2011-12-05 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "gdb-demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47 #include "hashtab.h"
48 #include "command.h"
49 #include "gdbcmd.h"
50 #include "block.h"
51 #include "addrmap.h"
52 #include "typeprint.h"
53 #include "jv-lang.h"
54 #include "psympriv.h"
55 #include "exceptions.h"
56 #include "gdb_stat.h"
57 #include "completer.h"
58 #include "vec.h"
59 #include "c-lang.h"
60 #include "valprint.h"
61 #include <ctype.h>
62
63 #include <fcntl.h>
64 #include "gdb_string.h"
65 #include "gdb_assert.h"
66 #include <sys/types.h>
67 #ifdef HAVE_ZLIB_H
68 #include <zlib.h>
69 #endif
70 #ifdef HAVE_MMAP
71 #include <sys/mman.h>
72 #ifndef MAP_FAILED
73 #define MAP_FAILED ((void *) -1)
74 #endif
75 #endif
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 #if 0
81 /* .debug_info header for a compilation unit
82 Because of alignment constraints, this structure has padding and cannot
83 be mapped directly onto the beginning of the .debug_info section. */
84 typedef struct comp_unit_header
85 {
86 unsigned int length; /* length of the .debug_info
87 contribution */
88 unsigned short version; /* version number -- 2 for DWARF
89 version 2 */
90 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
91 unsigned char addr_size; /* byte size of an address -- 4 */
92 }
93 _COMP_UNIT_HEADER;
94 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
95 #endif
96
97 /* .debug_line statement program prologue
98 Because of alignment constraints, this structure has padding and cannot
99 be mapped directly onto the beginning of the .debug_info section. */
100 typedef struct statement_prologue
101 {
102 unsigned int total_length; /* byte length of the statement
103 information */
104 unsigned short version; /* version number -- 2 for DWARF
105 version 2 */
106 unsigned int prologue_length; /* # bytes between prologue &
107 stmt program */
108 unsigned char minimum_instruction_length; /* byte size of
109 smallest instr */
110 unsigned char default_is_stmt; /* initial value of is_stmt
111 register */
112 char line_base;
113 unsigned char line_range;
114 unsigned char opcode_base; /* number assigned to first special
115 opcode */
116 unsigned char *standard_opcode_lengths;
117 }
118 _STATEMENT_PROLOGUE;
119
120 /* When non-zero, dump DIEs after they are read in. */
121 static int dwarf2_die_debug = 0;
122
123 /* When non-zero, cross-check physname against demangler. */
124 static int check_physname = 0;
125
126 static int pagesize;
127
128 /* When set, the file that we're processing is known to have debugging
129 info for C++ namespaces. GCC 3.3.x did not produce this information,
130 but later versions do. */
131
132 static int processing_has_namespace_info;
133
134 static const struct objfile_data *dwarf2_objfile_data_key;
135
136 struct dwarf2_section_info
137 {
138 asection *asection;
139 gdb_byte *buffer;
140 bfd_size_type size;
141 /* Not NULL if the section was actually mmapped. */
142 void *map_addr;
143 /* Page aligned size of mmapped area. */
144 bfd_size_type map_len;
145 /* True if we have tried to read this section. */
146 int readin;
147 };
148
149 typedef struct dwarf2_section_info dwarf2_section_info_def;
150 DEF_VEC_O (dwarf2_section_info_def);
151
152 /* All offsets in the index are of this type. It must be
153 architecture-independent. */
154 typedef uint32_t offset_type;
155
156 DEF_VEC_I (offset_type);
157
158 /* A description of the mapped index. The file format is described in
159 a comment by the code that writes the index. */
160 struct mapped_index
161 {
162 /* Index data format version. */
163 int version;
164
165 /* The total length of the buffer. */
166 off_t total_size;
167
168 /* A pointer to the address table data. */
169 const gdb_byte *address_table;
170
171 /* Size of the address table data in bytes. */
172 offset_type address_table_size;
173
174 /* The symbol table, implemented as a hash table. */
175 const offset_type *symbol_table;
176
177 /* Size in slots, each slot is 2 offset_types. */
178 offset_type symbol_table_slots;
179
180 /* A pointer to the constant pool. */
181 const char *constant_pool;
182 };
183
184 struct dwarf2_per_objfile
185 {
186 struct dwarf2_section_info info;
187 struct dwarf2_section_info abbrev;
188 struct dwarf2_section_info line;
189 struct dwarf2_section_info loc;
190 struct dwarf2_section_info macinfo;
191 struct dwarf2_section_info macro;
192 struct dwarf2_section_info str;
193 struct dwarf2_section_info ranges;
194 struct dwarf2_section_info frame;
195 struct dwarf2_section_info eh_frame;
196 struct dwarf2_section_info gdb_index;
197
198 VEC (dwarf2_section_info_def) *types;
199
200 /* Back link. */
201 struct objfile *objfile;
202
203 /* A list of all the compilation units. This is used to locate
204 the target compilation unit of a particular reference. */
205 struct dwarf2_per_cu_data **all_comp_units;
206
207 /* The number of compilation units in ALL_COMP_UNITS. */
208 int n_comp_units;
209
210 /* The number of .debug_types-related CUs. */
211 int n_type_comp_units;
212
213 /* The .debug_types-related CUs. */
214 struct dwarf2_per_cu_data **type_comp_units;
215
216 /* A chain of compilation units that are currently read in, so that
217 they can be freed later. */
218 struct dwarf2_per_cu_data *read_in_chain;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* A flag indicating wether this objfile has a section loaded at a
225 VMA of 0. */
226 int has_section_at_zero;
227
228 /* True if we are using the mapped index,
229 or we are faking it for OBJF_READNOW's sake. */
230 unsigned char using_index;
231
232 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
233 struct mapped_index *index_table;
234
235 /* When using index_table, this keeps track of all quick_file_names entries.
236 TUs can share line table entries with CUs or other TUs, and there can be
237 a lot more TUs than unique line tables, so we maintain a separate table
238 of all line table entries to support the sharing. */
239 htab_t quick_file_names_table;
240
241 /* Set during partial symbol reading, to prevent queueing of full
242 symbols. */
243 int reading_partial_symbols;
244
245 /* Table mapping type .debug_info DIE offsets to types.
246 This is NULL if not allocated yet.
247 It (currently) makes sense to allocate debug_types_type_hash lazily.
248 To keep things simple we allocate both lazily. */
249 htab_t debug_info_type_hash;
250
251 /* Table mapping type .debug_types DIE offsets to types.
252 This is NULL if not allocated yet. */
253 htab_t debug_types_type_hash;
254 };
255
256 static struct dwarf2_per_objfile *dwarf2_per_objfile;
257
258 /* Default names of the debugging sections. */
259
260 /* Note that if the debugging section has been compressed, it might
261 have a name like .zdebug_info. */
262
263 static const struct dwarf2_debug_sections dwarf2_elf_names = {
264 { ".debug_info", ".zdebug_info" },
265 { ".debug_abbrev", ".zdebug_abbrev" },
266 { ".debug_line", ".zdebug_line" },
267 { ".debug_loc", ".zdebug_loc" },
268 { ".debug_macinfo", ".zdebug_macinfo" },
269 { ".debug_macro", ".zdebug_macro" },
270 { ".debug_str", ".zdebug_str" },
271 { ".debug_ranges", ".zdebug_ranges" },
272 { ".debug_types", ".zdebug_types" },
273 { ".debug_frame", ".zdebug_frame" },
274 { ".eh_frame", NULL },
275 { ".gdb_index", ".zgdb_index" },
276 23
277 };
278
279 /* local data types */
280
281 /* We hold several abbreviation tables in memory at the same time. */
282 #ifndef ABBREV_HASH_SIZE
283 #define ABBREV_HASH_SIZE 121
284 #endif
285
286 /* The data in a compilation unit header, after target2host
287 translation, looks like this. */
288 struct comp_unit_head
289 {
290 unsigned int length;
291 short version;
292 unsigned char addr_size;
293 unsigned char signed_addr_p;
294 unsigned int abbrev_offset;
295
296 /* Size of file offsets; either 4 or 8. */
297 unsigned int offset_size;
298
299 /* Size of the length field; either 4 or 12. */
300 unsigned int initial_length_size;
301
302 /* Offset to the first byte of this compilation unit header in the
303 .debug_info section, for resolving relative reference dies. */
304 unsigned int offset;
305
306 /* Offset to first die in this cu from the start of the cu.
307 This will be the first byte following the compilation unit header. */
308 unsigned int first_die_offset;
309 };
310
311 /* Type used for delaying computation of method physnames.
312 See comments for compute_delayed_physnames. */
313 struct delayed_method_info
314 {
315 /* The type to which the method is attached, i.e., its parent class. */
316 struct type *type;
317
318 /* The index of the method in the type's function fieldlists. */
319 int fnfield_index;
320
321 /* The index of the method in the fieldlist. */
322 int index;
323
324 /* The name of the DIE. */
325 const char *name;
326
327 /* The DIE associated with this method. */
328 struct die_info *die;
329 };
330
331 typedef struct delayed_method_info delayed_method_info;
332 DEF_VEC_O (delayed_method_info);
333
334 /* Internal state when decoding a particular compilation unit. */
335 struct dwarf2_cu
336 {
337 /* The objfile containing this compilation unit. */
338 struct objfile *objfile;
339
340 /* The header of the compilation unit. */
341 struct comp_unit_head header;
342
343 /* Base address of this compilation unit. */
344 CORE_ADDR base_address;
345
346 /* Non-zero if base_address has been set. */
347 int base_known;
348
349 struct function_range *first_fn, *last_fn, *cached_fn;
350
351 /* The language we are debugging. */
352 enum language language;
353 const struct language_defn *language_defn;
354
355 const char *producer;
356
357 /* The generic symbol table building routines have separate lists for
358 file scope symbols and all all other scopes (local scopes). So
359 we need to select the right one to pass to add_symbol_to_list().
360 We do it by keeping a pointer to the correct list in list_in_scope.
361
362 FIXME: The original dwarf code just treated the file scope as the
363 first local scope, and all other local scopes as nested local
364 scopes, and worked fine. Check to see if we really need to
365 distinguish these in buildsym.c. */
366 struct pending **list_in_scope;
367
368 /* DWARF abbreviation table associated with this compilation unit. */
369 struct abbrev_info **dwarf2_abbrevs;
370
371 /* Storage for the abbrev table. */
372 struct obstack abbrev_obstack;
373
374 /* Hash table holding all the loaded partial DIEs. */
375 htab_t partial_dies;
376
377 /* Storage for things with the same lifetime as this read-in compilation
378 unit, including partial DIEs. */
379 struct obstack comp_unit_obstack;
380
381 /* When multiple dwarf2_cu structures are living in memory, this field
382 chains them all together, so that they can be released efficiently.
383 We will probably also want a generation counter so that most-recently-used
384 compilation units are cached... */
385 struct dwarf2_per_cu_data *read_in_chain;
386
387 /* Backchain to our per_cu entry if the tree has been built. */
388 struct dwarf2_per_cu_data *per_cu;
389
390 /* How many compilation units ago was this CU last referenced? */
391 int last_used;
392
393 /* A hash table of die offsets for following references. */
394 htab_t die_hash;
395
396 /* Full DIEs if read in. */
397 struct die_info *dies;
398
399 /* A set of pointers to dwarf2_per_cu_data objects for compilation
400 units referenced by this one. Only set during full symbol processing;
401 partial symbol tables do not have dependencies. */
402 htab_t dependencies;
403
404 /* Header data from the line table, during full symbol processing. */
405 struct line_header *line_header;
406
407 /* A list of methods which need to have physnames computed
408 after all type information has been read. */
409 VEC (delayed_method_info) *method_list;
410
411 /* To be copied to symtab->call_site_htab. */
412 htab_t call_site_htab;
413
414 /* Mark used when releasing cached dies. */
415 unsigned int mark : 1;
416
417 /* This flag will be set if this compilation unit might include
418 inter-compilation-unit references. */
419 unsigned int has_form_ref_addr : 1;
420
421 /* This flag will be set if this compilation unit includes any
422 DW_TAG_namespace DIEs. If we know that there are explicit
423 DIEs for namespaces, we don't need to try to infer them
424 from mangled names. */
425 unsigned int has_namespace_info : 1;
426
427 /* This CU references .debug_loc. See the symtab->locations_valid field.
428 This test is imperfect as there may exist optimized debug code not using
429 any location list and still facing inlining issues if handled as
430 unoptimized code. For a future better test see GCC PR other/32998. */
431
432 unsigned int has_loclist : 1;
433 };
434
435 /* Persistent data held for a compilation unit, even when not
436 processing it. We put a pointer to this structure in the
437 read_symtab_private field of the psymtab. If we encounter
438 inter-compilation-unit references, we also maintain a sorted
439 list of all compilation units. */
440
441 struct dwarf2_per_cu_data
442 {
443 /* The start offset and length of this compilation unit. 2**29-1
444 bytes should suffice to store the length of any compilation unit
445 - if it doesn't, GDB will fall over anyway.
446 NOTE: Unlike comp_unit_head.length, this length includes
447 initial_length_size. */
448 unsigned int offset;
449 unsigned int length : 29;
450
451 /* Flag indicating this compilation unit will be read in before
452 any of the current compilation units are processed. */
453 unsigned int queued : 1;
454
455 /* This flag will be set if we need to load absolutely all DIEs
456 for this compilation unit, instead of just the ones we think
457 are interesting. It gets set if we look for a DIE in the
458 hash table and don't find it. */
459 unsigned int load_all_dies : 1;
460
461 /* Non-null if this CU is from .debug_types; in which case it points
462 to the section. Otherwise it's from .debug_info. */
463 struct dwarf2_section_info *debug_type_section;
464
465 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
466 of the CU cache it gets reset to NULL again. */
467 struct dwarf2_cu *cu;
468
469 /* The corresponding objfile. */
470 struct objfile *objfile;
471
472 /* When using partial symbol tables, the 'psymtab' field is active.
473 Otherwise the 'quick' field is active. */
474 union
475 {
476 /* The partial symbol table associated with this compilation unit,
477 or NULL for partial units (which do not have an associated
478 symtab). */
479 struct partial_symtab *psymtab;
480
481 /* Data needed by the "quick" functions. */
482 struct dwarf2_per_cu_quick_data *quick;
483 } v;
484 };
485
486 /* Entry in the signatured_types hash table. */
487
488 struct signatured_type
489 {
490 ULONGEST signature;
491
492 /* Offset in .debug_types of the type defined by this TU. */
493 unsigned int type_offset;
494
495 /* The CU(/TU) of this type. */
496 struct dwarf2_per_cu_data per_cu;
497 };
498
499 /* Struct used to pass misc. parameters to read_die_and_children, et
500 al. which are used for both .debug_info and .debug_types dies.
501 All parameters here are unchanging for the life of the call. This
502 struct exists to abstract away the constant parameters of die
503 reading. */
504
505 struct die_reader_specs
506 {
507 /* The bfd of this objfile. */
508 bfd* abfd;
509
510 /* The CU of the DIE we are parsing. */
511 struct dwarf2_cu *cu;
512
513 /* Pointer to start of section buffer.
514 This is either the start of .debug_info or .debug_types. */
515 const gdb_byte *buffer;
516 };
517
518 /* The line number information for a compilation unit (found in the
519 .debug_line section) begins with a "statement program header",
520 which contains the following information. */
521 struct line_header
522 {
523 unsigned int total_length;
524 unsigned short version;
525 unsigned int header_length;
526 unsigned char minimum_instruction_length;
527 unsigned char maximum_ops_per_instruction;
528 unsigned char default_is_stmt;
529 int line_base;
530 unsigned char line_range;
531 unsigned char opcode_base;
532
533 /* standard_opcode_lengths[i] is the number of operands for the
534 standard opcode whose value is i. This means that
535 standard_opcode_lengths[0] is unused, and the last meaningful
536 element is standard_opcode_lengths[opcode_base - 1]. */
537 unsigned char *standard_opcode_lengths;
538
539 /* The include_directories table. NOTE! These strings are not
540 allocated with xmalloc; instead, they are pointers into
541 debug_line_buffer. If you try to free them, `free' will get
542 indigestion. */
543 unsigned int num_include_dirs, include_dirs_size;
544 char **include_dirs;
545
546 /* The file_names table. NOTE! These strings are not allocated
547 with xmalloc; instead, they are pointers into debug_line_buffer.
548 Don't try to free them directly. */
549 unsigned int num_file_names, file_names_size;
550 struct file_entry
551 {
552 char *name;
553 unsigned int dir_index;
554 unsigned int mod_time;
555 unsigned int length;
556 int included_p; /* Non-zero if referenced by the Line Number Program. */
557 struct symtab *symtab; /* The associated symbol table, if any. */
558 } *file_names;
559
560 /* The start and end of the statement program following this
561 header. These point into dwarf2_per_objfile->line_buffer. */
562 gdb_byte *statement_program_start, *statement_program_end;
563 };
564
565 /* When we construct a partial symbol table entry we only
566 need this much information. */
567 struct partial_die_info
568 {
569 /* Offset of this DIE. */
570 unsigned int offset;
571
572 /* DWARF-2 tag for this DIE. */
573 ENUM_BITFIELD(dwarf_tag) tag : 16;
574
575 /* Assorted flags describing the data found in this DIE. */
576 unsigned int has_children : 1;
577 unsigned int is_external : 1;
578 unsigned int is_declaration : 1;
579 unsigned int has_type : 1;
580 unsigned int has_specification : 1;
581 unsigned int has_pc_info : 1;
582
583 /* Flag set if the SCOPE field of this structure has been
584 computed. */
585 unsigned int scope_set : 1;
586
587 /* Flag set if the DIE has a byte_size attribute. */
588 unsigned int has_byte_size : 1;
589
590 /* Flag set if any of the DIE's children are template arguments. */
591 unsigned int has_template_arguments : 1;
592
593 /* Flag set if fixup_partial_die has been called on this die. */
594 unsigned int fixup_called : 1;
595
596 /* The name of this DIE. Normally the value of DW_AT_name, but
597 sometimes a default name for unnamed DIEs. */
598 char *name;
599
600 /* The linkage name, if present. */
601 const char *linkage_name;
602
603 /* The scope to prepend to our children. This is generally
604 allocated on the comp_unit_obstack, so will disappear
605 when this compilation unit leaves the cache. */
606 char *scope;
607
608 /* The location description associated with this DIE, if any. */
609 struct dwarf_block *locdesc;
610
611 /* If HAS_PC_INFO, the PC range associated with this DIE. */
612 CORE_ADDR lowpc;
613 CORE_ADDR highpc;
614
615 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
616 DW_AT_sibling, if any. */
617 /* NOTE: This member isn't strictly necessary, read_partial_die could
618 return DW_AT_sibling values to its caller load_partial_dies. */
619 gdb_byte *sibling;
620
621 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
622 DW_AT_specification (or DW_AT_abstract_origin or
623 DW_AT_extension). */
624 unsigned int spec_offset;
625
626 /* Pointers to this DIE's parent, first child, and next sibling,
627 if any. */
628 struct partial_die_info *die_parent, *die_child, *die_sibling;
629 };
630
631 /* This data structure holds the information of an abbrev. */
632 struct abbrev_info
633 {
634 unsigned int number; /* number identifying abbrev */
635 enum dwarf_tag tag; /* dwarf tag */
636 unsigned short has_children; /* boolean */
637 unsigned short num_attrs; /* number of attributes */
638 struct attr_abbrev *attrs; /* an array of attribute descriptions */
639 struct abbrev_info *next; /* next in chain */
640 };
641
642 struct attr_abbrev
643 {
644 ENUM_BITFIELD(dwarf_attribute) name : 16;
645 ENUM_BITFIELD(dwarf_form) form : 16;
646 };
647
648 /* Attributes have a name and a value. */
649 struct attribute
650 {
651 ENUM_BITFIELD(dwarf_attribute) name : 16;
652 ENUM_BITFIELD(dwarf_form) form : 15;
653
654 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
655 field should be in u.str (existing only for DW_STRING) but it is kept
656 here for better struct attribute alignment. */
657 unsigned int string_is_canonical : 1;
658
659 union
660 {
661 char *str;
662 struct dwarf_block *blk;
663 ULONGEST unsnd;
664 LONGEST snd;
665 CORE_ADDR addr;
666 struct signatured_type *signatured_type;
667 }
668 u;
669 };
670
671 /* This data structure holds a complete die structure. */
672 struct die_info
673 {
674 /* DWARF-2 tag for this DIE. */
675 ENUM_BITFIELD(dwarf_tag) tag : 16;
676
677 /* Number of attributes */
678 unsigned char num_attrs;
679
680 /* True if we're presently building the full type name for the
681 type derived from this DIE. */
682 unsigned char building_fullname : 1;
683
684 /* Abbrev number */
685 unsigned int abbrev;
686
687 /* Offset in .debug_info or .debug_types section. */
688 unsigned int offset;
689
690 /* The dies in a compilation unit form an n-ary tree. PARENT
691 points to this die's parent; CHILD points to the first child of
692 this node; and all the children of a given node are chained
693 together via their SIBLING fields. */
694 struct die_info *child; /* Its first child, if any. */
695 struct die_info *sibling; /* Its next sibling, if any. */
696 struct die_info *parent; /* Its parent, if any. */
697
698 /* An array of attributes, with NUM_ATTRS elements. There may be
699 zero, but it's not common and zero-sized arrays are not
700 sufficiently portable C. */
701 struct attribute attrs[1];
702 };
703
704 struct function_range
705 {
706 const char *name;
707 CORE_ADDR lowpc, highpc;
708 int seen_line;
709 struct function_range *next;
710 };
711
712 /* Get at parts of an attribute structure. */
713
714 #define DW_STRING(attr) ((attr)->u.str)
715 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
716 #define DW_UNSND(attr) ((attr)->u.unsnd)
717 #define DW_BLOCK(attr) ((attr)->u.blk)
718 #define DW_SND(attr) ((attr)->u.snd)
719 #define DW_ADDR(attr) ((attr)->u.addr)
720 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
721
722 /* Blocks are a bunch of untyped bytes. */
723 struct dwarf_block
724 {
725 unsigned int size;
726
727 /* Valid only if SIZE is not zero. */
728 gdb_byte *data;
729 };
730
731 #ifndef ATTR_ALLOC_CHUNK
732 #define ATTR_ALLOC_CHUNK 4
733 #endif
734
735 /* Allocate fields for structs, unions and enums in this size. */
736 #ifndef DW_FIELD_ALLOC_CHUNK
737 #define DW_FIELD_ALLOC_CHUNK 4
738 #endif
739
740 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
741 but this would require a corresponding change in unpack_field_as_long
742 and friends. */
743 static int bits_per_byte = 8;
744
745 /* The routines that read and process dies for a C struct or C++ class
746 pass lists of data member fields and lists of member function fields
747 in an instance of a field_info structure, as defined below. */
748 struct field_info
749 {
750 /* List of data member and baseclasses fields. */
751 struct nextfield
752 {
753 struct nextfield *next;
754 int accessibility;
755 int virtuality;
756 struct field field;
757 }
758 *fields, *baseclasses;
759
760 /* Number of fields (including baseclasses). */
761 int nfields;
762
763 /* Number of baseclasses. */
764 int nbaseclasses;
765
766 /* Set if the accesibility of one of the fields is not public. */
767 int non_public_fields;
768
769 /* Member function fields array, entries are allocated in the order they
770 are encountered in the object file. */
771 struct nextfnfield
772 {
773 struct nextfnfield *next;
774 struct fn_field fnfield;
775 }
776 *fnfields;
777
778 /* Member function fieldlist array, contains name of possibly overloaded
779 member function, number of overloaded member functions and a pointer
780 to the head of the member function field chain. */
781 struct fnfieldlist
782 {
783 char *name;
784 int length;
785 struct nextfnfield *head;
786 }
787 *fnfieldlists;
788
789 /* Number of entries in the fnfieldlists array. */
790 int nfnfields;
791
792 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
793 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
794 struct typedef_field_list
795 {
796 struct typedef_field field;
797 struct typedef_field_list *next;
798 }
799 *typedef_field_list;
800 unsigned typedef_field_list_count;
801 };
802
803 /* One item on the queue of compilation units to read in full symbols
804 for. */
805 struct dwarf2_queue_item
806 {
807 struct dwarf2_per_cu_data *per_cu;
808 struct dwarf2_queue_item *next;
809 };
810
811 /* The current queue. */
812 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
813
814 /* Loaded secondary compilation units are kept in memory until they
815 have not been referenced for the processing of this many
816 compilation units. Set this to zero to disable caching. Cache
817 sizes of up to at least twenty will improve startup time for
818 typical inter-CU-reference binaries, at an obvious memory cost. */
819 static int dwarf2_max_cache_age = 5;
820 static void
821 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
822 struct cmd_list_element *c, const char *value)
823 {
824 fprintf_filtered (file, _("The upper bound on the age of cached "
825 "dwarf2 compilation units is %s.\n"),
826 value);
827 }
828
829
830 /* Various complaints about symbol reading that don't abort the process. */
831
832 static void
833 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
834 {
835 complaint (&symfile_complaints,
836 _("statement list doesn't fit in .debug_line section"));
837 }
838
839 static void
840 dwarf2_debug_line_missing_file_complaint (void)
841 {
842 complaint (&symfile_complaints,
843 _(".debug_line section has line data without a file"));
844 }
845
846 static void
847 dwarf2_debug_line_missing_end_sequence_complaint (void)
848 {
849 complaint (&symfile_complaints,
850 _(".debug_line section has line "
851 "program sequence without an end"));
852 }
853
854 static void
855 dwarf2_complex_location_expr_complaint (void)
856 {
857 complaint (&symfile_complaints, _("location expression too complex"));
858 }
859
860 static void
861 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
862 int arg3)
863 {
864 complaint (&symfile_complaints,
865 _("const value length mismatch for '%s', got %d, expected %d"),
866 arg1, arg2, arg3);
867 }
868
869 static void
870 dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
871 {
872 complaint (&symfile_complaints,
873 _("macro info runs off end of `%s' section"),
874 section->asection->name);
875 }
876
877 static void
878 dwarf2_macro_malformed_definition_complaint (const char *arg1)
879 {
880 complaint (&symfile_complaints,
881 _("macro debug info contains a "
882 "malformed macro definition:\n`%s'"),
883 arg1);
884 }
885
886 static void
887 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
888 {
889 complaint (&symfile_complaints,
890 _("invalid attribute class or form for '%s' in '%s'"),
891 arg1, arg2);
892 }
893
894 /* local function prototypes */
895
896 static void dwarf2_locate_sections (bfd *, asection *, void *);
897
898 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
899 struct objfile *);
900
901 static void dwarf2_find_base_address (struct die_info *die,
902 struct dwarf2_cu *cu);
903
904 static void dwarf2_build_psymtabs_hard (struct objfile *);
905
906 static void scan_partial_symbols (struct partial_die_info *,
907 CORE_ADDR *, CORE_ADDR *,
908 int, struct dwarf2_cu *);
909
910 static void add_partial_symbol (struct partial_die_info *,
911 struct dwarf2_cu *);
912
913 static void add_partial_namespace (struct partial_die_info *pdi,
914 CORE_ADDR *lowpc, CORE_ADDR *highpc,
915 int need_pc, struct dwarf2_cu *cu);
916
917 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
918 CORE_ADDR *highpc, int need_pc,
919 struct dwarf2_cu *cu);
920
921 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
922 struct dwarf2_cu *cu);
923
924 static void add_partial_subprogram (struct partial_die_info *pdi,
925 CORE_ADDR *lowpc, CORE_ADDR *highpc,
926 int need_pc, struct dwarf2_cu *cu);
927
928 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
929 gdb_byte *buffer, gdb_byte *info_ptr,
930 bfd *abfd, struct dwarf2_cu *cu);
931
932 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
933
934 static void psymtab_to_symtab_1 (struct partial_symtab *);
935
936 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
937
938 static void dwarf2_free_abbrev_table (void *);
939
940 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
941
942 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
943 struct dwarf2_cu *);
944
945 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
946 struct dwarf2_cu *);
947
948 static struct partial_die_info *load_partial_dies (bfd *,
949 gdb_byte *, gdb_byte *,
950 int, struct dwarf2_cu *);
951
952 static gdb_byte *read_partial_die (struct partial_die_info *,
953 struct abbrev_info *abbrev,
954 unsigned int, bfd *,
955 gdb_byte *, gdb_byte *,
956 struct dwarf2_cu *);
957
958 static struct partial_die_info *find_partial_die (unsigned int,
959 struct dwarf2_cu *);
960
961 static void fixup_partial_die (struct partial_die_info *,
962 struct dwarf2_cu *);
963
964 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
965 bfd *, gdb_byte *, struct dwarf2_cu *);
966
967 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
968 bfd *, gdb_byte *, struct dwarf2_cu *);
969
970 static unsigned int read_1_byte (bfd *, gdb_byte *);
971
972 static int read_1_signed_byte (bfd *, gdb_byte *);
973
974 static unsigned int read_2_bytes (bfd *, gdb_byte *);
975
976 static unsigned int read_4_bytes (bfd *, gdb_byte *);
977
978 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
979
980 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
981 unsigned int *);
982
983 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
984
985 static LONGEST read_checked_initial_length_and_offset
986 (bfd *, gdb_byte *, const struct comp_unit_head *,
987 unsigned int *, unsigned int *);
988
989 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
990 unsigned int *);
991
992 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
993
994 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
995
996 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
997
998 static char *read_indirect_string (bfd *, gdb_byte *,
999 const struct comp_unit_head *,
1000 unsigned int *);
1001
1002 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1003
1004 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1005
1006 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
1007
1008 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1009
1010 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1011 struct dwarf2_cu *);
1012
1013 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1014 unsigned int,
1015 struct dwarf2_cu *);
1016
1017 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1018 struct dwarf2_cu *cu);
1019
1020 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1021
1022 static struct die_info *die_specification (struct die_info *die,
1023 struct dwarf2_cu **);
1024
1025 static void free_line_header (struct line_header *lh);
1026
1027 static void add_file_name (struct line_header *, char *, unsigned int,
1028 unsigned int, unsigned int);
1029
1030 static struct line_header *(dwarf_decode_line_header
1031 (unsigned int offset,
1032 bfd *abfd, struct dwarf2_cu *cu));
1033
1034 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
1035 struct dwarf2_cu *, struct partial_symtab *);
1036
1037 static void dwarf2_start_subfile (char *, const char *, const char *);
1038
1039 static struct symbol *new_symbol (struct die_info *, struct type *,
1040 struct dwarf2_cu *);
1041
1042 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1043 struct dwarf2_cu *, struct symbol *);
1044
1045 static void dwarf2_const_value (struct attribute *, struct symbol *,
1046 struct dwarf2_cu *);
1047
1048 static void dwarf2_const_value_attr (struct attribute *attr,
1049 struct type *type,
1050 const char *name,
1051 struct obstack *obstack,
1052 struct dwarf2_cu *cu, long *value,
1053 gdb_byte **bytes,
1054 struct dwarf2_locexpr_baton **baton);
1055
1056 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1057
1058 static int need_gnat_info (struct dwarf2_cu *);
1059
1060 static struct type *die_descriptive_type (struct die_info *,
1061 struct dwarf2_cu *);
1062
1063 static void set_descriptive_type (struct type *, struct die_info *,
1064 struct dwarf2_cu *);
1065
1066 static struct type *die_containing_type (struct die_info *,
1067 struct dwarf2_cu *);
1068
1069 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1070 struct dwarf2_cu *);
1071
1072 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1073
1074 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1075
1076 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1077
1078 static char *typename_concat (struct obstack *obs, const char *prefix,
1079 const char *suffix, int physname,
1080 struct dwarf2_cu *cu);
1081
1082 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1083
1084 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1085
1086 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1087
1088 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1089
1090 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1091
1092 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1093 struct dwarf2_cu *, struct partial_symtab *);
1094
1095 static int dwarf2_get_pc_bounds (struct die_info *,
1096 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1097 struct partial_symtab *);
1098
1099 static void get_scope_pc_bounds (struct die_info *,
1100 CORE_ADDR *, CORE_ADDR *,
1101 struct dwarf2_cu *);
1102
1103 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1104 CORE_ADDR, struct dwarf2_cu *);
1105
1106 static void dwarf2_add_field (struct field_info *, struct die_info *,
1107 struct dwarf2_cu *);
1108
1109 static void dwarf2_attach_fields_to_type (struct field_info *,
1110 struct type *, struct dwarf2_cu *);
1111
1112 static void dwarf2_add_member_fn (struct field_info *,
1113 struct die_info *, struct type *,
1114 struct dwarf2_cu *);
1115
1116 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1117 struct type *,
1118 struct dwarf2_cu *);
1119
1120 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1121
1122 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1123
1124 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1125
1126 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1127
1128 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1129
1130 static struct type *read_module_type (struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
1133 static const char *namespace_name (struct die_info *die,
1134 int *is_anonymous, struct dwarf2_cu *);
1135
1136 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1137
1138 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1139
1140 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1141 struct dwarf2_cu *);
1142
1143 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1144
1145 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1146 gdb_byte *info_ptr,
1147 gdb_byte **new_info_ptr,
1148 struct die_info *parent);
1149
1150 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1151 gdb_byte *info_ptr,
1152 gdb_byte **new_info_ptr,
1153 struct die_info *parent);
1154
1155 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1156 gdb_byte *info_ptr,
1157 gdb_byte **new_info_ptr,
1158 struct die_info *parent);
1159
1160 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1161 struct die_info **, gdb_byte *,
1162 int *);
1163
1164 static void process_die (struct die_info *, struct dwarf2_cu *);
1165
1166 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1167 struct obstack *);
1168
1169 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1170
1171 static const char *dwarf2_full_name (char *name,
1172 struct die_info *die,
1173 struct dwarf2_cu *cu);
1174
1175 static struct die_info *dwarf2_extension (struct die_info *die,
1176 struct dwarf2_cu **);
1177
1178 static char *dwarf_tag_name (unsigned int);
1179
1180 static char *dwarf_attr_name (unsigned int);
1181
1182 static char *dwarf_form_name (unsigned int);
1183
1184 static char *dwarf_bool_name (unsigned int);
1185
1186 static char *dwarf_type_encoding_name (unsigned int);
1187
1188 #if 0
1189 static char *dwarf_cfi_name (unsigned int);
1190 #endif
1191
1192 static struct die_info *sibling_die (struct die_info *);
1193
1194 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1195
1196 static void dump_die_for_error (struct die_info *);
1197
1198 static void dump_die_1 (struct ui_file *, int level, int max_level,
1199 struct die_info *);
1200
1201 /*static*/ void dump_die (struct die_info *, int max_level);
1202
1203 static void store_in_ref_table (struct die_info *,
1204 struct dwarf2_cu *);
1205
1206 static int is_ref_attr (struct attribute *);
1207
1208 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1209
1210 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1211
1212 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1213 struct attribute *,
1214 struct dwarf2_cu **);
1215
1216 static struct die_info *follow_die_ref (struct die_info *,
1217 struct attribute *,
1218 struct dwarf2_cu **);
1219
1220 static struct die_info *follow_die_sig (struct die_info *,
1221 struct attribute *,
1222 struct dwarf2_cu **);
1223
1224 static struct signatured_type *lookup_signatured_type_at_offset
1225 (struct objfile *objfile,
1226 struct dwarf2_section_info *section,
1227 unsigned int offset);
1228
1229 static void read_signatured_type_at_offset (struct objfile *objfile,
1230 struct dwarf2_section_info *sect,
1231 unsigned int offset);
1232
1233 static void read_signatured_type (struct objfile *,
1234 struct signatured_type *type_sig);
1235
1236 /* memory allocation interface */
1237
1238 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1239
1240 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1241
1242 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1243
1244 static void initialize_cu_func_list (struct dwarf2_cu *);
1245
1246 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1247 struct dwarf2_cu *);
1248
1249 static void dwarf_decode_macros (struct line_header *, unsigned int,
1250 char *, bfd *, struct dwarf2_cu *,
1251 struct dwarf2_section_info *,
1252 int);
1253
1254 static int attr_form_is_block (struct attribute *);
1255
1256 static int attr_form_is_section_offset (struct attribute *);
1257
1258 static int attr_form_is_constant (struct attribute *);
1259
1260 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1261 struct dwarf2_loclist_baton *baton,
1262 struct attribute *attr);
1263
1264 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1265 struct symbol *sym,
1266 struct dwarf2_cu *cu);
1267
1268 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1269 struct abbrev_info *abbrev,
1270 struct dwarf2_cu *cu);
1271
1272 static void free_stack_comp_unit (void *);
1273
1274 static hashval_t partial_die_hash (const void *item);
1275
1276 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1277
1278 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1279 (unsigned int offset, struct objfile *objfile);
1280
1281 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1282 (unsigned int offset, struct objfile *objfile);
1283
1284 static void init_one_comp_unit (struct dwarf2_cu *cu,
1285 struct objfile *objfile);
1286
1287 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1288 struct die_info *comp_unit_die);
1289
1290 static void free_one_comp_unit (void *);
1291
1292 static void free_cached_comp_units (void *);
1293
1294 static void age_cached_comp_units (void);
1295
1296 static void free_one_cached_comp_unit (void *);
1297
1298 static struct type *set_die_type (struct die_info *, struct type *,
1299 struct dwarf2_cu *);
1300
1301 static void create_all_comp_units (struct objfile *);
1302
1303 static int create_debug_types_hash_table (struct objfile *objfile);
1304
1305 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1306 struct objfile *);
1307
1308 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1309
1310 static void dwarf2_add_dependence (struct dwarf2_cu *,
1311 struct dwarf2_per_cu_data *);
1312
1313 static void dwarf2_mark (struct dwarf2_cu *);
1314
1315 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1316
1317 static struct type *get_die_type_at_offset (unsigned int,
1318 struct dwarf2_per_cu_data *per_cu);
1319
1320 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1321
1322 static void dwarf2_release_queue (void *dummy);
1323
1324 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1325 struct objfile *objfile);
1326
1327 static void process_queue (struct objfile *objfile);
1328
1329 static void find_file_and_directory (struct die_info *die,
1330 struct dwarf2_cu *cu,
1331 char **name, char **comp_dir);
1332
1333 static char *file_full_name (int file, struct line_header *lh,
1334 const char *comp_dir);
1335
1336 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1337 gdb_byte *info_ptr,
1338 gdb_byte *buffer,
1339 unsigned int buffer_size,
1340 bfd *abfd,
1341 int is_debug_type_section);
1342
1343 static void init_cu_die_reader (struct die_reader_specs *reader,
1344 struct dwarf2_cu *cu);
1345
1346 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1347
1348 #if WORDS_BIGENDIAN
1349
1350 /* Convert VALUE between big- and little-endian. */
1351 static offset_type
1352 byte_swap (offset_type value)
1353 {
1354 offset_type result;
1355
1356 result = (value & 0xff) << 24;
1357 result |= (value & 0xff00) << 8;
1358 result |= (value & 0xff0000) >> 8;
1359 result |= (value & 0xff000000) >> 24;
1360 return result;
1361 }
1362
1363 #define MAYBE_SWAP(V) byte_swap (V)
1364
1365 #else
1366 #define MAYBE_SWAP(V) (V)
1367 #endif /* WORDS_BIGENDIAN */
1368
1369 /* The suffix for an index file. */
1370 #define INDEX_SUFFIX ".gdb-index"
1371
1372 static const char *dwarf2_physname (char *name, struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 /* Try to locate the sections we need for DWARF 2 debugging
1376 information and return true if we have enough to do something.
1377 NAMES points to the dwarf2 section names, or is NULL if the standard
1378 ELF names are used. */
1379
1380 int
1381 dwarf2_has_info (struct objfile *objfile,
1382 const struct dwarf2_debug_sections *names)
1383 {
1384 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1385 if (!dwarf2_per_objfile)
1386 {
1387 /* Initialize per-objfile state. */
1388 struct dwarf2_per_objfile *data
1389 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1390
1391 memset (data, 0, sizeof (*data));
1392 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1393 dwarf2_per_objfile = data;
1394
1395 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1396 (void *) names);
1397 dwarf2_per_objfile->objfile = objfile;
1398 }
1399 return (dwarf2_per_objfile->info.asection != NULL
1400 && dwarf2_per_objfile->abbrev.asection != NULL);
1401 }
1402
1403 /* When loading sections, we look either for uncompressed section or for
1404 compressed section names. */
1405
1406 static int
1407 section_is_p (const char *section_name,
1408 const struct dwarf2_section_names *names)
1409 {
1410 if (names->normal != NULL
1411 && strcmp (section_name, names->normal) == 0)
1412 return 1;
1413 if (names->compressed != NULL
1414 && strcmp (section_name, names->compressed) == 0)
1415 return 1;
1416 return 0;
1417 }
1418
1419 /* This function is mapped across the sections and remembers the
1420 offset and size of each of the debugging sections we are interested
1421 in. */
1422
1423 static void
1424 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1425 {
1426 const struct dwarf2_debug_sections *names;
1427
1428 if (vnames == NULL)
1429 names = &dwarf2_elf_names;
1430 else
1431 names = (const struct dwarf2_debug_sections *) vnames;
1432
1433 if (section_is_p (sectp->name, &names->info))
1434 {
1435 dwarf2_per_objfile->info.asection = sectp;
1436 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1437 }
1438 else if (section_is_p (sectp->name, &names->abbrev))
1439 {
1440 dwarf2_per_objfile->abbrev.asection = sectp;
1441 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1442 }
1443 else if (section_is_p (sectp->name, &names->line))
1444 {
1445 dwarf2_per_objfile->line.asection = sectp;
1446 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1447 }
1448 else if (section_is_p (sectp->name, &names->loc))
1449 {
1450 dwarf2_per_objfile->loc.asection = sectp;
1451 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1452 }
1453 else if (section_is_p (sectp->name, &names->macinfo))
1454 {
1455 dwarf2_per_objfile->macinfo.asection = sectp;
1456 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1457 }
1458 else if (section_is_p (sectp->name, &names->macro))
1459 {
1460 dwarf2_per_objfile->macro.asection = sectp;
1461 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1462 }
1463 else if (section_is_p (sectp->name, &names->str))
1464 {
1465 dwarf2_per_objfile->str.asection = sectp;
1466 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1467 }
1468 else if (section_is_p (sectp->name, &names->frame))
1469 {
1470 dwarf2_per_objfile->frame.asection = sectp;
1471 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1472 }
1473 else if (section_is_p (sectp->name, &names->eh_frame))
1474 {
1475 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1476
1477 if (aflag & SEC_HAS_CONTENTS)
1478 {
1479 dwarf2_per_objfile->eh_frame.asection = sectp;
1480 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1481 }
1482 }
1483 else if (section_is_p (sectp->name, &names->ranges))
1484 {
1485 dwarf2_per_objfile->ranges.asection = sectp;
1486 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1487 }
1488 else if (section_is_p (sectp->name, &names->types))
1489 {
1490 struct dwarf2_section_info type_section;
1491
1492 memset (&type_section, 0, sizeof (type_section));
1493 type_section.asection = sectp;
1494 type_section.size = bfd_get_section_size (sectp);
1495
1496 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1497 &type_section);
1498 }
1499 else if (section_is_p (sectp->name, &names->gdb_index))
1500 {
1501 dwarf2_per_objfile->gdb_index.asection = sectp;
1502 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1503 }
1504
1505 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1506 && bfd_section_vma (abfd, sectp) == 0)
1507 dwarf2_per_objfile->has_section_at_zero = 1;
1508 }
1509
1510 /* Decompress a section that was compressed using zlib. Store the
1511 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1512
1513 static void
1514 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1515 gdb_byte **outbuf, bfd_size_type *outsize)
1516 {
1517 bfd *abfd = objfile->obfd;
1518 #ifndef HAVE_ZLIB_H
1519 error (_("Support for zlib-compressed DWARF data (from '%s') "
1520 "is disabled in this copy of GDB"),
1521 bfd_get_filename (abfd));
1522 #else
1523 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1524 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1525 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1526 bfd_size_type uncompressed_size;
1527 gdb_byte *uncompressed_buffer;
1528 z_stream strm;
1529 int rc;
1530 int header_size = 12;
1531
1532 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1533 || bfd_bread (compressed_buffer,
1534 compressed_size, abfd) != compressed_size)
1535 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1536 bfd_get_filename (abfd));
1537
1538 /* Read the zlib header. In this case, it should be "ZLIB" followed
1539 by the uncompressed section size, 8 bytes in big-endian order. */
1540 if (compressed_size < header_size
1541 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1542 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1543 bfd_get_filename (abfd));
1544 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1545 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1546 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1547 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1548 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1549 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1550 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1551 uncompressed_size += compressed_buffer[11];
1552
1553 /* It is possible the section consists of several compressed
1554 buffers concatenated together, so we uncompress in a loop. */
1555 strm.zalloc = NULL;
1556 strm.zfree = NULL;
1557 strm.opaque = NULL;
1558 strm.avail_in = compressed_size - header_size;
1559 strm.next_in = (Bytef*) compressed_buffer + header_size;
1560 strm.avail_out = uncompressed_size;
1561 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1562 uncompressed_size);
1563 rc = inflateInit (&strm);
1564 while (strm.avail_in > 0)
1565 {
1566 if (rc != Z_OK)
1567 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1568 bfd_get_filename (abfd), rc);
1569 strm.next_out = ((Bytef*) uncompressed_buffer
1570 + (uncompressed_size - strm.avail_out));
1571 rc = inflate (&strm, Z_FINISH);
1572 if (rc != Z_STREAM_END)
1573 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1574 bfd_get_filename (abfd), rc);
1575 rc = inflateReset (&strm);
1576 }
1577 rc = inflateEnd (&strm);
1578 if (rc != Z_OK
1579 || strm.avail_out != 0)
1580 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1581 bfd_get_filename (abfd), rc);
1582
1583 do_cleanups (cleanup);
1584 *outbuf = uncompressed_buffer;
1585 *outsize = uncompressed_size;
1586 #endif
1587 }
1588
1589 /* A helper function that decides whether a section is empty. */
1590
1591 static int
1592 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1593 {
1594 return info->asection == NULL || info->size == 0;
1595 }
1596
1597 /* Read the contents of the section SECTP from object file specified by
1598 OBJFILE, store info about the section into INFO.
1599 If the section is compressed, uncompress it before returning. */
1600
1601 static void
1602 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1603 {
1604 bfd *abfd = objfile->obfd;
1605 asection *sectp = info->asection;
1606 gdb_byte *buf, *retbuf;
1607 unsigned char header[4];
1608
1609 if (info->readin)
1610 return;
1611 info->buffer = NULL;
1612 info->map_addr = NULL;
1613 info->readin = 1;
1614
1615 if (dwarf2_section_empty_p (info))
1616 return;
1617
1618 /* Check if the file has a 4-byte header indicating compression. */
1619 if (info->size > sizeof (header)
1620 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1621 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1622 {
1623 /* Upon decompression, update the buffer and its size. */
1624 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1625 {
1626 zlib_decompress_section (objfile, sectp, &info->buffer,
1627 &info->size);
1628 return;
1629 }
1630 }
1631
1632 #ifdef HAVE_MMAP
1633 if (pagesize == 0)
1634 pagesize = getpagesize ();
1635
1636 /* Only try to mmap sections which are large enough: we don't want to
1637 waste space due to fragmentation. Also, only try mmap for sections
1638 without relocations. */
1639
1640 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1641 {
1642 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1643 MAP_PRIVATE, sectp->filepos,
1644 &info->map_addr, &info->map_len);
1645
1646 if ((caddr_t)info->buffer != MAP_FAILED)
1647 {
1648 #if HAVE_POSIX_MADVISE
1649 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1650 #endif
1651 return;
1652 }
1653 }
1654 #endif
1655
1656 /* If we get here, we are a normal, not-compressed section. */
1657 info->buffer = buf
1658 = obstack_alloc (&objfile->objfile_obstack, info->size);
1659
1660 /* When debugging .o files, we may need to apply relocations; see
1661 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1662 We never compress sections in .o files, so we only need to
1663 try this when the section is not compressed. */
1664 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1665 if (retbuf != NULL)
1666 {
1667 info->buffer = retbuf;
1668 return;
1669 }
1670
1671 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1672 || bfd_bread (buf, info->size, abfd) != info->size)
1673 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1674 bfd_get_filename (abfd));
1675 }
1676
1677 /* A helper function that returns the size of a section in a safe way.
1678 If you are positive that the section has been read before using the
1679 size, then it is safe to refer to the dwarf2_section_info object's
1680 "size" field directly. In other cases, you must call this
1681 function, because for compressed sections the size field is not set
1682 correctly until the section has been read. */
1683
1684 static bfd_size_type
1685 dwarf2_section_size (struct objfile *objfile,
1686 struct dwarf2_section_info *info)
1687 {
1688 if (!info->readin)
1689 dwarf2_read_section (objfile, info);
1690 return info->size;
1691 }
1692
1693 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1694 SECTION_NAME. */
1695
1696 void
1697 dwarf2_get_section_info (struct objfile *objfile,
1698 enum dwarf2_section_enum sect,
1699 asection **sectp, gdb_byte **bufp,
1700 bfd_size_type *sizep)
1701 {
1702 struct dwarf2_per_objfile *data
1703 = objfile_data (objfile, dwarf2_objfile_data_key);
1704 struct dwarf2_section_info *info;
1705
1706 /* We may see an objfile without any DWARF, in which case we just
1707 return nothing. */
1708 if (data == NULL)
1709 {
1710 *sectp = NULL;
1711 *bufp = NULL;
1712 *sizep = 0;
1713 return;
1714 }
1715 switch (sect)
1716 {
1717 case DWARF2_DEBUG_FRAME:
1718 info = &data->frame;
1719 break;
1720 case DWARF2_EH_FRAME:
1721 info = &data->eh_frame;
1722 break;
1723 default:
1724 gdb_assert_not_reached ("unexpected section");
1725 }
1726
1727 dwarf2_read_section (objfile, info);
1728
1729 *sectp = info->asection;
1730 *bufp = info->buffer;
1731 *sizep = info->size;
1732 }
1733
1734 \f
1735 /* DWARF quick_symbols_functions support. */
1736
1737 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1738 unique line tables, so we maintain a separate table of all .debug_line
1739 derived entries to support the sharing.
1740 All the quick functions need is the list of file names. We discard the
1741 line_header when we're done and don't need to record it here. */
1742 struct quick_file_names
1743 {
1744 /* The offset in .debug_line of the line table. We hash on this. */
1745 unsigned int offset;
1746
1747 /* The number of entries in file_names, real_names. */
1748 unsigned int num_file_names;
1749
1750 /* The file names from the line table, after being run through
1751 file_full_name. */
1752 const char **file_names;
1753
1754 /* The file names from the line table after being run through
1755 gdb_realpath. These are computed lazily. */
1756 const char **real_names;
1757 };
1758
1759 /* When using the index (and thus not using psymtabs), each CU has an
1760 object of this type. This is used to hold information needed by
1761 the various "quick" methods. */
1762 struct dwarf2_per_cu_quick_data
1763 {
1764 /* The file table. This can be NULL if there was no file table
1765 or it's currently not read in.
1766 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1767 struct quick_file_names *file_names;
1768
1769 /* The corresponding symbol table. This is NULL if symbols for this
1770 CU have not yet been read. */
1771 struct symtab *symtab;
1772
1773 /* A temporary mark bit used when iterating over all CUs in
1774 expand_symtabs_matching. */
1775 unsigned int mark : 1;
1776
1777 /* True if we've tried to read the file table and found there isn't one.
1778 There will be no point in trying to read it again next time. */
1779 unsigned int no_file_data : 1;
1780 };
1781
1782 /* Hash function for a quick_file_names. */
1783
1784 static hashval_t
1785 hash_file_name_entry (const void *e)
1786 {
1787 const struct quick_file_names *file_data = e;
1788
1789 return file_data->offset;
1790 }
1791
1792 /* Equality function for a quick_file_names. */
1793
1794 static int
1795 eq_file_name_entry (const void *a, const void *b)
1796 {
1797 const struct quick_file_names *ea = a;
1798 const struct quick_file_names *eb = b;
1799
1800 return ea->offset == eb->offset;
1801 }
1802
1803 /* Delete function for a quick_file_names. */
1804
1805 static void
1806 delete_file_name_entry (void *e)
1807 {
1808 struct quick_file_names *file_data = e;
1809 int i;
1810
1811 for (i = 0; i < file_data->num_file_names; ++i)
1812 {
1813 xfree ((void*) file_data->file_names[i]);
1814 if (file_data->real_names)
1815 xfree ((void*) file_data->real_names[i]);
1816 }
1817
1818 /* The space for the struct itself lives on objfile_obstack,
1819 so we don't free it here. */
1820 }
1821
1822 /* Create a quick_file_names hash table. */
1823
1824 static htab_t
1825 create_quick_file_names_table (unsigned int nr_initial_entries)
1826 {
1827 return htab_create_alloc (nr_initial_entries,
1828 hash_file_name_entry, eq_file_name_entry,
1829 delete_file_name_entry, xcalloc, xfree);
1830 }
1831
1832 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1833 have to be created afterwards. You should call age_cached_comp_units after
1834 processing PER_CU->CU. dw2_setup must have been already called. */
1835
1836 static void
1837 load_cu (struct dwarf2_per_cu_data *per_cu)
1838 {
1839 if (per_cu->debug_type_section)
1840 read_signatured_type_at_offset (per_cu->objfile,
1841 per_cu->debug_type_section,
1842 per_cu->offset);
1843 else
1844 load_full_comp_unit (per_cu, per_cu->objfile);
1845
1846 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1847
1848 gdb_assert (per_cu->cu != NULL);
1849 }
1850
1851 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1852 this CU came. */
1853
1854 static void
1855 dw2_do_instantiate_symtab (struct objfile *objfile,
1856 struct dwarf2_per_cu_data *per_cu)
1857 {
1858 struct cleanup *back_to;
1859
1860 back_to = make_cleanup (dwarf2_release_queue, NULL);
1861
1862 queue_comp_unit (per_cu, objfile);
1863
1864 load_cu (per_cu);
1865
1866 process_queue (objfile);
1867
1868 /* Age the cache, releasing compilation units that have not
1869 been used recently. */
1870 age_cached_comp_units ();
1871
1872 do_cleanups (back_to);
1873 }
1874
1875 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1876 the objfile from which this CU came. Returns the resulting symbol
1877 table. */
1878
1879 static struct symtab *
1880 dw2_instantiate_symtab (struct objfile *objfile,
1881 struct dwarf2_per_cu_data *per_cu)
1882 {
1883 if (!per_cu->v.quick->symtab)
1884 {
1885 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1886 increment_reading_symtab ();
1887 dw2_do_instantiate_symtab (objfile, per_cu);
1888 do_cleanups (back_to);
1889 }
1890 return per_cu->v.quick->symtab;
1891 }
1892
1893 /* Return the CU given its index. */
1894
1895 static struct dwarf2_per_cu_data *
1896 dw2_get_cu (int index)
1897 {
1898 if (index >= dwarf2_per_objfile->n_comp_units)
1899 {
1900 index -= dwarf2_per_objfile->n_comp_units;
1901 return dwarf2_per_objfile->type_comp_units[index];
1902 }
1903 return dwarf2_per_objfile->all_comp_units[index];
1904 }
1905
1906 /* A helper function that knows how to read a 64-bit value in a way
1907 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1908 otherwise. */
1909
1910 static int
1911 extract_cu_value (const char *bytes, ULONGEST *result)
1912 {
1913 if (sizeof (ULONGEST) < 8)
1914 {
1915 int i;
1916
1917 /* Ignore the upper 4 bytes if they are all zero. */
1918 for (i = 0; i < 4; ++i)
1919 if (bytes[i + 4] != 0)
1920 return 0;
1921
1922 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1923 }
1924 else
1925 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1926 return 1;
1927 }
1928
1929 /* Read the CU list from the mapped index, and use it to create all
1930 the CU objects for this objfile. Return 0 if something went wrong,
1931 1 if everything went ok. */
1932
1933 static int
1934 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1935 offset_type cu_list_elements)
1936 {
1937 offset_type i;
1938
1939 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1940 dwarf2_per_objfile->all_comp_units
1941 = obstack_alloc (&objfile->objfile_obstack,
1942 dwarf2_per_objfile->n_comp_units
1943 * sizeof (struct dwarf2_per_cu_data *));
1944
1945 for (i = 0; i < cu_list_elements; i += 2)
1946 {
1947 struct dwarf2_per_cu_data *the_cu;
1948 ULONGEST offset, length;
1949
1950 if (!extract_cu_value (cu_list, &offset)
1951 || !extract_cu_value (cu_list + 8, &length))
1952 return 0;
1953 cu_list += 2 * 8;
1954
1955 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1956 struct dwarf2_per_cu_data);
1957 the_cu->offset = offset;
1958 the_cu->length = length;
1959 the_cu->objfile = objfile;
1960 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1961 struct dwarf2_per_cu_quick_data);
1962 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1963 }
1964
1965 return 1;
1966 }
1967
1968 /* Create the signatured type hash table from the index. */
1969
1970 static int
1971 create_signatured_type_table_from_index (struct objfile *objfile,
1972 struct dwarf2_section_info *section,
1973 const gdb_byte *bytes,
1974 offset_type elements)
1975 {
1976 offset_type i;
1977 htab_t sig_types_hash;
1978
1979 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1980 dwarf2_per_objfile->type_comp_units
1981 = obstack_alloc (&objfile->objfile_obstack,
1982 dwarf2_per_objfile->n_type_comp_units
1983 * sizeof (struct dwarf2_per_cu_data *));
1984
1985 sig_types_hash = allocate_signatured_type_table (objfile);
1986
1987 for (i = 0; i < elements; i += 3)
1988 {
1989 struct signatured_type *type_sig;
1990 ULONGEST offset, type_offset, signature;
1991 void **slot;
1992
1993 if (!extract_cu_value (bytes, &offset)
1994 || !extract_cu_value (bytes + 8, &type_offset))
1995 return 0;
1996 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1997 bytes += 3 * 8;
1998
1999 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2000 struct signatured_type);
2001 type_sig->signature = signature;
2002 type_sig->type_offset = type_offset;
2003 type_sig->per_cu.debug_type_section = section;
2004 type_sig->per_cu.offset = offset;
2005 type_sig->per_cu.objfile = objfile;
2006 type_sig->per_cu.v.quick
2007 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2008 struct dwarf2_per_cu_quick_data);
2009
2010 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
2011 *slot = type_sig;
2012
2013 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
2014 }
2015
2016 dwarf2_per_objfile->signatured_types = sig_types_hash;
2017
2018 return 1;
2019 }
2020
2021 /* Read the address map data from the mapped index, and use it to
2022 populate the objfile's psymtabs_addrmap. */
2023
2024 static void
2025 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2026 {
2027 const gdb_byte *iter, *end;
2028 struct obstack temp_obstack;
2029 struct addrmap *mutable_map;
2030 struct cleanup *cleanup;
2031 CORE_ADDR baseaddr;
2032
2033 obstack_init (&temp_obstack);
2034 cleanup = make_cleanup_obstack_free (&temp_obstack);
2035 mutable_map = addrmap_create_mutable (&temp_obstack);
2036
2037 iter = index->address_table;
2038 end = iter + index->address_table_size;
2039
2040 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2041
2042 while (iter < end)
2043 {
2044 ULONGEST hi, lo, cu_index;
2045 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2046 iter += 8;
2047 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2048 iter += 8;
2049 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2050 iter += 4;
2051
2052 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2053 dw2_get_cu (cu_index));
2054 }
2055
2056 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2057 &objfile->objfile_obstack);
2058 do_cleanups (cleanup);
2059 }
2060
2061 /* The hash function for strings in the mapped index. This is the same as
2062 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2063 implementation. This is necessary because the hash function is tied to the
2064 format of the mapped index file. The hash values do not have to match with
2065 SYMBOL_HASH_NEXT.
2066
2067 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2068
2069 static hashval_t
2070 mapped_index_string_hash (int index_version, const void *p)
2071 {
2072 const unsigned char *str = (const unsigned char *) p;
2073 hashval_t r = 0;
2074 unsigned char c;
2075
2076 while ((c = *str++) != 0)
2077 {
2078 if (index_version >= 5)
2079 c = tolower (c);
2080 r = r * 67 + c - 113;
2081 }
2082
2083 return r;
2084 }
2085
2086 /* Find a slot in the mapped index INDEX for the object named NAME.
2087 If NAME is found, set *VEC_OUT to point to the CU vector in the
2088 constant pool and return 1. If NAME cannot be found, return 0. */
2089
2090 static int
2091 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2092 offset_type **vec_out)
2093 {
2094 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2095 offset_type hash;
2096 offset_type slot, step;
2097 int (*cmp) (const char *, const char *);
2098
2099 if (current_language->la_language == language_cplus
2100 || current_language->la_language == language_java
2101 || current_language->la_language == language_fortran)
2102 {
2103 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2104 not contain any. */
2105 const char *paren = strchr (name, '(');
2106
2107 if (paren)
2108 {
2109 char *dup;
2110
2111 dup = xmalloc (paren - name + 1);
2112 memcpy (dup, name, paren - name);
2113 dup[paren - name] = 0;
2114
2115 make_cleanup (xfree, dup);
2116 name = dup;
2117 }
2118 }
2119
2120 /* Index version 4 did not support case insensitive searches. But the
2121 indexes for case insensitive languages are built in lowercase, therefore
2122 simulate our NAME being searched is also lowercased. */
2123 hash = mapped_index_string_hash ((index->version == 4
2124 && case_sensitivity == case_sensitive_off
2125 ? 5 : index->version),
2126 name);
2127
2128 slot = hash & (index->symbol_table_slots - 1);
2129 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2130 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2131
2132 for (;;)
2133 {
2134 /* Convert a slot number to an offset into the table. */
2135 offset_type i = 2 * slot;
2136 const char *str;
2137 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2138 {
2139 do_cleanups (back_to);
2140 return 0;
2141 }
2142
2143 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2144 if (!cmp (name, str))
2145 {
2146 *vec_out = (offset_type *) (index->constant_pool
2147 + MAYBE_SWAP (index->symbol_table[i + 1]));
2148 do_cleanups (back_to);
2149 return 1;
2150 }
2151
2152 slot = (slot + step) & (index->symbol_table_slots - 1);
2153 }
2154 }
2155
2156 /* Read the index file. If everything went ok, initialize the "quick"
2157 elements of all the CUs and return 1. Otherwise, return 0. */
2158
2159 static int
2160 dwarf2_read_index (struct objfile *objfile)
2161 {
2162 char *addr;
2163 struct mapped_index *map;
2164 offset_type *metadata;
2165 const gdb_byte *cu_list;
2166 const gdb_byte *types_list = NULL;
2167 offset_type version, cu_list_elements;
2168 offset_type types_list_elements = 0;
2169 int i;
2170
2171 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2172 return 0;
2173
2174 /* Older elfutils strip versions could keep the section in the main
2175 executable while splitting it for the separate debug info file. */
2176 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2177 & SEC_HAS_CONTENTS) == 0)
2178 return 0;
2179
2180 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2181
2182 addr = dwarf2_per_objfile->gdb_index.buffer;
2183 /* Version check. */
2184 version = MAYBE_SWAP (*(offset_type *) addr);
2185 /* Versions earlier than 3 emitted every copy of a psymbol. This
2186 causes the index to behave very poorly for certain requests. Version 3
2187 contained incomplete addrmap. So, it seems better to just ignore such
2188 indices. Index version 4 uses a different hash function than index
2189 version 5 and later. */
2190 if (version < 4)
2191 return 0;
2192 /* Indexes with higher version than the one supported by GDB may be no
2193 longer backward compatible. */
2194 if (version > 5)
2195 return 0;
2196
2197 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2198 map->version = version;
2199 map->total_size = dwarf2_per_objfile->gdb_index.size;
2200
2201 metadata = (offset_type *) (addr + sizeof (offset_type));
2202
2203 i = 0;
2204 cu_list = addr + MAYBE_SWAP (metadata[i]);
2205 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2206 / 8);
2207 ++i;
2208
2209 types_list = addr + MAYBE_SWAP (metadata[i]);
2210 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2211 - MAYBE_SWAP (metadata[i]))
2212 / 8);
2213 ++i;
2214
2215 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2216 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2217 - MAYBE_SWAP (metadata[i]));
2218 ++i;
2219
2220 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2221 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2222 - MAYBE_SWAP (metadata[i]))
2223 / (2 * sizeof (offset_type)));
2224 ++i;
2225
2226 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2227
2228 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2229 return 0;
2230
2231 if (types_list_elements)
2232 {
2233 struct dwarf2_section_info *section;
2234
2235 /* We can only handle a single .debug_types when we have an
2236 index. */
2237 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2238 return 0;
2239
2240 section = VEC_index (dwarf2_section_info_def,
2241 dwarf2_per_objfile->types, 0);
2242
2243 if (!create_signatured_type_table_from_index (objfile, section,
2244 types_list,
2245 types_list_elements))
2246 return 0;
2247 }
2248
2249 create_addrmap_from_index (objfile, map);
2250
2251 dwarf2_per_objfile->index_table = map;
2252 dwarf2_per_objfile->using_index = 1;
2253 dwarf2_per_objfile->quick_file_names_table =
2254 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2255
2256 return 1;
2257 }
2258
2259 /* A helper for the "quick" functions which sets the global
2260 dwarf2_per_objfile according to OBJFILE. */
2261
2262 static void
2263 dw2_setup (struct objfile *objfile)
2264 {
2265 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2266 gdb_assert (dwarf2_per_objfile);
2267 }
2268
2269 /* A helper for the "quick" functions which attempts to read the line
2270 table for THIS_CU. */
2271
2272 static struct quick_file_names *
2273 dw2_get_file_names (struct objfile *objfile,
2274 struct dwarf2_per_cu_data *this_cu)
2275 {
2276 bfd *abfd = objfile->obfd;
2277 struct line_header *lh;
2278 struct attribute *attr;
2279 struct cleanup *cleanups;
2280 struct die_info *comp_unit_die;
2281 struct dwarf2_section_info* sec;
2282 gdb_byte *info_ptr, *buffer;
2283 int has_children, i;
2284 struct dwarf2_cu cu;
2285 unsigned int bytes_read, buffer_size;
2286 struct die_reader_specs reader_specs;
2287 char *name, *comp_dir;
2288 void **slot;
2289 struct quick_file_names *qfn;
2290 unsigned int line_offset;
2291
2292 if (this_cu->v.quick->file_names != NULL)
2293 return this_cu->v.quick->file_names;
2294 /* If we know there is no line data, no point in looking again. */
2295 if (this_cu->v.quick->no_file_data)
2296 return NULL;
2297
2298 init_one_comp_unit (&cu, objfile);
2299 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2300
2301 if (this_cu->debug_type_section)
2302 sec = this_cu->debug_type_section;
2303 else
2304 sec = &dwarf2_per_objfile->info;
2305 dwarf2_read_section (objfile, sec);
2306 buffer_size = sec->size;
2307 buffer = sec->buffer;
2308 info_ptr = buffer + this_cu->offset;
2309
2310 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2311 buffer, buffer_size,
2312 abfd,
2313 this_cu->debug_type_section != NULL);
2314
2315 /* Skip dummy compilation units. */
2316 if (info_ptr >= buffer + buffer_size
2317 || peek_abbrev_code (abfd, info_ptr) == 0)
2318 {
2319 do_cleanups (cleanups);
2320 return NULL;
2321 }
2322
2323 this_cu->cu = &cu;
2324 cu.per_cu = this_cu;
2325
2326 dwarf2_read_abbrevs (abfd, &cu);
2327 make_cleanup (dwarf2_free_abbrev_table, &cu);
2328
2329 init_cu_die_reader (&reader_specs, &cu);
2330 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2331 &has_children);
2332
2333 lh = NULL;
2334 slot = NULL;
2335 line_offset = 0;
2336 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2337 if (attr)
2338 {
2339 struct quick_file_names find_entry;
2340
2341 line_offset = DW_UNSND (attr);
2342
2343 /* We may have already read in this line header (TU line header sharing).
2344 If we have we're done. */
2345 find_entry.offset = line_offset;
2346 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2347 &find_entry, INSERT);
2348 if (*slot != NULL)
2349 {
2350 do_cleanups (cleanups);
2351 this_cu->v.quick->file_names = *slot;
2352 return *slot;
2353 }
2354
2355 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2356 }
2357 if (lh == NULL)
2358 {
2359 do_cleanups (cleanups);
2360 this_cu->v.quick->no_file_data = 1;
2361 return NULL;
2362 }
2363
2364 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2365 qfn->offset = line_offset;
2366 gdb_assert (slot != NULL);
2367 *slot = qfn;
2368
2369 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2370
2371 qfn->num_file_names = lh->num_file_names;
2372 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2373 lh->num_file_names * sizeof (char *));
2374 for (i = 0; i < lh->num_file_names; ++i)
2375 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2376 qfn->real_names = NULL;
2377
2378 free_line_header (lh);
2379 do_cleanups (cleanups);
2380
2381 this_cu->v.quick->file_names = qfn;
2382 return qfn;
2383 }
2384
2385 /* A helper for the "quick" functions which computes and caches the
2386 real path for a given file name from the line table. */
2387
2388 static const char *
2389 dw2_get_real_path (struct objfile *objfile,
2390 struct quick_file_names *qfn, int index)
2391 {
2392 if (qfn->real_names == NULL)
2393 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2394 qfn->num_file_names, sizeof (char *));
2395
2396 if (qfn->real_names[index] == NULL)
2397 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2398
2399 return qfn->real_names[index];
2400 }
2401
2402 static struct symtab *
2403 dw2_find_last_source_symtab (struct objfile *objfile)
2404 {
2405 int index;
2406
2407 dw2_setup (objfile);
2408 index = dwarf2_per_objfile->n_comp_units - 1;
2409 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2410 }
2411
2412 /* Traversal function for dw2_forget_cached_source_info. */
2413
2414 static int
2415 dw2_free_cached_file_names (void **slot, void *info)
2416 {
2417 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2418
2419 if (file_data->real_names)
2420 {
2421 int i;
2422
2423 for (i = 0; i < file_data->num_file_names; ++i)
2424 {
2425 xfree ((void*) file_data->real_names[i]);
2426 file_data->real_names[i] = NULL;
2427 }
2428 }
2429
2430 return 1;
2431 }
2432
2433 static void
2434 dw2_forget_cached_source_info (struct objfile *objfile)
2435 {
2436 dw2_setup (objfile);
2437
2438 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2439 dw2_free_cached_file_names, NULL);
2440 }
2441
2442 static int
2443 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2444 const char *full_path, const char *real_path,
2445 struct symtab **result)
2446 {
2447 int i;
2448 const char *name_basename = lbasename (name);
2449 int check_basename = name_basename == name;
2450 struct dwarf2_per_cu_data *base_cu = NULL;
2451
2452 dw2_setup (objfile);
2453
2454 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2455 + dwarf2_per_objfile->n_type_comp_units); ++i)
2456 {
2457 int j;
2458 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2459 struct quick_file_names *file_data;
2460
2461 /* We only need to look at symtabs not already expanded. */
2462 if (per_cu->v.quick->symtab)
2463 continue;
2464
2465 file_data = dw2_get_file_names (objfile, per_cu);
2466 if (file_data == NULL)
2467 continue;
2468
2469 for (j = 0; j < file_data->num_file_names; ++j)
2470 {
2471 const char *this_name = file_data->file_names[j];
2472
2473 if (FILENAME_CMP (name, this_name) == 0)
2474 {
2475 *result = dw2_instantiate_symtab (objfile, per_cu);
2476 return 1;
2477 }
2478
2479 if (check_basename && ! base_cu
2480 && FILENAME_CMP (lbasename (this_name), name) == 0)
2481 base_cu = per_cu;
2482
2483 /* Before we invoke realpath, which can get expensive when many
2484 files are involved, do a quick comparison of the basenames. */
2485 if (! basenames_may_differ
2486 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2487 continue;
2488
2489 if (full_path != NULL)
2490 {
2491 const char *this_real_name = dw2_get_real_path (objfile,
2492 file_data, j);
2493
2494 if (this_real_name != NULL
2495 && FILENAME_CMP (full_path, this_real_name) == 0)
2496 {
2497 *result = dw2_instantiate_symtab (objfile, per_cu);
2498 return 1;
2499 }
2500 }
2501
2502 if (real_path != NULL)
2503 {
2504 const char *this_real_name = dw2_get_real_path (objfile,
2505 file_data, j);
2506
2507 if (this_real_name != NULL
2508 && FILENAME_CMP (real_path, this_real_name) == 0)
2509 {
2510 *result = dw2_instantiate_symtab (objfile, per_cu);
2511 return 1;
2512 }
2513 }
2514 }
2515 }
2516
2517 if (base_cu)
2518 {
2519 *result = dw2_instantiate_symtab (objfile, base_cu);
2520 return 1;
2521 }
2522
2523 return 0;
2524 }
2525
2526 static struct symtab *
2527 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2528 const char *name, domain_enum domain)
2529 {
2530 /* We do all the work in the pre_expand_symtabs_matching hook
2531 instead. */
2532 return NULL;
2533 }
2534
2535 /* A helper function that expands all symtabs that hold an object
2536 named NAME. */
2537
2538 static void
2539 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2540 {
2541 dw2_setup (objfile);
2542
2543 /* index_table is NULL if OBJF_READNOW. */
2544 if (dwarf2_per_objfile->index_table)
2545 {
2546 offset_type *vec;
2547
2548 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2549 name, &vec))
2550 {
2551 offset_type i, len = MAYBE_SWAP (*vec);
2552 for (i = 0; i < len; ++i)
2553 {
2554 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2555 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2556
2557 dw2_instantiate_symtab (objfile, per_cu);
2558 }
2559 }
2560 }
2561 }
2562
2563 static void
2564 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2565 enum block_enum block_kind, const char *name,
2566 domain_enum domain)
2567 {
2568 dw2_do_expand_symtabs_matching (objfile, name);
2569 }
2570
2571 static void
2572 dw2_print_stats (struct objfile *objfile)
2573 {
2574 int i, count;
2575
2576 dw2_setup (objfile);
2577 count = 0;
2578 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2579 + dwarf2_per_objfile->n_type_comp_units); ++i)
2580 {
2581 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2582
2583 if (!per_cu->v.quick->symtab)
2584 ++count;
2585 }
2586 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2587 }
2588
2589 static void
2590 dw2_dump (struct objfile *objfile)
2591 {
2592 /* Nothing worth printing. */
2593 }
2594
2595 static void
2596 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2597 struct section_offsets *delta)
2598 {
2599 /* There's nothing to relocate here. */
2600 }
2601
2602 static void
2603 dw2_expand_symtabs_for_function (struct objfile *objfile,
2604 const char *func_name)
2605 {
2606 dw2_do_expand_symtabs_matching (objfile, func_name);
2607 }
2608
2609 static void
2610 dw2_expand_all_symtabs (struct objfile *objfile)
2611 {
2612 int i;
2613
2614 dw2_setup (objfile);
2615
2616 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2617 + dwarf2_per_objfile->n_type_comp_units); ++i)
2618 {
2619 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2620
2621 dw2_instantiate_symtab (objfile, per_cu);
2622 }
2623 }
2624
2625 static void
2626 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2627 const char *filename)
2628 {
2629 int i;
2630
2631 dw2_setup (objfile);
2632
2633 /* We don't need to consider type units here.
2634 This is only called for examining code, e.g. expand_line_sal.
2635 There can be an order of magnitude (or more) more type units
2636 than comp units, and we avoid them if we can. */
2637
2638 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2639 {
2640 int j;
2641 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2642 struct quick_file_names *file_data;
2643
2644 /* We only need to look at symtabs not already expanded. */
2645 if (per_cu->v.quick->symtab)
2646 continue;
2647
2648 file_data = dw2_get_file_names (objfile, per_cu);
2649 if (file_data == NULL)
2650 continue;
2651
2652 for (j = 0; j < file_data->num_file_names; ++j)
2653 {
2654 const char *this_name = file_data->file_names[j];
2655 if (FILENAME_CMP (this_name, filename) == 0)
2656 {
2657 dw2_instantiate_symtab (objfile, per_cu);
2658 break;
2659 }
2660 }
2661 }
2662 }
2663
2664 static const char *
2665 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2666 {
2667 struct dwarf2_per_cu_data *per_cu;
2668 offset_type *vec;
2669 struct quick_file_names *file_data;
2670
2671 dw2_setup (objfile);
2672
2673 /* index_table is NULL if OBJF_READNOW. */
2674 if (!dwarf2_per_objfile->index_table)
2675 {
2676 struct symtab *s;
2677
2678 ALL_OBJFILE_SYMTABS (objfile, s)
2679 if (s->primary)
2680 {
2681 struct blockvector *bv = BLOCKVECTOR (s);
2682 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2683 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2684
2685 if (sym)
2686 return sym->symtab->filename;
2687 }
2688 return NULL;
2689 }
2690
2691 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2692 name, &vec))
2693 return NULL;
2694
2695 /* Note that this just looks at the very first one named NAME -- but
2696 actually we are looking for a function. find_main_filename
2697 should be rewritten so that it doesn't require a custom hook. It
2698 could just use the ordinary symbol tables. */
2699 /* vec[0] is the length, which must always be >0. */
2700 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2701
2702 file_data = dw2_get_file_names (objfile, per_cu);
2703 if (file_data == NULL)
2704 return NULL;
2705
2706 return file_data->file_names[file_data->num_file_names - 1];
2707 }
2708
2709 static void
2710 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2711 struct objfile *objfile, int global,
2712 int (*callback) (struct block *,
2713 struct symbol *, void *),
2714 void *data, symbol_compare_ftype *match,
2715 symbol_compare_ftype *ordered_compare)
2716 {
2717 /* Currently unimplemented; used for Ada. The function can be called if the
2718 current language is Ada for a non-Ada objfile using GNU index. As Ada
2719 does not look for non-Ada symbols this function should just return. */
2720 }
2721
2722 static void
2723 dw2_expand_symtabs_matching (struct objfile *objfile,
2724 int (*file_matcher) (const char *, void *),
2725 int (*name_matcher) (const char *, void *),
2726 enum search_domain kind,
2727 void *data)
2728 {
2729 int i;
2730 offset_type iter;
2731 struct mapped_index *index;
2732
2733 dw2_setup (objfile);
2734
2735 /* index_table is NULL if OBJF_READNOW. */
2736 if (!dwarf2_per_objfile->index_table)
2737 return;
2738 index = dwarf2_per_objfile->index_table;
2739
2740 if (file_matcher != NULL)
2741 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2742 + dwarf2_per_objfile->n_type_comp_units); ++i)
2743 {
2744 int j;
2745 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2746 struct quick_file_names *file_data;
2747
2748 per_cu->v.quick->mark = 0;
2749
2750 /* We only need to look at symtabs not already expanded. */
2751 if (per_cu->v.quick->symtab)
2752 continue;
2753
2754 file_data = dw2_get_file_names (objfile, per_cu);
2755 if (file_data == NULL)
2756 continue;
2757
2758 for (j = 0; j < file_data->num_file_names; ++j)
2759 {
2760 if (file_matcher (file_data->file_names[j], data))
2761 {
2762 per_cu->v.quick->mark = 1;
2763 break;
2764 }
2765 }
2766 }
2767
2768 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2769 {
2770 offset_type idx = 2 * iter;
2771 const char *name;
2772 offset_type *vec, vec_len, vec_idx;
2773
2774 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2775 continue;
2776
2777 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2778
2779 if (! (*name_matcher) (name, data))
2780 continue;
2781
2782 /* The name was matched, now expand corresponding CUs that were
2783 marked. */
2784 vec = (offset_type *) (index->constant_pool
2785 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2786 vec_len = MAYBE_SWAP (vec[0]);
2787 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2788 {
2789 struct dwarf2_per_cu_data *per_cu;
2790
2791 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2792 if (file_matcher == NULL || per_cu->v.quick->mark)
2793 dw2_instantiate_symtab (objfile, per_cu);
2794 }
2795 }
2796 }
2797
2798 static struct symtab *
2799 dw2_find_pc_sect_symtab (struct objfile *objfile,
2800 struct minimal_symbol *msymbol,
2801 CORE_ADDR pc,
2802 struct obj_section *section,
2803 int warn_if_readin)
2804 {
2805 struct dwarf2_per_cu_data *data;
2806
2807 dw2_setup (objfile);
2808
2809 if (!objfile->psymtabs_addrmap)
2810 return NULL;
2811
2812 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2813 if (!data)
2814 return NULL;
2815
2816 if (warn_if_readin && data->v.quick->symtab)
2817 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2818 paddress (get_objfile_arch (objfile), pc));
2819
2820 return dw2_instantiate_symtab (objfile, data);
2821 }
2822
2823 static void
2824 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2825 void *data, int need_fullname)
2826 {
2827 int i;
2828
2829 dw2_setup (objfile);
2830
2831 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2832 + dwarf2_per_objfile->n_type_comp_units); ++i)
2833 {
2834 int j;
2835 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2836 struct quick_file_names *file_data;
2837
2838 /* We only need to look at symtabs not already expanded. */
2839 if (per_cu->v.quick->symtab)
2840 continue;
2841
2842 file_data = dw2_get_file_names (objfile, per_cu);
2843 if (file_data == NULL)
2844 continue;
2845
2846 for (j = 0; j < file_data->num_file_names; ++j)
2847 {
2848 const char *this_real_name;
2849
2850 if (need_fullname)
2851 this_real_name = dw2_get_real_path (objfile, file_data, j);
2852 else
2853 this_real_name = NULL;
2854 (*fun) (file_data->file_names[j], this_real_name, data);
2855 }
2856 }
2857 }
2858
2859 static int
2860 dw2_has_symbols (struct objfile *objfile)
2861 {
2862 return 1;
2863 }
2864
2865 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2866 {
2867 dw2_has_symbols,
2868 dw2_find_last_source_symtab,
2869 dw2_forget_cached_source_info,
2870 dw2_lookup_symtab,
2871 dw2_lookup_symbol,
2872 dw2_pre_expand_symtabs_matching,
2873 dw2_print_stats,
2874 dw2_dump,
2875 dw2_relocate,
2876 dw2_expand_symtabs_for_function,
2877 dw2_expand_all_symtabs,
2878 dw2_expand_symtabs_with_filename,
2879 dw2_find_symbol_file,
2880 dw2_map_matching_symbols,
2881 dw2_expand_symtabs_matching,
2882 dw2_find_pc_sect_symtab,
2883 dw2_map_symbol_filenames
2884 };
2885
2886 /* Initialize for reading DWARF for this objfile. Return 0 if this
2887 file will use psymtabs, or 1 if using the GNU index. */
2888
2889 int
2890 dwarf2_initialize_objfile (struct objfile *objfile)
2891 {
2892 /* If we're about to read full symbols, don't bother with the
2893 indices. In this case we also don't care if some other debug
2894 format is making psymtabs, because they are all about to be
2895 expanded anyway. */
2896 if ((objfile->flags & OBJF_READNOW))
2897 {
2898 int i;
2899
2900 dwarf2_per_objfile->using_index = 1;
2901 create_all_comp_units (objfile);
2902 create_debug_types_hash_table (objfile);
2903 dwarf2_per_objfile->quick_file_names_table =
2904 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2905
2906 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2907 + dwarf2_per_objfile->n_type_comp_units); ++i)
2908 {
2909 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2910
2911 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2912 struct dwarf2_per_cu_quick_data);
2913 }
2914
2915 /* Return 1 so that gdb sees the "quick" functions. However,
2916 these functions will be no-ops because we will have expanded
2917 all symtabs. */
2918 return 1;
2919 }
2920
2921 if (dwarf2_read_index (objfile))
2922 return 1;
2923
2924 return 0;
2925 }
2926
2927 \f
2928
2929 /* Build a partial symbol table. */
2930
2931 void
2932 dwarf2_build_psymtabs (struct objfile *objfile)
2933 {
2934 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2935 {
2936 init_psymbol_list (objfile, 1024);
2937 }
2938
2939 dwarf2_build_psymtabs_hard (objfile);
2940 }
2941
2942 /* Return TRUE if OFFSET is within CU_HEADER. */
2943
2944 static inline int
2945 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2946 {
2947 unsigned int bottom = cu_header->offset;
2948 unsigned int top = (cu_header->offset
2949 + cu_header->length
2950 + cu_header->initial_length_size);
2951
2952 return (offset >= bottom && offset < top);
2953 }
2954
2955 /* Read in the comp unit header information from the debug_info at info_ptr.
2956 NOTE: This leaves members offset, first_die_offset to be filled in
2957 by the caller. */
2958
2959 static gdb_byte *
2960 read_comp_unit_head (struct comp_unit_head *cu_header,
2961 gdb_byte *info_ptr, bfd *abfd)
2962 {
2963 int signed_addr;
2964 unsigned int bytes_read;
2965
2966 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2967 cu_header->initial_length_size = bytes_read;
2968 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2969 info_ptr += bytes_read;
2970 cu_header->version = read_2_bytes (abfd, info_ptr);
2971 info_ptr += 2;
2972 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2973 &bytes_read);
2974 info_ptr += bytes_read;
2975 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2976 info_ptr += 1;
2977 signed_addr = bfd_get_sign_extend_vma (abfd);
2978 if (signed_addr < 0)
2979 internal_error (__FILE__, __LINE__,
2980 _("read_comp_unit_head: dwarf from non elf file"));
2981 cu_header->signed_addr_p = signed_addr;
2982
2983 return info_ptr;
2984 }
2985
2986 /* Read in a CU header and perform some basic error checking. */
2987
2988 static gdb_byte *
2989 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2990 gdb_byte *buffer, unsigned int buffer_size,
2991 bfd *abfd, int is_debug_type_section)
2992 {
2993 gdb_byte *beg_of_comp_unit = info_ptr;
2994
2995 header->offset = beg_of_comp_unit - buffer;
2996
2997 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2998
2999 /* If we're reading a type unit, skip over the signature and
3000 type_offset fields. */
3001 if (is_debug_type_section)
3002 info_ptr += 8 /*signature*/ + header->offset_size;
3003
3004 header->first_die_offset = info_ptr - beg_of_comp_unit;
3005
3006 if (header->version != 2 && header->version != 3 && header->version != 4)
3007 error (_("Dwarf Error: wrong version in compilation unit header "
3008 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3009 bfd_get_filename (abfd));
3010
3011 if (header->abbrev_offset
3012 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3013 &dwarf2_per_objfile->abbrev))
3014 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3015 "(offset 0x%lx + 6) [in module %s]"),
3016 (long) header->abbrev_offset,
3017 (long) (beg_of_comp_unit - buffer),
3018 bfd_get_filename (abfd));
3019
3020 if (beg_of_comp_unit + header->length + header->initial_length_size
3021 > buffer + buffer_size)
3022 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3023 "(offset 0x%lx + 0) [in module %s]"),
3024 (long) header->length,
3025 (long) (beg_of_comp_unit - buffer),
3026 bfd_get_filename (abfd));
3027
3028 return info_ptr;
3029 }
3030
3031 /* Read in the types comp unit header information from .debug_types entry at
3032 types_ptr. The result is a pointer to one past the end of the header. */
3033
3034 static gdb_byte *
3035 read_type_comp_unit_head (struct comp_unit_head *cu_header,
3036 struct dwarf2_section_info *section,
3037 ULONGEST *signature,
3038 gdb_byte *types_ptr, bfd *abfd)
3039 {
3040 gdb_byte *initial_types_ptr = types_ptr;
3041
3042 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3043 cu_header->offset = types_ptr - section->buffer;
3044
3045 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
3046
3047 *signature = read_8_bytes (abfd, types_ptr);
3048 types_ptr += 8;
3049 types_ptr += cu_header->offset_size;
3050 cu_header->first_die_offset = types_ptr - initial_types_ptr;
3051
3052 return types_ptr;
3053 }
3054
3055 /* Allocate a new partial symtab for file named NAME and mark this new
3056 partial symtab as being an include of PST. */
3057
3058 static void
3059 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3060 struct objfile *objfile)
3061 {
3062 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3063
3064 subpst->section_offsets = pst->section_offsets;
3065 subpst->textlow = 0;
3066 subpst->texthigh = 0;
3067
3068 subpst->dependencies = (struct partial_symtab **)
3069 obstack_alloc (&objfile->objfile_obstack,
3070 sizeof (struct partial_symtab *));
3071 subpst->dependencies[0] = pst;
3072 subpst->number_of_dependencies = 1;
3073
3074 subpst->globals_offset = 0;
3075 subpst->n_global_syms = 0;
3076 subpst->statics_offset = 0;
3077 subpst->n_static_syms = 0;
3078 subpst->symtab = NULL;
3079 subpst->read_symtab = pst->read_symtab;
3080 subpst->readin = 0;
3081
3082 /* No private part is necessary for include psymtabs. This property
3083 can be used to differentiate between such include psymtabs and
3084 the regular ones. */
3085 subpst->read_symtab_private = NULL;
3086 }
3087
3088 /* Read the Line Number Program data and extract the list of files
3089 included by the source file represented by PST. Build an include
3090 partial symtab for each of these included files. */
3091
3092 static void
3093 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3094 struct die_info *die,
3095 struct partial_symtab *pst)
3096 {
3097 struct objfile *objfile = cu->objfile;
3098 bfd *abfd = objfile->obfd;
3099 struct line_header *lh = NULL;
3100 struct attribute *attr;
3101
3102 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3103 if (attr)
3104 {
3105 unsigned int line_offset = DW_UNSND (attr);
3106
3107 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3108 }
3109 if (lh == NULL)
3110 return; /* No linetable, so no includes. */
3111
3112 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3113 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
3114
3115 free_line_header (lh);
3116 }
3117
3118 static hashval_t
3119 hash_type_signature (const void *item)
3120 {
3121 const struct signatured_type *type_sig = item;
3122
3123 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3124 return type_sig->signature;
3125 }
3126
3127 static int
3128 eq_type_signature (const void *item_lhs, const void *item_rhs)
3129 {
3130 const struct signatured_type *lhs = item_lhs;
3131 const struct signatured_type *rhs = item_rhs;
3132
3133 return lhs->signature == rhs->signature;
3134 }
3135
3136 /* Allocate a hash table for signatured types. */
3137
3138 static htab_t
3139 allocate_signatured_type_table (struct objfile *objfile)
3140 {
3141 return htab_create_alloc_ex (41,
3142 hash_type_signature,
3143 eq_type_signature,
3144 NULL,
3145 &objfile->objfile_obstack,
3146 hashtab_obstack_allocate,
3147 dummy_obstack_deallocate);
3148 }
3149
3150 /* A helper function to add a signatured type CU to a list. */
3151
3152 static int
3153 add_signatured_type_cu_to_list (void **slot, void *datum)
3154 {
3155 struct signatured_type *sigt = *slot;
3156 struct dwarf2_per_cu_data ***datap = datum;
3157
3158 **datap = &sigt->per_cu;
3159 ++*datap;
3160
3161 return 1;
3162 }
3163
3164 /* Create the hash table of all entries in the .debug_types section.
3165 The result is zero if there is an error (e.g. missing .debug_types section),
3166 otherwise non-zero. */
3167
3168 static int
3169 create_debug_types_hash_table (struct objfile *objfile)
3170 {
3171 htab_t types_htab = NULL;
3172 struct dwarf2_per_cu_data **iter;
3173 int ix;
3174 struct dwarf2_section_info *section;
3175
3176 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3177 {
3178 dwarf2_per_objfile->signatured_types = NULL;
3179 return 0;
3180 }
3181
3182 for (ix = 0;
3183 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3184 ix, section);
3185 ++ix)
3186 {
3187 gdb_byte *info_ptr, *end_ptr;
3188
3189 dwarf2_read_section (objfile, section);
3190 info_ptr = section->buffer;
3191
3192 if (info_ptr == NULL)
3193 continue;
3194
3195 if (types_htab == NULL)
3196 types_htab = allocate_signatured_type_table (objfile);
3197
3198 if (dwarf2_die_debug)
3199 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3200
3201 end_ptr = info_ptr + section->size;
3202 while (info_ptr < end_ptr)
3203 {
3204 unsigned int offset;
3205 unsigned int offset_size;
3206 unsigned int type_offset;
3207 unsigned int length, initial_length_size;
3208 unsigned short version;
3209 ULONGEST signature;
3210 struct signatured_type *type_sig;
3211 void **slot;
3212 gdb_byte *ptr = info_ptr;
3213
3214 offset = ptr - section->buffer;
3215
3216 /* We need to read the type's signature in order to build the hash
3217 table, but we don't need to read anything else just yet. */
3218
3219 /* Sanity check to ensure entire cu is present. */
3220 length = read_initial_length (objfile->obfd, ptr,
3221 &initial_length_size);
3222 if (ptr + length + initial_length_size > end_ptr)
3223 {
3224 complaint (&symfile_complaints,
3225 _("debug type entry runs off end "
3226 "of `.debug_types' section, ignored"));
3227 break;
3228 }
3229
3230 offset_size = initial_length_size == 4 ? 4 : 8;
3231 ptr += initial_length_size;
3232 version = bfd_get_16 (objfile->obfd, ptr);
3233 ptr += 2;
3234 ptr += offset_size; /* abbrev offset */
3235 ptr += 1; /* address size */
3236 signature = bfd_get_64 (objfile->obfd, ptr);
3237 ptr += 8;
3238 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3239 ptr += offset_size;
3240
3241 /* Skip dummy type units. */
3242 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3243 {
3244 info_ptr = info_ptr + initial_length_size + length;
3245 continue;
3246 }
3247
3248 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3249 memset (type_sig, 0, sizeof (*type_sig));
3250 type_sig->signature = signature;
3251 type_sig->type_offset = type_offset;
3252 type_sig->per_cu.objfile = objfile;
3253 type_sig->per_cu.debug_type_section = section;
3254 type_sig->per_cu.offset = offset;
3255
3256 slot = htab_find_slot (types_htab, type_sig, INSERT);
3257 gdb_assert (slot != NULL);
3258 if (*slot != NULL)
3259 {
3260 const struct signatured_type *dup_sig = *slot;
3261
3262 complaint (&symfile_complaints,
3263 _("debug type entry at offset 0x%x is duplicate to the "
3264 "entry at offset 0x%x, signature 0x%s"),
3265 offset, dup_sig->per_cu.offset,
3266 phex (signature, sizeof (signature)));
3267 gdb_assert (signature == dup_sig->signature);
3268 }
3269 *slot = type_sig;
3270
3271 if (dwarf2_die_debug)
3272 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3273 offset, phex (signature, sizeof (signature)));
3274
3275 info_ptr = info_ptr + initial_length_size + length;
3276 }
3277 }
3278
3279 dwarf2_per_objfile->signatured_types = types_htab;
3280
3281 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3282 dwarf2_per_objfile->type_comp_units
3283 = obstack_alloc (&objfile->objfile_obstack,
3284 dwarf2_per_objfile->n_type_comp_units
3285 * sizeof (struct dwarf2_per_cu_data *));
3286 iter = &dwarf2_per_objfile->type_comp_units[0];
3287 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3288 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3289 == dwarf2_per_objfile->n_type_comp_units);
3290
3291 return 1;
3292 }
3293
3294 /* Lookup a signature based type.
3295 Returns NULL if SIG is not present in the table. */
3296
3297 static struct signatured_type *
3298 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3299 {
3300 struct signatured_type find_entry, *entry;
3301
3302 if (dwarf2_per_objfile->signatured_types == NULL)
3303 {
3304 complaint (&symfile_complaints,
3305 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3306 return 0;
3307 }
3308
3309 find_entry.signature = sig;
3310 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3311 return entry;
3312 }
3313
3314 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3315
3316 static void
3317 init_cu_die_reader (struct die_reader_specs *reader,
3318 struct dwarf2_cu *cu)
3319 {
3320 reader->abfd = cu->objfile->obfd;
3321 reader->cu = cu;
3322 if (cu->per_cu->debug_type_section)
3323 {
3324 gdb_assert (cu->per_cu->debug_type_section->readin);
3325 reader->buffer = cu->per_cu->debug_type_section->buffer;
3326 }
3327 else
3328 {
3329 gdb_assert (dwarf2_per_objfile->info.readin);
3330 reader->buffer = dwarf2_per_objfile->info.buffer;
3331 }
3332 }
3333
3334 /* Find the base address of the compilation unit for range lists and
3335 location lists. It will normally be specified by DW_AT_low_pc.
3336 In DWARF-3 draft 4, the base address could be overridden by
3337 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3338 compilation units with discontinuous ranges. */
3339
3340 static void
3341 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3342 {
3343 struct attribute *attr;
3344
3345 cu->base_known = 0;
3346 cu->base_address = 0;
3347
3348 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3349 if (attr)
3350 {
3351 cu->base_address = DW_ADDR (attr);
3352 cu->base_known = 1;
3353 }
3354 else
3355 {
3356 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3357 if (attr)
3358 {
3359 cu->base_address = DW_ADDR (attr);
3360 cu->base_known = 1;
3361 }
3362 }
3363 }
3364
3365 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3366 to combine the common parts.
3367 Process a compilation unit for a psymtab.
3368 BUFFER is a pointer to the beginning of the dwarf section buffer,
3369 either .debug_info or debug_types.
3370 INFO_PTR is a pointer to the start of the CU.
3371 Returns a pointer to the next CU. */
3372
3373 static gdb_byte *
3374 process_psymtab_comp_unit (struct objfile *objfile,
3375 struct dwarf2_per_cu_data *this_cu,
3376 gdb_byte *buffer, gdb_byte *info_ptr,
3377 unsigned int buffer_size)
3378 {
3379 bfd *abfd = objfile->obfd;
3380 gdb_byte *beg_of_comp_unit = info_ptr;
3381 struct die_info *comp_unit_die;
3382 struct partial_symtab *pst;
3383 CORE_ADDR baseaddr;
3384 struct cleanup *back_to_inner;
3385 struct dwarf2_cu cu;
3386 int has_children, has_pc_info;
3387 struct attribute *attr;
3388 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3389 struct die_reader_specs reader_specs;
3390 const char *filename;
3391
3392 init_one_comp_unit (&cu, objfile);
3393 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3394
3395 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3396 buffer, buffer_size,
3397 abfd,
3398 this_cu->debug_type_section != NULL);
3399
3400 /* Skip dummy compilation units. */
3401 if (info_ptr >= buffer + buffer_size
3402 || peek_abbrev_code (abfd, info_ptr) == 0)
3403 {
3404 info_ptr = (beg_of_comp_unit + cu.header.length
3405 + cu.header.initial_length_size);
3406 do_cleanups (back_to_inner);
3407 return info_ptr;
3408 }
3409
3410 cu.list_in_scope = &file_symbols;
3411
3412 /* If this compilation unit was already read in, free the
3413 cached copy in order to read it in again. This is
3414 necessary because we skipped some symbols when we first
3415 read in the compilation unit (see load_partial_dies).
3416 This problem could be avoided, but the benefit is
3417 unclear. */
3418 if (this_cu->cu != NULL)
3419 free_one_cached_comp_unit (this_cu->cu);
3420
3421 /* Note that this is a pointer to our stack frame, being
3422 added to a global data structure. It will be cleaned up
3423 in free_stack_comp_unit when we finish with this
3424 compilation unit. */
3425 this_cu->cu = &cu;
3426 cu.per_cu = this_cu;
3427
3428 /* Read the abbrevs for this compilation unit into a table. */
3429 dwarf2_read_abbrevs (abfd, &cu);
3430 make_cleanup (dwarf2_free_abbrev_table, &cu);
3431
3432 /* Read the compilation unit die. */
3433 init_cu_die_reader (&reader_specs, &cu);
3434 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3435 &has_children);
3436
3437 if (this_cu->debug_type_section)
3438 {
3439 /* LENGTH has not been set yet for type units. */
3440 gdb_assert (this_cu->offset == cu.header.offset);
3441 this_cu->length = cu.header.length + cu.header.initial_length_size;
3442 }
3443 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3444 {
3445 info_ptr = (beg_of_comp_unit + cu.header.length
3446 + cu.header.initial_length_size);
3447 do_cleanups (back_to_inner);
3448 return info_ptr;
3449 }
3450
3451 prepare_one_comp_unit (&cu, comp_unit_die);
3452
3453 /* Allocate a new partial symbol table structure. */
3454 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3455 if (attr == NULL || !DW_STRING (attr))
3456 filename = "";
3457 else
3458 filename = DW_STRING (attr);
3459 pst = start_psymtab_common (objfile, objfile->section_offsets,
3460 filename,
3461 /* TEXTLOW and TEXTHIGH are set below. */
3462 0,
3463 objfile->global_psymbols.next,
3464 objfile->static_psymbols.next);
3465 pst->psymtabs_addrmap_supported = 1;
3466
3467 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3468 if (attr != NULL)
3469 pst->dirname = DW_STRING (attr);
3470
3471 pst->read_symtab_private = this_cu;
3472
3473 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3474
3475 /* Store the function that reads in the rest of the symbol table. */
3476 pst->read_symtab = dwarf2_psymtab_to_symtab;
3477
3478 this_cu->v.psymtab = pst;
3479
3480 dwarf2_find_base_address (comp_unit_die, &cu);
3481
3482 /* Possibly set the default values of LOWPC and HIGHPC from
3483 `DW_AT_ranges'. */
3484 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3485 &best_highpc, &cu, pst);
3486 if (has_pc_info == 1 && best_lowpc < best_highpc)
3487 /* Store the contiguous range if it is not empty; it can be empty for
3488 CUs with no code. */
3489 addrmap_set_empty (objfile->psymtabs_addrmap,
3490 best_lowpc + baseaddr,
3491 best_highpc + baseaddr - 1, pst);
3492
3493 /* Check if comp unit has_children.
3494 If so, read the rest of the partial symbols from this comp unit.
3495 If not, there's no more debug_info for this comp unit. */
3496 if (has_children)
3497 {
3498 struct partial_die_info *first_die;
3499 CORE_ADDR lowpc, highpc;
3500
3501 lowpc = ((CORE_ADDR) -1);
3502 highpc = ((CORE_ADDR) 0);
3503
3504 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3505
3506 scan_partial_symbols (first_die, &lowpc, &highpc,
3507 ! has_pc_info, &cu);
3508
3509 /* If we didn't find a lowpc, set it to highpc to avoid
3510 complaints from `maint check'. */
3511 if (lowpc == ((CORE_ADDR) -1))
3512 lowpc = highpc;
3513
3514 /* If the compilation unit didn't have an explicit address range,
3515 then use the information extracted from its child dies. */
3516 if (! has_pc_info)
3517 {
3518 best_lowpc = lowpc;
3519 best_highpc = highpc;
3520 }
3521 }
3522 pst->textlow = best_lowpc + baseaddr;
3523 pst->texthigh = best_highpc + baseaddr;
3524
3525 pst->n_global_syms = objfile->global_psymbols.next -
3526 (objfile->global_psymbols.list + pst->globals_offset);
3527 pst->n_static_syms = objfile->static_psymbols.next -
3528 (objfile->static_psymbols.list + pst->statics_offset);
3529 sort_pst_symbols (pst);
3530
3531 info_ptr = (beg_of_comp_unit + cu.header.length
3532 + cu.header.initial_length_size);
3533
3534 if (this_cu->debug_type_section)
3535 {
3536 /* It's not clear we want to do anything with stmt lists here.
3537 Waiting to see what gcc ultimately does. */
3538 }
3539 else
3540 {
3541 /* Get the list of files included in the current compilation unit,
3542 and build a psymtab for each of them. */
3543 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3544 }
3545
3546 do_cleanups (back_to_inner);
3547
3548 return info_ptr;
3549 }
3550
3551 /* Traversal function for htab_traverse_noresize.
3552 Process one .debug_types comp-unit. */
3553
3554 static int
3555 process_type_comp_unit (void **slot, void *info)
3556 {
3557 struct signatured_type *entry = (struct signatured_type *) *slot;
3558 struct objfile *objfile = (struct objfile *) info;
3559 struct dwarf2_per_cu_data *this_cu;
3560
3561 this_cu = &entry->per_cu;
3562
3563 gdb_assert (this_cu->debug_type_section->readin);
3564 process_psymtab_comp_unit (objfile, this_cu,
3565 this_cu->debug_type_section->buffer,
3566 (this_cu->debug_type_section->buffer
3567 + this_cu->offset),
3568 this_cu->debug_type_section->size);
3569
3570 return 1;
3571 }
3572
3573 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3574 Build partial symbol tables for the .debug_types comp-units. */
3575
3576 static void
3577 build_type_psymtabs (struct objfile *objfile)
3578 {
3579 if (! create_debug_types_hash_table (objfile))
3580 return;
3581
3582 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3583 process_type_comp_unit, objfile);
3584 }
3585
3586 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3587
3588 static void
3589 psymtabs_addrmap_cleanup (void *o)
3590 {
3591 struct objfile *objfile = o;
3592
3593 objfile->psymtabs_addrmap = NULL;
3594 }
3595
3596 /* Build the partial symbol table by doing a quick pass through the
3597 .debug_info and .debug_abbrev sections. */
3598
3599 static void
3600 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3601 {
3602 gdb_byte *info_ptr;
3603 struct cleanup *back_to, *addrmap_cleanup;
3604 struct obstack temp_obstack;
3605
3606 dwarf2_per_objfile->reading_partial_symbols = 1;
3607
3608 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3609 info_ptr = dwarf2_per_objfile->info.buffer;
3610
3611 /* Any cached compilation units will be linked by the per-objfile
3612 read_in_chain. Make sure to free them when we're done. */
3613 back_to = make_cleanup (free_cached_comp_units, NULL);
3614
3615 build_type_psymtabs (objfile);
3616
3617 create_all_comp_units (objfile);
3618
3619 /* Create a temporary address map on a temporary obstack. We later
3620 copy this to the final obstack. */
3621 obstack_init (&temp_obstack);
3622 make_cleanup_obstack_free (&temp_obstack);
3623 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3624 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3625
3626 /* Since the objects we're extracting from .debug_info vary in
3627 length, only the individual functions to extract them (like
3628 read_comp_unit_head and load_partial_die) can really know whether
3629 the buffer is large enough to hold another complete object.
3630
3631 At the moment, they don't actually check that. If .debug_info
3632 holds just one extra byte after the last compilation unit's dies,
3633 then read_comp_unit_head will happily read off the end of the
3634 buffer. read_partial_die is similarly casual. Those functions
3635 should be fixed.
3636
3637 For this loop condition, simply checking whether there's any data
3638 left at all should be sufficient. */
3639
3640 while (info_ptr < (dwarf2_per_objfile->info.buffer
3641 + dwarf2_per_objfile->info.size))
3642 {
3643 struct dwarf2_per_cu_data *this_cu;
3644
3645 this_cu = dwarf2_find_comp_unit (info_ptr
3646 - dwarf2_per_objfile->info.buffer,
3647 objfile);
3648
3649 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3650 dwarf2_per_objfile->info.buffer,
3651 info_ptr,
3652 dwarf2_per_objfile->info.size);
3653 }
3654
3655 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3656 &objfile->objfile_obstack);
3657 discard_cleanups (addrmap_cleanup);
3658
3659 do_cleanups (back_to);
3660 }
3661
3662 /* Load the partial DIEs for a secondary CU into memory. */
3663
3664 static void
3665 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3666 struct objfile *objfile)
3667 {
3668 bfd *abfd = objfile->obfd;
3669 gdb_byte *info_ptr;
3670 struct die_info *comp_unit_die;
3671 struct dwarf2_cu *cu;
3672 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3673 int has_children;
3674 struct die_reader_specs reader_specs;
3675 int read_cu = 0;
3676
3677 gdb_assert (! this_cu->debug_type_section);
3678
3679 gdb_assert (dwarf2_per_objfile->info.readin);
3680 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3681
3682 if (this_cu->cu == NULL)
3683 {
3684 cu = xmalloc (sizeof (*cu));
3685 init_one_comp_unit (cu, objfile);
3686
3687 read_cu = 1;
3688
3689 /* If an error occurs while loading, release our storage. */
3690 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3691
3692 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3693 dwarf2_per_objfile->info.buffer,
3694 dwarf2_per_objfile->info.size,
3695 abfd, 0);
3696
3697 /* Skip dummy compilation units. */
3698 if (info_ptr >= (dwarf2_per_objfile->info.buffer
3699 + dwarf2_per_objfile->info.size)
3700 || peek_abbrev_code (abfd, info_ptr) == 0)
3701 {
3702 do_cleanups (free_cu_cleanup);
3703 return;
3704 }
3705
3706 /* Link this compilation unit into the compilation unit tree. */
3707 this_cu->cu = cu;
3708 cu->per_cu = this_cu;
3709
3710 /* Link this CU into read_in_chain. */
3711 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3712 dwarf2_per_objfile->read_in_chain = this_cu;
3713 }
3714 else
3715 {
3716 cu = this_cu->cu;
3717 info_ptr += cu->header.first_die_offset;
3718 }
3719
3720 /* Read the abbrevs for this compilation unit into a table. */
3721 gdb_assert (cu->dwarf2_abbrevs == NULL);
3722 dwarf2_read_abbrevs (abfd, cu);
3723 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3724
3725 /* Read the compilation unit die. */
3726 init_cu_die_reader (&reader_specs, cu);
3727 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3728 &has_children);
3729
3730 prepare_one_comp_unit (cu, comp_unit_die);
3731
3732 /* Check if comp unit has_children.
3733 If so, read the rest of the partial symbols from this comp unit.
3734 If not, there's no more debug_info for this comp unit. */
3735 if (has_children)
3736 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3737
3738 do_cleanups (free_abbrevs_cleanup);
3739
3740 if (read_cu)
3741 {
3742 /* We've successfully allocated this compilation unit. Let our
3743 caller clean it up when finished with it. */
3744 discard_cleanups (free_cu_cleanup);
3745 }
3746 }
3747
3748 /* Create a list of all compilation units in OBJFILE. We do this only
3749 if an inter-comp-unit reference is found; presumably if there is one,
3750 there will be many, and one will occur early in the .debug_info section.
3751 So there's no point in building this list incrementally. */
3752
3753 static void
3754 create_all_comp_units (struct objfile *objfile)
3755 {
3756 int n_allocated;
3757 int n_comp_units;
3758 struct dwarf2_per_cu_data **all_comp_units;
3759 gdb_byte *info_ptr;
3760
3761 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3762 info_ptr = dwarf2_per_objfile->info.buffer;
3763
3764 n_comp_units = 0;
3765 n_allocated = 10;
3766 all_comp_units = xmalloc (n_allocated
3767 * sizeof (struct dwarf2_per_cu_data *));
3768
3769 while (info_ptr < dwarf2_per_objfile->info.buffer
3770 + dwarf2_per_objfile->info.size)
3771 {
3772 unsigned int length, initial_length_size;
3773 struct dwarf2_per_cu_data *this_cu;
3774 unsigned int offset;
3775
3776 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3777
3778 /* Read just enough information to find out where the next
3779 compilation unit is. */
3780 length = read_initial_length (objfile->obfd, info_ptr,
3781 &initial_length_size);
3782
3783 /* Save the compilation unit for later lookup. */
3784 this_cu = obstack_alloc (&objfile->objfile_obstack,
3785 sizeof (struct dwarf2_per_cu_data));
3786 memset (this_cu, 0, sizeof (*this_cu));
3787 this_cu->offset = offset;
3788 this_cu->length = length + initial_length_size;
3789 this_cu->objfile = objfile;
3790
3791 if (n_comp_units == n_allocated)
3792 {
3793 n_allocated *= 2;
3794 all_comp_units = xrealloc (all_comp_units,
3795 n_allocated
3796 * sizeof (struct dwarf2_per_cu_data *));
3797 }
3798 all_comp_units[n_comp_units++] = this_cu;
3799
3800 info_ptr = info_ptr + this_cu->length;
3801 }
3802
3803 dwarf2_per_objfile->all_comp_units
3804 = obstack_alloc (&objfile->objfile_obstack,
3805 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3806 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3807 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3808 xfree (all_comp_units);
3809 dwarf2_per_objfile->n_comp_units = n_comp_units;
3810 }
3811
3812 /* Process all loaded DIEs for compilation unit CU, starting at
3813 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3814 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3815 DW_AT_ranges). If NEED_PC is set, then this function will set
3816 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3817 and record the covered ranges in the addrmap. */
3818
3819 static void
3820 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3821 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3822 {
3823 struct partial_die_info *pdi;
3824
3825 /* Now, march along the PDI's, descending into ones which have
3826 interesting children but skipping the children of the other ones,
3827 until we reach the end of the compilation unit. */
3828
3829 pdi = first_die;
3830
3831 while (pdi != NULL)
3832 {
3833 fixup_partial_die (pdi, cu);
3834
3835 /* Anonymous namespaces or modules have no name but have interesting
3836 children, so we need to look at them. Ditto for anonymous
3837 enums. */
3838
3839 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3840 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3841 {
3842 switch (pdi->tag)
3843 {
3844 case DW_TAG_subprogram:
3845 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3846 break;
3847 case DW_TAG_constant:
3848 case DW_TAG_variable:
3849 case DW_TAG_typedef:
3850 case DW_TAG_union_type:
3851 if (!pdi->is_declaration)
3852 {
3853 add_partial_symbol (pdi, cu);
3854 }
3855 break;
3856 case DW_TAG_class_type:
3857 case DW_TAG_interface_type:
3858 case DW_TAG_structure_type:
3859 if (!pdi->is_declaration)
3860 {
3861 add_partial_symbol (pdi, cu);
3862 }
3863 break;
3864 case DW_TAG_enumeration_type:
3865 if (!pdi->is_declaration)
3866 add_partial_enumeration (pdi, cu);
3867 break;
3868 case DW_TAG_base_type:
3869 case DW_TAG_subrange_type:
3870 /* File scope base type definitions are added to the partial
3871 symbol table. */
3872 add_partial_symbol (pdi, cu);
3873 break;
3874 case DW_TAG_namespace:
3875 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3876 break;
3877 case DW_TAG_module:
3878 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3879 break;
3880 default:
3881 break;
3882 }
3883 }
3884
3885 /* If the die has a sibling, skip to the sibling. */
3886
3887 pdi = pdi->die_sibling;
3888 }
3889 }
3890
3891 /* Functions used to compute the fully scoped name of a partial DIE.
3892
3893 Normally, this is simple. For C++, the parent DIE's fully scoped
3894 name is concatenated with "::" and the partial DIE's name. For
3895 Java, the same thing occurs except that "." is used instead of "::".
3896 Enumerators are an exception; they use the scope of their parent
3897 enumeration type, i.e. the name of the enumeration type is not
3898 prepended to the enumerator.
3899
3900 There are two complexities. One is DW_AT_specification; in this
3901 case "parent" means the parent of the target of the specification,
3902 instead of the direct parent of the DIE. The other is compilers
3903 which do not emit DW_TAG_namespace; in this case we try to guess
3904 the fully qualified name of structure types from their members'
3905 linkage names. This must be done using the DIE's children rather
3906 than the children of any DW_AT_specification target. We only need
3907 to do this for structures at the top level, i.e. if the target of
3908 any DW_AT_specification (if any; otherwise the DIE itself) does not
3909 have a parent. */
3910
3911 /* Compute the scope prefix associated with PDI's parent, in
3912 compilation unit CU. The result will be allocated on CU's
3913 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3914 field. NULL is returned if no prefix is necessary. */
3915 static char *
3916 partial_die_parent_scope (struct partial_die_info *pdi,
3917 struct dwarf2_cu *cu)
3918 {
3919 char *grandparent_scope;
3920 struct partial_die_info *parent, *real_pdi;
3921
3922 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3923 then this means the parent of the specification DIE. */
3924
3925 real_pdi = pdi;
3926 while (real_pdi->has_specification)
3927 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3928
3929 parent = real_pdi->die_parent;
3930 if (parent == NULL)
3931 return NULL;
3932
3933 if (parent->scope_set)
3934 return parent->scope;
3935
3936 fixup_partial_die (parent, cu);
3937
3938 grandparent_scope = partial_die_parent_scope (parent, cu);
3939
3940 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3941 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3942 Work around this problem here. */
3943 if (cu->language == language_cplus
3944 && parent->tag == DW_TAG_namespace
3945 && strcmp (parent->name, "::") == 0
3946 && grandparent_scope == NULL)
3947 {
3948 parent->scope = NULL;
3949 parent->scope_set = 1;
3950 return NULL;
3951 }
3952
3953 if (pdi->tag == DW_TAG_enumerator)
3954 /* Enumerators should not get the name of the enumeration as a prefix. */
3955 parent->scope = grandparent_scope;
3956 else if (parent->tag == DW_TAG_namespace
3957 || parent->tag == DW_TAG_module
3958 || parent->tag == DW_TAG_structure_type
3959 || parent->tag == DW_TAG_class_type
3960 || parent->tag == DW_TAG_interface_type
3961 || parent->tag == DW_TAG_union_type
3962 || parent->tag == DW_TAG_enumeration_type)
3963 {
3964 if (grandparent_scope == NULL)
3965 parent->scope = parent->name;
3966 else
3967 parent->scope = typename_concat (&cu->comp_unit_obstack,
3968 grandparent_scope,
3969 parent->name, 0, cu);
3970 }
3971 else
3972 {
3973 /* FIXME drow/2004-04-01: What should we be doing with
3974 function-local names? For partial symbols, we should probably be
3975 ignoring them. */
3976 complaint (&symfile_complaints,
3977 _("unhandled containing DIE tag %d for DIE at %d"),
3978 parent->tag, pdi->offset);
3979 parent->scope = grandparent_scope;
3980 }
3981
3982 parent->scope_set = 1;
3983 return parent->scope;
3984 }
3985
3986 /* Return the fully scoped name associated with PDI, from compilation unit
3987 CU. The result will be allocated with malloc. */
3988 static char *
3989 partial_die_full_name (struct partial_die_info *pdi,
3990 struct dwarf2_cu *cu)
3991 {
3992 char *parent_scope;
3993
3994 /* If this is a template instantiation, we can not work out the
3995 template arguments from partial DIEs. So, unfortunately, we have
3996 to go through the full DIEs. At least any work we do building
3997 types here will be reused if full symbols are loaded later. */
3998 if (pdi->has_template_arguments)
3999 {
4000 fixup_partial_die (pdi, cu);
4001
4002 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
4003 {
4004 struct die_info *die;
4005 struct attribute attr;
4006 struct dwarf2_cu *ref_cu = cu;
4007
4008 attr.name = 0;
4009 attr.form = DW_FORM_ref_addr;
4010 attr.u.addr = pdi->offset;
4011 die = follow_die_ref (NULL, &attr, &ref_cu);
4012
4013 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
4014 }
4015 }
4016
4017 parent_scope = partial_die_parent_scope (pdi, cu);
4018 if (parent_scope == NULL)
4019 return NULL;
4020 else
4021 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
4022 }
4023
4024 static void
4025 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
4026 {
4027 struct objfile *objfile = cu->objfile;
4028 CORE_ADDR addr = 0;
4029 char *actual_name = NULL;
4030 const struct partial_symbol *psym = NULL;
4031 CORE_ADDR baseaddr;
4032 int built_actual_name = 0;
4033
4034 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4035
4036 actual_name = partial_die_full_name (pdi, cu);
4037 if (actual_name)
4038 built_actual_name = 1;
4039
4040 if (actual_name == NULL)
4041 actual_name = pdi->name;
4042
4043 switch (pdi->tag)
4044 {
4045 case DW_TAG_subprogram:
4046 if (pdi->is_external || cu->language == language_ada)
4047 {
4048 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4049 of the global scope. But in Ada, we want to be able to access
4050 nested procedures globally. So all Ada subprograms are stored
4051 in the global scope. */
4052 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4053 mst_text, objfile); */
4054 add_psymbol_to_list (actual_name, strlen (actual_name),
4055 built_actual_name,
4056 VAR_DOMAIN, LOC_BLOCK,
4057 &objfile->global_psymbols,
4058 0, pdi->lowpc + baseaddr,
4059 cu->language, objfile);
4060 }
4061 else
4062 {
4063 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4064 mst_file_text, objfile); */
4065 add_psymbol_to_list (actual_name, strlen (actual_name),
4066 built_actual_name,
4067 VAR_DOMAIN, LOC_BLOCK,
4068 &objfile->static_psymbols,
4069 0, pdi->lowpc + baseaddr,
4070 cu->language, objfile);
4071 }
4072 break;
4073 case DW_TAG_constant:
4074 {
4075 struct psymbol_allocation_list *list;
4076
4077 if (pdi->is_external)
4078 list = &objfile->global_psymbols;
4079 else
4080 list = &objfile->static_psymbols;
4081 add_psymbol_to_list (actual_name, strlen (actual_name),
4082 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4083 list, 0, 0, cu->language, objfile);
4084 }
4085 break;
4086 case DW_TAG_variable:
4087 if (pdi->locdesc)
4088 addr = decode_locdesc (pdi->locdesc, cu);
4089
4090 if (pdi->locdesc
4091 && addr == 0
4092 && !dwarf2_per_objfile->has_section_at_zero)
4093 {
4094 /* A global or static variable may also have been stripped
4095 out by the linker if unused, in which case its address
4096 will be nullified; do not add such variables into partial
4097 symbol table then. */
4098 }
4099 else if (pdi->is_external)
4100 {
4101 /* Global Variable.
4102 Don't enter into the minimal symbol tables as there is
4103 a minimal symbol table entry from the ELF symbols already.
4104 Enter into partial symbol table if it has a location
4105 descriptor or a type.
4106 If the location descriptor is missing, new_symbol will create
4107 a LOC_UNRESOLVED symbol, the address of the variable will then
4108 be determined from the minimal symbol table whenever the variable
4109 is referenced.
4110 The address for the partial symbol table entry is not
4111 used by GDB, but it comes in handy for debugging partial symbol
4112 table building. */
4113
4114 if (pdi->locdesc || pdi->has_type)
4115 add_psymbol_to_list (actual_name, strlen (actual_name),
4116 built_actual_name,
4117 VAR_DOMAIN, LOC_STATIC,
4118 &objfile->global_psymbols,
4119 0, addr + baseaddr,
4120 cu->language, objfile);
4121 }
4122 else
4123 {
4124 /* Static Variable. Skip symbols without location descriptors. */
4125 if (pdi->locdesc == NULL)
4126 {
4127 if (built_actual_name)
4128 xfree (actual_name);
4129 return;
4130 }
4131 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4132 mst_file_data, objfile); */
4133 add_psymbol_to_list (actual_name, strlen (actual_name),
4134 built_actual_name,
4135 VAR_DOMAIN, LOC_STATIC,
4136 &objfile->static_psymbols,
4137 0, addr + baseaddr,
4138 cu->language, objfile);
4139 }
4140 break;
4141 case DW_TAG_typedef:
4142 case DW_TAG_base_type:
4143 case DW_TAG_subrange_type:
4144 add_psymbol_to_list (actual_name, strlen (actual_name),
4145 built_actual_name,
4146 VAR_DOMAIN, LOC_TYPEDEF,
4147 &objfile->static_psymbols,
4148 0, (CORE_ADDR) 0, cu->language, objfile);
4149 break;
4150 case DW_TAG_namespace:
4151 add_psymbol_to_list (actual_name, strlen (actual_name),
4152 built_actual_name,
4153 VAR_DOMAIN, LOC_TYPEDEF,
4154 &objfile->global_psymbols,
4155 0, (CORE_ADDR) 0, cu->language, objfile);
4156 break;
4157 case DW_TAG_class_type:
4158 case DW_TAG_interface_type:
4159 case DW_TAG_structure_type:
4160 case DW_TAG_union_type:
4161 case DW_TAG_enumeration_type:
4162 /* Skip external references. The DWARF standard says in the section
4163 about "Structure, Union, and Class Type Entries": "An incomplete
4164 structure, union or class type is represented by a structure,
4165 union or class entry that does not have a byte size attribute
4166 and that has a DW_AT_declaration attribute." */
4167 if (!pdi->has_byte_size && pdi->is_declaration)
4168 {
4169 if (built_actual_name)
4170 xfree (actual_name);
4171 return;
4172 }
4173
4174 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4175 static vs. global. */
4176 add_psymbol_to_list (actual_name, strlen (actual_name),
4177 built_actual_name,
4178 STRUCT_DOMAIN, LOC_TYPEDEF,
4179 (cu->language == language_cplus
4180 || cu->language == language_java)
4181 ? &objfile->global_psymbols
4182 : &objfile->static_psymbols,
4183 0, (CORE_ADDR) 0, cu->language, objfile);
4184
4185 break;
4186 case DW_TAG_enumerator:
4187 add_psymbol_to_list (actual_name, strlen (actual_name),
4188 built_actual_name,
4189 VAR_DOMAIN, LOC_CONST,
4190 (cu->language == language_cplus
4191 || cu->language == language_java)
4192 ? &objfile->global_psymbols
4193 : &objfile->static_psymbols,
4194 0, (CORE_ADDR) 0, cu->language, objfile);
4195 break;
4196 default:
4197 break;
4198 }
4199
4200 if (built_actual_name)
4201 xfree (actual_name);
4202 }
4203
4204 /* Read a partial die corresponding to a namespace; also, add a symbol
4205 corresponding to that namespace to the symbol table. NAMESPACE is
4206 the name of the enclosing namespace. */
4207
4208 static void
4209 add_partial_namespace (struct partial_die_info *pdi,
4210 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4211 int need_pc, struct dwarf2_cu *cu)
4212 {
4213 /* Add a symbol for the namespace. */
4214
4215 add_partial_symbol (pdi, cu);
4216
4217 /* Now scan partial symbols in that namespace. */
4218
4219 if (pdi->has_children)
4220 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4221 }
4222
4223 /* Read a partial die corresponding to a Fortran module. */
4224
4225 static void
4226 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4227 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4228 {
4229 /* Now scan partial symbols in that module. */
4230
4231 if (pdi->has_children)
4232 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4233 }
4234
4235 /* Read a partial die corresponding to a subprogram and create a partial
4236 symbol for that subprogram. When the CU language allows it, this
4237 routine also defines a partial symbol for each nested subprogram
4238 that this subprogram contains.
4239
4240 DIE my also be a lexical block, in which case we simply search
4241 recursively for suprograms defined inside that lexical block.
4242 Again, this is only performed when the CU language allows this
4243 type of definitions. */
4244
4245 static void
4246 add_partial_subprogram (struct partial_die_info *pdi,
4247 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4248 int need_pc, struct dwarf2_cu *cu)
4249 {
4250 if (pdi->tag == DW_TAG_subprogram)
4251 {
4252 if (pdi->has_pc_info)
4253 {
4254 if (pdi->lowpc < *lowpc)
4255 *lowpc = pdi->lowpc;
4256 if (pdi->highpc > *highpc)
4257 *highpc = pdi->highpc;
4258 if (need_pc)
4259 {
4260 CORE_ADDR baseaddr;
4261 struct objfile *objfile = cu->objfile;
4262
4263 baseaddr = ANOFFSET (objfile->section_offsets,
4264 SECT_OFF_TEXT (objfile));
4265 addrmap_set_empty (objfile->psymtabs_addrmap,
4266 pdi->lowpc + baseaddr,
4267 pdi->highpc - 1 + baseaddr,
4268 cu->per_cu->v.psymtab);
4269 }
4270 if (!pdi->is_declaration)
4271 /* Ignore subprogram DIEs that do not have a name, they are
4272 illegal. Do not emit a complaint at this point, we will
4273 do so when we convert this psymtab into a symtab. */
4274 if (pdi->name)
4275 add_partial_symbol (pdi, cu);
4276 }
4277 }
4278
4279 if (! pdi->has_children)
4280 return;
4281
4282 if (cu->language == language_ada)
4283 {
4284 pdi = pdi->die_child;
4285 while (pdi != NULL)
4286 {
4287 fixup_partial_die (pdi, cu);
4288 if (pdi->tag == DW_TAG_subprogram
4289 || pdi->tag == DW_TAG_lexical_block)
4290 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4291 pdi = pdi->die_sibling;
4292 }
4293 }
4294 }
4295
4296 /* Read a partial die corresponding to an enumeration type. */
4297
4298 static void
4299 add_partial_enumeration (struct partial_die_info *enum_pdi,
4300 struct dwarf2_cu *cu)
4301 {
4302 struct partial_die_info *pdi;
4303
4304 if (enum_pdi->name != NULL)
4305 add_partial_symbol (enum_pdi, cu);
4306
4307 pdi = enum_pdi->die_child;
4308 while (pdi)
4309 {
4310 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4311 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4312 else
4313 add_partial_symbol (pdi, cu);
4314 pdi = pdi->die_sibling;
4315 }
4316 }
4317
4318 /* Return the initial uleb128 in the die at INFO_PTR. */
4319
4320 static unsigned int
4321 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4322 {
4323 unsigned int bytes_read;
4324
4325 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4326 }
4327
4328 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4329 Return the corresponding abbrev, or NULL if the number is zero (indicating
4330 an empty DIE). In either case *BYTES_READ will be set to the length of
4331 the initial number. */
4332
4333 static struct abbrev_info *
4334 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4335 struct dwarf2_cu *cu)
4336 {
4337 bfd *abfd = cu->objfile->obfd;
4338 unsigned int abbrev_number;
4339 struct abbrev_info *abbrev;
4340
4341 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4342
4343 if (abbrev_number == 0)
4344 return NULL;
4345
4346 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4347 if (!abbrev)
4348 {
4349 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4350 abbrev_number, bfd_get_filename (abfd));
4351 }
4352
4353 return abbrev;
4354 }
4355
4356 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4357 Returns a pointer to the end of a series of DIEs, terminated by an empty
4358 DIE. Any children of the skipped DIEs will also be skipped. */
4359
4360 static gdb_byte *
4361 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4362 {
4363 struct abbrev_info *abbrev;
4364 unsigned int bytes_read;
4365
4366 while (1)
4367 {
4368 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4369 if (abbrev == NULL)
4370 return info_ptr + bytes_read;
4371 else
4372 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4373 }
4374 }
4375
4376 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4377 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4378 abbrev corresponding to that skipped uleb128 should be passed in
4379 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4380 children. */
4381
4382 static gdb_byte *
4383 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4384 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4385 {
4386 unsigned int bytes_read;
4387 struct attribute attr;
4388 bfd *abfd = cu->objfile->obfd;
4389 unsigned int form, i;
4390
4391 for (i = 0; i < abbrev->num_attrs; i++)
4392 {
4393 /* The only abbrev we care about is DW_AT_sibling. */
4394 if (abbrev->attrs[i].name == DW_AT_sibling)
4395 {
4396 read_attribute (&attr, &abbrev->attrs[i],
4397 abfd, info_ptr, cu);
4398 if (attr.form == DW_FORM_ref_addr)
4399 complaint (&symfile_complaints,
4400 _("ignoring absolute DW_AT_sibling"));
4401 else
4402 return buffer + dwarf2_get_ref_die_offset (&attr);
4403 }
4404
4405 /* If it isn't DW_AT_sibling, skip this attribute. */
4406 form = abbrev->attrs[i].form;
4407 skip_attribute:
4408 switch (form)
4409 {
4410 case DW_FORM_ref_addr:
4411 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4412 and later it is offset sized. */
4413 if (cu->header.version == 2)
4414 info_ptr += cu->header.addr_size;
4415 else
4416 info_ptr += cu->header.offset_size;
4417 break;
4418 case DW_FORM_addr:
4419 info_ptr += cu->header.addr_size;
4420 break;
4421 case DW_FORM_data1:
4422 case DW_FORM_ref1:
4423 case DW_FORM_flag:
4424 info_ptr += 1;
4425 break;
4426 case DW_FORM_flag_present:
4427 break;
4428 case DW_FORM_data2:
4429 case DW_FORM_ref2:
4430 info_ptr += 2;
4431 break;
4432 case DW_FORM_data4:
4433 case DW_FORM_ref4:
4434 info_ptr += 4;
4435 break;
4436 case DW_FORM_data8:
4437 case DW_FORM_ref8:
4438 case DW_FORM_ref_sig8:
4439 info_ptr += 8;
4440 break;
4441 case DW_FORM_string:
4442 read_direct_string (abfd, info_ptr, &bytes_read);
4443 info_ptr += bytes_read;
4444 break;
4445 case DW_FORM_sec_offset:
4446 case DW_FORM_strp:
4447 info_ptr += cu->header.offset_size;
4448 break;
4449 case DW_FORM_exprloc:
4450 case DW_FORM_block:
4451 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4452 info_ptr += bytes_read;
4453 break;
4454 case DW_FORM_block1:
4455 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4456 break;
4457 case DW_FORM_block2:
4458 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4459 break;
4460 case DW_FORM_block4:
4461 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4462 break;
4463 case DW_FORM_sdata:
4464 case DW_FORM_udata:
4465 case DW_FORM_ref_udata:
4466 info_ptr = skip_leb128 (abfd, info_ptr);
4467 break;
4468 case DW_FORM_indirect:
4469 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4470 info_ptr += bytes_read;
4471 /* We need to continue parsing from here, so just go back to
4472 the top. */
4473 goto skip_attribute;
4474
4475 default:
4476 error (_("Dwarf Error: Cannot handle %s "
4477 "in DWARF reader [in module %s]"),
4478 dwarf_form_name (form),
4479 bfd_get_filename (abfd));
4480 }
4481 }
4482
4483 if (abbrev->has_children)
4484 return skip_children (buffer, info_ptr, cu);
4485 else
4486 return info_ptr;
4487 }
4488
4489 /* Locate ORIG_PDI's sibling.
4490 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4491 in BUFFER. */
4492
4493 static gdb_byte *
4494 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4495 gdb_byte *buffer, gdb_byte *info_ptr,
4496 bfd *abfd, struct dwarf2_cu *cu)
4497 {
4498 /* Do we know the sibling already? */
4499
4500 if (orig_pdi->sibling)
4501 return orig_pdi->sibling;
4502
4503 /* Are there any children to deal with? */
4504
4505 if (!orig_pdi->has_children)
4506 return info_ptr;
4507
4508 /* Skip the children the long way. */
4509
4510 return skip_children (buffer, info_ptr, cu);
4511 }
4512
4513 /* Expand this partial symbol table into a full symbol table. */
4514
4515 static void
4516 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4517 {
4518 if (pst != NULL)
4519 {
4520 if (pst->readin)
4521 {
4522 warning (_("bug: psymtab for %s is already read in."),
4523 pst->filename);
4524 }
4525 else
4526 {
4527 if (info_verbose)
4528 {
4529 printf_filtered (_("Reading in symbols for %s..."),
4530 pst->filename);
4531 gdb_flush (gdb_stdout);
4532 }
4533
4534 /* Restore our global data. */
4535 dwarf2_per_objfile = objfile_data (pst->objfile,
4536 dwarf2_objfile_data_key);
4537
4538 /* If this psymtab is constructed from a debug-only objfile, the
4539 has_section_at_zero flag will not necessarily be correct. We
4540 can get the correct value for this flag by looking at the data
4541 associated with the (presumably stripped) associated objfile. */
4542 if (pst->objfile->separate_debug_objfile_backlink)
4543 {
4544 struct dwarf2_per_objfile *dpo_backlink
4545 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4546 dwarf2_objfile_data_key);
4547
4548 dwarf2_per_objfile->has_section_at_zero
4549 = dpo_backlink->has_section_at_zero;
4550 }
4551
4552 dwarf2_per_objfile->reading_partial_symbols = 0;
4553
4554 psymtab_to_symtab_1 (pst);
4555
4556 /* Finish up the debug error message. */
4557 if (info_verbose)
4558 printf_filtered (_("done.\n"));
4559 }
4560 }
4561 }
4562
4563 /* Add PER_CU to the queue. */
4564
4565 static void
4566 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4567 {
4568 struct dwarf2_queue_item *item;
4569
4570 per_cu->queued = 1;
4571 item = xmalloc (sizeof (*item));
4572 item->per_cu = per_cu;
4573 item->next = NULL;
4574
4575 if (dwarf2_queue == NULL)
4576 dwarf2_queue = item;
4577 else
4578 dwarf2_queue_tail->next = item;
4579
4580 dwarf2_queue_tail = item;
4581 }
4582
4583 /* Process the queue. */
4584
4585 static void
4586 process_queue (struct objfile *objfile)
4587 {
4588 struct dwarf2_queue_item *item, *next_item;
4589
4590 /* The queue starts out with one item, but following a DIE reference
4591 may load a new CU, adding it to the end of the queue. */
4592 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4593 {
4594 if (dwarf2_per_objfile->using_index
4595 ? !item->per_cu->v.quick->symtab
4596 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4597 process_full_comp_unit (item->per_cu);
4598
4599 item->per_cu->queued = 0;
4600 next_item = item->next;
4601 xfree (item);
4602 }
4603
4604 dwarf2_queue_tail = NULL;
4605 }
4606
4607 /* Free all allocated queue entries. This function only releases anything if
4608 an error was thrown; if the queue was processed then it would have been
4609 freed as we went along. */
4610
4611 static void
4612 dwarf2_release_queue (void *dummy)
4613 {
4614 struct dwarf2_queue_item *item, *last;
4615
4616 item = dwarf2_queue;
4617 while (item)
4618 {
4619 /* Anything still marked queued is likely to be in an
4620 inconsistent state, so discard it. */
4621 if (item->per_cu->queued)
4622 {
4623 if (item->per_cu->cu != NULL)
4624 free_one_cached_comp_unit (item->per_cu->cu);
4625 item->per_cu->queued = 0;
4626 }
4627
4628 last = item;
4629 item = item->next;
4630 xfree (last);
4631 }
4632
4633 dwarf2_queue = dwarf2_queue_tail = NULL;
4634 }
4635
4636 /* Read in full symbols for PST, and anything it depends on. */
4637
4638 static void
4639 psymtab_to_symtab_1 (struct partial_symtab *pst)
4640 {
4641 struct dwarf2_per_cu_data *per_cu;
4642 struct cleanup *back_to;
4643 int i;
4644
4645 for (i = 0; i < pst->number_of_dependencies; i++)
4646 if (!pst->dependencies[i]->readin)
4647 {
4648 /* Inform about additional files that need to be read in. */
4649 if (info_verbose)
4650 {
4651 /* FIXME: i18n: Need to make this a single string. */
4652 fputs_filtered (" ", gdb_stdout);
4653 wrap_here ("");
4654 fputs_filtered ("and ", gdb_stdout);
4655 wrap_here ("");
4656 printf_filtered ("%s...", pst->dependencies[i]->filename);
4657 wrap_here (""); /* Flush output. */
4658 gdb_flush (gdb_stdout);
4659 }
4660 psymtab_to_symtab_1 (pst->dependencies[i]);
4661 }
4662
4663 per_cu = pst->read_symtab_private;
4664
4665 if (per_cu == NULL)
4666 {
4667 /* It's an include file, no symbols to read for it.
4668 Everything is in the parent symtab. */
4669 pst->readin = 1;
4670 return;
4671 }
4672
4673 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4674 }
4675
4676 /* Load the DIEs associated with PER_CU into memory. */
4677
4678 static void
4679 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4680 struct objfile *objfile)
4681 {
4682 bfd *abfd = objfile->obfd;
4683 struct dwarf2_cu *cu;
4684 unsigned int offset;
4685 gdb_byte *info_ptr, *beg_of_comp_unit;
4686 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4687 struct attribute *attr;
4688 int read_cu = 0;
4689
4690 gdb_assert (! per_cu->debug_type_section);
4691
4692 /* Set local variables from the partial symbol table info. */
4693 offset = per_cu->offset;
4694
4695 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4696 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4697 beg_of_comp_unit = info_ptr;
4698
4699 if (per_cu->cu == NULL)
4700 {
4701 cu = xmalloc (sizeof (*cu));
4702 init_one_comp_unit (cu, objfile);
4703
4704 read_cu = 1;
4705
4706 /* If an error occurs while loading, release our storage. */
4707 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4708
4709 /* Read in the comp_unit header. */
4710 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4711
4712 /* Skip dummy compilation units. */
4713 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4714 + dwarf2_per_objfile->info.size)
4715 || peek_abbrev_code (abfd, info_ptr) == 0)
4716 {
4717 do_cleanups (free_cu_cleanup);
4718 return;
4719 }
4720
4721 /* Complete the cu_header. */
4722 cu->header.offset = offset;
4723 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4724
4725 /* Read the abbrevs for this compilation unit. */
4726 dwarf2_read_abbrevs (abfd, cu);
4727 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4728
4729 /* Link this compilation unit into the compilation unit tree. */
4730 per_cu->cu = cu;
4731 cu->per_cu = per_cu;
4732
4733 /* Link this CU into read_in_chain. */
4734 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4735 dwarf2_per_objfile->read_in_chain = per_cu;
4736 }
4737 else
4738 {
4739 cu = per_cu->cu;
4740 info_ptr += cu->header.first_die_offset;
4741 }
4742
4743 cu->dies = read_comp_unit (info_ptr, cu);
4744
4745 /* We try not to read any attributes in this function, because not
4746 all objfiles needed for references have been loaded yet, and symbol
4747 table processing isn't initialized. But we have to set the CU language,
4748 or we won't be able to build types correctly. */
4749 prepare_one_comp_unit (cu, cu->dies);
4750
4751 /* Similarly, if we do not read the producer, we can not apply
4752 producer-specific interpretation. */
4753 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4754 if (attr)
4755 cu->producer = DW_STRING (attr);
4756
4757 if (read_cu)
4758 {
4759 do_cleanups (free_abbrevs_cleanup);
4760
4761 /* We've successfully allocated this compilation unit. Let our
4762 caller clean it up when finished with it. */
4763 discard_cleanups (free_cu_cleanup);
4764 }
4765 }
4766
4767 /* Add a DIE to the delayed physname list. */
4768
4769 static void
4770 add_to_method_list (struct type *type, int fnfield_index, int index,
4771 const char *name, struct die_info *die,
4772 struct dwarf2_cu *cu)
4773 {
4774 struct delayed_method_info mi;
4775 mi.type = type;
4776 mi.fnfield_index = fnfield_index;
4777 mi.index = index;
4778 mi.name = name;
4779 mi.die = die;
4780 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4781 }
4782
4783 /* A cleanup for freeing the delayed method list. */
4784
4785 static void
4786 free_delayed_list (void *ptr)
4787 {
4788 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4789 if (cu->method_list != NULL)
4790 {
4791 VEC_free (delayed_method_info, cu->method_list);
4792 cu->method_list = NULL;
4793 }
4794 }
4795
4796 /* Compute the physnames of any methods on the CU's method list.
4797
4798 The computation of method physnames is delayed in order to avoid the
4799 (bad) condition that one of the method's formal parameters is of an as yet
4800 incomplete type. */
4801
4802 static void
4803 compute_delayed_physnames (struct dwarf2_cu *cu)
4804 {
4805 int i;
4806 struct delayed_method_info *mi;
4807 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4808 {
4809 const char *physname;
4810 struct fn_fieldlist *fn_flp
4811 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4812 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4813 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4814 }
4815 }
4816
4817 /* Generate full symbol information for PST and CU, whose DIEs have
4818 already been loaded into memory. */
4819
4820 static void
4821 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4822 {
4823 struct dwarf2_cu *cu = per_cu->cu;
4824 struct objfile *objfile = per_cu->objfile;
4825 CORE_ADDR lowpc, highpc;
4826 struct symtab *symtab;
4827 struct cleanup *back_to, *delayed_list_cleanup;
4828 CORE_ADDR baseaddr;
4829
4830 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4831
4832 buildsym_init ();
4833 back_to = make_cleanup (really_free_pendings, NULL);
4834 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4835
4836 cu->list_in_scope = &file_symbols;
4837
4838 /* Do line number decoding in read_file_scope () */
4839 process_die (cu->dies, cu);
4840
4841 /* Now that we have processed all the DIEs in the CU, all the types
4842 should be complete, and it should now be safe to compute all of the
4843 physnames. */
4844 compute_delayed_physnames (cu);
4845 do_cleanups (delayed_list_cleanup);
4846
4847 /* Some compilers don't define a DW_AT_high_pc attribute for the
4848 compilation unit. If the DW_AT_high_pc is missing, synthesize
4849 it, by scanning the DIE's below the compilation unit. */
4850 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4851
4852 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4853
4854 if (symtab != NULL)
4855 {
4856 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4857
4858 /* Set symtab language to language from DW_AT_language. If the
4859 compilation is from a C file generated by language preprocessors, do
4860 not set the language if it was already deduced by start_subfile. */
4861 if (!(cu->language == language_c && symtab->language != language_c))
4862 symtab->language = cu->language;
4863
4864 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4865 produce DW_AT_location with location lists but it can be possibly
4866 invalid without -fvar-tracking.
4867
4868 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4869 needed, it would be wrong due to missing DW_AT_producer there.
4870
4871 Still one can confuse GDB by using non-standard GCC compilation
4872 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4873 */
4874 if (cu->has_loclist && gcc_4_minor >= 0)
4875 symtab->locations_valid = 1;
4876
4877 if (gcc_4_minor >= 5)
4878 symtab->epilogue_unwind_valid = 1;
4879
4880 symtab->call_site_htab = cu->call_site_htab;
4881 }
4882
4883 if (dwarf2_per_objfile->using_index)
4884 per_cu->v.quick->symtab = symtab;
4885 else
4886 {
4887 struct partial_symtab *pst = per_cu->v.psymtab;
4888 pst->symtab = symtab;
4889 pst->readin = 1;
4890 }
4891
4892 do_cleanups (back_to);
4893 }
4894
4895 /* Process a die and its children. */
4896
4897 static void
4898 process_die (struct die_info *die, struct dwarf2_cu *cu)
4899 {
4900 switch (die->tag)
4901 {
4902 case DW_TAG_padding:
4903 break;
4904 case DW_TAG_compile_unit:
4905 read_file_scope (die, cu);
4906 break;
4907 case DW_TAG_type_unit:
4908 read_type_unit_scope (die, cu);
4909 break;
4910 case DW_TAG_subprogram:
4911 case DW_TAG_inlined_subroutine:
4912 read_func_scope (die, cu);
4913 break;
4914 case DW_TAG_lexical_block:
4915 case DW_TAG_try_block:
4916 case DW_TAG_catch_block:
4917 read_lexical_block_scope (die, cu);
4918 break;
4919 case DW_TAG_GNU_call_site:
4920 read_call_site_scope (die, cu);
4921 break;
4922 case DW_TAG_class_type:
4923 case DW_TAG_interface_type:
4924 case DW_TAG_structure_type:
4925 case DW_TAG_union_type:
4926 process_structure_scope (die, cu);
4927 break;
4928 case DW_TAG_enumeration_type:
4929 process_enumeration_scope (die, cu);
4930 break;
4931
4932 /* These dies have a type, but processing them does not create
4933 a symbol or recurse to process the children. Therefore we can
4934 read them on-demand through read_type_die. */
4935 case DW_TAG_subroutine_type:
4936 case DW_TAG_set_type:
4937 case DW_TAG_array_type:
4938 case DW_TAG_pointer_type:
4939 case DW_TAG_ptr_to_member_type:
4940 case DW_TAG_reference_type:
4941 case DW_TAG_string_type:
4942 break;
4943
4944 case DW_TAG_base_type:
4945 case DW_TAG_subrange_type:
4946 case DW_TAG_typedef:
4947 /* Add a typedef symbol for the type definition, if it has a
4948 DW_AT_name. */
4949 new_symbol (die, read_type_die (die, cu), cu);
4950 break;
4951 case DW_TAG_common_block:
4952 read_common_block (die, cu);
4953 break;
4954 case DW_TAG_common_inclusion:
4955 break;
4956 case DW_TAG_namespace:
4957 processing_has_namespace_info = 1;
4958 read_namespace (die, cu);
4959 break;
4960 case DW_TAG_module:
4961 processing_has_namespace_info = 1;
4962 read_module (die, cu);
4963 break;
4964 case DW_TAG_imported_declaration:
4965 case DW_TAG_imported_module:
4966 processing_has_namespace_info = 1;
4967 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4968 || cu->language != language_fortran))
4969 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4970 dwarf_tag_name (die->tag));
4971 read_import_statement (die, cu);
4972 break;
4973 default:
4974 new_symbol (die, NULL, cu);
4975 break;
4976 }
4977 }
4978
4979 /* A helper function for dwarf2_compute_name which determines whether DIE
4980 needs to have the name of the scope prepended to the name listed in the
4981 die. */
4982
4983 static int
4984 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4985 {
4986 struct attribute *attr;
4987
4988 switch (die->tag)
4989 {
4990 case DW_TAG_namespace:
4991 case DW_TAG_typedef:
4992 case DW_TAG_class_type:
4993 case DW_TAG_interface_type:
4994 case DW_TAG_structure_type:
4995 case DW_TAG_union_type:
4996 case DW_TAG_enumeration_type:
4997 case DW_TAG_enumerator:
4998 case DW_TAG_subprogram:
4999 case DW_TAG_member:
5000 return 1;
5001
5002 case DW_TAG_variable:
5003 case DW_TAG_constant:
5004 /* We only need to prefix "globally" visible variables. These include
5005 any variable marked with DW_AT_external or any variable that
5006 lives in a namespace. [Variables in anonymous namespaces
5007 require prefixing, but they are not DW_AT_external.] */
5008
5009 if (dwarf2_attr (die, DW_AT_specification, cu))
5010 {
5011 struct dwarf2_cu *spec_cu = cu;
5012
5013 return die_needs_namespace (die_specification (die, &spec_cu),
5014 spec_cu);
5015 }
5016
5017 attr = dwarf2_attr (die, DW_AT_external, cu);
5018 if (attr == NULL && die->parent->tag != DW_TAG_namespace
5019 && die->parent->tag != DW_TAG_module)
5020 return 0;
5021 /* A variable in a lexical block of some kind does not need a
5022 namespace, even though in C++ such variables may be external
5023 and have a mangled name. */
5024 if (die->parent->tag == DW_TAG_lexical_block
5025 || die->parent->tag == DW_TAG_try_block
5026 || die->parent->tag == DW_TAG_catch_block
5027 || die->parent->tag == DW_TAG_subprogram)
5028 return 0;
5029 return 1;
5030
5031 default:
5032 return 0;
5033 }
5034 }
5035
5036 /* Retrieve the last character from a mem_file. */
5037
5038 static void
5039 do_ui_file_peek_last (void *object, const char *buffer, long length)
5040 {
5041 char *last_char_p = (char *) object;
5042
5043 if (length > 0)
5044 *last_char_p = buffer[length - 1];
5045 }
5046
5047 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
5048 compute the physname for the object, which include a method's
5049 formal parameters (C++/Java) and return type (Java).
5050
5051 For Ada, return the DIE's linkage name rather than the fully qualified
5052 name. PHYSNAME is ignored..
5053
5054 The result is allocated on the objfile_obstack and canonicalized. */
5055
5056 static const char *
5057 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5058 int physname)
5059 {
5060 if (name == NULL)
5061 name = dwarf2_name (die, cu);
5062
5063 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5064 compute it by typename_concat inside GDB. */
5065 if (cu->language == language_ada
5066 || (cu->language == language_fortran && physname))
5067 {
5068 /* For Ada unit, we prefer the linkage name over the name, as
5069 the former contains the exported name, which the user expects
5070 to be able to reference. Ideally, we want the user to be able
5071 to reference this entity using either natural or linkage name,
5072 but we haven't started looking at this enhancement yet. */
5073 struct attribute *attr;
5074
5075 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5076 if (attr == NULL)
5077 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5078 if (attr && DW_STRING (attr))
5079 return DW_STRING (attr);
5080 }
5081
5082 /* These are the only languages we know how to qualify names in. */
5083 if (name != NULL
5084 && (cu->language == language_cplus || cu->language == language_java
5085 || cu->language == language_fortran))
5086 {
5087 if (die_needs_namespace (die, cu))
5088 {
5089 long length;
5090 char *prefix;
5091 struct ui_file *buf;
5092
5093 prefix = determine_prefix (die, cu);
5094 buf = mem_fileopen ();
5095 if (*prefix != '\0')
5096 {
5097 char *prefixed_name = typename_concat (NULL, prefix, name,
5098 physname, cu);
5099
5100 fputs_unfiltered (prefixed_name, buf);
5101 xfree (prefixed_name);
5102 }
5103 else
5104 fputs_unfiltered (name, buf);
5105
5106 /* Template parameters may be specified in the DIE's DW_AT_name, or
5107 as children with DW_TAG_template_type_param or
5108 DW_TAG_value_type_param. If the latter, add them to the name
5109 here. If the name already has template parameters, then
5110 skip this step; some versions of GCC emit both, and
5111 it is more efficient to use the pre-computed name.
5112
5113 Something to keep in mind about this process: it is very
5114 unlikely, or in some cases downright impossible, to produce
5115 something that will match the mangled name of a function.
5116 If the definition of the function has the same debug info,
5117 we should be able to match up with it anyway. But fallbacks
5118 using the minimal symbol, for instance to find a method
5119 implemented in a stripped copy of libstdc++, will not work.
5120 If we do not have debug info for the definition, we will have to
5121 match them up some other way.
5122
5123 When we do name matching there is a related problem with function
5124 templates; two instantiated function templates are allowed to
5125 differ only by their return types, which we do not add here. */
5126
5127 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5128 {
5129 struct attribute *attr;
5130 struct die_info *child;
5131 int first = 1;
5132
5133 die->building_fullname = 1;
5134
5135 for (child = die->child; child != NULL; child = child->sibling)
5136 {
5137 struct type *type;
5138 long value;
5139 gdb_byte *bytes;
5140 struct dwarf2_locexpr_baton *baton;
5141 struct value *v;
5142
5143 if (child->tag != DW_TAG_template_type_param
5144 && child->tag != DW_TAG_template_value_param)
5145 continue;
5146
5147 if (first)
5148 {
5149 fputs_unfiltered ("<", buf);
5150 first = 0;
5151 }
5152 else
5153 fputs_unfiltered (", ", buf);
5154
5155 attr = dwarf2_attr (child, DW_AT_type, cu);
5156 if (attr == NULL)
5157 {
5158 complaint (&symfile_complaints,
5159 _("template parameter missing DW_AT_type"));
5160 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5161 continue;
5162 }
5163 type = die_type (child, cu);
5164
5165 if (child->tag == DW_TAG_template_type_param)
5166 {
5167 c_print_type (type, "", buf, -1, 0);
5168 continue;
5169 }
5170
5171 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5172 if (attr == NULL)
5173 {
5174 complaint (&symfile_complaints,
5175 _("template parameter missing "
5176 "DW_AT_const_value"));
5177 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5178 continue;
5179 }
5180
5181 dwarf2_const_value_attr (attr, type, name,
5182 &cu->comp_unit_obstack, cu,
5183 &value, &bytes, &baton);
5184
5185 if (TYPE_NOSIGN (type))
5186 /* GDB prints characters as NUMBER 'CHAR'. If that's
5187 changed, this can use value_print instead. */
5188 c_printchar (value, type, buf);
5189 else
5190 {
5191 struct value_print_options opts;
5192
5193 if (baton != NULL)
5194 v = dwarf2_evaluate_loc_desc (type, NULL,
5195 baton->data,
5196 baton->size,
5197 baton->per_cu);
5198 else if (bytes != NULL)
5199 {
5200 v = allocate_value (type);
5201 memcpy (value_contents_writeable (v), bytes,
5202 TYPE_LENGTH (type));
5203 }
5204 else
5205 v = value_from_longest (type, value);
5206
5207 /* Specify decimal so that we do not depend on
5208 the radix. */
5209 get_formatted_print_options (&opts, 'd');
5210 opts.raw = 1;
5211 value_print (v, buf, &opts);
5212 release_value (v);
5213 value_free (v);
5214 }
5215 }
5216
5217 die->building_fullname = 0;
5218
5219 if (!first)
5220 {
5221 /* Close the argument list, with a space if necessary
5222 (nested templates). */
5223 char last_char = '\0';
5224 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5225 if (last_char == '>')
5226 fputs_unfiltered (" >", buf);
5227 else
5228 fputs_unfiltered (">", buf);
5229 }
5230 }
5231
5232 /* For Java and C++ methods, append formal parameter type
5233 information, if PHYSNAME. */
5234
5235 if (physname && die->tag == DW_TAG_subprogram
5236 && (cu->language == language_cplus
5237 || cu->language == language_java))
5238 {
5239 struct type *type = read_type_die (die, cu);
5240
5241 c_type_print_args (type, buf, 1, cu->language);
5242
5243 if (cu->language == language_java)
5244 {
5245 /* For java, we must append the return type to method
5246 names. */
5247 if (die->tag == DW_TAG_subprogram)
5248 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5249 0, 0);
5250 }
5251 else if (cu->language == language_cplus)
5252 {
5253 /* Assume that an artificial first parameter is
5254 "this", but do not crash if it is not. RealView
5255 marks unnamed (and thus unused) parameters as
5256 artificial; there is no way to differentiate
5257 the two cases. */
5258 if (TYPE_NFIELDS (type) > 0
5259 && TYPE_FIELD_ARTIFICIAL (type, 0)
5260 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5261 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5262 0))))
5263 fputs_unfiltered (" const", buf);
5264 }
5265 }
5266
5267 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5268 &length);
5269 ui_file_delete (buf);
5270
5271 if (cu->language == language_cplus)
5272 {
5273 char *cname
5274 = dwarf2_canonicalize_name (name, cu,
5275 &cu->objfile->objfile_obstack);
5276
5277 if (cname != NULL)
5278 name = cname;
5279 }
5280 }
5281 }
5282
5283 return name;
5284 }
5285
5286 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5287 If scope qualifiers are appropriate they will be added. The result
5288 will be allocated on the objfile_obstack, or NULL if the DIE does
5289 not have a name. NAME may either be from a previous call to
5290 dwarf2_name or NULL.
5291
5292 The output string will be canonicalized (if C++/Java). */
5293
5294 static const char *
5295 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5296 {
5297 return dwarf2_compute_name (name, die, cu, 0);
5298 }
5299
5300 /* Construct a physname for the given DIE in CU. NAME may either be
5301 from a previous call to dwarf2_name or NULL. The result will be
5302 allocated on the objfile_objstack or NULL if the DIE does not have a
5303 name.
5304
5305 The output string will be canonicalized (if C++/Java). */
5306
5307 static const char *
5308 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5309 {
5310 struct attribute *attr;
5311 const char *retval, *mangled = NULL, *canon = NULL;
5312 struct cleanup *back_to;
5313 int need_copy = 1;
5314
5315 /* In this case dwarf2_compute_name is just a shortcut not building anything
5316 on its own. */
5317 if (!die_needs_namespace (die, cu))
5318 return dwarf2_compute_name (name, die, cu, 1);
5319
5320 back_to = make_cleanup (null_cleanup, NULL);
5321
5322 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5323 if (!attr)
5324 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5325
5326 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5327 has computed. */
5328 if (attr && DW_STRING (attr))
5329 {
5330 char *demangled;
5331
5332 mangled = DW_STRING (attr);
5333
5334 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5335 type. It is easier for GDB users to search for such functions as
5336 `name(params)' than `long name(params)'. In such case the minimal
5337 symbol names do not match the full symbol names but for template
5338 functions there is never a need to look up their definition from their
5339 declaration so the only disadvantage remains the minimal symbol
5340 variant `long name(params)' does not have the proper inferior type.
5341 */
5342
5343 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5344 | (cu->language == language_java
5345 ? DMGL_JAVA | DMGL_RET_POSTFIX
5346 : DMGL_RET_DROP)));
5347 if (demangled)
5348 {
5349 make_cleanup (xfree, demangled);
5350 canon = demangled;
5351 }
5352 else
5353 {
5354 canon = mangled;
5355 need_copy = 0;
5356 }
5357 }
5358
5359 if (canon == NULL || check_physname)
5360 {
5361 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5362
5363 if (canon != NULL && strcmp (physname, canon) != 0)
5364 {
5365 /* It may not mean a bug in GDB. The compiler could also
5366 compute DW_AT_linkage_name incorrectly. But in such case
5367 GDB would need to be bug-to-bug compatible. */
5368
5369 complaint (&symfile_complaints,
5370 _("Computed physname <%s> does not match demangled <%s> "
5371 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5372 physname, canon, mangled, die->offset, cu->objfile->name);
5373
5374 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5375 is available here - over computed PHYSNAME. It is safer
5376 against both buggy GDB and buggy compilers. */
5377
5378 retval = canon;
5379 }
5380 else
5381 {
5382 retval = physname;
5383 need_copy = 0;
5384 }
5385 }
5386 else
5387 retval = canon;
5388
5389 if (need_copy)
5390 retval = obsavestring (retval, strlen (retval),
5391 &cu->objfile->objfile_obstack);
5392
5393 do_cleanups (back_to);
5394 return retval;
5395 }
5396
5397 /* Read the import statement specified by the given die and record it. */
5398
5399 static void
5400 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5401 {
5402 struct attribute *import_attr;
5403 struct die_info *imported_die, *child_die;
5404 struct dwarf2_cu *imported_cu;
5405 const char *imported_name;
5406 const char *imported_name_prefix;
5407 const char *canonical_name;
5408 const char *import_alias;
5409 const char *imported_declaration = NULL;
5410 const char *import_prefix;
5411 VEC (const_char_ptr) *excludes = NULL;
5412 struct cleanup *cleanups;
5413
5414 char *temp;
5415
5416 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5417 if (import_attr == NULL)
5418 {
5419 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5420 dwarf_tag_name (die->tag));
5421 return;
5422 }
5423
5424 imported_cu = cu;
5425 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5426 imported_name = dwarf2_name (imported_die, imported_cu);
5427 if (imported_name == NULL)
5428 {
5429 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5430
5431 The import in the following code:
5432 namespace A
5433 {
5434 typedef int B;
5435 }
5436
5437 int main ()
5438 {
5439 using A::B;
5440 B b;
5441 return b;
5442 }
5443
5444 ...
5445 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5446 <52> DW_AT_decl_file : 1
5447 <53> DW_AT_decl_line : 6
5448 <54> DW_AT_import : <0x75>
5449 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5450 <59> DW_AT_name : B
5451 <5b> DW_AT_decl_file : 1
5452 <5c> DW_AT_decl_line : 2
5453 <5d> DW_AT_type : <0x6e>
5454 ...
5455 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5456 <76> DW_AT_byte_size : 4
5457 <77> DW_AT_encoding : 5 (signed)
5458
5459 imports the wrong die ( 0x75 instead of 0x58 ).
5460 This case will be ignored until the gcc bug is fixed. */
5461 return;
5462 }
5463
5464 /* Figure out the local name after import. */
5465 import_alias = dwarf2_name (die, cu);
5466
5467 /* Figure out where the statement is being imported to. */
5468 import_prefix = determine_prefix (die, cu);
5469
5470 /* Figure out what the scope of the imported die is and prepend it
5471 to the name of the imported die. */
5472 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5473
5474 if (imported_die->tag != DW_TAG_namespace
5475 && imported_die->tag != DW_TAG_module)
5476 {
5477 imported_declaration = imported_name;
5478 canonical_name = imported_name_prefix;
5479 }
5480 else if (strlen (imported_name_prefix) > 0)
5481 {
5482 temp = alloca (strlen (imported_name_prefix)
5483 + 2 + strlen (imported_name) + 1);
5484 strcpy (temp, imported_name_prefix);
5485 strcat (temp, "::");
5486 strcat (temp, imported_name);
5487 canonical_name = temp;
5488 }
5489 else
5490 canonical_name = imported_name;
5491
5492 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5493
5494 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5495 for (child_die = die->child; child_die && child_die->tag;
5496 child_die = sibling_die (child_die))
5497 {
5498 /* DWARF-4: A Fortran use statement with a “rename list” may be
5499 represented by an imported module entry with an import attribute
5500 referring to the module and owned entries corresponding to those
5501 entities that are renamed as part of being imported. */
5502
5503 if (child_die->tag != DW_TAG_imported_declaration)
5504 {
5505 complaint (&symfile_complaints,
5506 _("child DW_TAG_imported_declaration expected "
5507 "- DIE at 0x%x [in module %s]"),
5508 child_die->offset, cu->objfile->name);
5509 continue;
5510 }
5511
5512 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5513 if (import_attr == NULL)
5514 {
5515 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5516 dwarf_tag_name (child_die->tag));
5517 continue;
5518 }
5519
5520 imported_cu = cu;
5521 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5522 &imported_cu);
5523 imported_name = dwarf2_name (imported_die, imported_cu);
5524 if (imported_name == NULL)
5525 {
5526 complaint (&symfile_complaints,
5527 _("child DW_TAG_imported_declaration has unknown "
5528 "imported name - DIE at 0x%x [in module %s]"),
5529 child_die->offset, cu->objfile->name);
5530 continue;
5531 }
5532
5533 VEC_safe_push (const_char_ptr, excludes, imported_name);
5534
5535 process_die (child_die, cu);
5536 }
5537
5538 cp_add_using_directive (import_prefix,
5539 canonical_name,
5540 import_alias,
5541 imported_declaration,
5542 excludes,
5543 &cu->objfile->objfile_obstack);
5544
5545 do_cleanups (cleanups);
5546 }
5547
5548 static void
5549 initialize_cu_func_list (struct dwarf2_cu *cu)
5550 {
5551 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5552 }
5553
5554 /* Cleanup function for read_file_scope. */
5555
5556 static void
5557 free_cu_line_header (void *arg)
5558 {
5559 struct dwarf2_cu *cu = arg;
5560
5561 free_line_header (cu->line_header);
5562 cu->line_header = NULL;
5563 }
5564
5565 static void
5566 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5567 char **name, char **comp_dir)
5568 {
5569 struct attribute *attr;
5570
5571 *name = NULL;
5572 *comp_dir = NULL;
5573
5574 /* Find the filename. Do not use dwarf2_name here, since the filename
5575 is not a source language identifier. */
5576 attr = dwarf2_attr (die, DW_AT_name, cu);
5577 if (attr)
5578 {
5579 *name = DW_STRING (attr);
5580 }
5581
5582 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5583 if (attr)
5584 *comp_dir = DW_STRING (attr);
5585 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5586 {
5587 *comp_dir = ldirname (*name);
5588 if (*comp_dir != NULL)
5589 make_cleanup (xfree, *comp_dir);
5590 }
5591 if (*comp_dir != NULL)
5592 {
5593 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5594 directory, get rid of it. */
5595 char *cp = strchr (*comp_dir, ':');
5596
5597 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5598 *comp_dir = cp + 1;
5599 }
5600
5601 if (*name == NULL)
5602 *name = "<unknown>";
5603 }
5604
5605 /* Handle DW_AT_stmt_list for a compilation unit. */
5606
5607 static void
5608 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5609 const char *comp_dir)
5610 {
5611 struct attribute *attr;
5612 struct objfile *objfile = cu->objfile;
5613 bfd *abfd = objfile->obfd;
5614
5615 /* Decode line number information if present. We do this before
5616 processing child DIEs, so that the line header table is available
5617 for DW_AT_decl_file. */
5618 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5619 if (attr)
5620 {
5621 unsigned int line_offset = DW_UNSND (attr);
5622 struct line_header *line_header
5623 = dwarf_decode_line_header (line_offset, abfd, cu);
5624
5625 if (line_header)
5626 {
5627 cu->line_header = line_header;
5628 make_cleanup (free_cu_line_header, cu);
5629 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5630 }
5631 }
5632 }
5633
5634 /* Process DW_TAG_compile_unit. */
5635
5636 static void
5637 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5638 {
5639 struct objfile *objfile = cu->objfile;
5640 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5641 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5642 CORE_ADDR highpc = ((CORE_ADDR) 0);
5643 struct attribute *attr;
5644 char *name = NULL;
5645 char *comp_dir = NULL;
5646 struct die_info *child_die;
5647 bfd *abfd = objfile->obfd;
5648 CORE_ADDR baseaddr;
5649
5650 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5651
5652 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5653
5654 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5655 from finish_block. */
5656 if (lowpc == ((CORE_ADDR) -1))
5657 lowpc = highpc;
5658 lowpc += baseaddr;
5659 highpc += baseaddr;
5660
5661 find_file_and_directory (die, cu, &name, &comp_dir);
5662
5663 attr = dwarf2_attr (die, DW_AT_language, cu);
5664 if (attr)
5665 {
5666 set_cu_language (DW_UNSND (attr), cu);
5667 }
5668
5669 attr = dwarf2_attr (die, DW_AT_producer, cu);
5670 if (attr)
5671 cu->producer = DW_STRING (attr);
5672
5673 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5674 standardised yet. As a workaround for the language detection we fall
5675 back to the DW_AT_producer string. */
5676 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5677 cu->language = language_opencl;
5678
5679 /* We assume that we're processing GCC output. */
5680 processing_gcc_compilation = 2;
5681
5682 processing_has_namespace_info = 0;
5683
5684 start_symtab (name, comp_dir, lowpc);
5685 record_debugformat ("DWARF 2");
5686 record_producer (cu->producer);
5687
5688 initialize_cu_func_list (cu);
5689
5690 handle_DW_AT_stmt_list (die, cu, comp_dir);
5691
5692 /* Process all dies in compilation unit. */
5693 if (die->child != NULL)
5694 {
5695 child_die = die->child;
5696 while (child_die && child_die->tag)
5697 {
5698 process_die (child_die, cu);
5699 child_die = sibling_die (child_die);
5700 }
5701 }
5702
5703 /* Decode macro information, if present. Dwarf 2 macro information
5704 refers to information in the line number info statement program
5705 header, so we can only read it if we've read the header
5706 successfully. */
5707 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5708 if (attr && cu->line_header)
5709 {
5710 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5711 complaint (&symfile_complaints,
5712 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5713
5714 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5715 comp_dir, abfd, cu,
5716 &dwarf2_per_objfile->macro, 1);
5717 }
5718 else
5719 {
5720 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5721 if (attr && cu->line_header)
5722 {
5723 unsigned int macro_offset = DW_UNSND (attr);
5724
5725 dwarf_decode_macros (cu->line_header, macro_offset,
5726 comp_dir, abfd, cu,
5727 &dwarf2_per_objfile->macinfo, 0);
5728 }
5729 }
5730 do_cleanups (back_to);
5731 }
5732
5733 /* Process DW_TAG_type_unit.
5734 For TUs we want to skip the first top level sibling if it's not the
5735 actual type being defined by this TU. In this case the first top
5736 level sibling is there to provide context only. */
5737
5738 static void
5739 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5740 {
5741 struct objfile *objfile = cu->objfile;
5742 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5743 CORE_ADDR lowpc;
5744 struct attribute *attr;
5745 char *name = NULL;
5746 char *comp_dir = NULL;
5747 struct die_info *child_die;
5748 bfd *abfd = objfile->obfd;
5749
5750 /* start_symtab needs a low pc, but we don't really have one.
5751 Do what read_file_scope would do in the absence of such info. */
5752 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5753
5754 /* Find the filename. Do not use dwarf2_name here, since the filename
5755 is not a source language identifier. */
5756 attr = dwarf2_attr (die, DW_AT_name, cu);
5757 if (attr)
5758 name = DW_STRING (attr);
5759
5760 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5761 if (attr)
5762 comp_dir = DW_STRING (attr);
5763 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5764 {
5765 comp_dir = ldirname (name);
5766 if (comp_dir != NULL)
5767 make_cleanup (xfree, comp_dir);
5768 }
5769
5770 if (name == NULL)
5771 name = "<unknown>";
5772
5773 attr = dwarf2_attr (die, DW_AT_language, cu);
5774 if (attr)
5775 set_cu_language (DW_UNSND (attr), cu);
5776
5777 /* This isn't technically needed today. It is done for symmetry
5778 with read_file_scope. */
5779 attr = dwarf2_attr (die, DW_AT_producer, cu);
5780 if (attr)
5781 cu->producer = DW_STRING (attr);
5782
5783 /* We assume that we're processing GCC output. */
5784 processing_gcc_compilation = 2;
5785
5786 processing_has_namespace_info = 0;
5787
5788 start_symtab (name, comp_dir, lowpc);
5789 record_debugformat ("DWARF 2");
5790 record_producer (cu->producer);
5791
5792 handle_DW_AT_stmt_list (die, cu, comp_dir);
5793
5794 /* Process the dies in the type unit. */
5795 if (die->child == NULL)
5796 {
5797 dump_die_for_error (die);
5798 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5799 bfd_get_filename (abfd));
5800 }
5801
5802 child_die = die->child;
5803
5804 while (child_die && child_die->tag)
5805 {
5806 process_die (child_die, cu);
5807
5808 child_die = sibling_die (child_die);
5809 }
5810
5811 do_cleanups (back_to);
5812 }
5813
5814 static void
5815 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5816 struct dwarf2_cu *cu)
5817 {
5818 struct function_range *thisfn;
5819
5820 thisfn = (struct function_range *)
5821 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5822 thisfn->name = name;
5823 thisfn->lowpc = lowpc;
5824 thisfn->highpc = highpc;
5825 thisfn->seen_line = 0;
5826 thisfn->next = NULL;
5827
5828 if (cu->last_fn == NULL)
5829 cu->first_fn = thisfn;
5830 else
5831 cu->last_fn->next = thisfn;
5832
5833 cu->last_fn = thisfn;
5834 }
5835
5836 /* qsort helper for inherit_abstract_dies. */
5837
5838 static int
5839 unsigned_int_compar (const void *ap, const void *bp)
5840 {
5841 unsigned int a = *(unsigned int *) ap;
5842 unsigned int b = *(unsigned int *) bp;
5843
5844 return (a > b) - (b > a);
5845 }
5846
5847 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5848 Inherit only the children of the DW_AT_abstract_origin DIE not being
5849 already referenced by DW_AT_abstract_origin from the children of the
5850 current DIE. */
5851
5852 static void
5853 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5854 {
5855 struct die_info *child_die;
5856 unsigned die_children_count;
5857 /* CU offsets which were referenced by children of the current DIE. */
5858 unsigned *offsets;
5859 unsigned *offsets_end, *offsetp;
5860 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5861 struct die_info *origin_die;
5862 /* Iterator of the ORIGIN_DIE children. */
5863 struct die_info *origin_child_die;
5864 struct cleanup *cleanups;
5865 struct attribute *attr;
5866 struct dwarf2_cu *origin_cu;
5867 struct pending **origin_previous_list_in_scope;
5868
5869 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5870 if (!attr)
5871 return;
5872
5873 /* Note that following die references may follow to a die in a
5874 different cu. */
5875
5876 origin_cu = cu;
5877 origin_die = follow_die_ref (die, attr, &origin_cu);
5878
5879 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5880 symbols in. */
5881 origin_previous_list_in_scope = origin_cu->list_in_scope;
5882 origin_cu->list_in_scope = cu->list_in_scope;
5883
5884 if (die->tag != origin_die->tag
5885 && !(die->tag == DW_TAG_inlined_subroutine
5886 && origin_die->tag == DW_TAG_subprogram))
5887 complaint (&symfile_complaints,
5888 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5889 die->offset, origin_die->offset);
5890
5891 child_die = die->child;
5892 die_children_count = 0;
5893 while (child_die && child_die->tag)
5894 {
5895 child_die = sibling_die (child_die);
5896 die_children_count++;
5897 }
5898 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5899 cleanups = make_cleanup (xfree, offsets);
5900
5901 offsets_end = offsets;
5902 child_die = die->child;
5903 while (child_die && child_die->tag)
5904 {
5905 /* For each CHILD_DIE, find the corresponding child of
5906 ORIGIN_DIE. If there is more than one layer of
5907 DW_AT_abstract_origin, follow them all; there shouldn't be,
5908 but GCC versions at least through 4.4 generate this (GCC PR
5909 40573). */
5910 struct die_info *child_origin_die = child_die;
5911 struct dwarf2_cu *child_origin_cu = cu;
5912
5913 while (1)
5914 {
5915 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5916 child_origin_cu);
5917 if (attr == NULL)
5918 break;
5919 child_origin_die = follow_die_ref (child_origin_die, attr,
5920 &child_origin_cu);
5921 }
5922
5923 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5924 counterpart may exist. */
5925 if (child_origin_die != child_die)
5926 {
5927 if (child_die->tag != child_origin_die->tag
5928 && !(child_die->tag == DW_TAG_inlined_subroutine
5929 && child_origin_die->tag == DW_TAG_subprogram))
5930 complaint (&symfile_complaints,
5931 _("Child DIE 0x%x and its abstract origin 0x%x have "
5932 "different tags"), child_die->offset,
5933 child_origin_die->offset);
5934 if (child_origin_die->parent != origin_die)
5935 complaint (&symfile_complaints,
5936 _("Child DIE 0x%x and its abstract origin 0x%x have "
5937 "different parents"), child_die->offset,
5938 child_origin_die->offset);
5939 else
5940 *offsets_end++ = child_origin_die->offset;
5941 }
5942 child_die = sibling_die (child_die);
5943 }
5944 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5945 unsigned_int_compar);
5946 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5947 if (offsetp[-1] == *offsetp)
5948 complaint (&symfile_complaints,
5949 _("Multiple children of DIE 0x%x refer "
5950 "to DIE 0x%x as their abstract origin"),
5951 die->offset, *offsetp);
5952
5953 offsetp = offsets;
5954 origin_child_die = origin_die->child;
5955 while (origin_child_die && origin_child_die->tag)
5956 {
5957 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5958 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5959 offsetp++;
5960 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5961 {
5962 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5963 process_die (origin_child_die, origin_cu);
5964 }
5965 origin_child_die = sibling_die (origin_child_die);
5966 }
5967 origin_cu->list_in_scope = origin_previous_list_in_scope;
5968
5969 do_cleanups (cleanups);
5970 }
5971
5972 static void
5973 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5974 {
5975 struct objfile *objfile = cu->objfile;
5976 struct context_stack *new;
5977 CORE_ADDR lowpc;
5978 CORE_ADDR highpc;
5979 struct die_info *child_die;
5980 struct attribute *attr, *call_line, *call_file;
5981 char *name;
5982 CORE_ADDR baseaddr;
5983 struct block *block;
5984 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5985 VEC (symbolp) *template_args = NULL;
5986 struct template_symbol *templ_func = NULL;
5987
5988 if (inlined_func)
5989 {
5990 /* If we do not have call site information, we can't show the
5991 caller of this inlined function. That's too confusing, so
5992 only use the scope for local variables. */
5993 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5994 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5995 if (call_line == NULL || call_file == NULL)
5996 {
5997 read_lexical_block_scope (die, cu);
5998 return;
5999 }
6000 }
6001
6002 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6003
6004 name = dwarf2_name (die, cu);
6005
6006 /* Ignore functions with missing or empty names. These are actually
6007 illegal according to the DWARF standard. */
6008 if (name == NULL)
6009 {
6010 complaint (&symfile_complaints,
6011 _("missing name for subprogram DIE at %d"), die->offset);
6012 return;
6013 }
6014
6015 /* Ignore functions with missing or invalid low and high pc attributes. */
6016 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6017 {
6018 attr = dwarf2_attr (die, DW_AT_external, cu);
6019 if (!attr || !DW_UNSND (attr))
6020 complaint (&symfile_complaints,
6021 _("cannot get low and high bounds "
6022 "for subprogram DIE at %d"),
6023 die->offset);
6024 return;
6025 }
6026
6027 lowpc += baseaddr;
6028 highpc += baseaddr;
6029
6030 /* Record the function range for dwarf_decode_lines. */
6031 add_to_cu_func_list (name, lowpc, highpc, cu);
6032
6033 /* If we have any template arguments, then we must allocate a
6034 different sort of symbol. */
6035 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
6036 {
6037 if (child_die->tag == DW_TAG_template_type_param
6038 || child_die->tag == DW_TAG_template_value_param)
6039 {
6040 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6041 struct template_symbol);
6042 templ_func->base.is_cplus_template_function = 1;
6043 break;
6044 }
6045 }
6046
6047 new = push_context (0, lowpc);
6048 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
6049 (struct symbol *) templ_func);
6050
6051 /* If there is a location expression for DW_AT_frame_base, record
6052 it. */
6053 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
6054 if (attr)
6055 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
6056 expression is being recorded directly in the function's symbol
6057 and not in a separate frame-base object. I guess this hack is
6058 to avoid adding some sort of frame-base adjunct/annex to the
6059 function's symbol :-(. The problem with doing this is that it
6060 results in a function symbol with a location expression that
6061 has nothing to do with the location of the function, ouch! The
6062 relationship should be: a function's symbol has-a frame base; a
6063 frame-base has-a location expression. */
6064 dwarf2_symbol_mark_computed (attr, new->name, cu);
6065
6066 cu->list_in_scope = &local_symbols;
6067
6068 if (die->child != NULL)
6069 {
6070 child_die = die->child;
6071 while (child_die && child_die->tag)
6072 {
6073 if (child_die->tag == DW_TAG_template_type_param
6074 || child_die->tag == DW_TAG_template_value_param)
6075 {
6076 struct symbol *arg = new_symbol (child_die, NULL, cu);
6077
6078 if (arg != NULL)
6079 VEC_safe_push (symbolp, template_args, arg);
6080 }
6081 else
6082 process_die (child_die, cu);
6083 child_die = sibling_die (child_die);
6084 }
6085 }
6086
6087 inherit_abstract_dies (die, cu);
6088
6089 /* If we have a DW_AT_specification, we might need to import using
6090 directives from the context of the specification DIE. See the
6091 comment in determine_prefix. */
6092 if (cu->language == language_cplus
6093 && dwarf2_attr (die, DW_AT_specification, cu))
6094 {
6095 struct dwarf2_cu *spec_cu = cu;
6096 struct die_info *spec_die = die_specification (die, &spec_cu);
6097
6098 while (spec_die)
6099 {
6100 child_die = spec_die->child;
6101 while (child_die && child_die->tag)
6102 {
6103 if (child_die->tag == DW_TAG_imported_module)
6104 process_die (child_die, spec_cu);
6105 child_die = sibling_die (child_die);
6106 }
6107
6108 /* In some cases, GCC generates specification DIEs that
6109 themselves contain DW_AT_specification attributes. */
6110 spec_die = die_specification (spec_die, &spec_cu);
6111 }
6112 }
6113
6114 new = pop_context ();
6115 /* Make a block for the local symbols within. */
6116 block = finish_block (new->name, &local_symbols, new->old_blocks,
6117 lowpc, highpc, objfile);
6118
6119 /* For C++, set the block's scope. */
6120 if (cu->language == language_cplus || cu->language == language_fortran)
6121 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6122 determine_prefix (die, cu),
6123 processing_has_namespace_info);
6124
6125 /* If we have address ranges, record them. */
6126 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6127
6128 /* Attach template arguments to function. */
6129 if (! VEC_empty (symbolp, template_args))
6130 {
6131 gdb_assert (templ_func != NULL);
6132
6133 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6134 templ_func->template_arguments
6135 = obstack_alloc (&objfile->objfile_obstack,
6136 (templ_func->n_template_arguments
6137 * sizeof (struct symbol *)));
6138 memcpy (templ_func->template_arguments,
6139 VEC_address (symbolp, template_args),
6140 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6141 VEC_free (symbolp, template_args);
6142 }
6143
6144 /* In C++, we can have functions nested inside functions (e.g., when
6145 a function declares a class that has methods). This means that
6146 when we finish processing a function scope, we may need to go
6147 back to building a containing block's symbol lists. */
6148 local_symbols = new->locals;
6149 param_symbols = new->params;
6150 using_directives = new->using_directives;
6151
6152 /* If we've finished processing a top-level function, subsequent
6153 symbols go in the file symbol list. */
6154 if (outermost_context_p ())
6155 cu->list_in_scope = &file_symbols;
6156 }
6157
6158 /* Process all the DIES contained within a lexical block scope. Start
6159 a new scope, process the dies, and then close the scope. */
6160
6161 static void
6162 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6163 {
6164 struct objfile *objfile = cu->objfile;
6165 struct context_stack *new;
6166 CORE_ADDR lowpc, highpc;
6167 struct die_info *child_die;
6168 CORE_ADDR baseaddr;
6169
6170 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6171
6172 /* Ignore blocks with missing or invalid low and high pc attributes. */
6173 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6174 as multiple lexical blocks? Handling children in a sane way would
6175 be nasty. Might be easier to properly extend generic blocks to
6176 describe ranges. */
6177 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6178 return;
6179 lowpc += baseaddr;
6180 highpc += baseaddr;
6181
6182 push_context (0, lowpc);
6183 if (die->child != NULL)
6184 {
6185 child_die = die->child;
6186 while (child_die && child_die->tag)
6187 {
6188 process_die (child_die, cu);
6189 child_die = sibling_die (child_die);
6190 }
6191 }
6192 new = pop_context ();
6193
6194 if (local_symbols != NULL || using_directives != NULL)
6195 {
6196 struct block *block
6197 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6198 highpc, objfile);
6199
6200 /* Note that recording ranges after traversing children, as we
6201 do here, means that recording a parent's ranges entails
6202 walking across all its children's ranges as they appear in
6203 the address map, which is quadratic behavior.
6204
6205 It would be nicer to record the parent's ranges before
6206 traversing its children, simply overriding whatever you find
6207 there. But since we don't even decide whether to create a
6208 block until after we've traversed its children, that's hard
6209 to do. */
6210 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6211 }
6212 local_symbols = new->locals;
6213 using_directives = new->using_directives;
6214 }
6215
6216 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6217
6218 static void
6219 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6220 {
6221 struct objfile *objfile = cu->objfile;
6222 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6223 CORE_ADDR pc, baseaddr;
6224 struct attribute *attr;
6225 struct call_site *call_site, call_site_local;
6226 void **slot;
6227 int nparams;
6228 struct die_info *child_die;
6229
6230 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6231
6232 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6233 if (!attr)
6234 {
6235 complaint (&symfile_complaints,
6236 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6237 "DIE 0x%x [in module %s]"),
6238 die->offset, cu->objfile->name);
6239 return;
6240 }
6241 pc = DW_ADDR (attr) + baseaddr;
6242
6243 if (cu->call_site_htab == NULL)
6244 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6245 NULL, &objfile->objfile_obstack,
6246 hashtab_obstack_allocate, NULL);
6247 call_site_local.pc = pc;
6248 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6249 if (*slot != NULL)
6250 {
6251 complaint (&symfile_complaints,
6252 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6253 "DIE 0x%x [in module %s]"),
6254 paddress (gdbarch, pc), die->offset, cu->objfile->name);
6255 return;
6256 }
6257
6258 /* Count parameters at the caller. */
6259
6260 nparams = 0;
6261 for (child_die = die->child; child_die && child_die->tag;
6262 child_die = sibling_die (child_die))
6263 {
6264 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6265 {
6266 complaint (&symfile_complaints,
6267 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6268 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6269 child_die->tag, child_die->offset, cu->objfile->name);
6270 continue;
6271 }
6272
6273 nparams++;
6274 }
6275
6276 call_site = obstack_alloc (&objfile->objfile_obstack,
6277 (sizeof (*call_site)
6278 + (sizeof (*call_site->parameter)
6279 * (nparams - 1))));
6280 *slot = call_site;
6281 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6282 call_site->pc = pc;
6283
6284 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6285 {
6286 struct die_info *func_die;
6287
6288 /* Skip also over DW_TAG_inlined_subroutine. */
6289 for (func_die = die->parent;
6290 func_die && func_die->tag != DW_TAG_subprogram
6291 && func_die->tag != DW_TAG_subroutine_type;
6292 func_die = func_die->parent);
6293
6294 /* DW_AT_GNU_all_call_sites is a superset
6295 of DW_AT_GNU_all_tail_call_sites. */
6296 if (func_die
6297 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6298 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6299 {
6300 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6301 not complete. But keep CALL_SITE for look ups via call_site_htab,
6302 both the initial caller containing the real return address PC and
6303 the final callee containing the current PC of a chain of tail
6304 calls do not need to have the tail call list complete. But any
6305 function candidate for a virtual tail call frame searched via
6306 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6307 determined unambiguously. */
6308 }
6309 else
6310 {
6311 struct type *func_type = NULL;
6312
6313 if (func_die)
6314 func_type = get_die_type (func_die, cu);
6315 if (func_type != NULL)
6316 {
6317 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6318
6319 /* Enlist this call site to the function. */
6320 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6321 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6322 }
6323 else
6324 complaint (&symfile_complaints,
6325 _("Cannot find function owning DW_TAG_GNU_call_site "
6326 "DIE 0x%x [in module %s]"),
6327 die->offset, cu->objfile->name);
6328 }
6329 }
6330
6331 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6332 if (attr == NULL)
6333 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6334 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6335 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6336 /* Keep NULL DWARF_BLOCK. */;
6337 else if (attr_form_is_block (attr))
6338 {
6339 struct dwarf2_locexpr_baton *dlbaton;
6340
6341 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6342 dlbaton->data = DW_BLOCK (attr)->data;
6343 dlbaton->size = DW_BLOCK (attr)->size;
6344 dlbaton->per_cu = cu->per_cu;
6345
6346 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6347 }
6348 else if (is_ref_attr (attr))
6349 {
6350 struct objfile *objfile = cu->objfile;
6351 struct dwarf2_cu *target_cu = cu;
6352 struct die_info *target_die;
6353
6354 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6355 gdb_assert (target_cu->objfile == objfile);
6356 if (die_is_declaration (target_die, target_cu))
6357 {
6358 const char *target_physname;
6359
6360 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6361 if (target_physname == NULL)
6362 complaint (&symfile_complaints,
6363 _("DW_AT_GNU_call_site_target target DIE has invalid "
6364 "physname, for referencing DIE 0x%x [in module %s]"),
6365 die->offset, cu->objfile->name);
6366 else
6367 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6368 }
6369 else
6370 {
6371 CORE_ADDR lowpc;
6372
6373 /* DW_AT_entry_pc should be preferred. */
6374 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6375 complaint (&symfile_complaints,
6376 _("DW_AT_GNU_call_site_target target DIE has invalid "
6377 "low pc, for referencing DIE 0x%x [in module %s]"),
6378 die->offset, cu->objfile->name);
6379 else
6380 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6381 }
6382 }
6383 else
6384 complaint (&symfile_complaints,
6385 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6386 "block nor reference, for DIE 0x%x [in module %s]"),
6387 die->offset, cu->objfile->name);
6388
6389 call_site->per_cu = cu->per_cu;
6390
6391 for (child_die = die->child;
6392 child_die && child_die->tag;
6393 child_die = sibling_die (child_die))
6394 {
6395 struct dwarf2_locexpr_baton *dlbaton;
6396 struct call_site_parameter *parameter;
6397
6398 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6399 {
6400 /* Already printed the complaint above. */
6401 continue;
6402 }
6403
6404 gdb_assert (call_site->parameter_count < nparams);
6405 parameter = &call_site->parameter[call_site->parameter_count];
6406
6407 /* DW_AT_location specifies the register number. Value of the data
6408 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6409
6410 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6411 if (!attr || !attr_form_is_block (attr))
6412 {
6413 complaint (&symfile_complaints,
6414 _("No DW_FORM_block* DW_AT_location for "
6415 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6416 child_die->offset, cu->objfile->name);
6417 continue;
6418 }
6419 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6420 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6421 if (parameter->dwarf_reg == -1
6422 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6423 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6424 &parameter->fb_offset))
6425 {
6426 complaint (&symfile_complaints,
6427 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6428 "for DW_FORM_block* DW_AT_location for "
6429 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6430 child_die->offset, cu->objfile->name);
6431 continue;
6432 }
6433
6434 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6435 if (!attr_form_is_block (attr))
6436 {
6437 complaint (&symfile_complaints,
6438 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6439 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6440 child_die->offset, cu->objfile->name);
6441 continue;
6442 }
6443 parameter->value = DW_BLOCK (attr)->data;
6444 parameter->value_size = DW_BLOCK (attr)->size;
6445
6446 /* Parameters are not pre-cleared by memset above. */
6447 parameter->data_value = NULL;
6448 parameter->data_value_size = 0;
6449 call_site->parameter_count++;
6450
6451 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6452 if (attr)
6453 {
6454 if (!attr_form_is_block (attr))
6455 complaint (&symfile_complaints,
6456 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6457 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6458 child_die->offset, cu->objfile->name);
6459 else
6460 {
6461 parameter->data_value = DW_BLOCK (attr)->data;
6462 parameter->data_value_size = DW_BLOCK (attr)->size;
6463 }
6464 }
6465 }
6466 }
6467
6468 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6469 Return 1 if the attributes are present and valid, otherwise, return 0.
6470 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
6471
6472 static int
6473 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6474 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6475 struct partial_symtab *ranges_pst)
6476 {
6477 struct objfile *objfile = cu->objfile;
6478 struct comp_unit_head *cu_header = &cu->header;
6479 bfd *obfd = objfile->obfd;
6480 unsigned int addr_size = cu_header->addr_size;
6481 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6482 /* Base address selection entry. */
6483 CORE_ADDR base;
6484 int found_base;
6485 unsigned int dummy;
6486 gdb_byte *buffer;
6487 CORE_ADDR marker;
6488 int low_set;
6489 CORE_ADDR low = 0;
6490 CORE_ADDR high = 0;
6491 CORE_ADDR baseaddr;
6492
6493 found_base = cu->base_known;
6494 base = cu->base_address;
6495
6496 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6497 if (offset >= dwarf2_per_objfile->ranges.size)
6498 {
6499 complaint (&symfile_complaints,
6500 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6501 offset);
6502 return 0;
6503 }
6504 buffer = dwarf2_per_objfile->ranges.buffer + offset;
6505
6506 /* Read in the largest possible address. */
6507 marker = read_address (obfd, buffer, cu, &dummy);
6508 if ((marker & mask) == mask)
6509 {
6510 /* If we found the largest possible address, then
6511 read the base address. */
6512 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6513 buffer += 2 * addr_size;
6514 offset += 2 * addr_size;
6515 found_base = 1;
6516 }
6517
6518 low_set = 0;
6519
6520 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6521
6522 while (1)
6523 {
6524 CORE_ADDR range_beginning, range_end;
6525
6526 range_beginning = read_address (obfd, buffer, cu, &dummy);
6527 buffer += addr_size;
6528 range_end = read_address (obfd, buffer, cu, &dummy);
6529 buffer += addr_size;
6530 offset += 2 * addr_size;
6531
6532 /* An end of list marker is a pair of zero addresses. */
6533 if (range_beginning == 0 && range_end == 0)
6534 /* Found the end of list entry. */
6535 break;
6536
6537 /* Each base address selection entry is a pair of 2 values.
6538 The first is the largest possible address, the second is
6539 the base address. Check for a base address here. */
6540 if ((range_beginning & mask) == mask)
6541 {
6542 /* If we found the largest possible address, then
6543 read the base address. */
6544 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6545 found_base = 1;
6546 continue;
6547 }
6548
6549 if (!found_base)
6550 {
6551 /* We have no valid base address for the ranges
6552 data. */
6553 complaint (&symfile_complaints,
6554 _("Invalid .debug_ranges data (no base address)"));
6555 return 0;
6556 }
6557
6558 if (range_beginning > range_end)
6559 {
6560 /* Inverted range entries are invalid. */
6561 complaint (&symfile_complaints,
6562 _("Invalid .debug_ranges data (inverted range)"));
6563 return 0;
6564 }
6565
6566 /* Empty range entries have no effect. */
6567 if (range_beginning == range_end)
6568 continue;
6569
6570 range_beginning += base;
6571 range_end += base;
6572
6573 if (ranges_pst != NULL)
6574 addrmap_set_empty (objfile->psymtabs_addrmap,
6575 range_beginning + baseaddr,
6576 range_end - 1 + baseaddr,
6577 ranges_pst);
6578
6579 /* FIXME: This is recording everything as a low-high
6580 segment of consecutive addresses. We should have a
6581 data structure for discontiguous block ranges
6582 instead. */
6583 if (! low_set)
6584 {
6585 low = range_beginning;
6586 high = range_end;
6587 low_set = 1;
6588 }
6589 else
6590 {
6591 if (range_beginning < low)
6592 low = range_beginning;
6593 if (range_end > high)
6594 high = range_end;
6595 }
6596 }
6597
6598 if (! low_set)
6599 /* If the first entry is an end-of-list marker, the range
6600 describes an empty scope, i.e. no instructions. */
6601 return 0;
6602
6603 if (low_return)
6604 *low_return = low;
6605 if (high_return)
6606 *high_return = high;
6607 return 1;
6608 }
6609
6610 /* Get low and high pc attributes from a die. Return 1 if the attributes
6611 are present and valid, otherwise, return 0. Return -1 if the range is
6612 discontinuous, i.e. derived from DW_AT_ranges information. */
6613 static int
6614 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6615 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6616 struct partial_symtab *pst)
6617 {
6618 struct attribute *attr;
6619 CORE_ADDR low = 0;
6620 CORE_ADDR high = 0;
6621 int ret = 0;
6622
6623 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6624 if (attr)
6625 {
6626 high = DW_ADDR (attr);
6627 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6628 if (attr)
6629 low = DW_ADDR (attr);
6630 else
6631 /* Found high w/o low attribute. */
6632 return 0;
6633
6634 /* Found consecutive range of addresses. */
6635 ret = 1;
6636 }
6637 else
6638 {
6639 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6640 if (attr != NULL)
6641 {
6642 /* Value of the DW_AT_ranges attribute is the offset in the
6643 .debug_ranges section. */
6644 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6645 return 0;
6646 /* Found discontinuous range of addresses. */
6647 ret = -1;
6648 }
6649 }
6650
6651 /* read_partial_die has also the strict LOW < HIGH requirement. */
6652 if (high <= low)
6653 return 0;
6654
6655 /* When using the GNU linker, .gnu.linkonce. sections are used to
6656 eliminate duplicate copies of functions and vtables and such.
6657 The linker will arbitrarily choose one and discard the others.
6658 The AT_*_pc values for such functions refer to local labels in
6659 these sections. If the section from that file was discarded, the
6660 labels are not in the output, so the relocs get a value of 0.
6661 If this is a discarded function, mark the pc bounds as invalid,
6662 so that GDB will ignore it. */
6663 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6664 return 0;
6665
6666 *lowpc = low;
6667 if (highpc)
6668 *highpc = high;
6669 return ret;
6670 }
6671
6672 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6673 its low and high PC addresses. Do nothing if these addresses could not
6674 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6675 and HIGHPC to the high address if greater than HIGHPC. */
6676
6677 static void
6678 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6679 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6680 struct dwarf2_cu *cu)
6681 {
6682 CORE_ADDR low, high;
6683 struct die_info *child = die->child;
6684
6685 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6686 {
6687 *lowpc = min (*lowpc, low);
6688 *highpc = max (*highpc, high);
6689 }
6690
6691 /* If the language does not allow nested subprograms (either inside
6692 subprograms or lexical blocks), we're done. */
6693 if (cu->language != language_ada)
6694 return;
6695
6696 /* Check all the children of the given DIE. If it contains nested
6697 subprograms, then check their pc bounds. Likewise, we need to
6698 check lexical blocks as well, as they may also contain subprogram
6699 definitions. */
6700 while (child && child->tag)
6701 {
6702 if (child->tag == DW_TAG_subprogram
6703 || child->tag == DW_TAG_lexical_block)
6704 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6705 child = sibling_die (child);
6706 }
6707 }
6708
6709 /* Get the low and high pc's represented by the scope DIE, and store
6710 them in *LOWPC and *HIGHPC. If the correct values can't be
6711 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6712
6713 static void
6714 get_scope_pc_bounds (struct die_info *die,
6715 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6716 struct dwarf2_cu *cu)
6717 {
6718 CORE_ADDR best_low = (CORE_ADDR) -1;
6719 CORE_ADDR best_high = (CORE_ADDR) 0;
6720 CORE_ADDR current_low, current_high;
6721
6722 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6723 {
6724 best_low = current_low;
6725 best_high = current_high;
6726 }
6727 else
6728 {
6729 struct die_info *child = die->child;
6730
6731 while (child && child->tag)
6732 {
6733 switch (child->tag) {
6734 case DW_TAG_subprogram:
6735 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6736 break;
6737 case DW_TAG_namespace:
6738 case DW_TAG_module:
6739 /* FIXME: carlton/2004-01-16: Should we do this for
6740 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6741 that current GCC's always emit the DIEs corresponding
6742 to definitions of methods of classes as children of a
6743 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6744 the DIEs giving the declarations, which could be
6745 anywhere). But I don't see any reason why the
6746 standards says that they have to be there. */
6747 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6748
6749 if (current_low != ((CORE_ADDR) -1))
6750 {
6751 best_low = min (best_low, current_low);
6752 best_high = max (best_high, current_high);
6753 }
6754 break;
6755 default:
6756 /* Ignore. */
6757 break;
6758 }
6759
6760 child = sibling_die (child);
6761 }
6762 }
6763
6764 *lowpc = best_low;
6765 *highpc = best_high;
6766 }
6767
6768 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6769 in DIE. */
6770 static void
6771 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6772 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6773 {
6774 struct attribute *attr;
6775
6776 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6777 if (attr)
6778 {
6779 CORE_ADDR high = DW_ADDR (attr);
6780
6781 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6782 if (attr)
6783 {
6784 CORE_ADDR low = DW_ADDR (attr);
6785
6786 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6787 }
6788 }
6789
6790 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6791 if (attr)
6792 {
6793 bfd *obfd = cu->objfile->obfd;
6794
6795 /* The value of the DW_AT_ranges attribute is the offset of the
6796 address range list in the .debug_ranges section. */
6797 unsigned long offset = DW_UNSND (attr);
6798 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6799
6800 /* For some target architectures, but not others, the
6801 read_address function sign-extends the addresses it returns.
6802 To recognize base address selection entries, we need a
6803 mask. */
6804 unsigned int addr_size = cu->header.addr_size;
6805 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6806
6807 /* The base address, to which the next pair is relative. Note
6808 that this 'base' is a DWARF concept: most entries in a range
6809 list are relative, to reduce the number of relocs against the
6810 debugging information. This is separate from this function's
6811 'baseaddr' argument, which GDB uses to relocate debugging
6812 information from a shared library based on the address at
6813 which the library was loaded. */
6814 CORE_ADDR base = cu->base_address;
6815 int base_known = cu->base_known;
6816
6817 gdb_assert (dwarf2_per_objfile->ranges.readin);
6818 if (offset >= dwarf2_per_objfile->ranges.size)
6819 {
6820 complaint (&symfile_complaints,
6821 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6822 offset);
6823 return;
6824 }
6825
6826 for (;;)
6827 {
6828 unsigned int bytes_read;
6829 CORE_ADDR start, end;
6830
6831 start = read_address (obfd, buffer, cu, &bytes_read);
6832 buffer += bytes_read;
6833 end = read_address (obfd, buffer, cu, &bytes_read);
6834 buffer += bytes_read;
6835
6836 /* Did we find the end of the range list? */
6837 if (start == 0 && end == 0)
6838 break;
6839
6840 /* Did we find a base address selection entry? */
6841 else if ((start & base_select_mask) == base_select_mask)
6842 {
6843 base = end;
6844 base_known = 1;
6845 }
6846
6847 /* We found an ordinary address range. */
6848 else
6849 {
6850 if (!base_known)
6851 {
6852 complaint (&symfile_complaints,
6853 _("Invalid .debug_ranges data "
6854 "(no base address)"));
6855 return;
6856 }
6857
6858 if (start > end)
6859 {
6860 /* Inverted range entries are invalid. */
6861 complaint (&symfile_complaints,
6862 _("Invalid .debug_ranges data "
6863 "(inverted range)"));
6864 return;
6865 }
6866
6867 /* Empty range entries have no effect. */
6868 if (start == end)
6869 continue;
6870
6871 record_block_range (block,
6872 baseaddr + base + start,
6873 baseaddr + base + end - 1);
6874 }
6875 }
6876 }
6877 }
6878
6879 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6880 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6881 during 4.6.0 experimental. */
6882
6883 static int
6884 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6885 {
6886 const char *cs;
6887 int major, minor, release;
6888
6889 if (cu->producer == NULL)
6890 {
6891 /* For unknown compilers expect their behavior is DWARF version
6892 compliant.
6893
6894 GCC started to support .debug_types sections by -gdwarf-4 since
6895 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6896 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6897 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6898 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6899
6900 return 0;
6901 }
6902
6903 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6904
6905 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6906 {
6907 /* For non-GCC compilers expect their behavior is DWARF version
6908 compliant. */
6909
6910 return 0;
6911 }
6912 cs = &cu->producer[strlen ("GNU ")];
6913 while (*cs && !isdigit (*cs))
6914 cs++;
6915 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6916 {
6917 /* Not recognized as GCC. */
6918
6919 return 0;
6920 }
6921
6922 return major < 4 || (major == 4 && minor < 6);
6923 }
6924
6925 /* Return the default accessibility type if it is not overriden by
6926 DW_AT_accessibility. */
6927
6928 static enum dwarf_access_attribute
6929 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6930 {
6931 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6932 {
6933 /* The default DWARF 2 accessibility for members is public, the default
6934 accessibility for inheritance is private. */
6935
6936 if (die->tag != DW_TAG_inheritance)
6937 return DW_ACCESS_public;
6938 else
6939 return DW_ACCESS_private;
6940 }
6941 else
6942 {
6943 /* DWARF 3+ defines the default accessibility a different way. The same
6944 rules apply now for DW_TAG_inheritance as for the members and it only
6945 depends on the container kind. */
6946
6947 if (die->parent->tag == DW_TAG_class_type)
6948 return DW_ACCESS_private;
6949 else
6950 return DW_ACCESS_public;
6951 }
6952 }
6953
6954 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6955 offset. If the attribute was not found return 0, otherwise return
6956 1. If it was found but could not properly be handled, set *OFFSET
6957 to 0. */
6958
6959 static int
6960 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6961 LONGEST *offset)
6962 {
6963 struct attribute *attr;
6964
6965 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6966 if (attr != NULL)
6967 {
6968 *offset = 0;
6969
6970 /* Note that we do not check for a section offset first here.
6971 This is because DW_AT_data_member_location is new in DWARF 4,
6972 so if we see it, we can assume that a constant form is really
6973 a constant and not a section offset. */
6974 if (attr_form_is_constant (attr))
6975 *offset = dwarf2_get_attr_constant_value (attr, 0);
6976 else if (attr_form_is_section_offset (attr))
6977 dwarf2_complex_location_expr_complaint ();
6978 else if (attr_form_is_block (attr))
6979 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6980 else
6981 dwarf2_complex_location_expr_complaint ();
6982
6983 return 1;
6984 }
6985
6986 return 0;
6987 }
6988
6989 /* Add an aggregate field to the field list. */
6990
6991 static void
6992 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6993 struct dwarf2_cu *cu)
6994 {
6995 struct objfile *objfile = cu->objfile;
6996 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6997 struct nextfield *new_field;
6998 struct attribute *attr;
6999 struct field *fp;
7000 char *fieldname = "";
7001
7002 /* Allocate a new field list entry and link it in. */
7003 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
7004 make_cleanup (xfree, new_field);
7005 memset (new_field, 0, sizeof (struct nextfield));
7006
7007 if (die->tag == DW_TAG_inheritance)
7008 {
7009 new_field->next = fip->baseclasses;
7010 fip->baseclasses = new_field;
7011 }
7012 else
7013 {
7014 new_field->next = fip->fields;
7015 fip->fields = new_field;
7016 }
7017 fip->nfields++;
7018
7019 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7020 if (attr)
7021 new_field->accessibility = DW_UNSND (attr);
7022 else
7023 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
7024 if (new_field->accessibility != DW_ACCESS_public)
7025 fip->non_public_fields = 1;
7026
7027 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7028 if (attr)
7029 new_field->virtuality = DW_UNSND (attr);
7030 else
7031 new_field->virtuality = DW_VIRTUALITY_none;
7032
7033 fp = &new_field->field;
7034
7035 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
7036 {
7037 LONGEST offset;
7038
7039 /* Data member other than a C++ static data member. */
7040
7041 /* Get type of field. */
7042 fp->type = die_type (die, cu);
7043
7044 SET_FIELD_BITPOS (*fp, 0);
7045
7046 /* Get bit size of field (zero if none). */
7047 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
7048 if (attr)
7049 {
7050 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
7051 }
7052 else
7053 {
7054 FIELD_BITSIZE (*fp) = 0;
7055 }
7056
7057 /* Get bit offset of field. */
7058 if (handle_data_member_location (die, cu, &offset))
7059 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7060 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
7061 if (attr)
7062 {
7063 if (gdbarch_bits_big_endian (gdbarch))
7064 {
7065 /* For big endian bits, the DW_AT_bit_offset gives the
7066 additional bit offset from the MSB of the containing
7067 anonymous object to the MSB of the field. We don't
7068 have to do anything special since we don't need to
7069 know the size of the anonymous object. */
7070 FIELD_BITPOS (*fp) += DW_UNSND (attr);
7071 }
7072 else
7073 {
7074 /* For little endian bits, compute the bit offset to the
7075 MSB of the anonymous object, subtract off the number of
7076 bits from the MSB of the field to the MSB of the
7077 object, and then subtract off the number of bits of
7078 the field itself. The result is the bit offset of
7079 the LSB of the field. */
7080 int anonymous_size;
7081 int bit_offset = DW_UNSND (attr);
7082
7083 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7084 if (attr)
7085 {
7086 /* The size of the anonymous object containing
7087 the bit field is explicit, so use the
7088 indicated size (in bytes). */
7089 anonymous_size = DW_UNSND (attr);
7090 }
7091 else
7092 {
7093 /* The size of the anonymous object containing
7094 the bit field must be inferred from the type
7095 attribute of the data member containing the
7096 bit field. */
7097 anonymous_size = TYPE_LENGTH (fp->type);
7098 }
7099 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
7100 - bit_offset - FIELD_BITSIZE (*fp);
7101 }
7102 }
7103
7104 /* Get name of field. */
7105 fieldname = dwarf2_name (die, cu);
7106 if (fieldname == NULL)
7107 fieldname = "";
7108
7109 /* The name is already allocated along with this objfile, so we don't
7110 need to duplicate it for the type. */
7111 fp->name = fieldname;
7112
7113 /* Change accessibility for artificial fields (e.g. virtual table
7114 pointer or virtual base class pointer) to private. */
7115 if (dwarf2_attr (die, DW_AT_artificial, cu))
7116 {
7117 FIELD_ARTIFICIAL (*fp) = 1;
7118 new_field->accessibility = DW_ACCESS_private;
7119 fip->non_public_fields = 1;
7120 }
7121 }
7122 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7123 {
7124 /* C++ static member. */
7125
7126 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7127 is a declaration, but all versions of G++ as of this writing
7128 (so through at least 3.2.1) incorrectly generate
7129 DW_TAG_variable tags. */
7130
7131 const char *physname;
7132
7133 /* Get name of field. */
7134 fieldname = dwarf2_name (die, cu);
7135 if (fieldname == NULL)
7136 return;
7137
7138 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7139 if (attr
7140 /* Only create a symbol if this is an external value.
7141 new_symbol checks this and puts the value in the global symbol
7142 table, which we want. If it is not external, new_symbol
7143 will try to put the value in cu->list_in_scope which is wrong. */
7144 && dwarf2_flag_true_p (die, DW_AT_external, cu))
7145 {
7146 /* A static const member, not much different than an enum as far as
7147 we're concerned, except that we can support more types. */
7148 new_symbol (die, NULL, cu);
7149 }
7150
7151 /* Get physical name. */
7152 physname = dwarf2_physname (fieldname, die, cu);
7153
7154 /* The name is already allocated along with this objfile, so we don't
7155 need to duplicate it for the type. */
7156 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7157 FIELD_TYPE (*fp) = die_type (die, cu);
7158 FIELD_NAME (*fp) = fieldname;
7159 }
7160 else if (die->tag == DW_TAG_inheritance)
7161 {
7162 LONGEST offset;
7163
7164 /* C++ base class field. */
7165 if (handle_data_member_location (die, cu, &offset))
7166 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7167 FIELD_BITSIZE (*fp) = 0;
7168 FIELD_TYPE (*fp) = die_type (die, cu);
7169 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7170 fip->nbaseclasses++;
7171 }
7172 }
7173
7174 /* Add a typedef defined in the scope of the FIP's class. */
7175
7176 static void
7177 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7178 struct dwarf2_cu *cu)
7179 {
7180 struct objfile *objfile = cu->objfile;
7181 struct typedef_field_list *new_field;
7182 struct attribute *attr;
7183 struct typedef_field *fp;
7184 char *fieldname = "";
7185
7186 /* Allocate a new field list entry and link it in. */
7187 new_field = xzalloc (sizeof (*new_field));
7188 make_cleanup (xfree, new_field);
7189
7190 gdb_assert (die->tag == DW_TAG_typedef);
7191
7192 fp = &new_field->field;
7193
7194 /* Get name of field. */
7195 fp->name = dwarf2_name (die, cu);
7196 if (fp->name == NULL)
7197 return;
7198
7199 fp->type = read_type_die (die, cu);
7200
7201 new_field->next = fip->typedef_field_list;
7202 fip->typedef_field_list = new_field;
7203 fip->typedef_field_list_count++;
7204 }
7205
7206 /* Create the vector of fields, and attach it to the type. */
7207
7208 static void
7209 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7210 struct dwarf2_cu *cu)
7211 {
7212 int nfields = fip->nfields;
7213
7214 /* Record the field count, allocate space for the array of fields,
7215 and create blank accessibility bitfields if necessary. */
7216 TYPE_NFIELDS (type) = nfields;
7217 TYPE_FIELDS (type) = (struct field *)
7218 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7219 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7220
7221 if (fip->non_public_fields && cu->language != language_ada)
7222 {
7223 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7224
7225 TYPE_FIELD_PRIVATE_BITS (type) =
7226 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7227 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7228
7229 TYPE_FIELD_PROTECTED_BITS (type) =
7230 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7231 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7232
7233 TYPE_FIELD_IGNORE_BITS (type) =
7234 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7235 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7236 }
7237
7238 /* If the type has baseclasses, allocate and clear a bit vector for
7239 TYPE_FIELD_VIRTUAL_BITS. */
7240 if (fip->nbaseclasses && cu->language != language_ada)
7241 {
7242 int num_bytes = B_BYTES (fip->nbaseclasses);
7243 unsigned char *pointer;
7244
7245 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7246 pointer = TYPE_ALLOC (type, num_bytes);
7247 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7248 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7249 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7250 }
7251
7252 /* Copy the saved-up fields into the field vector. Start from the head of
7253 the list, adding to the tail of the field array, so that they end up in
7254 the same order in the array in which they were added to the list. */
7255 while (nfields-- > 0)
7256 {
7257 struct nextfield *fieldp;
7258
7259 if (fip->fields)
7260 {
7261 fieldp = fip->fields;
7262 fip->fields = fieldp->next;
7263 }
7264 else
7265 {
7266 fieldp = fip->baseclasses;
7267 fip->baseclasses = fieldp->next;
7268 }
7269
7270 TYPE_FIELD (type, nfields) = fieldp->field;
7271 switch (fieldp->accessibility)
7272 {
7273 case DW_ACCESS_private:
7274 if (cu->language != language_ada)
7275 SET_TYPE_FIELD_PRIVATE (type, nfields);
7276 break;
7277
7278 case DW_ACCESS_protected:
7279 if (cu->language != language_ada)
7280 SET_TYPE_FIELD_PROTECTED (type, nfields);
7281 break;
7282
7283 case DW_ACCESS_public:
7284 break;
7285
7286 default:
7287 /* Unknown accessibility. Complain and treat it as public. */
7288 {
7289 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7290 fieldp->accessibility);
7291 }
7292 break;
7293 }
7294 if (nfields < fip->nbaseclasses)
7295 {
7296 switch (fieldp->virtuality)
7297 {
7298 case DW_VIRTUALITY_virtual:
7299 case DW_VIRTUALITY_pure_virtual:
7300 if (cu->language == language_ada)
7301 error (_("unexpected virtuality in component of Ada type"));
7302 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7303 break;
7304 }
7305 }
7306 }
7307 }
7308
7309 /* Add a member function to the proper fieldlist. */
7310
7311 static void
7312 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7313 struct type *type, struct dwarf2_cu *cu)
7314 {
7315 struct objfile *objfile = cu->objfile;
7316 struct attribute *attr;
7317 struct fnfieldlist *flp;
7318 int i;
7319 struct fn_field *fnp;
7320 char *fieldname;
7321 struct nextfnfield *new_fnfield;
7322 struct type *this_type;
7323 enum dwarf_access_attribute accessibility;
7324
7325 if (cu->language == language_ada)
7326 error (_("unexpected member function in Ada type"));
7327
7328 /* Get name of member function. */
7329 fieldname = dwarf2_name (die, cu);
7330 if (fieldname == NULL)
7331 return;
7332
7333 /* Look up member function name in fieldlist. */
7334 for (i = 0; i < fip->nfnfields; i++)
7335 {
7336 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7337 break;
7338 }
7339
7340 /* Create new list element if necessary. */
7341 if (i < fip->nfnfields)
7342 flp = &fip->fnfieldlists[i];
7343 else
7344 {
7345 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7346 {
7347 fip->fnfieldlists = (struct fnfieldlist *)
7348 xrealloc (fip->fnfieldlists,
7349 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7350 * sizeof (struct fnfieldlist));
7351 if (fip->nfnfields == 0)
7352 make_cleanup (free_current_contents, &fip->fnfieldlists);
7353 }
7354 flp = &fip->fnfieldlists[fip->nfnfields];
7355 flp->name = fieldname;
7356 flp->length = 0;
7357 flp->head = NULL;
7358 i = fip->nfnfields++;
7359 }
7360
7361 /* Create a new member function field and chain it to the field list
7362 entry. */
7363 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7364 make_cleanup (xfree, new_fnfield);
7365 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7366 new_fnfield->next = flp->head;
7367 flp->head = new_fnfield;
7368 flp->length++;
7369
7370 /* Fill in the member function field info. */
7371 fnp = &new_fnfield->fnfield;
7372
7373 /* Delay processing of the physname until later. */
7374 if (cu->language == language_cplus || cu->language == language_java)
7375 {
7376 add_to_method_list (type, i, flp->length - 1, fieldname,
7377 die, cu);
7378 }
7379 else
7380 {
7381 const char *physname = dwarf2_physname (fieldname, die, cu);
7382 fnp->physname = physname ? physname : "";
7383 }
7384
7385 fnp->type = alloc_type (objfile);
7386 this_type = read_type_die (die, cu);
7387 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7388 {
7389 int nparams = TYPE_NFIELDS (this_type);
7390
7391 /* TYPE is the domain of this method, and THIS_TYPE is the type
7392 of the method itself (TYPE_CODE_METHOD). */
7393 smash_to_method_type (fnp->type, type,
7394 TYPE_TARGET_TYPE (this_type),
7395 TYPE_FIELDS (this_type),
7396 TYPE_NFIELDS (this_type),
7397 TYPE_VARARGS (this_type));
7398
7399 /* Handle static member functions.
7400 Dwarf2 has no clean way to discern C++ static and non-static
7401 member functions. G++ helps GDB by marking the first
7402 parameter for non-static member functions (which is the this
7403 pointer) as artificial. We obtain this information from
7404 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
7405 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7406 fnp->voffset = VOFFSET_STATIC;
7407 }
7408 else
7409 complaint (&symfile_complaints, _("member function type missing for '%s'"),
7410 dwarf2_full_name (fieldname, die, cu));
7411
7412 /* Get fcontext from DW_AT_containing_type if present. */
7413 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7414 fnp->fcontext = die_containing_type (die, cu);
7415
7416 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7417 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
7418
7419 /* Get accessibility. */
7420 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7421 if (attr)
7422 accessibility = DW_UNSND (attr);
7423 else
7424 accessibility = dwarf2_default_access_attribute (die, cu);
7425 switch (accessibility)
7426 {
7427 case DW_ACCESS_private:
7428 fnp->is_private = 1;
7429 break;
7430 case DW_ACCESS_protected:
7431 fnp->is_protected = 1;
7432 break;
7433 }
7434
7435 /* Check for artificial methods. */
7436 attr = dwarf2_attr (die, DW_AT_artificial, cu);
7437 if (attr && DW_UNSND (attr) != 0)
7438 fnp->is_artificial = 1;
7439
7440 /* Get index in virtual function table if it is a virtual member
7441 function. For older versions of GCC, this is an offset in the
7442 appropriate virtual table, as specified by DW_AT_containing_type.
7443 For everyone else, it is an expression to be evaluated relative
7444 to the object address. */
7445
7446 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7447 if (attr)
7448 {
7449 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7450 {
7451 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7452 {
7453 /* Old-style GCC. */
7454 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7455 }
7456 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7457 || (DW_BLOCK (attr)->size > 1
7458 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7459 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7460 {
7461 struct dwarf_block blk;
7462 int offset;
7463
7464 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7465 ? 1 : 2);
7466 blk.size = DW_BLOCK (attr)->size - offset;
7467 blk.data = DW_BLOCK (attr)->data + offset;
7468 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7469 if ((fnp->voffset % cu->header.addr_size) != 0)
7470 dwarf2_complex_location_expr_complaint ();
7471 else
7472 fnp->voffset /= cu->header.addr_size;
7473 fnp->voffset += 2;
7474 }
7475 else
7476 dwarf2_complex_location_expr_complaint ();
7477
7478 if (!fnp->fcontext)
7479 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7480 }
7481 else if (attr_form_is_section_offset (attr))
7482 {
7483 dwarf2_complex_location_expr_complaint ();
7484 }
7485 else
7486 {
7487 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7488 fieldname);
7489 }
7490 }
7491 else
7492 {
7493 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7494 if (attr && DW_UNSND (attr))
7495 {
7496 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7497 complaint (&symfile_complaints,
7498 _("Member function \"%s\" (offset %d) is virtual "
7499 "but the vtable offset is not specified"),
7500 fieldname, die->offset);
7501 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7502 TYPE_CPLUS_DYNAMIC (type) = 1;
7503 }
7504 }
7505 }
7506
7507 /* Create the vector of member function fields, and attach it to the type. */
7508
7509 static void
7510 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7511 struct dwarf2_cu *cu)
7512 {
7513 struct fnfieldlist *flp;
7514 int total_length = 0;
7515 int i;
7516
7517 if (cu->language == language_ada)
7518 error (_("unexpected member functions in Ada type"));
7519
7520 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7521 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7522 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7523
7524 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7525 {
7526 struct nextfnfield *nfp = flp->head;
7527 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7528 int k;
7529
7530 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7531 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7532 fn_flp->fn_fields = (struct fn_field *)
7533 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7534 for (k = flp->length; (k--, nfp); nfp = nfp->next)
7535 fn_flp->fn_fields[k] = nfp->fnfield;
7536
7537 total_length += flp->length;
7538 }
7539
7540 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7541 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
7542 }
7543
7544 /* Returns non-zero if NAME is the name of a vtable member in CU's
7545 language, zero otherwise. */
7546 static int
7547 is_vtable_name (const char *name, struct dwarf2_cu *cu)
7548 {
7549 static const char vptr[] = "_vptr";
7550 static const char vtable[] = "vtable";
7551
7552 /* Look for the C++ and Java forms of the vtable. */
7553 if ((cu->language == language_java
7554 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7555 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7556 && is_cplus_marker (name[sizeof (vptr) - 1])))
7557 return 1;
7558
7559 return 0;
7560 }
7561
7562 /* GCC outputs unnamed structures that are really pointers to member
7563 functions, with the ABI-specified layout. If TYPE describes
7564 such a structure, smash it into a member function type.
7565
7566 GCC shouldn't do this; it should just output pointer to member DIEs.
7567 This is GCC PR debug/28767. */
7568
7569 static void
7570 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7571 {
7572 struct type *pfn_type, *domain_type, *new_type;
7573
7574 /* Check for a structure with no name and two children. */
7575 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7576 return;
7577
7578 /* Check for __pfn and __delta members. */
7579 if (TYPE_FIELD_NAME (type, 0) == NULL
7580 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7581 || TYPE_FIELD_NAME (type, 1) == NULL
7582 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7583 return;
7584
7585 /* Find the type of the method. */
7586 pfn_type = TYPE_FIELD_TYPE (type, 0);
7587 if (pfn_type == NULL
7588 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7589 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7590 return;
7591
7592 /* Look for the "this" argument. */
7593 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7594 if (TYPE_NFIELDS (pfn_type) == 0
7595 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7596 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7597 return;
7598
7599 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7600 new_type = alloc_type (objfile);
7601 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7602 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7603 TYPE_VARARGS (pfn_type));
7604 smash_to_methodptr_type (type, new_type);
7605 }
7606
7607 /* Called when we find the DIE that starts a structure or union scope
7608 (definition) to create a type for the structure or union. Fill in
7609 the type's name and general properties; the members will not be
7610 processed until process_structure_type.
7611
7612 NOTE: we need to call these functions regardless of whether or not the
7613 DIE has a DW_AT_name attribute, since it might be an anonymous
7614 structure or union. This gets the type entered into our set of
7615 user defined types.
7616
7617 However, if the structure is incomplete (an opaque struct/union)
7618 then suppress creating a symbol table entry for it since gdb only
7619 wants to find the one with the complete definition. Note that if
7620 it is complete, we just call new_symbol, which does it's own
7621 checking about whether the struct/union is anonymous or not (and
7622 suppresses creating a symbol table entry itself). */
7623
7624 static struct type *
7625 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7626 {
7627 struct objfile *objfile = cu->objfile;
7628 struct type *type;
7629 struct attribute *attr;
7630 char *name;
7631
7632 /* If the definition of this type lives in .debug_types, read that type.
7633 Don't follow DW_AT_specification though, that will take us back up
7634 the chain and we want to go down. */
7635 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7636 if (attr)
7637 {
7638 struct dwarf2_cu *type_cu = cu;
7639 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7640
7641 /* We could just recurse on read_structure_type, but we need to call
7642 get_die_type to ensure only one type for this DIE is created.
7643 This is important, for example, because for c++ classes we need
7644 TYPE_NAME set which is only done by new_symbol. Blech. */
7645 type = read_type_die (type_die, type_cu);
7646
7647 /* TYPE_CU may not be the same as CU.
7648 Ensure TYPE is recorded in CU's type_hash table. */
7649 return set_die_type (die, type, cu);
7650 }
7651
7652 type = alloc_type (objfile);
7653 INIT_CPLUS_SPECIFIC (type);
7654
7655 name = dwarf2_name (die, cu);
7656 if (name != NULL)
7657 {
7658 if (cu->language == language_cplus
7659 || cu->language == language_java)
7660 {
7661 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7662
7663 /* dwarf2_full_name might have already finished building the DIE's
7664 type. If so, there is no need to continue. */
7665 if (get_die_type (die, cu) != NULL)
7666 return get_die_type (die, cu);
7667
7668 TYPE_TAG_NAME (type) = full_name;
7669 if (die->tag == DW_TAG_structure_type
7670 || die->tag == DW_TAG_class_type)
7671 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7672 }
7673 else
7674 {
7675 /* The name is already allocated along with this objfile, so
7676 we don't need to duplicate it for the type. */
7677 TYPE_TAG_NAME (type) = (char *) name;
7678 if (die->tag == DW_TAG_class_type)
7679 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7680 }
7681 }
7682
7683 if (die->tag == DW_TAG_structure_type)
7684 {
7685 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7686 }
7687 else if (die->tag == DW_TAG_union_type)
7688 {
7689 TYPE_CODE (type) = TYPE_CODE_UNION;
7690 }
7691 else
7692 {
7693 TYPE_CODE (type) = TYPE_CODE_CLASS;
7694 }
7695
7696 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7697 TYPE_DECLARED_CLASS (type) = 1;
7698
7699 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7700 if (attr)
7701 {
7702 TYPE_LENGTH (type) = DW_UNSND (attr);
7703 }
7704 else
7705 {
7706 TYPE_LENGTH (type) = 0;
7707 }
7708
7709 TYPE_STUB_SUPPORTED (type) = 1;
7710 if (die_is_declaration (die, cu))
7711 TYPE_STUB (type) = 1;
7712 else if (attr == NULL && die->child == NULL
7713 && producer_is_realview (cu->producer))
7714 /* RealView does not output the required DW_AT_declaration
7715 on incomplete types. */
7716 TYPE_STUB (type) = 1;
7717
7718 /* We need to add the type field to the die immediately so we don't
7719 infinitely recurse when dealing with pointers to the structure
7720 type within the structure itself. */
7721 set_die_type (die, type, cu);
7722
7723 /* set_die_type should be already done. */
7724 set_descriptive_type (type, die, cu);
7725
7726 return type;
7727 }
7728
7729 /* Finish creating a structure or union type, including filling in
7730 its members and creating a symbol for it. */
7731
7732 static void
7733 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7734 {
7735 struct objfile *objfile = cu->objfile;
7736 struct die_info *child_die = die->child;
7737 struct type *type;
7738
7739 type = get_die_type (die, cu);
7740 if (type == NULL)
7741 type = read_structure_type (die, cu);
7742
7743 if (die->child != NULL && ! die_is_declaration (die, cu))
7744 {
7745 struct field_info fi;
7746 struct die_info *child_die;
7747 VEC (symbolp) *template_args = NULL;
7748 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7749
7750 memset (&fi, 0, sizeof (struct field_info));
7751
7752 child_die = die->child;
7753
7754 while (child_die && child_die->tag)
7755 {
7756 if (child_die->tag == DW_TAG_member
7757 || child_die->tag == DW_TAG_variable)
7758 {
7759 /* NOTE: carlton/2002-11-05: A C++ static data member
7760 should be a DW_TAG_member that is a declaration, but
7761 all versions of G++ as of this writing (so through at
7762 least 3.2.1) incorrectly generate DW_TAG_variable
7763 tags for them instead. */
7764 dwarf2_add_field (&fi, child_die, cu);
7765 }
7766 else if (child_die->tag == DW_TAG_subprogram)
7767 {
7768 /* C++ member function. */
7769 dwarf2_add_member_fn (&fi, child_die, type, cu);
7770 }
7771 else if (child_die->tag == DW_TAG_inheritance)
7772 {
7773 /* C++ base class field. */
7774 dwarf2_add_field (&fi, child_die, cu);
7775 }
7776 else if (child_die->tag == DW_TAG_typedef)
7777 dwarf2_add_typedef (&fi, child_die, cu);
7778 else if (child_die->tag == DW_TAG_template_type_param
7779 || child_die->tag == DW_TAG_template_value_param)
7780 {
7781 struct symbol *arg = new_symbol (child_die, NULL, cu);
7782
7783 if (arg != NULL)
7784 VEC_safe_push (symbolp, template_args, arg);
7785 }
7786
7787 child_die = sibling_die (child_die);
7788 }
7789
7790 /* Attach template arguments to type. */
7791 if (! VEC_empty (symbolp, template_args))
7792 {
7793 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7794 TYPE_N_TEMPLATE_ARGUMENTS (type)
7795 = VEC_length (symbolp, template_args);
7796 TYPE_TEMPLATE_ARGUMENTS (type)
7797 = obstack_alloc (&objfile->objfile_obstack,
7798 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7799 * sizeof (struct symbol *)));
7800 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7801 VEC_address (symbolp, template_args),
7802 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7803 * sizeof (struct symbol *)));
7804 VEC_free (symbolp, template_args);
7805 }
7806
7807 /* Attach fields and member functions to the type. */
7808 if (fi.nfields)
7809 dwarf2_attach_fields_to_type (&fi, type, cu);
7810 if (fi.nfnfields)
7811 {
7812 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7813
7814 /* Get the type which refers to the base class (possibly this
7815 class itself) which contains the vtable pointer for the current
7816 class from the DW_AT_containing_type attribute. This use of
7817 DW_AT_containing_type is a GNU extension. */
7818
7819 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7820 {
7821 struct type *t = die_containing_type (die, cu);
7822
7823 TYPE_VPTR_BASETYPE (type) = t;
7824 if (type == t)
7825 {
7826 int i;
7827
7828 /* Our own class provides vtbl ptr. */
7829 for (i = TYPE_NFIELDS (t) - 1;
7830 i >= TYPE_N_BASECLASSES (t);
7831 --i)
7832 {
7833 char *fieldname = TYPE_FIELD_NAME (t, i);
7834
7835 if (is_vtable_name (fieldname, cu))
7836 {
7837 TYPE_VPTR_FIELDNO (type) = i;
7838 break;
7839 }
7840 }
7841
7842 /* Complain if virtual function table field not found. */
7843 if (i < TYPE_N_BASECLASSES (t))
7844 complaint (&symfile_complaints,
7845 _("virtual function table pointer "
7846 "not found when defining class '%s'"),
7847 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7848 "");
7849 }
7850 else
7851 {
7852 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7853 }
7854 }
7855 else if (cu->producer
7856 && strncmp (cu->producer,
7857 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7858 {
7859 /* The IBM XLC compiler does not provide direct indication
7860 of the containing type, but the vtable pointer is
7861 always named __vfp. */
7862
7863 int i;
7864
7865 for (i = TYPE_NFIELDS (type) - 1;
7866 i >= TYPE_N_BASECLASSES (type);
7867 --i)
7868 {
7869 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7870 {
7871 TYPE_VPTR_FIELDNO (type) = i;
7872 TYPE_VPTR_BASETYPE (type) = type;
7873 break;
7874 }
7875 }
7876 }
7877 }
7878
7879 /* Copy fi.typedef_field_list linked list elements content into the
7880 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7881 if (fi.typedef_field_list)
7882 {
7883 int i = fi.typedef_field_list_count;
7884
7885 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7886 TYPE_TYPEDEF_FIELD_ARRAY (type)
7887 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7888 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7889
7890 /* Reverse the list order to keep the debug info elements order. */
7891 while (--i >= 0)
7892 {
7893 struct typedef_field *dest, *src;
7894
7895 dest = &TYPE_TYPEDEF_FIELD (type, i);
7896 src = &fi.typedef_field_list->field;
7897 fi.typedef_field_list = fi.typedef_field_list->next;
7898 *dest = *src;
7899 }
7900 }
7901
7902 do_cleanups (back_to);
7903
7904 if (HAVE_CPLUS_STRUCT (type))
7905 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7906 }
7907
7908 quirk_gcc_member_function_pointer (type, cu->objfile);
7909
7910 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7911 snapshots) has been known to create a die giving a declaration
7912 for a class that has, as a child, a die giving a definition for a
7913 nested class. So we have to process our children even if the
7914 current die is a declaration. Normally, of course, a declaration
7915 won't have any children at all. */
7916
7917 while (child_die != NULL && child_die->tag)
7918 {
7919 if (child_die->tag == DW_TAG_member
7920 || child_die->tag == DW_TAG_variable
7921 || child_die->tag == DW_TAG_inheritance
7922 || child_die->tag == DW_TAG_template_value_param
7923 || child_die->tag == DW_TAG_template_type_param)
7924 {
7925 /* Do nothing. */
7926 }
7927 else
7928 process_die (child_die, cu);
7929
7930 child_die = sibling_die (child_die);
7931 }
7932
7933 /* Do not consider external references. According to the DWARF standard,
7934 these DIEs are identified by the fact that they have no byte_size
7935 attribute, and a declaration attribute. */
7936 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7937 || !die_is_declaration (die, cu))
7938 new_symbol (die, type, cu);
7939 }
7940
7941 /* Given a DW_AT_enumeration_type die, set its type. We do not
7942 complete the type's fields yet, or create any symbols. */
7943
7944 static struct type *
7945 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7946 {
7947 struct objfile *objfile = cu->objfile;
7948 struct type *type;
7949 struct attribute *attr;
7950 const char *name;
7951
7952 /* If the definition of this type lives in .debug_types, read that type.
7953 Don't follow DW_AT_specification though, that will take us back up
7954 the chain and we want to go down. */
7955 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7956 if (attr)
7957 {
7958 struct dwarf2_cu *type_cu = cu;
7959 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7960
7961 type = read_type_die (type_die, type_cu);
7962
7963 /* TYPE_CU may not be the same as CU.
7964 Ensure TYPE is recorded in CU's type_hash table. */
7965 return set_die_type (die, type, cu);
7966 }
7967
7968 type = alloc_type (objfile);
7969
7970 TYPE_CODE (type) = TYPE_CODE_ENUM;
7971 name = dwarf2_full_name (NULL, die, cu);
7972 if (name != NULL)
7973 TYPE_TAG_NAME (type) = (char *) name;
7974
7975 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7976 if (attr)
7977 {
7978 TYPE_LENGTH (type) = DW_UNSND (attr);
7979 }
7980 else
7981 {
7982 TYPE_LENGTH (type) = 0;
7983 }
7984
7985 /* The enumeration DIE can be incomplete. In Ada, any type can be
7986 declared as private in the package spec, and then defined only
7987 inside the package body. Such types are known as Taft Amendment
7988 Types. When another package uses such a type, an incomplete DIE
7989 may be generated by the compiler. */
7990 if (die_is_declaration (die, cu))
7991 TYPE_STUB (type) = 1;
7992
7993 return set_die_type (die, type, cu);
7994 }
7995
7996 /* Given a pointer to a die which begins an enumeration, process all
7997 the dies that define the members of the enumeration, and create the
7998 symbol for the enumeration type.
7999
8000 NOTE: We reverse the order of the element list. */
8001
8002 static void
8003 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
8004 {
8005 struct type *this_type;
8006
8007 this_type = get_die_type (die, cu);
8008 if (this_type == NULL)
8009 this_type = read_enumeration_type (die, cu);
8010
8011 if (die->child != NULL)
8012 {
8013 struct die_info *child_die;
8014 struct symbol *sym;
8015 struct field *fields = NULL;
8016 int num_fields = 0;
8017 int unsigned_enum = 1;
8018 char *name;
8019
8020 child_die = die->child;
8021 while (child_die && child_die->tag)
8022 {
8023 if (child_die->tag != DW_TAG_enumerator)
8024 {
8025 process_die (child_die, cu);
8026 }
8027 else
8028 {
8029 name = dwarf2_name (child_die, cu);
8030 if (name)
8031 {
8032 sym = new_symbol (child_die, this_type, cu);
8033 if (SYMBOL_VALUE (sym) < 0)
8034 unsigned_enum = 0;
8035
8036 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
8037 {
8038 fields = (struct field *)
8039 xrealloc (fields,
8040 (num_fields + DW_FIELD_ALLOC_CHUNK)
8041 * sizeof (struct field));
8042 }
8043
8044 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
8045 FIELD_TYPE (fields[num_fields]) = NULL;
8046 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
8047 FIELD_BITSIZE (fields[num_fields]) = 0;
8048
8049 num_fields++;
8050 }
8051 }
8052
8053 child_die = sibling_die (child_die);
8054 }
8055
8056 if (num_fields)
8057 {
8058 TYPE_NFIELDS (this_type) = num_fields;
8059 TYPE_FIELDS (this_type) = (struct field *)
8060 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
8061 memcpy (TYPE_FIELDS (this_type), fields,
8062 sizeof (struct field) * num_fields);
8063 xfree (fields);
8064 }
8065 if (unsigned_enum)
8066 TYPE_UNSIGNED (this_type) = 1;
8067 }
8068
8069 /* If we are reading an enum from a .debug_types unit, and the enum
8070 is a declaration, and the enum is not the signatured type in the
8071 unit, then we do not want to add a symbol for it. Adding a
8072 symbol would in some cases obscure the true definition of the
8073 enum, giving users an incomplete type when the definition is
8074 actually available. Note that we do not want to do this for all
8075 enums which are just declarations, because C++0x allows forward
8076 enum declarations. */
8077 if (cu->per_cu->debug_type_section
8078 && die_is_declaration (die, cu))
8079 {
8080 struct signatured_type *type_sig;
8081
8082 type_sig
8083 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
8084 cu->per_cu->debug_type_section,
8085 cu->per_cu->offset);
8086 if (type_sig->type_offset != die->offset)
8087 return;
8088 }
8089
8090 new_symbol (die, this_type, cu);
8091 }
8092
8093 /* Extract all information from a DW_TAG_array_type DIE and put it in
8094 the DIE's type field. For now, this only handles one dimensional
8095 arrays. */
8096
8097 static struct type *
8098 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8099 {
8100 struct objfile *objfile = cu->objfile;
8101 struct die_info *child_die;
8102 struct type *type;
8103 struct type *element_type, *range_type, *index_type;
8104 struct type **range_types = NULL;
8105 struct attribute *attr;
8106 int ndim = 0;
8107 struct cleanup *back_to;
8108 char *name;
8109
8110 element_type = die_type (die, cu);
8111
8112 /* The die_type call above may have already set the type for this DIE. */
8113 type = get_die_type (die, cu);
8114 if (type)
8115 return type;
8116
8117 /* Irix 6.2 native cc creates array types without children for
8118 arrays with unspecified length. */
8119 if (die->child == NULL)
8120 {
8121 index_type = objfile_type (objfile)->builtin_int;
8122 range_type = create_range_type (NULL, index_type, 0, -1);
8123 type = create_array_type (NULL, element_type, range_type);
8124 return set_die_type (die, type, cu);
8125 }
8126
8127 back_to = make_cleanup (null_cleanup, NULL);
8128 child_die = die->child;
8129 while (child_die && child_die->tag)
8130 {
8131 if (child_die->tag == DW_TAG_subrange_type)
8132 {
8133 struct type *child_type = read_type_die (child_die, cu);
8134
8135 if (child_type != NULL)
8136 {
8137 /* The range type was succesfully read. Save it for the
8138 array type creation. */
8139 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8140 {
8141 range_types = (struct type **)
8142 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8143 * sizeof (struct type *));
8144 if (ndim == 0)
8145 make_cleanup (free_current_contents, &range_types);
8146 }
8147 range_types[ndim++] = child_type;
8148 }
8149 }
8150 child_die = sibling_die (child_die);
8151 }
8152
8153 /* Dwarf2 dimensions are output from left to right, create the
8154 necessary array types in backwards order. */
8155
8156 type = element_type;
8157
8158 if (read_array_order (die, cu) == DW_ORD_col_major)
8159 {
8160 int i = 0;
8161
8162 while (i < ndim)
8163 type = create_array_type (NULL, type, range_types[i++]);
8164 }
8165 else
8166 {
8167 while (ndim-- > 0)
8168 type = create_array_type (NULL, type, range_types[ndim]);
8169 }
8170
8171 /* Understand Dwarf2 support for vector types (like they occur on
8172 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8173 array type. This is not part of the Dwarf2/3 standard yet, but a
8174 custom vendor extension. The main difference between a regular
8175 array and the vector variant is that vectors are passed by value
8176 to functions. */
8177 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8178 if (attr)
8179 make_vector_type (type);
8180
8181 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8182 implementation may choose to implement triple vectors using this
8183 attribute. */
8184 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8185 if (attr)
8186 {
8187 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8188 TYPE_LENGTH (type) = DW_UNSND (attr);
8189 else
8190 complaint (&symfile_complaints,
8191 _("DW_AT_byte_size for array type smaller "
8192 "than the total size of elements"));
8193 }
8194
8195 name = dwarf2_name (die, cu);
8196 if (name)
8197 TYPE_NAME (type) = name;
8198
8199 /* Install the type in the die. */
8200 set_die_type (die, type, cu);
8201
8202 /* set_die_type should be already done. */
8203 set_descriptive_type (type, die, cu);
8204
8205 do_cleanups (back_to);
8206
8207 return type;
8208 }
8209
8210 static enum dwarf_array_dim_ordering
8211 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8212 {
8213 struct attribute *attr;
8214
8215 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8216
8217 if (attr) return DW_SND (attr);
8218
8219 /* GNU F77 is a special case, as at 08/2004 array type info is the
8220 opposite order to the dwarf2 specification, but data is still
8221 laid out as per normal fortran.
8222
8223 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8224 version checking. */
8225
8226 if (cu->language == language_fortran
8227 && cu->producer && strstr (cu->producer, "GNU F77"))
8228 {
8229 return DW_ORD_row_major;
8230 }
8231
8232 switch (cu->language_defn->la_array_ordering)
8233 {
8234 case array_column_major:
8235 return DW_ORD_col_major;
8236 case array_row_major:
8237 default:
8238 return DW_ORD_row_major;
8239 };
8240 }
8241
8242 /* Extract all information from a DW_TAG_set_type DIE and put it in
8243 the DIE's type field. */
8244
8245 static struct type *
8246 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8247 {
8248 struct type *domain_type, *set_type;
8249 struct attribute *attr;
8250
8251 domain_type = die_type (die, cu);
8252
8253 /* The die_type call above may have already set the type for this DIE. */
8254 set_type = get_die_type (die, cu);
8255 if (set_type)
8256 return set_type;
8257
8258 set_type = create_set_type (NULL, domain_type);
8259
8260 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8261 if (attr)
8262 TYPE_LENGTH (set_type) = DW_UNSND (attr);
8263
8264 return set_die_type (die, set_type, cu);
8265 }
8266
8267 /* First cut: install each common block member as a global variable. */
8268
8269 static void
8270 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8271 {
8272 struct die_info *child_die;
8273 struct attribute *attr;
8274 struct symbol *sym;
8275 CORE_ADDR base = (CORE_ADDR) 0;
8276
8277 attr = dwarf2_attr (die, DW_AT_location, cu);
8278 if (attr)
8279 {
8280 /* Support the .debug_loc offsets. */
8281 if (attr_form_is_block (attr))
8282 {
8283 base = decode_locdesc (DW_BLOCK (attr), cu);
8284 }
8285 else if (attr_form_is_section_offset (attr))
8286 {
8287 dwarf2_complex_location_expr_complaint ();
8288 }
8289 else
8290 {
8291 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8292 "common block member");
8293 }
8294 }
8295 if (die->child != NULL)
8296 {
8297 child_die = die->child;
8298 while (child_die && child_die->tag)
8299 {
8300 LONGEST offset;
8301
8302 sym = new_symbol (child_die, NULL, cu);
8303 if (sym != NULL
8304 && handle_data_member_location (child_die, cu, &offset))
8305 {
8306 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8307 add_symbol_to_list (sym, &global_symbols);
8308 }
8309 child_die = sibling_die (child_die);
8310 }
8311 }
8312 }
8313
8314 /* Create a type for a C++ namespace. */
8315
8316 static struct type *
8317 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8318 {
8319 struct objfile *objfile = cu->objfile;
8320 const char *previous_prefix, *name;
8321 int is_anonymous;
8322 struct type *type;
8323
8324 /* For extensions, reuse the type of the original namespace. */
8325 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8326 {
8327 struct die_info *ext_die;
8328 struct dwarf2_cu *ext_cu = cu;
8329
8330 ext_die = dwarf2_extension (die, &ext_cu);
8331 type = read_type_die (ext_die, ext_cu);
8332
8333 /* EXT_CU may not be the same as CU.
8334 Ensure TYPE is recorded in CU's type_hash table. */
8335 return set_die_type (die, type, cu);
8336 }
8337
8338 name = namespace_name (die, &is_anonymous, cu);
8339
8340 /* Now build the name of the current namespace. */
8341
8342 previous_prefix = determine_prefix (die, cu);
8343 if (previous_prefix[0] != '\0')
8344 name = typename_concat (&objfile->objfile_obstack,
8345 previous_prefix, name, 0, cu);
8346
8347 /* Create the type. */
8348 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8349 objfile);
8350 TYPE_NAME (type) = (char *) name;
8351 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8352
8353 return set_die_type (die, type, cu);
8354 }
8355
8356 /* Read a C++ namespace. */
8357
8358 static void
8359 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8360 {
8361 struct objfile *objfile = cu->objfile;
8362 int is_anonymous;
8363
8364 /* Add a symbol associated to this if we haven't seen the namespace
8365 before. Also, add a using directive if it's an anonymous
8366 namespace. */
8367
8368 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8369 {
8370 struct type *type;
8371
8372 type = read_type_die (die, cu);
8373 new_symbol (die, type, cu);
8374
8375 namespace_name (die, &is_anonymous, cu);
8376 if (is_anonymous)
8377 {
8378 const char *previous_prefix = determine_prefix (die, cu);
8379
8380 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8381 NULL, NULL, &objfile->objfile_obstack);
8382 }
8383 }
8384
8385 if (die->child != NULL)
8386 {
8387 struct die_info *child_die = die->child;
8388
8389 while (child_die && child_die->tag)
8390 {
8391 process_die (child_die, cu);
8392 child_die = sibling_die (child_die);
8393 }
8394 }
8395 }
8396
8397 /* Read a Fortran module as type. This DIE can be only a declaration used for
8398 imported module. Still we need that type as local Fortran "use ... only"
8399 declaration imports depend on the created type in determine_prefix. */
8400
8401 static struct type *
8402 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8403 {
8404 struct objfile *objfile = cu->objfile;
8405 char *module_name;
8406 struct type *type;
8407
8408 module_name = dwarf2_name (die, cu);
8409 if (!module_name)
8410 complaint (&symfile_complaints,
8411 _("DW_TAG_module has no name, offset 0x%x"),
8412 die->offset);
8413 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8414
8415 /* determine_prefix uses TYPE_TAG_NAME. */
8416 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8417
8418 return set_die_type (die, type, cu);
8419 }
8420
8421 /* Read a Fortran module. */
8422
8423 static void
8424 read_module (struct die_info *die, struct dwarf2_cu *cu)
8425 {
8426 struct die_info *child_die = die->child;
8427
8428 while (child_die && child_die->tag)
8429 {
8430 process_die (child_die, cu);
8431 child_die = sibling_die (child_die);
8432 }
8433 }
8434
8435 /* Return the name of the namespace represented by DIE. Set
8436 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8437 namespace. */
8438
8439 static const char *
8440 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8441 {
8442 struct die_info *current_die;
8443 const char *name = NULL;
8444
8445 /* Loop through the extensions until we find a name. */
8446
8447 for (current_die = die;
8448 current_die != NULL;
8449 current_die = dwarf2_extension (die, &cu))
8450 {
8451 name = dwarf2_name (current_die, cu);
8452 if (name != NULL)
8453 break;
8454 }
8455
8456 /* Is it an anonymous namespace? */
8457
8458 *is_anonymous = (name == NULL);
8459 if (*is_anonymous)
8460 name = CP_ANONYMOUS_NAMESPACE_STR;
8461
8462 return name;
8463 }
8464
8465 /* Extract all information from a DW_TAG_pointer_type DIE and add to
8466 the user defined type vector. */
8467
8468 static struct type *
8469 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8470 {
8471 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8472 struct comp_unit_head *cu_header = &cu->header;
8473 struct type *type;
8474 struct attribute *attr_byte_size;
8475 struct attribute *attr_address_class;
8476 int byte_size, addr_class;
8477 struct type *target_type;
8478
8479 target_type = die_type (die, cu);
8480
8481 /* The die_type call above may have already set the type for this DIE. */
8482 type = get_die_type (die, cu);
8483 if (type)
8484 return type;
8485
8486 type = lookup_pointer_type (target_type);
8487
8488 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8489 if (attr_byte_size)
8490 byte_size = DW_UNSND (attr_byte_size);
8491 else
8492 byte_size = cu_header->addr_size;
8493
8494 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8495 if (attr_address_class)
8496 addr_class = DW_UNSND (attr_address_class);
8497 else
8498 addr_class = DW_ADDR_none;
8499
8500 /* If the pointer size or address class is different than the
8501 default, create a type variant marked as such and set the
8502 length accordingly. */
8503 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8504 {
8505 if (gdbarch_address_class_type_flags_p (gdbarch))
8506 {
8507 int type_flags;
8508
8509 type_flags = gdbarch_address_class_type_flags
8510 (gdbarch, byte_size, addr_class);
8511 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8512 == 0);
8513 type = make_type_with_address_space (type, type_flags);
8514 }
8515 else if (TYPE_LENGTH (type) != byte_size)
8516 {
8517 complaint (&symfile_complaints,
8518 _("invalid pointer size %d"), byte_size);
8519 }
8520 else
8521 {
8522 /* Should we also complain about unhandled address classes? */
8523 }
8524 }
8525
8526 TYPE_LENGTH (type) = byte_size;
8527 return set_die_type (die, type, cu);
8528 }
8529
8530 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8531 the user defined type vector. */
8532
8533 static struct type *
8534 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8535 {
8536 struct type *type;
8537 struct type *to_type;
8538 struct type *domain;
8539
8540 to_type = die_type (die, cu);
8541 domain = die_containing_type (die, cu);
8542
8543 /* The calls above may have already set the type for this DIE. */
8544 type = get_die_type (die, cu);
8545 if (type)
8546 return type;
8547
8548 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8549 type = lookup_methodptr_type (to_type);
8550 else
8551 type = lookup_memberptr_type (to_type, domain);
8552
8553 return set_die_type (die, type, cu);
8554 }
8555
8556 /* Extract all information from a DW_TAG_reference_type DIE and add to
8557 the user defined type vector. */
8558
8559 static struct type *
8560 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8561 {
8562 struct comp_unit_head *cu_header = &cu->header;
8563 struct type *type, *target_type;
8564 struct attribute *attr;
8565
8566 target_type = die_type (die, cu);
8567
8568 /* The die_type call above may have already set the type for this DIE. */
8569 type = get_die_type (die, cu);
8570 if (type)
8571 return type;
8572
8573 type = lookup_reference_type (target_type);
8574 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8575 if (attr)
8576 {
8577 TYPE_LENGTH (type) = DW_UNSND (attr);
8578 }
8579 else
8580 {
8581 TYPE_LENGTH (type) = cu_header->addr_size;
8582 }
8583 return set_die_type (die, type, cu);
8584 }
8585
8586 static struct type *
8587 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8588 {
8589 struct type *base_type, *cv_type;
8590
8591 base_type = die_type (die, cu);
8592
8593 /* The die_type call above may have already set the type for this DIE. */
8594 cv_type = get_die_type (die, cu);
8595 if (cv_type)
8596 return cv_type;
8597
8598 /* In case the const qualifier is applied to an array type, the element type
8599 is so qualified, not the array type (section 6.7.3 of C99). */
8600 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8601 {
8602 struct type *el_type, *inner_array;
8603
8604 base_type = copy_type (base_type);
8605 inner_array = base_type;
8606
8607 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8608 {
8609 TYPE_TARGET_TYPE (inner_array) =
8610 copy_type (TYPE_TARGET_TYPE (inner_array));
8611 inner_array = TYPE_TARGET_TYPE (inner_array);
8612 }
8613
8614 el_type = TYPE_TARGET_TYPE (inner_array);
8615 TYPE_TARGET_TYPE (inner_array) =
8616 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8617
8618 return set_die_type (die, base_type, cu);
8619 }
8620
8621 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8622 return set_die_type (die, cv_type, cu);
8623 }
8624
8625 static struct type *
8626 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8627 {
8628 struct type *base_type, *cv_type;
8629
8630 base_type = die_type (die, cu);
8631
8632 /* The die_type call above may have already set the type for this DIE. */
8633 cv_type = get_die_type (die, cu);
8634 if (cv_type)
8635 return cv_type;
8636
8637 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8638 return set_die_type (die, cv_type, cu);
8639 }
8640
8641 /* Extract all information from a DW_TAG_string_type DIE and add to
8642 the user defined type vector. It isn't really a user defined type,
8643 but it behaves like one, with other DIE's using an AT_user_def_type
8644 attribute to reference it. */
8645
8646 static struct type *
8647 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8648 {
8649 struct objfile *objfile = cu->objfile;
8650 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8651 struct type *type, *range_type, *index_type, *char_type;
8652 struct attribute *attr;
8653 unsigned int length;
8654
8655 attr = dwarf2_attr (die, DW_AT_string_length, cu);
8656 if (attr)
8657 {
8658 length = DW_UNSND (attr);
8659 }
8660 else
8661 {
8662 /* Check for the DW_AT_byte_size attribute. */
8663 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8664 if (attr)
8665 {
8666 length = DW_UNSND (attr);
8667 }
8668 else
8669 {
8670 length = 1;
8671 }
8672 }
8673
8674 index_type = objfile_type (objfile)->builtin_int;
8675 range_type = create_range_type (NULL, index_type, 1, length);
8676 char_type = language_string_char_type (cu->language_defn, gdbarch);
8677 type = create_string_type (NULL, char_type, range_type);
8678
8679 return set_die_type (die, type, cu);
8680 }
8681
8682 /* Handle DIES due to C code like:
8683
8684 struct foo
8685 {
8686 int (*funcp)(int a, long l);
8687 int b;
8688 };
8689
8690 ('funcp' generates a DW_TAG_subroutine_type DIE). */
8691
8692 static struct type *
8693 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8694 {
8695 struct type *type; /* Type that this function returns. */
8696 struct type *ftype; /* Function that returns above type. */
8697 struct attribute *attr;
8698
8699 type = die_type (die, cu);
8700
8701 /* The die_type call above may have already set the type for this DIE. */
8702 ftype = get_die_type (die, cu);
8703 if (ftype)
8704 return ftype;
8705
8706 ftype = lookup_function_type (type);
8707
8708 /* All functions in C++, Pascal and Java have prototypes. */
8709 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8710 if ((attr && (DW_UNSND (attr) != 0))
8711 || cu->language == language_cplus
8712 || cu->language == language_java
8713 || cu->language == language_pascal)
8714 TYPE_PROTOTYPED (ftype) = 1;
8715 else if (producer_is_realview (cu->producer))
8716 /* RealView does not emit DW_AT_prototyped. We can not
8717 distinguish prototyped and unprototyped functions; default to
8718 prototyped, since that is more common in modern code (and
8719 RealView warns about unprototyped functions). */
8720 TYPE_PROTOTYPED (ftype) = 1;
8721
8722 /* Store the calling convention in the type if it's available in
8723 the subroutine die. Otherwise set the calling convention to
8724 the default value DW_CC_normal. */
8725 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8726 if (attr)
8727 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8728 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8729 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8730 else
8731 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8732
8733 /* We need to add the subroutine type to the die immediately so
8734 we don't infinitely recurse when dealing with parameters
8735 declared as the same subroutine type. */
8736 set_die_type (die, ftype, cu);
8737
8738 if (die->child != NULL)
8739 {
8740 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
8741 struct die_info *child_die;
8742 int nparams, iparams;
8743
8744 /* Count the number of parameters.
8745 FIXME: GDB currently ignores vararg functions, but knows about
8746 vararg member functions. */
8747 nparams = 0;
8748 child_die = die->child;
8749 while (child_die && child_die->tag)
8750 {
8751 if (child_die->tag == DW_TAG_formal_parameter)
8752 nparams++;
8753 else if (child_die->tag == DW_TAG_unspecified_parameters)
8754 TYPE_VARARGS (ftype) = 1;
8755 child_die = sibling_die (child_die);
8756 }
8757
8758 /* Allocate storage for parameters and fill them in. */
8759 TYPE_NFIELDS (ftype) = nparams;
8760 TYPE_FIELDS (ftype) = (struct field *)
8761 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8762
8763 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8764 even if we error out during the parameters reading below. */
8765 for (iparams = 0; iparams < nparams; iparams++)
8766 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8767
8768 iparams = 0;
8769 child_die = die->child;
8770 while (child_die && child_die->tag)
8771 {
8772 if (child_die->tag == DW_TAG_formal_parameter)
8773 {
8774 struct type *arg_type;
8775
8776 /* DWARF version 2 has no clean way to discern C++
8777 static and non-static member functions. G++ helps
8778 GDB by marking the first parameter for non-static
8779 member functions (which is the this pointer) as
8780 artificial. We pass this information to
8781 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8782
8783 DWARF version 3 added DW_AT_object_pointer, which GCC
8784 4.5 does not yet generate. */
8785 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8786 if (attr)
8787 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8788 else
8789 {
8790 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8791
8792 /* GCC/43521: In java, the formal parameter
8793 "this" is sometimes not marked with DW_AT_artificial. */
8794 if (cu->language == language_java)
8795 {
8796 const char *name = dwarf2_name (child_die, cu);
8797
8798 if (name && !strcmp (name, "this"))
8799 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8800 }
8801 }
8802 arg_type = die_type (child_die, cu);
8803
8804 /* RealView does not mark THIS as const, which the testsuite
8805 expects. GCC marks THIS as const in method definitions,
8806 but not in the class specifications (GCC PR 43053). */
8807 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8808 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8809 {
8810 int is_this = 0;
8811 struct dwarf2_cu *arg_cu = cu;
8812 const char *name = dwarf2_name (child_die, cu);
8813
8814 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8815 if (attr)
8816 {
8817 /* If the compiler emits this, use it. */
8818 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8819 is_this = 1;
8820 }
8821 else if (name && strcmp (name, "this") == 0)
8822 /* Function definitions will have the argument names. */
8823 is_this = 1;
8824 else if (name == NULL && iparams == 0)
8825 /* Declarations may not have the names, so like
8826 elsewhere in GDB, assume an artificial first
8827 argument is "this". */
8828 is_this = 1;
8829
8830 if (is_this)
8831 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8832 arg_type, 0);
8833 }
8834
8835 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8836 iparams++;
8837 }
8838 child_die = sibling_die (child_die);
8839 }
8840 }
8841
8842 return ftype;
8843 }
8844
8845 static struct type *
8846 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8847 {
8848 struct objfile *objfile = cu->objfile;
8849 const char *name = NULL;
8850 struct type *this_type;
8851
8852 name = dwarf2_full_name (NULL, die, cu);
8853 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8854 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8855 TYPE_NAME (this_type) = (char *) name;
8856 set_die_type (die, this_type, cu);
8857 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8858 return this_type;
8859 }
8860
8861 /* Find a representation of a given base type and install
8862 it in the TYPE field of the die. */
8863
8864 static struct type *
8865 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8866 {
8867 struct objfile *objfile = cu->objfile;
8868 struct type *type;
8869 struct attribute *attr;
8870 int encoding = 0, size = 0;
8871 char *name;
8872 enum type_code code = TYPE_CODE_INT;
8873 int type_flags = 0;
8874 struct type *target_type = NULL;
8875
8876 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8877 if (attr)
8878 {
8879 encoding = DW_UNSND (attr);
8880 }
8881 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8882 if (attr)
8883 {
8884 size = DW_UNSND (attr);
8885 }
8886 name = dwarf2_name (die, cu);
8887 if (!name)
8888 {
8889 complaint (&symfile_complaints,
8890 _("DW_AT_name missing from DW_TAG_base_type"));
8891 }
8892
8893 switch (encoding)
8894 {
8895 case DW_ATE_address:
8896 /* Turn DW_ATE_address into a void * pointer. */
8897 code = TYPE_CODE_PTR;
8898 type_flags |= TYPE_FLAG_UNSIGNED;
8899 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8900 break;
8901 case DW_ATE_boolean:
8902 code = TYPE_CODE_BOOL;
8903 type_flags |= TYPE_FLAG_UNSIGNED;
8904 break;
8905 case DW_ATE_complex_float:
8906 code = TYPE_CODE_COMPLEX;
8907 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8908 break;
8909 case DW_ATE_decimal_float:
8910 code = TYPE_CODE_DECFLOAT;
8911 break;
8912 case DW_ATE_float:
8913 code = TYPE_CODE_FLT;
8914 break;
8915 case DW_ATE_signed:
8916 break;
8917 case DW_ATE_unsigned:
8918 type_flags |= TYPE_FLAG_UNSIGNED;
8919 if (cu->language == language_fortran
8920 && name
8921 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8922 code = TYPE_CODE_CHAR;
8923 break;
8924 case DW_ATE_signed_char:
8925 if (cu->language == language_ada || cu->language == language_m2
8926 || cu->language == language_pascal
8927 || cu->language == language_fortran)
8928 code = TYPE_CODE_CHAR;
8929 break;
8930 case DW_ATE_unsigned_char:
8931 if (cu->language == language_ada || cu->language == language_m2
8932 || cu->language == language_pascal
8933 || cu->language == language_fortran)
8934 code = TYPE_CODE_CHAR;
8935 type_flags |= TYPE_FLAG_UNSIGNED;
8936 break;
8937 case DW_ATE_UTF:
8938 /* We just treat this as an integer and then recognize the
8939 type by name elsewhere. */
8940 break;
8941
8942 default:
8943 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8944 dwarf_type_encoding_name (encoding));
8945 break;
8946 }
8947
8948 type = init_type (code, size, type_flags, NULL, objfile);
8949 TYPE_NAME (type) = name;
8950 TYPE_TARGET_TYPE (type) = target_type;
8951
8952 if (name && strcmp (name, "char") == 0)
8953 TYPE_NOSIGN (type) = 1;
8954
8955 return set_die_type (die, type, cu);
8956 }
8957
8958 /* Read the given DW_AT_subrange DIE. */
8959
8960 static struct type *
8961 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8962 {
8963 struct type *base_type;
8964 struct type *range_type;
8965 struct attribute *attr;
8966 LONGEST low = 0;
8967 LONGEST high = -1;
8968 char *name;
8969 LONGEST negative_mask;
8970
8971 base_type = die_type (die, cu);
8972 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8973 check_typedef (base_type);
8974
8975 /* The die_type call above may have already set the type for this DIE. */
8976 range_type = get_die_type (die, cu);
8977 if (range_type)
8978 return range_type;
8979
8980 if (cu->language == language_fortran)
8981 {
8982 /* FORTRAN implies a lower bound of 1, if not given. */
8983 low = 1;
8984 }
8985
8986 /* FIXME: For variable sized arrays either of these could be
8987 a variable rather than a constant value. We'll allow it,
8988 but we don't know how to handle it. */
8989 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8990 if (attr)
8991 low = dwarf2_get_attr_constant_value (attr, 0);
8992
8993 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8994 if (attr)
8995 {
8996 if (attr_form_is_block (attr) || is_ref_attr (attr))
8997 {
8998 /* GCC encodes arrays with unspecified or dynamic length
8999 with a DW_FORM_block1 attribute or a reference attribute.
9000 FIXME: GDB does not yet know how to handle dynamic
9001 arrays properly, treat them as arrays with unspecified
9002 length for now.
9003
9004 FIXME: jimb/2003-09-22: GDB does not really know
9005 how to handle arrays of unspecified length
9006 either; we just represent them as zero-length
9007 arrays. Choose an appropriate upper bound given
9008 the lower bound we've computed above. */
9009 high = low - 1;
9010 }
9011 else
9012 high = dwarf2_get_attr_constant_value (attr, 1);
9013 }
9014 else
9015 {
9016 attr = dwarf2_attr (die, DW_AT_count, cu);
9017 if (attr)
9018 {
9019 int count = dwarf2_get_attr_constant_value (attr, 1);
9020 high = low + count - 1;
9021 }
9022 else
9023 {
9024 /* Unspecified array length. */
9025 high = low - 1;
9026 }
9027 }
9028
9029 /* Dwarf-2 specifications explicitly allows to create subrange types
9030 without specifying a base type.
9031 In that case, the base type must be set to the type of
9032 the lower bound, upper bound or count, in that order, if any of these
9033 three attributes references an object that has a type.
9034 If no base type is found, the Dwarf-2 specifications say that
9035 a signed integer type of size equal to the size of an address should
9036 be used.
9037 For the following C code: `extern char gdb_int [];'
9038 GCC produces an empty range DIE.
9039 FIXME: muller/2010-05-28: Possible references to object for low bound,
9040 high bound or count are not yet handled by this code. */
9041 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
9042 {
9043 struct objfile *objfile = cu->objfile;
9044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9045 int addr_size = gdbarch_addr_bit (gdbarch) /8;
9046 struct type *int_type = objfile_type (objfile)->builtin_int;
9047
9048 /* Test "int", "long int", and "long long int" objfile types,
9049 and select the first one having a size above or equal to the
9050 architecture address size. */
9051 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9052 base_type = int_type;
9053 else
9054 {
9055 int_type = objfile_type (objfile)->builtin_long;
9056 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9057 base_type = int_type;
9058 else
9059 {
9060 int_type = objfile_type (objfile)->builtin_long_long;
9061 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9062 base_type = int_type;
9063 }
9064 }
9065 }
9066
9067 negative_mask =
9068 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
9069 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
9070 low |= negative_mask;
9071 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
9072 high |= negative_mask;
9073
9074 range_type = create_range_type (NULL, base_type, low, high);
9075
9076 /* Mark arrays with dynamic length at least as an array of unspecified
9077 length. GDB could check the boundary but before it gets implemented at
9078 least allow accessing the array elements. */
9079 if (attr && attr_form_is_block (attr))
9080 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9081
9082 /* Ada expects an empty array on no boundary attributes. */
9083 if (attr == NULL && cu->language != language_ada)
9084 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9085
9086 name = dwarf2_name (die, cu);
9087 if (name)
9088 TYPE_NAME (range_type) = name;
9089
9090 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9091 if (attr)
9092 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9093
9094 set_die_type (die, range_type, cu);
9095
9096 /* set_die_type should be already done. */
9097 set_descriptive_type (range_type, die, cu);
9098
9099 return range_type;
9100 }
9101
9102 static struct type *
9103 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9104 {
9105 struct type *type;
9106
9107 /* For now, we only support the C meaning of an unspecified type: void. */
9108
9109 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9110 TYPE_NAME (type) = dwarf2_name (die, cu);
9111
9112 return set_die_type (die, type, cu);
9113 }
9114
9115 /* Trivial hash function for die_info: the hash value of a DIE
9116 is its offset in .debug_info for this objfile. */
9117
9118 static hashval_t
9119 die_hash (const void *item)
9120 {
9121 const struct die_info *die = item;
9122
9123 return die->offset;
9124 }
9125
9126 /* Trivial comparison function for die_info structures: two DIEs
9127 are equal if they have the same offset. */
9128
9129 static int
9130 die_eq (const void *item_lhs, const void *item_rhs)
9131 {
9132 const struct die_info *die_lhs = item_lhs;
9133 const struct die_info *die_rhs = item_rhs;
9134
9135 return die_lhs->offset == die_rhs->offset;
9136 }
9137
9138 /* Read a whole compilation unit into a linked list of dies. */
9139
9140 static struct die_info *
9141 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9142 {
9143 struct die_reader_specs reader_specs;
9144 int read_abbrevs = 0;
9145 struct cleanup *back_to = NULL;
9146 struct die_info *die;
9147
9148 if (cu->dwarf2_abbrevs == NULL)
9149 {
9150 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
9151 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9152 read_abbrevs = 1;
9153 }
9154
9155 gdb_assert (cu->die_hash == NULL);
9156 cu->die_hash
9157 = htab_create_alloc_ex (cu->header.length / 12,
9158 die_hash,
9159 die_eq,
9160 NULL,
9161 &cu->comp_unit_obstack,
9162 hashtab_obstack_allocate,
9163 dummy_obstack_deallocate);
9164
9165 init_cu_die_reader (&reader_specs, cu);
9166
9167 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9168
9169 if (read_abbrevs)
9170 do_cleanups (back_to);
9171
9172 return die;
9173 }
9174
9175 /* Main entry point for reading a DIE and all children.
9176 Read the DIE and dump it if requested. */
9177
9178 static struct die_info *
9179 read_die_and_children (const struct die_reader_specs *reader,
9180 gdb_byte *info_ptr,
9181 gdb_byte **new_info_ptr,
9182 struct die_info *parent)
9183 {
9184 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9185 new_info_ptr, parent);
9186
9187 if (dwarf2_die_debug)
9188 {
9189 fprintf_unfiltered (gdb_stdlog,
9190 "\nRead die from %s of %s:\n",
9191 (reader->cu->per_cu->debug_type_section
9192 ? ".debug_types"
9193 : ".debug_info"),
9194 reader->abfd->filename);
9195 dump_die (result, dwarf2_die_debug);
9196 }
9197
9198 return result;
9199 }
9200
9201 /* Read a single die and all its descendents. Set the die's sibling
9202 field to NULL; set other fields in the die correctly, and set all
9203 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9204 location of the info_ptr after reading all of those dies. PARENT
9205 is the parent of the die in question. */
9206
9207 static struct die_info *
9208 read_die_and_children_1 (const struct die_reader_specs *reader,
9209 gdb_byte *info_ptr,
9210 gdb_byte **new_info_ptr,
9211 struct die_info *parent)
9212 {
9213 struct die_info *die;
9214 gdb_byte *cur_ptr;
9215 int has_children;
9216
9217 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9218 if (die == NULL)
9219 {
9220 *new_info_ptr = cur_ptr;
9221 return NULL;
9222 }
9223 store_in_ref_table (die, reader->cu);
9224
9225 if (has_children)
9226 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9227 else
9228 {
9229 die->child = NULL;
9230 *new_info_ptr = cur_ptr;
9231 }
9232
9233 die->sibling = NULL;
9234 die->parent = parent;
9235 return die;
9236 }
9237
9238 /* Read a die, all of its descendents, and all of its siblings; set
9239 all of the fields of all of the dies correctly. Arguments are as
9240 in read_die_and_children. */
9241
9242 static struct die_info *
9243 read_die_and_siblings (const struct die_reader_specs *reader,
9244 gdb_byte *info_ptr,
9245 gdb_byte **new_info_ptr,
9246 struct die_info *parent)
9247 {
9248 struct die_info *first_die, *last_sibling;
9249 gdb_byte *cur_ptr;
9250
9251 cur_ptr = info_ptr;
9252 first_die = last_sibling = NULL;
9253
9254 while (1)
9255 {
9256 struct die_info *die
9257 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9258
9259 if (die == NULL)
9260 {
9261 *new_info_ptr = cur_ptr;
9262 return first_die;
9263 }
9264
9265 if (!first_die)
9266 first_die = die;
9267 else
9268 last_sibling->sibling = die;
9269
9270 last_sibling = die;
9271 }
9272 }
9273
9274 /* Read the die from the .debug_info section buffer. Set DIEP to
9275 point to a newly allocated die with its information, except for its
9276 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9277 whether the die has children or not. */
9278
9279 static gdb_byte *
9280 read_full_die (const struct die_reader_specs *reader,
9281 struct die_info **diep, gdb_byte *info_ptr,
9282 int *has_children)
9283 {
9284 unsigned int abbrev_number, bytes_read, i, offset;
9285 struct abbrev_info *abbrev;
9286 struct die_info *die;
9287 struct dwarf2_cu *cu = reader->cu;
9288 bfd *abfd = reader->abfd;
9289
9290 offset = info_ptr - reader->buffer;
9291 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9292 info_ptr += bytes_read;
9293 if (!abbrev_number)
9294 {
9295 *diep = NULL;
9296 *has_children = 0;
9297 return info_ptr;
9298 }
9299
9300 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9301 if (!abbrev)
9302 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9303 abbrev_number,
9304 bfd_get_filename (abfd));
9305
9306 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9307 die->offset = offset;
9308 die->tag = abbrev->tag;
9309 die->abbrev = abbrev_number;
9310
9311 die->num_attrs = abbrev->num_attrs;
9312
9313 for (i = 0; i < abbrev->num_attrs; ++i)
9314 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9315 abfd, info_ptr, cu);
9316
9317 *diep = die;
9318 *has_children = abbrev->has_children;
9319 return info_ptr;
9320 }
9321
9322 /* In DWARF version 2, the description of the debugging information is
9323 stored in a separate .debug_abbrev section. Before we read any
9324 dies from a section we read in all abbreviations and install them
9325 in a hash table. This function also sets flags in CU describing
9326 the data found in the abbrev table. */
9327
9328 static void
9329 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
9330 {
9331 struct comp_unit_head *cu_header = &cu->header;
9332 gdb_byte *abbrev_ptr;
9333 struct abbrev_info *cur_abbrev;
9334 unsigned int abbrev_number, bytes_read, abbrev_name;
9335 unsigned int abbrev_form, hash_number;
9336 struct attr_abbrev *cur_attrs;
9337 unsigned int allocated_attrs;
9338
9339 /* Initialize dwarf2 abbrevs. */
9340 obstack_init (&cu->abbrev_obstack);
9341 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9342 (ABBREV_HASH_SIZE
9343 * sizeof (struct abbrev_info *)));
9344 memset (cu->dwarf2_abbrevs, 0,
9345 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9346
9347 dwarf2_read_section (dwarf2_per_objfile->objfile,
9348 &dwarf2_per_objfile->abbrev);
9349 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
9350 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9351 abbrev_ptr += bytes_read;
9352
9353 allocated_attrs = ATTR_ALLOC_CHUNK;
9354 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9355
9356 /* Loop until we reach an abbrev number of 0. */
9357 while (abbrev_number)
9358 {
9359 cur_abbrev = dwarf_alloc_abbrev (cu);
9360
9361 /* read in abbrev header */
9362 cur_abbrev->number = abbrev_number;
9363 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9364 abbrev_ptr += bytes_read;
9365 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9366 abbrev_ptr += 1;
9367
9368 if (cur_abbrev->tag == DW_TAG_namespace)
9369 cu->has_namespace_info = 1;
9370
9371 /* now read in declarations */
9372 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9373 abbrev_ptr += bytes_read;
9374 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9375 abbrev_ptr += bytes_read;
9376 while (abbrev_name)
9377 {
9378 if (cur_abbrev->num_attrs == allocated_attrs)
9379 {
9380 allocated_attrs += ATTR_ALLOC_CHUNK;
9381 cur_attrs
9382 = xrealloc (cur_attrs, (allocated_attrs
9383 * sizeof (struct attr_abbrev)));
9384 }
9385
9386 /* Record whether this compilation unit might have
9387 inter-compilation-unit references. If we don't know what form
9388 this attribute will have, then it might potentially be a
9389 DW_FORM_ref_addr, so we conservatively expect inter-CU
9390 references. */
9391
9392 if (abbrev_form == DW_FORM_ref_addr
9393 || abbrev_form == DW_FORM_indirect)
9394 cu->has_form_ref_addr = 1;
9395
9396 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9397 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9398 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9399 abbrev_ptr += bytes_read;
9400 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9401 abbrev_ptr += bytes_read;
9402 }
9403
9404 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9405 (cur_abbrev->num_attrs
9406 * sizeof (struct attr_abbrev)));
9407 memcpy (cur_abbrev->attrs, cur_attrs,
9408 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9409
9410 hash_number = abbrev_number % ABBREV_HASH_SIZE;
9411 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9412 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9413
9414 /* Get next abbreviation.
9415 Under Irix6 the abbreviations for a compilation unit are not
9416 always properly terminated with an abbrev number of 0.
9417 Exit loop if we encounter an abbreviation which we have
9418 already read (which means we are about to read the abbreviations
9419 for the next compile unit) or if the end of the abbreviation
9420 table is reached. */
9421 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9422 >= dwarf2_per_objfile->abbrev.size)
9423 break;
9424 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9425 abbrev_ptr += bytes_read;
9426 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9427 break;
9428 }
9429
9430 xfree (cur_attrs);
9431 }
9432
9433 /* Release the memory used by the abbrev table for a compilation unit. */
9434
9435 static void
9436 dwarf2_free_abbrev_table (void *ptr_to_cu)
9437 {
9438 struct dwarf2_cu *cu = ptr_to_cu;
9439
9440 obstack_free (&cu->abbrev_obstack, NULL);
9441 cu->dwarf2_abbrevs = NULL;
9442 }
9443
9444 /* Lookup an abbrev_info structure in the abbrev hash table. */
9445
9446 static struct abbrev_info *
9447 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9448 {
9449 unsigned int hash_number;
9450 struct abbrev_info *abbrev;
9451
9452 hash_number = number % ABBREV_HASH_SIZE;
9453 abbrev = cu->dwarf2_abbrevs[hash_number];
9454
9455 while (abbrev)
9456 {
9457 if (abbrev->number == number)
9458 return abbrev;
9459 else
9460 abbrev = abbrev->next;
9461 }
9462 return NULL;
9463 }
9464
9465 /* Returns nonzero if TAG represents a type that we might generate a partial
9466 symbol for. */
9467
9468 static int
9469 is_type_tag_for_partial (int tag)
9470 {
9471 switch (tag)
9472 {
9473 #if 0
9474 /* Some types that would be reasonable to generate partial symbols for,
9475 that we don't at present. */
9476 case DW_TAG_array_type:
9477 case DW_TAG_file_type:
9478 case DW_TAG_ptr_to_member_type:
9479 case DW_TAG_set_type:
9480 case DW_TAG_string_type:
9481 case DW_TAG_subroutine_type:
9482 #endif
9483 case DW_TAG_base_type:
9484 case DW_TAG_class_type:
9485 case DW_TAG_interface_type:
9486 case DW_TAG_enumeration_type:
9487 case DW_TAG_structure_type:
9488 case DW_TAG_subrange_type:
9489 case DW_TAG_typedef:
9490 case DW_TAG_union_type:
9491 return 1;
9492 default:
9493 return 0;
9494 }
9495 }
9496
9497 /* Load all DIEs that are interesting for partial symbols into memory. */
9498
9499 static struct partial_die_info *
9500 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9501 int building_psymtab, struct dwarf2_cu *cu)
9502 {
9503 struct partial_die_info *part_die;
9504 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9505 struct abbrev_info *abbrev;
9506 unsigned int bytes_read;
9507 unsigned int load_all = 0;
9508
9509 int nesting_level = 1;
9510
9511 parent_die = NULL;
9512 last_die = NULL;
9513
9514 if (cu->per_cu && cu->per_cu->load_all_dies)
9515 load_all = 1;
9516
9517 cu->partial_dies
9518 = htab_create_alloc_ex (cu->header.length / 12,
9519 partial_die_hash,
9520 partial_die_eq,
9521 NULL,
9522 &cu->comp_unit_obstack,
9523 hashtab_obstack_allocate,
9524 dummy_obstack_deallocate);
9525
9526 part_die = obstack_alloc (&cu->comp_unit_obstack,
9527 sizeof (struct partial_die_info));
9528
9529 while (1)
9530 {
9531 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9532
9533 /* A NULL abbrev means the end of a series of children. */
9534 if (abbrev == NULL)
9535 {
9536 if (--nesting_level == 0)
9537 {
9538 /* PART_DIE was probably the last thing allocated on the
9539 comp_unit_obstack, so we could call obstack_free
9540 here. We don't do that because the waste is small,
9541 and will be cleaned up when we're done with this
9542 compilation unit. This way, we're also more robust
9543 against other users of the comp_unit_obstack. */
9544 return first_die;
9545 }
9546 info_ptr += bytes_read;
9547 last_die = parent_die;
9548 parent_die = parent_die->die_parent;
9549 continue;
9550 }
9551
9552 /* Check for template arguments. We never save these; if
9553 they're seen, we just mark the parent, and go on our way. */
9554 if (parent_die != NULL
9555 && cu->language == language_cplus
9556 && (abbrev->tag == DW_TAG_template_type_param
9557 || abbrev->tag == DW_TAG_template_value_param))
9558 {
9559 parent_die->has_template_arguments = 1;
9560
9561 if (!load_all)
9562 {
9563 /* We don't need a partial DIE for the template argument. */
9564 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9565 cu);
9566 continue;
9567 }
9568 }
9569
9570 /* We only recurse into subprograms looking for template arguments.
9571 Skip their other children. */
9572 if (!load_all
9573 && cu->language == language_cplus
9574 && parent_die != NULL
9575 && parent_die->tag == DW_TAG_subprogram)
9576 {
9577 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9578 continue;
9579 }
9580
9581 /* Check whether this DIE is interesting enough to save. Normally
9582 we would not be interested in members here, but there may be
9583 later variables referencing them via DW_AT_specification (for
9584 static members). */
9585 if (!load_all
9586 && !is_type_tag_for_partial (abbrev->tag)
9587 && abbrev->tag != DW_TAG_constant
9588 && abbrev->tag != DW_TAG_enumerator
9589 && abbrev->tag != DW_TAG_subprogram
9590 && abbrev->tag != DW_TAG_lexical_block
9591 && abbrev->tag != DW_TAG_variable
9592 && abbrev->tag != DW_TAG_namespace
9593 && abbrev->tag != DW_TAG_module
9594 && abbrev->tag != DW_TAG_member)
9595 {
9596 /* Otherwise we skip to the next sibling, if any. */
9597 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9598 continue;
9599 }
9600
9601 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9602 buffer, info_ptr, cu);
9603
9604 /* This two-pass algorithm for processing partial symbols has a
9605 high cost in cache pressure. Thus, handle some simple cases
9606 here which cover the majority of C partial symbols. DIEs
9607 which neither have specification tags in them, nor could have
9608 specification tags elsewhere pointing at them, can simply be
9609 processed and discarded.
9610
9611 This segment is also optional; scan_partial_symbols and
9612 add_partial_symbol will handle these DIEs if we chain
9613 them in normally. When compilers which do not emit large
9614 quantities of duplicate debug information are more common,
9615 this code can probably be removed. */
9616
9617 /* Any complete simple types at the top level (pretty much all
9618 of them, for a language without namespaces), can be processed
9619 directly. */
9620 if (parent_die == NULL
9621 && part_die->has_specification == 0
9622 && part_die->is_declaration == 0
9623 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9624 || part_die->tag == DW_TAG_base_type
9625 || part_die->tag == DW_TAG_subrange_type))
9626 {
9627 if (building_psymtab && part_die->name != NULL)
9628 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9629 VAR_DOMAIN, LOC_TYPEDEF,
9630 &cu->objfile->static_psymbols,
9631 0, (CORE_ADDR) 0, cu->language, cu->objfile);
9632 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9633 continue;
9634 }
9635
9636 /* The exception for DW_TAG_typedef with has_children above is
9637 a workaround of GCC PR debug/47510. In the case of this complaint
9638 type_name_no_tag_or_error will error on such types later.
9639
9640 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9641 it could not find the child DIEs referenced later, this is checked
9642 above. In correct DWARF DW_TAG_typedef should have no children. */
9643
9644 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9645 complaint (&symfile_complaints,
9646 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9647 "- DIE at 0x%x [in module %s]"),
9648 part_die->offset, cu->objfile->name);
9649
9650 /* If we're at the second level, and we're an enumerator, and
9651 our parent has no specification (meaning possibly lives in a
9652 namespace elsewhere), then we can add the partial symbol now
9653 instead of queueing it. */
9654 if (part_die->tag == DW_TAG_enumerator
9655 && parent_die != NULL
9656 && parent_die->die_parent == NULL
9657 && parent_die->tag == DW_TAG_enumeration_type
9658 && parent_die->has_specification == 0)
9659 {
9660 if (part_die->name == NULL)
9661 complaint (&symfile_complaints,
9662 _("malformed enumerator DIE ignored"));
9663 else if (building_psymtab)
9664 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9665 VAR_DOMAIN, LOC_CONST,
9666 (cu->language == language_cplus
9667 || cu->language == language_java)
9668 ? &cu->objfile->global_psymbols
9669 : &cu->objfile->static_psymbols,
9670 0, (CORE_ADDR) 0, cu->language, cu->objfile);
9671
9672 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9673 continue;
9674 }
9675
9676 /* We'll save this DIE so link it in. */
9677 part_die->die_parent = parent_die;
9678 part_die->die_sibling = NULL;
9679 part_die->die_child = NULL;
9680
9681 if (last_die && last_die == parent_die)
9682 last_die->die_child = part_die;
9683 else if (last_die)
9684 last_die->die_sibling = part_die;
9685
9686 last_die = part_die;
9687
9688 if (first_die == NULL)
9689 first_die = part_die;
9690
9691 /* Maybe add the DIE to the hash table. Not all DIEs that we
9692 find interesting need to be in the hash table, because we
9693 also have the parent/sibling/child chains; only those that we
9694 might refer to by offset later during partial symbol reading.
9695
9696 For now this means things that might have be the target of a
9697 DW_AT_specification, DW_AT_abstract_origin, or
9698 DW_AT_extension. DW_AT_extension will refer only to
9699 namespaces; DW_AT_abstract_origin refers to functions (and
9700 many things under the function DIE, but we do not recurse
9701 into function DIEs during partial symbol reading) and
9702 possibly variables as well; DW_AT_specification refers to
9703 declarations. Declarations ought to have the DW_AT_declaration
9704 flag. It happens that GCC forgets to put it in sometimes, but
9705 only for functions, not for types.
9706
9707 Adding more things than necessary to the hash table is harmless
9708 except for the performance cost. Adding too few will result in
9709 wasted time in find_partial_die, when we reread the compilation
9710 unit with load_all_dies set. */
9711
9712 if (load_all
9713 || abbrev->tag == DW_TAG_constant
9714 || abbrev->tag == DW_TAG_subprogram
9715 || abbrev->tag == DW_TAG_variable
9716 || abbrev->tag == DW_TAG_namespace
9717 || part_die->is_declaration)
9718 {
9719 void **slot;
9720
9721 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9722 part_die->offset, INSERT);
9723 *slot = part_die;
9724 }
9725
9726 part_die = obstack_alloc (&cu->comp_unit_obstack,
9727 sizeof (struct partial_die_info));
9728
9729 /* For some DIEs we want to follow their children (if any). For C
9730 we have no reason to follow the children of structures; for other
9731 languages we have to, so that we can get at method physnames
9732 to infer fully qualified class names, for DW_AT_specification,
9733 and for C++ template arguments. For C++, we also look one level
9734 inside functions to find template arguments (if the name of the
9735 function does not already contain the template arguments).
9736
9737 For Ada, we need to scan the children of subprograms and lexical
9738 blocks as well because Ada allows the definition of nested
9739 entities that could be interesting for the debugger, such as
9740 nested subprograms for instance. */
9741 if (last_die->has_children
9742 && (load_all
9743 || last_die->tag == DW_TAG_namespace
9744 || last_die->tag == DW_TAG_module
9745 || last_die->tag == DW_TAG_enumeration_type
9746 || (cu->language == language_cplus
9747 && last_die->tag == DW_TAG_subprogram
9748 && (last_die->name == NULL
9749 || strchr (last_die->name, '<') == NULL))
9750 || (cu->language != language_c
9751 && (last_die->tag == DW_TAG_class_type
9752 || last_die->tag == DW_TAG_interface_type
9753 || last_die->tag == DW_TAG_structure_type
9754 || last_die->tag == DW_TAG_union_type))
9755 || (cu->language == language_ada
9756 && (last_die->tag == DW_TAG_subprogram
9757 || last_die->tag == DW_TAG_lexical_block))))
9758 {
9759 nesting_level++;
9760 parent_die = last_die;
9761 continue;
9762 }
9763
9764 /* Otherwise we skip to the next sibling, if any. */
9765 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9766
9767 /* Back to the top, do it again. */
9768 }
9769 }
9770
9771 /* Read a minimal amount of information into the minimal die structure. */
9772
9773 static gdb_byte *
9774 read_partial_die (struct partial_die_info *part_die,
9775 struct abbrev_info *abbrev,
9776 unsigned int abbrev_len, bfd *abfd,
9777 gdb_byte *buffer, gdb_byte *info_ptr,
9778 struct dwarf2_cu *cu)
9779 {
9780 unsigned int i;
9781 struct attribute attr;
9782 int has_low_pc_attr = 0;
9783 int has_high_pc_attr = 0;
9784
9785 memset (part_die, 0, sizeof (struct partial_die_info));
9786
9787 part_die->offset = info_ptr - buffer;
9788
9789 info_ptr += abbrev_len;
9790
9791 if (abbrev == NULL)
9792 return info_ptr;
9793
9794 part_die->tag = abbrev->tag;
9795 part_die->has_children = abbrev->has_children;
9796
9797 for (i = 0; i < abbrev->num_attrs; ++i)
9798 {
9799 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9800
9801 /* Store the data if it is of an attribute we want to keep in a
9802 partial symbol table. */
9803 switch (attr.name)
9804 {
9805 case DW_AT_name:
9806 switch (part_die->tag)
9807 {
9808 case DW_TAG_compile_unit:
9809 case DW_TAG_type_unit:
9810 /* Compilation units have a DW_AT_name that is a filename, not
9811 a source language identifier. */
9812 case DW_TAG_enumeration_type:
9813 case DW_TAG_enumerator:
9814 /* These tags always have simple identifiers already; no need
9815 to canonicalize them. */
9816 part_die->name = DW_STRING (&attr);
9817 break;
9818 default:
9819 part_die->name
9820 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9821 &cu->objfile->objfile_obstack);
9822 break;
9823 }
9824 break;
9825 case DW_AT_linkage_name:
9826 case DW_AT_MIPS_linkage_name:
9827 /* Note that both forms of linkage name might appear. We
9828 assume they will be the same, and we only store the last
9829 one we see. */
9830 if (cu->language == language_ada)
9831 part_die->name = DW_STRING (&attr);
9832 part_die->linkage_name = DW_STRING (&attr);
9833 break;
9834 case DW_AT_low_pc:
9835 has_low_pc_attr = 1;
9836 part_die->lowpc = DW_ADDR (&attr);
9837 break;
9838 case DW_AT_high_pc:
9839 has_high_pc_attr = 1;
9840 part_die->highpc = DW_ADDR (&attr);
9841 break;
9842 case DW_AT_location:
9843 /* Support the .debug_loc offsets. */
9844 if (attr_form_is_block (&attr))
9845 {
9846 part_die->locdesc = DW_BLOCK (&attr);
9847 }
9848 else if (attr_form_is_section_offset (&attr))
9849 {
9850 dwarf2_complex_location_expr_complaint ();
9851 }
9852 else
9853 {
9854 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9855 "partial symbol information");
9856 }
9857 break;
9858 case DW_AT_external:
9859 part_die->is_external = DW_UNSND (&attr);
9860 break;
9861 case DW_AT_declaration:
9862 part_die->is_declaration = DW_UNSND (&attr);
9863 break;
9864 case DW_AT_type:
9865 part_die->has_type = 1;
9866 break;
9867 case DW_AT_abstract_origin:
9868 case DW_AT_specification:
9869 case DW_AT_extension:
9870 part_die->has_specification = 1;
9871 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9872 break;
9873 case DW_AT_sibling:
9874 /* Ignore absolute siblings, they might point outside of
9875 the current compile unit. */
9876 if (attr.form == DW_FORM_ref_addr)
9877 complaint (&symfile_complaints,
9878 _("ignoring absolute DW_AT_sibling"));
9879 else
9880 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9881 break;
9882 case DW_AT_byte_size:
9883 part_die->has_byte_size = 1;
9884 break;
9885 case DW_AT_calling_convention:
9886 /* DWARF doesn't provide a way to identify a program's source-level
9887 entry point. DW_AT_calling_convention attributes are only meant
9888 to describe functions' calling conventions.
9889
9890 However, because it's a necessary piece of information in
9891 Fortran, and because DW_CC_program is the only piece of debugging
9892 information whose definition refers to a 'main program' at all,
9893 several compilers have begun marking Fortran main programs with
9894 DW_CC_program --- even when those functions use the standard
9895 calling conventions.
9896
9897 So until DWARF specifies a way to provide this information and
9898 compilers pick up the new representation, we'll support this
9899 practice. */
9900 if (DW_UNSND (&attr) == DW_CC_program
9901 && cu->language == language_fortran)
9902 {
9903 set_main_name (part_die->name);
9904
9905 /* As this DIE has a static linkage the name would be difficult
9906 to look up later. */
9907 language_of_main = language_fortran;
9908 }
9909 break;
9910 default:
9911 break;
9912 }
9913 }
9914
9915 if (has_low_pc_attr && has_high_pc_attr)
9916 {
9917 /* When using the GNU linker, .gnu.linkonce. sections are used to
9918 eliminate duplicate copies of functions and vtables and such.
9919 The linker will arbitrarily choose one and discard the others.
9920 The AT_*_pc values for such functions refer to local labels in
9921 these sections. If the section from that file was discarded, the
9922 labels are not in the output, so the relocs get a value of 0.
9923 If this is a discarded function, mark the pc bounds as invalid,
9924 so that GDB will ignore it. */
9925 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9926 {
9927 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9928
9929 complaint (&symfile_complaints,
9930 _("DW_AT_low_pc %s is zero "
9931 "for DIE at 0x%x [in module %s]"),
9932 paddress (gdbarch, part_die->lowpc),
9933 part_die->offset, cu->objfile->name);
9934 }
9935 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9936 else if (part_die->lowpc >= part_die->highpc)
9937 {
9938 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9939
9940 complaint (&symfile_complaints,
9941 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9942 "for DIE at 0x%x [in module %s]"),
9943 paddress (gdbarch, part_die->lowpc),
9944 paddress (gdbarch, part_die->highpc),
9945 part_die->offset, cu->objfile->name);
9946 }
9947 else
9948 part_die->has_pc_info = 1;
9949 }
9950
9951 return info_ptr;
9952 }
9953
9954 /* Find a cached partial DIE at OFFSET in CU. */
9955
9956 static struct partial_die_info *
9957 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9958 {
9959 struct partial_die_info *lookup_die = NULL;
9960 struct partial_die_info part_die;
9961
9962 part_die.offset = offset;
9963 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9964
9965 return lookup_die;
9966 }
9967
9968 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9969 except in the case of .debug_types DIEs which do not reference
9970 outside their CU (they do however referencing other types via
9971 DW_FORM_ref_sig8). */
9972
9973 static struct partial_die_info *
9974 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9975 {
9976 struct dwarf2_per_cu_data *per_cu = NULL;
9977 struct partial_die_info *pd = NULL;
9978
9979 if (cu->per_cu->debug_type_section)
9980 {
9981 pd = find_partial_die_in_comp_unit (offset, cu);
9982 if (pd != NULL)
9983 return pd;
9984 goto not_found;
9985 }
9986
9987 if (offset_in_cu_p (&cu->header, offset))
9988 {
9989 pd = find_partial_die_in_comp_unit (offset, cu);
9990 if (pd != NULL)
9991 return pd;
9992 }
9993
9994 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9995
9996 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9997 load_partial_comp_unit (per_cu, cu->objfile);
9998
9999 per_cu->cu->last_used = 0;
10000 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10001
10002 if (pd == NULL && per_cu->load_all_dies == 0)
10003 {
10004 struct cleanup *back_to;
10005 struct partial_die_info comp_unit_die;
10006 struct abbrev_info *abbrev;
10007 unsigned int bytes_read;
10008 char *info_ptr;
10009
10010 per_cu->load_all_dies = 1;
10011
10012 /* Re-read the DIEs. */
10013 back_to = make_cleanup (null_cleanup, 0);
10014 if (per_cu->cu->dwarf2_abbrevs == NULL)
10015 {
10016 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
10017 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
10018 }
10019 info_ptr = (dwarf2_per_objfile->info.buffer
10020 + per_cu->cu->header.offset
10021 + per_cu->cu->header.first_die_offset);
10022 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
10023 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
10024 per_cu->cu->objfile->obfd,
10025 dwarf2_per_objfile->info.buffer, info_ptr,
10026 per_cu->cu);
10027 if (comp_unit_die.has_children)
10028 load_partial_dies (per_cu->cu->objfile->obfd,
10029 dwarf2_per_objfile->info.buffer, info_ptr,
10030 0, per_cu->cu);
10031 do_cleanups (back_to);
10032
10033 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10034 }
10035
10036 not_found:
10037
10038 if (pd == NULL)
10039 internal_error (__FILE__, __LINE__,
10040 _("could not find partial DIE 0x%x "
10041 "in cache [from module %s]\n"),
10042 offset, bfd_get_filename (cu->objfile->obfd));
10043 return pd;
10044 }
10045
10046 /* See if we can figure out if the class lives in a namespace. We do
10047 this by looking for a member function; its demangled name will
10048 contain namespace info, if there is any. */
10049
10050 static void
10051 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
10052 struct dwarf2_cu *cu)
10053 {
10054 /* NOTE: carlton/2003-10-07: Getting the info this way changes
10055 what template types look like, because the demangler
10056 frequently doesn't give the same name as the debug info. We
10057 could fix this by only using the demangled name to get the
10058 prefix (but see comment in read_structure_type). */
10059
10060 struct partial_die_info *real_pdi;
10061 struct partial_die_info *child_pdi;
10062
10063 /* If this DIE (this DIE's specification, if any) has a parent, then
10064 we should not do this. We'll prepend the parent's fully qualified
10065 name when we create the partial symbol. */
10066
10067 real_pdi = struct_pdi;
10068 while (real_pdi->has_specification)
10069 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
10070
10071 if (real_pdi->die_parent != NULL)
10072 return;
10073
10074 for (child_pdi = struct_pdi->die_child;
10075 child_pdi != NULL;
10076 child_pdi = child_pdi->die_sibling)
10077 {
10078 if (child_pdi->tag == DW_TAG_subprogram
10079 && child_pdi->linkage_name != NULL)
10080 {
10081 char *actual_class_name
10082 = language_class_name_from_physname (cu->language_defn,
10083 child_pdi->linkage_name);
10084 if (actual_class_name != NULL)
10085 {
10086 struct_pdi->name
10087 = obsavestring (actual_class_name,
10088 strlen (actual_class_name),
10089 &cu->objfile->objfile_obstack);
10090 xfree (actual_class_name);
10091 }
10092 break;
10093 }
10094 }
10095 }
10096
10097 /* Adjust PART_DIE before generating a symbol for it. This function
10098 may set the is_external flag or change the DIE's name. */
10099
10100 static void
10101 fixup_partial_die (struct partial_die_info *part_die,
10102 struct dwarf2_cu *cu)
10103 {
10104 /* Once we've fixed up a die, there's no point in doing so again.
10105 This also avoids a memory leak if we were to call
10106 guess_partial_die_structure_name multiple times. */
10107 if (part_die->fixup_called)
10108 return;
10109
10110 /* If we found a reference attribute and the DIE has no name, try
10111 to find a name in the referred to DIE. */
10112
10113 if (part_die->name == NULL && part_die->has_specification)
10114 {
10115 struct partial_die_info *spec_die;
10116
10117 spec_die = find_partial_die (part_die->spec_offset, cu);
10118
10119 fixup_partial_die (spec_die, cu);
10120
10121 if (spec_die->name)
10122 {
10123 part_die->name = spec_die->name;
10124
10125 /* Copy DW_AT_external attribute if it is set. */
10126 if (spec_die->is_external)
10127 part_die->is_external = spec_die->is_external;
10128 }
10129 }
10130
10131 /* Set default names for some unnamed DIEs. */
10132
10133 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10134 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10135
10136 /* If there is no parent die to provide a namespace, and there are
10137 children, see if we can determine the namespace from their linkage
10138 name.
10139 NOTE: We need to do this even if cu->has_namespace_info != 0.
10140 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
10141 if (cu->language == language_cplus
10142 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10143 && part_die->die_parent == NULL
10144 && part_die->has_children
10145 && (part_die->tag == DW_TAG_class_type
10146 || part_die->tag == DW_TAG_structure_type
10147 || part_die->tag == DW_TAG_union_type))
10148 guess_partial_die_structure_name (part_die, cu);
10149
10150 /* GCC might emit a nameless struct or union that has a linkage
10151 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10152 if (part_die->name == NULL
10153 && (part_die->tag == DW_TAG_class_type
10154 || part_die->tag == DW_TAG_interface_type
10155 || part_die->tag == DW_TAG_structure_type
10156 || part_die->tag == DW_TAG_union_type)
10157 && part_die->linkage_name != NULL)
10158 {
10159 char *demangled;
10160
10161 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10162 if (demangled)
10163 {
10164 const char *base;
10165
10166 /* Strip any leading namespaces/classes, keep only the base name.
10167 DW_AT_name for named DIEs does not contain the prefixes. */
10168 base = strrchr (demangled, ':');
10169 if (base && base > demangled && base[-1] == ':')
10170 base++;
10171 else
10172 base = demangled;
10173
10174 part_die->name = obsavestring (base, strlen (base),
10175 &cu->objfile->objfile_obstack);
10176 xfree (demangled);
10177 }
10178 }
10179
10180 part_die->fixup_called = 1;
10181 }
10182
10183 /* Read an attribute value described by an attribute form. */
10184
10185 static gdb_byte *
10186 read_attribute_value (struct attribute *attr, unsigned form,
10187 bfd *abfd, gdb_byte *info_ptr,
10188 struct dwarf2_cu *cu)
10189 {
10190 struct comp_unit_head *cu_header = &cu->header;
10191 unsigned int bytes_read;
10192 struct dwarf_block *blk;
10193
10194 attr->form = form;
10195 switch (form)
10196 {
10197 case DW_FORM_ref_addr:
10198 if (cu->header.version == 2)
10199 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10200 else
10201 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10202 &cu->header, &bytes_read);
10203 info_ptr += bytes_read;
10204 break;
10205 case DW_FORM_addr:
10206 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10207 info_ptr += bytes_read;
10208 break;
10209 case DW_FORM_block2:
10210 blk = dwarf_alloc_block (cu);
10211 blk->size = read_2_bytes (abfd, info_ptr);
10212 info_ptr += 2;
10213 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10214 info_ptr += blk->size;
10215 DW_BLOCK (attr) = blk;
10216 break;
10217 case DW_FORM_block4:
10218 blk = dwarf_alloc_block (cu);
10219 blk->size = read_4_bytes (abfd, info_ptr);
10220 info_ptr += 4;
10221 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10222 info_ptr += blk->size;
10223 DW_BLOCK (attr) = blk;
10224 break;
10225 case DW_FORM_data2:
10226 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10227 info_ptr += 2;
10228 break;
10229 case DW_FORM_data4:
10230 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10231 info_ptr += 4;
10232 break;
10233 case DW_FORM_data8:
10234 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10235 info_ptr += 8;
10236 break;
10237 case DW_FORM_sec_offset:
10238 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10239 info_ptr += bytes_read;
10240 break;
10241 case DW_FORM_string:
10242 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10243 DW_STRING_IS_CANONICAL (attr) = 0;
10244 info_ptr += bytes_read;
10245 break;
10246 case DW_FORM_strp:
10247 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10248 &bytes_read);
10249 DW_STRING_IS_CANONICAL (attr) = 0;
10250 info_ptr += bytes_read;
10251 break;
10252 case DW_FORM_exprloc:
10253 case DW_FORM_block:
10254 blk = dwarf_alloc_block (cu);
10255 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10256 info_ptr += bytes_read;
10257 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10258 info_ptr += blk->size;
10259 DW_BLOCK (attr) = blk;
10260 break;
10261 case DW_FORM_block1:
10262 blk = dwarf_alloc_block (cu);
10263 blk->size = read_1_byte (abfd, info_ptr);
10264 info_ptr += 1;
10265 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10266 info_ptr += blk->size;
10267 DW_BLOCK (attr) = blk;
10268 break;
10269 case DW_FORM_data1:
10270 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10271 info_ptr += 1;
10272 break;
10273 case DW_FORM_flag:
10274 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10275 info_ptr += 1;
10276 break;
10277 case DW_FORM_flag_present:
10278 DW_UNSND (attr) = 1;
10279 break;
10280 case DW_FORM_sdata:
10281 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10282 info_ptr += bytes_read;
10283 break;
10284 case DW_FORM_udata:
10285 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10286 info_ptr += bytes_read;
10287 break;
10288 case DW_FORM_ref1:
10289 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
10290 info_ptr += 1;
10291 break;
10292 case DW_FORM_ref2:
10293 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
10294 info_ptr += 2;
10295 break;
10296 case DW_FORM_ref4:
10297 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
10298 info_ptr += 4;
10299 break;
10300 case DW_FORM_ref8:
10301 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
10302 info_ptr += 8;
10303 break;
10304 case DW_FORM_ref_sig8:
10305 /* Convert the signature to something we can record in DW_UNSND
10306 for later lookup.
10307 NOTE: This is NULL if the type wasn't found. */
10308 DW_SIGNATURED_TYPE (attr) =
10309 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10310 info_ptr += 8;
10311 break;
10312 case DW_FORM_ref_udata:
10313 DW_ADDR (attr) = (cu->header.offset
10314 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10315 info_ptr += bytes_read;
10316 break;
10317 case DW_FORM_indirect:
10318 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10319 info_ptr += bytes_read;
10320 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10321 break;
10322 default:
10323 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10324 dwarf_form_name (form),
10325 bfd_get_filename (abfd));
10326 }
10327
10328 /* We have seen instances where the compiler tried to emit a byte
10329 size attribute of -1 which ended up being encoded as an unsigned
10330 0xffffffff. Although 0xffffffff is technically a valid size value,
10331 an object of this size seems pretty unlikely so we can relatively
10332 safely treat these cases as if the size attribute was invalid and
10333 treat them as zero by default. */
10334 if (attr->name == DW_AT_byte_size
10335 && form == DW_FORM_data4
10336 && DW_UNSND (attr) >= 0xffffffff)
10337 {
10338 complaint
10339 (&symfile_complaints,
10340 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10341 hex_string (DW_UNSND (attr)));
10342 DW_UNSND (attr) = 0;
10343 }
10344
10345 return info_ptr;
10346 }
10347
10348 /* Read an attribute described by an abbreviated attribute. */
10349
10350 static gdb_byte *
10351 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10352 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10353 {
10354 attr->name = abbrev->name;
10355 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10356 }
10357
10358 /* Read dwarf information from a buffer. */
10359
10360 static unsigned int
10361 read_1_byte (bfd *abfd, gdb_byte *buf)
10362 {
10363 return bfd_get_8 (abfd, buf);
10364 }
10365
10366 static int
10367 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10368 {
10369 return bfd_get_signed_8 (abfd, buf);
10370 }
10371
10372 static unsigned int
10373 read_2_bytes (bfd *abfd, gdb_byte *buf)
10374 {
10375 return bfd_get_16 (abfd, buf);
10376 }
10377
10378 static int
10379 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10380 {
10381 return bfd_get_signed_16 (abfd, buf);
10382 }
10383
10384 static unsigned int
10385 read_4_bytes (bfd *abfd, gdb_byte *buf)
10386 {
10387 return bfd_get_32 (abfd, buf);
10388 }
10389
10390 static int
10391 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10392 {
10393 return bfd_get_signed_32 (abfd, buf);
10394 }
10395
10396 static ULONGEST
10397 read_8_bytes (bfd *abfd, gdb_byte *buf)
10398 {
10399 return bfd_get_64 (abfd, buf);
10400 }
10401
10402 static CORE_ADDR
10403 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10404 unsigned int *bytes_read)
10405 {
10406 struct comp_unit_head *cu_header = &cu->header;
10407 CORE_ADDR retval = 0;
10408
10409 if (cu_header->signed_addr_p)
10410 {
10411 switch (cu_header->addr_size)
10412 {
10413 case 2:
10414 retval = bfd_get_signed_16 (abfd, buf);
10415 break;
10416 case 4:
10417 retval = bfd_get_signed_32 (abfd, buf);
10418 break;
10419 case 8:
10420 retval = bfd_get_signed_64 (abfd, buf);
10421 break;
10422 default:
10423 internal_error (__FILE__, __LINE__,
10424 _("read_address: bad switch, signed [in module %s]"),
10425 bfd_get_filename (abfd));
10426 }
10427 }
10428 else
10429 {
10430 switch (cu_header->addr_size)
10431 {
10432 case 2:
10433 retval = bfd_get_16 (abfd, buf);
10434 break;
10435 case 4:
10436 retval = bfd_get_32 (abfd, buf);
10437 break;
10438 case 8:
10439 retval = bfd_get_64 (abfd, buf);
10440 break;
10441 default:
10442 internal_error (__FILE__, __LINE__,
10443 _("read_address: bad switch, "
10444 "unsigned [in module %s]"),
10445 bfd_get_filename (abfd));
10446 }
10447 }
10448
10449 *bytes_read = cu_header->addr_size;
10450 return retval;
10451 }
10452
10453 /* Read the initial length from a section. The (draft) DWARF 3
10454 specification allows the initial length to take up either 4 bytes
10455 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10456 bytes describe the length and all offsets will be 8 bytes in length
10457 instead of 4.
10458
10459 An older, non-standard 64-bit format is also handled by this
10460 function. The older format in question stores the initial length
10461 as an 8-byte quantity without an escape value. Lengths greater
10462 than 2^32 aren't very common which means that the initial 4 bytes
10463 is almost always zero. Since a length value of zero doesn't make
10464 sense for the 32-bit format, this initial zero can be considered to
10465 be an escape value which indicates the presence of the older 64-bit
10466 format. As written, the code can't detect (old format) lengths
10467 greater than 4GB. If it becomes necessary to handle lengths
10468 somewhat larger than 4GB, we could allow other small values (such
10469 as the non-sensical values of 1, 2, and 3) to also be used as
10470 escape values indicating the presence of the old format.
10471
10472 The value returned via bytes_read should be used to increment the
10473 relevant pointer after calling read_initial_length().
10474
10475 [ Note: read_initial_length() and read_offset() are based on the
10476 document entitled "DWARF Debugging Information Format", revision
10477 3, draft 8, dated November 19, 2001. This document was obtained
10478 from:
10479
10480 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10481
10482 This document is only a draft and is subject to change. (So beware.)
10483
10484 Details regarding the older, non-standard 64-bit format were
10485 determined empirically by examining 64-bit ELF files produced by
10486 the SGI toolchain on an IRIX 6.5 machine.
10487
10488 - Kevin, July 16, 2002
10489 ] */
10490
10491 static LONGEST
10492 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10493 {
10494 LONGEST length = bfd_get_32 (abfd, buf);
10495
10496 if (length == 0xffffffff)
10497 {
10498 length = bfd_get_64 (abfd, buf + 4);
10499 *bytes_read = 12;
10500 }
10501 else if (length == 0)
10502 {
10503 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
10504 length = bfd_get_64 (abfd, buf);
10505 *bytes_read = 8;
10506 }
10507 else
10508 {
10509 *bytes_read = 4;
10510 }
10511
10512 return length;
10513 }
10514
10515 /* Cover function for read_initial_length.
10516 Returns the length of the object at BUF, and stores the size of the
10517 initial length in *BYTES_READ and stores the size that offsets will be in
10518 *OFFSET_SIZE.
10519 If the initial length size is not equivalent to that specified in
10520 CU_HEADER then issue a complaint.
10521 This is useful when reading non-comp-unit headers. */
10522
10523 static LONGEST
10524 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10525 const struct comp_unit_head *cu_header,
10526 unsigned int *bytes_read,
10527 unsigned int *offset_size)
10528 {
10529 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10530
10531 gdb_assert (cu_header->initial_length_size == 4
10532 || cu_header->initial_length_size == 8
10533 || cu_header->initial_length_size == 12);
10534
10535 if (cu_header->initial_length_size != *bytes_read)
10536 complaint (&symfile_complaints,
10537 _("intermixed 32-bit and 64-bit DWARF sections"));
10538
10539 *offset_size = (*bytes_read == 4) ? 4 : 8;
10540 return length;
10541 }
10542
10543 /* Read an offset from the data stream. The size of the offset is
10544 given by cu_header->offset_size. */
10545
10546 static LONGEST
10547 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10548 unsigned int *bytes_read)
10549 {
10550 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10551
10552 *bytes_read = cu_header->offset_size;
10553 return offset;
10554 }
10555
10556 /* Read an offset from the data stream. */
10557
10558 static LONGEST
10559 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10560 {
10561 LONGEST retval = 0;
10562
10563 switch (offset_size)
10564 {
10565 case 4:
10566 retval = bfd_get_32 (abfd, buf);
10567 break;
10568 case 8:
10569 retval = bfd_get_64 (abfd, buf);
10570 break;
10571 default:
10572 internal_error (__FILE__, __LINE__,
10573 _("read_offset_1: bad switch [in module %s]"),
10574 bfd_get_filename (abfd));
10575 }
10576
10577 return retval;
10578 }
10579
10580 static gdb_byte *
10581 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10582 {
10583 /* If the size of a host char is 8 bits, we can return a pointer
10584 to the buffer, otherwise we have to copy the data to a buffer
10585 allocated on the temporary obstack. */
10586 gdb_assert (HOST_CHAR_BIT == 8);
10587 return buf;
10588 }
10589
10590 static char *
10591 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10592 {
10593 /* If the size of a host char is 8 bits, we can return a pointer
10594 to the string, otherwise we have to copy the string to a buffer
10595 allocated on the temporary obstack. */
10596 gdb_assert (HOST_CHAR_BIT == 8);
10597 if (*buf == '\0')
10598 {
10599 *bytes_read_ptr = 1;
10600 return NULL;
10601 }
10602 *bytes_read_ptr = strlen ((char *) buf) + 1;
10603 return (char *) buf;
10604 }
10605
10606 static char *
10607 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10608 {
10609 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10610 if (dwarf2_per_objfile->str.buffer == NULL)
10611 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10612 bfd_get_filename (abfd));
10613 if (str_offset >= dwarf2_per_objfile->str.size)
10614 error (_("DW_FORM_strp pointing outside of "
10615 ".debug_str section [in module %s]"),
10616 bfd_get_filename (abfd));
10617 gdb_assert (HOST_CHAR_BIT == 8);
10618 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10619 return NULL;
10620 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10621 }
10622
10623 static char *
10624 read_indirect_string (bfd *abfd, gdb_byte *buf,
10625 const struct comp_unit_head *cu_header,
10626 unsigned int *bytes_read_ptr)
10627 {
10628 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10629
10630 return read_indirect_string_at_offset (abfd, str_offset);
10631 }
10632
10633 static unsigned long
10634 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10635 {
10636 unsigned long result;
10637 unsigned int num_read;
10638 int i, shift;
10639 unsigned char byte;
10640
10641 result = 0;
10642 shift = 0;
10643 num_read = 0;
10644 i = 0;
10645 while (1)
10646 {
10647 byte = bfd_get_8 (abfd, buf);
10648 buf++;
10649 num_read++;
10650 result |= ((unsigned long)(byte & 127) << shift);
10651 if ((byte & 128) == 0)
10652 {
10653 break;
10654 }
10655 shift += 7;
10656 }
10657 *bytes_read_ptr = num_read;
10658 return result;
10659 }
10660
10661 static long
10662 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10663 {
10664 long result;
10665 int i, shift, num_read;
10666 unsigned char byte;
10667
10668 result = 0;
10669 shift = 0;
10670 num_read = 0;
10671 i = 0;
10672 while (1)
10673 {
10674 byte = bfd_get_8 (abfd, buf);
10675 buf++;
10676 num_read++;
10677 result |= ((long)(byte & 127) << shift);
10678 shift += 7;
10679 if ((byte & 128) == 0)
10680 {
10681 break;
10682 }
10683 }
10684 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10685 result |= -(((long)1) << shift);
10686 *bytes_read_ptr = num_read;
10687 return result;
10688 }
10689
10690 /* Return a pointer to just past the end of an LEB128 number in BUF. */
10691
10692 static gdb_byte *
10693 skip_leb128 (bfd *abfd, gdb_byte *buf)
10694 {
10695 int byte;
10696
10697 while (1)
10698 {
10699 byte = bfd_get_8 (abfd, buf);
10700 buf++;
10701 if ((byte & 128) == 0)
10702 return buf;
10703 }
10704 }
10705
10706 static void
10707 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10708 {
10709 switch (lang)
10710 {
10711 case DW_LANG_C89:
10712 case DW_LANG_C99:
10713 case DW_LANG_C:
10714 cu->language = language_c;
10715 break;
10716 case DW_LANG_C_plus_plus:
10717 cu->language = language_cplus;
10718 break;
10719 case DW_LANG_D:
10720 cu->language = language_d;
10721 break;
10722 case DW_LANG_Fortran77:
10723 case DW_LANG_Fortran90:
10724 case DW_LANG_Fortran95:
10725 cu->language = language_fortran;
10726 break;
10727 case DW_LANG_Mips_Assembler:
10728 cu->language = language_asm;
10729 break;
10730 case DW_LANG_Java:
10731 cu->language = language_java;
10732 break;
10733 case DW_LANG_Ada83:
10734 case DW_LANG_Ada95:
10735 cu->language = language_ada;
10736 break;
10737 case DW_LANG_Modula2:
10738 cu->language = language_m2;
10739 break;
10740 case DW_LANG_Pascal83:
10741 cu->language = language_pascal;
10742 break;
10743 case DW_LANG_ObjC:
10744 cu->language = language_objc;
10745 break;
10746 case DW_LANG_Cobol74:
10747 case DW_LANG_Cobol85:
10748 default:
10749 cu->language = language_minimal;
10750 break;
10751 }
10752 cu->language_defn = language_def (cu->language);
10753 }
10754
10755 /* Return the named attribute or NULL if not there. */
10756
10757 static struct attribute *
10758 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10759 {
10760 unsigned int i;
10761 struct attribute *spec = NULL;
10762
10763 for (i = 0; i < die->num_attrs; ++i)
10764 {
10765 if (die->attrs[i].name == name)
10766 return &die->attrs[i];
10767 if (die->attrs[i].name == DW_AT_specification
10768 || die->attrs[i].name == DW_AT_abstract_origin)
10769 spec = &die->attrs[i];
10770 }
10771
10772 if (spec)
10773 {
10774 die = follow_die_ref (die, spec, &cu);
10775 return dwarf2_attr (die, name, cu);
10776 }
10777
10778 return NULL;
10779 }
10780
10781 /* Return the named attribute or NULL if not there,
10782 but do not follow DW_AT_specification, etc.
10783 This is for use in contexts where we're reading .debug_types dies.
10784 Following DW_AT_specification, DW_AT_abstract_origin will take us
10785 back up the chain, and we want to go down. */
10786
10787 static struct attribute *
10788 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10789 struct dwarf2_cu *cu)
10790 {
10791 unsigned int i;
10792
10793 for (i = 0; i < die->num_attrs; ++i)
10794 if (die->attrs[i].name == name)
10795 return &die->attrs[i];
10796
10797 return NULL;
10798 }
10799
10800 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10801 and holds a non-zero value. This function should only be used for
10802 DW_FORM_flag or DW_FORM_flag_present attributes. */
10803
10804 static int
10805 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10806 {
10807 struct attribute *attr = dwarf2_attr (die, name, cu);
10808
10809 return (attr && DW_UNSND (attr));
10810 }
10811
10812 static int
10813 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10814 {
10815 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10816 which value is non-zero. However, we have to be careful with
10817 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10818 (via dwarf2_flag_true_p) follows this attribute. So we may
10819 end up accidently finding a declaration attribute that belongs
10820 to a different DIE referenced by the specification attribute,
10821 even though the given DIE does not have a declaration attribute. */
10822 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10823 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10824 }
10825
10826 /* Return the die giving the specification for DIE, if there is
10827 one. *SPEC_CU is the CU containing DIE on input, and the CU
10828 containing the return value on output. If there is no
10829 specification, but there is an abstract origin, that is
10830 returned. */
10831
10832 static struct die_info *
10833 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10834 {
10835 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10836 *spec_cu);
10837
10838 if (spec_attr == NULL)
10839 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10840
10841 if (spec_attr == NULL)
10842 return NULL;
10843 else
10844 return follow_die_ref (die, spec_attr, spec_cu);
10845 }
10846
10847 /* Free the line_header structure *LH, and any arrays and strings it
10848 refers to.
10849 NOTE: This is also used as a "cleanup" function. */
10850
10851 static void
10852 free_line_header (struct line_header *lh)
10853 {
10854 if (lh->standard_opcode_lengths)
10855 xfree (lh->standard_opcode_lengths);
10856
10857 /* Remember that all the lh->file_names[i].name pointers are
10858 pointers into debug_line_buffer, and don't need to be freed. */
10859 if (lh->file_names)
10860 xfree (lh->file_names);
10861
10862 /* Similarly for the include directory names. */
10863 if (lh->include_dirs)
10864 xfree (lh->include_dirs);
10865
10866 xfree (lh);
10867 }
10868
10869 /* Add an entry to LH's include directory table. */
10870
10871 static void
10872 add_include_dir (struct line_header *lh, char *include_dir)
10873 {
10874 /* Grow the array if necessary. */
10875 if (lh->include_dirs_size == 0)
10876 {
10877 lh->include_dirs_size = 1; /* for testing */
10878 lh->include_dirs = xmalloc (lh->include_dirs_size
10879 * sizeof (*lh->include_dirs));
10880 }
10881 else if (lh->num_include_dirs >= lh->include_dirs_size)
10882 {
10883 lh->include_dirs_size *= 2;
10884 lh->include_dirs = xrealloc (lh->include_dirs,
10885 (lh->include_dirs_size
10886 * sizeof (*lh->include_dirs)));
10887 }
10888
10889 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10890 }
10891
10892 /* Add an entry to LH's file name table. */
10893
10894 static void
10895 add_file_name (struct line_header *lh,
10896 char *name,
10897 unsigned int dir_index,
10898 unsigned int mod_time,
10899 unsigned int length)
10900 {
10901 struct file_entry *fe;
10902
10903 /* Grow the array if necessary. */
10904 if (lh->file_names_size == 0)
10905 {
10906 lh->file_names_size = 1; /* for testing */
10907 lh->file_names = xmalloc (lh->file_names_size
10908 * sizeof (*lh->file_names));
10909 }
10910 else if (lh->num_file_names >= lh->file_names_size)
10911 {
10912 lh->file_names_size *= 2;
10913 lh->file_names = xrealloc (lh->file_names,
10914 (lh->file_names_size
10915 * sizeof (*lh->file_names)));
10916 }
10917
10918 fe = &lh->file_names[lh->num_file_names++];
10919 fe->name = name;
10920 fe->dir_index = dir_index;
10921 fe->mod_time = mod_time;
10922 fe->length = length;
10923 fe->included_p = 0;
10924 fe->symtab = NULL;
10925 }
10926
10927 /* Read the statement program header starting at OFFSET in
10928 .debug_line, according to the endianness of ABFD. Return a pointer
10929 to a struct line_header, allocated using xmalloc.
10930
10931 NOTE: the strings in the include directory and file name tables of
10932 the returned object point into debug_line_buffer, and must not be
10933 freed. */
10934
10935 static struct line_header *
10936 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10937 struct dwarf2_cu *cu)
10938 {
10939 struct cleanup *back_to;
10940 struct line_header *lh;
10941 gdb_byte *line_ptr;
10942 unsigned int bytes_read, offset_size;
10943 int i;
10944 char *cur_dir, *cur_file;
10945
10946 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10947 if (dwarf2_per_objfile->line.buffer == NULL)
10948 {
10949 complaint (&symfile_complaints, _("missing .debug_line section"));
10950 return 0;
10951 }
10952
10953 /* Make sure that at least there's room for the total_length field.
10954 That could be 12 bytes long, but we're just going to fudge that. */
10955 if (offset + 4 >= dwarf2_per_objfile->line.size)
10956 {
10957 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10958 return 0;
10959 }
10960
10961 lh = xmalloc (sizeof (*lh));
10962 memset (lh, 0, sizeof (*lh));
10963 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10964 (void *) lh);
10965
10966 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10967
10968 /* Read in the header. */
10969 lh->total_length =
10970 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10971 &bytes_read, &offset_size);
10972 line_ptr += bytes_read;
10973 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10974 + dwarf2_per_objfile->line.size))
10975 {
10976 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10977 return 0;
10978 }
10979 lh->statement_program_end = line_ptr + lh->total_length;
10980 lh->version = read_2_bytes (abfd, line_ptr);
10981 line_ptr += 2;
10982 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10983 line_ptr += offset_size;
10984 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10985 line_ptr += 1;
10986 if (lh->version >= 4)
10987 {
10988 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10989 line_ptr += 1;
10990 }
10991 else
10992 lh->maximum_ops_per_instruction = 1;
10993
10994 if (lh->maximum_ops_per_instruction == 0)
10995 {
10996 lh->maximum_ops_per_instruction = 1;
10997 complaint (&symfile_complaints,
10998 _("invalid maximum_ops_per_instruction "
10999 "in `.debug_line' section"));
11000 }
11001
11002 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
11003 line_ptr += 1;
11004 lh->line_base = read_1_signed_byte (abfd, line_ptr);
11005 line_ptr += 1;
11006 lh->line_range = read_1_byte (abfd, line_ptr);
11007 line_ptr += 1;
11008 lh->opcode_base = read_1_byte (abfd, line_ptr);
11009 line_ptr += 1;
11010 lh->standard_opcode_lengths
11011 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
11012
11013 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
11014 for (i = 1; i < lh->opcode_base; ++i)
11015 {
11016 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
11017 line_ptr += 1;
11018 }
11019
11020 /* Read directory table. */
11021 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11022 {
11023 line_ptr += bytes_read;
11024 add_include_dir (lh, cur_dir);
11025 }
11026 line_ptr += bytes_read;
11027
11028 /* Read file name table. */
11029 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11030 {
11031 unsigned int dir_index, mod_time, length;
11032
11033 line_ptr += bytes_read;
11034 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11035 line_ptr += bytes_read;
11036 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11037 line_ptr += bytes_read;
11038 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11039 line_ptr += bytes_read;
11040
11041 add_file_name (lh, cur_file, dir_index, mod_time, length);
11042 }
11043 line_ptr += bytes_read;
11044 lh->statement_program_start = line_ptr;
11045
11046 if (line_ptr > (dwarf2_per_objfile->line.buffer
11047 + dwarf2_per_objfile->line.size))
11048 complaint (&symfile_complaints,
11049 _("line number info header doesn't "
11050 "fit in `.debug_line' section"));
11051
11052 discard_cleanups (back_to);
11053 return lh;
11054 }
11055
11056 /* This function exists to work around a bug in certain compilers
11057 (particularly GCC 2.95), in which the first line number marker of a
11058 function does not show up until after the prologue, right before
11059 the second line number marker. This function shifts ADDRESS down
11060 to the beginning of the function if necessary, and is called on
11061 addresses passed to record_line. */
11062
11063 static CORE_ADDR
11064 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
11065 {
11066 struct function_range *fn;
11067
11068 /* Find the function_range containing address. */
11069 if (!cu->first_fn)
11070 return address;
11071
11072 if (!cu->cached_fn)
11073 cu->cached_fn = cu->first_fn;
11074
11075 fn = cu->cached_fn;
11076 while (fn)
11077 if (fn->lowpc <= address && fn->highpc > address)
11078 goto found;
11079 else
11080 fn = fn->next;
11081
11082 fn = cu->first_fn;
11083 while (fn && fn != cu->cached_fn)
11084 if (fn->lowpc <= address && fn->highpc > address)
11085 goto found;
11086 else
11087 fn = fn->next;
11088
11089 return address;
11090
11091 found:
11092 if (fn->seen_line)
11093 return address;
11094 if (address != fn->lowpc)
11095 complaint (&symfile_complaints,
11096 _("misplaced first line number at 0x%lx for '%s'"),
11097 (unsigned long) address, fn->name);
11098 fn->seen_line = 1;
11099 return fn->lowpc;
11100 }
11101
11102 /* Subroutine of dwarf_decode_lines to simplify it.
11103 Return the file name of the psymtab for included file FILE_INDEX
11104 in line header LH of PST.
11105 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11106 If space for the result is malloc'd, it will be freed by a cleanup.
11107 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
11108
11109 static char *
11110 psymtab_include_file_name (const struct line_header *lh, int file_index,
11111 const struct partial_symtab *pst,
11112 const char *comp_dir)
11113 {
11114 const struct file_entry fe = lh->file_names [file_index];
11115 char *include_name = fe.name;
11116 char *include_name_to_compare = include_name;
11117 char *dir_name = NULL;
11118 const char *pst_filename;
11119 char *copied_name = NULL;
11120 int file_is_pst;
11121
11122 if (fe.dir_index)
11123 dir_name = lh->include_dirs[fe.dir_index - 1];
11124
11125 if (!IS_ABSOLUTE_PATH (include_name)
11126 && (dir_name != NULL || comp_dir != NULL))
11127 {
11128 /* Avoid creating a duplicate psymtab for PST.
11129 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11130 Before we do the comparison, however, we need to account
11131 for DIR_NAME and COMP_DIR.
11132 First prepend dir_name (if non-NULL). If we still don't
11133 have an absolute path prepend comp_dir (if non-NULL).
11134 However, the directory we record in the include-file's
11135 psymtab does not contain COMP_DIR (to match the
11136 corresponding symtab(s)).
11137
11138 Example:
11139
11140 bash$ cd /tmp
11141 bash$ gcc -g ./hello.c
11142 include_name = "hello.c"
11143 dir_name = "."
11144 DW_AT_comp_dir = comp_dir = "/tmp"
11145 DW_AT_name = "./hello.c" */
11146
11147 if (dir_name != NULL)
11148 {
11149 include_name = concat (dir_name, SLASH_STRING,
11150 include_name, (char *)NULL);
11151 include_name_to_compare = include_name;
11152 make_cleanup (xfree, include_name);
11153 }
11154 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11155 {
11156 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11157 include_name, (char *)NULL);
11158 }
11159 }
11160
11161 pst_filename = pst->filename;
11162 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11163 {
11164 copied_name = concat (pst->dirname, SLASH_STRING,
11165 pst_filename, (char *)NULL);
11166 pst_filename = copied_name;
11167 }
11168
11169 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11170
11171 if (include_name_to_compare != include_name)
11172 xfree (include_name_to_compare);
11173 if (copied_name != NULL)
11174 xfree (copied_name);
11175
11176 if (file_is_pst)
11177 return NULL;
11178 return include_name;
11179 }
11180
11181 /* Ignore this record_line request. */
11182
11183 static void
11184 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11185 {
11186 return;
11187 }
11188
11189 /* Decode the Line Number Program (LNP) for the given line_header
11190 structure and CU. The actual information extracted and the type
11191 of structures created from the LNP depends on the value of PST.
11192
11193 1. If PST is NULL, then this procedure uses the data from the program
11194 to create all necessary symbol tables, and their linetables.
11195
11196 2. If PST is not NULL, this procedure reads the program to determine
11197 the list of files included by the unit represented by PST, and
11198 builds all the associated partial symbol tables.
11199
11200 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11201 It is used for relative paths in the line table.
11202 NOTE: When processing partial symtabs (pst != NULL),
11203 comp_dir == pst->dirname.
11204
11205 NOTE: It is important that psymtabs have the same file name (via strcmp)
11206 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11207 symtab we don't use it in the name of the psymtabs we create.
11208 E.g. expand_line_sal requires this when finding psymtabs to expand.
11209 A good testcase for this is mb-inline.exp. */
11210
11211 static void
11212 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
11213 struct dwarf2_cu *cu, struct partial_symtab *pst)
11214 {
11215 gdb_byte *line_ptr, *extended_end;
11216 gdb_byte *line_end;
11217 unsigned int bytes_read, extended_len;
11218 unsigned char op_code, extended_op, adj_opcode;
11219 CORE_ADDR baseaddr;
11220 struct objfile *objfile = cu->objfile;
11221 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11222 const int decode_for_pst_p = (pst != NULL);
11223 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
11224 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11225 = record_line;
11226
11227 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11228
11229 line_ptr = lh->statement_program_start;
11230 line_end = lh->statement_program_end;
11231
11232 /* Read the statement sequences until there's nothing left. */
11233 while (line_ptr < line_end)
11234 {
11235 /* state machine registers */
11236 CORE_ADDR address = 0;
11237 unsigned int file = 1;
11238 unsigned int line = 1;
11239 unsigned int column = 0;
11240 int is_stmt = lh->default_is_stmt;
11241 int basic_block = 0;
11242 int end_sequence = 0;
11243 CORE_ADDR addr;
11244 unsigned char op_index = 0;
11245
11246 if (!decode_for_pst_p && lh->num_file_names >= file)
11247 {
11248 /* Start a subfile for the current file of the state machine. */
11249 /* lh->include_dirs and lh->file_names are 0-based, but the
11250 directory and file name numbers in the statement program
11251 are 1-based. */
11252 struct file_entry *fe = &lh->file_names[file - 1];
11253 char *dir = NULL;
11254
11255 if (fe->dir_index)
11256 dir = lh->include_dirs[fe->dir_index - 1];
11257
11258 dwarf2_start_subfile (fe->name, dir, comp_dir);
11259 }
11260
11261 /* Decode the table. */
11262 while (!end_sequence)
11263 {
11264 op_code = read_1_byte (abfd, line_ptr);
11265 line_ptr += 1;
11266 if (line_ptr > line_end)
11267 {
11268 dwarf2_debug_line_missing_end_sequence_complaint ();
11269 break;
11270 }
11271
11272 if (op_code >= lh->opcode_base)
11273 {
11274 /* Special operand. */
11275 adj_opcode = op_code - lh->opcode_base;
11276 address += (((op_index + (adj_opcode / lh->line_range))
11277 / lh->maximum_ops_per_instruction)
11278 * lh->minimum_instruction_length);
11279 op_index = ((op_index + (adj_opcode / lh->line_range))
11280 % lh->maximum_ops_per_instruction);
11281 line += lh->line_base + (adj_opcode % lh->line_range);
11282 if (lh->num_file_names < file || file == 0)
11283 dwarf2_debug_line_missing_file_complaint ();
11284 /* For now we ignore lines not starting on an
11285 instruction boundary. */
11286 else if (op_index == 0)
11287 {
11288 lh->file_names[file - 1].included_p = 1;
11289 if (!decode_for_pst_p && is_stmt)
11290 {
11291 if (last_subfile != current_subfile)
11292 {
11293 addr = gdbarch_addr_bits_remove (gdbarch, address);
11294 if (last_subfile)
11295 (*p_record_line) (last_subfile, 0, addr);
11296 last_subfile = current_subfile;
11297 }
11298 /* Append row to matrix using current values. */
11299 addr = check_cu_functions (address, cu);
11300 addr = gdbarch_addr_bits_remove (gdbarch, addr);
11301 (*p_record_line) (current_subfile, line, addr);
11302 }
11303 }
11304 basic_block = 0;
11305 }
11306 else switch (op_code)
11307 {
11308 case DW_LNS_extended_op:
11309 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11310 &bytes_read);
11311 line_ptr += bytes_read;
11312 extended_end = line_ptr + extended_len;
11313 extended_op = read_1_byte (abfd, line_ptr);
11314 line_ptr += 1;
11315 switch (extended_op)
11316 {
11317 case DW_LNE_end_sequence:
11318 p_record_line = record_line;
11319 end_sequence = 1;
11320 break;
11321 case DW_LNE_set_address:
11322 address = read_address (abfd, line_ptr, cu, &bytes_read);
11323
11324 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11325 {
11326 /* This line table is for a function which has been
11327 GCd by the linker. Ignore it. PR gdb/12528 */
11328
11329 long line_offset
11330 = line_ptr - dwarf2_per_objfile->line.buffer;
11331
11332 complaint (&symfile_complaints,
11333 _(".debug_line address at offset 0x%lx is 0 "
11334 "[in module %s]"),
11335 line_offset, cu->objfile->name);
11336 p_record_line = noop_record_line;
11337 }
11338
11339 op_index = 0;
11340 line_ptr += bytes_read;
11341 address += baseaddr;
11342 break;
11343 case DW_LNE_define_file:
11344 {
11345 char *cur_file;
11346 unsigned int dir_index, mod_time, length;
11347
11348 cur_file = read_direct_string (abfd, line_ptr,
11349 &bytes_read);
11350 line_ptr += bytes_read;
11351 dir_index =
11352 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11353 line_ptr += bytes_read;
11354 mod_time =
11355 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11356 line_ptr += bytes_read;
11357 length =
11358 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11359 line_ptr += bytes_read;
11360 add_file_name (lh, cur_file, dir_index, mod_time, length);
11361 }
11362 break;
11363 case DW_LNE_set_discriminator:
11364 /* The discriminator is not interesting to the debugger;
11365 just ignore it. */
11366 line_ptr = extended_end;
11367 break;
11368 default:
11369 complaint (&symfile_complaints,
11370 _("mangled .debug_line section"));
11371 return;
11372 }
11373 /* Make sure that we parsed the extended op correctly. If e.g.
11374 we expected a different address size than the producer used,
11375 we may have read the wrong number of bytes. */
11376 if (line_ptr != extended_end)
11377 {
11378 complaint (&symfile_complaints,
11379 _("mangled .debug_line section"));
11380 return;
11381 }
11382 break;
11383 case DW_LNS_copy:
11384 if (lh->num_file_names < file || file == 0)
11385 dwarf2_debug_line_missing_file_complaint ();
11386 else
11387 {
11388 lh->file_names[file - 1].included_p = 1;
11389 if (!decode_for_pst_p && is_stmt)
11390 {
11391 if (last_subfile != current_subfile)
11392 {
11393 addr = gdbarch_addr_bits_remove (gdbarch, address);
11394 if (last_subfile)
11395 (*p_record_line) (last_subfile, 0, addr);
11396 last_subfile = current_subfile;
11397 }
11398 addr = check_cu_functions (address, cu);
11399 addr = gdbarch_addr_bits_remove (gdbarch, addr);
11400 (*p_record_line) (current_subfile, line, addr);
11401 }
11402 }
11403 basic_block = 0;
11404 break;
11405 case DW_LNS_advance_pc:
11406 {
11407 CORE_ADDR adjust
11408 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11409
11410 address += (((op_index + adjust)
11411 / lh->maximum_ops_per_instruction)
11412 * lh->minimum_instruction_length);
11413 op_index = ((op_index + adjust)
11414 % lh->maximum_ops_per_instruction);
11415 line_ptr += bytes_read;
11416 }
11417 break;
11418 case DW_LNS_advance_line:
11419 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11420 line_ptr += bytes_read;
11421 break;
11422 case DW_LNS_set_file:
11423 {
11424 /* The arrays lh->include_dirs and lh->file_names are
11425 0-based, but the directory and file name numbers in
11426 the statement program are 1-based. */
11427 struct file_entry *fe;
11428 char *dir = NULL;
11429
11430 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11431 line_ptr += bytes_read;
11432 if (lh->num_file_names < file || file == 0)
11433 dwarf2_debug_line_missing_file_complaint ();
11434 else
11435 {
11436 fe = &lh->file_names[file - 1];
11437 if (fe->dir_index)
11438 dir = lh->include_dirs[fe->dir_index - 1];
11439 if (!decode_for_pst_p)
11440 {
11441 last_subfile = current_subfile;
11442 dwarf2_start_subfile (fe->name, dir, comp_dir);
11443 }
11444 }
11445 }
11446 break;
11447 case DW_LNS_set_column:
11448 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11449 line_ptr += bytes_read;
11450 break;
11451 case DW_LNS_negate_stmt:
11452 is_stmt = (!is_stmt);
11453 break;
11454 case DW_LNS_set_basic_block:
11455 basic_block = 1;
11456 break;
11457 /* Add to the address register of the state machine the
11458 address increment value corresponding to special opcode
11459 255. I.e., this value is scaled by the minimum
11460 instruction length since special opcode 255 would have
11461 scaled the increment. */
11462 case DW_LNS_const_add_pc:
11463 {
11464 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11465
11466 address += (((op_index + adjust)
11467 / lh->maximum_ops_per_instruction)
11468 * lh->minimum_instruction_length);
11469 op_index = ((op_index + adjust)
11470 % lh->maximum_ops_per_instruction);
11471 }
11472 break;
11473 case DW_LNS_fixed_advance_pc:
11474 address += read_2_bytes (abfd, line_ptr);
11475 op_index = 0;
11476 line_ptr += 2;
11477 break;
11478 default:
11479 {
11480 /* Unknown standard opcode, ignore it. */
11481 int i;
11482
11483 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11484 {
11485 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11486 line_ptr += bytes_read;
11487 }
11488 }
11489 }
11490 }
11491 if (lh->num_file_names < file || file == 0)
11492 dwarf2_debug_line_missing_file_complaint ();
11493 else
11494 {
11495 lh->file_names[file - 1].included_p = 1;
11496 if (!decode_for_pst_p)
11497 {
11498 addr = gdbarch_addr_bits_remove (gdbarch, address);
11499 (*p_record_line) (current_subfile, 0, addr);
11500 }
11501 }
11502 }
11503
11504 if (decode_for_pst_p)
11505 {
11506 int file_index;
11507
11508 /* Now that we're done scanning the Line Header Program, we can
11509 create the psymtab of each included file. */
11510 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11511 if (lh->file_names[file_index].included_p == 1)
11512 {
11513 char *include_name =
11514 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11515 if (include_name != NULL)
11516 dwarf2_create_include_psymtab (include_name, pst, objfile);
11517 }
11518 }
11519 else
11520 {
11521 /* Make sure a symtab is created for every file, even files
11522 which contain only variables (i.e. no code with associated
11523 line numbers). */
11524
11525 int i;
11526 struct file_entry *fe;
11527
11528 for (i = 0; i < lh->num_file_names; i++)
11529 {
11530 char *dir = NULL;
11531
11532 fe = &lh->file_names[i];
11533 if (fe->dir_index)
11534 dir = lh->include_dirs[fe->dir_index - 1];
11535 dwarf2_start_subfile (fe->name, dir, comp_dir);
11536
11537 /* Skip the main file; we don't need it, and it must be
11538 allocated last, so that it will show up before the
11539 non-primary symtabs in the objfile's symtab list. */
11540 if (current_subfile == first_subfile)
11541 continue;
11542
11543 if (current_subfile->symtab == NULL)
11544 current_subfile->symtab = allocate_symtab (current_subfile->name,
11545 cu->objfile);
11546 fe->symtab = current_subfile->symtab;
11547 }
11548 }
11549 }
11550
11551 /* Start a subfile for DWARF. FILENAME is the name of the file and
11552 DIRNAME the name of the source directory which contains FILENAME
11553 or NULL if not known. COMP_DIR is the compilation directory for the
11554 linetable's compilation unit or NULL if not known.
11555 This routine tries to keep line numbers from identical absolute and
11556 relative file names in a common subfile.
11557
11558 Using the `list' example from the GDB testsuite, which resides in
11559 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11560 of /srcdir/list0.c yields the following debugging information for list0.c:
11561
11562 DW_AT_name: /srcdir/list0.c
11563 DW_AT_comp_dir: /compdir
11564 files.files[0].name: list0.h
11565 files.files[0].dir: /srcdir
11566 files.files[1].name: list0.c
11567 files.files[1].dir: /srcdir
11568
11569 The line number information for list0.c has to end up in a single
11570 subfile, so that `break /srcdir/list0.c:1' works as expected.
11571 start_subfile will ensure that this happens provided that we pass the
11572 concatenation of files.files[1].dir and files.files[1].name as the
11573 subfile's name. */
11574
11575 static void
11576 dwarf2_start_subfile (char *filename, const char *dirname,
11577 const char *comp_dir)
11578 {
11579 char *fullname;
11580
11581 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11582 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11583 second argument to start_subfile. To be consistent, we do the
11584 same here. In order not to lose the line information directory,
11585 we concatenate it to the filename when it makes sense.
11586 Note that the Dwarf3 standard says (speaking of filenames in line
11587 information): ``The directory index is ignored for file names
11588 that represent full path names''. Thus ignoring dirname in the
11589 `else' branch below isn't an issue. */
11590
11591 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11592 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11593 else
11594 fullname = filename;
11595
11596 start_subfile (fullname, comp_dir);
11597
11598 if (fullname != filename)
11599 xfree (fullname);
11600 }
11601
11602 static void
11603 var_decode_location (struct attribute *attr, struct symbol *sym,
11604 struct dwarf2_cu *cu)
11605 {
11606 struct objfile *objfile = cu->objfile;
11607 struct comp_unit_head *cu_header = &cu->header;
11608
11609 /* NOTE drow/2003-01-30: There used to be a comment and some special
11610 code here to turn a symbol with DW_AT_external and a
11611 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11612 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11613 with some versions of binutils) where shared libraries could have
11614 relocations against symbols in their debug information - the
11615 minimal symbol would have the right address, but the debug info
11616 would not. It's no longer necessary, because we will explicitly
11617 apply relocations when we read in the debug information now. */
11618
11619 /* A DW_AT_location attribute with no contents indicates that a
11620 variable has been optimized away. */
11621 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11622 {
11623 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11624 return;
11625 }
11626
11627 /* Handle one degenerate form of location expression specially, to
11628 preserve GDB's previous behavior when section offsets are
11629 specified. If this is just a DW_OP_addr then mark this symbol
11630 as LOC_STATIC. */
11631
11632 if (attr_form_is_block (attr)
11633 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11634 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11635 {
11636 unsigned int dummy;
11637
11638 SYMBOL_VALUE_ADDRESS (sym) =
11639 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11640 SYMBOL_CLASS (sym) = LOC_STATIC;
11641 fixup_symbol_section (sym, objfile);
11642 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11643 SYMBOL_SECTION (sym));
11644 return;
11645 }
11646
11647 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11648 expression evaluator, and use LOC_COMPUTED only when necessary
11649 (i.e. when the value of a register or memory location is
11650 referenced, or a thread-local block, etc.). Then again, it might
11651 not be worthwhile. I'm assuming that it isn't unless performance
11652 or memory numbers show me otherwise. */
11653
11654 dwarf2_symbol_mark_computed (attr, sym, cu);
11655 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11656
11657 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11658 cu->has_loclist = 1;
11659 }
11660
11661 /* Given a pointer to a DWARF information entry, figure out if we need
11662 to make a symbol table entry for it, and if so, create a new entry
11663 and return a pointer to it.
11664 If TYPE is NULL, determine symbol type from the die, otherwise
11665 used the passed type.
11666 If SPACE is not NULL, use it to hold the new symbol. If it is
11667 NULL, allocate a new symbol on the objfile's obstack. */
11668
11669 static struct symbol *
11670 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11671 struct symbol *space)
11672 {
11673 struct objfile *objfile = cu->objfile;
11674 struct symbol *sym = NULL;
11675 char *name;
11676 struct attribute *attr = NULL;
11677 struct attribute *attr2 = NULL;
11678 CORE_ADDR baseaddr;
11679 struct pending **list_to_add = NULL;
11680
11681 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11682
11683 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11684
11685 name = dwarf2_name (die, cu);
11686 if (name)
11687 {
11688 const char *linkagename;
11689 int suppress_add = 0;
11690
11691 if (space)
11692 sym = space;
11693 else
11694 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11695 OBJSTAT (objfile, n_syms++);
11696
11697 /* Cache this symbol's name and the name's demangled form (if any). */
11698 SYMBOL_SET_LANGUAGE (sym, cu->language);
11699 linkagename = dwarf2_physname (name, die, cu);
11700 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11701
11702 /* Fortran does not have mangling standard and the mangling does differ
11703 between gfortran, iFort etc. */
11704 if (cu->language == language_fortran
11705 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11706 symbol_set_demangled_name (&(sym->ginfo),
11707 (char *) dwarf2_full_name (name, die, cu),
11708 NULL);
11709
11710 /* Default assumptions.
11711 Use the passed type or decode it from the die. */
11712 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11713 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11714 if (type != NULL)
11715 SYMBOL_TYPE (sym) = type;
11716 else
11717 SYMBOL_TYPE (sym) = die_type (die, cu);
11718 attr = dwarf2_attr (die,
11719 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11720 cu);
11721 if (attr)
11722 {
11723 SYMBOL_LINE (sym) = DW_UNSND (attr);
11724 }
11725
11726 attr = dwarf2_attr (die,
11727 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11728 cu);
11729 if (attr)
11730 {
11731 int file_index = DW_UNSND (attr);
11732
11733 if (cu->line_header == NULL
11734 || file_index > cu->line_header->num_file_names)
11735 complaint (&symfile_complaints,
11736 _("file index out of range"));
11737 else if (file_index > 0)
11738 {
11739 struct file_entry *fe;
11740
11741 fe = &cu->line_header->file_names[file_index - 1];
11742 SYMBOL_SYMTAB (sym) = fe->symtab;
11743 }
11744 }
11745
11746 switch (die->tag)
11747 {
11748 case DW_TAG_label:
11749 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11750 if (attr)
11751 {
11752 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11753 }
11754 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11755 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11756 SYMBOL_CLASS (sym) = LOC_LABEL;
11757 add_symbol_to_list (sym, cu->list_in_scope);
11758 break;
11759 case DW_TAG_subprogram:
11760 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11761 finish_block. */
11762 SYMBOL_CLASS (sym) = LOC_BLOCK;
11763 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11764 if ((attr2 && (DW_UNSND (attr2) != 0))
11765 || cu->language == language_ada)
11766 {
11767 /* Subprograms marked external are stored as a global symbol.
11768 Ada subprograms, whether marked external or not, are always
11769 stored as a global symbol, because we want to be able to
11770 access them globally. For instance, we want to be able
11771 to break on a nested subprogram without having to
11772 specify the context. */
11773 list_to_add = &global_symbols;
11774 }
11775 else
11776 {
11777 list_to_add = cu->list_in_scope;
11778 }
11779 break;
11780 case DW_TAG_inlined_subroutine:
11781 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11782 finish_block. */
11783 SYMBOL_CLASS (sym) = LOC_BLOCK;
11784 SYMBOL_INLINED (sym) = 1;
11785 /* Do not add the symbol to any lists. It will be found via
11786 BLOCK_FUNCTION from the blockvector. */
11787 break;
11788 case DW_TAG_template_value_param:
11789 suppress_add = 1;
11790 /* Fall through. */
11791 case DW_TAG_constant:
11792 case DW_TAG_variable:
11793 case DW_TAG_member:
11794 /* Compilation with minimal debug info may result in
11795 variables with missing type entries. Change the
11796 misleading `void' type to something sensible. */
11797 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11798 SYMBOL_TYPE (sym)
11799 = objfile_type (objfile)->nodebug_data_symbol;
11800
11801 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11802 /* In the case of DW_TAG_member, we should only be called for
11803 static const members. */
11804 if (die->tag == DW_TAG_member)
11805 {
11806 /* dwarf2_add_field uses die_is_declaration,
11807 so we do the same. */
11808 gdb_assert (die_is_declaration (die, cu));
11809 gdb_assert (attr);
11810 }
11811 if (attr)
11812 {
11813 dwarf2_const_value (attr, sym, cu);
11814 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11815 if (!suppress_add)
11816 {
11817 if (attr2 && (DW_UNSND (attr2) != 0))
11818 list_to_add = &global_symbols;
11819 else
11820 list_to_add = cu->list_in_scope;
11821 }
11822 break;
11823 }
11824 attr = dwarf2_attr (die, DW_AT_location, cu);
11825 if (attr)
11826 {
11827 var_decode_location (attr, sym, cu);
11828 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11829 if (SYMBOL_CLASS (sym) == LOC_STATIC
11830 && SYMBOL_VALUE_ADDRESS (sym) == 0
11831 && !dwarf2_per_objfile->has_section_at_zero)
11832 {
11833 /* When a static variable is eliminated by the linker,
11834 the corresponding debug information is not stripped
11835 out, but the variable address is set to null;
11836 do not add such variables into symbol table. */
11837 }
11838 else if (attr2 && (DW_UNSND (attr2) != 0))
11839 {
11840 /* Workaround gfortran PR debug/40040 - it uses
11841 DW_AT_location for variables in -fPIC libraries which may
11842 get overriden by other libraries/executable and get
11843 a different address. Resolve it by the minimal symbol
11844 which may come from inferior's executable using copy
11845 relocation. Make this workaround only for gfortran as for
11846 other compilers GDB cannot guess the minimal symbol
11847 Fortran mangling kind. */
11848 if (cu->language == language_fortran && die->parent
11849 && die->parent->tag == DW_TAG_module
11850 && cu->producer
11851 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11852 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11853
11854 /* A variable with DW_AT_external is never static,
11855 but it may be block-scoped. */
11856 list_to_add = (cu->list_in_scope == &file_symbols
11857 ? &global_symbols : cu->list_in_scope);
11858 }
11859 else
11860 list_to_add = cu->list_in_scope;
11861 }
11862 else
11863 {
11864 /* We do not know the address of this symbol.
11865 If it is an external symbol and we have type information
11866 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11867 The address of the variable will then be determined from
11868 the minimal symbol table whenever the variable is
11869 referenced. */
11870 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11871 if (attr2 && (DW_UNSND (attr2) != 0)
11872 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11873 {
11874 /* A variable with DW_AT_external is never static, but it
11875 may be block-scoped. */
11876 list_to_add = (cu->list_in_scope == &file_symbols
11877 ? &global_symbols : cu->list_in_scope);
11878
11879 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11880 }
11881 else if (!die_is_declaration (die, cu))
11882 {
11883 /* Use the default LOC_OPTIMIZED_OUT class. */
11884 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11885 if (!suppress_add)
11886 list_to_add = cu->list_in_scope;
11887 }
11888 }
11889 break;
11890 case DW_TAG_formal_parameter:
11891 /* If we are inside a function, mark this as an argument. If
11892 not, we might be looking at an argument to an inlined function
11893 when we do not have enough information to show inlined frames;
11894 pretend it's a local variable in that case so that the user can
11895 still see it. */
11896 if (context_stack_depth > 0
11897 && context_stack[context_stack_depth - 1].name != NULL)
11898 SYMBOL_IS_ARGUMENT (sym) = 1;
11899 attr = dwarf2_attr (die, DW_AT_location, cu);
11900 if (attr)
11901 {
11902 var_decode_location (attr, sym, cu);
11903 }
11904 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11905 if (attr)
11906 {
11907 dwarf2_const_value (attr, sym, cu);
11908 }
11909
11910 list_to_add = cu->list_in_scope;
11911 break;
11912 case DW_TAG_unspecified_parameters:
11913 /* From varargs functions; gdb doesn't seem to have any
11914 interest in this information, so just ignore it for now.
11915 (FIXME?) */
11916 break;
11917 case DW_TAG_template_type_param:
11918 suppress_add = 1;
11919 /* Fall through. */
11920 case DW_TAG_class_type:
11921 case DW_TAG_interface_type:
11922 case DW_TAG_structure_type:
11923 case DW_TAG_union_type:
11924 case DW_TAG_set_type:
11925 case DW_TAG_enumeration_type:
11926 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11927 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11928
11929 {
11930 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11931 really ever be static objects: otherwise, if you try
11932 to, say, break of a class's method and you're in a file
11933 which doesn't mention that class, it won't work unless
11934 the check for all static symbols in lookup_symbol_aux
11935 saves you. See the OtherFileClass tests in
11936 gdb.c++/namespace.exp. */
11937
11938 if (!suppress_add)
11939 {
11940 list_to_add = (cu->list_in_scope == &file_symbols
11941 && (cu->language == language_cplus
11942 || cu->language == language_java)
11943 ? &global_symbols : cu->list_in_scope);
11944
11945 /* The semantics of C++ state that "struct foo {
11946 ... }" also defines a typedef for "foo". A Java
11947 class declaration also defines a typedef for the
11948 class. */
11949 if (cu->language == language_cplus
11950 || cu->language == language_java
11951 || cu->language == language_ada)
11952 {
11953 /* The symbol's name is already allocated along
11954 with this objfile, so we don't need to
11955 duplicate it for the type. */
11956 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11957 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11958 }
11959 }
11960 }
11961 break;
11962 case DW_TAG_typedef:
11963 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11964 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11965 list_to_add = cu->list_in_scope;
11966 break;
11967 case DW_TAG_base_type:
11968 case DW_TAG_subrange_type:
11969 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11970 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11971 list_to_add = cu->list_in_scope;
11972 break;
11973 case DW_TAG_enumerator:
11974 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11975 if (attr)
11976 {
11977 dwarf2_const_value (attr, sym, cu);
11978 }
11979 {
11980 /* NOTE: carlton/2003-11-10: See comment above in the
11981 DW_TAG_class_type, etc. block. */
11982
11983 list_to_add = (cu->list_in_scope == &file_symbols
11984 && (cu->language == language_cplus
11985 || cu->language == language_java)
11986 ? &global_symbols : cu->list_in_scope);
11987 }
11988 break;
11989 case DW_TAG_namespace:
11990 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11991 list_to_add = &global_symbols;
11992 break;
11993 default:
11994 /* Not a tag we recognize. Hopefully we aren't processing
11995 trash data, but since we must specifically ignore things
11996 we don't recognize, there is nothing else we should do at
11997 this point. */
11998 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11999 dwarf_tag_name (die->tag));
12000 break;
12001 }
12002
12003 if (suppress_add)
12004 {
12005 sym->hash_next = objfile->template_symbols;
12006 objfile->template_symbols = sym;
12007 list_to_add = NULL;
12008 }
12009
12010 if (list_to_add != NULL)
12011 add_symbol_to_list (sym, list_to_add);
12012
12013 /* For the benefit of old versions of GCC, check for anonymous
12014 namespaces based on the demangled name. */
12015 if (!processing_has_namespace_info
12016 && cu->language == language_cplus)
12017 cp_scan_for_anonymous_namespaces (sym, objfile);
12018 }
12019 return (sym);
12020 }
12021
12022 /* A wrapper for new_symbol_full that always allocates a new symbol. */
12023
12024 static struct symbol *
12025 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12026 {
12027 return new_symbol_full (die, type, cu, NULL);
12028 }
12029
12030 /* Given an attr with a DW_FORM_dataN value in host byte order,
12031 zero-extend it as appropriate for the symbol's type. The DWARF
12032 standard (v4) is not entirely clear about the meaning of using
12033 DW_FORM_dataN for a constant with a signed type, where the type is
12034 wider than the data. The conclusion of a discussion on the DWARF
12035 list was that this is unspecified. We choose to always zero-extend
12036 because that is the interpretation long in use by GCC. */
12037
12038 static gdb_byte *
12039 dwarf2_const_value_data (struct attribute *attr, struct type *type,
12040 const char *name, struct obstack *obstack,
12041 struct dwarf2_cu *cu, long *value, int bits)
12042 {
12043 struct objfile *objfile = cu->objfile;
12044 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
12045 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
12046 LONGEST l = DW_UNSND (attr);
12047
12048 if (bits < sizeof (*value) * 8)
12049 {
12050 l &= ((LONGEST) 1 << bits) - 1;
12051 *value = l;
12052 }
12053 else if (bits == sizeof (*value) * 8)
12054 *value = l;
12055 else
12056 {
12057 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
12058 store_unsigned_integer (bytes, bits / 8, byte_order, l);
12059 return bytes;
12060 }
12061
12062 return NULL;
12063 }
12064
12065 /* Read a constant value from an attribute. Either set *VALUE, or if
12066 the value does not fit in *VALUE, set *BYTES - either already
12067 allocated on the objfile obstack, or newly allocated on OBSTACK,
12068 or, set *BATON, if we translated the constant to a location
12069 expression. */
12070
12071 static void
12072 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
12073 const char *name, struct obstack *obstack,
12074 struct dwarf2_cu *cu,
12075 long *value, gdb_byte **bytes,
12076 struct dwarf2_locexpr_baton **baton)
12077 {
12078 struct objfile *objfile = cu->objfile;
12079 struct comp_unit_head *cu_header = &cu->header;
12080 struct dwarf_block *blk;
12081 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
12082 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
12083
12084 *value = 0;
12085 *bytes = NULL;
12086 *baton = NULL;
12087
12088 switch (attr->form)
12089 {
12090 case DW_FORM_addr:
12091 {
12092 gdb_byte *data;
12093
12094 if (TYPE_LENGTH (type) != cu_header->addr_size)
12095 dwarf2_const_value_length_mismatch_complaint (name,
12096 cu_header->addr_size,
12097 TYPE_LENGTH (type));
12098 /* Symbols of this form are reasonably rare, so we just
12099 piggyback on the existing location code rather than writing
12100 a new implementation of symbol_computed_ops. */
12101 *baton = obstack_alloc (&objfile->objfile_obstack,
12102 sizeof (struct dwarf2_locexpr_baton));
12103 (*baton)->per_cu = cu->per_cu;
12104 gdb_assert ((*baton)->per_cu);
12105
12106 (*baton)->size = 2 + cu_header->addr_size;
12107 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12108 (*baton)->data = data;
12109
12110 data[0] = DW_OP_addr;
12111 store_unsigned_integer (&data[1], cu_header->addr_size,
12112 byte_order, DW_ADDR (attr));
12113 data[cu_header->addr_size + 1] = DW_OP_stack_value;
12114 }
12115 break;
12116 case DW_FORM_string:
12117 case DW_FORM_strp:
12118 /* DW_STRING is already allocated on the objfile obstack, point
12119 directly to it. */
12120 *bytes = (gdb_byte *) DW_STRING (attr);
12121 break;
12122 case DW_FORM_block1:
12123 case DW_FORM_block2:
12124 case DW_FORM_block4:
12125 case DW_FORM_block:
12126 case DW_FORM_exprloc:
12127 blk = DW_BLOCK (attr);
12128 if (TYPE_LENGTH (type) != blk->size)
12129 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12130 TYPE_LENGTH (type));
12131 *bytes = blk->data;
12132 break;
12133
12134 /* The DW_AT_const_value attributes are supposed to carry the
12135 symbol's value "represented as it would be on the target
12136 architecture." By the time we get here, it's already been
12137 converted to host endianness, so we just need to sign- or
12138 zero-extend it as appropriate. */
12139 case DW_FORM_data1:
12140 *bytes = dwarf2_const_value_data (attr, type, name,
12141 obstack, cu, value, 8);
12142 break;
12143 case DW_FORM_data2:
12144 *bytes = dwarf2_const_value_data (attr, type, name,
12145 obstack, cu, value, 16);
12146 break;
12147 case DW_FORM_data4:
12148 *bytes = dwarf2_const_value_data (attr, type, name,
12149 obstack, cu, value, 32);
12150 break;
12151 case DW_FORM_data8:
12152 *bytes = dwarf2_const_value_data (attr, type, name,
12153 obstack, cu, value, 64);
12154 break;
12155
12156 case DW_FORM_sdata:
12157 *value = DW_SND (attr);
12158 break;
12159
12160 case DW_FORM_udata:
12161 *value = DW_UNSND (attr);
12162 break;
12163
12164 default:
12165 complaint (&symfile_complaints,
12166 _("unsupported const value attribute form: '%s'"),
12167 dwarf_form_name (attr->form));
12168 *value = 0;
12169 break;
12170 }
12171 }
12172
12173
12174 /* Copy constant value from an attribute to a symbol. */
12175
12176 static void
12177 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12178 struct dwarf2_cu *cu)
12179 {
12180 struct objfile *objfile = cu->objfile;
12181 struct comp_unit_head *cu_header = &cu->header;
12182 long value;
12183 gdb_byte *bytes;
12184 struct dwarf2_locexpr_baton *baton;
12185
12186 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12187 SYMBOL_PRINT_NAME (sym),
12188 &objfile->objfile_obstack, cu,
12189 &value, &bytes, &baton);
12190
12191 if (baton != NULL)
12192 {
12193 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12194 SYMBOL_LOCATION_BATON (sym) = baton;
12195 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12196 }
12197 else if (bytes != NULL)
12198 {
12199 SYMBOL_VALUE_BYTES (sym) = bytes;
12200 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12201 }
12202 else
12203 {
12204 SYMBOL_VALUE (sym) = value;
12205 SYMBOL_CLASS (sym) = LOC_CONST;
12206 }
12207 }
12208
12209 /* Return the type of the die in question using its DW_AT_type attribute. */
12210
12211 static struct type *
12212 die_type (struct die_info *die, struct dwarf2_cu *cu)
12213 {
12214 struct attribute *type_attr;
12215
12216 type_attr = dwarf2_attr (die, DW_AT_type, cu);
12217 if (!type_attr)
12218 {
12219 /* A missing DW_AT_type represents a void type. */
12220 return objfile_type (cu->objfile)->builtin_void;
12221 }
12222
12223 return lookup_die_type (die, type_attr, cu);
12224 }
12225
12226 /* True iff CU's producer generates GNAT Ada auxiliary information
12227 that allows to find parallel types through that information instead
12228 of having to do expensive parallel lookups by type name. */
12229
12230 static int
12231 need_gnat_info (struct dwarf2_cu *cu)
12232 {
12233 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12234 of GNAT produces this auxiliary information, without any indication
12235 that it is produced. Part of enhancing the FSF version of GNAT
12236 to produce that information will be to put in place an indicator
12237 that we can use in order to determine whether the descriptive type
12238 info is available or not. One suggestion that has been made is
12239 to use a new attribute, attached to the CU die. For now, assume
12240 that the descriptive type info is not available. */
12241 return 0;
12242 }
12243
12244 /* Return the auxiliary type of the die in question using its
12245 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12246 attribute is not present. */
12247
12248 static struct type *
12249 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12250 {
12251 struct attribute *type_attr;
12252
12253 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12254 if (!type_attr)
12255 return NULL;
12256
12257 return lookup_die_type (die, type_attr, cu);
12258 }
12259
12260 /* If DIE has a descriptive_type attribute, then set the TYPE's
12261 descriptive type accordingly. */
12262
12263 static void
12264 set_descriptive_type (struct type *type, struct die_info *die,
12265 struct dwarf2_cu *cu)
12266 {
12267 struct type *descriptive_type = die_descriptive_type (die, cu);
12268
12269 if (descriptive_type)
12270 {
12271 ALLOCATE_GNAT_AUX_TYPE (type);
12272 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12273 }
12274 }
12275
12276 /* Return the containing type of the die in question using its
12277 DW_AT_containing_type attribute. */
12278
12279 static struct type *
12280 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12281 {
12282 struct attribute *type_attr;
12283
12284 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12285 if (!type_attr)
12286 error (_("Dwarf Error: Problem turning containing type into gdb type "
12287 "[in module %s]"), cu->objfile->name);
12288
12289 return lookup_die_type (die, type_attr, cu);
12290 }
12291
12292 /* Look up the type of DIE in CU using its type attribute ATTR.
12293 If there is no type substitute an error marker. */
12294
12295 static struct type *
12296 lookup_die_type (struct die_info *die, struct attribute *attr,
12297 struct dwarf2_cu *cu)
12298 {
12299 struct type *this_type;
12300
12301 /* First see if we have it cached. */
12302
12303 if (is_ref_attr (attr))
12304 {
12305 unsigned int offset = dwarf2_get_ref_die_offset (attr);
12306
12307 this_type = get_die_type_at_offset (offset, cu->per_cu);
12308 }
12309 else if (attr->form == DW_FORM_ref_sig8)
12310 {
12311 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12312 struct dwarf2_cu *sig_cu;
12313 unsigned int offset;
12314
12315 /* sig_type will be NULL if the signatured type is missing from
12316 the debug info. */
12317 if (sig_type == NULL)
12318 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12319 "at 0x%x [in module %s]"),
12320 die->offset, cu->objfile->name);
12321
12322 gdb_assert (sig_type->per_cu.debug_type_section);
12323 offset = sig_type->per_cu.offset + sig_type->type_offset;
12324 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12325 }
12326 else
12327 {
12328 dump_die_for_error (die);
12329 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12330 dwarf_attr_name (attr->name), cu->objfile->name);
12331 }
12332
12333 /* If not cached we need to read it in. */
12334
12335 if (this_type == NULL)
12336 {
12337 struct die_info *type_die;
12338 struct dwarf2_cu *type_cu = cu;
12339
12340 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12341 /* If the type is cached, we should have found it above. */
12342 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12343 this_type = read_type_die_1 (type_die, type_cu);
12344 }
12345
12346 /* If we still don't have a type use an error marker. */
12347
12348 if (this_type == NULL)
12349 {
12350 char *message, *saved;
12351
12352 /* read_type_die already issued a complaint. */
12353 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12354 cu->objfile->name,
12355 cu->header.offset,
12356 die->offset);
12357 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
12358 message, strlen (message));
12359 xfree (message);
12360
12361 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
12362 }
12363
12364 return this_type;
12365 }
12366
12367 /* Return the type in DIE, CU.
12368 Returns NULL for invalid types.
12369
12370 This first does a lookup in the appropriate type_hash table,
12371 and only reads the die in if necessary.
12372
12373 NOTE: This can be called when reading in partial or full symbols. */
12374
12375 static struct type *
12376 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12377 {
12378 struct type *this_type;
12379
12380 this_type = get_die_type (die, cu);
12381 if (this_type)
12382 return this_type;
12383
12384 return read_type_die_1 (die, cu);
12385 }
12386
12387 /* Read the type in DIE, CU.
12388 Returns NULL for invalid types. */
12389
12390 static struct type *
12391 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12392 {
12393 struct type *this_type = NULL;
12394
12395 switch (die->tag)
12396 {
12397 case DW_TAG_class_type:
12398 case DW_TAG_interface_type:
12399 case DW_TAG_structure_type:
12400 case DW_TAG_union_type:
12401 this_type = read_structure_type (die, cu);
12402 break;
12403 case DW_TAG_enumeration_type:
12404 this_type = read_enumeration_type (die, cu);
12405 break;
12406 case DW_TAG_subprogram:
12407 case DW_TAG_subroutine_type:
12408 case DW_TAG_inlined_subroutine:
12409 this_type = read_subroutine_type (die, cu);
12410 break;
12411 case DW_TAG_array_type:
12412 this_type = read_array_type (die, cu);
12413 break;
12414 case DW_TAG_set_type:
12415 this_type = read_set_type (die, cu);
12416 break;
12417 case DW_TAG_pointer_type:
12418 this_type = read_tag_pointer_type (die, cu);
12419 break;
12420 case DW_TAG_ptr_to_member_type:
12421 this_type = read_tag_ptr_to_member_type (die, cu);
12422 break;
12423 case DW_TAG_reference_type:
12424 this_type = read_tag_reference_type (die, cu);
12425 break;
12426 case DW_TAG_const_type:
12427 this_type = read_tag_const_type (die, cu);
12428 break;
12429 case DW_TAG_volatile_type:
12430 this_type = read_tag_volatile_type (die, cu);
12431 break;
12432 case DW_TAG_string_type:
12433 this_type = read_tag_string_type (die, cu);
12434 break;
12435 case DW_TAG_typedef:
12436 this_type = read_typedef (die, cu);
12437 break;
12438 case DW_TAG_subrange_type:
12439 this_type = read_subrange_type (die, cu);
12440 break;
12441 case DW_TAG_base_type:
12442 this_type = read_base_type (die, cu);
12443 break;
12444 case DW_TAG_unspecified_type:
12445 this_type = read_unspecified_type (die, cu);
12446 break;
12447 case DW_TAG_namespace:
12448 this_type = read_namespace_type (die, cu);
12449 break;
12450 case DW_TAG_module:
12451 this_type = read_module_type (die, cu);
12452 break;
12453 default:
12454 complaint (&symfile_complaints,
12455 _("unexpected tag in read_type_die: '%s'"),
12456 dwarf_tag_name (die->tag));
12457 break;
12458 }
12459
12460 return this_type;
12461 }
12462
12463 /* See if we can figure out if the class lives in a namespace. We do
12464 this by looking for a member function; its demangled name will
12465 contain namespace info, if there is any.
12466 Return the computed name or NULL.
12467 Space for the result is allocated on the objfile's obstack.
12468 This is the full-die version of guess_partial_die_structure_name.
12469 In this case we know DIE has no useful parent. */
12470
12471 static char *
12472 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12473 {
12474 struct die_info *spec_die;
12475 struct dwarf2_cu *spec_cu;
12476 struct die_info *child;
12477
12478 spec_cu = cu;
12479 spec_die = die_specification (die, &spec_cu);
12480 if (spec_die != NULL)
12481 {
12482 die = spec_die;
12483 cu = spec_cu;
12484 }
12485
12486 for (child = die->child;
12487 child != NULL;
12488 child = child->sibling)
12489 {
12490 if (child->tag == DW_TAG_subprogram)
12491 {
12492 struct attribute *attr;
12493
12494 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12495 if (attr == NULL)
12496 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12497 if (attr != NULL)
12498 {
12499 char *actual_name
12500 = language_class_name_from_physname (cu->language_defn,
12501 DW_STRING (attr));
12502 char *name = NULL;
12503
12504 if (actual_name != NULL)
12505 {
12506 char *die_name = dwarf2_name (die, cu);
12507
12508 if (die_name != NULL
12509 && strcmp (die_name, actual_name) != 0)
12510 {
12511 /* Strip off the class name from the full name.
12512 We want the prefix. */
12513 int die_name_len = strlen (die_name);
12514 int actual_name_len = strlen (actual_name);
12515
12516 /* Test for '::' as a sanity check. */
12517 if (actual_name_len > die_name_len + 2
12518 && actual_name[actual_name_len
12519 - die_name_len - 1] == ':')
12520 name =
12521 obsavestring (actual_name,
12522 actual_name_len - die_name_len - 2,
12523 &cu->objfile->objfile_obstack);
12524 }
12525 }
12526 xfree (actual_name);
12527 return name;
12528 }
12529 }
12530 }
12531
12532 return NULL;
12533 }
12534
12535 /* GCC might emit a nameless typedef that has a linkage name. Determine the
12536 prefix part in such case. See
12537 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12538
12539 static char *
12540 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12541 {
12542 struct attribute *attr;
12543 char *base;
12544
12545 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12546 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12547 return NULL;
12548
12549 attr = dwarf2_attr (die, DW_AT_name, cu);
12550 if (attr != NULL && DW_STRING (attr) != NULL)
12551 return NULL;
12552
12553 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12554 if (attr == NULL)
12555 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12556 if (attr == NULL || DW_STRING (attr) == NULL)
12557 return NULL;
12558
12559 /* dwarf2_name had to be already called. */
12560 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12561
12562 /* Strip the base name, keep any leading namespaces/classes. */
12563 base = strrchr (DW_STRING (attr), ':');
12564 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12565 return "";
12566
12567 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12568 &cu->objfile->objfile_obstack);
12569 }
12570
12571 /* Return the name of the namespace/class that DIE is defined within,
12572 or "" if we can't tell. The caller should not xfree the result.
12573
12574 For example, if we're within the method foo() in the following
12575 code:
12576
12577 namespace N {
12578 class C {
12579 void foo () {
12580 }
12581 };
12582 }
12583
12584 then determine_prefix on foo's die will return "N::C". */
12585
12586 static char *
12587 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12588 {
12589 struct die_info *parent, *spec_die;
12590 struct dwarf2_cu *spec_cu;
12591 struct type *parent_type;
12592 char *retval;
12593
12594 if (cu->language != language_cplus && cu->language != language_java
12595 && cu->language != language_fortran)
12596 return "";
12597
12598 retval = anonymous_struct_prefix (die, cu);
12599 if (retval)
12600 return retval;
12601
12602 /* We have to be careful in the presence of DW_AT_specification.
12603 For example, with GCC 3.4, given the code
12604
12605 namespace N {
12606 void foo() {
12607 // Definition of N::foo.
12608 }
12609 }
12610
12611 then we'll have a tree of DIEs like this:
12612
12613 1: DW_TAG_compile_unit
12614 2: DW_TAG_namespace // N
12615 3: DW_TAG_subprogram // declaration of N::foo
12616 4: DW_TAG_subprogram // definition of N::foo
12617 DW_AT_specification // refers to die #3
12618
12619 Thus, when processing die #4, we have to pretend that we're in
12620 the context of its DW_AT_specification, namely the contex of die
12621 #3. */
12622 spec_cu = cu;
12623 spec_die = die_specification (die, &spec_cu);
12624 if (spec_die == NULL)
12625 parent = die->parent;
12626 else
12627 {
12628 parent = spec_die->parent;
12629 cu = spec_cu;
12630 }
12631
12632 if (parent == NULL)
12633 return "";
12634 else if (parent->building_fullname)
12635 {
12636 const char *name;
12637 const char *parent_name;
12638
12639 /* It has been seen on RealView 2.2 built binaries,
12640 DW_TAG_template_type_param types actually _defined_ as
12641 children of the parent class:
12642
12643 enum E {};
12644 template class <class Enum> Class{};
12645 Class<enum E> class_e;
12646
12647 1: DW_TAG_class_type (Class)
12648 2: DW_TAG_enumeration_type (E)
12649 3: DW_TAG_enumerator (enum1:0)
12650 3: DW_TAG_enumerator (enum2:1)
12651 ...
12652 2: DW_TAG_template_type_param
12653 DW_AT_type DW_FORM_ref_udata (E)
12654
12655 Besides being broken debug info, it can put GDB into an
12656 infinite loop. Consider:
12657
12658 When we're building the full name for Class<E>, we'll start
12659 at Class, and go look over its template type parameters,
12660 finding E. We'll then try to build the full name of E, and
12661 reach here. We're now trying to build the full name of E,
12662 and look over the parent DIE for containing scope. In the
12663 broken case, if we followed the parent DIE of E, we'd again
12664 find Class, and once again go look at its template type
12665 arguments, etc., etc. Simply don't consider such parent die
12666 as source-level parent of this die (it can't be, the language
12667 doesn't allow it), and break the loop here. */
12668 name = dwarf2_name (die, cu);
12669 parent_name = dwarf2_name (parent, cu);
12670 complaint (&symfile_complaints,
12671 _("template param type '%s' defined within parent '%s'"),
12672 name ? name : "<unknown>",
12673 parent_name ? parent_name : "<unknown>");
12674 return "";
12675 }
12676 else
12677 switch (parent->tag)
12678 {
12679 case DW_TAG_namespace:
12680 parent_type = read_type_die (parent, cu);
12681 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12682 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12683 Work around this problem here. */
12684 if (cu->language == language_cplus
12685 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12686 return "";
12687 /* We give a name to even anonymous namespaces. */
12688 return TYPE_TAG_NAME (parent_type);
12689 case DW_TAG_class_type:
12690 case DW_TAG_interface_type:
12691 case DW_TAG_structure_type:
12692 case DW_TAG_union_type:
12693 case DW_TAG_module:
12694 parent_type = read_type_die (parent, cu);
12695 if (TYPE_TAG_NAME (parent_type) != NULL)
12696 return TYPE_TAG_NAME (parent_type);
12697 else
12698 /* An anonymous structure is only allowed non-static data
12699 members; no typedefs, no member functions, et cetera.
12700 So it does not need a prefix. */
12701 return "";
12702 case DW_TAG_compile_unit:
12703 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12704 if (cu->language == language_cplus
12705 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12706 && die->child != NULL
12707 && (die->tag == DW_TAG_class_type
12708 || die->tag == DW_TAG_structure_type
12709 || die->tag == DW_TAG_union_type))
12710 {
12711 char *name = guess_full_die_structure_name (die, cu);
12712 if (name != NULL)
12713 return name;
12714 }
12715 return "";
12716 default:
12717 return determine_prefix (parent, cu);
12718 }
12719 }
12720
12721 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12722 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12723 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12724 an obconcat, otherwise allocate storage for the result. The CU argument is
12725 used to determine the language and hence, the appropriate separator. */
12726
12727 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
12728
12729 static char *
12730 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12731 int physname, struct dwarf2_cu *cu)
12732 {
12733 const char *lead = "";
12734 const char *sep;
12735
12736 if (suffix == NULL || suffix[0] == '\0'
12737 || prefix == NULL || prefix[0] == '\0')
12738 sep = "";
12739 else if (cu->language == language_java)
12740 sep = ".";
12741 else if (cu->language == language_fortran && physname)
12742 {
12743 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12744 DW_AT_MIPS_linkage_name is preferred and used instead. */
12745
12746 lead = "__";
12747 sep = "_MOD_";
12748 }
12749 else
12750 sep = "::";
12751
12752 if (prefix == NULL)
12753 prefix = "";
12754 if (suffix == NULL)
12755 suffix = "";
12756
12757 if (obs == NULL)
12758 {
12759 char *retval
12760 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12761
12762 strcpy (retval, lead);
12763 strcat (retval, prefix);
12764 strcat (retval, sep);
12765 strcat (retval, suffix);
12766 return retval;
12767 }
12768 else
12769 {
12770 /* We have an obstack. */
12771 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12772 }
12773 }
12774
12775 /* Return sibling of die, NULL if no sibling. */
12776
12777 static struct die_info *
12778 sibling_die (struct die_info *die)
12779 {
12780 return die->sibling;
12781 }
12782
12783 /* Get name of a die, return NULL if not found. */
12784
12785 static char *
12786 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12787 struct obstack *obstack)
12788 {
12789 if (name && cu->language == language_cplus)
12790 {
12791 char *canon_name = cp_canonicalize_string (name);
12792
12793 if (canon_name != NULL)
12794 {
12795 if (strcmp (canon_name, name) != 0)
12796 name = obsavestring (canon_name, strlen (canon_name),
12797 obstack);
12798 xfree (canon_name);
12799 }
12800 }
12801
12802 return name;
12803 }
12804
12805 /* Get name of a die, return NULL if not found. */
12806
12807 static char *
12808 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12809 {
12810 struct attribute *attr;
12811
12812 attr = dwarf2_attr (die, DW_AT_name, cu);
12813 if ((!attr || !DW_STRING (attr))
12814 && die->tag != DW_TAG_class_type
12815 && die->tag != DW_TAG_interface_type
12816 && die->tag != DW_TAG_structure_type
12817 && die->tag != DW_TAG_union_type)
12818 return NULL;
12819
12820 switch (die->tag)
12821 {
12822 case DW_TAG_compile_unit:
12823 /* Compilation units have a DW_AT_name that is a filename, not
12824 a source language identifier. */
12825 case DW_TAG_enumeration_type:
12826 case DW_TAG_enumerator:
12827 /* These tags always have simple identifiers already; no need
12828 to canonicalize them. */
12829 return DW_STRING (attr);
12830
12831 case DW_TAG_subprogram:
12832 /* Java constructors will all be named "<init>", so return
12833 the class name when we see this special case. */
12834 if (cu->language == language_java
12835 && DW_STRING (attr) != NULL
12836 && strcmp (DW_STRING (attr), "<init>") == 0)
12837 {
12838 struct dwarf2_cu *spec_cu = cu;
12839 struct die_info *spec_die;
12840
12841 /* GCJ will output '<init>' for Java constructor names.
12842 For this special case, return the name of the parent class. */
12843
12844 /* GCJ may output suprogram DIEs with AT_specification set.
12845 If so, use the name of the specified DIE. */
12846 spec_die = die_specification (die, &spec_cu);
12847 if (spec_die != NULL)
12848 return dwarf2_name (spec_die, spec_cu);
12849
12850 do
12851 {
12852 die = die->parent;
12853 if (die->tag == DW_TAG_class_type)
12854 return dwarf2_name (die, cu);
12855 }
12856 while (die->tag != DW_TAG_compile_unit);
12857 }
12858 break;
12859
12860 case DW_TAG_class_type:
12861 case DW_TAG_interface_type:
12862 case DW_TAG_structure_type:
12863 case DW_TAG_union_type:
12864 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12865 structures or unions. These were of the form "._%d" in GCC 4.1,
12866 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12867 and GCC 4.4. We work around this problem by ignoring these. */
12868 if (attr && DW_STRING (attr)
12869 && (strncmp (DW_STRING (attr), "._", 2) == 0
12870 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12871 return NULL;
12872
12873 /* GCC might emit a nameless typedef that has a linkage name. See
12874 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12875 if (!attr || DW_STRING (attr) == NULL)
12876 {
12877 char *demangled = NULL;
12878
12879 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12880 if (attr == NULL)
12881 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12882
12883 if (attr == NULL || DW_STRING (attr) == NULL)
12884 return NULL;
12885
12886 /* Avoid demangling DW_STRING (attr) the second time on a second
12887 call for the same DIE. */
12888 if (!DW_STRING_IS_CANONICAL (attr))
12889 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12890
12891 if (demangled)
12892 {
12893 char *base;
12894
12895 /* FIXME: we already did this for the partial symbol... */
12896 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12897 &cu->objfile->objfile_obstack);
12898 DW_STRING_IS_CANONICAL (attr) = 1;
12899 xfree (demangled);
12900
12901 /* Strip any leading namespaces/classes, keep only the base name.
12902 DW_AT_name for named DIEs does not contain the prefixes. */
12903 base = strrchr (DW_STRING (attr), ':');
12904 if (base && base > DW_STRING (attr) && base[-1] == ':')
12905 return &base[1];
12906 else
12907 return DW_STRING (attr);
12908 }
12909 }
12910 break;
12911
12912 default:
12913 break;
12914 }
12915
12916 if (!DW_STRING_IS_CANONICAL (attr))
12917 {
12918 DW_STRING (attr)
12919 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12920 &cu->objfile->objfile_obstack);
12921 DW_STRING_IS_CANONICAL (attr) = 1;
12922 }
12923 return DW_STRING (attr);
12924 }
12925
12926 /* Return the die that this die in an extension of, or NULL if there
12927 is none. *EXT_CU is the CU containing DIE on input, and the CU
12928 containing the return value on output. */
12929
12930 static struct die_info *
12931 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12932 {
12933 struct attribute *attr;
12934
12935 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12936 if (attr == NULL)
12937 return NULL;
12938
12939 return follow_die_ref (die, attr, ext_cu);
12940 }
12941
12942 /* Convert a DIE tag into its string name. */
12943
12944 static char *
12945 dwarf_tag_name (unsigned tag)
12946 {
12947 switch (tag)
12948 {
12949 case DW_TAG_padding:
12950 return "DW_TAG_padding";
12951 case DW_TAG_array_type:
12952 return "DW_TAG_array_type";
12953 case DW_TAG_class_type:
12954 return "DW_TAG_class_type";
12955 case DW_TAG_entry_point:
12956 return "DW_TAG_entry_point";
12957 case DW_TAG_enumeration_type:
12958 return "DW_TAG_enumeration_type";
12959 case DW_TAG_formal_parameter:
12960 return "DW_TAG_formal_parameter";
12961 case DW_TAG_imported_declaration:
12962 return "DW_TAG_imported_declaration";
12963 case DW_TAG_label:
12964 return "DW_TAG_label";
12965 case DW_TAG_lexical_block:
12966 return "DW_TAG_lexical_block";
12967 case DW_TAG_member:
12968 return "DW_TAG_member";
12969 case DW_TAG_pointer_type:
12970 return "DW_TAG_pointer_type";
12971 case DW_TAG_reference_type:
12972 return "DW_TAG_reference_type";
12973 case DW_TAG_compile_unit:
12974 return "DW_TAG_compile_unit";
12975 case DW_TAG_string_type:
12976 return "DW_TAG_string_type";
12977 case DW_TAG_structure_type:
12978 return "DW_TAG_structure_type";
12979 case DW_TAG_subroutine_type:
12980 return "DW_TAG_subroutine_type";
12981 case DW_TAG_typedef:
12982 return "DW_TAG_typedef";
12983 case DW_TAG_union_type:
12984 return "DW_TAG_union_type";
12985 case DW_TAG_unspecified_parameters:
12986 return "DW_TAG_unspecified_parameters";
12987 case DW_TAG_variant:
12988 return "DW_TAG_variant";
12989 case DW_TAG_common_block:
12990 return "DW_TAG_common_block";
12991 case DW_TAG_common_inclusion:
12992 return "DW_TAG_common_inclusion";
12993 case DW_TAG_inheritance:
12994 return "DW_TAG_inheritance";
12995 case DW_TAG_inlined_subroutine:
12996 return "DW_TAG_inlined_subroutine";
12997 case DW_TAG_module:
12998 return "DW_TAG_module";
12999 case DW_TAG_ptr_to_member_type:
13000 return "DW_TAG_ptr_to_member_type";
13001 case DW_TAG_set_type:
13002 return "DW_TAG_set_type";
13003 case DW_TAG_subrange_type:
13004 return "DW_TAG_subrange_type";
13005 case DW_TAG_with_stmt:
13006 return "DW_TAG_with_stmt";
13007 case DW_TAG_access_declaration:
13008 return "DW_TAG_access_declaration";
13009 case DW_TAG_base_type:
13010 return "DW_TAG_base_type";
13011 case DW_TAG_catch_block:
13012 return "DW_TAG_catch_block";
13013 case DW_TAG_const_type:
13014 return "DW_TAG_const_type";
13015 case DW_TAG_constant:
13016 return "DW_TAG_constant";
13017 case DW_TAG_enumerator:
13018 return "DW_TAG_enumerator";
13019 case DW_TAG_file_type:
13020 return "DW_TAG_file_type";
13021 case DW_TAG_friend:
13022 return "DW_TAG_friend";
13023 case DW_TAG_namelist:
13024 return "DW_TAG_namelist";
13025 case DW_TAG_namelist_item:
13026 return "DW_TAG_namelist_item";
13027 case DW_TAG_packed_type:
13028 return "DW_TAG_packed_type";
13029 case DW_TAG_subprogram:
13030 return "DW_TAG_subprogram";
13031 case DW_TAG_template_type_param:
13032 return "DW_TAG_template_type_param";
13033 case DW_TAG_template_value_param:
13034 return "DW_TAG_template_value_param";
13035 case DW_TAG_thrown_type:
13036 return "DW_TAG_thrown_type";
13037 case DW_TAG_try_block:
13038 return "DW_TAG_try_block";
13039 case DW_TAG_variant_part:
13040 return "DW_TAG_variant_part";
13041 case DW_TAG_variable:
13042 return "DW_TAG_variable";
13043 case DW_TAG_volatile_type:
13044 return "DW_TAG_volatile_type";
13045 case DW_TAG_dwarf_procedure:
13046 return "DW_TAG_dwarf_procedure";
13047 case DW_TAG_restrict_type:
13048 return "DW_TAG_restrict_type";
13049 case DW_TAG_interface_type:
13050 return "DW_TAG_interface_type";
13051 case DW_TAG_namespace:
13052 return "DW_TAG_namespace";
13053 case DW_TAG_imported_module:
13054 return "DW_TAG_imported_module";
13055 case DW_TAG_unspecified_type:
13056 return "DW_TAG_unspecified_type";
13057 case DW_TAG_partial_unit:
13058 return "DW_TAG_partial_unit";
13059 case DW_TAG_imported_unit:
13060 return "DW_TAG_imported_unit";
13061 case DW_TAG_condition:
13062 return "DW_TAG_condition";
13063 case DW_TAG_shared_type:
13064 return "DW_TAG_shared_type";
13065 case DW_TAG_type_unit:
13066 return "DW_TAG_type_unit";
13067 case DW_TAG_MIPS_loop:
13068 return "DW_TAG_MIPS_loop";
13069 case DW_TAG_HP_array_descriptor:
13070 return "DW_TAG_HP_array_descriptor";
13071 case DW_TAG_format_label:
13072 return "DW_TAG_format_label";
13073 case DW_TAG_function_template:
13074 return "DW_TAG_function_template";
13075 case DW_TAG_class_template:
13076 return "DW_TAG_class_template";
13077 case DW_TAG_GNU_BINCL:
13078 return "DW_TAG_GNU_BINCL";
13079 case DW_TAG_GNU_EINCL:
13080 return "DW_TAG_GNU_EINCL";
13081 case DW_TAG_upc_shared_type:
13082 return "DW_TAG_upc_shared_type";
13083 case DW_TAG_upc_strict_type:
13084 return "DW_TAG_upc_strict_type";
13085 case DW_TAG_upc_relaxed_type:
13086 return "DW_TAG_upc_relaxed_type";
13087 case DW_TAG_PGI_kanji_type:
13088 return "DW_TAG_PGI_kanji_type";
13089 case DW_TAG_PGI_interface_block:
13090 return "DW_TAG_PGI_interface_block";
13091 case DW_TAG_GNU_call_site:
13092 return "DW_TAG_GNU_call_site";
13093 default:
13094 return "DW_TAG_<unknown>";
13095 }
13096 }
13097
13098 /* Convert a DWARF attribute code into its string name. */
13099
13100 static char *
13101 dwarf_attr_name (unsigned attr)
13102 {
13103 switch (attr)
13104 {
13105 case DW_AT_sibling:
13106 return "DW_AT_sibling";
13107 case DW_AT_location:
13108 return "DW_AT_location";
13109 case DW_AT_name:
13110 return "DW_AT_name";
13111 case DW_AT_ordering:
13112 return "DW_AT_ordering";
13113 case DW_AT_subscr_data:
13114 return "DW_AT_subscr_data";
13115 case DW_AT_byte_size:
13116 return "DW_AT_byte_size";
13117 case DW_AT_bit_offset:
13118 return "DW_AT_bit_offset";
13119 case DW_AT_bit_size:
13120 return "DW_AT_bit_size";
13121 case DW_AT_element_list:
13122 return "DW_AT_element_list";
13123 case DW_AT_stmt_list:
13124 return "DW_AT_stmt_list";
13125 case DW_AT_low_pc:
13126 return "DW_AT_low_pc";
13127 case DW_AT_high_pc:
13128 return "DW_AT_high_pc";
13129 case DW_AT_language:
13130 return "DW_AT_language";
13131 case DW_AT_member:
13132 return "DW_AT_member";
13133 case DW_AT_discr:
13134 return "DW_AT_discr";
13135 case DW_AT_discr_value:
13136 return "DW_AT_discr_value";
13137 case DW_AT_visibility:
13138 return "DW_AT_visibility";
13139 case DW_AT_import:
13140 return "DW_AT_import";
13141 case DW_AT_string_length:
13142 return "DW_AT_string_length";
13143 case DW_AT_common_reference:
13144 return "DW_AT_common_reference";
13145 case DW_AT_comp_dir:
13146 return "DW_AT_comp_dir";
13147 case DW_AT_const_value:
13148 return "DW_AT_const_value";
13149 case DW_AT_containing_type:
13150 return "DW_AT_containing_type";
13151 case DW_AT_default_value:
13152 return "DW_AT_default_value";
13153 case DW_AT_inline:
13154 return "DW_AT_inline";
13155 case DW_AT_is_optional:
13156 return "DW_AT_is_optional";
13157 case DW_AT_lower_bound:
13158 return "DW_AT_lower_bound";
13159 case DW_AT_producer:
13160 return "DW_AT_producer";
13161 case DW_AT_prototyped:
13162 return "DW_AT_prototyped";
13163 case DW_AT_return_addr:
13164 return "DW_AT_return_addr";
13165 case DW_AT_start_scope:
13166 return "DW_AT_start_scope";
13167 case DW_AT_bit_stride:
13168 return "DW_AT_bit_stride";
13169 case DW_AT_upper_bound:
13170 return "DW_AT_upper_bound";
13171 case DW_AT_abstract_origin:
13172 return "DW_AT_abstract_origin";
13173 case DW_AT_accessibility:
13174 return "DW_AT_accessibility";
13175 case DW_AT_address_class:
13176 return "DW_AT_address_class";
13177 case DW_AT_artificial:
13178 return "DW_AT_artificial";
13179 case DW_AT_base_types:
13180 return "DW_AT_base_types";
13181 case DW_AT_calling_convention:
13182 return "DW_AT_calling_convention";
13183 case DW_AT_count:
13184 return "DW_AT_count";
13185 case DW_AT_data_member_location:
13186 return "DW_AT_data_member_location";
13187 case DW_AT_decl_column:
13188 return "DW_AT_decl_column";
13189 case DW_AT_decl_file:
13190 return "DW_AT_decl_file";
13191 case DW_AT_decl_line:
13192 return "DW_AT_decl_line";
13193 case DW_AT_declaration:
13194 return "DW_AT_declaration";
13195 case DW_AT_discr_list:
13196 return "DW_AT_discr_list";
13197 case DW_AT_encoding:
13198 return "DW_AT_encoding";
13199 case DW_AT_external:
13200 return "DW_AT_external";
13201 case DW_AT_frame_base:
13202 return "DW_AT_frame_base";
13203 case DW_AT_friend:
13204 return "DW_AT_friend";
13205 case DW_AT_identifier_case:
13206 return "DW_AT_identifier_case";
13207 case DW_AT_macro_info:
13208 return "DW_AT_macro_info";
13209 case DW_AT_namelist_items:
13210 return "DW_AT_namelist_items";
13211 case DW_AT_priority:
13212 return "DW_AT_priority";
13213 case DW_AT_segment:
13214 return "DW_AT_segment";
13215 case DW_AT_specification:
13216 return "DW_AT_specification";
13217 case DW_AT_static_link:
13218 return "DW_AT_static_link";
13219 case DW_AT_type:
13220 return "DW_AT_type";
13221 case DW_AT_use_location:
13222 return "DW_AT_use_location";
13223 case DW_AT_variable_parameter:
13224 return "DW_AT_variable_parameter";
13225 case DW_AT_virtuality:
13226 return "DW_AT_virtuality";
13227 case DW_AT_vtable_elem_location:
13228 return "DW_AT_vtable_elem_location";
13229 /* DWARF 3 values. */
13230 case DW_AT_allocated:
13231 return "DW_AT_allocated";
13232 case DW_AT_associated:
13233 return "DW_AT_associated";
13234 case DW_AT_data_location:
13235 return "DW_AT_data_location";
13236 case DW_AT_byte_stride:
13237 return "DW_AT_byte_stride";
13238 case DW_AT_entry_pc:
13239 return "DW_AT_entry_pc";
13240 case DW_AT_use_UTF8:
13241 return "DW_AT_use_UTF8";
13242 case DW_AT_extension:
13243 return "DW_AT_extension";
13244 case DW_AT_ranges:
13245 return "DW_AT_ranges";
13246 case DW_AT_trampoline:
13247 return "DW_AT_trampoline";
13248 case DW_AT_call_column:
13249 return "DW_AT_call_column";
13250 case DW_AT_call_file:
13251 return "DW_AT_call_file";
13252 case DW_AT_call_line:
13253 return "DW_AT_call_line";
13254 case DW_AT_description:
13255 return "DW_AT_description";
13256 case DW_AT_binary_scale:
13257 return "DW_AT_binary_scale";
13258 case DW_AT_decimal_scale:
13259 return "DW_AT_decimal_scale";
13260 case DW_AT_small:
13261 return "DW_AT_small";
13262 case DW_AT_decimal_sign:
13263 return "DW_AT_decimal_sign";
13264 case DW_AT_digit_count:
13265 return "DW_AT_digit_count";
13266 case DW_AT_picture_string:
13267 return "DW_AT_picture_string";
13268 case DW_AT_mutable:
13269 return "DW_AT_mutable";
13270 case DW_AT_threads_scaled:
13271 return "DW_AT_threads_scaled";
13272 case DW_AT_explicit:
13273 return "DW_AT_explicit";
13274 case DW_AT_object_pointer:
13275 return "DW_AT_object_pointer";
13276 case DW_AT_endianity:
13277 return "DW_AT_endianity";
13278 case DW_AT_elemental:
13279 return "DW_AT_elemental";
13280 case DW_AT_pure:
13281 return "DW_AT_pure";
13282 case DW_AT_recursive:
13283 return "DW_AT_recursive";
13284 /* DWARF 4 values. */
13285 case DW_AT_signature:
13286 return "DW_AT_signature";
13287 case DW_AT_linkage_name:
13288 return "DW_AT_linkage_name";
13289 /* SGI/MIPS extensions. */
13290 #ifdef MIPS /* collides with DW_AT_HP_block_index */
13291 case DW_AT_MIPS_fde:
13292 return "DW_AT_MIPS_fde";
13293 #endif
13294 case DW_AT_MIPS_loop_begin:
13295 return "DW_AT_MIPS_loop_begin";
13296 case DW_AT_MIPS_tail_loop_begin:
13297 return "DW_AT_MIPS_tail_loop_begin";
13298 case DW_AT_MIPS_epilog_begin:
13299 return "DW_AT_MIPS_epilog_begin";
13300 case DW_AT_MIPS_loop_unroll_factor:
13301 return "DW_AT_MIPS_loop_unroll_factor";
13302 case DW_AT_MIPS_software_pipeline_depth:
13303 return "DW_AT_MIPS_software_pipeline_depth";
13304 case DW_AT_MIPS_linkage_name:
13305 return "DW_AT_MIPS_linkage_name";
13306 case DW_AT_MIPS_stride:
13307 return "DW_AT_MIPS_stride";
13308 case DW_AT_MIPS_abstract_name:
13309 return "DW_AT_MIPS_abstract_name";
13310 case DW_AT_MIPS_clone_origin:
13311 return "DW_AT_MIPS_clone_origin";
13312 case DW_AT_MIPS_has_inlines:
13313 return "DW_AT_MIPS_has_inlines";
13314 /* HP extensions. */
13315 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
13316 case DW_AT_HP_block_index:
13317 return "DW_AT_HP_block_index";
13318 #endif
13319 case DW_AT_HP_unmodifiable:
13320 return "DW_AT_HP_unmodifiable";
13321 case DW_AT_HP_actuals_stmt_list:
13322 return "DW_AT_HP_actuals_stmt_list";
13323 case DW_AT_HP_proc_per_section:
13324 return "DW_AT_HP_proc_per_section";
13325 case DW_AT_HP_raw_data_ptr:
13326 return "DW_AT_HP_raw_data_ptr";
13327 case DW_AT_HP_pass_by_reference:
13328 return "DW_AT_HP_pass_by_reference";
13329 case DW_AT_HP_opt_level:
13330 return "DW_AT_HP_opt_level";
13331 case DW_AT_HP_prof_version_id:
13332 return "DW_AT_HP_prof_version_id";
13333 case DW_AT_HP_opt_flags:
13334 return "DW_AT_HP_opt_flags";
13335 case DW_AT_HP_cold_region_low_pc:
13336 return "DW_AT_HP_cold_region_low_pc";
13337 case DW_AT_HP_cold_region_high_pc:
13338 return "DW_AT_HP_cold_region_high_pc";
13339 case DW_AT_HP_all_variables_modifiable:
13340 return "DW_AT_HP_all_variables_modifiable";
13341 case DW_AT_HP_linkage_name:
13342 return "DW_AT_HP_linkage_name";
13343 case DW_AT_HP_prof_flags:
13344 return "DW_AT_HP_prof_flags";
13345 /* GNU extensions. */
13346 case DW_AT_sf_names:
13347 return "DW_AT_sf_names";
13348 case DW_AT_src_info:
13349 return "DW_AT_src_info";
13350 case DW_AT_mac_info:
13351 return "DW_AT_mac_info";
13352 case DW_AT_src_coords:
13353 return "DW_AT_src_coords";
13354 case DW_AT_body_begin:
13355 return "DW_AT_body_begin";
13356 case DW_AT_body_end:
13357 return "DW_AT_body_end";
13358 case DW_AT_GNU_vector:
13359 return "DW_AT_GNU_vector";
13360 case DW_AT_GNU_odr_signature:
13361 return "DW_AT_GNU_odr_signature";
13362 /* VMS extensions. */
13363 case DW_AT_VMS_rtnbeg_pd_address:
13364 return "DW_AT_VMS_rtnbeg_pd_address";
13365 /* UPC extension. */
13366 case DW_AT_upc_threads_scaled:
13367 return "DW_AT_upc_threads_scaled";
13368 /* PGI (STMicroelectronics) extensions. */
13369 case DW_AT_PGI_lbase:
13370 return "DW_AT_PGI_lbase";
13371 case DW_AT_PGI_soffset:
13372 return "DW_AT_PGI_soffset";
13373 case DW_AT_PGI_lstride:
13374 return "DW_AT_PGI_lstride";
13375 default:
13376 return "DW_AT_<unknown>";
13377 }
13378 }
13379
13380 /* Convert a DWARF value form code into its string name. */
13381
13382 static char *
13383 dwarf_form_name (unsigned form)
13384 {
13385 switch (form)
13386 {
13387 case DW_FORM_addr:
13388 return "DW_FORM_addr";
13389 case DW_FORM_block2:
13390 return "DW_FORM_block2";
13391 case DW_FORM_block4:
13392 return "DW_FORM_block4";
13393 case DW_FORM_data2:
13394 return "DW_FORM_data2";
13395 case DW_FORM_data4:
13396 return "DW_FORM_data4";
13397 case DW_FORM_data8:
13398 return "DW_FORM_data8";
13399 case DW_FORM_string:
13400 return "DW_FORM_string";
13401 case DW_FORM_block:
13402 return "DW_FORM_block";
13403 case DW_FORM_block1:
13404 return "DW_FORM_block1";
13405 case DW_FORM_data1:
13406 return "DW_FORM_data1";
13407 case DW_FORM_flag:
13408 return "DW_FORM_flag";
13409 case DW_FORM_sdata:
13410 return "DW_FORM_sdata";
13411 case DW_FORM_strp:
13412 return "DW_FORM_strp";
13413 case DW_FORM_udata:
13414 return "DW_FORM_udata";
13415 case DW_FORM_ref_addr:
13416 return "DW_FORM_ref_addr";
13417 case DW_FORM_ref1:
13418 return "DW_FORM_ref1";
13419 case DW_FORM_ref2:
13420 return "DW_FORM_ref2";
13421 case DW_FORM_ref4:
13422 return "DW_FORM_ref4";
13423 case DW_FORM_ref8:
13424 return "DW_FORM_ref8";
13425 case DW_FORM_ref_udata:
13426 return "DW_FORM_ref_udata";
13427 case DW_FORM_indirect:
13428 return "DW_FORM_indirect";
13429 case DW_FORM_sec_offset:
13430 return "DW_FORM_sec_offset";
13431 case DW_FORM_exprloc:
13432 return "DW_FORM_exprloc";
13433 case DW_FORM_flag_present:
13434 return "DW_FORM_flag_present";
13435 case DW_FORM_ref_sig8:
13436 return "DW_FORM_ref_sig8";
13437 default:
13438 return "DW_FORM_<unknown>";
13439 }
13440 }
13441
13442 /* Convert a DWARF stack opcode into its string name. */
13443
13444 const char *
13445 dwarf_stack_op_name (unsigned op)
13446 {
13447 switch (op)
13448 {
13449 case DW_OP_addr:
13450 return "DW_OP_addr";
13451 case DW_OP_deref:
13452 return "DW_OP_deref";
13453 case DW_OP_const1u:
13454 return "DW_OP_const1u";
13455 case DW_OP_const1s:
13456 return "DW_OP_const1s";
13457 case DW_OP_const2u:
13458 return "DW_OP_const2u";
13459 case DW_OP_const2s:
13460 return "DW_OP_const2s";
13461 case DW_OP_const4u:
13462 return "DW_OP_const4u";
13463 case DW_OP_const4s:
13464 return "DW_OP_const4s";
13465 case DW_OP_const8u:
13466 return "DW_OP_const8u";
13467 case DW_OP_const8s:
13468 return "DW_OP_const8s";
13469 case DW_OP_constu:
13470 return "DW_OP_constu";
13471 case DW_OP_consts:
13472 return "DW_OP_consts";
13473 case DW_OP_dup:
13474 return "DW_OP_dup";
13475 case DW_OP_drop:
13476 return "DW_OP_drop";
13477 case DW_OP_over:
13478 return "DW_OP_over";
13479 case DW_OP_pick:
13480 return "DW_OP_pick";
13481 case DW_OP_swap:
13482 return "DW_OP_swap";
13483 case DW_OP_rot:
13484 return "DW_OP_rot";
13485 case DW_OP_xderef:
13486 return "DW_OP_xderef";
13487 case DW_OP_abs:
13488 return "DW_OP_abs";
13489 case DW_OP_and:
13490 return "DW_OP_and";
13491 case DW_OP_div:
13492 return "DW_OP_div";
13493 case DW_OP_minus:
13494 return "DW_OP_minus";
13495 case DW_OP_mod:
13496 return "DW_OP_mod";
13497 case DW_OP_mul:
13498 return "DW_OP_mul";
13499 case DW_OP_neg:
13500 return "DW_OP_neg";
13501 case DW_OP_not:
13502 return "DW_OP_not";
13503 case DW_OP_or:
13504 return "DW_OP_or";
13505 case DW_OP_plus:
13506 return "DW_OP_plus";
13507 case DW_OP_plus_uconst:
13508 return "DW_OP_plus_uconst";
13509 case DW_OP_shl:
13510 return "DW_OP_shl";
13511 case DW_OP_shr:
13512 return "DW_OP_shr";
13513 case DW_OP_shra:
13514 return "DW_OP_shra";
13515 case DW_OP_xor:
13516 return "DW_OP_xor";
13517 case DW_OP_bra:
13518 return "DW_OP_bra";
13519 case DW_OP_eq:
13520 return "DW_OP_eq";
13521 case DW_OP_ge:
13522 return "DW_OP_ge";
13523 case DW_OP_gt:
13524 return "DW_OP_gt";
13525 case DW_OP_le:
13526 return "DW_OP_le";
13527 case DW_OP_lt:
13528 return "DW_OP_lt";
13529 case DW_OP_ne:
13530 return "DW_OP_ne";
13531 case DW_OP_skip:
13532 return "DW_OP_skip";
13533 case DW_OP_lit0:
13534 return "DW_OP_lit0";
13535 case DW_OP_lit1:
13536 return "DW_OP_lit1";
13537 case DW_OP_lit2:
13538 return "DW_OP_lit2";
13539 case DW_OP_lit3:
13540 return "DW_OP_lit3";
13541 case DW_OP_lit4:
13542 return "DW_OP_lit4";
13543 case DW_OP_lit5:
13544 return "DW_OP_lit5";
13545 case DW_OP_lit6:
13546 return "DW_OP_lit6";
13547 case DW_OP_lit7:
13548 return "DW_OP_lit7";
13549 case DW_OP_lit8:
13550 return "DW_OP_lit8";
13551 case DW_OP_lit9:
13552 return "DW_OP_lit9";
13553 case DW_OP_lit10:
13554 return "DW_OP_lit10";
13555 case DW_OP_lit11:
13556 return "DW_OP_lit11";
13557 case DW_OP_lit12:
13558 return "DW_OP_lit12";
13559 case DW_OP_lit13:
13560 return "DW_OP_lit13";
13561 case DW_OP_lit14:
13562 return "DW_OP_lit14";
13563 case DW_OP_lit15:
13564 return "DW_OP_lit15";
13565 case DW_OP_lit16:
13566 return "DW_OP_lit16";
13567 case DW_OP_lit17:
13568 return "DW_OP_lit17";
13569 case DW_OP_lit18:
13570 return "DW_OP_lit18";
13571 case DW_OP_lit19:
13572 return "DW_OP_lit19";
13573 case DW_OP_lit20:
13574 return "DW_OP_lit20";
13575 case DW_OP_lit21:
13576 return "DW_OP_lit21";
13577 case DW_OP_lit22:
13578 return "DW_OP_lit22";
13579 case DW_OP_lit23:
13580 return "DW_OP_lit23";
13581 case DW_OP_lit24:
13582 return "DW_OP_lit24";
13583 case DW_OP_lit25:
13584 return "DW_OP_lit25";
13585 case DW_OP_lit26:
13586 return "DW_OP_lit26";
13587 case DW_OP_lit27:
13588 return "DW_OP_lit27";
13589 case DW_OP_lit28:
13590 return "DW_OP_lit28";
13591 case DW_OP_lit29:
13592 return "DW_OP_lit29";
13593 case DW_OP_lit30:
13594 return "DW_OP_lit30";
13595 case DW_OP_lit31:
13596 return "DW_OP_lit31";
13597 case DW_OP_reg0:
13598 return "DW_OP_reg0";
13599 case DW_OP_reg1:
13600 return "DW_OP_reg1";
13601 case DW_OP_reg2:
13602 return "DW_OP_reg2";
13603 case DW_OP_reg3:
13604 return "DW_OP_reg3";
13605 case DW_OP_reg4:
13606 return "DW_OP_reg4";
13607 case DW_OP_reg5:
13608 return "DW_OP_reg5";
13609 case DW_OP_reg6:
13610 return "DW_OP_reg6";
13611 case DW_OP_reg7:
13612 return "DW_OP_reg7";
13613 case DW_OP_reg8:
13614 return "DW_OP_reg8";
13615 case DW_OP_reg9:
13616 return "DW_OP_reg9";
13617 case DW_OP_reg10:
13618 return "DW_OP_reg10";
13619 case DW_OP_reg11:
13620 return "DW_OP_reg11";
13621 case DW_OP_reg12:
13622 return "DW_OP_reg12";
13623 case DW_OP_reg13:
13624 return "DW_OP_reg13";
13625 case DW_OP_reg14:
13626 return "DW_OP_reg14";
13627 case DW_OP_reg15:
13628 return "DW_OP_reg15";
13629 case DW_OP_reg16:
13630 return "DW_OP_reg16";
13631 case DW_OP_reg17:
13632 return "DW_OP_reg17";
13633 case DW_OP_reg18:
13634 return "DW_OP_reg18";
13635 case DW_OP_reg19:
13636 return "DW_OP_reg19";
13637 case DW_OP_reg20:
13638 return "DW_OP_reg20";
13639 case DW_OP_reg21:
13640 return "DW_OP_reg21";
13641 case DW_OP_reg22:
13642 return "DW_OP_reg22";
13643 case DW_OP_reg23:
13644 return "DW_OP_reg23";
13645 case DW_OP_reg24:
13646 return "DW_OP_reg24";
13647 case DW_OP_reg25:
13648 return "DW_OP_reg25";
13649 case DW_OP_reg26:
13650 return "DW_OP_reg26";
13651 case DW_OP_reg27:
13652 return "DW_OP_reg27";
13653 case DW_OP_reg28:
13654 return "DW_OP_reg28";
13655 case DW_OP_reg29:
13656 return "DW_OP_reg29";
13657 case DW_OP_reg30:
13658 return "DW_OP_reg30";
13659 case DW_OP_reg31:
13660 return "DW_OP_reg31";
13661 case DW_OP_breg0:
13662 return "DW_OP_breg0";
13663 case DW_OP_breg1:
13664 return "DW_OP_breg1";
13665 case DW_OP_breg2:
13666 return "DW_OP_breg2";
13667 case DW_OP_breg3:
13668 return "DW_OP_breg3";
13669 case DW_OP_breg4:
13670 return "DW_OP_breg4";
13671 case DW_OP_breg5:
13672 return "DW_OP_breg5";
13673 case DW_OP_breg6:
13674 return "DW_OP_breg6";
13675 case DW_OP_breg7:
13676 return "DW_OP_breg7";
13677 case DW_OP_breg8:
13678 return "DW_OP_breg8";
13679 case DW_OP_breg9:
13680 return "DW_OP_breg9";
13681 case DW_OP_breg10:
13682 return "DW_OP_breg10";
13683 case DW_OP_breg11:
13684 return "DW_OP_breg11";
13685 case DW_OP_breg12:
13686 return "DW_OP_breg12";
13687 case DW_OP_breg13:
13688 return "DW_OP_breg13";
13689 case DW_OP_breg14:
13690 return "DW_OP_breg14";
13691 case DW_OP_breg15:
13692 return "DW_OP_breg15";
13693 case DW_OP_breg16:
13694 return "DW_OP_breg16";
13695 case DW_OP_breg17:
13696 return "DW_OP_breg17";
13697 case DW_OP_breg18:
13698 return "DW_OP_breg18";
13699 case DW_OP_breg19:
13700 return "DW_OP_breg19";
13701 case DW_OP_breg20:
13702 return "DW_OP_breg20";
13703 case DW_OP_breg21:
13704 return "DW_OP_breg21";
13705 case DW_OP_breg22:
13706 return "DW_OP_breg22";
13707 case DW_OP_breg23:
13708 return "DW_OP_breg23";
13709 case DW_OP_breg24:
13710 return "DW_OP_breg24";
13711 case DW_OP_breg25:
13712 return "DW_OP_breg25";
13713 case DW_OP_breg26:
13714 return "DW_OP_breg26";
13715 case DW_OP_breg27:
13716 return "DW_OP_breg27";
13717 case DW_OP_breg28:
13718 return "DW_OP_breg28";
13719 case DW_OP_breg29:
13720 return "DW_OP_breg29";
13721 case DW_OP_breg30:
13722 return "DW_OP_breg30";
13723 case DW_OP_breg31:
13724 return "DW_OP_breg31";
13725 case DW_OP_regx:
13726 return "DW_OP_regx";
13727 case DW_OP_fbreg:
13728 return "DW_OP_fbreg";
13729 case DW_OP_bregx:
13730 return "DW_OP_bregx";
13731 case DW_OP_piece:
13732 return "DW_OP_piece";
13733 case DW_OP_deref_size:
13734 return "DW_OP_deref_size";
13735 case DW_OP_xderef_size:
13736 return "DW_OP_xderef_size";
13737 case DW_OP_nop:
13738 return "DW_OP_nop";
13739 /* DWARF 3 extensions. */
13740 case DW_OP_push_object_address:
13741 return "DW_OP_push_object_address";
13742 case DW_OP_call2:
13743 return "DW_OP_call2";
13744 case DW_OP_call4:
13745 return "DW_OP_call4";
13746 case DW_OP_call_ref:
13747 return "DW_OP_call_ref";
13748 case DW_OP_form_tls_address:
13749 return "DW_OP_form_tls_address";
13750 case DW_OP_call_frame_cfa:
13751 return "DW_OP_call_frame_cfa";
13752 case DW_OP_bit_piece:
13753 return "DW_OP_bit_piece";
13754 /* DWARF 4 extensions. */
13755 case DW_OP_implicit_value:
13756 return "DW_OP_implicit_value";
13757 case DW_OP_stack_value:
13758 return "DW_OP_stack_value";
13759 /* GNU extensions. */
13760 case DW_OP_GNU_push_tls_address:
13761 return "DW_OP_GNU_push_tls_address";
13762 case DW_OP_GNU_uninit:
13763 return "DW_OP_GNU_uninit";
13764 case DW_OP_GNU_implicit_pointer:
13765 return "DW_OP_GNU_implicit_pointer";
13766 case DW_OP_GNU_entry_value:
13767 return "DW_OP_GNU_entry_value";
13768 case DW_OP_GNU_const_type:
13769 return "DW_OP_GNU_const_type";
13770 case DW_OP_GNU_regval_type:
13771 return "DW_OP_GNU_regval_type";
13772 case DW_OP_GNU_deref_type:
13773 return "DW_OP_GNU_deref_type";
13774 case DW_OP_GNU_convert:
13775 return "DW_OP_GNU_convert";
13776 case DW_OP_GNU_reinterpret:
13777 return "DW_OP_GNU_reinterpret";
13778 default:
13779 return NULL;
13780 }
13781 }
13782
13783 static char *
13784 dwarf_bool_name (unsigned mybool)
13785 {
13786 if (mybool)
13787 return "TRUE";
13788 else
13789 return "FALSE";
13790 }
13791
13792 /* Convert a DWARF type code into its string name. */
13793
13794 static char *
13795 dwarf_type_encoding_name (unsigned enc)
13796 {
13797 switch (enc)
13798 {
13799 case DW_ATE_void:
13800 return "DW_ATE_void";
13801 case DW_ATE_address:
13802 return "DW_ATE_address";
13803 case DW_ATE_boolean:
13804 return "DW_ATE_boolean";
13805 case DW_ATE_complex_float:
13806 return "DW_ATE_complex_float";
13807 case DW_ATE_float:
13808 return "DW_ATE_float";
13809 case DW_ATE_signed:
13810 return "DW_ATE_signed";
13811 case DW_ATE_signed_char:
13812 return "DW_ATE_signed_char";
13813 case DW_ATE_unsigned:
13814 return "DW_ATE_unsigned";
13815 case DW_ATE_unsigned_char:
13816 return "DW_ATE_unsigned_char";
13817 /* DWARF 3. */
13818 case DW_ATE_imaginary_float:
13819 return "DW_ATE_imaginary_float";
13820 case DW_ATE_packed_decimal:
13821 return "DW_ATE_packed_decimal";
13822 case DW_ATE_numeric_string:
13823 return "DW_ATE_numeric_string";
13824 case DW_ATE_edited:
13825 return "DW_ATE_edited";
13826 case DW_ATE_signed_fixed:
13827 return "DW_ATE_signed_fixed";
13828 case DW_ATE_unsigned_fixed:
13829 return "DW_ATE_unsigned_fixed";
13830 case DW_ATE_decimal_float:
13831 return "DW_ATE_decimal_float";
13832 /* DWARF 4. */
13833 case DW_ATE_UTF:
13834 return "DW_ATE_UTF";
13835 /* HP extensions. */
13836 case DW_ATE_HP_float80:
13837 return "DW_ATE_HP_float80";
13838 case DW_ATE_HP_complex_float80:
13839 return "DW_ATE_HP_complex_float80";
13840 case DW_ATE_HP_float128:
13841 return "DW_ATE_HP_float128";
13842 case DW_ATE_HP_complex_float128:
13843 return "DW_ATE_HP_complex_float128";
13844 case DW_ATE_HP_floathpintel:
13845 return "DW_ATE_HP_floathpintel";
13846 case DW_ATE_HP_imaginary_float80:
13847 return "DW_ATE_HP_imaginary_float80";
13848 case DW_ATE_HP_imaginary_float128:
13849 return "DW_ATE_HP_imaginary_float128";
13850 default:
13851 return "DW_ATE_<unknown>";
13852 }
13853 }
13854
13855 /* Convert a DWARF call frame info operation to its string name. */
13856
13857 #if 0
13858 static char *
13859 dwarf_cfi_name (unsigned cfi_opc)
13860 {
13861 switch (cfi_opc)
13862 {
13863 case DW_CFA_advance_loc:
13864 return "DW_CFA_advance_loc";
13865 case DW_CFA_offset:
13866 return "DW_CFA_offset";
13867 case DW_CFA_restore:
13868 return "DW_CFA_restore";
13869 case DW_CFA_nop:
13870 return "DW_CFA_nop";
13871 case DW_CFA_set_loc:
13872 return "DW_CFA_set_loc";
13873 case DW_CFA_advance_loc1:
13874 return "DW_CFA_advance_loc1";
13875 case DW_CFA_advance_loc2:
13876 return "DW_CFA_advance_loc2";
13877 case DW_CFA_advance_loc4:
13878 return "DW_CFA_advance_loc4";
13879 case DW_CFA_offset_extended:
13880 return "DW_CFA_offset_extended";
13881 case DW_CFA_restore_extended:
13882 return "DW_CFA_restore_extended";
13883 case DW_CFA_undefined:
13884 return "DW_CFA_undefined";
13885 case DW_CFA_same_value:
13886 return "DW_CFA_same_value";
13887 case DW_CFA_register:
13888 return "DW_CFA_register";
13889 case DW_CFA_remember_state:
13890 return "DW_CFA_remember_state";
13891 case DW_CFA_restore_state:
13892 return "DW_CFA_restore_state";
13893 case DW_CFA_def_cfa:
13894 return "DW_CFA_def_cfa";
13895 case DW_CFA_def_cfa_register:
13896 return "DW_CFA_def_cfa_register";
13897 case DW_CFA_def_cfa_offset:
13898 return "DW_CFA_def_cfa_offset";
13899 /* DWARF 3. */
13900 case DW_CFA_def_cfa_expression:
13901 return "DW_CFA_def_cfa_expression";
13902 case DW_CFA_expression:
13903 return "DW_CFA_expression";
13904 case DW_CFA_offset_extended_sf:
13905 return "DW_CFA_offset_extended_sf";
13906 case DW_CFA_def_cfa_sf:
13907 return "DW_CFA_def_cfa_sf";
13908 case DW_CFA_def_cfa_offset_sf:
13909 return "DW_CFA_def_cfa_offset_sf";
13910 case DW_CFA_val_offset:
13911 return "DW_CFA_val_offset";
13912 case DW_CFA_val_offset_sf:
13913 return "DW_CFA_val_offset_sf";
13914 case DW_CFA_val_expression:
13915 return "DW_CFA_val_expression";
13916 /* SGI/MIPS specific. */
13917 case DW_CFA_MIPS_advance_loc8:
13918 return "DW_CFA_MIPS_advance_loc8";
13919 /* GNU extensions. */
13920 case DW_CFA_GNU_window_save:
13921 return "DW_CFA_GNU_window_save";
13922 case DW_CFA_GNU_args_size:
13923 return "DW_CFA_GNU_args_size";
13924 case DW_CFA_GNU_negative_offset_extended:
13925 return "DW_CFA_GNU_negative_offset_extended";
13926 default:
13927 return "DW_CFA_<unknown>";
13928 }
13929 }
13930 #endif
13931
13932 static void
13933 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13934 {
13935 unsigned int i;
13936
13937 print_spaces (indent, f);
13938 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13939 dwarf_tag_name (die->tag), die->abbrev, die->offset);
13940
13941 if (die->parent != NULL)
13942 {
13943 print_spaces (indent, f);
13944 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13945 die->parent->offset);
13946 }
13947
13948 print_spaces (indent, f);
13949 fprintf_unfiltered (f, " has children: %s\n",
13950 dwarf_bool_name (die->child != NULL));
13951
13952 print_spaces (indent, f);
13953 fprintf_unfiltered (f, " attributes:\n");
13954
13955 for (i = 0; i < die->num_attrs; ++i)
13956 {
13957 print_spaces (indent, f);
13958 fprintf_unfiltered (f, " %s (%s) ",
13959 dwarf_attr_name (die->attrs[i].name),
13960 dwarf_form_name (die->attrs[i].form));
13961
13962 switch (die->attrs[i].form)
13963 {
13964 case DW_FORM_ref_addr:
13965 case DW_FORM_addr:
13966 fprintf_unfiltered (f, "address: ");
13967 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13968 break;
13969 case DW_FORM_block2:
13970 case DW_FORM_block4:
13971 case DW_FORM_block:
13972 case DW_FORM_block1:
13973 fprintf_unfiltered (f, "block: size %d",
13974 DW_BLOCK (&die->attrs[i])->size);
13975 break;
13976 case DW_FORM_exprloc:
13977 fprintf_unfiltered (f, "expression: size %u",
13978 DW_BLOCK (&die->attrs[i])->size);
13979 break;
13980 case DW_FORM_ref1:
13981 case DW_FORM_ref2:
13982 case DW_FORM_ref4:
13983 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13984 (long) (DW_ADDR (&die->attrs[i])));
13985 break;
13986 case DW_FORM_data1:
13987 case DW_FORM_data2:
13988 case DW_FORM_data4:
13989 case DW_FORM_data8:
13990 case DW_FORM_udata:
13991 case DW_FORM_sdata:
13992 fprintf_unfiltered (f, "constant: %s",
13993 pulongest (DW_UNSND (&die->attrs[i])));
13994 break;
13995 case DW_FORM_sec_offset:
13996 fprintf_unfiltered (f, "section offset: %s",
13997 pulongest (DW_UNSND (&die->attrs[i])));
13998 break;
13999 case DW_FORM_ref_sig8:
14000 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
14001 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
14002 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset);
14003 else
14004 fprintf_unfiltered (f, "signatured type, offset: unknown");
14005 break;
14006 case DW_FORM_string:
14007 case DW_FORM_strp:
14008 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
14009 DW_STRING (&die->attrs[i])
14010 ? DW_STRING (&die->attrs[i]) : "",
14011 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
14012 break;
14013 case DW_FORM_flag:
14014 if (DW_UNSND (&die->attrs[i]))
14015 fprintf_unfiltered (f, "flag: TRUE");
14016 else
14017 fprintf_unfiltered (f, "flag: FALSE");
14018 break;
14019 case DW_FORM_flag_present:
14020 fprintf_unfiltered (f, "flag: TRUE");
14021 break;
14022 case DW_FORM_indirect:
14023 /* The reader will have reduced the indirect form to
14024 the "base form" so this form should not occur. */
14025 fprintf_unfiltered (f,
14026 "unexpected attribute form: DW_FORM_indirect");
14027 break;
14028 default:
14029 fprintf_unfiltered (f, "unsupported attribute form: %d.",
14030 die->attrs[i].form);
14031 break;
14032 }
14033 fprintf_unfiltered (f, "\n");
14034 }
14035 }
14036
14037 static void
14038 dump_die_for_error (struct die_info *die)
14039 {
14040 dump_die_shallow (gdb_stderr, 0, die);
14041 }
14042
14043 static void
14044 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
14045 {
14046 int indent = level * 4;
14047
14048 gdb_assert (die != NULL);
14049
14050 if (level >= max_level)
14051 return;
14052
14053 dump_die_shallow (f, indent, die);
14054
14055 if (die->child != NULL)
14056 {
14057 print_spaces (indent, f);
14058 fprintf_unfiltered (f, " Children:");
14059 if (level + 1 < max_level)
14060 {
14061 fprintf_unfiltered (f, "\n");
14062 dump_die_1 (f, level + 1, max_level, die->child);
14063 }
14064 else
14065 {
14066 fprintf_unfiltered (f,
14067 " [not printed, max nesting level reached]\n");
14068 }
14069 }
14070
14071 if (die->sibling != NULL && level > 0)
14072 {
14073 dump_die_1 (f, level, max_level, die->sibling);
14074 }
14075 }
14076
14077 /* This is called from the pdie macro in gdbinit.in.
14078 It's not static so gcc will keep a copy callable from gdb. */
14079
14080 void
14081 dump_die (struct die_info *die, int max_level)
14082 {
14083 dump_die_1 (gdb_stdlog, 0, max_level, die);
14084 }
14085
14086 static void
14087 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14088 {
14089 void **slot;
14090
14091 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
14092
14093 *slot = die;
14094 }
14095
14096 static int
14097 is_ref_attr (struct attribute *attr)
14098 {
14099 switch (attr->form)
14100 {
14101 case DW_FORM_ref_addr:
14102 case DW_FORM_ref1:
14103 case DW_FORM_ref2:
14104 case DW_FORM_ref4:
14105 case DW_FORM_ref8:
14106 case DW_FORM_ref_udata:
14107 return 1;
14108 default:
14109 return 0;
14110 }
14111 }
14112
14113 static unsigned int
14114 dwarf2_get_ref_die_offset (struct attribute *attr)
14115 {
14116 if (is_ref_attr (attr))
14117 return DW_ADDR (attr);
14118
14119 complaint (&symfile_complaints,
14120 _("unsupported die ref attribute form: '%s'"),
14121 dwarf_form_name (attr->form));
14122 return 0;
14123 }
14124
14125 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14126 * the value held by the attribute is not constant. */
14127
14128 static LONGEST
14129 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14130 {
14131 if (attr->form == DW_FORM_sdata)
14132 return DW_SND (attr);
14133 else if (attr->form == DW_FORM_udata
14134 || attr->form == DW_FORM_data1
14135 || attr->form == DW_FORM_data2
14136 || attr->form == DW_FORM_data4
14137 || attr->form == DW_FORM_data8)
14138 return DW_UNSND (attr);
14139 else
14140 {
14141 complaint (&symfile_complaints,
14142 _("Attribute value is not a constant (%s)"),
14143 dwarf_form_name (attr->form));
14144 return default_value;
14145 }
14146 }
14147
14148 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14149 unit and add it to our queue.
14150 The result is non-zero if PER_CU was queued, otherwise the result is zero
14151 meaning either PER_CU is already queued or it is already loaded. */
14152
14153 static int
14154 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14155 struct dwarf2_per_cu_data *per_cu)
14156 {
14157 /* We may arrive here during partial symbol reading, if we need full
14158 DIEs to process an unusual case (e.g. template arguments). Do
14159 not queue PER_CU, just tell our caller to load its DIEs. */
14160 if (dwarf2_per_objfile->reading_partial_symbols)
14161 {
14162 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14163 return 1;
14164 return 0;
14165 }
14166
14167 /* Mark the dependence relation so that we don't flush PER_CU
14168 too early. */
14169 dwarf2_add_dependence (this_cu, per_cu);
14170
14171 /* If it's already on the queue, we have nothing to do. */
14172 if (per_cu->queued)
14173 return 0;
14174
14175 /* If the compilation unit is already loaded, just mark it as
14176 used. */
14177 if (per_cu->cu != NULL)
14178 {
14179 per_cu->cu->last_used = 0;
14180 return 0;
14181 }
14182
14183 /* Add it to the queue. */
14184 queue_comp_unit (per_cu, this_cu->objfile);
14185
14186 return 1;
14187 }
14188
14189 /* Follow reference or signature attribute ATTR of SRC_DIE.
14190 On entry *REF_CU is the CU of SRC_DIE.
14191 On exit *REF_CU is the CU of the result. */
14192
14193 static struct die_info *
14194 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14195 struct dwarf2_cu **ref_cu)
14196 {
14197 struct die_info *die;
14198
14199 if (is_ref_attr (attr))
14200 die = follow_die_ref (src_die, attr, ref_cu);
14201 else if (attr->form == DW_FORM_ref_sig8)
14202 die = follow_die_sig (src_die, attr, ref_cu);
14203 else
14204 {
14205 dump_die_for_error (src_die);
14206 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14207 (*ref_cu)->objfile->name);
14208 }
14209
14210 return die;
14211 }
14212
14213 /* Follow reference OFFSET.
14214 On entry *REF_CU is the CU of the source die referencing OFFSET.
14215 On exit *REF_CU is the CU of the result.
14216 Returns NULL if OFFSET is invalid. */
14217
14218 static struct die_info *
14219 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
14220 {
14221 struct die_info temp_die;
14222 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14223
14224 gdb_assert (cu->per_cu != NULL);
14225
14226 target_cu = cu;
14227
14228 if (cu->per_cu->debug_type_section)
14229 {
14230 /* .debug_types CUs cannot reference anything outside their CU.
14231 If they need to, they have to reference a signatured type via
14232 DW_FORM_ref_sig8. */
14233 if (! offset_in_cu_p (&cu->header, offset))
14234 return NULL;
14235 }
14236 else if (! offset_in_cu_p (&cu->header, offset))
14237 {
14238 struct dwarf2_per_cu_data *per_cu;
14239
14240 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14241
14242 /* If necessary, add it to the queue and load its DIEs. */
14243 if (maybe_queue_comp_unit (cu, per_cu))
14244 load_full_comp_unit (per_cu, cu->objfile);
14245
14246 target_cu = per_cu->cu;
14247 }
14248 else if (cu->dies == NULL)
14249 {
14250 /* We're loading full DIEs during partial symbol reading. */
14251 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14252 load_full_comp_unit (cu->per_cu, cu->objfile);
14253 }
14254
14255 *ref_cu = target_cu;
14256 temp_die.offset = offset;
14257 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
14258 }
14259
14260 /* Follow reference attribute ATTR of SRC_DIE.
14261 On entry *REF_CU is the CU of SRC_DIE.
14262 On exit *REF_CU is the CU of the result. */
14263
14264 static struct die_info *
14265 follow_die_ref (struct die_info *src_die, struct attribute *attr,
14266 struct dwarf2_cu **ref_cu)
14267 {
14268 unsigned int offset = dwarf2_get_ref_die_offset (attr);
14269 struct dwarf2_cu *cu = *ref_cu;
14270 struct die_info *die;
14271
14272 die = follow_die_offset (offset, ref_cu);
14273 if (!die)
14274 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14275 "at 0x%x [in module %s]"),
14276 offset, src_die->offset, cu->objfile->name);
14277
14278 return die;
14279 }
14280
14281 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14282 Returned value is intended for DW_OP_call*. Returned
14283 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
14284
14285 struct dwarf2_locexpr_baton
14286 dwarf2_fetch_die_location_block (unsigned int offset,
14287 struct dwarf2_per_cu_data *per_cu,
14288 CORE_ADDR (*get_frame_pc) (void *baton),
14289 void *baton)
14290 {
14291 struct dwarf2_cu *cu;
14292 struct die_info *die;
14293 struct attribute *attr;
14294 struct dwarf2_locexpr_baton retval;
14295
14296 dw2_setup (per_cu->objfile);
14297
14298 if (per_cu->cu == NULL)
14299 load_cu (per_cu);
14300 cu = per_cu->cu;
14301
14302 die = follow_die_offset (offset, &cu);
14303 if (!die)
14304 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14305 offset, per_cu->cu->objfile->name);
14306
14307 attr = dwarf2_attr (die, DW_AT_location, cu);
14308 if (!attr)
14309 {
14310 /* DWARF: "If there is no such attribute, then there is no effect.".
14311 DATA is ignored if SIZE is 0. */
14312
14313 retval.data = NULL;
14314 retval.size = 0;
14315 }
14316 else if (attr_form_is_section_offset (attr))
14317 {
14318 struct dwarf2_loclist_baton loclist_baton;
14319 CORE_ADDR pc = (*get_frame_pc) (baton);
14320 size_t size;
14321
14322 fill_in_loclist_baton (cu, &loclist_baton, attr);
14323
14324 retval.data = dwarf2_find_location_expression (&loclist_baton,
14325 &size, pc);
14326 retval.size = size;
14327 }
14328 else
14329 {
14330 if (!attr_form_is_block (attr))
14331 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14332 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14333 offset, per_cu->cu->objfile->name);
14334
14335 retval.data = DW_BLOCK (attr)->data;
14336 retval.size = DW_BLOCK (attr)->size;
14337 }
14338 retval.per_cu = cu->per_cu;
14339
14340 age_cached_comp_units ();
14341
14342 return retval;
14343 }
14344
14345 /* Return the type of the DIE at DIE_OFFSET in the CU named by
14346 PER_CU. */
14347
14348 struct type *
14349 dwarf2_get_die_type (unsigned int die_offset,
14350 struct dwarf2_per_cu_data *per_cu)
14351 {
14352 dw2_setup (per_cu->objfile);
14353 return get_die_type_at_offset (die_offset, per_cu);
14354 }
14355
14356 /* Follow the signature attribute ATTR in SRC_DIE.
14357 On entry *REF_CU is the CU of SRC_DIE.
14358 On exit *REF_CU is the CU of the result. */
14359
14360 static struct die_info *
14361 follow_die_sig (struct die_info *src_die, struct attribute *attr,
14362 struct dwarf2_cu **ref_cu)
14363 {
14364 struct objfile *objfile = (*ref_cu)->objfile;
14365 struct die_info temp_die;
14366 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14367 struct dwarf2_cu *sig_cu;
14368 struct die_info *die;
14369
14370 /* sig_type will be NULL if the signatured type is missing from
14371 the debug info. */
14372 if (sig_type == NULL)
14373 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14374 "at 0x%x [in module %s]"),
14375 src_die->offset, objfile->name);
14376
14377 /* If necessary, add it to the queue and load its DIEs. */
14378
14379 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14380 read_signatured_type (objfile, sig_type);
14381
14382 gdb_assert (sig_type->per_cu.cu != NULL);
14383
14384 sig_cu = sig_type->per_cu.cu;
14385 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
14386 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
14387 if (die)
14388 {
14389 *ref_cu = sig_cu;
14390 return die;
14391 }
14392
14393 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14394 "from DIE at 0x%x [in module %s]"),
14395 sig_type->type_offset, src_die->offset, objfile->name);
14396 }
14397
14398 /* Given an offset of a signatured type, return its signatured_type. */
14399
14400 static struct signatured_type *
14401 lookup_signatured_type_at_offset (struct objfile *objfile,
14402 struct dwarf2_section_info *section,
14403 unsigned int offset)
14404 {
14405 gdb_byte *info_ptr = section->buffer + offset;
14406 unsigned int length, initial_length_size;
14407 unsigned int sig_offset;
14408 struct signatured_type find_entry, *type_sig;
14409
14410 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14411 sig_offset = (initial_length_size
14412 + 2 /*version*/
14413 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14414 + 1 /*address_size*/);
14415 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14416 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14417
14418 /* This is only used to lookup previously recorded types.
14419 If we didn't find it, it's our bug. */
14420 gdb_assert (type_sig != NULL);
14421 gdb_assert (offset == type_sig->per_cu.offset);
14422
14423 return type_sig;
14424 }
14425
14426 /* Read in signatured type at OFFSET and build its CU and die(s). */
14427
14428 static void
14429 read_signatured_type_at_offset (struct objfile *objfile,
14430 struct dwarf2_section_info *sect,
14431 unsigned int offset)
14432 {
14433 struct signatured_type *type_sig;
14434
14435 dwarf2_read_section (objfile, sect);
14436
14437 /* We have the section offset, but we need the signature to do the
14438 hash table lookup. */
14439 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
14440
14441 gdb_assert (type_sig->per_cu.cu == NULL);
14442
14443 read_signatured_type (objfile, type_sig);
14444
14445 gdb_assert (type_sig->per_cu.cu != NULL);
14446 }
14447
14448 /* Read in a signatured type and build its CU and DIEs. */
14449
14450 static void
14451 read_signatured_type (struct objfile *objfile,
14452 struct signatured_type *type_sig)
14453 {
14454 gdb_byte *types_ptr;
14455 struct die_reader_specs reader_specs;
14456 struct dwarf2_cu *cu;
14457 ULONGEST signature;
14458 struct cleanup *back_to, *free_cu_cleanup;
14459 struct dwarf2_section_info *section = type_sig->per_cu.debug_type_section;
14460
14461 dwarf2_read_section (objfile, section);
14462 types_ptr = section->buffer + type_sig->per_cu.offset;
14463
14464 gdb_assert (type_sig->per_cu.cu == NULL);
14465
14466 cu = xmalloc (sizeof (*cu));
14467 init_one_comp_unit (cu, objfile);
14468
14469 type_sig->per_cu.cu = cu;
14470 cu->per_cu = &type_sig->per_cu;
14471
14472 /* If an error occurs while loading, release our storage. */
14473 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
14474
14475 types_ptr = read_type_comp_unit_head (&cu->header, section, &signature,
14476 types_ptr, objfile->obfd);
14477 gdb_assert (signature == type_sig->signature);
14478
14479 cu->die_hash
14480 = htab_create_alloc_ex (cu->header.length / 12,
14481 die_hash,
14482 die_eq,
14483 NULL,
14484 &cu->comp_unit_obstack,
14485 hashtab_obstack_allocate,
14486 dummy_obstack_deallocate);
14487
14488 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
14489 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14490
14491 init_cu_die_reader (&reader_specs, cu);
14492
14493 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14494 NULL /*parent*/);
14495
14496 /* We try not to read any attributes in this function, because not
14497 all objfiles needed for references have been loaded yet, and symbol
14498 table processing isn't initialized. But we have to set the CU language,
14499 or we won't be able to build types correctly. */
14500 prepare_one_comp_unit (cu, cu->dies);
14501
14502 do_cleanups (back_to);
14503
14504 /* We've successfully allocated this compilation unit. Let our caller
14505 clean it up when finished with it. */
14506 discard_cleanups (free_cu_cleanup);
14507
14508 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14509 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
14510 }
14511
14512 /* Decode simple location descriptions.
14513 Given a pointer to a dwarf block that defines a location, compute
14514 the location and return the value.
14515
14516 NOTE drow/2003-11-18: This function is called in two situations
14517 now: for the address of static or global variables (partial symbols
14518 only) and for offsets into structures which are expected to be
14519 (more or less) constant. The partial symbol case should go away,
14520 and only the constant case should remain. That will let this
14521 function complain more accurately. A few special modes are allowed
14522 without complaint for global variables (for instance, global
14523 register values and thread-local values).
14524
14525 A location description containing no operations indicates that the
14526 object is optimized out. The return value is 0 for that case.
14527 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14528 callers will only want a very basic result and this can become a
14529 complaint.
14530
14531 Note that stack[0] is unused except as a default error return. */
14532
14533 static CORE_ADDR
14534 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14535 {
14536 struct objfile *objfile = cu->objfile;
14537 int i;
14538 int size = blk->size;
14539 gdb_byte *data = blk->data;
14540 CORE_ADDR stack[64];
14541 int stacki;
14542 unsigned int bytes_read, unsnd;
14543 gdb_byte op;
14544
14545 i = 0;
14546 stacki = 0;
14547 stack[stacki] = 0;
14548 stack[++stacki] = 0;
14549
14550 while (i < size)
14551 {
14552 op = data[i++];
14553 switch (op)
14554 {
14555 case DW_OP_lit0:
14556 case DW_OP_lit1:
14557 case DW_OP_lit2:
14558 case DW_OP_lit3:
14559 case DW_OP_lit4:
14560 case DW_OP_lit5:
14561 case DW_OP_lit6:
14562 case DW_OP_lit7:
14563 case DW_OP_lit8:
14564 case DW_OP_lit9:
14565 case DW_OP_lit10:
14566 case DW_OP_lit11:
14567 case DW_OP_lit12:
14568 case DW_OP_lit13:
14569 case DW_OP_lit14:
14570 case DW_OP_lit15:
14571 case DW_OP_lit16:
14572 case DW_OP_lit17:
14573 case DW_OP_lit18:
14574 case DW_OP_lit19:
14575 case DW_OP_lit20:
14576 case DW_OP_lit21:
14577 case DW_OP_lit22:
14578 case DW_OP_lit23:
14579 case DW_OP_lit24:
14580 case DW_OP_lit25:
14581 case DW_OP_lit26:
14582 case DW_OP_lit27:
14583 case DW_OP_lit28:
14584 case DW_OP_lit29:
14585 case DW_OP_lit30:
14586 case DW_OP_lit31:
14587 stack[++stacki] = op - DW_OP_lit0;
14588 break;
14589
14590 case DW_OP_reg0:
14591 case DW_OP_reg1:
14592 case DW_OP_reg2:
14593 case DW_OP_reg3:
14594 case DW_OP_reg4:
14595 case DW_OP_reg5:
14596 case DW_OP_reg6:
14597 case DW_OP_reg7:
14598 case DW_OP_reg8:
14599 case DW_OP_reg9:
14600 case DW_OP_reg10:
14601 case DW_OP_reg11:
14602 case DW_OP_reg12:
14603 case DW_OP_reg13:
14604 case DW_OP_reg14:
14605 case DW_OP_reg15:
14606 case DW_OP_reg16:
14607 case DW_OP_reg17:
14608 case DW_OP_reg18:
14609 case DW_OP_reg19:
14610 case DW_OP_reg20:
14611 case DW_OP_reg21:
14612 case DW_OP_reg22:
14613 case DW_OP_reg23:
14614 case DW_OP_reg24:
14615 case DW_OP_reg25:
14616 case DW_OP_reg26:
14617 case DW_OP_reg27:
14618 case DW_OP_reg28:
14619 case DW_OP_reg29:
14620 case DW_OP_reg30:
14621 case DW_OP_reg31:
14622 stack[++stacki] = op - DW_OP_reg0;
14623 if (i < size)
14624 dwarf2_complex_location_expr_complaint ();
14625 break;
14626
14627 case DW_OP_regx:
14628 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14629 i += bytes_read;
14630 stack[++stacki] = unsnd;
14631 if (i < size)
14632 dwarf2_complex_location_expr_complaint ();
14633 break;
14634
14635 case DW_OP_addr:
14636 stack[++stacki] = read_address (objfile->obfd, &data[i],
14637 cu, &bytes_read);
14638 i += bytes_read;
14639 break;
14640
14641 case DW_OP_const1u:
14642 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14643 i += 1;
14644 break;
14645
14646 case DW_OP_const1s:
14647 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14648 i += 1;
14649 break;
14650
14651 case DW_OP_const2u:
14652 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14653 i += 2;
14654 break;
14655
14656 case DW_OP_const2s:
14657 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14658 i += 2;
14659 break;
14660
14661 case DW_OP_const4u:
14662 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14663 i += 4;
14664 break;
14665
14666 case DW_OP_const4s:
14667 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14668 i += 4;
14669 break;
14670
14671 case DW_OP_const8u:
14672 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
14673 i += 8;
14674 break;
14675
14676 case DW_OP_constu:
14677 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14678 &bytes_read);
14679 i += bytes_read;
14680 break;
14681
14682 case DW_OP_consts:
14683 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14684 i += bytes_read;
14685 break;
14686
14687 case DW_OP_dup:
14688 stack[stacki + 1] = stack[stacki];
14689 stacki++;
14690 break;
14691
14692 case DW_OP_plus:
14693 stack[stacki - 1] += stack[stacki];
14694 stacki--;
14695 break;
14696
14697 case DW_OP_plus_uconst:
14698 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14699 &bytes_read);
14700 i += bytes_read;
14701 break;
14702
14703 case DW_OP_minus:
14704 stack[stacki - 1] -= stack[stacki];
14705 stacki--;
14706 break;
14707
14708 case DW_OP_deref:
14709 /* If we're not the last op, then we definitely can't encode
14710 this using GDB's address_class enum. This is valid for partial
14711 global symbols, although the variable's address will be bogus
14712 in the psymtab. */
14713 if (i < size)
14714 dwarf2_complex_location_expr_complaint ();
14715 break;
14716
14717 case DW_OP_GNU_push_tls_address:
14718 /* The top of the stack has the offset from the beginning
14719 of the thread control block at which the variable is located. */
14720 /* Nothing should follow this operator, so the top of stack would
14721 be returned. */
14722 /* This is valid for partial global symbols, but the variable's
14723 address will be bogus in the psymtab. Make it always at least
14724 non-zero to not look as a variable garbage collected by linker
14725 which have DW_OP_addr 0. */
14726 if (i < size)
14727 dwarf2_complex_location_expr_complaint ();
14728 stack[stacki]++;
14729 break;
14730
14731 case DW_OP_GNU_uninit:
14732 break;
14733
14734 default:
14735 {
14736 const char *name = dwarf_stack_op_name (op);
14737
14738 if (name)
14739 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14740 name);
14741 else
14742 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14743 op);
14744 }
14745
14746 return (stack[stacki]);
14747 }
14748
14749 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14750 outside of the allocated space. Also enforce minimum>0. */
14751 if (stacki >= ARRAY_SIZE (stack) - 1)
14752 {
14753 complaint (&symfile_complaints,
14754 _("location description stack overflow"));
14755 return 0;
14756 }
14757
14758 if (stacki <= 0)
14759 {
14760 complaint (&symfile_complaints,
14761 _("location description stack underflow"));
14762 return 0;
14763 }
14764 }
14765 return (stack[stacki]);
14766 }
14767
14768 /* memory allocation interface */
14769
14770 static struct dwarf_block *
14771 dwarf_alloc_block (struct dwarf2_cu *cu)
14772 {
14773 struct dwarf_block *blk;
14774
14775 blk = (struct dwarf_block *)
14776 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14777 return (blk);
14778 }
14779
14780 static struct abbrev_info *
14781 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14782 {
14783 struct abbrev_info *abbrev;
14784
14785 abbrev = (struct abbrev_info *)
14786 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14787 memset (abbrev, 0, sizeof (struct abbrev_info));
14788 return (abbrev);
14789 }
14790
14791 static struct die_info *
14792 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14793 {
14794 struct die_info *die;
14795 size_t size = sizeof (struct die_info);
14796
14797 if (num_attrs > 1)
14798 size += (num_attrs - 1) * sizeof (struct attribute);
14799
14800 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14801 memset (die, 0, sizeof (struct die_info));
14802 return (die);
14803 }
14804
14805 \f
14806 /* Macro support. */
14807
14808 /* Return the full name of file number I in *LH's file name table.
14809 Use COMP_DIR as the name of the current directory of the
14810 compilation. The result is allocated using xmalloc; the caller is
14811 responsible for freeing it. */
14812 static char *
14813 file_full_name (int file, struct line_header *lh, const char *comp_dir)
14814 {
14815 /* Is the file number a valid index into the line header's file name
14816 table? Remember that file numbers start with one, not zero. */
14817 if (1 <= file && file <= lh->num_file_names)
14818 {
14819 struct file_entry *fe = &lh->file_names[file - 1];
14820
14821 if (IS_ABSOLUTE_PATH (fe->name))
14822 return xstrdup (fe->name);
14823 else
14824 {
14825 const char *dir;
14826 int dir_len;
14827 char *full_name;
14828
14829 if (fe->dir_index)
14830 dir = lh->include_dirs[fe->dir_index - 1];
14831 else
14832 dir = comp_dir;
14833
14834 if (dir)
14835 {
14836 dir_len = strlen (dir);
14837 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14838 strcpy (full_name, dir);
14839 full_name[dir_len] = '/';
14840 strcpy (full_name + dir_len + 1, fe->name);
14841 return full_name;
14842 }
14843 else
14844 return xstrdup (fe->name);
14845 }
14846 }
14847 else
14848 {
14849 /* The compiler produced a bogus file number. We can at least
14850 record the macro definitions made in the file, even if we
14851 won't be able to find the file by name. */
14852 char fake_name[80];
14853
14854 sprintf (fake_name, "<bad macro file number %d>", file);
14855
14856 complaint (&symfile_complaints,
14857 _("bad file number in macro information (%d)"),
14858 file);
14859
14860 return xstrdup (fake_name);
14861 }
14862 }
14863
14864
14865 static struct macro_source_file *
14866 macro_start_file (int file, int line,
14867 struct macro_source_file *current_file,
14868 const char *comp_dir,
14869 struct line_header *lh, struct objfile *objfile)
14870 {
14871 /* The full name of this source file. */
14872 char *full_name = file_full_name (file, lh, comp_dir);
14873
14874 /* We don't create a macro table for this compilation unit
14875 at all until we actually get a filename. */
14876 if (! pending_macros)
14877 pending_macros = new_macro_table (&objfile->objfile_obstack,
14878 objfile->macro_cache);
14879
14880 if (! current_file)
14881 /* If we have no current file, then this must be the start_file
14882 directive for the compilation unit's main source file. */
14883 current_file = macro_set_main (pending_macros, full_name);
14884 else
14885 current_file = macro_include (current_file, line, full_name);
14886
14887 xfree (full_name);
14888
14889 return current_file;
14890 }
14891
14892
14893 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14894 followed by a null byte. */
14895 static char *
14896 copy_string (const char *buf, int len)
14897 {
14898 char *s = xmalloc (len + 1);
14899
14900 memcpy (s, buf, len);
14901 s[len] = '\0';
14902 return s;
14903 }
14904
14905
14906 static const char *
14907 consume_improper_spaces (const char *p, const char *body)
14908 {
14909 if (*p == ' ')
14910 {
14911 complaint (&symfile_complaints,
14912 _("macro definition contains spaces "
14913 "in formal argument list:\n`%s'"),
14914 body);
14915
14916 while (*p == ' ')
14917 p++;
14918 }
14919
14920 return p;
14921 }
14922
14923
14924 static void
14925 parse_macro_definition (struct macro_source_file *file, int line,
14926 const char *body)
14927 {
14928 const char *p;
14929
14930 /* The body string takes one of two forms. For object-like macro
14931 definitions, it should be:
14932
14933 <macro name> " " <definition>
14934
14935 For function-like macro definitions, it should be:
14936
14937 <macro name> "() " <definition>
14938 or
14939 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14940
14941 Spaces may appear only where explicitly indicated, and in the
14942 <definition>.
14943
14944 The Dwarf 2 spec says that an object-like macro's name is always
14945 followed by a space, but versions of GCC around March 2002 omit
14946 the space when the macro's definition is the empty string.
14947
14948 The Dwarf 2 spec says that there should be no spaces between the
14949 formal arguments in a function-like macro's formal argument list,
14950 but versions of GCC around March 2002 include spaces after the
14951 commas. */
14952
14953
14954 /* Find the extent of the macro name. The macro name is terminated
14955 by either a space or null character (for an object-like macro) or
14956 an opening paren (for a function-like macro). */
14957 for (p = body; *p; p++)
14958 if (*p == ' ' || *p == '(')
14959 break;
14960
14961 if (*p == ' ' || *p == '\0')
14962 {
14963 /* It's an object-like macro. */
14964 int name_len = p - body;
14965 char *name = copy_string (body, name_len);
14966 const char *replacement;
14967
14968 if (*p == ' ')
14969 replacement = body + name_len + 1;
14970 else
14971 {
14972 dwarf2_macro_malformed_definition_complaint (body);
14973 replacement = body + name_len;
14974 }
14975
14976 macro_define_object (file, line, name, replacement);
14977
14978 xfree (name);
14979 }
14980 else if (*p == '(')
14981 {
14982 /* It's a function-like macro. */
14983 char *name = copy_string (body, p - body);
14984 int argc = 0;
14985 int argv_size = 1;
14986 char **argv = xmalloc (argv_size * sizeof (*argv));
14987
14988 p++;
14989
14990 p = consume_improper_spaces (p, body);
14991
14992 /* Parse the formal argument list. */
14993 while (*p && *p != ')')
14994 {
14995 /* Find the extent of the current argument name. */
14996 const char *arg_start = p;
14997
14998 while (*p && *p != ',' && *p != ')' && *p != ' ')
14999 p++;
15000
15001 if (! *p || p == arg_start)
15002 dwarf2_macro_malformed_definition_complaint (body);
15003 else
15004 {
15005 /* Make sure argv has room for the new argument. */
15006 if (argc >= argv_size)
15007 {
15008 argv_size *= 2;
15009 argv = xrealloc (argv, argv_size * sizeof (*argv));
15010 }
15011
15012 argv[argc++] = copy_string (arg_start, p - arg_start);
15013 }
15014
15015 p = consume_improper_spaces (p, body);
15016
15017 /* Consume the comma, if present. */
15018 if (*p == ',')
15019 {
15020 p++;
15021
15022 p = consume_improper_spaces (p, body);
15023 }
15024 }
15025
15026 if (*p == ')')
15027 {
15028 p++;
15029
15030 if (*p == ' ')
15031 /* Perfectly formed definition, no complaints. */
15032 macro_define_function (file, line, name,
15033 argc, (const char **) argv,
15034 p + 1);
15035 else if (*p == '\0')
15036 {
15037 /* Complain, but do define it. */
15038 dwarf2_macro_malformed_definition_complaint (body);
15039 macro_define_function (file, line, name,
15040 argc, (const char **) argv,
15041 p);
15042 }
15043 else
15044 /* Just complain. */
15045 dwarf2_macro_malformed_definition_complaint (body);
15046 }
15047 else
15048 /* Just complain. */
15049 dwarf2_macro_malformed_definition_complaint (body);
15050
15051 xfree (name);
15052 {
15053 int i;
15054
15055 for (i = 0; i < argc; i++)
15056 xfree (argv[i]);
15057 }
15058 xfree (argv);
15059 }
15060 else
15061 dwarf2_macro_malformed_definition_complaint (body);
15062 }
15063
15064 /* Skip some bytes from BYTES according to the form given in FORM.
15065 Returns the new pointer. */
15066
15067 static gdb_byte *
15068 skip_form_bytes (bfd *abfd, gdb_byte *bytes,
15069 enum dwarf_form form,
15070 unsigned int offset_size,
15071 struct dwarf2_section_info *section)
15072 {
15073 unsigned int bytes_read;
15074
15075 switch (form)
15076 {
15077 case DW_FORM_data1:
15078 case DW_FORM_flag:
15079 ++bytes;
15080 break;
15081
15082 case DW_FORM_data2:
15083 bytes += 2;
15084 break;
15085
15086 case DW_FORM_data4:
15087 bytes += 4;
15088 break;
15089
15090 case DW_FORM_data8:
15091 bytes += 8;
15092 break;
15093
15094 case DW_FORM_string:
15095 read_direct_string (abfd, bytes, &bytes_read);
15096 bytes += bytes_read;
15097 break;
15098
15099 case DW_FORM_sec_offset:
15100 case DW_FORM_strp:
15101 bytes += offset_size;
15102 break;
15103
15104 case DW_FORM_block:
15105 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15106 bytes += bytes_read;
15107 break;
15108
15109 case DW_FORM_block1:
15110 bytes += 1 + read_1_byte (abfd, bytes);
15111 break;
15112 case DW_FORM_block2:
15113 bytes += 2 + read_2_bytes (abfd, bytes);
15114 break;
15115 case DW_FORM_block4:
15116 bytes += 4 + read_4_bytes (abfd, bytes);
15117 break;
15118
15119 case DW_FORM_sdata:
15120 case DW_FORM_udata:
15121 bytes = skip_leb128 (abfd, bytes);
15122 break;
15123
15124 default:
15125 {
15126 complain:
15127 complaint (&symfile_complaints,
15128 _("invalid form 0x%x in `%s'"),
15129 form,
15130 section->asection->name);
15131 return NULL;
15132 }
15133 }
15134
15135 return bytes;
15136 }
15137
15138 /* A helper for dwarf_decode_macros that handles skipping an unknown
15139 opcode. Returns an updated pointer to the macro data buffer; or,
15140 on error, issues a complaint and returns NULL. */
15141
15142 static gdb_byte *
15143 skip_unknown_opcode (unsigned int opcode,
15144 gdb_byte **opcode_definitions,
15145 gdb_byte *mac_ptr,
15146 bfd *abfd,
15147 unsigned int offset_size,
15148 struct dwarf2_section_info *section)
15149 {
15150 unsigned int bytes_read, i;
15151 unsigned long arg;
15152 gdb_byte *defn;
15153
15154 if (opcode_definitions[opcode] == NULL)
15155 {
15156 complaint (&symfile_complaints,
15157 _("unrecognized DW_MACFINO opcode 0x%x"),
15158 opcode);
15159 return NULL;
15160 }
15161
15162 defn = opcode_definitions[opcode];
15163 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15164 defn += bytes_read;
15165
15166 for (i = 0; i < arg; ++i)
15167 {
15168 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15169 if (mac_ptr == NULL)
15170 {
15171 /* skip_form_bytes already issued the complaint. */
15172 return NULL;
15173 }
15174 }
15175
15176 return mac_ptr;
15177 }
15178
15179 /* A helper function which parses the header of a macro section.
15180 If the macro section is the extended (for now called "GNU") type,
15181 then this updates *OFFSET_SIZE. Returns a pointer to just after
15182 the header, or issues a complaint and returns NULL on error. */
15183
15184 static gdb_byte *
15185 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15186 bfd *abfd,
15187 gdb_byte *mac_ptr,
15188 unsigned int *offset_size,
15189 int section_is_gnu)
15190 {
15191 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15192
15193 if (section_is_gnu)
15194 {
15195 unsigned int version, flags;
15196
15197 version = read_2_bytes (abfd, mac_ptr);
15198 if (version != 4)
15199 {
15200 complaint (&symfile_complaints,
15201 _("unrecognized version `%d' in .debug_macro section"),
15202 version);
15203 return NULL;
15204 }
15205 mac_ptr += 2;
15206
15207 flags = read_1_byte (abfd, mac_ptr);
15208 ++mac_ptr;
15209 *offset_size = (flags & 1) ? 8 : 4;
15210
15211 if ((flags & 2) != 0)
15212 /* We don't need the line table offset. */
15213 mac_ptr += *offset_size;
15214
15215 /* Vendor opcode descriptions. */
15216 if ((flags & 4) != 0)
15217 {
15218 unsigned int i, count;
15219
15220 count = read_1_byte (abfd, mac_ptr);
15221 ++mac_ptr;
15222 for (i = 0; i < count; ++i)
15223 {
15224 unsigned int opcode, bytes_read;
15225 unsigned long arg;
15226
15227 opcode = read_1_byte (abfd, mac_ptr);
15228 ++mac_ptr;
15229 opcode_definitions[opcode] = mac_ptr;
15230 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15231 mac_ptr += bytes_read;
15232 mac_ptr += arg;
15233 }
15234 }
15235 }
15236
15237 return mac_ptr;
15238 }
15239
15240 /* A helper for dwarf_decode_macros that handles the GNU extensions,
15241 including DW_GNU_MACINFO_transparent_include. */
15242
15243 static void
15244 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15245 struct macro_source_file *current_file,
15246 struct line_header *lh, char *comp_dir,
15247 struct dwarf2_section_info *section,
15248 int section_is_gnu,
15249 unsigned int offset_size,
15250 struct objfile *objfile)
15251 {
15252 enum dwarf_macro_record_type macinfo_type;
15253 int at_commandline;
15254 gdb_byte *opcode_definitions[256];
15255
15256 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15257 &offset_size, section_is_gnu);
15258 if (mac_ptr == NULL)
15259 {
15260 /* We already issued a complaint. */
15261 return;
15262 }
15263
15264 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15265 GDB is still reading the definitions from command line. First
15266 DW_MACINFO_start_file will need to be ignored as it was already executed
15267 to create CURRENT_FILE for the main source holding also the command line
15268 definitions. On first met DW_MACINFO_start_file this flag is reset to
15269 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15270
15271 at_commandline = 1;
15272
15273 do
15274 {
15275 /* Do we at least have room for a macinfo type byte? */
15276 if (mac_ptr >= mac_end)
15277 {
15278 dwarf2_macros_too_long_complaint (section);
15279 break;
15280 }
15281
15282 macinfo_type = read_1_byte (abfd, mac_ptr);
15283 mac_ptr++;
15284
15285 /* Note that we rely on the fact that the corresponding GNU and
15286 DWARF constants are the same. */
15287 switch (macinfo_type)
15288 {
15289 /* A zero macinfo type indicates the end of the macro
15290 information. */
15291 case 0:
15292 break;
15293
15294 case DW_MACRO_GNU_define:
15295 case DW_MACRO_GNU_undef:
15296 case DW_MACRO_GNU_define_indirect:
15297 case DW_MACRO_GNU_undef_indirect:
15298 {
15299 unsigned int bytes_read;
15300 int line;
15301 char *body;
15302 int is_define;
15303
15304 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15305 mac_ptr += bytes_read;
15306
15307 if (macinfo_type == DW_MACRO_GNU_define
15308 || macinfo_type == DW_MACRO_GNU_undef)
15309 {
15310 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15311 mac_ptr += bytes_read;
15312 }
15313 else
15314 {
15315 LONGEST str_offset;
15316
15317 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15318 mac_ptr += offset_size;
15319
15320 body = read_indirect_string_at_offset (abfd, str_offset);
15321 }
15322
15323 is_define = (macinfo_type == DW_MACRO_GNU_define
15324 || macinfo_type == DW_MACRO_GNU_define_indirect);
15325 if (! current_file)
15326 {
15327 /* DWARF violation as no main source is present. */
15328 complaint (&symfile_complaints,
15329 _("debug info with no main source gives macro %s "
15330 "on line %d: %s"),
15331 is_define ? _("definition") : _("undefinition"),
15332 line, body);
15333 break;
15334 }
15335 if ((line == 0 && !at_commandline)
15336 || (line != 0 && at_commandline))
15337 complaint (&symfile_complaints,
15338 _("debug info gives %s macro %s with %s line %d: %s"),
15339 at_commandline ? _("command-line") : _("in-file"),
15340 is_define ? _("definition") : _("undefinition"),
15341 line == 0 ? _("zero") : _("non-zero"), line, body);
15342
15343 if (is_define)
15344 parse_macro_definition (current_file, line, body);
15345 else
15346 {
15347 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15348 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15349 macro_undef (current_file, line, body);
15350 }
15351 }
15352 break;
15353
15354 case DW_MACRO_GNU_start_file:
15355 {
15356 unsigned int bytes_read;
15357 int line, file;
15358
15359 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15360 mac_ptr += bytes_read;
15361 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15362 mac_ptr += bytes_read;
15363
15364 if ((line == 0 && !at_commandline)
15365 || (line != 0 && at_commandline))
15366 complaint (&symfile_complaints,
15367 _("debug info gives source %d included "
15368 "from %s at %s line %d"),
15369 file, at_commandline ? _("command-line") : _("file"),
15370 line == 0 ? _("zero") : _("non-zero"), line);
15371
15372 if (at_commandline)
15373 {
15374 /* This DW_MACRO_GNU_start_file was executed in the
15375 pass one. */
15376 at_commandline = 0;
15377 }
15378 else
15379 current_file = macro_start_file (file, line,
15380 current_file, comp_dir,
15381 lh, objfile);
15382 }
15383 break;
15384
15385 case DW_MACRO_GNU_end_file:
15386 if (! current_file)
15387 complaint (&symfile_complaints,
15388 _("macro debug info has an unmatched "
15389 "`close_file' directive"));
15390 else
15391 {
15392 current_file = current_file->included_by;
15393 if (! current_file)
15394 {
15395 enum dwarf_macro_record_type next_type;
15396
15397 /* GCC circa March 2002 doesn't produce the zero
15398 type byte marking the end of the compilation
15399 unit. Complain if it's not there, but exit no
15400 matter what. */
15401
15402 /* Do we at least have room for a macinfo type byte? */
15403 if (mac_ptr >= mac_end)
15404 {
15405 dwarf2_macros_too_long_complaint (section);
15406 return;
15407 }
15408
15409 /* We don't increment mac_ptr here, so this is just
15410 a look-ahead. */
15411 next_type = read_1_byte (abfd, mac_ptr);
15412 if (next_type != 0)
15413 complaint (&symfile_complaints,
15414 _("no terminating 0-type entry for "
15415 "macros in `.debug_macinfo' section"));
15416
15417 return;
15418 }
15419 }
15420 break;
15421
15422 case DW_MACRO_GNU_transparent_include:
15423 {
15424 LONGEST offset;
15425
15426 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15427 mac_ptr += offset_size;
15428
15429 dwarf_decode_macro_bytes (abfd,
15430 section->buffer + offset,
15431 mac_end, current_file,
15432 lh, comp_dir,
15433 section, section_is_gnu,
15434 offset_size, objfile);
15435 }
15436 break;
15437
15438 case DW_MACINFO_vendor_ext:
15439 if (!section_is_gnu)
15440 {
15441 unsigned int bytes_read;
15442 int constant;
15443
15444 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15445 mac_ptr += bytes_read;
15446 read_direct_string (abfd, mac_ptr, &bytes_read);
15447 mac_ptr += bytes_read;
15448
15449 /* We don't recognize any vendor extensions. */
15450 break;
15451 }
15452 /* FALLTHROUGH */
15453
15454 default:
15455 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15456 mac_ptr, abfd, offset_size,
15457 section);
15458 if (mac_ptr == NULL)
15459 return;
15460 break;
15461 }
15462 } while (macinfo_type != 0);
15463 }
15464
15465 static void
15466 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15467 char *comp_dir, bfd *abfd,
15468 struct dwarf2_cu *cu,
15469 struct dwarf2_section_info *section,
15470 int section_is_gnu)
15471 {
15472 gdb_byte *mac_ptr, *mac_end;
15473 struct macro_source_file *current_file = 0;
15474 enum dwarf_macro_record_type macinfo_type;
15475 unsigned int offset_size = cu->header.offset_size;
15476 gdb_byte *opcode_definitions[256];
15477
15478 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15479 if (section->buffer == NULL)
15480 {
15481 complaint (&symfile_complaints, _("missing %s section"),
15482 section->asection->name);
15483 return;
15484 }
15485
15486 /* First pass: Find the name of the base filename.
15487 This filename is needed in order to process all macros whose definition
15488 (or undefinition) comes from the command line. These macros are defined
15489 before the first DW_MACINFO_start_file entry, and yet still need to be
15490 associated to the base file.
15491
15492 To determine the base file name, we scan the macro definitions until we
15493 reach the first DW_MACINFO_start_file entry. We then initialize
15494 CURRENT_FILE accordingly so that any macro definition found before the
15495 first DW_MACINFO_start_file can still be associated to the base file. */
15496
15497 mac_ptr = section->buffer + offset;
15498 mac_end = section->buffer + section->size;
15499
15500 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15501 &offset_size, section_is_gnu);
15502 if (mac_ptr == NULL)
15503 {
15504 /* We already issued a complaint. */
15505 return;
15506 }
15507
15508 do
15509 {
15510 /* Do we at least have room for a macinfo type byte? */
15511 if (mac_ptr >= mac_end)
15512 {
15513 /* Complaint is printed during the second pass as GDB will probably
15514 stop the first pass earlier upon finding
15515 DW_MACINFO_start_file. */
15516 break;
15517 }
15518
15519 macinfo_type = read_1_byte (abfd, mac_ptr);
15520 mac_ptr++;
15521
15522 /* Note that we rely on the fact that the corresponding GNU and
15523 DWARF constants are the same. */
15524 switch (macinfo_type)
15525 {
15526 /* A zero macinfo type indicates the end of the macro
15527 information. */
15528 case 0:
15529 break;
15530
15531 case DW_MACRO_GNU_define:
15532 case DW_MACRO_GNU_undef:
15533 /* Only skip the data by MAC_PTR. */
15534 {
15535 unsigned int bytes_read;
15536
15537 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15538 mac_ptr += bytes_read;
15539 read_direct_string (abfd, mac_ptr, &bytes_read);
15540 mac_ptr += bytes_read;
15541 }
15542 break;
15543
15544 case DW_MACRO_GNU_start_file:
15545 {
15546 unsigned int bytes_read;
15547 int line, file;
15548
15549 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15550 mac_ptr += bytes_read;
15551 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15552 mac_ptr += bytes_read;
15553
15554 current_file = macro_start_file (file, line, current_file,
15555 comp_dir, lh, cu->objfile);
15556 }
15557 break;
15558
15559 case DW_MACRO_GNU_end_file:
15560 /* No data to skip by MAC_PTR. */
15561 break;
15562
15563 case DW_MACRO_GNU_define_indirect:
15564 case DW_MACRO_GNU_undef_indirect:
15565 {
15566 unsigned int bytes_read;
15567
15568 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15569 mac_ptr += bytes_read;
15570 mac_ptr += offset_size;
15571 }
15572 break;
15573
15574 case DW_MACRO_GNU_transparent_include:
15575 /* Note that, according to the spec, a transparent include
15576 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15577 skip this opcode. */
15578 mac_ptr += offset_size;
15579 break;
15580
15581 case DW_MACINFO_vendor_ext:
15582 /* Only skip the data by MAC_PTR. */
15583 if (!section_is_gnu)
15584 {
15585 unsigned int bytes_read;
15586
15587 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15588 mac_ptr += bytes_read;
15589 read_direct_string (abfd, mac_ptr, &bytes_read);
15590 mac_ptr += bytes_read;
15591 }
15592 /* FALLTHROUGH */
15593
15594 default:
15595 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15596 mac_ptr, abfd, offset_size,
15597 section);
15598 if (mac_ptr == NULL)
15599 return;
15600 break;
15601 }
15602 } while (macinfo_type != 0 && current_file == NULL);
15603
15604 /* Second pass: Process all entries.
15605
15606 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15607 command-line macro definitions/undefinitions. This flag is unset when we
15608 reach the first DW_MACINFO_start_file entry. */
15609
15610 dwarf_decode_macro_bytes (abfd, section->buffer + offset, mac_end,
15611 current_file, lh, comp_dir, section, section_is_gnu,
15612 offset_size, cu->objfile);
15613 }
15614
15615 /* Check if the attribute's form is a DW_FORM_block*
15616 if so return true else false. */
15617 static int
15618 attr_form_is_block (struct attribute *attr)
15619 {
15620 return (attr == NULL ? 0 :
15621 attr->form == DW_FORM_block1
15622 || attr->form == DW_FORM_block2
15623 || attr->form == DW_FORM_block4
15624 || attr->form == DW_FORM_block
15625 || attr->form == DW_FORM_exprloc);
15626 }
15627
15628 /* Return non-zero if ATTR's value is a section offset --- classes
15629 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15630 You may use DW_UNSND (attr) to retrieve such offsets.
15631
15632 Section 7.5.4, "Attribute Encodings", explains that no attribute
15633 may have a value that belongs to more than one of these classes; it
15634 would be ambiguous if we did, because we use the same forms for all
15635 of them. */
15636 static int
15637 attr_form_is_section_offset (struct attribute *attr)
15638 {
15639 return (attr->form == DW_FORM_data4
15640 || attr->form == DW_FORM_data8
15641 || attr->form == DW_FORM_sec_offset);
15642 }
15643
15644
15645 /* Return non-zero if ATTR's value falls in the 'constant' class, or
15646 zero otherwise. When this function returns true, you can apply
15647 dwarf2_get_attr_constant_value to it.
15648
15649 However, note that for some attributes you must check
15650 attr_form_is_section_offset before using this test. DW_FORM_data4
15651 and DW_FORM_data8 are members of both the constant class, and of
15652 the classes that contain offsets into other debug sections
15653 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15654 that, if an attribute's can be either a constant or one of the
15655 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15656 taken as section offsets, not constants. */
15657 static int
15658 attr_form_is_constant (struct attribute *attr)
15659 {
15660 switch (attr->form)
15661 {
15662 case DW_FORM_sdata:
15663 case DW_FORM_udata:
15664 case DW_FORM_data1:
15665 case DW_FORM_data2:
15666 case DW_FORM_data4:
15667 case DW_FORM_data8:
15668 return 1;
15669 default:
15670 return 0;
15671 }
15672 }
15673
15674 /* A helper function that fills in a dwarf2_loclist_baton. */
15675
15676 static void
15677 fill_in_loclist_baton (struct dwarf2_cu *cu,
15678 struct dwarf2_loclist_baton *baton,
15679 struct attribute *attr)
15680 {
15681 dwarf2_read_section (dwarf2_per_objfile->objfile,
15682 &dwarf2_per_objfile->loc);
15683
15684 baton->per_cu = cu->per_cu;
15685 gdb_assert (baton->per_cu);
15686 /* We don't know how long the location list is, but make sure we
15687 don't run off the edge of the section. */
15688 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15689 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15690 baton->base_address = cu->base_address;
15691 }
15692
15693 static void
15694 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15695 struct dwarf2_cu *cu)
15696 {
15697 if (attr_form_is_section_offset (attr)
15698 /* ".debug_loc" may not exist at all, or the offset may be outside
15699 the section. If so, fall through to the complaint in the
15700 other branch. */
15701 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
15702 &dwarf2_per_objfile->loc))
15703 {
15704 struct dwarf2_loclist_baton *baton;
15705
15706 baton = obstack_alloc (&cu->objfile->objfile_obstack,
15707 sizeof (struct dwarf2_loclist_baton));
15708
15709 fill_in_loclist_baton (cu, baton, attr);
15710
15711 if (cu->base_known == 0)
15712 complaint (&symfile_complaints,
15713 _("Location list used without "
15714 "specifying the CU base address."));
15715
15716 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15717 SYMBOL_LOCATION_BATON (sym) = baton;
15718 }
15719 else
15720 {
15721 struct dwarf2_locexpr_baton *baton;
15722
15723 baton = obstack_alloc (&cu->objfile->objfile_obstack,
15724 sizeof (struct dwarf2_locexpr_baton));
15725 baton->per_cu = cu->per_cu;
15726 gdb_assert (baton->per_cu);
15727
15728 if (attr_form_is_block (attr))
15729 {
15730 /* Note that we're just copying the block's data pointer
15731 here, not the actual data. We're still pointing into the
15732 info_buffer for SYM's objfile; right now we never release
15733 that buffer, but when we do clean up properly this may
15734 need to change. */
15735 baton->size = DW_BLOCK (attr)->size;
15736 baton->data = DW_BLOCK (attr)->data;
15737 }
15738 else
15739 {
15740 dwarf2_invalid_attrib_class_complaint ("location description",
15741 SYMBOL_NATURAL_NAME (sym));
15742 baton->size = 0;
15743 }
15744
15745 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15746 SYMBOL_LOCATION_BATON (sym) = baton;
15747 }
15748 }
15749
15750 /* Return the OBJFILE associated with the compilation unit CU. If CU
15751 came from a separate debuginfo file, then the master objfile is
15752 returned. */
15753
15754 struct objfile *
15755 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15756 {
15757 struct objfile *objfile = per_cu->objfile;
15758
15759 /* Return the master objfile, so that we can report and look up the
15760 correct file containing this variable. */
15761 if (objfile->separate_debug_objfile_backlink)
15762 objfile = objfile->separate_debug_objfile_backlink;
15763
15764 return objfile;
15765 }
15766
15767 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15768 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15769 CU_HEADERP first. */
15770
15771 static const struct comp_unit_head *
15772 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15773 struct dwarf2_per_cu_data *per_cu)
15774 {
15775 struct objfile *objfile;
15776 struct dwarf2_per_objfile *per_objfile;
15777 gdb_byte *info_ptr;
15778
15779 if (per_cu->cu)
15780 return &per_cu->cu->header;
15781
15782 objfile = per_cu->objfile;
15783 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15784 info_ptr = per_objfile->info.buffer + per_cu->offset;
15785
15786 memset (cu_headerp, 0, sizeof (*cu_headerp));
15787 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15788
15789 return cu_headerp;
15790 }
15791
15792 /* Return the address size given in the compilation unit header for CU. */
15793
15794 CORE_ADDR
15795 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15796 {
15797 struct comp_unit_head cu_header_local;
15798 const struct comp_unit_head *cu_headerp;
15799
15800 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15801
15802 return cu_headerp->addr_size;
15803 }
15804
15805 /* Return the offset size given in the compilation unit header for CU. */
15806
15807 int
15808 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15809 {
15810 struct comp_unit_head cu_header_local;
15811 const struct comp_unit_head *cu_headerp;
15812
15813 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15814
15815 return cu_headerp->offset_size;
15816 }
15817
15818 /* See its dwarf2loc.h declaration. */
15819
15820 int
15821 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15822 {
15823 struct comp_unit_head cu_header_local;
15824 const struct comp_unit_head *cu_headerp;
15825
15826 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15827
15828 if (cu_headerp->version == 2)
15829 return cu_headerp->addr_size;
15830 else
15831 return cu_headerp->offset_size;
15832 }
15833
15834 /* Return the text offset of the CU. The returned offset comes from
15835 this CU's objfile. If this objfile came from a separate debuginfo
15836 file, then the offset may be different from the corresponding
15837 offset in the parent objfile. */
15838
15839 CORE_ADDR
15840 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15841 {
15842 struct objfile *objfile = per_cu->objfile;
15843
15844 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15845 }
15846
15847 /* Locate the .debug_info compilation unit from CU's objfile which contains
15848 the DIE at OFFSET. Raises an error on failure. */
15849
15850 static struct dwarf2_per_cu_data *
15851 dwarf2_find_containing_comp_unit (unsigned int offset,
15852 struct objfile *objfile)
15853 {
15854 struct dwarf2_per_cu_data *this_cu;
15855 int low, high;
15856
15857 low = 0;
15858 high = dwarf2_per_objfile->n_comp_units - 1;
15859 while (high > low)
15860 {
15861 int mid = low + (high - low) / 2;
15862
15863 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
15864 high = mid;
15865 else
15866 low = mid + 1;
15867 }
15868 gdb_assert (low == high);
15869 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
15870 {
15871 if (low == 0)
15872 error (_("Dwarf Error: could not find partial DIE containing "
15873 "offset 0x%lx [in module %s]"),
15874 (long) offset, bfd_get_filename (objfile->obfd));
15875
15876 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
15877 return dwarf2_per_objfile->all_comp_units[low-1];
15878 }
15879 else
15880 {
15881 this_cu = dwarf2_per_objfile->all_comp_units[low];
15882 if (low == dwarf2_per_objfile->n_comp_units - 1
15883 && offset >= this_cu->offset + this_cu->length)
15884 error (_("invalid dwarf2 offset %u"), offset);
15885 gdb_assert (offset < this_cu->offset + this_cu->length);
15886 return this_cu;
15887 }
15888 }
15889
15890 /* Locate the compilation unit from OBJFILE which is located at exactly
15891 OFFSET. Raises an error on failure. */
15892
15893 static struct dwarf2_per_cu_data *
15894 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
15895 {
15896 struct dwarf2_per_cu_data *this_cu;
15897
15898 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
15899 if (this_cu->offset != offset)
15900 error (_("no compilation unit with offset %u."), offset);
15901 return this_cu;
15902 }
15903
15904 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
15905
15906 static void
15907 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
15908 {
15909 memset (cu, 0, sizeof (*cu));
15910 cu->objfile = objfile;
15911 obstack_init (&cu->comp_unit_obstack);
15912 }
15913
15914 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15915
15916 static void
15917 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15918 {
15919 struct attribute *attr;
15920
15921 /* Set the language we're debugging. */
15922 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15923 if (attr)
15924 set_cu_language (DW_UNSND (attr), cu);
15925 else
15926 {
15927 cu->language = language_minimal;
15928 cu->language_defn = language_def (cu->language);
15929 }
15930 }
15931
15932 /* Release one cached compilation unit, CU. We unlink it from the tree
15933 of compilation units, but we don't remove it from the read_in_chain;
15934 the caller is responsible for that.
15935 NOTE: DATA is a void * because this function is also used as a
15936 cleanup routine. */
15937
15938 static void
15939 free_one_comp_unit (void *data)
15940 {
15941 struct dwarf2_cu *cu = data;
15942
15943 if (cu->per_cu != NULL)
15944 cu->per_cu->cu = NULL;
15945 cu->per_cu = NULL;
15946
15947 obstack_free (&cu->comp_unit_obstack, NULL);
15948
15949 xfree (cu);
15950 }
15951
15952 /* This cleanup function is passed the address of a dwarf2_cu on the stack
15953 when we're finished with it. We can't free the pointer itself, but be
15954 sure to unlink it from the cache. Also release any associated storage
15955 and perform cache maintenance.
15956
15957 Only used during partial symbol parsing. */
15958
15959 static void
15960 free_stack_comp_unit (void *data)
15961 {
15962 struct dwarf2_cu *cu = data;
15963
15964 obstack_free (&cu->comp_unit_obstack, NULL);
15965 cu->partial_dies = NULL;
15966
15967 if (cu->per_cu != NULL)
15968 {
15969 /* This compilation unit is on the stack in our caller, so we
15970 should not xfree it. Just unlink it. */
15971 cu->per_cu->cu = NULL;
15972 cu->per_cu = NULL;
15973
15974 /* If we had a per-cu pointer, then we may have other compilation
15975 units loaded, so age them now. */
15976 age_cached_comp_units ();
15977 }
15978 }
15979
15980 /* Free all cached compilation units. */
15981
15982 static void
15983 free_cached_comp_units (void *data)
15984 {
15985 struct dwarf2_per_cu_data *per_cu, **last_chain;
15986
15987 per_cu = dwarf2_per_objfile->read_in_chain;
15988 last_chain = &dwarf2_per_objfile->read_in_chain;
15989 while (per_cu != NULL)
15990 {
15991 struct dwarf2_per_cu_data *next_cu;
15992
15993 next_cu = per_cu->cu->read_in_chain;
15994
15995 free_one_comp_unit (per_cu->cu);
15996 *last_chain = next_cu;
15997
15998 per_cu = next_cu;
15999 }
16000 }
16001
16002 /* Increase the age counter on each cached compilation unit, and free
16003 any that are too old. */
16004
16005 static void
16006 age_cached_comp_units (void)
16007 {
16008 struct dwarf2_per_cu_data *per_cu, **last_chain;
16009
16010 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
16011 per_cu = dwarf2_per_objfile->read_in_chain;
16012 while (per_cu != NULL)
16013 {
16014 per_cu->cu->last_used ++;
16015 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
16016 dwarf2_mark (per_cu->cu);
16017 per_cu = per_cu->cu->read_in_chain;
16018 }
16019
16020 per_cu = dwarf2_per_objfile->read_in_chain;
16021 last_chain = &dwarf2_per_objfile->read_in_chain;
16022 while (per_cu != NULL)
16023 {
16024 struct dwarf2_per_cu_data *next_cu;
16025
16026 next_cu = per_cu->cu->read_in_chain;
16027
16028 if (!per_cu->cu->mark)
16029 {
16030 free_one_comp_unit (per_cu->cu);
16031 *last_chain = next_cu;
16032 }
16033 else
16034 last_chain = &per_cu->cu->read_in_chain;
16035
16036 per_cu = next_cu;
16037 }
16038 }
16039
16040 /* Remove a single compilation unit from the cache. */
16041
16042 static void
16043 free_one_cached_comp_unit (void *target_cu)
16044 {
16045 struct dwarf2_per_cu_data *per_cu, **last_chain;
16046
16047 per_cu = dwarf2_per_objfile->read_in_chain;
16048 last_chain = &dwarf2_per_objfile->read_in_chain;
16049 while (per_cu != NULL)
16050 {
16051 struct dwarf2_per_cu_data *next_cu;
16052
16053 next_cu = per_cu->cu->read_in_chain;
16054
16055 if (per_cu->cu == target_cu)
16056 {
16057 free_one_comp_unit (per_cu->cu);
16058 *last_chain = next_cu;
16059 break;
16060 }
16061 else
16062 last_chain = &per_cu->cu->read_in_chain;
16063
16064 per_cu = next_cu;
16065 }
16066 }
16067
16068 /* Release all extra memory associated with OBJFILE. */
16069
16070 void
16071 dwarf2_free_objfile (struct objfile *objfile)
16072 {
16073 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16074
16075 if (dwarf2_per_objfile == NULL)
16076 return;
16077
16078 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16079 free_cached_comp_units (NULL);
16080
16081 if (dwarf2_per_objfile->quick_file_names_table)
16082 htab_delete (dwarf2_per_objfile->quick_file_names_table);
16083
16084 /* Everything else should be on the objfile obstack. */
16085 }
16086
16087 /* A pair of DIE offset and GDB type pointer. We store these
16088 in a hash table separate from the DIEs, and preserve them
16089 when the DIEs are flushed out of cache. */
16090
16091 struct dwarf2_offset_and_type
16092 {
16093 unsigned int offset;
16094 struct type *type;
16095 };
16096
16097 /* Hash function for a dwarf2_offset_and_type. */
16098
16099 static hashval_t
16100 offset_and_type_hash (const void *item)
16101 {
16102 const struct dwarf2_offset_and_type *ofs = item;
16103
16104 return ofs->offset;
16105 }
16106
16107 /* Equality function for a dwarf2_offset_and_type. */
16108
16109 static int
16110 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16111 {
16112 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16113 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16114
16115 return ofs_lhs->offset == ofs_rhs->offset;
16116 }
16117
16118 /* Set the type associated with DIE to TYPE. Save it in CU's hash
16119 table if necessary. For convenience, return TYPE.
16120
16121 The DIEs reading must have careful ordering to:
16122 * Not cause infite loops trying to read in DIEs as a prerequisite for
16123 reading current DIE.
16124 * Not trying to dereference contents of still incompletely read in types
16125 while reading in other DIEs.
16126 * Enable referencing still incompletely read in types just by a pointer to
16127 the type without accessing its fields.
16128
16129 Therefore caller should follow these rules:
16130 * Try to fetch any prerequisite types we may need to build this DIE type
16131 before building the type and calling set_die_type.
16132 * After building type call set_die_type for current DIE as soon as
16133 possible before fetching more types to complete the current type.
16134 * Make the type as complete as possible before fetching more types. */
16135
16136 static struct type *
16137 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16138 {
16139 struct dwarf2_offset_and_type **slot, ofs;
16140 struct objfile *objfile = cu->objfile;
16141 htab_t *type_hash_ptr;
16142
16143 /* For Ada types, make sure that the gnat-specific data is always
16144 initialized (if not already set). There are a few types where
16145 we should not be doing so, because the type-specific area is
16146 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16147 where the type-specific area is used to store the floatformat).
16148 But this is not a problem, because the gnat-specific information
16149 is actually not needed for these types. */
16150 if (need_gnat_info (cu)
16151 && TYPE_CODE (type) != TYPE_CODE_FUNC
16152 && TYPE_CODE (type) != TYPE_CODE_FLT
16153 && !HAVE_GNAT_AUX_INFO (type))
16154 INIT_GNAT_SPECIFIC (type);
16155
16156 if (cu->per_cu->debug_type_section)
16157 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16158 else
16159 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16160
16161 if (*type_hash_ptr == NULL)
16162 {
16163 *type_hash_ptr
16164 = htab_create_alloc_ex (127,
16165 offset_and_type_hash,
16166 offset_and_type_eq,
16167 NULL,
16168 &objfile->objfile_obstack,
16169 hashtab_obstack_allocate,
16170 dummy_obstack_deallocate);
16171 }
16172
16173 ofs.offset = die->offset;
16174 ofs.type = type;
16175 slot = (struct dwarf2_offset_and_type **)
16176 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
16177 if (*slot)
16178 complaint (&symfile_complaints,
16179 _("A problem internal to GDB: DIE 0x%x has type already set"),
16180 die->offset);
16181 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16182 **slot = ofs;
16183 return type;
16184 }
16185
16186 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16187 table, or return NULL if the die does not have a saved type. */
16188
16189 static struct type *
16190 get_die_type_at_offset (unsigned int offset,
16191 struct dwarf2_per_cu_data *per_cu)
16192 {
16193 struct dwarf2_offset_and_type *slot, ofs;
16194 htab_t type_hash;
16195
16196 if (per_cu->debug_type_section)
16197 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16198 else
16199 type_hash = dwarf2_per_objfile->debug_info_type_hash;
16200 if (type_hash == NULL)
16201 return NULL;
16202
16203 ofs.offset = offset;
16204 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
16205 if (slot)
16206 return slot->type;
16207 else
16208 return NULL;
16209 }
16210
16211 /* Look up the type for DIE in the appropriate type_hash table,
16212 or return NULL if DIE does not have a saved type. */
16213
16214 static struct type *
16215 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16216 {
16217 return get_die_type_at_offset (die->offset, cu->per_cu);
16218 }
16219
16220 /* Add a dependence relationship from CU to REF_PER_CU. */
16221
16222 static void
16223 dwarf2_add_dependence (struct dwarf2_cu *cu,
16224 struct dwarf2_per_cu_data *ref_per_cu)
16225 {
16226 void **slot;
16227
16228 if (cu->dependencies == NULL)
16229 cu->dependencies
16230 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16231 NULL, &cu->comp_unit_obstack,
16232 hashtab_obstack_allocate,
16233 dummy_obstack_deallocate);
16234
16235 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16236 if (*slot == NULL)
16237 *slot = ref_per_cu;
16238 }
16239
16240 /* Subroutine of dwarf2_mark to pass to htab_traverse.
16241 Set the mark field in every compilation unit in the
16242 cache that we must keep because we are keeping CU. */
16243
16244 static int
16245 dwarf2_mark_helper (void **slot, void *data)
16246 {
16247 struct dwarf2_per_cu_data *per_cu;
16248
16249 per_cu = (struct dwarf2_per_cu_data *) *slot;
16250
16251 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16252 reading of the chain. As such dependencies remain valid it is not much
16253 useful to track and undo them during QUIT cleanups. */
16254 if (per_cu->cu == NULL)
16255 return 1;
16256
16257 if (per_cu->cu->mark)
16258 return 1;
16259 per_cu->cu->mark = 1;
16260
16261 if (per_cu->cu->dependencies != NULL)
16262 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16263
16264 return 1;
16265 }
16266
16267 /* Set the mark field in CU and in every other compilation unit in the
16268 cache that we must keep because we are keeping CU. */
16269
16270 static void
16271 dwarf2_mark (struct dwarf2_cu *cu)
16272 {
16273 if (cu->mark)
16274 return;
16275 cu->mark = 1;
16276 if (cu->dependencies != NULL)
16277 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16278 }
16279
16280 static void
16281 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16282 {
16283 while (per_cu)
16284 {
16285 per_cu->cu->mark = 0;
16286 per_cu = per_cu->cu->read_in_chain;
16287 }
16288 }
16289
16290 /* Trivial hash function for partial_die_info: the hash value of a DIE
16291 is its offset in .debug_info for this objfile. */
16292
16293 static hashval_t
16294 partial_die_hash (const void *item)
16295 {
16296 const struct partial_die_info *part_die = item;
16297
16298 return part_die->offset;
16299 }
16300
16301 /* Trivial comparison function for partial_die_info structures: two DIEs
16302 are equal if they have the same offset. */
16303
16304 static int
16305 partial_die_eq (const void *item_lhs, const void *item_rhs)
16306 {
16307 const struct partial_die_info *part_die_lhs = item_lhs;
16308 const struct partial_die_info *part_die_rhs = item_rhs;
16309
16310 return part_die_lhs->offset == part_die_rhs->offset;
16311 }
16312
16313 static struct cmd_list_element *set_dwarf2_cmdlist;
16314 static struct cmd_list_element *show_dwarf2_cmdlist;
16315
16316 static void
16317 set_dwarf2_cmd (char *args, int from_tty)
16318 {
16319 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16320 }
16321
16322 static void
16323 show_dwarf2_cmd (char *args, int from_tty)
16324 {
16325 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16326 }
16327
16328 /* If section described by INFO was mmapped, munmap it now. */
16329
16330 static void
16331 munmap_section_buffer (struct dwarf2_section_info *info)
16332 {
16333 if (info->map_addr != NULL)
16334 {
16335 #ifdef HAVE_MMAP
16336 int res;
16337
16338 res = munmap (info->map_addr, info->map_len);
16339 gdb_assert (res == 0);
16340 #else
16341 /* Without HAVE_MMAP, we should never be here to begin with. */
16342 gdb_assert_not_reached ("no mmap support");
16343 #endif
16344 }
16345 }
16346
16347 /* munmap debug sections for OBJFILE, if necessary. */
16348
16349 static void
16350 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16351 {
16352 struct dwarf2_per_objfile *data = d;
16353 int ix;
16354 struct dwarf2_section_info *section;
16355
16356 /* This is sorted according to the order they're defined in to make it easier
16357 to keep in sync. */
16358 munmap_section_buffer (&data->info);
16359 munmap_section_buffer (&data->abbrev);
16360 munmap_section_buffer (&data->line);
16361 munmap_section_buffer (&data->loc);
16362 munmap_section_buffer (&data->macinfo);
16363 munmap_section_buffer (&data->macro);
16364 munmap_section_buffer (&data->str);
16365 munmap_section_buffer (&data->ranges);
16366 munmap_section_buffer (&data->frame);
16367 munmap_section_buffer (&data->eh_frame);
16368 munmap_section_buffer (&data->gdb_index);
16369
16370 for (ix = 0;
16371 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16372 ++ix)
16373 munmap_section_buffer (section);
16374
16375 VEC_free (dwarf2_section_info_def, data->types);
16376 }
16377
16378 \f
16379 /* The "save gdb-index" command. */
16380
16381 /* The contents of the hash table we create when building the string
16382 table. */
16383 struct strtab_entry
16384 {
16385 offset_type offset;
16386 const char *str;
16387 };
16388
16389 /* Hash function for a strtab_entry.
16390
16391 Function is used only during write_hash_table so no index format backward
16392 compatibility is needed. */
16393
16394 static hashval_t
16395 hash_strtab_entry (const void *e)
16396 {
16397 const struct strtab_entry *entry = e;
16398 return mapped_index_string_hash (INT_MAX, entry->str);
16399 }
16400
16401 /* Equality function for a strtab_entry. */
16402
16403 static int
16404 eq_strtab_entry (const void *a, const void *b)
16405 {
16406 const struct strtab_entry *ea = a;
16407 const struct strtab_entry *eb = b;
16408 return !strcmp (ea->str, eb->str);
16409 }
16410
16411 /* Create a strtab_entry hash table. */
16412
16413 static htab_t
16414 create_strtab (void)
16415 {
16416 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16417 xfree, xcalloc, xfree);
16418 }
16419
16420 /* Add a string to the constant pool. Return the string's offset in
16421 host order. */
16422
16423 static offset_type
16424 add_string (htab_t table, struct obstack *cpool, const char *str)
16425 {
16426 void **slot;
16427 struct strtab_entry entry;
16428 struct strtab_entry *result;
16429
16430 entry.str = str;
16431 slot = htab_find_slot (table, &entry, INSERT);
16432 if (*slot)
16433 result = *slot;
16434 else
16435 {
16436 result = XNEW (struct strtab_entry);
16437 result->offset = obstack_object_size (cpool);
16438 result->str = str;
16439 obstack_grow_str0 (cpool, str);
16440 *slot = result;
16441 }
16442 return result->offset;
16443 }
16444
16445 /* An entry in the symbol table. */
16446 struct symtab_index_entry
16447 {
16448 /* The name of the symbol. */
16449 const char *name;
16450 /* The offset of the name in the constant pool. */
16451 offset_type index_offset;
16452 /* A sorted vector of the indices of all the CUs that hold an object
16453 of this name. */
16454 VEC (offset_type) *cu_indices;
16455 };
16456
16457 /* The symbol table. This is a power-of-2-sized hash table. */
16458 struct mapped_symtab
16459 {
16460 offset_type n_elements;
16461 offset_type size;
16462 struct symtab_index_entry **data;
16463 };
16464
16465 /* Hash function for a symtab_index_entry. */
16466
16467 static hashval_t
16468 hash_symtab_entry (const void *e)
16469 {
16470 const struct symtab_index_entry *entry = e;
16471 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16472 sizeof (offset_type) * VEC_length (offset_type,
16473 entry->cu_indices),
16474 0);
16475 }
16476
16477 /* Equality function for a symtab_index_entry. */
16478
16479 static int
16480 eq_symtab_entry (const void *a, const void *b)
16481 {
16482 const struct symtab_index_entry *ea = a;
16483 const struct symtab_index_entry *eb = b;
16484 int len = VEC_length (offset_type, ea->cu_indices);
16485 if (len != VEC_length (offset_type, eb->cu_indices))
16486 return 0;
16487 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16488 VEC_address (offset_type, eb->cu_indices),
16489 sizeof (offset_type) * len);
16490 }
16491
16492 /* Destroy a symtab_index_entry. */
16493
16494 static void
16495 delete_symtab_entry (void *p)
16496 {
16497 struct symtab_index_entry *entry = p;
16498 VEC_free (offset_type, entry->cu_indices);
16499 xfree (entry);
16500 }
16501
16502 /* Create a hash table holding symtab_index_entry objects. */
16503
16504 static htab_t
16505 create_symbol_hash_table (void)
16506 {
16507 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16508 delete_symtab_entry, xcalloc, xfree);
16509 }
16510
16511 /* Create a new mapped symtab object. */
16512
16513 static struct mapped_symtab *
16514 create_mapped_symtab (void)
16515 {
16516 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16517 symtab->n_elements = 0;
16518 symtab->size = 1024;
16519 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16520 return symtab;
16521 }
16522
16523 /* Destroy a mapped_symtab. */
16524
16525 static void
16526 cleanup_mapped_symtab (void *p)
16527 {
16528 struct mapped_symtab *symtab = p;
16529 /* The contents of the array are freed when the other hash table is
16530 destroyed. */
16531 xfree (symtab->data);
16532 xfree (symtab);
16533 }
16534
16535 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
16536 the slot.
16537
16538 Function is used only during write_hash_table so no index format backward
16539 compatibility is needed. */
16540
16541 static struct symtab_index_entry **
16542 find_slot (struct mapped_symtab *symtab, const char *name)
16543 {
16544 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16545
16546 index = hash & (symtab->size - 1);
16547 step = ((hash * 17) & (symtab->size - 1)) | 1;
16548
16549 for (;;)
16550 {
16551 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16552 return &symtab->data[index];
16553 index = (index + step) & (symtab->size - 1);
16554 }
16555 }
16556
16557 /* Expand SYMTAB's hash table. */
16558
16559 static void
16560 hash_expand (struct mapped_symtab *symtab)
16561 {
16562 offset_type old_size = symtab->size;
16563 offset_type i;
16564 struct symtab_index_entry **old_entries = symtab->data;
16565
16566 symtab->size *= 2;
16567 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16568
16569 for (i = 0; i < old_size; ++i)
16570 {
16571 if (old_entries[i])
16572 {
16573 struct symtab_index_entry **slot = find_slot (symtab,
16574 old_entries[i]->name);
16575 *slot = old_entries[i];
16576 }
16577 }
16578
16579 xfree (old_entries);
16580 }
16581
16582 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16583 is the index of the CU in which the symbol appears. */
16584
16585 static void
16586 add_index_entry (struct mapped_symtab *symtab, const char *name,
16587 offset_type cu_index)
16588 {
16589 struct symtab_index_entry **slot;
16590
16591 ++symtab->n_elements;
16592 if (4 * symtab->n_elements / 3 >= symtab->size)
16593 hash_expand (symtab);
16594
16595 slot = find_slot (symtab, name);
16596 if (!*slot)
16597 {
16598 *slot = XNEW (struct symtab_index_entry);
16599 (*slot)->name = name;
16600 (*slot)->cu_indices = NULL;
16601 }
16602 /* Don't push an index twice. Due to how we add entries we only
16603 have to check the last one. */
16604 if (VEC_empty (offset_type, (*slot)->cu_indices)
16605 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16606 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16607 }
16608
16609 /* Add a vector of indices to the constant pool. */
16610
16611 static offset_type
16612 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16613 struct symtab_index_entry *entry)
16614 {
16615 void **slot;
16616
16617 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16618 if (!*slot)
16619 {
16620 offset_type len = VEC_length (offset_type, entry->cu_indices);
16621 offset_type val = MAYBE_SWAP (len);
16622 offset_type iter;
16623 int i;
16624
16625 *slot = entry;
16626 entry->index_offset = obstack_object_size (cpool);
16627
16628 obstack_grow (cpool, &val, sizeof (val));
16629 for (i = 0;
16630 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16631 ++i)
16632 {
16633 val = MAYBE_SWAP (iter);
16634 obstack_grow (cpool, &val, sizeof (val));
16635 }
16636 }
16637 else
16638 {
16639 struct symtab_index_entry *old_entry = *slot;
16640 entry->index_offset = old_entry->index_offset;
16641 entry = old_entry;
16642 }
16643 return entry->index_offset;
16644 }
16645
16646 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16647 constant pool entries going into the obstack CPOOL. */
16648
16649 static void
16650 write_hash_table (struct mapped_symtab *symtab,
16651 struct obstack *output, struct obstack *cpool)
16652 {
16653 offset_type i;
16654 htab_t symbol_hash_table;
16655 htab_t str_table;
16656
16657 symbol_hash_table = create_symbol_hash_table ();
16658 str_table = create_strtab ();
16659
16660 /* We add all the index vectors to the constant pool first, to
16661 ensure alignment is ok. */
16662 for (i = 0; i < symtab->size; ++i)
16663 {
16664 if (symtab->data[i])
16665 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16666 }
16667
16668 /* Now write out the hash table. */
16669 for (i = 0; i < symtab->size; ++i)
16670 {
16671 offset_type str_off, vec_off;
16672
16673 if (symtab->data[i])
16674 {
16675 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16676 vec_off = symtab->data[i]->index_offset;
16677 }
16678 else
16679 {
16680 /* While 0 is a valid constant pool index, it is not valid
16681 to have 0 for both offsets. */
16682 str_off = 0;
16683 vec_off = 0;
16684 }
16685
16686 str_off = MAYBE_SWAP (str_off);
16687 vec_off = MAYBE_SWAP (vec_off);
16688
16689 obstack_grow (output, &str_off, sizeof (str_off));
16690 obstack_grow (output, &vec_off, sizeof (vec_off));
16691 }
16692
16693 htab_delete (str_table);
16694 htab_delete (symbol_hash_table);
16695 }
16696
16697 /* Struct to map psymtab to CU index in the index file. */
16698 struct psymtab_cu_index_map
16699 {
16700 struct partial_symtab *psymtab;
16701 unsigned int cu_index;
16702 };
16703
16704 static hashval_t
16705 hash_psymtab_cu_index (const void *item)
16706 {
16707 const struct psymtab_cu_index_map *map = item;
16708
16709 return htab_hash_pointer (map->psymtab);
16710 }
16711
16712 static int
16713 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16714 {
16715 const struct psymtab_cu_index_map *lhs = item_lhs;
16716 const struct psymtab_cu_index_map *rhs = item_rhs;
16717
16718 return lhs->psymtab == rhs->psymtab;
16719 }
16720
16721 /* Helper struct for building the address table. */
16722 struct addrmap_index_data
16723 {
16724 struct objfile *objfile;
16725 struct obstack *addr_obstack;
16726 htab_t cu_index_htab;
16727
16728 /* Non-zero if the previous_* fields are valid.
16729 We can't write an entry until we see the next entry (since it is only then
16730 that we know the end of the entry). */
16731 int previous_valid;
16732 /* Index of the CU in the table of all CUs in the index file. */
16733 unsigned int previous_cu_index;
16734 /* Start address of the CU. */
16735 CORE_ADDR previous_cu_start;
16736 };
16737
16738 /* Write an address entry to OBSTACK. */
16739
16740 static void
16741 add_address_entry (struct objfile *objfile, struct obstack *obstack,
16742 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16743 {
16744 offset_type cu_index_to_write;
16745 char addr[8];
16746 CORE_ADDR baseaddr;
16747
16748 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16749
16750 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16751 obstack_grow (obstack, addr, 8);
16752 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16753 obstack_grow (obstack, addr, 8);
16754 cu_index_to_write = MAYBE_SWAP (cu_index);
16755 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16756 }
16757
16758 /* Worker function for traversing an addrmap to build the address table. */
16759
16760 static int
16761 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16762 {
16763 struct addrmap_index_data *data = datap;
16764 struct partial_symtab *pst = obj;
16765 offset_type cu_index;
16766 void **slot;
16767
16768 if (data->previous_valid)
16769 add_address_entry (data->objfile, data->addr_obstack,
16770 data->previous_cu_start, start_addr,
16771 data->previous_cu_index);
16772
16773 data->previous_cu_start = start_addr;
16774 if (pst != NULL)
16775 {
16776 struct psymtab_cu_index_map find_map, *map;
16777 find_map.psymtab = pst;
16778 map = htab_find (data->cu_index_htab, &find_map);
16779 gdb_assert (map != NULL);
16780 data->previous_cu_index = map->cu_index;
16781 data->previous_valid = 1;
16782 }
16783 else
16784 data->previous_valid = 0;
16785
16786 return 0;
16787 }
16788
16789 /* Write OBJFILE's address map to OBSTACK.
16790 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16791 in the index file. */
16792
16793 static void
16794 write_address_map (struct objfile *objfile, struct obstack *obstack,
16795 htab_t cu_index_htab)
16796 {
16797 struct addrmap_index_data addrmap_index_data;
16798
16799 /* When writing the address table, we have to cope with the fact that
16800 the addrmap iterator only provides the start of a region; we have to
16801 wait until the next invocation to get the start of the next region. */
16802
16803 addrmap_index_data.objfile = objfile;
16804 addrmap_index_data.addr_obstack = obstack;
16805 addrmap_index_data.cu_index_htab = cu_index_htab;
16806 addrmap_index_data.previous_valid = 0;
16807
16808 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16809 &addrmap_index_data);
16810
16811 /* It's highly unlikely the last entry (end address = 0xff...ff)
16812 is valid, but we should still handle it.
16813 The end address is recorded as the start of the next region, but that
16814 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16815 anyway. */
16816 if (addrmap_index_data.previous_valid)
16817 add_address_entry (objfile, obstack,
16818 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16819 addrmap_index_data.previous_cu_index);
16820 }
16821
16822 /* Add a list of partial symbols to SYMTAB. */
16823
16824 static void
16825 write_psymbols (struct mapped_symtab *symtab,
16826 htab_t psyms_seen,
16827 struct partial_symbol **psymp,
16828 int count,
16829 offset_type cu_index,
16830 int is_static)
16831 {
16832 for (; count-- > 0; ++psymp)
16833 {
16834 void **slot, *lookup;
16835
16836 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16837 error (_("Ada is not currently supported by the index"));
16838
16839 /* We only want to add a given psymbol once. However, we also
16840 want to account for whether it is global or static. So, we
16841 may add it twice, using slightly different values. */
16842 if (is_static)
16843 {
16844 uintptr_t val = 1 | (uintptr_t) *psymp;
16845
16846 lookup = (void *) val;
16847 }
16848 else
16849 lookup = *psymp;
16850
16851 /* Only add a given psymbol once. */
16852 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16853 if (!*slot)
16854 {
16855 *slot = lookup;
16856 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
16857 }
16858 }
16859 }
16860
16861 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
16862 exception if there is an error. */
16863
16864 static void
16865 write_obstack (FILE *file, struct obstack *obstack)
16866 {
16867 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16868 file)
16869 != obstack_object_size (obstack))
16870 error (_("couldn't data write to file"));
16871 }
16872
16873 /* Unlink a file if the argument is not NULL. */
16874
16875 static void
16876 unlink_if_set (void *p)
16877 {
16878 char **filename = p;
16879 if (*filename)
16880 unlink (*filename);
16881 }
16882
16883 /* A helper struct used when iterating over debug_types. */
16884 struct signatured_type_index_data
16885 {
16886 struct objfile *objfile;
16887 struct mapped_symtab *symtab;
16888 struct obstack *types_list;
16889 htab_t psyms_seen;
16890 int cu_index;
16891 };
16892
16893 /* A helper function that writes a single signatured_type to an
16894 obstack. */
16895
16896 static int
16897 write_one_signatured_type (void **slot, void *d)
16898 {
16899 struct signatured_type_index_data *info = d;
16900 struct signatured_type *entry = (struct signatured_type *) *slot;
16901 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16902 struct partial_symtab *psymtab = per_cu->v.psymtab;
16903 gdb_byte val[8];
16904
16905 write_psymbols (info->symtab,
16906 info->psyms_seen,
16907 info->objfile->global_psymbols.list
16908 + psymtab->globals_offset,
16909 psymtab->n_global_syms, info->cu_index,
16910 0);
16911 write_psymbols (info->symtab,
16912 info->psyms_seen,
16913 info->objfile->static_psymbols.list
16914 + psymtab->statics_offset,
16915 psymtab->n_static_syms, info->cu_index,
16916 1);
16917
16918 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->per_cu.offset);
16919 obstack_grow (info->types_list, val, 8);
16920 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
16921 obstack_grow (info->types_list, val, 8);
16922 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16923 obstack_grow (info->types_list, val, 8);
16924
16925 ++info->cu_index;
16926
16927 return 1;
16928 }
16929
16930 /* Create an index file for OBJFILE in the directory DIR. */
16931
16932 static void
16933 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16934 {
16935 struct cleanup *cleanup;
16936 char *filename, *cleanup_filename;
16937 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16938 struct obstack cu_list, types_cu_list;
16939 int i;
16940 FILE *out_file;
16941 struct mapped_symtab *symtab;
16942 offset_type val, size_of_contents, total_len;
16943 struct stat st;
16944 char buf[8];
16945 htab_t psyms_seen;
16946 htab_t cu_index_htab;
16947 struct psymtab_cu_index_map *psymtab_cu_index_map;
16948
16949 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
16950 return;
16951
16952 if (dwarf2_per_objfile->using_index)
16953 error (_("Cannot use an index to create the index"));
16954
16955 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16956 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16957
16958 if (stat (objfile->name, &st) < 0)
16959 perror_with_name (objfile->name);
16960
16961 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
16962 INDEX_SUFFIX, (char *) NULL);
16963 cleanup = make_cleanup (xfree, filename);
16964
16965 out_file = fopen (filename, "wb");
16966 if (!out_file)
16967 error (_("Can't open `%s' for writing"), filename);
16968
16969 cleanup_filename = filename;
16970 make_cleanup (unlink_if_set, &cleanup_filename);
16971
16972 symtab = create_mapped_symtab ();
16973 make_cleanup (cleanup_mapped_symtab, symtab);
16974
16975 obstack_init (&addr_obstack);
16976 make_cleanup_obstack_free (&addr_obstack);
16977
16978 obstack_init (&cu_list);
16979 make_cleanup_obstack_free (&cu_list);
16980
16981 obstack_init (&types_cu_list);
16982 make_cleanup_obstack_free (&types_cu_list);
16983
16984 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
16985 NULL, xcalloc, xfree);
16986 make_cleanup_htab_delete (psyms_seen);
16987
16988 /* While we're scanning CU's create a table that maps a psymtab pointer
16989 (which is what addrmap records) to its index (which is what is recorded
16990 in the index file). This will later be needed to write the address
16991 table. */
16992 cu_index_htab = htab_create_alloc (100,
16993 hash_psymtab_cu_index,
16994 eq_psymtab_cu_index,
16995 NULL, xcalloc, xfree);
16996 make_cleanup_htab_delete (cu_index_htab);
16997 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
16998 xmalloc (sizeof (struct psymtab_cu_index_map)
16999 * dwarf2_per_objfile->n_comp_units);
17000 make_cleanup (xfree, psymtab_cu_index_map);
17001
17002 /* The CU list is already sorted, so we don't need to do additional
17003 work here. Also, the debug_types entries do not appear in
17004 all_comp_units, but only in their own hash table. */
17005 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
17006 {
17007 struct dwarf2_per_cu_data *per_cu
17008 = dwarf2_per_objfile->all_comp_units[i];
17009 struct partial_symtab *psymtab = per_cu->v.psymtab;
17010 gdb_byte val[8];
17011 struct psymtab_cu_index_map *map;
17012 void **slot;
17013
17014 write_psymbols (symtab,
17015 psyms_seen,
17016 objfile->global_psymbols.list + psymtab->globals_offset,
17017 psymtab->n_global_syms, i,
17018 0);
17019 write_psymbols (symtab,
17020 psyms_seen,
17021 objfile->static_psymbols.list + psymtab->statics_offset,
17022 psymtab->n_static_syms, i,
17023 1);
17024
17025 map = &psymtab_cu_index_map[i];
17026 map->psymtab = psymtab;
17027 map->cu_index = i;
17028 slot = htab_find_slot (cu_index_htab, map, INSERT);
17029 gdb_assert (slot != NULL);
17030 gdb_assert (*slot == NULL);
17031 *slot = map;
17032
17033 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
17034 obstack_grow (&cu_list, val, 8);
17035 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
17036 obstack_grow (&cu_list, val, 8);
17037 }
17038
17039 /* Dump the address map. */
17040 write_address_map (objfile, &addr_obstack, cu_index_htab);
17041
17042 /* Write out the .debug_type entries, if any. */
17043 if (dwarf2_per_objfile->signatured_types)
17044 {
17045 struct signatured_type_index_data sig_data;
17046
17047 sig_data.objfile = objfile;
17048 sig_data.symtab = symtab;
17049 sig_data.types_list = &types_cu_list;
17050 sig_data.psyms_seen = psyms_seen;
17051 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
17052 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
17053 write_one_signatured_type, &sig_data);
17054 }
17055
17056 obstack_init (&constant_pool);
17057 make_cleanup_obstack_free (&constant_pool);
17058 obstack_init (&symtab_obstack);
17059 make_cleanup_obstack_free (&symtab_obstack);
17060 write_hash_table (symtab, &symtab_obstack, &constant_pool);
17061
17062 obstack_init (&contents);
17063 make_cleanup_obstack_free (&contents);
17064 size_of_contents = 6 * sizeof (offset_type);
17065 total_len = size_of_contents;
17066
17067 /* The version number. */
17068 val = MAYBE_SWAP (5);
17069 obstack_grow (&contents, &val, sizeof (val));
17070
17071 /* The offset of the CU list from the start of the file. */
17072 val = MAYBE_SWAP (total_len);
17073 obstack_grow (&contents, &val, sizeof (val));
17074 total_len += obstack_object_size (&cu_list);
17075
17076 /* The offset of the types CU list from the start of the file. */
17077 val = MAYBE_SWAP (total_len);
17078 obstack_grow (&contents, &val, sizeof (val));
17079 total_len += obstack_object_size (&types_cu_list);
17080
17081 /* The offset of the address table from the start of the file. */
17082 val = MAYBE_SWAP (total_len);
17083 obstack_grow (&contents, &val, sizeof (val));
17084 total_len += obstack_object_size (&addr_obstack);
17085
17086 /* The offset of the symbol table from the start of the file. */
17087 val = MAYBE_SWAP (total_len);
17088 obstack_grow (&contents, &val, sizeof (val));
17089 total_len += obstack_object_size (&symtab_obstack);
17090
17091 /* The offset of the constant pool from the start of the file. */
17092 val = MAYBE_SWAP (total_len);
17093 obstack_grow (&contents, &val, sizeof (val));
17094 total_len += obstack_object_size (&constant_pool);
17095
17096 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17097
17098 write_obstack (out_file, &contents);
17099 write_obstack (out_file, &cu_list);
17100 write_obstack (out_file, &types_cu_list);
17101 write_obstack (out_file, &addr_obstack);
17102 write_obstack (out_file, &symtab_obstack);
17103 write_obstack (out_file, &constant_pool);
17104
17105 fclose (out_file);
17106
17107 /* We want to keep the file, so we set cleanup_filename to NULL
17108 here. See unlink_if_set. */
17109 cleanup_filename = NULL;
17110
17111 do_cleanups (cleanup);
17112 }
17113
17114 /* Implementation of the `save gdb-index' command.
17115
17116 Note that the file format used by this command is documented in the
17117 GDB manual. Any changes here must be documented there. */
17118
17119 static void
17120 save_gdb_index_command (char *arg, int from_tty)
17121 {
17122 struct objfile *objfile;
17123
17124 if (!arg || !*arg)
17125 error (_("usage: save gdb-index DIRECTORY"));
17126
17127 ALL_OBJFILES (objfile)
17128 {
17129 struct stat st;
17130
17131 /* If the objfile does not correspond to an actual file, skip it. */
17132 if (stat (objfile->name, &st) < 0)
17133 continue;
17134
17135 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17136 if (dwarf2_per_objfile)
17137 {
17138 volatile struct gdb_exception except;
17139
17140 TRY_CATCH (except, RETURN_MASK_ERROR)
17141 {
17142 write_psymtabs_to_index (objfile, arg);
17143 }
17144 if (except.reason < 0)
17145 exception_fprintf (gdb_stderr, except,
17146 _("Error while writing index for `%s': "),
17147 objfile->name);
17148 }
17149 }
17150 }
17151
17152 \f
17153
17154 int dwarf2_always_disassemble;
17155
17156 static void
17157 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17158 struct cmd_list_element *c, const char *value)
17159 {
17160 fprintf_filtered (file,
17161 _("Whether to always disassemble "
17162 "DWARF expressions is %s.\n"),
17163 value);
17164 }
17165
17166 static void
17167 show_check_physname (struct ui_file *file, int from_tty,
17168 struct cmd_list_element *c, const char *value)
17169 {
17170 fprintf_filtered (file,
17171 _("Whether to check \"physname\" is %s.\n"),
17172 value);
17173 }
17174
17175 void _initialize_dwarf2_read (void);
17176
17177 void
17178 _initialize_dwarf2_read (void)
17179 {
17180 struct cmd_list_element *c;
17181
17182 dwarf2_objfile_data_key
17183 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17184
17185 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17186 Set DWARF 2 specific variables.\n\
17187 Configure DWARF 2 variables such as the cache size"),
17188 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17189 0/*allow-unknown*/, &maintenance_set_cmdlist);
17190
17191 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17192 Show DWARF 2 specific variables\n\
17193 Show DWARF 2 variables such as the cache size"),
17194 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17195 0/*allow-unknown*/, &maintenance_show_cmdlist);
17196
17197 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17198 &dwarf2_max_cache_age, _("\
17199 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17200 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17201 A higher limit means that cached compilation units will be stored\n\
17202 in memory longer, and more total memory will be used. Zero disables\n\
17203 caching, which can slow down startup."),
17204 NULL,
17205 show_dwarf2_max_cache_age,
17206 &set_dwarf2_cmdlist,
17207 &show_dwarf2_cmdlist);
17208
17209 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17210 &dwarf2_always_disassemble, _("\
17211 Set whether `info address' always disassembles DWARF expressions."), _("\
17212 Show whether `info address' always disassembles DWARF expressions."), _("\
17213 When enabled, DWARF expressions are always printed in an assembly-like\n\
17214 syntax. When disabled, expressions will be printed in a more\n\
17215 conversational style, when possible."),
17216 NULL,
17217 show_dwarf2_always_disassemble,
17218 &set_dwarf2_cmdlist,
17219 &show_dwarf2_cmdlist);
17220
17221 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17222 Set debugging of the dwarf2 DIE reader."), _("\
17223 Show debugging of the dwarf2 DIE reader."), _("\
17224 When enabled (non-zero), DIEs are dumped after they are read in.\n\
17225 The value is the maximum depth to print."),
17226 NULL,
17227 NULL,
17228 &setdebuglist, &showdebuglist);
17229
17230 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17231 Set cross-checking of \"physname\" code against demangler."), _("\
17232 Show cross-checking of \"physname\" code against demangler."), _("\
17233 When enabled, GDB's internal \"physname\" code is checked against\n\
17234 the demangler."),
17235 NULL, show_check_physname,
17236 &setdebuglist, &showdebuglist);
17237
17238 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17239 _("\
17240 Save a gdb-index file.\n\
17241 Usage: save gdb-index DIRECTORY"),
17242 &save_cmdlist);
17243 set_cmd_completer (c, filename_completer);
17244 }
This page took 0.39671 seconds and 4 git commands to generate.