b2ecadf89bc4f0c012f49b510f93b642ff184f3c
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 /* The name_component table (a sorted vector). See name_component's
151 description above. */
152 std::vector<name_component> name_components;
153
154 /* How NAME_COMPONENTS is sorted. */
155 enum case_sensitivity name_components_casing;
156
157 /* Return the number of names in the symbol table. */
158 virtual size_t symbol_name_count () const = 0;
159
160 /* Get the name of the symbol at IDX in the symbol table. */
161 virtual const char *symbol_name_at (offset_type idx) const = 0;
162
163 /* Return whether the name at IDX in the symbol table should be
164 ignored. */
165 virtual bool symbol_name_slot_invalid (offset_type idx) const
166 {
167 return false;
168 }
169
170 /* Build the symbol name component sorted vector, if we haven't
171 yet. */
172 void build_name_components ();
173
174 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
175 possible matches for LN_NO_PARAMS in the name component
176 vector. */
177 std::pair<std::vector<name_component>::const_iterator,
178 std::vector<name_component>::const_iterator>
179 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
180
181 /* Prevent deleting/destroying via a base class pointer. */
182 protected:
183 ~mapped_index_base() = default;
184 };
185
186 /* A description of the mapped index. The file format is described in
187 a comment by the code that writes the index. */
188 struct mapped_index final : public mapped_index_base
189 {
190 /* A slot/bucket in the symbol table hash. */
191 struct symbol_table_slot
192 {
193 const offset_type name;
194 const offset_type vec;
195 };
196
197 /* Index data format version. */
198 int version;
199
200 /* The total length of the buffer. */
201 off_t total_size;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version;
818
819 /* The bfd. */
820 bfd *dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections;
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_t loaded_cus;
833 htab_t loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections;
838 asection **elf_sections;
839 };
840
841 /* This represents a '.dwz' file. */
842
843 struct dwz_file
844 {
845 /* A dwz file can only contain a few sections. */
846 struct dwarf2_section_info abbrev;
847 struct dwarf2_section_info info;
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info line;
850 struct dwarf2_section_info macro;
851 struct dwarf2_section_info gdb_index;
852 struct dwarf2_section_info debug_names;
853
854 /* The dwz's BFD. */
855 bfd *dwz_bfd;
856 };
857
858 /* Struct used to pass misc. parameters to read_die_and_children, et
859 al. which are used for both .debug_info and .debug_types dies.
860 All parameters here are unchanging for the life of the call. This
861 struct exists to abstract away the constant parameters of die reading. */
862
863 struct die_reader_specs
864 {
865 /* The bfd of die_section. */
866 bfd* abfd;
867
868 /* The CU of the DIE we are parsing. */
869 struct dwarf2_cu *cu;
870
871 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
872 struct dwo_file *dwo_file;
873
874 /* The section the die comes from.
875 This is either .debug_info or .debug_types, or the .dwo variants. */
876 struct dwarf2_section_info *die_section;
877
878 /* die_section->buffer. */
879 const gdb_byte *buffer;
880
881 /* The end of the buffer. */
882 const gdb_byte *buffer_end;
883
884 /* The value of the DW_AT_comp_dir attribute. */
885 const char *comp_dir;
886
887 /* The abbreviation table to use when reading the DIEs. */
888 struct abbrev_table *abbrev_table;
889 };
890
891 /* Type of function passed to init_cutu_and_read_dies, et.al. */
892 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
893 const gdb_byte *info_ptr,
894 struct die_info *comp_unit_die,
895 int has_children,
896 void *data);
897
898 /* A 1-based directory index. This is a strong typedef to prevent
899 accidentally using a directory index as a 0-based index into an
900 array/vector. */
901 enum class dir_index : unsigned int {};
902
903 /* Likewise, a 1-based file name index. */
904 enum class file_name_index : unsigned int {};
905
906 struct file_entry
907 {
908 file_entry () = default;
909
910 file_entry (const char *name_, dir_index d_index_,
911 unsigned int mod_time_, unsigned int length_)
912 : name (name_),
913 d_index (d_index_),
914 mod_time (mod_time_),
915 length (length_)
916 {}
917
918 /* Return the include directory at D_INDEX stored in LH. Returns
919 NULL if D_INDEX is out of bounds. */
920 const char *include_dir (const line_header *lh) const;
921
922 /* The file name. Note this is an observing pointer. The memory is
923 owned by debug_line_buffer. */
924 const char *name {};
925
926 /* The directory index (1-based). */
927 dir_index d_index {};
928
929 unsigned int mod_time {};
930
931 unsigned int length {};
932
933 /* True if referenced by the Line Number Program. */
934 bool included_p {};
935
936 /* The associated symbol table, if any. */
937 struct symtab *symtab {};
938 };
939
940 /* The line number information for a compilation unit (found in the
941 .debug_line section) begins with a "statement program header",
942 which contains the following information. */
943 struct line_header
944 {
945 line_header ()
946 : offset_in_dwz {}
947 {}
948
949 /* Add an entry to the include directory table. */
950 void add_include_dir (const char *include_dir);
951
952 /* Add an entry to the file name table. */
953 void add_file_name (const char *name, dir_index d_index,
954 unsigned int mod_time, unsigned int length);
955
956 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
957 is out of bounds. */
958 const char *include_dir_at (dir_index index) const
959 {
960 /* Convert directory index number (1-based) to vector index
961 (0-based). */
962 size_t vec_index = to_underlying (index) - 1;
963
964 if (vec_index >= include_dirs.size ())
965 return NULL;
966 return include_dirs[vec_index];
967 }
968
969 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
970 is out of bounds. */
971 file_entry *file_name_at (file_name_index index)
972 {
973 /* Convert file name index number (1-based) to vector index
974 (0-based). */
975 size_t vec_index = to_underlying (index) - 1;
976
977 if (vec_index >= file_names.size ())
978 return NULL;
979 return &file_names[vec_index];
980 }
981
982 /* Const version of the above. */
983 const file_entry *file_name_at (unsigned int index) const
984 {
985 if (index >= file_names.size ())
986 return NULL;
987 return &file_names[index];
988 }
989
990 /* Offset of line number information in .debug_line section. */
991 sect_offset sect_off {};
992
993 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
994 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
995
996 unsigned int total_length {};
997 unsigned short version {};
998 unsigned int header_length {};
999 unsigned char minimum_instruction_length {};
1000 unsigned char maximum_ops_per_instruction {};
1001 unsigned char default_is_stmt {};
1002 int line_base {};
1003 unsigned char line_range {};
1004 unsigned char opcode_base {};
1005
1006 /* standard_opcode_lengths[i] is the number of operands for the
1007 standard opcode whose value is i. This means that
1008 standard_opcode_lengths[0] is unused, and the last meaningful
1009 element is standard_opcode_lengths[opcode_base - 1]. */
1010 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1011
1012 /* The include_directories table. Note these are observing
1013 pointers. The memory is owned by debug_line_buffer. */
1014 std::vector<const char *> include_dirs;
1015
1016 /* The file_names table. */
1017 std::vector<file_entry> file_names;
1018
1019 /* The start and end of the statement program following this
1020 header. These point into dwarf2_per_objfile->line_buffer. */
1021 const gdb_byte *statement_program_start {}, *statement_program_end {};
1022 };
1023
1024 typedef std::unique_ptr<line_header> line_header_up;
1025
1026 const char *
1027 file_entry::include_dir (const line_header *lh) const
1028 {
1029 return lh->include_dir_at (d_index);
1030 }
1031
1032 /* When we construct a partial symbol table entry we only
1033 need this much information. */
1034 struct partial_die_info : public allocate_on_obstack
1035 {
1036 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1037
1038 /* Disable assign but still keep copy ctor, which is needed
1039 load_partial_dies. */
1040 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1041
1042 /* Adjust the partial die before generating a symbol for it. This
1043 function may set the is_external flag or change the DIE's
1044 name. */
1045 void fixup (struct dwarf2_cu *cu);
1046
1047 /* Read a minimal amount of information into the minimal die
1048 structure. */
1049 const gdb_byte *read (const struct die_reader_specs *reader,
1050 const struct abbrev_info &abbrev,
1051 const gdb_byte *info_ptr);
1052
1053 /* Offset of this DIE. */
1054 const sect_offset sect_off;
1055
1056 /* DWARF-2 tag for this DIE. */
1057 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Assorted flags describing the data found in this DIE. */
1060 const unsigned int has_children : 1;
1061
1062 unsigned int is_external : 1;
1063 unsigned int is_declaration : 1;
1064 unsigned int has_type : 1;
1065 unsigned int has_specification : 1;
1066 unsigned int has_pc_info : 1;
1067 unsigned int may_be_inlined : 1;
1068
1069 /* This DIE has been marked DW_AT_main_subprogram. */
1070 unsigned int main_subprogram : 1;
1071
1072 /* Flag set if the SCOPE field of this structure has been
1073 computed. */
1074 unsigned int scope_set : 1;
1075
1076 /* Flag set if the DIE has a byte_size attribute. */
1077 unsigned int has_byte_size : 1;
1078
1079 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1080 unsigned int has_const_value : 1;
1081
1082 /* Flag set if any of the DIE's children are template arguments. */
1083 unsigned int has_template_arguments : 1;
1084
1085 /* Flag set if fixup has been called on this die. */
1086 unsigned int fixup_called : 1;
1087
1088 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1089 unsigned int is_dwz : 1;
1090
1091 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1092 unsigned int spec_is_dwz : 1;
1093
1094 /* The name of this DIE. Normally the value of DW_AT_name, but
1095 sometimes a default name for unnamed DIEs. */
1096 const char *name = nullptr;
1097
1098 /* The linkage name, if present. */
1099 const char *linkage_name = nullptr;
1100
1101 /* The scope to prepend to our children. This is generally
1102 allocated on the comp_unit_obstack, so will disappear
1103 when this compilation unit leaves the cache. */
1104 const char *scope = nullptr;
1105
1106 /* Some data associated with the partial DIE. The tag determines
1107 which field is live. */
1108 union
1109 {
1110 /* The location description associated with this DIE, if any. */
1111 struct dwarf_block *locdesc;
1112 /* The offset of an import, for DW_TAG_imported_unit. */
1113 sect_offset sect_off;
1114 } d {};
1115
1116 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1117 CORE_ADDR lowpc = 0;
1118 CORE_ADDR highpc = 0;
1119
1120 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1121 DW_AT_sibling, if any. */
1122 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1123 could return DW_AT_sibling values to its caller load_partial_dies. */
1124 const gdb_byte *sibling = nullptr;
1125
1126 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1127 DW_AT_specification (or DW_AT_abstract_origin or
1128 DW_AT_extension). */
1129 sect_offset spec_offset {};
1130
1131 /* Pointers to this DIE's parent, first child, and next sibling,
1132 if any. */
1133 struct partial_die_info *die_parent = nullptr;
1134 struct partial_die_info *die_child = nullptr;
1135 struct partial_die_info *die_sibling = nullptr;
1136
1137 friend struct partial_die_info *
1138 dwarf2_cu::find_partial_die (sect_offset sect_off);
1139
1140 private:
1141 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1142 partial_die_info (sect_offset sect_off)
1143 : partial_die_info (sect_off, DW_TAG_padding, 0)
1144 {
1145 }
1146
1147 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1148 int has_children_)
1149 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1150 {
1151 is_external = 0;
1152 is_declaration = 0;
1153 has_type = 0;
1154 has_specification = 0;
1155 has_pc_info = 0;
1156 may_be_inlined = 0;
1157 main_subprogram = 0;
1158 scope_set = 0;
1159 has_byte_size = 0;
1160 has_const_value = 0;
1161 has_template_arguments = 0;
1162 fixup_called = 0;
1163 is_dwz = 0;
1164 spec_is_dwz = 0;
1165 }
1166 };
1167
1168 /* This data structure holds the information of an abbrev. */
1169 struct abbrev_info
1170 {
1171 unsigned int number; /* number identifying abbrev */
1172 enum dwarf_tag tag; /* dwarf tag */
1173 unsigned short has_children; /* boolean */
1174 unsigned short num_attrs; /* number of attributes */
1175 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1176 struct abbrev_info *next; /* next in chain */
1177 };
1178
1179 struct attr_abbrev
1180 {
1181 ENUM_BITFIELD(dwarf_attribute) name : 16;
1182 ENUM_BITFIELD(dwarf_form) form : 16;
1183
1184 /* It is valid only if FORM is DW_FORM_implicit_const. */
1185 LONGEST implicit_const;
1186 };
1187
1188 /* Size of abbrev_table.abbrev_hash_table. */
1189 #define ABBREV_HASH_SIZE 121
1190
1191 /* Top level data structure to contain an abbreviation table. */
1192
1193 struct abbrev_table
1194 {
1195 explicit abbrev_table (sect_offset off)
1196 : sect_off (off)
1197 {
1198 m_abbrevs =
1199 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1200 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1201 }
1202
1203 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1204
1205 /* Allocate space for a struct abbrev_info object in
1206 ABBREV_TABLE. */
1207 struct abbrev_info *alloc_abbrev ();
1208
1209 /* Add an abbreviation to the table. */
1210 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1211
1212 /* Look up an abbrev in the table.
1213 Returns NULL if the abbrev is not found. */
1214
1215 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1216
1217
1218 /* Where the abbrev table came from.
1219 This is used as a sanity check when the table is used. */
1220 const sect_offset sect_off;
1221
1222 /* Storage for the abbrev table. */
1223 auto_obstack abbrev_obstack;
1224
1225 private:
1226
1227 /* Hash table of abbrevs.
1228 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1229 It could be statically allocated, but the previous code didn't so we
1230 don't either. */
1231 struct abbrev_info **m_abbrevs;
1232 };
1233
1234 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1235
1236 /* Attributes have a name and a value. */
1237 struct attribute
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 15;
1241
1242 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1243 field should be in u.str (existing only for DW_STRING) but it is kept
1244 here for better struct attribute alignment. */
1245 unsigned int string_is_canonical : 1;
1246
1247 union
1248 {
1249 const char *str;
1250 struct dwarf_block *blk;
1251 ULONGEST unsnd;
1252 LONGEST snd;
1253 CORE_ADDR addr;
1254 ULONGEST signature;
1255 }
1256 u;
1257 };
1258
1259 /* This data structure holds a complete die structure. */
1260 struct die_info
1261 {
1262 /* DWARF-2 tag for this DIE. */
1263 ENUM_BITFIELD(dwarf_tag) tag : 16;
1264
1265 /* Number of attributes */
1266 unsigned char num_attrs;
1267
1268 /* True if we're presently building the full type name for the
1269 type derived from this DIE. */
1270 unsigned char building_fullname : 1;
1271
1272 /* True if this die is in process. PR 16581. */
1273 unsigned char in_process : 1;
1274
1275 /* Abbrev number */
1276 unsigned int abbrev;
1277
1278 /* Offset in .debug_info or .debug_types section. */
1279 sect_offset sect_off;
1280
1281 /* The dies in a compilation unit form an n-ary tree. PARENT
1282 points to this die's parent; CHILD points to the first child of
1283 this node; and all the children of a given node are chained
1284 together via their SIBLING fields. */
1285 struct die_info *child; /* Its first child, if any. */
1286 struct die_info *sibling; /* Its next sibling, if any. */
1287 struct die_info *parent; /* Its parent, if any. */
1288
1289 /* An array of attributes, with NUM_ATTRS elements. There may be
1290 zero, but it's not common and zero-sized arrays are not
1291 sufficiently portable C. */
1292 struct attribute attrs[1];
1293 };
1294
1295 /* Get at parts of an attribute structure. */
1296
1297 #define DW_STRING(attr) ((attr)->u.str)
1298 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1299 #define DW_UNSND(attr) ((attr)->u.unsnd)
1300 #define DW_BLOCK(attr) ((attr)->u.blk)
1301 #define DW_SND(attr) ((attr)->u.snd)
1302 #define DW_ADDR(attr) ((attr)->u.addr)
1303 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1304
1305 /* Blocks are a bunch of untyped bytes. */
1306 struct dwarf_block
1307 {
1308 size_t size;
1309
1310 /* Valid only if SIZE is not zero. */
1311 const gdb_byte *data;
1312 };
1313
1314 #ifndef ATTR_ALLOC_CHUNK
1315 #define ATTR_ALLOC_CHUNK 4
1316 #endif
1317
1318 /* Allocate fields for structs, unions and enums in this size. */
1319 #ifndef DW_FIELD_ALLOC_CHUNK
1320 #define DW_FIELD_ALLOC_CHUNK 4
1321 #endif
1322
1323 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1324 but this would require a corresponding change in unpack_field_as_long
1325 and friends. */
1326 static int bits_per_byte = 8;
1327
1328 /* When reading a variant or variant part, we track a bit more
1329 information about the field, and store it in an object of this
1330 type. */
1331
1332 struct variant_field
1333 {
1334 /* If we see a DW_TAG_variant, then this will be the discriminant
1335 value. */
1336 ULONGEST discriminant_value;
1337 /* If we see a DW_TAG_variant, then this will be set if this is the
1338 default branch. */
1339 bool default_branch;
1340 /* While reading a DW_TAG_variant_part, this will be set if this
1341 field is the discriminant. */
1342 bool is_discriminant;
1343 };
1344
1345 struct nextfield
1346 {
1347 int accessibility = 0;
1348 int virtuality = 0;
1349 /* Extra information to describe a variant or variant part. */
1350 struct variant_field variant {};
1351 struct field field {};
1352 };
1353
1354 struct fnfieldlist
1355 {
1356 const char *name = nullptr;
1357 std::vector<struct fn_field> fnfields;
1358 };
1359
1360 /* The routines that read and process dies for a C struct or C++ class
1361 pass lists of data member fields and lists of member function fields
1362 in an instance of a field_info structure, as defined below. */
1363 struct field_info
1364 {
1365 /* List of data member and baseclasses fields. */
1366 std::vector<struct nextfield> fields;
1367 std::vector<struct nextfield> baseclasses;
1368
1369 /* Number of fields (including baseclasses). */
1370 int nfields = 0;
1371
1372 /* Set if the accesibility of one of the fields is not public. */
1373 int non_public_fields = 0;
1374
1375 /* Member function fieldlist array, contains name of possibly overloaded
1376 member function, number of overloaded member functions and a pointer
1377 to the head of the member function field chain. */
1378 std::vector<struct fnfieldlist> fnfieldlists;
1379
1380 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1381 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1382 std::vector<struct decl_field> typedef_field_list;
1383
1384 /* Nested types defined by this class and the number of elements in this
1385 list. */
1386 std::vector<struct decl_field> nested_types_list;
1387 };
1388
1389 /* One item on the queue of compilation units to read in full symbols
1390 for. */
1391 struct dwarf2_queue_item
1392 {
1393 struct dwarf2_per_cu_data *per_cu;
1394 enum language pretend_language;
1395 struct dwarf2_queue_item *next;
1396 };
1397
1398 /* The current queue. */
1399 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1400
1401 /* Loaded secondary compilation units are kept in memory until they
1402 have not been referenced for the processing of this many
1403 compilation units. Set this to zero to disable caching. Cache
1404 sizes of up to at least twenty will improve startup time for
1405 typical inter-CU-reference binaries, at an obvious memory cost. */
1406 static int dwarf_max_cache_age = 5;
1407 static void
1408 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410 {
1411 fprintf_filtered (file, _("The upper bound on the age of cached "
1412 "DWARF compilation units is %s.\n"),
1413 value);
1414 }
1415 \f
1416 /* local function prototypes */
1417
1418 static const char *get_section_name (const struct dwarf2_section_info *);
1419
1420 static const char *get_section_file_name (const struct dwarf2_section_info *);
1421
1422 static void dwarf2_find_base_address (struct die_info *die,
1423 struct dwarf2_cu *cu);
1424
1425 static struct partial_symtab *create_partial_symtab
1426 (struct dwarf2_per_cu_data *per_cu, const char *name);
1427
1428 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1429 const gdb_byte *info_ptr,
1430 struct die_info *type_unit_die,
1431 int has_children, void *data);
1432
1433 static void dwarf2_build_psymtabs_hard
1434 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1435
1436 static void scan_partial_symbols (struct partial_die_info *,
1437 CORE_ADDR *, CORE_ADDR *,
1438 int, struct dwarf2_cu *);
1439
1440 static void add_partial_symbol (struct partial_die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void add_partial_namespace (struct partial_die_info *pdi,
1444 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1445 int set_addrmap, struct dwarf2_cu *cu);
1446
1447 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1448 CORE_ADDR *highpc, int set_addrmap,
1449 struct dwarf2_cu *cu);
1450
1451 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1452 struct dwarf2_cu *cu);
1453
1454 static void add_partial_subprogram (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int need_pc, struct dwarf2_cu *cu);
1457
1458 static void dwarf2_read_symtab (struct partial_symtab *,
1459 struct objfile *);
1460
1461 static void psymtab_to_symtab_1 (struct partial_symtab *);
1462
1463 static abbrev_table_up abbrev_table_read_table
1464 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1465 sect_offset);
1466
1467 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1468
1469 static struct partial_die_info *load_partial_dies
1470 (const struct die_reader_specs *, const gdb_byte *, int);
1471
1472 static struct partial_die_info *find_partial_die (sect_offset, int,
1473 struct dwarf2_cu *);
1474
1475 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1476 struct attribute *, struct attr_abbrev *,
1477 const gdb_byte *);
1478
1479 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1480
1481 static int read_1_signed_byte (bfd *, const gdb_byte *);
1482
1483 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1484
1485 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1486
1487 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1488
1489 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1490 unsigned int *);
1491
1492 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static LONGEST read_checked_initial_length_and_offset
1495 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1496 unsigned int *, unsigned int *);
1497
1498 static LONGEST read_offset (bfd *, const gdb_byte *,
1499 const struct comp_unit_head *,
1500 unsigned int *);
1501
1502 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1503
1504 static sect_offset read_abbrev_offset
1505 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1506 struct dwarf2_section_info *, sect_offset);
1507
1508 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1509
1510 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static const char *read_indirect_string
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1514 const struct comp_unit_head *, unsigned int *);
1515
1516 static const char *read_indirect_line_string
1517 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1518 const struct comp_unit_head *, unsigned int *);
1519
1520 static const char *read_indirect_string_at_offset
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1522 LONGEST str_offset);
1523
1524 static const char *read_indirect_string_from_dwz
1525 (struct objfile *objfile, struct dwz_file *, LONGEST);
1526
1527 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1530 const gdb_byte *,
1531 unsigned int *);
1532
1533 static const char *read_str_index (const struct die_reader_specs *reader,
1534 ULONGEST str_index);
1535
1536 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1537
1538 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1539 struct dwarf2_cu *);
1540
1541 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1542 unsigned int);
1543
1544 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1545 struct dwarf2_cu *cu);
1546
1547 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1548 struct dwarf2_cu *cu);
1549
1550 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1551
1552 static struct die_info *die_specification (struct die_info *die,
1553 struct dwarf2_cu **);
1554
1555 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1556 struct dwarf2_cu *cu);
1557
1558 static void dwarf_decode_lines (struct line_header *, const char *,
1559 struct dwarf2_cu *, struct partial_symtab *,
1560 CORE_ADDR, int decode_mapping);
1561
1562 static void dwarf2_start_subfile (const char *, const char *);
1563
1564 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1565 const char *, const char *,
1566 CORE_ADDR);
1567
1568 static struct symbol *new_symbol (struct die_info *, struct type *,
1569 struct dwarf2_cu *, struct symbol * = NULL);
1570
1571 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1572 struct dwarf2_cu *);
1573
1574 static void dwarf2_const_value_attr (const struct attribute *attr,
1575 struct type *type,
1576 const char *name,
1577 struct obstack *obstack,
1578 struct dwarf2_cu *cu, LONGEST *value,
1579 const gdb_byte **bytes,
1580 struct dwarf2_locexpr_baton **baton);
1581
1582 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1583
1584 static int need_gnat_info (struct dwarf2_cu *);
1585
1586 static struct type *die_descriptive_type (struct die_info *,
1587 struct dwarf2_cu *);
1588
1589 static void set_descriptive_type (struct type *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static struct type *die_containing_type (struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1596 struct dwarf2_cu *);
1597
1598 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1599
1600 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1601
1602 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1603
1604 static char *typename_concat (struct obstack *obs, const char *prefix,
1605 const char *suffix, int physname,
1606 struct dwarf2_cu *cu);
1607
1608 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1613
1614 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1615
1616 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1621 struct dwarf2_cu *, struct partial_symtab *);
1622
1623 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1624 values. Keep the items ordered with increasing constraints compliance. */
1625 enum pc_bounds_kind
1626 {
1627 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1628 PC_BOUNDS_NOT_PRESENT,
1629
1630 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1631 were present but they do not form a valid range of PC addresses. */
1632 PC_BOUNDS_INVALID,
1633
1634 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1635 PC_BOUNDS_RANGES,
1636
1637 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1638 PC_BOUNDS_HIGH_LOW,
1639 };
1640
1641 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1642 CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *,
1644 struct partial_symtab *);
1645
1646 static void get_scope_pc_bounds (struct die_info *,
1647 CORE_ADDR *, CORE_ADDR *,
1648 struct dwarf2_cu *);
1649
1650 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1651 CORE_ADDR, struct dwarf2_cu *);
1652
1653 static void dwarf2_add_field (struct field_info *, struct die_info *,
1654 struct dwarf2_cu *);
1655
1656 static void dwarf2_attach_fields_to_type (struct field_info *,
1657 struct type *, struct dwarf2_cu *);
1658
1659 static void dwarf2_add_member_fn (struct field_info *,
1660 struct die_info *, struct type *,
1661 struct dwarf2_cu *);
1662
1663 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1664 struct type *,
1665 struct dwarf2_cu *);
1666
1667 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1672
1673 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static struct using_direct **using_directives (enum language);
1676
1677 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1678
1679 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1680
1681 static struct type *read_module_type (struct die_info *die,
1682 struct dwarf2_cu *cu);
1683
1684 static const char *namespace_name (struct die_info *die,
1685 int *is_anonymous, struct dwarf2_cu *);
1686
1687 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1688
1689 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1690
1691 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1692 struct dwarf2_cu *);
1693
1694 static struct die_info *read_die_and_siblings_1
1695 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1696 struct die_info *);
1697
1698 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1699 const gdb_byte *info_ptr,
1700 const gdb_byte **new_info_ptr,
1701 struct die_info *parent);
1702
1703 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1704 struct die_info **, const gdb_byte *,
1705 int *, int);
1706
1707 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1708 struct die_info **, const gdb_byte *,
1709 int *);
1710
1711 static void process_die (struct die_info *, struct dwarf2_cu *);
1712
1713 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1714 struct obstack *);
1715
1716 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1717
1718 static const char *dwarf2_full_name (const char *name,
1719 struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722 static const char *dwarf2_physname (const char *name, struct die_info *die,
1723 struct dwarf2_cu *cu);
1724
1725 static struct die_info *dwarf2_extension (struct die_info *die,
1726 struct dwarf2_cu **);
1727
1728 static const char *dwarf_tag_name (unsigned int);
1729
1730 static const char *dwarf_attr_name (unsigned int);
1731
1732 static const char *dwarf_form_name (unsigned int);
1733
1734 static const char *dwarf_bool_name (unsigned int);
1735
1736 static const char *dwarf_type_encoding_name (unsigned int);
1737
1738 static struct die_info *sibling_die (struct die_info *);
1739
1740 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1741
1742 static void dump_die_for_error (struct die_info *);
1743
1744 static void dump_die_1 (struct ui_file *, int level, int max_level,
1745 struct die_info *);
1746
1747 /*static*/ void dump_die (struct die_info *, int max_level);
1748
1749 static void store_in_ref_table (struct die_info *,
1750 struct dwarf2_cu *);
1751
1752 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1753
1754 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1755
1756 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1757 const struct attribute *,
1758 struct dwarf2_cu **);
1759
1760 static struct die_info *follow_die_ref (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu **);
1763
1764 static struct die_info *follow_die_sig (struct die_info *,
1765 const struct attribute *,
1766 struct dwarf2_cu **);
1767
1768 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1769 struct dwarf2_cu *);
1770
1771 static struct type *get_DW_AT_signature_type (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu *);
1774
1775 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1776
1777 static void read_signatured_type (struct signatured_type *);
1778
1779 static int attr_to_dynamic_prop (const struct attribute *attr,
1780 struct die_info *die, struct dwarf2_cu *cu,
1781 struct dynamic_prop *prop);
1782
1783 /* memory allocation interface */
1784
1785 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1786
1787 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1788
1789 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1790
1791 static int attr_form_is_block (const struct attribute *);
1792
1793 static int attr_form_is_section_offset (const struct attribute *);
1794
1795 static int attr_form_is_constant (const struct attribute *);
1796
1797 static int attr_form_is_ref (const struct attribute *);
1798
1799 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1800 struct dwarf2_loclist_baton *baton,
1801 const struct attribute *attr);
1802
1803 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1804 struct symbol *sym,
1805 struct dwarf2_cu *cu,
1806 int is_block);
1807
1808 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1809 const gdb_byte *info_ptr,
1810 struct abbrev_info *abbrev);
1811
1812 static hashval_t partial_die_hash (const void *item);
1813
1814 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1815
1816 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1817 (sect_offset sect_off, unsigned int offset_in_dwz,
1818 struct dwarf2_per_objfile *dwarf2_per_objfile);
1819
1820 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1821 struct die_info *comp_unit_die,
1822 enum language pretend_language);
1823
1824 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1825
1826 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1827
1828 static struct type *set_die_type (struct die_info *, struct type *,
1829 struct dwarf2_cu *);
1830
1831 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1832
1833 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1834
1835 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1836 enum language);
1837
1838 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1839 enum language);
1840
1841 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1842 enum language);
1843
1844 static void dwarf2_add_dependence (struct dwarf2_cu *,
1845 struct dwarf2_per_cu_data *);
1846
1847 static void dwarf2_mark (struct dwarf2_cu *);
1848
1849 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1850
1851 static struct type *get_die_type_at_offset (sect_offset,
1852 struct dwarf2_per_cu_data *);
1853
1854 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1855
1856 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
1859 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1860
1861 /* Class, the destructor of which frees all allocated queue entries. This
1862 will only have work to do if an error was thrown while processing the
1863 dwarf. If no error was thrown then the queue entries should have all
1864 been processed, and freed, as we went along. */
1865
1866 class dwarf2_queue_guard
1867 {
1868 public:
1869 dwarf2_queue_guard () = default;
1870
1871 /* Free any entries remaining on the queue. There should only be
1872 entries left if we hit an error while processing the dwarf. */
1873 ~dwarf2_queue_guard ()
1874 {
1875 struct dwarf2_queue_item *item, *last;
1876
1877 item = dwarf2_queue;
1878 while (item)
1879 {
1880 /* Anything still marked queued is likely to be in an
1881 inconsistent state, so discard it. */
1882 if (item->per_cu->queued)
1883 {
1884 if (item->per_cu->cu != NULL)
1885 free_one_cached_comp_unit (item->per_cu);
1886 item->per_cu->queued = 0;
1887 }
1888
1889 last = item;
1890 item = item->next;
1891 xfree (last);
1892 }
1893
1894 dwarf2_queue = dwarf2_queue_tail = NULL;
1895 }
1896 };
1897
1898 /* The return type of find_file_and_directory. Note, the enclosed
1899 string pointers are only valid while this object is valid. */
1900
1901 struct file_and_directory
1902 {
1903 /* The filename. This is never NULL. */
1904 const char *name;
1905
1906 /* The compilation directory. NULL if not known. If we needed to
1907 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1908 points directly to the DW_AT_comp_dir string attribute owned by
1909 the obstack that owns the DIE. */
1910 const char *comp_dir;
1911
1912 /* If we needed to build a new string for comp_dir, this is what
1913 owns the storage. */
1914 std::string comp_dir_storage;
1915 };
1916
1917 static file_and_directory find_file_and_directory (struct die_info *die,
1918 struct dwarf2_cu *cu);
1919
1920 static char *file_full_name (int file, struct line_header *lh,
1921 const char *comp_dir);
1922
1923 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1924 enum class rcuh_kind { COMPILE, TYPE };
1925
1926 static const gdb_byte *read_and_check_comp_unit_head
1927 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1928 struct comp_unit_head *header,
1929 struct dwarf2_section_info *section,
1930 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1931 rcuh_kind section_kind);
1932
1933 static void init_cutu_and_read_dies
1934 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1935 int use_existing_cu, int keep, bool skip_partial,
1936 die_reader_func_ftype *die_reader_func, void *data);
1937
1938 static void init_cutu_and_read_dies_simple
1939 (struct dwarf2_per_cu_data *this_cu,
1940 die_reader_func_ftype *die_reader_func, void *data);
1941
1942 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1943
1944 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1945
1946 static struct dwo_unit *lookup_dwo_unit_in_dwp
1947 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1948 struct dwp_file *dwp_file, const char *comp_dir,
1949 ULONGEST signature, int is_debug_types);
1950
1951 static struct dwp_file *get_dwp_file
1952 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1953
1954 static struct dwo_unit *lookup_dwo_comp_unit
1955 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1956
1957 static struct dwo_unit *lookup_dwo_type_unit
1958 (struct signatured_type *, const char *, const char *);
1959
1960 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1961
1962 static void free_dwo_file (struct dwo_file *);
1963
1964 /* A unique_ptr helper to free a dwo_file. */
1965
1966 struct dwo_file_deleter
1967 {
1968 void operator() (struct dwo_file *df) const
1969 {
1970 free_dwo_file (df);
1971 }
1972 };
1973
1974 /* A unique pointer to a dwo_file. */
1975
1976 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1977
1978 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1979
1980 static void check_producer (struct dwarf2_cu *cu);
1981
1982 static void free_line_header_voidp (void *arg);
1983 \f
1984 /* Various complaints about symbol reading that don't abort the process. */
1985
1986 static void
1987 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1988 {
1989 complaint (&symfile_complaints,
1990 _("statement list doesn't fit in .debug_line section"));
1991 }
1992
1993 static void
1994 dwarf2_debug_line_missing_file_complaint (void)
1995 {
1996 complaint (&symfile_complaints,
1997 _(".debug_line section has line data without a file"));
1998 }
1999
2000 static void
2001 dwarf2_debug_line_missing_end_sequence_complaint (void)
2002 {
2003 complaint (&symfile_complaints,
2004 _(".debug_line section has line "
2005 "program sequence without an end"));
2006 }
2007
2008 static void
2009 dwarf2_complex_location_expr_complaint (void)
2010 {
2011 complaint (&symfile_complaints, _("location expression too complex"));
2012 }
2013
2014 static void
2015 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2016 int arg3)
2017 {
2018 complaint (&symfile_complaints,
2019 _("const value length mismatch for '%s', got %d, expected %d"),
2020 arg1, arg2, arg3);
2021 }
2022
2023 static void
2024 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2025 {
2026 complaint (&symfile_complaints,
2027 _("debug info runs off end of %s section"
2028 " [in module %s]"),
2029 get_section_name (section),
2030 get_section_file_name (section));
2031 }
2032
2033 static void
2034 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2035 {
2036 complaint (&symfile_complaints,
2037 _("macro debug info contains a "
2038 "malformed macro definition:\n`%s'"),
2039 arg1);
2040 }
2041
2042 static void
2043 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2044 {
2045 complaint (&symfile_complaints,
2046 _("invalid attribute class or form for '%s' in '%s'"),
2047 arg1, arg2);
2048 }
2049
2050 /* Hash function for line_header_hash. */
2051
2052 static hashval_t
2053 line_header_hash (const struct line_header *ofs)
2054 {
2055 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2056 }
2057
2058 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2059
2060 static hashval_t
2061 line_header_hash_voidp (const void *item)
2062 {
2063 const struct line_header *ofs = (const struct line_header *) item;
2064
2065 return line_header_hash (ofs);
2066 }
2067
2068 /* Equality function for line_header_hash. */
2069
2070 static int
2071 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2072 {
2073 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2074 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2075
2076 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2077 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2078 }
2079
2080 \f
2081
2082 /* Read the given attribute value as an address, taking the attribute's
2083 form into account. */
2084
2085 static CORE_ADDR
2086 attr_value_as_address (struct attribute *attr)
2087 {
2088 CORE_ADDR addr;
2089
2090 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2091 {
2092 /* Aside from a few clearly defined exceptions, attributes that
2093 contain an address must always be in DW_FORM_addr form.
2094 Unfortunately, some compilers happen to be violating this
2095 requirement by encoding addresses using other forms, such
2096 as DW_FORM_data4 for example. For those broken compilers,
2097 we try to do our best, without any guarantee of success,
2098 to interpret the address correctly. It would also be nice
2099 to generate a complaint, but that would require us to maintain
2100 a list of legitimate cases where a non-address form is allowed,
2101 as well as update callers to pass in at least the CU's DWARF
2102 version. This is more overhead than what we're willing to
2103 expand for a pretty rare case. */
2104 addr = DW_UNSND (attr);
2105 }
2106 else
2107 addr = DW_ADDR (attr);
2108
2109 return addr;
2110 }
2111
2112 /* See declaration. */
2113
2114 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2115 const dwarf2_debug_sections *names)
2116 : objfile (objfile_)
2117 {
2118 if (names == NULL)
2119 names = &dwarf2_elf_names;
2120
2121 bfd *obfd = objfile->obfd;
2122
2123 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2124 locate_sections (obfd, sec, *names);
2125 }
2126
2127 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2128
2129 dwarf2_per_objfile::~dwarf2_per_objfile ()
2130 {
2131 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2132 free_cached_comp_units ();
2133
2134 if (quick_file_names_table)
2135 htab_delete (quick_file_names_table);
2136
2137 if (line_header_hash)
2138 htab_delete (line_header_hash);
2139
2140 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2141 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2142
2143 for (signatured_type *sig_type : all_type_units)
2144 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2145
2146 VEC_free (dwarf2_section_info_def, types);
2147
2148 if (dwo_files != NULL)
2149 free_dwo_files (dwo_files, objfile);
2150 if (dwp_file != NULL)
2151 gdb_bfd_unref (dwp_file->dbfd);
2152
2153 if (dwz_file != NULL && dwz_file->dwz_bfd)
2154 gdb_bfd_unref (dwz_file->dwz_bfd);
2155
2156 if (index_table != NULL)
2157 index_table->~mapped_index ();
2158
2159 /* Everything else should be on the objfile obstack. */
2160 }
2161
2162 /* See declaration. */
2163
2164 void
2165 dwarf2_per_objfile::free_cached_comp_units ()
2166 {
2167 dwarf2_per_cu_data *per_cu = read_in_chain;
2168 dwarf2_per_cu_data **last_chain = &read_in_chain;
2169 while (per_cu != NULL)
2170 {
2171 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2172
2173 delete per_cu->cu;
2174 *last_chain = next_cu;
2175 per_cu = next_cu;
2176 }
2177 }
2178
2179 /* A helper class that calls free_cached_comp_units on
2180 destruction. */
2181
2182 class free_cached_comp_units
2183 {
2184 public:
2185
2186 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2187 : m_per_objfile (per_objfile)
2188 {
2189 }
2190
2191 ~free_cached_comp_units ()
2192 {
2193 m_per_objfile->free_cached_comp_units ();
2194 }
2195
2196 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2197
2198 private:
2199
2200 dwarf2_per_objfile *m_per_objfile;
2201 };
2202
2203 /* Try to locate the sections we need for DWARF 2 debugging
2204 information and return true if we have enough to do something.
2205 NAMES points to the dwarf2 section names, or is NULL if the standard
2206 ELF names are used. */
2207
2208 int
2209 dwarf2_has_info (struct objfile *objfile,
2210 const struct dwarf2_debug_sections *names)
2211 {
2212 if (objfile->flags & OBJF_READNEVER)
2213 return 0;
2214
2215 struct dwarf2_per_objfile *dwarf2_per_objfile
2216 = get_dwarf2_per_objfile (objfile);
2217
2218 if (dwarf2_per_objfile == NULL)
2219 {
2220 /* Initialize per-objfile state. */
2221 dwarf2_per_objfile
2222 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2223 names);
2224 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2225 }
2226 return (!dwarf2_per_objfile->info.is_virtual
2227 && dwarf2_per_objfile->info.s.section != NULL
2228 && !dwarf2_per_objfile->abbrev.is_virtual
2229 && dwarf2_per_objfile->abbrev.s.section != NULL);
2230 }
2231
2232 /* Return the containing section of virtual section SECTION. */
2233
2234 static struct dwarf2_section_info *
2235 get_containing_section (const struct dwarf2_section_info *section)
2236 {
2237 gdb_assert (section->is_virtual);
2238 return section->s.containing_section;
2239 }
2240
2241 /* Return the bfd owner of SECTION. */
2242
2243 static struct bfd *
2244 get_section_bfd_owner (const struct dwarf2_section_info *section)
2245 {
2246 if (section->is_virtual)
2247 {
2248 section = get_containing_section (section);
2249 gdb_assert (!section->is_virtual);
2250 }
2251 return section->s.section->owner;
2252 }
2253
2254 /* Return the bfd section of SECTION.
2255 Returns NULL if the section is not present. */
2256
2257 static asection *
2258 get_section_bfd_section (const struct dwarf2_section_info *section)
2259 {
2260 if (section->is_virtual)
2261 {
2262 section = get_containing_section (section);
2263 gdb_assert (!section->is_virtual);
2264 }
2265 return section->s.section;
2266 }
2267
2268 /* Return the name of SECTION. */
2269
2270 static const char *
2271 get_section_name (const struct dwarf2_section_info *section)
2272 {
2273 asection *sectp = get_section_bfd_section (section);
2274
2275 gdb_assert (sectp != NULL);
2276 return bfd_section_name (get_section_bfd_owner (section), sectp);
2277 }
2278
2279 /* Return the name of the file SECTION is in. */
2280
2281 static const char *
2282 get_section_file_name (const struct dwarf2_section_info *section)
2283 {
2284 bfd *abfd = get_section_bfd_owner (section);
2285
2286 return bfd_get_filename (abfd);
2287 }
2288
2289 /* Return the id of SECTION.
2290 Returns 0 if SECTION doesn't exist. */
2291
2292 static int
2293 get_section_id (const struct dwarf2_section_info *section)
2294 {
2295 asection *sectp = get_section_bfd_section (section);
2296
2297 if (sectp == NULL)
2298 return 0;
2299 return sectp->id;
2300 }
2301
2302 /* Return the flags of SECTION.
2303 SECTION (or containing section if this is a virtual section) must exist. */
2304
2305 static int
2306 get_section_flags (const struct dwarf2_section_info *section)
2307 {
2308 asection *sectp = get_section_bfd_section (section);
2309
2310 gdb_assert (sectp != NULL);
2311 return bfd_get_section_flags (sectp->owner, sectp);
2312 }
2313
2314 /* When loading sections, we look either for uncompressed section or for
2315 compressed section names. */
2316
2317 static int
2318 section_is_p (const char *section_name,
2319 const struct dwarf2_section_names *names)
2320 {
2321 if (names->normal != NULL
2322 && strcmp (section_name, names->normal) == 0)
2323 return 1;
2324 if (names->compressed != NULL
2325 && strcmp (section_name, names->compressed) == 0)
2326 return 1;
2327 return 0;
2328 }
2329
2330 /* See declaration. */
2331
2332 void
2333 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2334 const dwarf2_debug_sections &names)
2335 {
2336 flagword aflag = bfd_get_section_flags (abfd, sectp);
2337
2338 if ((aflag & SEC_HAS_CONTENTS) == 0)
2339 {
2340 }
2341 else if (section_is_p (sectp->name, &names.info))
2342 {
2343 this->info.s.section = sectp;
2344 this->info.size = bfd_get_section_size (sectp);
2345 }
2346 else if (section_is_p (sectp->name, &names.abbrev))
2347 {
2348 this->abbrev.s.section = sectp;
2349 this->abbrev.size = bfd_get_section_size (sectp);
2350 }
2351 else if (section_is_p (sectp->name, &names.line))
2352 {
2353 this->line.s.section = sectp;
2354 this->line.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &names.loc))
2357 {
2358 this->loc.s.section = sectp;
2359 this->loc.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &names.loclists))
2362 {
2363 this->loclists.s.section = sectp;
2364 this->loclists.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &names.macinfo))
2367 {
2368 this->macinfo.s.section = sectp;
2369 this->macinfo.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &names.macro))
2372 {
2373 this->macro.s.section = sectp;
2374 this->macro.size = bfd_get_section_size (sectp);
2375 }
2376 else if (section_is_p (sectp->name, &names.str))
2377 {
2378 this->str.s.section = sectp;
2379 this->str.size = bfd_get_section_size (sectp);
2380 }
2381 else if (section_is_p (sectp->name, &names.line_str))
2382 {
2383 this->line_str.s.section = sectp;
2384 this->line_str.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.addr))
2387 {
2388 this->addr.s.section = sectp;
2389 this->addr.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.frame))
2392 {
2393 this->frame.s.section = sectp;
2394 this->frame.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.eh_frame))
2397 {
2398 this->eh_frame.s.section = sectp;
2399 this->eh_frame.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.ranges))
2402 {
2403 this->ranges.s.section = sectp;
2404 this->ranges.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.rnglists))
2407 {
2408 this->rnglists.s.section = sectp;
2409 this->rnglists.size = bfd_get_section_size (sectp);
2410 }
2411 else if (section_is_p (sectp->name, &names.types))
2412 {
2413 struct dwarf2_section_info type_section;
2414
2415 memset (&type_section, 0, sizeof (type_section));
2416 type_section.s.section = sectp;
2417 type_section.size = bfd_get_section_size (sectp);
2418
2419 VEC_safe_push (dwarf2_section_info_def, this->types,
2420 &type_section);
2421 }
2422 else if (section_is_p (sectp->name, &names.gdb_index))
2423 {
2424 this->gdb_index.s.section = sectp;
2425 this->gdb_index.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.debug_names))
2428 {
2429 this->debug_names.s.section = sectp;
2430 this->debug_names.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.debug_aranges))
2433 {
2434 this->debug_aranges.s.section = sectp;
2435 this->debug_aranges.size = bfd_get_section_size (sectp);
2436 }
2437
2438 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2439 && bfd_section_vma (abfd, sectp) == 0)
2440 this->has_section_at_zero = true;
2441 }
2442
2443 /* A helper function that decides whether a section is empty,
2444 or not present. */
2445
2446 static int
2447 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2448 {
2449 if (section->is_virtual)
2450 return section->size == 0;
2451 return section->s.section == NULL || section->size == 0;
2452 }
2453
2454 /* See dwarf2read.h. */
2455
2456 void
2457 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2458 {
2459 asection *sectp;
2460 bfd *abfd;
2461 gdb_byte *buf, *retbuf;
2462
2463 if (info->readin)
2464 return;
2465 info->buffer = NULL;
2466 info->readin = 1;
2467
2468 if (dwarf2_section_empty_p (info))
2469 return;
2470
2471 sectp = get_section_bfd_section (info);
2472
2473 /* If this is a virtual section we need to read in the real one first. */
2474 if (info->is_virtual)
2475 {
2476 struct dwarf2_section_info *containing_section =
2477 get_containing_section (info);
2478
2479 gdb_assert (sectp != NULL);
2480 if ((sectp->flags & SEC_RELOC) != 0)
2481 {
2482 error (_("Dwarf Error: DWP format V2 with relocations is not"
2483 " supported in section %s [in module %s]"),
2484 get_section_name (info), get_section_file_name (info));
2485 }
2486 dwarf2_read_section (objfile, containing_section);
2487 /* Other code should have already caught virtual sections that don't
2488 fit. */
2489 gdb_assert (info->virtual_offset + info->size
2490 <= containing_section->size);
2491 /* If the real section is empty or there was a problem reading the
2492 section we shouldn't get here. */
2493 gdb_assert (containing_section->buffer != NULL);
2494 info->buffer = containing_section->buffer + info->virtual_offset;
2495 return;
2496 }
2497
2498 /* If the section has relocations, we must read it ourselves.
2499 Otherwise we attach it to the BFD. */
2500 if ((sectp->flags & SEC_RELOC) == 0)
2501 {
2502 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2503 return;
2504 }
2505
2506 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2507 info->buffer = buf;
2508
2509 /* When debugging .o files, we may need to apply relocations; see
2510 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2511 We never compress sections in .o files, so we only need to
2512 try this when the section is not compressed. */
2513 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2514 if (retbuf != NULL)
2515 {
2516 info->buffer = retbuf;
2517 return;
2518 }
2519
2520 abfd = get_section_bfd_owner (info);
2521 gdb_assert (abfd != NULL);
2522
2523 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2524 || bfd_bread (buf, info->size, abfd) != info->size)
2525 {
2526 error (_("Dwarf Error: Can't read DWARF data"
2527 " in section %s [in module %s]"),
2528 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2529 }
2530 }
2531
2532 /* A helper function that returns the size of a section in a safe way.
2533 If you are positive that the section has been read before using the
2534 size, then it is safe to refer to the dwarf2_section_info object's
2535 "size" field directly. In other cases, you must call this
2536 function, because for compressed sections the size field is not set
2537 correctly until the section has been read. */
2538
2539 static bfd_size_type
2540 dwarf2_section_size (struct objfile *objfile,
2541 struct dwarf2_section_info *info)
2542 {
2543 if (!info->readin)
2544 dwarf2_read_section (objfile, info);
2545 return info->size;
2546 }
2547
2548 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2549 SECTION_NAME. */
2550
2551 void
2552 dwarf2_get_section_info (struct objfile *objfile,
2553 enum dwarf2_section_enum sect,
2554 asection **sectp, const gdb_byte **bufp,
2555 bfd_size_type *sizep)
2556 {
2557 struct dwarf2_per_objfile *data
2558 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2559 dwarf2_objfile_data_key);
2560 struct dwarf2_section_info *info;
2561
2562 /* We may see an objfile without any DWARF, in which case we just
2563 return nothing. */
2564 if (data == NULL)
2565 {
2566 *sectp = NULL;
2567 *bufp = NULL;
2568 *sizep = 0;
2569 return;
2570 }
2571 switch (sect)
2572 {
2573 case DWARF2_DEBUG_FRAME:
2574 info = &data->frame;
2575 break;
2576 case DWARF2_EH_FRAME:
2577 info = &data->eh_frame;
2578 break;
2579 default:
2580 gdb_assert_not_reached ("unexpected section");
2581 }
2582
2583 dwarf2_read_section (objfile, info);
2584
2585 *sectp = get_section_bfd_section (info);
2586 *bufp = info->buffer;
2587 *sizep = info->size;
2588 }
2589
2590 /* A helper function to find the sections for a .dwz file. */
2591
2592 static void
2593 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2594 {
2595 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2596
2597 /* Note that we only support the standard ELF names, because .dwz
2598 is ELF-only (at the time of writing). */
2599 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2600 {
2601 dwz_file->abbrev.s.section = sectp;
2602 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2603 }
2604 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2605 {
2606 dwz_file->info.s.section = sectp;
2607 dwz_file->info.size = bfd_get_section_size (sectp);
2608 }
2609 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2610 {
2611 dwz_file->str.s.section = sectp;
2612 dwz_file->str.size = bfd_get_section_size (sectp);
2613 }
2614 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2615 {
2616 dwz_file->line.s.section = sectp;
2617 dwz_file->line.size = bfd_get_section_size (sectp);
2618 }
2619 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2620 {
2621 dwz_file->macro.s.section = sectp;
2622 dwz_file->macro.size = bfd_get_section_size (sectp);
2623 }
2624 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2625 {
2626 dwz_file->gdb_index.s.section = sectp;
2627 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2628 }
2629 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2630 {
2631 dwz_file->debug_names.s.section = sectp;
2632 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2633 }
2634 }
2635
2636 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2637 there is no .gnu_debugaltlink section in the file. Error if there
2638 is such a section but the file cannot be found. */
2639
2640 static struct dwz_file *
2641 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2642 {
2643 const char *filename;
2644 struct dwz_file *result;
2645 bfd_size_type buildid_len_arg;
2646 size_t buildid_len;
2647 bfd_byte *buildid;
2648
2649 if (dwarf2_per_objfile->dwz_file != NULL)
2650 return dwarf2_per_objfile->dwz_file;
2651
2652 bfd_set_error (bfd_error_no_error);
2653 gdb::unique_xmalloc_ptr<char> data
2654 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2655 &buildid_len_arg, &buildid));
2656 if (data == NULL)
2657 {
2658 if (bfd_get_error () == bfd_error_no_error)
2659 return NULL;
2660 error (_("could not read '.gnu_debugaltlink' section: %s"),
2661 bfd_errmsg (bfd_get_error ()));
2662 }
2663
2664 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2665
2666 buildid_len = (size_t) buildid_len_arg;
2667
2668 filename = data.get ();
2669
2670 std::string abs_storage;
2671 if (!IS_ABSOLUTE_PATH (filename))
2672 {
2673 gdb::unique_xmalloc_ptr<char> abs
2674 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2675
2676 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2677 filename = abs_storage.c_str ();
2678 }
2679
2680 /* First try the file name given in the section. If that doesn't
2681 work, try to use the build-id instead. */
2682 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2683 if (dwz_bfd != NULL)
2684 {
2685 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2686 dwz_bfd.release ();
2687 }
2688
2689 if (dwz_bfd == NULL)
2690 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2691
2692 if (dwz_bfd == NULL)
2693 error (_("could not find '.gnu_debugaltlink' file for %s"),
2694 objfile_name (dwarf2_per_objfile->objfile));
2695
2696 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2697 struct dwz_file);
2698 result->dwz_bfd = dwz_bfd.release ();
2699
2700 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2701
2702 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2703 dwarf2_per_objfile->dwz_file = result;
2704 return result;
2705 }
2706 \f
2707 /* DWARF quick_symbols_functions support. */
2708
2709 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2710 unique line tables, so we maintain a separate table of all .debug_line
2711 derived entries to support the sharing.
2712 All the quick functions need is the list of file names. We discard the
2713 line_header when we're done and don't need to record it here. */
2714 struct quick_file_names
2715 {
2716 /* The data used to construct the hash key. */
2717 struct stmt_list_hash hash;
2718
2719 /* The number of entries in file_names, real_names. */
2720 unsigned int num_file_names;
2721
2722 /* The file names from the line table, after being run through
2723 file_full_name. */
2724 const char **file_names;
2725
2726 /* The file names from the line table after being run through
2727 gdb_realpath. These are computed lazily. */
2728 const char **real_names;
2729 };
2730
2731 /* When using the index (and thus not using psymtabs), each CU has an
2732 object of this type. This is used to hold information needed by
2733 the various "quick" methods. */
2734 struct dwarf2_per_cu_quick_data
2735 {
2736 /* The file table. This can be NULL if there was no file table
2737 or it's currently not read in.
2738 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2739 struct quick_file_names *file_names;
2740
2741 /* The corresponding symbol table. This is NULL if symbols for this
2742 CU have not yet been read. */
2743 struct compunit_symtab *compunit_symtab;
2744
2745 /* A temporary mark bit used when iterating over all CUs in
2746 expand_symtabs_matching. */
2747 unsigned int mark : 1;
2748
2749 /* True if we've tried to read the file table and found there isn't one.
2750 There will be no point in trying to read it again next time. */
2751 unsigned int no_file_data : 1;
2752 };
2753
2754 /* Utility hash function for a stmt_list_hash. */
2755
2756 static hashval_t
2757 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2758 {
2759 hashval_t v = 0;
2760
2761 if (stmt_list_hash->dwo_unit != NULL)
2762 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2763 v += to_underlying (stmt_list_hash->line_sect_off);
2764 return v;
2765 }
2766
2767 /* Utility equality function for a stmt_list_hash. */
2768
2769 static int
2770 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2771 const struct stmt_list_hash *rhs)
2772 {
2773 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2774 return 0;
2775 if (lhs->dwo_unit != NULL
2776 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2777 return 0;
2778
2779 return lhs->line_sect_off == rhs->line_sect_off;
2780 }
2781
2782 /* Hash function for a quick_file_names. */
2783
2784 static hashval_t
2785 hash_file_name_entry (const void *e)
2786 {
2787 const struct quick_file_names *file_data
2788 = (const struct quick_file_names *) e;
2789
2790 return hash_stmt_list_entry (&file_data->hash);
2791 }
2792
2793 /* Equality function for a quick_file_names. */
2794
2795 static int
2796 eq_file_name_entry (const void *a, const void *b)
2797 {
2798 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2799 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2800
2801 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2802 }
2803
2804 /* Delete function for a quick_file_names. */
2805
2806 static void
2807 delete_file_name_entry (void *e)
2808 {
2809 struct quick_file_names *file_data = (struct quick_file_names *) e;
2810 int i;
2811
2812 for (i = 0; i < file_data->num_file_names; ++i)
2813 {
2814 xfree ((void*) file_data->file_names[i]);
2815 if (file_data->real_names)
2816 xfree ((void*) file_data->real_names[i]);
2817 }
2818
2819 /* The space for the struct itself lives on objfile_obstack,
2820 so we don't free it here. */
2821 }
2822
2823 /* Create a quick_file_names hash table. */
2824
2825 static htab_t
2826 create_quick_file_names_table (unsigned int nr_initial_entries)
2827 {
2828 return htab_create_alloc (nr_initial_entries,
2829 hash_file_name_entry, eq_file_name_entry,
2830 delete_file_name_entry, xcalloc, xfree);
2831 }
2832
2833 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2834 have to be created afterwards. You should call age_cached_comp_units after
2835 processing PER_CU->CU. dw2_setup must have been already called. */
2836
2837 static void
2838 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2839 {
2840 if (per_cu->is_debug_types)
2841 load_full_type_unit (per_cu);
2842 else
2843 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2844
2845 if (per_cu->cu == NULL)
2846 return; /* Dummy CU. */
2847
2848 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2849 }
2850
2851 /* Read in the symbols for PER_CU. */
2852
2853 static void
2854 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2855 {
2856 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2857
2858 /* Skip type_unit_groups, reading the type units they contain
2859 is handled elsewhere. */
2860 if (IS_TYPE_UNIT_GROUP (per_cu))
2861 return;
2862
2863 /* The destructor of dwarf2_queue_guard frees any entries left on
2864 the queue. After this point we're guaranteed to leave this function
2865 with the dwarf queue empty. */
2866 dwarf2_queue_guard q_guard;
2867
2868 if (dwarf2_per_objfile->using_index
2869 ? per_cu->v.quick->compunit_symtab == NULL
2870 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2871 {
2872 queue_comp_unit (per_cu, language_minimal);
2873 load_cu (per_cu, skip_partial);
2874
2875 /* If we just loaded a CU from a DWO, and we're working with an index
2876 that may badly handle TUs, load all the TUs in that DWO as well.
2877 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2878 if (!per_cu->is_debug_types
2879 && per_cu->cu != NULL
2880 && per_cu->cu->dwo_unit != NULL
2881 && dwarf2_per_objfile->index_table != NULL
2882 && dwarf2_per_objfile->index_table->version <= 7
2883 /* DWP files aren't supported yet. */
2884 && get_dwp_file (dwarf2_per_objfile) == NULL)
2885 queue_and_load_all_dwo_tus (per_cu);
2886 }
2887
2888 process_queue (dwarf2_per_objfile);
2889
2890 /* Age the cache, releasing compilation units that have not
2891 been used recently. */
2892 age_cached_comp_units (dwarf2_per_objfile);
2893 }
2894
2895 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2896 the objfile from which this CU came. Returns the resulting symbol
2897 table. */
2898
2899 static struct compunit_symtab *
2900 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2901 {
2902 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2903
2904 gdb_assert (dwarf2_per_objfile->using_index);
2905 if (!per_cu->v.quick->compunit_symtab)
2906 {
2907 free_cached_comp_units freer (dwarf2_per_objfile);
2908 scoped_restore decrementer = increment_reading_symtab ();
2909 dw2_do_instantiate_symtab (per_cu, skip_partial);
2910 process_cu_includes (dwarf2_per_objfile);
2911 }
2912
2913 return per_cu->v.quick->compunit_symtab;
2914 }
2915
2916 /* See declaration. */
2917
2918 dwarf2_per_cu_data *
2919 dwarf2_per_objfile::get_cutu (int index)
2920 {
2921 if (index >= this->all_comp_units.size ())
2922 {
2923 index -= this->all_comp_units.size ();
2924 gdb_assert (index < this->all_type_units.size ());
2925 return &this->all_type_units[index]->per_cu;
2926 }
2927
2928 return this->all_comp_units[index];
2929 }
2930
2931 /* See declaration. */
2932
2933 dwarf2_per_cu_data *
2934 dwarf2_per_objfile::get_cu (int index)
2935 {
2936 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2937
2938 return this->all_comp_units[index];
2939 }
2940
2941 /* See declaration. */
2942
2943 signatured_type *
2944 dwarf2_per_objfile::get_tu (int index)
2945 {
2946 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2947
2948 return this->all_type_units[index];
2949 }
2950
2951 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2952 objfile_obstack, and constructed with the specified field
2953 values. */
2954
2955 static dwarf2_per_cu_data *
2956 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2957 struct dwarf2_section_info *section,
2958 int is_dwz,
2959 sect_offset sect_off, ULONGEST length)
2960 {
2961 struct objfile *objfile = dwarf2_per_objfile->objfile;
2962 dwarf2_per_cu_data *the_cu
2963 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_data);
2965 the_cu->sect_off = sect_off;
2966 the_cu->length = length;
2967 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2968 the_cu->section = section;
2969 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_quick_data);
2971 the_cu->is_dwz = is_dwz;
2972 return the_cu;
2973 }
2974
2975 /* A helper for create_cus_from_index that handles a given list of
2976 CUs. */
2977
2978 static void
2979 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2980 const gdb_byte *cu_list, offset_type n_elements,
2981 struct dwarf2_section_info *section,
2982 int is_dwz)
2983 {
2984 for (offset_type i = 0; i < n_elements; i += 2)
2985 {
2986 gdb_static_assert (sizeof (ULONGEST) >= 8);
2987
2988 sect_offset sect_off
2989 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2990 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2991 cu_list += 2 * 8;
2992
2993 dwarf2_per_cu_data *per_cu
2994 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2995 sect_off, length);
2996 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2997 }
2998 }
2999
3000 /* Read the CU list from the mapped index, and use it to create all
3001 the CU objects for this objfile. */
3002
3003 static void
3004 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3005 const gdb_byte *cu_list, offset_type cu_list_elements,
3006 const gdb_byte *dwz_list, offset_type dwz_elements)
3007 {
3008 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3009 dwarf2_per_objfile->all_comp_units.reserve
3010 ((cu_list_elements + dwz_elements) / 2);
3011
3012 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3013 &dwarf2_per_objfile->info, 0);
3014
3015 if (dwz_elements == 0)
3016 return;
3017
3018 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3019 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3020 &dwz->info, 1);
3021 }
3022
3023 /* Create the signatured type hash table from the index. */
3024
3025 static void
3026 create_signatured_type_table_from_index
3027 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3028 struct dwarf2_section_info *section,
3029 const gdb_byte *bytes,
3030 offset_type elements)
3031 {
3032 struct objfile *objfile = dwarf2_per_objfile->objfile;
3033
3034 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3035 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3036
3037 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3038
3039 for (offset_type i = 0; i < elements; i += 3)
3040 {
3041 struct signatured_type *sig_type;
3042 ULONGEST signature;
3043 void **slot;
3044 cu_offset type_offset_in_tu;
3045
3046 gdb_static_assert (sizeof (ULONGEST) >= 8);
3047 sect_offset sect_off
3048 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3049 type_offset_in_tu
3050 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3051 BFD_ENDIAN_LITTLE);
3052 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3053 bytes += 3 * 8;
3054
3055 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3056 struct signatured_type);
3057 sig_type->signature = signature;
3058 sig_type->type_offset_in_tu = type_offset_in_tu;
3059 sig_type->per_cu.is_debug_types = 1;
3060 sig_type->per_cu.section = section;
3061 sig_type->per_cu.sect_off = sect_off;
3062 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3063 sig_type->per_cu.v.quick
3064 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3065 struct dwarf2_per_cu_quick_data);
3066
3067 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3068 *slot = sig_type;
3069
3070 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3071 }
3072
3073 dwarf2_per_objfile->signatured_types = sig_types_hash;
3074 }
3075
3076 /* Create the signatured type hash table from .debug_names. */
3077
3078 static void
3079 create_signatured_type_table_from_debug_names
3080 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3081 const mapped_debug_names &map,
3082 struct dwarf2_section_info *section,
3083 struct dwarf2_section_info *abbrev_section)
3084 {
3085 struct objfile *objfile = dwarf2_per_objfile->objfile;
3086
3087 dwarf2_read_section (objfile, section);
3088 dwarf2_read_section (objfile, abbrev_section);
3089
3090 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3091 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3092
3093 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3094
3095 for (uint32_t i = 0; i < map.tu_count; ++i)
3096 {
3097 struct signatured_type *sig_type;
3098 void **slot;
3099
3100 sect_offset sect_off
3101 = (sect_offset) (extract_unsigned_integer
3102 (map.tu_table_reordered + i * map.offset_size,
3103 map.offset_size,
3104 map.dwarf5_byte_order));
3105
3106 comp_unit_head cu_header;
3107 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3108 abbrev_section,
3109 section->buffer + to_underlying (sect_off),
3110 rcuh_kind::TYPE);
3111
3112 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3113 struct signatured_type);
3114 sig_type->signature = cu_header.signature;
3115 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3116 sig_type->per_cu.is_debug_types = 1;
3117 sig_type->per_cu.section = section;
3118 sig_type->per_cu.sect_off = sect_off;
3119 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3120 sig_type->per_cu.v.quick
3121 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3122 struct dwarf2_per_cu_quick_data);
3123
3124 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3125 *slot = sig_type;
3126
3127 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3128 }
3129
3130 dwarf2_per_objfile->signatured_types = sig_types_hash;
3131 }
3132
3133 /* Read the address map data from the mapped index, and use it to
3134 populate the objfile's psymtabs_addrmap. */
3135
3136 static void
3137 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3138 struct mapped_index *index)
3139 {
3140 struct objfile *objfile = dwarf2_per_objfile->objfile;
3141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3142 const gdb_byte *iter, *end;
3143 struct addrmap *mutable_map;
3144 CORE_ADDR baseaddr;
3145
3146 auto_obstack temp_obstack;
3147
3148 mutable_map = addrmap_create_mutable (&temp_obstack);
3149
3150 iter = index->address_table.data ();
3151 end = iter + index->address_table.size ();
3152
3153 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3154
3155 while (iter < end)
3156 {
3157 ULONGEST hi, lo, cu_index;
3158 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3159 iter += 8;
3160 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3161 iter += 8;
3162 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3163 iter += 4;
3164
3165 if (lo > hi)
3166 {
3167 complaint (&symfile_complaints,
3168 _(".gdb_index address table has invalid range (%s - %s)"),
3169 hex_string (lo), hex_string (hi));
3170 continue;
3171 }
3172
3173 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3174 {
3175 complaint (&symfile_complaints,
3176 _(".gdb_index address table has invalid CU number %u"),
3177 (unsigned) cu_index);
3178 continue;
3179 }
3180
3181 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3182 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3183 addrmap_set_empty (mutable_map, lo, hi - 1,
3184 dwarf2_per_objfile->get_cu (cu_index));
3185 }
3186
3187 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3188 &objfile->objfile_obstack);
3189 }
3190
3191 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3192 populate the objfile's psymtabs_addrmap. */
3193
3194 static void
3195 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3196 struct dwarf2_section_info *section)
3197 {
3198 struct objfile *objfile = dwarf2_per_objfile->objfile;
3199 bfd *abfd = objfile->obfd;
3200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3201 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3202 SECT_OFF_TEXT (objfile));
3203
3204 auto_obstack temp_obstack;
3205 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3206
3207 std::unordered_map<sect_offset,
3208 dwarf2_per_cu_data *,
3209 gdb::hash_enum<sect_offset>>
3210 debug_info_offset_to_per_cu;
3211 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3212 {
3213 const auto insertpair
3214 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3215 if (!insertpair.second)
3216 {
3217 warning (_("Section .debug_aranges in %s has duplicate "
3218 "debug_info_offset %s, ignoring .debug_aranges."),
3219 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3220 return;
3221 }
3222 }
3223
3224 dwarf2_read_section (objfile, section);
3225
3226 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3227
3228 const gdb_byte *addr = section->buffer;
3229
3230 while (addr < section->buffer + section->size)
3231 {
3232 const gdb_byte *const entry_addr = addr;
3233 unsigned int bytes_read;
3234
3235 const LONGEST entry_length = read_initial_length (abfd, addr,
3236 &bytes_read);
3237 addr += bytes_read;
3238
3239 const gdb_byte *const entry_end = addr + entry_length;
3240 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3241 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3242 if (addr + entry_length > section->buffer + section->size)
3243 {
3244 warning (_("Section .debug_aranges in %s entry at offset %zu "
3245 "length %s exceeds section length %s, "
3246 "ignoring .debug_aranges."),
3247 objfile_name (objfile), entry_addr - section->buffer,
3248 plongest (bytes_read + entry_length),
3249 pulongest (section->size));
3250 return;
3251 }
3252
3253 /* The version number. */
3254 const uint16_t version = read_2_bytes (abfd, addr);
3255 addr += 2;
3256 if (version != 2)
3257 {
3258 warning (_("Section .debug_aranges in %s entry at offset %zu "
3259 "has unsupported version %d, ignoring .debug_aranges."),
3260 objfile_name (objfile), entry_addr - section->buffer,
3261 version);
3262 return;
3263 }
3264
3265 const uint64_t debug_info_offset
3266 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3267 addr += offset_size;
3268 const auto per_cu_it
3269 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3270 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3271 {
3272 warning (_("Section .debug_aranges in %s entry at offset %zu "
3273 "debug_info_offset %s does not exists, "
3274 "ignoring .debug_aranges."),
3275 objfile_name (objfile), entry_addr - section->buffer,
3276 pulongest (debug_info_offset));
3277 return;
3278 }
3279 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3280
3281 const uint8_t address_size = *addr++;
3282 if (address_size < 1 || address_size > 8)
3283 {
3284 warning (_("Section .debug_aranges in %s entry at offset %zu "
3285 "address_size %u is invalid, ignoring .debug_aranges."),
3286 objfile_name (objfile), entry_addr - section->buffer,
3287 address_size);
3288 return;
3289 }
3290
3291 const uint8_t segment_selector_size = *addr++;
3292 if (segment_selector_size != 0)
3293 {
3294 warning (_("Section .debug_aranges in %s entry at offset %zu "
3295 "segment_selector_size %u is not supported, "
3296 "ignoring .debug_aranges."),
3297 objfile_name (objfile), entry_addr - section->buffer,
3298 segment_selector_size);
3299 return;
3300 }
3301
3302 /* Must pad to an alignment boundary that is twice the address
3303 size. It is undocumented by the DWARF standard but GCC does
3304 use it. */
3305 for (size_t padding = ((-(addr - section->buffer))
3306 & (2 * address_size - 1));
3307 padding > 0; padding--)
3308 if (*addr++ != 0)
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "padding is not zero, ignoring .debug_aranges."),
3312 objfile_name (objfile), entry_addr - section->buffer);
3313 return;
3314 }
3315
3316 for (;;)
3317 {
3318 if (addr + 2 * address_size > entry_end)
3319 {
3320 warning (_("Section .debug_aranges in %s entry at offset %zu "
3321 "address list is not properly terminated, "
3322 "ignoring .debug_aranges."),
3323 objfile_name (objfile), entry_addr - section->buffer);
3324 return;
3325 }
3326 ULONGEST start = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 ULONGEST length = extract_unsigned_integer (addr, address_size,
3330 dwarf5_byte_order);
3331 addr += address_size;
3332 if (start == 0 && length == 0)
3333 break;
3334 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3335 {
3336 /* Symbol was eliminated due to a COMDAT group. */
3337 continue;
3338 }
3339 ULONGEST end = start + length;
3340 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3341 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3342 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3343 }
3344 }
3345
3346 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3347 &objfile->objfile_obstack);
3348 }
3349
3350 /* Find a slot in the mapped index INDEX for the object named NAME.
3351 If NAME is found, set *VEC_OUT to point to the CU vector in the
3352 constant pool and return true. If NAME cannot be found, return
3353 false. */
3354
3355 static bool
3356 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3357 offset_type **vec_out)
3358 {
3359 offset_type hash;
3360 offset_type slot, step;
3361 int (*cmp) (const char *, const char *);
3362
3363 gdb::unique_xmalloc_ptr<char> without_params;
3364 if (current_language->la_language == language_cplus
3365 || current_language->la_language == language_fortran
3366 || current_language->la_language == language_d)
3367 {
3368 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3369 not contain any. */
3370
3371 if (strchr (name, '(') != NULL)
3372 {
3373 without_params = cp_remove_params (name);
3374
3375 if (without_params != NULL)
3376 name = without_params.get ();
3377 }
3378 }
3379
3380 /* Index version 4 did not support case insensitive searches. But the
3381 indices for case insensitive languages are built in lowercase, therefore
3382 simulate our NAME being searched is also lowercased. */
3383 hash = mapped_index_string_hash ((index->version == 4
3384 && case_sensitivity == case_sensitive_off
3385 ? 5 : index->version),
3386 name);
3387
3388 slot = hash & (index->symbol_table.size () - 1);
3389 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3390 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3391
3392 for (;;)
3393 {
3394 const char *str;
3395
3396 const auto &bucket = index->symbol_table[slot];
3397 if (bucket.name == 0 && bucket.vec == 0)
3398 return false;
3399
3400 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3401 if (!cmp (name, str))
3402 {
3403 *vec_out = (offset_type *) (index->constant_pool
3404 + MAYBE_SWAP (bucket.vec));
3405 return true;
3406 }
3407
3408 slot = (slot + step) & (index->symbol_table.size () - 1);
3409 }
3410 }
3411
3412 /* A helper function that reads the .gdb_index from SECTION and fills
3413 in MAP. FILENAME is the name of the file containing the section;
3414 it is used for error reporting. DEPRECATED_OK is true if it is
3415 ok to use deprecated sections.
3416
3417 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3418 out parameters that are filled in with information about the CU and
3419 TU lists in the section.
3420
3421 Returns 1 if all went well, 0 otherwise. */
3422
3423 static bool
3424 read_index_from_section (struct objfile *objfile,
3425 const char *filename,
3426 bool deprecated_ok,
3427 struct dwarf2_section_info *section,
3428 struct mapped_index *map,
3429 const gdb_byte **cu_list,
3430 offset_type *cu_list_elements,
3431 const gdb_byte **types_list,
3432 offset_type *types_list_elements)
3433 {
3434 const gdb_byte *addr;
3435 offset_type version;
3436 offset_type *metadata;
3437 int i;
3438
3439 if (dwarf2_section_empty_p (section))
3440 return 0;
3441
3442 /* Older elfutils strip versions could keep the section in the main
3443 executable while splitting it for the separate debug info file. */
3444 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3445 return 0;
3446
3447 dwarf2_read_section (objfile, section);
3448
3449 addr = section->buffer;
3450 /* Version check. */
3451 version = MAYBE_SWAP (*(offset_type *) addr);
3452 /* Versions earlier than 3 emitted every copy of a psymbol. This
3453 causes the index to behave very poorly for certain requests. Version 3
3454 contained incomplete addrmap. So, it seems better to just ignore such
3455 indices. */
3456 if (version < 4)
3457 {
3458 static int warning_printed = 0;
3459 if (!warning_printed)
3460 {
3461 warning (_("Skipping obsolete .gdb_index section in %s."),
3462 filename);
3463 warning_printed = 1;
3464 }
3465 return 0;
3466 }
3467 /* Index version 4 uses a different hash function than index version
3468 5 and later.
3469
3470 Versions earlier than 6 did not emit psymbols for inlined
3471 functions. Using these files will cause GDB not to be able to
3472 set breakpoints on inlined functions by name, so we ignore these
3473 indices unless the user has done
3474 "set use-deprecated-index-sections on". */
3475 if (version < 6 && !deprecated_ok)
3476 {
3477 static int warning_printed = 0;
3478 if (!warning_printed)
3479 {
3480 warning (_("\
3481 Skipping deprecated .gdb_index section in %s.\n\
3482 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3483 to use the section anyway."),
3484 filename);
3485 warning_printed = 1;
3486 }
3487 return 0;
3488 }
3489 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3490 of the TU (for symbols coming from TUs),
3491 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3492 Plus gold-generated indices can have duplicate entries for global symbols,
3493 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3494 These are just performance bugs, and we can't distinguish gdb-generated
3495 indices from gold-generated ones, so issue no warning here. */
3496
3497 /* Indexes with higher version than the one supported by GDB may be no
3498 longer backward compatible. */
3499 if (version > 8)
3500 return 0;
3501
3502 map->version = version;
3503 map->total_size = section->size;
3504
3505 metadata = (offset_type *) (addr + sizeof (offset_type));
3506
3507 i = 0;
3508 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3509 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3510 / 8);
3511 ++i;
3512
3513 *types_list = addr + MAYBE_SWAP (metadata[i]);
3514 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3515 - MAYBE_SWAP (metadata[i]))
3516 / 8);
3517 ++i;
3518
3519 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3520 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3521 map->address_table
3522 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3523 ++i;
3524
3525 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3526 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3527 map->symbol_table
3528 = gdb::array_view<mapped_index::symbol_table_slot>
3529 ((mapped_index::symbol_table_slot *) symbol_table,
3530 (mapped_index::symbol_table_slot *) symbol_table_end);
3531
3532 ++i;
3533 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3534
3535 return 1;
3536 }
3537
3538 /* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541 static int
3542 dwarf2_read_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3543 {
3544 struct mapped_index local_map, *map;
3545 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3546 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3547 struct dwz_file *dwz;
3548 struct objfile *objfile = dwarf2_per_objfile->objfile;
3549
3550 if (!read_index_from_section (objfile, objfile_name (objfile),
3551 use_deprecated_index_sections,
3552 &dwarf2_per_objfile->gdb_index, &local_map,
3553 &cu_list, &cu_list_elements,
3554 &types_list, &types_list_elements))
3555 return 0;
3556
3557 /* Don't use the index if it's empty. */
3558 if (local_map.symbol_table.empty ())
3559 return 0;
3560
3561 /* If there is a .dwz file, read it so we can get its CU list as
3562 well. */
3563 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3564 if (dwz != NULL)
3565 {
3566 struct mapped_index dwz_map;
3567 const gdb_byte *dwz_types_ignore;
3568 offset_type dwz_types_elements_ignore;
3569
3570 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3571 1,
3572 &dwz->gdb_index, &dwz_map,
3573 &dwz_list, &dwz_list_elements,
3574 &dwz_types_ignore,
3575 &dwz_types_elements_ignore))
3576 {
3577 warning (_("could not read '.gdb_index' section from %s; skipping"),
3578 bfd_get_filename (dwz->dwz_bfd));
3579 return 0;
3580 }
3581 }
3582
3583 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3584 dwz_list, dwz_list_elements);
3585
3586 if (types_list_elements)
3587 {
3588 struct dwarf2_section_info *section;
3589
3590 /* We can only handle a single .debug_types when we have an
3591 index. */
3592 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3593 return 0;
3594
3595 section = VEC_index (dwarf2_section_info_def,
3596 dwarf2_per_objfile->types, 0);
3597
3598 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3599 types_list, types_list_elements);
3600 }
3601
3602 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3603
3604 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3605 map = new (map) mapped_index ();
3606 *map = local_map;
3607
3608 dwarf2_per_objfile->index_table = map;
3609 dwarf2_per_objfile->using_index = 1;
3610 dwarf2_per_objfile->quick_file_names_table =
3611 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3612
3613 return 1;
3614 }
3615
3616 /* die_reader_func for dw2_get_file_names. */
3617
3618 static void
3619 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3620 const gdb_byte *info_ptr,
3621 struct die_info *comp_unit_die,
3622 int has_children,
3623 void *data)
3624 {
3625 struct dwarf2_cu *cu = reader->cu;
3626 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3627 struct dwarf2_per_objfile *dwarf2_per_objfile
3628 = cu->per_cu->dwarf2_per_objfile;
3629 struct objfile *objfile = dwarf2_per_objfile->objfile;
3630 struct dwarf2_per_cu_data *lh_cu;
3631 struct attribute *attr;
3632 int i;
3633 void **slot;
3634 struct quick_file_names *qfn;
3635
3636 gdb_assert (! this_cu->is_debug_types);
3637
3638 /* Our callers never want to match partial units -- instead they
3639 will match the enclosing full CU. */
3640 if (comp_unit_die->tag == DW_TAG_partial_unit)
3641 {
3642 this_cu->v.quick->no_file_data = 1;
3643 return;
3644 }
3645
3646 lh_cu = this_cu;
3647 slot = NULL;
3648
3649 line_header_up lh;
3650 sect_offset line_offset {};
3651
3652 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3653 if (attr)
3654 {
3655 struct quick_file_names find_entry;
3656
3657 line_offset = (sect_offset) DW_UNSND (attr);
3658
3659 /* We may have already read in this line header (TU line header sharing).
3660 If we have we're done. */
3661 find_entry.hash.dwo_unit = cu->dwo_unit;
3662 find_entry.hash.line_sect_off = line_offset;
3663 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3664 &find_entry, INSERT);
3665 if (*slot != NULL)
3666 {
3667 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3668 return;
3669 }
3670
3671 lh = dwarf_decode_line_header (line_offset, cu);
3672 }
3673 if (lh == NULL)
3674 {
3675 lh_cu->v.quick->no_file_data = 1;
3676 return;
3677 }
3678
3679 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3680 qfn->hash.dwo_unit = cu->dwo_unit;
3681 qfn->hash.line_sect_off = line_offset;
3682 gdb_assert (slot != NULL);
3683 *slot = qfn;
3684
3685 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3686
3687 qfn->num_file_names = lh->file_names.size ();
3688 qfn->file_names =
3689 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3690 for (i = 0; i < lh->file_names.size (); ++i)
3691 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3692 qfn->real_names = NULL;
3693
3694 lh_cu->v.quick->file_names = qfn;
3695 }
3696
3697 /* A helper for the "quick" functions which attempts to read the line
3698 table for THIS_CU. */
3699
3700 static struct quick_file_names *
3701 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3702 {
3703 /* This should never be called for TUs. */
3704 gdb_assert (! this_cu->is_debug_types);
3705 /* Nor type unit groups. */
3706 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3707
3708 if (this_cu->v.quick->file_names != NULL)
3709 return this_cu->v.quick->file_names;
3710 /* If we know there is no line data, no point in looking again. */
3711 if (this_cu->v.quick->no_file_data)
3712 return NULL;
3713
3714 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3715
3716 if (this_cu->v.quick->no_file_data)
3717 return NULL;
3718 return this_cu->v.quick->file_names;
3719 }
3720
3721 /* A helper for the "quick" functions which computes and caches the
3722 real path for a given file name from the line table. */
3723
3724 static const char *
3725 dw2_get_real_path (struct objfile *objfile,
3726 struct quick_file_names *qfn, int index)
3727 {
3728 if (qfn->real_names == NULL)
3729 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3730 qfn->num_file_names, const char *);
3731
3732 if (qfn->real_names[index] == NULL)
3733 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3734
3735 return qfn->real_names[index];
3736 }
3737
3738 static struct symtab *
3739 dw2_find_last_source_symtab (struct objfile *objfile)
3740 {
3741 struct dwarf2_per_objfile *dwarf2_per_objfile
3742 = get_dwarf2_per_objfile (objfile);
3743 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3744 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3745
3746 if (cust == NULL)
3747 return NULL;
3748
3749 return compunit_primary_filetab (cust);
3750 }
3751
3752 /* Traversal function for dw2_forget_cached_source_info. */
3753
3754 static int
3755 dw2_free_cached_file_names (void **slot, void *info)
3756 {
3757 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3758
3759 if (file_data->real_names)
3760 {
3761 int i;
3762
3763 for (i = 0; i < file_data->num_file_names; ++i)
3764 {
3765 xfree ((void*) file_data->real_names[i]);
3766 file_data->real_names[i] = NULL;
3767 }
3768 }
3769
3770 return 1;
3771 }
3772
3773 static void
3774 dw2_forget_cached_source_info (struct objfile *objfile)
3775 {
3776 struct dwarf2_per_objfile *dwarf2_per_objfile
3777 = get_dwarf2_per_objfile (objfile);
3778
3779 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3780 dw2_free_cached_file_names, NULL);
3781 }
3782
3783 /* Helper function for dw2_map_symtabs_matching_filename that expands
3784 the symtabs and calls the iterator. */
3785
3786 static int
3787 dw2_map_expand_apply (struct objfile *objfile,
3788 struct dwarf2_per_cu_data *per_cu,
3789 const char *name, const char *real_path,
3790 gdb::function_view<bool (symtab *)> callback)
3791 {
3792 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3793
3794 /* Don't visit already-expanded CUs. */
3795 if (per_cu->v.quick->compunit_symtab)
3796 return 0;
3797
3798 /* This may expand more than one symtab, and we want to iterate over
3799 all of them. */
3800 dw2_instantiate_symtab (per_cu, false);
3801
3802 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3803 last_made, callback);
3804 }
3805
3806 /* Implementation of the map_symtabs_matching_filename method. */
3807
3808 static bool
3809 dw2_map_symtabs_matching_filename
3810 (struct objfile *objfile, const char *name, const char *real_path,
3811 gdb::function_view<bool (symtab *)> callback)
3812 {
3813 const char *name_basename = lbasename (name);
3814 struct dwarf2_per_objfile *dwarf2_per_objfile
3815 = get_dwarf2_per_objfile (objfile);
3816
3817 /* The rule is CUs specify all the files, including those used by
3818 any TU, so there's no need to scan TUs here. */
3819
3820 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3821 {
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 quick_file_names *file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (int j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_name = file_data->file_names[j];
3833 const char *this_real_name;
3834
3835 if (compare_filenames_for_search (this_name, name))
3836 {
3837 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3838 callback))
3839 return true;
3840 continue;
3841 }
3842
3843 /* Before we invoke realpath, which can get expensive when many
3844 files are involved, do a quick comparison of the basenames. */
3845 if (! basenames_may_differ
3846 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3847 continue;
3848
3849 this_real_name = dw2_get_real_path (objfile, file_data, j);
3850 if (compare_filenames_for_search (this_real_name, name))
3851 {
3852 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3853 callback))
3854 return true;
3855 continue;
3856 }
3857
3858 if (real_path != NULL)
3859 {
3860 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3861 gdb_assert (IS_ABSOLUTE_PATH (name));
3862 if (this_real_name != NULL
3863 && FILENAME_CMP (real_path, this_real_name) == 0)
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870 }
3871 }
3872 }
3873
3874 return false;
3875 }
3876
3877 /* Struct used to manage iterating over all CUs looking for a symbol. */
3878
3879 struct dw2_symtab_iterator
3880 {
3881 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3882 struct dwarf2_per_objfile *dwarf2_per_objfile;
3883 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3884 int want_specific_block;
3885 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3886 Unused if !WANT_SPECIFIC_BLOCK. */
3887 int block_index;
3888 /* The kind of symbol we're looking for. */
3889 domain_enum domain;
3890 /* The list of CUs from the index entry of the symbol,
3891 or NULL if not found. */
3892 offset_type *vec;
3893 /* The next element in VEC to look at. */
3894 int next;
3895 /* The number of elements in VEC, or zero if there is no match. */
3896 int length;
3897 /* Have we seen a global version of the symbol?
3898 If so we can ignore all further global instances.
3899 This is to work around gold/15646, inefficient gold-generated
3900 indices. */
3901 int global_seen;
3902 };
3903
3904 /* Initialize the index symtab iterator ITER.
3905 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3906 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3907
3908 static void
3909 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3910 struct dwarf2_per_objfile *dwarf2_per_objfile,
3911 int want_specific_block,
3912 int block_index,
3913 domain_enum domain,
3914 const char *name)
3915 {
3916 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3917 iter->want_specific_block = want_specific_block;
3918 iter->block_index = block_index;
3919 iter->domain = domain;
3920 iter->next = 0;
3921 iter->global_seen = 0;
3922
3923 mapped_index *index = dwarf2_per_objfile->index_table;
3924
3925 /* index is NULL if OBJF_READNOW. */
3926 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3927 iter->length = MAYBE_SWAP (*iter->vec);
3928 else
3929 {
3930 iter->vec = NULL;
3931 iter->length = 0;
3932 }
3933 }
3934
3935 /* Return the next matching CU or NULL if there are no more. */
3936
3937 static struct dwarf2_per_cu_data *
3938 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3939 {
3940 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3941
3942 for ( ; iter->next < iter->length; ++iter->next)
3943 {
3944 offset_type cu_index_and_attrs =
3945 MAYBE_SWAP (iter->vec[iter->next + 1]);
3946 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3947 int want_static = iter->block_index != GLOBAL_BLOCK;
3948 /* This value is only valid for index versions >= 7. */
3949 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3950 gdb_index_symbol_kind symbol_kind =
3951 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3952 /* Only check the symbol attributes if they're present.
3953 Indices prior to version 7 don't record them,
3954 and indices >= 7 may elide them for certain symbols
3955 (gold does this). */
3956 int attrs_valid =
3957 (dwarf2_per_objfile->index_table->version >= 7
3958 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3959
3960 /* Don't crash on bad data. */
3961 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3962 + dwarf2_per_objfile->all_type_units.size ()))
3963 {
3964 complaint (&symfile_complaints,
3965 _(".gdb_index entry has bad CU index"
3966 " [in module %s]"),
3967 objfile_name (dwarf2_per_objfile->objfile));
3968 continue;
3969 }
3970
3971 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3972
3973 /* Skip if already read in. */
3974 if (per_cu->v.quick->compunit_symtab)
3975 continue;
3976
3977 /* Check static vs global. */
3978 if (attrs_valid)
3979 {
3980 if (iter->want_specific_block
3981 && want_static != is_static)
3982 continue;
3983 /* Work around gold/15646. */
3984 if (!is_static && iter->global_seen)
3985 continue;
3986 if (!is_static)
3987 iter->global_seen = 1;
3988 }
3989
3990 /* Only check the symbol's kind if it has one. */
3991 if (attrs_valid)
3992 {
3993 switch (iter->domain)
3994 {
3995 case VAR_DOMAIN:
3996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3998 /* Some types are also in VAR_DOMAIN. */
3999 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 case STRUCT_DOMAIN:
4003 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4004 continue;
4005 break;
4006 case LABEL_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4008 continue;
4009 break;
4010 default:
4011 break;
4012 }
4013 }
4014
4015 ++iter->next;
4016 return per_cu;
4017 }
4018
4019 return NULL;
4020 }
4021
4022 static struct compunit_symtab *
4023 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4024 const char *name, domain_enum domain)
4025 {
4026 struct compunit_symtab *stab_best = NULL;
4027 struct dwarf2_per_objfile *dwarf2_per_objfile
4028 = get_dwarf2_per_objfile (objfile);
4029
4030 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4031
4032 struct dw2_symtab_iterator iter;
4033 struct dwarf2_per_cu_data *per_cu;
4034
4035 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4036
4037 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4038 {
4039 struct symbol *sym, *with_opaque = NULL;
4040 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4041 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4042 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4043
4044 sym = block_find_symbol (block, name, domain,
4045 block_find_non_opaque_type_preferred,
4046 &with_opaque);
4047
4048 /* Some caution must be observed with overloaded functions
4049 and methods, since the index will not contain any overload
4050 information (but NAME might contain it). */
4051
4052 if (sym != NULL
4053 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4054 return stab;
4055 if (with_opaque != NULL
4056 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4057 stab_best = stab;
4058
4059 /* Keep looking through other CUs. */
4060 }
4061
4062 return stab_best;
4063 }
4064
4065 static void
4066 dw2_print_stats (struct objfile *objfile)
4067 {
4068 struct dwarf2_per_objfile *dwarf2_per_objfile
4069 = get_dwarf2_per_objfile (objfile);
4070 int total = (dwarf2_per_objfile->all_comp_units.size ()
4071 + dwarf2_per_objfile->all_type_units.size ());
4072 int count = 0;
4073
4074 for (int i = 0; i < total; ++i)
4075 {
4076 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4077
4078 if (!per_cu->v.quick->compunit_symtab)
4079 ++count;
4080 }
4081 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4082 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4083 }
4084
4085 /* This dumps minimal information about the index.
4086 It is called via "mt print objfiles".
4087 One use is to verify .gdb_index has been loaded by the
4088 gdb.dwarf2/gdb-index.exp testcase. */
4089
4090 static void
4091 dw2_dump (struct objfile *objfile)
4092 {
4093 struct dwarf2_per_objfile *dwarf2_per_objfile
4094 = get_dwarf2_per_objfile (objfile);
4095
4096 gdb_assert (dwarf2_per_objfile->using_index);
4097 printf_filtered (".gdb_index:");
4098 if (dwarf2_per_objfile->index_table != NULL)
4099 {
4100 printf_filtered (" version %d\n",
4101 dwarf2_per_objfile->index_table->version);
4102 }
4103 else
4104 printf_filtered (" faked for \"readnow\"\n");
4105 printf_filtered ("\n");
4106 }
4107
4108 static void
4109 dw2_relocate (struct objfile *objfile,
4110 const struct section_offsets *new_offsets,
4111 const struct section_offsets *delta)
4112 {
4113 /* There's nothing to relocate here. */
4114 }
4115
4116 static void
4117 dw2_expand_symtabs_for_function (struct objfile *objfile,
4118 const char *func_name)
4119 {
4120 struct dwarf2_per_objfile *dwarf2_per_objfile
4121 = get_dwarf2_per_objfile (objfile);
4122
4123 struct dw2_symtab_iterator iter;
4124 struct dwarf2_per_cu_data *per_cu;
4125
4126 /* Note: It doesn't matter what we pass for block_index here. */
4127 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4128 func_name);
4129
4130 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4131 dw2_instantiate_symtab (per_cu, false);
4132
4133 }
4134
4135 static void
4136 dw2_expand_all_symtabs (struct objfile *objfile)
4137 {
4138 struct dwarf2_per_objfile *dwarf2_per_objfile
4139 = get_dwarf2_per_objfile (objfile);
4140 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4141 + dwarf2_per_objfile->all_type_units.size ());
4142
4143 for (int i = 0; i < total_units; ++i)
4144 {
4145 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4146
4147 /* We don't want to directly expand a partial CU, because if we
4148 read it with the wrong language, then assertion failures can
4149 be triggered later on. See PR symtab/23010. So, tell
4150 dw2_instantiate_symtab to skip partial CUs -- any important
4151 partial CU will be read via DW_TAG_imported_unit anyway. */
4152 dw2_instantiate_symtab (per_cu, true);
4153 }
4154 }
4155
4156 static void
4157 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4158 const char *fullname)
4159 {
4160 struct dwarf2_per_objfile *dwarf2_per_objfile
4161 = get_dwarf2_per_objfile (objfile);
4162
4163 /* We don't need to consider type units here.
4164 This is only called for examining code, e.g. expand_line_sal.
4165 There can be an order of magnitude (or more) more type units
4166 than comp units, and we avoid them if we can. */
4167
4168 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4169 {
4170 /* We only need to look at symtabs not already expanded. */
4171 if (per_cu->v.quick->compunit_symtab)
4172 continue;
4173
4174 quick_file_names *file_data = dw2_get_file_names (per_cu);
4175 if (file_data == NULL)
4176 continue;
4177
4178 for (int j = 0; j < file_data->num_file_names; ++j)
4179 {
4180 const char *this_fullname = file_data->file_names[j];
4181
4182 if (filename_cmp (this_fullname, fullname) == 0)
4183 {
4184 dw2_instantiate_symtab (per_cu, false);
4185 break;
4186 }
4187 }
4188 }
4189 }
4190
4191 static void
4192 dw2_map_matching_symbols (struct objfile *objfile,
4193 const char * name, domain_enum domain,
4194 int global,
4195 int (*callback) (struct block *,
4196 struct symbol *, void *),
4197 void *data, symbol_name_match_type match,
4198 symbol_compare_ftype *ordered_compare)
4199 {
4200 /* Currently unimplemented; used for Ada. The function can be called if the
4201 current language is Ada for a non-Ada objfile using GNU index. As Ada
4202 does not look for non-Ada symbols this function should just return. */
4203 }
4204
4205 /* Symbol name matcher for .gdb_index names.
4206
4207 Symbol names in .gdb_index have a few particularities:
4208
4209 - There's no indication of which is the language of each symbol.
4210
4211 Since each language has its own symbol name matching algorithm,
4212 and we don't know which language is the right one, we must match
4213 each symbol against all languages. This would be a potential
4214 performance problem if it were not mitigated by the
4215 mapped_index::name_components lookup table, which significantly
4216 reduces the number of times we need to call into this matcher,
4217 making it a non-issue.
4218
4219 - Symbol names in the index have no overload (parameter)
4220 information. I.e., in C++, "foo(int)" and "foo(long)" both
4221 appear as "foo" in the index, for example.
4222
4223 This means that the lookup names passed to the symbol name
4224 matcher functions must have no parameter information either
4225 because (e.g.) symbol search name "foo" does not match
4226 lookup-name "foo(int)" [while swapping search name for lookup
4227 name would match].
4228 */
4229 class gdb_index_symbol_name_matcher
4230 {
4231 public:
4232 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4233 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4234
4235 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4236 Returns true if any matcher matches. */
4237 bool matches (const char *symbol_name);
4238
4239 private:
4240 /* A reference to the lookup name we're matching against. */
4241 const lookup_name_info &m_lookup_name;
4242
4243 /* A vector holding all the different symbol name matchers, for all
4244 languages. */
4245 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4246 };
4247
4248 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4249 (const lookup_name_info &lookup_name)
4250 : m_lookup_name (lookup_name)
4251 {
4252 /* Prepare the vector of comparison functions upfront, to avoid
4253 doing the same work for each symbol. Care is taken to avoid
4254 matching with the same matcher more than once if/when multiple
4255 languages use the same matcher function. */
4256 auto &matchers = m_symbol_name_matcher_funcs;
4257 matchers.reserve (nr_languages);
4258
4259 matchers.push_back (default_symbol_name_matcher);
4260
4261 for (int i = 0; i < nr_languages; i++)
4262 {
4263 const language_defn *lang = language_def ((enum language) i);
4264 symbol_name_matcher_ftype *name_matcher
4265 = get_symbol_name_matcher (lang, m_lookup_name);
4266
4267 /* Don't insert the same comparison routine more than once.
4268 Note that we do this linear walk instead of a seemingly
4269 cheaper sorted insert, or use a std::set or something like
4270 that, because relative order of function addresses is not
4271 stable. This is not a problem in practice because the number
4272 of supported languages is low, and the cost here is tiny
4273 compared to the number of searches we'll do afterwards using
4274 this object. */
4275 if (name_matcher != default_symbol_name_matcher
4276 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4277 == matchers.end ()))
4278 matchers.push_back (name_matcher);
4279 }
4280 }
4281
4282 bool
4283 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4284 {
4285 for (auto matches_name : m_symbol_name_matcher_funcs)
4286 if (matches_name (symbol_name, m_lookup_name, NULL))
4287 return true;
4288
4289 return false;
4290 }
4291
4292 /* Starting from a search name, return the string that finds the upper
4293 bound of all strings that start with SEARCH_NAME in a sorted name
4294 list. Returns the empty string to indicate that the upper bound is
4295 the end of the list. */
4296
4297 static std::string
4298 make_sort_after_prefix_name (const char *search_name)
4299 {
4300 /* When looking to complete "func", we find the upper bound of all
4301 symbols that start with "func" by looking for where we'd insert
4302 the closest string that would follow "func" in lexicographical
4303 order. Usually, that's "func"-with-last-character-incremented,
4304 i.e. "fund". Mind non-ASCII characters, though. Usually those
4305 will be UTF-8 multi-byte sequences, but we can't be certain.
4306 Especially mind the 0xff character, which is a valid character in
4307 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4308 rule out compilers allowing it in identifiers. Note that
4309 conveniently, strcmp/strcasecmp are specified to compare
4310 characters interpreted as unsigned char. So what we do is treat
4311 the whole string as a base 256 number composed of a sequence of
4312 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4313 to 0, and carries 1 to the following more-significant position.
4314 If the very first character in SEARCH_NAME ends up incremented
4315 and carries/overflows, then the upper bound is the end of the
4316 list. The string after the empty string is also the empty
4317 string.
4318
4319 Some examples of this operation:
4320
4321 SEARCH_NAME => "+1" RESULT
4322
4323 "abc" => "abd"
4324 "ab\xff" => "ac"
4325 "\xff" "a" "\xff" => "\xff" "b"
4326 "\xff" => ""
4327 "\xff\xff" => ""
4328 "" => ""
4329
4330 Then, with these symbols for example:
4331
4332 func
4333 func1
4334 fund
4335
4336 completing "func" looks for symbols between "func" and
4337 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4338 which finds "func" and "func1", but not "fund".
4339
4340 And with:
4341
4342 funcÿ (Latin1 'ÿ' [0xff])
4343 funcÿ1
4344 fund
4345
4346 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4347 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4348
4349 And with:
4350
4351 ÿÿ (Latin1 'ÿ' [0xff])
4352 ÿÿ1
4353
4354 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4355 the end of the list.
4356 */
4357 std::string after = search_name;
4358 while (!after.empty () && (unsigned char) after.back () == 0xff)
4359 after.pop_back ();
4360 if (!after.empty ())
4361 after.back () = (unsigned char) after.back () + 1;
4362 return after;
4363 }
4364
4365 /* See declaration. */
4366
4367 std::pair<std::vector<name_component>::const_iterator,
4368 std::vector<name_component>::const_iterator>
4369 mapped_index_base::find_name_components_bounds
4370 (const lookup_name_info &lookup_name_without_params) const
4371 {
4372 auto *name_cmp
4373 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4374
4375 const char *cplus
4376 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4377
4378 /* Comparison function object for lower_bound that matches against a
4379 given symbol name. */
4380 auto lookup_compare_lower = [&] (const name_component &elem,
4381 const char *name)
4382 {
4383 const char *elem_qualified = this->symbol_name_at (elem.idx);
4384 const char *elem_name = elem_qualified + elem.name_offset;
4385 return name_cmp (elem_name, name) < 0;
4386 };
4387
4388 /* Comparison function object for upper_bound that matches against a
4389 given symbol name. */
4390 auto lookup_compare_upper = [&] (const char *name,
4391 const name_component &elem)
4392 {
4393 const char *elem_qualified = this->symbol_name_at (elem.idx);
4394 const char *elem_name = elem_qualified + elem.name_offset;
4395 return name_cmp (name, elem_name) < 0;
4396 };
4397
4398 auto begin = this->name_components.begin ();
4399 auto end = this->name_components.end ();
4400
4401 /* Find the lower bound. */
4402 auto lower = [&] ()
4403 {
4404 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4405 return begin;
4406 else
4407 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4408 } ();
4409
4410 /* Find the upper bound. */
4411 auto upper = [&] ()
4412 {
4413 if (lookup_name_without_params.completion_mode ())
4414 {
4415 /* In completion mode, we want UPPER to point past all
4416 symbols names that have the same prefix. I.e., with
4417 these symbols, and completing "func":
4418
4419 function << lower bound
4420 function1
4421 other_function << upper bound
4422
4423 We find the upper bound by looking for the insertion
4424 point of "func"-with-last-character-incremented,
4425 i.e. "fund". */
4426 std::string after = make_sort_after_prefix_name (cplus);
4427 if (after.empty ())
4428 return end;
4429 return std::lower_bound (lower, end, after.c_str (),
4430 lookup_compare_lower);
4431 }
4432 else
4433 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4434 } ();
4435
4436 return {lower, upper};
4437 }
4438
4439 /* See declaration. */
4440
4441 void
4442 mapped_index_base::build_name_components ()
4443 {
4444 if (!this->name_components.empty ())
4445 return;
4446
4447 this->name_components_casing = case_sensitivity;
4448 auto *name_cmp
4449 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4450
4451 /* The code below only knows how to break apart components of C++
4452 symbol names (and other languages that use '::' as
4453 namespace/module separator). If we add support for wild matching
4454 to some language that uses some other operator (E.g., Ada, Go and
4455 D use '.'), then we'll need to try splitting the symbol name
4456 according to that language too. Note that Ada does support wild
4457 matching, but doesn't currently support .gdb_index. */
4458 auto count = this->symbol_name_count ();
4459 for (offset_type idx = 0; idx < count; idx++)
4460 {
4461 if (this->symbol_name_slot_invalid (idx))
4462 continue;
4463
4464 const char *name = this->symbol_name_at (idx);
4465
4466 /* Add each name component to the name component table. */
4467 unsigned int previous_len = 0;
4468 for (unsigned int current_len = cp_find_first_component (name);
4469 name[current_len] != '\0';
4470 current_len += cp_find_first_component (name + current_len))
4471 {
4472 gdb_assert (name[current_len] == ':');
4473 this->name_components.push_back ({previous_len, idx});
4474 /* Skip the '::'. */
4475 current_len += 2;
4476 previous_len = current_len;
4477 }
4478 this->name_components.push_back ({previous_len, idx});
4479 }
4480
4481 /* Sort name_components elements by name. */
4482 auto name_comp_compare = [&] (const name_component &left,
4483 const name_component &right)
4484 {
4485 const char *left_qualified = this->symbol_name_at (left.idx);
4486 const char *right_qualified = this->symbol_name_at (right.idx);
4487
4488 const char *left_name = left_qualified + left.name_offset;
4489 const char *right_name = right_qualified + right.name_offset;
4490
4491 return name_cmp (left_name, right_name) < 0;
4492 };
4493
4494 std::sort (this->name_components.begin (),
4495 this->name_components.end (),
4496 name_comp_compare);
4497 }
4498
4499 /* Helper for dw2_expand_symtabs_matching that works with a
4500 mapped_index_base instead of the containing objfile. This is split
4501 to a separate function in order to be able to unit test the
4502 name_components matching using a mock mapped_index_base. For each
4503 symbol name that matches, calls MATCH_CALLBACK, passing it the
4504 symbol's index in the mapped_index_base symbol table. */
4505
4506 static void
4507 dw2_expand_symtabs_matching_symbol
4508 (mapped_index_base &index,
4509 const lookup_name_info &lookup_name_in,
4510 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4511 enum search_domain kind,
4512 gdb::function_view<void (offset_type)> match_callback)
4513 {
4514 lookup_name_info lookup_name_without_params
4515 = lookup_name_in.make_ignore_params ();
4516 gdb_index_symbol_name_matcher lookup_name_matcher
4517 (lookup_name_without_params);
4518
4519 /* Build the symbol name component sorted vector, if we haven't
4520 yet. */
4521 index.build_name_components ();
4522
4523 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4524
4525 /* Now for each symbol name in range, check to see if we have a name
4526 match, and if so, call the MATCH_CALLBACK callback. */
4527
4528 /* The same symbol may appear more than once in the range though.
4529 E.g., if we're looking for symbols that complete "w", and we have
4530 a symbol named "w1::w2", we'll find the two name components for
4531 that same symbol in the range. To be sure we only call the
4532 callback once per symbol, we first collect the symbol name
4533 indexes that matched in a temporary vector and ignore
4534 duplicates. */
4535 std::vector<offset_type> matches;
4536 matches.reserve (std::distance (bounds.first, bounds.second));
4537
4538 for (; bounds.first != bounds.second; ++bounds.first)
4539 {
4540 const char *qualified = index.symbol_name_at (bounds.first->idx);
4541
4542 if (!lookup_name_matcher.matches (qualified)
4543 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4544 continue;
4545
4546 matches.push_back (bounds.first->idx);
4547 }
4548
4549 std::sort (matches.begin (), matches.end ());
4550
4551 /* Finally call the callback, once per match. */
4552 ULONGEST prev = -1;
4553 for (offset_type idx : matches)
4554 {
4555 if (prev != idx)
4556 {
4557 match_callback (idx);
4558 prev = idx;
4559 }
4560 }
4561
4562 /* Above we use a type wider than idx's for 'prev', since 0 and
4563 (offset_type)-1 are both possible values. */
4564 static_assert (sizeof (prev) > sizeof (offset_type), "");
4565 }
4566
4567 #if GDB_SELF_TEST
4568
4569 namespace selftests { namespace dw2_expand_symtabs_matching {
4570
4571 /* A mock .gdb_index/.debug_names-like name index table, enough to
4572 exercise dw2_expand_symtabs_matching_symbol, which works with the
4573 mapped_index_base interface. Builds an index from the symbol list
4574 passed as parameter to the constructor. */
4575 class mock_mapped_index : public mapped_index_base
4576 {
4577 public:
4578 mock_mapped_index (gdb::array_view<const char *> symbols)
4579 : m_symbol_table (symbols)
4580 {}
4581
4582 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4583
4584 /* Return the number of names in the symbol table. */
4585 size_t symbol_name_count () const override
4586 {
4587 return m_symbol_table.size ();
4588 }
4589
4590 /* Get the name of the symbol at IDX in the symbol table. */
4591 const char *symbol_name_at (offset_type idx) const override
4592 {
4593 return m_symbol_table[idx];
4594 }
4595
4596 private:
4597 gdb::array_view<const char *> m_symbol_table;
4598 };
4599
4600 /* Convenience function that converts a NULL pointer to a "<null>"
4601 string, to pass to print routines. */
4602
4603 static const char *
4604 string_or_null (const char *str)
4605 {
4606 return str != NULL ? str : "<null>";
4607 }
4608
4609 /* Check if a lookup_name_info built from
4610 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4611 index. EXPECTED_LIST is the list of expected matches, in expected
4612 matching order. If no match expected, then an empty list is
4613 specified. Returns true on success. On failure prints a warning
4614 indicating the file:line that failed, and returns false. */
4615
4616 static bool
4617 check_match (const char *file, int line,
4618 mock_mapped_index &mock_index,
4619 const char *name, symbol_name_match_type match_type,
4620 bool completion_mode,
4621 std::initializer_list<const char *> expected_list)
4622 {
4623 lookup_name_info lookup_name (name, match_type, completion_mode);
4624
4625 bool matched = true;
4626
4627 auto mismatch = [&] (const char *expected_str,
4628 const char *got)
4629 {
4630 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4631 "expected=\"%s\", got=\"%s\"\n"),
4632 file, line,
4633 (match_type == symbol_name_match_type::FULL
4634 ? "FULL" : "WILD"),
4635 name, string_or_null (expected_str), string_or_null (got));
4636 matched = false;
4637 };
4638
4639 auto expected_it = expected_list.begin ();
4640 auto expected_end = expected_list.end ();
4641
4642 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4643 NULL, ALL_DOMAIN,
4644 [&] (offset_type idx)
4645 {
4646 const char *matched_name = mock_index.symbol_name_at (idx);
4647 const char *expected_str
4648 = expected_it == expected_end ? NULL : *expected_it++;
4649
4650 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4651 mismatch (expected_str, matched_name);
4652 });
4653
4654 const char *expected_str
4655 = expected_it == expected_end ? NULL : *expected_it++;
4656 if (expected_str != NULL)
4657 mismatch (expected_str, NULL);
4658
4659 return matched;
4660 }
4661
4662 /* The symbols added to the mock mapped_index for testing (in
4663 canonical form). */
4664 static const char *test_symbols[] = {
4665 "function",
4666 "std::bar",
4667 "std::zfunction",
4668 "std::zfunction2",
4669 "w1::w2",
4670 "ns::foo<char*>",
4671 "ns::foo<int>",
4672 "ns::foo<long>",
4673 "ns2::tmpl<int>::foo2",
4674 "(anonymous namespace)::A::B::C",
4675
4676 /* These are used to check that the increment-last-char in the
4677 matching algorithm for completion doesn't match "t1_fund" when
4678 completing "t1_func". */
4679 "t1_func",
4680 "t1_func1",
4681 "t1_fund",
4682 "t1_fund1",
4683
4684 /* A UTF-8 name with multi-byte sequences to make sure that
4685 cp-name-parser understands this as a single identifier ("função"
4686 is "function" in PT). */
4687 u8"u8função",
4688
4689 /* \377 (0xff) is Latin1 'ÿ'. */
4690 "yfunc\377",
4691
4692 /* \377 (0xff) is Latin1 'ÿ'. */
4693 "\377",
4694 "\377\377123",
4695
4696 /* A name with all sorts of complications. Starts with "z" to make
4697 it easier for the completion tests below. */
4698 #define Z_SYM_NAME \
4699 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4700 "::tuple<(anonymous namespace)::ui*, " \
4701 "std::default_delete<(anonymous namespace)::ui>, void>"
4702
4703 Z_SYM_NAME
4704 };
4705
4706 /* Returns true if the mapped_index_base::find_name_component_bounds
4707 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4708 in completion mode. */
4709
4710 static bool
4711 check_find_bounds_finds (mapped_index_base &index,
4712 const char *search_name,
4713 gdb::array_view<const char *> expected_syms)
4714 {
4715 lookup_name_info lookup_name (search_name,
4716 symbol_name_match_type::FULL, true);
4717
4718 auto bounds = index.find_name_components_bounds (lookup_name);
4719
4720 size_t distance = std::distance (bounds.first, bounds.second);
4721 if (distance != expected_syms.size ())
4722 return false;
4723
4724 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4725 {
4726 auto nc_elem = bounds.first + exp_elem;
4727 const char *qualified = index.symbol_name_at (nc_elem->idx);
4728 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4729 return false;
4730 }
4731
4732 return true;
4733 }
4734
4735 /* Test the lower-level mapped_index::find_name_component_bounds
4736 method. */
4737
4738 static void
4739 test_mapped_index_find_name_component_bounds ()
4740 {
4741 mock_mapped_index mock_index (test_symbols);
4742
4743 mock_index.build_name_components ();
4744
4745 /* Test the lower-level mapped_index::find_name_component_bounds
4746 method in completion mode. */
4747 {
4748 static const char *expected_syms[] = {
4749 "t1_func",
4750 "t1_func1",
4751 };
4752
4753 SELF_CHECK (check_find_bounds_finds (mock_index,
4754 "t1_func", expected_syms));
4755 }
4756
4757 /* Check that the increment-last-char in the name matching algorithm
4758 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4759 {
4760 static const char *expected_syms1[] = {
4761 "\377",
4762 "\377\377123",
4763 };
4764 SELF_CHECK (check_find_bounds_finds (mock_index,
4765 "\377", expected_syms1));
4766
4767 static const char *expected_syms2[] = {
4768 "\377\377123",
4769 };
4770 SELF_CHECK (check_find_bounds_finds (mock_index,
4771 "\377\377", expected_syms2));
4772 }
4773 }
4774
4775 /* Test dw2_expand_symtabs_matching_symbol. */
4776
4777 static void
4778 test_dw2_expand_symtabs_matching_symbol ()
4779 {
4780 mock_mapped_index mock_index (test_symbols);
4781
4782 /* We let all tests run until the end even if some fails, for debug
4783 convenience. */
4784 bool any_mismatch = false;
4785
4786 /* Create the expected symbols list (an initializer_list). Needed
4787 because lists have commas, and we need to pass them to CHECK,
4788 which is a macro. */
4789 #define EXPECT(...) { __VA_ARGS__ }
4790
4791 /* Wrapper for check_match that passes down the current
4792 __FILE__/__LINE__. */
4793 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4794 any_mismatch |= !check_match (__FILE__, __LINE__, \
4795 mock_index, \
4796 NAME, MATCH_TYPE, COMPLETION_MODE, \
4797 EXPECTED_LIST)
4798
4799 /* Identity checks. */
4800 for (const char *sym : test_symbols)
4801 {
4802 /* Should be able to match all existing symbols. */
4803 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* Should be able to match all existing symbols with
4807 parameters. */
4808 std::string with_params = std::string (sym) + "(int)";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 EXPECT (sym));
4811
4812 /* Should be able to match all existing symbols with
4813 parameters and qualifiers. */
4814 with_params = std::string (sym) + " ( int ) const";
4815 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4816 EXPECT (sym));
4817
4818 /* This should really find sym, but cp-name-parser.y doesn't
4819 know about lvalue/rvalue qualifiers yet. */
4820 with_params = std::string (sym) + " ( int ) &&";
4821 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4822 {});
4823 }
4824
4825 /* Check that the name matching algorithm for completion doesn't get
4826 confused with Latin1 'ÿ' / 0xff. */
4827 {
4828 static const char str[] = "\377";
4829 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4830 EXPECT ("\377", "\377\377123"));
4831 }
4832
4833 /* Check that the increment-last-char in the matching algorithm for
4834 completion doesn't match "t1_fund" when completing "t1_func". */
4835 {
4836 static const char str[] = "t1_func";
4837 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4838 EXPECT ("t1_func", "t1_func1"));
4839 }
4840
4841 /* Check that completion mode works at each prefix of the expected
4842 symbol name. */
4843 {
4844 static const char str[] = "function(int)";
4845 size_t len = strlen (str);
4846 std::string lookup;
4847
4848 for (size_t i = 1; i < len; i++)
4849 {
4850 lookup.assign (str, i);
4851 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4852 EXPECT ("function"));
4853 }
4854 }
4855
4856 /* While "w" is a prefix of both components, the match function
4857 should still only be called once. */
4858 {
4859 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4860 EXPECT ("w1::w2"));
4861 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4862 EXPECT ("w1::w2"));
4863 }
4864
4865 /* Same, with a "complicated" symbol. */
4866 {
4867 static const char str[] = Z_SYM_NAME;
4868 size_t len = strlen (str);
4869 std::string lookup;
4870
4871 for (size_t i = 1; i < len; i++)
4872 {
4873 lookup.assign (str, i);
4874 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4875 EXPECT (Z_SYM_NAME));
4876 }
4877 }
4878
4879 /* In FULL mode, an incomplete symbol doesn't match. */
4880 {
4881 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4882 {});
4883 }
4884
4885 /* A complete symbol with parameters matches any overload, since the
4886 index has no overload info. */
4887 {
4888 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4889 EXPECT ("std::zfunction", "std::zfunction2"));
4890 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4891 EXPECT ("std::zfunction", "std::zfunction2"));
4892 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 }
4895
4896 /* Check that whitespace is ignored appropriately. A symbol with a
4897 template argument list. */
4898 {
4899 static const char expected[] = "ns::foo<int>";
4900 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4901 EXPECT (expected));
4902 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4903 EXPECT (expected));
4904 }
4905
4906 /* Check that whitespace is ignored appropriately. A symbol with a
4907 template argument list that includes a pointer. */
4908 {
4909 static const char expected[] = "ns::foo<char*>";
4910 /* Try both completion and non-completion modes. */
4911 static const bool completion_mode[2] = {false, true};
4912 for (size_t i = 0; i < 2; i++)
4913 {
4914 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4915 completion_mode[i], EXPECT (expected));
4916 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4917 completion_mode[i], EXPECT (expected));
4918
4919 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4920 completion_mode[i], EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4922 completion_mode[i], EXPECT (expected));
4923 }
4924 }
4925
4926 {
4927 /* Check method qualifiers are ignored. */
4928 static const char expected[] = "ns::foo<char*>";
4929 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4930 symbol_name_match_type::FULL, true, EXPECT (expected));
4931 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4932 symbol_name_match_type::FULL, true, EXPECT (expected));
4933 CHECK_MATCH ("foo < char * > ( int ) const",
4934 symbol_name_match_type::WILD, true, EXPECT (expected));
4935 CHECK_MATCH ("foo < char * > ( int ) &&",
4936 symbol_name_match_type::WILD, true, EXPECT (expected));
4937 }
4938
4939 /* Test lookup names that don't match anything. */
4940 {
4941 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4942 {});
4943
4944 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4945 {});
4946 }
4947
4948 /* Some wild matching tests, exercising "(anonymous namespace)",
4949 which should not be confused with a parameter list. */
4950 {
4951 static const char *syms[] = {
4952 "A::B::C",
4953 "B::C",
4954 "C",
4955 "A :: B :: C ( int )",
4956 "B :: C ( int )",
4957 "C ( int )",
4958 };
4959
4960 for (const char *s : syms)
4961 {
4962 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4963 EXPECT ("(anonymous namespace)::A::B::C"));
4964 }
4965 }
4966
4967 {
4968 static const char expected[] = "ns2::tmpl<int>::foo2";
4969 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4970 EXPECT (expected));
4971 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4972 EXPECT (expected));
4973 }
4974
4975 SELF_CHECK (!any_mismatch);
4976
4977 #undef EXPECT
4978 #undef CHECK_MATCH
4979 }
4980
4981 static void
4982 run_test ()
4983 {
4984 test_mapped_index_find_name_component_bounds ();
4985 test_dw2_expand_symtabs_matching_symbol ();
4986 }
4987
4988 }} // namespace selftests::dw2_expand_symtabs_matching
4989
4990 #endif /* GDB_SELF_TEST */
4991
4992 /* If FILE_MATCHER is NULL or if PER_CU has
4993 dwarf2_per_cu_quick_data::MARK set (see
4994 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4995 EXPANSION_NOTIFY on it. */
4996
4997 static void
4998 dw2_expand_symtabs_matching_one
4999 (struct dwarf2_per_cu_data *per_cu,
5000 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5001 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5002 {
5003 if (file_matcher == NULL || per_cu->v.quick->mark)
5004 {
5005 bool symtab_was_null
5006 = (per_cu->v.quick->compunit_symtab == NULL);
5007
5008 dw2_instantiate_symtab (per_cu, false);
5009
5010 if (expansion_notify != NULL
5011 && symtab_was_null
5012 && per_cu->v.quick->compunit_symtab != NULL)
5013 expansion_notify (per_cu->v.quick->compunit_symtab);
5014 }
5015 }
5016
5017 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5018 matched, to expand corresponding CUs that were marked. IDX is the
5019 index of the symbol name that matched. */
5020
5021 static void
5022 dw2_expand_marked_cus
5023 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5024 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5025 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5026 search_domain kind)
5027 {
5028 offset_type *vec, vec_len, vec_idx;
5029 bool global_seen = false;
5030 mapped_index &index = *dwarf2_per_objfile->index_table;
5031
5032 vec = (offset_type *) (index.constant_pool
5033 + MAYBE_SWAP (index.symbol_table[idx].vec));
5034 vec_len = MAYBE_SWAP (vec[0]);
5035 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5036 {
5037 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5038 /* This value is only valid for index versions >= 7. */
5039 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5040 gdb_index_symbol_kind symbol_kind =
5041 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5042 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5043 /* Only check the symbol attributes if they're present.
5044 Indices prior to version 7 don't record them,
5045 and indices >= 7 may elide them for certain symbols
5046 (gold does this). */
5047 int attrs_valid =
5048 (index.version >= 7
5049 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5050
5051 /* Work around gold/15646. */
5052 if (attrs_valid)
5053 {
5054 if (!is_static && global_seen)
5055 continue;
5056 if (!is_static)
5057 global_seen = true;
5058 }
5059
5060 /* Only check the symbol's kind if it has one. */
5061 if (attrs_valid)
5062 {
5063 switch (kind)
5064 {
5065 case VARIABLES_DOMAIN:
5066 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5067 continue;
5068 break;
5069 case FUNCTIONS_DOMAIN:
5070 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5071 continue;
5072 break;
5073 case TYPES_DOMAIN:
5074 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5075 continue;
5076 break;
5077 default:
5078 break;
5079 }
5080 }
5081
5082 /* Don't crash on bad data. */
5083 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5084 + dwarf2_per_objfile->all_type_units.size ()))
5085 {
5086 complaint (&symfile_complaints,
5087 _(".gdb_index entry has bad CU index"
5088 " [in module %s]"),
5089 objfile_name (dwarf2_per_objfile->objfile));
5090 continue;
5091 }
5092
5093 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5094 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5095 expansion_notify);
5096 }
5097 }
5098
5099 /* If FILE_MATCHER is non-NULL, set all the
5100 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5101 that match FILE_MATCHER. */
5102
5103 static void
5104 dw_expand_symtabs_matching_file_matcher
5105 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5107 {
5108 if (file_matcher == NULL)
5109 return;
5110
5111 objfile *const objfile = dwarf2_per_objfile->objfile;
5112
5113 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5114 htab_eq_pointer,
5115 NULL, xcalloc, xfree));
5116 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5117 htab_eq_pointer,
5118 NULL, xcalloc, xfree));
5119
5120 /* The rule is CUs specify all the files, including those used by
5121 any TU, so there's no need to scan TUs here. */
5122
5123 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5124 {
5125 QUIT;
5126
5127 per_cu->v.quick->mark = 0;
5128
5129 /* We only need to look at symtabs not already expanded. */
5130 if (per_cu->v.quick->compunit_symtab)
5131 continue;
5132
5133 quick_file_names *file_data = dw2_get_file_names (per_cu);
5134 if (file_data == NULL)
5135 continue;
5136
5137 if (htab_find (visited_not_found.get (), file_data) != NULL)
5138 continue;
5139 else if (htab_find (visited_found.get (), file_data) != NULL)
5140 {
5141 per_cu->v.quick->mark = 1;
5142 continue;
5143 }
5144
5145 for (int j = 0; j < file_data->num_file_names; ++j)
5146 {
5147 const char *this_real_name;
5148
5149 if (file_matcher (file_data->file_names[j], false))
5150 {
5151 per_cu->v.quick->mark = 1;
5152 break;
5153 }
5154
5155 /* Before we invoke realpath, which can get expensive when many
5156 files are involved, do a quick comparison of the basenames. */
5157 if (!basenames_may_differ
5158 && !file_matcher (lbasename (file_data->file_names[j]),
5159 true))
5160 continue;
5161
5162 this_real_name = dw2_get_real_path (objfile, file_data, j);
5163 if (file_matcher (this_real_name, false))
5164 {
5165 per_cu->v.quick->mark = 1;
5166 break;
5167 }
5168 }
5169
5170 void **slot = htab_find_slot (per_cu->v.quick->mark
5171 ? visited_found.get ()
5172 : visited_not_found.get (),
5173 file_data, INSERT);
5174 *slot = file_data;
5175 }
5176 }
5177
5178 static void
5179 dw2_expand_symtabs_matching
5180 (struct objfile *objfile,
5181 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5182 const lookup_name_info &lookup_name,
5183 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5184 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5185 enum search_domain kind)
5186 {
5187 struct dwarf2_per_objfile *dwarf2_per_objfile
5188 = get_dwarf2_per_objfile (objfile);
5189
5190 /* index_table is NULL if OBJF_READNOW. */
5191 if (!dwarf2_per_objfile->index_table)
5192 return;
5193
5194 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5195
5196 mapped_index &index = *dwarf2_per_objfile->index_table;
5197
5198 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5199 symbol_matcher,
5200 kind, [&] (offset_type idx)
5201 {
5202 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5203 expansion_notify, kind);
5204 });
5205 }
5206
5207 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5208 symtab. */
5209
5210 static struct compunit_symtab *
5211 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5212 CORE_ADDR pc)
5213 {
5214 int i;
5215
5216 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5217 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5218 return cust;
5219
5220 if (cust->includes == NULL)
5221 return NULL;
5222
5223 for (i = 0; cust->includes[i]; ++i)
5224 {
5225 struct compunit_symtab *s = cust->includes[i];
5226
5227 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5228 if (s != NULL)
5229 return s;
5230 }
5231
5232 return NULL;
5233 }
5234
5235 static struct compunit_symtab *
5236 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5237 struct bound_minimal_symbol msymbol,
5238 CORE_ADDR pc,
5239 struct obj_section *section,
5240 int warn_if_readin)
5241 {
5242 struct dwarf2_per_cu_data *data;
5243 struct compunit_symtab *result;
5244
5245 if (!objfile->psymtabs_addrmap)
5246 return NULL;
5247
5248 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5249 pc);
5250 if (!data)
5251 return NULL;
5252
5253 if (warn_if_readin && data->v.quick->compunit_symtab)
5254 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5255 paddress (get_objfile_arch (objfile), pc));
5256
5257 result
5258 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5259 false),
5260 pc);
5261 gdb_assert (result != NULL);
5262 return result;
5263 }
5264
5265 static void
5266 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5267 void *data, int need_fullname)
5268 {
5269 struct dwarf2_per_objfile *dwarf2_per_objfile
5270 = get_dwarf2_per_objfile (objfile);
5271
5272 if (!dwarf2_per_objfile->filenames_cache)
5273 {
5274 dwarf2_per_objfile->filenames_cache.emplace ();
5275
5276 htab_up visited (htab_create_alloc (10,
5277 htab_hash_pointer, htab_eq_pointer,
5278 NULL, xcalloc, xfree));
5279
5280 /* The rule is CUs specify all the files, including those used
5281 by any TU, so there's no need to scan TUs here. We can
5282 ignore file names coming from already-expanded CUs. */
5283
5284 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5285 {
5286 if (per_cu->v.quick->compunit_symtab)
5287 {
5288 void **slot = htab_find_slot (visited.get (),
5289 per_cu->v.quick->file_names,
5290 INSERT);
5291
5292 *slot = per_cu->v.quick->file_names;
5293 }
5294 }
5295
5296 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5297 {
5298 /* We only need to look at symtabs not already expanded. */
5299 if (per_cu->v.quick->compunit_symtab)
5300 continue;
5301
5302 quick_file_names *file_data = dw2_get_file_names (per_cu);
5303 if (file_data == NULL)
5304 continue;
5305
5306 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5307 if (*slot)
5308 {
5309 /* Already visited. */
5310 continue;
5311 }
5312 *slot = file_data;
5313
5314 for (int j = 0; j < file_data->num_file_names; ++j)
5315 {
5316 const char *filename = file_data->file_names[j];
5317 dwarf2_per_objfile->filenames_cache->seen (filename);
5318 }
5319 }
5320 }
5321
5322 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5323 {
5324 gdb::unique_xmalloc_ptr<char> this_real_name;
5325
5326 if (need_fullname)
5327 this_real_name = gdb_realpath (filename);
5328 (*fun) (filename, this_real_name.get (), data);
5329 });
5330 }
5331
5332 static int
5333 dw2_has_symbols (struct objfile *objfile)
5334 {
5335 return 1;
5336 }
5337
5338 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5339 {
5340 dw2_has_symbols,
5341 dw2_find_last_source_symtab,
5342 dw2_forget_cached_source_info,
5343 dw2_map_symtabs_matching_filename,
5344 dw2_lookup_symbol,
5345 dw2_print_stats,
5346 dw2_dump,
5347 dw2_relocate,
5348 dw2_expand_symtabs_for_function,
5349 dw2_expand_all_symtabs,
5350 dw2_expand_symtabs_with_fullname,
5351 dw2_map_matching_symbols,
5352 dw2_expand_symtabs_matching,
5353 dw2_find_pc_sect_compunit_symtab,
5354 NULL,
5355 dw2_map_symbol_filenames
5356 };
5357
5358 /* DWARF-5 debug_names reader. */
5359
5360 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5361 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5362
5363 /* A helper function that reads the .debug_names section in SECTION
5364 and fills in MAP. FILENAME is the name of the file containing the
5365 section; it is used for error reporting.
5366
5367 Returns true if all went well, false otherwise. */
5368
5369 static bool
5370 read_debug_names_from_section (struct objfile *objfile,
5371 const char *filename,
5372 struct dwarf2_section_info *section,
5373 mapped_debug_names &map)
5374 {
5375 if (dwarf2_section_empty_p (section))
5376 return false;
5377
5378 /* Older elfutils strip versions could keep the section in the main
5379 executable while splitting it for the separate debug info file. */
5380 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5381 return false;
5382
5383 dwarf2_read_section (objfile, section);
5384
5385 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5386
5387 const gdb_byte *addr = section->buffer;
5388
5389 bfd *const abfd = get_section_bfd_owner (section);
5390
5391 unsigned int bytes_read;
5392 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5393 addr += bytes_read;
5394
5395 map.dwarf5_is_dwarf64 = bytes_read != 4;
5396 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5397 if (bytes_read + length != section->size)
5398 {
5399 /* There may be multiple per-CU indices. */
5400 warning (_("Section .debug_names in %s length %s does not match "
5401 "section length %s, ignoring .debug_names."),
5402 filename, plongest (bytes_read + length),
5403 pulongest (section->size));
5404 return false;
5405 }
5406
5407 /* The version number. */
5408 uint16_t version = read_2_bytes (abfd, addr);
5409 addr += 2;
5410 if (version != 5)
5411 {
5412 warning (_("Section .debug_names in %s has unsupported version %d, "
5413 "ignoring .debug_names."),
5414 filename, version);
5415 return false;
5416 }
5417
5418 /* Padding. */
5419 uint16_t padding = read_2_bytes (abfd, addr);
5420 addr += 2;
5421 if (padding != 0)
5422 {
5423 warning (_("Section .debug_names in %s has unsupported padding %d, "
5424 "ignoring .debug_names."),
5425 filename, padding);
5426 return false;
5427 }
5428
5429 /* comp_unit_count - The number of CUs in the CU list. */
5430 map.cu_count = read_4_bytes (abfd, addr);
5431 addr += 4;
5432
5433 /* local_type_unit_count - The number of TUs in the local TU
5434 list. */
5435 map.tu_count = read_4_bytes (abfd, addr);
5436 addr += 4;
5437
5438 /* foreign_type_unit_count - The number of TUs in the foreign TU
5439 list. */
5440 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5441 addr += 4;
5442 if (foreign_tu_count != 0)
5443 {
5444 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5445 "ignoring .debug_names."),
5446 filename, static_cast<unsigned long> (foreign_tu_count));
5447 return false;
5448 }
5449
5450 /* bucket_count - The number of hash buckets in the hash lookup
5451 table. */
5452 map.bucket_count = read_4_bytes (abfd, addr);
5453 addr += 4;
5454
5455 /* name_count - The number of unique names in the index. */
5456 map.name_count = read_4_bytes (abfd, addr);
5457 addr += 4;
5458
5459 /* abbrev_table_size - The size in bytes of the abbreviations
5460 table. */
5461 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5462 addr += 4;
5463
5464 /* augmentation_string_size - The size in bytes of the augmentation
5465 string. This value is rounded up to a multiple of 4. */
5466 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5467 addr += 4;
5468 map.augmentation_is_gdb = ((augmentation_string_size
5469 == sizeof (dwarf5_augmentation))
5470 && memcmp (addr, dwarf5_augmentation,
5471 sizeof (dwarf5_augmentation)) == 0);
5472 augmentation_string_size += (-augmentation_string_size) & 3;
5473 addr += augmentation_string_size;
5474
5475 /* List of CUs */
5476 map.cu_table_reordered = addr;
5477 addr += map.cu_count * map.offset_size;
5478
5479 /* List of Local TUs */
5480 map.tu_table_reordered = addr;
5481 addr += map.tu_count * map.offset_size;
5482
5483 /* Hash Lookup Table */
5484 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5485 addr += map.bucket_count * 4;
5486 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5487 addr += map.name_count * 4;
5488
5489 /* Name Table */
5490 map.name_table_string_offs_reordered = addr;
5491 addr += map.name_count * map.offset_size;
5492 map.name_table_entry_offs_reordered = addr;
5493 addr += map.name_count * map.offset_size;
5494
5495 const gdb_byte *abbrev_table_start = addr;
5496 for (;;)
5497 {
5498 unsigned int bytes_read;
5499 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5500 addr += bytes_read;
5501 if (index_num == 0)
5502 break;
5503
5504 const auto insertpair
5505 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5506 if (!insertpair.second)
5507 {
5508 warning (_("Section .debug_names in %s has duplicate index %s, "
5509 "ignoring .debug_names."),
5510 filename, pulongest (index_num));
5511 return false;
5512 }
5513 mapped_debug_names::index_val &indexval = insertpair.first->second;
5514 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5515 addr += bytes_read;
5516
5517 for (;;)
5518 {
5519 mapped_debug_names::index_val::attr attr;
5520 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5521 addr += bytes_read;
5522 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5523 addr += bytes_read;
5524 if (attr.form == DW_FORM_implicit_const)
5525 {
5526 attr.implicit_const = read_signed_leb128 (abfd, addr,
5527 &bytes_read);
5528 addr += bytes_read;
5529 }
5530 if (attr.dw_idx == 0 && attr.form == 0)
5531 break;
5532 indexval.attr_vec.push_back (std::move (attr));
5533 }
5534 }
5535 if (addr != abbrev_table_start + abbrev_table_size)
5536 {
5537 warning (_("Section .debug_names in %s has abbreviation_table "
5538 "of size %zu vs. written as %u, ignoring .debug_names."),
5539 filename, addr - abbrev_table_start, abbrev_table_size);
5540 return false;
5541 }
5542 map.entry_pool = addr;
5543
5544 return true;
5545 }
5546
5547 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5548 list. */
5549
5550 static void
5551 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5552 const mapped_debug_names &map,
5553 dwarf2_section_info &section,
5554 bool is_dwz)
5555 {
5556 sect_offset sect_off_prev;
5557 for (uint32_t i = 0; i <= map.cu_count; ++i)
5558 {
5559 sect_offset sect_off_next;
5560 if (i < map.cu_count)
5561 {
5562 sect_off_next
5563 = (sect_offset) (extract_unsigned_integer
5564 (map.cu_table_reordered + i * map.offset_size,
5565 map.offset_size,
5566 map.dwarf5_byte_order));
5567 }
5568 else
5569 sect_off_next = (sect_offset) section.size;
5570 if (i >= 1)
5571 {
5572 const ULONGEST length = sect_off_next - sect_off_prev;
5573 dwarf2_per_cu_data *per_cu
5574 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5575 sect_off_prev, length);
5576 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5577 }
5578 sect_off_prev = sect_off_next;
5579 }
5580 }
5581
5582 /* Read the CU list from the mapped index, and use it to create all
5583 the CU objects for this dwarf2_per_objfile. */
5584
5585 static void
5586 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5587 const mapped_debug_names &map,
5588 const mapped_debug_names &dwz_map)
5589 {
5590 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5591 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5592
5593 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5594 dwarf2_per_objfile->info,
5595 false /* is_dwz */);
5596
5597 if (dwz_map.cu_count == 0)
5598 return;
5599
5600 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5601 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5602 true /* is_dwz */);
5603 }
5604
5605 /* Read .debug_names. If everything went ok, initialize the "quick"
5606 elements of all the CUs and return true. Otherwise, return false. */
5607
5608 static bool
5609 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5610 {
5611 mapped_debug_names local_map (dwarf2_per_objfile);
5612 mapped_debug_names dwz_map (dwarf2_per_objfile);
5613 struct objfile *objfile = dwarf2_per_objfile->objfile;
5614
5615 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5616 &dwarf2_per_objfile->debug_names,
5617 local_map))
5618 return false;
5619
5620 /* Don't use the index if it's empty. */
5621 if (local_map.name_count == 0)
5622 return false;
5623
5624 /* If there is a .dwz file, read it so we can get its CU list as
5625 well. */
5626 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5627 if (dwz != NULL)
5628 {
5629 if (!read_debug_names_from_section (objfile,
5630 bfd_get_filename (dwz->dwz_bfd),
5631 &dwz->debug_names, dwz_map))
5632 {
5633 warning (_("could not read '.debug_names' section from %s; skipping"),
5634 bfd_get_filename (dwz->dwz_bfd));
5635 return false;
5636 }
5637 }
5638
5639 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5640
5641 if (local_map.tu_count != 0)
5642 {
5643 /* We can only handle a single .debug_types when we have an
5644 index. */
5645 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5646 return false;
5647
5648 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5649 dwarf2_per_objfile->types, 0);
5650
5651 create_signatured_type_table_from_debug_names
5652 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5653 }
5654
5655 create_addrmap_from_aranges (dwarf2_per_objfile,
5656 &dwarf2_per_objfile->debug_aranges);
5657
5658 dwarf2_per_objfile->debug_names_table.reset
5659 (new mapped_debug_names (dwarf2_per_objfile));
5660 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5661 dwarf2_per_objfile->using_index = 1;
5662 dwarf2_per_objfile->quick_file_names_table =
5663 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5664
5665 return true;
5666 }
5667
5668 /* Type used to manage iterating over all CUs looking for a symbol for
5669 .debug_names. */
5670
5671 class dw2_debug_names_iterator
5672 {
5673 public:
5674 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5675 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5676 dw2_debug_names_iterator (const mapped_debug_names &map,
5677 bool want_specific_block,
5678 block_enum block_index, domain_enum domain,
5679 const char *name)
5680 : m_map (map), m_want_specific_block (want_specific_block),
5681 m_block_index (block_index), m_domain (domain),
5682 m_addr (find_vec_in_debug_names (map, name))
5683 {}
5684
5685 dw2_debug_names_iterator (const mapped_debug_names &map,
5686 search_domain search, uint32_t namei)
5687 : m_map (map),
5688 m_search (search),
5689 m_addr (find_vec_in_debug_names (map, namei))
5690 {}
5691
5692 /* Return the next matching CU or NULL if there are no more. */
5693 dwarf2_per_cu_data *next ();
5694
5695 private:
5696 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5697 const char *name);
5698 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5699 uint32_t namei);
5700
5701 /* The internalized form of .debug_names. */
5702 const mapped_debug_names &m_map;
5703
5704 /* If true, only look for symbols that match BLOCK_INDEX. */
5705 const bool m_want_specific_block = false;
5706
5707 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5708 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5709 value. */
5710 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5711
5712 /* The kind of symbol we're looking for. */
5713 const domain_enum m_domain = UNDEF_DOMAIN;
5714 const search_domain m_search = ALL_DOMAIN;
5715
5716 /* The list of CUs from the index entry of the symbol, or NULL if
5717 not found. */
5718 const gdb_byte *m_addr;
5719 };
5720
5721 const char *
5722 mapped_debug_names::namei_to_name (uint32_t namei) const
5723 {
5724 const ULONGEST namei_string_offs
5725 = extract_unsigned_integer ((name_table_string_offs_reordered
5726 + namei * offset_size),
5727 offset_size,
5728 dwarf5_byte_order);
5729 return read_indirect_string_at_offset
5730 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5731 }
5732
5733 /* Find a slot in .debug_names for the object named NAME. If NAME is
5734 found, return pointer to its pool data. If NAME cannot be found,
5735 return NULL. */
5736
5737 const gdb_byte *
5738 dw2_debug_names_iterator::find_vec_in_debug_names
5739 (const mapped_debug_names &map, const char *name)
5740 {
5741 int (*cmp) (const char *, const char *);
5742
5743 if (current_language->la_language == language_cplus
5744 || current_language->la_language == language_fortran
5745 || current_language->la_language == language_d)
5746 {
5747 /* NAME is already canonical. Drop any qualifiers as
5748 .debug_names does not contain any. */
5749
5750 if (strchr (name, '(') != NULL)
5751 {
5752 gdb::unique_xmalloc_ptr<char> without_params
5753 = cp_remove_params (name);
5754
5755 if (without_params != NULL)
5756 {
5757 name = without_params.get();
5758 }
5759 }
5760 }
5761
5762 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5763
5764 const uint32_t full_hash = dwarf5_djb_hash (name);
5765 uint32_t namei
5766 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5767 (map.bucket_table_reordered
5768 + (full_hash % map.bucket_count)), 4,
5769 map.dwarf5_byte_order);
5770 if (namei == 0)
5771 return NULL;
5772 --namei;
5773 if (namei >= map.name_count)
5774 {
5775 complaint (&symfile_complaints,
5776 _("Wrong .debug_names with name index %u but name_count=%u "
5777 "[in module %s]"),
5778 namei, map.name_count,
5779 objfile_name (map.dwarf2_per_objfile->objfile));
5780 return NULL;
5781 }
5782
5783 for (;;)
5784 {
5785 const uint32_t namei_full_hash
5786 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5787 (map.hash_table_reordered + namei), 4,
5788 map.dwarf5_byte_order);
5789 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5790 return NULL;
5791
5792 if (full_hash == namei_full_hash)
5793 {
5794 const char *const namei_string = map.namei_to_name (namei);
5795
5796 #if 0 /* An expensive sanity check. */
5797 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5798 {
5799 complaint (&symfile_complaints,
5800 _("Wrong .debug_names hash for string at index %u "
5801 "[in module %s]"),
5802 namei, objfile_name (dwarf2_per_objfile->objfile));
5803 return NULL;
5804 }
5805 #endif
5806
5807 if (cmp (namei_string, name) == 0)
5808 {
5809 const ULONGEST namei_entry_offs
5810 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5811 + namei * map.offset_size),
5812 map.offset_size, map.dwarf5_byte_order);
5813 return map.entry_pool + namei_entry_offs;
5814 }
5815 }
5816
5817 ++namei;
5818 if (namei >= map.name_count)
5819 return NULL;
5820 }
5821 }
5822
5823 const gdb_byte *
5824 dw2_debug_names_iterator::find_vec_in_debug_names
5825 (const mapped_debug_names &map, uint32_t namei)
5826 {
5827 if (namei >= map.name_count)
5828 {
5829 complaint (&symfile_complaints,
5830 _("Wrong .debug_names with name index %u but name_count=%u "
5831 "[in module %s]"),
5832 namei, map.name_count,
5833 objfile_name (map.dwarf2_per_objfile->objfile));
5834 return NULL;
5835 }
5836
5837 const ULONGEST namei_entry_offs
5838 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5839 + namei * map.offset_size),
5840 map.offset_size, map.dwarf5_byte_order);
5841 return map.entry_pool + namei_entry_offs;
5842 }
5843
5844 /* See dw2_debug_names_iterator. */
5845
5846 dwarf2_per_cu_data *
5847 dw2_debug_names_iterator::next ()
5848 {
5849 if (m_addr == NULL)
5850 return NULL;
5851
5852 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5853 struct objfile *objfile = dwarf2_per_objfile->objfile;
5854 bfd *const abfd = objfile->obfd;
5855
5856 again:
5857
5858 unsigned int bytes_read;
5859 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5860 m_addr += bytes_read;
5861 if (abbrev == 0)
5862 return NULL;
5863
5864 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5865 if (indexval_it == m_map.abbrev_map.cend ())
5866 {
5867 complaint (&symfile_complaints,
5868 _("Wrong .debug_names undefined abbrev code %s "
5869 "[in module %s]"),
5870 pulongest (abbrev), objfile_name (objfile));
5871 return NULL;
5872 }
5873 const mapped_debug_names::index_val &indexval = indexval_it->second;
5874 bool have_is_static = false;
5875 bool is_static;
5876 dwarf2_per_cu_data *per_cu = NULL;
5877 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5878 {
5879 ULONGEST ull;
5880 switch (attr.form)
5881 {
5882 case DW_FORM_implicit_const:
5883 ull = attr.implicit_const;
5884 break;
5885 case DW_FORM_flag_present:
5886 ull = 1;
5887 break;
5888 case DW_FORM_udata:
5889 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5890 m_addr += bytes_read;
5891 break;
5892 default:
5893 complaint (&symfile_complaints,
5894 _("Unsupported .debug_names form %s [in module %s]"),
5895 dwarf_form_name (attr.form),
5896 objfile_name (objfile));
5897 return NULL;
5898 }
5899 switch (attr.dw_idx)
5900 {
5901 case DW_IDX_compile_unit:
5902 /* Don't crash on bad data. */
5903 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5904 {
5905 complaint (&symfile_complaints,
5906 _(".debug_names entry has bad CU index %s"
5907 " [in module %s]"),
5908 pulongest (ull),
5909 objfile_name (dwarf2_per_objfile->objfile));
5910 continue;
5911 }
5912 per_cu = dwarf2_per_objfile->get_cutu (ull);
5913 break;
5914 case DW_IDX_type_unit:
5915 /* Don't crash on bad data. */
5916 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5917 {
5918 complaint (&symfile_complaints,
5919 _(".debug_names entry has bad TU index %s"
5920 " [in module %s]"),
5921 pulongest (ull),
5922 objfile_name (dwarf2_per_objfile->objfile));
5923 continue;
5924 }
5925 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5926 break;
5927 case DW_IDX_GNU_internal:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = true;
5932 break;
5933 case DW_IDX_GNU_external:
5934 if (!m_map.augmentation_is_gdb)
5935 break;
5936 have_is_static = true;
5937 is_static = false;
5938 break;
5939 }
5940 }
5941
5942 /* Skip if already read in. */
5943 if (per_cu->v.quick->compunit_symtab)
5944 goto again;
5945
5946 /* Check static vs global. */
5947 if (have_is_static)
5948 {
5949 const bool want_static = m_block_index != GLOBAL_BLOCK;
5950 if (m_want_specific_block && want_static != is_static)
5951 goto again;
5952 }
5953
5954 /* Match dw2_symtab_iter_next, symbol_kind
5955 and debug_names::psymbol_tag. */
5956 switch (m_domain)
5957 {
5958 case VAR_DOMAIN:
5959 switch (indexval.dwarf_tag)
5960 {
5961 case DW_TAG_variable:
5962 case DW_TAG_subprogram:
5963 /* Some types are also in VAR_DOMAIN. */
5964 case DW_TAG_typedef:
5965 case DW_TAG_structure_type:
5966 break;
5967 default:
5968 goto again;
5969 }
5970 break;
5971 case STRUCT_DOMAIN:
5972 switch (indexval.dwarf_tag)
5973 {
5974 case DW_TAG_typedef:
5975 case DW_TAG_structure_type:
5976 break;
5977 default:
5978 goto again;
5979 }
5980 break;
5981 case LABEL_DOMAIN:
5982 switch (indexval.dwarf_tag)
5983 {
5984 case 0:
5985 case DW_TAG_variable:
5986 break;
5987 default:
5988 goto again;
5989 }
5990 break;
5991 default:
5992 break;
5993 }
5994
5995 /* Match dw2_expand_symtabs_matching, symbol_kind and
5996 debug_names::psymbol_tag. */
5997 switch (m_search)
5998 {
5999 case VARIABLES_DOMAIN:
6000 switch (indexval.dwarf_tag)
6001 {
6002 case DW_TAG_variable:
6003 break;
6004 default:
6005 goto again;
6006 }
6007 break;
6008 case FUNCTIONS_DOMAIN:
6009 switch (indexval.dwarf_tag)
6010 {
6011 case DW_TAG_subprogram:
6012 break;
6013 default:
6014 goto again;
6015 }
6016 break;
6017 case TYPES_DOMAIN:
6018 switch (indexval.dwarf_tag)
6019 {
6020 case DW_TAG_typedef:
6021 case DW_TAG_structure_type:
6022 break;
6023 default:
6024 goto again;
6025 }
6026 break;
6027 default:
6028 break;
6029 }
6030
6031 return per_cu;
6032 }
6033
6034 static struct compunit_symtab *
6035 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6036 const char *name, domain_enum domain)
6037 {
6038 const block_enum block_index = static_cast<block_enum> (block_index_int);
6039 struct dwarf2_per_objfile *dwarf2_per_objfile
6040 = get_dwarf2_per_objfile (objfile);
6041
6042 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6043 if (!mapp)
6044 {
6045 /* index is NULL if OBJF_READNOW. */
6046 return NULL;
6047 }
6048 const auto &map = *mapp;
6049
6050 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6051 block_index, domain, name);
6052
6053 struct compunit_symtab *stab_best = NULL;
6054 struct dwarf2_per_cu_data *per_cu;
6055 while ((per_cu = iter.next ()) != NULL)
6056 {
6057 struct symbol *sym, *with_opaque = NULL;
6058 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6059 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6060 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6061
6062 sym = block_find_symbol (block, name, domain,
6063 block_find_non_opaque_type_preferred,
6064 &with_opaque);
6065
6066 /* Some caution must be observed with overloaded functions and
6067 methods, since the index will not contain any overload
6068 information (but NAME might contain it). */
6069
6070 if (sym != NULL
6071 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6072 return stab;
6073 if (with_opaque != NULL
6074 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6075 stab_best = stab;
6076
6077 /* Keep looking through other CUs. */
6078 }
6079
6080 return stab_best;
6081 }
6082
6083 /* This dumps minimal information about .debug_names. It is called
6084 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6085 uses this to verify that .debug_names has been loaded. */
6086
6087 static void
6088 dw2_debug_names_dump (struct objfile *objfile)
6089 {
6090 struct dwarf2_per_objfile *dwarf2_per_objfile
6091 = get_dwarf2_per_objfile (objfile);
6092
6093 gdb_assert (dwarf2_per_objfile->using_index);
6094 printf_filtered (".debug_names:");
6095 if (dwarf2_per_objfile->debug_names_table)
6096 printf_filtered (" exists\n");
6097 else
6098 printf_filtered (" faked for \"readnow\"\n");
6099 printf_filtered ("\n");
6100 }
6101
6102 static void
6103 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6104 const char *func_name)
6105 {
6106 struct dwarf2_per_objfile *dwarf2_per_objfile
6107 = get_dwarf2_per_objfile (objfile);
6108
6109 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6110 if (dwarf2_per_objfile->debug_names_table)
6111 {
6112 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6113
6114 /* Note: It doesn't matter what we pass for block_index here. */
6115 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6116 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6117
6118 struct dwarf2_per_cu_data *per_cu;
6119 while ((per_cu = iter.next ()) != NULL)
6120 dw2_instantiate_symtab (per_cu, false);
6121 }
6122 }
6123
6124 static void
6125 dw2_debug_names_expand_symtabs_matching
6126 (struct objfile *objfile,
6127 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6128 const lookup_name_info &lookup_name,
6129 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6130 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6131 enum search_domain kind)
6132 {
6133 struct dwarf2_per_objfile *dwarf2_per_objfile
6134 = get_dwarf2_per_objfile (objfile);
6135
6136 /* debug_names_table is NULL if OBJF_READNOW. */
6137 if (!dwarf2_per_objfile->debug_names_table)
6138 return;
6139
6140 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6141
6142 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6143
6144 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6145 symbol_matcher,
6146 kind, [&] (offset_type namei)
6147 {
6148 /* The name was matched, now expand corresponding CUs that were
6149 marked. */
6150 dw2_debug_names_iterator iter (map, kind, namei);
6151
6152 struct dwarf2_per_cu_data *per_cu;
6153 while ((per_cu = iter.next ()) != NULL)
6154 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6155 expansion_notify);
6156 });
6157 }
6158
6159 const struct quick_symbol_functions dwarf2_debug_names_functions =
6160 {
6161 dw2_has_symbols,
6162 dw2_find_last_source_symtab,
6163 dw2_forget_cached_source_info,
6164 dw2_map_symtabs_matching_filename,
6165 dw2_debug_names_lookup_symbol,
6166 dw2_print_stats,
6167 dw2_debug_names_dump,
6168 dw2_relocate,
6169 dw2_debug_names_expand_symtabs_for_function,
6170 dw2_expand_all_symtabs,
6171 dw2_expand_symtabs_with_fullname,
6172 dw2_map_matching_symbols,
6173 dw2_debug_names_expand_symtabs_matching,
6174 dw2_find_pc_sect_compunit_symtab,
6175 NULL,
6176 dw2_map_symbol_filenames
6177 };
6178
6179 /* See symfile.h. */
6180
6181 bool
6182 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6183 {
6184 struct dwarf2_per_objfile *dwarf2_per_objfile
6185 = get_dwarf2_per_objfile (objfile);
6186
6187 /* If we're about to read full symbols, don't bother with the
6188 indices. In this case we also don't care if some other debug
6189 format is making psymtabs, because they are all about to be
6190 expanded anyway. */
6191 if ((objfile->flags & OBJF_READNOW))
6192 {
6193 dwarf2_per_objfile->using_index = 1;
6194 create_all_comp_units (dwarf2_per_objfile);
6195 create_all_type_units (dwarf2_per_objfile);
6196 dwarf2_per_objfile->quick_file_names_table
6197 = create_quick_file_names_table
6198 (dwarf2_per_objfile->all_comp_units.size ());
6199
6200 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6201 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6202 {
6203 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6204
6205 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6206 struct dwarf2_per_cu_quick_data);
6207 }
6208
6209 /* Return 1 so that gdb sees the "quick" functions. However,
6210 these functions will be no-ops because we will have expanded
6211 all symtabs. */
6212 *index_kind = dw_index_kind::GDB_INDEX;
6213 return true;
6214 }
6215
6216 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6217 {
6218 *index_kind = dw_index_kind::DEBUG_NAMES;
6219 return true;
6220 }
6221
6222 if (dwarf2_read_index (dwarf2_per_objfile))
6223 {
6224 *index_kind = dw_index_kind::GDB_INDEX;
6225 return true;
6226 }
6227
6228 return false;
6229 }
6230
6231 \f
6232
6233 /* Build a partial symbol table. */
6234
6235 void
6236 dwarf2_build_psymtabs (struct objfile *objfile)
6237 {
6238 struct dwarf2_per_objfile *dwarf2_per_objfile
6239 = get_dwarf2_per_objfile (objfile);
6240
6241 if (objfile->global_psymbols.capacity () == 0
6242 && objfile->static_psymbols.capacity () == 0)
6243 init_psymbol_list (objfile, 1024);
6244
6245 TRY
6246 {
6247 /* This isn't really ideal: all the data we allocate on the
6248 objfile's obstack is still uselessly kept around. However,
6249 freeing it seems unsafe. */
6250 psymtab_discarder psymtabs (objfile);
6251 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6252 psymtabs.keep ();
6253 }
6254 CATCH (except, RETURN_MASK_ERROR)
6255 {
6256 exception_print (gdb_stderr, except);
6257 }
6258 END_CATCH
6259 }
6260
6261 /* Return the total length of the CU described by HEADER. */
6262
6263 static unsigned int
6264 get_cu_length (const struct comp_unit_head *header)
6265 {
6266 return header->initial_length_size + header->length;
6267 }
6268
6269 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6270
6271 static inline bool
6272 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6273 {
6274 sect_offset bottom = cu_header->sect_off;
6275 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6276
6277 return sect_off >= bottom && sect_off < top;
6278 }
6279
6280 /* Find the base address of the compilation unit for range lists and
6281 location lists. It will normally be specified by DW_AT_low_pc.
6282 In DWARF-3 draft 4, the base address could be overridden by
6283 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6284 compilation units with discontinuous ranges. */
6285
6286 static void
6287 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6288 {
6289 struct attribute *attr;
6290
6291 cu->base_known = 0;
6292 cu->base_address = 0;
6293
6294 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6295 if (attr)
6296 {
6297 cu->base_address = attr_value_as_address (attr);
6298 cu->base_known = 1;
6299 }
6300 else
6301 {
6302 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6303 if (attr)
6304 {
6305 cu->base_address = attr_value_as_address (attr);
6306 cu->base_known = 1;
6307 }
6308 }
6309 }
6310
6311 /* Read in the comp unit header information from the debug_info at info_ptr.
6312 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6313 NOTE: This leaves members offset, first_die_offset to be filled in
6314 by the caller. */
6315
6316 static const gdb_byte *
6317 read_comp_unit_head (struct comp_unit_head *cu_header,
6318 const gdb_byte *info_ptr,
6319 struct dwarf2_section_info *section,
6320 rcuh_kind section_kind)
6321 {
6322 int signed_addr;
6323 unsigned int bytes_read;
6324 const char *filename = get_section_file_name (section);
6325 bfd *abfd = get_section_bfd_owner (section);
6326
6327 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6328 cu_header->initial_length_size = bytes_read;
6329 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6330 info_ptr += bytes_read;
6331 cu_header->version = read_2_bytes (abfd, info_ptr);
6332 info_ptr += 2;
6333 if (cu_header->version < 5)
6334 switch (section_kind)
6335 {
6336 case rcuh_kind::COMPILE:
6337 cu_header->unit_type = DW_UT_compile;
6338 break;
6339 case rcuh_kind::TYPE:
6340 cu_header->unit_type = DW_UT_type;
6341 break;
6342 default:
6343 internal_error (__FILE__, __LINE__,
6344 _("read_comp_unit_head: invalid section_kind"));
6345 }
6346 else
6347 {
6348 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6349 (read_1_byte (abfd, info_ptr));
6350 info_ptr += 1;
6351 switch (cu_header->unit_type)
6352 {
6353 case DW_UT_compile:
6354 if (section_kind != rcuh_kind::COMPILE)
6355 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6356 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6357 filename);
6358 break;
6359 case DW_UT_type:
6360 section_kind = rcuh_kind::TYPE;
6361 break;
6362 default:
6363 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6364 "(is %d, should be %d or %d) [in module %s]"),
6365 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6366 }
6367
6368 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6369 info_ptr += 1;
6370 }
6371 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6372 cu_header,
6373 &bytes_read);
6374 info_ptr += bytes_read;
6375 if (cu_header->version < 5)
6376 {
6377 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6378 info_ptr += 1;
6379 }
6380 signed_addr = bfd_get_sign_extend_vma (abfd);
6381 if (signed_addr < 0)
6382 internal_error (__FILE__, __LINE__,
6383 _("read_comp_unit_head: dwarf from non elf file"));
6384 cu_header->signed_addr_p = signed_addr;
6385
6386 if (section_kind == rcuh_kind::TYPE)
6387 {
6388 LONGEST type_offset;
6389
6390 cu_header->signature = read_8_bytes (abfd, info_ptr);
6391 info_ptr += 8;
6392
6393 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6394 info_ptr += bytes_read;
6395 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6396 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6397 error (_("Dwarf Error: Too big type_offset in compilation unit "
6398 "header (is %s) [in module %s]"), plongest (type_offset),
6399 filename);
6400 }
6401
6402 return info_ptr;
6403 }
6404
6405 /* Helper function that returns the proper abbrev section for
6406 THIS_CU. */
6407
6408 static struct dwarf2_section_info *
6409 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6410 {
6411 struct dwarf2_section_info *abbrev;
6412 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6413
6414 if (this_cu->is_dwz)
6415 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6416 else
6417 abbrev = &dwarf2_per_objfile->abbrev;
6418
6419 return abbrev;
6420 }
6421
6422 /* Subroutine of read_and_check_comp_unit_head and
6423 read_and_check_type_unit_head to simplify them.
6424 Perform various error checking on the header. */
6425
6426 static void
6427 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6428 struct comp_unit_head *header,
6429 struct dwarf2_section_info *section,
6430 struct dwarf2_section_info *abbrev_section)
6431 {
6432 const char *filename = get_section_file_name (section);
6433
6434 if (header->version < 2 || header->version > 5)
6435 error (_("Dwarf Error: wrong version in compilation unit header "
6436 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6437 filename);
6438
6439 if (to_underlying (header->abbrev_sect_off)
6440 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6441 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6442 "(offset %s + 6) [in module %s]"),
6443 sect_offset_str (header->abbrev_sect_off),
6444 sect_offset_str (header->sect_off),
6445 filename);
6446
6447 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6448 avoid potential 32-bit overflow. */
6449 if (((ULONGEST) header->sect_off + get_cu_length (header))
6450 > section->size)
6451 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6452 "(offset %s + 0) [in module %s]"),
6453 header->length, sect_offset_str (header->sect_off),
6454 filename);
6455 }
6456
6457 /* Read in a CU/TU header and perform some basic error checking.
6458 The contents of the header are stored in HEADER.
6459 The result is a pointer to the start of the first DIE. */
6460
6461 static const gdb_byte *
6462 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6463 struct comp_unit_head *header,
6464 struct dwarf2_section_info *section,
6465 struct dwarf2_section_info *abbrev_section,
6466 const gdb_byte *info_ptr,
6467 rcuh_kind section_kind)
6468 {
6469 const gdb_byte *beg_of_comp_unit = info_ptr;
6470
6471 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6472
6473 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6474
6475 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6476
6477 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6478 abbrev_section);
6479
6480 return info_ptr;
6481 }
6482
6483 /* Fetch the abbreviation table offset from a comp or type unit header. */
6484
6485 static sect_offset
6486 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6487 struct dwarf2_section_info *section,
6488 sect_offset sect_off)
6489 {
6490 bfd *abfd = get_section_bfd_owner (section);
6491 const gdb_byte *info_ptr;
6492 unsigned int initial_length_size, offset_size;
6493 uint16_t version;
6494
6495 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6496 info_ptr = section->buffer + to_underlying (sect_off);
6497 read_initial_length (abfd, info_ptr, &initial_length_size);
6498 offset_size = initial_length_size == 4 ? 4 : 8;
6499 info_ptr += initial_length_size;
6500
6501 version = read_2_bytes (abfd, info_ptr);
6502 info_ptr += 2;
6503 if (version >= 5)
6504 {
6505 /* Skip unit type and address size. */
6506 info_ptr += 2;
6507 }
6508
6509 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6510 }
6511
6512 /* Allocate a new partial symtab for file named NAME and mark this new
6513 partial symtab as being an include of PST. */
6514
6515 static void
6516 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6517 struct objfile *objfile)
6518 {
6519 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6520
6521 if (!IS_ABSOLUTE_PATH (subpst->filename))
6522 {
6523 /* It shares objfile->objfile_obstack. */
6524 subpst->dirname = pst->dirname;
6525 }
6526
6527 subpst->textlow = 0;
6528 subpst->texthigh = 0;
6529
6530 subpst->dependencies
6531 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6532 subpst->dependencies[0] = pst;
6533 subpst->number_of_dependencies = 1;
6534
6535 subpst->globals_offset = 0;
6536 subpst->n_global_syms = 0;
6537 subpst->statics_offset = 0;
6538 subpst->n_static_syms = 0;
6539 subpst->compunit_symtab = NULL;
6540 subpst->read_symtab = pst->read_symtab;
6541 subpst->readin = 0;
6542
6543 /* No private part is necessary for include psymtabs. This property
6544 can be used to differentiate between such include psymtabs and
6545 the regular ones. */
6546 subpst->read_symtab_private = NULL;
6547 }
6548
6549 /* Read the Line Number Program data and extract the list of files
6550 included by the source file represented by PST. Build an include
6551 partial symtab for each of these included files. */
6552
6553 static void
6554 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6555 struct die_info *die,
6556 struct partial_symtab *pst)
6557 {
6558 line_header_up lh;
6559 struct attribute *attr;
6560
6561 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6562 if (attr)
6563 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6564 if (lh == NULL)
6565 return; /* No linetable, so no includes. */
6566
6567 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6568 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6569 }
6570
6571 static hashval_t
6572 hash_signatured_type (const void *item)
6573 {
6574 const struct signatured_type *sig_type
6575 = (const struct signatured_type *) item;
6576
6577 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6578 return sig_type->signature;
6579 }
6580
6581 static int
6582 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6583 {
6584 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6585 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6586
6587 return lhs->signature == rhs->signature;
6588 }
6589
6590 /* Allocate a hash table for signatured types. */
6591
6592 static htab_t
6593 allocate_signatured_type_table (struct objfile *objfile)
6594 {
6595 return htab_create_alloc_ex (41,
6596 hash_signatured_type,
6597 eq_signatured_type,
6598 NULL,
6599 &objfile->objfile_obstack,
6600 hashtab_obstack_allocate,
6601 dummy_obstack_deallocate);
6602 }
6603
6604 /* A helper function to add a signatured type CU to a table. */
6605
6606 static int
6607 add_signatured_type_cu_to_table (void **slot, void *datum)
6608 {
6609 struct signatured_type *sigt = (struct signatured_type *) *slot;
6610 std::vector<signatured_type *> *all_type_units
6611 = (std::vector<signatured_type *> *) datum;
6612
6613 all_type_units->push_back (sigt);
6614
6615 return 1;
6616 }
6617
6618 /* A helper for create_debug_types_hash_table. Read types from SECTION
6619 and fill them into TYPES_HTAB. It will process only type units,
6620 therefore DW_UT_type. */
6621
6622 static void
6623 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6624 struct dwo_file *dwo_file,
6625 dwarf2_section_info *section, htab_t &types_htab,
6626 rcuh_kind section_kind)
6627 {
6628 struct objfile *objfile = dwarf2_per_objfile->objfile;
6629 struct dwarf2_section_info *abbrev_section;
6630 bfd *abfd;
6631 const gdb_byte *info_ptr, *end_ptr;
6632
6633 abbrev_section = (dwo_file != NULL
6634 ? &dwo_file->sections.abbrev
6635 : &dwarf2_per_objfile->abbrev);
6636
6637 if (dwarf_read_debug)
6638 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6639 get_section_name (section),
6640 get_section_file_name (abbrev_section));
6641
6642 dwarf2_read_section (objfile, section);
6643 info_ptr = section->buffer;
6644
6645 if (info_ptr == NULL)
6646 return;
6647
6648 /* We can't set abfd until now because the section may be empty or
6649 not present, in which case the bfd is unknown. */
6650 abfd = get_section_bfd_owner (section);
6651
6652 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6653 because we don't need to read any dies: the signature is in the
6654 header. */
6655
6656 end_ptr = info_ptr + section->size;
6657 while (info_ptr < end_ptr)
6658 {
6659 struct signatured_type *sig_type;
6660 struct dwo_unit *dwo_tu;
6661 void **slot;
6662 const gdb_byte *ptr = info_ptr;
6663 struct comp_unit_head header;
6664 unsigned int length;
6665
6666 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6667
6668 /* Initialize it due to a false compiler warning. */
6669 header.signature = -1;
6670 header.type_cu_offset_in_tu = (cu_offset) -1;
6671
6672 /* We need to read the type's signature in order to build the hash
6673 table, but we don't need anything else just yet. */
6674
6675 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6676 abbrev_section, ptr, section_kind);
6677
6678 length = get_cu_length (&header);
6679
6680 /* Skip dummy type units. */
6681 if (ptr >= info_ptr + length
6682 || peek_abbrev_code (abfd, ptr) == 0
6683 || header.unit_type != DW_UT_type)
6684 {
6685 info_ptr += length;
6686 continue;
6687 }
6688
6689 if (types_htab == NULL)
6690 {
6691 if (dwo_file)
6692 types_htab = allocate_dwo_unit_table (objfile);
6693 else
6694 types_htab = allocate_signatured_type_table (objfile);
6695 }
6696
6697 if (dwo_file)
6698 {
6699 sig_type = NULL;
6700 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6701 struct dwo_unit);
6702 dwo_tu->dwo_file = dwo_file;
6703 dwo_tu->signature = header.signature;
6704 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6705 dwo_tu->section = section;
6706 dwo_tu->sect_off = sect_off;
6707 dwo_tu->length = length;
6708 }
6709 else
6710 {
6711 /* N.B.: type_offset is not usable if this type uses a DWO file.
6712 The real type_offset is in the DWO file. */
6713 dwo_tu = NULL;
6714 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6715 struct signatured_type);
6716 sig_type->signature = header.signature;
6717 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6718 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6719 sig_type->per_cu.is_debug_types = 1;
6720 sig_type->per_cu.section = section;
6721 sig_type->per_cu.sect_off = sect_off;
6722 sig_type->per_cu.length = length;
6723 }
6724
6725 slot = htab_find_slot (types_htab,
6726 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6727 INSERT);
6728 gdb_assert (slot != NULL);
6729 if (*slot != NULL)
6730 {
6731 sect_offset dup_sect_off;
6732
6733 if (dwo_file)
6734 {
6735 const struct dwo_unit *dup_tu
6736 = (const struct dwo_unit *) *slot;
6737
6738 dup_sect_off = dup_tu->sect_off;
6739 }
6740 else
6741 {
6742 const struct signatured_type *dup_tu
6743 = (const struct signatured_type *) *slot;
6744
6745 dup_sect_off = dup_tu->per_cu.sect_off;
6746 }
6747
6748 complaint (&symfile_complaints,
6749 _("debug type entry at offset %s is duplicate to"
6750 " the entry at offset %s, signature %s"),
6751 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6752 hex_string (header.signature));
6753 }
6754 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6755
6756 if (dwarf_read_debug > 1)
6757 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6758 sect_offset_str (sect_off),
6759 hex_string (header.signature));
6760
6761 info_ptr += length;
6762 }
6763 }
6764
6765 /* Create the hash table of all entries in the .debug_types
6766 (or .debug_types.dwo) section(s).
6767 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6768 otherwise it is NULL.
6769
6770 The result is a pointer to the hash table or NULL if there are no types.
6771
6772 Note: This function processes DWO files only, not DWP files. */
6773
6774 static void
6775 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6776 struct dwo_file *dwo_file,
6777 VEC (dwarf2_section_info_def) *types,
6778 htab_t &types_htab)
6779 {
6780 int ix;
6781 struct dwarf2_section_info *section;
6782
6783 if (VEC_empty (dwarf2_section_info_def, types))
6784 return;
6785
6786 for (ix = 0;
6787 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6788 ++ix)
6789 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6790 types_htab, rcuh_kind::TYPE);
6791 }
6792
6793 /* Create the hash table of all entries in the .debug_types section,
6794 and initialize all_type_units.
6795 The result is zero if there is an error (e.g. missing .debug_types section),
6796 otherwise non-zero. */
6797
6798 static int
6799 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6800 {
6801 htab_t types_htab = NULL;
6802
6803 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6804 &dwarf2_per_objfile->info, types_htab,
6805 rcuh_kind::COMPILE);
6806 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6807 dwarf2_per_objfile->types, types_htab);
6808 if (types_htab == NULL)
6809 {
6810 dwarf2_per_objfile->signatured_types = NULL;
6811 return 0;
6812 }
6813
6814 dwarf2_per_objfile->signatured_types = types_htab;
6815
6816 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6817 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6818
6819 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6820 &dwarf2_per_objfile->all_type_units);
6821
6822 return 1;
6823 }
6824
6825 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6826 If SLOT is non-NULL, it is the entry to use in the hash table.
6827 Otherwise we find one. */
6828
6829 static struct signatured_type *
6830 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6831 void **slot)
6832 {
6833 struct objfile *objfile = dwarf2_per_objfile->objfile;
6834
6835 if (dwarf2_per_objfile->all_type_units.size ()
6836 == dwarf2_per_objfile->all_type_units.capacity ())
6837 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6838
6839 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6840 struct signatured_type);
6841
6842 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6843 sig_type->signature = sig;
6844 sig_type->per_cu.is_debug_types = 1;
6845 if (dwarf2_per_objfile->using_index)
6846 {
6847 sig_type->per_cu.v.quick =
6848 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6849 struct dwarf2_per_cu_quick_data);
6850 }
6851
6852 if (slot == NULL)
6853 {
6854 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6855 sig_type, INSERT);
6856 }
6857 gdb_assert (*slot == NULL);
6858 *slot = sig_type;
6859 /* The rest of sig_type must be filled in by the caller. */
6860 return sig_type;
6861 }
6862
6863 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6864 Fill in SIG_ENTRY with DWO_ENTRY. */
6865
6866 static void
6867 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6868 struct signatured_type *sig_entry,
6869 struct dwo_unit *dwo_entry)
6870 {
6871 /* Make sure we're not clobbering something we don't expect to. */
6872 gdb_assert (! sig_entry->per_cu.queued);
6873 gdb_assert (sig_entry->per_cu.cu == NULL);
6874 if (dwarf2_per_objfile->using_index)
6875 {
6876 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6877 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6878 }
6879 else
6880 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6881 gdb_assert (sig_entry->signature == dwo_entry->signature);
6882 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6883 gdb_assert (sig_entry->type_unit_group == NULL);
6884 gdb_assert (sig_entry->dwo_unit == NULL);
6885
6886 sig_entry->per_cu.section = dwo_entry->section;
6887 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6888 sig_entry->per_cu.length = dwo_entry->length;
6889 sig_entry->per_cu.reading_dwo_directly = 1;
6890 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6891 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6892 sig_entry->dwo_unit = dwo_entry;
6893 }
6894
6895 /* Subroutine of lookup_signatured_type.
6896 If we haven't read the TU yet, create the signatured_type data structure
6897 for a TU to be read in directly from a DWO file, bypassing the stub.
6898 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6899 using .gdb_index, then when reading a CU we want to stay in the DWO file
6900 containing that CU. Otherwise we could end up reading several other DWO
6901 files (due to comdat folding) to process the transitive closure of all the
6902 mentioned TUs, and that can be slow. The current DWO file will have every
6903 type signature that it needs.
6904 We only do this for .gdb_index because in the psymtab case we already have
6905 to read all the DWOs to build the type unit groups. */
6906
6907 static struct signatured_type *
6908 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6909 {
6910 struct dwarf2_per_objfile *dwarf2_per_objfile
6911 = cu->per_cu->dwarf2_per_objfile;
6912 struct objfile *objfile = dwarf2_per_objfile->objfile;
6913 struct dwo_file *dwo_file;
6914 struct dwo_unit find_dwo_entry, *dwo_entry;
6915 struct signatured_type find_sig_entry, *sig_entry;
6916 void **slot;
6917
6918 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6919
6920 /* If TU skeletons have been removed then we may not have read in any
6921 TUs yet. */
6922 if (dwarf2_per_objfile->signatured_types == NULL)
6923 {
6924 dwarf2_per_objfile->signatured_types
6925 = allocate_signatured_type_table (objfile);
6926 }
6927
6928 /* We only ever need to read in one copy of a signatured type.
6929 Use the global signatured_types array to do our own comdat-folding
6930 of types. If this is the first time we're reading this TU, and
6931 the TU has an entry in .gdb_index, replace the recorded data from
6932 .gdb_index with this TU. */
6933
6934 find_sig_entry.signature = sig;
6935 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6936 &find_sig_entry, INSERT);
6937 sig_entry = (struct signatured_type *) *slot;
6938
6939 /* We can get here with the TU already read, *or* in the process of being
6940 read. Don't reassign the global entry to point to this DWO if that's
6941 the case. Also note that if the TU is already being read, it may not
6942 have come from a DWO, the program may be a mix of Fission-compiled
6943 code and non-Fission-compiled code. */
6944
6945 /* Have we already tried to read this TU?
6946 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6947 needn't exist in the global table yet). */
6948 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6949 return sig_entry;
6950
6951 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6952 dwo_unit of the TU itself. */
6953 dwo_file = cu->dwo_unit->dwo_file;
6954
6955 /* Ok, this is the first time we're reading this TU. */
6956 if (dwo_file->tus == NULL)
6957 return NULL;
6958 find_dwo_entry.signature = sig;
6959 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6960 if (dwo_entry == NULL)
6961 return NULL;
6962
6963 /* If the global table doesn't have an entry for this TU, add one. */
6964 if (sig_entry == NULL)
6965 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6966
6967 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6968 sig_entry->per_cu.tu_read = 1;
6969 return sig_entry;
6970 }
6971
6972 /* Subroutine of lookup_signatured_type.
6973 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6974 then try the DWP file. If the TU stub (skeleton) has been removed then
6975 it won't be in .gdb_index. */
6976
6977 static struct signatured_type *
6978 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6979 {
6980 struct dwarf2_per_objfile *dwarf2_per_objfile
6981 = cu->per_cu->dwarf2_per_objfile;
6982 struct objfile *objfile = dwarf2_per_objfile->objfile;
6983 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6984 struct dwo_unit *dwo_entry;
6985 struct signatured_type find_sig_entry, *sig_entry;
6986 void **slot;
6987
6988 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6989 gdb_assert (dwp_file != NULL);
6990
6991 /* If TU skeletons have been removed then we may not have read in any
6992 TUs yet. */
6993 if (dwarf2_per_objfile->signatured_types == NULL)
6994 {
6995 dwarf2_per_objfile->signatured_types
6996 = allocate_signatured_type_table (objfile);
6997 }
6998
6999 find_sig_entry.signature = sig;
7000 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7001 &find_sig_entry, INSERT);
7002 sig_entry = (struct signatured_type *) *slot;
7003
7004 /* Have we already tried to read this TU?
7005 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7006 needn't exist in the global table yet). */
7007 if (sig_entry != NULL)
7008 return sig_entry;
7009
7010 if (dwp_file->tus == NULL)
7011 return NULL;
7012 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7013 sig, 1 /* is_debug_types */);
7014 if (dwo_entry == NULL)
7015 return NULL;
7016
7017 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7018 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7019
7020 return sig_entry;
7021 }
7022
7023 /* Lookup a signature based type for DW_FORM_ref_sig8.
7024 Returns NULL if signature SIG is not present in the table.
7025 It is up to the caller to complain about this. */
7026
7027 static struct signatured_type *
7028 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7029 {
7030 struct dwarf2_per_objfile *dwarf2_per_objfile
7031 = cu->per_cu->dwarf2_per_objfile;
7032
7033 if (cu->dwo_unit
7034 && dwarf2_per_objfile->using_index)
7035 {
7036 /* We're in a DWO/DWP file, and we're using .gdb_index.
7037 These cases require special processing. */
7038 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7039 return lookup_dwo_signatured_type (cu, sig);
7040 else
7041 return lookup_dwp_signatured_type (cu, sig);
7042 }
7043 else
7044 {
7045 struct signatured_type find_entry, *entry;
7046
7047 if (dwarf2_per_objfile->signatured_types == NULL)
7048 return NULL;
7049 find_entry.signature = sig;
7050 entry = ((struct signatured_type *)
7051 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7052 return entry;
7053 }
7054 }
7055 \f
7056 /* Low level DIE reading support. */
7057
7058 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7059
7060 static void
7061 init_cu_die_reader (struct die_reader_specs *reader,
7062 struct dwarf2_cu *cu,
7063 struct dwarf2_section_info *section,
7064 struct dwo_file *dwo_file,
7065 struct abbrev_table *abbrev_table)
7066 {
7067 gdb_assert (section->readin && section->buffer != NULL);
7068 reader->abfd = get_section_bfd_owner (section);
7069 reader->cu = cu;
7070 reader->dwo_file = dwo_file;
7071 reader->die_section = section;
7072 reader->buffer = section->buffer;
7073 reader->buffer_end = section->buffer + section->size;
7074 reader->comp_dir = NULL;
7075 reader->abbrev_table = abbrev_table;
7076 }
7077
7078 /* Subroutine of init_cutu_and_read_dies to simplify it.
7079 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7080 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7081 already.
7082
7083 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7084 from it to the DIE in the DWO. If NULL we are skipping the stub.
7085 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7086 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7087 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7088 STUB_COMP_DIR may be non-NULL.
7089 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7090 are filled in with the info of the DIE from the DWO file.
7091 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7092 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7093 kept around for at least as long as *RESULT_READER.
7094
7095 The result is non-zero if a valid (non-dummy) DIE was found. */
7096
7097 static int
7098 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7099 struct dwo_unit *dwo_unit,
7100 struct die_info *stub_comp_unit_die,
7101 const char *stub_comp_dir,
7102 struct die_reader_specs *result_reader,
7103 const gdb_byte **result_info_ptr,
7104 struct die_info **result_comp_unit_die,
7105 int *result_has_children,
7106 abbrev_table_up *result_dwo_abbrev_table)
7107 {
7108 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7109 struct objfile *objfile = dwarf2_per_objfile->objfile;
7110 struct dwarf2_cu *cu = this_cu->cu;
7111 bfd *abfd;
7112 const gdb_byte *begin_info_ptr, *info_ptr;
7113 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7114 int i,num_extra_attrs;
7115 struct dwarf2_section_info *dwo_abbrev_section;
7116 struct attribute *attr;
7117 struct die_info *comp_unit_die;
7118
7119 /* At most one of these may be provided. */
7120 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7121
7122 /* These attributes aren't processed until later:
7123 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7124 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7125 referenced later. However, these attributes are found in the stub
7126 which we won't have later. In order to not impose this complication
7127 on the rest of the code, we read them here and copy them to the
7128 DWO CU/TU die. */
7129
7130 stmt_list = NULL;
7131 low_pc = NULL;
7132 high_pc = NULL;
7133 ranges = NULL;
7134 comp_dir = NULL;
7135
7136 if (stub_comp_unit_die != NULL)
7137 {
7138 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7139 DWO file. */
7140 if (! this_cu->is_debug_types)
7141 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7142 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7143 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7144 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7145 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7146
7147 /* There should be a DW_AT_addr_base attribute here (if needed).
7148 We need the value before we can process DW_FORM_GNU_addr_index. */
7149 cu->addr_base = 0;
7150 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7151 if (attr)
7152 cu->addr_base = DW_UNSND (attr);
7153
7154 /* There should be a DW_AT_ranges_base attribute here (if needed).
7155 We need the value before we can process DW_AT_ranges. */
7156 cu->ranges_base = 0;
7157 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7158 if (attr)
7159 cu->ranges_base = DW_UNSND (attr);
7160 }
7161 else if (stub_comp_dir != NULL)
7162 {
7163 /* Reconstruct the comp_dir attribute to simplify the code below. */
7164 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7165 comp_dir->name = DW_AT_comp_dir;
7166 comp_dir->form = DW_FORM_string;
7167 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7168 DW_STRING (comp_dir) = stub_comp_dir;
7169 }
7170
7171 /* Set up for reading the DWO CU/TU. */
7172 cu->dwo_unit = dwo_unit;
7173 dwarf2_section_info *section = dwo_unit->section;
7174 dwarf2_read_section (objfile, section);
7175 abfd = get_section_bfd_owner (section);
7176 begin_info_ptr = info_ptr = (section->buffer
7177 + to_underlying (dwo_unit->sect_off));
7178 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7179
7180 if (this_cu->is_debug_types)
7181 {
7182 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7183
7184 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7185 &cu->header, section,
7186 dwo_abbrev_section,
7187 info_ptr, rcuh_kind::TYPE);
7188 /* This is not an assert because it can be caused by bad debug info. */
7189 if (sig_type->signature != cu->header.signature)
7190 {
7191 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7192 " TU at offset %s [in module %s]"),
7193 hex_string (sig_type->signature),
7194 hex_string (cu->header.signature),
7195 sect_offset_str (dwo_unit->sect_off),
7196 bfd_get_filename (abfd));
7197 }
7198 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7199 /* For DWOs coming from DWP files, we don't know the CU length
7200 nor the type's offset in the TU until now. */
7201 dwo_unit->length = get_cu_length (&cu->header);
7202 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7203
7204 /* Establish the type offset that can be used to lookup the type.
7205 For DWO files, we don't know it until now. */
7206 sig_type->type_offset_in_section
7207 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7208 }
7209 else
7210 {
7211 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7212 &cu->header, section,
7213 dwo_abbrev_section,
7214 info_ptr, rcuh_kind::COMPILE);
7215 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7216 /* For DWOs coming from DWP files, we don't know the CU length
7217 until now. */
7218 dwo_unit->length = get_cu_length (&cu->header);
7219 }
7220
7221 *result_dwo_abbrev_table
7222 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7223 cu->header.abbrev_sect_off);
7224 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7225 result_dwo_abbrev_table->get ());
7226
7227 /* Read in the die, but leave space to copy over the attributes
7228 from the stub. This has the benefit of simplifying the rest of
7229 the code - all the work to maintain the illusion of a single
7230 DW_TAG_{compile,type}_unit DIE is done here. */
7231 num_extra_attrs = ((stmt_list != NULL)
7232 + (low_pc != NULL)
7233 + (high_pc != NULL)
7234 + (ranges != NULL)
7235 + (comp_dir != NULL));
7236 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7237 result_has_children, num_extra_attrs);
7238
7239 /* Copy over the attributes from the stub to the DIE we just read in. */
7240 comp_unit_die = *result_comp_unit_die;
7241 i = comp_unit_die->num_attrs;
7242 if (stmt_list != NULL)
7243 comp_unit_die->attrs[i++] = *stmt_list;
7244 if (low_pc != NULL)
7245 comp_unit_die->attrs[i++] = *low_pc;
7246 if (high_pc != NULL)
7247 comp_unit_die->attrs[i++] = *high_pc;
7248 if (ranges != NULL)
7249 comp_unit_die->attrs[i++] = *ranges;
7250 if (comp_dir != NULL)
7251 comp_unit_die->attrs[i++] = *comp_dir;
7252 comp_unit_die->num_attrs += num_extra_attrs;
7253
7254 if (dwarf_die_debug)
7255 {
7256 fprintf_unfiltered (gdb_stdlog,
7257 "Read die from %s@0x%x of %s:\n",
7258 get_section_name (section),
7259 (unsigned) (begin_info_ptr - section->buffer),
7260 bfd_get_filename (abfd));
7261 dump_die (comp_unit_die, dwarf_die_debug);
7262 }
7263
7264 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7265 TUs by skipping the stub and going directly to the entry in the DWO file.
7266 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7267 to get it via circuitous means. Blech. */
7268 if (comp_dir != NULL)
7269 result_reader->comp_dir = DW_STRING (comp_dir);
7270
7271 /* Skip dummy compilation units. */
7272 if (info_ptr >= begin_info_ptr + dwo_unit->length
7273 || peek_abbrev_code (abfd, info_ptr) == 0)
7274 return 0;
7275
7276 *result_info_ptr = info_ptr;
7277 return 1;
7278 }
7279
7280 /* Subroutine of init_cutu_and_read_dies to simplify it.
7281 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7282 Returns NULL if the specified DWO unit cannot be found. */
7283
7284 static struct dwo_unit *
7285 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7286 struct die_info *comp_unit_die)
7287 {
7288 struct dwarf2_cu *cu = this_cu->cu;
7289 ULONGEST signature;
7290 struct dwo_unit *dwo_unit;
7291 const char *comp_dir, *dwo_name;
7292
7293 gdb_assert (cu != NULL);
7294
7295 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7296 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7297 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7298
7299 if (this_cu->is_debug_types)
7300 {
7301 struct signatured_type *sig_type;
7302
7303 /* Since this_cu is the first member of struct signatured_type,
7304 we can go from a pointer to one to a pointer to the other. */
7305 sig_type = (struct signatured_type *) this_cu;
7306 signature = sig_type->signature;
7307 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7308 }
7309 else
7310 {
7311 struct attribute *attr;
7312
7313 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7314 if (! attr)
7315 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7316 " [in module %s]"),
7317 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7318 signature = DW_UNSND (attr);
7319 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7320 signature);
7321 }
7322
7323 return dwo_unit;
7324 }
7325
7326 /* Subroutine of init_cutu_and_read_dies to simplify it.
7327 See it for a description of the parameters.
7328 Read a TU directly from a DWO file, bypassing the stub. */
7329
7330 static void
7331 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7332 int use_existing_cu, int keep,
7333 die_reader_func_ftype *die_reader_func,
7334 void *data)
7335 {
7336 std::unique_ptr<dwarf2_cu> new_cu;
7337 struct signatured_type *sig_type;
7338 struct die_reader_specs reader;
7339 const gdb_byte *info_ptr;
7340 struct die_info *comp_unit_die;
7341 int has_children;
7342 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7343
7344 /* Verify we can do the following downcast, and that we have the
7345 data we need. */
7346 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7347 sig_type = (struct signatured_type *) this_cu;
7348 gdb_assert (sig_type->dwo_unit != NULL);
7349
7350 if (use_existing_cu && this_cu->cu != NULL)
7351 {
7352 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7353 /* There's no need to do the rereading_dwo_cu handling that
7354 init_cutu_and_read_dies does since we don't read the stub. */
7355 }
7356 else
7357 {
7358 /* If !use_existing_cu, this_cu->cu must be NULL. */
7359 gdb_assert (this_cu->cu == NULL);
7360 new_cu.reset (new dwarf2_cu (this_cu));
7361 }
7362
7363 /* A future optimization, if needed, would be to use an existing
7364 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7365 could share abbrev tables. */
7366
7367 /* The abbreviation table used by READER, this must live at least as long as
7368 READER. */
7369 abbrev_table_up dwo_abbrev_table;
7370
7371 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7372 NULL /* stub_comp_unit_die */,
7373 sig_type->dwo_unit->dwo_file->comp_dir,
7374 &reader, &info_ptr,
7375 &comp_unit_die, &has_children,
7376 &dwo_abbrev_table) == 0)
7377 {
7378 /* Dummy die. */
7379 return;
7380 }
7381
7382 /* All the "real" work is done here. */
7383 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7384
7385 /* This duplicates the code in init_cutu_and_read_dies,
7386 but the alternative is making the latter more complex.
7387 This function is only for the special case of using DWO files directly:
7388 no point in overly complicating the general case just to handle this. */
7389 if (new_cu != NULL && keep)
7390 {
7391 /* Link this CU into read_in_chain. */
7392 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7393 dwarf2_per_objfile->read_in_chain = this_cu;
7394 /* The chain owns it now. */
7395 new_cu.release ();
7396 }
7397 }
7398
7399 /* Initialize a CU (or TU) and read its DIEs.
7400 If the CU defers to a DWO file, read the DWO file as well.
7401
7402 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7403 Otherwise the table specified in the comp unit header is read in and used.
7404 This is an optimization for when we already have the abbrev table.
7405
7406 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7407 Otherwise, a new CU is allocated with xmalloc.
7408
7409 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7410 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7411
7412 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7413 linker) then DIE_READER_FUNC will not get called. */
7414
7415 static void
7416 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7417 struct abbrev_table *abbrev_table,
7418 int use_existing_cu, int keep,
7419 bool skip_partial,
7420 die_reader_func_ftype *die_reader_func,
7421 void *data)
7422 {
7423 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7424 struct objfile *objfile = dwarf2_per_objfile->objfile;
7425 struct dwarf2_section_info *section = this_cu->section;
7426 bfd *abfd = get_section_bfd_owner (section);
7427 struct dwarf2_cu *cu;
7428 const gdb_byte *begin_info_ptr, *info_ptr;
7429 struct die_reader_specs reader;
7430 struct die_info *comp_unit_die;
7431 int has_children;
7432 struct attribute *attr;
7433 struct signatured_type *sig_type = NULL;
7434 struct dwarf2_section_info *abbrev_section;
7435 /* Non-zero if CU currently points to a DWO file and we need to
7436 reread it. When this happens we need to reread the skeleton die
7437 before we can reread the DWO file (this only applies to CUs, not TUs). */
7438 int rereading_dwo_cu = 0;
7439
7440 if (dwarf_die_debug)
7441 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7442 this_cu->is_debug_types ? "type" : "comp",
7443 sect_offset_str (this_cu->sect_off));
7444
7445 if (use_existing_cu)
7446 gdb_assert (keep);
7447
7448 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7449 file (instead of going through the stub), short-circuit all of this. */
7450 if (this_cu->reading_dwo_directly)
7451 {
7452 /* Narrow down the scope of possibilities to have to understand. */
7453 gdb_assert (this_cu->is_debug_types);
7454 gdb_assert (abbrev_table == NULL);
7455 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7456 die_reader_func, data);
7457 return;
7458 }
7459
7460 /* This is cheap if the section is already read in. */
7461 dwarf2_read_section (objfile, section);
7462
7463 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7464
7465 abbrev_section = get_abbrev_section_for_cu (this_cu);
7466
7467 std::unique_ptr<dwarf2_cu> new_cu;
7468 if (use_existing_cu && this_cu->cu != NULL)
7469 {
7470 cu = this_cu->cu;
7471 /* If this CU is from a DWO file we need to start over, we need to
7472 refetch the attributes from the skeleton CU.
7473 This could be optimized by retrieving those attributes from when we
7474 were here the first time: the previous comp_unit_die was stored in
7475 comp_unit_obstack. But there's no data yet that we need this
7476 optimization. */
7477 if (cu->dwo_unit != NULL)
7478 rereading_dwo_cu = 1;
7479 }
7480 else
7481 {
7482 /* If !use_existing_cu, this_cu->cu must be NULL. */
7483 gdb_assert (this_cu->cu == NULL);
7484 new_cu.reset (new dwarf2_cu (this_cu));
7485 cu = new_cu.get ();
7486 }
7487
7488 /* Get the header. */
7489 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7490 {
7491 /* We already have the header, there's no need to read it in again. */
7492 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7493 }
7494 else
7495 {
7496 if (this_cu->is_debug_types)
7497 {
7498 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7499 &cu->header, section,
7500 abbrev_section, info_ptr,
7501 rcuh_kind::TYPE);
7502
7503 /* Since per_cu is the first member of struct signatured_type,
7504 we can go from a pointer to one to a pointer to the other. */
7505 sig_type = (struct signatured_type *) this_cu;
7506 gdb_assert (sig_type->signature == cu->header.signature);
7507 gdb_assert (sig_type->type_offset_in_tu
7508 == cu->header.type_cu_offset_in_tu);
7509 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7510
7511 /* LENGTH has not been set yet for type units if we're
7512 using .gdb_index. */
7513 this_cu->length = get_cu_length (&cu->header);
7514
7515 /* Establish the type offset that can be used to lookup the type. */
7516 sig_type->type_offset_in_section =
7517 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7518
7519 this_cu->dwarf_version = cu->header.version;
7520 }
7521 else
7522 {
7523 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7524 &cu->header, section,
7525 abbrev_section,
7526 info_ptr,
7527 rcuh_kind::COMPILE);
7528
7529 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7530 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7531 this_cu->dwarf_version = cu->header.version;
7532 }
7533 }
7534
7535 /* Skip dummy compilation units. */
7536 if (info_ptr >= begin_info_ptr + this_cu->length
7537 || peek_abbrev_code (abfd, info_ptr) == 0)
7538 return;
7539
7540 /* If we don't have them yet, read the abbrevs for this compilation unit.
7541 And if we need to read them now, make sure they're freed when we're
7542 done (own the table through ABBREV_TABLE_HOLDER). */
7543 abbrev_table_up abbrev_table_holder;
7544 if (abbrev_table != NULL)
7545 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7546 else
7547 {
7548 abbrev_table_holder
7549 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7550 cu->header.abbrev_sect_off);
7551 abbrev_table = abbrev_table_holder.get ();
7552 }
7553
7554 /* Read the top level CU/TU die. */
7555 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7556 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7557
7558 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7559 return;
7560
7561 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7562 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7563 table from the DWO file and pass the ownership over to us. It will be
7564 referenced from READER, so we must make sure to free it after we're done
7565 with READER.
7566
7567 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7568 DWO CU, that this test will fail (the attribute will not be present). */
7569 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7570 abbrev_table_up dwo_abbrev_table;
7571 if (attr)
7572 {
7573 struct dwo_unit *dwo_unit;
7574 struct die_info *dwo_comp_unit_die;
7575
7576 if (has_children)
7577 {
7578 complaint (&symfile_complaints,
7579 _("compilation unit with DW_AT_GNU_dwo_name"
7580 " has children (offset %s) [in module %s]"),
7581 sect_offset_str (this_cu->sect_off),
7582 bfd_get_filename (abfd));
7583 }
7584 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7585 if (dwo_unit != NULL)
7586 {
7587 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7588 comp_unit_die, NULL,
7589 &reader, &info_ptr,
7590 &dwo_comp_unit_die, &has_children,
7591 &dwo_abbrev_table) == 0)
7592 {
7593 /* Dummy die. */
7594 return;
7595 }
7596 comp_unit_die = dwo_comp_unit_die;
7597 }
7598 else
7599 {
7600 /* Yikes, we couldn't find the rest of the DIE, we only have
7601 the stub. A complaint has already been logged. There's
7602 not much more we can do except pass on the stub DIE to
7603 die_reader_func. We don't want to throw an error on bad
7604 debug info. */
7605 }
7606 }
7607
7608 /* All of the above is setup for this call. Yikes. */
7609 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7610
7611 /* Done, clean up. */
7612 if (new_cu != NULL && keep)
7613 {
7614 /* Link this CU into read_in_chain. */
7615 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7616 dwarf2_per_objfile->read_in_chain = this_cu;
7617 /* The chain owns it now. */
7618 new_cu.release ();
7619 }
7620 }
7621
7622 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7623 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7624 to have already done the lookup to find the DWO file).
7625
7626 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7627 THIS_CU->is_debug_types, but nothing else.
7628
7629 We fill in THIS_CU->length.
7630
7631 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7632 linker) then DIE_READER_FUNC will not get called.
7633
7634 THIS_CU->cu is always freed when done.
7635 This is done in order to not leave THIS_CU->cu in a state where we have
7636 to care whether it refers to the "main" CU or the DWO CU. */
7637
7638 static void
7639 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7640 struct dwo_file *dwo_file,
7641 die_reader_func_ftype *die_reader_func,
7642 void *data)
7643 {
7644 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7645 struct objfile *objfile = dwarf2_per_objfile->objfile;
7646 struct dwarf2_section_info *section = this_cu->section;
7647 bfd *abfd = get_section_bfd_owner (section);
7648 struct dwarf2_section_info *abbrev_section;
7649 const gdb_byte *begin_info_ptr, *info_ptr;
7650 struct die_reader_specs reader;
7651 struct die_info *comp_unit_die;
7652 int has_children;
7653
7654 if (dwarf_die_debug)
7655 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7656 this_cu->is_debug_types ? "type" : "comp",
7657 sect_offset_str (this_cu->sect_off));
7658
7659 gdb_assert (this_cu->cu == NULL);
7660
7661 abbrev_section = (dwo_file != NULL
7662 ? &dwo_file->sections.abbrev
7663 : get_abbrev_section_for_cu (this_cu));
7664
7665 /* This is cheap if the section is already read in. */
7666 dwarf2_read_section (objfile, section);
7667
7668 struct dwarf2_cu cu (this_cu);
7669
7670 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7671 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7672 &cu.header, section,
7673 abbrev_section, info_ptr,
7674 (this_cu->is_debug_types
7675 ? rcuh_kind::TYPE
7676 : rcuh_kind::COMPILE));
7677
7678 this_cu->length = get_cu_length (&cu.header);
7679
7680 /* Skip dummy compilation units. */
7681 if (info_ptr >= begin_info_ptr + this_cu->length
7682 || peek_abbrev_code (abfd, info_ptr) == 0)
7683 return;
7684
7685 abbrev_table_up abbrev_table
7686 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7687 cu.header.abbrev_sect_off);
7688
7689 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7690 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7691
7692 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7693 }
7694
7695 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7696 does not lookup the specified DWO file.
7697 This cannot be used to read DWO files.
7698
7699 THIS_CU->cu is always freed when done.
7700 This is done in order to not leave THIS_CU->cu in a state where we have
7701 to care whether it refers to the "main" CU or the DWO CU.
7702 We can revisit this if the data shows there's a performance issue. */
7703
7704 static void
7705 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7706 die_reader_func_ftype *die_reader_func,
7707 void *data)
7708 {
7709 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7710 }
7711 \f
7712 /* Type Unit Groups.
7713
7714 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7715 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7716 so that all types coming from the same compilation (.o file) are grouped
7717 together. A future step could be to put the types in the same symtab as
7718 the CU the types ultimately came from. */
7719
7720 static hashval_t
7721 hash_type_unit_group (const void *item)
7722 {
7723 const struct type_unit_group *tu_group
7724 = (const struct type_unit_group *) item;
7725
7726 return hash_stmt_list_entry (&tu_group->hash);
7727 }
7728
7729 static int
7730 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7731 {
7732 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7733 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7734
7735 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7736 }
7737
7738 /* Allocate a hash table for type unit groups. */
7739
7740 static htab_t
7741 allocate_type_unit_groups_table (struct objfile *objfile)
7742 {
7743 return htab_create_alloc_ex (3,
7744 hash_type_unit_group,
7745 eq_type_unit_group,
7746 NULL,
7747 &objfile->objfile_obstack,
7748 hashtab_obstack_allocate,
7749 dummy_obstack_deallocate);
7750 }
7751
7752 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7753 partial symtabs. We combine several TUs per psymtab to not let the size
7754 of any one psymtab grow too big. */
7755 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7756 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7757
7758 /* Helper routine for get_type_unit_group.
7759 Create the type_unit_group object used to hold one or more TUs. */
7760
7761 static struct type_unit_group *
7762 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7763 {
7764 struct dwarf2_per_objfile *dwarf2_per_objfile
7765 = cu->per_cu->dwarf2_per_objfile;
7766 struct objfile *objfile = dwarf2_per_objfile->objfile;
7767 struct dwarf2_per_cu_data *per_cu;
7768 struct type_unit_group *tu_group;
7769
7770 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7771 struct type_unit_group);
7772 per_cu = &tu_group->per_cu;
7773 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7774
7775 if (dwarf2_per_objfile->using_index)
7776 {
7777 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7778 struct dwarf2_per_cu_quick_data);
7779 }
7780 else
7781 {
7782 unsigned int line_offset = to_underlying (line_offset_struct);
7783 struct partial_symtab *pst;
7784 char *name;
7785
7786 /* Give the symtab a useful name for debug purposes. */
7787 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7788 name = xstrprintf ("<type_units_%d>",
7789 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7790 else
7791 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7792
7793 pst = create_partial_symtab (per_cu, name);
7794 pst->anonymous = 1;
7795
7796 xfree (name);
7797 }
7798
7799 tu_group->hash.dwo_unit = cu->dwo_unit;
7800 tu_group->hash.line_sect_off = line_offset_struct;
7801
7802 return tu_group;
7803 }
7804
7805 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7806 STMT_LIST is a DW_AT_stmt_list attribute. */
7807
7808 static struct type_unit_group *
7809 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7810 {
7811 struct dwarf2_per_objfile *dwarf2_per_objfile
7812 = cu->per_cu->dwarf2_per_objfile;
7813 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7814 struct type_unit_group *tu_group;
7815 void **slot;
7816 unsigned int line_offset;
7817 struct type_unit_group type_unit_group_for_lookup;
7818
7819 if (dwarf2_per_objfile->type_unit_groups == NULL)
7820 {
7821 dwarf2_per_objfile->type_unit_groups =
7822 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7823 }
7824
7825 /* Do we need to create a new group, or can we use an existing one? */
7826
7827 if (stmt_list)
7828 {
7829 line_offset = DW_UNSND (stmt_list);
7830 ++tu_stats->nr_symtab_sharers;
7831 }
7832 else
7833 {
7834 /* Ugh, no stmt_list. Rare, but we have to handle it.
7835 We can do various things here like create one group per TU or
7836 spread them over multiple groups to split up the expansion work.
7837 To avoid worst case scenarios (too many groups or too large groups)
7838 we, umm, group them in bunches. */
7839 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7840 | (tu_stats->nr_stmt_less_type_units
7841 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7842 ++tu_stats->nr_stmt_less_type_units;
7843 }
7844
7845 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7846 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7847 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7848 &type_unit_group_for_lookup, INSERT);
7849 if (*slot != NULL)
7850 {
7851 tu_group = (struct type_unit_group *) *slot;
7852 gdb_assert (tu_group != NULL);
7853 }
7854 else
7855 {
7856 sect_offset line_offset_struct = (sect_offset) line_offset;
7857 tu_group = create_type_unit_group (cu, line_offset_struct);
7858 *slot = tu_group;
7859 ++tu_stats->nr_symtabs;
7860 }
7861
7862 return tu_group;
7863 }
7864 \f
7865 /* Partial symbol tables. */
7866
7867 /* Create a psymtab named NAME and assign it to PER_CU.
7868
7869 The caller must fill in the following details:
7870 dirname, textlow, texthigh. */
7871
7872 static struct partial_symtab *
7873 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7874 {
7875 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7876 struct partial_symtab *pst;
7877
7878 pst = start_psymtab_common (objfile, name, 0,
7879 objfile->global_psymbols,
7880 objfile->static_psymbols);
7881
7882 pst->psymtabs_addrmap_supported = 1;
7883
7884 /* This is the glue that links PST into GDB's symbol API. */
7885 pst->read_symtab_private = per_cu;
7886 pst->read_symtab = dwarf2_read_symtab;
7887 per_cu->v.psymtab = pst;
7888
7889 return pst;
7890 }
7891
7892 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7893 type. */
7894
7895 struct process_psymtab_comp_unit_data
7896 {
7897 /* True if we are reading a DW_TAG_partial_unit. */
7898
7899 int want_partial_unit;
7900
7901 /* The "pretend" language that is used if the CU doesn't declare a
7902 language. */
7903
7904 enum language pretend_language;
7905 };
7906
7907 /* die_reader_func for process_psymtab_comp_unit. */
7908
7909 static void
7910 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7911 const gdb_byte *info_ptr,
7912 struct die_info *comp_unit_die,
7913 int has_children,
7914 void *data)
7915 {
7916 struct dwarf2_cu *cu = reader->cu;
7917 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7919 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7920 CORE_ADDR baseaddr;
7921 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7922 struct partial_symtab *pst;
7923 enum pc_bounds_kind cu_bounds_kind;
7924 const char *filename;
7925 struct process_psymtab_comp_unit_data *info
7926 = (struct process_psymtab_comp_unit_data *) data;
7927
7928 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7929 return;
7930
7931 gdb_assert (! per_cu->is_debug_types);
7932
7933 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7934
7935 cu->list_in_scope = &file_symbols;
7936
7937 /* Allocate a new partial symbol table structure. */
7938 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7939 if (filename == NULL)
7940 filename = "";
7941
7942 pst = create_partial_symtab (per_cu, filename);
7943
7944 /* This must be done before calling dwarf2_build_include_psymtabs. */
7945 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7946
7947 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7948
7949 dwarf2_find_base_address (comp_unit_die, cu);
7950
7951 /* Possibly set the default values of LOWPC and HIGHPC from
7952 `DW_AT_ranges'. */
7953 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7954 &best_highpc, cu, pst);
7955 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7956 /* Store the contiguous range if it is not empty; it can be empty for
7957 CUs with no code. */
7958 addrmap_set_empty (objfile->psymtabs_addrmap,
7959 gdbarch_adjust_dwarf2_addr (gdbarch,
7960 best_lowpc + baseaddr),
7961 gdbarch_adjust_dwarf2_addr (gdbarch,
7962 best_highpc + baseaddr) - 1,
7963 pst);
7964
7965 /* Check if comp unit has_children.
7966 If so, read the rest of the partial symbols from this comp unit.
7967 If not, there's no more debug_info for this comp unit. */
7968 if (has_children)
7969 {
7970 struct partial_die_info *first_die;
7971 CORE_ADDR lowpc, highpc;
7972
7973 lowpc = ((CORE_ADDR) -1);
7974 highpc = ((CORE_ADDR) 0);
7975
7976 first_die = load_partial_dies (reader, info_ptr, 1);
7977
7978 scan_partial_symbols (first_die, &lowpc, &highpc,
7979 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7980
7981 /* If we didn't find a lowpc, set it to highpc to avoid
7982 complaints from `maint check'. */
7983 if (lowpc == ((CORE_ADDR) -1))
7984 lowpc = highpc;
7985
7986 /* If the compilation unit didn't have an explicit address range,
7987 then use the information extracted from its child dies. */
7988 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7989 {
7990 best_lowpc = lowpc;
7991 best_highpc = highpc;
7992 }
7993 }
7994 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7995 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7996
7997 end_psymtab_common (objfile, pst);
7998
7999 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8000 {
8001 int i;
8002 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8003 struct dwarf2_per_cu_data *iter;
8004
8005 /* Fill in 'dependencies' here; we fill in 'users' in a
8006 post-pass. */
8007 pst->number_of_dependencies = len;
8008 pst->dependencies =
8009 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8010 for (i = 0;
8011 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8012 i, iter);
8013 ++i)
8014 pst->dependencies[i] = iter->v.psymtab;
8015
8016 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8017 }
8018
8019 /* Get the list of files included in the current compilation unit,
8020 and build a psymtab for each of them. */
8021 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8022
8023 if (dwarf_read_debug)
8024 {
8025 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8026
8027 fprintf_unfiltered (gdb_stdlog,
8028 "Psymtab for %s unit @%s: %s - %s"
8029 ", %d global, %d static syms\n",
8030 per_cu->is_debug_types ? "type" : "comp",
8031 sect_offset_str (per_cu->sect_off),
8032 paddress (gdbarch, pst->textlow),
8033 paddress (gdbarch, pst->texthigh),
8034 pst->n_global_syms, pst->n_static_syms);
8035 }
8036 }
8037
8038 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8039 Process compilation unit THIS_CU for a psymtab. */
8040
8041 static void
8042 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8043 int want_partial_unit,
8044 enum language pretend_language)
8045 {
8046 /* If this compilation unit was already read in, free the
8047 cached copy in order to read it in again. This is
8048 necessary because we skipped some symbols when we first
8049 read in the compilation unit (see load_partial_dies).
8050 This problem could be avoided, but the benefit is unclear. */
8051 if (this_cu->cu != NULL)
8052 free_one_cached_comp_unit (this_cu);
8053
8054 if (this_cu->is_debug_types)
8055 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8056 build_type_psymtabs_reader, NULL);
8057 else
8058 {
8059 process_psymtab_comp_unit_data info;
8060 info.want_partial_unit = want_partial_unit;
8061 info.pretend_language = pretend_language;
8062 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8063 process_psymtab_comp_unit_reader, &info);
8064 }
8065
8066 /* Age out any secondary CUs. */
8067 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8068 }
8069
8070 /* Reader function for build_type_psymtabs. */
8071
8072 static void
8073 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8074 const gdb_byte *info_ptr,
8075 struct die_info *type_unit_die,
8076 int has_children,
8077 void *data)
8078 {
8079 struct dwarf2_per_objfile *dwarf2_per_objfile
8080 = reader->cu->per_cu->dwarf2_per_objfile;
8081 struct objfile *objfile = dwarf2_per_objfile->objfile;
8082 struct dwarf2_cu *cu = reader->cu;
8083 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8084 struct signatured_type *sig_type;
8085 struct type_unit_group *tu_group;
8086 struct attribute *attr;
8087 struct partial_die_info *first_die;
8088 CORE_ADDR lowpc, highpc;
8089 struct partial_symtab *pst;
8090
8091 gdb_assert (data == NULL);
8092 gdb_assert (per_cu->is_debug_types);
8093 sig_type = (struct signatured_type *) per_cu;
8094
8095 if (! has_children)
8096 return;
8097
8098 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8099 tu_group = get_type_unit_group (cu, attr);
8100
8101 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8102
8103 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8104 cu->list_in_scope = &file_symbols;
8105 pst = create_partial_symtab (per_cu, "");
8106 pst->anonymous = 1;
8107
8108 first_die = load_partial_dies (reader, info_ptr, 1);
8109
8110 lowpc = (CORE_ADDR) -1;
8111 highpc = (CORE_ADDR) 0;
8112 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8113
8114 end_psymtab_common (objfile, pst);
8115 }
8116
8117 /* Struct used to sort TUs by their abbreviation table offset. */
8118
8119 struct tu_abbrev_offset
8120 {
8121 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8122 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8123 {}
8124
8125 signatured_type *sig_type;
8126 sect_offset abbrev_offset;
8127 };
8128
8129 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8130
8131 static bool
8132 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8133 const struct tu_abbrev_offset &b)
8134 {
8135 return a.abbrev_offset < b.abbrev_offset;
8136 }
8137
8138 /* Efficiently read all the type units.
8139 This does the bulk of the work for build_type_psymtabs.
8140
8141 The efficiency is because we sort TUs by the abbrev table they use and
8142 only read each abbrev table once. In one program there are 200K TUs
8143 sharing 8K abbrev tables.
8144
8145 The main purpose of this function is to support building the
8146 dwarf2_per_objfile->type_unit_groups table.
8147 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8148 can collapse the search space by grouping them by stmt_list.
8149 The savings can be significant, in the same program from above the 200K TUs
8150 share 8K stmt_list tables.
8151
8152 FUNC is expected to call get_type_unit_group, which will create the
8153 struct type_unit_group if necessary and add it to
8154 dwarf2_per_objfile->type_unit_groups. */
8155
8156 static void
8157 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8158 {
8159 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8160 abbrev_table_up abbrev_table;
8161 sect_offset abbrev_offset;
8162
8163 /* It's up to the caller to not call us multiple times. */
8164 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8165
8166 if (dwarf2_per_objfile->all_type_units.empty ())
8167 return;
8168
8169 /* TUs typically share abbrev tables, and there can be way more TUs than
8170 abbrev tables. Sort by abbrev table to reduce the number of times we
8171 read each abbrev table in.
8172 Alternatives are to punt or to maintain a cache of abbrev tables.
8173 This is simpler and efficient enough for now.
8174
8175 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8176 symtab to use). Typically TUs with the same abbrev offset have the same
8177 stmt_list value too so in practice this should work well.
8178
8179 The basic algorithm here is:
8180
8181 sort TUs by abbrev table
8182 for each TU with same abbrev table:
8183 read abbrev table if first user
8184 read TU top level DIE
8185 [IWBN if DWO skeletons had DW_AT_stmt_list]
8186 call FUNC */
8187
8188 if (dwarf_read_debug)
8189 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8190
8191 /* Sort in a separate table to maintain the order of all_type_units
8192 for .gdb_index: TU indices directly index all_type_units. */
8193 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8194 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8195
8196 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8197 sorted_by_abbrev.emplace_back
8198 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8199 sig_type->per_cu.section,
8200 sig_type->per_cu.sect_off));
8201
8202 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8203 sort_tu_by_abbrev_offset);
8204
8205 abbrev_offset = (sect_offset) ~(unsigned) 0;
8206
8207 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8208 {
8209 /* Switch to the next abbrev table if necessary. */
8210 if (abbrev_table == NULL
8211 || tu.abbrev_offset != abbrev_offset)
8212 {
8213 abbrev_offset = tu.abbrev_offset;
8214 abbrev_table =
8215 abbrev_table_read_table (dwarf2_per_objfile,
8216 &dwarf2_per_objfile->abbrev,
8217 abbrev_offset);
8218 ++tu_stats->nr_uniq_abbrev_tables;
8219 }
8220
8221 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8222 0, 0, false, build_type_psymtabs_reader, NULL);
8223 }
8224 }
8225
8226 /* Print collected type unit statistics. */
8227
8228 static void
8229 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8230 {
8231 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8232
8233 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8234 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8235 dwarf2_per_objfile->all_type_units.size ());
8236 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8237 tu_stats->nr_uniq_abbrev_tables);
8238 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8239 tu_stats->nr_symtabs);
8240 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8241 tu_stats->nr_symtab_sharers);
8242 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8243 tu_stats->nr_stmt_less_type_units);
8244 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8245 tu_stats->nr_all_type_units_reallocs);
8246 }
8247
8248 /* Traversal function for build_type_psymtabs. */
8249
8250 static int
8251 build_type_psymtab_dependencies (void **slot, void *info)
8252 {
8253 struct dwarf2_per_objfile *dwarf2_per_objfile
8254 = (struct dwarf2_per_objfile *) info;
8255 struct objfile *objfile = dwarf2_per_objfile->objfile;
8256 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8257 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8258 struct partial_symtab *pst = per_cu->v.psymtab;
8259 int len = VEC_length (sig_type_ptr, tu_group->tus);
8260 struct signatured_type *iter;
8261 int i;
8262
8263 gdb_assert (len > 0);
8264 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8265
8266 pst->number_of_dependencies = len;
8267 pst->dependencies =
8268 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8269 for (i = 0;
8270 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8271 ++i)
8272 {
8273 gdb_assert (iter->per_cu.is_debug_types);
8274 pst->dependencies[i] = iter->per_cu.v.psymtab;
8275 iter->type_unit_group = tu_group;
8276 }
8277
8278 VEC_free (sig_type_ptr, tu_group->tus);
8279
8280 return 1;
8281 }
8282
8283 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8284 Build partial symbol tables for the .debug_types comp-units. */
8285
8286 static void
8287 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8288 {
8289 if (! create_all_type_units (dwarf2_per_objfile))
8290 return;
8291
8292 build_type_psymtabs_1 (dwarf2_per_objfile);
8293 }
8294
8295 /* Traversal function for process_skeletonless_type_unit.
8296 Read a TU in a DWO file and build partial symbols for it. */
8297
8298 static int
8299 process_skeletonless_type_unit (void **slot, void *info)
8300 {
8301 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8302 struct dwarf2_per_objfile *dwarf2_per_objfile
8303 = (struct dwarf2_per_objfile *) info;
8304 struct signatured_type find_entry, *entry;
8305
8306 /* If this TU doesn't exist in the global table, add it and read it in. */
8307
8308 if (dwarf2_per_objfile->signatured_types == NULL)
8309 {
8310 dwarf2_per_objfile->signatured_types
8311 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8312 }
8313
8314 find_entry.signature = dwo_unit->signature;
8315 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8316 INSERT);
8317 /* If we've already seen this type there's nothing to do. What's happening
8318 is we're doing our own version of comdat-folding here. */
8319 if (*slot != NULL)
8320 return 1;
8321
8322 /* This does the job that create_all_type_units would have done for
8323 this TU. */
8324 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8325 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8326 *slot = entry;
8327
8328 /* This does the job that build_type_psymtabs_1 would have done. */
8329 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8330 build_type_psymtabs_reader, NULL);
8331
8332 return 1;
8333 }
8334
8335 /* Traversal function for process_skeletonless_type_units. */
8336
8337 static int
8338 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8339 {
8340 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8341
8342 if (dwo_file->tus != NULL)
8343 {
8344 htab_traverse_noresize (dwo_file->tus,
8345 process_skeletonless_type_unit, info);
8346 }
8347
8348 return 1;
8349 }
8350
8351 /* Scan all TUs of DWO files, verifying we've processed them.
8352 This is needed in case a TU was emitted without its skeleton.
8353 Note: This can't be done until we know what all the DWO files are. */
8354
8355 static void
8356 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8357 {
8358 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8359 if (get_dwp_file (dwarf2_per_objfile) == NULL
8360 && dwarf2_per_objfile->dwo_files != NULL)
8361 {
8362 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8363 process_dwo_file_for_skeletonless_type_units,
8364 dwarf2_per_objfile);
8365 }
8366 }
8367
8368 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8369
8370 static void
8371 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8372 {
8373 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8374 {
8375 struct partial_symtab *pst = per_cu->v.psymtab;
8376
8377 if (pst == NULL)
8378 continue;
8379
8380 for (int j = 0; j < pst->number_of_dependencies; ++j)
8381 {
8382 /* Set the 'user' field only if it is not already set. */
8383 if (pst->dependencies[j]->user == NULL)
8384 pst->dependencies[j]->user = pst;
8385 }
8386 }
8387 }
8388
8389 /* Build the partial symbol table by doing a quick pass through the
8390 .debug_info and .debug_abbrev sections. */
8391
8392 static void
8393 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8394 {
8395 struct objfile *objfile = dwarf2_per_objfile->objfile;
8396
8397 if (dwarf_read_debug)
8398 {
8399 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8400 objfile_name (objfile));
8401 }
8402
8403 dwarf2_per_objfile->reading_partial_symbols = 1;
8404
8405 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8406
8407 /* Any cached compilation units will be linked by the per-objfile
8408 read_in_chain. Make sure to free them when we're done. */
8409 free_cached_comp_units freer (dwarf2_per_objfile);
8410
8411 build_type_psymtabs (dwarf2_per_objfile);
8412
8413 create_all_comp_units (dwarf2_per_objfile);
8414
8415 /* Create a temporary address map on a temporary obstack. We later
8416 copy this to the final obstack. */
8417 auto_obstack temp_obstack;
8418
8419 scoped_restore save_psymtabs_addrmap
8420 = make_scoped_restore (&objfile->psymtabs_addrmap,
8421 addrmap_create_mutable (&temp_obstack));
8422
8423 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8424 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8425
8426 /* This has to wait until we read the CUs, we need the list of DWOs. */
8427 process_skeletonless_type_units (dwarf2_per_objfile);
8428
8429 /* Now that all TUs have been processed we can fill in the dependencies. */
8430 if (dwarf2_per_objfile->type_unit_groups != NULL)
8431 {
8432 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8433 build_type_psymtab_dependencies, dwarf2_per_objfile);
8434 }
8435
8436 if (dwarf_read_debug)
8437 print_tu_stats (dwarf2_per_objfile);
8438
8439 set_partial_user (dwarf2_per_objfile);
8440
8441 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8442 &objfile->objfile_obstack);
8443 /* At this point we want to keep the address map. */
8444 save_psymtabs_addrmap.release ();
8445
8446 if (dwarf_read_debug)
8447 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8448 objfile_name (objfile));
8449 }
8450
8451 /* die_reader_func for load_partial_comp_unit. */
8452
8453 static void
8454 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8455 const gdb_byte *info_ptr,
8456 struct die_info *comp_unit_die,
8457 int has_children,
8458 void *data)
8459 {
8460 struct dwarf2_cu *cu = reader->cu;
8461
8462 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8463
8464 /* Check if comp unit has_children.
8465 If so, read the rest of the partial symbols from this comp unit.
8466 If not, there's no more debug_info for this comp unit. */
8467 if (has_children)
8468 load_partial_dies (reader, info_ptr, 0);
8469 }
8470
8471 /* Load the partial DIEs for a secondary CU into memory.
8472 This is also used when rereading a primary CU with load_all_dies. */
8473
8474 static void
8475 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8476 {
8477 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8478 load_partial_comp_unit_reader, NULL);
8479 }
8480
8481 static void
8482 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8483 struct dwarf2_section_info *section,
8484 struct dwarf2_section_info *abbrev_section,
8485 unsigned int is_dwz)
8486 {
8487 const gdb_byte *info_ptr;
8488 struct objfile *objfile = dwarf2_per_objfile->objfile;
8489
8490 if (dwarf_read_debug)
8491 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8492 get_section_name (section),
8493 get_section_file_name (section));
8494
8495 dwarf2_read_section (objfile, section);
8496
8497 info_ptr = section->buffer;
8498
8499 while (info_ptr < section->buffer + section->size)
8500 {
8501 struct dwarf2_per_cu_data *this_cu;
8502
8503 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8504
8505 comp_unit_head cu_header;
8506 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8507 abbrev_section, info_ptr,
8508 rcuh_kind::COMPILE);
8509
8510 /* Save the compilation unit for later lookup. */
8511 if (cu_header.unit_type != DW_UT_type)
8512 {
8513 this_cu = XOBNEW (&objfile->objfile_obstack,
8514 struct dwarf2_per_cu_data);
8515 memset (this_cu, 0, sizeof (*this_cu));
8516 }
8517 else
8518 {
8519 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8520 struct signatured_type);
8521 memset (sig_type, 0, sizeof (*sig_type));
8522 sig_type->signature = cu_header.signature;
8523 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8524 this_cu = &sig_type->per_cu;
8525 }
8526 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8527 this_cu->sect_off = sect_off;
8528 this_cu->length = cu_header.length + cu_header.initial_length_size;
8529 this_cu->is_dwz = is_dwz;
8530 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8531 this_cu->section = section;
8532
8533 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8534
8535 info_ptr = info_ptr + this_cu->length;
8536 }
8537 }
8538
8539 /* Create a list of all compilation units in OBJFILE.
8540 This is only done for -readnow and building partial symtabs. */
8541
8542 static void
8543 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8544 {
8545 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8546 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8547 &dwarf2_per_objfile->abbrev, 0);
8548
8549 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8550 if (dwz != NULL)
8551 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8552 1);
8553 }
8554
8555 /* Process all loaded DIEs for compilation unit CU, starting at
8556 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8557 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8558 DW_AT_ranges). See the comments of add_partial_subprogram on how
8559 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8560
8561 static void
8562 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8563 CORE_ADDR *highpc, int set_addrmap,
8564 struct dwarf2_cu *cu)
8565 {
8566 struct partial_die_info *pdi;
8567
8568 /* Now, march along the PDI's, descending into ones which have
8569 interesting children but skipping the children of the other ones,
8570 until we reach the end of the compilation unit. */
8571
8572 pdi = first_die;
8573
8574 while (pdi != NULL)
8575 {
8576 pdi->fixup (cu);
8577
8578 /* Anonymous namespaces or modules have no name but have interesting
8579 children, so we need to look at them. Ditto for anonymous
8580 enums. */
8581
8582 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8583 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8584 || pdi->tag == DW_TAG_imported_unit
8585 || pdi->tag == DW_TAG_inlined_subroutine)
8586 {
8587 switch (pdi->tag)
8588 {
8589 case DW_TAG_subprogram:
8590 case DW_TAG_inlined_subroutine:
8591 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8592 break;
8593 case DW_TAG_constant:
8594 case DW_TAG_variable:
8595 case DW_TAG_typedef:
8596 case DW_TAG_union_type:
8597 if (!pdi->is_declaration)
8598 {
8599 add_partial_symbol (pdi, cu);
8600 }
8601 break;
8602 case DW_TAG_class_type:
8603 case DW_TAG_interface_type:
8604 case DW_TAG_structure_type:
8605 if (!pdi->is_declaration)
8606 {
8607 add_partial_symbol (pdi, cu);
8608 }
8609 if ((cu->language == language_rust
8610 || cu->language == language_cplus) && pdi->has_children)
8611 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8612 set_addrmap, cu);
8613 break;
8614 case DW_TAG_enumeration_type:
8615 if (!pdi->is_declaration)
8616 add_partial_enumeration (pdi, cu);
8617 break;
8618 case DW_TAG_base_type:
8619 case DW_TAG_subrange_type:
8620 /* File scope base type definitions are added to the partial
8621 symbol table. */
8622 add_partial_symbol (pdi, cu);
8623 break;
8624 case DW_TAG_namespace:
8625 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8626 break;
8627 case DW_TAG_module:
8628 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8629 break;
8630 case DW_TAG_imported_unit:
8631 {
8632 struct dwarf2_per_cu_data *per_cu;
8633
8634 /* For now we don't handle imported units in type units. */
8635 if (cu->per_cu->is_debug_types)
8636 {
8637 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8638 " supported in type units [in module %s]"),
8639 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8640 }
8641
8642 per_cu = dwarf2_find_containing_comp_unit
8643 (pdi->d.sect_off, pdi->is_dwz,
8644 cu->per_cu->dwarf2_per_objfile);
8645
8646 /* Go read the partial unit, if needed. */
8647 if (per_cu->v.psymtab == NULL)
8648 process_psymtab_comp_unit (per_cu, 1, cu->language);
8649
8650 VEC_safe_push (dwarf2_per_cu_ptr,
8651 cu->per_cu->imported_symtabs, per_cu);
8652 }
8653 break;
8654 case DW_TAG_imported_declaration:
8655 add_partial_symbol (pdi, cu);
8656 break;
8657 default:
8658 break;
8659 }
8660 }
8661
8662 /* If the die has a sibling, skip to the sibling. */
8663
8664 pdi = pdi->die_sibling;
8665 }
8666 }
8667
8668 /* Functions used to compute the fully scoped name of a partial DIE.
8669
8670 Normally, this is simple. For C++, the parent DIE's fully scoped
8671 name is concatenated with "::" and the partial DIE's name.
8672 Enumerators are an exception; they use the scope of their parent
8673 enumeration type, i.e. the name of the enumeration type is not
8674 prepended to the enumerator.
8675
8676 There are two complexities. One is DW_AT_specification; in this
8677 case "parent" means the parent of the target of the specification,
8678 instead of the direct parent of the DIE. The other is compilers
8679 which do not emit DW_TAG_namespace; in this case we try to guess
8680 the fully qualified name of structure types from their members'
8681 linkage names. This must be done using the DIE's children rather
8682 than the children of any DW_AT_specification target. We only need
8683 to do this for structures at the top level, i.e. if the target of
8684 any DW_AT_specification (if any; otherwise the DIE itself) does not
8685 have a parent. */
8686
8687 /* Compute the scope prefix associated with PDI's parent, in
8688 compilation unit CU. The result will be allocated on CU's
8689 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8690 field. NULL is returned if no prefix is necessary. */
8691 static const char *
8692 partial_die_parent_scope (struct partial_die_info *pdi,
8693 struct dwarf2_cu *cu)
8694 {
8695 const char *grandparent_scope;
8696 struct partial_die_info *parent, *real_pdi;
8697
8698 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8699 then this means the parent of the specification DIE. */
8700
8701 real_pdi = pdi;
8702 while (real_pdi->has_specification)
8703 real_pdi = find_partial_die (real_pdi->spec_offset,
8704 real_pdi->spec_is_dwz, cu);
8705
8706 parent = real_pdi->die_parent;
8707 if (parent == NULL)
8708 return NULL;
8709
8710 if (parent->scope_set)
8711 return parent->scope;
8712
8713 parent->fixup (cu);
8714
8715 grandparent_scope = partial_die_parent_scope (parent, cu);
8716
8717 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8718 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8719 Work around this problem here. */
8720 if (cu->language == language_cplus
8721 && parent->tag == DW_TAG_namespace
8722 && strcmp (parent->name, "::") == 0
8723 && grandparent_scope == NULL)
8724 {
8725 parent->scope = NULL;
8726 parent->scope_set = 1;
8727 return NULL;
8728 }
8729
8730 if (pdi->tag == DW_TAG_enumerator)
8731 /* Enumerators should not get the name of the enumeration as a prefix. */
8732 parent->scope = grandparent_scope;
8733 else if (parent->tag == DW_TAG_namespace
8734 || parent->tag == DW_TAG_module
8735 || parent->tag == DW_TAG_structure_type
8736 || parent->tag == DW_TAG_class_type
8737 || parent->tag == DW_TAG_interface_type
8738 || parent->tag == DW_TAG_union_type
8739 || parent->tag == DW_TAG_enumeration_type)
8740 {
8741 if (grandparent_scope == NULL)
8742 parent->scope = parent->name;
8743 else
8744 parent->scope = typename_concat (&cu->comp_unit_obstack,
8745 grandparent_scope,
8746 parent->name, 0, cu);
8747 }
8748 else
8749 {
8750 /* FIXME drow/2004-04-01: What should we be doing with
8751 function-local names? For partial symbols, we should probably be
8752 ignoring them. */
8753 complaint (&symfile_complaints,
8754 _("unhandled containing DIE tag %d for DIE at %s"),
8755 parent->tag, sect_offset_str (pdi->sect_off));
8756 parent->scope = grandparent_scope;
8757 }
8758
8759 parent->scope_set = 1;
8760 return parent->scope;
8761 }
8762
8763 /* Return the fully scoped name associated with PDI, from compilation unit
8764 CU. The result will be allocated with malloc. */
8765
8766 static char *
8767 partial_die_full_name (struct partial_die_info *pdi,
8768 struct dwarf2_cu *cu)
8769 {
8770 const char *parent_scope;
8771
8772 /* If this is a template instantiation, we can not work out the
8773 template arguments from partial DIEs. So, unfortunately, we have
8774 to go through the full DIEs. At least any work we do building
8775 types here will be reused if full symbols are loaded later. */
8776 if (pdi->has_template_arguments)
8777 {
8778 pdi->fixup (cu);
8779
8780 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8781 {
8782 struct die_info *die;
8783 struct attribute attr;
8784 struct dwarf2_cu *ref_cu = cu;
8785
8786 /* DW_FORM_ref_addr is using section offset. */
8787 attr.name = (enum dwarf_attribute) 0;
8788 attr.form = DW_FORM_ref_addr;
8789 attr.u.unsnd = to_underlying (pdi->sect_off);
8790 die = follow_die_ref (NULL, &attr, &ref_cu);
8791
8792 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8793 }
8794 }
8795
8796 parent_scope = partial_die_parent_scope (pdi, cu);
8797 if (parent_scope == NULL)
8798 return NULL;
8799 else
8800 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8801 }
8802
8803 static void
8804 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8805 {
8806 struct dwarf2_per_objfile *dwarf2_per_objfile
8807 = cu->per_cu->dwarf2_per_objfile;
8808 struct objfile *objfile = dwarf2_per_objfile->objfile;
8809 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8810 CORE_ADDR addr = 0;
8811 const char *actual_name = NULL;
8812 CORE_ADDR baseaddr;
8813 char *built_actual_name;
8814
8815 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8816
8817 built_actual_name = partial_die_full_name (pdi, cu);
8818 if (built_actual_name != NULL)
8819 actual_name = built_actual_name;
8820
8821 if (actual_name == NULL)
8822 actual_name = pdi->name;
8823
8824 switch (pdi->tag)
8825 {
8826 case DW_TAG_inlined_subroutine:
8827 case DW_TAG_subprogram:
8828 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8829 if (pdi->is_external || cu->language == language_ada)
8830 {
8831 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8832 of the global scope. But in Ada, we want to be able to access
8833 nested procedures globally. So all Ada subprograms are stored
8834 in the global scope. */
8835 add_psymbol_to_list (actual_name, strlen (actual_name),
8836 built_actual_name != NULL,
8837 VAR_DOMAIN, LOC_BLOCK,
8838 &objfile->global_psymbols,
8839 addr, cu->language, objfile);
8840 }
8841 else
8842 {
8843 add_psymbol_to_list (actual_name, strlen (actual_name),
8844 built_actual_name != NULL,
8845 VAR_DOMAIN, LOC_BLOCK,
8846 &objfile->static_psymbols,
8847 addr, cu->language, objfile);
8848 }
8849
8850 if (pdi->main_subprogram && actual_name != NULL)
8851 set_objfile_main_name (objfile, actual_name, cu->language);
8852 break;
8853 case DW_TAG_constant:
8854 {
8855 std::vector<partial_symbol *> *list;
8856
8857 if (pdi->is_external)
8858 list = &objfile->global_psymbols;
8859 else
8860 list = &objfile->static_psymbols;
8861 add_psymbol_to_list (actual_name, strlen (actual_name),
8862 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8863 list, 0, cu->language, objfile);
8864 }
8865 break;
8866 case DW_TAG_variable:
8867 if (pdi->d.locdesc)
8868 addr = decode_locdesc (pdi->d.locdesc, cu);
8869
8870 if (pdi->d.locdesc
8871 && addr == 0
8872 && !dwarf2_per_objfile->has_section_at_zero)
8873 {
8874 /* A global or static variable may also have been stripped
8875 out by the linker if unused, in which case its address
8876 will be nullified; do not add such variables into partial
8877 symbol table then. */
8878 }
8879 else if (pdi->is_external)
8880 {
8881 /* Global Variable.
8882 Don't enter into the minimal symbol tables as there is
8883 a minimal symbol table entry from the ELF symbols already.
8884 Enter into partial symbol table if it has a location
8885 descriptor or a type.
8886 If the location descriptor is missing, new_symbol will create
8887 a LOC_UNRESOLVED symbol, the address of the variable will then
8888 be determined from the minimal symbol table whenever the variable
8889 is referenced.
8890 The address for the partial symbol table entry is not
8891 used by GDB, but it comes in handy for debugging partial symbol
8892 table building. */
8893
8894 if (pdi->d.locdesc || pdi->has_type)
8895 add_psymbol_to_list (actual_name, strlen (actual_name),
8896 built_actual_name != NULL,
8897 VAR_DOMAIN, LOC_STATIC,
8898 &objfile->global_psymbols,
8899 addr + baseaddr,
8900 cu->language, objfile);
8901 }
8902 else
8903 {
8904 int has_loc = pdi->d.locdesc != NULL;
8905
8906 /* Static Variable. Skip symbols whose value we cannot know (those
8907 without location descriptors or constant values). */
8908 if (!has_loc && !pdi->has_const_value)
8909 {
8910 xfree (built_actual_name);
8911 return;
8912 }
8913
8914 add_psymbol_to_list (actual_name, strlen (actual_name),
8915 built_actual_name != NULL,
8916 VAR_DOMAIN, LOC_STATIC,
8917 &objfile->static_psymbols,
8918 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8919 cu->language, objfile);
8920 }
8921 break;
8922 case DW_TAG_typedef:
8923 case DW_TAG_base_type:
8924 case DW_TAG_subrange_type:
8925 add_psymbol_to_list (actual_name, strlen (actual_name),
8926 built_actual_name != NULL,
8927 VAR_DOMAIN, LOC_TYPEDEF,
8928 &objfile->static_psymbols,
8929 0, cu->language, objfile);
8930 break;
8931 case DW_TAG_imported_declaration:
8932 case DW_TAG_namespace:
8933 add_psymbol_to_list (actual_name, strlen (actual_name),
8934 built_actual_name != NULL,
8935 VAR_DOMAIN, LOC_TYPEDEF,
8936 &objfile->global_psymbols,
8937 0, cu->language, objfile);
8938 break;
8939 case DW_TAG_module:
8940 add_psymbol_to_list (actual_name, strlen (actual_name),
8941 built_actual_name != NULL,
8942 MODULE_DOMAIN, LOC_TYPEDEF,
8943 &objfile->global_psymbols,
8944 0, cu->language, objfile);
8945 break;
8946 case DW_TAG_class_type:
8947 case DW_TAG_interface_type:
8948 case DW_TAG_structure_type:
8949 case DW_TAG_union_type:
8950 case DW_TAG_enumeration_type:
8951 /* Skip external references. The DWARF standard says in the section
8952 about "Structure, Union, and Class Type Entries": "An incomplete
8953 structure, union or class type is represented by a structure,
8954 union or class entry that does not have a byte size attribute
8955 and that has a DW_AT_declaration attribute." */
8956 if (!pdi->has_byte_size && pdi->is_declaration)
8957 {
8958 xfree (built_actual_name);
8959 return;
8960 }
8961
8962 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8963 static vs. global. */
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 STRUCT_DOMAIN, LOC_TYPEDEF,
8967 cu->language == language_cplus
8968 ? &objfile->global_psymbols
8969 : &objfile->static_psymbols,
8970 0, cu->language, objfile);
8971
8972 break;
8973 case DW_TAG_enumerator:
8974 add_psymbol_to_list (actual_name, strlen (actual_name),
8975 built_actual_name != NULL,
8976 VAR_DOMAIN, LOC_CONST,
8977 cu->language == language_cplus
8978 ? &objfile->global_psymbols
8979 : &objfile->static_psymbols,
8980 0, cu->language, objfile);
8981 break;
8982 default:
8983 break;
8984 }
8985
8986 xfree (built_actual_name);
8987 }
8988
8989 /* Read a partial die corresponding to a namespace; also, add a symbol
8990 corresponding to that namespace to the symbol table. NAMESPACE is
8991 the name of the enclosing namespace. */
8992
8993 static void
8994 add_partial_namespace (struct partial_die_info *pdi,
8995 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8996 int set_addrmap, struct dwarf2_cu *cu)
8997 {
8998 /* Add a symbol for the namespace. */
8999
9000 add_partial_symbol (pdi, cu);
9001
9002 /* Now scan partial symbols in that namespace. */
9003
9004 if (pdi->has_children)
9005 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9006 }
9007
9008 /* Read a partial die corresponding to a Fortran module. */
9009
9010 static void
9011 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9012 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9013 {
9014 /* Add a symbol for the namespace. */
9015
9016 add_partial_symbol (pdi, cu);
9017
9018 /* Now scan partial symbols in that module. */
9019
9020 if (pdi->has_children)
9021 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9022 }
9023
9024 /* Read a partial die corresponding to a subprogram or an inlined
9025 subprogram and create a partial symbol for that subprogram.
9026 When the CU language allows it, this routine also defines a partial
9027 symbol for each nested subprogram that this subprogram contains.
9028 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9029 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9030
9031 PDI may also be a lexical block, in which case we simply search
9032 recursively for subprograms defined inside that lexical block.
9033 Again, this is only performed when the CU language allows this
9034 type of definitions. */
9035
9036 static void
9037 add_partial_subprogram (struct partial_die_info *pdi,
9038 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9039 int set_addrmap, struct dwarf2_cu *cu)
9040 {
9041 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9042 {
9043 if (pdi->has_pc_info)
9044 {
9045 if (pdi->lowpc < *lowpc)
9046 *lowpc = pdi->lowpc;
9047 if (pdi->highpc > *highpc)
9048 *highpc = pdi->highpc;
9049 if (set_addrmap)
9050 {
9051 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9052 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9053 CORE_ADDR baseaddr;
9054 CORE_ADDR highpc;
9055 CORE_ADDR lowpc;
9056
9057 baseaddr = ANOFFSET (objfile->section_offsets,
9058 SECT_OFF_TEXT (objfile));
9059 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9060 pdi->lowpc + baseaddr);
9061 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9062 pdi->highpc + baseaddr);
9063 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9064 cu->per_cu->v.psymtab);
9065 }
9066 }
9067
9068 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9069 {
9070 if (!pdi->is_declaration)
9071 /* Ignore subprogram DIEs that do not have a name, they are
9072 illegal. Do not emit a complaint at this point, we will
9073 do so when we convert this psymtab into a symtab. */
9074 if (pdi->name)
9075 add_partial_symbol (pdi, cu);
9076 }
9077 }
9078
9079 if (! pdi->has_children)
9080 return;
9081
9082 if (cu->language == language_ada)
9083 {
9084 pdi = pdi->die_child;
9085 while (pdi != NULL)
9086 {
9087 pdi->fixup (cu);
9088 if (pdi->tag == DW_TAG_subprogram
9089 || pdi->tag == DW_TAG_inlined_subroutine
9090 || pdi->tag == DW_TAG_lexical_block)
9091 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9092 pdi = pdi->die_sibling;
9093 }
9094 }
9095 }
9096
9097 /* Read a partial die corresponding to an enumeration type. */
9098
9099 static void
9100 add_partial_enumeration (struct partial_die_info *enum_pdi,
9101 struct dwarf2_cu *cu)
9102 {
9103 struct partial_die_info *pdi;
9104
9105 if (enum_pdi->name != NULL)
9106 add_partial_symbol (enum_pdi, cu);
9107
9108 pdi = enum_pdi->die_child;
9109 while (pdi)
9110 {
9111 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9112 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9113 else
9114 add_partial_symbol (pdi, cu);
9115 pdi = pdi->die_sibling;
9116 }
9117 }
9118
9119 /* Return the initial uleb128 in the die at INFO_PTR. */
9120
9121 static unsigned int
9122 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9123 {
9124 unsigned int bytes_read;
9125
9126 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9127 }
9128
9129 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9130 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9131
9132 Return the corresponding abbrev, or NULL if the number is zero (indicating
9133 an empty DIE). In either case *BYTES_READ will be set to the length of
9134 the initial number. */
9135
9136 static struct abbrev_info *
9137 peek_die_abbrev (const die_reader_specs &reader,
9138 const gdb_byte *info_ptr, unsigned int *bytes_read)
9139 {
9140 dwarf2_cu *cu = reader.cu;
9141 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9142 unsigned int abbrev_number
9143 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9144
9145 if (abbrev_number == 0)
9146 return NULL;
9147
9148 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9149 if (!abbrev)
9150 {
9151 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9152 " at offset %s [in module %s]"),
9153 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9154 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9155 }
9156
9157 return abbrev;
9158 }
9159
9160 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9161 Returns a pointer to the end of a series of DIEs, terminated by an empty
9162 DIE. Any children of the skipped DIEs will also be skipped. */
9163
9164 static const gdb_byte *
9165 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9166 {
9167 while (1)
9168 {
9169 unsigned int bytes_read;
9170 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9171
9172 if (abbrev == NULL)
9173 return info_ptr + bytes_read;
9174 else
9175 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9176 }
9177 }
9178
9179 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9180 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9181 abbrev corresponding to that skipped uleb128 should be passed in
9182 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9183 children. */
9184
9185 static const gdb_byte *
9186 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9187 struct abbrev_info *abbrev)
9188 {
9189 unsigned int bytes_read;
9190 struct attribute attr;
9191 bfd *abfd = reader->abfd;
9192 struct dwarf2_cu *cu = reader->cu;
9193 const gdb_byte *buffer = reader->buffer;
9194 const gdb_byte *buffer_end = reader->buffer_end;
9195 unsigned int form, i;
9196
9197 for (i = 0; i < abbrev->num_attrs; i++)
9198 {
9199 /* The only abbrev we care about is DW_AT_sibling. */
9200 if (abbrev->attrs[i].name == DW_AT_sibling)
9201 {
9202 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9203 if (attr.form == DW_FORM_ref_addr)
9204 complaint (&symfile_complaints,
9205 _("ignoring absolute DW_AT_sibling"));
9206 else
9207 {
9208 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9209 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9210
9211 if (sibling_ptr < info_ptr)
9212 complaint (&symfile_complaints,
9213 _("DW_AT_sibling points backwards"));
9214 else if (sibling_ptr > reader->buffer_end)
9215 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9216 else
9217 return sibling_ptr;
9218 }
9219 }
9220
9221 /* If it isn't DW_AT_sibling, skip this attribute. */
9222 form = abbrev->attrs[i].form;
9223 skip_attribute:
9224 switch (form)
9225 {
9226 case DW_FORM_ref_addr:
9227 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9228 and later it is offset sized. */
9229 if (cu->header.version == 2)
9230 info_ptr += cu->header.addr_size;
9231 else
9232 info_ptr += cu->header.offset_size;
9233 break;
9234 case DW_FORM_GNU_ref_alt:
9235 info_ptr += cu->header.offset_size;
9236 break;
9237 case DW_FORM_addr:
9238 info_ptr += cu->header.addr_size;
9239 break;
9240 case DW_FORM_data1:
9241 case DW_FORM_ref1:
9242 case DW_FORM_flag:
9243 info_ptr += 1;
9244 break;
9245 case DW_FORM_flag_present:
9246 case DW_FORM_implicit_const:
9247 break;
9248 case DW_FORM_data2:
9249 case DW_FORM_ref2:
9250 info_ptr += 2;
9251 break;
9252 case DW_FORM_data4:
9253 case DW_FORM_ref4:
9254 info_ptr += 4;
9255 break;
9256 case DW_FORM_data8:
9257 case DW_FORM_ref8:
9258 case DW_FORM_ref_sig8:
9259 info_ptr += 8;
9260 break;
9261 case DW_FORM_data16:
9262 info_ptr += 16;
9263 break;
9264 case DW_FORM_string:
9265 read_direct_string (abfd, info_ptr, &bytes_read);
9266 info_ptr += bytes_read;
9267 break;
9268 case DW_FORM_sec_offset:
9269 case DW_FORM_strp:
9270 case DW_FORM_GNU_strp_alt:
9271 info_ptr += cu->header.offset_size;
9272 break;
9273 case DW_FORM_exprloc:
9274 case DW_FORM_block:
9275 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9276 info_ptr += bytes_read;
9277 break;
9278 case DW_FORM_block1:
9279 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9280 break;
9281 case DW_FORM_block2:
9282 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9283 break;
9284 case DW_FORM_block4:
9285 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9286 break;
9287 case DW_FORM_sdata:
9288 case DW_FORM_udata:
9289 case DW_FORM_ref_udata:
9290 case DW_FORM_GNU_addr_index:
9291 case DW_FORM_GNU_str_index:
9292 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9293 break;
9294 case DW_FORM_indirect:
9295 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9296 info_ptr += bytes_read;
9297 /* We need to continue parsing from here, so just go back to
9298 the top. */
9299 goto skip_attribute;
9300
9301 default:
9302 error (_("Dwarf Error: Cannot handle %s "
9303 "in DWARF reader [in module %s]"),
9304 dwarf_form_name (form),
9305 bfd_get_filename (abfd));
9306 }
9307 }
9308
9309 if (abbrev->has_children)
9310 return skip_children (reader, info_ptr);
9311 else
9312 return info_ptr;
9313 }
9314
9315 /* Locate ORIG_PDI's sibling.
9316 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9317
9318 static const gdb_byte *
9319 locate_pdi_sibling (const struct die_reader_specs *reader,
9320 struct partial_die_info *orig_pdi,
9321 const gdb_byte *info_ptr)
9322 {
9323 /* Do we know the sibling already? */
9324
9325 if (orig_pdi->sibling)
9326 return orig_pdi->sibling;
9327
9328 /* Are there any children to deal with? */
9329
9330 if (!orig_pdi->has_children)
9331 return info_ptr;
9332
9333 /* Skip the children the long way. */
9334
9335 return skip_children (reader, info_ptr);
9336 }
9337
9338 /* Expand this partial symbol table into a full symbol table. SELF is
9339 not NULL. */
9340
9341 static void
9342 dwarf2_read_symtab (struct partial_symtab *self,
9343 struct objfile *objfile)
9344 {
9345 struct dwarf2_per_objfile *dwarf2_per_objfile
9346 = get_dwarf2_per_objfile (objfile);
9347
9348 if (self->readin)
9349 {
9350 warning (_("bug: psymtab for %s is already read in."),
9351 self->filename);
9352 }
9353 else
9354 {
9355 if (info_verbose)
9356 {
9357 printf_filtered (_("Reading in symbols for %s..."),
9358 self->filename);
9359 gdb_flush (gdb_stdout);
9360 }
9361
9362 /* If this psymtab is constructed from a debug-only objfile, the
9363 has_section_at_zero flag will not necessarily be correct. We
9364 can get the correct value for this flag by looking at the data
9365 associated with the (presumably stripped) associated objfile. */
9366 if (objfile->separate_debug_objfile_backlink)
9367 {
9368 struct dwarf2_per_objfile *dpo_backlink
9369 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9370
9371 dwarf2_per_objfile->has_section_at_zero
9372 = dpo_backlink->has_section_at_zero;
9373 }
9374
9375 dwarf2_per_objfile->reading_partial_symbols = 0;
9376
9377 psymtab_to_symtab_1 (self);
9378
9379 /* Finish up the debug error message. */
9380 if (info_verbose)
9381 printf_filtered (_("done.\n"));
9382 }
9383
9384 process_cu_includes (dwarf2_per_objfile);
9385 }
9386 \f
9387 /* Reading in full CUs. */
9388
9389 /* Add PER_CU to the queue. */
9390
9391 static void
9392 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9393 enum language pretend_language)
9394 {
9395 struct dwarf2_queue_item *item;
9396
9397 per_cu->queued = 1;
9398 item = XNEW (struct dwarf2_queue_item);
9399 item->per_cu = per_cu;
9400 item->pretend_language = pretend_language;
9401 item->next = NULL;
9402
9403 if (dwarf2_queue == NULL)
9404 dwarf2_queue = item;
9405 else
9406 dwarf2_queue_tail->next = item;
9407
9408 dwarf2_queue_tail = item;
9409 }
9410
9411 /* If PER_CU is not yet queued, add it to the queue.
9412 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9413 dependency.
9414 The result is non-zero if PER_CU was queued, otherwise the result is zero
9415 meaning either PER_CU is already queued or it is already loaded.
9416
9417 N.B. There is an invariant here that if a CU is queued then it is loaded.
9418 The caller is required to load PER_CU if we return non-zero. */
9419
9420 static int
9421 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9422 struct dwarf2_per_cu_data *per_cu,
9423 enum language pretend_language)
9424 {
9425 /* We may arrive here during partial symbol reading, if we need full
9426 DIEs to process an unusual case (e.g. template arguments). Do
9427 not queue PER_CU, just tell our caller to load its DIEs. */
9428 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9429 {
9430 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9431 return 1;
9432 return 0;
9433 }
9434
9435 /* Mark the dependence relation so that we don't flush PER_CU
9436 too early. */
9437 if (dependent_cu != NULL)
9438 dwarf2_add_dependence (dependent_cu, per_cu);
9439
9440 /* If it's already on the queue, we have nothing to do. */
9441 if (per_cu->queued)
9442 return 0;
9443
9444 /* If the compilation unit is already loaded, just mark it as
9445 used. */
9446 if (per_cu->cu != NULL)
9447 {
9448 per_cu->cu->last_used = 0;
9449 return 0;
9450 }
9451
9452 /* Add it to the queue. */
9453 queue_comp_unit (per_cu, pretend_language);
9454
9455 return 1;
9456 }
9457
9458 /* Process the queue. */
9459
9460 static void
9461 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9462 {
9463 struct dwarf2_queue_item *item, *next_item;
9464
9465 if (dwarf_read_debug)
9466 {
9467 fprintf_unfiltered (gdb_stdlog,
9468 "Expanding one or more symtabs of objfile %s ...\n",
9469 objfile_name (dwarf2_per_objfile->objfile));
9470 }
9471
9472 /* The queue starts out with one item, but following a DIE reference
9473 may load a new CU, adding it to the end of the queue. */
9474 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9475 {
9476 if ((dwarf2_per_objfile->using_index
9477 ? !item->per_cu->v.quick->compunit_symtab
9478 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9479 /* Skip dummy CUs. */
9480 && item->per_cu->cu != NULL)
9481 {
9482 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9483 unsigned int debug_print_threshold;
9484 char buf[100];
9485
9486 if (per_cu->is_debug_types)
9487 {
9488 struct signatured_type *sig_type =
9489 (struct signatured_type *) per_cu;
9490
9491 sprintf (buf, "TU %s at offset %s",
9492 hex_string (sig_type->signature),
9493 sect_offset_str (per_cu->sect_off));
9494 /* There can be 100s of TUs.
9495 Only print them in verbose mode. */
9496 debug_print_threshold = 2;
9497 }
9498 else
9499 {
9500 sprintf (buf, "CU at offset %s",
9501 sect_offset_str (per_cu->sect_off));
9502 debug_print_threshold = 1;
9503 }
9504
9505 if (dwarf_read_debug >= debug_print_threshold)
9506 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9507
9508 if (per_cu->is_debug_types)
9509 process_full_type_unit (per_cu, item->pretend_language);
9510 else
9511 process_full_comp_unit (per_cu, item->pretend_language);
9512
9513 if (dwarf_read_debug >= debug_print_threshold)
9514 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9515 }
9516
9517 item->per_cu->queued = 0;
9518 next_item = item->next;
9519 xfree (item);
9520 }
9521
9522 dwarf2_queue_tail = NULL;
9523
9524 if (dwarf_read_debug)
9525 {
9526 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9527 objfile_name (dwarf2_per_objfile->objfile));
9528 }
9529 }
9530
9531 /* Read in full symbols for PST, and anything it depends on. */
9532
9533 static void
9534 psymtab_to_symtab_1 (struct partial_symtab *pst)
9535 {
9536 struct dwarf2_per_cu_data *per_cu;
9537 int i;
9538
9539 if (pst->readin)
9540 return;
9541
9542 for (i = 0; i < pst->number_of_dependencies; i++)
9543 if (!pst->dependencies[i]->readin
9544 && pst->dependencies[i]->user == NULL)
9545 {
9546 /* Inform about additional files that need to be read in. */
9547 if (info_verbose)
9548 {
9549 /* FIXME: i18n: Need to make this a single string. */
9550 fputs_filtered (" ", gdb_stdout);
9551 wrap_here ("");
9552 fputs_filtered ("and ", gdb_stdout);
9553 wrap_here ("");
9554 printf_filtered ("%s...", pst->dependencies[i]->filename);
9555 wrap_here (""); /* Flush output. */
9556 gdb_flush (gdb_stdout);
9557 }
9558 psymtab_to_symtab_1 (pst->dependencies[i]);
9559 }
9560
9561 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9562
9563 if (per_cu == NULL)
9564 {
9565 /* It's an include file, no symbols to read for it.
9566 Everything is in the parent symtab. */
9567 pst->readin = 1;
9568 return;
9569 }
9570
9571 dw2_do_instantiate_symtab (per_cu, false);
9572 }
9573
9574 /* Trivial hash function for die_info: the hash value of a DIE
9575 is its offset in .debug_info for this objfile. */
9576
9577 static hashval_t
9578 die_hash (const void *item)
9579 {
9580 const struct die_info *die = (const struct die_info *) item;
9581
9582 return to_underlying (die->sect_off);
9583 }
9584
9585 /* Trivial comparison function for die_info structures: two DIEs
9586 are equal if they have the same offset. */
9587
9588 static int
9589 die_eq (const void *item_lhs, const void *item_rhs)
9590 {
9591 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9592 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9593
9594 return die_lhs->sect_off == die_rhs->sect_off;
9595 }
9596
9597 /* die_reader_func for load_full_comp_unit.
9598 This is identical to read_signatured_type_reader,
9599 but is kept separate for now. */
9600
9601 static void
9602 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9603 const gdb_byte *info_ptr,
9604 struct die_info *comp_unit_die,
9605 int has_children,
9606 void *data)
9607 {
9608 struct dwarf2_cu *cu = reader->cu;
9609 enum language *language_ptr = (enum language *) data;
9610
9611 gdb_assert (cu->die_hash == NULL);
9612 cu->die_hash =
9613 htab_create_alloc_ex (cu->header.length / 12,
9614 die_hash,
9615 die_eq,
9616 NULL,
9617 &cu->comp_unit_obstack,
9618 hashtab_obstack_allocate,
9619 dummy_obstack_deallocate);
9620
9621 if (has_children)
9622 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9623 &info_ptr, comp_unit_die);
9624 cu->dies = comp_unit_die;
9625 /* comp_unit_die is not stored in die_hash, no need. */
9626
9627 /* We try not to read any attributes in this function, because not
9628 all CUs needed for references have been loaded yet, and symbol
9629 table processing isn't initialized. But we have to set the CU language,
9630 or we won't be able to build types correctly.
9631 Similarly, if we do not read the producer, we can not apply
9632 producer-specific interpretation. */
9633 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9634 }
9635
9636 /* Load the DIEs associated with PER_CU into memory. */
9637
9638 static void
9639 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9640 bool skip_partial,
9641 enum language pretend_language)
9642 {
9643 gdb_assert (! this_cu->is_debug_types);
9644
9645 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9646 load_full_comp_unit_reader, &pretend_language);
9647 }
9648
9649 /* Add a DIE to the delayed physname list. */
9650
9651 static void
9652 add_to_method_list (struct type *type, int fnfield_index, int index,
9653 const char *name, struct die_info *die,
9654 struct dwarf2_cu *cu)
9655 {
9656 struct delayed_method_info mi;
9657 mi.type = type;
9658 mi.fnfield_index = fnfield_index;
9659 mi.index = index;
9660 mi.name = name;
9661 mi.die = die;
9662 cu->method_list.push_back (mi);
9663 }
9664
9665 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9666 "const" / "volatile". If so, decrements LEN by the length of the
9667 modifier and return true. Otherwise return false. */
9668
9669 template<size_t N>
9670 static bool
9671 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9672 {
9673 size_t mod_len = sizeof (mod) - 1;
9674 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9675 {
9676 len -= mod_len;
9677 return true;
9678 }
9679 return false;
9680 }
9681
9682 /* Compute the physnames of any methods on the CU's method list.
9683
9684 The computation of method physnames is delayed in order to avoid the
9685 (bad) condition that one of the method's formal parameters is of an as yet
9686 incomplete type. */
9687
9688 static void
9689 compute_delayed_physnames (struct dwarf2_cu *cu)
9690 {
9691 /* Only C++ delays computing physnames. */
9692 if (cu->method_list.empty ())
9693 return;
9694 gdb_assert (cu->language == language_cplus);
9695
9696 for (struct delayed_method_info &mi : cu->method_list)
9697 {
9698 const char *physname;
9699 struct fn_fieldlist *fn_flp
9700 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9701 physname = dwarf2_physname (mi.name, mi.die, cu);
9702 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9703 = physname ? physname : "";
9704
9705 /* Since there's no tag to indicate whether a method is a
9706 const/volatile overload, extract that information out of the
9707 demangled name. */
9708 if (physname != NULL)
9709 {
9710 size_t len = strlen (physname);
9711
9712 while (1)
9713 {
9714 if (physname[len] == ')') /* shortcut */
9715 break;
9716 else if (check_modifier (physname, len, " const"))
9717 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9718 else if (check_modifier (physname, len, " volatile"))
9719 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9720 else
9721 break;
9722 }
9723 }
9724 }
9725
9726 /* The list is no longer needed. */
9727 cu->method_list.clear ();
9728 }
9729
9730 /* Go objects should be embedded in a DW_TAG_module DIE,
9731 and it's not clear if/how imported objects will appear.
9732 To keep Go support simple until that's worked out,
9733 go back through what we've read and create something usable.
9734 We could do this while processing each DIE, and feels kinda cleaner,
9735 but that way is more invasive.
9736 This is to, for example, allow the user to type "p var" or "b main"
9737 without having to specify the package name, and allow lookups
9738 of module.object to work in contexts that use the expression
9739 parser. */
9740
9741 static void
9742 fixup_go_packaging (struct dwarf2_cu *cu)
9743 {
9744 char *package_name = NULL;
9745 struct pending *list;
9746 int i;
9747
9748 for (list = global_symbols; list != NULL; list = list->next)
9749 {
9750 for (i = 0; i < list->nsyms; ++i)
9751 {
9752 struct symbol *sym = list->symbol[i];
9753
9754 if (SYMBOL_LANGUAGE (sym) == language_go
9755 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9756 {
9757 char *this_package_name = go_symbol_package_name (sym);
9758
9759 if (this_package_name == NULL)
9760 continue;
9761 if (package_name == NULL)
9762 package_name = this_package_name;
9763 else
9764 {
9765 struct objfile *objfile
9766 = cu->per_cu->dwarf2_per_objfile->objfile;
9767 if (strcmp (package_name, this_package_name) != 0)
9768 complaint (&symfile_complaints,
9769 _("Symtab %s has objects from two different Go packages: %s and %s"),
9770 (symbol_symtab (sym) != NULL
9771 ? symtab_to_filename_for_display
9772 (symbol_symtab (sym))
9773 : objfile_name (objfile)),
9774 this_package_name, package_name);
9775 xfree (this_package_name);
9776 }
9777 }
9778 }
9779 }
9780
9781 if (package_name != NULL)
9782 {
9783 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9784 const char *saved_package_name
9785 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9786 package_name,
9787 strlen (package_name));
9788 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9789 saved_package_name);
9790 struct symbol *sym;
9791
9792 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9793
9794 sym = allocate_symbol (objfile);
9795 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9796 SYMBOL_SET_NAMES (sym, saved_package_name,
9797 strlen (saved_package_name), 0, objfile);
9798 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9799 e.g., "main" finds the "main" module and not C's main(). */
9800 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9801 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9802 SYMBOL_TYPE (sym) = type;
9803
9804 add_symbol_to_list (sym, &global_symbols);
9805
9806 xfree (package_name);
9807 }
9808 }
9809
9810 /* Allocate a fully-qualified name consisting of the two parts on the
9811 obstack. */
9812
9813 static const char *
9814 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9815 {
9816 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9817 }
9818
9819 /* A helper that allocates a struct discriminant_info to attach to a
9820 union type. */
9821
9822 static struct discriminant_info *
9823 alloc_discriminant_info (struct type *type, int discriminant_index,
9824 int default_index)
9825 {
9826 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9827 gdb_assert (discriminant_index == -1
9828 || (discriminant_index >= 0
9829 && discriminant_index < TYPE_NFIELDS (type)));
9830 gdb_assert (default_index == -1
9831 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9832
9833 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9834
9835 struct discriminant_info *disc
9836 = ((struct discriminant_info *)
9837 TYPE_ZALLOC (type,
9838 offsetof (struct discriminant_info, discriminants)
9839 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9840 disc->default_index = default_index;
9841 disc->discriminant_index = discriminant_index;
9842
9843 struct dynamic_prop prop;
9844 prop.kind = PROP_UNDEFINED;
9845 prop.data.baton = disc;
9846
9847 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9848
9849 return disc;
9850 }
9851
9852 /* Some versions of rustc emitted enums in an unusual way.
9853
9854 Ordinary enums were emitted as unions. The first element of each
9855 structure in the union was named "RUST$ENUM$DISR". This element
9856 held the discriminant.
9857
9858 These versions of Rust also implemented the "non-zero"
9859 optimization. When the enum had two values, and one is empty and
9860 the other holds a pointer that cannot be zero, the pointer is used
9861 as the discriminant, with a zero value meaning the empty variant.
9862 Here, the union's first member is of the form
9863 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9864 where the fieldnos are the indices of the fields that should be
9865 traversed in order to find the field (which may be several fields deep)
9866 and the variantname is the name of the variant of the case when the
9867 field is zero.
9868
9869 This function recognizes whether TYPE is of one of these forms,
9870 and, if so, smashes it to be a variant type. */
9871
9872 static void
9873 quirk_rust_enum (struct type *type, struct objfile *objfile)
9874 {
9875 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9876
9877 /* We don't need to deal with empty enums. */
9878 if (TYPE_NFIELDS (type) == 0)
9879 return;
9880
9881 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9882 if (TYPE_NFIELDS (type) == 1
9883 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9884 {
9885 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9886
9887 /* Decode the field name to find the offset of the
9888 discriminant. */
9889 ULONGEST bit_offset = 0;
9890 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9891 while (name[0] >= '0' && name[0] <= '9')
9892 {
9893 char *tail;
9894 unsigned long index = strtoul (name, &tail, 10);
9895 name = tail;
9896 if (*name != '$'
9897 || index >= TYPE_NFIELDS (field_type)
9898 || (TYPE_FIELD_LOC_KIND (field_type, index)
9899 != FIELD_LOC_KIND_BITPOS))
9900 {
9901 complaint (&symfile_complaints,
9902 _("Could not parse Rust enum encoding string \"%s\""
9903 "[in module %s]"),
9904 TYPE_FIELD_NAME (type, 0),
9905 objfile_name (objfile));
9906 return;
9907 }
9908 ++name;
9909
9910 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9911 field_type = TYPE_FIELD_TYPE (field_type, index);
9912 }
9913
9914 /* Make a union to hold the variants. */
9915 struct type *union_type = alloc_type (objfile);
9916 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9917 TYPE_NFIELDS (union_type) = 3;
9918 TYPE_FIELDS (union_type)
9919 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9920 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9921 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9922
9923 /* Put the discriminant must at index 0. */
9924 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9925 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9926 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9927 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9928
9929 /* The order of fields doesn't really matter, so put the real
9930 field at index 1 and the data-less field at index 2. */
9931 struct discriminant_info *disc
9932 = alloc_discriminant_info (union_type, 0, 1);
9933 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9934 TYPE_FIELD_NAME (union_type, 1)
9935 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9936 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9937 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9938 TYPE_FIELD_NAME (union_type, 1));
9939
9940 const char *dataless_name
9941 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9942 name);
9943 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9944 dataless_name);
9945 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9946 /* NAME points into the original discriminant name, which
9947 already has the correct lifetime. */
9948 TYPE_FIELD_NAME (union_type, 2) = name;
9949 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9950 disc->discriminants[2] = 0;
9951
9952 /* Smash this type to be a structure type. We have to do this
9953 because the type has already been recorded. */
9954 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9955 TYPE_NFIELDS (type) = 1;
9956 TYPE_FIELDS (type)
9957 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9958
9959 /* Install the variant part. */
9960 TYPE_FIELD_TYPE (type, 0) = union_type;
9961 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9962 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9963 }
9964 else if (TYPE_NFIELDS (type) == 1)
9965 {
9966 /* We assume that a union with a single field is a univariant
9967 enum. */
9968 /* Smash this type to be a structure type. We have to do this
9969 because the type has already been recorded. */
9970 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9971
9972 /* Make a union to hold the variants. */
9973 struct type *union_type = alloc_type (objfile);
9974 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9975 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9976 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9977 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9978 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9979
9980 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9981 const char *variant_name
9982 = rust_last_path_segment (TYPE_NAME (field_type));
9983 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9984 TYPE_NAME (field_type)
9985 = rust_fully_qualify (&objfile->objfile_obstack,
9986 TYPE_NAME (type), variant_name);
9987
9988 /* Install the union in the outer struct type. */
9989 TYPE_NFIELDS (type) = 1;
9990 TYPE_FIELDS (type)
9991 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9992 TYPE_FIELD_TYPE (type, 0) = union_type;
9993 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9994 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9995
9996 alloc_discriminant_info (union_type, -1, 0);
9997 }
9998 else
9999 {
10000 struct type *disr_type = nullptr;
10001 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10002 {
10003 disr_type = TYPE_FIELD_TYPE (type, i);
10004
10005 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10006 {
10007 /* All fields of a true enum will be structs. */
10008 return;
10009 }
10010 else if (TYPE_NFIELDS (disr_type) == 0)
10011 {
10012 /* Could be data-less variant, so keep going. */
10013 disr_type = nullptr;
10014 }
10015 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10016 "RUST$ENUM$DISR") != 0)
10017 {
10018 /* Not a Rust enum. */
10019 return;
10020 }
10021 else
10022 {
10023 /* Found one. */
10024 break;
10025 }
10026 }
10027
10028 /* If we got here without a discriminant, then it's probably
10029 just a union. */
10030 if (disr_type == nullptr)
10031 return;
10032
10033 /* Smash this type to be a structure type. We have to do this
10034 because the type has already been recorded. */
10035 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10036
10037 /* Make a union to hold the variants. */
10038 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10039 struct type *union_type = alloc_type (objfile);
10040 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10041 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10042 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10043 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10044 TYPE_FIELDS (union_type)
10045 = (struct field *) TYPE_ZALLOC (union_type,
10046 (TYPE_NFIELDS (union_type)
10047 * sizeof (struct field)));
10048
10049 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10050 TYPE_NFIELDS (type) * sizeof (struct field));
10051
10052 /* Install the discriminant at index 0 in the union. */
10053 TYPE_FIELD (union_type, 0) = *disr_field;
10054 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10055 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10056
10057 /* Install the union in the outer struct type. */
10058 TYPE_FIELD_TYPE (type, 0) = union_type;
10059 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10060 TYPE_NFIELDS (type) = 1;
10061
10062 /* Set the size and offset of the union type. */
10063 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10064
10065 /* We need a way to find the correct discriminant given a
10066 variant name. For convenience we build a map here. */
10067 struct type *enum_type = FIELD_TYPE (*disr_field);
10068 std::unordered_map<std::string, ULONGEST> discriminant_map;
10069 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10070 {
10071 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10072 {
10073 const char *name
10074 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10075 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10076 }
10077 }
10078
10079 int n_fields = TYPE_NFIELDS (union_type);
10080 struct discriminant_info *disc
10081 = alloc_discriminant_info (union_type, 0, -1);
10082 /* Skip the discriminant here. */
10083 for (int i = 1; i < n_fields; ++i)
10084 {
10085 /* Find the final word in the name of this variant's type.
10086 That name can be used to look up the correct
10087 discriminant. */
10088 const char *variant_name
10089 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10090 i)));
10091
10092 auto iter = discriminant_map.find (variant_name);
10093 if (iter != discriminant_map.end ())
10094 disc->discriminants[i] = iter->second;
10095
10096 /* Remove the discriminant field, if it exists. */
10097 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10098 if (TYPE_NFIELDS (sub_type) > 0)
10099 {
10100 --TYPE_NFIELDS (sub_type);
10101 ++TYPE_FIELDS (sub_type);
10102 }
10103 TYPE_FIELD_NAME (union_type, i) = variant_name;
10104 TYPE_NAME (sub_type)
10105 = rust_fully_qualify (&objfile->objfile_obstack,
10106 TYPE_NAME (type), variant_name);
10107 }
10108 }
10109 }
10110
10111 /* Rewrite some Rust unions to be structures with variants parts. */
10112
10113 static void
10114 rust_union_quirks (struct dwarf2_cu *cu)
10115 {
10116 gdb_assert (cu->language == language_rust);
10117 for (struct type *type : cu->rust_unions)
10118 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10119 /* We don't need this any more. */
10120 cu->rust_unions.clear ();
10121 }
10122
10123 /* Return the symtab for PER_CU. This works properly regardless of
10124 whether we're using the index or psymtabs. */
10125
10126 static struct compunit_symtab *
10127 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10128 {
10129 return (per_cu->dwarf2_per_objfile->using_index
10130 ? per_cu->v.quick->compunit_symtab
10131 : per_cu->v.psymtab->compunit_symtab);
10132 }
10133
10134 /* A helper function for computing the list of all symbol tables
10135 included by PER_CU. */
10136
10137 static void
10138 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10139 htab_t all_children, htab_t all_type_symtabs,
10140 struct dwarf2_per_cu_data *per_cu,
10141 struct compunit_symtab *immediate_parent)
10142 {
10143 void **slot;
10144 int ix;
10145 struct compunit_symtab *cust;
10146 struct dwarf2_per_cu_data *iter;
10147
10148 slot = htab_find_slot (all_children, per_cu, INSERT);
10149 if (*slot != NULL)
10150 {
10151 /* This inclusion and its children have been processed. */
10152 return;
10153 }
10154
10155 *slot = per_cu;
10156 /* Only add a CU if it has a symbol table. */
10157 cust = get_compunit_symtab (per_cu);
10158 if (cust != NULL)
10159 {
10160 /* If this is a type unit only add its symbol table if we haven't
10161 seen it yet (type unit per_cu's can share symtabs). */
10162 if (per_cu->is_debug_types)
10163 {
10164 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10165 if (*slot == NULL)
10166 {
10167 *slot = cust;
10168 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10169 if (cust->user == NULL)
10170 cust->user = immediate_parent;
10171 }
10172 }
10173 else
10174 {
10175 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10176 if (cust->user == NULL)
10177 cust->user = immediate_parent;
10178 }
10179 }
10180
10181 for (ix = 0;
10182 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10183 ++ix)
10184 {
10185 recursively_compute_inclusions (result, all_children,
10186 all_type_symtabs, iter, cust);
10187 }
10188 }
10189
10190 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10191 PER_CU. */
10192
10193 static void
10194 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10195 {
10196 gdb_assert (! per_cu->is_debug_types);
10197
10198 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10199 {
10200 int ix, len;
10201 struct dwarf2_per_cu_data *per_cu_iter;
10202 struct compunit_symtab *compunit_symtab_iter;
10203 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10204 htab_t all_children, all_type_symtabs;
10205 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10206
10207 /* If we don't have a symtab, we can just skip this case. */
10208 if (cust == NULL)
10209 return;
10210
10211 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10212 NULL, xcalloc, xfree);
10213 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10214 NULL, xcalloc, xfree);
10215
10216 for (ix = 0;
10217 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10218 ix, per_cu_iter);
10219 ++ix)
10220 {
10221 recursively_compute_inclusions (&result_symtabs, all_children,
10222 all_type_symtabs, per_cu_iter,
10223 cust);
10224 }
10225
10226 /* Now we have a transitive closure of all the included symtabs. */
10227 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10228 cust->includes
10229 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10230 struct compunit_symtab *, len + 1);
10231 for (ix = 0;
10232 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10233 compunit_symtab_iter);
10234 ++ix)
10235 cust->includes[ix] = compunit_symtab_iter;
10236 cust->includes[len] = NULL;
10237
10238 VEC_free (compunit_symtab_ptr, result_symtabs);
10239 htab_delete (all_children);
10240 htab_delete (all_type_symtabs);
10241 }
10242 }
10243
10244 /* Compute the 'includes' field for the symtabs of all the CUs we just
10245 read. */
10246
10247 static void
10248 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10249 {
10250 int ix;
10251 struct dwarf2_per_cu_data *iter;
10252
10253 for (ix = 0;
10254 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10255 ix, iter);
10256 ++ix)
10257 {
10258 if (! iter->is_debug_types)
10259 compute_compunit_symtab_includes (iter);
10260 }
10261
10262 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10263 }
10264
10265 /* Generate full symbol information for PER_CU, whose DIEs have
10266 already been loaded into memory. */
10267
10268 static void
10269 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10270 enum language pretend_language)
10271 {
10272 struct dwarf2_cu *cu = per_cu->cu;
10273 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10274 struct objfile *objfile = dwarf2_per_objfile->objfile;
10275 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10276 CORE_ADDR lowpc, highpc;
10277 struct compunit_symtab *cust;
10278 CORE_ADDR baseaddr;
10279 struct block *static_block;
10280 CORE_ADDR addr;
10281
10282 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10283
10284 buildsym_init ();
10285 scoped_free_pendings free_pending;
10286
10287 /* Clear the list here in case something was left over. */
10288 cu->method_list.clear ();
10289
10290 cu->list_in_scope = &file_symbols;
10291
10292 cu->language = pretend_language;
10293 cu->language_defn = language_def (cu->language);
10294
10295 /* Do line number decoding in read_file_scope () */
10296 process_die (cu->dies, cu);
10297
10298 /* For now fudge the Go package. */
10299 if (cu->language == language_go)
10300 fixup_go_packaging (cu);
10301
10302 /* Now that we have processed all the DIEs in the CU, all the types
10303 should be complete, and it should now be safe to compute all of the
10304 physnames. */
10305 compute_delayed_physnames (cu);
10306
10307 if (cu->language == language_rust)
10308 rust_union_quirks (cu);
10309
10310 /* Some compilers don't define a DW_AT_high_pc attribute for the
10311 compilation unit. If the DW_AT_high_pc is missing, synthesize
10312 it, by scanning the DIE's below the compilation unit. */
10313 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10314
10315 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10316 static_block = end_symtab_get_static_block (addr, 0, 1);
10317
10318 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10319 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10320 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10321 addrmap to help ensure it has an accurate map of pc values belonging to
10322 this comp unit. */
10323 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10324
10325 cust = end_symtab_from_static_block (static_block,
10326 SECT_OFF_TEXT (objfile), 0);
10327
10328 if (cust != NULL)
10329 {
10330 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10331
10332 /* Set symtab language to language from DW_AT_language. If the
10333 compilation is from a C file generated by language preprocessors, do
10334 not set the language if it was already deduced by start_subfile. */
10335 if (!(cu->language == language_c
10336 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10337 COMPUNIT_FILETABS (cust)->language = cu->language;
10338
10339 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10340 produce DW_AT_location with location lists but it can be possibly
10341 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10342 there were bugs in prologue debug info, fixed later in GCC-4.5
10343 by "unwind info for epilogues" patch (which is not directly related).
10344
10345 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10346 needed, it would be wrong due to missing DW_AT_producer there.
10347
10348 Still one can confuse GDB by using non-standard GCC compilation
10349 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10350 */
10351 if (cu->has_loclist && gcc_4_minor >= 5)
10352 cust->locations_valid = 1;
10353
10354 if (gcc_4_minor >= 5)
10355 cust->epilogue_unwind_valid = 1;
10356
10357 cust->call_site_htab = cu->call_site_htab;
10358 }
10359
10360 if (dwarf2_per_objfile->using_index)
10361 per_cu->v.quick->compunit_symtab = cust;
10362 else
10363 {
10364 struct partial_symtab *pst = per_cu->v.psymtab;
10365 pst->compunit_symtab = cust;
10366 pst->readin = 1;
10367 }
10368
10369 /* Push it for inclusion processing later. */
10370 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10371 }
10372
10373 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10374 already been loaded into memory. */
10375
10376 static void
10377 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10378 enum language pretend_language)
10379 {
10380 struct dwarf2_cu *cu = per_cu->cu;
10381 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10382 struct objfile *objfile = dwarf2_per_objfile->objfile;
10383 struct compunit_symtab *cust;
10384 struct signatured_type *sig_type;
10385
10386 gdb_assert (per_cu->is_debug_types);
10387 sig_type = (struct signatured_type *) per_cu;
10388
10389 buildsym_init ();
10390 scoped_free_pendings free_pending;
10391
10392 /* Clear the list here in case something was left over. */
10393 cu->method_list.clear ();
10394
10395 cu->list_in_scope = &file_symbols;
10396
10397 cu->language = pretend_language;
10398 cu->language_defn = language_def (cu->language);
10399
10400 /* The symbol tables are set up in read_type_unit_scope. */
10401 process_die (cu->dies, cu);
10402
10403 /* For now fudge the Go package. */
10404 if (cu->language == language_go)
10405 fixup_go_packaging (cu);
10406
10407 /* Now that we have processed all the DIEs in the CU, all the types
10408 should be complete, and it should now be safe to compute all of the
10409 physnames. */
10410 compute_delayed_physnames (cu);
10411
10412 if (cu->language == language_rust)
10413 rust_union_quirks (cu);
10414
10415 /* TUs share symbol tables.
10416 If this is the first TU to use this symtab, complete the construction
10417 of it with end_expandable_symtab. Otherwise, complete the addition of
10418 this TU's symbols to the existing symtab. */
10419 if (sig_type->type_unit_group->compunit_symtab == NULL)
10420 {
10421 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10422 sig_type->type_unit_group->compunit_symtab = cust;
10423
10424 if (cust != NULL)
10425 {
10426 /* Set symtab language to language from DW_AT_language. If the
10427 compilation is from a C file generated by language preprocessors,
10428 do not set the language if it was already deduced by
10429 start_subfile. */
10430 if (!(cu->language == language_c
10431 && COMPUNIT_FILETABS (cust)->language != language_c))
10432 COMPUNIT_FILETABS (cust)->language = cu->language;
10433 }
10434 }
10435 else
10436 {
10437 augment_type_symtab ();
10438 cust = sig_type->type_unit_group->compunit_symtab;
10439 }
10440
10441 if (dwarf2_per_objfile->using_index)
10442 per_cu->v.quick->compunit_symtab = cust;
10443 else
10444 {
10445 struct partial_symtab *pst = per_cu->v.psymtab;
10446 pst->compunit_symtab = cust;
10447 pst->readin = 1;
10448 }
10449 }
10450
10451 /* Process an imported unit DIE. */
10452
10453 static void
10454 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10455 {
10456 struct attribute *attr;
10457
10458 /* For now we don't handle imported units in type units. */
10459 if (cu->per_cu->is_debug_types)
10460 {
10461 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10462 " supported in type units [in module %s]"),
10463 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10464 }
10465
10466 attr = dwarf2_attr (die, DW_AT_import, cu);
10467 if (attr != NULL)
10468 {
10469 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10470 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10471 dwarf2_per_cu_data *per_cu
10472 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10473 cu->per_cu->dwarf2_per_objfile);
10474
10475 /* If necessary, add it to the queue and load its DIEs. */
10476 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10477 load_full_comp_unit (per_cu, false, cu->language);
10478
10479 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10480 per_cu);
10481 }
10482 }
10483
10484 /* RAII object that represents a process_die scope: i.e.,
10485 starts/finishes processing a DIE. */
10486 class process_die_scope
10487 {
10488 public:
10489 process_die_scope (die_info *die, dwarf2_cu *cu)
10490 : m_die (die), m_cu (cu)
10491 {
10492 /* We should only be processing DIEs not already in process. */
10493 gdb_assert (!m_die->in_process);
10494 m_die->in_process = true;
10495 }
10496
10497 ~process_die_scope ()
10498 {
10499 m_die->in_process = false;
10500
10501 /* If we're done processing the DIE for the CU that owns the line
10502 header, we don't need the line header anymore. */
10503 if (m_cu->line_header_die_owner == m_die)
10504 {
10505 delete m_cu->line_header;
10506 m_cu->line_header = NULL;
10507 m_cu->line_header_die_owner = NULL;
10508 }
10509 }
10510
10511 private:
10512 die_info *m_die;
10513 dwarf2_cu *m_cu;
10514 };
10515
10516 /* Process a die and its children. */
10517
10518 static void
10519 process_die (struct die_info *die, struct dwarf2_cu *cu)
10520 {
10521 process_die_scope scope (die, cu);
10522
10523 switch (die->tag)
10524 {
10525 case DW_TAG_padding:
10526 break;
10527 case DW_TAG_compile_unit:
10528 case DW_TAG_partial_unit:
10529 read_file_scope (die, cu);
10530 break;
10531 case DW_TAG_type_unit:
10532 read_type_unit_scope (die, cu);
10533 break;
10534 case DW_TAG_subprogram:
10535 case DW_TAG_inlined_subroutine:
10536 read_func_scope (die, cu);
10537 break;
10538 case DW_TAG_lexical_block:
10539 case DW_TAG_try_block:
10540 case DW_TAG_catch_block:
10541 read_lexical_block_scope (die, cu);
10542 break;
10543 case DW_TAG_call_site:
10544 case DW_TAG_GNU_call_site:
10545 read_call_site_scope (die, cu);
10546 break;
10547 case DW_TAG_class_type:
10548 case DW_TAG_interface_type:
10549 case DW_TAG_structure_type:
10550 case DW_TAG_union_type:
10551 process_structure_scope (die, cu);
10552 break;
10553 case DW_TAG_enumeration_type:
10554 process_enumeration_scope (die, cu);
10555 break;
10556
10557 /* These dies have a type, but processing them does not create
10558 a symbol or recurse to process the children. Therefore we can
10559 read them on-demand through read_type_die. */
10560 case DW_TAG_subroutine_type:
10561 case DW_TAG_set_type:
10562 case DW_TAG_array_type:
10563 case DW_TAG_pointer_type:
10564 case DW_TAG_ptr_to_member_type:
10565 case DW_TAG_reference_type:
10566 case DW_TAG_rvalue_reference_type:
10567 case DW_TAG_string_type:
10568 break;
10569
10570 case DW_TAG_base_type:
10571 case DW_TAG_subrange_type:
10572 case DW_TAG_typedef:
10573 /* Add a typedef symbol for the type definition, if it has a
10574 DW_AT_name. */
10575 new_symbol (die, read_type_die (die, cu), cu);
10576 break;
10577 case DW_TAG_common_block:
10578 read_common_block (die, cu);
10579 break;
10580 case DW_TAG_common_inclusion:
10581 break;
10582 case DW_TAG_namespace:
10583 cu->processing_has_namespace_info = 1;
10584 read_namespace (die, cu);
10585 break;
10586 case DW_TAG_module:
10587 cu->processing_has_namespace_info = 1;
10588 read_module (die, cu);
10589 break;
10590 case DW_TAG_imported_declaration:
10591 cu->processing_has_namespace_info = 1;
10592 if (read_namespace_alias (die, cu))
10593 break;
10594 /* The declaration is not a global namespace alias. */
10595 /* Fall through. */
10596 case DW_TAG_imported_module:
10597 cu->processing_has_namespace_info = 1;
10598 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10599 || cu->language != language_fortran))
10600 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10601 dwarf_tag_name (die->tag));
10602 read_import_statement (die, cu);
10603 break;
10604
10605 case DW_TAG_imported_unit:
10606 process_imported_unit_die (die, cu);
10607 break;
10608
10609 case DW_TAG_variable:
10610 read_variable (die, cu);
10611 break;
10612
10613 default:
10614 new_symbol (die, NULL, cu);
10615 break;
10616 }
10617 }
10618 \f
10619 /* DWARF name computation. */
10620
10621 /* A helper function for dwarf2_compute_name which determines whether DIE
10622 needs to have the name of the scope prepended to the name listed in the
10623 die. */
10624
10625 static int
10626 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10627 {
10628 struct attribute *attr;
10629
10630 switch (die->tag)
10631 {
10632 case DW_TAG_namespace:
10633 case DW_TAG_typedef:
10634 case DW_TAG_class_type:
10635 case DW_TAG_interface_type:
10636 case DW_TAG_structure_type:
10637 case DW_TAG_union_type:
10638 case DW_TAG_enumeration_type:
10639 case DW_TAG_enumerator:
10640 case DW_TAG_subprogram:
10641 case DW_TAG_inlined_subroutine:
10642 case DW_TAG_member:
10643 case DW_TAG_imported_declaration:
10644 return 1;
10645
10646 case DW_TAG_variable:
10647 case DW_TAG_constant:
10648 /* We only need to prefix "globally" visible variables. These include
10649 any variable marked with DW_AT_external or any variable that
10650 lives in a namespace. [Variables in anonymous namespaces
10651 require prefixing, but they are not DW_AT_external.] */
10652
10653 if (dwarf2_attr (die, DW_AT_specification, cu))
10654 {
10655 struct dwarf2_cu *spec_cu = cu;
10656
10657 return die_needs_namespace (die_specification (die, &spec_cu),
10658 spec_cu);
10659 }
10660
10661 attr = dwarf2_attr (die, DW_AT_external, cu);
10662 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10663 && die->parent->tag != DW_TAG_module)
10664 return 0;
10665 /* A variable in a lexical block of some kind does not need a
10666 namespace, even though in C++ such variables may be external
10667 and have a mangled name. */
10668 if (die->parent->tag == DW_TAG_lexical_block
10669 || die->parent->tag == DW_TAG_try_block
10670 || die->parent->tag == DW_TAG_catch_block
10671 || die->parent->tag == DW_TAG_subprogram)
10672 return 0;
10673 return 1;
10674
10675 default:
10676 return 0;
10677 }
10678 }
10679
10680 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10681 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10682 defined for the given DIE. */
10683
10684 static struct attribute *
10685 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10686 {
10687 struct attribute *attr;
10688
10689 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10690 if (attr == NULL)
10691 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10692
10693 return attr;
10694 }
10695
10696 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10697 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10698 defined for the given DIE. */
10699
10700 static const char *
10701 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10702 {
10703 const char *linkage_name;
10704
10705 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10706 if (linkage_name == NULL)
10707 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10708
10709 return linkage_name;
10710 }
10711
10712 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10713 compute the physname for the object, which include a method's:
10714 - formal parameters (C++),
10715 - receiver type (Go),
10716
10717 The term "physname" is a bit confusing.
10718 For C++, for example, it is the demangled name.
10719 For Go, for example, it's the mangled name.
10720
10721 For Ada, return the DIE's linkage name rather than the fully qualified
10722 name. PHYSNAME is ignored..
10723
10724 The result is allocated on the objfile_obstack and canonicalized. */
10725
10726 static const char *
10727 dwarf2_compute_name (const char *name,
10728 struct die_info *die, struct dwarf2_cu *cu,
10729 int physname)
10730 {
10731 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10732
10733 if (name == NULL)
10734 name = dwarf2_name (die, cu);
10735
10736 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10737 but otherwise compute it by typename_concat inside GDB.
10738 FIXME: Actually this is not really true, or at least not always true.
10739 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10740 Fortran names because there is no mangling standard. So new_symbol
10741 will set the demangled name to the result of dwarf2_full_name, and it is
10742 the demangled name that GDB uses if it exists. */
10743 if (cu->language == language_ada
10744 || (cu->language == language_fortran && physname))
10745 {
10746 /* For Ada unit, we prefer the linkage name over the name, as
10747 the former contains the exported name, which the user expects
10748 to be able to reference. Ideally, we want the user to be able
10749 to reference this entity using either natural or linkage name,
10750 but we haven't started looking at this enhancement yet. */
10751 const char *linkage_name = dw2_linkage_name (die, cu);
10752
10753 if (linkage_name != NULL)
10754 return linkage_name;
10755 }
10756
10757 /* These are the only languages we know how to qualify names in. */
10758 if (name != NULL
10759 && (cu->language == language_cplus
10760 || cu->language == language_fortran || cu->language == language_d
10761 || cu->language == language_rust))
10762 {
10763 if (die_needs_namespace (die, cu))
10764 {
10765 const char *prefix;
10766 const char *canonical_name = NULL;
10767
10768 string_file buf;
10769
10770 prefix = determine_prefix (die, cu);
10771 if (*prefix != '\0')
10772 {
10773 char *prefixed_name = typename_concat (NULL, prefix, name,
10774 physname, cu);
10775
10776 buf.puts (prefixed_name);
10777 xfree (prefixed_name);
10778 }
10779 else
10780 buf.puts (name);
10781
10782 /* Template parameters may be specified in the DIE's DW_AT_name, or
10783 as children with DW_TAG_template_type_param or
10784 DW_TAG_value_type_param. If the latter, add them to the name
10785 here. If the name already has template parameters, then
10786 skip this step; some versions of GCC emit both, and
10787 it is more efficient to use the pre-computed name.
10788
10789 Something to keep in mind about this process: it is very
10790 unlikely, or in some cases downright impossible, to produce
10791 something that will match the mangled name of a function.
10792 If the definition of the function has the same debug info,
10793 we should be able to match up with it anyway. But fallbacks
10794 using the minimal symbol, for instance to find a method
10795 implemented in a stripped copy of libstdc++, will not work.
10796 If we do not have debug info for the definition, we will have to
10797 match them up some other way.
10798
10799 When we do name matching there is a related problem with function
10800 templates; two instantiated function templates are allowed to
10801 differ only by their return types, which we do not add here. */
10802
10803 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10804 {
10805 struct attribute *attr;
10806 struct die_info *child;
10807 int first = 1;
10808
10809 die->building_fullname = 1;
10810
10811 for (child = die->child; child != NULL; child = child->sibling)
10812 {
10813 struct type *type;
10814 LONGEST value;
10815 const gdb_byte *bytes;
10816 struct dwarf2_locexpr_baton *baton;
10817 struct value *v;
10818
10819 if (child->tag != DW_TAG_template_type_param
10820 && child->tag != DW_TAG_template_value_param)
10821 continue;
10822
10823 if (first)
10824 {
10825 buf.puts ("<");
10826 first = 0;
10827 }
10828 else
10829 buf.puts (", ");
10830
10831 attr = dwarf2_attr (child, DW_AT_type, cu);
10832 if (attr == NULL)
10833 {
10834 complaint (&symfile_complaints,
10835 _("template parameter missing DW_AT_type"));
10836 buf.puts ("UNKNOWN_TYPE");
10837 continue;
10838 }
10839 type = die_type (child, cu);
10840
10841 if (child->tag == DW_TAG_template_type_param)
10842 {
10843 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10844 continue;
10845 }
10846
10847 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10848 if (attr == NULL)
10849 {
10850 complaint (&symfile_complaints,
10851 _("template parameter missing "
10852 "DW_AT_const_value"));
10853 buf.puts ("UNKNOWN_VALUE");
10854 continue;
10855 }
10856
10857 dwarf2_const_value_attr (attr, type, name,
10858 &cu->comp_unit_obstack, cu,
10859 &value, &bytes, &baton);
10860
10861 if (TYPE_NOSIGN (type))
10862 /* GDB prints characters as NUMBER 'CHAR'. If that's
10863 changed, this can use value_print instead. */
10864 c_printchar (value, type, &buf);
10865 else
10866 {
10867 struct value_print_options opts;
10868
10869 if (baton != NULL)
10870 v = dwarf2_evaluate_loc_desc (type, NULL,
10871 baton->data,
10872 baton->size,
10873 baton->per_cu);
10874 else if (bytes != NULL)
10875 {
10876 v = allocate_value (type);
10877 memcpy (value_contents_writeable (v), bytes,
10878 TYPE_LENGTH (type));
10879 }
10880 else
10881 v = value_from_longest (type, value);
10882
10883 /* Specify decimal so that we do not depend on
10884 the radix. */
10885 get_formatted_print_options (&opts, 'd');
10886 opts.raw = 1;
10887 value_print (v, &buf, &opts);
10888 release_value (v);
10889 }
10890 }
10891
10892 die->building_fullname = 0;
10893
10894 if (!first)
10895 {
10896 /* Close the argument list, with a space if necessary
10897 (nested templates). */
10898 if (!buf.empty () && buf.string ().back () == '>')
10899 buf.puts (" >");
10900 else
10901 buf.puts (">");
10902 }
10903 }
10904
10905 /* For C++ methods, append formal parameter type
10906 information, if PHYSNAME. */
10907
10908 if (physname && die->tag == DW_TAG_subprogram
10909 && cu->language == language_cplus)
10910 {
10911 struct type *type = read_type_die (die, cu);
10912
10913 c_type_print_args (type, &buf, 1, cu->language,
10914 &type_print_raw_options);
10915
10916 if (cu->language == language_cplus)
10917 {
10918 /* Assume that an artificial first parameter is
10919 "this", but do not crash if it is not. RealView
10920 marks unnamed (and thus unused) parameters as
10921 artificial; there is no way to differentiate
10922 the two cases. */
10923 if (TYPE_NFIELDS (type) > 0
10924 && TYPE_FIELD_ARTIFICIAL (type, 0)
10925 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10926 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10927 0))))
10928 buf.puts (" const");
10929 }
10930 }
10931
10932 const std::string &intermediate_name = buf.string ();
10933
10934 if (cu->language == language_cplus)
10935 canonical_name
10936 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10937 &objfile->per_bfd->storage_obstack);
10938
10939 /* If we only computed INTERMEDIATE_NAME, or if
10940 INTERMEDIATE_NAME is already canonical, then we need to
10941 copy it to the appropriate obstack. */
10942 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10943 name = ((const char *)
10944 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10945 intermediate_name.c_str (),
10946 intermediate_name.length ()));
10947 else
10948 name = canonical_name;
10949 }
10950 }
10951
10952 return name;
10953 }
10954
10955 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10956 If scope qualifiers are appropriate they will be added. The result
10957 will be allocated on the storage_obstack, or NULL if the DIE does
10958 not have a name. NAME may either be from a previous call to
10959 dwarf2_name or NULL.
10960
10961 The output string will be canonicalized (if C++). */
10962
10963 static const char *
10964 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10965 {
10966 return dwarf2_compute_name (name, die, cu, 0);
10967 }
10968
10969 /* Construct a physname for the given DIE in CU. NAME may either be
10970 from a previous call to dwarf2_name or NULL. The result will be
10971 allocated on the objfile_objstack or NULL if the DIE does not have a
10972 name.
10973
10974 The output string will be canonicalized (if C++). */
10975
10976 static const char *
10977 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10978 {
10979 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10980 const char *retval, *mangled = NULL, *canon = NULL;
10981 int need_copy = 1;
10982
10983 /* In this case dwarf2_compute_name is just a shortcut not building anything
10984 on its own. */
10985 if (!die_needs_namespace (die, cu))
10986 return dwarf2_compute_name (name, die, cu, 1);
10987
10988 mangled = dw2_linkage_name (die, cu);
10989
10990 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10991 See https://github.com/rust-lang/rust/issues/32925. */
10992 if (cu->language == language_rust && mangled != NULL
10993 && strchr (mangled, '{') != NULL)
10994 mangled = NULL;
10995
10996 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10997 has computed. */
10998 gdb::unique_xmalloc_ptr<char> demangled;
10999 if (mangled != NULL)
11000 {
11001
11002 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11003 {
11004 /* Do nothing (do not demangle the symbol name). */
11005 }
11006 else if (cu->language == language_go)
11007 {
11008 /* This is a lie, but we already lie to the caller new_symbol.
11009 new_symbol assumes we return the mangled name.
11010 This just undoes that lie until things are cleaned up. */
11011 }
11012 else
11013 {
11014 /* Use DMGL_RET_DROP for C++ template functions to suppress
11015 their return type. It is easier for GDB users to search
11016 for such functions as `name(params)' than `long name(params)'.
11017 In such case the minimal symbol names do not match the full
11018 symbol names but for template functions there is never a need
11019 to look up their definition from their declaration so
11020 the only disadvantage remains the minimal symbol variant
11021 `long name(params)' does not have the proper inferior type. */
11022 demangled.reset (gdb_demangle (mangled,
11023 (DMGL_PARAMS | DMGL_ANSI
11024 | DMGL_RET_DROP)));
11025 }
11026 if (demangled)
11027 canon = demangled.get ();
11028 else
11029 {
11030 canon = mangled;
11031 need_copy = 0;
11032 }
11033 }
11034
11035 if (canon == NULL || check_physname)
11036 {
11037 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11038
11039 if (canon != NULL && strcmp (physname, canon) != 0)
11040 {
11041 /* It may not mean a bug in GDB. The compiler could also
11042 compute DW_AT_linkage_name incorrectly. But in such case
11043 GDB would need to be bug-to-bug compatible. */
11044
11045 complaint (&symfile_complaints,
11046 _("Computed physname <%s> does not match demangled <%s> "
11047 "(from linkage <%s>) - DIE at %s [in module %s]"),
11048 physname, canon, mangled, sect_offset_str (die->sect_off),
11049 objfile_name (objfile));
11050
11051 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11052 is available here - over computed PHYSNAME. It is safer
11053 against both buggy GDB and buggy compilers. */
11054
11055 retval = canon;
11056 }
11057 else
11058 {
11059 retval = physname;
11060 need_copy = 0;
11061 }
11062 }
11063 else
11064 retval = canon;
11065
11066 if (need_copy)
11067 retval = ((const char *)
11068 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11069 retval, strlen (retval)));
11070
11071 return retval;
11072 }
11073
11074 /* Inspect DIE in CU for a namespace alias. If one exists, record
11075 a new symbol for it.
11076
11077 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11078
11079 static int
11080 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11081 {
11082 struct attribute *attr;
11083
11084 /* If the die does not have a name, this is not a namespace
11085 alias. */
11086 attr = dwarf2_attr (die, DW_AT_name, cu);
11087 if (attr != NULL)
11088 {
11089 int num;
11090 struct die_info *d = die;
11091 struct dwarf2_cu *imported_cu = cu;
11092
11093 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11094 keep inspecting DIEs until we hit the underlying import. */
11095 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11096 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11097 {
11098 attr = dwarf2_attr (d, DW_AT_import, cu);
11099 if (attr == NULL)
11100 break;
11101
11102 d = follow_die_ref (d, attr, &imported_cu);
11103 if (d->tag != DW_TAG_imported_declaration)
11104 break;
11105 }
11106
11107 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11108 {
11109 complaint (&symfile_complaints,
11110 _("DIE at %s has too many recursively imported "
11111 "declarations"), sect_offset_str (d->sect_off));
11112 return 0;
11113 }
11114
11115 if (attr != NULL)
11116 {
11117 struct type *type;
11118 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11119
11120 type = get_die_type_at_offset (sect_off, cu->per_cu);
11121 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11122 {
11123 /* This declaration is a global namespace alias. Add
11124 a symbol for it whose type is the aliased namespace. */
11125 new_symbol (die, type, cu);
11126 return 1;
11127 }
11128 }
11129 }
11130
11131 return 0;
11132 }
11133
11134 /* Return the using directives repository (global or local?) to use in the
11135 current context for LANGUAGE.
11136
11137 For Ada, imported declarations can materialize renamings, which *may* be
11138 global. However it is impossible (for now?) in DWARF to distinguish
11139 "external" imported declarations and "static" ones. As all imported
11140 declarations seem to be static in all other languages, make them all CU-wide
11141 global only in Ada. */
11142
11143 static struct using_direct **
11144 using_directives (enum language language)
11145 {
11146 if (language == language_ada && context_stack_depth == 0)
11147 return &global_using_directives;
11148 else
11149 return &local_using_directives;
11150 }
11151
11152 /* Read the import statement specified by the given die and record it. */
11153
11154 static void
11155 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11156 {
11157 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11158 struct attribute *import_attr;
11159 struct die_info *imported_die, *child_die;
11160 struct dwarf2_cu *imported_cu;
11161 const char *imported_name;
11162 const char *imported_name_prefix;
11163 const char *canonical_name;
11164 const char *import_alias;
11165 const char *imported_declaration = NULL;
11166 const char *import_prefix;
11167 std::vector<const char *> excludes;
11168
11169 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11170 if (import_attr == NULL)
11171 {
11172 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11173 dwarf_tag_name (die->tag));
11174 return;
11175 }
11176
11177 imported_cu = cu;
11178 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11179 imported_name = dwarf2_name (imported_die, imported_cu);
11180 if (imported_name == NULL)
11181 {
11182 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11183
11184 The import in the following code:
11185 namespace A
11186 {
11187 typedef int B;
11188 }
11189
11190 int main ()
11191 {
11192 using A::B;
11193 B b;
11194 return b;
11195 }
11196
11197 ...
11198 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11199 <52> DW_AT_decl_file : 1
11200 <53> DW_AT_decl_line : 6
11201 <54> DW_AT_import : <0x75>
11202 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11203 <59> DW_AT_name : B
11204 <5b> DW_AT_decl_file : 1
11205 <5c> DW_AT_decl_line : 2
11206 <5d> DW_AT_type : <0x6e>
11207 ...
11208 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11209 <76> DW_AT_byte_size : 4
11210 <77> DW_AT_encoding : 5 (signed)
11211
11212 imports the wrong die ( 0x75 instead of 0x58 ).
11213 This case will be ignored until the gcc bug is fixed. */
11214 return;
11215 }
11216
11217 /* Figure out the local name after import. */
11218 import_alias = dwarf2_name (die, cu);
11219
11220 /* Figure out where the statement is being imported to. */
11221 import_prefix = determine_prefix (die, cu);
11222
11223 /* Figure out what the scope of the imported die is and prepend it
11224 to the name of the imported die. */
11225 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11226
11227 if (imported_die->tag != DW_TAG_namespace
11228 && imported_die->tag != DW_TAG_module)
11229 {
11230 imported_declaration = imported_name;
11231 canonical_name = imported_name_prefix;
11232 }
11233 else if (strlen (imported_name_prefix) > 0)
11234 canonical_name = obconcat (&objfile->objfile_obstack,
11235 imported_name_prefix,
11236 (cu->language == language_d ? "." : "::"),
11237 imported_name, (char *) NULL);
11238 else
11239 canonical_name = imported_name;
11240
11241 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11242 for (child_die = die->child; child_die && child_die->tag;
11243 child_die = sibling_die (child_die))
11244 {
11245 /* DWARF-4: A Fortran use statement with a “rename list” may be
11246 represented by an imported module entry with an import attribute
11247 referring to the module and owned entries corresponding to those
11248 entities that are renamed as part of being imported. */
11249
11250 if (child_die->tag != DW_TAG_imported_declaration)
11251 {
11252 complaint (&symfile_complaints,
11253 _("child DW_TAG_imported_declaration expected "
11254 "- DIE at %s [in module %s]"),
11255 sect_offset_str (child_die->sect_off),
11256 objfile_name (objfile));
11257 continue;
11258 }
11259
11260 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11261 if (import_attr == NULL)
11262 {
11263 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11264 dwarf_tag_name (child_die->tag));
11265 continue;
11266 }
11267
11268 imported_cu = cu;
11269 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11270 &imported_cu);
11271 imported_name = dwarf2_name (imported_die, imported_cu);
11272 if (imported_name == NULL)
11273 {
11274 complaint (&symfile_complaints,
11275 _("child DW_TAG_imported_declaration has unknown "
11276 "imported name - DIE at %s [in module %s]"),
11277 sect_offset_str (child_die->sect_off),
11278 objfile_name (objfile));
11279 continue;
11280 }
11281
11282 excludes.push_back (imported_name);
11283
11284 process_die (child_die, cu);
11285 }
11286
11287 add_using_directive (using_directives (cu->language),
11288 import_prefix,
11289 canonical_name,
11290 import_alias,
11291 imported_declaration,
11292 excludes,
11293 0,
11294 &objfile->objfile_obstack);
11295 }
11296
11297 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11298 types, but gives them a size of zero. Starting with version 14,
11299 ICC is compatible with GCC. */
11300
11301 static int
11302 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11303 {
11304 if (!cu->checked_producer)
11305 check_producer (cu);
11306
11307 return cu->producer_is_icc_lt_14;
11308 }
11309
11310 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11311 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11312 this, it was first present in GCC release 4.3.0. */
11313
11314 static int
11315 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11316 {
11317 if (!cu->checked_producer)
11318 check_producer (cu);
11319
11320 return cu->producer_is_gcc_lt_4_3;
11321 }
11322
11323 static file_and_directory
11324 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11325 {
11326 file_and_directory res;
11327
11328 /* Find the filename. Do not use dwarf2_name here, since the filename
11329 is not a source language identifier. */
11330 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11331 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11332
11333 if (res.comp_dir == NULL
11334 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11335 && IS_ABSOLUTE_PATH (res.name))
11336 {
11337 res.comp_dir_storage = ldirname (res.name);
11338 if (!res.comp_dir_storage.empty ())
11339 res.comp_dir = res.comp_dir_storage.c_str ();
11340 }
11341 if (res.comp_dir != NULL)
11342 {
11343 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11344 directory, get rid of it. */
11345 const char *cp = strchr (res.comp_dir, ':');
11346
11347 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11348 res.comp_dir = cp + 1;
11349 }
11350
11351 if (res.name == NULL)
11352 res.name = "<unknown>";
11353
11354 return res;
11355 }
11356
11357 /* Handle DW_AT_stmt_list for a compilation unit.
11358 DIE is the DW_TAG_compile_unit die for CU.
11359 COMP_DIR is the compilation directory. LOWPC is passed to
11360 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11361
11362 static void
11363 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11364 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11365 {
11366 struct dwarf2_per_objfile *dwarf2_per_objfile
11367 = cu->per_cu->dwarf2_per_objfile;
11368 struct objfile *objfile = dwarf2_per_objfile->objfile;
11369 struct attribute *attr;
11370 struct line_header line_header_local;
11371 hashval_t line_header_local_hash;
11372 void **slot;
11373 int decode_mapping;
11374
11375 gdb_assert (! cu->per_cu->is_debug_types);
11376
11377 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11378 if (attr == NULL)
11379 return;
11380
11381 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11382
11383 /* The line header hash table is only created if needed (it exists to
11384 prevent redundant reading of the line table for partial_units).
11385 If we're given a partial_unit, we'll need it. If we're given a
11386 compile_unit, then use the line header hash table if it's already
11387 created, but don't create one just yet. */
11388
11389 if (dwarf2_per_objfile->line_header_hash == NULL
11390 && die->tag == DW_TAG_partial_unit)
11391 {
11392 dwarf2_per_objfile->line_header_hash
11393 = htab_create_alloc_ex (127, line_header_hash_voidp,
11394 line_header_eq_voidp,
11395 free_line_header_voidp,
11396 &objfile->objfile_obstack,
11397 hashtab_obstack_allocate,
11398 dummy_obstack_deallocate);
11399 }
11400
11401 line_header_local.sect_off = line_offset;
11402 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11403 line_header_local_hash = line_header_hash (&line_header_local);
11404 if (dwarf2_per_objfile->line_header_hash != NULL)
11405 {
11406 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11407 &line_header_local,
11408 line_header_local_hash, NO_INSERT);
11409
11410 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11411 is not present in *SLOT (since if there is something in *SLOT then
11412 it will be for a partial_unit). */
11413 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11414 {
11415 gdb_assert (*slot != NULL);
11416 cu->line_header = (struct line_header *) *slot;
11417 return;
11418 }
11419 }
11420
11421 /* dwarf_decode_line_header does not yet provide sufficient information.
11422 We always have to call also dwarf_decode_lines for it. */
11423 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11424 if (lh == NULL)
11425 return;
11426
11427 cu->line_header = lh.release ();
11428 cu->line_header_die_owner = die;
11429
11430 if (dwarf2_per_objfile->line_header_hash == NULL)
11431 slot = NULL;
11432 else
11433 {
11434 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11435 &line_header_local,
11436 line_header_local_hash, INSERT);
11437 gdb_assert (slot != NULL);
11438 }
11439 if (slot != NULL && *slot == NULL)
11440 {
11441 /* This newly decoded line number information unit will be owned
11442 by line_header_hash hash table. */
11443 *slot = cu->line_header;
11444 cu->line_header_die_owner = NULL;
11445 }
11446 else
11447 {
11448 /* We cannot free any current entry in (*slot) as that struct line_header
11449 may be already used by multiple CUs. Create only temporary decoded
11450 line_header for this CU - it may happen at most once for each line
11451 number information unit. And if we're not using line_header_hash
11452 then this is what we want as well. */
11453 gdb_assert (die->tag != DW_TAG_partial_unit);
11454 }
11455 decode_mapping = (die->tag != DW_TAG_partial_unit);
11456 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11457 decode_mapping);
11458
11459 }
11460
11461 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11462
11463 static void
11464 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11465 {
11466 struct dwarf2_per_objfile *dwarf2_per_objfile
11467 = cu->per_cu->dwarf2_per_objfile;
11468 struct objfile *objfile = dwarf2_per_objfile->objfile;
11469 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11470 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11471 CORE_ADDR highpc = ((CORE_ADDR) 0);
11472 struct attribute *attr;
11473 struct die_info *child_die;
11474 CORE_ADDR baseaddr;
11475
11476 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11477
11478 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11479
11480 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11481 from finish_block. */
11482 if (lowpc == ((CORE_ADDR) -1))
11483 lowpc = highpc;
11484 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11485
11486 file_and_directory fnd = find_file_and_directory (die, cu);
11487
11488 prepare_one_comp_unit (cu, die, cu->language);
11489
11490 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11491 standardised yet. As a workaround for the language detection we fall
11492 back to the DW_AT_producer string. */
11493 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11494 cu->language = language_opencl;
11495
11496 /* Similar hack for Go. */
11497 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11498 set_cu_language (DW_LANG_Go, cu);
11499
11500 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11501
11502 /* Decode line number information if present. We do this before
11503 processing child DIEs, so that the line header table is available
11504 for DW_AT_decl_file. */
11505 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11506
11507 /* Process all dies in compilation unit. */
11508 if (die->child != NULL)
11509 {
11510 child_die = die->child;
11511 while (child_die && child_die->tag)
11512 {
11513 process_die (child_die, cu);
11514 child_die = sibling_die (child_die);
11515 }
11516 }
11517
11518 /* Decode macro information, if present. Dwarf 2 macro information
11519 refers to information in the line number info statement program
11520 header, so we can only read it if we've read the header
11521 successfully. */
11522 attr = dwarf2_attr (die, DW_AT_macros, cu);
11523 if (attr == NULL)
11524 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11525 if (attr && cu->line_header)
11526 {
11527 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11528 complaint (&symfile_complaints,
11529 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11530
11531 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11532 }
11533 else
11534 {
11535 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11536 if (attr && cu->line_header)
11537 {
11538 unsigned int macro_offset = DW_UNSND (attr);
11539
11540 dwarf_decode_macros (cu, macro_offset, 0);
11541 }
11542 }
11543 }
11544
11545 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11546 Create the set of symtabs used by this TU, or if this TU is sharing
11547 symtabs with another TU and the symtabs have already been created
11548 then restore those symtabs in the line header.
11549 We don't need the pc/line-number mapping for type units. */
11550
11551 static void
11552 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11553 {
11554 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11555 struct type_unit_group *tu_group;
11556 int first_time;
11557 struct attribute *attr;
11558 unsigned int i;
11559 struct signatured_type *sig_type;
11560
11561 gdb_assert (per_cu->is_debug_types);
11562 sig_type = (struct signatured_type *) per_cu;
11563
11564 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11565
11566 /* If we're using .gdb_index (includes -readnow) then
11567 per_cu->type_unit_group may not have been set up yet. */
11568 if (sig_type->type_unit_group == NULL)
11569 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11570 tu_group = sig_type->type_unit_group;
11571
11572 /* If we've already processed this stmt_list there's no real need to
11573 do it again, we could fake it and just recreate the part we need
11574 (file name,index -> symtab mapping). If data shows this optimization
11575 is useful we can do it then. */
11576 first_time = tu_group->compunit_symtab == NULL;
11577
11578 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11579 debug info. */
11580 line_header_up lh;
11581 if (attr != NULL)
11582 {
11583 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11584 lh = dwarf_decode_line_header (line_offset, cu);
11585 }
11586 if (lh == NULL)
11587 {
11588 if (first_time)
11589 dwarf2_start_symtab (cu, "", NULL, 0);
11590 else
11591 {
11592 gdb_assert (tu_group->symtabs == NULL);
11593 restart_symtab (tu_group->compunit_symtab, "", 0);
11594 }
11595 return;
11596 }
11597
11598 cu->line_header = lh.release ();
11599 cu->line_header_die_owner = die;
11600
11601 if (first_time)
11602 {
11603 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11604
11605 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11606 still initializing it, and our caller (a few levels up)
11607 process_full_type_unit still needs to know if this is the first
11608 time. */
11609
11610 tu_group->num_symtabs = cu->line_header->file_names.size ();
11611 tu_group->symtabs = XNEWVEC (struct symtab *,
11612 cu->line_header->file_names.size ());
11613
11614 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11615 {
11616 file_entry &fe = cu->line_header->file_names[i];
11617
11618 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11619
11620 if (current_subfile->symtab == NULL)
11621 {
11622 /* NOTE: start_subfile will recognize when it's been
11623 passed a file it has already seen. So we can't
11624 assume there's a simple mapping from
11625 cu->line_header->file_names to subfiles, plus
11626 cu->line_header->file_names may contain dups. */
11627 current_subfile->symtab
11628 = allocate_symtab (cust, current_subfile->name);
11629 }
11630
11631 fe.symtab = current_subfile->symtab;
11632 tu_group->symtabs[i] = fe.symtab;
11633 }
11634 }
11635 else
11636 {
11637 restart_symtab (tu_group->compunit_symtab, "", 0);
11638
11639 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11640 {
11641 file_entry &fe = cu->line_header->file_names[i];
11642
11643 fe.symtab = tu_group->symtabs[i];
11644 }
11645 }
11646
11647 /* The main symtab is allocated last. Type units don't have DW_AT_name
11648 so they don't have a "real" (so to speak) symtab anyway.
11649 There is later code that will assign the main symtab to all symbols
11650 that don't have one. We need to handle the case of a symbol with a
11651 missing symtab (DW_AT_decl_file) anyway. */
11652 }
11653
11654 /* Process DW_TAG_type_unit.
11655 For TUs we want to skip the first top level sibling if it's not the
11656 actual type being defined by this TU. In this case the first top
11657 level sibling is there to provide context only. */
11658
11659 static void
11660 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11661 {
11662 struct die_info *child_die;
11663
11664 prepare_one_comp_unit (cu, die, language_minimal);
11665
11666 /* Initialize (or reinitialize) the machinery for building symtabs.
11667 We do this before processing child DIEs, so that the line header table
11668 is available for DW_AT_decl_file. */
11669 setup_type_unit_groups (die, cu);
11670
11671 if (die->child != NULL)
11672 {
11673 child_die = die->child;
11674 while (child_die && child_die->tag)
11675 {
11676 process_die (child_die, cu);
11677 child_die = sibling_die (child_die);
11678 }
11679 }
11680 }
11681 \f
11682 /* DWO/DWP files.
11683
11684 http://gcc.gnu.org/wiki/DebugFission
11685 http://gcc.gnu.org/wiki/DebugFissionDWP
11686
11687 To simplify handling of both DWO files ("object" files with the DWARF info)
11688 and DWP files (a file with the DWOs packaged up into one file), we treat
11689 DWP files as having a collection of virtual DWO files. */
11690
11691 static hashval_t
11692 hash_dwo_file (const void *item)
11693 {
11694 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11695 hashval_t hash;
11696
11697 hash = htab_hash_string (dwo_file->dwo_name);
11698 if (dwo_file->comp_dir != NULL)
11699 hash += htab_hash_string (dwo_file->comp_dir);
11700 return hash;
11701 }
11702
11703 static int
11704 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11705 {
11706 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11707 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11708
11709 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11710 return 0;
11711 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11712 return lhs->comp_dir == rhs->comp_dir;
11713 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11714 }
11715
11716 /* Allocate a hash table for DWO files. */
11717
11718 static htab_t
11719 allocate_dwo_file_hash_table (struct objfile *objfile)
11720 {
11721 return htab_create_alloc_ex (41,
11722 hash_dwo_file,
11723 eq_dwo_file,
11724 NULL,
11725 &objfile->objfile_obstack,
11726 hashtab_obstack_allocate,
11727 dummy_obstack_deallocate);
11728 }
11729
11730 /* Lookup DWO file DWO_NAME. */
11731
11732 static void **
11733 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11734 const char *dwo_name,
11735 const char *comp_dir)
11736 {
11737 struct dwo_file find_entry;
11738 void **slot;
11739
11740 if (dwarf2_per_objfile->dwo_files == NULL)
11741 dwarf2_per_objfile->dwo_files
11742 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11743
11744 memset (&find_entry, 0, sizeof (find_entry));
11745 find_entry.dwo_name = dwo_name;
11746 find_entry.comp_dir = comp_dir;
11747 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11748
11749 return slot;
11750 }
11751
11752 static hashval_t
11753 hash_dwo_unit (const void *item)
11754 {
11755 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11756
11757 /* This drops the top 32 bits of the id, but is ok for a hash. */
11758 return dwo_unit->signature;
11759 }
11760
11761 static int
11762 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11763 {
11764 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11765 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11766
11767 /* The signature is assumed to be unique within the DWO file.
11768 So while object file CU dwo_id's always have the value zero,
11769 that's OK, assuming each object file DWO file has only one CU,
11770 and that's the rule for now. */
11771 return lhs->signature == rhs->signature;
11772 }
11773
11774 /* Allocate a hash table for DWO CUs,TUs.
11775 There is one of these tables for each of CUs,TUs for each DWO file. */
11776
11777 static htab_t
11778 allocate_dwo_unit_table (struct objfile *objfile)
11779 {
11780 /* Start out with a pretty small number.
11781 Generally DWO files contain only one CU and maybe some TUs. */
11782 return htab_create_alloc_ex (3,
11783 hash_dwo_unit,
11784 eq_dwo_unit,
11785 NULL,
11786 &objfile->objfile_obstack,
11787 hashtab_obstack_allocate,
11788 dummy_obstack_deallocate);
11789 }
11790
11791 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11792
11793 struct create_dwo_cu_data
11794 {
11795 struct dwo_file *dwo_file;
11796 struct dwo_unit dwo_unit;
11797 };
11798
11799 /* die_reader_func for create_dwo_cu. */
11800
11801 static void
11802 create_dwo_cu_reader (const struct die_reader_specs *reader,
11803 const gdb_byte *info_ptr,
11804 struct die_info *comp_unit_die,
11805 int has_children,
11806 void *datap)
11807 {
11808 struct dwarf2_cu *cu = reader->cu;
11809 sect_offset sect_off = cu->per_cu->sect_off;
11810 struct dwarf2_section_info *section = cu->per_cu->section;
11811 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11812 struct dwo_file *dwo_file = data->dwo_file;
11813 struct dwo_unit *dwo_unit = &data->dwo_unit;
11814 struct attribute *attr;
11815
11816 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11817 if (attr == NULL)
11818 {
11819 complaint (&symfile_complaints,
11820 _("Dwarf Error: debug entry at offset %s is missing"
11821 " its dwo_id [in module %s]"),
11822 sect_offset_str (sect_off), dwo_file->dwo_name);
11823 return;
11824 }
11825
11826 dwo_unit->dwo_file = dwo_file;
11827 dwo_unit->signature = DW_UNSND (attr);
11828 dwo_unit->section = section;
11829 dwo_unit->sect_off = sect_off;
11830 dwo_unit->length = cu->per_cu->length;
11831
11832 if (dwarf_read_debug)
11833 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11834 sect_offset_str (sect_off),
11835 hex_string (dwo_unit->signature));
11836 }
11837
11838 /* Create the dwo_units for the CUs in a DWO_FILE.
11839 Note: This function processes DWO files only, not DWP files. */
11840
11841 static void
11842 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11843 struct dwo_file &dwo_file, dwarf2_section_info &section,
11844 htab_t &cus_htab)
11845 {
11846 struct objfile *objfile = dwarf2_per_objfile->objfile;
11847 const gdb_byte *info_ptr, *end_ptr;
11848
11849 dwarf2_read_section (objfile, &section);
11850 info_ptr = section.buffer;
11851
11852 if (info_ptr == NULL)
11853 return;
11854
11855 if (dwarf_read_debug)
11856 {
11857 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11858 get_section_name (&section),
11859 get_section_file_name (&section));
11860 }
11861
11862 end_ptr = info_ptr + section.size;
11863 while (info_ptr < end_ptr)
11864 {
11865 struct dwarf2_per_cu_data per_cu;
11866 struct create_dwo_cu_data create_dwo_cu_data;
11867 struct dwo_unit *dwo_unit;
11868 void **slot;
11869 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11870
11871 memset (&create_dwo_cu_data.dwo_unit, 0,
11872 sizeof (create_dwo_cu_data.dwo_unit));
11873 memset (&per_cu, 0, sizeof (per_cu));
11874 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11875 per_cu.is_debug_types = 0;
11876 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11877 per_cu.section = &section;
11878 create_dwo_cu_data.dwo_file = &dwo_file;
11879
11880 init_cutu_and_read_dies_no_follow (
11881 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11882 info_ptr += per_cu.length;
11883
11884 // If the unit could not be parsed, skip it.
11885 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11886 continue;
11887
11888 if (cus_htab == NULL)
11889 cus_htab = allocate_dwo_unit_table (objfile);
11890
11891 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11892 *dwo_unit = create_dwo_cu_data.dwo_unit;
11893 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11894 gdb_assert (slot != NULL);
11895 if (*slot != NULL)
11896 {
11897 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11898 sect_offset dup_sect_off = dup_cu->sect_off;
11899
11900 complaint (&symfile_complaints,
11901 _("debug cu entry at offset %s is duplicate to"
11902 " the entry at offset %s, signature %s"),
11903 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11904 hex_string (dwo_unit->signature));
11905 }
11906 *slot = (void *)dwo_unit;
11907 }
11908 }
11909
11910 /* DWP file .debug_{cu,tu}_index section format:
11911 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11912
11913 DWP Version 1:
11914
11915 Both index sections have the same format, and serve to map a 64-bit
11916 signature to a set of section numbers. Each section begins with a header,
11917 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11918 indexes, and a pool of 32-bit section numbers. The index sections will be
11919 aligned at 8-byte boundaries in the file.
11920
11921 The index section header consists of:
11922
11923 V, 32 bit version number
11924 -, 32 bits unused
11925 N, 32 bit number of compilation units or type units in the index
11926 M, 32 bit number of slots in the hash table
11927
11928 Numbers are recorded using the byte order of the application binary.
11929
11930 The hash table begins at offset 16 in the section, and consists of an array
11931 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11932 order of the application binary). Unused slots in the hash table are 0.
11933 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11934
11935 The parallel table begins immediately after the hash table
11936 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11937 array of 32-bit indexes (using the byte order of the application binary),
11938 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11939 table contains a 32-bit index into the pool of section numbers. For unused
11940 hash table slots, the corresponding entry in the parallel table will be 0.
11941
11942 The pool of section numbers begins immediately following the hash table
11943 (at offset 16 + 12 * M from the beginning of the section). The pool of
11944 section numbers consists of an array of 32-bit words (using the byte order
11945 of the application binary). Each item in the array is indexed starting
11946 from 0. The hash table entry provides the index of the first section
11947 number in the set. Additional section numbers in the set follow, and the
11948 set is terminated by a 0 entry (section number 0 is not used in ELF).
11949
11950 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11951 section must be the first entry in the set, and the .debug_abbrev.dwo must
11952 be the second entry. Other members of the set may follow in any order.
11953
11954 ---
11955
11956 DWP Version 2:
11957
11958 DWP Version 2 combines all the .debug_info, etc. sections into one,
11959 and the entries in the index tables are now offsets into these sections.
11960 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11961 section.
11962
11963 Index Section Contents:
11964 Header
11965 Hash Table of Signatures dwp_hash_table.hash_table
11966 Parallel Table of Indices dwp_hash_table.unit_table
11967 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11968 Table of Section Sizes dwp_hash_table.v2.sizes
11969
11970 The index section header consists of:
11971
11972 V, 32 bit version number
11973 L, 32 bit number of columns in the table of section offsets
11974 N, 32 bit number of compilation units or type units in the index
11975 M, 32 bit number of slots in the hash table
11976
11977 Numbers are recorded using the byte order of the application binary.
11978
11979 The hash table has the same format as version 1.
11980 The parallel table of indices has the same format as version 1,
11981 except that the entries are origin-1 indices into the table of sections
11982 offsets and the table of section sizes.
11983
11984 The table of offsets begins immediately following the parallel table
11985 (at offset 16 + 12 * M from the beginning of the section). The table is
11986 a two-dimensional array of 32-bit words (using the byte order of the
11987 application binary), with L columns and N+1 rows, in row-major order.
11988 Each row in the array is indexed starting from 0. The first row provides
11989 a key to the remaining rows: each column in this row provides an identifier
11990 for a debug section, and the offsets in the same column of subsequent rows
11991 refer to that section. The section identifiers are:
11992
11993 DW_SECT_INFO 1 .debug_info.dwo
11994 DW_SECT_TYPES 2 .debug_types.dwo
11995 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11996 DW_SECT_LINE 4 .debug_line.dwo
11997 DW_SECT_LOC 5 .debug_loc.dwo
11998 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11999 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12000 DW_SECT_MACRO 8 .debug_macro.dwo
12001
12002 The offsets provided by the CU and TU index sections are the base offsets
12003 for the contributions made by each CU or TU to the corresponding section
12004 in the package file. Each CU and TU header contains an abbrev_offset
12005 field, used to find the abbreviations table for that CU or TU within the
12006 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12007 be interpreted as relative to the base offset given in the index section.
12008 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12009 should be interpreted as relative to the base offset for .debug_line.dwo,
12010 and offsets into other debug sections obtained from DWARF attributes should
12011 also be interpreted as relative to the corresponding base offset.
12012
12013 The table of sizes begins immediately following the table of offsets.
12014 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12015 with L columns and N rows, in row-major order. Each row in the array is
12016 indexed starting from 1 (row 0 is shared by the two tables).
12017
12018 ---
12019
12020 Hash table lookup is handled the same in version 1 and 2:
12021
12022 We assume that N and M will not exceed 2^32 - 1.
12023 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12024
12025 Given a 64-bit compilation unit signature or a type signature S, an entry
12026 in the hash table is located as follows:
12027
12028 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12029 the low-order k bits all set to 1.
12030
12031 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12032
12033 3) If the hash table entry at index H matches the signature, use that
12034 entry. If the hash table entry at index H is unused (all zeroes),
12035 terminate the search: the signature is not present in the table.
12036
12037 4) Let H = (H + H') modulo M. Repeat at Step 3.
12038
12039 Because M > N and H' and M are relatively prime, the search is guaranteed
12040 to stop at an unused slot or find the match. */
12041
12042 /* Create a hash table to map DWO IDs to their CU/TU entry in
12043 .debug_{info,types}.dwo in DWP_FILE.
12044 Returns NULL if there isn't one.
12045 Note: This function processes DWP files only, not DWO files. */
12046
12047 static struct dwp_hash_table *
12048 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12049 struct dwp_file *dwp_file, int is_debug_types)
12050 {
12051 struct objfile *objfile = dwarf2_per_objfile->objfile;
12052 bfd *dbfd = dwp_file->dbfd;
12053 const gdb_byte *index_ptr, *index_end;
12054 struct dwarf2_section_info *index;
12055 uint32_t version, nr_columns, nr_units, nr_slots;
12056 struct dwp_hash_table *htab;
12057
12058 if (is_debug_types)
12059 index = &dwp_file->sections.tu_index;
12060 else
12061 index = &dwp_file->sections.cu_index;
12062
12063 if (dwarf2_section_empty_p (index))
12064 return NULL;
12065 dwarf2_read_section (objfile, index);
12066
12067 index_ptr = index->buffer;
12068 index_end = index_ptr + index->size;
12069
12070 version = read_4_bytes (dbfd, index_ptr);
12071 index_ptr += 4;
12072 if (version == 2)
12073 nr_columns = read_4_bytes (dbfd, index_ptr);
12074 else
12075 nr_columns = 0;
12076 index_ptr += 4;
12077 nr_units = read_4_bytes (dbfd, index_ptr);
12078 index_ptr += 4;
12079 nr_slots = read_4_bytes (dbfd, index_ptr);
12080 index_ptr += 4;
12081
12082 if (version != 1 && version != 2)
12083 {
12084 error (_("Dwarf Error: unsupported DWP file version (%s)"
12085 " [in module %s]"),
12086 pulongest (version), dwp_file->name);
12087 }
12088 if (nr_slots != (nr_slots & -nr_slots))
12089 {
12090 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12091 " is not power of 2 [in module %s]"),
12092 pulongest (nr_slots), dwp_file->name);
12093 }
12094
12095 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12096 htab->version = version;
12097 htab->nr_columns = nr_columns;
12098 htab->nr_units = nr_units;
12099 htab->nr_slots = nr_slots;
12100 htab->hash_table = index_ptr;
12101 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12102
12103 /* Exit early if the table is empty. */
12104 if (nr_slots == 0 || nr_units == 0
12105 || (version == 2 && nr_columns == 0))
12106 {
12107 /* All must be zero. */
12108 if (nr_slots != 0 || nr_units != 0
12109 || (version == 2 && nr_columns != 0))
12110 {
12111 complaint (&symfile_complaints,
12112 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12113 " all zero [in modules %s]"),
12114 dwp_file->name);
12115 }
12116 return htab;
12117 }
12118
12119 if (version == 1)
12120 {
12121 htab->section_pool.v1.indices =
12122 htab->unit_table + sizeof (uint32_t) * nr_slots;
12123 /* It's harder to decide whether the section is too small in v1.
12124 V1 is deprecated anyway so we punt. */
12125 }
12126 else
12127 {
12128 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12129 int *ids = htab->section_pool.v2.section_ids;
12130 /* Reverse map for error checking. */
12131 int ids_seen[DW_SECT_MAX + 1];
12132 int i;
12133
12134 if (nr_columns < 2)
12135 {
12136 error (_("Dwarf Error: bad DWP hash table, too few columns"
12137 " in section table [in module %s]"),
12138 dwp_file->name);
12139 }
12140 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12141 {
12142 error (_("Dwarf Error: bad DWP hash table, too many columns"
12143 " in section table [in module %s]"),
12144 dwp_file->name);
12145 }
12146 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12147 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12148 for (i = 0; i < nr_columns; ++i)
12149 {
12150 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12151
12152 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12153 {
12154 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12155 " in section table [in module %s]"),
12156 id, dwp_file->name);
12157 }
12158 if (ids_seen[id] != -1)
12159 {
12160 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12161 " id %d in section table [in module %s]"),
12162 id, dwp_file->name);
12163 }
12164 ids_seen[id] = i;
12165 ids[i] = id;
12166 }
12167 /* Must have exactly one info or types section. */
12168 if (((ids_seen[DW_SECT_INFO] != -1)
12169 + (ids_seen[DW_SECT_TYPES] != -1))
12170 != 1)
12171 {
12172 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12173 " DWO info/types section [in module %s]"),
12174 dwp_file->name);
12175 }
12176 /* Must have an abbrev section. */
12177 if (ids_seen[DW_SECT_ABBREV] == -1)
12178 {
12179 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12180 " section [in module %s]"),
12181 dwp_file->name);
12182 }
12183 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12184 htab->section_pool.v2.sizes =
12185 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12186 * nr_units * nr_columns);
12187 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12188 * nr_units * nr_columns))
12189 > index_end)
12190 {
12191 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12192 " [in module %s]"),
12193 dwp_file->name);
12194 }
12195 }
12196
12197 return htab;
12198 }
12199
12200 /* Update SECTIONS with the data from SECTP.
12201
12202 This function is like the other "locate" section routines that are
12203 passed to bfd_map_over_sections, but in this context the sections to
12204 read comes from the DWP V1 hash table, not the full ELF section table.
12205
12206 The result is non-zero for success, or zero if an error was found. */
12207
12208 static int
12209 locate_v1_virtual_dwo_sections (asection *sectp,
12210 struct virtual_v1_dwo_sections *sections)
12211 {
12212 const struct dwop_section_names *names = &dwop_section_names;
12213
12214 if (section_is_p (sectp->name, &names->abbrev_dwo))
12215 {
12216 /* There can be only one. */
12217 if (sections->abbrev.s.section != NULL)
12218 return 0;
12219 sections->abbrev.s.section = sectp;
12220 sections->abbrev.size = bfd_get_section_size (sectp);
12221 }
12222 else if (section_is_p (sectp->name, &names->info_dwo)
12223 || section_is_p (sectp->name, &names->types_dwo))
12224 {
12225 /* There can be only one. */
12226 if (sections->info_or_types.s.section != NULL)
12227 return 0;
12228 sections->info_or_types.s.section = sectp;
12229 sections->info_or_types.size = bfd_get_section_size (sectp);
12230 }
12231 else if (section_is_p (sectp->name, &names->line_dwo))
12232 {
12233 /* There can be only one. */
12234 if (sections->line.s.section != NULL)
12235 return 0;
12236 sections->line.s.section = sectp;
12237 sections->line.size = bfd_get_section_size (sectp);
12238 }
12239 else if (section_is_p (sectp->name, &names->loc_dwo))
12240 {
12241 /* There can be only one. */
12242 if (sections->loc.s.section != NULL)
12243 return 0;
12244 sections->loc.s.section = sectp;
12245 sections->loc.size = bfd_get_section_size (sectp);
12246 }
12247 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12248 {
12249 /* There can be only one. */
12250 if (sections->macinfo.s.section != NULL)
12251 return 0;
12252 sections->macinfo.s.section = sectp;
12253 sections->macinfo.size = bfd_get_section_size (sectp);
12254 }
12255 else if (section_is_p (sectp->name, &names->macro_dwo))
12256 {
12257 /* There can be only one. */
12258 if (sections->macro.s.section != NULL)
12259 return 0;
12260 sections->macro.s.section = sectp;
12261 sections->macro.size = bfd_get_section_size (sectp);
12262 }
12263 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12264 {
12265 /* There can be only one. */
12266 if (sections->str_offsets.s.section != NULL)
12267 return 0;
12268 sections->str_offsets.s.section = sectp;
12269 sections->str_offsets.size = bfd_get_section_size (sectp);
12270 }
12271 else
12272 {
12273 /* No other kind of section is valid. */
12274 return 0;
12275 }
12276
12277 return 1;
12278 }
12279
12280 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12281 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12282 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12283 This is for DWP version 1 files. */
12284
12285 static struct dwo_unit *
12286 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12287 struct dwp_file *dwp_file,
12288 uint32_t unit_index,
12289 const char *comp_dir,
12290 ULONGEST signature, int is_debug_types)
12291 {
12292 struct objfile *objfile = dwarf2_per_objfile->objfile;
12293 const struct dwp_hash_table *dwp_htab =
12294 is_debug_types ? dwp_file->tus : dwp_file->cus;
12295 bfd *dbfd = dwp_file->dbfd;
12296 const char *kind = is_debug_types ? "TU" : "CU";
12297 struct dwo_file *dwo_file;
12298 struct dwo_unit *dwo_unit;
12299 struct virtual_v1_dwo_sections sections;
12300 void **dwo_file_slot;
12301 int i;
12302
12303 gdb_assert (dwp_file->version == 1);
12304
12305 if (dwarf_read_debug)
12306 {
12307 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12308 kind,
12309 pulongest (unit_index), hex_string (signature),
12310 dwp_file->name);
12311 }
12312
12313 /* Fetch the sections of this DWO unit.
12314 Put a limit on the number of sections we look for so that bad data
12315 doesn't cause us to loop forever. */
12316
12317 #define MAX_NR_V1_DWO_SECTIONS \
12318 (1 /* .debug_info or .debug_types */ \
12319 + 1 /* .debug_abbrev */ \
12320 + 1 /* .debug_line */ \
12321 + 1 /* .debug_loc */ \
12322 + 1 /* .debug_str_offsets */ \
12323 + 1 /* .debug_macro or .debug_macinfo */ \
12324 + 1 /* trailing zero */)
12325
12326 memset (&sections, 0, sizeof (sections));
12327
12328 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12329 {
12330 asection *sectp;
12331 uint32_t section_nr =
12332 read_4_bytes (dbfd,
12333 dwp_htab->section_pool.v1.indices
12334 + (unit_index + i) * sizeof (uint32_t));
12335
12336 if (section_nr == 0)
12337 break;
12338 if (section_nr >= dwp_file->num_sections)
12339 {
12340 error (_("Dwarf Error: bad DWP hash table, section number too large"
12341 " [in module %s]"),
12342 dwp_file->name);
12343 }
12344
12345 sectp = dwp_file->elf_sections[section_nr];
12346 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12347 {
12348 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12349 " [in module %s]"),
12350 dwp_file->name);
12351 }
12352 }
12353
12354 if (i < 2
12355 || dwarf2_section_empty_p (&sections.info_or_types)
12356 || dwarf2_section_empty_p (&sections.abbrev))
12357 {
12358 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12359 " [in module %s]"),
12360 dwp_file->name);
12361 }
12362 if (i == MAX_NR_V1_DWO_SECTIONS)
12363 {
12364 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12365 " [in module %s]"),
12366 dwp_file->name);
12367 }
12368
12369 /* It's easier for the rest of the code if we fake a struct dwo_file and
12370 have dwo_unit "live" in that. At least for now.
12371
12372 The DWP file can be made up of a random collection of CUs and TUs.
12373 However, for each CU + set of TUs that came from the same original DWO
12374 file, we can combine them back into a virtual DWO file to save space
12375 (fewer struct dwo_file objects to allocate). Remember that for really
12376 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12377
12378 std::string virtual_dwo_name =
12379 string_printf ("virtual-dwo/%d-%d-%d-%d",
12380 get_section_id (&sections.abbrev),
12381 get_section_id (&sections.line),
12382 get_section_id (&sections.loc),
12383 get_section_id (&sections.str_offsets));
12384 /* Can we use an existing virtual DWO file? */
12385 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12386 virtual_dwo_name.c_str (),
12387 comp_dir);
12388 /* Create one if necessary. */
12389 if (*dwo_file_slot == NULL)
12390 {
12391 if (dwarf_read_debug)
12392 {
12393 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12394 virtual_dwo_name.c_str ());
12395 }
12396 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12397 dwo_file->dwo_name
12398 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12399 virtual_dwo_name.c_str (),
12400 virtual_dwo_name.size ());
12401 dwo_file->comp_dir = comp_dir;
12402 dwo_file->sections.abbrev = sections.abbrev;
12403 dwo_file->sections.line = sections.line;
12404 dwo_file->sections.loc = sections.loc;
12405 dwo_file->sections.macinfo = sections.macinfo;
12406 dwo_file->sections.macro = sections.macro;
12407 dwo_file->sections.str_offsets = sections.str_offsets;
12408 /* The "str" section is global to the entire DWP file. */
12409 dwo_file->sections.str = dwp_file->sections.str;
12410 /* The info or types section is assigned below to dwo_unit,
12411 there's no need to record it in dwo_file.
12412 Also, we can't simply record type sections in dwo_file because
12413 we record a pointer into the vector in dwo_unit. As we collect more
12414 types we'll grow the vector and eventually have to reallocate space
12415 for it, invalidating all copies of pointers into the previous
12416 contents. */
12417 *dwo_file_slot = dwo_file;
12418 }
12419 else
12420 {
12421 if (dwarf_read_debug)
12422 {
12423 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12424 virtual_dwo_name.c_str ());
12425 }
12426 dwo_file = (struct dwo_file *) *dwo_file_slot;
12427 }
12428
12429 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12430 dwo_unit->dwo_file = dwo_file;
12431 dwo_unit->signature = signature;
12432 dwo_unit->section =
12433 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12434 *dwo_unit->section = sections.info_or_types;
12435 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12436
12437 return dwo_unit;
12438 }
12439
12440 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12441 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12442 piece within that section used by a TU/CU, return a virtual section
12443 of just that piece. */
12444
12445 static struct dwarf2_section_info
12446 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12447 struct dwarf2_section_info *section,
12448 bfd_size_type offset, bfd_size_type size)
12449 {
12450 struct dwarf2_section_info result;
12451 asection *sectp;
12452
12453 gdb_assert (section != NULL);
12454 gdb_assert (!section->is_virtual);
12455
12456 memset (&result, 0, sizeof (result));
12457 result.s.containing_section = section;
12458 result.is_virtual = 1;
12459
12460 if (size == 0)
12461 return result;
12462
12463 sectp = get_section_bfd_section (section);
12464
12465 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12466 bounds of the real section. This is a pretty-rare event, so just
12467 flag an error (easier) instead of a warning and trying to cope. */
12468 if (sectp == NULL
12469 || offset + size > bfd_get_section_size (sectp))
12470 {
12471 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12472 " in section %s [in module %s]"),
12473 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12474 objfile_name (dwarf2_per_objfile->objfile));
12475 }
12476
12477 result.virtual_offset = offset;
12478 result.size = size;
12479 return result;
12480 }
12481
12482 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12483 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12484 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12485 This is for DWP version 2 files. */
12486
12487 static struct dwo_unit *
12488 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12489 struct dwp_file *dwp_file,
12490 uint32_t unit_index,
12491 const char *comp_dir,
12492 ULONGEST signature, int is_debug_types)
12493 {
12494 struct objfile *objfile = dwarf2_per_objfile->objfile;
12495 const struct dwp_hash_table *dwp_htab =
12496 is_debug_types ? dwp_file->tus : dwp_file->cus;
12497 bfd *dbfd = dwp_file->dbfd;
12498 const char *kind = is_debug_types ? "TU" : "CU";
12499 struct dwo_file *dwo_file;
12500 struct dwo_unit *dwo_unit;
12501 struct virtual_v2_dwo_sections sections;
12502 void **dwo_file_slot;
12503 int i;
12504
12505 gdb_assert (dwp_file->version == 2);
12506
12507 if (dwarf_read_debug)
12508 {
12509 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12510 kind,
12511 pulongest (unit_index), hex_string (signature),
12512 dwp_file->name);
12513 }
12514
12515 /* Fetch the section offsets of this DWO unit. */
12516
12517 memset (&sections, 0, sizeof (sections));
12518
12519 for (i = 0; i < dwp_htab->nr_columns; ++i)
12520 {
12521 uint32_t offset = read_4_bytes (dbfd,
12522 dwp_htab->section_pool.v2.offsets
12523 + (((unit_index - 1) * dwp_htab->nr_columns
12524 + i)
12525 * sizeof (uint32_t)));
12526 uint32_t size = read_4_bytes (dbfd,
12527 dwp_htab->section_pool.v2.sizes
12528 + (((unit_index - 1) * dwp_htab->nr_columns
12529 + i)
12530 * sizeof (uint32_t)));
12531
12532 switch (dwp_htab->section_pool.v2.section_ids[i])
12533 {
12534 case DW_SECT_INFO:
12535 case DW_SECT_TYPES:
12536 sections.info_or_types_offset = offset;
12537 sections.info_or_types_size = size;
12538 break;
12539 case DW_SECT_ABBREV:
12540 sections.abbrev_offset = offset;
12541 sections.abbrev_size = size;
12542 break;
12543 case DW_SECT_LINE:
12544 sections.line_offset = offset;
12545 sections.line_size = size;
12546 break;
12547 case DW_SECT_LOC:
12548 sections.loc_offset = offset;
12549 sections.loc_size = size;
12550 break;
12551 case DW_SECT_STR_OFFSETS:
12552 sections.str_offsets_offset = offset;
12553 sections.str_offsets_size = size;
12554 break;
12555 case DW_SECT_MACINFO:
12556 sections.macinfo_offset = offset;
12557 sections.macinfo_size = size;
12558 break;
12559 case DW_SECT_MACRO:
12560 sections.macro_offset = offset;
12561 sections.macro_size = size;
12562 break;
12563 }
12564 }
12565
12566 /* It's easier for the rest of the code if we fake a struct dwo_file and
12567 have dwo_unit "live" in that. At least for now.
12568
12569 The DWP file can be made up of a random collection of CUs and TUs.
12570 However, for each CU + set of TUs that came from the same original DWO
12571 file, we can combine them back into a virtual DWO file to save space
12572 (fewer struct dwo_file objects to allocate). Remember that for really
12573 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12574
12575 std::string virtual_dwo_name =
12576 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12577 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12578 (long) (sections.line_size ? sections.line_offset : 0),
12579 (long) (sections.loc_size ? sections.loc_offset : 0),
12580 (long) (sections.str_offsets_size
12581 ? sections.str_offsets_offset : 0));
12582 /* Can we use an existing virtual DWO file? */
12583 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12584 virtual_dwo_name.c_str (),
12585 comp_dir);
12586 /* Create one if necessary. */
12587 if (*dwo_file_slot == NULL)
12588 {
12589 if (dwarf_read_debug)
12590 {
12591 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12592 virtual_dwo_name.c_str ());
12593 }
12594 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12595 dwo_file->dwo_name
12596 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12597 virtual_dwo_name.c_str (),
12598 virtual_dwo_name.size ());
12599 dwo_file->comp_dir = comp_dir;
12600 dwo_file->sections.abbrev =
12601 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12602 sections.abbrev_offset, sections.abbrev_size);
12603 dwo_file->sections.line =
12604 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12605 sections.line_offset, sections.line_size);
12606 dwo_file->sections.loc =
12607 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12608 sections.loc_offset, sections.loc_size);
12609 dwo_file->sections.macinfo =
12610 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12611 sections.macinfo_offset, sections.macinfo_size);
12612 dwo_file->sections.macro =
12613 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12614 sections.macro_offset, sections.macro_size);
12615 dwo_file->sections.str_offsets =
12616 create_dwp_v2_section (dwarf2_per_objfile,
12617 &dwp_file->sections.str_offsets,
12618 sections.str_offsets_offset,
12619 sections.str_offsets_size);
12620 /* The "str" section is global to the entire DWP file. */
12621 dwo_file->sections.str = dwp_file->sections.str;
12622 /* The info or types section is assigned below to dwo_unit,
12623 there's no need to record it in dwo_file.
12624 Also, we can't simply record type sections in dwo_file because
12625 we record a pointer into the vector in dwo_unit. As we collect more
12626 types we'll grow the vector and eventually have to reallocate space
12627 for it, invalidating all copies of pointers into the previous
12628 contents. */
12629 *dwo_file_slot = dwo_file;
12630 }
12631 else
12632 {
12633 if (dwarf_read_debug)
12634 {
12635 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12636 virtual_dwo_name.c_str ());
12637 }
12638 dwo_file = (struct dwo_file *) *dwo_file_slot;
12639 }
12640
12641 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12642 dwo_unit->dwo_file = dwo_file;
12643 dwo_unit->signature = signature;
12644 dwo_unit->section =
12645 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12646 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12647 is_debug_types
12648 ? &dwp_file->sections.types
12649 : &dwp_file->sections.info,
12650 sections.info_or_types_offset,
12651 sections.info_or_types_size);
12652 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12653
12654 return dwo_unit;
12655 }
12656
12657 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12658 Returns NULL if the signature isn't found. */
12659
12660 static struct dwo_unit *
12661 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12662 struct dwp_file *dwp_file, const char *comp_dir,
12663 ULONGEST signature, int is_debug_types)
12664 {
12665 const struct dwp_hash_table *dwp_htab =
12666 is_debug_types ? dwp_file->tus : dwp_file->cus;
12667 bfd *dbfd = dwp_file->dbfd;
12668 uint32_t mask = dwp_htab->nr_slots - 1;
12669 uint32_t hash = signature & mask;
12670 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12671 unsigned int i;
12672 void **slot;
12673 struct dwo_unit find_dwo_cu;
12674
12675 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12676 find_dwo_cu.signature = signature;
12677 slot = htab_find_slot (is_debug_types
12678 ? dwp_file->loaded_tus
12679 : dwp_file->loaded_cus,
12680 &find_dwo_cu, INSERT);
12681
12682 if (*slot != NULL)
12683 return (struct dwo_unit *) *slot;
12684
12685 /* Use a for loop so that we don't loop forever on bad debug info. */
12686 for (i = 0; i < dwp_htab->nr_slots; ++i)
12687 {
12688 ULONGEST signature_in_table;
12689
12690 signature_in_table =
12691 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12692 if (signature_in_table == signature)
12693 {
12694 uint32_t unit_index =
12695 read_4_bytes (dbfd,
12696 dwp_htab->unit_table + hash * sizeof (uint32_t));
12697
12698 if (dwp_file->version == 1)
12699 {
12700 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12701 dwp_file, unit_index,
12702 comp_dir, signature,
12703 is_debug_types);
12704 }
12705 else
12706 {
12707 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12708 dwp_file, unit_index,
12709 comp_dir, signature,
12710 is_debug_types);
12711 }
12712 return (struct dwo_unit *) *slot;
12713 }
12714 if (signature_in_table == 0)
12715 return NULL;
12716 hash = (hash + hash2) & mask;
12717 }
12718
12719 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12720 " [in module %s]"),
12721 dwp_file->name);
12722 }
12723
12724 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12725 Open the file specified by FILE_NAME and hand it off to BFD for
12726 preliminary analysis. Return a newly initialized bfd *, which
12727 includes a canonicalized copy of FILE_NAME.
12728 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12729 SEARCH_CWD is true if the current directory is to be searched.
12730 It will be searched before debug-file-directory.
12731 If successful, the file is added to the bfd include table of the
12732 objfile's bfd (see gdb_bfd_record_inclusion).
12733 If unable to find/open the file, return NULL.
12734 NOTE: This function is derived from symfile_bfd_open. */
12735
12736 static gdb_bfd_ref_ptr
12737 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12738 const char *file_name, int is_dwp, int search_cwd)
12739 {
12740 int desc;
12741 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12742 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12743 to debug_file_directory. */
12744 const char *search_path;
12745 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12746
12747 gdb::unique_xmalloc_ptr<char> search_path_holder;
12748 if (search_cwd)
12749 {
12750 if (*debug_file_directory != '\0')
12751 {
12752 search_path_holder.reset (concat (".", dirname_separator_string,
12753 debug_file_directory,
12754 (char *) NULL));
12755 search_path = search_path_holder.get ();
12756 }
12757 else
12758 search_path = ".";
12759 }
12760 else
12761 search_path = debug_file_directory;
12762
12763 openp_flags flags = OPF_RETURN_REALPATH;
12764 if (is_dwp)
12765 flags |= OPF_SEARCH_IN_PATH;
12766
12767 gdb::unique_xmalloc_ptr<char> absolute_name;
12768 desc = openp (search_path, flags, file_name,
12769 O_RDONLY | O_BINARY, &absolute_name);
12770 if (desc < 0)
12771 return NULL;
12772
12773 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12774 gnutarget, desc));
12775 if (sym_bfd == NULL)
12776 return NULL;
12777 bfd_set_cacheable (sym_bfd.get (), 1);
12778
12779 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12780 return NULL;
12781
12782 /* Success. Record the bfd as having been included by the objfile's bfd.
12783 This is important because things like demangled_names_hash lives in the
12784 objfile's per_bfd space and may have references to things like symbol
12785 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12786 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12787
12788 return sym_bfd;
12789 }
12790
12791 /* Try to open DWO file FILE_NAME.
12792 COMP_DIR is the DW_AT_comp_dir attribute.
12793 The result is the bfd handle of the file.
12794 If there is a problem finding or opening the file, return NULL.
12795 Upon success, the canonicalized path of the file is stored in the bfd,
12796 same as symfile_bfd_open. */
12797
12798 static gdb_bfd_ref_ptr
12799 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12800 const char *file_name, const char *comp_dir)
12801 {
12802 if (IS_ABSOLUTE_PATH (file_name))
12803 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12804 0 /*is_dwp*/, 0 /*search_cwd*/);
12805
12806 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12807
12808 if (comp_dir != NULL)
12809 {
12810 char *path_to_try = concat (comp_dir, SLASH_STRING,
12811 file_name, (char *) NULL);
12812
12813 /* NOTE: If comp_dir is a relative path, this will also try the
12814 search path, which seems useful. */
12815 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12816 path_to_try,
12817 0 /*is_dwp*/,
12818 1 /*search_cwd*/));
12819 xfree (path_to_try);
12820 if (abfd != NULL)
12821 return abfd;
12822 }
12823
12824 /* That didn't work, try debug-file-directory, which, despite its name,
12825 is a list of paths. */
12826
12827 if (*debug_file_directory == '\0')
12828 return NULL;
12829
12830 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12831 0 /*is_dwp*/, 1 /*search_cwd*/);
12832 }
12833
12834 /* This function is mapped across the sections and remembers the offset and
12835 size of each of the DWO debugging sections we are interested in. */
12836
12837 static void
12838 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12839 {
12840 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12841 const struct dwop_section_names *names = &dwop_section_names;
12842
12843 if (section_is_p (sectp->name, &names->abbrev_dwo))
12844 {
12845 dwo_sections->abbrev.s.section = sectp;
12846 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12847 }
12848 else if (section_is_p (sectp->name, &names->info_dwo))
12849 {
12850 dwo_sections->info.s.section = sectp;
12851 dwo_sections->info.size = bfd_get_section_size (sectp);
12852 }
12853 else if (section_is_p (sectp->name, &names->line_dwo))
12854 {
12855 dwo_sections->line.s.section = sectp;
12856 dwo_sections->line.size = bfd_get_section_size (sectp);
12857 }
12858 else if (section_is_p (sectp->name, &names->loc_dwo))
12859 {
12860 dwo_sections->loc.s.section = sectp;
12861 dwo_sections->loc.size = bfd_get_section_size (sectp);
12862 }
12863 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12864 {
12865 dwo_sections->macinfo.s.section = sectp;
12866 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12867 }
12868 else if (section_is_p (sectp->name, &names->macro_dwo))
12869 {
12870 dwo_sections->macro.s.section = sectp;
12871 dwo_sections->macro.size = bfd_get_section_size (sectp);
12872 }
12873 else if (section_is_p (sectp->name, &names->str_dwo))
12874 {
12875 dwo_sections->str.s.section = sectp;
12876 dwo_sections->str.size = bfd_get_section_size (sectp);
12877 }
12878 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12879 {
12880 dwo_sections->str_offsets.s.section = sectp;
12881 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12882 }
12883 else if (section_is_p (sectp->name, &names->types_dwo))
12884 {
12885 struct dwarf2_section_info type_section;
12886
12887 memset (&type_section, 0, sizeof (type_section));
12888 type_section.s.section = sectp;
12889 type_section.size = bfd_get_section_size (sectp);
12890 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12891 &type_section);
12892 }
12893 }
12894
12895 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12896 by PER_CU. This is for the non-DWP case.
12897 The result is NULL if DWO_NAME can't be found. */
12898
12899 static struct dwo_file *
12900 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12901 const char *dwo_name, const char *comp_dir)
12902 {
12903 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12904 struct objfile *objfile = dwarf2_per_objfile->objfile;
12905
12906 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12907 if (dbfd == NULL)
12908 {
12909 if (dwarf_read_debug)
12910 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12911 return NULL;
12912 }
12913
12914 /* We use a unique pointer here, despite the obstack allocation,
12915 because a dwo_file needs some cleanup if it is abandoned. */
12916 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12917 struct dwo_file));
12918 dwo_file->dwo_name = dwo_name;
12919 dwo_file->comp_dir = comp_dir;
12920 dwo_file->dbfd = dbfd.release ();
12921
12922 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12923 &dwo_file->sections);
12924
12925 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12926 dwo_file->cus);
12927
12928 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12929 dwo_file->sections.types, dwo_file->tus);
12930
12931 if (dwarf_read_debug)
12932 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12933
12934 return dwo_file.release ();
12935 }
12936
12937 /* This function is mapped across the sections and remembers the offset and
12938 size of each of the DWP debugging sections common to version 1 and 2 that
12939 we are interested in. */
12940
12941 static void
12942 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12943 void *dwp_file_ptr)
12944 {
12945 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12946 const struct dwop_section_names *names = &dwop_section_names;
12947 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12948
12949 /* Record the ELF section number for later lookup: this is what the
12950 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12951 gdb_assert (elf_section_nr < dwp_file->num_sections);
12952 dwp_file->elf_sections[elf_section_nr] = sectp;
12953
12954 /* Look for specific sections that we need. */
12955 if (section_is_p (sectp->name, &names->str_dwo))
12956 {
12957 dwp_file->sections.str.s.section = sectp;
12958 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12959 }
12960 else if (section_is_p (sectp->name, &names->cu_index))
12961 {
12962 dwp_file->sections.cu_index.s.section = sectp;
12963 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12964 }
12965 else if (section_is_p (sectp->name, &names->tu_index))
12966 {
12967 dwp_file->sections.tu_index.s.section = sectp;
12968 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12969 }
12970 }
12971
12972 /* This function is mapped across the sections and remembers the offset and
12973 size of each of the DWP version 2 debugging sections that we are interested
12974 in. This is split into a separate function because we don't know if we
12975 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12976
12977 static void
12978 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12979 {
12980 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12981 const struct dwop_section_names *names = &dwop_section_names;
12982 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12983
12984 /* Record the ELF section number for later lookup: this is what the
12985 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12986 gdb_assert (elf_section_nr < dwp_file->num_sections);
12987 dwp_file->elf_sections[elf_section_nr] = sectp;
12988
12989 /* Look for specific sections that we need. */
12990 if (section_is_p (sectp->name, &names->abbrev_dwo))
12991 {
12992 dwp_file->sections.abbrev.s.section = sectp;
12993 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12994 }
12995 else if (section_is_p (sectp->name, &names->info_dwo))
12996 {
12997 dwp_file->sections.info.s.section = sectp;
12998 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12999 }
13000 else if (section_is_p (sectp->name, &names->line_dwo))
13001 {
13002 dwp_file->sections.line.s.section = sectp;
13003 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13004 }
13005 else if (section_is_p (sectp->name, &names->loc_dwo))
13006 {
13007 dwp_file->sections.loc.s.section = sectp;
13008 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13009 }
13010 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13011 {
13012 dwp_file->sections.macinfo.s.section = sectp;
13013 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13014 }
13015 else if (section_is_p (sectp->name, &names->macro_dwo))
13016 {
13017 dwp_file->sections.macro.s.section = sectp;
13018 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13019 }
13020 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13021 {
13022 dwp_file->sections.str_offsets.s.section = sectp;
13023 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13024 }
13025 else if (section_is_p (sectp->name, &names->types_dwo))
13026 {
13027 dwp_file->sections.types.s.section = sectp;
13028 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13029 }
13030 }
13031
13032 /* Hash function for dwp_file loaded CUs/TUs. */
13033
13034 static hashval_t
13035 hash_dwp_loaded_cutus (const void *item)
13036 {
13037 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13038
13039 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13040 return dwo_unit->signature;
13041 }
13042
13043 /* Equality function for dwp_file loaded CUs/TUs. */
13044
13045 static int
13046 eq_dwp_loaded_cutus (const void *a, const void *b)
13047 {
13048 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13049 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13050
13051 return dua->signature == dub->signature;
13052 }
13053
13054 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13055
13056 static htab_t
13057 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13058 {
13059 return htab_create_alloc_ex (3,
13060 hash_dwp_loaded_cutus,
13061 eq_dwp_loaded_cutus,
13062 NULL,
13063 &objfile->objfile_obstack,
13064 hashtab_obstack_allocate,
13065 dummy_obstack_deallocate);
13066 }
13067
13068 /* Try to open DWP file FILE_NAME.
13069 The result is the bfd handle of the file.
13070 If there is a problem finding or opening the file, return NULL.
13071 Upon success, the canonicalized path of the file is stored in the bfd,
13072 same as symfile_bfd_open. */
13073
13074 static gdb_bfd_ref_ptr
13075 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13076 const char *file_name)
13077 {
13078 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13079 1 /*is_dwp*/,
13080 1 /*search_cwd*/));
13081 if (abfd != NULL)
13082 return abfd;
13083
13084 /* Work around upstream bug 15652.
13085 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13086 [Whether that's a "bug" is debatable, but it is getting in our way.]
13087 We have no real idea where the dwp file is, because gdb's realpath-ing
13088 of the executable's path may have discarded the needed info.
13089 [IWBN if the dwp file name was recorded in the executable, akin to
13090 .gnu_debuglink, but that doesn't exist yet.]
13091 Strip the directory from FILE_NAME and search again. */
13092 if (*debug_file_directory != '\0')
13093 {
13094 /* Don't implicitly search the current directory here.
13095 If the user wants to search "." to handle this case,
13096 it must be added to debug-file-directory. */
13097 return try_open_dwop_file (dwarf2_per_objfile,
13098 lbasename (file_name), 1 /*is_dwp*/,
13099 0 /*search_cwd*/);
13100 }
13101
13102 return NULL;
13103 }
13104
13105 /* Initialize the use of the DWP file for the current objfile.
13106 By convention the name of the DWP file is ${objfile}.dwp.
13107 The result is NULL if it can't be found. */
13108
13109 static struct dwp_file *
13110 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13111 {
13112 struct objfile *objfile = dwarf2_per_objfile->objfile;
13113 struct dwp_file *dwp_file;
13114
13115 /* Try to find first .dwp for the binary file before any symbolic links
13116 resolving. */
13117
13118 /* If the objfile is a debug file, find the name of the real binary
13119 file and get the name of dwp file from there. */
13120 std::string dwp_name;
13121 if (objfile->separate_debug_objfile_backlink != NULL)
13122 {
13123 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13124 const char *backlink_basename = lbasename (backlink->original_name);
13125
13126 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13127 }
13128 else
13129 dwp_name = objfile->original_name;
13130
13131 dwp_name += ".dwp";
13132
13133 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13134 if (dbfd == NULL
13135 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13136 {
13137 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13138 dwp_name = objfile_name (objfile);
13139 dwp_name += ".dwp";
13140 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13141 }
13142
13143 if (dbfd == NULL)
13144 {
13145 if (dwarf_read_debug)
13146 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13147 return NULL;
13148 }
13149 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13150 dwp_file->name = bfd_get_filename (dbfd.get ());
13151 dwp_file->dbfd = dbfd.release ();
13152
13153 /* +1: section 0 is unused */
13154 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13155 dwp_file->elf_sections =
13156 OBSTACK_CALLOC (&objfile->objfile_obstack,
13157 dwp_file->num_sections, asection *);
13158
13159 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13160 dwp_file);
13161
13162 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13163
13164 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13165
13166 /* The DWP file version is stored in the hash table. Oh well. */
13167 if (dwp_file->cus && dwp_file->tus
13168 && dwp_file->cus->version != dwp_file->tus->version)
13169 {
13170 /* Technically speaking, we should try to limp along, but this is
13171 pretty bizarre. We use pulongest here because that's the established
13172 portability solution (e.g, we cannot use %u for uint32_t). */
13173 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13174 " TU version %s [in DWP file %s]"),
13175 pulongest (dwp_file->cus->version),
13176 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13177 }
13178
13179 if (dwp_file->cus)
13180 dwp_file->version = dwp_file->cus->version;
13181 else if (dwp_file->tus)
13182 dwp_file->version = dwp_file->tus->version;
13183 else
13184 dwp_file->version = 2;
13185
13186 if (dwp_file->version == 2)
13187 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13188 dwp_file);
13189
13190 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13191 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13192
13193 if (dwarf_read_debug)
13194 {
13195 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13196 fprintf_unfiltered (gdb_stdlog,
13197 " %s CUs, %s TUs\n",
13198 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13199 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13200 }
13201
13202 return dwp_file;
13203 }
13204
13205 /* Wrapper around open_and_init_dwp_file, only open it once. */
13206
13207 static struct dwp_file *
13208 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13209 {
13210 if (! dwarf2_per_objfile->dwp_checked)
13211 {
13212 dwarf2_per_objfile->dwp_file
13213 = open_and_init_dwp_file (dwarf2_per_objfile);
13214 dwarf2_per_objfile->dwp_checked = 1;
13215 }
13216 return dwarf2_per_objfile->dwp_file;
13217 }
13218
13219 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13220 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13221 or in the DWP file for the objfile, referenced by THIS_UNIT.
13222 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13223 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13224
13225 This is called, for example, when wanting to read a variable with a
13226 complex location. Therefore we don't want to do file i/o for every call.
13227 Therefore we don't want to look for a DWO file on every call.
13228 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13229 then we check if we've already seen DWO_NAME, and only THEN do we check
13230 for a DWO file.
13231
13232 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13233 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13234
13235 static struct dwo_unit *
13236 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13237 const char *dwo_name, const char *comp_dir,
13238 ULONGEST signature, int is_debug_types)
13239 {
13240 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13241 struct objfile *objfile = dwarf2_per_objfile->objfile;
13242 const char *kind = is_debug_types ? "TU" : "CU";
13243 void **dwo_file_slot;
13244 struct dwo_file *dwo_file;
13245 struct dwp_file *dwp_file;
13246
13247 /* First see if there's a DWP file.
13248 If we have a DWP file but didn't find the DWO inside it, don't
13249 look for the original DWO file. It makes gdb behave differently
13250 depending on whether one is debugging in the build tree. */
13251
13252 dwp_file = get_dwp_file (dwarf2_per_objfile);
13253 if (dwp_file != NULL)
13254 {
13255 const struct dwp_hash_table *dwp_htab =
13256 is_debug_types ? dwp_file->tus : dwp_file->cus;
13257
13258 if (dwp_htab != NULL)
13259 {
13260 struct dwo_unit *dwo_cutu =
13261 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13262 signature, is_debug_types);
13263
13264 if (dwo_cutu != NULL)
13265 {
13266 if (dwarf_read_debug)
13267 {
13268 fprintf_unfiltered (gdb_stdlog,
13269 "Virtual DWO %s %s found: @%s\n",
13270 kind, hex_string (signature),
13271 host_address_to_string (dwo_cutu));
13272 }
13273 return dwo_cutu;
13274 }
13275 }
13276 }
13277 else
13278 {
13279 /* No DWP file, look for the DWO file. */
13280
13281 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13282 dwo_name, comp_dir);
13283 if (*dwo_file_slot == NULL)
13284 {
13285 /* Read in the file and build a table of the CUs/TUs it contains. */
13286 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13287 }
13288 /* NOTE: This will be NULL if unable to open the file. */
13289 dwo_file = (struct dwo_file *) *dwo_file_slot;
13290
13291 if (dwo_file != NULL)
13292 {
13293 struct dwo_unit *dwo_cutu = NULL;
13294
13295 if (is_debug_types && dwo_file->tus)
13296 {
13297 struct dwo_unit find_dwo_cutu;
13298
13299 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13300 find_dwo_cutu.signature = signature;
13301 dwo_cutu
13302 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13303 }
13304 else if (!is_debug_types && dwo_file->cus)
13305 {
13306 struct dwo_unit find_dwo_cutu;
13307
13308 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13309 find_dwo_cutu.signature = signature;
13310 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13311 &find_dwo_cutu);
13312 }
13313
13314 if (dwo_cutu != NULL)
13315 {
13316 if (dwarf_read_debug)
13317 {
13318 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13319 kind, dwo_name, hex_string (signature),
13320 host_address_to_string (dwo_cutu));
13321 }
13322 return dwo_cutu;
13323 }
13324 }
13325 }
13326
13327 /* We didn't find it. This could mean a dwo_id mismatch, or
13328 someone deleted the DWO/DWP file, or the search path isn't set up
13329 correctly to find the file. */
13330
13331 if (dwarf_read_debug)
13332 {
13333 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13334 kind, dwo_name, hex_string (signature));
13335 }
13336
13337 /* This is a warning and not a complaint because it can be caused by
13338 pilot error (e.g., user accidentally deleting the DWO). */
13339 {
13340 /* Print the name of the DWP file if we looked there, helps the user
13341 better diagnose the problem. */
13342 std::string dwp_text;
13343
13344 if (dwp_file != NULL)
13345 dwp_text = string_printf (" [in DWP file %s]",
13346 lbasename (dwp_file->name));
13347
13348 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13349 " [in module %s]"),
13350 kind, dwo_name, hex_string (signature),
13351 dwp_text.c_str (),
13352 this_unit->is_debug_types ? "TU" : "CU",
13353 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13354 }
13355 return NULL;
13356 }
13357
13358 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13359 See lookup_dwo_cutu_unit for details. */
13360
13361 static struct dwo_unit *
13362 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13363 const char *dwo_name, const char *comp_dir,
13364 ULONGEST signature)
13365 {
13366 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13367 }
13368
13369 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13370 See lookup_dwo_cutu_unit for details. */
13371
13372 static struct dwo_unit *
13373 lookup_dwo_type_unit (struct signatured_type *this_tu,
13374 const char *dwo_name, const char *comp_dir)
13375 {
13376 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13377 }
13378
13379 /* Traversal function for queue_and_load_all_dwo_tus. */
13380
13381 static int
13382 queue_and_load_dwo_tu (void **slot, void *info)
13383 {
13384 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13385 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13386 ULONGEST signature = dwo_unit->signature;
13387 struct signatured_type *sig_type =
13388 lookup_dwo_signatured_type (per_cu->cu, signature);
13389
13390 if (sig_type != NULL)
13391 {
13392 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13393
13394 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13395 a real dependency of PER_CU on SIG_TYPE. That is detected later
13396 while processing PER_CU. */
13397 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13398 load_full_type_unit (sig_cu);
13399 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13400 }
13401
13402 return 1;
13403 }
13404
13405 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13406 The DWO may have the only definition of the type, though it may not be
13407 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13408 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13409
13410 static void
13411 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13412 {
13413 struct dwo_unit *dwo_unit;
13414 struct dwo_file *dwo_file;
13415
13416 gdb_assert (!per_cu->is_debug_types);
13417 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13418 gdb_assert (per_cu->cu != NULL);
13419
13420 dwo_unit = per_cu->cu->dwo_unit;
13421 gdb_assert (dwo_unit != NULL);
13422
13423 dwo_file = dwo_unit->dwo_file;
13424 if (dwo_file->tus != NULL)
13425 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13426 }
13427
13428 /* Free all resources associated with DWO_FILE.
13429 Close the DWO file and munmap the sections. */
13430
13431 static void
13432 free_dwo_file (struct dwo_file *dwo_file)
13433 {
13434 /* Note: dbfd is NULL for virtual DWO files. */
13435 gdb_bfd_unref (dwo_file->dbfd);
13436
13437 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13438 }
13439
13440 /* Traversal function for free_dwo_files. */
13441
13442 static int
13443 free_dwo_file_from_slot (void **slot, void *info)
13444 {
13445 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13446
13447 free_dwo_file (dwo_file);
13448
13449 return 1;
13450 }
13451
13452 /* Free all resources associated with DWO_FILES. */
13453
13454 static void
13455 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13456 {
13457 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13458 }
13459 \f
13460 /* Read in various DIEs. */
13461
13462 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13463 Inherit only the children of the DW_AT_abstract_origin DIE not being
13464 already referenced by DW_AT_abstract_origin from the children of the
13465 current DIE. */
13466
13467 static void
13468 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13469 {
13470 struct die_info *child_die;
13471 sect_offset *offsetp;
13472 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13473 struct die_info *origin_die;
13474 /* Iterator of the ORIGIN_DIE children. */
13475 struct die_info *origin_child_die;
13476 struct attribute *attr;
13477 struct dwarf2_cu *origin_cu;
13478 struct pending **origin_previous_list_in_scope;
13479
13480 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13481 if (!attr)
13482 return;
13483
13484 /* Note that following die references may follow to a die in a
13485 different cu. */
13486
13487 origin_cu = cu;
13488 origin_die = follow_die_ref (die, attr, &origin_cu);
13489
13490 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13491 symbols in. */
13492 origin_previous_list_in_scope = origin_cu->list_in_scope;
13493 origin_cu->list_in_scope = cu->list_in_scope;
13494
13495 if (die->tag != origin_die->tag
13496 && !(die->tag == DW_TAG_inlined_subroutine
13497 && origin_die->tag == DW_TAG_subprogram))
13498 complaint (&symfile_complaints,
13499 _("DIE %s and its abstract origin %s have different tags"),
13500 sect_offset_str (die->sect_off),
13501 sect_offset_str (origin_die->sect_off));
13502
13503 std::vector<sect_offset> offsets;
13504
13505 for (child_die = die->child;
13506 child_die && child_die->tag;
13507 child_die = sibling_die (child_die))
13508 {
13509 struct die_info *child_origin_die;
13510 struct dwarf2_cu *child_origin_cu;
13511
13512 /* We are trying to process concrete instance entries:
13513 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13514 it's not relevant to our analysis here. i.e. detecting DIEs that are
13515 present in the abstract instance but not referenced in the concrete
13516 one. */
13517 if (child_die->tag == DW_TAG_call_site
13518 || child_die->tag == DW_TAG_GNU_call_site)
13519 continue;
13520
13521 /* For each CHILD_DIE, find the corresponding child of
13522 ORIGIN_DIE. If there is more than one layer of
13523 DW_AT_abstract_origin, follow them all; there shouldn't be,
13524 but GCC versions at least through 4.4 generate this (GCC PR
13525 40573). */
13526 child_origin_die = child_die;
13527 child_origin_cu = cu;
13528 while (1)
13529 {
13530 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13531 child_origin_cu);
13532 if (attr == NULL)
13533 break;
13534 child_origin_die = follow_die_ref (child_origin_die, attr,
13535 &child_origin_cu);
13536 }
13537
13538 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13539 counterpart may exist. */
13540 if (child_origin_die != child_die)
13541 {
13542 if (child_die->tag != child_origin_die->tag
13543 && !(child_die->tag == DW_TAG_inlined_subroutine
13544 && child_origin_die->tag == DW_TAG_subprogram))
13545 complaint (&symfile_complaints,
13546 _("Child DIE %s and its abstract origin %s have "
13547 "different tags"),
13548 sect_offset_str (child_die->sect_off),
13549 sect_offset_str (child_origin_die->sect_off));
13550 if (child_origin_die->parent != origin_die)
13551 complaint (&symfile_complaints,
13552 _("Child DIE %s and its abstract origin %s have "
13553 "different parents"),
13554 sect_offset_str (child_die->sect_off),
13555 sect_offset_str (child_origin_die->sect_off));
13556 else
13557 offsets.push_back (child_origin_die->sect_off);
13558 }
13559 }
13560 std::sort (offsets.begin (), offsets.end ());
13561 sect_offset *offsets_end = offsets.data () + offsets.size ();
13562 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13563 if (offsetp[-1] == *offsetp)
13564 complaint (&symfile_complaints,
13565 _("Multiple children of DIE %s refer "
13566 "to DIE %s as their abstract origin"),
13567 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13568
13569 offsetp = offsets.data ();
13570 origin_child_die = origin_die->child;
13571 while (origin_child_die && origin_child_die->tag)
13572 {
13573 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13574 while (offsetp < offsets_end
13575 && *offsetp < origin_child_die->sect_off)
13576 offsetp++;
13577 if (offsetp >= offsets_end
13578 || *offsetp > origin_child_die->sect_off)
13579 {
13580 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13581 Check whether we're already processing ORIGIN_CHILD_DIE.
13582 This can happen with mutually referenced abstract_origins.
13583 PR 16581. */
13584 if (!origin_child_die->in_process)
13585 process_die (origin_child_die, origin_cu);
13586 }
13587 origin_child_die = sibling_die (origin_child_die);
13588 }
13589 origin_cu->list_in_scope = origin_previous_list_in_scope;
13590 }
13591
13592 static void
13593 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13594 {
13595 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13596 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13597 struct context_stack *newobj;
13598 CORE_ADDR lowpc;
13599 CORE_ADDR highpc;
13600 struct die_info *child_die;
13601 struct attribute *attr, *call_line, *call_file;
13602 const char *name;
13603 CORE_ADDR baseaddr;
13604 struct block *block;
13605 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13606 std::vector<struct symbol *> template_args;
13607 struct template_symbol *templ_func = NULL;
13608
13609 if (inlined_func)
13610 {
13611 /* If we do not have call site information, we can't show the
13612 caller of this inlined function. That's too confusing, so
13613 only use the scope for local variables. */
13614 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13615 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13616 if (call_line == NULL || call_file == NULL)
13617 {
13618 read_lexical_block_scope (die, cu);
13619 return;
13620 }
13621 }
13622
13623 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13624
13625 name = dwarf2_name (die, cu);
13626
13627 /* Ignore functions with missing or empty names. These are actually
13628 illegal according to the DWARF standard. */
13629 if (name == NULL)
13630 {
13631 complaint (&symfile_complaints,
13632 _("missing name for subprogram DIE at %s"),
13633 sect_offset_str (die->sect_off));
13634 return;
13635 }
13636
13637 /* Ignore functions with missing or invalid low and high pc attributes. */
13638 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13639 <= PC_BOUNDS_INVALID)
13640 {
13641 attr = dwarf2_attr (die, DW_AT_external, cu);
13642 if (!attr || !DW_UNSND (attr))
13643 complaint (&symfile_complaints,
13644 _("cannot get low and high bounds "
13645 "for subprogram DIE at %s"),
13646 sect_offset_str (die->sect_off));
13647 return;
13648 }
13649
13650 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13651 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13652
13653 /* If we have any template arguments, then we must allocate a
13654 different sort of symbol. */
13655 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13656 {
13657 if (child_die->tag == DW_TAG_template_type_param
13658 || child_die->tag == DW_TAG_template_value_param)
13659 {
13660 templ_func = allocate_template_symbol (objfile);
13661 templ_func->subclass = SYMBOL_TEMPLATE;
13662 break;
13663 }
13664 }
13665
13666 newobj = push_context (0, lowpc);
13667 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13668 (struct symbol *) templ_func);
13669
13670 /* If there is a location expression for DW_AT_frame_base, record
13671 it. */
13672 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13673 if (attr)
13674 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13675
13676 /* If there is a location for the static link, record it. */
13677 newobj->static_link = NULL;
13678 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13679 if (attr)
13680 {
13681 newobj->static_link
13682 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13683 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13684 }
13685
13686 cu->list_in_scope = &local_symbols;
13687
13688 if (die->child != NULL)
13689 {
13690 child_die = die->child;
13691 while (child_die && child_die->tag)
13692 {
13693 if (child_die->tag == DW_TAG_template_type_param
13694 || child_die->tag == DW_TAG_template_value_param)
13695 {
13696 struct symbol *arg = new_symbol (child_die, NULL, cu);
13697
13698 if (arg != NULL)
13699 template_args.push_back (arg);
13700 }
13701 else
13702 process_die (child_die, cu);
13703 child_die = sibling_die (child_die);
13704 }
13705 }
13706
13707 inherit_abstract_dies (die, cu);
13708
13709 /* If we have a DW_AT_specification, we might need to import using
13710 directives from the context of the specification DIE. See the
13711 comment in determine_prefix. */
13712 if (cu->language == language_cplus
13713 && dwarf2_attr (die, DW_AT_specification, cu))
13714 {
13715 struct dwarf2_cu *spec_cu = cu;
13716 struct die_info *spec_die = die_specification (die, &spec_cu);
13717
13718 while (spec_die)
13719 {
13720 child_die = spec_die->child;
13721 while (child_die && child_die->tag)
13722 {
13723 if (child_die->tag == DW_TAG_imported_module)
13724 process_die (child_die, spec_cu);
13725 child_die = sibling_die (child_die);
13726 }
13727
13728 /* In some cases, GCC generates specification DIEs that
13729 themselves contain DW_AT_specification attributes. */
13730 spec_die = die_specification (spec_die, &spec_cu);
13731 }
13732 }
13733
13734 newobj = pop_context ();
13735 /* Make a block for the local symbols within. */
13736 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13737 newobj->static_link, lowpc, highpc);
13738
13739 /* For C++, set the block's scope. */
13740 if ((cu->language == language_cplus
13741 || cu->language == language_fortran
13742 || cu->language == language_d
13743 || cu->language == language_rust)
13744 && cu->processing_has_namespace_info)
13745 block_set_scope (block, determine_prefix (die, cu),
13746 &objfile->objfile_obstack);
13747
13748 /* If we have address ranges, record them. */
13749 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13750
13751 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13752
13753 /* Attach template arguments to function. */
13754 if (!template_args.empty ())
13755 {
13756 gdb_assert (templ_func != NULL);
13757
13758 templ_func->n_template_arguments = template_args.size ();
13759 templ_func->template_arguments
13760 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13761 templ_func->n_template_arguments);
13762 memcpy (templ_func->template_arguments,
13763 template_args.data (),
13764 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13765 }
13766
13767 /* In C++, we can have functions nested inside functions (e.g., when
13768 a function declares a class that has methods). This means that
13769 when we finish processing a function scope, we may need to go
13770 back to building a containing block's symbol lists. */
13771 local_symbols = newobj->locals;
13772 local_using_directives = newobj->local_using_directives;
13773
13774 /* If we've finished processing a top-level function, subsequent
13775 symbols go in the file symbol list. */
13776 if (outermost_context_p ())
13777 cu->list_in_scope = &file_symbols;
13778 }
13779
13780 /* Process all the DIES contained within a lexical block scope. Start
13781 a new scope, process the dies, and then close the scope. */
13782
13783 static void
13784 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13785 {
13786 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13787 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13788 struct context_stack *newobj;
13789 CORE_ADDR lowpc, highpc;
13790 struct die_info *child_die;
13791 CORE_ADDR baseaddr;
13792
13793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13794
13795 /* Ignore blocks with missing or invalid low and high pc attributes. */
13796 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13797 as multiple lexical blocks? Handling children in a sane way would
13798 be nasty. Might be easier to properly extend generic blocks to
13799 describe ranges. */
13800 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13801 {
13802 case PC_BOUNDS_NOT_PRESENT:
13803 /* DW_TAG_lexical_block has no attributes, process its children as if
13804 there was no wrapping by that DW_TAG_lexical_block.
13805 GCC does no longer produces such DWARF since GCC r224161. */
13806 for (child_die = die->child;
13807 child_die != NULL && child_die->tag;
13808 child_die = sibling_die (child_die))
13809 process_die (child_die, cu);
13810 return;
13811 case PC_BOUNDS_INVALID:
13812 return;
13813 }
13814 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13815 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13816
13817 push_context (0, lowpc);
13818 if (die->child != NULL)
13819 {
13820 child_die = die->child;
13821 while (child_die && child_die->tag)
13822 {
13823 process_die (child_die, cu);
13824 child_die = sibling_die (child_die);
13825 }
13826 }
13827 inherit_abstract_dies (die, cu);
13828 newobj = pop_context ();
13829
13830 if (local_symbols != NULL || local_using_directives != NULL)
13831 {
13832 struct block *block
13833 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13834 newobj->start_addr, highpc);
13835
13836 /* Note that recording ranges after traversing children, as we
13837 do here, means that recording a parent's ranges entails
13838 walking across all its children's ranges as they appear in
13839 the address map, which is quadratic behavior.
13840
13841 It would be nicer to record the parent's ranges before
13842 traversing its children, simply overriding whatever you find
13843 there. But since we don't even decide whether to create a
13844 block until after we've traversed its children, that's hard
13845 to do. */
13846 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13847 }
13848 local_symbols = newobj->locals;
13849 local_using_directives = newobj->local_using_directives;
13850 }
13851
13852 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13853
13854 static void
13855 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13856 {
13857 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13859 CORE_ADDR pc, baseaddr;
13860 struct attribute *attr;
13861 struct call_site *call_site, call_site_local;
13862 void **slot;
13863 int nparams;
13864 struct die_info *child_die;
13865
13866 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13867
13868 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13869 if (attr == NULL)
13870 {
13871 /* This was a pre-DWARF-5 GNU extension alias
13872 for DW_AT_call_return_pc. */
13873 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13874 }
13875 if (!attr)
13876 {
13877 complaint (&symfile_complaints,
13878 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
13879 "DIE %s [in module %s]"),
13880 sect_offset_str (die->sect_off), objfile_name (objfile));
13881 return;
13882 }
13883 pc = attr_value_as_address (attr) + baseaddr;
13884 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13885
13886 if (cu->call_site_htab == NULL)
13887 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13888 NULL, &objfile->objfile_obstack,
13889 hashtab_obstack_allocate, NULL);
13890 call_site_local.pc = pc;
13891 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13892 if (*slot != NULL)
13893 {
13894 complaint (&symfile_complaints,
13895 _("Duplicate PC %s for DW_TAG_call_site "
13896 "DIE %s [in module %s]"),
13897 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13898 objfile_name (objfile));
13899 return;
13900 }
13901
13902 /* Count parameters at the caller. */
13903
13904 nparams = 0;
13905 for (child_die = die->child; child_die && child_die->tag;
13906 child_die = sibling_die (child_die))
13907 {
13908 if (child_die->tag != DW_TAG_call_site_parameter
13909 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13910 {
13911 complaint (&symfile_complaints,
13912 _("Tag %d is not DW_TAG_call_site_parameter in "
13913 "DW_TAG_call_site child DIE %s [in module %s]"),
13914 child_die->tag, sect_offset_str (child_die->sect_off),
13915 objfile_name (objfile));
13916 continue;
13917 }
13918
13919 nparams++;
13920 }
13921
13922 call_site
13923 = ((struct call_site *)
13924 obstack_alloc (&objfile->objfile_obstack,
13925 sizeof (*call_site)
13926 + (sizeof (*call_site->parameter) * (nparams - 1))));
13927 *slot = call_site;
13928 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13929 call_site->pc = pc;
13930
13931 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13932 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13933 {
13934 struct die_info *func_die;
13935
13936 /* Skip also over DW_TAG_inlined_subroutine. */
13937 for (func_die = die->parent;
13938 func_die && func_die->tag != DW_TAG_subprogram
13939 && func_die->tag != DW_TAG_subroutine_type;
13940 func_die = func_die->parent);
13941
13942 /* DW_AT_call_all_calls is a superset
13943 of DW_AT_call_all_tail_calls. */
13944 if (func_die
13945 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13946 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13947 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13948 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13949 {
13950 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13951 not complete. But keep CALL_SITE for look ups via call_site_htab,
13952 both the initial caller containing the real return address PC and
13953 the final callee containing the current PC of a chain of tail
13954 calls do not need to have the tail call list complete. But any
13955 function candidate for a virtual tail call frame searched via
13956 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13957 determined unambiguously. */
13958 }
13959 else
13960 {
13961 struct type *func_type = NULL;
13962
13963 if (func_die)
13964 func_type = get_die_type (func_die, cu);
13965 if (func_type != NULL)
13966 {
13967 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13968
13969 /* Enlist this call site to the function. */
13970 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13971 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13972 }
13973 else
13974 complaint (&symfile_complaints,
13975 _("Cannot find function owning DW_TAG_call_site "
13976 "DIE %s [in module %s]"),
13977 sect_offset_str (die->sect_off), objfile_name (objfile));
13978 }
13979 }
13980
13981 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13982 if (attr == NULL)
13983 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13984 if (attr == NULL)
13985 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13986 if (attr == NULL)
13987 {
13988 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13989 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13990 }
13991 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13992 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13993 /* Keep NULL DWARF_BLOCK. */;
13994 else if (attr_form_is_block (attr))
13995 {
13996 struct dwarf2_locexpr_baton *dlbaton;
13997
13998 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13999 dlbaton->data = DW_BLOCK (attr)->data;
14000 dlbaton->size = DW_BLOCK (attr)->size;
14001 dlbaton->per_cu = cu->per_cu;
14002
14003 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14004 }
14005 else if (attr_form_is_ref (attr))
14006 {
14007 struct dwarf2_cu *target_cu = cu;
14008 struct die_info *target_die;
14009
14010 target_die = follow_die_ref (die, attr, &target_cu);
14011 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14012 if (die_is_declaration (target_die, target_cu))
14013 {
14014 const char *target_physname;
14015
14016 /* Prefer the mangled name; otherwise compute the demangled one. */
14017 target_physname = dw2_linkage_name (target_die, target_cu);
14018 if (target_physname == NULL)
14019 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14020 if (target_physname == NULL)
14021 complaint (&symfile_complaints,
14022 _("DW_AT_call_target target DIE has invalid "
14023 "physname, for referencing DIE %s [in module %s]"),
14024 sect_offset_str (die->sect_off), objfile_name (objfile));
14025 else
14026 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14027 }
14028 else
14029 {
14030 CORE_ADDR lowpc;
14031
14032 /* DW_AT_entry_pc should be preferred. */
14033 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14034 <= PC_BOUNDS_INVALID)
14035 complaint (&symfile_complaints,
14036 _("DW_AT_call_target target DIE has invalid "
14037 "low pc, for referencing DIE %s [in module %s]"),
14038 sect_offset_str (die->sect_off), objfile_name (objfile));
14039 else
14040 {
14041 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14042 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14043 }
14044 }
14045 }
14046 else
14047 complaint (&symfile_complaints,
14048 _("DW_TAG_call_site DW_AT_call_target is neither "
14049 "block nor reference, for DIE %s [in module %s]"),
14050 sect_offset_str (die->sect_off), objfile_name (objfile));
14051
14052 call_site->per_cu = cu->per_cu;
14053
14054 for (child_die = die->child;
14055 child_die && child_die->tag;
14056 child_die = sibling_die (child_die))
14057 {
14058 struct call_site_parameter *parameter;
14059 struct attribute *loc, *origin;
14060
14061 if (child_die->tag != DW_TAG_call_site_parameter
14062 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14063 {
14064 /* Already printed the complaint above. */
14065 continue;
14066 }
14067
14068 gdb_assert (call_site->parameter_count < nparams);
14069 parameter = &call_site->parameter[call_site->parameter_count];
14070
14071 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14072 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14073 register is contained in DW_AT_call_value. */
14074
14075 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14076 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14077 if (origin == NULL)
14078 {
14079 /* This was a pre-DWARF-5 GNU extension alias
14080 for DW_AT_call_parameter. */
14081 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14082 }
14083 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14084 {
14085 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14086
14087 sect_offset sect_off
14088 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14089 if (!offset_in_cu_p (&cu->header, sect_off))
14090 {
14091 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14092 binding can be done only inside one CU. Such referenced DIE
14093 therefore cannot be even moved to DW_TAG_partial_unit. */
14094 complaint (&symfile_complaints,
14095 _("DW_AT_call_parameter offset is not in CU for "
14096 "DW_TAG_call_site child DIE %s [in module %s]"),
14097 sect_offset_str (child_die->sect_off),
14098 objfile_name (objfile));
14099 continue;
14100 }
14101 parameter->u.param_cu_off
14102 = (cu_offset) (sect_off - cu->header.sect_off);
14103 }
14104 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14105 {
14106 complaint (&symfile_complaints,
14107 _("No DW_FORM_block* DW_AT_location for "
14108 "DW_TAG_call_site child DIE %s [in module %s]"),
14109 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14110 continue;
14111 }
14112 else
14113 {
14114 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14115 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14116 if (parameter->u.dwarf_reg != -1)
14117 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14118 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14119 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14120 &parameter->u.fb_offset))
14121 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14122 else
14123 {
14124 complaint (&symfile_complaints,
14125 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14126 "for DW_FORM_block* DW_AT_location is supported for "
14127 "DW_TAG_call_site child DIE %s "
14128 "[in module %s]"),
14129 sect_offset_str (child_die->sect_off),
14130 objfile_name (objfile));
14131 continue;
14132 }
14133 }
14134
14135 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14136 if (attr == NULL)
14137 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14138 if (!attr_form_is_block (attr))
14139 {
14140 complaint (&symfile_complaints,
14141 _("No DW_FORM_block* DW_AT_call_value for "
14142 "DW_TAG_call_site child DIE %s [in module %s]"),
14143 sect_offset_str (child_die->sect_off),
14144 objfile_name (objfile));
14145 continue;
14146 }
14147 parameter->value = DW_BLOCK (attr)->data;
14148 parameter->value_size = DW_BLOCK (attr)->size;
14149
14150 /* Parameters are not pre-cleared by memset above. */
14151 parameter->data_value = NULL;
14152 parameter->data_value_size = 0;
14153 call_site->parameter_count++;
14154
14155 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14156 if (attr == NULL)
14157 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14158 if (attr)
14159 {
14160 if (!attr_form_is_block (attr))
14161 complaint (&symfile_complaints,
14162 _("No DW_FORM_block* DW_AT_call_data_value for "
14163 "DW_TAG_call_site child DIE %s [in module %s]"),
14164 sect_offset_str (child_die->sect_off),
14165 objfile_name (objfile));
14166 else
14167 {
14168 parameter->data_value = DW_BLOCK (attr)->data;
14169 parameter->data_value_size = DW_BLOCK (attr)->size;
14170 }
14171 }
14172 }
14173 }
14174
14175 /* Helper function for read_variable. If DIE represents a virtual
14176 table, then return the type of the concrete object that is
14177 associated with the virtual table. Otherwise, return NULL. */
14178
14179 static struct type *
14180 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14181 {
14182 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14183 if (attr == NULL)
14184 return NULL;
14185
14186 /* Find the type DIE. */
14187 struct die_info *type_die = NULL;
14188 struct dwarf2_cu *type_cu = cu;
14189
14190 if (attr_form_is_ref (attr))
14191 type_die = follow_die_ref (die, attr, &type_cu);
14192 if (type_die == NULL)
14193 return NULL;
14194
14195 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14196 return NULL;
14197 return die_containing_type (type_die, type_cu);
14198 }
14199
14200 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14201
14202 static void
14203 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14204 {
14205 struct rust_vtable_symbol *storage = NULL;
14206
14207 if (cu->language == language_rust)
14208 {
14209 struct type *containing_type = rust_containing_type (die, cu);
14210
14211 if (containing_type != NULL)
14212 {
14213 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14214
14215 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14216 struct rust_vtable_symbol);
14217 initialize_objfile_symbol (storage);
14218 storage->concrete_type = containing_type;
14219 storage->subclass = SYMBOL_RUST_VTABLE;
14220 }
14221 }
14222
14223 new_symbol (die, NULL, cu, storage);
14224 }
14225
14226 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14227 reading .debug_rnglists.
14228 Callback's type should be:
14229 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14230 Return true if the attributes are present and valid, otherwise,
14231 return false. */
14232
14233 template <typename Callback>
14234 static bool
14235 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14236 Callback &&callback)
14237 {
14238 struct dwarf2_per_objfile *dwarf2_per_objfile
14239 = cu->per_cu->dwarf2_per_objfile;
14240 struct objfile *objfile = dwarf2_per_objfile->objfile;
14241 bfd *obfd = objfile->obfd;
14242 /* Base address selection entry. */
14243 CORE_ADDR base;
14244 int found_base;
14245 const gdb_byte *buffer;
14246 CORE_ADDR baseaddr;
14247 bool overflow = false;
14248
14249 found_base = cu->base_known;
14250 base = cu->base_address;
14251
14252 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14253 if (offset >= dwarf2_per_objfile->rnglists.size)
14254 {
14255 complaint (&symfile_complaints,
14256 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14257 offset);
14258 return false;
14259 }
14260 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14261
14262 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14263
14264 while (1)
14265 {
14266 /* Initialize it due to a false compiler warning. */
14267 CORE_ADDR range_beginning = 0, range_end = 0;
14268 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14269 + dwarf2_per_objfile->rnglists.size);
14270 unsigned int bytes_read;
14271
14272 if (buffer == buf_end)
14273 {
14274 overflow = true;
14275 break;
14276 }
14277 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14278 switch (rlet)
14279 {
14280 case DW_RLE_end_of_list:
14281 break;
14282 case DW_RLE_base_address:
14283 if (buffer + cu->header.addr_size > buf_end)
14284 {
14285 overflow = true;
14286 break;
14287 }
14288 base = read_address (obfd, buffer, cu, &bytes_read);
14289 found_base = 1;
14290 buffer += bytes_read;
14291 break;
14292 case DW_RLE_start_length:
14293 if (buffer + cu->header.addr_size > buf_end)
14294 {
14295 overflow = true;
14296 break;
14297 }
14298 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14299 buffer += bytes_read;
14300 range_end = (range_beginning
14301 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14302 buffer += bytes_read;
14303 if (buffer > buf_end)
14304 {
14305 overflow = true;
14306 break;
14307 }
14308 break;
14309 case DW_RLE_offset_pair:
14310 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14311 buffer += bytes_read;
14312 if (buffer > buf_end)
14313 {
14314 overflow = true;
14315 break;
14316 }
14317 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14318 buffer += bytes_read;
14319 if (buffer > buf_end)
14320 {
14321 overflow = true;
14322 break;
14323 }
14324 break;
14325 case DW_RLE_start_end:
14326 if (buffer + 2 * cu->header.addr_size > buf_end)
14327 {
14328 overflow = true;
14329 break;
14330 }
14331 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14332 buffer += bytes_read;
14333 range_end = read_address (obfd, buffer, cu, &bytes_read);
14334 buffer += bytes_read;
14335 break;
14336 default:
14337 complaint (&symfile_complaints,
14338 _("Invalid .debug_rnglists data (no base address)"));
14339 return false;
14340 }
14341 if (rlet == DW_RLE_end_of_list || overflow)
14342 break;
14343 if (rlet == DW_RLE_base_address)
14344 continue;
14345
14346 if (!found_base)
14347 {
14348 /* We have no valid base address for the ranges
14349 data. */
14350 complaint (&symfile_complaints,
14351 _("Invalid .debug_rnglists data (no base address)"));
14352 return false;
14353 }
14354
14355 if (range_beginning > range_end)
14356 {
14357 /* Inverted range entries are invalid. */
14358 complaint (&symfile_complaints,
14359 _("Invalid .debug_rnglists data (inverted range)"));
14360 return false;
14361 }
14362
14363 /* Empty range entries have no effect. */
14364 if (range_beginning == range_end)
14365 continue;
14366
14367 range_beginning += base;
14368 range_end += base;
14369
14370 /* A not-uncommon case of bad debug info.
14371 Don't pollute the addrmap with bad data. */
14372 if (range_beginning + baseaddr == 0
14373 && !dwarf2_per_objfile->has_section_at_zero)
14374 {
14375 complaint (&symfile_complaints,
14376 _(".debug_rnglists entry has start address of zero"
14377 " [in module %s]"), objfile_name (objfile));
14378 continue;
14379 }
14380
14381 callback (range_beginning, range_end);
14382 }
14383
14384 if (overflow)
14385 {
14386 complaint (&symfile_complaints,
14387 _("Offset %d is not terminated "
14388 "for DW_AT_ranges attribute"),
14389 offset);
14390 return false;
14391 }
14392
14393 return true;
14394 }
14395
14396 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14397 Callback's type should be:
14398 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14399 Return 1 if the attributes are present and valid, otherwise, return 0. */
14400
14401 template <typename Callback>
14402 static int
14403 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14404 Callback &&callback)
14405 {
14406 struct dwarf2_per_objfile *dwarf2_per_objfile
14407 = cu->per_cu->dwarf2_per_objfile;
14408 struct objfile *objfile = dwarf2_per_objfile->objfile;
14409 struct comp_unit_head *cu_header = &cu->header;
14410 bfd *obfd = objfile->obfd;
14411 unsigned int addr_size = cu_header->addr_size;
14412 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14413 /* Base address selection entry. */
14414 CORE_ADDR base;
14415 int found_base;
14416 unsigned int dummy;
14417 const gdb_byte *buffer;
14418 CORE_ADDR baseaddr;
14419
14420 if (cu_header->version >= 5)
14421 return dwarf2_rnglists_process (offset, cu, callback);
14422
14423 found_base = cu->base_known;
14424 base = cu->base_address;
14425
14426 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14427 if (offset >= dwarf2_per_objfile->ranges.size)
14428 {
14429 complaint (&symfile_complaints,
14430 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14431 offset);
14432 return 0;
14433 }
14434 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14435
14436 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14437
14438 while (1)
14439 {
14440 CORE_ADDR range_beginning, range_end;
14441
14442 range_beginning = read_address (obfd, buffer, cu, &dummy);
14443 buffer += addr_size;
14444 range_end = read_address (obfd, buffer, cu, &dummy);
14445 buffer += addr_size;
14446 offset += 2 * addr_size;
14447
14448 /* An end of list marker is a pair of zero addresses. */
14449 if (range_beginning == 0 && range_end == 0)
14450 /* Found the end of list entry. */
14451 break;
14452
14453 /* Each base address selection entry is a pair of 2 values.
14454 The first is the largest possible address, the second is
14455 the base address. Check for a base address here. */
14456 if ((range_beginning & mask) == mask)
14457 {
14458 /* If we found the largest possible address, then we already
14459 have the base address in range_end. */
14460 base = range_end;
14461 found_base = 1;
14462 continue;
14463 }
14464
14465 if (!found_base)
14466 {
14467 /* We have no valid base address for the ranges
14468 data. */
14469 complaint (&symfile_complaints,
14470 _("Invalid .debug_ranges data (no base address)"));
14471 return 0;
14472 }
14473
14474 if (range_beginning > range_end)
14475 {
14476 /* Inverted range entries are invalid. */
14477 complaint (&symfile_complaints,
14478 _("Invalid .debug_ranges data (inverted range)"));
14479 return 0;
14480 }
14481
14482 /* Empty range entries have no effect. */
14483 if (range_beginning == range_end)
14484 continue;
14485
14486 range_beginning += base;
14487 range_end += base;
14488
14489 /* A not-uncommon case of bad debug info.
14490 Don't pollute the addrmap with bad data. */
14491 if (range_beginning + baseaddr == 0
14492 && !dwarf2_per_objfile->has_section_at_zero)
14493 {
14494 complaint (&symfile_complaints,
14495 _(".debug_ranges entry has start address of zero"
14496 " [in module %s]"), objfile_name (objfile));
14497 continue;
14498 }
14499
14500 callback (range_beginning, range_end);
14501 }
14502
14503 return 1;
14504 }
14505
14506 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14507 Return 1 if the attributes are present and valid, otherwise, return 0.
14508 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14509
14510 static int
14511 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14512 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14513 struct partial_symtab *ranges_pst)
14514 {
14515 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14516 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14517 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14518 SECT_OFF_TEXT (objfile));
14519 int low_set = 0;
14520 CORE_ADDR low = 0;
14521 CORE_ADDR high = 0;
14522 int retval;
14523
14524 retval = dwarf2_ranges_process (offset, cu,
14525 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14526 {
14527 if (ranges_pst != NULL)
14528 {
14529 CORE_ADDR lowpc;
14530 CORE_ADDR highpc;
14531
14532 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14533 range_beginning + baseaddr);
14534 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14535 range_end + baseaddr);
14536 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14537 ranges_pst);
14538 }
14539
14540 /* FIXME: This is recording everything as a low-high
14541 segment of consecutive addresses. We should have a
14542 data structure for discontiguous block ranges
14543 instead. */
14544 if (! low_set)
14545 {
14546 low = range_beginning;
14547 high = range_end;
14548 low_set = 1;
14549 }
14550 else
14551 {
14552 if (range_beginning < low)
14553 low = range_beginning;
14554 if (range_end > high)
14555 high = range_end;
14556 }
14557 });
14558 if (!retval)
14559 return 0;
14560
14561 if (! low_set)
14562 /* If the first entry is an end-of-list marker, the range
14563 describes an empty scope, i.e. no instructions. */
14564 return 0;
14565
14566 if (low_return)
14567 *low_return = low;
14568 if (high_return)
14569 *high_return = high;
14570 return 1;
14571 }
14572
14573 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14574 definition for the return value. *LOWPC and *HIGHPC are set iff
14575 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14576
14577 static enum pc_bounds_kind
14578 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14579 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14580 struct partial_symtab *pst)
14581 {
14582 struct dwarf2_per_objfile *dwarf2_per_objfile
14583 = cu->per_cu->dwarf2_per_objfile;
14584 struct attribute *attr;
14585 struct attribute *attr_high;
14586 CORE_ADDR low = 0;
14587 CORE_ADDR high = 0;
14588 enum pc_bounds_kind ret;
14589
14590 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14591 if (attr_high)
14592 {
14593 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14594 if (attr)
14595 {
14596 low = attr_value_as_address (attr);
14597 high = attr_value_as_address (attr_high);
14598 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14599 high += low;
14600 }
14601 else
14602 /* Found high w/o low attribute. */
14603 return PC_BOUNDS_INVALID;
14604
14605 /* Found consecutive range of addresses. */
14606 ret = PC_BOUNDS_HIGH_LOW;
14607 }
14608 else
14609 {
14610 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14611 if (attr != NULL)
14612 {
14613 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14614 We take advantage of the fact that DW_AT_ranges does not appear
14615 in DW_TAG_compile_unit of DWO files. */
14616 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14617 unsigned int ranges_offset = (DW_UNSND (attr)
14618 + (need_ranges_base
14619 ? cu->ranges_base
14620 : 0));
14621
14622 /* Value of the DW_AT_ranges attribute is the offset in the
14623 .debug_ranges section. */
14624 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14625 return PC_BOUNDS_INVALID;
14626 /* Found discontinuous range of addresses. */
14627 ret = PC_BOUNDS_RANGES;
14628 }
14629 else
14630 return PC_BOUNDS_NOT_PRESENT;
14631 }
14632
14633 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14634 if (high <= low)
14635 return PC_BOUNDS_INVALID;
14636
14637 /* When using the GNU linker, .gnu.linkonce. sections are used to
14638 eliminate duplicate copies of functions and vtables and such.
14639 The linker will arbitrarily choose one and discard the others.
14640 The AT_*_pc values for such functions refer to local labels in
14641 these sections. If the section from that file was discarded, the
14642 labels are not in the output, so the relocs get a value of 0.
14643 If this is a discarded function, mark the pc bounds as invalid,
14644 so that GDB will ignore it. */
14645 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14646 return PC_BOUNDS_INVALID;
14647
14648 *lowpc = low;
14649 if (highpc)
14650 *highpc = high;
14651 return ret;
14652 }
14653
14654 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14655 its low and high PC addresses. Do nothing if these addresses could not
14656 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14657 and HIGHPC to the high address if greater than HIGHPC. */
14658
14659 static void
14660 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14661 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14662 struct dwarf2_cu *cu)
14663 {
14664 CORE_ADDR low, high;
14665 struct die_info *child = die->child;
14666
14667 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14668 {
14669 *lowpc = std::min (*lowpc, low);
14670 *highpc = std::max (*highpc, high);
14671 }
14672
14673 /* If the language does not allow nested subprograms (either inside
14674 subprograms or lexical blocks), we're done. */
14675 if (cu->language != language_ada)
14676 return;
14677
14678 /* Check all the children of the given DIE. If it contains nested
14679 subprograms, then check their pc bounds. Likewise, we need to
14680 check lexical blocks as well, as they may also contain subprogram
14681 definitions. */
14682 while (child && child->tag)
14683 {
14684 if (child->tag == DW_TAG_subprogram
14685 || child->tag == DW_TAG_lexical_block)
14686 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14687 child = sibling_die (child);
14688 }
14689 }
14690
14691 /* Get the low and high pc's represented by the scope DIE, and store
14692 them in *LOWPC and *HIGHPC. If the correct values can't be
14693 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14694
14695 static void
14696 get_scope_pc_bounds (struct die_info *die,
14697 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14698 struct dwarf2_cu *cu)
14699 {
14700 CORE_ADDR best_low = (CORE_ADDR) -1;
14701 CORE_ADDR best_high = (CORE_ADDR) 0;
14702 CORE_ADDR current_low, current_high;
14703
14704 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14705 >= PC_BOUNDS_RANGES)
14706 {
14707 best_low = current_low;
14708 best_high = current_high;
14709 }
14710 else
14711 {
14712 struct die_info *child = die->child;
14713
14714 while (child && child->tag)
14715 {
14716 switch (child->tag) {
14717 case DW_TAG_subprogram:
14718 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14719 break;
14720 case DW_TAG_namespace:
14721 case DW_TAG_module:
14722 /* FIXME: carlton/2004-01-16: Should we do this for
14723 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14724 that current GCC's always emit the DIEs corresponding
14725 to definitions of methods of classes as children of a
14726 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14727 the DIEs giving the declarations, which could be
14728 anywhere). But I don't see any reason why the
14729 standards says that they have to be there. */
14730 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14731
14732 if (current_low != ((CORE_ADDR) -1))
14733 {
14734 best_low = std::min (best_low, current_low);
14735 best_high = std::max (best_high, current_high);
14736 }
14737 break;
14738 default:
14739 /* Ignore. */
14740 break;
14741 }
14742
14743 child = sibling_die (child);
14744 }
14745 }
14746
14747 *lowpc = best_low;
14748 *highpc = best_high;
14749 }
14750
14751 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14752 in DIE. */
14753
14754 static void
14755 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14756 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14757 {
14758 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14759 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14760 struct attribute *attr;
14761 struct attribute *attr_high;
14762
14763 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14764 if (attr_high)
14765 {
14766 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14767 if (attr)
14768 {
14769 CORE_ADDR low = attr_value_as_address (attr);
14770 CORE_ADDR high = attr_value_as_address (attr_high);
14771
14772 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14773 high += low;
14774
14775 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14776 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14777 record_block_range (block, low, high - 1);
14778 }
14779 }
14780
14781 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14782 if (attr)
14783 {
14784 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14785 We take advantage of the fact that DW_AT_ranges does not appear
14786 in DW_TAG_compile_unit of DWO files. */
14787 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14788
14789 /* The value of the DW_AT_ranges attribute is the offset of the
14790 address range list in the .debug_ranges section. */
14791 unsigned long offset = (DW_UNSND (attr)
14792 + (need_ranges_base ? cu->ranges_base : 0));
14793
14794 dwarf2_ranges_process (offset, cu,
14795 [&] (CORE_ADDR start, CORE_ADDR end)
14796 {
14797 start += baseaddr;
14798 end += baseaddr;
14799 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14800 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14801 record_block_range (block, start, end - 1);
14802 });
14803 }
14804 }
14805
14806 /* Check whether the producer field indicates either of GCC < 4.6, or the
14807 Intel C/C++ compiler, and cache the result in CU. */
14808
14809 static void
14810 check_producer (struct dwarf2_cu *cu)
14811 {
14812 int major, minor;
14813
14814 if (cu->producer == NULL)
14815 {
14816 /* For unknown compilers expect their behavior is DWARF version
14817 compliant.
14818
14819 GCC started to support .debug_types sections by -gdwarf-4 since
14820 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14821 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14822 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14823 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14824 }
14825 else if (producer_is_gcc (cu->producer, &major, &minor))
14826 {
14827 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14828 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14829 }
14830 else if (producer_is_icc (cu->producer, &major, &minor))
14831 cu->producer_is_icc_lt_14 = major < 14;
14832 else
14833 {
14834 /* For other non-GCC compilers, expect their behavior is DWARF version
14835 compliant. */
14836 }
14837
14838 cu->checked_producer = 1;
14839 }
14840
14841 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14842 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14843 during 4.6.0 experimental. */
14844
14845 static int
14846 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14847 {
14848 if (!cu->checked_producer)
14849 check_producer (cu);
14850
14851 return cu->producer_is_gxx_lt_4_6;
14852 }
14853
14854 /* Return the default accessibility type if it is not overriden by
14855 DW_AT_accessibility. */
14856
14857 static enum dwarf_access_attribute
14858 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14859 {
14860 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14861 {
14862 /* The default DWARF 2 accessibility for members is public, the default
14863 accessibility for inheritance is private. */
14864
14865 if (die->tag != DW_TAG_inheritance)
14866 return DW_ACCESS_public;
14867 else
14868 return DW_ACCESS_private;
14869 }
14870 else
14871 {
14872 /* DWARF 3+ defines the default accessibility a different way. The same
14873 rules apply now for DW_TAG_inheritance as for the members and it only
14874 depends on the container kind. */
14875
14876 if (die->parent->tag == DW_TAG_class_type)
14877 return DW_ACCESS_private;
14878 else
14879 return DW_ACCESS_public;
14880 }
14881 }
14882
14883 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14884 offset. If the attribute was not found return 0, otherwise return
14885 1. If it was found but could not properly be handled, set *OFFSET
14886 to 0. */
14887
14888 static int
14889 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14890 LONGEST *offset)
14891 {
14892 struct attribute *attr;
14893
14894 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14895 if (attr != NULL)
14896 {
14897 *offset = 0;
14898
14899 /* Note that we do not check for a section offset first here.
14900 This is because DW_AT_data_member_location is new in DWARF 4,
14901 so if we see it, we can assume that a constant form is really
14902 a constant and not a section offset. */
14903 if (attr_form_is_constant (attr))
14904 *offset = dwarf2_get_attr_constant_value (attr, 0);
14905 else if (attr_form_is_section_offset (attr))
14906 dwarf2_complex_location_expr_complaint ();
14907 else if (attr_form_is_block (attr))
14908 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14909 else
14910 dwarf2_complex_location_expr_complaint ();
14911
14912 return 1;
14913 }
14914
14915 return 0;
14916 }
14917
14918 /* Add an aggregate field to the field list. */
14919
14920 static void
14921 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14922 struct dwarf2_cu *cu)
14923 {
14924 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14925 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14926 struct nextfield *new_field;
14927 struct attribute *attr;
14928 struct field *fp;
14929 const char *fieldname = "";
14930
14931 if (die->tag == DW_TAG_inheritance)
14932 {
14933 fip->baseclasses.emplace_back ();
14934 new_field = &fip->baseclasses.back ();
14935 }
14936 else
14937 {
14938 fip->fields.emplace_back ();
14939 new_field = &fip->fields.back ();
14940 }
14941
14942 fip->nfields++;
14943
14944 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14945 if (attr)
14946 new_field->accessibility = DW_UNSND (attr);
14947 else
14948 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14949 if (new_field->accessibility != DW_ACCESS_public)
14950 fip->non_public_fields = 1;
14951
14952 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14953 if (attr)
14954 new_field->virtuality = DW_UNSND (attr);
14955 else
14956 new_field->virtuality = DW_VIRTUALITY_none;
14957
14958 fp = &new_field->field;
14959
14960 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14961 {
14962 LONGEST offset;
14963
14964 /* Data member other than a C++ static data member. */
14965
14966 /* Get type of field. */
14967 fp->type = die_type (die, cu);
14968
14969 SET_FIELD_BITPOS (*fp, 0);
14970
14971 /* Get bit size of field (zero if none). */
14972 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14973 if (attr)
14974 {
14975 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14976 }
14977 else
14978 {
14979 FIELD_BITSIZE (*fp) = 0;
14980 }
14981
14982 /* Get bit offset of field. */
14983 if (handle_data_member_location (die, cu, &offset))
14984 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14985 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14986 if (attr)
14987 {
14988 if (gdbarch_bits_big_endian (gdbarch))
14989 {
14990 /* For big endian bits, the DW_AT_bit_offset gives the
14991 additional bit offset from the MSB of the containing
14992 anonymous object to the MSB of the field. We don't
14993 have to do anything special since we don't need to
14994 know the size of the anonymous object. */
14995 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14996 }
14997 else
14998 {
14999 /* For little endian bits, compute the bit offset to the
15000 MSB of the anonymous object, subtract off the number of
15001 bits from the MSB of the field to the MSB of the
15002 object, and then subtract off the number of bits of
15003 the field itself. The result is the bit offset of
15004 the LSB of the field. */
15005 int anonymous_size;
15006 int bit_offset = DW_UNSND (attr);
15007
15008 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15009 if (attr)
15010 {
15011 /* The size of the anonymous object containing
15012 the bit field is explicit, so use the
15013 indicated size (in bytes). */
15014 anonymous_size = DW_UNSND (attr);
15015 }
15016 else
15017 {
15018 /* The size of the anonymous object containing
15019 the bit field must be inferred from the type
15020 attribute of the data member containing the
15021 bit field. */
15022 anonymous_size = TYPE_LENGTH (fp->type);
15023 }
15024 SET_FIELD_BITPOS (*fp,
15025 (FIELD_BITPOS (*fp)
15026 + anonymous_size * bits_per_byte
15027 - bit_offset - FIELD_BITSIZE (*fp)));
15028 }
15029 }
15030 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15031 if (attr != NULL)
15032 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15033 + dwarf2_get_attr_constant_value (attr, 0)));
15034
15035 /* Get name of field. */
15036 fieldname = dwarf2_name (die, cu);
15037 if (fieldname == NULL)
15038 fieldname = "";
15039
15040 /* The name is already allocated along with this objfile, so we don't
15041 need to duplicate it for the type. */
15042 fp->name = fieldname;
15043
15044 /* Change accessibility for artificial fields (e.g. virtual table
15045 pointer or virtual base class pointer) to private. */
15046 if (dwarf2_attr (die, DW_AT_artificial, cu))
15047 {
15048 FIELD_ARTIFICIAL (*fp) = 1;
15049 new_field->accessibility = DW_ACCESS_private;
15050 fip->non_public_fields = 1;
15051 }
15052 }
15053 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15054 {
15055 /* C++ static member. */
15056
15057 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15058 is a declaration, but all versions of G++ as of this writing
15059 (so through at least 3.2.1) incorrectly generate
15060 DW_TAG_variable tags. */
15061
15062 const char *physname;
15063
15064 /* Get name of field. */
15065 fieldname = dwarf2_name (die, cu);
15066 if (fieldname == NULL)
15067 return;
15068
15069 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15070 if (attr
15071 /* Only create a symbol if this is an external value.
15072 new_symbol checks this and puts the value in the global symbol
15073 table, which we want. If it is not external, new_symbol
15074 will try to put the value in cu->list_in_scope which is wrong. */
15075 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15076 {
15077 /* A static const member, not much different than an enum as far as
15078 we're concerned, except that we can support more types. */
15079 new_symbol (die, NULL, cu);
15080 }
15081
15082 /* Get physical name. */
15083 physname = dwarf2_physname (fieldname, die, cu);
15084
15085 /* The name is already allocated along with this objfile, so we don't
15086 need to duplicate it for the type. */
15087 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15088 FIELD_TYPE (*fp) = die_type (die, cu);
15089 FIELD_NAME (*fp) = fieldname;
15090 }
15091 else if (die->tag == DW_TAG_inheritance)
15092 {
15093 LONGEST offset;
15094
15095 /* C++ base class field. */
15096 if (handle_data_member_location (die, cu, &offset))
15097 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15098 FIELD_BITSIZE (*fp) = 0;
15099 FIELD_TYPE (*fp) = die_type (die, cu);
15100 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15101 }
15102 else if (die->tag == DW_TAG_variant_part)
15103 {
15104 /* process_structure_scope will treat this DIE as a union. */
15105 process_structure_scope (die, cu);
15106
15107 /* The variant part is relative to the start of the enclosing
15108 structure. */
15109 SET_FIELD_BITPOS (*fp, 0);
15110 fp->type = get_die_type (die, cu);
15111 fp->artificial = 1;
15112 fp->name = "<<variant>>";
15113 }
15114 else
15115 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15116 }
15117
15118 /* Can the type given by DIE define another type? */
15119
15120 static bool
15121 type_can_define_types (const struct die_info *die)
15122 {
15123 switch (die->tag)
15124 {
15125 case DW_TAG_typedef:
15126 case DW_TAG_class_type:
15127 case DW_TAG_structure_type:
15128 case DW_TAG_union_type:
15129 case DW_TAG_enumeration_type:
15130 return true;
15131
15132 default:
15133 return false;
15134 }
15135 }
15136
15137 /* Add a type definition defined in the scope of the FIP's class. */
15138
15139 static void
15140 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15141 struct dwarf2_cu *cu)
15142 {
15143 struct decl_field fp;
15144 memset (&fp, 0, sizeof (fp));
15145
15146 gdb_assert (type_can_define_types (die));
15147
15148 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15149 fp.name = dwarf2_name (die, cu);
15150 fp.type = read_type_die (die, cu);
15151
15152 /* Save accessibility. */
15153 enum dwarf_access_attribute accessibility;
15154 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15155 if (attr != NULL)
15156 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15157 else
15158 accessibility = dwarf2_default_access_attribute (die, cu);
15159 switch (accessibility)
15160 {
15161 case DW_ACCESS_public:
15162 /* The assumed value if neither private nor protected. */
15163 break;
15164 case DW_ACCESS_private:
15165 fp.is_private = 1;
15166 break;
15167 case DW_ACCESS_protected:
15168 fp.is_protected = 1;
15169 break;
15170 default:
15171 complaint (&symfile_complaints,
15172 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15173 }
15174
15175 if (die->tag == DW_TAG_typedef)
15176 fip->typedef_field_list.push_back (fp);
15177 else
15178 fip->nested_types_list.push_back (fp);
15179 }
15180
15181 /* Create the vector of fields, and attach it to the type. */
15182
15183 static void
15184 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15185 struct dwarf2_cu *cu)
15186 {
15187 int nfields = fip->nfields;
15188
15189 /* Record the field count, allocate space for the array of fields,
15190 and create blank accessibility bitfields if necessary. */
15191 TYPE_NFIELDS (type) = nfields;
15192 TYPE_FIELDS (type) = (struct field *)
15193 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15194
15195 if (fip->non_public_fields && cu->language != language_ada)
15196 {
15197 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15198
15199 TYPE_FIELD_PRIVATE_BITS (type) =
15200 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15201 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15202
15203 TYPE_FIELD_PROTECTED_BITS (type) =
15204 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15205 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15206
15207 TYPE_FIELD_IGNORE_BITS (type) =
15208 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15209 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15210 }
15211
15212 /* If the type has baseclasses, allocate and clear a bit vector for
15213 TYPE_FIELD_VIRTUAL_BITS. */
15214 if (!fip->baseclasses.empty () && cu->language != language_ada)
15215 {
15216 int num_bytes = B_BYTES (fip->baseclasses.size ());
15217 unsigned char *pointer;
15218
15219 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15220 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15221 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15222 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15223 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15224 }
15225
15226 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15227 {
15228 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15229
15230 for (int index = 0; index < nfields; ++index)
15231 {
15232 struct nextfield &field = fip->fields[index];
15233
15234 if (field.variant.is_discriminant)
15235 di->discriminant_index = index;
15236 else if (field.variant.default_branch)
15237 di->default_index = index;
15238 else
15239 di->discriminants[index] = field.variant.discriminant_value;
15240 }
15241 }
15242
15243 /* Copy the saved-up fields into the field vector. */
15244 for (int i = 0; i < nfields; ++i)
15245 {
15246 struct nextfield &field
15247 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15248 : fip->fields[i - fip->baseclasses.size ()]);
15249
15250 TYPE_FIELD (type, i) = field.field;
15251 switch (field.accessibility)
15252 {
15253 case DW_ACCESS_private:
15254 if (cu->language != language_ada)
15255 SET_TYPE_FIELD_PRIVATE (type, i);
15256 break;
15257
15258 case DW_ACCESS_protected:
15259 if (cu->language != language_ada)
15260 SET_TYPE_FIELD_PROTECTED (type, i);
15261 break;
15262
15263 case DW_ACCESS_public:
15264 break;
15265
15266 default:
15267 /* Unknown accessibility. Complain and treat it as public. */
15268 {
15269 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15270 field.accessibility);
15271 }
15272 break;
15273 }
15274 if (i < fip->baseclasses.size ())
15275 {
15276 switch (field.virtuality)
15277 {
15278 case DW_VIRTUALITY_virtual:
15279 case DW_VIRTUALITY_pure_virtual:
15280 if (cu->language == language_ada)
15281 error (_("unexpected virtuality in component of Ada type"));
15282 SET_TYPE_FIELD_VIRTUAL (type, i);
15283 break;
15284 }
15285 }
15286 }
15287 }
15288
15289 /* Return true if this member function is a constructor, false
15290 otherwise. */
15291
15292 static int
15293 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15294 {
15295 const char *fieldname;
15296 const char *type_name;
15297 int len;
15298
15299 if (die->parent == NULL)
15300 return 0;
15301
15302 if (die->parent->tag != DW_TAG_structure_type
15303 && die->parent->tag != DW_TAG_union_type
15304 && die->parent->tag != DW_TAG_class_type)
15305 return 0;
15306
15307 fieldname = dwarf2_name (die, cu);
15308 type_name = dwarf2_name (die->parent, cu);
15309 if (fieldname == NULL || type_name == NULL)
15310 return 0;
15311
15312 len = strlen (fieldname);
15313 return (strncmp (fieldname, type_name, len) == 0
15314 && (type_name[len] == '\0' || type_name[len] == '<'));
15315 }
15316
15317 /* Add a member function to the proper fieldlist. */
15318
15319 static void
15320 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15321 struct type *type, struct dwarf2_cu *cu)
15322 {
15323 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15324 struct attribute *attr;
15325 int i;
15326 struct fnfieldlist *flp = nullptr;
15327 struct fn_field *fnp;
15328 const char *fieldname;
15329 struct type *this_type;
15330 enum dwarf_access_attribute accessibility;
15331
15332 if (cu->language == language_ada)
15333 error (_("unexpected member function in Ada type"));
15334
15335 /* Get name of member function. */
15336 fieldname = dwarf2_name (die, cu);
15337 if (fieldname == NULL)
15338 return;
15339
15340 /* Look up member function name in fieldlist. */
15341 for (i = 0; i < fip->fnfieldlists.size (); i++)
15342 {
15343 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15344 {
15345 flp = &fip->fnfieldlists[i];
15346 break;
15347 }
15348 }
15349
15350 /* Create a new fnfieldlist if necessary. */
15351 if (flp == nullptr)
15352 {
15353 fip->fnfieldlists.emplace_back ();
15354 flp = &fip->fnfieldlists.back ();
15355 flp->name = fieldname;
15356 i = fip->fnfieldlists.size () - 1;
15357 }
15358
15359 /* Create a new member function field and add it to the vector of
15360 fnfieldlists. */
15361 flp->fnfields.emplace_back ();
15362 fnp = &flp->fnfields.back ();
15363
15364 /* Delay processing of the physname until later. */
15365 if (cu->language == language_cplus)
15366 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15367 die, cu);
15368 else
15369 {
15370 const char *physname = dwarf2_physname (fieldname, die, cu);
15371 fnp->physname = physname ? physname : "";
15372 }
15373
15374 fnp->type = alloc_type (objfile);
15375 this_type = read_type_die (die, cu);
15376 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15377 {
15378 int nparams = TYPE_NFIELDS (this_type);
15379
15380 /* TYPE is the domain of this method, and THIS_TYPE is the type
15381 of the method itself (TYPE_CODE_METHOD). */
15382 smash_to_method_type (fnp->type, type,
15383 TYPE_TARGET_TYPE (this_type),
15384 TYPE_FIELDS (this_type),
15385 TYPE_NFIELDS (this_type),
15386 TYPE_VARARGS (this_type));
15387
15388 /* Handle static member functions.
15389 Dwarf2 has no clean way to discern C++ static and non-static
15390 member functions. G++ helps GDB by marking the first
15391 parameter for non-static member functions (which is the this
15392 pointer) as artificial. We obtain this information from
15393 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15394 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15395 fnp->voffset = VOFFSET_STATIC;
15396 }
15397 else
15398 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15399 dwarf2_full_name (fieldname, die, cu));
15400
15401 /* Get fcontext from DW_AT_containing_type if present. */
15402 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15403 fnp->fcontext = die_containing_type (die, cu);
15404
15405 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15406 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15407
15408 /* Get accessibility. */
15409 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15410 if (attr)
15411 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15412 else
15413 accessibility = dwarf2_default_access_attribute (die, cu);
15414 switch (accessibility)
15415 {
15416 case DW_ACCESS_private:
15417 fnp->is_private = 1;
15418 break;
15419 case DW_ACCESS_protected:
15420 fnp->is_protected = 1;
15421 break;
15422 }
15423
15424 /* Check for artificial methods. */
15425 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15426 if (attr && DW_UNSND (attr) != 0)
15427 fnp->is_artificial = 1;
15428
15429 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15430
15431 /* Get index in virtual function table if it is a virtual member
15432 function. For older versions of GCC, this is an offset in the
15433 appropriate virtual table, as specified by DW_AT_containing_type.
15434 For everyone else, it is an expression to be evaluated relative
15435 to the object address. */
15436
15437 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15438 if (attr)
15439 {
15440 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15441 {
15442 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15443 {
15444 /* Old-style GCC. */
15445 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15446 }
15447 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15448 || (DW_BLOCK (attr)->size > 1
15449 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15450 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15451 {
15452 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15453 if ((fnp->voffset % cu->header.addr_size) != 0)
15454 dwarf2_complex_location_expr_complaint ();
15455 else
15456 fnp->voffset /= cu->header.addr_size;
15457 fnp->voffset += 2;
15458 }
15459 else
15460 dwarf2_complex_location_expr_complaint ();
15461
15462 if (!fnp->fcontext)
15463 {
15464 /* If there is no `this' field and no DW_AT_containing_type,
15465 we cannot actually find a base class context for the
15466 vtable! */
15467 if (TYPE_NFIELDS (this_type) == 0
15468 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15469 {
15470 complaint (&symfile_complaints,
15471 _("cannot determine context for virtual member "
15472 "function \"%s\" (offset %s)"),
15473 fieldname, sect_offset_str (die->sect_off));
15474 }
15475 else
15476 {
15477 fnp->fcontext
15478 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15479 }
15480 }
15481 }
15482 else if (attr_form_is_section_offset (attr))
15483 {
15484 dwarf2_complex_location_expr_complaint ();
15485 }
15486 else
15487 {
15488 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15489 fieldname);
15490 }
15491 }
15492 else
15493 {
15494 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15495 if (attr && DW_UNSND (attr))
15496 {
15497 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15498 complaint (&symfile_complaints,
15499 _("Member function \"%s\" (offset %s) is virtual "
15500 "but the vtable offset is not specified"),
15501 fieldname, sect_offset_str (die->sect_off));
15502 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15503 TYPE_CPLUS_DYNAMIC (type) = 1;
15504 }
15505 }
15506 }
15507
15508 /* Create the vector of member function fields, and attach it to the type. */
15509
15510 static void
15511 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15512 struct dwarf2_cu *cu)
15513 {
15514 if (cu->language == language_ada)
15515 error (_("unexpected member functions in Ada type"));
15516
15517 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15518 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15519 TYPE_ALLOC (type,
15520 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15521
15522 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15523 {
15524 struct fnfieldlist &nf = fip->fnfieldlists[i];
15525 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15526
15527 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15528 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15529 fn_flp->fn_fields = (struct fn_field *)
15530 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15531
15532 for (int k = 0; k < nf.fnfields.size (); ++k)
15533 fn_flp->fn_fields[k] = nf.fnfields[k];
15534 }
15535
15536 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15537 }
15538
15539 /* Returns non-zero if NAME is the name of a vtable member in CU's
15540 language, zero otherwise. */
15541 static int
15542 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15543 {
15544 static const char vptr[] = "_vptr";
15545
15546 /* Look for the C++ form of the vtable. */
15547 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15548 return 1;
15549
15550 return 0;
15551 }
15552
15553 /* GCC outputs unnamed structures that are really pointers to member
15554 functions, with the ABI-specified layout. If TYPE describes
15555 such a structure, smash it into a member function type.
15556
15557 GCC shouldn't do this; it should just output pointer to member DIEs.
15558 This is GCC PR debug/28767. */
15559
15560 static void
15561 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15562 {
15563 struct type *pfn_type, *self_type, *new_type;
15564
15565 /* Check for a structure with no name and two children. */
15566 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15567 return;
15568
15569 /* Check for __pfn and __delta members. */
15570 if (TYPE_FIELD_NAME (type, 0) == NULL
15571 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15572 || TYPE_FIELD_NAME (type, 1) == NULL
15573 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15574 return;
15575
15576 /* Find the type of the method. */
15577 pfn_type = TYPE_FIELD_TYPE (type, 0);
15578 if (pfn_type == NULL
15579 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15580 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15581 return;
15582
15583 /* Look for the "this" argument. */
15584 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15585 if (TYPE_NFIELDS (pfn_type) == 0
15586 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15587 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15588 return;
15589
15590 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15591 new_type = alloc_type (objfile);
15592 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15593 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15594 TYPE_VARARGS (pfn_type));
15595 smash_to_methodptr_type (type, new_type);
15596 }
15597
15598 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15599 appropriate error checking and issuing complaints if there is a
15600 problem. */
15601
15602 static ULONGEST
15603 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15604 {
15605 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15606
15607 if (attr == nullptr)
15608 return 0;
15609
15610 if (!attr_form_is_constant (attr))
15611 {
15612 complaint (&symfile_complaints,
15613 _("DW_AT_alignment must have constant form"
15614 " - DIE at %s [in module %s]"),
15615 sect_offset_str (die->sect_off),
15616 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15617 return 0;
15618 }
15619
15620 ULONGEST align;
15621 if (attr->form == DW_FORM_sdata)
15622 {
15623 LONGEST val = DW_SND (attr);
15624 if (val < 0)
15625 {
15626 complaint (&symfile_complaints,
15627 _("DW_AT_alignment value must not be negative"
15628 " - DIE at %s [in module %s]"),
15629 sect_offset_str (die->sect_off),
15630 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15631 return 0;
15632 }
15633 align = val;
15634 }
15635 else
15636 align = DW_UNSND (attr);
15637
15638 if (align == 0)
15639 {
15640 complaint (&symfile_complaints,
15641 _("DW_AT_alignment value must not be zero"
15642 " - DIE at %s [in module %s]"),
15643 sect_offset_str (die->sect_off),
15644 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15645 return 0;
15646 }
15647 if ((align & (align - 1)) != 0)
15648 {
15649 complaint (&symfile_complaints,
15650 _("DW_AT_alignment value must be a power of 2"
15651 " - DIE at %s [in module %s]"),
15652 sect_offset_str (die->sect_off),
15653 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15654 return 0;
15655 }
15656
15657 return align;
15658 }
15659
15660 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15661 the alignment for TYPE. */
15662
15663 static void
15664 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15665 struct type *type)
15666 {
15667 if (!set_type_align (type, get_alignment (cu, die)))
15668 complaint (&symfile_complaints,
15669 _("DW_AT_alignment value too large"
15670 " - DIE at %s [in module %s]"),
15671 sect_offset_str (die->sect_off),
15672 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15673 }
15674
15675 /* Called when we find the DIE that starts a structure or union scope
15676 (definition) to create a type for the structure or union. Fill in
15677 the type's name and general properties; the members will not be
15678 processed until process_structure_scope. A symbol table entry for
15679 the type will also not be done until process_structure_scope (assuming
15680 the type has a name).
15681
15682 NOTE: we need to call these functions regardless of whether or not the
15683 DIE has a DW_AT_name attribute, since it might be an anonymous
15684 structure or union. This gets the type entered into our set of
15685 user defined types. */
15686
15687 static struct type *
15688 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15689 {
15690 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15691 struct type *type;
15692 struct attribute *attr;
15693 const char *name;
15694
15695 /* If the definition of this type lives in .debug_types, read that type.
15696 Don't follow DW_AT_specification though, that will take us back up
15697 the chain and we want to go down. */
15698 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15699 if (attr)
15700 {
15701 type = get_DW_AT_signature_type (die, attr, cu);
15702
15703 /* The type's CU may not be the same as CU.
15704 Ensure TYPE is recorded with CU in die_type_hash. */
15705 return set_die_type (die, type, cu);
15706 }
15707
15708 type = alloc_type (objfile);
15709 INIT_CPLUS_SPECIFIC (type);
15710
15711 name = dwarf2_name (die, cu);
15712 if (name != NULL)
15713 {
15714 if (cu->language == language_cplus
15715 || cu->language == language_d
15716 || cu->language == language_rust)
15717 {
15718 const char *full_name = dwarf2_full_name (name, die, cu);
15719
15720 /* dwarf2_full_name might have already finished building the DIE's
15721 type. If so, there is no need to continue. */
15722 if (get_die_type (die, cu) != NULL)
15723 return get_die_type (die, cu);
15724
15725 TYPE_TAG_NAME (type) = full_name;
15726 if (die->tag == DW_TAG_structure_type
15727 || die->tag == DW_TAG_class_type)
15728 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15729 }
15730 else
15731 {
15732 /* The name is already allocated along with this objfile, so
15733 we don't need to duplicate it for the type. */
15734 TYPE_TAG_NAME (type) = name;
15735 if (die->tag == DW_TAG_class_type)
15736 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15737 }
15738 }
15739
15740 if (die->tag == DW_TAG_structure_type)
15741 {
15742 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15743 }
15744 else if (die->tag == DW_TAG_union_type)
15745 {
15746 TYPE_CODE (type) = TYPE_CODE_UNION;
15747 }
15748 else if (die->tag == DW_TAG_variant_part)
15749 {
15750 TYPE_CODE (type) = TYPE_CODE_UNION;
15751 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15752 }
15753 else
15754 {
15755 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15756 }
15757
15758 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15759 TYPE_DECLARED_CLASS (type) = 1;
15760
15761 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15762 if (attr)
15763 {
15764 if (attr_form_is_constant (attr))
15765 TYPE_LENGTH (type) = DW_UNSND (attr);
15766 else
15767 {
15768 /* For the moment, dynamic type sizes are not supported
15769 by GDB's struct type. The actual size is determined
15770 on-demand when resolving the type of a given object,
15771 so set the type's length to zero for now. Otherwise,
15772 we record an expression as the length, and that expression
15773 could lead to a very large value, which could eventually
15774 lead to us trying to allocate that much memory when creating
15775 a value of that type. */
15776 TYPE_LENGTH (type) = 0;
15777 }
15778 }
15779 else
15780 {
15781 TYPE_LENGTH (type) = 0;
15782 }
15783
15784 maybe_set_alignment (cu, die, type);
15785
15786 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15787 {
15788 /* ICC<14 does not output the required DW_AT_declaration on
15789 incomplete types, but gives them a size of zero. */
15790 TYPE_STUB (type) = 1;
15791 }
15792 else
15793 TYPE_STUB_SUPPORTED (type) = 1;
15794
15795 if (die_is_declaration (die, cu))
15796 TYPE_STUB (type) = 1;
15797 else if (attr == NULL && die->child == NULL
15798 && producer_is_realview (cu->producer))
15799 /* RealView does not output the required DW_AT_declaration
15800 on incomplete types. */
15801 TYPE_STUB (type) = 1;
15802
15803 /* We need to add the type field to the die immediately so we don't
15804 infinitely recurse when dealing with pointers to the structure
15805 type within the structure itself. */
15806 set_die_type (die, type, cu);
15807
15808 /* set_die_type should be already done. */
15809 set_descriptive_type (type, die, cu);
15810
15811 return type;
15812 }
15813
15814 /* A helper for process_structure_scope that handles a single member
15815 DIE. */
15816
15817 static void
15818 handle_struct_member_die (struct die_info *child_die, struct type *type,
15819 struct field_info *fi,
15820 std::vector<struct symbol *> *template_args,
15821 struct dwarf2_cu *cu)
15822 {
15823 if (child_die->tag == DW_TAG_member
15824 || child_die->tag == DW_TAG_variable
15825 || child_die->tag == DW_TAG_variant_part)
15826 {
15827 /* NOTE: carlton/2002-11-05: A C++ static data member
15828 should be a DW_TAG_member that is a declaration, but
15829 all versions of G++ as of this writing (so through at
15830 least 3.2.1) incorrectly generate DW_TAG_variable
15831 tags for them instead. */
15832 dwarf2_add_field (fi, child_die, cu);
15833 }
15834 else if (child_die->tag == DW_TAG_subprogram)
15835 {
15836 /* Rust doesn't have member functions in the C++ sense.
15837 However, it does emit ordinary functions as children
15838 of a struct DIE. */
15839 if (cu->language == language_rust)
15840 read_func_scope (child_die, cu);
15841 else
15842 {
15843 /* C++ member function. */
15844 dwarf2_add_member_fn (fi, child_die, type, cu);
15845 }
15846 }
15847 else if (child_die->tag == DW_TAG_inheritance)
15848 {
15849 /* C++ base class field. */
15850 dwarf2_add_field (fi, child_die, cu);
15851 }
15852 else if (type_can_define_types (child_die))
15853 dwarf2_add_type_defn (fi, child_die, cu);
15854 else if (child_die->tag == DW_TAG_template_type_param
15855 || child_die->tag == DW_TAG_template_value_param)
15856 {
15857 struct symbol *arg = new_symbol (child_die, NULL, cu);
15858
15859 if (arg != NULL)
15860 template_args->push_back (arg);
15861 }
15862 else if (child_die->tag == DW_TAG_variant)
15863 {
15864 /* In a variant we want to get the discriminant and also add a
15865 field for our sole member child. */
15866 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15867
15868 for (struct die_info *variant_child = child_die->child;
15869 variant_child != NULL;
15870 variant_child = sibling_die (variant_child))
15871 {
15872 if (variant_child->tag == DW_TAG_member)
15873 {
15874 handle_struct_member_die (variant_child, type, fi,
15875 template_args, cu);
15876 /* Only handle the one. */
15877 break;
15878 }
15879 }
15880
15881 /* We don't handle this but we might as well report it if we see
15882 it. */
15883 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15884 complaint (&symfile_complaints,
15885 _("DW_AT_discr_list is not supported yet"
15886 " - DIE at %s [in module %s]"),
15887 sect_offset_str (child_die->sect_off),
15888 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15889
15890 /* The first field was just added, so we can stash the
15891 discriminant there. */
15892 gdb_assert (!fi->fields.empty ());
15893 if (discr == NULL)
15894 fi->fields.back ().variant.default_branch = true;
15895 else
15896 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15897 }
15898 }
15899
15900 /* Finish creating a structure or union type, including filling in
15901 its members and creating a symbol for it. */
15902
15903 static void
15904 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15905 {
15906 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15907 struct die_info *child_die;
15908 struct type *type;
15909
15910 type = get_die_type (die, cu);
15911 if (type == NULL)
15912 type = read_structure_type (die, cu);
15913
15914 /* When reading a DW_TAG_variant_part, we need to notice when we
15915 read the discriminant member, so we can record it later in the
15916 discriminant_info. */
15917 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15918 sect_offset discr_offset;
15919
15920 if (is_variant_part)
15921 {
15922 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15923 if (discr == NULL)
15924 {
15925 /* Maybe it's a univariant form, an extension we support.
15926 In this case arrange not to check the offset. */
15927 is_variant_part = false;
15928 }
15929 else if (attr_form_is_ref (discr))
15930 {
15931 struct dwarf2_cu *target_cu = cu;
15932 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15933
15934 discr_offset = target_die->sect_off;
15935 }
15936 else
15937 {
15938 complaint (&symfile_complaints,
15939 _("DW_AT_discr does not have DIE reference form"
15940 " - DIE at %s [in module %s]"),
15941 sect_offset_str (die->sect_off),
15942 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15943 is_variant_part = false;
15944 }
15945 }
15946
15947 if (die->child != NULL && ! die_is_declaration (die, cu))
15948 {
15949 struct field_info fi;
15950 std::vector<struct symbol *> template_args;
15951
15952 child_die = die->child;
15953
15954 while (child_die && child_die->tag)
15955 {
15956 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15957
15958 if (is_variant_part && discr_offset == child_die->sect_off)
15959 fi.fields.back ().variant.is_discriminant = true;
15960
15961 child_die = sibling_die (child_die);
15962 }
15963
15964 /* Attach template arguments to type. */
15965 if (!template_args.empty ())
15966 {
15967 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15968 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15969 TYPE_TEMPLATE_ARGUMENTS (type)
15970 = XOBNEWVEC (&objfile->objfile_obstack,
15971 struct symbol *,
15972 TYPE_N_TEMPLATE_ARGUMENTS (type));
15973 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15974 template_args.data (),
15975 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15976 * sizeof (struct symbol *)));
15977 }
15978
15979 /* Attach fields and member functions to the type. */
15980 if (fi.nfields)
15981 dwarf2_attach_fields_to_type (&fi, type, cu);
15982 if (!fi.fnfieldlists.empty ())
15983 {
15984 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15985
15986 /* Get the type which refers to the base class (possibly this
15987 class itself) which contains the vtable pointer for the current
15988 class from the DW_AT_containing_type attribute. This use of
15989 DW_AT_containing_type is a GNU extension. */
15990
15991 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15992 {
15993 struct type *t = die_containing_type (die, cu);
15994
15995 set_type_vptr_basetype (type, t);
15996 if (type == t)
15997 {
15998 int i;
15999
16000 /* Our own class provides vtbl ptr. */
16001 for (i = TYPE_NFIELDS (t) - 1;
16002 i >= TYPE_N_BASECLASSES (t);
16003 --i)
16004 {
16005 const char *fieldname = TYPE_FIELD_NAME (t, i);
16006
16007 if (is_vtable_name (fieldname, cu))
16008 {
16009 set_type_vptr_fieldno (type, i);
16010 break;
16011 }
16012 }
16013
16014 /* Complain if virtual function table field not found. */
16015 if (i < TYPE_N_BASECLASSES (t))
16016 complaint (&symfile_complaints,
16017 _("virtual function table pointer "
16018 "not found when defining class '%s'"),
16019 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16020 "");
16021 }
16022 else
16023 {
16024 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16025 }
16026 }
16027 else if (cu->producer
16028 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16029 {
16030 /* The IBM XLC compiler does not provide direct indication
16031 of the containing type, but the vtable pointer is
16032 always named __vfp. */
16033
16034 int i;
16035
16036 for (i = TYPE_NFIELDS (type) - 1;
16037 i >= TYPE_N_BASECLASSES (type);
16038 --i)
16039 {
16040 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16041 {
16042 set_type_vptr_fieldno (type, i);
16043 set_type_vptr_basetype (type, type);
16044 break;
16045 }
16046 }
16047 }
16048 }
16049
16050 /* Copy fi.typedef_field_list linked list elements content into the
16051 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16052 if (!fi.typedef_field_list.empty ())
16053 {
16054 int count = fi.typedef_field_list.size ();
16055
16056 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16057 TYPE_TYPEDEF_FIELD_ARRAY (type)
16058 = ((struct decl_field *)
16059 TYPE_ALLOC (type,
16060 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16061 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16062
16063 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16064 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16065 }
16066
16067 /* Copy fi.nested_types_list linked list elements content into the
16068 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16069 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16070 {
16071 int count = fi.nested_types_list.size ();
16072
16073 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16074 TYPE_NESTED_TYPES_ARRAY (type)
16075 = ((struct decl_field *)
16076 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16077 TYPE_NESTED_TYPES_COUNT (type) = count;
16078
16079 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16080 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16081 }
16082 }
16083
16084 quirk_gcc_member_function_pointer (type, objfile);
16085 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16086 cu->rust_unions.push_back (type);
16087
16088 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16089 snapshots) has been known to create a die giving a declaration
16090 for a class that has, as a child, a die giving a definition for a
16091 nested class. So we have to process our children even if the
16092 current die is a declaration. Normally, of course, a declaration
16093 won't have any children at all. */
16094
16095 child_die = die->child;
16096
16097 while (child_die != NULL && child_die->tag)
16098 {
16099 if (child_die->tag == DW_TAG_member
16100 || child_die->tag == DW_TAG_variable
16101 || child_die->tag == DW_TAG_inheritance
16102 || child_die->tag == DW_TAG_template_value_param
16103 || child_die->tag == DW_TAG_template_type_param)
16104 {
16105 /* Do nothing. */
16106 }
16107 else
16108 process_die (child_die, cu);
16109
16110 child_die = sibling_die (child_die);
16111 }
16112
16113 /* Do not consider external references. According to the DWARF standard,
16114 these DIEs are identified by the fact that they have no byte_size
16115 attribute, and a declaration attribute. */
16116 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16117 || !die_is_declaration (die, cu))
16118 new_symbol (die, type, cu);
16119 }
16120
16121 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16122 update TYPE using some information only available in DIE's children. */
16123
16124 static void
16125 update_enumeration_type_from_children (struct die_info *die,
16126 struct type *type,
16127 struct dwarf2_cu *cu)
16128 {
16129 struct die_info *child_die;
16130 int unsigned_enum = 1;
16131 int flag_enum = 1;
16132 ULONGEST mask = 0;
16133
16134 auto_obstack obstack;
16135
16136 for (child_die = die->child;
16137 child_die != NULL && child_die->tag;
16138 child_die = sibling_die (child_die))
16139 {
16140 struct attribute *attr;
16141 LONGEST value;
16142 const gdb_byte *bytes;
16143 struct dwarf2_locexpr_baton *baton;
16144 const char *name;
16145
16146 if (child_die->tag != DW_TAG_enumerator)
16147 continue;
16148
16149 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16150 if (attr == NULL)
16151 continue;
16152
16153 name = dwarf2_name (child_die, cu);
16154 if (name == NULL)
16155 name = "<anonymous enumerator>";
16156
16157 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16158 &value, &bytes, &baton);
16159 if (value < 0)
16160 {
16161 unsigned_enum = 0;
16162 flag_enum = 0;
16163 }
16164 else if ((mask & value) != 0)
16165 flag_enum = 0;
16166 else
16167 mask |= value;
16168
16169 /* If we already know that the enum type is neither unsigned, nor
16170 a flag type, no need to look at the rest of the enumerates. */
16171 if (!unsigned_enum && !flag_enum)
16172 break;
16173 }
16174
16175 if (unsigned_enum)
16176 TYPE_UNSIGNED (type) = 1;
16177 if (flag_enum)
16178 TYPE_FLAG_ENUM (type) = 1;
16179 }
16180
16181 /* Given a DW_AT_enumeration_type die, set its type. We do not
16182 complete the type's fields yet, or create any symbols. */
16183
16184 static struct type *
16185 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16186 {
16187 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16188 struct type *type;
16189 struct attribute *attr;
16190 const char *name;
16191
16192 /* If the definition of this type lives in .debug_types, read that type.
16193 Don't follow DW_AT_specification though, that will take us back up
16194 the chain and we want to go down. */
16195 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16196 if (attr)
16197 {
16198 type = get_DW_AT_signature_type (die, attr, cu);
16199
16200 /* The type's CU may not be the same as CU.
16201 Ensure TYPE is recorded with CU in die_type_hash. */
16202 return set_die_type (die, type, cu);
16203 }
16204
16205 type = alloc_type (objfile);
16206
16207 TYPE_CODE (type) = TYPE_CODE_ENUM;
16208 name = dwarf2_full_name (NULL, die, cu);
16209 if (name != NULL)
16210 TYPE_TAG_NAME (type) = name;
16211
16212 attr = dwarf2_attr (die, DW_AT_type, cu);
16213 if (attr != NULL)
16214 {
16215 struct type *underlying_type = die_type (die, cu);
16216
16217 TYPE_TARGET_TYPE (type) = underlying_type;
16218 }
16219
16220 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16221 if (attr)
16222 {
16223 TYPE_LENGTH (type) = DW_UNSND (attr);
16224 }
16225 else
16226 {
16227 TYPE_LENGTH (type) = 0;
16228 }
16229
16230 maybe_set_alignment (cu, die, type);
16231
16232 /* The enumeration DIE can be incomplete. In Ada, any type can be
16233 declared as private in the package spec, and then defined only
16234 inside the package body. Such types are known as Taft Amendment
16235 Types. When another package uses such a type, an incomplete DIE
16236 may be generated by the compiler. */
16237 if (die_is_declaration (die, cu))
16238 TYPE_STUB (type) = 1;
16239
16240 /* Finish the creation of this type by using the enum's children.
16241 We must call this even when the underlying type has been provided
16242 so that we can determine if we're looking at a "flag" enum. */
16243 update_enumeration_type_from_children (die, type, cu);
16244
16245 /* If this type has an underlying type that is not a stub, then we
16246 may use its attributes. We always use the "unsigned" attribute
16247 in this situation, because ordinarily we guess whether the type
16248 is unsigned -- but the guess can be wrong and the underlying type
16249 can tell us the reality. However, we defer to a local size
16250 attribute if one exists, because this lets the compiler override
16251 the underlying type if needed. */
16252 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16253 {
16254 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16255 if (TYPE_LENGTH (type) == 0)
16256 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16257 if (TYPE_RAW_ALIGN (type) == 0
16258 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16259 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16260 }
16261
16262 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16263
16264 return set_die_type (die, type, cu);
16265 }
16266
16267 /* Given a pointer to a die which begins an enumeration, process all
16268 the dies that define the members of the enumeration, and create the
16269 symbol for the enumeration type.
16270
16271 NOTE: We reverse the order of the element list. */
16272
16273 static void
16274 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16275 {
16276 struct type *this_type;
16277
16278 this_type = get_die_type (die, cu);
16279 if (this_type == NULL)
16280 this_type = read_enumeration_type (die, cu);
16281
16282 if (die->child != NULL)
16283 {
16284 struct die_info *child_die;
16285 struct symbol *sym;
16286 struct field *fields = NULL;
16287 int num_fields = 0;
16288 const char *name;
16289
16290 child_die = die->child;
16291 while (child_die && child_die->tag)
16292 {
16293 if (child_die->tag != DW_TAG_enumerator)
16294 {
16295 process_die (child_die, cu);
16296 }
16297 else
16298 {
16299 name = dwarf2_name (child_die, cu);
16300 if (name)
16301 {
16302 sym = new_symbol (child_die, this_type, cu);
16303
16304 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16305 {
16306 fields = (struct field *)
16307 xrealloc (fields,
16308 (num_fields + DW_FIELD_ALLOC_CHUNK)
16309 * sizeof (struct field));
16310 }
16311
16312 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16313 FIELD_TYPE (fields[num_fields]) = NULL;
16314 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16315 FIELD_BITSIZE (fields[num_fields]) = 0;
16316
16317 num_fields++;
16318 }
16319 }
16320
16321 child_die = sibling_die (child_die);
16322 }
16323
16324 if (num_fields)
16325 {
16326 TYPE_NFIELDS (this_type) = num_fields;
16327 TYPE_FIELDS (this_type) = (struct field *)
16328 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16329 memcpy (TYPE_FIELDS (this_type), fields,
16330 sizeof (struct field) * num_fields);
16331 xfree (fields);
16332 }
16333 }
16334
16335 /* If we are reading an enum from a .debug_types unit, and the enum
16336 is a declaration, and the enum is not the signatured type in the
16337 unit, then we do not want to add a symbol for it. Adding a
16338 symbol would in some cases obscure the true definition of the
16339 enum, giving users an incomplete type when the definition is
16340 actually available. Note that we do not want to do this for all
16341 enums which are just declarations, because C++0x allows forward
16342 enum declarations. */
16343 if (cu->per_cu->is_debug_types
16344 && die_is_declaration (die, cu))
16345 {
16346 struct signatured_type *sig_type;
16347
16348 sig_type = (struct signatured_type *) cu->per_cu;
16349 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16350 if (sig_type->type_offset_in_section != die->sect_off)
16351 return;
16352 }
16353
16354 new_symbol (die, this_type, cu);
16355 }
16356
16357 /* Extract all information from a DW_TAG_array_type DIE and put it in
16358 the DIE's type field. For now, this only handles one dimensional
16359 arrays. */
16360
16361 static struct type *
16362 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16363 {
16364 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16365 struct die_info *child_die;
16366 struct type *type;
16367 struct type *element_type, *range_type, *index_type;
16368 struct attribute *attr;
16369 const char *name;
16370 struct dynamic_prop *byte_stride_prop = NULL;
16371 unsigned int bit_stride = 0;
16372
16373 element_type = die_type (die, cu);
16374
16375 /* The die_type call above may have already set the type for this DIE. */
16376 type = get_die_type (die, cu);
16377 if (type)
16378 return type;
16379
16380 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16381 if (attr != NULL)
16382 {
16383 int stride_ok;
16384
16385 byte_stride_prop
16386 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16387 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16388 if (!stride_ok)
16389 {
16390 complaint (&symfile_complaints,
16391 _("unable to read array DW_AT_byte_stride "
16392 " - DIE at %s [in module %s]"),
16393 sect_offset_str (die->sect_off),
16394 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16395 /* Ignore this attribute. We will likely not be able to print
16396 arrays of this type correctly, but there is little we can do
16397 to help if we cannot read the attribute's value. */
16398 byte_stride_prop = NULL;
16399 }
16400 }
16401
16402 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16403 if (attr != NULL)
16404 bit_stride = DW_UNSND (attr);
16405
16406 /* Irix 6.2 native cc creates array types without children for
16407 arrays with unspecified length. */
16408 if (die->child == NULL)
16409 {
16410 index_type = objfile_type (objfile)->builtin_int;
16411 range_type = create_static_range_type (NULL, index_type, 0, -1);
16412 type = create_array_type_with_stride (NULL, element_type, range_type,
16413 byte_stride_prop, bit_stride);
16414 return set_die_type (die, type, cu);
16415 }
16416
16417 std::vector<struct type *> range_types;
16418 child_die = die->child;
16419 while (child_die && child_die->tag)
16420 {
16421 if (child_die->tag == DW_TAG_subrange_type)
16422 {
16423 struct type *child_type = read_type_die (child_die, cu);
16424
16425 if (child_type != NULL)
16426 {
16427 /* The range type was succesfully read. Save it for the
16428 array type creation. */
16429 range_types.push_back (child_type);
16430 }
16431 }
16432 child_die = sibling_die (child_die);
16433 }
16434
16435 /* Dwarf2 dimensions are output from left to right, create the
16436 necessary array types in backwards order. */
16437
16438 type = element_type;
16439
16440 if (read_array_order (die, cu) == DW_ORD_col_major)
16441 {
16442 int i = 0;
16443
16444 while (i < range_types.size ())
16445 type = create_array_type_with_stride (NULL, type, range_types[i++],
16446 byte_stride_prop, bit_stride);
16447 }
16448 else
16449 {
16450 size_t ndim = range_types.size ();
16451 while (ndim-- > 0)
16452 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16453 byte_stride_prop, bit_stride);
16454 }
16455
16456 /* Understand Dwarf2 support for vector types (like they occur on
16457 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16458 array type. This is not part of the Dwarf2/3 standard yet, but a
16459 custom vendor extension. The main difference between a regular
16460 array and the vector variant is that vectors are passed by value
16461 to functions. */
16462 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16463 if (attr)
16464 make_vector_type (type);
16465
16466 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16467 implementation may choose to implement triple vectors using this
16468 attribute. */
16469 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16470 if (attr)
16471 {
16472 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16473 TYPE_LENGTH (type) = DW_UNSND (attr);
16474 else
16475 complaint (&symfile_complaints,
16476 _("DW_AT_byte_size for array type smaller "
16477 "than the total size of elements"));
16478 }
16479
16480 name = dwarf2_name (die, cu);
16481 if (name)
16482 TYPE_NAME (type) = name;
16483
16484 maybe_set_alignment (cu, die, type);
16485
16486 /* Install the type in the die. */
16487 set_die_type (die, type, cu);
16488
16489 /* set_die_type should be already done. */
16490 set_descriptive_type (type, die, cu);
16491
16492 return type;
16493 }
16494
16495 static enum dwarf_array_dim_ordering
16496 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16497 {
16498 struct attribute *attr;
16499
16500 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16501
16502 if (attr)
16503 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16504
16505 /* GNU F77 is a special case, as at 08/2004 array type info is the
16506 opposite order to the dwarf2 specification, but data is still
16507 laid out as per normal fortran.
16508
16509 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16510 version checking. */
16511
16512 if (cu->language == language_fortran
16513 && cu->producer && strstr (cu->producer, "GNU F77"))
16514 {
16515 return DW_ORD_row_major;
16516 }
16517
16518 switch (cu->language_defn->la_array_ordering)
16519 {
16520 case array_column_major:
16521 return DW_ORD_col_major;
16522 case array_row_major:
16523 default:
16524 return DW_ORD_row_major;
16525 };
16526 }
16527
16528 /* Extract all information from a DW_TAG_set_type DIE and put it in
16529 the DIE's type field. */
16530
16531 static struct type *
16532 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16533 {
16534 struct type *domain_type, *set_type;
16535 struct attribute *attr;
16536
16537 domain_type = die_type (die, cu);
16538
16539 /* The die_type call above may have already set the type for this DIE. */
16540 set_type = get_die_type (die, cu);
16541 if (set_type)
16542 return set_type;
16543
16544 set_type = create_set_type (NULL, domain_type);
16545
16546 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16547 if (attr)
16548 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16549
16550 maybe_set_alignment (cu, die, set_type);
16551
16552 return set_die_type (die, set_type, cu);
16553 }
16554
16555 /* A helper for read_common_block that creates a locexpr baton.
16556 SYM is the symbol which we are marking as computed.
16557 COMMON_DIE is the DIE for the common block.
16558 COMMON_LOC is the location expression attribute for the common
16559 block itself.
16560 MEMBER_LOC is the location expression attribute for the particular
16561 member of the common block that we are processing.
16562 CU is the CU from which the above come. */
16563
16564 static void
16565 mark_common_block_symbol_computed (struct symbol *sym,
16566 struct die_info *common_die,
16567 struct attribute *common_loc,
16568 struct attribute *member_loc,
16569 struct dwarf2_cu *cu)
16570 {
16571 struct dwarf2_per_objfile *dwarf2_per_objfile
16572 = cu->per_cu->dwarf2_per_objfile;
16573 struct objfile *objfile = dwarf2_per_objfile->objfile;
16574 struct dwarf2_locexpr_baton *baton;
16575 gdb_byte *ptr;
16576 unsigned int cu_off;
16577 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16578 LONGEST offset = 0;
16579
16580 gdb_assert (common_loc && member_loc);
16581 gdb_assert (attr_form_is_block (common_loc));
16582 gdb_assert (attr_form_is_block (member_loc)
16583 || attr_form_is_constant (member_loc));
16584
16585 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16586 baton->per_cu = cu->per_cu;
16587 gdb_assert (baton->per_cu);
16588
16589 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16590
16591 if (attr_form_is_constant (member_loc))
16592 {
16593 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16594 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16595 }
16596 else
16597 baton->size += DW_BLOCK (member_loc)->size;
16598
16599 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16600 baton->data = ptr;
16601
16602 *ptr++ = DW_OP_call4;
16603 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16604 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16605 ptr += 4;
16606
16607 if (attr_form_is_constant (member_loc))
16608 {
16609 *ptr++ = DW_OP_addr;
16610 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16611 ptr += cu->header.addr_size;
16612 }
16613 else
16614 {
16615 /* We have to copy the data here, because DW_OP_call4 will only
16616 use a DW_AT_location attribute. */
16617 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16618 ptr += DW_BLOCK (member_loc)->size;
16619 }
16620
16621 *ptr++ = DW_OP_plus;
16622 gdb_assert (ptr - baton->data == baton->size);
16623
16624 SYMBOL_LOCATION_BATON (sym) = baton;
16625 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16626 }
16627
16628 /* Create appropriate locally-scoped variables for all the
16629 DW_TAG_common_block entries. Also create a struct common_block
16630 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16631 is used to sepate the common blocks name namespace from regular
16632 variable names. */
16633
16634 static void
16635 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16636 {
16637 struct attribute *attr;
16638
16639 attr = dwarf2_attr (die, DW_AT_location, cu);
16640 if (attr)
16641 {
16642 /* Support the .debug_loc offsets. */
16643 if (attr_form_is_block (attr))
16644 {
16645 /* Ok. */
16646 }
16647 else if (attr_form_is_section_offset (attr))
16648 {
16649 dwarf2_complex_location_expr_complaint ();
16650 attr = NULL;
16651 }
16652 else
16653 {
16654 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16655 "common block member");
16656 attr = NULL;
16657 }
16658 }
16659
16660 if (die->child != NULL)
16661 {
16662 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16663 struct die_info *child_die;
16664 size_t n_entries = 0, size;
16665 struct common_block *common_block;
16666 struct symbol *sym;
16667
16668 for (child_die = die->child;
16669 child_die && child_die->tag;
16670 child_die = sibling_die (child_die))
16671 ++n_entries;
16672
16673 size = (sizeof (struct common_block)
16674 + (n_entries - 1) * sizeof (struct symbol *));
16675 common_block
16676 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16677 size);
16678 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16679 common_block->n_entries = 0;
16680
16681 for (child_die = die->child;
16682 child_die && child_die->tag;
16683 child_die = sibling_die (child_die))
16684 {
16685 /* Create the symbol in the DW_TAG_common_block block in the current
16686 symbol scope. */
16687 sym = new_symbol (child_die, NULL, cu);
16688 if (sym != NULL)
16689 {
16690 struct attribute *member_loc;
16691
16692 common_block->contents[common_block->n_entries++] = sym;
16693
16694 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16695 cu);
16696 if (member_loc)
16697 {
16698 /* GDB has handled this for a long time, but it is
16699 not specified by DWARF. It seems to have been
16700 emitted by gfortran at least as recently as:
16701 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16702 complaint (&symfile_complaints,
16703 _("Variable in common block has "
16704 "DW_AT_data_member_location "
16705 "- DIE at %s [in module %s]"),
16706 sect_offset_str (child_die->sect_off),
16707 objfile_name (objfile));
16708
16709 if (attr_form_is_section_offset (member_loc))
16710 dwarf2_complex_location_expr_complaint ();
16711 else if (attr_form_is_constant (member_loc)
16712 || attr_form_is_block (member_loc))
16713 {
16714 if (attr)
16715 mark_common_block_symbol_computed (sym, die, attr,
16716 member_loc, cu);
16717 }
16718 else
16719 dwarf2_complex_location_expr_complaint ();
16720 }
16721 }
16722 }
16723
16724 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16725 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16726 }
16727 }
16728
16729 /* Create a type for a C++ namespace. */
16730
16731 static struct type *
16732 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16733 {
16734 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16735 const char *previous_prefix, *name;
16736 int is_anonymous;
16737 struct type *type;
16738
16739 /* For extensions, reuse the type of the original namespace. */
16740 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16741 {
16742 struct die_info *ext_die;
16743 struct dwarf2_cu *ext_cu = cu;
16744
16745 ext_die = dwarf2_extension (die, &ext_cu);
16746 type = read_type_die (ext_die, ext_cu);
16747
16748 /* EXT_CU may not be the same as CU.
16749 Ensure TYPE is recorded with CU in die_type_hash. */
16750 return set_die_type (die, type, cu);
16751 }
16752
16753 name = namespace_name (die, &is_anonymous, cu);
16754
16755 /* Now build the name of the current namespace. */
16756
16757 previous_prefix = determine_prefix (die, cu);
16758 if (previous_prefix[0] != '\0')
16759 name = typename_concat (&objfile->objfile_obstack,
16760 previous_prefix, name, 0, cu);
16761
16762 /* Create the type. */
16763 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16764 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16765
16766 return set_die_type (die, type, cu);
16767 }
16768
16769 /* Read a namespace scope. */
16770
16771 static void
16772 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16773 {
16774 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16775 int is_anonymous;
16776
16777 /* Add a symbol associated to this if we haven't seen the namespace
16778 before. Also, add a using directive if it's an anonymous
16779 namespace. */
16780
16781 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16782 {
16783 struct type *type;
16784
16785 type = read_type_die (die, cu);
16786 new_symbol (die, type, cu);
16787
16788 namespace_name (die, &is_anonymous, cu);
16789 if (is_anonymous)
16790 {
16791 const char *previous_prefix = determine_prefix (die, cu);
16792
16793 std::vector<const char *> excludes;
16794 add_using_directive (using_directives (cu->language),
16795 previous_prefix, TYPE_NAME (type), NULL,
16796 NULL, excludes, 0, &objfile->objfile_obstack);
16797 }
16798 }
16799
16800 if (die->child != NULL)
16801 {
16802 struct die_info *child_die = die->child;
16803
16804 while (child_die && child_die->tag)
16805 {
16806 process_die (child_die, cu);
16807 child_die = sibling_die (child_die);
16808 }
16809 }
16810 }
16811
16812 /* Read a Fortran module as type. This DIE can be only a declaration used for
16813 imported module. Still we need that type as local Fortran "use ... only"
16814 declaration imports depend on the created type in determine_prefix. */
16815
16816 static struct type *
16817 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16818 {
16819 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16820 const char *module_name;
16821 struct type *type;
16822
16823 module_name = dwarf2_name (die, cu);
16824 if (!module_name)
16825 complaint (&symfile_complaints,
16826 _("DW_TAG_module has no name, offset %s"),
16827 sect_offset_str (die->sect_off));
16828 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16829
16830 /* determine_prefix uses TYPE_TAG_NAME. */
16831 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16832
16833 return set_die_type (die, type, cu);
16834 }
16835
16836 /* Read a Fortran module. */
16837
16838 static void
16839 read_module (struct die_info *die, struct dwarf2_cu *cu)
16840 {
16841 struct die_info *child_die = die->child;
16842 struct type *type;
16843
16844 type = read_type_die (die, cu);
16845 new_symbol (die, type, cu);
16846
16847 while (child_die && child_die->tag)
16848 {
16849 process_die (child_die, cu);
16850 child_die = sibling_die (child_die);
16851 }
16852 }
16853
16854 /* Return the name of the namespace represented by DIE. Set
16855 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16856 namespace. */
16857
16858 static const char *
16859 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16860 {
16861 struct die_info *current_die;
16862 const char *name = NULL;
16863
16864 /* Loop through the extensions until we find a name. */
16865
16866 for (current_die = die;
16867 current_die != NULL;
16868 current_die = dwarf2_extension (die, &cu))
16869 {
16870 /* We don't use dwarf2_name here so that we can detect the absence
16871 of a name -> anonymous namespace. */
16872 name = dwarf2_string_attr (die, DW_AT_name, cu);
16873
16874 if (name != NULL)
16875 break;
16876 }
16877
16878 /* Is it an anonymous namespace? */
16879
16880 *is_anonymous = (name == NULL);
16881 if (*is_anonymous)
16882 name = CP_ANONYMOUS_NAMESPACE_STR;
16883
16884 return name;
16885 }
16886
16887 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16888 the user defined type vector. */
16889
16890 static struct type *
16891 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16892 {
16893 struct gdbarch *gdbarch
16894 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16895 struct comp_unit_head *cu_header = &cu->header;
16896 struct type *type;
16897 struct attribute *attr_byte_size;
16898 struct attribute *attr_address_class;
16899 int byte_size, addr_class;
16900 struct type *target_type;
16901
16902 target_type = die_type (die, cu);
16903
16904 /* The die_type call above may have already set the type for this DIE. */
16905 type = get_die_type (die, cu);
16906 if (type)
16907 return type;
16908
16909 type = lookup_pointer_type (target_type);
16910
16911 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16912 if (attr_byte_size)
16913 byte_size = DW_UNSND (attr_byte_size);
16914 else
16915 byte_size = cu_header->addr_size;
16916
16917 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16918 if (attr_address_class)
16919 addr_class = DW_UNSND (attr_address_class);
16920 else
16921 addr_class = DW_ADDR_none;
16922
16923 ULONGEST alignment = get_alignment (cu, die);
16924
16925 /* If the pointer size, alignment, or address class is different
16926 than the default, create a type variant marked as such and set
16927 the length accordingly. */
16928 if (TYPE_LENGTH (type) != byte_size
16929 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16930 && alignment != TYPE_RAW_ALIGN (type))
16931 || addr_class != DW_ADDR_none)
16932 {
16933 if (gdbarch_address_class_type_flags_p (gdbarch))
16934 {
16935 int type_flags;
16936
16937 type_flags = gdbarch_address_class_type_flags
16938 (gdbarch, byte_size, addr_class);
16939 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16940 == 0);
16941 type = make_type_with_address_space (type, type_flags);
16942 }
16943 else if (TYPE_LENGTH (type) != byte_size)
16944 {
16945 complaint (&symfile_complaints,
16946 _("invalid pointer size %d"), byte_size);
16947 }
16948 else if (TYPE_RAW_ALIGN (type) != alignment)
16949 {
16950 complaint (&symfile_complaints,
16951 _("Invalid DW_AT_alignment"
16952 " - DIE at %s [in module %s]"),
16953 sect_offset_str (die->sect_off),
16954 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16955 }
16956 else
16957 {
16958 /* Should we also complain about unhandled address classes? */
16959 }
16960 }
16961
16962 TYPE_LENGTH (type) = byte_size;
16963 set_type_align (type, alignment);
16964 return set_die_type (die, type, cu);
16965 }
16966
16967 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16968 the user defined type vector. */
16969
16970 static struct type *
16971 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16972 {
16973 struct type *type;
16974 struct type *to_type;
16975 struct type *domain;
16976
16977 to_type = die_type (die, cu);
16978 domain = die_containing_type (die, cu);
16979
16980 /* The calls above may have already set the type for this DIE. */
16981 type = get_die_type (die, cu);
16982 if (type)
16983 return type;
16984
16985 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16986 type = lookup_methodptr_type (to_type);
16987 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16988 {
16989 struct type *new_type
16990 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16991
16992 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16993 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16994 TYPE_VARARGS (to_type));
16995 type = lookup_methodptr_type (new_type);
16996 }
16997 else
16998 type = lookup_memberptr_type (to_type, domain);
16999
17000 return set_die_type (die, type, cu);
17001 }
17002
17003 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17004 the user defined type vector. */
17005
17006 static struct type *
17007 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17008 enum type_code refcode)
17009 {
17010 struct comp_unit_head *cu_header = &cu->header;
17011 struct type *type, *target_type;
17012 struct attribute *attr;
17013
17014 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17015
17016 target_type = die_type (die, cu);
17017
17018 /* The die_type call above may have already set the type for this DIE. */
17019 type = get_die_type (die, cu);
17020 if (type)
17021 return type;
17022
17023 type = lookup_reference_type (target_type, refcode);
17024 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17025 if (attr)
17026 {
17027 TYPE_LENGTH (type) = DW_UNSND (attr);
17028 }
17029 else
17030 {
17031 TYPE_LENGTH (type) = cu_header->addr_size;
17032 }
17033 maybe_set_alignment (cu, die, type);
17034 return set_die_type (die, type, cu);
17035 }
17036
17037 /* Add the given cv-qualifiers to the element type of the array. GCC
17038 outputs DWARF type qualifiers that apply to an array, not the
17039 element type. But GDB relies on the array element type to carry
17040 the cv-qualifiers. This mimics section 6.7.3 of the C99
17041 specification. */
17042
17043 static struct type *
17044 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17045 struct type *base_type, int cnst, int voltl)
17046 {
17047 struct type *el_type, *inner_array;
17048
17049 base_type = copy_type (base_type);
17050 inner_array = base_type;
17051
17052 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17053 {
17054 TYPE_TARGET_TYPE (inner_array) =
17055 copy_type (TYPE_TARGET_TYPE (inner_array));
17056 inner_array = TYPE_TARGET_TYPE (inner_array);
17057 }
17058
17059 el_type = TYPE_TARGET_TYPE (inner_array);
17060 cnst |= TYPE_CONST (el_type);
17061 voltl |= TYPE_VOLATILE (el_type);
17062 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17063
17064 return set_die_type (die, base_type, cu);
17065 }
17066
17067 static struct type *
17068 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17069 {
17070 struct type *base_type, *cv_type;
17071
17072 base_type = die_type (die, cu);
17073
17074 /* The die_type call above may have already set the type for this DIE. */
17075 cv_type = get_die_type (die, cu);
17076 if (cv_type)
17077 return cv_type;
17078
17079 /* In case the const qualifier is applied to an array type, the element type
17080 is so qualified, not the array type (section 6.7.3 of C99). */
17081 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17082 return add_array_cv_type (die, cu, base_type, 1, 0);
17083
17084 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17085 return set_die_type (die, cv_type, cu);
17086 }
17087
17088 static struct type *
17089 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17090 {
17091 struct type *base_type, *cv_type;
17092
17093 base_type = die_type (die, cu);
17094
17095 /* The die_type call above may have already set the type for this DIE. */
17096 cv_type = get_die_type (die, cu);
17097 if (cv_type)
17098 return cv_type;
17099
17100 /* In case the volatile qualifier is applied to an array type, the
17101 element type is so qualified, not the array type (section 6.7.3
17102 of C99). */
17103 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17104 return add_array_cv_type (die, cu, base_type, 0, 1);
17105
17106 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17107 return set_die_type (die, cv_type, cu);
17108 }
17109
17110 /* Handle DW_TAG_restrict_type. */
17111
17112 static struct type *
17113 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17114 {
17115 struct type *base_type, *cv_type;
17116
17117 base_type = die_type (die, cu);
17118
17119 /* The die_type call above may have already set the type for this DIE. */
17120 cv_type = get_die_type (die, cu);
17121 if (cv_type)
17122 return cv_type;
17123
17124 cv_type = make_restrict_type (base_type);
17125 return set_die_type (die, cv_type, cu);
17126 }
17127
17128 /* Handle DW_TAG_atomic_type. */
17129
17130 static struct type *
17131 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17132 {
17133 struct type *base_type, *cv_type;
17134
17135 base_type = die_type (die, cu);
17136
17137 /* The die_type call above may have already set the type for this DIE. */
17138 cv_type = get_die_type (die, cu);
17139 if (cv_type)
17140 return cv_type;
17141
17142 cv_type = make_atomic_type (base_type);
17143 return set_die_type (die, cv_type, cu);
17144 }
17145
17146 /* Extract all information from a DW_TAG_string_type DIE and add to
17147 the user defined type vector. It isn't really a user defined type,
17148 but it behaves like one, with other DIE's using an AT_user_def_type
17149 attribute to reference it. */
17150
17151 static struct type *
17152 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17153 {
17154 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17155 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17156 struct type *type, *range_type, *index_type, *char_type;
17157 struct attribute *attr;
17158 unsigned int length;
17159
17160 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17161 if (attr)
17162 {
17163 length = DW_UNSND (attr);
17164 }
17165 else
17166 {
17167 /* Check for the DW_AT_byte_size attribute. */
17168 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17169 if (attr)
17170 {
17171 length = DW_UNSND (attr);
17172 }
17173 else
17174 {
17175 length = 1;
17176 }
17177 }
17178
17179 index_type = objfile_type (objfile)->builtin_int;
17180 range_type = create_static_range_type (NULL, index_type, 1, length);
17181 char_type = language_string_char_type (cu->language_defn, gdbarch);
17182 type = create_string_type (NULL, char_type, range_type);
17183
17184 return set_die_type (die, type, cu);
17185 }
17186
17187 /* Assuming that DIE corresponds to a function, returns nonzero
17188 if the function is prototyped. */
17189
17190 static int
17191 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17192 {
17193 struct attribute *attr;
17194
17195 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17196 if (attr && (DW_UNSND (attr) != 0))
17197 return 1;
17198
17199 /* The DWARF standard implies that the DW_AT_prototyped attribute
17200 is only meaninful for C, but the concept also extends to other
17201 languages that allow unprototyped functions (Eg: Objective C).
17202 For all other languages, assume that functions are always
17203 prototyped. */
17204 if (cu->language != language_c
17205 && cu->language != language_objc
17206 && cu->language != language_opencl)
17207 return 1;
17208
17209 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17210 prototyped and unprototyped functions; default to prototyped,
17211 since that is more common in modern code (and RealView warns
17212 about unprototyped functions). */
17213 if (producer_is_realview (cu->producer))
17214 return 1;
17215
17216 return 0;
17217 }
17218
17219 /* Handle DIES due to C code like:
17220
17221 struct foo
17222 {
17223 int (*funcp)(int a, long l);
17224 int b;
17225 };
17226
17227 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17228
17229 static struct type *
17230 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17231 {
17232 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17233 struct type *type; /* Type that this function returns. */
17234 struct type *ftype; /* Function that returns above type. */
17235 struct attribute *attr;
17236
17237 type = die_type (die, cu);
17238
17239 /* The die_type call above may have already set the type for this DIE. */
17240 ftype = get_die_type (die, cu);
17241 if (ftype)
17242 return ftype;
17243
17244 ftype = lookup_function_type (type);
17245
17246 if (prototyped_function_p (die, cu))
17247 TYPE_PROTOTYPED (ftype) = 1;
17248
17249 /* Store the calling convention in the type if it's available in
17250 the subroutine die. Otherwise set the calling convention to
17251 the default value DW_CC_normal. */
17252 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17253 if (attr)
17254 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17255 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17256 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17257 else
17258 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17259
17260 /* Record whether the function returns normally to its caller or not
17261 if the DWARF producer set that information. */
17262 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17263 if (attr && (DW_UNSND (attr) != 0))
17264 TYPE_NO_RETURN (ftype) = 1;
17265
17266 /* We need to add the subroutine type to the die immediately so
17267 we don't infinitely recurse when dealing with parameters
17268 declared as the same subroutine type. */
17269 set_die_type (die, ftype, cu);
17270
17271 if (die->child != NULL)
17272 {
17273 struct type *void_type = objfile_type (objfile)->builtin_void;
17274 struct die_info *child_die;
17275 int nparams, iparams;
17276
17277 /* Count the number of parameters.
17278 FIXME: GDB currently ignores vararg functions, but knows about
17279 vararg member functions. */
17280 nparams = 0;
17281 child_die = die->child;
17282 while (child_die && child_die->tag)
17283 {
17284 if (child_die->tag == DW_TAG_formal_parameter)
17285 nparams++;
17286 else if (child_die->tag == DW_TAG_unspecified_parameters)
17287 TYPE_VARARGS (ftype) = 1;
17288 child_die = sibling_die (child_die);
17289 }
17290
17291 /* Allocate storage for parameters and fill them in. */
17292 TYPE_NFIELDS (ftype) = nparams;
17293 TYPE_FIELDS (ftype) = (struct field *)
17294 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17295
17296 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17297 even if we error out during the parameters reading below. */
17298 for (iparams = 0; iparams < nparams; iparams++)
17299 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17300
17301 iparams = 0;
17302 child_die = die->child;
17303 while (child_die && child_die->tag)
17304 {
17305 if (child_die->tag == DW_TAG_formal_parameter)
17306 {
17307 struct type *arg_type;
17308
17309 /* DWARF version 2 has no clean way to discern C++
17310 static and non-static member functions. G++ helps
17311 GDB by marking the first parameter for non-static
17312 member functions (which is the this pointer) as
17313 artificial. We pass this information to
17314 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17315
17316 DWARF version 3 added DW_AT_object_pointer, which GCC
17317 4.5 does not yet generate. */
17318 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17319 if (attr)
17320 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17321 else
17322 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17323 arg_type = die_type (child_die, cu);
17324
17325 /* RealView does not mark THIS as const, which the testsuite
17326 expects. GCC marks THIS as const in method definitions,
17327 but not in the class specifications (GCC PR 43053). */
17328 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17329 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17330 {
17331 int is_this = 0;
17332 struct dwarf2_cu *arg_cu = cu;
17333 const char *name = dwarf2_name (child_die, cu);
17334
17335 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17336 if (attr)
17337 {
17338 /* If the compiler emits this, use it. */
17339 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17340 is_this = 1;
17341 }
17342 else if (name && strcmp (name, "this") == 0)
17343 /* Function definitions will have the argument names. */
17344 is_this = 1;
17345 else if (name == NULL && iparams == 0)
17346 /* Declarations may not have the names, so like
17347 elsewhere in GDB, assume an artificial first
17348 argument is "this". */
17349 is_this = 1;
17350
17351 if (is_this)
17352 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17353 arg_type, 0);
17354 }
17355
17356 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17357 iparams++;
17358 }
17359 child_die = sibling_die (child_die);
17360 }
17361 }
17362
17363 return ftype;
17364 }
17365
17366 static struct type *
17367 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17368 {
17369 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17370 const char *name = NULL;
17371 struct type *this_type, *target_type;
17372
17373 name = dwarf2_full_name (NULL, die, cu);
17374 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17375 TYPE_TARGET_STUB (this_type) = 1;
17376 set_die_type (die, this_type, cu);
17377 target_type = die_type (die, cu);
17378 if (target_type != this_type)
17379 TYPE_TARGET_TYPE (this_type) = target_type;
17380 else
17381 {
17382 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17383 spec and cause infinite loops in GDB. */
17384 complaint (&symfile_complaints,
17385 _("Self-referential DW_TAG_typedef "
17386 "- DIE at %s [in module %s]"),
17387 sect_offset_str (die->sect_off), objfile_name (objfile));
17388 TYPE_TARGET_TYPE (this_type) = NULL;
17389 }
17390 return this_type;
17391 }
17392
17393 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17394 (which may be different from NAME) to the architecture back-end to allow
17395 it to guess the correct format if necessary. */
17396
17397 static struct type *
17398 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17399 const char *name_hint)
17400 {
17401 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17402 const struct floatformat **format;
17403 struct type *type;
17404
17405 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17406 if (format)
17407 type = init_float_type (objfile, bits, name, format);
17408 else
17409 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17410
17411 return type;
17412 }
17413
17414 /* Find a representation of a given base type and install
17415 it in the TYPE field of the die. */
17416
17417 static struct type *
17418 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17419 {
17420 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17421 struct type *type;
17422 struct attribute *attr;
17423 int encoding = 0, bits = 0;
17424 const char *name;
17425
17426 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17427 if (attr)
17428 {
17429 encoding = DW_UNSND (attr);
17430 }
17431 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17432 if (attr)
17433 {
17434 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17435 }
17436 name = dwarf2_name (die, cu);
17437 if (!name)
17438 {
17439 complaint (&symfile_complaints,
17440 _("DW_AT_name missing from DW_TAG_base_type"));
17441 }
17442
17443 switch (encoding)
17444 {
17445 case DW_ATE_address:
17446 /* Turn DW_ATE_address into a void * pointer. */
17447 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17448 type = init_pointer_type (objfile, bits, name, type);
17449 break;
17450 case DW_ATE_boolean:
17451 type = init_boolean_type (objfile, bits, 1, name);
17452 break;
17453 case DW_ATE_complex_float:
17454 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17455 type = init_complex_type (objfile, name, type);
17456 break;
17457 case DW_ATE_decimal_float:
17458 type = init_decfloat_type (objfile, bits, name);
17459 break;
17460 case DW_ATE_float:
17461 type = dwarf2_init_float_type (objfile, bits, name, name);
17462 break;
17463 case DW_ATE_signed:
17464 type = init_integer_type (objfile, bits, 0, name);
17465 break;
17466 case DW_ATE_unsigned:
17467 if (cu->language == language_fortran
17468 && name
17469 && startswith (name, "character("))
17470 type = init_character_type (objfile, bits, 1, name);
17471 else
17472 type = init_integer_type (objfile, bits, 1, name);
17473 break;
17474 case DW_ATE_signed_char:
17475 if (cu->language == language_ada || cu->language == language_m2
17476 || cu->language == language_pascal
17477 || cu->language == language_fortran)
17478 type = init_character_type (objfile, bits, 0, name);
17479 else
17480 type = init_integer_type (objfile, bits, 0, name);
17481 break;
17482 case DW_ATE_unsigned_char:
17483 if (cu->language == language_ada || cu->language == language_m2
17484 || cu->language == language_pascal
17485 || cu->language == language_fortran
17486 || cu->language == language_rust)
17487 type = init_character_type (objfile, bits, 1, name);
17488 else
17489 type = init_integer_type (objfile, bits, 1, name);
17490 break;
17491 case DW_ATE_UTF:
17492 {
17493 gdbarch *arch = get_objfile_arch (objfile);
17494
17495 if (bits == 16)
17496 type = builtin_type (arch)->builtin_char16;
17497 else if (bits == 32)
17498 type = builtin_type (arch)->builtin_char32;
17499 else
17500 {
17501 complaint (&symfile_complaints,
17502 _("unsupported DW_ATE_UTF bit size: '%d'"),
17503 bits);
17504 type = init_integer_type (objfile, bits, 1, name);
17505 }
17506 return set_die_type (die, type, cu);
17507 }
17508 break;
17509
17510 default:
17511 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17512 dwarf_type_encoding_name (encoding));
17513 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17514 break;
17515 }
17516
17517 if (name && strcmp (name, "char") == 0)
17518 TYPE_NOSIGN (type) = 1;
17519
17520 maybe_set_alignment (cu, die, type);
17521
17522 return set_die_type (die, type, cu);
17523 }
17524
17525 /* Parse dwarf attribute if it's a block, reference or constant and put the
17526 resulting value of the attribute into struct bound_prop.
17527 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17528
17529 static int
17530 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17531 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17532 {
17533 struct dwarf2_property_baton *baton;
17534 struct obstack *obstack
17535 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17536
17537 if (attr == NULL || prop == NULL)
17538 return 0;
17539
17540 if (attr_form_is_block (attr))
17541 {
17542 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17543 baton->referenced_type = NULL;
17544 baton->locexpr.per_cu = cu->per_cu;
17545 baton->locexpr.size = DW_BLOCK (attr)->size;
17546 baton->locexpr.data = DW_BLOCK (attr)->data;
17547 prop->data.baton = baton;
17548 prop->kind = PROP_LOCEXPR;
17549 gdb_assert (prop->data.baton != NULL);
17550 }
17551 else if (attr_form_is_ref (attr))
17552 {
17553 struct dwarf2_cu *target_cu = cu;
17554 struct die_info *target_die;
17555 struct attribute *target_attr;
17556
17557 target_die = follow_die_ref (die, attr, &target_cu);
17558 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17559 if (target_attr == NULL)
17560 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17561 target_cu);
17562 if (target_attr == NULL)
17563 return 0;
17564
17565 switch (target_attr->name)
17566 {
17567 case DW_AT_location:
17568 if (attr_form_is_section_offset (target_attr))
17569 {
17570 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17571 baton->referenced_type = die_type (target_die, target_cu);
17572 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17573 prop->data.baton = baton;
17574 prop->kind = PROP_LOCLIST;
17575 gdb_assert (prop->data.baton != NULL);
17576 }
17577 else if (attr_form_is_block (target_attr))
17578 {
17579 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17580 baton->referenced_type = die_type (target_die, target_cu);
17581 baton->locexpr.per_cu = cu->per_cu;
17582 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17583 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17584 prop->data.baton = baton;
17585 prop->kind = PROP_LOCEXPR;
17586 gdb_assert (prop->data.baton != NULL);
17587 }
17588 else
17589 {
17590 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17591 "dynamic property");
17592 return 0;
17593 }
17594 break;
17595 case DW_AT_data_member_location:
17596 {
17597 LONGEST offset;
17598
17599 if (!handle_data_member_location (target_die, target_cu,
17600 &offset))
17601 return 0;
17602
17603 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17604 baton->referenced_type = read_type_die (target_die->parent,
17605 target_cu);
17606 baton->offset_info.offset = offset;
17607 baton->offset_info.type = die_type (target_die, target_cu);
17608 prop->data.baton = baton;
17609 prop->kind = PROP_ADDR_OFFSET;
17610 break;
17611 }
17612 }
17613 }
17614 else if (attr_form_is_constant (attr))
17615 {
17616 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17617 prop->kind = PROP_CONST;
17618 }
17619 else
17620 {
17621 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17622 dwarf2_name (die, cu));
17623 return 0;
17624 }
17625
17626 return 1;
17627 }
17628
17629 /* Read the given DW_AT_subrange DIE. */
17630
17631 static struct type *
17632 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17633 {
17634 struct type *base_type, *orig_base_type;
17635 struct type *range_type;
17636 struct attribute *attr;
17637 struct dynamic_prop low, high;
17638 int low_default_is_valid;
17639 int high_bound_is_count = 0;
17640 const char *name;
17641 LONGEST negative_mask;
17642
17643 orig_base_type = die_type (die, cu);
17644 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17645 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17646 creating the range type, but we use the result of check_typedef
17647 when examining properties of the type. */
17648 base_type = check_typedef (orig_base_type);
17649
17650 /* The die_type call above may have already set the type for this DIE. */
17651 range_type = get_die_type (die, cu);
17652 if (range_type)
17653 return range_type;
17654
17655 low.kind = PROP_CONST;
17656 high.kind = PROP_CONST;
17657 high.data.const_val = 0;
17658
17659 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17660 omitting DW_AT_lower_bound. */
17661 switch (cu->language)
17662 {
17663 case language_c:
17664 case language_cplus:
17665 low.data.const_val = 0;
17666 low_default_is_valid = 1;
17667 break;
17668 case language_fortran:
17669 low.data.const_val = 1;
17670 low_default_is_valid = 1;
17671 break;
17672 case language_d:
17673 case language_objc:
17674 case language_rust:
17675 low.data.const_val = 0;
17676 low_default_is_valid = (cu->header.version >= 4);
17677 break;
17678 case language_ada:
17679 case language_m2:
17680 case language_pascal:
17681 low.data.const_val = 1;
17682 low_default_is_valid = (cu->header.version >= 4);
17683 break;
17684 default:
17685 low.data.const_val = 0;
17686 low_default_is_valid = 0;
17687 break;
17688 }
17689
17690 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17691 if (attr)
17692 attr_to_dynamic_prop (attr, die, cu, &low);
17693 else if (!low_default_is_valid)
17694 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17695 "- DIE at %s [in module %s]"),
17696 sect_offset_str (die->sect_off),
17697 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17698
17699 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17700 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17701 {
17702 attr = dwarf2_attr (die, DW_AT_count, cu);
17703 if (attr_to_dynamic_prop (attr, die, cu, &high))
17704 {
17705 /* If bounds are constant do the final calculation here. */
17706 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17707 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17708 else
17709 high_bound_is_count = 1;
17710 }
17711 }
17712
17713 /* Dwarf-2 specifications explicitly allows to create subrange types
17714 without specifying a base type.
17715 In that case, the base type must be set to the type of
17716 the lower bound, upper bound or count, in that order, if any of these
17717 three attributes references an object that has a type.
17718 If no base type is found, the Dwarf-2 specifications say that
17719 a signed integer type of size equal to the size of an address should
17720 be used.
17721 For the following C code: `extern char gdb_int [];'
17722 GCC produces an empty range DIE.
17723 FIXME: muller/2010-05-28: Possible references to object for low bound,
17724 high bound or count are not yet handled by this code. */
17725 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17726 {
17727 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17728 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17729 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17730 struct type *int_type = objfile_type (objfile)->builtin_int;
17731
17732 /* Test "int", "long int", and "long long int" objfile types,
17733 and select the first one having a size above or equal to the
17734 architecture address size. */
17735 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17736 base_type = int_type;
17737 else
17738 {
17739 int_type = objfile_type (objfile)->builtin_long;
17740 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17741 base_type = int_type;
17742 else
17743 {
17744 int_type = objfile_type (objfile)->builtin_long_long;
17745 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17746 base_type = int_type;
17747 }
17748 }
17749 }
17750
17751 /* Normally, the DWARF producers are expected to use a signed
17752 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17753 But this is unfortunately not always the case, as witnessed
17754 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17755 is used instead. To work around that ambiguity, we treat
17756 the bounds as signed, and thus sign-extend their values, when
17757 the base type is signed. */
17758 negative_mask =
17759 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17760 if (low.kind == PROP_CONST
17761 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17762 low.data.const_val |= negative_mask;
17763 if (high.kind == PROP_CONST
17764 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17765 high.data.const_val |= negative_mask;
17766
17767 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17768
17769 if (high_bound_is_count)
17770 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17771
17772 /* Ada expects an empty array on no boundary attributes. */
17773 if (attr == NULL && cu->language != language_ada)
17774 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17775
17776 name = dwarf2_name (die, cu);
17777 if (name)
17778 TYPE_NAME (range_type) = name;
17779
17780 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17781 if (attr)
17782 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17783
17784 maybe_set_alignment (cu, die, range_type);
17785
17786 set_die_type (die, range_type, cu);
17787
17788 /* set_die_type should be already done. */
17789 set_descriptive_type (range_type, die, cu);
17790
17791 return range_type;
17792 }
17793
17794 static struct type *
17795 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17796 {
17797 struct type *type;
17798
17799 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17800 NULL);
17801 TYPE_NAME (type) = dwarf2_name (die, cu);
17802
17803 /* In Ada, an unspecified type is typically used when the description
17804 of the type is defered to a different unit. When encountering
17805 such a type, we treat it as a stub, and try to resolve it later on,
17806 when needed. */
17807 if (cu->language == language_ada)
17808 TYPE_STUB (type) = 1;
17809
17810 return set_die_type (die, type, cu);
17811 }
17812
17813 /* Read a single die and all its descendents. Set the die's sibling
17814 field to NULL; set other fields in the die correctly, and set all
17815 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17816 location of the info_ptr after reading all of those dies. PARENT
17817 is the parent of the die in question. */
17818
17819 static struct die_info *
17820 read_die_and_children (const struct die_reader_specs *reader,
17821 const gdb_byte *info_ptr,
17822 const gdb_byte **new_info_ptr,
17823 struct die_info *parent)
17824 {
17825 struct die_info *die;
17826 const gdb_byte *cur_ptr;
17827 int has_children;
17828
17829 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17830 if (die == NULL)
17831 {
17832 *new_info_ptr = cur_ptr;
17833 return NULL;
17834 }
17835 store_in_ref_table (die, reader->cu);
17836
17837 if (has_children)
17838 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17839 else
17840 {
17841 die->child = NULL;
17842 *new_info_ptr = cur_ptr;
17843 }
17844
17845 die->sibling = NULL;
17846 die->parent = parent;
17847 return die;
17848 }
17849
17850 /* Read a die, all of its descendents, and all of its siblings; set
17851 all of the fields of all of the dies correctly. Arguments are as
17852 in read_die_and_children. */
17853
17854 static struct die_info *
17855 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17856 const gdb_byte *info_ptr,
17857 const gdb_byte **new_info_ptr,
17858 struct die_info *parent)
17859 {
17860 struct die_info *first_die, *last_sibling;
17861 const gdb_byte *cur_ptr;
17862
17863 cur_ptr = info_ptr;
17864 first_die = last_sibling = NULL;
17865
17866 while (1)
17867 {
17868 struct die_info *die
17869 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17870
17871 if (die == NULL)
17872 {
17873 *new_info_ptr = cur_ptr;
17874 return first_die;
17875 }
17876
17877 if (!first_die)
17878 first_die = die;
17879 else
17880 last_sibling->sibling = die;
17881
17882 last_sibling = die;
17883 }
17884 }
17885
17886 /* Read a die, all of its descendents, and all of its siblings; set
17887 all of the fields of all of the dies correctly. Arguments are as
17888 in read_die_and_children.
17889 This the main entry point for reading a DIE and all its children. */
17890
17891 static struct die_info *
17892 read_die_and_siblings (const struct die_reader_specs *reader,
17893 const gdb_byte *info_ptr,
17894 const gdb_byte **new_info_ptr,
17895 struct die_info *parent)
17896 {
17897 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17898 new_info_ptr, parent);
17899
17900 if (dwarf_die_debug)
17901 {
17902 fprintf_unfiltered (gdb_stdlog,
17903 "Read die from %s@0x%x of %s:\n",
17904 get_section_name (reader->die_section),
17905 (unsigned) (info_ptr - reader->die_section->buffer),
17906 bfd_get_filename (reader->abfd));
17907 dump_die (die, dwarf_die_debug);
17908 }
17909
17910 return die;
17911 }
17912
17913 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17914 attributes.
17915 The caller is responsible for filling in the extra attributes
17916 and updating (*DIEP)->num_attrs.
17917 Set DIEP to point to a newly allocated die with its information,
17918 except for its child, sibling, and parent fields.
17919 Set HAS_CHILDREN to tell whether the die has children or not. */
17920
17921 static const gdb_byte *
17922 read_full_die_1 (const struct die_reader_specs *reader,
17923 struct die_info **diep, const gdb_byte *info_ptr,
17924 int *has_children, int num_extra_attrs)
17925 {
17926 unsigned int abbrev_number, bytes_read, i;
17927 struct abbrev_info *abbrev;
17928 struct die_info *die;
17929 struct dwarf2_cu *cu = reader->cu;
17930 bfd *abfd = reader->abfd;
17931
17932 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17933 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17934 info_ptr += bytes_read;
17935 if (!abbrev_number)
17936 {
17937 *diep = NULL;
17938 *has_children = 0;
17939 return info_ptr;
17940 }
17941
17942 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17943 if (!abbrev)
17944 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17945 abbrev_number,
17946 bfd_get_filename (abfd));
17947
17948 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17949 die->sect_off = sect_off;
17950 die->tag = abbrev->tag;
17951 die->abbrev = abbrev_number;
17952
17953 /* Make the result usable.
17954 The caller needs to update num_attrs after adding the extra
17955 attributes. */
17956 die->num_attrs = abbrev->num_attrs;
17957
17958 for (i = 0; i < abbrev->num_attrs; ++i)
17959 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17960 info_ptr);
17961
17962 *diep = die;
17963 *has_children = abbrev->has_children;
17964 return info_ptr;
17965 }
17966
17967 /* Read a die and all its attributes.
17968 Set DIEP to point to a newly allocated die with its information,
17969 except for its child, sibling, and parent fields.
17970 Set HAS_CHILDREN to tell whether the die has children or not. */
17971
17972 static const gdb_byte *
17973 read_full_die (const struct die_reader_specs *reader,
17974 struct die_info **diep, const gdb_byte *info_ptr,
17975 int *has_children)
17976 {
17977 const gdb_byte *result;
17978
17979 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17980
17981 if (dwarf_die_debug)
17982 {
17983 fprintf_unfiltered (gdb_stdlog,
17984 "Read die from %s@0x%x of %s:\n",
17985 get_section_name (reader->die_section),
17986 (unsigned) (info_ptr - reader->die_section->buffer),
17987 bfd_get_filename (reader->abfd));
17988 dump_die (*diep, dwarf_die_debug);
17989 }
17990
17991 return result;
17992 }
17993 \f
17994 /* Abbreviation tables.
17995
17996 In DWARF version 2, the description of the debugging information is
17997 stored in a separate .debug_abbrev section. Before we read any
17998 dies from a section we read in all abbreviations and install them
17999 in a hash table. */
18000
18001 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18002
18003 struct abbrev_info *
18004 abbrev_table::alloc_abbrev ()
18005 {
18006 struct abbrev_info *abbrev;
18007
18008 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18009 memset (abbrev, 0, sizeof (struct abbrev_info));
18010
18011 return abbrev;
18012 }
18013
18014 /* Add an abbreviation to the table. */
18015
18016 void
18017 abbrev_table::add_abbrev (unsigned int abbrev_number,
18018 struct abbrev_info *abbrev)
18019 {
18020 unsigned int hash_number;
18021
18022 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18023 abbrev->next = m_abbrevs[hash_number];
18024 m_abbrevs[hash_number] = abbrev;
18025 }
18026
18027 /* Look up an abbrev in the table.
18028 Returns NULL if the abbrev is not found. */
18029
18030 struct abbrev_info *
18031 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18032 {
18033 unsigned int hash_number;
18034 struct abbrev_info *abbrev;
18035
18036 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18037 abbrev = m_abbrevs[hash_number];
18038
18039 while (abbrev)
18040 {
18041 if (abbrev->number == abbrev_number)
18042 return abbrev;
18043 abbrev = abbrev->next;
18044 }
18045 return NULL;
18046 }
18047
18048 /* Read in an abbrev table. */
18049
18050 static abbrev_table_up
18051 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18052 struct dwarf2_section_info *section,
18053 sect_offset sect_off)
18054 {
18055 struct objfile *objfile = dwarf2_per_objfile->objfile;
18056 bfd *abfd = get_section_bfd_owner (section);
18057 const gdb_byte *abbrev_ptr;
18058 struct abbrev_info *cur_abbrev;
18059 unsigned int abbrev_number, bytes_read, abbrev_name;
18060 unsigned int abbrev_form;
18061 struct attr_abbrev *cur_attrs;
18062 unsigned int allocated_attrs;
18063
18064 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18065
18066 dwarf2_read_section (objfile, section);
18067 abbrev_ptr = section->buffer + to_underlying (sect_off);
18068 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18069 abbrev_ptr += bytes_read;
18070
18071 allocated_attrs = ATTR_ALLOC_CHUNK;
18072 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18073
18074 /* Loop until we reach an abbrev number of 0. */
18075 while (abbrev_number)
18076 {
18077 cur_abbrev = abbrev_table->alloc_abbrev ();
18078
18079 /* read in abbrev header */
18080 cur_abbrev->number = abbrev_number;
18081 cur_abbrev->tag
18082 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18083 abbrev_ptr += bytes_read;
18084 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18085 abbrev_ptr += 1;
18086
18087 /* now read in declarations */
18088 for (;;)
18089 {
18090 LONGEST implicit_const;
18091
18092 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18093 abbrev_ptr += bytes_read;
18094 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18095 abbrev_ptr += bytes_read;
18096 if (abbrev_form == DW_FORM_implicit_const)
18097 {
18098 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18099 &bytes_read);
18100 abbrev_ptr += bytes_read;
18101 }
18102 else
18103 {
18104 /* Initialize it due to a false compiler warning. */
18105 implicit_const = -1;
18106 }
18107
18108 if (abbrev_name == 0)
18109 break;
18110
18111 if (cur_abbrev->num_attrs == allocated_attrs)
18112 {
18113 allocated_attrs += ATTR_ALLOC_CHUNK;
18114 cur_attrs
18115 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18116 }
18117
18118 cur_attrs[cur_abbrev->num_attrs].name
18119 = (enum dwarf_attribute) abbrev_name;
18120 cur_attrs[cur_abbrev->num_attrs].form
18121 = (enum dwarf_form) abbrev_form;
18122 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18123 ++cur_abbrev->num_attrs;
18124 }
18125
18126 cur_abbrev->attrs =
18127 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18128 cur_abbrev->num_attrs);
18129 memcpy (cur_abbrev->attrs, cur_attrs,
18130 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18131
18132 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18133
18134 /* Get next abbreviation.
18135 Under Irix6 the abbreviations for a compilation unit are not
18136 always properly terminated with an abbrev number of 0.
18137 Exit loop if we encounter an abbreviation which we have
18138 already read (which means we are about to read the abbreviations
18139 for the next compile unit) or if the end of the abbreviation
18140 table is reached. */
18141 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18142 break;
18143 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18144 abbrev_ptr += bytes_read;
18145 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18146 break;
18147 }
18148
18149 xfree (cur_attrs);
18150 return abbrev_table;
18151 }
18152
18153 /* Returns nonzero if TAG represents a type that we might generate a partial
18154 symbol for. */
18155
18156 static int
18157 is_type_tag_for_partial (int tag)
18158 {
18159 switch (tag)
18160 {
18161 #if 0
18162 /* Some types that would be reasonable to generate partial symbols for,
18163 that we don't at present. */
18164 case DW_TAG_array_type:
18165 case DW_TAG_file_type:
18166 case DW_TAG_ptr_to_member_type:
18167 case DW_TAG_set_type:
18168 case DW_TAG_string_type:
18169 case DW_TAG_subroutine_type:
18170 #endif
18171 case DW_TAG_base_type:
18172 case DW_TAG_class_type:
18173 case DW_TAG_interface_type:
18174 case DW_TAG_enumeration_type:
18175 case DW_TAG_structure_type:
18176 case DW_TAG_subrange_type:
18177 case DW_TAG_typedef:
18178 case DW_TAG_union_type:
18179 return 1;
18180 default:
18181 return 0;
18182 }
18183 }
18184
18185 /* Load all DIEs that are interesting for partial symbols into memory. */
18186
18187 static struct partial_die_info *
18188 load_partial_dies (const struct die_reader_specs *reader,
18189 const gdb_byte *info_ptr, int building_psymtab)
18190 {
18191 struct dwarf2_cu *cu = reader->cu;
18192 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18193 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18194 unsigned int bytes_read;
18195 unsigned int load_all = 0;
18196 int nesting_level = 1;
18197
18198 parent_die = NULL;
18199 last_die = NULL;
18200
18201 gdb_assert (cu->per_cu != NULL);
18202 if (cu->per_cu->load_all_dies)
18203 load_all = 1;
18204
18205 cu->partial_dies
18206 = htab_create_alloc_ex (cu->header.length / 12,
18207 partial_die_hash,
18208 partial_die_eq,
18209 NULL,
18210 &cu->comp_unit_obstack,
18211 hashtab_obstack_allocate,
18212 dummy_obstack_deallocate);
18213
18214 while (1)
18215 {
18216 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18217
18218 /* A NULL abbrev means the end of a series of children. */
18219 if (abbrev == NULL)
18220 {
18221 if (--nesting_level == 0)
18222 return first_die;
18223
18224 info_ptr += bytes_read;
18225 last_die = parent_die;
18226 parent_die = parent_die->die_parent;
18227 continue;
18228 }
18229
18230 /* Check for template arguments. We never save these; if
18231 they're seen, we just mark the parent, and go on our way. */
18232 if (parent_die != NULL
18233 && cu->language == language_cplus
18234 && (abbrev->tag == DW_TAG_template_type_param
18235 || abbrev->tag == DW_TAG_template_value_param))
18236 {
18237 parent_die->has_template_arguments = 1;
18238
18239 if (!load_all)
18240 {
18241 /* We don't need a partial DIE for the template argument. */
18242 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18243 continue;
18244 }
18245 }
18246
18247 /* We only recurse into c++ subprograms looking for template arguments.
18248 Skip their other children. */
18249 if (!load_all
18250 && cu->language == language_cplus
18251 && parent_die != NULL
18252 && parent_die->tag == DW_TAG_subprogram)
18253 {
18254 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18255 continue;
18256 }
18257
18258 /* Check whether this DIE is interesting enough to save. Normally
18259 we would not be interested in members here, but there may be
18260 later variables referencing them via DW_AT_specification (for
18261 static members). */
18262 if (!load_all
18263 && !is_type_tag_for_partial (abbrev->tag)
18264 && abbrev->tag != DW_TAG_constant
18265 && abbrev->tag != DW_TAG_enumerator
18266 && abbrev->tag != DW_TAG_subprogram
18267 && abbrev->tag != DW_TAG_inlined_subroutine
18268 && abbrev->tag != DW_TAG_lexical_block
18269 && abbrev->tag != DW_TAG_variable
18270 && abbrev->tag != DW_TAG_namespace
18271 && abbrev->tag != DW_TAG_module
18272 && abbrev->tag != DW_TAG_member
18273 && abbrev->tag != DW_TAG_imported_unit
18274 && abbrev->tag != DW_TAG_imported_declaration)
18275 {
18276 /* Otherwise we skip to the next sibling, if any. */
18277 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18278 continue;
18279 }
18280
18281 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18282 abbrev);
18283
18284 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18285
18286 /* This two-pass algorithm for processing partial symbols has a
18287 high cost in cache pressure. Thus, handle some simple cases
18288 here which cover the majority of C partial symbols. DIEs
18289 which neither have specification tags in them, nor could have
18290 specification tags elsewhere pointing at them, can simply be
18291 processed and discarded.
18292
18293 This segment is also optional; scan_partial_symbols and
18294 add_partial_symbol will handle these DIEs if we chain
18295 them in normally. When compilers which do not emit large
18296 quantities of duplicate debug information are more common,
18297 this code can probably be removed. */
18298
18299 /* Any complete simple types at the top level (pretty much all
18300 of them, for a language without namespaces), can be processed
18301 directly. */
18302 if (parent_die == NULL
18303 && pdi.has_specification == 0
18304 && pdi.is_declaration == 0
18305 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18306 || pdi.tag == DW_TAG_base_type
18307 || pdi.tag == DW_TAG_subrange_type))
18308 {
18309 if (building_psymtab && pdi.name != NULL)
18310 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18311 VAR_DOMAIN, LOC_TYPEDEF,
18312 &objfile->static_psymbols,
18313 0, cu->language, objfile);
18314 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18315 continue;
18316 }
18317
18318 /* The exception for DW_TAG_typedef with has_children above is
18319 a workaround of GCC PR debug/47510. In the case of this complaint
18320 type_name_no_tag_or_error will error on such types later.
18321
18322 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18323 it could not find the child DIEs referenced later, this is checked
18324 above. In correct DWARF DW_TAG_typedef should have no children. */
18325
18326 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18327 complaint (&symfile_complaints,
18328 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18329 "- DIE at %s [in module %s]"),
18330 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18331
18332 /* If we're at the second level, and we're an enumerator, and
18333 our parent has no specification (meaning possibly lives in a
18334 namespace elsewhere), then we can add the partial symbol now
18335 instead of queueing it. */
18336 if (pdi.tag == DW_TAG_enumerator
18337 && parent_die != NULL
18338 && parent_die->die_parent == NULL
18339 && parent_die->tag == DW_TAG_enumeration_type
18340 && parent_die->has_specification == 0)
18341 {
18342 if (pdi.name == NULL)
18343 complaint (&symfile_complaints,
18344 _("malformed enumerator DIE ignored"));
18345 else if (building_psymtab)
18346 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18347 VAR_DOMAIN, LOC_CONST,
18348 cu->language == language_cplus
18349 ? &objfile->global_psymbols
18350 : &objfile->static_psymbols,
18351 0, cu->language, objfile);
18352
18353 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18354 continue;
18355 }
18356
18357 struct partial_die_info *part_die
18358 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18359
18360 /* We'll save this DIE so link it in. */
18361 part_die->die_parent = parent_die;
18362 part_die->die_sibling = NULL;
18363 part_die->die_child = NULL;
18364
18365 if (last_die && last_die == parent_die)
18366 last_die->die_child = part_die;
18367 else if (last_die)
18368 last_die->die_sibling = part_die;
18369
18370 last_die = part_die;
18371
18372 if (first_die == NULL)
18373 first_die = part_die;
18374
18375 /* Maybe add the DIE to the hash table. Not all DIEs that we
18376 find interesting need to be in the hash table, because we
18377 also have the parent/sibling/child chains; only those that we
18378 might refer to by offset later during partial symbol reading.
18379
18380 For now this means things that might have be the target of a
18381 DW_AT_specification, DW_AT_abstract_origin, or
18382 DW_AT_extension. DW_AT_extension will refer only to
18383 namespaces; DW_AT_abstract_origin refers to functions (and
18384 many things under the function DIE, but we do not recurse
18385 into function DIEs during partial symbol reading) and
18386 possibly variables as well; DW_AT_specification refers to
18387 declarations. Declarations ought to have the DW_AT_declaration
18388 flag. It happens that GCC forgets to put it in sometimes, but
18389 only for functions, not for types.
18390
18391 Adding more things than necessary to the hash table is harmless
18392 except for the performance cost. Adding too few will result in
18393 wasted time in find_partial_die, when we reread the compilation
18394 unit with load_all_dies set. */
18395
18396 if (load_all
18397 || abbrev->tag == DW_TAG_constant
18398 || abbrev->tag == DW_TAG_subprogram
18399 || abbrev->tag == DW_TAG_variable
18400 || abbrev->tag == DW_TAG_namespace
18401 || part_die->is_declaration)
18402 {
18403 void **slot;
18404
18405 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18406 to_underlying (part_die->sect_off),
18407 INSERT);
18408 *slot = part_die;
18409 }
18410
18411 /* For some DIEs we want to follow their children (if any). For C
18412 we have no reason to follow the children of structures; for other
18413 languages we have to, so that we can get at method physnames
18414 to infer fully qualified class names, for DW_AT_specification,
18415 and for C++ template arguments. For C++, we also look one level
18416 inside functions to find template arguments (if the name of the
18417 function does not already contain the template arguments).
18418
18419 For Ada, we need to scan the children of subprograms and lexical
18420 blocks as well because Ada allows the definition of nested
18421 entities that could be interesting for the debugger, such as
18422 nested subprograms for instance. */
18423 if (last_die->has_children
18424 && (load_all
18425 || last_die->tag == DW_TAG_namespace
18426 || last_die->tag == DW_TAG_module
18427 || last_die->tag == DW_TAG_enumeration_type
18428 || (cu->language == language_cplus
18429 && last_die->tag == DW_TAG_subprogram
18430 && (last_die->name == NULL
18431 || strchr (last_die->name, '<') == NULL))
18432 || (cu->language != language_c
18433 && (last_die->tag == DW_TAG_class_type
18434 || last_die->tag == DW_TAG_interface_type
18435 || last_die->tag == DW_TAG_structure_type
18436 || last_die->tag == DW_TAG_union_type))
18437 || (cu->language == language_ada
18438 && (last_die->tag == DW_TAG_subprogram
18439 || last_die->tag == DW_TAG_lexical_block))))
18440 {
18441 nesting_level++;
18442 parent_die = last_die;
18443 continue;
18444 }
18445
18446 /* Otherwise we skip to the next sibling, if any. */
18447 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18448
18449 /* Back to the top, do it again. */
18450 }
18451 }
18452
18453 partial_die_info::partial_die_info (sect_offset sect_off_,
18454 struct abbrev_info *abbrev)
18455 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18456 {
18457 }
18458
18459 /* Read a minimal amount of information into the minimal die structure.
18460 INFO_PTR should point just after the initial uleb128 of a DIE. */
18461
18462 const gdb_byte *
18463 partial_die_info::read (const struct die_reader_specs *reader,
18464 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18465 {
18466 struct dwarf2_cu *cu = reader->cu;
18467 struct dwarf2_per_objfile *dwarf2_per_objfile
18468 = cu->per_cu->dwarf2_per_objfile;
18469 unsigned int i;
18470 int has_low_pc_attr = 0;
18471 int has_high_pc_attr = 0;
18472 int high_pc_relative = 0;
18473
18474 for (i = 0; i < abbrev.num_attrs; ++i)
18475 {
18476 struct attribute attr;
18477
18478 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18479
18480 /* Store the data if it is of an attribute we want to keep in a
18481 partial symbol table. */
18482 switch (attr.name)
18483 {
18484 case DW_AT_name:
18485 switch (tag)
18486 {
18487 case DW_TAG_compile_unit:
18488 case DW_TAG_partial_unit:
18489 case DW_TAG_type_unit:
18490 /* Compilation units have a DW_AT_name that is a filename, not
18491 a source language identifier. */
18492 case DW_TAG_enumeration_type:
18493 case DW_TAG_enumerator:
18494 /* These tags always have simple identifiers already; no need
18495 to canonicalize them. */
18496 name = DW_STRING (&attr);
18497 break;
18498 default:
18499 {
18500 struct objfile *objfile = dwarf2_per_objfile->objfile;
18501
18502 name
18503 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18504 &objfile->per_bfd->storage_obstack);
18505 }
18506 break;
18507 }
18508 break;
18509 case DW_AT_linkage_name:
18510 case DW_AT_MIPS_linkage_name:
18511 /* Note that both forms of linkage name might appear. We
18512 assume they will be the same, and we only store the last
18513 one we see. */
18514 if (cu->language == language_ada)
18515 name = DW_STRING (&attr);
18516 linkage_name = DW_STRING (&attr);
18517 break;
18518 case DW_AT_low_pc:
18519 has_low_pc_attr = 1;
18520 lowpc = attr_value_as_address (&attr);
18521 break;
18522 case DW_AT_high_pc:
18523 has_high_pc_attr = 1;
18524 highpc = attr_value_as_address (&attr);
18525 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18526 high_pc_relative = 1;
18527 break;
18528 case DW_AT_location:
18529 /* Support the .debug_loc offsets. */
18530 if (attr_form_is_block (&attr))
18531 {
18532 d.locdesc = DW_BLOCK (&attr);
18533 }
18534 else if (attr_form_is_section_offset (&attr))
18535 {
18536 dwarf2_complex_location_expr_complaint ();
18537 }
18538 else
18539 {
18540 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18541 "partial symbol information");
18542 }
18543 break;
18544 case DW_AT_external:
18545 is_external = DW_UNSND (&attr);
18546 break;
18547 case DW_AT_declaration:
18548 is_declaration = DW_UNSND (&attr);
18549 break;
18550 case DW_AT_type:
18551 has_type = 1;
18552 break;
18553 case DW_AT_abstract_origin:
18554 case DW_AT_specification:
18555 case DW_AT_extension:
18556 has_specification = 1;
18557 spec_offset = dwarf2_get_ref_die_offset (&attr);
18558 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18559 || cu->per_cu->is_dwz);
18560 break;
18561 case DW_AT_sibling:
18562 /* Ignore absolute siblings, they might point outside of
18563 the current compile unit. */
18564 if (attr.form == DW_FORM_ref_addr)
18565 complaint (&symfile_complaints,
18566 _("ignoring absolute DW_AT_sibling"));
18567 else
18568 {
18569 const gdb_byte *buffer = reader->buffer;
18570 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18571 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18572
18573 if (sibling_ptr < info_ptr)
18574 complaint (&symfile_complaints,
18575 _("DW_AT_sibling points backwards"));
18576 else if (sibling_ptr > reader->buffer_end)
18577 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18578 else
18579 sibling = sibling_ptr;
18580 }
18581 break;
18582 case DW_AT_byte_size:
18583 has_byte_size = 1;
18584 break;
18585 case DW_AT_const_value:
18586 has_const_value = 1;
18587 break;
18588 case DW_AT_calling_convention:
18589 /* DWARF doesn't provide a way to identify a program's source-level
18590 entry point. DW_AT_calling_convention attributes are only meant
18591 to describe functions' calling conventions.
18592
18593 However, because it's a necessary piece of information in
18594 Fortran, and before DWARF 4 DW_CC_program was the only
18595 piece of debugging information whose definition refers to
18596 a 'main program' at all, several compilers marked Fortran
18597 main programs with DW_CC_program --- even when those
18598 functions use the standard calling conventions.
18599
18600 Although DWARF now specifies a way to provide this
18601 information, we support this practice for backward
18602 compatibility. */
18603 if (DW_UNSND (&attr) == DW_CC_program
18604 && cu->language == language_fortran)
18605 main_subprogram = 1;
18606 break;
18607 case DW_AT_inline:
18608 if (DW_UNSND (&attr) == DW_INL_inlined
18609 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18610 may_be_inlined = 1;
18611 break;
18612
18613 case DW_AT_import:
18614 if (tag == DW_TAG_imported_unit)
18615 {
18616 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18617 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18618 || cu->per_cu->is_dwz);
18619 }
18620 break;
18621
18622 case DW_AT_main_subprogram:
18623 main_subprogram = DW_UNSND (&attr);
18624 break;
18625
18626 default:
18627 break;
18628 }
18629 }
18630
18631 if (high_pc_relative)
18632 highpc += lowpc;
18633
18634 if (has_low_pc_attr && has_high_pc_attr)
18635 {
18636 /* When using the GNU linker, .gnu.linkonce. sections are used to
18637 eliminate duplicate copies of functions and vtables and such.
18638 The linker will arbitrarily choose one and discard the others.
18639 The AT_*_pc values for such functions refer to local labels in
18640 these sections. If the section from that file was discarded, the
18641 labels are not in the output, so the relocs get a value of 0.
18642 If this is a discarded function, mark the pc bounds as invalid,
18643 so that GDB will ignore it. */
18644 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18645 {
18646 struct objfile *objfile = dwarf2_per_objfile->objfile;
18647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18648
18649 complaint (&symfile_complaints,
18650 _("DW_AT_low_pc %s is zero "
18651 "for DIE at %s [in module %s]"),
18652 paddress (gdbarch, lowpc),
18653 sect_offset_str (sect_off),
18654 objfile_name (objfile));
18655 }
18656 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18657 else if (lowpc >= highpc)
18658 {
18659 struct objfile *objfile = dwarf2_per_objfile->objfile;
18660 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18661
18662 complaint (&symfile_complaints,
18663 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18664 "for DIE at %s [in module %s]"),
18665 paddress (gdbarch, lowpc),
18666 paddress (gdbarch, highpc),
18667 sect_offset_str (sect_off),
18668 objfile_name (objfile));
18669 }
18670 else
18671 has_pc_info = 1;
18672 }
18673
18674 return info_ptr;
18675 }
18676
18677 /* Find a cached partial DIE at OFFSET in CU. */
18678
18679 struct partial_die_info *
18680 dwarf2_cu::find_partial_die (sect_offset sect_off)
18681 {
18682 struct partial_die_info *lookup_die = NULL;
18683 struct partial_die_info part_die (sect_off);
18684
18685 lookup_die = ((struct partial_die_info *)
18686 htab_find_with_hash (partial_dies, &part_die,
18687 to_underlying (sect_off)));
18688
18689 return lookup_die;
18690 }
18691
18692 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18693 except in the case of .debug_types DIEs which do not reference
18694 outside their CU (they do however referencing other types via
18695 DW_FORM_ref_sig8). */
18696
18697 static struct partial_die_info *
18698 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18699 {
18700 struct dwarf2_per_objfile *dwarf2_per_objfile
18701 = cu->per_cu->dwarf2_per_objfile;
18702 struct objfile *objfile = dwarf2_per_objfile->objfile;
18703 struct dwarf2_per_cu_data *per_cu = NULL;
18704 struct partial_die_info *pd = NULL;
18705
18706 if (offset_in_dwz == cu->per_cu->is_dwz
18707 && offset_in_cu_p (&cu->header, sect_off))
18708 {
18709 pd = cu->find_partial_die (sect_off);
18710 if (pd != NULL)
18711 return pd;
18712 /* We missed recording what we needed.
18713 Load all dies and try again. */
18714 per_cu = cu->per_cu;
18715 }
18716 else
18717 {
18718 /* TUs don't reference other CUs/TUs (except via type signatures). */
18719 if (cu->per_cu->is_debug_types)
18720 {
18721 error (_("Dwarf Error: Type Unit at offset %s contains"
18722 " external reference to offset %s [in module %s].\n"),
18723 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18724 bfd_get_filename (objfile->obfd));
18725 }
18726 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18727 dwarf2_per_objfile);
18728
18729 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18730 load_partial_comp_unit (per_cu);
18731
18732 per_cu->cu->last_used = 0;
18733 pd = per_cu->cu->find_partial_die (sect_off);
18734 }
18735
18736 /* If we didn't find it, and not all dies have been loaded,
18737 load them all and try again. */
18738
18739 if (pd == NULL && per_cu->load_all_dies == 0)
18740 {
18741 per_cu->load_all_dies = 1;
18742
18743 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18744 THIS_CU->cu may already be in use. So we can't just free it and
18745 replace its DIEs with the ones we read in. Instead, we leave those
18746 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18747 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18748 set. */
18749 load_partial_comp_unit (per_cu);
18750
18751 pd = per_cu->cu->find_partial_die (sect_off);
18752 }
18753
18754 if (pd == NULL)
18755 internal_error (__FILE__, __LINE__,
18756 _("could not find partial DIE %s "
18757 "in cache [from module %s]\n"),
18758 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18759 return pd;
18760 }
18761
18762 /* See if we can figure out if the class lives in a namespace. We do
18763 this by looking for a member function; its demangled name will
18764 contain namespace info, if there is any. */
18765
18766 static void
18767 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18768 struct dwarf2_cu *cu)
18769 {
18770 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18771 what template types look like, because the demangler
18772 frequently doesn't give the same name as the debug info. We
18773 could fix this by only using the demangled name to get the
18774 prefix (but see comment in read_structure_type). */
18775
18776 struct partial_die_info *real_pdi;
18777 struct partial_die_info *child_pdi;
18778
18779 /* If this DIE (this DIE's specification, if any) has a parent, then
18780 we should not do this. We'll prepend the parent's fully qualified
18781 name when we create the partial symbol. */
18782
18783 real_pdi = struct_pdi;
18784 while (real_pdi->has_specification)
18785 real_pdi = find_partial_die (real_pdi->spec_offset,
18786 real_pdi->spec_is_dwz, cu);
18787
18788 if (real_pdi->die_parent != NULL)
18789 return;
18790
18791 for (child_pdi = struct_pdi->die_child;
18792 child_pdi != NULL;
18793 child_pdi = child_pdi->die_sibling)
18794 {
18795 if (child_pdi->tag == DW_TAG_subprogram
18796 && child_pdi->linkage_name != NULL)
18797 {
18798 char *actual_class_name
18799 = language_class_name_from_physname (cu->language_defn,
18800 child_pdi->linkage_name);
18801 if (actual_class_name != NULL)
18802 {
18803 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18804 struct_pdi->name
18805 = ((const char *)
18806 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18807 actual_class_name,
18808 strlen (actual_class_name)));
18809 xfree (actual_class_name);
18810 }
18811 break;
18812 }
18813 }
18814 }
18815
18816 void
18817 partial_die_info::fixup (struct dwarf2_cu *cu)
18818 {
18819 /* Once we've fixed up a die, there's no point in doing so again.
18820 This also avoids a memory leak if we were to call
18821 guess_partial_die_structure_name multiple times. */
18822 if (fixup_called)
18823 return;
18824
18825 /* If we found a reference attribute and the DIE has no name, try
18826 to find a name in the referred to DIE. */
18827
18828 if (name == NULL && has_specification)
18829 {
18830 struct partial_die_info *spec_die;
18831
18832 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18833
18834 spec_die->fixup (cu);
18835
18836 if (spec_die->name)
18837 {
18838 name = spec_die->name;
18839
18840 /* Copy DW_AT_external attribute if it is set. */
18841 if (spec_die->is_external)
18842 is_external = spec_die->is_external;
18843 }
18844 }
18845
18846 /* Set default names for some unnamed DIEs. */
18847
18848 if (name == NULL && tag == DW_TAG_namespace)
18849 name = CP_ANONYMOUS_NAMESPACE_STR;
18850
18851 /* If there is no parent die to provide a namespace, and there are
18852 children, see if we can determine the namespace from their linkage
18853 name. */
18854 if (cu->language == language_cplus
18855 && !VEC_empty (dwarf2_section_info_def,
18856 cu->per_cu->dwarf2_per_objfile->types)
18857 && die_parent == NULL
18858 && has_children
18859 && (tag == DW_TAG_class_type
18860 || tag == DW_TAG_structure_type
18861 || tag == DW_TAG_union_type))
18862 guess_partial_die_structure_name (this, cu);
18863
18864 /* GCC might emit a nameless struct or union that has a linkage
18865 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18866 if (name == NULL
18867 && (tag == DW_TAG_class_type
18868 || tag == DW_TAG_interface_type
18869 || tag == DW_TAG_structure_type
18870 || tag == DW_TAG_union_type)
18871 && linkage_name != NULL)
18872 {
18873 char *demangled;
18874
18875 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18876 if (demangled)
18877 {
18878 const char *base;
18879
18880 /* Strip any leading namespaces/classes, keep only the base name.
18881 DW_AT_name for named DIEs does not contain the prefixes. */
18882 base = strrchr (demangled, ':');
18883 if (base && base > demangled && base[-1] == ':')
18884 base++;
18885 else
18886 base = demangled;
18887
18888 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18889 name
18890 = ((const char *)
18891 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18892 base, strlen (base)));
18893 xfree (demangled);
18894 }
18895 }
18896
18897 fixup_called = 1;
18898 }
18899
18900 /* Read an attribute value described by an attribute form. */
18901
18902 static const gdb_byte *
18903 read_attribute_value (const struct die_reader_specs *reader,
18904 struct attribute *attr, unsigned form,
18905 LONGEST implicit_const, const gdb_byte *info_ptr)
18906 {
18907 struct dwarf2_cu *cu = reader->cu;
18908 struct dwarf2_per_objfile *dwarf2_per_objfile
18909 = cu->per_cu->dwarf2_per_objfile;
18910 struct objfile *objfile = dwarf2_per_objfile->objfile;
18911 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18912 bfd *abfd = reader->abfd;
18913 struct comp_unit_head *cu_header = &cu->header;
18914 unsigned int bytes_read;
18915 struct dwarf_block *blk;
18916
18917 attr->form = (enum dwarf_form) form;
18918 switch (form)
18919 {
18920 case DW_FORM_ref_addr:
18921 if (cu->header.version == 2)
18922 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18923 else
18924 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18925 &cu->header, &bytes_read);
18926 info_ptr += bytes_read;
18927 break;
18928 case DW_FORM_GNU_ref_alt:
18929 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18930 info_ptr += bytes_read;
18931 break;
18932 case DW_FORM_addr:
18933 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18934 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18935 info_ptr += bytes_read;
18936 break;
18937 case DW_FORM_block2:
18938 blk = dwarf_alloc_block (cu);
18939 blk->size = read_2_bytes (abfd, info_ptr);
18940 info_ptr += 2;
18941 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18942 info_ptr += blk->size;
18943 DW_BLOCK (attr) = blk;
18944 break;
18945 case DW_FORM_block4:
18946 blk = dwarf_alloc_block (cu);
18947 blk->size = read_4_bytes (abfd, info_ptr);
18948 info_ptr += 4;
18949 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18950 info_ptr += blk->size;
18951 DW_BLOCK (attr) = blk;
18952 break;
18953 case DW_FORM_data2:
18954 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18955 info_ptr += 2;
18956 break;
18957 case DW_FORM_data4:
18958 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18959 info_ptr += 4;
18960 break;
18961 case DW_FORM_data8:
18962 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18963 info_ptr += 8;
18964 break;
18965 case DW_FORM_data16:
18966 blk = dwarf_alloc_block (cu);
18967 blk->size = 16;
18968 blk->data = read_n_bytes (abfd, info_ptr, 16);
18969 info_ptr += 16;
18970 DW_BLOCK (attr) = blk;
18971 break;
18972 case DW_FORM_sec_offset:
18973 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18974 info_ptr += bytes_read;
18975 break;
18976 case DW_FORM_string:
18977 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18978 DW_STRING_IS_CANONICAL (attr) = 0;
18979 info_ptr += bytes_read;
18980 break;
18981 case DW_FORM_strp:
18982 if (!cu->per_cu->is_dwz)
18983 {
18984 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18985 abfd, info_ptr, cu_header,
18986 &bytes_read);
18987 DW_STRING_IS_CANONICAL (attr) = 0;
18988 info_ptr += bytes_read;
18989 break;
18990 }
18991 /* FALLTHROUGH */
18992 case DW_FORM_line_strp:
18993 if (!cu->per_cu->is_dwz)
18994 {
18995 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18996 abfd, info_ptr,
18997 cu_header, &bytes_read);
18998 DW_STRING_IS_CANONICAL (attr) = 0;
18999 info_ptr += bytes_read;
19000 break;
19001 }
19002 /* FALLTHROUGH */
19003 case DW_FORM_GNU_strp_alt:
19004 {
19005 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19006 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19007 &bytes_read);
19008
19009 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19010 dwz, str_offset);
19011 DW_STRING_IS_CANONICAL (attr) = 0;
19012 info_ptr += bytes_read;
19013 }
19014 break;
19015 case DW_FORM_exprloc:
19016 case DW_FORM_block:
19017 blk = dwarf_alloc_block (cu);
19018 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19019 info_ptr += bytes_read;
19020 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19021 info_ptr += blk->size;
19022 DW_BLOCK (attr) = blk;
19023 break;
19024 case DW_FORM_block1:
19025 blk = dwarf_alloc_block (cu);
19026 blk->size = read_1_byte (abfd, info_ptr);
19027 info_ptr += 1;
19028 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19029 info_ptr += blk->size;
19030 DW_BLOCK (attr) = blk;
19031 break;
19032 case DW_FORM_data1:
19033 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19034 info_ptr += 1;
19035 break;
19036 case DW_FORM_flag:
19037 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19038 info_ptr += 1;
19039 break;
19040 case DW_FORM_flag_present:
19041 DW_UNSND (attr) = 1;
19042 break;
19043 case DW_FORM_sdata:
19044 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19045 info_ptr += bytes_read;
19046 break;
19047 case DW_FORM_udata:
19048 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19049 info_ptr += bytes_read;
19050 break;
19051 case DW_FORM_ref1:
19052 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19053 + read_1_byte (abfd, info_ptr));
19054 info_ptr += 1;
19055 break;
19056 case DW_FORM_ref2:
19057 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19058 + read_2_bytes (abfd, info_ptr));
19059 info_ptr += 2;
19060 break;
19061 case DW_FORM_ref4:
19062 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19063 + read_4_bytes (abfd, info_ptr));
19064 info_ptr += 4;
19065 break;
19066 case DW_FORM_ref8:
19067 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19068 + read_8_bytes (abfd, info_ptr));
19069 info_ptr += 8;
19070 break;
19071 case DW_FORM_ref_sig8:
19072 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19073 info_ptr += 8;
19074 break;
19075 case DW_FORM_ref_udata:
19076 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19077 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19078 info_ptr += bytes_read;
19079 break;
19080 case DW_FORM_indirect:
19081 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19082 info_ptr += bytes_read;
19083 if (form == DW_FORM_implicit_const)
19084 {
19085 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19086 info_ptr += bytes_read;
19087 }
19088 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19089 info_ptr);
19090 break;
19091 case DW_FORM_implicit_const:
19092 DW_SND (attr) = implicit_const;
19093 break;
19094 case DW_FORM_GNU_addr_index:
19095 if (reader->dwo_file == NULL)
19096 {
19097 /* For now flag a hard error.
19098 Later we can turn this into a complaint. */
19099 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19100 dwarf_form_name (form),
19101 bfd_get_filename (abfd));
19102 }
19103 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19104 info_ptr += bytes_read;
19105 break;
19106 case DW_FORM_GNU_str_index:
19107 if (reader->dwo_file == NULL)
19108 {
19109 /* For now flag a hard error.
19110 Later we can turn this into a complaint if warranted. */
19111 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19112 dwarf_form_name (form),
19113 bfd_get_filename (abfd));
19114 }
19115 {
19116 ULONGEST str_index =
19117 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19118
19119 DW_STRING (attr) = read_str_index (reader, str_index);
19120 DW_STRING_IS_CANONICAL (attr) = 0;
19121 info_ptr += bytes_read;
19122 }
19123 break;
19124 default:
19125 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19126 dwarf_form_name (form),
19127 bfd_get_filename (abfd));
19128 }
19129
19130 /* Super hack. */
19131 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19132 attr->form = DW_FORM_GNU_ref_alt;
19133
19134 /* We have seen instances where the compiler tried to emit a byte
19135 size attribute of -1 which ended up being encoded as an unsigned
19136 0xffffffff. Although 0xffffffff is technically a valid size value,
19137 an object of this size seems pretty unlikely so we can relatively
19138 safely treat these cases as if the size attribute was invalid and
19139 treat them as zero by default. */
19140 if (attr->name == DW_AT_byte_size
19141 && form == DW_FORM_data4
19142 && DW_UNSND (attr) >= 0xffffffff)
19143 {
19144 complaint
19145 (&symfile_complaints,
19146 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19147 hex_string (DW_UNSND (attr)));
19148 DW_UNSND (attr) = 0;
19149 }
19150
19151 return info_ptr;
19152 }
19153
19154 /* Read an attribute described by an abbreviated attribute. */
19155
19156 static const gdb_byte *
19157 read_attribute (const struct die_reader_specs *reader,
19158 struct attribute *attr, struct attr_abbrev *abbrev,
19159 const gdb_byte *info_ptr)
19160 {
19161 attr->name = abbrev->name;
19162 return read_attribute_value (reader, attr, abbrev->form,
19163 abbrev->implicit_const, info_ptr);
19164 }
19165
19166 /* Read dwarf information from a buffer. */
19167
19168 static unsigned int
19169 read_1_byte (bfd *abfd, const gdb_byte *buf)
19170 {
19171 return bfd_get_8 (abfd, buf);
19172 }
19173
19174 static int
19175 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19176 {
19177 return bfd_get_signed_8 (abfd, buf);
19178 }
19179
19180 static unsigned int
19181 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19182 {
19183 return bfd_get_16 (abfd, buf);
19184 }
19185
19186 static int
19187 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19188 {
19189 return bfd_get_signed_16 (abfd, buf);
19190 }
19191
19192 static unsigned int
19193 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19194 {
19195 return bfd_get_32 (abfd, buf);
19196 }
19197
19198 static int
19199 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19200 {
19201 return bfd_get_signed_32 (abfd, buf);
19202 }
19203
19204 static ULONGEST
19205 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19206 {
19207 return bfd_get_64 (abfd, buf);
19208 }
19209
19210 static CORE_ADDR
19211 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19212 unsigned int *bytes_read)
19213 {
19214 struct comp_unit_head *cu_header = &cu->header;
19215 CORE_ADDR retval = 0;
19216
19217 if (cu_header->signed_addr_p)
19218 {
19219 switch (cu_header->addr_size)
19220 {
19221 case 2:
19222 retval = bfd_get_signed_16 (abfd, buf);
19223 break;
19224 case 4:
19225 retval = bfd_get_signed_32 (abfd, buf);
19226 break;
19227 case 8:
19228 retval = bfd_get_signed_64 (abfd, buf);
19229 break;
19230 default:
19231 internal_error (__FILE__, __LINE__,
19232 _("read_address: bad switch, signed [in module %s]"),
19233 bfd_get_filename (abfd));
19234 }
19235 }
19236 else
19237 {
19238 switch (cu_header->addr_size)
19239 {
19240 case 2:
19241 retval = bfd_get_16 (abfd, buf);
19242 break;
19243 case 4:
19244 retval = bfd_get_32 (abfd, buf);
19245 break;
19246 case 8:
19247 retval = bfd_get_64 (abfd, buf);
19248 break;
19249 default:
19250 internal_error (__FILE__, __LINE__,
19251 _("read_address: bad switch, "
19252 "unsigned [in module %s]"),
19253 bfd_get_filename (abfd));
19254 }
19255 }
19256
19257 *bytes_read = cu_header->addr_size;
19258 return retval;
19259 }
19260
19261 /* Read the initial length from a section. The (draft) DWARF 3
19262 specification allows the initial length to take up either 4 bytes
19263 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19264 bytes describe the length and all offsets will be 8 bytes in length
19265 instead of 4.
19266
19267 An older, non-standard 64-bit format is also handled by this
19268 function. The older format in question stores the initial length
19269 as an 8-byte quantity without an escape value. Lengths greater
19270 than 2^32 aren't very common which means that the initial 4 bytes
19271 is almost always zero. Since a length value of zero doesn't make
19272 sense for the 32-bit format, this initial zero can be considered to
19273 be an escape value which indicates the presence of the older 64-bit
19274 format. As written, the code can't detect (old format) lengths
19275 greater than 4GB. If it becomes necessary to handle lengths
19276 somewhat larger than 4GB, we could allow other small values (such
19277 as the non-sensical values of 1, 2, and 3) to also be used as
19278 escape values indicating the presence of the old format.
19279
19280 The value returned via bytes_read should be used to increment the
19281 relevant pointer after calling read_initial_length().
19282
19283 [ Note: read_initial_length() and read_offset() are based on the
19284 document entitled "DWARF Debugging Information Format", revision
19285 3, draft 8, dated November 19, 2001. This document was obtained
19286 from:
19287
19288 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19289
19290 This document is only a draft and is subject to change. (So beware.)
19291
19292 Details regarding the older, non-standard 64-bit format were
19293 determined empirically by examining 64-bit ELF files produced by
19294 the SGI toolchain on an IRIX 6.5 machine.
19295
19296 - Kevin, July 16, 2002
19297 ] */
19298
19299 static LONGEST
19300 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19301 {
19302 LONGEST length = bfd_get_32 (abfd, buf);
19303
19304 if (length == 0xffffffff)
19305 {
19306 length = bfd_get_64 (abfd, buf + 4);
19307 *bytes_read = 12;
19308 }
19309 else if (length == 0)
19310 {
19311 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19312 length = bfd_get_64 (abfd, buf);
19313 *bytes_read = 8;
19314 }
19315 else
19316 {
19317 *bytes_read = 4;
19318 }
19319
19320 return length;
19321 }
19322
19323 /* Cover function for read_initial_length.
19324 Returns the length of the object at BUF, and stores the size of the
19325 initial length in *BYTES_READ and stores the size that offsets will be in
19326 *OFFSET_SIZE.
19327 If the initial length size is not equivalent to that specified in
19328 CU_HEADER then issue a complaint.
19329 This is useful when reading non-comp-unit headers. */
19330
19331 static LONGEST
19332 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19333 const struct comp_unit_head *cu_header,
19334 unsigned int *bytes_read,
19335 unsigned int *offset_size)
19336 {
19337 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19338
19339 gdb_assert (cu_header->initial_length_size == 4
19340 || cu_header->initial_length_size == 8
19341 || cu_header->initial_length_size == 12);
19342
19343 if (cu_header->initial_length_size != *bytes_read)
19344 complaint (&symfile_complaints,
19345 _("intermixed 32-bit and 64-bit DWARF sections"));
19346
19347 *offset_size = (*bytes_read == 4) ? 4 : 8;
19348 return length;
19349 }
19350
19351 /* Read an offset from the data stream. The size of the offset is
19352 given by cu_header->offset_size. */
19353
19354 static LONGEST
19355 read_offset (bfd *abfd, const gdb_byte *buf,
19356 const struct comp_unit_head *cu_header,
19357 unsigned int *bytes_read)
19358 {
19359 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19360
19361 *bytes_read = cu_header->offset_size;
19362 return offset;
19363 }
19364
19365 /* Read an offset from the data stream. */
19366
19367 static LONGEST
19368 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19369 {
19370 LONGEST retval = 0;
19371
19372 switch (offset_size)
19373 {
19374 case 4:
19375 retval = bfd_get_32 (abfd, buf);
19376 break;
19377 case 8:
19378 retval = bfd_get_64 (abfd, buf);
19379 break;
19380 default:
19381 internal_error (__FILE__, __LINE__,
19382 _("read_offset_1: bad switch [in module %s]"),
19383 bfd_get_filename (abfd));
19384 }
19385
19386 return retval;
19387 }
19388
19389 static const gdb_byte *
19390 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19391 {
19392 /* If the size of a host char is 8 bits, we can return a pointer
19393 to the buffer, otherwise we have to copy the data to a buffer
19394 allocated on the temporary obstack. */
19395 gdb_assert (HOST_CHAR_BIT == 8);
19396 return buf;
19397 }
19398
19399 static const char *
19400 read_direct_string (bfd *abfd, const gdb_byte *buf,
19401 unsigned int *bytes_read_ptr)
19402 {
19403 /* If the size of a host char is 8 bits, we can return a pointer
19404 to the string, otherwise we have to copy the string to a buffer
19405 allocated on the temporary obstack. */
19406 gdb_assert (HOST_CHAR_BIT == 8);
19407 if (*buf == '\0')
19408 {
19409 *bytes_read_ptr = 1;
19410 return NULL;
19411 }
19412 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19413 return (const char *) buf;
19414 }
19415
19416 /* Return pointer to string at section SECT offset STR_OFFSET with error
19417 reporting strings FORM_NAME and SECT_NAME. */
19418
19419 static const char *
19420 read_indirect_string_at_offset_from (struct objfile *objfile,
19421 bfd *abfd, LONGEST str_offset,
19422 struct dwarf2_section_info *sect,
19423 const char *form_name,
19424 const char *sect_name)
19425 {
19426 dwarf2_read_section (objfile, sect);
19427 if (sect->buffer == NULL)
19428 error (_("%s used without %s section [in module %s]"),
19429 form_name, sect_name, bfd_get_filename (abfd));
19430 if (str_offset >= sect->size)
19431 error (_("%s pointing outside of %s section [in module %s]"),
19432 form_name, sect_name, bfd_get_filename (abfd));
19433 gdb_assert (HOST_CHAR_BIT == 8);
19434 if (sect->buffer[str_offset] == '\0')
19435 return NULL;
19436 return (const char *) (sect->buffer + str_offset);
19437 }
19438
19439 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19440
19441 static const char *
19442 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19443 bfd *abfd, LONGEST str_offset)
19444 {
19445 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19446 abfd, str_offset,
19447 &dwarf2_per_objfile->str,
19448 "DW_FORM_strp", ".debug_str");
19449 }
19450
19451 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19452
19453 static const char *
19454 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19455 bfd *abfd, LONGEST str_offset)
19456 {
19457 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19458 abfd, str_offset,
19459 &dwarf2_per_objfile->line_str,
19460 "DW_FORM_line_strp",
19461 ".debug_line_str");
19462 }
19463
19464 /* Read a string at offset STR_OFFSET in the .debug_str section from
19465 the .dwz file DWZ. Throw an error if the offset is too large. If
19466 the string consists of a single NUL byte, return NULL; otherwise
19467 return a pointer to the string. */
19468
19469 static const char *
19470 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19471 LONGEST str_offset)
19472 {
19473 dwarf2_read_section (objfile, &dwz->str);
19474
19475 if (dwz->str.buffer == NULL)
19476 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19477 "section [in module %s]"),
19478 bfd_get_filename (dwz->dwz_bfd));
19479 if (str_offset >= dwz->str.size)
19480 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19481 ".debug_str section [in module %s]"),
19482 bfd_get_filename (dwz->dwz_bfd));
19483 gdb_assert (HOST_CHAR_BIT == 8);
19484 if (dwz->str.buffer[str_offset] == '\0')
19485 return NULL;
19486 return (const char *) (dwz->str.buffer + str_offset);
19487 }
19488
19489 /* Return pointer to string at .debug_str offset as read from BUF.
19490 BUF is assumed to be in a compilation unit described by CU_HEADER.
19491 Return *BYTES_READ_PTR count of bytes read from BUF. */
19492
19493 static const char *
19494 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19495 const gdb_byte *buf,
19496 const struct comp_unit_head *cu_header,
19497 unsigned int *bytes_read_ptr)
19498 {
19499 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19500
19501 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19502 }
19503
19504 /* Return pointer to string at .debug_line_str offset as read from BUF.
19505 BUF is assumed to be in a compilation unit described by CU_HEADER.
19506 Return *BYTES_READ_PTR count of bytes read from BUF. */
19507
19508 static const char *
19509 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19510 bfd *abfd, const gdb_byte *buf,
19511 const struct comp_unit_head *cu_header,
19512 unsigned int *bytes_read_ptr)
19513 {
19514 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19515
19516 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19517 str_offset);
19518 }
19519
19520 ULONGEST
19521 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19522 unsigned int *bytes_read_ptr)
19523 {
19524 ULONGEST result;
19525 unsigned int num_read;
19526 int shift;
19527 unsigned char byte;
19528
19529 result = 0;
19530 shift = 0;
19531 num_read = 0;
19532 while (1)
19533 {
19534 byte = bfd_get_8 (abfd, buf);
19535 buf++;
19536 num_read++;
19537 result |= ((ULONGEST) (byte & 127) << shift);
19538 if ((byte & 128) == 0)
19539 {
19540 break;
19541 }
19542 shift += 7;
19543 }
19544 *bytes_read_ptr = num_read;
19545 return result;
19546 }
19547
19548 static LONGEST
19549 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19550 unsigned int *bytes_read_ptr)
19551 {
19552 LONGEST result;
19553 int shift, num_read;
19554 unsigned char byte;
19555
19556 result = 0;
19557 shift = 0;
19558 num_read = 0;
19559 while (1)
19560 {
19561 byte = bfd_get_8 (abfd, buf);
19562 buf++;
19563 num_read++;
19564 result |= ((LONGEST) (byte & 127) << shift);
19565 shift += 7;
19566 if ((byte & 128) == 0)
19567 {
19568 break;
19569 }
19570 }
19571 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19572 result |= -(((LONGEST) 1) << shift);
19573 *bytes_read_ptr = num_read;
19574 return result;
19575 }
19576
19577 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19578 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19579 ADDR_SIZE is the size of addresses from the CU header. */
19580
19581 static CORE_ADDR
19582 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19583 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19584 {
19585 struct objfile *objfile = dwarf2_per_objfile->objfile;
19586 bfd *abfd = objfile->obfd;
19587 const gdb_byte *info_ptr;
19588
19589 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19590 if (dwarf2_per_objfile->addr.buffer == NULL)
19591 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19592 objfile_name (objfile));
19593 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19594 error (_("DW_FORM_addr_index pointing outside of "
19595 ".debug_addr section [in module %s]"),
19596 objfile_name (objfile));
19597 info_ptr = (dwarf2_per_objfile->addr.buffer
19598 + addr_base + addr_index * addr_size);
19599 if (addr_size == 4)
19600 return bfd_get_32 (abfd, info_ptr);
19601 else
19602 return bfd_get_64 (abfd, info_ptr);
19603 }
19604
19605 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19606
19607 static CORE_ADDR
19608 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19609 {
19610 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19611 cu->addr_base, cu->header.addr_size);
19612 }
19613
19614 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19615
19616 static CORE_ADDR
19617 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19618 unsigned int *bytes_read)
19619 {
19620 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19621 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19622
19623 return read_addr_index (cu, addr_index);
19624 }
19625
19626 /* Data structure to pass results from dwarf2_read_addr_index_reader
19627 back to dwarf2_read_addr_index. */
19628
19629 struct dwarf2_read_addr_index_data
19630 {
19631 ULONGEST addr_base;
19632 int addr_size;
19633 };
19634
19635 /* die_reader_func for dwarf2_read_addr_index. */
19636
19637 static void
19638 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19639 const gdb_byte *info_ptr,
19640 struct die_info *comp_unit_die,
19641 int has_children,
19642 void *data)
19643 {
19644 struct dwarf2_cu *cu = reader->cu;
19645 struct dwarf2_read_addr_index_data *aidata =
19646 (struct dwarf2_read_addr_index_data *) data;
19647
19648 aidata->addr_base = cu->addr_base;
19649 aidata->addr_size = cu->header.addr_size;
19650 }
19651
19652 /* Given an index in .debug_addr, fetch the value.
19653 NOTE: This can be called during dwarf expression evaluation,
19654 long after the debug information has been read, and thus per_cu->cu
19655 may no longer exist. */
19656
19657 CORE_ADDR
19658 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19659 unsigned int addr_index)
19660 {
19661 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19662 struct dwarf2_cu *cu = per_cu->cu;
19663 ULONGEST addr_base;
19664 int addr_size;
19665
19666 /* We need addr_base and addr_size.
19667 If we don't have PER_CU->cu, we have to get it.
19668 Nasty, but the alternative is storing the needed info in PER_CU,
19669 which at this point doesn't seem justified: it's not clear how frequently
19670 it would get used and it would increase the size of every PER_CU.
19671 Entry points like dwarf2_per_cu_addr_size do a similar thing
19672 so we're not in uncharted territory here.
19673 Alas we need to be a bit more complicated as addr_base is contained
19674 in the DIE.
19675
19676 We don't need to read the entire CU(/TU).
19677 We just need the header and top level die.
19678
19679 IWBN to use the aging mechanism to let us lazily later discard the CU.
19680 For now we skip this optimization. */
19681
19682 if (cu != NULL)
19683 {
19684 addr_base = cu->addr_base;
19685 addr_size = cu->header.addr_size;
19686 }
19687 else
19688 {
19689 struct dwarf2_read_addr_index_data aidata;
19690
19691 /* Note: We can't use init_cutu_and_read_dies_simple here,
19692 we need addr_base. */
19693 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19694 dwarf2_read_addr_index_reader, &aidata);
19695 addr_base = aidata.addr_base;
19696 addr_size = aidata.addr_size;
19697 }
19698
19699 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19700 addr_size);
19701 }
19702
19703 /* Given a DW_FORM_GNU_str_index, fetch the string.
19704 This is only used by the Fission support. */
19705
19706 static const char *
19707 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19708 {
19709 struct dwarf2_cu *cu = reader->cu;
19710 struct dwarf2_per_objfile *dwarf2_per_objfile
19711 = cu->per_cu->dwarf2_per_objfile;
19712 struct objfile *objfile = dwarf2_per_objfile->objfile;
19713 const char *objf_name = objfile_name (objfile);
19714 bfd *abfd = objfile->obfd;
19715 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19716 struct dwarf2_section_info *str_offsets_section =
19717 &reader->dwo_file->sections.str_offsets;
19718 const gdb_byte *info_ptr;
19719 ULONGEST str_offset;
19720 static const char form_name[] = "DW_FORM_GNU_str_index";
19721
19722 dwarf2_read_section (objfile, str_section);
19723 dwarf2_read_section (objfile, str_offsets_section);
19724 if (str_section->buffer == NULL)
19725 error (_("%s used without .debug_str.dwo section"
19726 " in CU at offset %s [in module %s]"),
19727 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19728 if (str_offsets_section->buffer == NULL)
19729 error (_("%s used without .debug_str_offsets.dwo section"
19730 " in CU at offset %s [in module %s]"),
19731 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19732 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19733 error (_("%s pointing outside of .debug_str_offsets.dwo"
19734 " section in CU at offset %s [in module %s]"),
19735 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19736 info_ptr = (str_offsets_section->buffer
19737 + str_index * cu->header.offset_size);
19738 if (cu->header.offset_size == 4)
19739 str_offset = bfd_get_32 (abfd, info_ptr);
19740 else
19741 str_offset = bfd_get_64 (abfd, info_ptr);
19742 if (str_offset >= str_section->size)
19743 error (_("Offset from %s pointing outside of"
19744 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19745 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19746 return (const char *) (str_section->buffer + str_offset);
19747 }
19748
19749 /* Return the length of an LEB128 number in BUF. */
19750
19751 static int
19752 leb128_size (const gdb_byte *buf)
19753 {
19754 const gdb_byte *begin = buf;
19755 gdb_byte byte;
19756
19757 while (1)
19758 {
19759 byte = *buf++;
19760 if ((byte & 128) == 0)
19761 return buf - begin;
19762 }
19763 }
19764
19765 static void
19766 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19767 {
19768 switch (lang)
19769 {
19770 case DW_LANG_C89:
19771 case DW_LANG_C99:
19772 case DW_LANG_C11:
19773 case DW_LANG_C:
19774 case DW_LANG_UPC:
19775 cu->language = language_c;
19776 break;
19777 case DW_LANG_Java:
19778 case DW_LANG_C_plus_plus:
19779 case DW_LANG_C_plus_plus_11:
19780 case DW_LANG_C_plus_plus_14:
19781 cu->language = language_cplus;
19782 break;
19783 case DW_LANG_D:
19784 cu->language = language_d;
19785 break;
19786 case DW_LANG_Fortran77:
19787 case DW_LANG_Fortran90:
19788 case DW_LANG_Fortran95:
19789 case DW_LANG_Fortran03:
19790 case DW_LANG_Fortran08:
19791 cu->language = language_fortran;
19792 break;
19793 case DW_LANG_Go:
19794 cu->language = language_go;
19795 break;
19796 case DW_LANG_Mips_Assembler:
19797 cu->language = language_asm;
19798 break;
19799 case DW_LANG_Ada83:
19800 case DW_LANG_Ada95:
19801 cu->language = language_ada;
19802 break;
19803 case DW_LANG_Modula2:
19804 cu->language = language_m2;
19805 break;
19806 case DW_LANG_Pascal83:
19807 cu->language = language_pascal;
19808 break;
19809 case DW_LANG_ObjC:
19810 cu->language = language_objc;
19811 break;
19812 case DW_LANG_Rust:
19813 case DW_LANG_Rust_old:
19814 cu->language = language_rust;
19815 break;
19816 case DW_LANG_Cobol74:
19817 case DW_LANG_Cobol85:
19818 default:
19819 cu->language = language_minimal;
19820 break;
19821 }
19822 cu->language_defn = language_def (cu->language);
19823 }
19824
19825 /* Return the named attribute or NULL if not there. */
19826
19827 static struct attribute *
19828 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19829 {
19830 for (;;)
19831 {
19832 unsigned int i;
19833 struct attribute *spec = NULL;
19834
19835 for (i = 0; i < die->num_attrs; ++i)
19836 {
19837 if (die->attrs[i].name == name)
19838 return &die->attrs[i];
19839 if (die->attrs[i].name == DW_AT_specification
19840 || die->attrs[i].name == DW_AT_abstract_origin)
19841 spec = &die->attrs[i];
19842 }
19843
19844 if (!spec)
19845 break;
19846
19847 die = follow_die_ref (die, spec, &cu);
19848 }
19849
19850 return NULL;
19851 }
19852
19853 /* Return the named attribute or NULL if not there,
19854 but do not follow DW_AT_specification, etc.
19855 This is for use in contexts where we're reading .debug_types dies.
19856 Following DW_AT_specification, DW_AT_abstract_origin will take us
19857 back up the chain, and we want to go down. */
19858
19859 static struct attribute *
19860 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19861 {
19862 unsigned int i;
19863
19864 for (i = 0; i < die->num_attrs; ++i)
19865 if (die->attrs[i].name == name)
19866 return &die->attrs[i];
19867
19868 return NULL;
19869 }
19870
19871 /* Return the string associated with a string-typed attribute, or NULL if it
19872 is either not found or is of an incorrect type. */
19873
19874 static const char *
19875 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19876 {
19877 struct attribute *attr;
19878 const char *str = NULL;
19879
19880 attr = dwarf2_attr (die, name, cu);
19881
19882 if (attr != NULL)
19883 {
19884 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19885 || attr->form == DW_FORM_string
19886 || attr->form == DW_FORM_GNU_str_index
19887 || attr->form == DW_FORM_GNU_strp_alt)
19888 str = DW_STRING (attr);
19889 else
19890 complaint (&symfile_complaints,
19891 _("string type expected for attribute %s for "
19892 "DIE at %s in module %s"),
19893 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19894 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19895 }
19896
19897 return str;
19898 }
19899
19900 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19901 and holds a non-zero value. This function should only be used for
19902 DW_FORM_flag or DW_FORM_flag_present attributes. */
19903
19904 static int
19905 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19906 {
19907 struct attribute *attr = dwarf2_attr (die, name, cu);
19908
19909 return (attr && DW_UNSND (attr));
19910 }
19911
19912 static int
19913 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19914 {
19915 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19916 which value is non-zero. However, we have to be careful with
19917 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19918 (via dwarf2_flag_true_p) follows this attribute. So we may
19919 end up accidently finding a declaration attribute that belongs
19920 to a different DIE referenced by the specification attribute,
19921 even though the given DIE does not have a declaration attribute. */
19922 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19923 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19924 }
19925
19926 /* Return the die giving the specification for DIE, if there is
19927 one. *SPEC_CU is the CU containing DIE on input, and the CU
19928 containing the return value on output. If there is no
19929 specification, but there is an abstract origin, that is
19930 returned. */
19931
19932 static struct die_info *
19933 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19934 {
19935 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19936 *spec_cu);
19937
19938 if (spec_attr == NULL)
19939 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19940
19941 if (spec_attr == NULL)
19942 return NULL;
19943 else
19944 return follow_die_ref (die, spec_attr, spec_cu);
19945 }
19946
19947 /* Stub for free_line_header to match void * callback types. */
19948
19949 static void
19950 free_line_header_voidp (void *arg)
19951 {
19952 struct line_header *lh = (struct line_header *) arg;
19953
19954 delete lh;
19955 }
19956
19957 void
19958 line_header::add_include_dir (const char *include_dir)
19959 {
19960 if (dwarf_line_debug >= 2)
19961 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19962 include_dirs.size () + 1, include_dir);
19963
19964 include_dirs.push_back (include_dir);
19965 }
19966
19967 void
19968 line_header::add_file_name (const char *name,
19969 dir_index d_index,
19970 unsigned int mod_time,
19971 unsigned int length)
19972 {
19973 if (dwarf_line_debug >= 2)
19974 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19975 (unsigned) file_names.size () + 1, name);
19976
19977 file_names.emplace_back (name, d_index, mod_time, length);
19978 }
19979
19980 /* A convenience function to find the proper .debug_line section for a CU. */
19981
19982 static struct dwarf2_section_info *
19983 get_debug_line_section (struct dwarf2_cu *cu)
19984 {
19985 struct dwarf2_section_info *section;
19986 struct dwarf2_per_objfile *dwarf2_per_objfile
19987 = cu->per_cu->dwarf2_per_objfile;
19988
19989 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19990 DWO file. */
19991 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19992 section = &cu->dwo_unit->dwo_file->sections.line;
19993 else if (cu->per_cu->is_dwz)
19994 {
19995 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19996
19997 section = &dwz->line;
19998 }
19999 else
20000 section = &dwarf2_per_objfile->line;
20001
20002 return section;
20003 }
20004
20005 /* Read directory or file name entry format, starting with byte of
20006 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20007 entries count and the entries themselves in the described entry
20008 format. */
20009
20010 static void
20011 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20012 bfd *abfd, const gdb_byte **bufp,
20013 struct line_header *lh,
20014 const struct comp_unit_head *cu_header,
20015 void (*callback) (struct line_header *lh,
20016 const char *name,
20017 dir_index d_index,
20018 unsigned int mod_time,
20019 unsigned int length))
20020 {
20021 gdb_byte format_count, formati;
20022 ULONGEST data_count, datai;
20023 const gdb_byte *buf = *bufp;
20024 const gdb_byte *format_header_data;
20025 unsigned int bytes_read;
20026
20027 format_count = read_1_byte (abfd, buf);
20028 buf += 1;
20029 format_header_data = buf;
20030 for (formati = 0; formati < format_count; formati++)
20031 {
20032 read_unsigned_leb128 (abfd, buf, &bytes_read);
20033 buf += bytes_read;
20034 read_unsigned_leb128 (abfd, buf, &bytes_read);
20035 buf += bytes_read;
20036 }
20037
20038 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20039 buf += bytes_read;
20040 for (datai = 0; datai < data_count; datai++)
20041 {
20042 const gdb_byte *format = format_header_data;
20043 struct file_entry fe;
20044
20045 for (formati = 0; formati < format_count; formati++)
20046 {
20047 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20048 format += bytes_read;
20049
20050 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20051 format += bytes_read;
20052
20053 gdb::optional<const char *> string;
20054 gdb::optional<unsigned int> uint;
20055
20056 switch (form)
20057 {
20058 case DW_FORM_string:
20059 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20060 buf += bytes_read;
20061 break;
20062
20063 case DW_FORM_line_strp:
20064 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20065 abfd, buf,
20066 cu_header,
20067 &bytes_read));
20068 buf += bytes_read;
20069 break;
20070
20071 case DW_FORM_data1:
20072 uint.emplace (read_1_byte (abfd, buf));
20073 buf += 1;
20074 break;
20075
20076 case DW_FORM_data2:
20077 uint.emplace (read_2_bytes (abfd, buf));
20078 buf += 2;
20079 break;
20080
20081 case DW_FORM_data4:
20082 uint.emplace (read_4_bytes (abfd, buf));
20083 buf += 4;
20084 break;
20085
20086 case DW_FORM_data8:
20087 uint.emplace (read_8_bytes (abfd, buf));
20088 buf += 8;
20089 break;
20090
20091 case DW_FORM_udata:
20092 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20093 buf += bytes_read;
20094 break;
20095
20096 case DW_FORM_block:
20097 /* It is valid only for DW_LNCT_timestamp which is ignored by
20098 current GDB. */
20099 break;
20100 }
20101
20102 switch (content_type)
20103 {
20104 case DW_LNCT_path:
20105 if (string.has_value ())
20106 fe.name = *string;
20107 break;
20108 case DW_LNCT_directory_index:
20109 if (uint.has_value ())
20110 fe.d_index = (dir_index) *uint;
20111 break;
20112 case DW_LNCT_timestamp:
20113 if (uint.has_value ())
20114 fe.mod_time = *uint;
20115 break;
20116 case DW_LNCT_size:
20117 if (uint.has_value ())
20118 fe.length = *uint;
20119 break;
20120 case DW_LNCT_MD5:
20121 break;
20122 default:
20123 complaint (&symfile_complaints,
20124 _("Unknown format content type %s"),
20125 pulongest (content_type));
20126 }
20127 }
20128
20129 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20130 }
20131
20132 *bufp = buf;
20133 }
20134
20135 /* Read the statement program header starting at OFFSET in
20136 .debug_line, or .debug_line.dwo. Return a pointer
20137 to a struct line_header, allocated using xmalloc.
20138 Returns NULL if there is a problem reading the header, e.g., if it
20139 has a version we don't understand.
20140
20141 NOTE: the strings in the include directory and file name tables of
20142 the returned object point into the dwarf line section buffer,
20143 and must not be freed. */
20144
20145 static line_header_up
20146 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20147 {
20148 const gdb_byte *line_ptr;
20149 unsigned int bytes_read, offset_size;
20150 int i;
20151 const char *cur_dir, *cur_file;
20152 struct dwarf2_section_info *section;
20153 bfd *abfd;
20154 struct dwarf2_per_objfile *dwarf2_per_objfile
20155 = cu->per_cu->dwarf2_per_objfile;
20156
20157 section = get_debug_line_section (cu);
20158 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20159 if (section->buffer == NULL)
20160 {
20161 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20162 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20163 else
20164 complaint (&symfile_complaints, _("missing .debug_line section"));
20165 return 0;
20166 }
20167
20168 /* We can't do this until we know the section is non-empty.
20169 Only then do we know we have such a section. */
20170 abfd = get_section_bfd_owner (section);
20171
20172 /* Make sure that at least there's room for the total_length field.
20173 That could be 12 bytes long, but we're just going to fudge that. */
20174 if (to_underlying (sect_off) + 4 >= section->size)
20175 {
20176 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20177 return 0;
20178 }
20179
20180 line_header_up lh (new line_header ());
20181
20182 lh->sect_off = sect_off;
20183 lh->offset_in_dwz = cu->per_cu->is_dwz;
20184
20185 line_ptr = section->buffer + to_underlying (sect_off);
20186
20187 /* Read in the header. */
20188 lh->total_length =
20189 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20190 &bytes_read, &offset_size);
20191 line_ptr += bytes_read;
20192 if (line_ptr + lh->total_length > (section->buffer + section->size))
20193 {
20194 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20195 return 0;
20196 }
20197 lh->statement_program_end = line_ptr + lh->total_length;
20198 lh->version = read_2_bytes (abfd, line_ptr);
20199 line_ptr += 2;
20200 if (lh->version > 5)
20201 {
20202 /* This is a version we don't understand. The format could have
20203 changed in ways we don't handle properly so just punt. */
20204 complaint (&symfile_complaints,
20205 _("unsupported version in .debug_line section"));
20206 return NULL;
20207 }
20208 if (lh->version >= 5)
20209 {
20210 gdb_byte segment_selector_size;
20211
20212 /* Skip address size. */
20213 read_1_byte (abfd, line_ptr);
20214 line_ptr += 1;
20215
20216 segment_selector_size = read_1_byte (abfd, line_ptr);
20217 line_ptr += 1;
20218 if (segment_selector_size != 0)
20219 {
20220 complaint (&symfile_complaints,
20221 _("unsupported segment selector size %u "
20222 "in .debug_line section"),
20223 segment_selector_size);
20224 return NULL;
20225 }
20226 }
20227 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20228 line_ptr += offset_size;
20229 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20230 line_ptr += 1;
20231 if (lh->version >= 4)
20232 {
20233 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20234 line_ptr += 1;
20235 }
20236 else
20237 lh->maximum_ops_per_instruction = 1;
20238
20239 if (lh->maximum_ops_per_instruction == 0)
20240 {
20241 lh->maximum_ops_per_instruction = 1;
20242 complaint (&symfile_complaints,
20243 _("invalid maximum_ops_per_instruction "
20244 "in `.debug_line' section"));
20245 }
20246
20247 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20248 line_ptr += 1;
20249 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20250 line_ptr += 1;
20251 lh->line_range = read_1_byte (abfd, line_ptr);
20252 line_ptr += 1;
20253 lh->opcode_base = read_1_byte (abfd, line_ptr);
20254 line_ptr += 1;
20255 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20256
20257 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20258 for (i = 1; i < lh->opcode_base; ++i)
20259 {
20260 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20261 line_ptr += 1;
20262 }
20263
20264 if (lh->version >= 5)
20265 {
20266 /* Read directory table. */
20267 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20268 &cu->header,
20269 [] (struct line_header *lh, const char *name,
20270 dir_index d_index, unsigned int mod_time,
20271 unsigned int length)
20272 {
20273 lh->add_include_dir (name);
20274 });
20275
20276 /* Read file name table. */
20277 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20278 &cu->header,
20279 [] (struct line_header *lh, const char *name,
20280 dir_index d_index, unsigned int mod_time,
20281 unsigned int length)
20282 {
20283 lh->add_file_name (name, d_index, mod_time, length);
20284 });
20285 }
20286 else
20287 {
20288 /* Read directory table. */
20289 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20290 {
20291 line_ptr += bytes_read;
20292 lh->add_include_dir (cur_dir);
20293 }
20294 line_ptr += bytes_read;
20295
20296 /* Read file name table. */
20297 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20298 {
20299 unsigned int mod_time, length;
20300 dir_index d_index;
20301
20302 line_ptr += bytes_read;
20303 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20304 line_ptr += bytes_read;
20305 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20306 line_ptr += bytes_read;
20307 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20308 line_ptr += bytes_read;
20309
20310 lh->add_file_name (cur_file, d_index, mod_time, length);
20311 }
20312 line_ptr += bytes_read;
20313 }
20314 lh->statement_program_start = line_ptr;
20315
20316 if (line_ptr > (section->buffer + section->size))
20317 complaint (&symfile_complaints,
20318 _("line number info header doesn't "
20319 "fit in `.debug_line' section"));
20320
20321 return lh;
20322 }
20323
20324 /* Subroutine of dwarf_decode_lines to simplify it.
20325 Return the file name of the psymtab for included file FILE_INDEX
20326 in line header LH of PST.
20327 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20328 If space for the result is malloc'd, *NAME_HOLDER will be set.
20329 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20330
20331 static const char *
20332 psymtab_include_file_name (const struct line_header *lh, int file_index,
20333 const struct partial_symtab *pst,
20334 const char *comp_dir,
20335 gdb::unique_xmalloc_ptr<char> *name_holder)
20336 {
20337 const file_entry &fe = lh->file_names[file_index];
20338 const char *include_name = fe.name;
20339 const char *include_name_to_compare = include_name;
20340 const char *pst_filename;
20341 int file_is_pst;
20342
20343 const char *dir_name = fe.include_dir (lh);
20344
20345 gdb::unique_xmalloc_ptr<char> hold_compare;
20346 if (!IS_ABSOLUTE_PATH (include_name)
20347 && (dir_name != NULL || comp_dir != NULL))
20348 {
20349 /* Avoid creating a duplicate psymtab for PST.
20350 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20351 Before we do the comparison, however, we need to account
20352 for DIR_NAME and COMP_DIR.
20353 First prepend dir_name (if non-NULL). If we still don't
20354 have an absolute path prepend comp_dir (if non-NULL).
20355 However, the directory we record in the include-file's
20356 psymtab does not contain COMP_DIR (to match the
20357 corresponding symtab(s)).
20358
20359 Example:
20360
20361 bash$ cd /tmp
20362 bash$ gcc -g ./hello.c
20363 include_name = "hello.c"
20364 dir_name = "."
20365 DW_AT_comp_dir = comp_dir = "/tmp"
20366 DW_AT_name = "./hello.c"
20367
20368 */
20369
20370 if (dir_name != NULL)
20371 {
20372 name_holder->reset (concat (dir_name, SLASH_STRING,
20373 include_name, (char *) NULL));
20374 include_name = name_holder->get ();
20375 include_name_to_compare = include_name;
20376 }
20377 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20378 {
20379 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20380 include_name, (char *) NULL));
20381 include_name_to_compare = hold_compare.get ();
20382 }
20383 }
20384
20385 pst_filename = pst->filename;
20386 gdb::unique_xmalloc_ptr<char> copied_name;
20387 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20388 {
20389 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20390 pst_filename, (char *) NULL));
20391 pst_filename = copied_name.get ();
20392 }
20393
20394 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20395
20396 if (file_is_pst)
20397 return NULL;
20398 return include_name;
20399 }
20400
20401 /* State machine to track the state of the line number program. */
20402
20403 class lnp_state_machine
20404 {
20405 public:
20406 /* Initialize a machine state for the start of a line number
20407 program. */
20408 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20409
20410 file_entry *current_file ()
20411 {
20412 /* lh->file_names is 0-based, but the file name numbers in the
20413 statement program are 1-based. */
20414 return m_line_header->file_name_at (m_file);
20415 }
20416
20417 /* Record the line in the state machine. END_SEQUENCE is true if
20418 we're processing the end of a sequence. */
20419 void record_line (bool end_sequence);
20420
20421 /* Check address and if invalid nop-out the rest of the lines in this
20422 sequence. */
20423 void check_line_address (struct dwarf2_cu *cu,
20424 const gdb_byte *line_ptr,
20425 CORE_ADDR lowpc, CORE_ADDR address);
20426
20427 void handle_set_discriminator (unsigned int discriminator)
20428 {
20429 m_discriminator = discriminator;
20430 m_line_has_non_zero_discriminator |= discriminator != 0;
20431 }
20432
20433 /* Handle DW_LNE_set_address. */
20434 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20435 {
20436 m_op_index = 0;
20437 address += baseaddr;
20438 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20439 }
20440
20441 /* Handle DW_LNS_advance_pc. */
20442 void handle_advance_pc (CORE_ADDR adjust);
20443
20444 /* Handle a special opcode. */
20445 void handle_special_opcode (unsigned char op_code);
20446
20447 /* Handle DW_LNS_advance_line. */
20448 void handle_advance_line (int line_delta)
20449 {
20450 advance_line (line_delta);
20451 }
20452
20453 /* Handle DW_LNS_set_file. */
20454 void handle_set_file (file_name_index file);
20455
20456 /* Handle DW_LNS_negate_stmt. */
20457 void handle_negate_stmt ()
20458 {
20459 m_is_stmt = !m_is_stmt;
20460 }
20461
20462 /* Handle DW_LNS_const_add_pc. */
20463 void handle_const_add_pc ();
20464
20465 /* Handle DW_LNS_fixed_advance_pc. */
20466 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20467 {
20468 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20469 m_op_index = 0;
20470 }
20471
20472 /* Handle DW_LNS_copy. */
20473 void handle_copy ()
20474 {
20475 record_line (false);
20476 m_discriminator = 0;
20477 }
20478
20479 /* Handle DW_LNE_end_sequence. */
20480 void handle_end_sequence ()
20481 {
20482 m_record_line_callback = ::record_line;
20483 }
20484
20485 private:
20486 /* Advance the line by LINE_DELTA. */
20487 void advance_line (int line_delta)
20488 {
20489 m_line += line_delta;
20490
20491 if (line_delta != 0)
20492 m_line_has_non_zero_discriminator = m_discriminator != 0;
20493 }
20494
20495 gdbarch *m_gdbarch;
20496
20497 /* True if we're recording lines.
20498 Otherwise we're building partial symtabs and are just interested in
20499 finding include files mentioned by the line number program. */
20500 bool m_record_lines_p;
20501
20502 /* The line number header. */
20503 line_header *m_line_header;
20504
20505 /* These are part of the standard DWARF line number state machine,
20506 and initialized according to the DWARF spec. */
20507
20508 unsigned char m_op_index = 0;
20509 /* The line table index (1-based) of the current file. */
20510 file_name_index m_file = (file_name_index) 1;
20511 unsigned int m_line = 1;
20512
20513 /* These are initialized in the constructor. */
20514
20515 CORE_ADDR m_address;
20516 bool m_is_stmt;
20517 unsigned int m_discriminator;
20518
20519 /* Additional bits of state we need to track. */
20520
20521 /* The last file that we called dwarf2_start_subfile for.
20522 This is only used for TLLs. */
20523 unsigned int m_last_file = 0;
20524 /* The last file a line number was recorded for. */
20525 struct subfile *m_last_subfile = NULL;
20526
20527 /* The function to call to record a line. */
20528 record_line_ftype *m_record_line_callback = NULL;
20529
20530 /* The last line number that was recorded, used to coalesce
20531 consecutive entries for the same line. This can happen, for
20532 example, when discriminators are present. PR 17276. */
20533 unsigned int m_last_line = 0;
20534 bool m_line_has_non_zero_discriminator = false;
20535 };
20536
20537 void
20538 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20539 {
20540 CORE_ADDR addr_adj = (((m_op_index + adjust)
20541 / m_line_header->maximum_ops_per_instruction)
20542 * m_line_header->minimum_instruction_length);
20543 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20544 m_op_index = ((m_op_index + adjust)
20545 % m_line_header->maximum_ops_per_instruction);
20546 }
20547
20548 void
20549 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20550 {
20551 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20552 CORE_ADDR addr_adj = (((m_op_index
20553 + (adj_opcode / m_line_header->line_range))
20554 / m_line_header->maximum_ops_per_instruction)
20555 * m_line_header->minimum_instruction_length);
20556 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20557 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20558 % m_line_header->maximum_ops_per_instruction);
20559
20560 int line_delta = (m_line_header->line_base
20561 + (adj_opcode % m_line_header->line_range));
20562 advance_line (line_delta);
20563 record_line (false);
20564 m_discriminator = 0;
20565 }
20566
20567 void
20568 lnp_state_machine::handle_set_file (file_name_index file)
20569 {
20570 m_file = file;
20571
20572 const file_entry *fe = current_file ();
20573 if (fe == NULL)
20574 dwarf2_debug_line_missing_file_complaint ();
20575 else if (m_record_lines_p)
20576 {
20577 const char *dir = fe->include_dir (m_line_header);
20578
20579 m_last_subfile = current_subfile;
20580 m_line_has_non_zero_discriminator = m_discriminator != 0;
20581 dwarf2_start_subfile (fe->name, dir);
20582 }
20583 }
20584
20585 void
20586 lnp_state_machine::handle_const_add_pc ()
20587 {
20588 CORE_ADDR adjust
20589 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20590
20591 CORE_ADDR addr_adj
20592 = (((m_op_index + adjust)
20593 / m_line_header->maximum_ops_per_instruction)
20594 * m_line_header->minimum_instruction_length);
20595
20596 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20597 m_op_index = ((m_op_index + adjust)
20598 % m_line_header->maximum_ops_per_instruction);
20599 }
20600
20601 /* Ignore this record_line request. */
20602
20603 static void
20604 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20605 {
20606 return;
20607 }
20608
20609 /* Return non-zero if we should add LINE to the line number table.
20610 LINE is the line to add, LAST_LINE is the last line that was added,
20611 LAST_SUBFILE is the subfile for LAST_LINE.
20612 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20613 had a non-zero discriminator.
20614
20615 We have to be careful in the presence of discriminators.
20616 E.g., for this line:
20617
20618 for (i = 0; i < 100000; i++);
20619
20620 clang can emit four line number entries for that one line,
20621 each with a different discriminator.
20622 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20623
20624 However, we want gdb to coalesce all four entries into one.
20625 Otherwise the user could stepi into the middle of the line and
20626 gdb would get confused about whether the pc really was in the
20627 middle of the line.
20628
20629 Things are further complicated by the fact that two consecutive
20630 line number entries for the same line is a heuristic used by gcc
20631 to denote the end of the prologue. So we can't just discard duplicate
20632 entries, we have to be selective about it. The heuristic we use is
20633 that we only collapse consecutive entries for the same line if at least
20634 one of those entries has a non-zero discriminator. PR 17276.
20635
20636 Note: Addresses in the line number state machine can never go backwards
20637 within one sequence, thus this coalescing is ok. */
20638
20639 static int
20640 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20641 int line_has_non_zero_discriminator,
20642 struct subfile *last_subfile)
20643 {
20644 if (current_subfile != last_subfile)
20645 return 1;
20646 if (line != last_line)
20647 return 1;
20648 /* Same line for the same file that we've seen already.
20649 As a last check, for pr 17276, only record the line if the line
20650 has never had a non-zero discriminator. */
20651 if (!line_has_non_zero_discriminator)
20652 return 1;
20653 return 0;
20654 }
20655
20656 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20657 in the line table of subfile SUBFILE. */
20658
20659 static void
20660 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20661 unsigned int line, CORE_ADDR address,
20662 record_line_ftype p_record_line)
20663 {
20664 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20665
20666 if (dwarf_line_debug)
20667 {
20668 fprintf_unfiltered (gdb_stdlog,
20669 "Recording line %u, file %s, address %s\n",
20670 line, lbasename (subfile->name),
20671 paddress (gdbarch, address));
20672 }
20673
20674 (*p_record_line) (subfile, line, addr);
20675 }
20676
20677 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20678 Mark the end of a set of line number records.
20679 The arguments are the same as for dwarf_record_line_1.
20680 If SUBFILE is NULL the request is ignored. */
20681
20682 static void
20683 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20684 CORE_ADDR address, record_line_ftype p_record_line)
20685 {
20686 if (subfile == NULL)
20687 return;
20688
20689 if (dwarf_line_debug)
20690 {
20691 fprintf_unfiltered (gdb_stdlog,
20692 "Finishing current line, file %s, address %s\n",
20693 lbasename (subfile->name),
20694 paddress (gdbarch, address));
20695 }
20696
20697 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20698 }
20699
20700 void
20701 lnp_state_machine::record_line (bool end_sequence)
20702 {
20703 if (dwarf_line_debug)
20704 {
20705 fprintf_unfiltered (gdb_stdlog,
20706 "Processing actual line %u: file %u,"
20707 " address %s, is_stmt %u, discrim %u\n",
20708 m_line, to_underlying (m_file),
20709 paddress (m_gdbarch, m_address),
20710 m_is_stmt, m_discriminator);
20711 }
20712
20713 file_entry *fe = current_file ();
20714
20715 if (fe == NULL)
20716 dwarf2_debug_line_missing_file_complaint ();
20717 /* For now we ignore lines not starting on an instruction boundary.
20718 But not when processing end_sequence for compatibility with the
20719 previous version of the code. */
20720 else if (m_op_index == 0 || end_sequence)
20721 {
20722 fe->included_p = 1;
20723 if (m_record_lines_p && m_is_stmt)
20724 {
20725 if (m_last_subfile != current_subfile || end_sequence)
20726 {
20727 dwarf_finish_line (m_gdbarch, m_last_subfile,
20728 m_address, m_record_line_callback);
20729 }
20730
20731 if (!end_sequence)
20732 {
20733 if (dwarf_record_line_p (m_line, m_last_line,
20734 m_line_has_non_zero_discriminator,
20735 m_last_subfile))
20736 {
20737 dwarf_record_line_1 (m_gdbarch, current_subfile,
20738 m_line, m_address,
20739 m_record_line_callback);
20740 }
20741 m_last_subfile = current_subfile;
20742 m_last_line = m_line;
20743 }
20744 }
20745 }
20746 }
20747
20748 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20749 bool record_lines_p)
20750 {
20751 m_gdbarch = arch;
20752 m_record_lines_p = record_lines_p;
20753 m_line_header = lh;
20754
20755 m_record_line_callback = ::record_line;
20756
20757 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20758 was a line entry for it so that the backend has a chance to adjust it
20759 and also record it in case it needs it. This is currently used by MIPS
20760 code, cf. `mips_adjust_dwarf2_line'. */
20761 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20762 m_is_stmt = lh->default_is_stmt;
20763 m_discriminator = 0;
20764 }
20765
20766 void
20767 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20768 const gdb_byte *line_ptr,
20769 CORE_ADDR lowpc, CORE_ADDR address)
20770 {
20771 /* If address < lowpc then it's not a usable value, it's outside the
20772 pc range of the CU. However, we restrict the test to only address
20773 values of zero to preserve GDB's previous behaviour which is to
20774 handle the specific case of a function being GC'd by the linker. */
20775
20776 if (address == 0 && address < lowpc)
20777 {
20778 /* This line table is for a function which has been
20779 GCd by the linker. Ignore it. PR gdb/12528 */
20780
20781 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20782 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20783
20784 complaint (&symfile_complaints,
20785 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20786 line_offset, objfile_name (objfile));
20787 m_record_line_callback = noop_record_line;
20788 /* Note: record_line_callback is left as noop_record_line until
20789 we see DW_LNE_end_sequence. */
20790 }
20791 }
20792
20793 /* Subroutine of dwarf_decode_lines to simplify it.
20794 Process the line number information in LH.
20795 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20796 program in order to set included_p for every referenced header. */
20797
20798 static void
20799 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20800 const int decode_for_pst_p, CORE_ADDR lowpc)
20801 {
20802 const gdb_byte *line_ptr, *extended_end;
20803 const gdb_byte *line_end;
20804 unsigned int bytes_read, extended_len;
20805 unsigned char op_code, extended_op;
20806 CORE_ADDR baseaddr;
20807 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20808 bfd *abfd = objfile->obfd;
20809 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20810 /* True if we're recording line info (as opposed to building partial
20811 symtabs and just interested in finding include files mentioned by
20812 the line number program). */
20813 bool record_lines_p = !decode_for_pst_p;
20814
20815 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20816
20817 line_ptr = lh->statement_program_start;
20818 line_end = lh->statement_program_end;
20819
20820 /* Read the statement sequences until there's nothing left. */
20821 while (line_ptr < line_end)
20822 {
20823 /* The DWARF line number program state machine. Reset the state
20824 machine at the start of each sequence. */
20825 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20826 bool end_sequence = false;
20827
20828 if (record_lines_p)
20829 {
20830 /* Start a subfile for the current file of the state
20831 machine. */
20832 const file_entry *fe = state_machine.current_file ();
20833
20834 if (fe != NULL)
20835 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20836 }
20837
20838 /* Decode the table. */
20839 while (line_ptr < line_end && !end_sequence)
20840 {
20841 op_code = read_1_byte (abfd, line_ptr);
20842 line_ptr += 1;
20843
20844 if (op_code >= lh->opcode_base)
20845 {
20846 /* Special opcode. */
20847 state_machine.handle_special_opcode (op_code);
20848 }
20849 else switch (op_code)
20850 {
20851 case DW_LNS_extended_op:
20852 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20853 &bytes_read);
20854 line_ptr += bytes_read;
20855 extended_end = line_ptr + extended_len;
20856 extended_op = read_1_byte (abfd, line_ptr);
20857 line_ptr += 1;
20858 switch (extended_op)
20859 {
20860 case DW_LNE_end_sequence:
20861 state_machine.handle_end_sequence ();
20862 end_sequence = true;
20863 break;
20864 case DW_LNE_set_address:
20865 {
20866 CORE_ADDR address
20867 = read_address (abfd, line_ptr, cu, &bytes_read);
20868 line_ptr += bytes_read;
20869
20870 state_machine.check_line_address (cu, line_ptr,
20871 lowpc, address);
20872 state_machine.handle_set_address (baseaddr, address);
20873 }
20874 break;
20875 case DW_LNE_define_file:
20876 {
20877 const char *cur_file;
20878 unsigned int mod_time, length;
20879 dir_index dindex;
20880
20881 cur_file = read_direct_string (abfd, line_ptr,
20882 &bytes_read);
20883 line_ptr += bytes_read;
20884 dindex = (dir_index)
20885 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20886 line_ptr += bytes_read;
20887 mod_time =
20888 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20889 line_ptr += bytes_read;
20890 length =
20891 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20892 line_ptr += bytes_read;
20893 lh->add_file_name (cur_file, dindex, mod_time, length);
20894 }
20895 break;
20896 case DW_LNE_set_discriminator:
20897 {
20898 /* The discriminator is not interesting to the
20899 debugger; just ignore it. We still need to
20900 check its value though:
20901 if there are consecutive entries for the same
20902 (non-prologue) line we want to coalesce them.
20903 PR 17276. */
20904 unsigned int discr
20905 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20906 line_ptr += bytes_read;
20907
20908 state_machine.handle_set_discriminator (discr);
20909 }
20910 break;
20911 default:
20912 complaint (&symfile_complaints,
20913 _("mangled .debug_line section"));
20914 return;
20915 }
20916 /* Make sure that we parsed the extended op correctly. If e.g.
20917 we expected a different address size than the producer used,
20918 we may have read the wrong number of bytes. */
20919 if (line_ptr != extended_end)
20920 {
20921 complaint (&symfile_complaints,
20922 _("mangled .debug_line section"));
20923 return;
20924 }
20925 break;
20926 case DW_LNS_copy:
20927 state_machine.handle_copy ();
20928 break;
20929 case DW_LNS_advance_pc:
20930 {
20931 CORE_ADDR adjust
20932 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20933 line_ptr += bytes_read;
20934
20935 state_machine.handle_advance_pc (adjust);
20936 }
20937 break;
20938 case DW_LNS_advance_line:
20939 {
20940 int line_delta
20941 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20942 line_ptr += bytes_read;
20943
20944 state_machine.handle_advance_line (line_delta);
20945 }
20946 break;
20947 case DW_LNS_set_file:
20948 {
20949 file_name_index file
20950 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20951 &bytes_read);
20952 line_ptr += bytes_read;
20953
20954 state_machine.handle_set_file (file);
20955 }
20956 break;
20957 case DW_LNS_set_column:
20958 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20959 line_ptr += bytes_read;
20960 break;
20961 case DW_LNS_negate_stmt:
20962 state_machine.handle_negate_stmt ();
20963 break;
20964 case DW_LNS_set_basic_block:
20965 break;
20966 /* Add to the address register of the state machine the
20967 address increment value corresponding to special opcode
20968 255. I.e., this value is scaled by the minimum
20969 instruction length since special opcode 255 would have
20970 scaled the increment. */
20971 case DW_LNS_const_add_pc:
20972 state_machine.handle_const_add_pc ();
20973 break;
20974 case DW_LNS_fixed_advance_pc:
20975 {
20976 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20977 line_ptr += 2;
20978
20979 state_machine.handle_fixed_advance_pc (addr_adj);
20980 }
20981 break;
20982 default:
20983 {
20984 /* Unknown standard opcode, ignore it. */
20985 int i;
20986
20987 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20988 {
20989 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20990 line_ptr += bytes_read;
20991 }
20992 }
20993 }
20994 }
20995
20996 if (!end_sequence)
20997 dwarf2_debug_line_missing_end_sequence_complaint ();
20998
20999 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21000 in which case we still finish recording the last line). */
21001 state_machine.record_line (true);
21002 }
21003 }
21004
21005 /* Decode the Line Number Program (LNP) for the given line_header
21006 structure and CU. The actual information extracted and the type
21007 of structures created from the LNP depends on the value of PST.
21008
21009 1. If PST is NULL, then this procedure uses the data from the program
21010 to create all necessary symbol tables, and their linetables.
21011
21012 2. If PST is not NULL, this procedure reads the program to determine
21013 the list of files included by the unit represented by PST, and
21014 builds all the associated partial symbol tables.
21015
21016 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21017 It is used for relative paths in the line table.
21018 NOTE: When processing partial symtabs (pst != NULL),
21019 comp_dir == pst->dirname.
21020
21021 NOTE: It is important that psymtabs have the same file name (via strcmp)
21022 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21023 symtab we don't use it in the name of the psymtabs we create.
21024 E.g. expand_line_sal requires this when finding psymtabs to expand.
21025 A good testcase for this is mb-inline.exp.
21026
21027 LOWPC is the lowest address in CU (or 0 if not known).
21028
21029 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21030 for its PC<->lines mapping information. Otherwise only the filename
21031 table is read in. */
21032
21033 static void
21034 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21035 struct dwarf2_cu *cu, struct partial_symtab *pst,
21036 CORE_ADDR lowpc, int decode_mapping)
21037 {
21038 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21039 const int decode_for_pst_p = (pst != NULL);
21040
21041 if (decode_mapping)
21042 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21043
21044 if (decode_for_pst_p)
21045 {
21046 int file_index;
21047
21048 /* Now that we're done scanning the Line Header Program, we can
21049 create the psymtab of each included file. */
21050 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21051 if (lh->file_names[file_index].included_p == 1)
21052 {
21053 gdb::unique_xmalloc_ptr<char> name_holder;
21054 const char *include_name =
21055 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21056 &name_holder);
21057 if (include_name != NULL)
21058 dwarf2_create_include_psymtab (include_name, pst, objfile);
21059 }
21060 }
21061 else
21062 {
21063 /* Make sure a symtab is created for every file, even files
21064 which contain only variables (i.e. no code with associated
21065 line numbers). */
21066 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21067 int i;
21068
21069 for (i = 0; i < lh->file_names.size (); i++)
21070 {
21071 file_entry &fe = lh->file_names[i];
21072
21073 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21074
21075 if (current_subfile->symtab == NULL)
21076 {
21077 current_subfile->symtab
21078 = allocate_symtab (cust, current_subfile->name);
21079 }
21080 fe.symtab = current_subfile->symtab;
21081 }
21082 }
21083 }
21084
21085 /* Start a subfile for DWARF. FILENAME is the name of the file and
21086 DIRNAME the name of the source directory which contains FILENAME
21087 or NULL if not known.
21088 This routine tries to keep line numbers from identical absolute and
21089 relative file names in a common subfile.
21090
21091 Using the `list' example from the GDB testsuite, which resides in
21092 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21093 of /srcdir/list0.c yields the following debugging information for list0.c:
21094
21095 DW_AT_name: /srcdir/list0.c
21096 DW_AT_comp_dir: /compdir
21097 files.files[0].name: list0.h
21098 files.files[0].dir: /srcdir
21099 files.files[1].name: list0.c
21100 files.files[1].dir: /srcdir
21101
21102 The line number information for list0.c has to end up in a single
21103 subfile, so that `break /srcdir/list0.c:1' works as expected.
21104 start_subfile will ensure that this happens provided that we pass the
21105 concatenation of files.files[1].dir and files.files[1].name as the
21106 subfile's name. */
21107
21108 static void
21109 dwarf2_start_subfile (const char *filename, const char *dirname)
21110 {
21111 char *copy = NULL;
21112
21113 /* In order not to lose the line information directory,
21114 we concatenate it to the filename when it makes sense.
21115 Note that the Dwarf3 standard says (speaking of filenames in line
21116 information): ``The directory index is ignored for file names
21117 that represent full path names''. Thus ignoring dirname in the
21118 `else' branch below isn't an issue. */
21119
21120 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21121 {
21122 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21123 filename = copy;
21124 }
21125
21126 start_subfile (filename);
21127
21128 if (copy != NULL)
21129 xfree (copy);
21130 }
21131
21132 /* Start a symtab for DWARF.
21133 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21134
21135 static struct compunit_symtab *
21136 dwarf2_start_symtab (struct dwarf2_cu *cu,
21137 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21138 {
21139 struct compunit_symtab *cust
21140 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21141 low_pc, cu->language);
21142
21143 record_debugformat ("DWARF 2");
21144 record_producer (cu->producer);
21145
21146 /* We assume that we're processing GCC output. */
21147 processing_gcc_compilation = 2;
21148
21149 cu->processing_has_namespace_info = 0;
21150
21151 return cust;
21152 }
21153
21154 static void
21155 var_decode_location (struct attribute *attr, struct symbol *sym,
21156 struct dwarf2_cu *cu)
21157 {
21158 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21159 struct comp_unit_head *cu_header = &cu->header;
21160
21161 /* NOTE drow/2003-01-30: There used to be a comment and some special
21162 code here to turn a symbol with DW_AT_external and a
21163 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21164 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21165 with some versions of binutils) where shared libraries could have
21166 relocations against symbols in their debug information - the
21167 minimal symbol would have the right address, but the debug info
21168 would not. It's no longer necessary, because we will explicitly
21169 apply relocations when we read in the debug information now. */
21170
21171 /* A DW_AT_location attribute with no contents indicates that a
21172 variable has been optimized away. */
21173 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21174 {
21175 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21176 return;
21177 }
21178
21179 /* Handle one degenerate form of location expression specially, to
21180 preserve GDB's previous behavior when section offsets are
21181 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21182 then mark this symbol as LOC_STATIC. */
21183
21184 if (attr_form_is_block (attr)
21185 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21186 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21187 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21188 && (DW_BLOCK (attr)->size
21189 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21190 {
21191 unsigned int dummy;
21192
21193 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21194 SYMBOL_VALUE_ADDRESS (sym) =
21195 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21196 else
21197 SYMBOL_VALUE_ADDRESS (sym) =
21198 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21199 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21200 fixup_symbol_section (sym, objfile);
21201 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21202 SYMBOL_SECTION (sym));
21203 return;
21204 }
21205
21206 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21207 expression evaluator, and use LOC_COMPUTED only when necessary
21208 (i.e. when the value of a register or memory location is
21209 referenced, or a thread-local block, etc.). Then again, it might
21210 not be worthwhile. I'm assuming that it isn't unless performance
21211 or memory numbers show me otherwise. */
21212
21213 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21214
21215 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21216 cu->has_loclist = 1;
21217 }
21218
21219 /* Given a pointer to a DWARF information entry, figure out if we need
21220 to make a symbol table entry for it, and if so, create a new entry
21221 and return a pointer to it.
21222 If TYPE is NULL, determine symbol type from the die, otherwise
21223 used the passed type.
21224 If SPACE is not NULL, use it to hold the new symbol. If it is
21225 NULL, allocate a new symbol on the objfile's obstack. */
21226
21227 static struct symbol *
21228 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21229 struct symbol *space)
21230 {
21231 struct dwarf2_per_objfile *dwarf2_per_objfile
21232 = cu->per_cu->dwarf2_per_objfile;
21233 struct objfile *objfile = dwarf2_per_objfile->objfile;
21234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21235 struct symbol *sym = NULL;
21236 const char *name;
21237 struct attribute *attr = NULL;
21238 struct attribute *attr2 = NULL;
21239 CORE_ADDR baseaddr;
21240 struct pending **list_to_add = NULL;
21241
21242 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21243
21244 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21245
21246 name = dwarf2_name (die, cu);
21247 if (name)
21248 {
21249 const char *linkagename;
21250 int suppress_add = 0;
21251
21252 if (space)
21253 sym = space;
21254 else
21255 sym = allocate_symbol (objfile);
21256 OBJSTAT (objfile, n_syms++);
21257
21258 /* Cache this symbol's name and the name's demangled form (if any). */
21259 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21260 linkagename = dwarf2_physname (name, die, cu);
21261 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21262
21263 /* Fortran does not have mangling standard and the mangling does differ
21264 between gfortran, iFort etc. */
21265 if (cu->language == language_fortran
21266 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21267 symbol_set_demangled_name (&(sym->ginfo),
21268 dwarf2_full_name (name, die, cu),
21269 NULL);
21270
21271 /* Default assumptions.
21272 Use the passed type or decode it from the die. */
21273 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21274 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21275 if (type != NULL)
21276 SYMBOL_TYPE (sym) = type;
21277 else
21278 SYMBOL_TYPE (sym) = die_type (die, cu);
21279 attr = dwarf2_attr (die,
21280 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21281 cu);
21282 if (attr)
21283 {
21284 SYMBOL_LINE (sym) = DW_UNSND (attr);
21285 }
21286
21287 attr = dwarf2_attr (die,
21288 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21289 cu);
21290 if (attr)
21291 {
21292 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21293 struct file_entry *fe;
21294
21295 if (cu->line_header != NULL)
21296 fe = cu->line_header->file_name_at (file_index);
21297 else
21298 fe = NULL;
21299
21300 if (fe == NULL)
21301 complaint (&symfile_complaints,
21302 _("file index out of range"));
21303 else
21304 symbol_set_symtab (sym, fe->symtab);
21305 }
21306
21307 switch (die->tag)
21308 {
21309 case DW_TAG_label:
21310 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21311 if (attr)
21312 {
21313 CORE_ADDR addr;
21314
21315 addr = attr_value_as_address (attr);
21316 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21317 SYMBOL_VALUE_ADDRESS (sym) = addr;
21318 }
21319 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21320 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21321 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21322 add_symbol_to_list (sym, cu->list_in_scope);
21323 break;
21324 case DW_TAG_subprogram:
21325 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21326 finish_block. */
21327 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21328 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21329 if ((attr2 && (DW_UNSND (attr2) != 0))
21330 || cu->language == language_ada)
21331 {
21332 /* Subprograms marked external are stored as a global symbol.
21333 Ada subprograms, whether marked external or not, are always
21334 stored as a global symbol, because we want to be able to
21335 access them globally. For instance, we want to be able
21336 to break on a nested subprogram without having to
21337 specify the context. */
21338 list_to_add = &global_symbols;
21339 }
21340 else
21341 {
21342 list_to_add = cu->list_in_scope;
21343 }
21344 break;
21345 case DW_TAG_inlined_subroutine:
21346 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21347 finish_block. */
21348 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21349 SYMBOL_INLINED (sym) = 1;
21350 list_to_add = cu->list_in_scope;
21351 break;
21352 case DW_TAG_template_value_param:
21353 suppress_add = 1;
21354 /* Fall through. */
21355 case DW_TAG_constant:
21356 case DW_TAG_variable:
21357 case DW_TAG_member:
21358 /* Compilation with minimal debug info may result in
21359 variables with missing type entries. Change the
21360 misleading `void' type to something sensible. */
21361 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21362 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21363
21364 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21365 /* In the case of DW_TAG_member, we should only be called for
21366 static const members. */
21367 if (die->tag == DW_TAG_member)
21368 {
21369 /* dwarf2_add_field uses die_is_declaration,
21370 so we do the same. */
21371 gdb_assert (die_is_declaration (die, cu));
21372 gdb_assert (attr);
21373 }
21374 if (attr)
21375 {
21376 dwarf2_const_value (attr, sym, cu);
21377 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21378 if (!suppress_add)
21379 {
21380 if (attr2 && (DW_UNSND (attr2) != 0))
21381 list_to_add = &global_symbols;
21382 else
21383 list_to_add = cu->list_in_scope;
21384 }
21385 break;
21386 }
21387 attr = dwarf2_attr (die, DW_AT_location, cu);
21388 if (attr)
21389 {
21390 var_decode_location (attr, sym, cu);
21391 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21392
21393 /* Fortran explicitly imports any global symbols to the local
21394 scope by DW_TAG_common_block. */
21395 if (cu->language == language_fortran && die->parent
21396 && die->parent->tag == DW_TAG_common_block)
21397 attr2 = NULL;
21398
21399 if (SYMBOL_CLASS (sym) == LOC_STATIC
21400 && SYMBOL_VALUE_ADDRESS (sym) == 0
21401 && !dwarf2_per_objfile->has_section_at_zero)
21402 {
21403 /* When a static variable is eliminated by the linker,
21404 the corresponding debug information is not stripped
21405 out, but the variable address is set to null;
21406 do not add such variables into symbol table. */
21407 }
21408 else if (attr2 && (DW_UNSND (attr2) != 0))
21409 {
21410 /* Workaround gfortran PR debug/40040 - it uses
21411 DW_AT_location for variables in -fPIC libraries which may
21412 get overriden by other libraries/executable and get
21413 a different address. Resolve it by the minimal symbol
21414 which may come from inferior's executable using copy
21415 relocation. Make this workaround only for gfortran as for
21416 other compilers GDB cannot guess the minimal symbol
21417 Fortran mangling kind. */
21418 if (cu->language == language_fortran && die->parent
21419 && die->parent->tag == DW_TAG_module
21420 && cu->producer
21421 && startswith (cu->producer, "GNU Fortran"))
21422 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21423
21424 /* A variable with DW_AT_external is never static,
21425 but it may be block-scoped. */
21426 list_to_add = (cu->list_in_scope == &file_symbols
21427 ? &global_symbols : cu->list_in_scope);
21428 }
21429 else
21430 list_to_add = cu->list_in_scope;
21431 }
21432 else
21433 {
21434 /* We do not know the address of this symbol.
21435 If it is an external symbol and we have type information
21436 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21437 The address of the variable will then be determined from
21438 the minimal symbol table whenever the variable is
21439 referenced. */
21440 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21441
21442 /* Fortran explicitly imports any global symbols to the local
21443 scope by DW_TAG_common_block. */
21444 if (cu->language == language_fortran && die->parent
21445 && die->parent->tag == DW_TAG_common_block)
21446 {
21447 /* SYMBOL_CLASS doesn't matter here because
21448 read_common_block is going to reset it. */
21449 if (!suppress_add)
21450 list_to_add = cu->list_in_scope;
21451 }
21452 else if (attr2 && (DW_UNSND (attr2) != 0)
21453 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21454 {
21455 /* A variable with DW_AT_external is never static, but it
21456 may be block-scoped. */
21457 list_to_add = (cu->list_in_scope == &file_symbols
21458 ? &global_symbols : cu->list_in_scope);
21459
21460 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21461 }
21462 else if (!die_is_declaration (die, cu))
21463 {
21464 /* Use the default LOC_OPTIMIZED_OUT class. */
21465 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21466 if (!suppress_add)
21467 list_to_add = cu->list_in_scope;
21468 }
21469 }
21470 break;
21471 case DW_TAG_formal_parameter:
21472 /* If we are inside a function, mark this as an argument. If
21473 not, we might be looking at an argument to an inlined function
21474 when we do not have enough information to show inlined frames;
21475 pretend it's a local variable in that case so that the user can
21476 still see it. */
21477 if (context_stack_depth > 0
21478 && context_stack[context_stack_depth - 1].name != NULL)
21479 SYMBOL_IS_ARGUMENT (sym) = 1;
21480 attr = dwarf2_attr (die, DW_AT_location, cu);
21481 if (attr)
21482 {
21483 var_decode_location (attr, sym, cu);
21484 }
21485 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21486 if (attr)
21487 {
21488 dwarf2_const_value (attr, sym, cu);
21489 }
21490
21491 list_to_add = cu->list_in_scope;
21492 break;
21493 case DW_TAG_unspecified_parameters:
21494 /* From varargs functions; gdb doesn't seem to have any
21495 interest in this information, so just ignore it for now.
21496 (FIXME?) */
21497 break;
21498 case DW_TAG_template_type_param:
21499 suppress_add = 1;
21500 /* Fall through. */
21501 case DW_TAG_class_type:
21502 case DW_TAG_interface_type:
21503 case DW_TAG_structure_type:
21504 case DW_TAG_union_type:
21505 case DW_TAG_set_type:
21506 case DW_TAG_enumeration_type:
21507 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21508 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21509
21510 {
21511 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21512 really ever be static objects: otherwise, if you try
21513 to, say, break of a class's method and you're in a file
21514 which doesn't mention that class, it won't work unless
21515 the check for all static symbols in lookup_symbol_aux
21516 saves you. See the OtherFileClass tests in
21517 gdb.c++/namespace.exp. */
21518
21519 if (!suppress_add)
21520 {
21521 list_to_add = (cu->list_in_scope == &file_symbols
21522 && cu->language == language_cplus
21523 ? &global_symbols : cu->list_in_scope);
21524
21525 /* The semantics of C++ state that "struct foo {
21526 ... }" also defines a typedef for "foo". */
21527 if (cu->language == language_cplus
21528 || cu->language == language_ada
21529 || cu->language == language_d
21530 || cu->language == language_rust)
21531 {
21532 /* The symbol's name is already allocated along
21533 with this objfile, so we don't need to
21534 duplicate it for the type. */
21535 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21536 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21537 }
21538 }
21539 }
21540 break;
21541 case DW_TAG_typedef:
21542 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21543 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21544 list_to_add = cu->list_in_scope;
21545 break;
21546 case DW_TAG_base_type:
21547 case DW_TAG_subrange_type:
21548 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21549 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21550 list_to_add = cu->list_in_scope;
21551 break;
21552 case DW_TAG_enumerator:
21553 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21554 if (attr)
21555 {
21556 dwarf2_const_value (attr, sym, cu);
21557 }
21558 {
21559 /* NOTE: carlton/2003-11-10: See comment above in the
21560 DW_TAG_class_type, etc. block. */
21561
21562 list_to_add = (cu->list_in_scope == &file_symbols
21563 && cu->language == language_cplus
21564 ? &global_symbols : cu->list_in_scope);
21565 }
21566 break;
21567 case DW_TAG_imported_declaration:
21568 case DW_TAG_namespace:
21569 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21570 list_to_add = &global_symbols;
21571 break;
21572 case DW_TAG_module:
21573 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21574 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21575 list_to_add = &global_symbols;
21576 break;
21577 case DW_TAG_common_block:
21578 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21579 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21580 add_symbol_to_list (sym, cu->list_in_scope);
21581 break;
21582 default:
21583 /* Not a tag we recognize. Hopefully we aren't processing
21584 trash data, but since we must specifically ignore things
21585 we don't recognize, there is nothing else we should do at
21586 this point. */
21587 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21588 dwarf_tag_name (die->tag));
21589 break;
21590 }
21591
21592 if (suppress_add)
21593 {
21594 sym->hash_next = objfile->template_symbols;
21595 objfile->template_symbols = sym;
21596 list_to_add = NULL;
21597 }
21598
21599 if (list_to_add != NULL)
21600 add_symbol_to_list (sym, list_to_add);
21601
21602 /* For the benefit of old versions of GCC, check for anonymous
21603 namespaces based on the demangled name. */
21604 if (!cu->processing_has_namespace_info
21605 && cu->language == language_cplus)
21606 cp_scan_for_anonymous_namespaces (sym, objfile);
21607 }
21608 return (sym);
21609 }
21610
21611 /* Given an attr with a DW_FORM_dataN value in host byte order,
21612 zero-extend it as appropriate for the symbol's type. The DWARF
21613 standard (v4) is not entirely clear about the meaning of using
21614 DW_FORM_dataN for a constant with a signed type, where the type is
21615 wider than the data. The conclusion of a discussion on the DWARF
21616 list was that this is unspecified. We choose to always zero-extend
21617 because that is the interpretation long in use by GCC. */
21618
21619 static gdb_byte *
21620 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21621 struct dwarf2_cu *cu, LONGEST *value, int bits)
21622 {
21623 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21624 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21625 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21626 LONGEST l = DW_UNSND (attr);
21627
21628 if (bits < sizeof (*value) * 8)
21629 {
21630 l &= ((LONGEST) 1 << bits) - 1;
21631 *value = l;
21632 }
21633 else if (bits == sizeof (*value) * 8)
21634 *value = l;
21635 else
21636 {
21637 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21638 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21639 return bytes;
21640 }
21641
21642 return NULL;
21643 }
21644
21645 /* Read a constant value from an attribute. Either set *VALUE, or if
21646 the value does not fit in *VALUE, set *BYTES - either already
21647 allocated on the objfile obstack, or newly allocated on OBSTACK,
21648 or, set *BATON, if we translated the constant to a location
21649 expression. */
21650
21651 static void
21652 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21653 const char *name, struct obstack *obstack,
21654 struct dwarf2_cu *cu,
21655 LONGEST *value, const gdb_byte **bytes,
21656 struct dwarf2_locexpr_baton **baton)
21657 {
21658 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21659 struct comp_unit_head *cu_header = &cu->header;
21660 struct dwarf_block *blk;
21661 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21662 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21663
21664 *value = 0;
21665 *bytes = NULL;
21666 *baton = NULL;
21667
21668 switch (attr->form)
21669 {
21670 case DW_FORM_addr:
21671 case DW_FORM_GNU_addr_index:
21672 {
21673 gdb_byte *data;
21674
21675 if (TYPE_LENGTH (type) != cu_header->addr_size)
21676 dwarf2_const_value_length_mismatch_complaint (name,
21677 cu_header->addr_size,
21678 TYPE_LENGTH (type));
21679 /* Symbols of this form are reasonably rare, so we just
21680 piggyback on the existing location code rather than writing
21681 a new implementation of symbol_computed_ops. */
21682 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21683 (*baton)->per_cu = cu->per_cu;
21684 gdb_assert ((*baton)->per_cu);
21685
21686 (*baton)->size = 2 + cu_header->addr_size;
21687 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21688 (*baton)->data = data;
21689
21690 data[0] = DW_OP_addr;
21691 store_unsigned_integer (&data[1], cu_header->addr_size,
21692 byte_order, DW_ADDR (attr));
21693 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21694 }
21695 break;
21696 case DW_FORM_string:
21697 case DW_FORM_strp:
21698 case DW_FORM_GNU_str_index:
21699 case DW_FORM_GNU_strp_alt:
21700 /* DW_STRING is already allocated on the objfile obstack, point
21701 directly to it. */
21702 *bytes = (const gdb_byte *) DW_STRING (attr);
21703 break;
21704 case DW_FORM_block1:
21705 case DW_FORM_block2:
21706 case DW_FORM_block4:
21707 case DW_FORM_block:
21708 case DW_FORM_exprloc:
21709 case DW_FORM_data16:
21710 blk = DW_BLOCK (attr);
21711 if (TYPE_LENGTH (type) != blk->size)
21712 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21713 TYPE_LENGTH (type));
21714 *bytes = blk->data;
21715 break;
21716
21717 /* The DW_AT_const_value attributes are supposed to carry the
21718 symbol's value "represented as it would be on the target
21719 architecture." By the time we get here, it's already been
21720 converted to host endianness, so we just need to sign- or
21721 zero-extend it as appropriate. */
21722 case DW_FORM_data1:
21723 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21724 break;
21725 case DW_FORM_data2:
21726 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21727 break;
21728 case DW_FORM_data4:
21729 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21730 break;
21731 case DW_FORM_data8:
21732 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21733 break;
21734
21735 case DW_FORM_sdata:
21736 case DW_FORM_implicit_const:
21737 *value = DW_SND (attr);
21738 break;
21739
21740 case DW_FORM_udata:
21741 *value = DW_UNSND (attr);
21742 break;
21743
21744 default:
21745 complaint (&symfile_complaints,
21746 _("unsupported const value attribute form: '%s'"),
21747 dwarf_form_name (attr->form));
21748 *value = 0;
21749 break;
21750 }
21751 }
21752
21753
21754 /* Copy constant value from an attribute to a symbol. */
21755
21756 static void
21757 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21758 struct dwarf2_cu *cu)
21759 {
21760 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21761 LONGEST value;
21762 const gdb_byte *bytes;
21763 struct dwarf2_locexpr_baton *baton;
21764
21765 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21766 SYMBOL_PRINT_NAME (sym),
21767 &objfile->objfile_obstack, cu,
21768 &value, &bytes, &baton);
21769
21770 if (baton != NULL)
21771 {
21772 SYMBOL_LOCATION_BATON (sym) = baton;
21773 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21774 }
21775 else if (bytes != NULL)
21776 {
21777 SYMBOL_VALUE_BYTES (sym) = bytes;
21778 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21779 }
21780 else
21781 {
21782 SYMBOL_VALUE (sym) = value;
21783 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21784 }
21785 }
21786
21787 /* Return the type of the die in question using its DW_AT_type attribute. */
21788
21789 static struct type *
21790 die_type (struct die_info *die, struct dwarf2_cu *cu)
21791 {
21792 struct attribute *type_attr;
21793
21794 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21795 if (!type_attr)
21796 {
21797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21798 /* A missing DW_AT_type represents a void type. */
21799 return objfile_type (objfile)->builtin_void;
21800 }
21801
21802 return lookup_die_type (die, type_attr, cu);
21803 }
21804
21805 /* True iff CU's producer generates GNAT Ada auxiliary information
21806 that allows to find parallel types through that information instead
21807 of having to do expensive parallel lookups by type name. */
21808
21809 static int
21810 need_gnat_info (struct dwarf2_cu *cu)
21811 {
21812 /* Assume that the Ada compiler was GNAT, which always produces
21813 the auxiliary information. */
21814 return (cu->language == language_ada);
21815 }
21816
21817 /* Return the auxiliary type of the die in question using its
21818 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21819 attribute is not present. */
21820
21821 static struct type *
21822 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21823 {
21824 struct attribute *type_attr;
21825
21826 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21827 if (!type_attr)
21828 return NULL;
21829
21830 return lookup_die_type (die, type_attr, cu);
21831 }
21832
21833 /* If DIE has a descriptive_type attribute, then set the TYPE's
21834 descriptive type accordingly. */
21835
21836 static void
21837 set_descriptive_type (struct type *type, struct die_info *die,
21838 struct dwarf2_cu *cu)
21839 {
21840 struct type *descriptive_type = die_descriptive_type (die, cu);
21841
21842 if (descriptive_type)
21843 {
21844 ALLOCATE_GNAT_AUX_TYPE (type);
21845 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21846 }
21847 }
21848
21849 /* Return the containing type of the die in question using its
21850 DW_AT_containing_type attribute. */
21851
21852 static struct type *
21853 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21854 {
21855 struct attribute *type_attr;
21856 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21857
21858 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21859 if (!type_attr)
21860 error (_("Dwarf Error: Problem turning containing type into gdb type "
21861 "[in module %s]"), objfile_name (objfile));
21862
21863 return lookup_die_type (die, type_attr, cu);
21864 }
21865
21866 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21867
21868 static struct type *
21869 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21870 {
21871 struct dwarf2_per_objfile *dwarf2_per_objfile
21872 = cu->per_cu->dwarf2_per_objfile;
21873 struct objfile *objfile = dwarf2_per_objfile->objfile;
21874 char *message, *saved;
21875
21876 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21877 objfile_name (objfile),
21878 sect_offset_str (cu->header.sect_off),
21879 sect_offset_str (die->sect_off));
21880 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21881 message, strlen (message));
21882 xfree (message);
21883
21884 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21885 }
21886
21887 /* Look up the type of DIE in CU using its type attribute ATTR.
21888 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21889 DW_AT_containing_type.
21890 If there is no type substitute an error marker. */
21891
21892 static struct type *
21893 lookup_die_type (struct die_info *die, const struct attribute *attr,
21894 struct dwarf2_cu *cu)
21895 {
21896 struct dwarf2_per_objfile *dwarf2_per_objfile
21897 = cu->per_cu->dwarf2_per_objfile;
21898 struct objfile *objfile = dwarf2_per_objfile->objfile;
21899 struct type *this_type;
21900
21901 gdb_assert (attr->name == DW_AT_type
21902 || attr->name == DW_AT_GNAT_descriptive_type
21903 || attr->name == DW_AT_containing_type);
21904
21905 /* First see if we have it cached. */
21906
21907 if (attr->form == DW_FORM_GNU_ref_alt)
21908 {
21909 struct dwarf2_per_cu_data *per_cu;
21910 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21911
21912 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21913 dwarf2_per_objfile);
21914 this_type = get_die_type_at_offset (sect_off, per_cu);
21915 }
21916 else if (attr_form_is_ref (attr))
21917 {
21918 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21919
21920 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21921 }
21922 else if (attr->form == DW_FORM_ref_sig8)
21923 {
21924 ULONGEST signature = DW_SIGNATURE (attr);
21925
21926 return get_signatured_type (die, signature, cu);
21927 }
21928 else
21929 {
21930 complaint (&symfile_complaints,
21931 _("Dwarf Error: Bad type attribute %s in DIE"
21932 " at %s [in module %s]"),
21933 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21934 objfile_name (objfile));
21935 return build_error_marker_type (cu, die);
21936 }
21937
21938 /* If not cached we need to read it in. */
21939
21940 if (this_type == NULL)
21941 {
21942 struct die_info *type_die = NULL;
21943 struct dwarf2_cu *type_cu = cu;
21944
21945 if (attr_form_is_ref (attr))
21946 type_die = follow_die_ref (die, attr, &type_cu);
21947 if (type_die == NULL)
21948 return build_error_marker_type (cu, die);
21949 /* If we find the type now, it's probably because the type came
21950 from an inter-CU reference and the type's CU got expanded before
21951 ours. */
21952 this_type = read_type_die (type_die, type_cu);
21953 }
21954
21955 /* If we still don't have a type use an error marker. */
21956
21957 if (this_type == NULL)
21958 return build_error_marker_type (cu, die);
21959
21960 return this_type;
21961 }
21962
21963 /* Return the type in DIE, CU.
21964 Returns NULL for invalid types.
21965
21966 This first does a lookup in die_type_hash,
21967 and only reads the die in if necessary.
21968
21969 NOTE: This can be called when reading in partial or full symbols. */
21970
21971 static struct type *
21972 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21973 {
21974 struct type *this_type;
21975
21976 this_type = get_die_type (die, cu);
21977 if (this_type)
21978 return this_type;
21979
21980 return read_type_die_1 (die, cu);
21981 }
21982
21983 /* Read the type in DIE, CU.
21984 Returns NULL for invalid types. */
21985
21986 static struct type *
21987 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21988 {
21989 struct type *this_type = NULL;
21990
21991 switch (die->tag)
21992 {
21993 case DW_TAG_class_type:
21994 case DW_TAG_interface_type:
21995 case DW_TAG_structure_type:
21996 case DW_TAG_union_type:
21997 this_type = read_structure_type (die, cu);
21998 break;
21999 case DW_TAG_enumeration_type:
22000 this_type = read_enumeration_type (die, cu);
22001 break;
22002 case DW_TAG_subprogram:
22003 case DW_TAG_subroutine_type:
22004 case DW_TAG_inlined_subroutine:
22005 this_type = read_subroutine_type (die, cu);
22006 break;
22007 case DW_TAG_array_type:
22008 this_type = read_array_type (die, cu);
22009 break;
22010 case DW_TAG_set_type:
22011 this_type = read_set_type (die, cu);
22012 break;
22013 case DW_TAG_pointer_type:
22014 this_type = read_tag_pointer_type (die, cu);
22015 break;
22016 case DW_TAG_ptr_to_member_type:
22017 this_type = read_tag_ptr_to_member_type (die, cu);
22018 break;
22019 case DW_TAG_reference_type:
22020 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22021 break;
22022 case DW_TAG_rvalue_reference_type:
22023 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22024 break;
22025 case DW_TAG_const_type:
22026 this_type = read_tag_const_type (die, cu);
22027 break;
22028 case DW_TAG_volatile_type:
22029 this_type = read_tag_volatile_type (die, cu);
22030 break;
22031 case DW_TAG_restrict_type:
22032 this_type = read_tag_restrict_type (die, cu);
22033 break;
22034 case DW_TAG_string_type:
22035 this_type = read_tag_string_type (die, cu);
22036 break;
22037 case DW_TAG_typedef:
22038 this_type = read_typedef (die, cu);
22039 break;
22040 case DW_TAG_subrange_type:
22041 this_type = read_subrange_type (die, cu);
22042 break;
22043 case DW_TAG_base_type:
22044 this_type = read_base_type (die, cu);
22045 break;
22046 case DW_TAG_unspecified_type:
22047 this_type = read_unspecified_type (die, cu);
22048 break;
22049 case DW_TAG_namespace:
22050 this_type = read_namespace_type (die, cu);
22051 break;
22052 case DW_TAG_module:
22053 this_type = read_module_type (die, cu);
22054 break;
22055 case DW_TAG_atomic_type:
22056 this_type = read_tag_atomic_type (die, cu);
22057 break;
22058 default:
22059 complaint (&symfile_complaints,
22060 _("unexpected tag in read_type_die: '%s'"),
22061 dwarf_tag_name (die->tag));
22062 break;
22063 }
22064
22065 return this_type;
22066 }
22067
22068 /* See if we can figure out if the class lives in a namespace. We do
22069 this by looking for a member function; its demangled name will
22070 contain namespace info, if there is any.
22071 Return the computed name or NULL.
22072 Space for the result is allocated on the objfile's obstack.
22073 This is the full-die version of guess_partial_die_structure_name.
22074 In this case we know DIE has no useful parent. */
22075
22076 static char *
22077 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22078 {
22079 struct die_info *spec_die;
22080 struct dwarf2_cu *spec_cu;
22081 struct die_info *child;
22082 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22083
22084 spec_cu = cu;
22085 spec_die = die_specification (die, &spec_cu);
22086 if (spec_die != NULL)
22087 {
22088 die = spec_die;
22089 cu = spec_cu;
22090 }
22091
22092 for (child = die->child;
22093 child != NULL;
22094 child = child->sibling)
22095 {
22096 if (child->tag == DW_TAG_subprogram)
22097 {
22098 const char *linkage_name = dw2_linkage_name (child, cu);
22099
22100 if (linkage_name != NULL)
22101 {
22102 char *actual_name
22103 = language_class_name_from_physname (cu->language_defn,
22104 linkage_name);
22105 char *name = NULL;
22106
22107 if (actual_name != NULL)
22108 {
22109 const char *die_name = dwarf2_name (die, cu);
22110
22111 if (die_name != NULL
22112 && strcmp (die_name, actual_name) != 0)
22113 {
22114 /* Strip off the class name from the full name.
22115 We want the prefix. */
22116 int die_name_len = strlen (die_name);
22117 int actual_name_len = strlen (actual_name);
22118
22119 /* Test for '::' as a sanity check. */
22120 if (actual_name_len > die_name_len + 2
22121 && actual_name[actual_name_len
22122 - die_name_len - 1] == ':')
22123 name = (char *) obstack_copy0 (
22124 &objfile->per_bfd->storage_obstack,
22125 actual_name, actual_name_len - die_name_len - 2);
22126 }
22127 }
22128 xfree (actual_name);
22129 return name;
22130 }
22131 }
22132 }
22133
22134 return NULL;
22135 }
22136
22137 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22138 prefix part in such case. See
22139 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22140
22141 static const char *
22142 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22143 {
22144 struct attribute *attr;
22145 const char *base;
22146
22147 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22148 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22149 return NULL;
22150
22151 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22152 return NULL;
22153
22154 attr = dw2_linkage_name_attr (die, cu);
22155 if (attr == NULL || DW_STRING (attr) == NULL)
22156 return NULL;
22157
22158 /* dwarf2_name had to be already called. */
22159 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22160
22161 /* Strip the base name, keep any leading namespaces/classes. */
22162 base = strrchr (DW_STRING (attr), ':');
22163 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22164 return "";
22165
22166 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22167 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22168 DW_STRING (attr),
22169 &base[-1] - DW_STRING (attr));
22170 }
22171
22172 /* Return the name of the namespace/class that DIE is defined within,
22173 or "" if we can't tell. The caller should not xfree the result.
22174
22175 For example, if we're within the method foo() in the following
22176 code:
22177
22178 namespace N {
22179 class C {
22180 void foo () {
22181 }
22182 };
22183 }
22184
22185 then determine_prefix on foo's die will return "N::C". */
22186
22187 static const char *
22188 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22189 {
22190 struct dwarf2_per_objfile *dwarf2_per_objfile
22191 = cu->per_cu->dwarf2_per_objfile;
22192 struct die_info *parent, *spec_die;
22193 struct dwarf2_cu *spec_cu;
22194 struct type *parent_type;
22195 const char *retval;
22196
22197 if (cu->language != language_cplus
22198 && cu->language != language_fortran && cu->language != language_d
22199 && cu->language != language_rust)
22200 return "";
22201
22202 retval = anonymous_struct_prefix (die, cu);
22203 if (retval)
22204 return retval;
22205
22206 /* We have to be careful in the presence of DW_AT_specification.
22207 For example, with GCC 3.4, given the code
22208
22209 namespace N {
22210 void foo() {
22211 // Definition of N::foo.
22212 }
22213 }
22214
22215 then we'll have a tree of DIEs like this:
22216
22217 1: DW_TAG_compile_unit
22218 2: DW_TAG_namespace // N
22219 3: DW_TAG_subprogram // declaration of N::foo
22220 4: DW_TAG_subprogram // definition of N::foo
22221 DW_AT_specification // refers to die #3
22222
22223 Thus, when processing die #4, we have to pretend that we're in
22224 the context of its DW_AT_specification, namely the contex of die
22225 #3. */
22226 spec_cu = cu;
22227 spec_die = die_specification (die, &spec_cu);
22228 if (spec_die == NULL)
22229 parent = die->parent;
22230 else
22231 {
22232 parent = spec_die->parent;
22233 cu = spec_cu;
22234 }
22235
22236 if (parent == NULL)
22237 return "";
22238 else if (parent->building_fullname)
22239 {
22240 const char *name;
22241 const char *parent_name;
22242
22243 /* It has been seen on RealView 2.2 built binaries,
22244 DW_TAG_template_type_param types actually _defined_ as
22245 children of the parent class:
22246
22247 enum E {};
22248 template class <class Enum> Class{};
22249 Class<enum E> class_e;
22250
22251 1: DW_TAG_class_type (Class)
22252 2: DW_TAG_enumeration_type (E)
22253 3: DW_TAG_enumerator (enum1:0)
22254 3: DW_TAG_enumerator (enum2:1)
22255 ...
22256 2: DW_TAG_template_type_param
22257 DW_AT_type DW_FORM_ref_udata (E)
22258
22259 Besides being broken debug info, it can put GDB into an
22260 infinite loop. Consider:
22261
22262 When we're building the full name for Class<E>, we'll start
22263 at Class, and go look over its template type parameters,
22264 finding E. We'll then try to build the full name of E, and
22265 reach here. We're now trying to build the full name of E,
22266 and look over the parent DIE for containing scope. In the
22267 broken case, if we followed the parent DIE of E, we'd again
22268 find Class, and once again go look at its template type
22269 arguments, etc., etc. Simply don't consider such parent die
22270 as source-level parent of this die (it can't be, the language
22271 doesn't allow it), and break the loop here. */
22272 name = dwarf2_name (die, cu);
22273 parent_name = dwarf2_name (parent, cu);
22274 complaint (&symfile_complaints,
22275 _("template param type '%s' defined within parent '%s'"),
22276 name ? name : "<unknown>",
22277 parent_name ? parent_name : "<unknown>");
22278 return "";
22279 }
22280 else
22281 switch (parent->tag)
22282 {
22283 case DW_TAG_namespace:
22284 parent_type = read_type_die (parent, cu);
22285 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22286 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22287 Work around this problem here. */
22288 if (cu->language == language_cplus
22289 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22290 return "";
22291 /* We give a name to even anonymous namespaces. */
22292 return TYPE_TAG_NAME (parent_type);
22293 case DW_TAG_class_type:
22294 case DW_TAG_interface_type:
22295 case DW_TAG_structure_type:
22296 case DW_TAG_union_type:
22297 case DW_TAG_module:
22298 parent_type = read_type_die (parent, cu);
22299 if (TYPE_TAG_NAME (parent_type) != NULL)
22300 return TYPE_TAG_NAME (parent_type);
22301 else
22302 /* An anonymous structure is only allowed non-static data
22303 members; no typedefs, no member functions, et cetera.
22304 So it does not need a prefix. */
22305 return "";
22306 case DW_TAG_compile_unit:
22307 case DW_TAG_partial_unit:
22308 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22309 if (cu->language == language_cplus
22310 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22311 && die->child != NULL
22312 && (die->tag == DW_TAG_class_type
22313 || die->tag == DW_TAG_structure_type
22314 || die->tag == DW_TAG_union_type))
22315 {
22316 char *name = guess_full_die_structure_name (die, cu);
22317 if (name != NULL)
22318 return name;
22319 }
22320 return "";
22321 case DW_TAG_enumeration_type:
22322 parent_type = read_type_die (parent, cu);
22323 if (TYPE_DECLARED_CLASS (parent_type))
22324 {
22325 if (TYPE_TAG_NAME (parent_type) != NULL)
22326 return TYPE_TAG_NAME (parent_type);
22327 return "";
22328 }
22329 /* Fall through. */
22330 default:
22331 return determine_prefix (parent, cu);
22332 }
22333 }
22334
22335 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22336 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22337 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22338 an obconcat, otherwise allocate storage for the result. The CU argument is
22339 used to determine the language and hence, the appropriate separator. */
22340
22341 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22342
22343 static char *
22344 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22345 int physname, struct dwarf2_cu *cu)
22346 {
22347 const char *lead = "";
22348 const char *sep;
22349
22350 if (suffix == NULL || suffix[0] == '\0'
22351 || prefix == NULL || prefix[0] == '\0')
22352 sep = "";
22353 else if (cu->language == language_d)
22354 {
22355 /* For D, the 'main' function could be defined in any module, but it
22356 should never be prefixed. */
22357 if (strcmp (suffix, "D main") == 0)
22358 {
22359 prefix = "";
22360 sep = "";
22361 }
22362 else
22363 sep = ".";
22364 }
22365 else if (cu->language == language_fortran && physname)
22366 {
22367 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22368 DW_AT_MIPS_linkage_name is preferred and used instead. */
22369
22370 lead = "__";
22371 sep = "_MOD_";
22372 }
22373 else
22374 sep = "::";
22375
22376 if (prefix == NULL)
22377 prefix = "";
22378 if (suffix == NULL)
22379 suffix = "";
22380
22381 if (obs == NULL)
22382 {
22383 char *retval
22384 = ((char *)
22385 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22386
22387 strcpy (retval, lead);
22388 strcat (retval, prefix);
22389 strcat (retval, sep);
22390 strcat (retval, suffix);
22391 return retval;
22392 }
22393 else
22394 {
22395 /* We have an obstack. */
22396 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22397 }
22398 }
22399
22400 /* Return sibling of die, NULL if no sibling. */
22401
22402 static struct die_info *
22403 sibling_die (struct die_info *die)
22404 {
22405 return die->sibling;
22406 }
22407
22408 /* Get name of a die, return NULL if not found. */
22409
22410 static const char *
22411 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22412 struct obstack *obstack)
22413 {
22414 if (name && cu->language == language_cplus)
22415 {
22416 std::string canon_name = cp_canonicalize_string (name);
22417
22418 if (!canon_name.empty ())
22419 {
22420 if (canon_name != name)
22421 name = (const char *) obstack_copy0 (obstack,
22422 canon_name.c_str (),
22423 canon_name.length ());
22424 }
22425 }
22426
22427 return name;
22428 }
22429
22430 /* Get name of a die, return NULL if not found.
22431 Anonymous namespaces are converted to their magic string. */
22432
22433 static const char *
22434 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22435 {
22436 struct attribute *attr;
22437 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22438
22439 attr = dwarf2_attr (die, DW_AT_name, cu);
22440 if ((!attr || !DW_STRING (attr))
22441 && die->tag != DW_TAG_namespace
22442 && die->tag != DW_TAG_class_type
22443 && die->tag != DW_TAG_interface_type
22444 && die->tag != DW_TAG_structure_type
22445 && die->tag != DW_TAG_union_type)
22446 return NULL;
22447
22448 switch (die->tag)
22449 {
22450 case DW_TAG_compile_unit:
22451 case DW_TAG_partial_unit:
22452 /* Compilation units have a DW_AT_name that is a filename, not
22453 a source language identifier. */
22454 case DW_TAG_enumeration_type:
22455 case DW_TAG_enumerator:
22456 /* These tags always have simple identifiers already; no need
22457 to canonicalize them. */
22458 return DW_STRING (attr);
22459
22460 case DW_TAG_namespace:
22461 if (attr != NULL && DW_STRING (attr) != NULL)
22462 return DW_STRING (attr);
22463 return CP_ANONYMOUS_NAMESPACE_STR;
22464
22465 case DW_TAG_class_type:
22466 case DW_TAG_interface_type:
22467 case DW_TAG_structure_type:
22468 case DW_TAG_union_type:
22469 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22470 structures or unions. These were of the form "._%d" in GCC 4.1,
22471 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22472 and GCC 4.4. We work around this problem by ignoring these. */
22473 if (attr && DW_STRING (attr)
22474 && (startswith (DW_STRING (attr), "._")
22475 || startswith (DW_STRING (attr), "<anonymous")))
22476 return NULL;
22477
22478 /* GCC might emit a nameless typedef that has a linkage name. See
22479 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22480 if (!attr || DW_STRING (attr) == NULL)
22481 {
22482 char *demangled = NULL;
22483
22484 attr = dw2_linkage_name_attr (die, cu);
22485 if (attr == NULL || DW_STRING (attr) == NULL)
22486 return NULL;
22487
22488 /* Avoid demangling DW_STRING (attr) the second time on a second
22489 call for the same DIE. */
22490 if (!DW_STRING_IS_CANONICAL (attr))
22491 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22492
22493 if (demangled)
22494 {
22495 const char *base;
22496
22497 /* FIXME: we already did this for the partial symbol... */
22498 DW_STRING (attr)
22499 = ((const char *)
22500 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22501 demangled, strlen (demangled)));
22502 DW_STRING_IS_CANONICAL (attr) = 1;
22503 xfree (demangled);
22504
22505 /* Strip any leading namespaces/classes, keep only the base name.
22506 DW_AT_name for named DIEs does not contain the prefixes. */
22507 base = strrchr (DW_STRING (attr), ':');
22508 if (base && base > DW_STRING (attr) && base[-1] == ':')
22509 return &base[1];
22510 else
22511 return DW_STRING (attr);
22512 }
22513 }
22514 break;
22515
22516 default:
22517 break;
22518 }
22519
22520 if (!DW_STRING_IS_CANONICAL (attr))
22521 {
22522 DW_STRING (attr)
22523 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22524 &objfile->per_bfd->storage_obstack);
22525 DW_STRING_IS_CANONICAL (attr) = 1;
22526 }
22527 return DW_STRING (attr);
22528 }
22529
22530 /* Return the die that this die in an extension of, or NULL if there
22531 is none. *EXT_CU is the CU containing DIE on input, and the CU
22532 containing the return value on output. */
22533
22534 static struct die_info *
22535 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22536 {
22537 struct attribute *attr;
22538
22539 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22540 if (attr == NULL)
22541 return NULL;
22542
22543 return follow_die_ref (die, attr, ext_cu);
22544 }
22545
22546 /* Convert a DIE tag into its string name. */
22547
22548 static const char *
22549 dwarf_tag_name (unsigned tag)
22550 {
22551 const char *name = get_DW_TAG_name (tag);
22552
22553 if (name == NULL)
22554 return "DW_TAG_<unknown>";
22555
22556 return name;
22557 }
22558
22559 /* Convert a DWARF attribute code into its string name. */
22560
22561 static const char *
22562 dwarf_attr_name (unsigned attr)
22563 {
22564 const char *name;
22565
22566 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22567 if (attr == DW_AT_MIPS_fde)
22568 return "DW_AT_MIPS_fde";
22569 #else
22570 if (attr == DW_AT_HP_block_index)
22571 return "DW_AT_HP_block_index";
22572 #endif
22573
22574 name = get_DW_AT_name (attr);
22575
22576 if (name == NULL)
22577 return "DW_AT_<unknown>";
22578
22579 return name;
22580 }
22581
22582 /* Convert a DWARF value form code into its string name. */
22583
22584 static const char *
22585 dwarf_form_name (unsigned form)
22586 {
22587 const char *name = get_DW_FORM_name (form);
22588
22589 if (name == NULL)
22590 return "DW_FORM_<unknown>";
22591
22592 return name;
22593 }
22594
22595 static const char *
22596 dwarf_bool_name (unsigned mybool)
22597 {
22598 if (mybool)
22599 return "TRUE";
22600 else
22601 return "FALSE";
22602 }
22603
22604 /* Convert a DWARF type code into its string name. */
22605
22606 static const char *
22607 dwarf_type_encoding_name (unsigned enc)
22608 {
22609 const char *name = get_DW_ATE_name (enc);
22610
22611 if (name == NULL)
22612 return "DW_ATE_<unknown>";
22613
22614 return name;
22615 }
22616
22617 static void
22618 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22619 {
22620 unsigned int i;
22621
22622 print_spaces (indent, f);
22623 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22624 dwarf_tag_name (die->tag), die->abbrev,
22625 sect_offset_str (die->sect_off));
22626
22627 if (die->parent != NULL)
22628 {
22629 print_spaces (indent, f);
22630 fprintf_unfiltered (f, " parent at offset: %s\n",
22631 sect_offset_str (die->parent->sect_off));
22632 }
22633
22634 print_spaces (indent, f);
22635 fprintf_unfiltered (f, " has children: %s\n",
22636 dwarf_bool_name (die->child != NULL));
22637
22638 print_spaces (indent, f);
22639 fprintf_unfiltered (f, " attributes:\n");
22640
22641 for (i = 0; i < die->num_attrs; ++i)
22642 {
22643 print_spaces (indent, f);
22644 fprintf_unfiltered (f, " %s (%s) ",
22645 dwarf_attr_name (die->attrs[i].name),
22646 dwarf_form_name (die->attrs[i].form));
22647
22648 switch (die->attrs[i].form)
22649 {
22650 case DW_FORM_addr:
22651 case DW_FORM_GNU_addr_index:
22652 fprintf_unfiltered (f, "address: ");
22653 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22654 break;
22655 case DW_FORM_block2:
22656 case DW_FORM_block4:
22657 case DW_FORM_block:
22658 case DW_FORM_block1:
22659 fprintf_unfiltered (f, "block: size %s",
22660 pulongest (DW_BLOCK (&die->attrs[i])->size));
22661 break;
22662 case DW_FORM_exprloc:
22663 fprintf_unfiltered (f, "expression: size %s",
22664 pulongest (DW_BLOCK (&die->attrs[i])->size));
22665 break;
22666 case DW_FORM_data16:
22667 fprintf_unfiltered (f, "constant of 16 bytes");
22668 break;
22669 case DW_FORM_ref_addr:
22670 fprintf_unfiltered (f, "ref address: ");
22671 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22672 break;
22673 case DW_FORM_GNU_ref_alt:
22674 fprintf_unfiltered (f, "alt ref address: ");
22675 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22676 break;
22677 case DW_FORM_ref1:
22678 case DW_FORM_ref2:
22679 case DW_FORM_ref4:
22680 case DW_FORM_ref8:
22681 case DW_FORM_ref_udata:
22682 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22683 (long) (DW_UNSND (&die->attrs[i])));
22684 break;
22685 case DW_FORM_data1:
22686 case DW_FORM_data2:
22687 case DW_FORM_data4:
22688 case DW_FORM_data8:
22689 case DW_FORM_udata:
22690 case DW_FORM_sdata:
22691 fprintf_unfiltered (f, "constant: %s",
22692 pulongest (DW_UNSND (&die->attrs[i])));
22693 break;
22694 case DW_FORM_sec_offset:
22695 fprintf_unfiltered (f, "section offset: %s",
22696 pulongest (DW_UNSND (&die->attrs[i])));
22697 break;
22698 case DW_FORM_ref_sig8:
22699 fprintf_unfiltered (f, "signature: %s",
22700 hex_string (DW_SIGNATURE (&die->attrs[i])));
22701 break;
22702 case DW_FORM_string:
22703 case DW_FORM_strp:
22704 case DW_FORM_line_strp:
22705 case DW_FORM_GNU_str_index:
22706 case DW_FORM_GNU_strp_alt:
22707 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22708 DW_STRING (&die->attrs[i])
22709 ? DW_STRING (&die->attrs[i]) : "",
22710 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22711 break;
22712 case DW_FORM_flag:
22713 if (DW_UNSND (&die->attrs[i]))
22714 fprintf_unfiltered (f, "flag: TRUE");
22715 else
22716 fprintf_unfiltered (f, "flag: FALSE");
22717 break;
22718 case DW_FORM_flag_present:
22719 fprintf_unfiltered (f, "flag: TRUE");
22720 break;
22721 case DW_FORM_indirect:
22722 /* The reader will have reduced the indirect form to
22723 the "base form" so this form should not occur. */
22724 fprintf_unfiltered (f,
22725 "unexpected attribute form: DW_FORM_indirect");
22726 break;
22727 case DW_FORM_implicit_const:
22728 fprintf_unfiltered (f, "constant: %s",
22729 plongest (DW_SND (&die->attrs[i])));
22730 break;
22731 default:
22732 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22733 die->attrs[i].form);
22734 break;
22735 }
22736 fprintf_unfiltered (f, "\n");
22737 }
22738 }
22739
22740 static void
22741 dump_die_for_error (struct die_info *die)
22742 {
22743 dump_die_shallow (gdb_stderr, 0, die);
22744 }
22745
22746 static void
22747 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22748 {
22749 int indent = level * 4;
22750
22751 gdb_assert (die != NULL);
22752
22753 if (level >= max_level)
22754 return;
22755
22756 dump_die_shallow (f, indent, die);
22757
22758 if (die->child != NULL)
22759 {
22760 print_spaces (indent, f);
22761 fprintf_unfiltered (f, " Children:");
22762 if (level + 1 < max_level)
22763 {
22764 fprintf_unfiltered (f, "\n");
22765 dump_die_1 (f, level + 1, max_level, die->child);
22766 }
22767 else
22768 {
22769 fprintf_unfiltered (f,
22770 " [not printed, max nesting level reached]\n");
22771 }
22772 }
22773
22774 if (die->sibling != NULL && level > 0)
22775 {
22776 dump_die_1 (f, level, max_level, die->sibling);
22777 }
22778 }
22779
22780 /* This is called from the pdie macro in gdbinit.in.
22781 It's not static so gcc will keep a copy callable from gdb. */
22782
22783 void
22784 dump_die (struct die_info *die, int max_level)
22785 {
22786 dump_die_1 (gdb_stdlog, 0, max_level, die);
22787 }
22788
22789 static void
22790 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22791 {
22792 void **slot;
22793
22794 slot = htab_find_slot_with_hash (cu->die_hash, die,
22795 to_underlying (die->sect_off),
22796 INSERT);
22797
22798 *slot = die;
22799 }
22800
22801 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22802 required kind. */
22803
22804 static sect_offset
22805 dwarf2_get_ref_die_offset (const struct attribute *attr)
22806 {
22807 if (attr_form_is_ref (attr))
22808 return (sect_offset) DW_UNSND (attr);
22809
22810 complaint (&symfile_complaints,
22811 _("unsupported die ref attribute form: '%s'"),
22812 dwarf_form_name (attr->form));
22813 return {};
22814 }
22815
22816 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22817 * the value held by the attribute is not constant. */
22818
22819 static LONGEST
22820 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22821 {
22822 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22823 return DW_SND (attr);
22824 else if (attr->form == DW_FORM_udata
22825 || attr->form == DW_FORM_data1
22826 || attr->form == DW_FORM_data2
22827 || attr->form == DW_FORM_data4
22828 || attr->form == DW_FORM_data8)
22829 return DW_UNSND (attr);
22830 else
22831 {
22832 /* For DW_FORM_data16 see attr_form_is_constant. */
22833 complaint (&symfile_complaints,
22834 _("Attribute value is not a constant (%s)"),
22835 dwarf_form_name (attr->form));
22836 return default_value;
22837 }
22838 }
22839
22840 /* Follow reference or signature attribute ATTR of SRC_DIE.
22841 On entry *REF_CU is the CU of SRC_DIE.
22842 On exit *REF_CU is the CU of the result. */
22843
22844 static struct die_info *
22845 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22846 struct dwarf2_cu **ref_cu)
22847 {
22848 struct die_info *die;
22849
22850 if (attr_form_is_ref (attr))
22851 die = follow_die_ref (src_die, attr, ref_cu);
22852 else if (attr->form == DW_FORM_ref_sig8)
22853 die = follow_die_sig (src_die, attr, ref_cu);
22854 else
22855 {
22856 dump_die_for_error (src_die);
22857 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22858 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22859 }
22860
22861 return die;
22862 }
22863
22864 /* Follow reference OFFSET.
22865 On entry *REF_CU is the CU of the source die referencing OFFSET.
22866 On exit *REF_CU is the CU of the result.
22867 Returns NULL if OFFSET is invalid. */
22868
22869 static struct die_info *
22870 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22871 struct dwarf2_cu **ref_cu)
22872 {
22873 struct die_info temp_die;
22874 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22875 struct dwarf2_per_objfile *dwarf2_per_objfile
22876 = cu->per_cu->dwarf2_per_objfile;
22877
22878 gdb_assert (cu->per_cu != NULL);
22879
22880 target_cu = cu;
22881
22882 if (cu->per_cu->is_debug_types)
22883 {
22884 /* .debug_types CUs cannot reference anything outside their CU.
22885 If they need to, they have to reference a signatured type via
22886 DW_FORM_ref_sig8. */
22887 if (!offset_in_cu_p (&cu->header, sect_off))
22888 return NULL;
22889 }
22890 else if (offset_in_dwz != cu->per_cu->is_dwz
22891 || !offset_in_cu_p (&cu->header, sect_off))
22892 {
22893 struct dwarf2_per_cu_data *per_cu;
22894
22895 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22896 dwarf2_per_objfile);
22897
22898 /* If necessary, add it to the queue and load its DIEs. */
22899 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22900 load_full_comp_unit (per_cu, false, cu->language);
22901
22902 target_cu = per_cu->cu;
22903 }
22904 else if (cu->dies == NULL)
22905 {
22906 /* We're loading full DIEs during partial symbol reading. */
22907 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22908 load_full_comp_unit (cu->per_cu, false, language_minimal);
22909 }
22910
22911 *ref_cu = target_cu;
22912 temp_die.sect_off = sect_off;
22913 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22914 &temp_die,
22915 to_underlying (sect_off));
22916 }
22917
22918 /* Follow reference attribute ATTR of SRC_DIE.
22919 On entry *REF_CU is the CU of SRC_DIE.
22920 On exit *REF_CU is the CU of the result. */
22921
22922 static struct die_info *
22923 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22924 struct dwarf2_cu **ref_cu)
22925 {
22926 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22927 struct dwarf2_cu *cu = *ref_cu;
22928 struct die_info *die;
22929
22930 die = follow_die_offset (sect_off,
22931 (attr->form == DW_FORM_GNU_ref_alt
22932 || cu->per_cu->is_dwz),
22933 ref_cu);
22934 if (!die)
22935 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22936 "at %s [in module %s]"),
22937 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22938 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22939
22940 return die;
22941 }
22942
22943 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22944 Returned value is intended for DW_OP_call*. Returned
22945 dwarf2_locexpr_baton->data has lifetime of
22946 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22947
22948 struct dwarf2_locexpr_baton
22949 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22950 struct dwarf2_per_cu_data *per_cu,
22951 CORE_ADDR (*get_frame_pc) (void *baton),
22952 void *baton)
22953 {
22954 struct dwarf2_cu *cu;
22955 struct die_info *die;
22956 struct attribute *attr;
22957 struct dwarf2_locexpr_baton retval;
22958 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22959 struct objfile *objfile = dwarf2_per_objfile->objfile;
22960
22961 if (per_cu->cu == NULL)
22962 load_cu (per_cu, false);
22963 cu = per_cu->cu;
22964 if (cu == NULL)
22965 {
22966 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22967 Instead just throw an error, not much else we can do. */
22968 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22969 sect_offset_str (sect_off), objfile_name (objfile));
22970 }
22971
22972 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22973 if (!die)
22974 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22975 sect_offset_str (sect_off), objfile_name (objfile));
22976
22977 attr = dwarf2_attr (die, DW_AT_location, cu);
22978 if (!attr)
22979 {
22980 /* DWARF: "If there is no such attribute, then there is no effect.".
22981 DATA is ignored if SIZE is 0. */
22982
22983 retval.data = NULL;
22984 retval.size = 0;
22985 }
22986 else if (attr_form_is_section_offset (attr))
22987 {
22988 struct dwarf2_loclist_baton loclist_baton;
22989 CORE_ADDR pc = (*get_frame_pc) (baton);
22990 size_t size;
22991
22992 fill_in_loclist_baton (cu, &loclist_baton, attr);
22993
22994 retval.data = dwarf2_find_location_expression (&loclist_baton,
22995 &size, pc);
22996 retval.size = size;
22997 }
22998 else
22999 {
23000 if (!attr_form_is_block (attr))
23001 error (_("Dwarf Error: DIE at %s referenced in module %s "
23002 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23003 sect_offset_str (sect_off), objfile_name (objfile));
23004
23005 retval.data = DW_BLOCK (attr)->data;
23006 retval.size = DW_BLOCK (attr)->size;
23007 }
23008 retval.per_cu = cu->per_cu;
23009
23010 age_cached_comp_units (dwarf2_per_objfile);
23011
23012 return retval;
23013 }
23014
23015 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23016 offset. */
23017
23018 struct dwarf2_locexpr_baton
23019 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23020 struct dwarf2_per_cu_data *per_cu,
23021 CORE_ADDR (*get_frame_pc) (void *baton),
23022 void *baton)
23023 {
23024 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23025
23026 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23027 }
23028
23029 /* Write a constant of a given type as target-ordered bytes into
23030 OBSTACK. */
23031
23032 static const gdb_byte *
23033 write_constant_as_bytes (struct obstack *obstack,
23034 enum bfd_endian byte_order,
23035 struct type *type,
23036 ULONGEST value,
23037 LONGEST *len)
23038 {
23039 gdb_byte *result;
23040
23041 *len = TYPE_LENGTH (type);
23042 result = (gdb_byte *) obstack_alloc (obstack, *len);
23043 store_unsigned_integer (result, *len, byte_order, value);
23044
23045 return result;
23046 }
23047
23048 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23049 pointer to the constant bytes and set LEN to the length of the
23050 data. If memory is needed, allocate it on OBSTACK. If the DIE
23051 does not have a DW_AT_const_value, return NULL. */
23052
23053 const gdb_byte *
23054 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23055 struct dwarf2_per_cu_data *per_cu,
23056 struct obstack *obstack,
23057 LONGEST *len)
23058 {
23059 struct dwarf2_cu *cu;
23060 struct die_info *die;
23061 struct attribute *attr;
23062 const gdb_byte *result = NULL;
23063 struct type *type;
23064 LONGEST value;
23065 enum bfd_endian byte_order;
23066 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23067
23068 if (per_cu->cu == NULL)
23069 load_cu (per_cu, false);
23070 cu = per_cu->cu;
23071 if (cu == NULL)
23072 {
23073 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23074 Instead just throw an error, not much else we can do. */
23075 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23076 sect_offset_str (sect_off), objfile_name (objfile));
23077 }
23078
23079 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23080 if (!die)
23081 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23082 sect_offset_str (sect_off), objfile_name (objfile));
23083
23084 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23085 if (attr == NULL)
23086 return NULL;
23087
23088 byte_order = (bfd_big_endian (objfile->obfd)
23089 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23090
23091 switch (attr->form)
23092 {
23093 case DW_FORM_addr:
23094 case DW_FORM_GNU_addr_index:
23095 {
23096 gdb_byte *tem;
23097
23098 *len = cu->header.addr_size;
23099 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23100 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23101 result = tem;
23102 }
23103 break;
23104 case DW_FORM_string:
23105 case DW_FORM_strp:
23106 case DW_FORM_GNU_str_index:
23107 case DW_FORM_GNU_strp_alt:
23108 /* DW_STRING is already allocated on the objfile obstack, point
23109 directly to it. */
23110 result = (const gdb_byte *) DW_STRING (attr);
23111 *len = strlen (DW_STRING (attr));
23112 break;
23113 case DW_FORM_block1:
23114 case DW_FORM_block2:
23115 case DW_FORM_block4:
23116 case DW_FORM_block:
23117 case DW_FORM_exprloc:
23118 case DW_FORM_data16:
23119 result = DW_BLOCK (attr)->data;
23120 *len = DW_BLOCK (attr)->size;
23121 break;
23122
23123 /* The DW_AT_const_value attributes are supposed to carry the
23124 symbol's value "represented as it would be on the target
23125 architecture." By the time we get here, it's already been
23126 converted to host endianness, so we just need to sign- or
23127 zero-extend it as appropriate. */
23128 case DW_FORM_data1:
23129 type = die_type (die, cu);
23130 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23131 if (result == NULL)
23132 result = write_constant_as_bytes (obstack, byte_order,
23133 type, value, len);
23134 break;
23135 case DW_FORM_data2:
23136 type = die_type (die, cu);
23137 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23138 if (result == NULL)
23139 result = write_constant_as_bytes (obstack, byte_order,
23140 type, value, len);
23141 break;
23142 case DW_FORM_data4:
23143 type = die_type (die, cu);
23144 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23145 if (result == NULL)
23146 result = write_constant_as_bytes (obstack, byte_order,
23147 type, value, len);
23148 break;
23149 case DW_FORM_data8:
23150 type = die_type (die, cu);
23151 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23152 if (result == NULL)
23153 result = write_constant_as_bytes (obstack, byte_order,
23154 type, value, len);
23155 break;
23156
23157 case DW_FORM_sdata:
23158 case DW_FORM_implicit_const:
23159 type = die_type (die, cu);
23160 result = write_constant_as_bytes (obstack, byte_order,
23161 type, DW_SND (attr), len);
23162 break;
23163
23164 case DW_FORM_udata:
23165 type = die_type (die, cu);
23166 result = write_constant_as_bytes (obstack, byte_order,
23167 type, DW_UNSND (attr), len);
23168 break;
23169
23170 default:
23171 complaint (&symfile_complaints,
23172 _("unsupported const value attribute form: '%s'"),
23173 dwarf_form_name (attr->form));
23174 break;
23175 }
23176
23177 return result;
23178 }
23179
23180 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23181 valid type for this die is found. */
23182
23183 struct type *
23184 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23185 struct dwarf2_per_cu_data *per_cu)
23186 {
23187 struct dwarf2_cu *cu;
23188 struct die_info *die;
23189
23190 if (per_cu->cu == NULL)
23191 load_cu (per_cu, false);
23192 cu = per_cu->cu;
23193 if (!cu)
23194 return NULL;
23195
23196 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23197 if (!die)
23198 return NULL;
23199
23200 return die_type (die, cu);
23201 }
23202
23203 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23204 PER_CU. */
23205
23206 struct type *
23207 dwarf2_get_die_type (cu_offset die_offset,
23208 struct dwarf2_per_cu_data *per_cu)
23209 {
23210 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23211 return get_die_type_at_offset (die_offset_sect, per_cu);
23212 }
23213
23214 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23215 On entry *REF_CU is the CU of SRC_DIE.
23216 On exit *REF_CU is the CU of the result.
23217 Returns NULL if the referenced DIE isn't found. */
23218
23219 static struct die_info *
23220 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23221 struct dwarf2_cu **ref_cu)
23222 {
23223 struct die_info temp_die;
23224 struct dwarf2_cu *sig_cu;
23225 struct die_info *die;
23226
23227 /* While it might be nice to assert sig_type->type == NULL here,
23228 we can get here for DW_AT_imported_declaration where we need
23229 the DIE not the type. */
23230
23231 /* If necessary, add it to the queue and load its DIEs. */
23232
23233 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23234 read_signatured_type (sig_type);
23235
23236 sig_cu = sig_type->per_cu.cu;
23237 gdb_assert (sig_cu != NULL);
23238 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23239 temp_die.sect_off = sig_type->type_offset_in_section;
23240 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23241 to_underlying (temp_die.sect_off));
23242 if (die)
23243 {
23244 struct dwarf2_per_objfile *dwarf2_per_objfile
23245 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23246
23247 /* For .gdb_index version 7 keep track of included TUs.
23248 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23249 if (dwarf2_per_objfile->index_table != NULL
23250 && dwarf2_per_objfile->index_table->version <= 7)
23251 {
23252 VEC_safe_push (dwarf2_per_cu_ptr,
23253 (*ref_cu)->per_cu->imported_symtabs,
23254 sig_cu->per_cu);
23255 }
23256
23257 *ref_cu = sig_cu;
23258 return die;
23259 }
23260
23261 return NULL;
23262 }
23263
23264 /* Follow signatured type referenced by ATTR in SRC_DIE.
23265 On entry *REF_CU is the CU of SRC_DIE.
23266 On exit *REF_CU is the CU of the result.
23267 The result is the DIE of the type.
23268 If the referenced type cannot be found an error is thrown. */
23269
23270 static struct die_info *
23271 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23272 struct dwarf2_cu **ref_cu)
23273 {
23274 ULONGEST signature = DW_SIGNATURE (attr);
23275 struct signatured_type *sig_type;
23276 struct die_info *die;
23277
23278 gdb_assert (attr->form == DW_FORM_ref_sig8);
23279
23280 sig_type = lookup_signatured_type (*ref_cu, signature);
23281 /* sig_type will be NULL if the signatured type is missing from
23282 the debug info. */
23283 if (sig_type == NULL)
23284 {
23285 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23286 " from DIE at %s [in module %s]"),
23287 hex_string (signature), sect_offset_str (src_die->sect_off),
23288 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23289 }
23290
23291 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23292 if (die == NULL)
23293 {
23294 dump_die_for_error (src_die);
23295 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23296 " from DIE at %s [in module %s]"),
23297 hex_string (signature), sect_offset_str (src_die->sect_off),
23298 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23299 }
23300
23301 return die;
23302 }
23303
23304 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23305 reading in and processing the type unit if necessary. */
23306
23307 static struct type *
23308 get_signatured_type (struct die_info *die, ULONGEST signature,
23309 struct dwarf2_cu *cu)
23310 {
23311 struct dwarf2_per_objfile *dwarf2_per_objfile
23312 = cu->per_cu->dwarf2_per_objfile;
23313 struct signatured_type *sig_type;
23314 struct dwarf2_cu *type_cu;
23315 struct die_info *type_die;
23316 struct type *type;
23317
23318 sig_type = lookup_signatured_type (cu, signature);
23319 /* sig_type will be NULL if the signatured type is missing from
23320 the debug info. */
23321 if (sig_type == NULL)
23322 {
23323 complaint (&symfile_complaints,
23324 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23325 " from DIE at %s [in module %s]"),
23326 hex_string (signature), sect_offset_str (die->sect_off),
23327 objfile_name (dwarf2_per_objfile->objfile));
23328 return build_error_marker_type (cu, die);
23329 }
23330
23331 /* If we already know the type we're done. */
23332 if (sig_type->type != NULL)
23333 return sig_type->type;
23334
23335 type_cu = cu;
23336 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23337 if (type_die != NULL)
23338 {
23339 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23340 is created. This is important, for example, because for c++ classes
23341 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23342 type = read_type_die (type_die, type_cu);
23343 if (type == NULL)
23344 {
23345 complaint (&symfile_complaints,
23346 _("Dwarf Error: Cannot build signatured type %s"
23347 " referenced from DIE at %s [in module %s]"),
23348 hex_string (signature), sect_offset_str (die->sect_off),
23349 objfile_name (dwarf2_per_objfile->objfile));
23350 type = build_error_marker_type (cu, die);
23351 }
23352 }
23353 else
23354 {
23355 complaint (&symfile_complaints,
23356 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23357 " from DIE at %s [in module %s]"),
23358 hex_string (signature), sect_offset_str (die->sect_off),
23359 objfile_name (dwarf2_per_objfile->objfile));
23360 type = build_error_marker_type (cu, die);
23361 }
23362 sig_type->type = type;
23363
23364 return type;
23365 }
23366
23367 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23368 reading in and processing the type unit if necessary. */
23369
23370 static struct type *
23371 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23372 struct dwarf2_cu *cu) /* ARI: editCase function */
23373 {
23374 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23375 if (attr_form_is_ref (attr))
23376 {
23377 struct dwarf2_cu *type_cu = cu;
23378 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23379
23380 return read_type_die (type_die, type_cu);
23381 }
23382 else if (attr->form == DW_FORM_ref_sig8)
23383 {
23384 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23385 }
23386 else
23387 {
23388 struct dwarf2_per_objfile *dwarf2_per_objfile
23389 = cu->per_cu->dwarf2_per_objfile;
23390
23391 complaint (&symfile_complaints,
23392 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23393 " at %s [in module %s]"),
23394 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23395 objfile_name (dwarf2_per_objfile->objfile));
23396 return build_error_marker_type (cu, die);
23397 }
23398 }
23399
23400 /* Load the DIEs associated with type unit PER_CU into memory. */
23401
23402 static void
23403 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23404 {
23405 struct signatured_type *sig_type;
23406
23407 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23408 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23409
23410 /* We have the per_cu, but we need the signatured_type.
23411 Fortunately this is an easy translation. */
23412 gdb_assert (per_cu->is_debug_types);
23413 sig_type = (struct signatured_type *) per_cu;
23414
23415 gdb_assert (per_cu->cu == NULL);
23416
23417 read_signatured_type (sig_type);
23418
23419 gdb_assert (per_cu->cu != NULL);
23420 }
23421
23422 /* die_reader_func for read_signatured_type.
23423 This is identical to load_full_comp_unit_reader,
23424 but is kept separate for now. */
23425
23426 static void
23427 read_signatured_type_reader (const struct die_reader_specs *reader,
23428 const gdb_byte *info_ptr,
23429 struct die_info *comp_unit_die,
23430 int has_children,
23431 void *data)
23432 {
23433 struct dwarf2_cu *cu = reader->cu;
23434
23435 gdb_assert (cu->die_hash == NULL);
23436 cu->die_hash =
23437 htab_create_alloc_ex (cu->header.length / 12,
23438 die_hash,
23439 die_eq,
23440 NULL,
23441 &cu->comp_unit_obstack,
23442 hashtab_obstack_allocate,
23443 dummy_obstack_deallocate);
23444
23445 if (has_children)
23446 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23447 &info_ptr, comp_unit_die);
23448 cu->dies = comp_unit_die;
23449 /* comp_unit_die is not stored in die_hash, no need. */
23450
23451 /* We try not to read any attributes in this function, because not
23452 all CUs needed for references have been loaded yet, and symbol
23453 table processing isn't initialized. But we have to set the CU language,
23454 or we won't be able to build types correctly.
23455 Similarly, if we do not read the producer, we can not apply
23456 producer-specific interpretation. */
23457 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23458 }
23459
23460 /* Read in a signatured type and build its CU and DIEs.
23461 If the type is a stub for the real type in a DWO file,
23462 read in the real type from the DWO file as well. */
23463
23464 static void
23465 read_signatured_type (struct signatured_type *sig_type)
23466 {
23467 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23468
23469 gdb_assert (per_cu->is_debug_types);
23470 gdb_assert (per_cu->cu == NULL);
23471
23472 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23473 read_signatured_type_reader, NULL);
23474 sig_type->per_cu.tu_read = 1;
23475 }
23476
23477 /* Decode simple location descriptions.
23478 Given a pointer to a dwarf block that defines a location, compute
23479 the location and return the value.
23480
23481 NOTE drow/2003-11-18: This function is called in two situations
23482 now: for the address of static or global variables (partial symbols
23483 only) and for offsets into structures which are expected to be
23484 (more or less) constant. The partial symbol case should go away,
23485 and only the constant case should remain. That will let this
23486 function complain more accurately. A few special modes are allowed
23487 without complaint for global variables (for instance, global
23488 register values and thread-local values).
23489
23490 A location description containing no operations indicates that the
23491 object is optimized out. The return value is 0 for that case.
23492 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23493 callers will only want a very basic result and this can become a
23494 complaint.
23495
23496 Note that stack[0] is unused except as a default error return. */
23497
23498 static CORE_ADDR
23499 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23500 {
23501 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23502 size_t i;
23503 size_t size = blk->size;
23504 const gdb_byte *data = blk->data;
23505 CORE_ADDR stack[64];
23506 int stacki;
23507 unsigned int bytes_read, unsnd;
23508 gdb_byte op;
23509
23510 i = 0;
23511 stacki = 0;
23512 stack[stacki] = 0;
23513 stack[++stacki] = 0;
23514
23515 while (i < size)
23516 {
23517 op = data[i++];
23518 switch (op)
23519 {
23520 case DW_OP_lit0:
23521 case DW_OP_lit1:
23522 case DW_OP_lit2:
23523 case DW_OP_lit3:
23524 case DW_OP_lit4:
23525 case DW_OP_lit5:
23526 case DW_OP_lit6:
23527 case DW_OP_lit7:
23528 case DW_OP_lit8:
23529 case DW_OP_lit9:
23530 case DW_OP_lit10:
23531 case DW_OP_lit11:
23532 case DW_OP_lit12:
23533 case DW_OP_lit13:
23534 case DW_OP_lit14:
23535 case DW_OP_lit15:
23536 case DW_OP_lit16:
23537 case DW_OP_lit17:
23538 case DW_OP_lit18:
23539 case DW_OP_lit19:
23540 case DW_OP_lit20:
23541 case DW_OP_lit21:
23542 case DW_OP_lit22:
23543 case DW_OP_lit23:
23544 case DW_OP_lit24:
23545 case DW_OP_lit25:
23546 case DW_OP_lit26:
23547 case DW_OP_lit27:
23548 case DW_OP_lit28:
23549 case DW_OP_lit29:
23550 case DW_OP_lit30:
23551 case DW_OP_lit31:
23552 stack[++stacki] = op - DW_OP_lit0;
23553 break;
23554
23555 case DW_OP_reg0:
23556 case DW_OP_reg1:
23557 case DW_OP_reg2:
23558 case DW_OP_reg3:
23559 case DW_OP_reg4:
23560 case DW_OP_reg5:
23561 case DW_OP_reg6:
23562 case DW_OP_reg7:
23563 case DW_OP_reg8:
23564 case DW_OP_reg9:
23565 case DW_OP_reg10:
23566 case DW_OP_reg11:
23567 case DW_OP_reg12:
23568 case DW_OP_reg13:
23569 case DW_OP_reg14:
23570 case DW_OP_reg15:
23571 case DW_OP_reg16:
23572 case DW_OP_reg17:
23573 case DW_OP_reg18:
23574 case DW_OP_reg19:
23575 case DW_OP_reg20:
23576 case DW_OP_reg21:
23577 case DW_OP_reg22:
23578 case DW_OP_reg23:
23579 case DW_OP_reg24:
23580 case DW_OP_reg25:
23581 case DW_OP_reg26:
23582 case DW_OP_reg27:
23583 case DW_OP_reg28:
23584 case DW_OP_reg29:
23585 case DW_OP_reg30:
23586 case DW_OP_reg31:
23587 stack[++stacki] = op - DW_OP_reg0;
23588 if (i < size)
23589 dwarf2_complex_location_expr_complaint ();
23590 break;
23591
23592 case DW_OP_regx:
23593 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23594 i += bytes_read;
23595 stack[++stacki] = unsnd;
23596 if (i < size)
23597 dwarf2_complex_location_expr_complaint ();
23598 break;
23599
23600 case DW_OP_addr:
23601 stack[++stacki] = read_address (objfile->obfd, &data[i],
23602 cu, &bytes_read);
23603 i += bytes_read;
23604 break;
23605
23606 case DW_OP_const1u:
23607 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23608 i += 1;
23609 break;
23610
23611 case DW_OP_const1s:
23612 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23613 i += 1;
23614 break;
23615
23616 case DW_OP_const2u:
23617 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23618 i += 2;
23619 break;
23620
23621 case DW_OP_const2s:
23622 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23623 i += 2;
23624 break;
23625
23626 case DW_OP_const4u:
23627 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23628 i += 4;
23629 break;
23630
23631 case DW_OP_const4s:
23632 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23633 i += 4;
23634 break;
23635
23636 case DW_OP_const8u:
23637 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23638 i += 8;
23639 break;
23640
23641 case DW_OP_constu:
23642 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23643 &bytes_read);
23644 i += bytes_read;
23645 break;
23646
23647 case DW_OP_consts:
23648 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23649 i += bytes_read;
23650 break;
23651
23652 case DW_OP_dup:
23653 stack[stacki + 1] = stack[stacki];
23654 stacki++;
23655 break;
23656
23657 case DW_OP_plus:
23658 stack[stacki - 1] += stack[stacki];
23659 stacki--;
23660 break;
23661
23662 case DW_OP_plus_uconst:
23663 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23664 &bytes_read);
23665 i += bytes_read;
23666 break;
23667
23668 case DW_OP_minus:
23669 stack[stacki - 1] -= stack[stacki];
23670 stacki--;
23671 break;
23672
23673 case DW_OP_deref:
23674 /* If we're not the last op, then we definitely can't encode
23675 this using GDB's address_class enum. This is valid for partial
23676 global symbols, although the variable's address will be bogus
23677 in the psymtab. */
23678 if (i < size)
23679 dwarf2_complex_location_expr_complaint ();
23680 break;
23681
23682 case DW_OP_GNU_push_tls_address:
23683 case DW_OP_form_tls_address:
23684 /* The top of the stack has the offset from the beginning
23685 of the thread control block at which the variable is located. */
23686 /* Nothing should follow this operator, so the top of stack would
23687 be returned. */
23688 /* This is valid for partial global symbols, but the variable's
23689 address will be bogus in the psymtab. Make it always at least
23690 non-zero to not look as a variable garbage collected by linker
23691 which have DW_OP_addr 0. */
23692 if (i < size)
23693 dwarf2_complex_location_expr_complaint ();
23694 stack[stacki]++;
23695 break;
23696
23697 case DW_OP_GNU_uninit:
23698 break;
23699
23700 case DW_OP_GNU_addr_index:
23701 case DW_OP_GNU_const_index:
23702 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23703 &bytes_read);
23704 i += bytes_read;
23705 break;
23706
23707 default:
23708 {
23709 const char *name = get_DW_OP_name (op);
23710
23711 if (name)
23712 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23713 name);
23714 else
23715 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23716 op);
23717 }
23718
23719 return (stack[stacki]);
23720 }
23721
23722 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23723 outside of the allocated space. Also enforce minimum>0. */
23724 if (stacki >= ARRAY_SIZE (stack) - 1)
23725 {
23726 complaint (&symfile_complaints,
23727 _("location description stack overflow"));
23728 return 0;
23729 }
23730
23731 if (stacki <= 0)
23732 {
23733 complaint (&symfile_complaints,
23734 _("location description stack underflow"));
23735 return 0;
23736 }
23737 }
23738 return (stack[stacki]);
23739 }
23740
23741 /* memory allocation interface */
23742
23743 static struct dwarf_block *
23744 dwarf_alloc_block (struct dwarf2_cu *cu)
23745 {
23746 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23747 }
23748
23749 static struct die_info *
23750 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23751 {
23752 struct die_info *die;
23753 size_t size = sizeof (struct die_info);
23754
23755 if (num_attrs > 1)
23756 size += (num_attrs - 1) * sizeof (struct attribute);
23757
23758 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23759 memset (die, 0, sizeof (struct die_info));
23760 return (die);
23761 }
23762
23763 \f
23764 /* Macro support. */
23765
23766 /* Return file name relative to the compilation directory of file number I in
23767 *LH's file name table. The result is allocated using xmalloc; the caller is
23768 responsible for freeing it. */
23769
23770 static char *
23771 file_file_name (int file, struct line_header *lh)
23772 {
23773 /* Is the file number a valid index into the line header's file name
23774 table? Remember that file numbers start with one, not zero. */
23775 if (1 <= file && file <= lh->file_names.size ())
23776 {
23777 const file_entry &fe = lh->file_names[file - 1];
23778
23779 if (!IS_ABSOLUTE_PATH (fe.name))
23780 {
23781 const char *dir = fe.include_dir (lh);
23782 if (dir != NULL)
23783 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23784 }
23785 return xstrdup (fe.name);
23786 }
23787 else
23788 {
23789 /* The compiler produced a bogus file number. We can at least
23790 record the macro definitions made in the file, even if we
23791 won't be able to find the file by name. */
23792 char fake_name[80];
23793
23794 xsnprintf (fake_name, sizeof (fake_name),
23795 "<bad macro file number %d>", file);
23796
23797 complaint (&symfile_complaints,
23798 _("bad file number in macro information (%d)"),
23799 file);
23800
23801 return xstrdup (fake_name);
23802 }
23803 }
23804
23805 /* Return the full name of file number I in *LH's file name table.
23806 Use COMP_DIR as the name of the current directory of the
23807 compilation. The result is allocated using xmalloc; the caller is
23808 responsible for freeing it. */
23809 static char *
23810 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23811 {
23812 /* Is the file number a valid index into the line header's file name
23813 table? Remember that file numbers start with one, not zero. */
23814 if (1 <= file && file <= lh->file_names.size ())
23815 {
23816 char *relative = file_file_name (file, lh);
23817
23818 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23819 return relative;
23820 return reconcat (relative, comp_dir, SLASH_STRING,
23821 relative, (char *) NULL);
23822 }
23823 else
23824 return file_file_name (file, lh);
23825 }
23826
23827
23828 static struct macro_source_file *
23829 macro_start_file (int file, int line,
23830 struct macro_source_file *current_file,
23831 struct line_header *lh)
23832 {
23833 /* File name relative to the compilation directory of this source file. */
23834 char *file_name = file_file_name (file, lh);
23835
23836 if (! current_file)
23837 {
23838 /* Note: We don't create a macro table for this compilation unit
23839 at all until we actually get a filename. */
23840 struct macro_table *macro_table = get_macro_table ();
23841
23842 /* If we have no current file, then this must be the start_file
23843 directive for the compilation unit's main source file. */
23844 current_file = macro_set_main (macro_table, file_name);
23845 macro_define_special (macro_table);
23846 }
23847 else
23848 current_file = macro_include (current_file, line, file_name);
23849
23850 xfree (file_name);
23851
23852 return current_file;
23853 }
23854
23855 static const char *
23856 consume_improper_spaces (const char *p, const char *body)
23857 {
23858 if (*p == ' ')
23859 {
23860 complaint (&symfile_complaints,
23861 _("macro definition contains spaces "
23862 "in formal argument list:\n`%s'"),
23863 body);
23864
23865 while (*p == ' ')
23866 p++;
23867 }
23868
23869 return p;
23870 }
23871
23872
23873 static void
23874 parse_macro_definition (struct macro_source_file *file, int line,
23875 const char *body)
23876 {
23877 const char *p;
23878
23879 /* The body string takes one of two forms. For object-like macro
23880 definitions, it should be:
23881
23882 <macro name> " " <definition>
23883
23884 For function-like macro definitions, it should be:
23885
23886 <macro name> "() " <definition>
23887 or
23888 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23889
23890 Spaces may appear only where explicitly indicated, and in the
23891 <definition>.
23892
23893 The Dwarf 2 spec says that an object-like macro's name is always
23894 followed by a space, but versions of GCC around March 2002 omit
23895 the space when the macro's definition is the empty string.
23896
23897 The Dwarf 2 spec says that there should be no spaces between the
23898 formal arguments in a function-like macro's formal argument list,
23899 but versions of GCC around March 2002 include spaces after the
23900 commas. */
23901
23902
23903 /* Find the extent of the macro name. The macro name is terminated
23904 by either a space or null character (for an object-like macro) or
23905 an opening paren (for a function-like macro). */
23906 for (p = body; *p; p++)
23907 if (*p == ' ' || *p == '(')
23908 break;
23909
23910 if (*p == ' ' || *p == '\0')
23911 {
23912 /* It's an object-like macro. */
23913 int name_len = p - body;
23914 char *name = savestring (body, name_len);
23915 const char *replacement;
23916
23917 if (*p == ' ')
23918 replacement = body + name_len + 1;
23919 else
23920 {
23921 dwarf2_macro_malformed_definition_complaint (body);
23922 replacement = body + name_len;
23923 }
23924
23925 macro_define_object (file, line, name, replacement);
23926
23927 xfree (name);
23928 }
23929 else if (*p == '(')
23930 {
23931 /* It's a function-like macro. */
23932 char *name = savestring (body, p - body);
23933 int argc = 0;
23934 int argv_size = 1;
23935 char **argv = XNEWVEC (char *, argv_size);
23936
23937 p++;
23938
23939 p = consume_improper_spaces (p, body);
23940
23941 /* Parse the formal argument list. */
23942 while (*p && *p != ')')
23943 {
23944 /* Find the extent of the current argument name. */
23945 const char *arg_start = p;
23946
23947 while (*p && *p != ',' && *p != ')' && *p != ' ')
23948 p++;
23949
23950 if (! *p || p == arg_start)
23951 dwarf2_macro_malformed_definition_complaint (body);
23952 else
23953 {
23954 /* Make sure argv has room for the new argument. */
23955 if (argc >= argv_size)
23956 {
23957 argv_size *= 2;
23958 argv = XRESIZEVEC (char *, argv, argv_size);
23959 }
23960
23961 argv[argc++] = savestring (arg_start, p - arg_start);
23962 }
23963
23964 p = consume_improper_spaces (p, body);
23965
23966 /* Consume the comma, if present. */
23967 if (*p == ',')
23968 {
23969 p++;
23970
23971 p = consume_improper_spaces (p, body);
23972 }
23973 }
23974
23975 if (*p == ')')
23976 {
23977 p++;
23978
23979 if (*p == ' ')
23980 /* Perfectly formed definition, no complaints. */
23981 macro_define_function (file, line, name,
23982 argc, (const char **) argv,
23983 p + 1);
23984 else if (*p == '\0')
23985 {
23986 /* Complain, but do define it. */
23987 dwarf2_macro_malformed_definition_complaint (body);
23988 macro_define_function (file, line, name,
23989 argc, (const char **) argv,
23990 p);
23991 }
23992 else
23993 /* Just complain. */
23994 dwarf2_macro_malformed_definition_complaint (body);
23995 }
23996 else
23997 /* Just complain. */
23998 dwarf2_macro_malformed_definition_complaint (body);
23999
24000 xfree (name);
24001 {
24002 int i;
24003
24004 for (i = 0; i < argc; i++)
24005 xfree (argv[i]);
24006 }
24007 xfree (argv);
24008 }
24009 else
24010 dwarf2_macro_malformed_definition_complaint (body);
24011 }
24012
24013 /* Skip some bytes from BYTES according to the form given in FORM.
24014 Returns the new pointer. */
24015
24016 static const gdb_byte *
24017 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24018 enum dwarf_form form,
24019 unsigned int offset_size,
24020 struct dwarf2_section_info *section)
24021 {
24022 unsigned int bytes_read;
24023
24024 switch (form)
24025 {
24026 case DW_FORM_data1:
24027 case DW_FORM_flag:
24028 ++bytes;
24029 break;
24030
24031 case DW_FORM_data2:
24032 bytes += 2;
24033 break;
24034
24035 case DW_FORM_data4:
24036 bytes += 4;
24037 break;
24038
24039 case DW_FORM_data8:
24040 bytes += 8;
24041 break;
24042
24043 case DW_FORM_data16:
24044 bytes += 16;
24045 break;
24046
24047 case DW_FORM_string:
24048 read_direct_string (abfd, bytes, &bytes_read);
24049 bytes += bytes_read;
24050 break;
24051
24052 case DW_FORM_sec_offset:
24053 case DW_FORM_strp:
24054 case DW_FORM_GNU_strp_alt:
24055 bytes += offset_size;
24056 break;
24057
24058 case DW_FORM_block:
24059 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24060 bytes += bytes_read;
24061 break;
24062
24063 case DW_FORM_block1:
24064 bytes += 1 + read_1_byte (abfd, bytes);
24065 break;
24066 case DW_FORM_block2:
24067 bytes += 2 + read_2_bytes (abfd, bytes);
24068 break;
24069 case DW_FORM_block4:
24070 bytes += 4 + read_4_bytes (abfd, bytes);
24071 break;
24072
24073 case DW_FORM_sdata:
24074 case DW_FORM_udata:
24075 case DW_FORM_GNU_addr_index:
24076 case DW_FORM_GNU_str_index:
24077 bytes = gdb_skip_leb128 (bytes, buffer_end);
24078 if (bytes == NULL)
24079 {
24080 dwarf2_section_buffer_overflow_complaint (section);
24081 return NULL;
24082 }
24083 break;
24084
24085 case DW_FORM_implicit_const:
24086 break;
24087
24088 default:
24089 {
24090 complaint (&symfile_complaints,
24091 _("invalid form 0x%x in `%s'"),
24092 form, get_section_name (section));
24093 return NULL;
24094 }
24095 }
24096
24097 return bytes;
24098 }
24099
24100 /* A helper for dwarf_decode_macros that handles skipping an unknown
24101 opcode. Returns an updated pointer to the macro data buffer; or,
24102 on error, issues a complaint and returns NULL. */
24103
24104 static const gdb_byte *
24105 skip_unknown_opcode (unsigned int opcode,
24106 const gdb_byte **opcode_definitions,
24107 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24108 bfd *abfd,
24109 unsigned int offset_size,
24110 struct dwarf2_section_info *section)
24111 {
24112 unsigned int bytes_read, i;
24113 unsigned long arg;
24114 const gdb_byte *defn;
24115
24116 if (opcode_definitions[opcode] == NULL)
24117 {
24118 complaint (&symfile_complaints,
24119 _("unrecognized DW_MACFINO opcode 0x%x"),
24120 opcode);
24121 return NULL;
24122 }
24123
24124 defn = opcode_definitions[opcode];
24125 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24126 defn += bytes_read;
24127
24128 for (i = 0; i < arg; ++i)
24129 {
24130 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24131 (enum dwarf_form) defn[i], offset_size,
24132 section);
24133 if (mac_ptr == NULL)
24134 {
24135 /* skip_form_bytes already issued the complaint. */
24136 return NULL;
24137 }
24138 }
24139
24140 return mac_ptr;
24141 }
24142
24143 /* A helper function which parses the header of a macro section.
24144 If the macro section is the extended (for now called "GNU") type,
24145 then this updates *OFFSET_SIZE. Returns a pointer to just after
24146 the header, or issues a complaint and returns NULL on error. */
24147
24148 static const gdb_byte *
24149 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24150 bfd *abfd,
24151 const gdb_byte *mac_ptr,
24152 unsigned int *offset_size,
24153 int section_is_gnu)
24154 {
24155 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24156
24157 if (section_is_gnu)
24158 {
24159 unsigned int version, flags;
24160
24161 version = read_2_bytes (abfd, mac_ptr);
24162 if (version != 4 && version != 5)
24163 {
24164 complaint (&symfile_complaints,
24165 _("unrecognized version `%d' in .debug_macro section"),
24166 version);
24167 return NULL;
24168 }
24169 mac_ptr += 2;
24170
24171 flags = read_1_byte (abfd, mac_ptr);
24172 ++mac_ptr;
24173 *offset_size = (flags & 1) ? 8 : 4;
24174
24175 if ((flags & 2) != 0)
24176 /* We don't need the line table offset. */
24177 mac_ptr += *offset_size;
24178
24179 /* Vendor opcode descriptions. */
24180 if ((flags & 4) != 0)
24181 {
24182 unsigned int i, count;
24183
24184 count = read_1_byte (abfd, mac_ptr);
24185 ++mac_ptr;
24186 for (i = 0; i < count; ++i)
24187 {
24188 unsigned int opcode, bytes_read;
24189 unsigned long arg;
24190
24191 opcode = read_1_byte (abfd, mac_ptr);
24192 ++mac_ptr;
24193 opcode_definitions[opcode] = mac_ptr;
24194 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24195 mac_ptr += bytes_read;
24196 mac_ptr += arg;
24197 }
24198 }
24199 }
24200
24201 return mac_ptr;
24202 }
24203
24204 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24205 including DW_MACRO_import. */
24206
24207 static void
24208 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24209 bfd *abfd,
24210 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24211 struct macro_source_file *current_file,
24212 struct line_header *lh,
24213 struct dwarf2_section_info *section,
24214 int section_is_gnu, int section_is_dwz,
24215 unsigned int offset_size,
24216 htab_t include_hash)
24217 {
24218 struct objfile *objfile = dwarf2_per_objfile->objfile;
24219 enum dwarf_macro_record_type macinfo_type;
24220 int at_commandline;
24221 const gdb_byte *opcode_definitions[256];
24222
24223 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24224 &offset_size, section_is_gnu);
24225 if (mac_ptr == NULL)
24226 {
24227 /* We already issued a complaint. */
24228 return;
24229 }
24230
24231 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24232 GDB is still reading the definitions from command line. First
24233 DW_MACINFO_start_file will need to be ignored as it was already executed
24234 to create CURRENT_FILE for the main source holding also the command line
24235 definitions. On first met DW_MACINFO_start_file this flag is reset to
24236 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24237
24238 at_commandline = 1;
24239
24240 do
24241 {
24242 /* Do we at least have room for a macinfo type byte? */
24243 if (mac_ptr >= mac_end)
24244 {
24245 dwarf2_section_buffer_overflow_complaint (section);
24246 break;
24247 }
24248
24249 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24250 mac_ptr++;
24251
24252 /* Note that we rely on the fact that the corresponding GNU and
24253 DWARF constants are the same. */
24254 DIAGNOSTIC_PUSH
24255 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24256 switch (macinfo_type)
24257 {
24258 /* A zero macinfo type indicates the end of the macro
24259 information. */
24260 case 0:
24261 break;
24262
24263 case DW_MACRO_define:
24264 case DW_MACRO_undef:
24265 case DW_MACRO_define_strp:
24266 case DW_MACRO_undef_strp:
24267 case DW_MACRO_define_sup:
24268 case DW_MACRO_undef_sup:
24269 {
24270 unsigned int bytes_read;
24271 int line;
24272 const char *body;
24273 int is_define;
24274
24275 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24276 mac_ptr += bytes_read;
24277
24278 if (macinfo_type == DW_MACRO_define
24279 || macinfo_type == DW_MACRO_undef)
24280 {
24281 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24282 mac_ptr += bytes_read;
24283 }
24284 else
24285 {
24286 LONGEST str_offset;
24287
24288 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24289 mac_ptr += offset_size;
24290
24291 if (macinfo_type == DW_MACRO_define_sup
24292 || macinfo_type == DW_MACRO_undef_sup
24293 || section_is_dwz)
24294 {
24295 struct dwz_file *dwz
24296 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24297
24298 body = read_indirect_string_from_dwz (objfile,
24299 dwz, str_offset);
24300 }
24301 else
24302 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24303 abfd, str_offset);
24304 }
24305
24306 is_define = (macinfo_type == DW_MACRO_define
24307 || macinfo_type == DW_MACRO_define_strp
24308 || macinfo_type == DW_MACRO_define_sup);
24309 if (! current_file)
24310 {
24311 /* DWARF violation as no main source is present. */
24312 complaint (&symfile_complaints,
24313 _("debug info with no main source gives macro %s "
24314 "on line %d: %s"),
24315 is_define ? _("definition") : _("undefinition"),
24316 line, body);
24317 break;
24318 }
24319 if ((line == 0 && !at_commandline)
24320 || (line != 0 && at_commandline))
24321 complaint (&symfile_complaints,
24322 _("debug info gives %s macro %s with %s line %d: %s"),
24323 at_commandline ? _("command-line") : _("in-file"),
24324 is_define ? _("definition") : _("undefinition"),
24325 line == 0 ? _("zero") : _("non-zero"), line, body);
24326
24327 if (is_define)
24328 parse_macro_definition (current_file, line, body);
24329 else
24330 {
24331 gdb_assert (macinfo_type == DW_MACRO_undef
24332 || macinfo_type == DW_MACRO_undef_strp
24333 || macinfo_type == DW_MACRO_undef_sup);
24334 macro_undef (current_file, line, body);
24335 }
24336 }
24337 break;
24338
24339 case DW_MACRO_start_file:
24340 {
24341 unsigned int bytes_read;
24342 int line, file;
24343
24344 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24345 mac_ptr += bytes_read;
24346 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24347 mac_ptr += bytes_read;
24348
24349 if ((line == 0 && !at_commandline)
24350 || (line != 0 && at_commandline))
24351 complaint (&symfile_complaints,
24352 _("debug info gives source %d included "
24353 "from %s at %s line %d"),
24354 file, at_commandline ? _("command-line") : _("file"),
24355 line == 0 ? _("zero") : _("non-zero"), line);
24356
24357 if (at_commandline)
24358 {
24359 /* This DW_MACRO_start_file was executed in the
24360 pass one. */
24361 at_commandline = 0;
24362 }
24363 else
24364 current_file = macro_start_file (file, line, current_file, lh);
24365 }
24366 break;
24367
24368 case DW_MACRO_end_file:
24369 if (! current_file)
24370 complaint (&symfile_complaints,
24371 _("macro debug info has an unmatched "
24372 "`close_file' directive"));
24373 else
24374 {
24375 current_file = current_file->included_by;
24376 if (! current_file)
24377 {
24378 enum dwarf_macro_record_type next_type;
24379
24380 /* GCC circa March 2002 doesn't produce the zero
24381 type byte marking the end of the compilation
24382 unit. Complain if it's not there, but exit no
24383 matter what. */
24384
24385 /* Do we at least have room for a macinfo type byte? */
24386 if (mac_ptr >= mac_end)
24387 {
24388 dwarf2_section_buffer_overflow_complaint (section);
24389 return;
24390 }
24391
24392 /* We don't increment mac_ptr here, so this is just
24393 a look-ahead. */
24394 next_type
24395 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24396 mac_ptr);
24397 if (next_type != 0)
24398 complaint (&symfile_complaints,
24399 _("no terminating 0-type entry for "
24400 "macros in `.debug_macinfo' section"));
24401
24402 return;
24403 }
24404 }
24405 break;
24406
24407 case DW_MACRO_import:
24408 case DW_MACRO_import_sup:
24409 {
24410 LONGEST offset;
24411 void **slot;
24412 bfd *include_bfd = abfd;
24413 struct dwarf2_section_info *include_section = section;
24414 const gdb_byte *include_mac_end = mac_end;
24415 int is_dwz = section_is_dwz;
24416 const gdb_byte *new_mac_ptr;
24417
24418 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24419 mac_ptr += offset_size;
24420
24421 if (macinfo_type == DW_MACRO_import_sup)
24422 {
24423 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24424
24425 dwarf2_read_section (objfile, &dwz->macro);
24426
24427 include_section = &dwz->macro;
24428 include_bfd = get_section_bfd_owner (include_section);
24429 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24430 is_dwz = 1;
24431 }
24432
24433 new_mac_ptr = include_section->buffer + offset;
24434 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24435
24436 if (*slot != NULL)
24437 {
24438 /* This has actually happened; see
24439 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24440 complaint (&symfile_complaints,
24441 _("recursive DW_MACRO_import in "
24442 ".debug_macro section"));
24443 }
24444 else
24445 {
24446 *slot = (void *) new_mac_ptr;
24447
24448 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24449 include_bfd, new_mac_ptr,
24450 include_mac_end, current_file, lh,
24451 section, section_is_gnu, is_dwz,
24452 offset_size, include_hash);
24453
24454 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24455 }
24456 }
24457 break;
24458
24459 case DW_MACINFO_vendor_ext:
24460 if (!section_is_gnu)
24461 {
24462 unsigned int bytes_read;
24463
24464 /* This reads the constant, but since we don't recognize
24465 any vendor extensions, we ignore it. */
24466 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24467 mac_ptr += bytes_read;
24468 read_direct_string (abfd, mac_ptr, &bytes_read);
24469 mac_ptr += bytes_read;
24470
24471 /* We don't recognize any vendor extensions. */
24472 break;
24473 }
24474 /* FALLTHROUGH */
24475
24476 default:
24477 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24478 mac_ptr, mac_end, abfd, offset_size,
24479 section);
24480 if (mac_ptr == NULL)
24481 return;
24482 break;
24483 }
24484 DIAGNOSTIC_POP
24485 } while (macinfo_type != 0);
24486 }
24487
24488 static void
24489 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24490 int section_is_gnu)
24491 {
24492 struct dwarf2_per_objfile *dwarf2_per_objfile
24493 = cu->per_cu->dwarf2_per_objfile;
24494 struct objfile *objfile = dwarf2_per_objfile->objfile;
24495 struct line_header *lh = cu->line_header;
24496 bfd *abfd;
24497 const gdb_byte *mac_ptr, *mac_end;
24498 struct macro_source_file *current_file = 0;
24499 enum dwarf_macro_record_type macinfo_type;
24500 unsigned int offset_size = cu->header.offset_size;
24501 const gdb_byte *opcode_definitions[256];
24502 void **slot;
24503 struct dwarf2_section_info *section;
24504 const char *section_name;
24505
24506 if (cu->dwo_unit != NULL)
24507 {
24508 if (section_is_gnu)
24509 {
24510 section = &cu->dwo_unit->dwo_file->sections.macro;
24511 section_name = ".debug_macro.dwo";
24512 }
24513 else
24514 {
24515 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24516 section_name = ".debug_macinfo.dwo";
24517 }
24518 }
24519 else
24520 {
24521 if (section_is_gnu)
24522 {
24523 section = &dwarf2_per_objfile->macro;
24524 section_name = ".debug_macro";
24525 }
24526 else
24527 {
24528 section = &dwarf2_per_objfile->macinfo;
24529 section_name = ".debug_macinfo";
24530 }
24531 }
24532
24533 dwarf2_read_section (objfile, section);
24534 if (section->buffer == NULL)
24535 {
24536 complaint (&symfile_complaints, _("missing %s section"), section_name);
24537 return;
24538 }
24539 abfd = get_section_bfd_owner (section);
24540
24541 /* First pass: Find the name of the base filename.
24542 This filename is needed in order to process all macros whose definition
24543 (or undefinition) comes from the command line. These macros are defined
24544 before the first DW_MACINFO_start_file entry, and yet still need to be
24545 associated to the base file.
24546
24547 To determine the base file name, we scan the macro definitions until we
24548 reach the first DW_MACINFO_start_file entry. We then initialize
24549 CURRENT_FILE accordingly so that any macro definition found before the
24550 first DW_MACINFO_start_file can still be associated to the base file. */
24551
24552 mac_ptr = section->buffer + offset;
24553 mac_end = section->buffer + section->size;
24554
24555 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24556 &offset_size, section_is_gnu);
24557 if (mac_ptr == NULL)
24558 {
24559 /* We already issued a complaint. */
24560 return;
24561 }
24562
24563 do
24564 {
24565 /* Do we at least have room for a macinfo type byte? */
24566 if (mac_ptr >= mac_end)
24567 {
24568 /* Complaint is printed during the second pass as GDB will probably
24569 stop the first pass earlier upon finding
24570 DW_MACINFO_start_file. */
24571 break;
24572 }
24573
24574 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24575 mac_ptr++;
24576
24577 /* Note that we rely on the fact that the corresponding GNU and
24578 DWARF constants are the same. */
24579 DIAGNOSTIC_PUSH
24580 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24581 switch (macinfo_type)
24582 {
24583 /* A zero macinfo type indicates the end of the macro
24584 information. */
24585 case 0:
24586 break;
24587
24588 case DW_MACRO_define:
24589 case DW_MACRO_undef:
24590 /* Only skip the data by MAC_PTR. */
24591 {
24592 unsigned int bytes_read;
24593
24594 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24595 mac_ptr += bytes_read;
24596 read_direct_string (abfd, mac_ptr, &bytes_read);
24597 mac_ptr += bytes_read;
24598 }
24599 break;
24600
24601 case DW_MACRO_start_file:
24602 {
24603 unsigned int bytes_read;
24604 int line, file;
24605
24606 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24607 mac_ptr += bytes_read;
24608 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24609 mac_ptr += bytes_read;
24610
24611 current_file = macro_start_file (file, line, current_file, lh);
24612 }
24613 break;
24614
24615 case DW_MACRO_end_file:
24616 /* No data to skip by MAC_PTR. */
24617 break;
24618
24619 case DW_MACRO_define_strp:
24620 case DW_MACRO_undef_strp:
24621 case DW_MACRO_define_sup:
24622 case DW_MACRO_undef_sup:
24623 {
24624 unsigned int bytes_read;
24625
24626 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24627 mac_ptr += bytes_read;
24628 mac_ptr += offset_size;
24629 }
24630 break;
24631
24632 case DW_MACRO_import:
24633 case DW_MACRO_import_sup:
24634 /* Note that, according to the spec, a transparent include
24635 chain cannot call DW_MACRO_start_file. So, we can just
24636 skip this opcode. */
24637 mac_ptr += offset_size;
24638 break;
24639
24640 case DW_MACINFO_vendor_ext:
24641 /* Only skip the data by MAC_PTR. */
24642 if (!section_is_gnu)
24643 {
24644 unsigned int bytes_read;
24645
24646 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24647 mac_ptr += bytes_read;
24648 read_direct_string (abfd, mac_ptr, &bytes_read);
24649 mac_ptr += bytes_read;
24650 }
24651 /* FALLTHROUGH */
24652
24653 default:
24654 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24655 mac_ptr, mac_end, abfd, offset_size,
24656 section);
24657 if (mac_ptr == NULL)
24658 return;
24659 break;
24660 }
24661 DIAGNOSTIC_POP
24662 } while (macinfo_type != 0 && current_file == NULL);
24663
24664 /* Second pass: Process all entries.
24665
24666 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24667 command-line macro definitions/undefinitions. This flag is unset when we
24668 reach the first DW_MACINFO_start_file entry. */
24669
24670 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24671 htab_eq_pointer,
24672 NULL, xcalloc, xfree));
24673 mac_ptr = section->buffer + offset;
24674 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24675 *slot = (void *) mac_ptr;
24676 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24677 abfd, mac_ptr, mac_end,
24678 current_file, lh, section,
24679 section_is_gnu, 0, offset_size,
24680 include_hash.get ());
24681 }
24682
24683 /* Check if the attribute's form is a DW_FORM_block*
24684 if so return true else false. */
24685
24686 static int
24687 attr_form_is_block (const struct attribute *attr)
24688 {
24689 return (attr == NULL ? 0 :
24690 attr->form == DW_FORM_block1
24691 || attr->form == DW_FORM_block2
24692 || attr->form == DW_FORM_block4
24693 || attr->form == DW_FORM_block
24694 || attr->form == DW_FORM_exprloc);
24695 }
24696
24697 /* Return non-zero if ATTR's value is a section offset --- classes
24698 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24699 You may use DW_UNSND (attr) to retrieve such offsets.
24700
24701 Section 7.5.4, "Attribute Encodings", explains that no attribute
24702 may have a value that belongs to more than one of these classes; it
24703 would be ambiguous if we did, because we use the same forms for all
24704 of them. */
24705
24706 static int
24707 attr_form_is_section_offset (const struct attribute *attr)
24708 {
24709 return (attr->form == DW_FORM_data4
24710 || attr->form == DW_FORM_data8
24711 || attr->form == DW_FORM_sec_offset);
24712 }
24713
24714 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24715 zero otherwise. When this function returns true, you can apply
24716 dwarf2_get_attr_constant_value to it.
24717
24718 However, note that for some attributes you must check
24719 attr_form_is_section_offset before using this test. DW_FORM_data4
24720 and DW_FORM_data8 are members of both the constant class, and of
24721 the classes that contain offsets into other debug sections
24722 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24723 that, if an attribute's can be either a constant or one of the
24724 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24725 taken as section offsets, not constants.
24726
24727 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24728 cannot handle that. */
24729
24730 static int
24731 attr_form_is_constant (const struct attribute *attr)
24732 {
24733 switch (attr->form)
24734 {
24735 case DW_FORM_sdata:
24736 case DW_FORM_udata:
24737 case DW_FORM_data1:
24738 case DW_FORM_data2:
24739 case DW_FORM_data4:
24740 case DW_FORM_data8:
24741 case DW_FORM_implicit_const:
24742 return 1;
24743 default:
24744 return 0;
24745 }
24746 }
24747
24748
24749 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24750 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24751
24752 static int
24753 attr_form_is_ref (const struct attribute *attr)
24754 {
24755 switch (attr->form)
24756 {
24757 case DW_FORM_ref_addr:
24758 case DW_FORM_ref1:
24759 case DW_FORM_ref2:
24760 case DW_FORM_ref4:
24761 case DW_FORM_ref8:
24762 case DW_FORM_ref_udata:
24763 case DW_FORM_GNU_ref_alt:
24764 return 1;
24765 default:
24766 return 0;
24767 }
24768 }
24769
24770 /* Return the .debug_loc section to use for CU.
24771 For DWO files use .debug_loc.dwo. */
24772
24773 static struct dwarf2_section_info *
24774 cu_debug_loc_section (struct dwarf2_cu *cu)
24775 {
24776 struct dwarf2_per_objfile *dwarf2_per_objfile
24777 = cu->per_cu->dwarf2_per_objfile;
24778
24779 if (cu->dwo_unit)
24780 {
24781 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24782
24783 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24784 }
24785 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24786 : &dwarf2_per_objfile->loc);
24787 }
24788
24789 /* A helper function that fills in a dwarf2_loclist_baton. */
24790
24791 static void
24792 fill_in_loclist_baton (struct dwarf2_cu *cu,
24793 struct dwarf2_loclist_baton *baton,
24794 const struct attribute *attr)
24795 {
24796 struct dwarf2_per_objfile *dwarf2_per_objfile
24797 = cu->per_cu->dwarf2_per_objfile;
24798 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24799
24800 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24801
24802 baton->per_cu = cu->per_cu;
24803 gdb_assert (baton->per_cu);
24804 /* We don't know how long the location list is, but make sure we
24805 don't run off the edge of the section. */
24806 baton->size = section->size - DW_UNSND (attr);
24807 baton->data = section->buffer + DW_UNSND (attr);
24808 baton->base_address = cu->base_address;
24809 baton->from_dwo = cu->dwo_unit != NULL;
24810 }
24811
24812 static void
24813 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24814 struct dwarf2_cu *cu, int is_block)
24815 {
24816 struct dwarf2_per_objfile *dwarf2_per_objfile
24817 = cu->per_cu->dwarf2_per_objfile;
24818 struct objfile *objfile = dwarf2_per_objfile->objfile;
24819 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24820
24821 if (attr_form_is_section_offset (attr)
24822 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24823 the section. If so, fall through to the complaint in the
24824 other branch. */
24825 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24826 {
24827 struct dwarf2_loclist_baton *baton;
24828
24829 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24830
24831 fill_in_loclist_baton (cu, baton, attr);
24832
24833 if (cu->base_known == 0)
24834 complaint (&symfile_complaints,
24835 _("Location list used without "
24836 "specifying the CU base address."));
24837
24838 SYMBOL_ACLASS_INDEX (sym) = (is_block
24839 ? dwarf2_loclist_block_index
24840 : dwarf2_loclist_index);
24841 SYMBOL_LOCATION_BATON (sym) = baton;
24842 }
24843 else
24844 {
24845 struct dwarf2_locexpr_baton *baton;
24846
24847 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24848 baton->per_cu = cu->per_cu;
24849 gdb_assert (baton->per_cu);
24850
24851 if (attr_form_is_block (attr))
24852 {
24853 /* Note that we're just copying the block's data pointer
24854 here, not the actual data. We're still pointing into the
24855 info_buffer for SYM's objfile; right now we never release
24856 that buffer, but when we do clean up properly this may
24857 need to change. */
24858 baton->size = DW_BLOCK (attr)->size;
24859 baton->data = DW_BLOCK (attr)->data;
24860 }
24861 else
24862 {
24863 dwarf2_invalid_attrib_class_complaint ("location description",
24864 SYMBOL_NATURAL_NAME (sym));
24865 baton->size = 0;
24866 }
24867
24868 SYMBOL_ACLASS_INDEX (sym) = (is_block
24869 ? dwarf2_locexpr_block_index
24870 : dwarf2_locexpr_index);
24871 SYMBOL_LOCATION_BATON (sym) = baton;
24872 }
24873 }
24874
24875 /* Return the OBJFILE associated with the compilation unit CU. If CU
24876 came from a separate debuginfo file, then the master objfile is
24877 returned. */
24878
24879 struct objfile *
24880 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24881 {
24882 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24883
24884 /* Return the master objfile, so that we can report and look up the
24885 correct file containing this variable. */
24886 if (objfile->separate_debug_objfile_backlink)
24887 objfile = objfile->separate_debug_objfile_backlink;
24888
24889 return objfile;
24890 }
24891
24892 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24893 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24894 CU_HEADERP first. */
24895
24896 static const struct comp_unit_head *
24897 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24898 struct dwarf2_per_cu_data *per_cu)
24899 {
24900 const gdb_byte *info_ptr;
24901
24902 if (per_cu->cu)
24903 return &per_cu->cu->header;
24904
24905 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24906
24907 memset (cu_headerp, 0, sizeof (*cu_headerp));
24908 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24909 rcuh_kind::COMPILE);
24910
24911 return cu_headerp;
24912 }
24913
24914 /* Return the address size given in the compilation unit header for CU. */
24915
24916 int
24917 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24918 {
24919 struct comp_unit_head cu_header_local;
24920 const struct comp_unit_head *cu_headerp;
24921
24922 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24923
24924 return cu_headerp->addr_size;
24925 }
24926
24927 /* Return the offset size given in the compilation unit header for CU. */
24928
24929 int
24930 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24931 {
24932 struct comp_unit_head cu_header_local;
24933 const struct comp_unit_head *cu_headerp;
24934
24935 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24936
24937 return cu_headerp->offset_size;
24938 }
24939
24940 /* See its dwarf2loc.h declaration. */
24941
24942 int
24943 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24944 {
24945 struct comp_unit_head cu_header_local;
24946 const struct comp_unit_head *cu_headerp;
24947
24948 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24949
24950 if (cu_headerp->version == 2)
24951 return cu_headerp->addr_size;
24952 else
24953 return cu_headerp->offset_size;
24954 }
24955
24956 /* Return the text offset of the CU. The returned offset comes from
24957 this CU's objfile. If this objfile came from a separate debuginfo
24958 file, then the offset may be different from the corresponding
24959 offset in the parent objfile. */
24960
24961 CORE_ADDR
24962 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24963 {
24964 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24965
24966 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24967 }
24968
24969 /* Return DWARF version number of PER_CU. */
24970
24971 short
24972 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24973 {
24974 return per_cu->dwarf_version;
24975 }
24976
24977 /* Locate the .debug_info compilation unit from CU's objfile which contains
24978 the DIE at OFFSET. Raises an error on failure. */
24979
24980 static struct dwarf2_per_cu_data *
24981 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24982 unsigned int offset_in_dwz,
24983 struct dwarf2_per_objfile *dwarf2_per_objfile)
24984 {
24985 struct dwarf2_per_cu_data *this_cu;
24986 int low, high;
24987 const sect_offset *cu_off;
24988
24989 low = 0;
24990 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24991 while (high > low)
24992 {
24993 struct dwarf2_per_cu_data *mid_cu;
24994 int mid = low + (high - low) / 2;
24995
24996 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24997 cu_off = &mid_cu->sect_off;
24998 if (mid_cu->is_dwz > offset_in_dwz
24999 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25000 high = mid;
25001 else
25002 low = mid + 1;
25003 }
25004 gdb_assert (low == high);
25005 this_cu = dwarf2_per_objfile->all_comp_units[low];
25006 cu_off = &this_cu->sect_off;
25007 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25008 {
25009 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25010 error (_("Dwarf Error: could not find partial DIE containing "
25011 "offset %s [in module %s]"),
25012 sect_offset_str (sect_off),
25013 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25014
25015 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25016 <= sect_off);
25017 return dwarf2_per_objfile->all_comp_units[low-1];
25018 }
25019 else
25020 {
25021 this_cu = dwarf2_per_objfile->all_comp_units[low];
25022 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25023 && sect_off >= this_cu->sect_off + this_cu->length)
25024 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25025 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25026 return this_cu;
25027 }
25028 }
25029
25030 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25031
25032 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25033 : per_cu (per_cu_),
25034 mark (0),
25035 has_loclist (0),
25036 checked_producer (0),
25037 producer_is_gxx_lt_4_6 (0),
25038 producer_is_gcc_lt_4_3 (0),
25039 producer_is_icc_lt_14 (0),
25040 processing_has_namespace_info (0)
25041 {
25042 per_cu->cu = this;
25043 }
25044
25045 /* Destroy a dwarf2_cu. */
25046
25047 dwarf2_cu::~dwarf2_cu ()
25048 {
25049 per_cu->cu = NULL;
25050 }
25051
25052 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25053
25054 static void
25055 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25056 enum language pretend_language)
25057 {
25058 struct attribute *attr;
25059
25060 /* Set the language we're debugging. */
25061 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25062 if (attr)
25063 set_cu_language (DW_UNSND (attr), cu);
25064 else
25065 {
25066 cu->language = pretend_language;
25067 cu->language_defn = language_def (cu->language);
25068 }
25069
25070 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25071 }
25072
25073 /* Increase the age counter on each cached compilation unit, and free
25074 any that are too old. */
25075
25076 static void
25077 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25078 {
25079 struct dwarf2_per_cu_data *per_cu, **last_chain;
25080
25081 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25082 per_cu = dwarf2_per_objfile->read_in_chain;
25083 while (per_cu != NULL)
25084 {
25085 per_cu->cu->last_used ++;
25086 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25087 dwarf2_mark (per_cu->cu);
25088 per_cu = per_cu->cu->read_in_chain;
25089 }
25090
25091 per_cu = dwarf2_per_objfile->read_in_chain;
25092 last_chain = &dwarf2_per_objfile->read_in_chain;
25093 while (per_cu != NULL)
25094 {
25095 struct dwarf2_per_cu_data *next_cu;
25096
25097 next_cu = per_cu->cu->read_in_chain;
25098
25099 if (!per_cu->cu->mark)
25100 {
25101 delete per_cu->cu;
25102 *last_chain = next_cu;
25103 }
25104 else
25105 last_chain = &per_cu->cu->read_in_chain;
25106
25107 per_cu = next_cu;
25108 }
25109 }
25110
25111 /* Remove a single compilation unit from the cache. */
25112
25113 static void
25114 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25115 {
25116 struct dwarf2_per_cu_data *per_cu, **last_chain;
25117 struct dwarf2_per_objfile *dwarf2_per_objfile
25118 = target_per_cu->dwarf2_per_objfile;
25119
25120 per_cu = dwarf2_per_objfile->read_in_chain;
25121 last_chain = &dwarf2_per_objfile->read_in_chain;
25122 while (per_cu != NULL)
25123 {
25124 struct dwarf2_per_cu_data *next_cu;
25125
25126 next_cu = per_cu->cu->read_in_chain;
25127
25128 if (per_cu == target_per_cu)
25129 {
25130 delete per_cu->cu;
25131 per_cu->cu = NULL;
25132 *last_chain = next_cu;
25133 break;
25134 }
25135 else
25136 last_chain = &per_cu->cu->read_in_chain;
25137
25138 per_cu = next_cu;
25139 }
25140 }
25141
25142 /* Release all extra memory associated with OBJFILE. */
25143
25144 void
25145 dwarf2_free_objfile (struct objfile *objfile)
25146 {
25147 struct dwarf2_per_objfile *dwarf2_per_objfile
25148 = get_dwarf2_per_objfile (objfile);
25149
25150 delete dwarf2_per_objfile;
25151 }
25152
25153 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25154 We store these in a hash table separate from the DIEs, and preserve them
25155 when the DIEs are flushed out of cache.
25156
25157 The CU "per_cu" pointer is needed because offset alone is not enough to
25158 uniquely identify the type. A file may have multiple .debug_types sections,
25159 or the type may come from a DWO file. Furthermore, while it's more logical
25160 to use per_cu->section+offset, with Fission the section with the data is in
25161 the DWO file but we don't know that section at the point we need it.
25162 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25163 because we can enter the lookup routine, get_die_type_at_offset, from
25164 outside this file, and thus won't necessarily have PER_CU->cu.
25165 Fortunately, PER_CU is stable for the life of the objfile. */
25166
25167 struct dwarf2_per_cu_offset_and_type
25168 {
25169 const struct dwarf2_per_cu_data *per_cu;
25170 sect_offset sect_off;
25171 struct type *type;
25172 };
25173
25174 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25175
25176 static hashval_t
25177 per_cu_offset_and_type_hash (const void *item)
25178 {
25179 const struct dwarf2_per_cu_offset_and_type *ofs
25180 = (const struct dwarf2_per_cu_offset_and_type *) item;
25181
25182 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25183 }
25184
25185 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25186
25187 static int
25188 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25189 {
25190 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25191 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25192 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25193 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25194
25195 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25196 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25197 }
25198
25199 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25200 table if necessary. For convenience, return TYPE.
25201
25202 The DIEs reading must have careful ordering to:
25203 * Not cause infite loops trying to read in DIEs as a prerequisite for
25204 reading current DIE.
25205 * Not trying to dereference contents of still incompletely read in types
25206 while reading in other DIEs.
25207 * Enable referencing still incompletely read in types just by a pointer to
25208 the type without accessing its fields.
25209
25210 Therefore caller should follow these rules:
25211 * Try to fetch any prerequisite types we may need to build this DIE type
25212 before building the type and calling set_die_type.
25213 * After building type call set_die_type for current DIE as soon as
25214 possible before fetching more types to complete the current type.
25215 * Make the type as complete as possible before fetching more types. */
25216
25217 static struct type *
25218 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25219 {
25220 struct dwarf2_per_objfile *dwarf2_per_objfile
25221 = cu->per_cu->dwarf2_per_objfile;
25222 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25223 struct objfile *objfile = dwarf2_per_objfile->objfile;
25224 struct attribute *attr;
25225 struct dynamic_prop prop;
25226
25227 /* For Ada types, make sure that the gnat-specific data is always
25228 initialized (if not already set). There are a few types where
25229 we should not be doing so, because the type-specific area is
25230 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25231 where the type-specific area is used to store the floatformat).
25232 But this is not a problem, because the gnat-specific information
25233 is actually not needed for these types. */
25234 if (need_gnat_info (cu)
25235 && TYPE_CODE (type) != TYPE_CODE_FUNC
25236 && TYPE_CODE (type) != TYPE_CODE_FLT
25237 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25238 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25239 && TYPE_CODE (type) != TYPE_CODE_METHOD
25240 && !HAVE_GNAT_AUX_INFO (type))
25241 INIT_GNAT_SPECIFIC (type);
25242
25243 /* Read DW_AT_allocated and set in type. */
25244 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25245 if (attr_form_is_block (attr))
25246 {
25247 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25248 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25249 }
25250 else if (attr != NULL)
25251 {
25252 complaint (&symfile_complaints,
25253 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25254 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25255 sect_offset_str (die->sect_off));
25256 }
25257
25258 /* Read DW_AT_associated and set in type. */
25259 attr = dwarf2_attr (die, DW_AT_associated, cu);
25260 if (attr_form_is_block (attr))
25261 {
25262 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25263 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25264 }
25265 else if (attr != NULL)
25266 {
25267 complaint (&symfile_complaints,
25268 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25269 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25270 sect_offset_str (die->sect_off));
25271 }
25272
25273 /* Read DW_AT_data_location and set in type. */
25274 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25275 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25276 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25277
25278 if (dwarf2_per_objfile->die_type_hash == NULL)
25279 {
25280 dwarf2_per_objfile->die_type_hash =
25281 htab_create_alloc_ex (127,
25282 per_cu_offset_and_type_hash,
25283 per_cu_offset_and_type_eq,
25284 NULL,
25285 &objfile->objfile_obstack,
25286 hashtab_obstack_allocate,
25287 dummy_obstack_deallocate);
25288 }
25289
25290 ofs.per_cu = cu->per_cu;
25291 ofs.sect_off = die->sect_off;
25292 ofs.type = type;
25293 slot = (struct dwarf2_per_cu_offset_and_type **)
25294 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25295 if (*slot)
25296 complaint (&symfile_complaints,
25297 _("A problem internal to GDB: DIE %s has type already set"),
25298 sect_offset_str (die->sect_off));
25299 *slot = XOBNEW (&objfile->objfile_obstack,
25300 struct dwarf2_per_cu_offset_and_type);
25301 **slot = ofs;
25302 return type;
25303 }
25304
25305 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25306 or return NULL if the die does not have a saved type. */
25307
25308 static struct type *
25309 get_die_type_at_offset (sect_offset sect_off,
25310 struct dwarf2_per_cu_data *per_cu)
25311 {
25312 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25313 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25314
25315 if (dwarf2_per_objfile->die_type_hash == NULL)
25316 return NULL;
25317
25318 ofs.per_cu = per_cu;
25319 ofs.sect_off = sect_off;
25320 slot = ((struct dwarf2_per_cu_offset_and_type *)
25321 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25322 if (slot)
25323 return slot->type;
25324 else
25325 return NULL;
25326 }
25327
25328 /* Look up the type for DIE in CU in die_type_hash,
25329 or return NULL if DIE does not have a saved type. */
25330
25331 static struct type *
25332 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25333 {
25334 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25335 }
25336
25337 /* Add a dependence relationship from CU to REF_PER_CU. */
25338
25339 static void
25340 dwarf2_add_dependence (struct dwarf2_cu *cu,
25341 struct dwarf2_per_cu_data *ref_per_cu)
25342 {
25343 void **slot;
25344
25345 if (cu->dependencies == NULL)
25346 cu->dependencies
25347 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25348 NULL, &cu->comp_unit_obstack,
25349 hashtab_obstack_allocate,
25350 dummy_obstack_deallocate);
25351
25352 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25353 if (*slot == NULL)
25354 *slot = ref_per_cu;
25355 }
25356
25357 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25358 Set the mark field in every compilation unit in the
25359 cache that we must keep because we are keeping CU. */
25360
25361 static int
25362 dwarf2_mark_helper (void **slot, void *data)
25363 {
25364 struct dwarf2_per_cu_data *per_cu;
25365
25366 per_cu = (struct dwarf2_per_cu_data *) *slot;
25367
25368 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25369 reading of the chain. As such dependencies remain valid it is not much
25370 useful to track and undo them during QUIT cleanups. */
25371 if (per_cu->cu == NULL)
25372 return 1;
25373
25374 if (per_cu->cu->mark)
25375 return 1;
25376 per_cu->cu->mark = 1;
25377
25378 if (per_cu->cu->dependencies != NULL)
25379 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25380
25381 return 1;
25382 }
25383
25384 /* Set the mark field in CU and in every other compilation unit in the
25385 cache that we must keep because we are keeping CU. */
25386
25387 static void
25388 dwarf2_mark (struct dwarf2_cu *cu)
25389 {
25390 if (cu->mark)
25391 return;
25392 cu->mark = 1;
25393 if (cu->dependencies != NULL)
25394 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25395 }
25396
25397 static void
25398 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25399 {
25400 while (per_cu)
25401 {
25402 per_cu->cu->mark = 0;
25403 per_cu = per_cu->cu->read_in_chain;
25404 }
25405 }
25406
25407 /* Trivial hash function for partial_die_info: the hash value of a DIE
25408 is its offset in .debug_info for this objfile. */
25409
25410 static hashval_t
25411 partial_die_hash (const void *item)
25412 {
25413 const struct partial_die_info *part_die
25414 = (const struct partial_die_info *) item;
25415
25416 return to_underlying (part_die->sect_off);
25417 }
25418
25419 /* Trivial comparison function for partial_die_info structures: two DIEs
25420 are equal if they have the same offset. */
25421
25422 static int
25423 partial_die_eq (const void *item_lhs, const void *item_rhs)
25424 {
25425 const struct partial_die_info *part_die_lhs
25426 = (const struct partial_die_info *) item_lhs;
25427 const struct partial_die_info *part_die_rhs
25428 = (const struct partial_die_info *) item_rhs;
25429
25430 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25431 }
25432
25433 static struct cmd_list_element *set_dwarf_cmdlist;
25434 static struct cmd_list_element *show_dwarf_cmdlist;
25435
25436 static void
25437 set_dwarf_cmd (const char *args, int from_tty)
25438 {
25439 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25440 gdb_stdout);
25441 }
25442
25443 static void
25444 show_dwarf_cmd (const char *args, int from_tty)
25445 {
25446 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25447 }
25448
25449 int dwarf_always_disassemble;
25450
25451 static void
25452 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25453 struct cmd_list_element *c, const char *value)
25454 {
25455 fprintf_filtered (file,
25456 _("Whether to always disassemble "
25457 "DWARF expressions is %s.\n"),
25458 value);
25459 }
25460
25461 static void
25462 show_check_physname (struct ui_file *file, int from_tty,
25463 struct cmd_list_element *c, const char *value)
25464 {
25465 fprintf_filtered (file,
25466 _("Whether to check \"physname\" is %s.\n"),
25467 value);
25468 }
25469
25470 void
25471 _initialize_dwarf2_read (void)
25472 {
25473
25474 dwarf2_objfile_data_key = register_objfile_data ();
25475
25476 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25477 Set DWARF specific variables.\n\
25478 Configure DWARF variables such as the cache size"),
25479 &set_dwarf_cmdlist, "maintenance set dwarf ",
25480 0/*allow-unknown*/, &maintenance_set_cmdlist);
25481
25482 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25483 Show DWARF specific variables\n\
25484 Show DWARF variables such as the cache size"),
25485 &show_dwarf_cmdlist, "maintenance show dwarf ",
25486 0/*allow-unknown*/, &maintenance_show_cmdlist);
25487
25488 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25489 &dwarf_max_cache_age, _("\
25490 Set the upper bound on the age of cached DWARF compilation units."), _("\
25491 Show the upper bound on the age of cached DWARF compilation units."), _("\
25492 A higher limit means that cached compilation units will be stored\n\
25493 in memory longer, and more total memory will be used. Zero disables\n\
25494 caching, which can slow down startup."),
25495 NULL,
25496 show_dwarf_max_cache_age,
25497 &set_dwarf_cmdlist,
25498 &show_dwarf_cmdlist);
25499
25500 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25501 &dwarf_always_disassemble, _("\
25502 Set whether `info address' always disassembles DWARF expressions."), _("\
25503 Show whether `info address' always disassembles DWARF expressions."), _("\
25504 When enabled, DWARF expressions are always printed in an assembly-like\n\
25505 syntax. When disabled, expressions will be printed in a more\n\
25506 conversational style, when possible."),
25507 NULL,
25508 show_dwarf_always_disassemble,
25509 &set_dwarf_cmdlist,
25510 &show_dwarf_cmdlist);
25511
25512 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25513 Set debugging of the DWARF reader."), _("\
25514 Show debugging of the DWARF reader."), _("\
25515 When enabled (non-zero), debugging messages are printed during DWARF\n\
25516 reading and symtab expansion. A value of 1 (one) provides basic\n\
25517 information. A value greater than 1 provides more verbose information."),
25518 NULL,
25519 NULL,
25520 &setdebuglist, &showdebuglist);
25521
25522 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25523 Set debugging of the DWARF DIE reader."), _("\
25524 Show debugging of the DWARF DIE reader."), _("\
25525 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25526 The value is the maximum depth to print."),
25527 NULL,
25528 NULL,
25529 &setdebuglist, &showdebuglist);
25530
25531 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25532 Set debugging of the dwarf line reader."), _("\
25533 Show debugging of the dwarf line reader."), _("\
25534 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25535 A value of 1 (one) provides basic information.\n\
25536 A value greater than 1 provides more verbose information."),
25537 NULL,
25538 NULL,
25539 &setdebuglist, &showdebuglist);
25540
25541 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25542 Set cross-checking of \"physname\" code against demangler."), _("\
25543 Show cross-checking of \"physname\" code against demangler."), _("\
25544 When enabled, GDB's internal \"physname\" code is checked against\n\
25545 the demangler."),
25546 NULL, show_check_physname,
25547 &setdebuglist, &showdebuglist);
25548
25549 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25550 no_class, &use_deprecated_index_sections, _("\
25551 Set whether to use deprecated gdb_index sections."), _("\
25552 Show whether to use deprecated gdb_index sections."), _("\
25553 When enabled, deprecated .gdb_index sections are used anyway.\n\
25554 Normally they are ignored either because of a missing feature or\n\
25555 performance issue.\n\
25556 Warning: This option must be enabled before gdb reads the file."),
25557 NULL,
25558 NULL,
25559 &setlist, &showlist);
25560
25561 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25562 &dwarf2_locexpr_funcs);
25563 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25564 &dwarf2_loclist_funcs);
25565
25566 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25567 &dwarf2_block_frame_base_locexpr_funcs);
25568 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25569 &dwarf2_block_frame_base_loclist_funcs);
25570
25571 #if GDB_SELF_TEST
25572 selftests::register_test ("dw2_expand_symtabs_matching",
25573 selftests::dw2_expand_symtabs_matching::run_test);
25574 #endif
25575 }
This page took 0.742131 seconds and 4 git commands to generate.