBOL_VALUE (sym) = value;
22006 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22007 }
22008 }
22009
22010 /* Return the type of the die in question using its DW_AT_type attribute. */
22011
22012 static struct type *
22013 die_type (struct die_info *die, struct dwarf2_cu *cu)
22014 {
22015 struct attribute *type_attr;
22016
22017 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22018 if (!type_attr)
22019 {
22020 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22021 /* A missing DW_AT_type represents a void type. */
22022 return objfile_type (objfile)->builtin_void;
22023 }
22024
22025 return lookup_die_type (die, type_attr, cu);
22026 }
22027
22028 /* True iff CU's producer generates GNAT Ada auxiliary information
22029 that allows to find parallel types through that information instead
22030 of having to do expensive parallel lookups by type name. */
22031
22032 static int
22033 need_gnat_info (struct dwarf2_cu *cu)
22034 {
22035 /* Assume that the Ada compiler was GNAT, which always produces
22036 the auxiliary information. */
22037 return (cu->language == language_ada);
22038 }
22039
22040 /* Return the auxiliary type of the die in question using its
22041 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22042 attribute is not present. */
22043
22044 static struct type *
22045 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22046 {
22047 struct attribute *type_attr;
22048
22049 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22050 if (!type_attr)
22051 return NULL;
22052
22053 return lookup_die_type (die, type_attr, cu);
22054 }
22055
22056 /* If DIE has a descriptive_type attribute, then set the TYPE's
22057 descriptive type accordingly. */
22058
22059 static void
22060 set_descriptive_type (struct type *type, struct die_info *die,
22061 struct dwarf2_cu *cu)
22062 {
22063 struct type *descriptive_type = die_descriptive_type (die, cu);
22064
22065 if (descriptive_type)
22066 {
22067 ALLOCATE_GNAT_AUX_TYPE (type);
22068 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22069 }
22070 }
22071
22072 /* Return the containing type of the die in question using its
22073 DW_AT_containing_type attribute. */
22074
22075 static struct type *
22076 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22077 {
22078 struct attribute *type_attr;
22079 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22080
22081 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22082 if (!type_attr)
22083 error (_("Dwarf Error: Problem turning containing type into gdb type "
22084 "[in module %s]"), objfile_name (objfile));
22085
22086 return lookup_die_type (die, type_attr, cu);
22087 }
22088
22089 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22090
22091 static struct type *
22092 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22093 {
22094 struct dwarf2_per_objfile *dwarf2_per_objfile
22095 = cu->per_cu->dwarf2_per_objfile;
22096 struct objfile *objfile = dwarf2_per_objfile->objfile;
22097 char *saved;
22098
22099 std::string message
22100 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22101 objfile_name (objfile),
22102 sect_offset_str (cu->header.sect_off),
22103 sect_offset_str (die->sect_off));
22104 saved = obstack_strdup (&objfile->objfile_obstack, message);
22105
22106 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22107 }
22108
22109 /* Look up the type of DIE in CU using its type attribute ATTR.
22110 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22111 DW_AT_containing_type.
22112 If there is no type substitute an error marker. */
22113
22114 static struct type *
22115 lookup_die_type (struct die_info *die, const struct attribute *attr,
22116 struct dwarf2_cu *cu)
22117 {
22118 struct dwarf2_per_objfile *dwarf2_per_objfile
22119 = cu->per_cu->dwarf2_per_objfile;
22120 struct objfile *objfile = dwarf2_per_objfile->objfile;
22121 struct type *this_type;
22122
22123 gdb_assert (attr->name == DW_AT_type
22124 || attr->name == DW_AT_GNAT_descriptive_type
22125 || attr->name == DW_AT_containing_type);
22126
22127 /* First see if we have it cached. */
22128
22129 if (attr->form == DW_FORM_GNU_ref_alt)
22130 {
22131 struct dwarf2_per_cu_data *per_cu;
22132 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22133
22134 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22135 dwarf2_per_objfile);
22136 this_type = get_die_type_at_offset (sect_off, per_cu);
22137 }
22138 else if (attr_form_is_ref (attr))
22139 {
22140 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22141
22142 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22143 }
22144 else if (attr->form == DW_FORM_ref_sig8)
22145 {
22146 ULONGEST signature = DW_SIGNATURE (attr);
22147
22148 return get_signatured_type (die, signature, cu);
22149 }
22150 else
22151 {
22152 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22153 " at %s [in module %s]"),
22154 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22155 objfile_name (objfile));
22156 return build_error_marker_type (cu, die);
22157 }
22158
22159 /* If not cached we need to read it in. */
22160
22161 if (this_type == NULL)
22162 {
22163 struct die_info *type_die = NULL;
22164 struct dwarf2_cu *type_cu = cu;
22165
22166 if (attr_form_is_ref (attr))
22167 type_die = follow_die_ref (die, attr, &type_cu);
22168 if (type_die == NULL)
22169 return build_error_marker_type (cu, die);
22170 /* If we find the type now, it's probably because the type came
22171 from an inter-CU reference and the type's CU got expanded before
22172 ours. */
22173 this_type = read_type_die (type_die, type_cu);
22174 }
22175
22176 /* If we still don't have a type use an error marker. */
22177
22178 if (this_type == NULL)
22179 return build_error_marker_type (cu, die);
22180
22181 return this_type;
22182 }
22183
22184 /* Return the type in DIE, CU.
22185 Returns NULL for invalid types.
22186
22187 This first does a lookup in die_type_hash,
22188 and only reads the die in if necessary.
22189
22190 NOTE: This can be called when reading in partial or full symbols. */
22191
22192 static struct type *
22193 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22194 {
22195 struct type *this_type;
22196
22197 this_type = get_die_type (die, cu);
22198 if (this_type)
22199 return this_type;
22200
22201 return read_type_die_1 (die, cu);
22202 }
22203
22204 /* Read the type in DIE, CU.
22205 Returns NULL for invalid types. */
22206
22207 static struct type *
22208 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22209 {
22210 struct type *this_type = NULL;
22211
22212 switch (die->tag)
22213 {
22214 case DW_TAG_class_type:
22215 case DW_TAG_interface_type:
22216 case DW_TAG_structure_type:
22217 case DW_TAG_union_type:
22218 this_type = read_structure_type (die, cu);
22219 break;
22220 case DW_TAG_enumeration_type:
22221 this_type = read_enumeration_type (die, cu);
22222 break;
22223 case DW_TAG_subprogram:
22224 case DW_TAG_subroutine_type:
22225 case DW_TAG_inlined_subroutine:
22226 this_type = read_subroutine_type (die, cu);
22227 break;
22228 case DW_TAG_array_type:
22229 this_type = read_array_type (die, cu);
22230 break;
22231 case DW_TAG_set_type:
22232 this_type = read_set_type (die, cu);
22233 break;
22234 case DW_TAG_pointer_type:
22235 this_type = read_tag_pointer_type (die, cu);
22236 break;
22237 case DW_TAG_ptr_to_member_type:
22238 this_type = read_tag_ptr_to_member_type (die, cu);
22239 break;
22240 case DW_TAG_reference_type:
22241 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22242 break;
22243 case DW_TAG_rvalue_reference_type:
22244 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22245 break;
22246 case DW_TAG_const_type:
22247 this_type = read_tag_const_type (die, cu);
22248 break;
22249 case DW_TAG_volatile_type:
22250 this_type = read_tag_volatile_type (die, cu);
22251 break;
22252 case DW_TAG_restrict_type:
22253 this_type = read_tag_restrict_type (die, cu);
22254 break;
22255 case DW_TAG_string_type:
22256 this_type = read_tag_string_type (die, cu);
22257 break;
22258 case DW_TAG_typedef:
22259 this_type = read_typedef (die, cu);
22260 break;
22261 case DW_TAG_subrange_type:
22262 this_type = read_subrange_type (die, cu);
22263 break;
22264 case DW_TAG_base_type:
22265 this_type = read_base_type (die, cu);
22266 break;
22267 case DW_TAG_unspecified_type:
22268 this_type = read_unspecified_type (die, cu);
22269 break;
22270 case DW_TAG_namespace:
22271 this_type = read_namespace_type (die, cu);
22272 break;
22273 case DW_TAG_module:
22274 this_type = read_module_type (die, cu);
22275 break;
22276 case DW_TAG_atomic_type:
22277 this_type = read_tag_atomic_type (die, cu);
22278 break;
22279 default:
22280 complaint (_("unexpected tag in read_type_die: '%s'"),
22281 dwarf_tag_name (die->tag));
22282 break;
22283 }
22284
22285 return this_type;
22286 }
22287
22288 /* See if we can figure out if the class lives in a namespace. We do
22289 this by looking for a member function; its demangled name will
22290 contain namespace info, if there is any.
22291 Return the computed name or NULL.
22292 Space for the result is allocated on the objfile's obstack.
22293 This is the full-die version of guess_partial_die_structure_name.
22294 In this case we know DIE has no useful parent. */
22295
22296 static char *
22297 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22298 {
22299 struct die_info *spec_die;
22300 struct dwarf2_cu *spec_cu;
22301 struct die_info *child;
22302 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22303
22304 spec_cu = cu;
22305 spec_die = die_specification (die, &spec_cu);
22306 if (spec_die != NULL)
22307 {
22308 die = spec_die;
22309 cu = spec_cu;
22310 }
22311
22312 for (child = die->child;
22313 child != NULL;
22314 child = child->sibling)
22315 {
22316 if (child->tag == DW_TAG_subprogram)
22317 {
22318 const char *linkage_name = dw2_linkage_name (child, cu);
22319
22320 if (linkage_name != NULL)
22321 {
22322 char *actual_name
22323 = language_class_name_from_physname (cu->language_defn,
22324 linkage_name);
22325 char *name = NULL;
22326
22327 if (actual_name != NULL)
22328 {
22329 const char *die_name = dwarf2_name (die, cu);
22330
22331 if (die_name != NULL
22332 && strcmp (die_name, actual_name) != 0)
22333 {
22334 /* Strip off the class name from the full name.
22335 We want the prefix. */
22336 int die_name_len = strlen (die_name);
22337 int actual_name_len = strlen (actual_name);
22338
22339 /* Test for '::' as a sanity check. */
22340 if (actual_name_len > die_name_len + 2
22341 && actual_name[actual_name_len
22342 - die_name_len - 1] == ':')
22343 name = obstack_strndup (
22344 &objfile->per_bfd->storage_obstack,
22345 actual_name, actual_name_len - die_name_len - 2);
22346 }
22347 }
22348 xfree (actual_name);
22349 return name;
22350 }
22351 }
22352 }
22353
22354 return NULL;
22355 }
22356
22357 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22358 prefix part in such case. See
22359 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22360
22361 static const char *
22362 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22363 {
22364 struct attribute *attr;
22365 const char *base;
22366
22367 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22368 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22369 return NULL;
22370
22371 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22372 return NULL;
22373
22374 attr = dw2_linkage_name_attr (die, cu);
22375 if (attr == NULL || DW_STRING (attr) == NULL)
22376 return NULL;
22377
22378 /* dwarf2_name had to be already called. */
22379 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22380
22381 /* Strip the base name, keep any leading namespaces/classes. */
22382 base = strrchr (DW_STRING (attr), ':');
22383 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22384 return "";
22385
22386 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22387 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22388 DW_STRING (attr),
22389 &base[-1] - DW_STRING (attr));
22390 }
22391
22392 /* Return the name of the namespace/class that DIE is defined within,
22393 or "" if we can't tell. The caller should not xfree the result.
22394
22395 For example, if we're within the method foo() in the following
22396 code:
22397
22398 namespace N {
22399 class C {
22400 void foo () {
22401 }
22402 };
22403 }
22404
22405 then determine_prefix on foo's die will return "N::C". */
22406
22407 static const char *
22408 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22409 {
22410 struct dwarf2_per_objfile *dwarf2_per_objfile
22411 = cu->per_cu->dwarf2_per_objfile;
22412 struct die_info *parent, *spec_die;
22413 struct dwarf2_cu *spec_cu;
22414 struct type *parent_type;
22415 const char *retval;
22416
22417 if (cu->language != language_cplus
22418 && cu->language != language_fortran && cu->language != language_d
22419 && cu->language != language_rust)
22420 return "";
22421
22422 retval = anonymous_struct_prefix (die, cu);
22423 if (retval)
22424 return retval;
22425
22426 /* We have to be careful in the presence of DW_AT_specification.
22427 For example, with GCC 3.4, given the code
22428
22429 namespace N {
22430 void foo() {
22431 // Definition of N::foo.
22432 }
22433 }
22434
22435 then we'll have a tree of DIEs like this:
22436
22437 1: DW_TAG_compile_unit
22438 2: DW_TAG_namespace // N
22439 3: DW_TAG_subprogram // declaration of N::foo
22440 4: DW_TAG_subprogram // definition of N::foo
22441 DW_AT_specification // refers to die #3
22442
22443 Thus, when processing die #4, we have to pretend that we're in
22444 the context of its DW_AT_specification, namely the contex of die
22445 #3. */
22446 spec_cu = cu;
22447 spec_die = die_specification (die, &spec_cu);
22448 if (spec_die == NULL)
22449 parent = die->parent;
22450 else
22451 {
22452 parent = spec_die->parent;
22453 cu = spec_cu;
22454 }
22455
22456 if (parent == NULL)
22457 return "";
22458 else if (parent->building_fullname)
22459 {
22460 const char *name;
22461 const char *parent_name;
22462
22463 /* It has been seen on RealView 2.2 built binaries,
22464 DW_TAG_template_type_param types actually _defined_ as
22465 children of the parent class:
22466
22467 enum E {};
22468 template class <class Enum> Class{};
22469 Class<enum E> class_e;
22470
22471 1: DW_TAG_class_type (Class)
22472 2: DW_TAG_enumeration_type (E)
22473 3: DW_TAG_enumerator (enum1:0)
22474 3: DW_TAG_enumerator (enum2:1)
22475 ...
22476 2: DW_TAG_template_type_param
22477 DW_AT_type DW_FORM_ref_udata (E)
22478
22479 Besides being broken debug info, it can put GDB into an
22480 infinite loop. Consider:
22481
22482 When we're building the full name for Class<E>, we'll start
22483 at Class, and go look over its template type parameters,
22484 finding E. We'll then try to build the full name of E, and
22485 reach here. We're now trying to build the full name of E,
22486 and look over the parent DIE for containing scope. In the
22487 broken case, if we followed the parent DIE of E, we'd again
22488 find Class, and once again go look at its template type
22489 arguments, etc., etc. Simply don't consider such parent die
22490 as source-level parent of this die (it can't be, the language
22491 doesn't allow it), and break the loop here. */
22492 name = dwarf2_name (die, cu);
22493 parent_name = dwarf2_name (parent, cu);
22494 complaint (_("template param type '%s' defined within parent '%s'"),
22495 name ? name : "<unknown>",
22496 parent_name ? parent_name : "<unknown>");
22497 return "";
22498 }
22499 else
22500 switch (parent->tag)
22501 {
22502 case DW_TAG_namespace:
22503 parent_type = read_type_die (parent, cu);
22504 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22505 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22506 Work around this problem here. */
22507 if (cu->language == language_cplus
22508 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22509 return "";
22510 /* We give a name to even anonymous namespaces. */
22511 return TYPE_NAME (parent_type);
22512 case DW_TAG_class_type:
22513 case DW_TAG_interface_type:
22514 case DW_TAG_structure_type:
22515 case DW_TAG_union_type:
22516 case DW_TAG_module:
22517 parent_type = read_type_die (parent, cu);
22518 if (TYPE_NAME (parent_type) != NULL)
22519 return TYPE_NAME (parent_type);
22520 else
22521 /* An anonymous structure is only allowed non-static data
22522 members; no typedefs, no member functions, et cetera.
22523 So it does not need a prefix. */
22524 return "";
22525 case DW_TAG_compile_unit:
22526 case DW_TAG_partial_unit:
22527 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22528 if (cu->language == language_cplus
22529 && !dwarf2_per_objfile->types.empty ()
22530 && die->child != NULL
22531 && (die->tag == DW_TAG_class_type
22532 || die->tag == DW_TAG_structure_type
22533 || die->tag == DW_TAG_union_type))
22534 {
22535 char *name = guess_full_die_structure_name (die, cu);
22536 if (name != NULL)
22537 return name;
22538 }
22539 return "";
22540 case DW_TAG_enumeration_type:
22541 parent_type = read_type_die (parent, cu);
22542 if (TYPE_DECLARED_CLASS (parent_type))
22543 {
22544 if (TYPE_NAME (parent_type) != NULL)
22545 return TYPE_NAME (parent_type);
22546 return "";
22547 }
22548 /* Fall through. */
22549 default:
22550 return determine_prefix (parent, cu);
22551 }
22552 }
22553
22554 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22555 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22556 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22557 an obconcat, otherwise allocate storage for the result. The CU argument is
22558 used to determine the language and hence, the appropriate separator. */
22559
22560 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22561
22562 static char *
22563 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22564 int physname, struct dwarf2_cu *cu)
22565 {
22566 const char *lead = "";
22567 const char *sep;
22568
22569 if (suffix == NULL || suffix[0] == '\0'
22570 || prefix == NULL || prefix[0] == '\0')
22571 sep = "";
22572 else if (cu->language == language_d)
22573 {
22574 /* For D, the 'main' function could be defined in any module, but it
22575 should never be prefixed. */
22576 if (strcmp (suffix, "D main") == 0)
22577 {
22578 prefix = "";
22579 sep = "";
22580 }
22581 else
22582 sep = ".";
22583 }
22584 else if (cu->language == language_fortran && physname)
22585 {
22586 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22587 DW_AT_MIPS_linkage_name is preferred and used instead. */
22588
22589 lead = "__";
22590 sep = "_MOD_";
22591 }
22592 else
22593 sep = "::";
22594
22595 if (prefix == NULL)
22596 prefix = "";
22597 if (suffix == NULL)
22598 suffix = "";
22599
22600 if (obs == NULL)
22601 {
22602 char *retval
22603 = ((char *)
22604 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22605
22606 strcpy (retval, lead);
22607 strcat (retval, prefix);
22608 strcat (retval, sep);
22609 strcat (retval, suffix);
22610 return retval;
22611 }
22612 else
22613 {
22614 /* We have an obstack. */
22615 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22616 }
22617 }
22618
22619 /* Return sibling of die, NULL if no sibling. */
22620
22621 static struct die_info *
22622 sibling_die (struct die_info *die)
22623 {
22624 return die->sibling;
22625 }
22626
22627 /* Get name of a die, return NULL if not found. */
22628
22629 static const char *
22630 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22631 struct obstack *obstack)
22632 {
22633 if (name && cu->language == language_cplus)
22634 {
22635 std::string canon_name = cp_canonicalize_string (name);
22636
22637 if (!canon_name.empty ())
22638 {
22639 if (canon_name != name)
22640 name = obstack_strdup (obstack, canon_name);
22641 }
22642 }
22643
22644 return name;
22645 }
22646
22647 /* Get name of a die, return NULL if not found.
22648 Anonymous namespaces are converted to their magic string. */
22649
22650 static const char *
22651 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22652 {
22653 struct attribute *attr;
22654 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22655
22656 attr = dwarf2_attr (die, DW_AT_name, cu);
22657 if ((!attr || !DW_STRING (attr))
22658 && die->tag != DW_TAG_namespace
22659 && die->tag != DW_TAG_class_type
22660 && die->tag != DW_TAG_interface_type
22661 && die->tag != DW_TAG_structure_type
22662 && die->tag != DW_TAG_union_type)
22663 return NULL;
22664
22665 switch (die->tag)
22666 {
22667 case DW_TAG_compile_unit:
22668 case DW_TAG_partial_unit:
22669 /* Compilation units have a DW_AT_name that is a filename, not
22670 a source language identifier. */
22671 case DW_TAG_enumeration_type:
22672 case DW_TAG_enumerator:
22673 /* These tags always have simple identifiers already; no need
22674 to canonicalize them. */
22675 return DW_STRING (attr);
22676
22677 case DW_TAG_namespace:
22678 if (attr != NULL && DW_STRING (attr) != NULL)
22679 return DW_STRING (attr);
22680 return CP_ANONYMOUS_NAMESPACE_STR;
22681
22682 case DW_TAG_class_type:
22683 case DW_TAG_interface_type:
22684 case DW_TAG_structure_type:
22685 case DW_TAG_union_type:
22686 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22687 structures or unions. These were of the form "._%d" in GCC 4.1,
22688 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22689 and GCC 4.4. We work around this problem by ignoring these. */
22690 if (attr && DW_STRING (attr)
22691 && (startswith (DW_STRING (attr), "._")
22692 || startswith (DW_STRING (attr), "<anonymous")))
22693 return NULL;
22694
22695 /* GCC might emit a nameless typedef that has a linkage name. See
22696 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22697 if (!attr || DW_STRING (attr) == NULL)
22698 {
22699 char *demangled = NULL;
22700
22701 attr = dw2_linkage_name_attr (die, cu);
22702 if (attr == NULL || DW_STRING (attr) == NULL)
22703 return NULL;
22704
22705 /* Avoid demangling DW_STRING (attr) the second time on a second
22706 call for the same DIE. */
22707 if (!DW_STRING_IS_CANONICAL (attr))
22708 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22709
22710 if (demangled)
22711 {
22712 const char *base;
22713
22714 /* FIXME: we already did this for the partial symbol... */
22715 DW_STRING (attr)
22716 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22717 demangled);
22718 DW_STRING_IS_CANONICAL (attr) = 1;
22719 xfree (demangled);
22720
22721 /* Strip any leading namespaces/classes, keep only the base name.
22722 DW_AT_name for named DIEs does not contain the prefixes. */
22723 base = strrchr (DW_STRING (attr), ':');
22724 if (base && base > DW_STRING (attr) && base[-1] == ':')
22725 return &base[1];
22726 else
22727 return DW_STRING (attr);
22728 }
22729 }
22730 break;
22731
22732 default:
22733 break;
22734 }
22735
22736 if (!DW_STRING_IS_CANONICAL (attr))
22737 {
22738 DW_STRING (attr)
22739 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22740 &objfile->per_bfd->storage_obstack);
22741 DW_STRING_IS_CANONICAL (attr) = 1;
22742 }
22743 return DW_STRING (attr);
22744 }
22745
22746 /* Return the die that this die in an extension of, or NULL if there
22747 is none. *EXT_CU is the CU containing DIE on input, and the CU
22748 containing the return value on output. */
22749
22750 static struct die_info *
22751 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22752 {
22753 struct attribute *attr;
22754
22755 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22756 if (attr == NULL)
22757 return NULL;
22758
22759 return follow_die_ref (die, attr, ext_cu);
22760 }
22761
22762 /* A convenience function that returns an "unknown" DWARF name,
22763 including the value of V. STR is the name of the entity being
22764 printed, e.g., "TAG". */
22765
22766 static const char *
22767 dwarf_unknown (const char *str, unsigned v)
22768 {
22769 char *cell = get_print_cell ();
22770 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22771 return cell;
22772 }
22773
22774 /* Convert a DIE tag into its string name. */
22775
22776 static const char *
22777 dwarf_tag_name (unsigned tag)
22778 {
22779 const char *name = get_DW_TAG_name (tag);
22780
22781 if (name == NULL)
22782 return dwarf_unknown ("TAG", tag);
22783
22784 return name;
22785 }
22786
22787 /* Convert a DWARF attribute code into its string name. */
22788
22789 static const char *
22790 dwarf_attr_name (unsigned attr)
22791 {
22792 const char *name;
22793
22794 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22795 if (attr == DW_AT_MIPS_fde)
22796 return "DW_AT_MIPS_fde";
22797 #else
22798 if (attr == DW_AT_HP_block_index)
22799 return "DW_AT_HP_block_index";
22800 #endif
22801
22802 name = get_DW_AT_name (attr);
22803
22804 if (name == NULL)
22805 return dwarf_unknown ("AT", attr);
22806
22807 return name;
22808 }
22809
22810 /* Convert a DWARF value form code into its string name. */
22811
22812 static const char *
22813 dwarf_form_name (unsigned form)
22814 {
22815 const char *name = get_DW_FORM_name (form);
22816
22817 if (name == NULL)
22818 return dwarf_unknown ("FORM", form);
22819
22820 return name;
22821 }
22822
22823 static const char *
22824 dwarf_bool_name (unsigned mybool)
22825 {
22826 if (mybool)
22827 return "TRUE";
22828 else
22829 return "FALSE";
22830 }
22831
22832 /* Convert a DWARF type code into its string name. */
22833
22834 static const char *
22835 dwarf_type_encoding_name (unsigned enc)
22836 {
22837 const char *name = get_DW_ATE_name (enc);
22838
22839 if (name == NULL)
22840 return dwarf_unknown ("ATE", enc);
22841
22842 return name;
22843 }
22844
22845 static void
22846 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22847 {
22848 unsigned int i;
22849
22850 print_spaces (indent, f);
22851 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22852 dwarf_tag_name (die->tag), die->abbrev,
22853 sect_offset_str (die->sect_off));
22854
22855 if (die->parent != NULL)
22856 {
22857 print_spaces (indent, f);
22858 fprintf_unfiltered (f, " parent at offset: %s\n",
22859 sect_offset_str (die->parent->sect_off));
22860 }
22861
22862 print_spaces (indent, f);
22863 fprintf_unfiltered (f, " has children: %s\n",
22864 dwarf_bool_name (die->child != NULL));
22865
22866 print_spaces (indent, f);
22867 fprintf_unfiltered (f, " attributes:\n");
22868
22869 for (i = 0; i < die->num_attrs; ++i)
22870 {
22871 print_spaces (indent, f);
22872 fprintf_unfiltered (f, " %s (%s) ",
22873 dwarf_attr_name (die->attrs[i].name),
22874 dwarf_form_name (die->attrs[i].form));
22875
22876 switch (die->attrs[i].form)
22877 {
22878 case DW_FORM_addr:
22879 case DW_FORM_addrx:
22880 case DW_FORM_GNU_addr_index:
22881 fprintf_unfiltered (f, "address: ");
22882 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22883 break;
22884 case DW_FORM_block2:
22885 case DW_FORM_block4:
22886 case DW_FORM_block:
22887 case DW_FORM_block1:
22888 fprintf_unfiltered (f, "block: size %s",
22889 pulongest (DW_BLOCK (&die->attrs[i])->size));
22890 break;
22891 case DW_FORM_exprloc:
22892 fprintf_unfiltered (f, "expression: size %s",
22893 pulongest (DW_BLOCK (&die->attrs[i])->size));
22894 break;
22895 case DW_FORM_data16:
22896 fprintf_unfiltered (f, "constant of 16 bytes");
22897 break;
22898 case DW_FORM_ref_addr:
22899 fprintf_unfiltered (f, "ref address: ");
22900 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22901 break;
22902 case DW_FORM_GNU_ref_alt:
22903 fprintf_unfiltered (f, "alt ref address: ");
22904 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22905 break;
22906 case DW_FORM_ref1:
22907 case DW_FORM_ref2:
22908 case DW_FORM_ref4:
22909 case DW_FORM_ref8:
22910 case DW_FORM_ref_udata:
22911 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22912 (long) (DW_UNSND (&die->attrs[i])));
22913 break;
22914 case DW_FORM_data1:
22915 case DW_FORM_data2:
22916 case DW_FORM_data4:
22917 case DW_FORM_data8:
22918 case DW_FORM_udata:
22919 case DW_FORM_sdata:
22920 fprintf_unfiltered (f, "constant: %s",
22921 pulongest (DW_UNSND (&die->attrs[i])));
22922 break;
22923 case DW_FORM_sec_offset:
22924 fprintf_unfiltered (f, "section offset: %s",
22925 pulongest (DW_UNSND (&die->attrs[i])));
22926 break;
22927 case DW_FORM_ref_sig8:
22928 fprintf_unfiltered (f, "signature: %s",
22929 hex_string (DW_SIGNATURE (&die->attrs[i])));
22930 break;
22931 case DW_FORM_string:
22932 case DW_FORM_strp:
22933 case DW_FORM_line_strp:
22934 case DW_FORM_strx:
22935 case DW_FORM_GNU_str_index:
22936 case DW_FORM_GNU_strp_alt:
22937 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22938 DW_STRING (&die->attrs[i])
22939 ? DW_STRING (&die->attrs[i]) : "",
22940 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22941 break;
22942 case DW_FORM_flag:
22943 if (DW_UNSND (&die->attrs[i]))
22944 fprintf_unfiltered (f, "flag: TRUE");
22945 else
22946 fprintf_unfiltered (f, "flag: FALSE");
22947 break;
22948 case DW_FORM_flag_present:
22949 fprintf_unfiltered (f, "flag: TRUE");
22950 break;
22951 case DW_FORM_indirect:
22952 /* The reader will have reduced the indirect form to
22953 the "base form" so this form should not occur. */
22954 fprintf_unfiltered (f,
22955 "unexpected attribute form: DW_FORM_indirect");
22956 break;
22957 case DW_FORM_implicit_const:
22958 fprintf_unfiltered (f, "constant: %s",
22959 plongest (DW_SND (&die->attrs[i])));
22960 break;
22961 default:
22962 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22963 die->attrs[i].form);
22964 break;
22965 }
22966 fprintf_unfiltered (f, "\n");
22967 }
22968 }
22969
22970 static void
22971 dump_die_for_error (struct die_info *die)
22972 {
22973 dump_die_shallow (gdb_stderr, 0, die);
22974 }
22975
22976 static void
22977 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22978 {
22979 int indent = level * 4;
22980
22981 gdb_assert (die != NULL);
22982
22983 if (level >= max_level)
22984 return;
22985
22986 dump_die_shallow (f, indent, die);
22987
22988 if (die->child != NULL)
22989 {
22990 print_spaces (indent, f);
22991 fprintf_unfiltered (f, " Children:");
22992 if (level + 1 < max_level)
22993 {
22994 fprintf_unfiltered (f, "\n");
22995 dump_die_1 (f, level + 1, max_level, die->child);
22996 }
22997 else
22998 {
22999 fprintf_unfiltered (f,
23000 " [not printed, max nesting level reached]\n");
23001 }
23002 }
23003
23004 if (die->sibling != NULL && level > 0)
23005 {
23006 dump_die_1 (f, level, max_level, die->sibling);
23007 }
23008 }
23009
23010 /* This is called from the pdie macro in gdbinit.in.
23011 It's not static so gcc will keep a copy callable from gdb. */
23012
23013 void
23014 dump_die (struct die_info *die, int max_level)
23015 {
23016 dump_die_1 (gdb_stdlog, 0, max_level, die);
23017 }
23018
23019 static void
23020 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23021 {
23022 void **slot;
23023
23024 slot = htab_find_slot_with_hash (cu->die_hash, die,
23025 to_underlying (die->sect_off),
23026 INSERT);
23027
23028 *slot = die;
23029 }
23030
23031 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23032 required kind. */
23033
23034 static sect_offset
23035 dwarf2_get_ref_die_offset (const struct attribute *attr)
23036 {
23037 if (attr_form_is_ref (attr))
23038 return (sect_offset) DW_UNSND (attr);
23039
23040 complaint (_("unsupported die ref attribute form: '%s'"),
23041 dwarf_form_name (attr->form));
23042 return {};
23043 }
23044
23045 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23046 * the value held by the attribute is not constant. */
23047
23048 static LONGEST
23049 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23050 {
23051 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23052 return DW_SND (attr);
23053 else if (attr->form == DW_FORM_udata
23054 || attr->form == DW_FORM_data1
23055 || attr->form == DW_FORM_data2
23056 || attr->form == DW_FORM_data4
23057 || attr->form == DW_FORM_data8)
23058 return DW_UNSND (attr);
23059 else
23060 {
23061 /* For DW_FORM_data16 see attr_form_is_constant. */
23062 complaint (_("Attribute value is not a constant (%s)"),
23063 dwarf_form_name (attr->form));
23064 return default_value;
23065 }
23066 }
23067
23068 /* Follow reference or signature attribute ATTR of SRC_DIE.
23069 On entry *REF_CU is the CU of SRC_DIE.
23070 On exit *REF_CU is the CU of the result. */
23071
23072 static struct die_info *
23073 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23074 struct dwarf2_cu **ref_cu)
23075 {
23076 struct die_info *die;
23077
23078 if (attr_form_is_ref (attr))
23079 die = follow_die_ref (src_die, attr, ref_cu);
23080 else if (attr->form == DW_FORM_ref_sig8)
23081 die = follow_die_sig (src_die, attr, ref_cu);
23082 else
23083 {
23084 dump_die_for_error (src_die);
23085 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23086 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23087 }
23088
23089 return die;
23090 }
23091
23092 /* Follow reference OFFSET.
23093 On entry *REF_CU is the CU of the source die referencing OFFSET.
23094 On exit *REF_CU is the CU of the result.
23095 Returns NULL if OFFSET is invalid. */
23096
23097 static struct die_info *
23098 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23099 struct dwarf2_cu **ref_cu)
23100 {
23101 struct die_info temp_die;
23102 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23103 struct dwarf2_per_objfile *dwarf2_per_objfile
23104 = cu->per_cu->dwarf2_per_objfile;
23105
23106 gdb_assert (cu->per_cu != NULL);
23107
23108 target_cu = cu;
23109
23110 if (cu->per_cu->is_debug_types)
23111 {
23112 /* .debug_types CUs cannot reference anything outside their CU.
23113 If they need to, they have to reference a signatured type via
23114 DW_FORM_ref_sig8. */
23115 if (!offset_in_cu_p (&cu->header, sect_off))
23116 return NULL;
23117 }
23118 else if (offset_in_dwz != cu->per_cu->is_dwz
23119 || !offset_in_cu_p (&cu->header, sect_off))
23120 {
23121 struct dwarf2_per_cu_data *per_cu;
23122
23123 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23124 dwarf2_per_objfile);
23125
23126 /* If necessary, add it to the queue and load its DIEs. */
23127 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23128 load_full_comp_unit (per_cu, false, cu->language);
23129
23130 target_cu = per_cu->cu;
23131 }
23132 else if (cu->dies == NULL)
23133 {
23134 /* We're loading full DIEs during partial symbol reading. */
23135 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23136 load_full_comp_unit (cu->per_cu, false, language_minimal);
23137 }
23138
23139 *ref_cu = target_cu;
23140 temp_die.sect_off = sect_off;
23141
23142 if (target_cu != cu)
23143 target_cu->ancestor = cu;
23144
23145 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23146 &temp_die,
23147 to_underlying (sect_off));
23148 }
23149
23150 /* Follow reference attribute ATTR of SRC_DIE.
23151 On entry *REF_CU is the CU of SRC_DIE.
23152 On exit *REF_CU is the CU of the result. */
23153
23154 static struct die_info *
23155 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23156 struct dwarf2_cu **ref_cu)
23157 {
23158 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23159 struct dwarf2_cu *cu = *ref_cu;
23160 struct die_info *die;
23161
23162 die = follow_die_offset (sect_off,
23163 (attr->form == DW_FORM_GNU_ref_alt
23164 || cu->per_cu->is_dwz),
23165 ref_cu);
23166 if (!die)
23167 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23168 "at %s [in module %s]"),
23169 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23170 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23171
23172 return die;
23173 }
23174
23175 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23176 Returned value is intended for DW_OP_call*. Returned
23177 dwarf2_locexpr_baton->data has lifetime of
23178 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23179
23180 struct dwarf2_locexpr_baton
23181 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23182 struct dwarf2_per_cu_data *per_cu,
23183 CORE_ADDR (*get_frame_pc) (void *baton),
23184 void *baton, bool resolve_abstract_p)
23185 {
23186 struct dwarf2_cu *cu;
23187 struct die_info *die;
23188 struct attribute *attr;
23189 struct dwarf2_locexpr_baton retval;
23190 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23191 struct objfile *objfile = dwarf2_per_objfile->objfile;
23192
23193 if (per_cu->cu == NULL)
23194 load_cu (per_cu, false);
23195 cu = per_cu->cu;
23196 if (cu == NULL)
23197 {
23198 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23199 Instead just throw an error, not much else we can do. */
23200 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23201 sect_offset_str (sect_off), objfile_name (objfile));
23202 }
23203
23204 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23205 if (!die)
23206 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23207 sect_offset_str (sect_off), objfile_name (objfile));
23208
23209 attr = dwarf2_attr (die, DW_AT_location, cu);
23210 if (!attr && resolve_abstract_p
23211 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23212 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23213 {
23214 CORE_ADDR pc = (*get_frame_pc) (baton);
23215 CORE_ADDR baseaddr
23216 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23218
23219 for (const auto &cand_off
23220 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23221 {
23222 struct dwarf2_cu *cand_cu = cu;
23223 struct die_info *cand
23224 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23225 if (!cand
23226 || !cand->parent
23227 || cand->parent->tag != DW_TAG_subprogram)
23228 continue;
23229
23230 CORE_ADDR pc_low, pc_high;
23231 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23232 if (pc_low == ((CORE_ADDR) -1))
23233 continue;
23234 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23235 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23236 if (!(pc_low <= pc && pc < pc_high))
23237 continue;
23238
23239 die = cand;
23240 attr = dwarf2_attr (die, DW_AT_location, cu);
23241 break;
23242 }
23243 }
23244
23245 if (!attr)
23246 {
23247 /* DWARF: "If there is no such attribute, then there is no effect.".
23248 DATA is ignored if SIZE is 0. */
23249
23250 retval.data = NULL;
23251 retval.size = 0;
23252 }
23253 else if (attr_form_is_section_offset (attr))
23254 {
23255 struct dwarf2_loclist_baton loclist_baton;
23256 CORE_ADDR pc = (*get_frame_pc) (baton);
23257 size_t size;
23258
23259 fill_in_loclist_baton (cu, &loclist_baton, attr);
23260
23261 retval.data = dwarf2_find_location_expression (&loclist_baton,
23262 &size, pc);
23263 retval.size = size;
23264 }
23265 else
23266 {
23267 if (!attr_form_is_block (attr))
23268 error (_("Dwarf Error: DIE at %s referenced in module %s "
23269 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23270 sect_offset_str (sect_off), objfile_name (objfile));
23271
23272 retval.data = DW_BLOCK (attr)->data;
23273 retval.size = DW_BLOCK (attr)->size;
23274 }
23275 retval.per_cu = cu->per_cu;
23276
23277 age_cached_comp_units (dwarf2_per_objfile);
23278
23279 return retval;
23280 }
23281
23282 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23283 offset. */
23284
23285 struct dwarf2_locexpr_baton
23286 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23287 struct dwarf2_per_cu_data *per_cu,
23288 CORE_ADDR (*get_frame_pc) (void *baton),
23289 void *baton)
23290 {
23291 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23292
23293 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23294 }
23295
23296 /* Write a constant of a given type as target-ordered bytes into
23297 OBSTACK. */
23298
23299 static const gdb_byte *
23300 write_constant_as_bytes (struct obstack *obstack,
23301 enum bfd_endian byte_order,
23302 struct type *type,
23303 ULONGEST value,
23304 LONGEST *len)
23305 {
23306 gdb_byte *result;
23307
23308 *len = TYPE_LENGTH (type);
23309 result = (gdb_byte *) obstack_alloc (obstack, *len);
23310 store_unsigned_integer (result, *len, byte_order, value);
23311
23312 return result;
23313 }
23314
23315 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23316 pointer to the constant bytes and set LEN to the length of the
23317 data. If memory is needed, allocate it on OBSTACK. If the DIE
23318 does not have a DW_AT_const_value, return NULL. */
23319
23320 const gdb_byte *
23321 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23322 struct dwarf2_per_cu_data *per_cu,
23323 struct obstack *obstack,
23324 LONGEST *len)
23325 {
23326 struct dwarf2_cu *cu;
23327 struct die_info *die;
23328 struct attribute *attr;
23329 const gdb_byte *result = NULL;
23330 struct type *type;
23331 LONGEST value;
23332 enum bfd_endian byte_order;
23333 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23334
23335 if (per_cu->cu == NULL)
23336 load_cu (per_cu, false);
23337 cu = per_cu->cu;
23338 if (cu == NULL)
23339 {
23340 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23341 Instead just throw an error, not much else we can do. */
23342 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23343 sect_offset_str (sect_off), objfile_name (objfile));
23344 }
23345
23346 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23347 if (!die)
23348 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23349 sect_offset_str (sect_off), objfile_name (objfile));
23350
23351 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23352 if (attr == NULL)
23353 return NULL;
23354
23355 byte_order = (bfd_big_endian (objfile->obfd)
23356 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23357
23358 switch (attr->form)
23359 {
23360 case DW_FORM_addr:
23361 case DW_FORM_addrx:
23362 case DW_FORM_GNU_addr_index:
23363 {
23364 gdb_byte *tem;
23365
23366 *len = cu->header.addr_size;
23367 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23368 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23369 result = tem;
23370 }
23371 break;
23372 case DW_FORM_string:
23373 case DW_FORM_strp:
23374 case DW_FORM_strx:
23375 case DW_FORM_GNU_str_index:
23376 case DW_FORM_GNU_strp_alt:
23377 /* DW_STRING is already allocated on the objfile obstack, point
23378 directly to it. */
23379 result = (const gdb_byte *) DW_STRING (attr);
23380 *len = strlen (DW_STRING (attr));
23381 break;
23382 case DW_FORM_block1:
23383 case DW_FORM_block2:
23384 case DW_FORM_block4:
23385 case DW_FORM_block:
23386 case DW_FORM_exprloc:
23387 case DW_FORM_data16:
23388 result = DW_BLOCK (attr)->data;
23389 *len = DW_BLOCK (attr)->size;
23390 break;
23391
23392 /* The DW_AT_const_value attributes are supposed to carry the
23393 symbol's value "represented as it would be on the target
23394 architecture." By the time we get here, it's already been
23395 converted to host endianness, so we just need to sign- or
23396 zero-extend it as appropriate. */
23397 case DW_FORM_data1:
23398 type = die_type (die, cu);
23399 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23400 if (result == NULL)
23401 result = write_constant_as_bytes (obstack, byte_order,
23402 type, value, len);
23403 break;
23404 case DW_FORM_data2:
23405 type = die_type (die, cu);
23406 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23407 if (result == NULL)
23408 result = write_constant_as_bytes (obstack, byte_order,
23409 type, value, len);
23410 break;
23411 case DW_FORM_data4:
23412 type = die_type (die, cu);
23413 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23414 if (result == NULL)
23415 result = write_constant_as_bytes (obstack, byte_order,
23416 type, value, len);
23417 break;
23418 case DW_FORM_data8:
23419 type = die_type (die, cu);
23420 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23421 if (result == NULL)
23422 result = write_constant_as_bytes (obstack, byte_order,
23423 type, value, len);
23424 break;
23425
23426 case DW_FORM_sdata:
23427 case DW_FORM_implicit_const:
23428 type = die_type (die, cu);
23429 result = write_constant_as_bytes (obstack, byte_order,
23430 type, DW_SND (attr), len);
23431 break;
23432
23433 case DW_FORM_udata:
23434 type = die_type (die, cu);
23435 result = write_constant_as_bytes (obstack, byte_order,
23436 type, DW_UNSND (attr), len);
23437 break;
23438
23439 default:
23440 complaint (_("unsupported const value attribute form: '%s'"),
23441 dwarf_form_name (attr->form));
23442 break;
23443 }
23444
23445 return result;
23446 }
23447
23448 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23449 valid type for this die is found. */
23450
23451 struct type *
23452 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23453 struct dwarf2_per_cu_data *per_cu)
23454 {
23455 struct dwarf2_cu *cu;
23456 struct die_info *die;
23457
23458 if (per_cu->cu == NULL)
23459 load_cu (per_cu, false);
23460 cu = per_cu->cu;
23461 if (!cu)
23462 return NULL;
23463
23464 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23465 if (!die)
23466 return NULL;
23467
23468 return die_type (die, cu);
23469 }
23470
23471 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23472 PER_CU. */
23473
23474 struct type *
23475 dwarf2_get_die_type (cu_offset die_offset,
23476 struct dwarf2_per_cu_data *per_cu)
23477 {
23478 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23479 return get_die_type_at_offset (die_offset_sect, per_cu);
23480 }
23481
23482 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23483 On entry *REF_CU is the CU of SRC_DIE.
23484 On exit *REF_CU is the CU of the result.
23485 Returns NULL if the referenced DIE isn't found. */
23486
23487 static struct die_info *
23488 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23489 struct dwarf2_cu **ref_cu)
23490 {
23491 struct die_info temp_die;
23492 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23493 struct die_info *die;
23494
23495 /* While it might be nice to assert sig_type->type == NULL here,
23496 we can get here for DW_AT_imported_declaration where we need
23497 the DIE not the type. */
23498
23499 /* If necessary, add it to the queue and load its DIEs. */
23500
23501 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23502 read_signatured_type (sig_type);
23503
23504 sig_cu = sig_type->per_cu.cu;
23505 gdb_assert (sig_cu != NULL);
23506 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23507 temp_die.sect_off = sig_type->type_offset_in_section;
23508 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23509 to_underlying (temp_die.sect_off));
23510 if (die)
23511 {
23512 struct dwarf2_per_objfile *dwarf2_per_objfile
23513 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23514
23515 /* For .gdb_index version 7 keep track of included TUs.
23516 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23517 if (dwarf2_per_objfile->index_table != NULL
23518 && dwarf2_per_objfile->index_table->version <= 7)
23519 {
23520 VEC_safe_push (dwarf2_per_cu_ptr,
23521 (*ref_cu)->per_cu->imported_symtabs,
23522 sig_cu->per_cu);
23523 }
23524
23525 *ref_cu = sig_cu;
23526 if (sig_cu != cu)
23527 sig_cu->ancestor = cu;
23528
23529 return die;
23530 }
23531
23532 return NULL;
23533 }
23534
23535 /* Follow signatured type referenced by ATTR in SRC_DIE.
23536 On entry *REF_CU is the CU of SRC_DIE.
23537 On exit *REF_CU is the CU of the result.
23538 The result is the DIE of the type.
23539 If the referenced type cannot be found an error is thrown. */
23540
23541 static struct die_info *
23542 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23543 struct dwarf2_cu **ref_cu)
23544 {
23545 ULONGEST signature = DW_SIGNATURE (attr);
23546 struct signatured_type *sig_type;
23547 struct die_info *die;
23548
23549 gdb_assert (attr->form == DW_FORM_ref_sig8);
23550
23551 sig_type = lookup_signatured_type (*ref_cu, signature);
23552 /* sig_type will be NULL if the signatured type is missing from
23553 the debug info. */
23554 if (sig_type == NULL)
23555 {
23556 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23557 " from DIE at %s [in module %s]"),
23558 hex_string (signature), sect_offset_str (src_die->sect_off),
23559 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23560 }
23561
23562 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23563 if (die == NULL)
23564 {
23565 dump_die_for_error (src_die);
23566 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23567 " from DIE at %s [in module %s]"),
23568 hex_string (signature), sect_offset_str (src_die->sect_off),
23569 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23570 }
23571
23572 return die;
23573 }
23574
23575 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23576 reading in and processing the type unit if necessary. */
23577
23578 static struct type *
23579 get_signatured_type (struct die_info *die, ULONGEST signature,
23580 struct dwarf2_cu *cu)
23581 {
23582 struct dwarf2_per_objfile *dwarf2_per_objfile
23583 = cu->per_cu->dwarf2_per_objfile;
23584 struct signatured_type *sig_type;
23585 struct dwarf2_cu *type_cu;
23586 struct die_info *type_die;
23587 struct type *type;
23588
23589 sig_type = lookup_signatured_type (cu, signature);
23590 /* sig_type will be NULL if the signatured type is missing from
23591 the debug info. */
23592 if (sig_type == NULL)
23593 {
23594 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23595 " from DIE at %s [in module %s]"),
23596 hex_string (signature), sect_offset_str (die->sect_off),
23597 objfile_name (dwarf2_per_objfile->objfile));
23598 return build_error_marker_type (cu, die);
23599 }
23600
23601 /* If we already know the type we're done. */
23602 if (sig_type->type != NULL)
23603 return sig_type->type;
23604
23605 type_cu = cu;
23606 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23607 if (type_die != NULL)
23608 {
23609 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23610 is created. This is important, for example, because for c++ classes
23611 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23612 type = read_type_die (type_die, type_cu);
23613 if (type == NULL)
23614 {
23615 complaint (_("Dwarf Error: Cannot build signatured type %s"
23616 " referenced from DIE at %s [in module %s]"),
23617 hex_string (signature), sect_offset_str (die->sect_off),
23618 objfile_name (dwarf2_per_objfile->objfile));
23619 type = build_error_marker_type (cu, die);
23620 }
23621 }
23622 else
23623 {
23624 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23625 " from DIE at %s [in module %s]"),
23626 hex_string (signature), sect_offset_str (die->sect_off),
23627 objfile_name (dwarf2_per_objfile->objfile));
23628 type = build_error_marker_type (cu, die);
23629 }
23630 sig_type->type = type;
23631
23632 return type;
23633 }
23634
23635 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23636 reading in and processing the type unit if necessary. */
23637
23638 static struct type *
23639 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23640 struct dwarf2_cu *cu) /* ARI: editCase function */
23641 {
23642 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23643 if (attr_form_is_ref (attr))
23644 {
23645 struct dwarf2_cu *type_cu = cu;
23646 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23647
23648 return read_type_die (type_die, type_cu);
23649 }
23650 else if (attr->form == DW_FORM_ref_sig8)
23651 {
23652 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23653 }
23654 else
23655 {
23656 struct dwarf2_per_objfile *dwarf2_per_objfile
23657 = cu->per_cu->dwarf2_per_objfile;
23658
23659 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23660 " at %s [in module %s]"),
23661 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23662 objfile_name (dwarf2_per_objfile->objfile));
23663 return build_error_marker_type (cu, die);
23664 }
23665 }
23666
23667 /* Load the DIEs associated with type unit PER_CU into memory. */
23668
23669 static void
23670 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23671 {
23672 struct signatured_type *sig_type;
23673
23674 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23675 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23676
23677 /* We have the per_cu, but we need the signatured_type.
23678 Fortunately this is an easy translation. */
23679 gdb_assert (per_cu->is_debug_types);
23680 sig_type = (struct signatured_type *) per_cu;
23681
23682 gdb_assert (per_cu->cu == NULL);
23683
23684 read_signatured_type (sig_type);
23685
23686 gdb_assert (per_cu->cu != NULL);
23687 }
23688
23689 /* die_reader_func for read_signatured_type.
23690 This is identical to load_full_comp_unit_reader,
23691 but is kept separate for now. */
23692
23693 static void
23694 read_signatured_type_reader (const struct die_reader_specs *reader,
23695 const gdb_byte *info_ptr,
23696 struct die_info *comp_unit_die,
23697 int has_children,
23698 void *data)
23699 {
23700 struct dwarf2_cu *cu = reader->cu;
23701
23702 gdb_assert (cu->die_hash == NULL);
23703 cu->die_hash =
23704 htab_create_alloc_ex (cu->header.length / 12,
23705 die_hash,
23706 die_eq,
23707 NULL,
23708 &cu->comp_unit_obstack,
23709 hashtab_obstack_allocate,
23710 dummy_obstack_deallocate);
23711
23712 if (has_children)
23713 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23714 &info_ptr, comp_unit_die);
23715 cu->dies = comp_unit_die;
23716 /* comp_unit_die is not stored in die_hash, no need. */
23717
23718 /* We try not to read any attributes in this function, because not
23719 all CUs needed for references have been loaded yet, and symbol
23720 table processing isn't initialized. But we have to set the CU language,
23721 or we won't be able to build types correctly.
23722 Similarly, if we do not read the producer, we can not apply
23723 producer-specific interpretation. */
23724 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23725 }
23726
23727 /* Read in a signatured type and build its CU and DIEs.
23728 If the type is a stub for the real type in a DWO file,
23729 read in the real type from the DWO file as well. */
23730
23731 static void
23732 read_signatured_type (struct signatured_type *sig_type)
23733 {
23734 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23735
23736 gdb_assert (per_cu->is_debug_types);
23737 gdb_assert (per_cu->cu == NULL);
23738
23739 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23740 read_signatured_type_reader, NULL);
23741 sig_type->per_cu.tu_read = 1;
23742 }
23743
23744 /* Decode simple location descriptions.
23745 Given a pointer to a dwarf block that defines a location, compute
23746 the location and return the value.
23747
23748 NOTE drow/2003-11-18: This function is called in two situations
23749 now: for the address of static or global variables (partial symbols
23750 only) and for offsets into structures which are expected to be
23751 (more or less) constant. The partial symbol case should go away,
23752 and only the constant case should remain. That will let this
23753 function complain more accurately. A few special modes are allowed
23754 without complaint for global variables (for instance, global
23755 register values and thread-local values).
23756
23757 A location description containing no operations indicates that the
23758 object is optimized out. The return value is 0 for that case.
23759 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23760 callers will only want a very basic result and this can become a
23761 complaint.
23762
23763 Note that stack[0] is unused except as a default error return. */
23764
23765 static CORE_ADDR
23766 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23767 {
23768 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23769 size_t i;
23770 size_t size = blk->size;
23771 const gdb_byte *data = blk->data;
23772 CORE_ADDR stack[64];
23773 int stacki;
23774 unsigned int bytes_read, unsnd;
23775 gdb_byte op;
23776
23777 i = 0;
23778 stacki = 0;
23779 stack[stacki] = 0;
23780 stack[++stacki] = 0;
23781
23782 while (i < size)
23783 {
23784 op = data[i++];
23785 switch (op)
23786 {
23787 case DW_OP_lit0:
23788 case DW_OP_lit1:
23789 case DW_OP_lit2:
23790 case DW_OP_lit3:
23791 case DW_OP_lit4:
23792 case DW_OP_lit5:
23793 case DW_OP_lit6:
23794 case DW_OP_lit7:
23795 case DW_OP_lit8:
23796 case DW_OP_lit9:
23797 case DW_OP_lit10:
23798 case DW_OP_lit11:
23799 case DW_OP_lit12:
23800 case DW_OP_lit13:
23801 case DW_OP_lit14:
23802 case DW_OP_lit15:
23803 case DW_OP_lit16:
23804 case DW_OP_lit17:
23805 case DW_OP_lit18:
23806 case DW_OP_lit19:
23807 case DW_OP_lit20:
23808 case DW_OP_lit21:
23809 case DW_OP_lit22:
23810 case DW_OP_lit23:
23811 case DW_OP_lit24:
23812 case DW_OP_lit25:
23813 case DW_OP_lit26:
23814 case DW_OP_lit27:
23815 case DW_OP_lit28:
23816 case DW_OP_lit29:
23817 case DW_OP_lit30:
23818 case DW_OP_lit31:
23819 stack[++stacki] = op - DW_OP_lit0;
23820 break;
23821
23822 case DW_OP_reg0:
23823 case DW_OP_reg1:
23824 case DW_OP_reg2:
23825 case DW_OP_reg3:
23826 case DW_OP_reg4:
23827 case DW_OP_reg5:
23828 case DW_OP_reg6:
23829 case DW_OP_reg7:
23830 case DW_OP_reg8:
23831 case DW_OP_reg9:
23832 case DW_OP_reg10:
23833 case DW_OP_reg11:
23834 case DW_OP_reg12:
23835 case DW_OP_reg13:
23836 case DW_OP_reg14:
23837 case DW_OP_reg15:
23838 case DW_OP_reg16:
23839 case DW_OP_reg17:
23840 case DW_OP_reg18:
23841 case DW_OP_reg19:
23842 case DW_OP_reg20:
23843 case DW_OP_reg21:
23844 case DW_OP_reg22:
23845 case DW_OP_reg23:
23846 case DW_OP_reg24:
23847 case DW_OP_reg25:
23848 case DW_OP_reg26:
23849 case DW_OP_reg27:
23850 case DW_OP_reg28:
23851 case DW_OP_reg29:
23852 case DW_OP_reg30:
23853 case DW_OP_reg31:
23854 stack[++stacki] = op - DW_OP_reg0;
23855 if (i < size)
23856 dwarf2_complex_location_expr_complaint ();
23857 break;
23858
23859 case DW_OP_regx:
23860 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23861 i += bytes_read;
23862 stack[++stacki] = unsnd;
23863 if (i < size)
23864 dwarf2_complex_location_expr_complaint ();
23865 break;
23866
23867 case DW_OP_addr:
23868 stack[++stacki] = read_address (objfile->obfd, &data[i],
23869 cu, &bytes_read);
23870 i += bytes_read;
23871 break;
23872
23873 case DW_OP_const1u:
23874 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23875 i += 1;
23876 break;
23877
23878 case DW_OP_const1s:
23879 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23880 i += 1;
23881 break;
23882
23883 case DW_OP_const2u:
23884 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23885 i += 2;
23886 break;
23887
23888 case DW_OP_const2s:
23889 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23890 i += 2;
23891 break;
23892
23893 case DW_OP_const4u:
23894 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23895 i += 4;
23896 break;
23897
23898 case DW_OP_const4s:
23899 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23900 i += 4;
23901 break;
23902
23903 case DW_OP_const8u:
23904 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23905 i += 8;
23906 break;
23907
23908 case DW_OP_constu:
23909 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23910 &bytes_read);
23911 i += bytes_read;
23912 break;
23913
23914 case DW_OP_consts:
23915 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23916 i += bytes_read;
23917 break;
23918
23919 case DW_OP_dup:
23920 stack[stacki + 1] = stack[stacki];
23921 stacki++;
23922 break;
23923
23924 case DW_OP_plus:
23925 stack[stacki - 1] += stack[stacki];
23926 stacki--;
23927 break;
23928
23929 case DW_OP_plus_uconst:
23930 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23931 &bytes_read);
23932 i += bytes_read;
23933 break;
23934
23935 case DW_OP_minus:
23936 stack[stacki - 1] -= stack[stacki];
23937 stacki--;
23938 break;
23939
23940 case DW_OP_deref:
23941 /* If we're not the last op, then we definitely can't encode
23942 this using GDB's address_class enum. This is valid for partial
23943 global symbols, although the variable's address will be bogus
23944 in the psymtab. */
23945 if (i < size)
23946 dwarf2_complex_location_expr_complaint ();
23947 break;
23948
23949 case DW_OP_GNU_push_tls_address:
23950 case DW_OP_form_tls_address:
23951 /* The top of the stack has the offset from the beginning
23952 of the thread control block at which the variable is located. */
23953 /* Nothing should follow this operator, so the top of stack would
23954 be returned. */
23955 /* This is valid for partial global symbols, but the variable's
23956 address will be bogus in the psymtab. Make it always at least
23957 non-zero to not look as a variable garbage collected by linker
23958 which have DW_OP_addr 0. */
23959 if (i < size)
23960 dwarf2_complex_location_expr_complaint ();
23961 stack[stacki]++;
23962 break;
23963
23964 case DW_OP_GNU_uninit:
23965 break;
23966
23967 case DW_OP_addrx:
23968 case DW_OP_GNU_addr_index:
23969 case DW_OP_GNU_const_index:
23970 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23971 &bytes_read);
23972 i += bytes_read;
23973 break;
23974
23975 default:
23976 {
23977 const char *name = get_DW_OP_name (op);
23978
23979 if (name)
23980 complaint (_("unsupported stack op: '%s'"),
23981 name);
23982 else
23983 complaint (_("unsupported stack op: '%02x'"),
23984 op);
23985 }
23986
23987 return (stack[stacki]);
23988 }
23989
23990 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23991 outside of the allocated space. Also enforce minimum>0. */
23992 if (stacki >= ARRAY_SIZE (stack) - 1)
23993 {
23994 complaint (_("location description stack overflow"));
23995 return 0;
23996 }
23997
23998 if (stacki <= 0)
23999 {
24000 complaint (_("location description stack underflow"));
24001 return 0;
24002 }
24003 }
24004 return (stack[stacki]);
24005 }
24006
24007 /* memory allocation interface */
24008
24009 static struct dwarf_block *
24010 dwarf_alloc_block (struct dwarf2_cu *cu)
24011 {
24012 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24013 }
24014
24015 static struct die_info *
24016 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24017 {
24018 struct die_info *die;
24019 size_t size = sizeof (struct die_info);
24020
24021 if (num_attrs > 1)
24022 size += (num_attrs - 1) * sizeof (struct attribute);
24023
24024 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24025 memset (die, 0, sizeof (struct die_info));
24026 return (die);
24027 }
24028
24029 \f
24030 /* Macro support. */
24031
24032 /* Return file name relative to the compilation directory of file number I in
24033 *LH's file name table. The result is allocated using xmalloc; the caller is
24034 responsible for freeing it. */
24035
24036 static char *
24037 file_file_name (int file, struct line_header *lh)
24038 {
24039 /* Is the file number a valid index into the line header's file name
24040 table? Remember that file numbers start with one, not zero. */
24041 if (1 <= file && file <= lh->file_names.size ())
24042 {
24043 const file_entry &fe = lh->file_names[file - 1];
24044
24045 if (!IS_ABSOLUTE_PATH (fe.name))
24046 {
24047 const char *dir = fe.include_dir (lh);
24048 if (dir != NULL)
24049 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24050 }
24051 return xstrdup (fe.name);
24052 }
24053 else
24054 {
24055 /* The compiler produced a bogus file number. We can at least
24056 record the macro definitions made in the file, even if we
24057 won't be able to find the file by name. */
24058 char fake_name[80];
24059
24060 xsnprintf (fake_name, sizeof (fake_name),
24061 "<bad macro file number %d>", file);
24062
24063 complaint (_("bad file number in macro information (%d)"),
24064 file);
24065
24066 return xstrdup (fake_name);
24067 }
24068 }
24069
24070 /* Return the full name of file number I in *LH's file name table.
24071 Use COMP_DIR as the name of the current directory of the
24072 compilation. The result is allocated using xmalloc; the caller is
24073 responsible for freeing it. */
24074 static char *
24075 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24076 {
24077 /* Is the file number a valid index into the line header's file name
24078 table? Remember that file numbers start with one, not zero. */
24079 if (1 <= file && file <= lh->file_names.size ())
24080 {
24081 char *relative = file_file_name (file, lh);
24082
24083 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24084 return relative;
24085 return reconcat (relative, comp_dir, SLASH_STRING,
24086 relative, (char *) NULL);
24087 }
24088 else
24089 return file_file_name (file, lh);
24090 }
24091
24092
24093 static struct macro_source_file *
24094 macro_start_file (struct dwarf2_cu *cu,
24095 int file, int line,
24096 struct macro_source_file *current_file,
24097 struct line_header *lh)
24098 {
24099 /* File name relative to the compilation directory of this source file. */
24100 char *file_name = file_file_name (file, lh);
24101
24102 if (! current_file)
24103 {
24104 /* Note: We don't create a macro table for this compilation unit
24105 at all until we actually get a filename. */
24106 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24107
24108 /* If we have no current file, then this must be the start_file
24109 directive for the compilation unit's main source file. */
24110 current_file = macro_set_main (macro_table, file_name);
24111 macro_define_special (macro_table);
24112 }
24113 else
24114 current_file = macro_include (current_file, line, file_name);
24115
24116 xfree (file_name);
24117
24118 return current_file;
24119 }
24120
24121 static const char *
24122 consume_improper_spaces (const char *p, const char *body)
24123 {
24124 if (*p == ' ')
24125 {
24126 complaint (_("macro definition contains spaces "
24127 "in formal argument list:\n`%s'"),
24128 body);
24129
24130 while (*p == ' ')
24131 p++;
24132 }
24133
24134 return p;
24135 }
24136
24137
24138 static void
24139 parse_macro_definition (struct macro_source_file *file, int line,
24140 const char *body)
24141 {
24142 const char *p;
24143
24144 /* The body string takes one of two forms. For object-like macro
24145 definitions, it should be:
24146
24147 <macro name> " " <definition>
24148
24149 For function-like macro definitions, it should be:
24150
24151 <macro name> "() " <definition>
24152 or
24153 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24154
24155 Spaces may appear only where explicitly indicated, and in the
24156 <definition>.
24157
24158 The Dwarf 2 spec says that an object-like macro's name is always
24159 followed by a space, but versions of GCC around March 2002 omit
24160 the space when the macro's definition is the empty string.
24161
24162 The Dwarf 2 spec says that there should be no spaces between the
24163 formal arguments in a function-like macro's formal argument list,
24164 but versions of GCC around March 2002 include spaces after the
24165 commas. */
24166
24167
24168 /* Find the extent of the macro name. The macro name is terminated
24169 by either a space or null character (for an object-like macro) or
24170 an opening paren (for a function-like macro). */
24171 for (p = body; *p; p++)
24172 if (*p == ' ' || *p == '(')
24173 break;
24174
24175 if (*p == ' ' || *p == '\0')
24176 {
24177 /* It's an object-like macro. */
24178 int name_len = p - body;
24179 char *name = savestring (body, name_len);
24180 const char *replacement;
24181
24182 if (*p == ' ')
24183 replacement = body + name_len + 1;
24184 else
24185 {
24186 dwarf2_macro_malformed_definition_complaint (body);
24187 replacement = body + name_len;
24188 }
24189
24190 macro_define_object (file, line, name, replacement);
24191
24192 xfree (name);
24193 }
24194 else if (*p == '(')
24195 {
24196 /* It's a function-like macro. */
24197 char *name = savestring (body, p - body);
24198 int argc = 0;
24199 int argv_size = 1;
24200 char **argv = XNEWVEC (char *, argv_size);
24201
24202 p++;
24203
24204 p = consume_improper_spaces (p, body);
24205
24206 /* Parse the formal argument list. */
24207 while (*p && *p != ')')
24208 {
24209 /* Find the extent of the current argument name. */
24210 const char *arg_start = p;
24211
24212 while (*p && *p != ',' && *p != ')' && *p != ' ')
24213 p++;
24214
24215 if (! *p || p == arg_start)
24216 dwarf2_macro_malformed_definition_complaint (body);
24217 else
24218 {
24219 /* Make sure argv has room for the new argument. */
24220 if (argc >= argv_size)
24221 {
24222 argv_size *= 2;
24223 argv = XRESIZEVEC (char *, argv, argv_size);
24224 }
24225
24226 argv[argc++] = savestring (arg_start, p - arg_start);
24227 }
24228
24229 p = consume_improper_spaces (p, body);
24230
24231 /* Consume the comma, if present. */
24232 if (*p == ',')
24233 {
24234 p++;
24235
24236 p = consume_improper_spaces (p, body);
24237 }
24238 }
24239
24240 if (*p == ')')
24241 {
24242 p++;
24243
24244 if (*p == ' ')
24245 /* Perfectly formed definition, no complaints. */
24246 macro_define_function (file, line, name,
24247 argc, (const char **) argv,
24248 p + 1);
24249 else if (*p == '\0')
24250 {
24251 /* Complain, but do define it. */
24252 dwarf2_macro_malformed_definition_complaint (body);
24253 macro_define_function (file, line, name,
24254 argc, (const char **) argv,
24255 p);
24256 }
24257 else
24258 /* Just complain. */
24259 dwarf2_macro_malformed_definition_complaint (body);
24260 }
24261 else
24262 /* Just complain. */
24263 dwarf2_macro_malformed_definition_complaint (body);
24264
24265 xfree (name);
24266 {
24267 int i;
24268
24269 for (i = 0; i < argc; i++)
24270 xfree (argv[i]);
24271 }
24272 xfree (argv);
24273 }
24274 else
24275 dwarf2_macro_malformed_definition_complaint (body);
24276 }
24277
24278 /* Skip some bytes from BYTES according to the form given in FORM.
24279 Returns the new pointer. */
24280
24281 static const gdb_byte *
24282 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24283 enum dwarf_form form,
24284 unsigned int offset_size,
24285 struct dwarf2_section_info *section)
24286 {
24287 unsigned int bytes_read;
24288
24289 switch (form)
24290 {
24291 case DW_FORM_data1:
24292 case DW_FORM_flag:
24293 ++bytes;
24294 break;
24295
24296 case DW_FORM_data2:
24297 bytes += 2;
24298 break;
24299
24300 case DW_FORM_data4:
24301 bytes += 4;
24302 break;
24303
24304 case DW_FORM_data8:
24305 bytes += 8;
24306 break;
24307
24308 case DW_FORM_data16:
24309 bytes += 16;
24310 break;
24311
24312 case DW_FORM_string:
24313 read_direct_string (abfd, bytes, &bytes_read);
24314 bytes += bytes_read;
24315 break;
24316
24317 case DW_FORM_sec_offset:
24318 case DW_FORM_strp:
24319 case DW_FORM_GNU_strp_alt:
24320 bytes += offset_size;
24321 break;
24322
24323 case DW_FORM_block:
24324 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24325 bytes += bytes_read;
24326 break;
24327
24328 case DW_FORM_block1:
24329 bytes += 1 + read_1_byte (abfd, bytes);
24330 break;
24331 case DW_FORM_block2:
24332 bytes += 2 + read_2_bytes (abfd, bytes);
24333 break;
24334 case DW_FORM_block4:
24335 bytes += 4 + read_4_bytes (abfd, bytes);
24336 break;
24337
24338 case DW_FORM_addrx:
24339 case DW_FORM_sdata:
24340 case DW_FORM_strx:
24341 case DW_FORM_udata:
24342 case DW_FORM_GNU_addr_index:
24343 case DW_FORM_GNU_str_index:
24344 bytes = gdb_skip_leb128 (bytes, buffer_end);
24345 if (bytes == NULL)
24346 {
24347 dwarf2_section_buffer_overflow_complaint (section);
24348 return NULL;
24349 }
24350 break;
24351
24352 case DW_FORM_implicit_const:
24353 break;
24354
24355 default:
24356 {
24357 complaint (_("invalid form 0x%x in `%s'"),
24358 form, get_section_name (section));
24359 return NULL;
24360 }
24361 }
24362
24363 return bytes;
24364 }
24365
24366 /* A helper for dwarf_decode_macros that handles skipping an unknown
24367 opcode. Returns an updated pointer to the macro data buffer; or,
24368 on error, issues a complaint and returns NULL. */
24369
24370 static const gdb_byte *
24371 skip_unknown_opcode (unsigned int opcode,
24372 const gdb_byte **opcode_definitions,
24373 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24374 bfd *abfd,
24375 unsigned int offset_size,
24376 struct dwarf2_section_info *section)
24377 {
24378 unsigned int bytes_read, i;
24379 unsigned long arg;
24380 const gdb_byte *defn;
24381
24382 if (opcode_definitions[opcode] == NULL)
24383 {
24384 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24385 opcode);
24386 return NULL;
24387 }
24388
24389 defn = opcode_definitions[opcode];
24390 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24391 defn += bytes_read;
24392
24393 for (i = 0; i < arg; ++i)
24394 {
24395 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24396 (enum dwarf_form) defn[i], offset_size,
24397 section);
24398 if (mac_ptr == NULL)
24399 {
24400 /* skip_form_bytes already issued the complaint. */
24401 return NULL;
24402 }
24403 }
24404
24405 return mac_ptr;
24406 }
24407
24408 /* A helper function which parses the header of a macro section.
24409 If the macro section is the extended (for now called "GNU") type,
24410 then this updates *OFFSET_SIZE. Returns a pointer to just after
24411 the header, or issues a complaint and returns NULL on error. */
24412
24413 static const gdb_byte *
24414 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24415 bfd *abfd,
24416 const gdb_byte *mac_ptr,
24417 unsigned int *offset_size,
24418 int section_is_gnu)
24419 {
24420 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24421
24422 if (section_is_gnu)
24423 {
24424 unsigned int version, flags;
24425
24426 version = read_2_bytes (abfd, mac_ptr);
24427 if (version != 4 && version != 5)
24428 {
24429 complaint (_("unrecognized version `%d' in .debug_macro section"),
24430 version);
24431 return NULL;
24432 }
24433 mac_ptr += 2;
24434
24435 flags = read_1_byte (abfd, mac_ptr);
24436 ++mac_ptr;
24437 *offset_size = (flags & 1) ? 8 : 4;
24438
24439 if ((flags & 2) != 0)
24440 /* We don't need the line table offset. */
24441 mac_ptr += *offset_size;
24442
24443 /* Vendor opcode descriptions. */
24444 if ((flags & 4) != 0)
24445 {
24446 unsigned int i, count;
24447
24448 count = read_1_byte (abfd, mac_ptr);
24449 ++mac_ptr;
24450 for (i = 0; i < count; ++i)
24451 {
24452 unsigned int opcode, bytes_read;
24453 unsigned long arg;
24454
24455 opcode = read_1_byte (abfd, mac_ptr);
24456 ++mac_ptr;
24457 opcode_definitions[opcode] = mac_ptr;
24458 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24459 mac_ptr += bytes_read;
24460 mac_ptr += arg;
24461 }
24462 }
24463 }
24464
24465 return mac_ptr;
24466 }
24467
24468 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24469 including DW_MACRO_import. */
24470
24471 static void
24472 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24473 bfd *abfd,
24474 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24475 struct macro_source_file *current_file,
24476 struct line_header *lh,
24477 struct dwarf2_section_info *section,
24478 int section_is_gnu, int section_is_dwz,
24479 unsigned int offset_size,
24480 htab_t include_hash)
24481 {
24482 struct dwarf2_per_objfile *dwarf2_per_objfile
24483 = cu->per_cu->dwarf2_per_objfile;
24484 struct objfile *objfile = dwarf2_per_objfile->objfile;
24485 enum dwarf_macro_record_type macinfo_type;
24486 int at_commandline;
24487 const gdb_byte *opcode_definitions[256];
24488
24489 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24490 &offset_size, section_is_gnu);
24491 if (mac_ptr == NULL)
24492 {
24493 /* We already issued a complaint. */
24494 return;
24495 }
24496
24497 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24498 GDB is still reading the definitions from command line. First
24499 DW_MACINFO_start_file will need to be ignored as it was already executed
24500 to create CURRENT_FILE for the main source holding also the command line
24501 definitions. On first met DW_MACINFO_start_file this flag is reset to
24502 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24503
24504 at_commandline = 1;
24505
24506 do
24507 {
24508 /* Do we at least have room for a macinfo type byte? */
24509 if (mac_ptr >= mac_end)
24510 {
24511 dwarf2_section_buffer_overflow_complaint (section);
24512 break;
24513 }
24514
24515 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24516 mac_ptr++;
24517
24518 /* Note that we rely on the fact that the corresponding GNU and
24519 DWARF constants are the same. */
24520 DIAGNOSTIC_PUSH
24521 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24522 switch (macinfo_type)
24523 {
24524 /* A zero macinfo type indicates the end of the macro
24525 information. */
24526 case 0:
24527 break;
24528
24529 case DW_MACRO_define:
24530 case DW_MACRO_undef:
24531 case DW_MACRO_define_strp:
24532 case DW_MACRO_undef_strp:
24533 case DW_MACRO_define_sup:
24534 case DW_MACRO_undef_sup:
24535 {
24536 unsigned int bytes_read;
24537 int line;
24538 const char *body;
24539 int is_define;
24540
24541 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24542 mac_ptr += bytes_read;
24543
24544 if (macinfo_type == DW_MACRO_define
24545 || macinfo_type == DW_MACRO_undef)
24546 {
24547 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24548 mac_ptr += bytes_read;
24549 }
24550 else
24551 {
24552 LONGEST str_offset;
24553
24554 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24555 mac_ptr += offset_size;
24556
24557 if (macinfo_type == DW_MACRO_define_sup
24558 || macinfo_type == DW_MACRO_undef_sup
24559 || section_is_dwz)
24560 {
24561 struct dwz_file *dwz
24562 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24563
24564 body = read_indirect_string_from_dwz (objfile,
24565 dwz, str_offset);
24566 }
24567 else
24568 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24569 abfd, str_offset);
24570 }
24571
24572 is_define = (macinfo_type == DW_MACRO_define
24573 || macinfo_type == DW_MACRO_define_strp
24574 || macinfo_type == DW_MACRO_define_sup);
24575 if (! current_file)
24576 {
24577 /* DWARF violation as no main source is present. */
24578 complaint (_("debug info with no main source gives macro %s "
24579 "on line %d: %s"),
24580 is_define ? _("definition") : _("undefinition"),
24581 line, body);
24582 break;
24583 }
24584 if ((line == 0 && !at_commandline)
24585 || (line != 0 && at_commandline))
24586 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24587 at_commandline ? _("command-line") : _("in-file"),
24588 is_define ? _("definition") : _("undefinition"),
24589 line == 0 ? _("zero") : _("non-zero"), line, body);
24590
24591 if (body == NULL)
24592 {
24593 /* Fedora's rpm-build's "debugedit" binary
24594 corrupted .debug_macro sections.
24595
24596 For more info, see
24597 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24598 complaint (_("debug info gives %s invalid macro %s "
24599 "without body (corrupted?) at line %d "
24600 "on file %s"),
24601 at_commandline ? _("command-line") : _("in-file"),
24602 is_define ? _("definition") : _("undefinition"),
24603 line, current_file->filename);
24604 }
24605 else if (is_define)
24606 parse_macro_definition (current_file, line, body);
24607 else
24608 {
24609 gdb_assert (macinfo_type == DW_MACRO_undef
24610 || macinfo_type == DW_MACRO_undef_strp
24611 || macinfo_type == DW_MACRO_undef_sup);
24612 macro_undef (current_file, line, body);
24613 }
24614 }
24615 break;
24616
24617 case DW_MACRO_start_file:
24618 {
24619 unsigned int bytes_read;
24620 int line, file;
24621
24622 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24623 mac_ptr += bytes_read;
24624 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24625 mac_ptr += bytes_read;
24626
24627 if ((line == 0 && !at_commandline)
24628 || (line != 0 && at_commandline))
24629 complaint (_("debug info gives source %d included "
24630 "from %s at %s line %d"),
24631 file, at_commandline ? _("command-line") : _("file"),
24632 line == 0 ? _("zero") : _("non-zero"), line);
24633
24634 if (at_commandline)
24635 {
24636 /* This DW_MACRO_start_file was executed in the
24637 pass one. */
24638 at_commandline = 0;
24639 }
24640 else
24641 current_file = macro_start_file (cu, file, line, current_file,
24642 lh);
24643 }
24644 break;
24645
24646 case DW_MACRO_end_file:
24647 if (! current_file)
24648 complaint (_("macro debug info has an unmatched "
24649 "`close_file' directive"));
24650 else
24651 {
24652 current_file = current_file->included_by;
24653 if (! current_file)
24654 {
24655 enum dwarf_macro_record_type next_type;
24656
24657 /* GCC circa March 2002 doesn't produce the zero
24658 type byte marking the end of the compilation
24659 unit. Complain if it's not there, but exit no
24660 matter what. */
24661
24662 /* Do we at least have room for a macinfo type byte? */
24663 if (mac_ptr >= mac_end)
24664 {
24665 dwarf2_section_buffer_overflow_complaint (section);
24666 return;
24667 }
24668
24669 /* We don't increment mac_ptr here, so this is just
24670 a look-ahead. */
24671 next_type
24672 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24673 mac_ptr);
24674 if (next_type != 0)
24675 complaint (_("no terminating 0-type entry for "
24676 "macros in `.debug_macinfo' section"));
24677
24678 return;
24679 }
24680 }
24681 break;
24682
24683 case DW_MACRO_import:
24684 case DW_MACRO_import_sup:
24685 {
24686 LONGEST offset;
24687 void **slot;
24688 bfd *include_bfd = abfd;
24689 struct dwarf2_section_info *include_section = section;
24690 const gdb_byte *include_mac_end = mac_end;
24691 int is_dwz = section_is_dwz;
24692 const gdb_byte *new_mac_ptr;
24693
24694 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24695 mac_ptr += offset_size;
24696
24697 if (macinfo_type == DW_MACRO_import_sup)
24698 {
24699 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24700
24701 dwarf2_read_section (objfile, &dwz->macro);
24702
24703 include_section = &dwz->macro;
24704 include_bfd = get_section_bfd_owner (include_section);
24705 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24706 is_dwz = 1;
24707 }
24708
24709 new_mac_ptr = include_section->buffer + offset;
24710 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24711
24712 if (*slot != NULL)
24713 {
24714 /* This has actually happened; see
24715 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24716 complaint (_("recursive DW_MACRO_import in "
24717 ".debug_macro section"));
24718 }
24719 else
24720 {
24721 *slot = (void *) new_mac_ptr;
24722
24723 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24724 include_mac_end, current_file, lh,
24725 section, section_is_gnu, is_dwz,
24726 offset_size, include_hash);
24727
24728 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24729 }
24730 }
24731 break;
24732
24733 case DW_MACINFO_vendor_ext:
24734 if (!section_is_gnu)
24735 {
24736 unsigned int bytes_read;
24737
24738 /* This reads the constant, but since we don't recognize
24739 any vendor extensions, we ignore it. */
24740 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24741 mac_ptr += bytes_read;
24742 read_direct_string (abfd, mac_ptr, &bytes_read);
24743 mac_ptr += bytes_read;
24744
24745 /* We don't recognize any vendor extensions. */
24746 break;
24747 }
24748 /* FALLTHROUGH */
24749
24750 default:
24751 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24752 mac_ptr, mac_end, abfd, offset_size,
24753 section);
24754 if (mac_ptr == NULL)
24755 return;
24756 break;
24757 }
24758 DIAGNOSTIC_POP
24759 } while (macinfo_type != 0);
24760 }
24761
24762 static void
24763 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24764 int section_is_gnu)
24765 {
24766 struct dwarf2_per_objfile *dwarf2_per_objfile
24767 = cu->per_cu->dwarf2_per_objfile;
24768 struct objfile *objfile = dwarf2_per_objfile->objfile;
24769 struct line_header *lh = cu->line_header;
24770 bfd *abfd;
24771 const gdb_byte *mac_ptr, *mac_end;
24772 struct macro_source_file *current_file = 0;
24773 enum dwarf_macro_record_type macinfo_type;
24774 unsigned int offset_size = cu->header.offset_size;
24775 const gdb_byte *opcode_definitions[256];
24776 void **slot;
24777 struct dwarf2_section_info *section;
24778 const char *section_name;
24779
24780 if (cu->dwo_unit != NULL)
24781 {
24782 if (section_is_gnu)
24783 {
24784 section = &cu->dwo_unit->dwo_file->sections.macro;
24785 section_name = ".debug_macro.dwo";
24786 }
24787 else
24788 {
24789 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24790 section_name = ".debug_macinfo.dwo";
24791 }
24792 }
24793 else
24794 {
24795 if (section_is_gnu)
24796 {
24797 section = &dwarf2_per_objfile->macro;
24798 section_name = ".debug_macro";
24799 }
24800 else
24801 {
24802 section = &dwarf2_per_objfile->macinfo;
24803 section_name = ".debug_macinfo";
24804 }
24805 }
24806
24807 dwarf2_read_section (objfile, section);
24808 if (section->buffer == NULL)
24809 {
24810 complaint (_("missing %s section"), section_name);
24811 return;
24812 }
24813 abfd = get_section_bfd_owner (section);
24814
24815 /* First pass: Find the name of the base filename.
24816 This filename is needed in order to process all macros whose definition
24817 (or undefinition) comes from the command line. These macros are defined
24818 before the first DW_MACINFO_start_file entry, and yet still need to be
24819 associated to the base file.
24820
24821 To determine the base file name, we scan the macro definitions until we
24822 reach the first DW_MACINFO_start_file entry. We then initialize
24823 CURRENT_FILE accordingly so that any macro definition found before the
24824 first DW_MACINFO_start_file can still be associated to the base file. */
24825
24826 mac_ptr = section->buffer + offset;
24827 mac_end = section->buffer + section->size;
24828
24829 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24830 &offset_size, section_is_gnu);
24831 if (mac_ptr == NULL)
24832 {
24833 /* We already issued a complaint. */
24834 return;
24835 }
24836
24837 do
24838 {
24839 /* Do we at least have room for a macinfo type byte? */
24840 if (mac_ptr >= mac_end)
24841 {
24842 /* Complaint is printed during the second pass as GDB will probably
24843 stop the first pass earlier upon finding
24844 DW_MACINFO_start_file. */
24845 break;
24846 }
24847
24848 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24849 mac_ptr++;
24850
24851 /* Note that we rely on the fact that the corresponding GNU and
24852 DWARF constants are the same. */
24853 DIAGNOSTIC_PUSH
24854 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24855 switch (macinfo_type)
24856 {
24857 /* A zero macinfo type indicates the end of the macro
24858 information. */
24859 case 0:
24860 break;
24861
24862 case DW_MACRO_define:
24863 case DW_MACRO_undef:
24864 /* Only skip the data by MAC_PTR. */
24865 {
24866 unsigned int bytes_read;
24867
24868 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24869 mac_ptr += bytes_read;
24870 read_direct_string (abfd, mac_ptr, &bytes_read);
24871 mac_ptr += bytes_read;
24872 }
24873 break;
24874
24875 case DW_MACRO_start_file:
24876 {
24877 unsigned int bytes_read;
24878 int line, file;
24879
24880 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24881 mac_ptr += bytes_read;
24882 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24883 mac_ptr += bytes_read;
24884
24885 current_file = macro_start_file (cu, file, line, current_file, lh);
24886 }
24887 break;
24888
24889 case DW_MACRO_end_file:
24890 /* No data to skip by MAC_PTR. */
24891 break;
24892
24893 case DW_MACRO_define_strp:
24894 case DW_MACRO_undef_strp:
24895 case DW_MACRO_define_sup:
24896 case DW_MACRO_undef_sup:
24897 {
24898 unsigned int bytes_read;
24899
24900 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24901 mac_ptr += bytes_read;
24902 mac_ptr += offset_size;
24903 }
24904 break;
24905
24906 case DW_MACRO_import:
24907 case DW_MACRO_import_sup:
24908 /* Note that, according to the spec, a transparent include
24909 chain cannot call DW_MACRO_start_file. So, we can just
24910 skip this opcode. */
24911 mac_ptr += offset_size;
24912 break;
24913
24914 case DW_MACINFO_vendor_ext:
24915 /* Only skip the data by MAC_PTR. */
24916 if (!section_is_gnu)
24917 {
24918 unsigned int bytes_read;
24919
24920 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24921 mac_ptr += bytes_read;
24922 read_direct_string (abfd, mac_ptr, &bytes_read);
24923 mac_ptr += bytes_read;
24924 }
24925 /* FALLTHROUGH */
24926
24927 default:
24928 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24929 mac_ptr, mac_end, abfd, offset_size,
24930 section);
24931 if (mac_ptr == NULL)
24932 return;
24933 break;
24934 }
24935 DIAGNOSTIC_POP
24936 } while (macinfo_type != 0 && current_file == NULL);
24937
24938 /* Second pass: Process all entries.
24939
24940 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24941 command-line macro definitions/undefinitions. This flag is unset when we
24942 reach the first DW_MACINFO_start_file entry. */
24943
24944 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24945 htab_eq_pointer,
24946 NULL, xcalloc, xfree));
24947 mac_ptr = section->buffer + offset;
24948 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24949 *slot = (void *) mac_ptr;
24950 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24951 current_file, lh, section,
24952 section_is_gnu, 0, offset_size,
24953 include_hash.get ());
24954 }
24955
24956 /* Check if the attribute's form is a DW_FORM_block*
24957 if so return true else false. */
24958
24959 static int
24960 attr_form_is_block (const struct attribute *attr)
24961 {
24962 return (attr == NULL ? 0 :
24963 attr->form == DW_FORM_block1
24964 || attr->form == DW_FORM_block2
24965 || attr->form == DW_FORM_block4
24966 || attr->form == DW_FORM_block
24967 || attr->form == DW_FORM_exprloc);
24968 }
24969
24970 /* Return non-zero if ATTR's value is a section offset --- classes
24971 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24972 You may use DW_UNSND (attr) to retrieve such offsets.
24973
24974 Section 7.5.4, "Attribute Encodings", explains that no attribute
24975 may have a value that belongs to more than one of these classes; it
24976 would be ambiguous if we did, because we use the same forms for all
24977 of them. */
24978
24979 static int
24980 attr_form_is_section_offset (const struct attribute *attr)
24981 {
24982 return (attr->form == DW_FORM_data4
24983 || attr->form == DW_FORM_data8
24984 || attr->form == DW_FORM_sec_offset);
24985 }
24986
24987 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24988 zero otherwise. When this function returns true, you can apply
24989 dwarf2_get_attr_constant_value to it.
24990
24991 However, note that for some attributes you must check
24992 attr_form_is_section_offset before using this test. DW_FORM_data4
24993 and DW_FORM_data8 are members of both the constant class, and of
24994 the classes that contain offsets into other debug sections
24995 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24996 that, if an attribute's can be either a constant or one of the
24997 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24998 taken as section offsets, not constants.
24999
25000 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25001 cannot handle that. */
25002
25003 static int
25004 attr_form_is_constant (const struct attribute *attr)
25005 {
25006 switch (attr->form)
25007 {
25008 case DW_FORM_sdata:
25009 case DW_FORM_udata:
25010 case DW_FORM_data1:
25011 case DW_FORM_data2:
25012 case DW_FORM_data4:
25013 case DW_FORM_data8:
25014 case DW_FORM_implicit_const:
25015 return 1;
25016 default:
25017 return 0;
25018 }
25019 }
25020
25021
25022 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25023 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25024
25025 static int
25026 attr_form_is_ref (const struct attribute *attr)
25027 {
25028 switch (attr->form)
25029 {
25030 case DW_FORM_ref_addr:
25031 case DW_FORM_ref1:
25032 case DW_FORM_ref2:
25033 case DW_FORM_ref4:
25034 case DW_FORM_ref8:
25035 case DW_FORM_ref_udata:
25036 case DW_FORM_GNU_ref_alt:
25037 return 1;
25038 default:
25039 return 0;
25040 }
25041 }
25042
25043 /* Return the .debug_loc section to use for CU.
25044 For DWO files use .debug_loc.dwo. */
25045
25046 static struct dwarf2_section_info *
25047 cu_debug_loc_section (struct dwarf2_cu *cu)
25048 {
25049 struct dwarf2_per_objfile *dwarf2_per_objfile
25050 = cu->per_cu->dwarf2_per_objfile;
25051
25052 if (cu->dwo_unit)
25053 {
25054 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25055
25056 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25057 }
25058 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25059 : &dwarf2_per_objfile->loc);
25060 }
25061
25062 /* A helper function that fills in a dwarf2_loclist_baton. */
25063
25064 static void
25065 fill_in_loclist_baton (struct dwarf2_cu *cu,
25066 struct dwarf2_loclist_baton *baton,
25067 const struct attribute *attr)
25068 {
25069 struct dwarf2_per_objfile *dwarf2_per_objfile
25070 = cu->per_cu->dwarf2_per_objfile;
25071 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25072
25073 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25074
25075 baton->per_cu = cu->per_cu;
25076 gdb_assert (baton->per_cu);
25077 /* We don't know how long the location list is, but make sure we
25078 don't run off the edge of the section. */
25079 baton->size = section->size - DW_UNSND (attr);
25080 baton->data = section->buffer + DW_UNSND (attr);
25081 baton->base_address = cu->base_address;
25082 baton->from_dwo = cu->dwo_unit != NULL;
25083 }
25084
25085 static void
25086 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25087 struct dwarf2_cu *cu, int is_block)
25088 {
25089 struct dwarf2_per_objfile *dwarf2_per_objfile
25090 = cu->per_cu->dwarf2_per_objfile;
25091 struct objfile *objfile = dwarf2_per_objfile->objfile;
25092 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25093
25094 if (attr_form_is_section_offset (attr)
25095 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25096 the section. If so, fall through to the complaint in the
25097 other branch. */
25098 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25099 {
25100 struct dwarf2_loclist_baton *baton;
25101
25102 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25103
25104 fill_in_loclist_baton (cu, baton, attr);
25105
25106 if (cu->base_known == 0)
25107 complaint (_("Location list used without "
25108 "specifying the CU base address."));
25109
25110 SYMBOL_ACLASS_INDEX (sym) = (is_block
25111 ? dwarf2_loclist_block_index
25112 : dwarf2_loclist_index);
25113 SYMBOL_LOCATION_BATON (sym) = baton;
25114 }
25115 else
25116 {
25117 struct dwarf2_locexpr_baton *baton;
25118
25119 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25120 baton->per_cu = cu->per_cu;
25121 gdb_assert (baton->per_cu);
25122
25123 if (attr_form_is_block (attr))
25124 {
25125 /* Note that we're just copying the block's data pointer
25126 here, not the actual data. We're still pointing into the
25127 info_buffer for SYM's objfile; right now we never release
25128 that buffer, but when we do clean up properly this may
25129 need to change. */
25130 baton->size = DW_BLOCK (attr)->size;
25131 baton->data = DW_BLOCK (attr)->data;
25132 }
25133 else
25134 {
25135 dwarf2_invalid_attrib_class_complaint ("location description",
25136 SYMBOL_NATURAL_NAME (sym));
25137 baton->size = 0;
25138 }
25139
25140 SYMBOL_ACLASS_INDEX (sym) = (is_block
25141 ? dwarf2_locexpr_block_index
25142 : dwarf2_locexpr_index);
25143 SYMBOL_LOCATION_BATON (sym) = baton;
25144 }
25145 }
25146
25147 /* Return the OBJFILE associated with the compilation unit CU. If CU
25148 came from a separate debuginfo file, then the master objfile is
25149 returned. */
25150
25151 struct objfile *
25152 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25153 {
25154 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25155
25156 /* Return the master objfile, so that we can report and look up the
25157 correct file containing this variable. */
25158 if (objfile->separate_debug_objfile_backlink)
25159 objfile = objfile->separate_debug_objfile_backlink;
25160
25161 return objfile;
25162 }
25163
25164 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25165 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25166 CU_HEADERP first. */
25167
25168 static const struct comp_unit_head *
25169 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25170 struct dwarf2_per_cu_data *per_cu)
25171 {
25172 const gdb_byte *info_ptr;
25173
25174 if (per_cu->cu)
25175 return &per_cu->cu->header;
25176
25177 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25178
25179 memset (cu_headerp, 0, sizeof (*cu_headerp));
25180 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25181 rcuh_kind::COMPILE);
25182
25183 return cu_headerp;
25184 }
25185
25186 /* Return the address size given in the compilation unit header for CU. */
25187
25188 int
25189 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25190 {
25191 struct comp_unit_head cu_header_local;
25192 const struct comp_unit_head *cu_headerp;
25193
25194 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25195
25196 return cu_headerp->addr_size;
25197 }
25198
25199 /* Return the offset size given in the compilation unit header for CU. */
25200
25201 int
25202 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25203 {
25204 struct comp_unit_head cu_header_local;
25205 const struct comp_unit_head *cu_headerp;
25206
25207 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25208
25209 return cu_headerp->offset_size;
25210 }
25211
25212 /* See its dwarf2loc.h declaration. */
25213
25214 int
25215 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25216 {
25217 struct comp_unit_head cu_header_local;
25218 const struct comp_unit_head *cu_headerp;
25219
25220 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25221
25222 if (cu_headerp->version == 2)
25223 return cu_headerp->addr_size;
25224 else
25225 return cu_headerp->offset_size;
25226 }
25227
25228 /* Return the text offset of the CU. The returned offset comes from
25229 this CU's objfile. If this objfile came from a separate debuginfo
25230 file, then the offset may be different from the corresponding
25231 offset in the parent objfile. */
25232
25233 CORE_ADDR
25234 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25235 {
25236 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25237
25238 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25239 }
25240
25241 /* Return a type that is a generic pointer type, the size of which matches
25242 the address size given in the compilation unit header for PER_CU. */
25243 static struct type *
25244 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25245 {
25246 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25247 struct type *void_type = objfile_type (objfile)->builtin_void;
25248 struct type *addr_type = lookup_pointer_type (void_type);
25249 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25250
25251 if (TYPE_LENGTH (addr_type) == addr_size)
25252 return addr_type;
25253
25254 addr_type
25255 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25256 return addr_type;
25257 }
25258
25259 /* Return DWARF version number of PER_CU. */
25260
25261 short
25262 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25263 {
25264 return per_cu->dwarf_version;
25265 }
25266
25267 /* Locate the .debug_info compilation unit from CU's objfile which contains
25268 the DIE at OFFSET. Raises an error on failure. */
25269
25270 static struct dwarf2_per_cu_data *
25271 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25272 unsigned int offset_in_dwz,
25273 struct dwarf2_per_objfile *dwarf2_per_objfile)
25274 {
25275 struct dwarf2_per_cu_data *this_cu;
25276 int low, high;
25277
25278 low = 0;
25279 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25280 while (high > low)
25281 {
25282 struct dwarf2_per_cu_data *mid_cu;
25283 int mid = low + (high - low) / 2;
25284
25285 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25286 if (mid_cu->is_dwz > offset_in_dwz
25287 || (mid_cu->is_dwz == offset_in_dwz
25288 && mid_cu->sect_off + mid_cu->length >= sect_off))
25289 high = mid;
25290 else
25291 low = mid + 1;
25292 }
25293 gdb_assert (low == high);
25294 this_cu = dwarf2_per_objfile->all_comp_units[low];
25295 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25296 {
25297 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25298 error (_("Dwarf Error: could not find partial DIE containing "
25299 "offset %s [in module %s]"),
25300 sect_offset_str (sect_off),
25301 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25302
25303 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25304 <= sect_off);
25305 return dwarf2_per_objfile->all_comp_units[low-1];
25306 }
25307 else
25308 {
25309 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25310 && sect_off >= this_cu->sect_off + this_cu->length)
25311 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25312 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25313 return this_cu;
25314 }
25315 }
25316
25317 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25318
25319 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25320 : per_cu (per_cu_),
25321 mark (false),
25322 has_loclist (false),
25323 checked_producer (false),
25324 producer_is_gxx_lt_4_6 (false),
25325 producer_is_gcc_lt_4_3 (false),
25326 producer_is_icc (false),
25327 producer_is_icc_lt_14 (false),
25328 producer_is_codewarrior (false),
25329 processing_has_namespace_info (false)
25330 {
25331 per_cu->cu = this;
25332 }
25333
25334 /* Destroy a dwarf2_cu. */
25335
25336 dwarf2_cu::~dwarf2_cu ()
25337 {
25338 per_cu->cu = NULL;
25339 }
25340
25341 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25342
25343 static void
25344 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25345 enum language pretend_language)
25346 {
25347 struct attribute *attr;
25348
25349 /* Set the language we're debugging. */
25350 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25351 if (attr)
25352 set_cu_language (DW_UNSND (attr), cu);
25353 else
25354 {
25355 cu->language = pretend_language;
25356 cu->language_defn = language_def (cu->language);
25357 }
25358
25359 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25360 }
25361
25362 /* Increase the age counter on each cached compilation unit, and free
25363 any that are too old. */
25364
25365 static void
25366 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25367 {
25368 struct dwarf2_per_cu_data *per_cu, **last_chain;
25369
25370 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25371 per_cu = dwarf2_per_objfile->read_in_chain;
25372 while (per_cu != NULL)
25373 {
25374 per_cu->cu->last_used ++;
25375 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25376 dwarf2_mark (per_cu->cu);
25377 per_cu = per_cu->cu->read_in_chain;
25378 }
25379
25380 per_cu = dwarf2_per_objfile->read_in_chain;
25381 last_chain = &dwarf2_per_objfile->read_in_chain;
25382 while (per_cu != NULL)
25383 {
25384 struct dwarf2_per_cu_data *next_cu;
25385
25386 next_cu = per_cu->cu->read_in_chain;
25387
25388 if (!per_cu->cu->mark)
25389 {
25390 delete per_cu->cu;
25391 *last_chain = next_cu;
25392 }
25393 else
25394 last_chain = &per_cu->cu->read_in_chain;
25395
25396 per_cu = next_cu;
25397 }
25398 }
25399
25400 /* Remove a single compilation unit from the cache. */
25401
25402 static void
25403 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25404 {
25405 struct dwarf2_per_cu_data *per_cu, **last_chain;
25406 struct dwarf2_per_objfile *dwarf2_per_objfile
25407 = target_per_cu->dwarf2_per_objfile;
25408
25409 per_cu = dwarf2_per_objfile->read_in_chain;
25410 last_chain = &dwarf2_per_objfile->read_in_chain;
25411 while (per_cu != NULL)
25412 {
25413 struct dwarf2_per_cu_data *next_cu;
25414
25415 next_cu = per_cu->cu->read_in_chain;
25416
25417 if (per_cu == target_per_cu)
25418 {
25419 delete per_cu->cu;
25420 per_cu->cu = NULL;
25421 *last_chain = next_cu;
25422 break;
25423 }
25424 else
25425 last_chain = &per_cu->cu->read_in_chain;
25426
25427 per_cu = next_cu;
25428 }
25429 }
25430
25431 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25432 We store these in a hash table separate from the DIEs, and preserve them
25433 when the DIEs are flushed out of cache.
25434
25435 The CU "per_cu" pointer is needed because offset alone is not enough to
25436 uniquely identify the type. A file may have multiple .debug_types sections,
25437 or the type may come from a DWO file. Furthermore, while it's more logical
25438 to use per_cu->section+offset, with Fission the section with the data is in
25439 the DWO file but we don't know that section at the point we need it.
25440 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25441 because we can enter the lookup routine, get_die_type_at_offset, from
25442 outside this file, and thus won't necessarily have PER_CU->cu.
25443 Fortunately, PER_CU is stable for the life of the objfile. */
25444
25445 struct dwarf2_per_cu_offset_and_type
25446 {
25447 const struct dwarf2_per_cu_data *per_cu;
25448 sect_offset sect_off;
25449 struct type *type;
25450 };
25451
25452 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25453
25454 static hashval_t
25455 per_cu_offset_and_type_hash (const void *item)
25456 {
25457 const struct dwarf2_per_cu_offset_and_type *ofs
25458 = (const struct dwarf2_per_cu_offset_and_type *) item;
25459
25460 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25461 }
25462
25463 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25464
25465 static int
25466 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25467 {
25468 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25469 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25470 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25471 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25472
25473 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25474 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25475 }
25476
25477 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25478 table if necessary. For convenience, return TYPE.
25479
25480 The DIEs reading must have careful ordering to:
25481 * Not cause infite loops trying to read in DIEs as a prerequisite for
25482 reading current DIE.
25483 * Not trying to dereference contents of still incompletely read in types
25484 while reading in other DIEs.
25485 * Enable referencing still incompletely read in types just by a pointer to
25486 the type without accessing its fields.
25487
25488 Therefore caller should follow these rules:
25489 * Try to fetch any prerequisite types we may need to build this DIE type
25490 before building the type and calling set_die_type.
25491 * After building type call set_die_type for current DIE as soon as
25492 possible before fetching more types to complete the current type.
25493 * Make the type as complete as possible before fetching more types. */
25494
25495 static struct type *
25496 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25497 {
25498 struct dwarf2_per_objfile *dwarf2_per_objfile
25499 = cu->per_cu->dwarf2_per_objfile;
25500 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25501 struct objfile *objfile = dwarf2_per_objfile->objfile;
25502 struct attribute *attr;
25503 struct dynamic_prop prop;
25504
25505 /* For Ada types, make sure that the gnat-specific data is always
25506 initialized (if not already set). There are a few types where
25507 we should not be doing so, because the type-specific area is
25508 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25509 where the type-specific area is used to store the floatformat).
25510 But this is not a problem, because the gnat-specific information
25511 is actually not needed for these types. */
25512 if (need_gnat_info (cu)
25513 && TYPE_CODE (type) != TYPE_CODE_FUNC
25514 && TYPE_CODE (type) != TYPE_CODE_FLT
25515 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25516 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25517 && TYPE_CODE (type) != TYPE_CODE_METHOD
25518 && !HAVE_GNAT_AUX_INFO (type))
25519 INIT_GNAT_SPECIFIC (type);
25520
25521 /* Read DW_AT_allocated and set in type. */
25522 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25523 if (attr_form_is_block (attr))
25524 {
25525 struct type *prop_type
25526 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25527 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25528 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25529 }
25530 else if (attr != NULL)
25531 {
25532 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25533 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25534 sect_offset_str (die->sect_off));
25535 }
25536
25537 /* Read DW_AT_associated and set in type. */
25538 attr = dwarf2_attr (die, DW_AT_associated, cu);
25539 if (attr_form_is_block (attr))
25540 {
25541 struct type *prop_type
25542 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25543 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25544 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25545 }
25546 else if (attr != NULL)
25547 {
25548 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25549 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25550 sect_offset_str (die->sect_off));
25551 }
25552
25553 /* Read DW_AT_data_location and set in type. */
25554 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25555 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25556 dwarf2_per_cu_addr_type (cu->per_cu)))
25557 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25558
25559 if (dwarf2_per_objfile->die_type_hash == NULL)
25560 {
25561 dwarf2_per_objfile->die_type_hash =
25562 htab_create_alloc_ex (127,
25563 per_cu_offset_and_type_hash,
25564 per_cu_offset_and_type_eq,
25565 NULL,
25566 &objfile->objfile_obstack,
25567 hashtab_obstack_allocate,
25568 dummy_obstack_deallocate);
25569 }
25570
25571 ofs.per_cu = cu->per_cu;
25572 ofs.sect_off = die->sect_off;
25573 ofs.type = type;
25574 slot = (struct dwarf2_per_cu_offset_and_type **)
25575 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25576 if (*slot)
25577 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25578 sect_offset_str (die->sect_off));
25579 *slot = XOBNEW (&objfile->objfile_obstack,
25580 struct dwarf2_per_cu_offset_and_type);
25581 **slot = ofs;
25582 return type;
25583 }
25584
25585 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25586 or return NULL if the die does not have a saved type. */
25587
25588 static struct type *
25589 get_die_type_at_offset (sect_offset sect_off,
25590 struct dwarf2_per_cu_data *per_cu)
25591 {
25592 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25593 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25594
25595 if (dwarf2_per_objfile->die_type_hash == NULL)
25596 return NULL;
25597
25598 ofs.per_cu = per_cu;
25599 ofs.sect_off = sect_off;
25600 slot = ((struct dwarf2_per_cu_offset_and_type *)
25601 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25602 if (slot)
25603 return slot->type;
25604 else
25605 return NULL;
25606 }
25607
25608 /* Look up the type for DIE in CU in die_type_hash,
25609 or return NULL if DIE does not have a saved type. */
25610
25611 static struct type *
25612 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25613 {
25614 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25615 }
25616
25617 /* Add a dependence relationship from CU to REF_PER_CU. */
25618
25619 static void
25620 dwarf2_add_dependence (struct dwarf2_cu *cu,
25621 struct dwarf2_per_cu_data *ref_per_cu)
25622 {
25623 void **slot;
25624
25625 if (cu->dependencies == NULL)
25626 cu->dependencies
25627 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25628 NULL, &cu->comp_unit_obstack,
25629 hashtab_obstack_allocate,
25630 dummy_obstack_deallocate);
25631
25632 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25633 if (*slot == NULL)
25634 *slot = ref_per_cu;
25635 }
25636
25637 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25638 Set the mark field in every compilation unit in the
25639 cache that we must keep because we are keeping CU. */
25640
25641 static int
25642 dwarf2_mark_helper (void **slot, void *data)
25643 {
25644 struct dwarf2_per_cu_data *per_cu;
25645
25646 per_cu = (struct dwarf2_per_cu_data *) *slot;
25647
25648 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25649 reading of the chain. As such dependencies remain valid it is not much
25650 useful to track and undo them during QUIT cleanups. */
25651 if (per_cu->cu == NULL)
25652 return 1;
25653
25654 if (per_cu->cu->mark)
25655 return 1;
25656 per_cu->cu->mark = true;
25657
25658 if (per_cu->cu->dependencies != NULL)
25659 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25660
25661 return 1;
25662 }
25663
25664 /* Set the mark field in CU and in every other compilation unit in the
25665 cache that we must keep because we are keeping CU. */
25666
25667 static void
25668 dwarf2_mark (struct dwarf2_cu *cu)
25669 {
25670 if (cu->mark)
25671 return;
25672 cu->mark = true;
25673 if (cu->dependencies != NULL)
25674 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25675 }
25676
25677 static void
25678 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25679 {
25680 while (per_cu)
25681 {
25682 per_cu->cu->mark = false;
25683 per_cu = per_cu->cu->read_in_chain;
25684 }
25685 }
25686
25687 /* Trivial hash function for partial_die_info: the hash value of a DIE
25688 is its offset in .debug_info for this objfile. */
25689
25690 static hashval_t
25691 partial_die_hash (const void *item)
25692 {
25693 const struct partial_die_info *part_die
25694 = (const struct partial_die_info *) item;
25695
25696 return to_underlying (part_die->sect_off);
25697 }
25698
25699 /* Trivial comparison function for partial_die_info structures: two DIEs
25700 are equal if they have the same offset. */
25701
25702 static int
25703 partial_die_eq (const void *item_lhs, const void *item_rhs)
25704 {
25705 const struct partial_die_info *part_die_lhs
25706 = (const struct partial_die_info *) item_lhs;
25707 const struct partial_die_info *part_die_rhs
25708 = (const struct partial_die_info *) item_rhs;
25709
25710 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25711 }
25712
25713 struct cmd_list_element *set_dwarf_cmdlist;
25714 struct cmd_list_element *show_dwarf_cmdlist;
25715
25716 static void
25717 set_dwarf_cmd (const char *args, int from_tty)
25718 {
25719 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25720 gdb_stdout);
25721 }
25722
25723 static void
25724 show_dwarf_cmd (const char *args, int from_tty)
25725 {
25726 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25727 }
25728
25729 int dwarf_always_disassemble;
25730
25731 static void
25732 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25733 struct cmd_list_element *c, const char *value)
25734 {
25735 fprintf_filtered (file,
25736 _("Whether to always disassemble "
25737 "DWARF expressions is %s.\n"),
25738 value);
25739 }
25740
25741 static void
25742 show_check_physname (struct ui_file *file, int from_tty,
25743 struct cmd_list_element *c, const char *value)
25744 {
25745 fprintf_filtered (file,
25746 _("Whether to check \"physname\" is %s.\n"),
25747 value);
25748 }
25749
25750 void
25751 _initialize_dwarf2_read (void)
25752 {
25753 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25754 Set DWARF specific variables.\n\
25755 Configure DWARF variables such as the cache size."),
25756 &set_dwarf_cmdlist, "maintenance set dwarf ",
25757 0/*allow-unknown*/, &maintenance_set_cmdlist);
25758
25759 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25760 Show DWARF specific variables.\n\
25761 Show DWARF variables such as the cache size."),
25762 &show_dwarf_cmdlist, "maintenance show dwarf ",
25763 0/*allow-unknown*/, &maintenance_show_cmdlist);
25764
25765 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25766 &dwarf_max_cache_age, _("\
25767 Set the upper bound on the age of cached DWARF compilation units."), _("\
25768 Show the upper bound on the age of cached DWARF compilation units."), _("\
25769 A higher limit means that cached compilation units will be stored\n\
25770 in memory longer, and more total memory will be used. Zero disables\n\
25771 caching, which can slow down startup."),
25772 NULL,
25773 show_dwarf_max_cache_age,
25774 &set_dwarf_cmdlist,
25775 &show_dwarf_cmdlist);
25776
25777 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25778 &dwarf_always_disassemble, _("\
25779 Set whether `info address' always disassembles DWARF expressions."), _("\
25780 Show whether `info address' always disassembles DWARF expressions."), _("\
25781 When enabled, DWARF expressions are always printed in an assembly-like\n\
25782 syntax. When disabled, expressions will be printed in a more\n\
25783 conversational style, when possible."),
25784 NULL,
25785 show_dwarf_always_disassemble,
25786 &set_dwarf_cmdlist,
25787 &show_dwarf_cmdlist);
25788
25789 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25790 Set debugging of the DWARF reader."), _("\
25791 Show debugging of the DWARF reader."), _("\
25792 When enabled (non-zero), debugging messages are printed during DWARF\n\
25793 reading and symtab expansion. A value of 1 (one) provides basic\n\
25794 information. A value greater than 1 provides more verbose information."),
25795 NULL,
25796 NULL,
25797 &setdebuglist, &showdebuglist);
25798
25799 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25800 Set debugging of the DWARF DIE reader."), _("\
25801 Show debugging of the DWARF DIE reader."), _("\
25802 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25803 The value is the maximum depth to print."),
25804 NULL,
25805 NULL,
25806 &setdebuglist, &showdebuglist);
25807
25808 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25809 Set debugging of the dwarf line reader."), _("\
25810 Show debugging of the dwarf line reader."), _("\
25811 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25812 A value of 1 (one) provides basic information.\n\
25813 A value greater than 1 provides more verbose information."),
25814 NULL,
25815 NULL,
25816 &setdebuglist, &showdebuglist);
25817
25818 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25819 Set cross-checking of \"physname\" code against demangler."), _("\
25820 Show cross-checking of \"physname\" code against demangler."), _("\
25821 When enabled, GDB's internal \"physname\" code is checked against\n\
25822 the demangler."),
25823 NULL, show_check_physname,
25824 &setdebuglist, &showdebuglist);
25825
25826 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25827 no_class, &use_deprecated_index_sections, _("\
25828 Set whether to use deprecated gdb_index sections."), _("\
25829 Show whether to use deprecated gdb_index sections."), _("\
25830 When enabled, deprecated .gdb_index sections are used anyway.\n\
25831 Normally they are ignored either because of a missing feature or\n\
25832 performance issue.\n\
25833 Warning: This option must be enabled before gdb reads the file."),
25834 NULL,
25835 NULL,
25836 &setlist, &showlist);
25837
25838 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25839 &dwarf2_locexpr_funcs);
25840 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25841 &dwarf2_loclist_funcs);
25842
25843 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25844 &dwarf2_block_frame_base_locexpr_funcs);
25845 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25846 &dwarf2_block_frame_base_loclist_funcs);
25847
25848 #if GDB_SELF_TEST
25849 selftests::register_test ("dw2_expand_symtabs_matching",
25850 selftests::dw2_expand_symtabs_matching::run_test);
25851 #endif
25852 }
This page took 0.586514 seconds and 4 git commands to generate.