bb19ba5847e8f1a3b3f12c438f3b6b19c9fc89ba
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71
72 #include <fcntl.h>
73 #include "gdb_string.h"
74 #include "gdb_assert.h"
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When non-zero, print basic high level tracing messages.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 struct dwarf2_section_info
103 {
104 asection *asection;
105 gdb_byte *buffer;
106 bfd_size_type size;
107 /* True if we have tried to read this section. */
108 int readin;
109 };
110
111 typedef struct dwarf2_section_info dwarf2_section_info_def;
112 DEF_VEC_O (dwarf2_section_info_def);
113
114 /* All offsets in the index are of this type. It must be
115 architecture-independent. */
116 typedef uint32_t offset_type;
117
118 DEF_VEC_I (offset_type);
119
120 /* Ensure only legit values are used. */
121 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
122 do { \
123 gdb_assert ((unsigned int) (value) <= 1); \
124 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
125 } while (0)
126
127 /* Ensure only legit values are used. */
128 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
129 do { \
130 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
131 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
132 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
133 } while (0)
134
135 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
136 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
137 do { \
138 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
139 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
140 } while (0)
141
142 /* A description of the mapped index. The file format is described in
143 a comment by the code that writes the index. */
144 struct mapped_index
145 {
146 /* Index data format version. */
147 int version;
148
149 /* The total length of the buffer. */
150 off_t total_size;
151
152 /* A pointer to the address table data. */
153 const gdb_byte *address_table;
154
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157
158 /* The symbol table, implemented as a hash table. */
159 const offset_type *symbol_table;
160
161 /* Size in slots, each slot is 2 offset_types. */
162 offset_type symbol_table_slots;
163
164 /* A pointer to the constant pool. */
165 const char *constant_pool;
166 };
167
168 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
169 DEF_VEC_P (dwarf2_per_cu_ptr);
170
171 /* Collection of data recorded per objfile.
172 This hangs off of dwarf2_objfile_data_key. */
173
174 struct dwarf2_per_objfile
175 {
176 struct dwarf2_section_info info;
177 struct dwarf2_section_info abbrev;
178 struct dwarf2_section_info line;
179 struct dwarf2_section_info loc;
180 struct dwarf2_section_info macinfo;
181 struct dwarf2_section_info macro;
182 struct dwarf2_section_info str;
183 struct dwarf2_section_info ranges;
184 struct dwarf2_section_info addr;
185 struct dwarf2_section_info frame;
186 struct dwarf2_section_info eh_frame;
187 struct dwarf2_section_info gdb_index;
188
189 VEC (dwarf2_section_info_def) *types;
190
191 /* Back link. */
192 struct objfile *objfile;
193
194 /* Table of all the compilation units. This is used to locate
195 the target compilation unit of a particular reference. */
196 struct dwarf2_per_cu_data **all_comp_units;
197
198 /* The number of compilation units in ALL_COMP_UNITS. */
199 int n_comp_units;
200
201 /* The number of .debug_types-related CUs. */
202 int n_type_units;
203
204 /* The .debug_types-related CUs (TUs). */
205 struct signatured_type **all_type_units;
206
207 /* The number of entries in all_type_unit_groups. */
208 int n_type_unit_groups;
209
210 /* Table of type unit groups.
211 This exists to make it easy to iterate over all CUs and TU groups. */
212 struct type_unit_group **all_type_unit_groups;
213
214 /* Table of struct type_unit_group objects.
215 The hash key is the DW_AT_stmt_list value. */
216 htab_t type_unit_groups;
217
218 /* A table mapping .debug_types signatures to its signatured_type entry.
219 This is NULL if the .debug_types section hasn't been read in yet. */
220 htab_t signatured_types;
221
222 /* Type unit statistics, to see how well the scaling improvements
223 are doing. */
224 struct tu_stats
225 {
226 int nr_uniq_abbrev_tables;
227 int nr_symtabs;
228 int nr_symtab_sharers;
229 int nr_stmt_less_type_units;
230 } tu_stats;
231
232 /* A chain of compilation units that are currently read in, so that
233 they can be freed later. */
234 struct dwarf2_per_cu_data *read_in_chain;
235
236 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
237 This is NULL if the table hasn't been allocated yet. */
238 htab_t dwo_files;
239
240 /* Non-zero if we've check for whether there is a DWP file. */
241 int dwp_checked;
242
243 /* The DWP file if there is one, or NULL. */
244 struct dwp_file *dwp_file;
245
246 /* The shared '.dwz' file, if one exists. This is used when the
247 original data was compressed using 'dwz -m'. */
248 struct dwz_file *dwz_file;
249
250 /* A flag indicating wether this objfile has a section loaded at a
251 VMA of 0. */
252 int has_section_at_zero;
253
254 /* True if we are using the mapped index,
255 or we are faking it for OBJF_READNOW's sake. */
256 unsigned char using_index;
257
258 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
259 struct mapped_index *index_table;
260
261 /* When using index_table, this keeps track of all quick_file_names entries.
262 TUs typically share line table entries with a CU, so we maintain a
263 separate table of all line table entries to support the sharing.
264 Note that while there can be way more TUs than CUs, we've already
265 sorted all the TUs into "type unit groups", grouped by their
266 DW_AT_stmt_list value. Therefore the only sharing done here is with a
267 CU and its associated TU group if there is one. */
268 htab_t quick_file_names_table;
269
270 /* Set during partial symbol reading, to prevent queueing of full
271 symbols. */
272 int reading_partial_symbols;
273
274 /* Table mapping type DIEs to their struct type *.
275 This is NULL if not allocated yet.
276 The mapping is done via (CU/TU signature + DIE offset) -> type. */
277 htab_t die_type_hash;
278
279 /* The CUs we recently read. */
280 VEC (dwarf2_per_cu_ptr) *just_read_cus;
281 };
282
283 static struct dwarf2_per_objfile *dwarf2_per_objfile;
284
285 /* Default names of the debugging sections. */
286
287 /* Note that if the debugging section has been compressed, it might
288 have a name like .zdebug_info. */
289
290 static const struct dwarf2_debug_sections dwarf2_elf_names =
291 {
292 { ".debug_info", ".zdebug_info" },
293 { ".debug_abbrev", ".zdebug_abbrev" },
294 { ".debug_line", ".zdebug_line" },
295 { ".debug_loc", ".zdebug_loc" },
296 { ".debug_macinfo", ".zdebug_macinfo" },
297 { ".debug_macro", ".zdebug_macro" },
298 { ".debug_str", ".zdebug_str" },
299 { ".debug_ranges", ".zdebug_ranges" },
300 { ".debug_types", ".zdebug_types" },
301 { ".debug_addr", ".zdebug_addr" },
302 { ".debug_frame", ".zdebug_frame" },
303 { ".eh_frame", NULL },
304 { ".gdb_index", ".zgdb_index" },
305 23
306 };
307
308 /* List of DWO/DWP sections. */
309
310 static const struct dwop_section_names
311 {
312 struct dwarf2_section_names abbrev_dwo;
313 struct dwarf2_section_names info_dwo;
314 struct dwarf2_section_names line_dwo;
315 struct dwarf2_section_names loc_dwo;
316 struct dwarf2_section_names macinfo_dwo;
317 struct dwarf2_section_names macro_dwo;
318 struct dwarf2_section_names str_dwo;
319 struct dwarf2_section_names str_offsets_dwo;
320 struct dwarf2_section_names types_dwo;
321 struct dwarf2_section_names cu_index;
322 struct dwarf2_section_names tu_index;
323 }
324 dwop_section_names =
325 {
326 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
327 { ".debug_info.dwo", ".zdebug_info.dwo" },
328 { ".debug_line.dwo", ".zdebug_line.dwo" },
329 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
330 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
331 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
332 { ".debug_str.dwo", ".zdebug_str.dwo" },
333 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
334 { ".debug_types.dwo", ".zdebug_types.dwo" },
335 { ".debug_cu_index", ".zdebug_cu_index" },
336 { ".debug_tu_index", ".zdebug_tu_index" },
337 };
338
339 /* local data types */
340
341 /* The data in a compilation unit header, after target2host
342 translation, looks like this. */
343 struct comp_unit_head
344 {
345 unsigned int length;
346 short version;
347 unsigned char addr_size;
348 unsigned char signed_addr_p;
349 sect_offset abbrev_offset;
350
351 /* Size of file offsets; either 4 or 8. */
352 unsigned int offset_size;
353
354 /* Size of the length field; either 4 or 12. */
355 unsigned int initial_length_size;
356
357 /* Offset to the first byte of this compilation unit header in the
358 .debug_info section, for resolving relative reference dies. */
359 sect_offset offset;
360
361 /* Offset to first die in this cu from the start of the cu.
362 This will be the first byte following the compilation unit header. */
363 cu_offset first_die_offset;
364 };
365
366 /* Type used for delaying computation of method physnames.
367 See comments for compute_delayed_physnames. */
368 struct delayed_method_info
369 {
370 /* The type to which the method is attached, i.e., its parent class. */
371 struct type *type;
372
373 /* The index of the method in the type's function fieldlists. */
374 int fnfield_index;
375
376 /* The index of the method in the fieldlist. */
377 int index;
378
379 /* The name of the DIE. */
380 const char *name;
381
382 /* The DIE associated with this method. */
383 struct die_info *die;
384 };
385
386 typedef struct delayed_method_info delayed_method_info;
387 DEF_VEC_O (delayed_method_info);
388
389 /* Internal state when decoding a particular compilation unit. */
390 struct dwarf2_cu
391 {
392 /* The objfile containing this compilation unit. */
393 struct objfile *objfile;
394
395 /* The header of the compilation unit. */
396 struct comp_unit_head header;
397
398 /* Base address of this compilation unit. */
399 CORE_ADDR base_address;
400
401 /* Non-zero if base_address has been set. */
402 int base_known;
403
404 /* The language we are debugging. */
405 enum language language;
406 const struct language_defn *language_defn;
407
408 const char *producer;
409
410 /* The generic symbol table building routines have separate lists for
411 file scope symbols and all all other scopes (local scopes). So
412 we need to select the right one to pass to add_symbol_to_list().
413 We do it by keeping a pointer to the correct list in list_in_scope.
414
415 FIXME: The original dwarf code just treated the file scope as the
416 first local scope, and all other local scopes as nested local
417 scopes, and worked fine. Check to see if we really need to
418 distinguish these in buildsym.c. */
419 struct pending **list_in_scope;
420
421 /* The abbrev table for this CU.
422 Normally this points to the abbrev table in the objfile.
423 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
424 struct abbrev_table *abbrev_table;
425
426 /* Hash table holding all the loaded partial DIEs
427 with partial_die->offset.SECT_OFF as hash. */
428 htab_t partial_dies;
429
430 /* Storage for things with the same lifetime as this read-in compilation
431 unit, including partial DIEs. */
432 struct obstack comp_unit_obstack;
433
434 /* When multiple dwarf2_cu structures are living in memory, this field
435 chains them all together, so that they can be released efficiently.
436 We will probably also want a generation counter so that most-recently-used
437 compilation units are cached... */
438 struct dwarf2_per_cu_data *read_in_chain;
439
440 /* Backchain to our per_cu entry if the tree has been built. */
441 struct dwarf2_per_cu_data *per_cu;
442
443 /* How many compilation units ago was this CU last referenced? */
444 int last_used;
445
446 /* A hash table of DIE cu_offset for following references with
447 die_info->offset.sect_off as hash. */
448 htab_t die_hash;
449
450 /* Full DIEs if read in. */
451 struct die_info *dies;
452
453 /* A set of pointers to dwarf2_per_cu_data objects for compilation
454 units referenced by this one. Only set during full symbol processing;
455 partial symbol tables do not have dependencies. */
456 htab_t dependencies;
457
458 /* Header data from the line table, during full symbol processing. */
459 struct line_header *line_header;
460
461 /* A list of methods which need to have physnames computed
462 after all type information has been read. */
463 VEC (delayed_method_info) *method_list;
464
465 /* To be copied to symtab->call_site_htab. */
466 htab_t call_site_htab;
467
468 /* Non-NULL if this CU came from a DWO file.
469 There is an invariant here that is important to remember:
470 Except for attributes copied from the top level DIE in the "main"
471 (or "stub") file in preparation for reading the DWO file
472 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
473 Either there isn't a DWO file (in which case this is NULL and the point
474 is moot), or there is and either we're not going to read it (in which
475 case this is NULL) or there is and we are reading it (in which case this
476 is non-NULL). */
477 struct dwo_unit *dwo_unit;
478
479 /* The DW_AT_addr_base attribute if present, zero otherwise
480 (zero is a valid value though).
481 Note this value comes from the stub CU/TU's DIE. */
482 ULONGEST addr_base;
483
484 /* The DW_AT_ranges_base attribute if present, zero otherwise
485 (zero is a valid value though).
486 Note this value comes from the stub CU/TU's DIE.
487 Also note that the value is zero in the non-DWO case so this value can
488 be used without needing to know whether DWO files are in use or not.
489 N.B. This does not apply to DW_AT_ranges appearing in
490 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
491 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
492 DW_AT_ranges_base *would* have to be applied, and we'd have to care
493 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
494 ULONGEST ranges_base;
495
496 /* Mark used when releasing cached dies. */
497 unsigned int mark : 1;
498
499 /* This CU references .debug_loc. See the symtab->locations_valid field.
500 This test is imperfect as there may exist optimized debug code not using
501 any location list and still facing inlining issues if handled as
502 unoptimized code. For a future better test see GCC PR other/32998. */
503 unsigned int has_loclist : 1;
504
505 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
506 if all the producer_is_* fields are valid. This information is cached
507 because profiling CU expansion showed excessive time spent in
508 producer_is_gxx_lt_4_6. */
509 unsigned int checked_producer : 1;
510 unsigned int producer_is_gxx_lt_4_6 : 1;
511 unsigned int producer_is_gcc_lt_4_3 : 1;
512 unsigned int producer_is_icc : 1;
513
514 /* When set, the file that we're processing is known to have
515 debugging info for C++ namespaces. GCC 3.3.x did not produce
516 this information, but later versions do. */
517
518 unsigned int processing_has_namespace_info : 1;
519 };
520
521 /* Persistent data held for a compilation unit, even when not
522 processing it. We put a pointer to this structure in the
523 read_symtab_private field of the psymtab. */
524
525 struct dwarf2_per_cu_data
526 {
527 /* The start offset and length of this compilation unit.
528 NOTE: Unlike comp_unit_head.length, this length includes
529 initial_length_size.
530 If the DIE refers to a DWO file, this is always of the original die,
531 not the DWO file. */
532 sect_offset offset;
533 unsigned int length;
534
535 /* Flag indicating this compilation unit will be read in before
536 any of the current compilation units are processed. */
537 unsigned int queued : 1;
538
539 /* This flag will be set when reading partial DIEs if we need to load
540 absolutely all DIEs for this compilation unit, instead of just the ones
541 we think are interesting. It gets set if we look for a DIE in the
542 hash table and don't find it. */
543 unsigned int load_all_dies : 1;
544
545 /* Non-zero if this CU is from .debug_types. */
546 unsigned int is_debug_types : 1;
547
548 /* Non-zero if this CU is from the .dwz file. */
549 unsigned int is_dwz : 1;
550
551 /* The section this CU/TU lives in.
552 If the DIE refers to a DWO file, this is always the original die,
553 not the DWO file. */
554 struct dwarf2_section_info *section;
555
556 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
557 of the CU cache it gets reset to NULL again. */
558 struct dwarf2_cu *cu;
559
560 /* The corresponding objfile.
561 Normally we can get the objfile from dwarf2_per_objfile.
562 However we can enter this file with just a "per_cu" handle. */
563 struct objfile *objfile;
564
565 /* When using partial symbol tables, the 'psymtab' field is active.
566 Otherwise the 'quick' field is active. */
567 union
568 {
569 /* The partial symbol table associated with this compilation unit,
570 or NULL for unread partial units. */
571 struct partial_symtab *psymtab;
572
573 /* Data needed by the "quick" functions. */
574 struct dwarf2_per_cu_quick_data *quick;
575 } v;
576
577 /* The CUs we import using DW_TAG_imported_unit. This is filled in
578 while reading psymtabs, used to compute the psymtab dependencies,
579 and then cleared. Then it is filled in again while reading full
580 symbols, and only deleted when the objfile is destroyed.
581
582 This is also used to work around a difference between the way gold
583 generates .gdb_index version <=7 and the way gdb does. Arguably this
584 is a gold bug. For symbols coming from TUs, gold records in the index
585 the CU that includes the TU instead of the TU itself. This breaks
586 dw2_lookup_symbol: It assumes that if the index says symbol X lives
587 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
588 will find X. Alas TUs live in their own symtab, so after expanding CU Y
589 we need to look in TU Z to find X. Fortunately, this is akin to
590 DW_TAG_imported_unit, so we just use the same mechanism: For
591 .gdb_index version <=7 this also records the TUs that the CU referred
592 to. Concurrently with this change gdb was modified to emit version 8
593 indices so we only pay a price for gold generated indices. */
594 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
595
596 /* Type units are grouped by their DW_AT_stmt_list entry so that they
597 can share them. If this is a TU, this points to the containing
598 symtab. */
599 struct type_unit_group *type_unit_group;
600 };
601
602 /* Entry in the signatured_types hash table. */
603
604 struct signatured_type
605 {
606 /* The "per_cu" object of this type.
607 N.B.: This is the first member so that it's easy to convert pointers
608 between them. */
609 struct dwarf2_per_cu_data per_cu;
610
611 /* The type's signature. */
612 ULONGEST signature;
613
614 /* Offset in the TU of the type's DIE, as read from the TU header.
615 If this TU is a DWO stub and the definition lives in a DWO file
616 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
617 cu_offset type_offset_in_tu;
618
619 /* Offset in the section of the type's DIE.
620 If the definition lives in a DWO file, this is the offset in the
621 .debug_types.dwo section.
622 The value is zero until the actual value is known.
623 Zero is otherwise not a valid section offset. */
624 sect_offset type_offset_in_section;
625 };
626
627 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
628 This includes type_unit_group and quick_file_names. */
629
630 struct stmt_list_hash
631 {
632 /* The DWO unit this table is from or NULL if there is none. */
633 struct dwo_unit *dwo_unit;
634
635 /* Offset in .debug_line or .debug_line.dwo. */
636 sect_offset line_offset;
637 };
638
639 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
640 an object of this type. */
641
642 struct type_unit_group
643 {
644 /* dwarf2read.c's main "handle" on the symtab.
645 To simplify things we create an artificial CU that "includes" all the
646 type units using this stmt_list so that the rest of the code still has
647 a "per_cu" handle on the symtab.
648 This PER_CU is recognized by having no section. */
649 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
650 struct dwarf2_per_cu_data per_cu;
651
652 union
653 {
654 /* The TUs that share this DW_AT_stmt_list entry.
655 This is added to while parsing type units to build partial symtabs,
656 and is deleted afterwards and not used again. */
657 VEC (dwarf2_per_cu_ptr) *tus;
658
659 /* When reading the line table in "quick" functions, we need a real TU.
660 Any will do, we know they all share the same DW_AT_stmt_list entry.
661 For simplicity's sake, we pick the first one. */
662 struct dwarf2_per_cu_data *first_tu;
663 } t;
664
665 /* The primary symtab.
666 Type units in a group needn't all be defined in the same source file,
667 so we create an essentially anonymous symtab as the primary symtab. */
668 struct symtab *primary_symtab;
669
670 /* The data used to construct the hash key. */
671 struct stmt_list_hash hash;
672
673 /* The number of symtabs from the line header.
674 The value here must match line_header.num_file_names. */
675 unsigned int num_symtabs;
676
677 /* The symbol tables for this TU (obtained from the files listed in
678 DW_AT_stmt_list).
679 WARNING: The order of entries here must match the order of entries
680 in the line header. After the first TU using this type_unit_group, the
681 line header for the subsequent TUs is recreated from this. This is done
682 because we need to use the same symtabs for each TU using the same
683 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
684 there's no guarantee the line header doesn't have duplicate entries. */
685 struct symtab **symtabs;
686 };
687
688 /* These sections are what may appear in a DWO file. */
689
690 struct dwo_sections
691 {
692 struct dwarf2_section_info abbrev;
693 struct dwarf2_section_info line;
694 struct dwarf2_section_info loc;
695 struct dwarf2_section_info macinfo;
696 struct dwarf2_section_info macro;
697 struct dwarf2_section_info str;
698 struct dwarf2_section_info str_offsets;
699 /* In the case of a virtual DWO file, these two are unused. */
700 struct dwarf2_section_info info;
701 VEC (dwarf2_section_info_def) *types;
702 };
703
704 /* CUs/TUs in DWP/DWO files. */
705
706 struct dwo_unit
707 {
708 /* Backlink to the containing struct dwo_file. */
709 struct dwo_file *dwo_file;
710
711 /* The "id" that distinguishes this CU/TU.
712 .debug_info calls this "dwo_id", .debug_types calls this "signature".
713 Since signatures came first, we stick with it for consistency. */
714 ULONGEST signature;
715
716 /* The section this CU/TU lives in, in the DWO file. */
717 struct dwarf2_section_info *section;
718
719 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
720 sect_offset offset;
721 unsigned int length;
722
723 /* For types, offset in the type's DIE of the type defined by this TU. */
724 cu_offset type_offset_in_tu;
725 };
726
727 /* Data for one DWO file.
728 This includes virtual DWO files that have been packaged into a
729 DWP file. */
730
731 struct dwo_file
732 {
733 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
734 For virtual DWO files the name is constructed from the section offsets
735 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
736 from related CU+TUs. */
737 const char *name;
738
739 /* The bfd, when the file is open. Otherwise this is NULL.
740 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
741 bfd *dbfd;
742
743 /* Section info for this file. */
744 struct dwo_sections sections;
745
746 /* Table of CUs in the file.
747 Each element is a struct dwo_unit. */
748 htab_t cus;
749
750 /* Table of TUs in the file.
751 Each element is a struct dwo_unit. */
752 htab_t tus;
753 };
754
755 /* These sections are what may appear in a DWP file. */
756
757 struct dwp_sections
758 {
759 struct dwarf2_section_info str;
760 struct dwarf2_section_info cu_index;
761 struct dwarf2_section_info tu_index;
762 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
763 by section number. We don't need to record them here. */
764 };
765
766 /* These sections are what may appear in a virtual DWO file. */
767
768 struct virtual_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Contents of DWP hash tables. */
782
783 struct dwp_hash_table
784 {
785 uint32_t nr_units, nr_slots;
786 const gdb_byte *hash_table, *unit_table, *section_pool;
787 };
788
789 /* Data for one DWP file. */
790
791 struct dwp_file
792 {
793 /* Name of the file. */
794 const char *name;
795
796 /* The bfd, when the file is open. Otherwise this is NULL. */
797 bfd *dbfd;
798
799 /* Section info for this file. */
800 struct dwp_sections sections;
801
802 /* Table of CUs in the file. */
803 const struct dwp_hash_table *cus;
804
805 /* Table of TUs in the file. */
806 const struct dwp_hash_table *tus;
807
808 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
809 htab_t loaded_cutus;
810
811 /* Table to map ELF section numbers to their sections. */
812 unsigned int num_sections;
813 asection **elf_sections;
814 };
815
816 /* This represents a '.dwz' file. */
817
818 struct dwz_file
819 {
820 /* A dwz file can only contain a few sections. */
821 struct dwarf2_section_info abbrev;
822 struct dwarf2_section_info info;
823 struct dwarf2_section_info str;
824 struct dwarf2_section_info line;
825 struct dwarf2_section_info macro;
826 struct dwarf2_section_info gdb_index;
827
828 /* The dwz's BFD. */
829 bfd *dwz_bfd;
830 };
831
832 /* Struct used to pass misc. parameters to read_die_and_children, et
833 al. which are used for both .debug_info and .debug_types dies.
834 All parameters here are unchanging for the life of the call. This
835 struct exists to abstract away the constant parameters of die reading. */
836
837 struct die_reader_specs
838 {
839 /* die_section->asection->owner. */
840 bfd* abfd;
841
842 /* The CU of the DIE we are parsing. */
843 struct dwarf2_cu *cu;
844
845 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
846 struct dwo_file *dwo_file;
847
848 /* The section the die comes from.
849 This is either .debug_info or .debug_types, or the .dwo variants. */
850 struct dwarf2_section_info *die_section;
851
852 /* die_section->buffer. */
853 gdb_byte *buffer;
854
855 /* The end of the buffer. */
856 const gdb_byte *buffer_end;
857 };
858
859 /* Type of function passed to init_cutu_and_read_dies, et.al. */
860 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
861 gdb_byte *info_ptr,
862 struct die_info *comp_unit_die,
863 int has_children,
864 void *data);
865
866 /* The line number information for a compilation unit (found in the
867 .debug_line section) begins with a "statement program header",
868 which contains the following information. */
869 struct line_header
870 {
871 unsigned int total_length;
872 unsigned short version;
873 unsigned int header_length;
874 unsigned char minimum_instruction_length;
875 unsigned char maximum_ops_per_instruction;
876 unsigned char default_is_stmt;
877 int line_base;
878 unsigned char line_range;
879 unsigned char opcode_base;
880
881 /* standard_opcode_lengths[i] is the number of operands for the
882 standard opcode whose value is i. This means that
883 standard_opcode_lengths[0] is unused, and the last meaningful
884 element is standard_opcode_lengths[opcode_base - 1]. */
885 unsigned char *standard_opcode_lengths;
886
887 /* The include_directories table. NOTE! These strings are not
888 allocated with xmalloc; instead, they are pointers into
889 debug_line_buffer. If you try to free them, `free' will get
890 indigestion. */
891 unsigned int num_include_dirs, include_dirs_size;
892 char **include_dirs;
893
894 /* The file_names table. NOTE! These strings are not allocated
895 with xmalloc; instead, they are pointers into debug_line_buffer.
896 Don't try to free them directly. */
897 unsigned int num_file_names, file_names_size;
898 struct file_entry
899 {
900 char *name;
901 unsigned int dir_index;
902 unsigned int mod_time;
903 unsigned int length;
904 int included_p; /* Non-zero if referenced by the Line Number Program. */
905 struct symtab *symtab; /* The associated symbol table, if any. */
906 } *file_names;
907
908 /* The start and end of the statement program following this
909 header. These point into dwarf2_per_objfile->line_buffer. */
910 gdb_byte *statement_program_start, *statement_program_end;
911 };
912
913 /* When we construct a partial symbol table entry we only
914 need this much information. */
915 struct partial_die_info
916 {
917 /* Offset of this DIE. */
918 sect_offset offset;
919
920 /* DWARF-2 tag for this DIE. */
921 ENUM_BITFIELD(dwarf_tag) tag : 16;
922
923 /* Assorted flags describing the data found in this DIE. */
924 unsigned int has_children : 1;
925 unsigned int is_external : 1;
926 unsigned int is_declaration : 1;
927 unsigned int has_type : 1;
928 unsigned int has_specification : 1;
929 unsigned int has_pc_info : 1;
930 unsigned int may_be_inlined : 1;
931
932 /* Flag set if the SCOPE field of this structure has been
933 computed. */
934 unsigned int scope_set : 1;
935
936 /* Flag set if the DIE has a byte_size attribute. */
937 unsigned int has_byte_size : 1;
938
939 /* Flag set if any of the DIE's children are template arguments. */
940 unsigned int has_template_arguments : 1;
941
942 /* Flag set if fixup_partial_die has been called on this die. */
943 unsigned int fixup_called : 1;
944
945 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
946 unsigned int is_dwz : 1;
947
948 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
949 unsigned int spec_is_dwz : 1;
950
951 /* The name of this DIE. Normally the value of DW_AT_name, but
952 sometimes a default name for unnamed DIEs. */
953 const char *name;
954
955 /* The linkage name, if present. */
956 const char *linkage_name;
957
958 /* The scope to prepend to our children. This is generally
959 allocated on the comp_unit_obstack, so will disappear
960 when this compilation unit leaves the cache. */
961 const char *scope;
962
963 /* Some data associated with the partial DIE. The tag determines
964 which field is live. */
965 union
966 {
967 /* The location description associated with this DIE, if any. */
968 struct dwarf_block *locdesc;
969 /* The offset of an import, for DW_TAG_imported_unit. */
970 sect_offset offset;
971 } d;
972
973 /* If HAS_PC_INFO, the PC range associated with this DIE. */
974 CORE_ADDR lowpc;
975 CORE_ADDR highpc;
976
977 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
978 DW_AT_sibling, if any. */
979 /* NOTE: This member isn't strictly necessary, read_partial_die could
980 return DW_AT_sibling values to its caller load_partial_dies. */
981 gdb_byte *sibling;
982
983 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
984 DW_AT_specification (or DW_AT_abstract_origin or
985 DW_AT_extension). */
986 sect_offset spec_offset;
987
988 /* Pointers to this DIE's parent, first child, and next sibling,
989 if any. */
990 struct partial_die_info *die_parent, *die_child, *die_sibling;
991 };
992
993 /* This data structure holds the information of an abbrev. */
994 struct abbrev_info
995 {
996 unsigned int number; /* number identifying abbrev */
997 enum dwarf_tag tag; /* dwarf tag */
998 unsigned short has_children; /* boolean */
999 unsigned short num_attrs; /* number of attributes */
1000 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1001 struct abbrev_info *next; /* next in chain */
1002 };
1003
1004 struct attr_abbrev
1005 {
1006 ENUM_BITFIELD(dwarf_attribute) name : 16;
1007 ENUM_BITFIELD(dwarf_form) form : 16;
1008 };
1009
1010 /* Size of abbrev_table.abbrev_hash_table. */
1011 #define ABBREV_HASH_SIZE 121
1012
1013 /* Top level data structure to contain an abbreviation table. */
1014
1015 struct abbrev_table
1016 {
1017 /* Where the abbrev table came from.
1018 This is used as a sanity check when the table is used. */
1019 sect_offset offset;
1020
1021 /* Storage for the abbrev table. */
1022 struct obstack abbrev_obstack;
1023
1024 /* Hash table of abbrevs.
1025 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1026 It could be statically allocated, but the previous code didn't so we
1027 don't either. */
1028 struct abbrev_info **abbrevs;
1029 };
1030
1031 /* Attributes have a name and a value. */
1032 struct attribute
1033 {
1034 ENUM_BITFIELD(dwarf_attribute) name : 16;
1035 ENUM_BITFIELD(dwarf_form) form : 15;
1036
1037 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1038 field should be in u.str (existing only for DW_STRING) but it is kept
1039 here for better struct attribute alignment. */
1040 unsigned int string_is_canonical : 1;
1041
1042 union
1043 {
1044 const char *str;
1045 struct dwarf_block *blk;
1046 ULONGEST unsnd;
1047 LONGEST snd;
1048 CORE_ADDR addr;
1049 struct signatured_type *signatured_type;
1050 }
1051 u;
1052 };
1053
1054 /* This data structure holds a complete die structure. */
1055 struct die_info
1056 {
1057 /* DWARF-2 tag for this DIE. */
1058 ENUM_BITFIELD(dwarf_tag) tag : 16;
1059
1060 /* Number of attributes */
1061 unsigned char num_attrs;
1062
1063 /* True if we're presently building the full type name for the
1064 type derived from this DIE. */
1065 unsigned char building_fullname : 1;
1066
1067 /* Abbrev number */
1068 unsigned int abbrev;
1069
1070 /* Offset in .debug_info or .debug_types section. */
1071 sect_offset offset;
1072
1073 /* The dies in a compilation unit form an n-ary tree. PARENT
1074 points to this die's parent; CHILD points to the first child of
1075 this node; and all the children of a given node are chained
1076 together via their SIBLING fields. */
1077 struct die_info *child; /* Its first child, if any. */
1078 struct die_info *sibling; /* Its next sibling, if any. */
1079 struct die_info *parent; /* Its parent, if any. */
1080
1081 /* An array of attributes, with NUM_ATTRS elements. There may be
1082 zero, but it's not common and zero-sized arrays are not
1083 sufficiently portable C. */
1084 struct attribute attrs[1];
1085 };
1086
1087 /* Get at parts of an attribute structure. */
1088
1089 #define DW_STRING(attr) ((attr)->u.str)
1090 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1091 #define DW_UNSND(attr) ((attr)->u.unsnd)
1092 #define DW_BLOCK(attr) ((attr)->u.blk)
1093 #define DW_SND(attr) ((attr)->u.snd)
1094 #define DW_ADDR(attr) ((attr)->u.addr)
1095 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1096
1097 /* Blocks are a bunch of untyped bytes. */
1098 struct dwarf_block
1099 {
1100 size_t size;
1101
1102 /* Valid only if SIZE is not zero. */
1103 gdb_byte *data;
1104 };
1105
1106 #ifndef ATTR_ALLOC_CHUNK
1107 #define ATTR_ALLOC_CHUNK 4
1108 #endif
1109
1110 /* Allocate fields for structs, unions and enums in this size. */
1111 #ifndef DW_FIELD_ALLOC_CHUNK
1112 #define DW_FIELD_ALLOC_CHUNK 4
1113 #endif
1114
1115 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1116 but this would require a corresponding change in unpack_field_as_long
1117 and friends. */
1118 static int bits_per_byte = 8;
1119
1120 /* The routines that read and process dies for a C struct or C++ class
1121 pass lists of data member fields and lists of member function fields
1122 in an instance of a field_info structure, as defined below. */
1123 struct field_info
1124 {
1125 /* List of data member and baseclasses fields. */
1126 struct nextfield
1127 {
1128 struct nextfield *next;
1129 int accessibility;
1130 int virtuality;
1131 struct field field;
1132 }
1133 *fields, *baseclasses;
1134
1135 /* Number of fields (including baseclasses). */
1136 int nfields;
1137
1138 /* Number of baseclasses. */
1139 int nbaseclasses;
1140
1141 /* Set if the accesibility of one of the fields is not public. */
1142 int non_public_fields;
1143
1144 /* Member function fields array, entries are allocated in the order they
1145 are encountered in the object file. */
1146 struct nextfnfield
1147 {
1148 struct nextfnfield *next;
1149 struct fn_field fnfield;
1150 }
1151 *fnfields;
1152
1153 /* Member function fieldlist array, contains name of possibly overloaded
1154 member function, number of overloaded member functions and a pointer
1155 to the head of the member function field chain. */
1156 struct fnfieldlist
1157 {
1158 const char *name;
1159 int length;
1160 struct nextfnfield *head;
1161 }
1162 *fnfieldlists;
1163
1164 /* Number of entries in the fnfieldlists array. */
1165 int nfnfields;
1166
1167 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1168 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1169 struct typedef_field_list
1170 {
1171 struct typedef_field field;
1172 struct typedef_field_list *next;
1173 }
1174 *typedef_field_list;
1175 unsigned typedef_field_list_count;
1176 };
1177
1178 /* One item on the queue of compilation units to read in full symbols
1179 for. */
1180 struct dwarf2_queue_item
1181 {
1182 struct dwarf2_per_cu_data *per_cu;
1183 enum language pretend_language;
1184 struct dwarf2_queue_item *next;
1185 };
1186
1187 /* The current queue. */
1188 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1189
1190 /* Loaded secondary compilation units are kept in memory until they
1191 have not been referenced for the processing of this many
1192 compilation units. Set this to zero to disable caching. Cache
1193 sizes of up to at least twenty will improve startup time for
1194 typical inter-CU-reference binaries, at an obvious memory cost. */
1195 static int dwarf2_max_cache_age = 5;
1196 static void
1197 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1198 struct cmd_list_element *c, const char *value)
1199 {
1200 fprintf_filtered (file, _("The upper bound on the age of cached "
1201 "dwarf2 compilation units is %s.\n"),
1202 value);
1203 }
1204
1205
1206 /* Various complaints about symbol reading that don't abort the process. */
1207
1208 static void
1209 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1210 {
1211 complaint (&symfile_complaints,
1212 _("statement list doesn't fit in .debug_line section"));
1213 }
1214
1215 static void
1216 dwarf2_debug_line_missing_file_complaint (void)
1217 {
1218 complaint (&symfile_complaints,
1219 _(".debug_line section has line data without a file"));
1220 }
1221
1222 static void
1223 dwarf2_debug_line_missing_end_sequence_complaint (void)
1224 {
1225 complaint (&symfile_complaints,
1226 _(".debug_line section has line "
1227 "program sequence without an end"));
1228 }
1229
1230 static void
1231 dwarf2_complex_location_expr_complaint (void)
1232 {
1233 complaint (&symfile_complaints, _("location expression too complex"));
1234 }
1235
1236 static void
1237 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1238 int arg3)
1239 {
1240 complaint (&symfile_complaints,
1241 _("const value length mismatch for '%s', got %d, expected %d"),
1242 arg1, arg2, arg3);
1243 }
1244
1245 static void
1246 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1247 {
1248 complaint (&symfile_complaints,
1249 _("debug info runs off end of %s section"
1250 " [in module %s]"),
1251 section->asection->name,
1252 bfd_get_filename (section->asection->owner));
1253 }
1254
1255 static void
1256 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1257 {
1258 complaint (&symfile_complaints,
1259 _("macro debug info contains a "
1260 "malformed macro definition:\n`%s'"),
1261 arg1);
1262 }
1263
1264 static void
1265 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1266 {
1267 complaint (&symfile_complaints,
1268 _("invalid attribute class or form for '%s' in '%s'"),
1269 arg1, arg2);
1270 }
1271
1272 /* local function prototypes */
1273
1274 static void dwarf2_locate_sections (bfd *, asection *, void *);
1275
1276 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1277 struct objfile *);
1278
1279 static void dwarf2_find_base_address (struct die_info *die,
1280 struct dwarf2_cu *cu);
1281
1282 static struct partial_symtab *create_partial_symtab
1283 (struct dwarf2_per_cu_data *per_cu, const char *name);
1284
1285 static void dwarf2_build_psymtabs_hard (struct objfile *);
1286
1287 static void scan_partial_symbols (struct partial_die_info *,
1288 CORE_ADDR *, CORE_ADDR *,
1289 int, struct dwarf2_cu *);
1290
1291 static void add_partial_symbol (struct partial_die_info *,
1292 struct dwarf2_cu *);
1293
1294 static void add_partial_namespace (struct partial_die_info *pdi,
1295 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1296 int need_pc, struct dwarf2_cu *cu);
1297
1298 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1299 CORE_ADDR *highpc, int need_pc,
1300 struct dwarf2_cu *cu);
1301
1302 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1303 struct dwarf2_cu *cu);
1304
1305 static void add_partial_subprogram (struct partial_die_info *pdi,
1306 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1307 int need_pc, struct dwarf2_cu *cu);
1308
1309 static void dwarf2_read_symtab (struct partial_symtab *,
1310 struct objfile *);
1311
1312 static void psymtab_to_symtab_1 (struct partial_symtab *);
1313
1314 static struct abbrev_info *abbrev_table_lookup_abbrev
1315 (const struct abbrev_table *, unsigned int);
1316
1317 static struct abbrev_table *abbrev_table_read_table
1318 (struct dwarf2_section_info *, sect_offset);
1319
1320 static void abbrev_table_free (struct abbrev_table *);
1321
1322 static void abbrev_table_free_cleanup (void *);
1323
1324 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1325 struct dwarf2_section_info *);
1326
1327 static void dwarf2_free_abbrev_table (void *);
1328
1329 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1330
1331 static struct partial_die_info *load_partial_dies
1332 (const struct die_reader_specs *, gdb_byte *, int);
1333
1334 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1335 struct partial_die_info *,
1336 struct abbrev_info *,
1337 unsigned int,
1338 gdb_byte *);
1339
1340 static struct partial_die_info *find_partial_die (sect_offset, int,
1341 struct dwarf2_cu *);
1342
1343 static void fixup_partial_die (struct partial_die_info *,
1344 struct dwarf2_cu *);
1345
1346 static gdb_byte *read_attribute (const struct die_reader_specs *,
1347 struct attribute *, struct attr_abbrev *,
1348 gdb_byte *);
1349
1350 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1351
1352 static int read_1_signed_byte (bfd *, const gdb_byte *);
1353
1354 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1355
1356 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1357
1358 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1359
1360 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1361 unsigned int *);
1362
1363 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1364
1365 static LONGEST read_checked_initial_length_and_offset
1366 (bfd *, gdb_byte *, const struct comp_unit_head *,
1367 unsigned int *, unsigned int *);
1368
1369 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1370 unsigned int *);
1371
1372 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1373
1374 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1375 sect_offset);
1376
1377 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1378
1379 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1380
1381 static char *read_indirect_string (bfd *, gdb_byte *,
1382 const struct comp_unit_head *,
1383 unsigned int *);
1384
1385 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1386
1387 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1388
1389 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1390
1391 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1392 unsigned int *);
1393
1394 static char *read_str_index (const struct die_reader_specs *reader,
1395 struct dwarf2_cu *cu, ULONGEST str_index);
1396
1397 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1398
1399 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1400 struct dwarf2_cu *);
1401
1402 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1403 unsigned int);
1404
1405 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1406 struct dwarf2_cu *cu);
1407
1408 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1409
1410 static struct die_info *die_specification (struct die_info *die,
1411 struct dwarf2_cu **);
1412
1413 static void free_line_header (struct line_header *lh);
1414
1415 static void add_file_name (struct line_header *, char *, unsigned int,
1416 unsigned int, unsigned int);
1417
1418 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1419 struct dwarf2_cu *cu);
1420
1421 static void dwarf_decode_lines (struct line_header *, const char *,
1422 struct dwarf2_cu *, struct partial_symtab *,
1423 int);
1424
1425 static void dwarf2_start_subfile (char *, const char *, const char *);
1426
1427 static void dwarf2_start_symtab (struct dwarf2_cu *,
1428 const char *, const char *, CORE_ADDR);
1429
1430 static struct symbol *new_symbol (struct die_info *, struct type *,
1431 struct dwarf2_cu *);
1432
1433 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1434 struct dwarf2_cu *, struct symbol *);
1435
1436 static void dwarf2_const_value (struct attribute *, struct symbol *,
1437 struct dwarf2_cu *);
1438
1439 static void dwarf2_const_value_attr (struct attribute *attr,
1440 struct type *type,
1441 const char *name,
1442 struct obstack *obstack,
1443 struct dwarf2_cu *cu, LONGEST *value,
1444 gdb_byte **bytes,
1445 struct dwarf2_locexpr_baton **baton);
1446
1447 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1448
1449 static int need_gnat_info (struct dwarf2_cu *);
1450
1451 static struct type *die_descriptive_type (struct die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void set_descriptive_type (struct type *, struct die_info *,
1455 struct dwarf2_cu *);
1456
1457 static struct type *die_containing_type (struct die_info *,
1458 struct dwarf2_cu *);
1459
1460 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1461 struct dwarf2_cu *);
1462
1463 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1464
1465 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1466
1467 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1468
1469 static char *typename_concat (struct obstack *obs, const char *prefix,
1470 const char *suffix, int physname,
1471 struct dwarf2_cu *cu);
1472
1473 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1474
1475 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1476
1477 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1478
1479 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1480
1481 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1482
1483 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1484 struct dwarf2_cu *, struct partial_symtab *);
1485
1486 static int dwarf2_get_pc_bounds (struct die_info *,
1487 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1488 struct partial_symtab *);
1489
1490 static void get_scope_pc_bounds (struct die_info *,
1491 CORE_ADDR *, CORE_ADDR *,
1492 struct dwarf2_cu *);
1493
1494 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1495 CORE_ADDR, struct dwarf2_cu *);
1496
1497 static void dwarf2_add_field (struct field_info *, struct die_info *,
1498 struct dwarf2_cu *);
1499
1500 static void dwarf2_attach_fields_to_type (struct field_info *,
1501 struct type *, struct dwarf2_cu *);
1502
1503 static void dwarf2_add_member_fn (struct field_info *,
1504 struct die_info *, struct type *,
1505 struct dwarf2_cu *);
1506
1507 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1508 struct type *,
1509 struct dwarf2_cu *);
1510
1511 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1512
1513 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1514
1515 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1516
1517 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1518
1519 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1520
1521 static struct type *read_module_type (struct die_info *die,
1522 struct dwarf2_cu *cu);
1523
1524 static const char *namespace_name (struct die_info *die,
1525 int *is_anonymous, struct dwarf2_cu *);
1526
1527 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1528
1529 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1530
1531 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1532 struct dwarf2_cu *);
1533
1534 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1535 gdb_byte *info_ptr,
1536 gdb_byte **new_info_ptr,
1537 struct die_info *parent);
1538
1539 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1540 gdb_byte *info_ptr,
1541 gdb_byte **new_info_ptr,
1542 struct die_info *parent);
1543
1544 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1545 struct die_info **, gdb_byte *, int *, int);
1546
1547 static gdb_byte *read_full_die (const struct die_reader_specs *,
1548 struct die_info **, gdb_byte *, int *);
1549
1550 static void process_die (struct die_info *, struct dwarf2_cu *);
1551
1552 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1553 struct obstack *);
1554
1555 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1556
1557 static const char *dwarf2_full_name (const char *name,
1558 struct die_info *die,
1559 struct dwarf2_cu *cu);
1560
1561 static const char *dwarf2_physname (const char *name, struct die_info *die,
1562 struct dwarf2_cu *cu);
1563
1564 static struct die_info *dwarf2_extension (struct die_info *die,
1565 struct dwarf2_cu **);
1566
1567 static const char *dwarf_tag_name (unsigned int);
1568
1569 static const char *dwarf_attr_name (unsigned int);
1570
1571 static const char *dwarf_form_name (unsigned int);
1572
1573 static char *dwarf_bool_name (unsigned int);
1574
1575 static const char *dwarf_type_encoding_name (unsigned int);
1576
1577 static struct die_info *sibling_die (struct die_info *);
1578
1579 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1580
1581 static void dump_die_for_error (struct die_info *);
1582
1583 static void dump_die_1 (struct ui_file *, int level, int max_level,
1584 struct die_info *);
1585
1586 /*static*/ void dump_die (struct die_info *, int max_level);
1587
1588 static void store_in_ref_table (struct die_info *,
1589 struct dwarf2_cu *);
1590
1591 static int is_ref_attr (struct attribute *);
1592
1593 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1594
1595 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1596
1597 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1598 struct attribute *,
1599 struct dwarf2_cu **);
1600
1601 static struct die_info *follow_die_ref (struct die_info *,
1602 struct attribute *,
1603 struct dwarf2_cu **);
1604
1605 static struct die_info *follow_die_sig (struct die_info *,
1606 struct attribute *,
1607 struct dwarf2_cu **);
1608
1609 static struct signatured_type *lookup_signatured_type_at_offset
1610 (struct objfile *objfile,
1611 struct dwarf2_section_info *section, sect_offset offset);
1612
1613 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1614
1615 static void read_signatured_type (struct signatured_type *);
1616
1617 static struct type_unit_group *get_type_unit_group
1618 (struct dwarf2_cu *, struct attribute *);
1619
1620 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1621
1622 /* memory allocation interface */
1623
1624 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1625
1626 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1627
1628 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1629 const char *, int);
1630
1631 static int attr_form_is_block (struct attribute *);
1632
1633 static int attr_form_is_section_offset (struct attribute *);
1634
1635 static int attr_form_is_constant (struct attribute *);
1636
1637 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1638 struct dwarf2_loclist_baton *baton,
1639 struct attribute *attr);
1640
1641 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1642 struct symbol *sym,
1643 struct dwarf2_cu *cu,
1644 int is_block);
1645
1646 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1647 gdb_byte *info_ptr,
1648 struct abbrev_info *abbrev);
1649
1650 static void free_stack_comp_unit (void *);
1651
1652 static hashval_t partial_die_hash (const void *item);
1653
1654 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1655
1656 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1657 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1658
1659 static void init_one_comp_unit (struct dwarf2_cu *cu,
1660 struct dwarf2_per_cu_data *per_cu);
1661
1662 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1663 struct die_info *comp_unit_die,
1664 enum language pretend_language);
1665
1666 static void free_heap_comp_unit (void *);
1667
1668 static void free_cached_comp_units (void *);
1669
1670 static void age_cached_comp_units (void);
1671
1672 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1673
1674 static struct type *set_die_type (struct die_info *, struct type *,
1675 struct dwarf2_cu *);
1676
1677 static void create_all_comp_units (struct objfile *);
1678
1679 static int create_all_type_units (struct objfile *);
1680
1681 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1682 enum language);
1683
1684 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1685 enum language);
1686
1687 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1688 enum language);
1689
1690 static void dwarf2_add_dependence (struct dwarf2_cu *,
1691 struct dwarf2_per_cu_data *);
1692
1693 static void dwarf2_mark (struct dwarf2_cu *);
1694
1695 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1696
1697 static struct type *get_die_type_at_offset (sect_offset,
1698 struct dwarf2_per_cu_data *per_cu);
1699
1700 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1701
1702 static void dwarf2_release_queue (void *dummy);
1703
1704 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1705 enum language pretend_language);
1706
1707 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1708 struct dwarf2_per_cu_data *per_cu,
1709 enum language pretend_language);
1710
1711 static void process_queue (void);
1712
1713 static void find_file_and_directory (struct die_info *die,
1714 struct dwarf2_cu *cu,
1715 const char **name, const char **comp_dir);
1716
1717 static char *file_full_name (int file, struct line_header *lh,
1718 const char *comp_dir);
1719
1720 static gdb_byte *read_and_check_comp_unit_head
1721 (struct comp_unit_head *header,
1722 struct dwarf2_section_info *section,
1723 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1724 int is_debug_types_section);
1725
1726 static void init_cutu_and_read_dies
1727 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1728 int use_existing_cu, int keep,
1729 die_reader_func_ftype *die_reader_func, void *data);
1730
1731 static void init_cutu_and_read_dies_simple
1732 (struct dwarf2_per_cu_data *this_cu,
1733 die_reader_func_ftype *die_reader_func, void *data);
1734
1735 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1736
1737 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1738
1739 static struct dwo_unit *lookup_dwo_comp_unit
1740 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1741
1742 static struct dwo_unit *lookup_dwo_type_unit
1743 (struct signatured_type *, const char *, const char *);
1744
1745 static void free_dwo_file_cleanup (void *);
1746
1747 static void process_cu_includes (void);
1748
1749 static void check_producer (struct dwarf2_cu *cu);
1750
1751 #if WORDS_BIGENDIAN
1752
1753 /* Convert VALUE between big- and little-endian. */
1754 static offset_type
1755 byte_swap (offset_type value)
1756 {
1757 offset_type result;
1758
1759 result = (value & 0xff) << 24;
1760 result |= (value & 0xff00) << 8;
1761 result |= (value & 0xff0000) >> 8;
1762 result |= (value & 0xff000000) >> 24;
1763 return result;
1764 }
1765
1766 #define MAYBE_SWAP(V) byte_swap (V)
1767
1768 #else
1769 #define MAYBE_SWAP(V) (V)
1770 #endif /* WORDS_BIGENDIAN */
1771
1772 /* The suffix for an index file. */
1773 #define INDEX_SUFFIX ".gdb-index"
1774
1775 /* Try to locate the sections we need for DWARF 2 debugging
1776 information and return true if we have enough to do something.
1777 NAMES points to the dwarf2 section names, or is NULL if the standard
1778 ELF names are used. */
1779
1780 int
1781 dwarf2_has_info (struct objfile *objfile,
1782 const struct dwarf2_debug_sections *names)
1783 {
1784 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1785 if (!dwarf2_per_objfile)
1786 {
1787 /* Initialize per-objfile state. */
1788 struct dwarf2_per_objfile *data
1789 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1790
1791 memset (data, 0, sizeof (*data));
1792 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1793 dwarf2_per_objfile = data;
1794
1795 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1796 (void *) names);
1797 dwarf2_per_objfile->objfile = objfile;
1798 }
1799 return (dwarf2_per_objfile->info.asection != NULL
1800 && dwarf2_per_objfile->abbrev.asection != NULL);
1801 }
1802
1803 /* When loading sections, we look either for uncompressed section or for
1804 compressed section names. */
1805
1806 static int
1807 section_is_p (const char *section_name,
1808 const struct dwarf2_section_names *names)
1809 {
1810 if (names->normal != NULL
1811 && strcmp (section_name, names->normal) == 0)
1812 return 1;
1813 if (names->compressed != NULL
1814 && strcmp (section_name, names->compressed) == 0)
1815 return 1;
1816 return 0;
1817 }
1818
1819 /* This function is mapped across the sections and remembers the
1820 offset and size of each of the debugging sections we are interested
1821 in. */
1822
1823 static void
1824 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1825 {
1826 const struct dwarf2_debug_sections *names;
1827 flagword aflag = bfd_get_section_flags (abfd, sectp);
1828
1829 if (vnames == NULL)
1830 names = &dwarf2_elf_names;
1831 else
1832 names = (const struct dwarf2_debug_sections *) vnames;
1833
1834 if ((aflag & SEC_HAS_CONTENTS) == 0)
1835 {
1836 }
1837 else if (section_is_p (sectp->name, &names->info))
1838 {
1839 dwarf2_per_objfile->info.asection = sectp;
1840 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1841 }
1842 else if (section_is_p (sectp->name, &names->abbrev))
1843 {
1844 dwarf2_per_objfile->abbrev.asection = sectp;
1845 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1846 }
1847 else if (section_is_p (sectp->name, &names->line))
1848 {
1849 dwarf2_per_objfile->line.asection = sectp;
1850 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1851 }
1852 else if (section_is_p (sectp->name, &names->loc))
1853 {
1854 dwarf2_per_objfile->loc.asection = sectp;
1855 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1856 }
1857 else if (section_is_p (sectp->name, &names->macinfo))
1858 {
1859 dwarf2_per_objfile->macinfo.asection = sectp;
1860 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1861 }
1862 else if (section_is_p (sectp->name, &names->macro))
1863 {
1864 dwarf2_per_objfile->macro.asection = sectp;
1865 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1866 }
1867 else if (section_is_p (sectp->name, &names->str))
1868 {
1869 dwarf2_per_objfile->str.asection = sectp;
1870 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1871 }
1872 else if (section_is_p (sectp->name, &names->addr))
1873 {
1874 dwarf2_per_objfile->addr.asection = sectp;
1875 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1876 }
1877 else if (section_is_p (sectp->name, &names->frame))
1878 {
1879 dwarf2_per_objfile->frame.asection = sectp;
1880 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1881 }
1882 else if (section_is_p (sectp->name, &names->eh_frame))
1883 {
1884 dwarf2_per_objfile->eh_frame.asection = sectp;
1885 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1886 }
1887 else if (section_is_p (sectp->name, &names->ranges))
1888 {
1889 dwarf2_per_objfile->ranges.asection = sectp;
1890 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1891 }
1892 else if (section_is_p (sectp->name, &names->types))
1893 {
1894 struct dwarf2_section_info type_section;
1895
1896 memset (&type_section, 0, sizeof (type_section));
1897 type_section.asection = sectp;
1898 type_section.size = bfd_get_section_size (sectp);
1899
1900 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1901 &type_section);
1902 }
1903 else if (section_is_p (sectp->name, &names->gdb_index))
1904 {
1905 dwarf2_per_objfile->gdb_index.asection = sectp;
1906 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1907 }
1908
1909 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1910 && bfd_section_vma (abfd, sectp) == 0)
1911 dwarf2_per_objfile->has_section_at_zero = 1;
1912 }
1913
1914 /* A helper function that decides whether a section is empty,
1915 or not present. */
1916
1917 static int
1918 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1919 {
1920 return info->asection == NULL || info->size == 0;
1921 }
1922
1923 /* Read the contents of the section INFO.
1924 OBJFILE is the main object file, but not necessarily the file where
1925 the section comes from. E.g., for DWO files INFO->asection->owner
1926 is the bfd of the DWO file.
1927 If the section is compressed, uncompress it before returning. */
1928
1929 static void
1930 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1931 {
1932 asection *sectp = info->asection;
1933 bfd *abfd;
1934 gdb_byte *buf, *retbuf;
1935 unsigned char header[4];
1936
1937 if (info->readin)
1938 return;
1939 info->buffer = NULL;
1940 info->readin = 1;
1941
1942 if (dwarf2_section_empty_p (info))
1943 return;
1944
1945 abfd = sectp->owner;
1946
1947 /* If the section has relocations, we must read it ourselves.
1948 Otherwise we attach it to the BFD. */
1949 if ((sectp->flags & SEC_RELOC) == 0)
1950 {
1951 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1952
1953 /* We have to cast away const here for historical reasons.
1954 Fixing dwarf2read to be const-correct would be quite nice. */
1955 info->buffer = (gdb_byte *) bytes;
1956 return;
1957 }
1958
1959 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1960 info->buffer = buf;
1961
1962 /* When debugging .o files, we may need to apply relocations; see
1963 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1964 We never compress sections in .o files, so we only need to
1965 try this when the section is not compressed. */
1966 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1967 if (retbuf != NULL)
1968 {
1969 info->buffer = retbuf;
1970 return;
1971 }
1972
1973 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1974 || bfd_bread (buf, info->size, abfd) != info->size)
1975 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1976 bfd_get_filename (abfd));
1977 }
1978
1979 /* A helper function that returns the size of a section in a safe way.
1980 If you are positive that the section has been read before using the
1981 size, then it is safe to refer to the dwarf2_section_info object's
1982 "size" field directly. In other cases, you must call this
1983 function, because for compressed sections the size field is not set
1984 correctly until the section has been read. */
1985
1986 static bfd_size_type
1987 dwarf2_section_size (struct objfile *objfile,
1988 struct dwarf2_section_info *info)
1989 {
1990 if (!info->readin)
1991 dwarf2_read_section (objfile, info);
1992 return info->size;
1993 }
1994
1995 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1996 SECTION_NAME. */
1997
1998 void
1999 dwarf2_get_section_info (struct objfile *objfile,
2000 enum dwarf2_section_enum sect,
2001 asection **sectp, gdb_byte **bufp,
2002 bfd_size_type *sizep)
2003 {
2004 struct dwarf2_per_objfile *data
2005 = objfile_data (objfile, dwarf2_objfile_data_key);
2006 struct dwarf2_section_info *info;
2007
2008 /* We may see an objfile without any DWARF, in which case we just
2009 return nothing. */
2010 if (data == NULL)
2011 {
2012 *sectp = NULL;
2013 *bufp = NULL;
2014 *sizep = 0;
2015 return;
2016 }
2017 switch (sect)
2018 {
2019 case DWARF2_DEBUG_FRAME:
2020 info = &data->frame;
2021 break;
2022 case DWARF2_EH_FRAME:
2023 info = &data->eh_frame;
2024 break;
2025 default:
2026 gdb_assert_not_reached ("unexpected section");
2027 }
2028
2029 dwarf2_read_section (objfile, info);
2030
2031 *sectp = info->asection;
2032 *bufp = info->buffer;
2033 *sizep = info->size;
2034 }
2035
2036 /* A helper function to find the sections for a .dwz file. */
2037
2038 static void
2039 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2040 {
2041 struct dwz_file *dwz_file = arg;
2042
2043 /* Note that we only support the standard ELF names, because .dwz
2044 is ELF-only (at the time of writing). */
2045 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2046 {
2047 dwz_file->abbrev.asection = sectp;
2048 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2049 }
2050 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2051 {
2052 dwz_file->info.asection = sectp;
2053 dwz_file->info.size = bfd_get_section_size (sectp);
2054 }
2055 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2056 {
2057 dwz_file->str.asection = sectp;
2058 dwz_file->str.size = bfd_get_section_size (sectp);
2059 }
2060 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2061 {
2062 dwz_file->line.asection = sectp;
2063 dwz_file->line.size = bfd_get_section_size (sectp);
2064 }
2065 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2066 {
2067 dwz_file->macro.asection = sectp;
2068 dwz_file->macro.size = bfd_get_section_size (sectp);
2069 }
2070 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2071 {
2072 dwz_file->gdb_index.asection = sectp;
2073 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2074 }
2075 }
2076
2077 /* Open the separate '.dwz' debug file, if needed. Error if the file
2078 cannot be found. */
2079
2080 static struct dwz_file *
2081 dwarf2_get_dwz_file (void)
2082 {
2083 bfd *abfd, *dwz_bfd;
2084 asection *section;
2085 gdb_byte *data;
2086 struct cleanup *cleanup;
2087 const char *filename;
2088 struct dwz_file *result;
2089
2090 if (dwarf2_per_objfile->dwz_file != NULL)
2091 return dwarf2_per_objfile->dwz_file;
2092
2093 abfd = dwarf2_per_objfile->objfile->obfd;
2094 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2095 if (section == NULL)
2096 error (_("could not find '.gnu_debugaltlink' section"));
2097 if (!bfd_malloc_and_get_section (abfd, section, &data))
2098 error (_("could not read '.gnu_debugaltlink' section: %s"),
2099 bfd_errmsg (bfd_get_error ()));
2100 cleanup = make_cleanup (xfree, data);
2101
2102 filename = data;
2103 if (!IS_ABSOLUTE_PATH (filename))
2104 {
2105 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2106 char *rel;
2107
2108 make_cleanup (xfree, abs);
2109 abs = ldirname (abs);
2110 make_cleanup (xfree, abs);
2111
2112 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2113 make_cleanup (xfree, rel);
2114 filename = rel;
2115 }
2116
2117 /* The format is just a NUL-terminated file name, followed by the
2118 build-id. For now, though, we ignore the build-id. */
2119 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2120 if (dwz_bfd == NULL)
2121 error (_("could not read '%s': %s"), filename,
2122 bfd_errmsg (bfd_get_error ()));
2123
2124 if (!bfd_check_format (dwz_bfd, bfd_object))
2125 {
2126 gdb_bfd_unref (dwz_bfd);
2127 error (_("file '%s' was not usable: %s"), filename,
2128 bfd_errmsg (bfd_get_error ()));
2129 }
2130
2131 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2132 struct dwz_file);
2133 result->dwz_bfd = dwz_bfd;
2134
2135 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2136
2137 do_cleanups (cleanup);
2138
2139 dwarf2_per_objfile->dwz_file = result;
2140 return result;
2141 }
2142 \f
2143 /* DWARF quick_symbols_functions support. */
2144
2145 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2146 unique line tables, so we maintain a separate table of all .debug_line
2147 derived entries to support the sharing.
2148 All the quick functions need is the list of file names. We discard the
2149 line_header when we're done and don't need to record it here. */
2150 struct quick_file_names
2151 {
2152 /* The data used to construct the hash key. */
2153 struct stmt_list_hash hash;
2154
2155 /* The number of entries in file_names, real_names. */
2156 unsigned int num_file_names;
2157
2158 /* The file names from the line table, after being run through
2159 file_full_name. */
2160 const char **file_names;
2161
2162 /* The file names from the line table after being run through
2163 gdb_realpath. These are computed lazily. */
2164 const char **real_names;
2165 };
2166
2167 /* When using the index (and thus not using psymtabs), each CU has an
2168 object of this type. This is used to hold information needed by
2169 the various "quick" methods. */
2170 struct dwarf2_per_cu_quick_data
2171 {
2172 /* The file table. This can be NULL if there was no file table
2173 or it's currently not read in.
2174 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2175 struct quick_file_names *file_names;
2176
2177 /* The corresponding symbol table. This is NULL if symbols for this
2178 CU have not yet been read. */
2179 struct symtab *symtab;
2180
2181 /* A temporary mark bit used when iterating over all CUs in
2182 expand_symtabs_matching. */
2183 unsigned int mark : 1;
2184
2185 /* True if we've tried to read the file table and found there isn't one.
2186 There will be no point in trying to read it again next time. */
2187 unsigned int no_file_data : 1;
2188 };
2189
2190 /* Utility hash function for a stmt_list_hash. */
2191
2192 static hashval_t
2193 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2194 {
2195 hashval_t v = 0;
2196
2197 if (stmt_list_hash->dwo_unit != NULL)
2198 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2199 v += stmt_list_hash->line_offset.sect_off;
2200 return v;
2201 }
2202
2203 /* Utility equality function for a stmt_list_hash. */
2204
2205 static int
2206 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2207 const struct stmt_list_hash *rhs)
2208 {
2209 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2210 return 0;
2211 if (lhs->dwo_unit != NULL
2212 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2213 return 0;
2214
2215 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2216 }
2217
2218 /* Hash function for a quick_file_names. */
2219
2220 static hashval_t
2221 hash_file_name_entry (const void *e)
2222 {
2223 const struct quick_file_names *file_data = e;
2224
2225 return hash_stmt_list_entry (&file_data->hash);
2226 }
2227
2228 /* Equality function for a quick_file_names. */
2229
2230 static int
2231 eq_file_name_entry (const void *a, const void *b)
2232 {
2233 const struct quick_file_names *ea = a;
2234 const struct quick_file_names *eb = b;
2235
2236 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2237 }
2238
2239 /* Delete function for a quick_file_names. */
2240
2241 static void
2242 delete_file_name_entry (void *e)
2243 {
2244 struct quick_file_names *file_data = e;
2245 int i;
2246
2247 for (i = 0; i < file_data->num_file_names; ++i)
2248 {
2249 xfree ((void*) file_data->file_names[i]);
2250 if (file_data->real_names)
2251 xfree ((void*) file_data->real_names[i]);
2252 }
2253
2254 /* The space for the struct itself lives on objfile_obstack,
2255 so we don't free it here. */
2256 }
2257
2258 /* Create a quick_file_names hash table. */
2259
2260 static htab_t
2261 create_quick_file_names_table (unsigned int nr_initial_entries)
2262 {
2263 return htab_create_alloc (nr_initial_entries,
2264 hash_file_name_entry, eq_file_name_entry,
2265 delete_file_name_entry, xcalloc, xfree);
2266 }
2267
2268 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2269 have to be created afterwards. You should call age_cached_comp_units after
2270 processing PER_CU->CU. dw2_setup must have been already called. */
2271
2272 static void
2273 load_cu (struct dwarf2_per_cu_data *per_cu)
2274 {
2275 if (per_cu->is_debug_types)
2276 load_full_type_unit (per_cu);
2277 else
2278 load_full_comp_unit (per_cu, language_minimal);
2279
2280 gdb_assert (per_cu->cu != NULL);
2281
2282 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2283 }
2284
2285 /* Read in the symbols for PER_CU. */
2286
2287 static void
2288 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2289 {
2290 struct cleanup *back_to;
2291
2292 /* Skip type_unit_groups, reading the type units they contain
2293 is handled elsewhere. */
2294 if (IS_TYPE_UNIT_GROUP (per_cu))
2295 return;
2296
2297 back_to = make_cleanup (dwarf2_release_queue, NULL);
2298
2299 if (dwarf2_per_objfile->using_index
2300 ? per_cu->v.quick->symtab == NULL
2301 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2302 {
2303 queue_comp_unit (per_cu, language_minimal);
2304 load_cu (per_cu);
2305 }
2306
2307 process_queue ();
2308
2309 /* Age the cache, releasing compilation units that have not
2310 been used recently. */
2311 age_cached_comp_units ();
2312
2313 do_cleanups (back_to);
2314 }
2315
2316 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2317 the objfile from which this CU came. Returns the resulting symbol
2318 table. */
2319
2320 static struct symtab *
2321 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2322 {
2323 gdb_assert (dwarf2_per_objfile->using_index);
2324 if (!per_cu->v.quick->symtab)
2325 {
2326 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2327 increment_reading_symtab ();
2328 dw2_do_instantiate_symtab (per_cu);
2329 process_cu_includes ();
2330 do_cleanups (back_to);
2331 }
2332 return per_cu->v.quick->symtab;
2333 }
2334
2335 /* Return the CU given its index.
2336
2337 This is intended for loops like:
2338
2339 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2340 + dwarf2_per_objfile->n_type_units); ++i)
2341 {
2342 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2343
2344 ...;
2345 }
2346 */
2347
2348 static struct dwarf2_per_cu_data *
2349 dw2_get_cu (int index)
2350 {
2351 if (index >= dwarf2_per_objfile->n_comp_units)
2352 {
2353 index -= dwarf2_per_objfile->n_comp_units;
2354 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2355 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2356 }
2357
2358 return dwarf2_per_objfile->all_comp_units[index];
2359 }
2360
2361 /* Return the primary CU given its index.
2362 The difference between this function and dw2_get_cu is in the handling
2363 of type units (TUs). Here we return the type_unit_group object.
2364
2365 This is intended for loops like:
2366
2367 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2368 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2369 {
2370 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2371
2372 ...;
2373 }
2374 */
2375
2376 static struct dwarf2_per_cu_data *
2377 dw2_get_primary_cu (int index)
2378 {
2379 if (index >= dwarf2_per_objfile->n_comp_units)
2380 {
2381 index -= dwarf2_per_objfile->n_comp_units;
2382 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2383 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2384 }
2385
2386 return dwarf2_per_objfile->all_comp_units[index];
2387 }
2388
2389 /* A helper for create_cus_from_index that handles a given list of
2390 CUs. */
2391
2392 static void
2393 create_cus_from_index_list (struct objfile *objfile,
2394 const gdb_byte *cu_list, offset_type n_elements,
2395 struct dwarf2_section_info *section,
2396 int is_dwz,
2397 int base_offset)
2398 {
2399 offset_type i;
2400
2401 for (i = 0; i < n_elements; i += 2)
2402 {
2403 struct dwarf2_per_cu_data *the_cu;
2404 ULONGEST offset, length;
2405
2406 gdb_static_assert (sizeof (ULONGEST) >= 8);
2407 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2408 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2409 cu_list += 2 * 8;
2410
2411 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2412 struct dwarf2_per_cu_data);
2413 the_cu->offset.sect_off = offset;
2414 the_cu->length = length;
2415 the_cu->objfile = objfile;
2416 the_cu->section = section;
2417 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2418 struct dwarf2_per_cu_quick_data);
2419 the_cu->is_dwz = is_dwz;
2420 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2421 }
2422 }
2423
2424 /* Read the CU list from the mapped index, and use it to create all
2425 the CU objects for this objfile. */
2426
2427 static void
2428 create_cus_from_index (struct objfile *objfile,
2429 const gdb_byte *cu_list, offset_type cu_list_elements,
2430 const gdb_byte *dwz_list, offset_type dwz_elements)
2431 {
2432 struct dwz_file *dwz;
2433
2434 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2435 dwarf2_per_objfile->all_comp_units
2436 = obstack_alloc (&objfile->objfile_obstack,
2437 dwarf2_per_objfile->n_comp_units
2438 * sizeof (struct dwarf2_per_cu_data *));
2439
2440 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2441 &dwarf2_per_objfile->info, 0, 0);
2442
2443 if (dwz_elements == 0)
2444 return;
2445
2446 dwz = dwarf2_get_dwz_file ();
2447 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2448 cu_list_elements / 2);
2449 }
2450
2451 /* Create the signatured type hash table from the index. */
2452
2453 static void
2454 create_signatured_type_table_from_index (struct objfile *objfile,
2455 struct dwarf2_section_info *section,
2456 const gdb_byte *bytes,
2457 offset_type elements)
2458 {
2459 offset_type i;
2460 htab_t sig_types_hash;
2461
2462 dwarf2_per_objfile->n_type_units = elements / 3;
2463 dwarf2_per_objfile->all_type_units
2464 = obstack_alloc (&objfile->objfile_obstack,
2465 dwarf2_per_objfile->n_type_units
2466 * sizeof (struct signatured_type *));
2467
2468 sig_types_hash = allocate_signatured_type_table (objfile);
2469
2470 for (i = 0; i < elements; i += 3)
2471 {
2472 struct signatured_type *sig_type;
2473 ULONGEST offset, type_offset_in_tu, signature;
2474 void **slot;
2475
2476 gdb_static_assert (sizeof (ULONGEST) >= 8);
2477 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2478 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2479 BFD_ENDIAN_LITTLE);
2480 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2481 bytes += 3 * 8;
2482
2483 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2484 struct signatured_type);
2485 sig_type->signature = signature;
2486 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2487 sig_type->per_cu.is_debug_types = 1;
2488 sig_type->per_cu.section = section;
2489 sig_type->per_cu.offset.sect_off = offset;
2490 sig_type->per_cu.objfile = objfile;
2491 sig_type->per_cu.v.quick
2492 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2493 struct dwarf2_per_cu_quick_data);
2494
2495 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2496 *slot = sig_type;
2497
2498 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2499 }
2500
2501 dwarf2_per_objfile->signatured_types = sig_types_hash;
2502 }
2503
2504 /* Read the address map data from the mapped index, and use it to
2505 populate the objfile's psymtabs_addrmap. */
2506
2507 static void
2508 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2509 {
2510 const gdb_byte *iter, *end;
2511 struct obstack temp_obstack;
2512 struct addrmap *mutable_map;
2513 struct cleanup *cleanup;
2514 CORE_ADDR baseaddr;
2515
2516 obstack_init (&temp_obstack);
2517 cleanup = make_cleanup_obstack_free (&temp_obstack);
2518 mutable_map = addrmap_create_mutable (&temp_obstack);
2519
2520 iter = index->address_table;
2521 end = iter + index->address_table_size;
2522
2523 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2524
2525 while (iter < end)
2526 {
2527 ULONGEST hi, lo, cu_index;
2528 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2529 iter += 8;
2530 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2531 iter += 8;
2532 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2533 iter += 4;
2534
2535 if (cu_index < dwarf2_per_objfile->n_comp_units)
2536 {
2537 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2538 dw2_get_cu (cu_index));
2539 }
2540 else
2541 {
2542 complaint (&symfile_complaints,
2543 _(".gdb_index address table has invalid CU number %u"),
2544 (unsigned) cu_index);
2545 }
2546 }
2547
2548 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2549 &objfile->objfile_obstack);
2550 do_cleanups (cleanup);
2551 }
2552
2553 /* The hash function for strings in the mapped index. This is the same as
2554 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2555 implementation. This is necessary because the hash function is tied to the
2556 format of the mapped index file. The hash values do not have to match with
2557 SYMBOL_HASH_NEXT.
2558
2559 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2560
2561 static hashval_t
2562 mapped_index_string_hash (int index_version, const void *p)
2563 {
2564 const unsigned char *str = (const unsigned char *) p;
2565 hashval_t r = 0;
2566 unsigned char c;
2567
2568 while ((c = *str++) != 0)
2569 {
2570 if (index_version >= 5)
2571 c = tolower (c);
2572 r = r * 67 + c - 113;
2573 }
2574
2575 return r;
2576 }
2577
2578 /* Find a slot in the mapped index INDEX for the object named NAME.
2579 If NAME is found, set *VEC_OUT to point to the CU vector in the
2580 constant pool and return 1. If NAME cannot be found, return 0. */
2581
2582 static int
2583 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2584 offset_type **vec_out)
2585 {
2586 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2587 offset_type hash;
2588 offset_type slot, step;
2589 int (*cmp) (const char *, const char *);
2590
2591 if (current_language->la_language == language_cplus
2592 || current_language->la_language == language_java
2593 || current_language->la_language == language_fortran)
2594 {
2595 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2596 not contain any. */
2597 const char *paren = strchr (name, '(');
2598
2599 if (paren)
2600 {
2601 char *dup;
2602
2603 dup = xmalloc (paren - name + 1);
2604 memcpy (dup, name, paren - name);
2605 dup[paren - name] = 0;
2606
2607 make_cleanup (xfree, dup);
2608 name = dup;
2609 }
2610 }
2611
2612 /* Index version 4 did not support case insensitive searches. But the
2613 indices for case insensitive languages are built in lowercase, therefore
2614 simulate our NAME being searched is also lowercased. */
2615 hash = mapped_index_string_hash ((index->version == 4
2616 && case_sensitivity == case_sensitive_off
2617 ? 5 : index->version),
2618 name);
2619
2620 slot = hash & (index->symbol_table_slots - 1);
2621 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2622 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2623
2624 for (;;)
2625 {
2626 /* Convert a slot number to an offset into the table. */
2627 offset_type i = 2 * slot;
2628 const char *str;
2629 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2630 {
2631 do_cleanups (back_to);
2632 return 0;
2633 }
2634
2635 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2636 if (!cmp (name, str))
2637 {
2638 *vec_out = (offset_type *) (index->constant_pool
2639 + MAYBE_SWAP (index->symbol_table[i + 1]));
2640 do_cleanups (back_to);
2641 return 1;
2642 }
2643
2644 slot = (slot + step) & (index->symbol_table_slots - 1);
2645 }
2646 }
2647
2648 /* A helper function that reads the .gdb_index from SECTION and fills
2649 in MAP. FILENAME is the name of the file containing the section;
2650 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2651 ok to use deprecated sections.
2652
2653 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2654 out parameters that are filled in with information about the CU and
2655 TU lists in the section.
2656
2657 Returns 1 if all went well, 0 otherwise. */
2658
2659 static int
2660 read_index_from_section (struct objfile *objfile,
2661 const char *filename,
2662 int deprecated_ok,
2663 struct dwarf2_section_info *section,
2664 struct mapped_index *map,
2665 const gdb_byte **cu_list,
2666 offset_type *cu_list_elements,
2667 const gdb_byte **types_list,
2668 offset_type *types_list_elements)
2669 {
2670 char *addr;
2671 offset_type version;
2672 offset_type *metadata;
2673 int i;
2674
2675 if (dwarf2_section_empty_p (section))
2676 return 0;
2677
2678 /* Older elfutils strip versions could keep the section in the main
2679 executable while splitting it for the separate debug info file. */
2680 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2681 return 0;
2682
2683 dwarf2_read_section (objfile, section);
2684
2685 addr = section->buffer;
2686 /* Version check. */
2687 version = MAYBE_SWAP (*(offset_type *) addr);
2688 /* Versions earlier than 3 emitted every copy of a psymbol. This
2689 causes the index to behave very poorly for certain requests. Version 3
2690 contained incomplete addrmap. So, it seems better to just ignore such
2691 indices. */
2692 if (version < 4)
2693 {
2694 static int warning_printed = 0;
2695 if (!warning_printed)
2696 {
2697 warning (_("Skipping obsolete .gdb_index section in %s."),
2698 filename);
2699 warning_printed = 1;
2700 }
2701 return 0;
2702 }
2703 /* Index version 4 uses a different hash function than index version
2704 5 and later.
2705
2706 Versions earlier than 6 did not emit psymbols for inlined
2707 functions. Using these files will cause GDB not to be able to
2708 set breakpoints on inlined functions by name, so we ignore these
2709 indices unless the user has done
2710 "set use-deprecated-index-sections on". */
2711 if (version < 6 && !deprecated_ok)
2712 {
2713 static int warning_printed = 0;
2714 if (!warning_printed)
2715 {
2716 warning (_("\
2717 Skipping deprecated .gdb_index section in %s.\n\
2718 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2719 to use the section anyway."),
2720 filename);
2721 warning_printed = 1;
2722 }
2723 return 0;
2724 }
2725 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2726 of the TU (for symbols coming from TUs). It's just a performance bug, and
2727 we can't distinguish gdb-generated indices from gold-generated ones, so
2728 nothing to do here. */
2729
2730 /* Indexes with higher version than the one supported by GDB may be no
2731 longer backward compatible. */
2732 if (version > 8)
2733 return 0;
2734
2735 map->version = version;
2736 map->total_size = section->size;
2737
2738 metadata = (offset_type *) (addr + sizeof (offset_type));
2739
2740 i = 0;
2741 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2742 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2743 / 8);
2744 ++i;
2745
2746 *types_list = addr + MAYBE_SWAP (metadata[i]);
2747 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2748 - MAYBE_SWAP (metadata[i]))
2749 / 8);
2750 ++i;
2751
2752 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2753 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2754 - MAYBE_SWAP (metadata[i]));
2755 ++i;
2756
2757 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2758 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2759 - MAYBE_SWAP (metadata[i]))
2760 / (2 * sizeof (offset_type)));
2761 ++i;
2762
2763 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2764
2765 return 1;
2766 }
2767
2768
2769 /* Read the index file. If everything went ok, initialize the "quick"
2770 elements of all the CUs and return 1. Otherwise, return 0. */
2771
2772 static int
2773 dwarf2_read_index (struct objfile *objfile)
2774 {
2775 struct mapped_index local_map, *map;
2776 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2777 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2778
2779 if (!read_index_from_section (objfile, objfile->name,
2780 use_deprecated_index_sections,
2781 &dwarf2_per_objfile->gdb_index, &local_map,
2782 &cu_list, &cu_list_elements,
2783 &types_list, &types_list_elements))
2784 return 0;
2785
2786 /* Don't use the index if it's empty. */
2787 if (local_map.symbol_table_slots == 0)
2788 return 0;
2789
2790 /* If there is a .dwz file, read it so we can get its CU list as
2791 well. */
2792 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2793 {
2794 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2795 struct mapped_index dwz_map;
2796 const gdb_byte *dwz_types_ignore;
2797 offset_type dwz_types_elements_ignore;
2798
2799 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2800 1,
2801 &dwz->gdb_index, &dwz_map,
2802 &dwz_list, &dwz_list_elements,
2803 &dwz_types_ignore,
2804 &dwz_types_elements_ignore))
2805 {
2806 warning (_("could not read '.gdb_index' section from %s; skipping"),
2807 bfd_get_filename (dwz->dwz_bfd));
2808 return 0;
2809 }
2810 }
2811
2812 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2813 dwz_list_elements);
2814
2815 if (types_list_elements)
2816 {
2817 struct dwarf2_section_info *section;
2818
2819 /* We can only handle a single .debug_types when we have an
2820 index. */
2821 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2822 return 0;
2823
2824 section = VEC_index (dwarf2_section_info_def,
2825 dwarf2_per_objfile->types, 0);
2826
2827 create_signatured_type_table_from_index (objfile, section, types_list,
2828 types_list_elements);
2829 }
2830
2831 create_addrmap_from_index (objfile, &local_map);
2832
2833 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2834 *map = local_map;
2835
2836 dwarf2_per_objfile->index_table = map;
2837 dwarf2_per_objfile->using_index = 1;
2838 dwarf2_per_objfile->quick_file_names_table =
2839 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2840
2841 return 1;
2842 }
2843
2844 /* A helper for the "quick" functions which sets the global
2845 dwarf2_per_objfile according to OBJFILE. */
2846
2847 static void
2848 dw2_setup (struct objfile *objfile)
2849 {
2850 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2851 gdb_assert (dwarf2_per_objfile);
2852 }
2853
2854 /* die_reader_func for dw2_get_file_names. */
2855
2856 static void
2857 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2858 gdb_byte *info_ptr,
2859 struct die_info *comp_unit_die,
2860 int has_children,
2861 void *data)
2862 {
2863 struct dwarf2_cu *cu = reader->cu;
2864 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2865 struct objfile *objfile = dwarf2_per_objfile->objfile;
2866 struct dwarf2_per_cu_data *lh_cu;
2867 struct line_header *lh;
2868 struct attribute *attr;
2869 int i;
2870 const char *name, *comp_dir;
2871 void **slot;
2872 struct quick_file_names *qfn;
2873 unsigned int line_offset;
2874
2875 /* Our callers never want to match partial units -- instead they
2876 will match the enclosing full CU. */
2877 if (comp_unit_die->tag == DW_TAG_partial_unit)
2878 {
2879 this_cu->v.quick->no_file_data = 1;
2880 return;
2881 }
2882
2883 /* If we're reading the line header for TUs, store it in the "per_cu"
2884 for tu_group. */
2885 if (this_cu->is_debug_types)
2886 {
2887 struct type_unit_group *tu_group = data;
2888
2889 gdb_assert (tu_group != NULL);
2890 lh_cu = &tu_group->per_cu;
2891 }
2892 else
2893 lh_cu = this_cu;
2894
2895 lh = NULL;
2896 slot = NULL;
2897 line_offset = 0;
2898
2899 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2900 if (attr)
2901 {
2902 struct quick_file_names find_entry;
2903
2904 line_offset = DW_UNSND (attr);
2905
2906 /* We may have already read in this line header (TU line header sharing).
2907 If we have we're done. */
2908 find_entry.hash.dwo_unit = cu->dwo_unit;
2909 find_entry.hash.line_offset.sect_off = line_offset;
2910 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2911 &find_entry, INSERT);
2912 if (*slot != NULL)
2913 {
2914 lh_cu->v.quick->file_names = *slot;
2915 return;
2916 }
2917
2918 lh = dwarf_decode_line_header (line_offset, cu);
2919 }
2920 if (lh == NULL)
2921 {
2922 lh_cu->v.quick->no_file_data = 1;
2923 return;
2924 }
2925
2926 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2927 qfn->hash.dwo_unit = cu->dwo_unit;
2928 qfn->hash.line_offset.sect_off = line_offset;
2929 gdb_assert (slot != NULL);
2930 *slot = qfn;
2931
2932 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2933
2934 qfn->num_file_names = lh->num_file_names;
2935 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2936 lh->num_file_names * sizeof (char *));
2937 for (i = 0; i < lh->num_file_names; ++i)
2938 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2939 qfn->real_names = NULL;
2940
2941 free_line_header (lh);
2942
2943 lh_cu->v.quick->file_names = qfn;
2944 }
2945
2946 /* A helper for the "quick" functions which attempts to read the line
2947 table for THIS_CU. */
2948
2949 static struct quick_file_names *
2950 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2951 {
2952 /* For TUs this should only be called on the parent group. */
2953 if (this_cu->is_debug_types)
2954 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2955
2956 if (this_cu->v.quick->file_names != NULL)
2957 return this_cu->v.quick->file_names;
2958 /* If we know there is no line data, no point in looking again. */
2959 if (this_cu->v.quick->no_file_data)
2960 return NULL;
2961
2962 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2963 in the stub for CUs, there's is no need to lookup the DWO file.
2964 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2965 DWO file. */
2966 if (this_cu->is_debug_types)
2967 {
2968 struct type_unit_group *tu_group = this_cu->type_unit_group;
2969
2970 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2971 dw2_get_file_names_reader, tu_group);
2972 }
2973 else
2974 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2975
2976 if (this_cu->v.quick->no_file_data)
2977 return NULL;
2978 return this_cu->v.quick->file_names;
2979 }
2980
2981 /* A helper for the "quick" functions which computes and caches the
2982 real path for a given file name from the line table. */
2983
2984 static const char *
2985 dw2_get_real_path (struct objfile *objfile,
2986 struct quick_file_names *qfn, int index)
2987 {
2988 if (qfn->real_names == NULL)
2989 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2990 qfn->num_file_names, sizeof (char *));
2991
2992 if (qfn->real_names[index] == NULL)
2993 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2994
2995 return qfn->real_names[index];
2996 }
2997
2998 static struct symtab *
2999 dw2_find_last_source_symtab (struct objfile *objfile)
3000 {
3001 int index;
3002
3003 dw2_setup (objfile);
3004 index = dwarf2_per_objfile->n_comp_units - 1;
3005 return dw2_instantiate_symtab (dw2_get_cu (index));
3006 }
3007
3008 /* Traversal function for dw2_forget_cached_source_info. */
3009
3010 static int
3011 dw2_free_cached_file_names (void **slot, void *info)
3012 {
3013 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3014
3015 if (file_data->real_names)
3016 {
3017 int i;
3018
3019 for (i = 0; i < file_data->num_file_names; ++i)
3020 {
3021 xfree ((void*) file_data->real_names[i]);
3022 file_data->real_names[i] = NULL;
3023 }
3024 }
3025
3026 return 1;
3027 }
3028
3029 static void
3030 dw2_forget_cached_source_info (struct objfile *objfile)
3031 {
3032 dw2_setup (objfile);
3033
3034 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3035 dw2_free_cached_file_names, NULL);
3036 }
3037
3038 /* Helper function for dw2_map_symtabs_matching_filename that expands
3039 the symtabs and calls the iterator. */
3040
3041 static int
3042 dw2_map_expand_apply (struct objfile *objfile,
3043 struct dwarf2_per_cu_data *per_cu,
3044 const char *name, const char *real_path,
3045 int (*callback) (struct symtab *, void *),
3046 void *data)
3047 {
3048 struct symtab *last_made = objfile->symtabs;
3049
3050 /* Don't visit already-expanded CUs. */
3051 if (per_cu->v.quick->symtab)
3052 return 0;
3053
3054 /* This may expand more than one symtab, and we want to iterate over
3055 all of them. */
3056 dw2_instantiate_symtab (per_cu);
3057
3058 return iterate_over_some_symtabs (name, real_path, callback, data,
3059 objfile->symtabs, last_made);
3060 }
3061
3062 /* Implementation of the map_symtabs_matching_filename method. */
3063
3064 static int
3065 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3066 const char *real_path,
3067 int (*callback) (struct symtab *, void *),
3068 void *data)
3069 {
3070 int i;
3071 const char *name_basename = lbasename (name);
3072
3073 dw2_setup (objfile);
3074
3075 /* The rule is CUs specify all the files, including those used by
3076 any TU, so there's no need to scan TUs here. */
3077
3078 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3079 {
3080 int j;
3081 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3082 struct quick_file_names *file_data;
3083
3084 /* We only need to look at symtabs not already expanded. */
3085 if (per_cu->v.quick->symtab)
3086 continue;
3087
3088 file_data = dw2_get_file_names (per_cu);
3089 if (file_data == NULL)
3090 continue;
3091
3092 for (j = 0; j < file_data->num_file_names; ++j)
3093 {
3094 const char *this_name = file_data->file_names[j];
3095 const char *this_real_name;
3096
3097 if (compare_filenames_for_search (this_name, name))
3098 {
3099 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3100 callback, data))
3101 return 1;
3102 continue;
3103 }
3104
3105 /* Before we invoke realpath, which can get expensive when many
3106 files are involved, do a quick comparison of the basenames. */
3107 if (! basenames_may_differ
3108 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3109 continue;
3110
3111 this_real_name = dw2_get_real_path (objfile, file_data, j);
3112 if (compare_filenames_for_search (this_real_name, name))
3113 {
3114 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3115 callback, data))
3116 return 1;
3117 continue;
3118 }
3119
3120 if (real_path != NULL)
3121 {
3122 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3123 gdb_assert (IS_ABSOLUTE_PATH (name));
3124 if (this_real_name != NULL
3125 && FILENAME_CMP (real_path, this_real_name) == 0)
3126 {
3127 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3128 callback, data))
3129 return 1;
3130 continue;
3131 }
3132 }
3133 }
3134 }
3135
3136 return 0;
3137 }
3138
3139 /* Struct used to manage iterating over all CUs looking for a symbol. */
3140
3141 struct dw2_symtab_iterator
3142 {
3143 /* The internalized form of .gdb_index. */
3144 struct mapped_index *index;
3145 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3146 int want_specific_block;
3147 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3148 Unused if !WANT_SPECIFIC_BLOCK. */
3149 int block_index;
3150 /* The kind of symbol we're looking for. */
3151 domain_enum domain;
3152 /* The list of CUs from the index entry of the symbol,
3153 or NULL if not found. */
3154 offset_type *vec;
3155 /* The next element in VEC to look at. */
3156 int next;
3157 /* The number of elements in VEC, or zero if there is no match. */
3158 int length;
3159 };
3160
3161 /* Initialize the index symtab iterator ITER.
3162 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3163 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3164
3165 static void
3166 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3167 struct mapped_index *index,
3168 int want_specific_block,
3169 int block_index,
3170 domain_enum domain,
3171 const char *name)
3172 {
3173 iter->index = index;
3174 iter->want_specific_block = want_specific_block;
3175 iter->block_index = block_index;
3176 iter->domain = domain;
3177 iter->next = 0;
3178
3179 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3180 iter->length = MAYBE_SWAP (*iter->vec);
3181 else
3182 {
3183 iter->vec = NULL;
3184 iter->length = 0;
3185 }
3186 }
3187
3188 /* Return the next matching CU or NULL if there are no more. */
3189
3190 static struct dwarf2_per_cu_data *
3191 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3192 {
3193 for ( ; iter->next < iter->length; ++iter->next)
3194 {
3195 offset_type cu_index_and_attrs =
3196 MAYBE_SWAP (iter->vec[iter->next + 1]);
3197 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3198 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3199 int want_static = iter->block_index != GLOBAL_BLOCK;
3200 /* This value is only valid for index versions >= 7. */
3201 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3202 gdb_index_symbol_kind symbol_kind =
3203 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3204 /* Only check the symbol attributes if they're present.
3205 Indices prior to version 7 don't record them,
3206 and indices >= 7 may elide them for certain symbols
3207 (gold does this). */
3208 int attrs_valid =
3209 (iter->index->version >= 7
3210 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3211
3212 /* Skip if already read in. */
3213 if (per_cu->v.quick->symtab)
3214 continue;
3215
3216 if (attrs_valid
3217 && iter->want_specific_block
3218 && want_static != is_static)
3219 continue;
3220
3221 /* Only check the symbol's kind if it has one. */
3222 if (attrs_valid)
3223 {
3224 switch (iter->domain)
3225 {
3226 case VAR_DOMAIN:
3227 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3228 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3229 /* Some types are also in VAR_DOMAIN. */
3230 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3231 continue;
3232 break;
3233 case STRUCT_DOMAIN:
3234 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3235 continue;
3236 break;
3237 case LABEL_DOMAIN:
3238 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3239 continue;
3240 break;
3241 default:
3242 break;
3243 }
3244 }
3245
3246 ++iter->next;
3247 return per_cu;
3248 }
3249
3250 return NULL;
3251 }
3252
3253 static struct symtab *
3254 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3255 const char *name, domain_enum domain)
3256 {
3257 struct symtab *stab_best = NULL;
3258 struct mapped_index *index;
3259
3260 dw2_setup (objfile);
3261
3262 index = dwarf2_per_objfile->index_table;
3263
3264 /* index is NULL if OBJF_READNOW. */
3265 if (index)
3266 {
3267 struct dw2_symtab_iterator iter;
3268 struct dwarf2_per_cu_data *per_cu;
3269
3270 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3271
3272 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3273 {
3274 struct symbol *sym = NULL;
3275 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3276
3277 /* Some caution must be observed with overloaded functions
3278 and methods, since the index will not contain any overload
3279 information (but NAME might contain it). */
3280 if (stab->primary)
3281 {
3282 struct blockvector *bv = BLOCKVECTOR (stab);
3283 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3284
3285 sym = lookup_block_symbol (block, name, domain);
3286 }
3287
3288 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3289 {
3290 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3291 return stab;
3292
3293 stab_best = stab;
3294 }
3295
3296 /* Keep looking through other CUs. */
3297 }
3298 }
3299
3300 return stab_best;
3301 }
3302
3303 static void
3304 dw2_print_stats (struct objfile *objfile)
3305 {
3306 int i, total, count;
3307
3308 dw2_setup (objfile);
3309 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3310 count = 0;
3311 for (i = 0; i < total; ++i)
3312 {
3313 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3314
3315 if (!per_cu->v.quick->symtab)
3316 ++count;
3317 }
3318 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3319 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3320 }
3321
3322 static void
3323 dw2_dump (struct objfile *objfile)
3324 {
3325 /* Nothing worth printing. */
3326 }
3327
3328 static void
3329 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3330 struct section_offsets *delta)
3331 {
3332 /* There's nothing to relocate here. */
3333 }
3334
3335 static void
3336 dw2_expand_symtabs_for_function (struct objfile *objfile,
3337 const char *func_name)
3338 {
3339 struct mapped_index *index;
3340
3341 dw2_setup (objfile);
3342
3343 index = dwarf2_per_objfile->index_table;
3344
3345 /* index is NULL if OBJF_READNOW. */
3346 if (index)
3347 {
3348 struct dw2_symtab_iterator iter;
3349 struct dwarf2_per_cu_data *per_cu;
3350
3351 /* Note: It doesn't matter what we pass for block_index here. */
3352 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3353 func_name);
3354
3355 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3356 dw2_instantiate_symtab (per_cu);
3357 }
3358 }
3359
3360 static void
3361 dw2_expand_all_symtabs (struct objfile *objfile)
3362 {
3363 int i;
3364
3365 dw2_setup (objfile);
3366
3367 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3368 + dwarf2_per_objfile->n_type_units); ++i)
3369 {
3370 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3371
3372 dw2_instantiate_symtab (per_cu);
3373 }
3374 }
3375
3376 static void
3377 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3378 const char *fullname)
3379 {
3380 int i;
3381
3382 dw2_setup (objfile);
3383
3384 /* We don't need to consider type units here.
3385 This is only called for examining code, e.g. expand_line_sal.
3386 There can be an order of magnitude (or more) more type units
3387 than comp units, and we avoid them if we can. */
3388
3389 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3390 {
3391 int j;
3392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3393 struct quick_file_names *file_data;
3394
3395 /* We only need to look at symtabs not already expanded. */
3396 if (per_cu->v.quick->symtab)
3397 continue;
3398
3399 file_data = dw2_get_file_names (per_cu);
3400 if (file_data == NULL)
3401 continue;
3402
3403 for (j = 0; j < file_data->num_file_names; ++j)
3404 {
3405 const char *this_fullname = file_data->file_names[j];
3406
3407 if (filename_cmp (this_fullname, fullname) == 0)
3408 {
3409 dw2_instantiate_symtab (per_cu);
3410 break;
3411 }
3412 }
3413 }
3414 }
3415
3416 /* A helper function for dw2_find_symbol_file that finds the primary
3417 file name for a given CU. This is a die_reader_func. */
3418
3419 static void
3420 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3421 gdb_byte *info_ptr,
3422 struct die_info *comp_unit_die,
3423 int has_children,
3424 void *data)
3425 {
3426 const char **result_ptr = data;
3427 struct dwarf2_cu *cu = reader->cu;
3428 struct attribute *attr;
3429
3430 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3431 if (attr == NULL)
3432 *result_ptr = NULL;
3433 else
3434 *result_ptr = DW_STRING (attr);
3435 }
3436
3437 static const char *
3438 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3439 {
3440 struct dwarf2_per_cu_data *per_cu;
3441 offset_type *vec;
3442 const char *filename;
3443
3444 dw2_setup (objfile);
3445
3446 /* index_table is NULL if OBJF_READNOW. */
3447 if (!dwarf2_per_objfile->index_table)
3448 {
3449 struct symtab *s;
3450
3451 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3452 {
3453 struct blockvector *bv = BLOCKVECTOR (s);
3454 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3455 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3456
3457 if (sym)
3458 {
3459 /* Only file extension of returned filename is recognized. */
3460 return SYMBOL_SYMTAB (sym)->filename;
3461 }
3462 }
3463 return NULL;
3464 }
3465
3466 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3467 name, &vec))
3468 return NULL;
3469
3470 /* Note that this just looks at the very first one named NAME -- but
3471 actually we are looking for a function. find_main_filename
3472 should be rewritten so that it doesn't require a custom hook. It
3473 could just use the ordinary symbol tables. */
3474 /* vec[0] is the length, which must always be >0. */
3475 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3476
3477 if (per_cu->v.quick->symtab != NULL)
3478 {
3479 /* Only file extension of returned filename is recognized. */
3480 return per_cu->v.quick->symtab->filename;
3481 }
3482
3483 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3484 dw2_get_primary_filename_reader, &filename);
3485
3486 /* Only file extension of returned filename is recognized. */
3487 return filename;
3488 }
3489
3490 static void
3491 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3492 struct objfile *objfile, int global,
3493 int (*callback) (struct block *,
3494 struct symbol *, void *),
3495 void *data, symbol_compare_ftype *match,
3496 symbol_compare_ftype *ordered_compare)
3497 {
3498 /* Currently unimplemented; used for Ada. The function can be called if the
3499 current language is Ada for a non-Ada objfile using GNU index. As Ada
3500 does not look for non-Ada symbols this function should just return. */
3501 }
3502
3503 static void
3504 dw2_expand_symtabs_matching
3505 (struct objfile *objfile,
3506 int (*file_matcher) (const char *, void *, int basenames),
3507 int (*name_matcher) (const char *, void *),
3508 enum search_domain kind,
3509 void *data)
3510 {
3511 int i;
3512 offset_type iter;
3513 struct mapped_index *index;
3514
3515 dw2_setup (objfile);
3516
3517 /* index_table is NULL if OBJF_READNOW. */
3518 if (!dwarf2_per_objfile->index_table)
3519 return;
3520 index = dwarf2_per_objfile->index_table;
3521
3522 if (file_matcher != NULL)
3523 {
3524 struct cleanup *cleanup;
3525 htab_t visited_found, visited_not_found;
3526
3527 visited_found = htab_create_alloc (10,
3528 htab_hash_pointer, htab_eq_pointer,
3529 NULL, xcalloc, xfree);
3530 cleanup = make_cleanup_htab_delete (visited_found);
3531 visited_not_found = htab_create_alloc (10,
3532 htab_hash_pointer, htab_eq_pointer,
3533 NULL, xcalloc, xfree);
3534 make_cleanup_htab_delete (visited_not_found);
3535
3536 /* The rule is CUs specify all the files, including those used by
3537 any TU, so there's no need to scan TUs here. */
3538
3539 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3540 {
3541 int j;
3542 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3543 struct quick_file_names *file_data;
3544 void **slot;
3545
3546 per_cu->v.quick->mark = 0;
3547
3548 /* We only need to look at symtabs not already expanded. */
3549 if (per_cu->v.quick->symtab)
3550 continue;
3551
3552 file_data = dw2_get_file_names (per_cu);
3553 if (file_data == NULL)
3554 continue;
3555
3556 if (htab_find (visited_not_found, file_data) != NULL)
3557 continue;
3558 else if (htab_find (visited_found, file_data) != NULL)
3559 {
3560 per_cu->v.quick->mark = 1;
3561 continue;
3562 }
3563
3564 for (j = 0; j < file_data->num_file_names; ++j)
3565 {
3566 const char *this_real_name;
3567
3568 if (file_matcher (file_data->file_names[j], data, 0))
3569 {
3570 per_cu->v.quick->mark = 1;
3571 break;
3572 }
3573
3574 /* Before we invoke realpath, which can get expensive when many
3575 files are involved, do a quick comparison of the basenames. */
3576 if (!basenames_may_differ
3577 && !file_matcher (lbasename (file_data->file_names[j]),
3578 data, 1))
3579 continue;
3580
3581 this_real_name = dw2_get_real_path (objfile, file_data, j);
3582 if (file_matcher (this_real_name, data, 0))
3583 {
3584 per_cu->v.quick->mark = 1;
3585 break;
3586 }
3587 }
3588
3589 slot = htab_find_slot (per_cu->v.quick->mark
3590 ? visited_found
3591 : visited_not_found,
3592 file_data, INSERT);
3593 *slot = file_data;
3594 }
3595
3596 do_cleanups (cleanup);
3597 }
3598
3599 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3600 {
3601 offset_type idx = 2 * iter;
3602 const char *name;
3603 offset_type *vec, vec_len, vec_idx;
3604
3605 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3606 continue;
3607
3608 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3609
3610 if (! (*name_matcher) (name, data))
3611 continue;
3612
3613 /* The name was matched, now expand corresponding CUs that were
3614 marked. */
3615 vec = (offset_type *) (index->constant_pool
3616 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3617 vec_len = MAYBE_SWAP (vec[0]);
3618 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3619 {
3620 struct dwarf2_per_cu_data *per_cu;
3621 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3622 gdb_index_symbol_kind symbol_kind =
3623 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3624 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3625
3626 /* Don't crash on bad data. */
3627 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3628 + dwarf2_per_objfile->n_type_units))
3629 continue;
3630
3631 /* Only check the symbol's kind if it has one.
3632 Indices prior to version 7 don't record it. */
3633 if (index->version >= 7)
3634 {
3635 switch (kind)
3636 {
3637 case VARIABLES_DOMAIN:
3638 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3639 continue;
3640 break;
3641 case FUNCTIONS_DOMAIN:
3642 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3643 continue;
3644 break;
3645 case TYPES_DOMAIN:
3646 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3647 continue;
3648 break;
3649 default:
3650 break;
3651 }
3652 }
3653
3654 per_cu = dw2_get_cu (cu_index);
3655 if (file_matcher == NULL || per_cu->v.quick->mark)
3656 dw2_instantiate_symtab (per_cu);
3657 }
3658 }
3659 }
3660
3661 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3662 symtab. */
3663
3664 static struct symtab *
3665 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3666 {
3667 int i;
3668
3669 if (BLOCKVECTOR (symtab) != NULL
3670 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3671 return symtab;
3672
3673 if (symtab->includes == NULL)
3674 return NULL;
3675
3676 for (i = 0; symtab->includes[i]; ++i)
3677 {
3678 struct symtab *s = symtab->includes[i];
3679
3680 s = recursively_find_pc_sect_symtab (s, pc);
3681 if (s != NULL)
3682 return s;
3683 }
3684
3685 return NULL;
3686 }
3687
3688 static struct symtab *
3689 dw2_find_pc_sect_symtab (struct objfile *objfile,
3690 struct minimal_symbol *msymbol,
3691 CORE_ADDR pc,
3692 struct obj_section *section,
3693 int warn_if_readin)
3694 {
3695 struct dwarf2_per_cu_data *data;
3696 struct symtab *result;
3697
3698 dw2_setup (objfile);
3699
3700 if (!objfile->psymtabs_addrmap)
3701 return NULL;
3702
3703 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3704 if (!data)
3705 return NULL;
3706
3707 if (warn_if_readin && data->v.quick->symtab)
3708 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3709 paddress (get_objfile_arch (objfile), pc));
3710
3711 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3712 gdb_assert (result != NULL);
3713 return result;
3714 }
3715
3716 static void
3717 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3718 void *data, int need_fullname)
3719 {
3720 int i;
3721 struct cleanup *cleanup;
3722 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3723 NULL, xcalloc, xfree);
3724
3725 cleanup = make_cleanup_htab_delete (visited);
3726 dw2_setup (objfile);
3727
3728 /* The rule is CUs specify all the files, including those used by
3729 any TU, so there's no need to scan TUs here.
3730 We can ignore file names coming from already-expanded CUs. */
3731
3732 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3733 {
3734 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3735
3736 if (per_cu->v.quick->symtab)
3737 {
3738 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3739 INSERT);
3740
3741 *slot = per_cu->v.quick->file_names;
3742 }
3743 }
3744
3745 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3746 {
3747 int j;
3748 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3749 struct quick_file_names *file_data;
3750 void **slot;
3751
3752 /* We only need to look at symtabs not already expanded. */
3753 if (per_cu->v.quick->symtab)
3754 continue;
3755
3756 file_data = dw2_get_file_names (per_cu);
3757 if (file_data == NULL)
3758 continue;
3759
3760 slot = htab_find_slot (visited, file_data, INSERT);
3761 if (*slot)
3762 {
3763 /* Already visited. */
3764 continue;
3765 }
3766 *slot = file_data;
3767
3768 for (j = 0; j < file_data->num_file_names; ++j)
3769 {
3770 const char *this_real_name;
3771
3772 if (need_fullname)
3773 this_real_name = dw2_get_real_path (objfile, file_data, j);
3774 else
3775 this_real_name = NULL;
3776 (*fun) (file_data->file_names[j], this_real_name, data);
3777 }
3778 }
3779
3780 do_cleanups (cleanup);
3781 }
3782
3783 static int
3784 dw2_has_symbols (struct objfile *objfile)
3785 {
3786 return 1;
3787 }
3788
3789 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3790 {
3791 dw2_has_symbols,
3792 dw2_find_last_source_symtab,
3793 dw2_forget_cached_source_info,
3794 dw2_map_symtabs_matching_filename,
3795 dw2_lookup_symbol,
3796 dw2_print_stats,
3797 dw2_dump,
3798 dw2_relocate,
3799 dw2_expand_symtabs_for_function,
3800 dw2_expand_all_symtabs,
3801 dw2_expand_symtabs_with_fullname,
3802 dw2_find_symbol_file,
3803 dw2_map_matching_symbols,
3804 dw2_expand_symtabs_matching,
3805 dw2_find_pc_sect_symtab,
3806 dw2_map_symbol_filenames
3807 };
3808
3809 /* Initialize for reading DWARF for this objfile. Return 0 if this
3810 file will use psymtabs, or 1 if using the GNU index. */
3811
3812 int
3813 dwarf2_initialize_objfile (struct objfile *objfile)
3814 {
3815 /* If we're about to read full symbols, don't bother with the
3816 indices. In this case we also don't care if some other debug
3817 format is making psymtabs, because they are all about to be
3818 expanded anyway. */
3819 if ((objfile->flags & OBJF_READNOW))
3820 {
3821 int i;
3822
3823 dwarf2_per_objfile->using_index = 1;
3824 create_all_comp_units (objfile);
3825 create_all_type_units (objfile);
3826 dwarf2_per_objfile->quick_file_names_table =
3827 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3828
3829 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3830 + dwarf2_per_objfile->n_type_units); ++i)
3831 {
3832 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3833
3834 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3835 struct dwarf2_per_cu_quick_data);
3836 }
3837
3838 /* Return 1 so that gdb sees the "quick" functions. However,
3839 these functions will be no-ops because we will have expanded
3840 all symtabs. */
3841 return 1;
3842 }
3843
3844 if (dwarf2_read_index (objfile))
3845 return 1;
3846
3847 return 0;
3848 }
3849
3850 \f
3851
3852 /* Build a partial symbol table. */
3853
3854 void
3855 dwarf2_build_psymtabs (struct objfile *objfile)
3856 {
3857 volatile struct gdb_exception except;
3858
3859 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3860 {
3861 init_psymbol_list (objfile, 1024);
3862 }
3863
3864 TRY_CATCH (except, RETURN_MASK_ERROR)
3865 {
3866 /* This isn't really ideal: all the data we allocate on the
3867 objfile's obstack is still uselessly kept around. However,
3868 freeing it seems unsafe. */
3869 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3870
3871 dwarf2_build_psymtabs_hard (objfile);
3872 discard_cleanups (cleanups);
3873 }
3874 if (except.reason < 0)
3875 exception_print (gdb_stderr, except);
3876 }
3877
3878 /* Return the total length of the CU described by HEADER. */
3879
3880 static unsigned int
3881 get_cu_length (const struct comp_unit_head *header)
3882 {
3883 return header->initial_length_size + header->length;
3884 }
3885
3886 /* Return TRUE if OFFSET is within CU_HEADER. */
3887
3888 static inline int
3889 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3890 {
3891 sect_offset bottom = { cu_header->offset.sect_off };
3892 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3893
3894 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3895 }
3896
3897 /* Find the base address of the compilation unit for range lists and
3898 location lists. It will normally be specified by DW_AT_low_pc.
3899 In DWARF-3 draft 4, the base address could be overridden by
3900 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3901 compilation units with discontinuous ranges. */
3902
3903 static void
3904 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3905 {
3906 struct attribute *attr;
3907
3908 cu->base_known = 0;
3909 cu->base_address = 0;
3910
3911 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3912 if (attr)
3913 {
3914 cu->base_address = DW_ADDR (attr);
3915 cu->base_known = 1;
3916 }
3917 else
3918 {
3919 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3920 if (attr)
3921 {
3922 cu->base_address = DW_ADDR (attr);
3923 cu->base_known = 1;
3924 }
3925 }
3926 }
3927
3928 /* Read in the comp unit header information from the debug_info at info_ptr.
3929 NOTE: This leaves members offset, first_die_offset to be filled in
3930 by the caller. */
3931
3932 static gdb_byte *
3933 read_comp_unit_head (struct comp_unit_head *cu_header,
3934 gdb_byte *info_ptr, bfd *abfd)
3935 {
3936 int signed_addr;
3937 unsigned int bytes_read;
3938
3939 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3940 cu_header->initial_length_size = bytes_read;
3941 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3942 info_ptr += bytes_read;
3943 cu_header->version = read_2_bytes (abfd, info_ptr);
3944 info_ptr += 2;
3945 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3946 &bytes_read);
3947 info_ptr += bytes_read;
3948 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3949 info_ptr += 1;
3950 signed_addr = bfd_get_sign_extend_vma (abfd);
3951 if (signed_addr < 0)
3952 internal_error (__FILE__, __LINE__,
3953 _("read_comp_unit_head: dwarf from non elf file"));
3954 cu_header->signed_addr_p = signed_addr;
3955
3956 return info_ptr;
3957 }
3958
3959 /* Helper function that returns the proper abbrev section for
3960 THIS_CU. */
3961
3962 static struct dwarf2_section_info *
3963 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3964 {
3965 struct dwarf2_section_info *abbrev;
3966
3967 if (this_cu->is_dwz)
3968 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3969 else
3970 abbrev = &dwarf2_per_objfile->abbrev;
3971
3972 return abbrev;
3973 }
3974
3975 /* Subroutine of read_and_check_comp_unit_head and
3976 read_and_check_type_unit_head to simplify them.
3977 Perform various error checking on the header. */
3978
3979 static void
3980 error_check_comp_unit_head (struct comp_unit_head *header,
3981 struct dwarf2_section_info *section,
3982 struct dwarf2_section_info *abbrev_section)
3983 {
3984 bfd *abfd = section->asection->owner;
3985 const char *filename = bfd_get_filename (abfd);
3986
3987 if (header->version != 2 && header->version != 3 && header->version != 4)
3988 error (_("Dwarf Error: wrong version in compilation unit header "
3989 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3990 filename);
3991
3992 if (header->abbrev_offset.sect_off
3993 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3994 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3995 "(offset 0x%lx + 6) [in module %s]"),
3996 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3997 filename);
3998
3999 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4000 avoid potential 32-bit overflow. */
4001 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4002 > section->size)
4003 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4004 "(offset 0x%lx + 0) [in module %s]"),
4005 (long) header->length, (long) header->offset.sect_off,
4006 filename);
4007 }
4008
4009 /* Read in a CU/TU header and perform some basic error checking.
4010 The contents of the header are stored in HEADER.
4011 The result is a pointer to the start of the first DIE. */
4012
4013 static gdb_byte *
4014 read_and_check_comp_unit_head (struct comp_unit_head *header,
4015 struct dwarf2_section_info *section,
4016 struct dwarf2_section_info *abbrev_section,
4017 gdb_byte *info_ptr,
4018 int is_debug_types_section)
4019 {
4020 gdb_byte *beg_of_comp_unit = info_ptr;
4021 bfd *abfd = section->asection->owner;
4022
4023 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4024
4025 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4026
4027 /* If we're reading a type unit, skip over the signature and
4028 type_offset fields. */
4029 if (is_debug_types_section)
4030 info_ptr += 8 /*signature*/ + header->offset_size;
4031
4032 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4033
4034 error_check_comp_unit_head (header, section, abbrev_section);
4035
4036 return info_ptr;
4037 }
4038
4039 /* Read in the types comp unit header information from .debug_types entry at
4040 types_ptr. The result is a pointer to one past the end of the header. */
4041
4042 static gdb_byte *
4043 read_and_check_type_unit_head (struct comp_unit_head *header,
4044 struct dwarf2_section_info *section,
4045 struct dwarf2_section_info *abbrev_section,
4046 gdb_byte *info_ptr,
4047 ULONGEST *signature,
4048 cu_offset *type_offset_in_tu)
4049 {
4050 gdb_byte *beg_of_comp_unit = info_ptr;
4051 bfd *abfd = section->asection->owner;
4052
4053 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4054
4055 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4056
4057 /* If we're reading a type unit, skip over the signature and
4058 type_offset fields. */
4059 if (signature != NULL)
4060 *signature = read_8_bytes (abfd, info_ptr);
4061 info_ptr += 8;
4062 if (type_offset_in_tu != NULL)
4063 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4064 header->offset_size);
4065 info_ptr += header->offset_size;
4066
4067 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4068
4069 error_check_comp_unit_head (header, section, abbrev_section);
4070
4071 return info_ptr;
4072 }
4073
4074 /* Fetch the abbreviation table offset from a comp or type unit header. */
4075
4076 static sect_offset
4077 read_abbrev_offset (struct dwarf2_section_info *section,
4078 sect_offset offset)
4079 {
4080 bfd *abfd = section->asection->owner;
4081 gdb_byte *info_ptr;
4082 unsigned int length, initial_length_size, offset_size;
4083 sect_offset abbrev_offset;
4084
4085 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4086 info_ptr = section->buffer + offset.sect_off;
4087 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4088 offset_size = initial_length_size == 4 ? 4 : 8;
4089 info_ptr += initial_length_size + 2 /*version*/;
4090 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4091 return abbrev_offset;
4092 }
4093
4094 /* Allocate a new partial symtab for file named NAME and mark this new
4095 partial symtab as being an include of PST. */
4096
4097 static void
4098 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4099 struct objfile *objfile)
4100 {
4101 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4102
4103 if (!IS_ABSOLUTE_PATH (subpst->filename))
4104 {
4105 /* It shares objfile->objfile_obstack. */
4106 subpst->dirname = pst->dirname;
4107 }
4108
4109 subpst->section_offsets = pst->section_offsets;
4110 subpst->textlow = 0;
4111 subpst->texthigh = 0;
4112
4113 subpst->dependencies = (struct partial_symtab **)
4114 obstack_alloc (&objfile->objfile_obstack,
4115 sizeof (struct partial_symtab *));
4116 subpst->dependencies[0] = pst;
4117 subpst->number_of_dependencies = 1;
4118
4119 subpst->globals_offset = 0;
4120 subpst->n_global_syms = 0;
4121 subpst->statics_offset = 0;
4122 subpst->n_static_syms = 0;
4123 subpst->symtab = NULL;
4124 subpst->read_symtab = pst->read_symtab;
4125 subpst->readin = 0;
4126
4127 /* No private part is necessary for include psymtabs. This property
4128 can be used to differentiate between such include psymtabs and
4129 the regular ones. */
4130 subpst->read_symtab_private = NULL;
4131 }
4132
4133 /* Read the Line Number Program data and extract the list of files
4134 included by the source file represented by PST. Build an include
4135 partial symtab for each of these included files. */
4136
4137 static void
4138 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4139 struct die_info *die,
4140 struct partial_symtab *pst)
4141 {
4142 struct line_header *lh = NULL;
4143 struct attribute *attr;
4144
4145 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4146 if (attr)
4147 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4148 if (lh == NULL)
4149 return; /* No linetable, so no includes. */
4150
4151 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4152 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4153
4154 free_line_header (lh);
4155 }
4156
4157 static hashval_t
4158 hash_signatured_type (const void *item)
4159 {
4160 const struct signatured_type *sig_type = item;
4161
4162 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4163 return sig_type->signature;
4164 }
4165
4166 static int
4167 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4168 {
4169 const struct signatured_type *lhs = item_lhs;
4170 const struct signatured_type *rhs = item_rhs;
4171
4172 return lhs->signature == rhs->signature;
4173 }
4174
4175 /* Allocate a hash table for signatured types. */
4176
4177 static htab_t
4178 allocate_signatured_type_table (struct objfile *objfile)
4179 {
4180 return htab_create_alloc_ex (41,
4181 hash_signatured_type,
4182 eq_signatured_type,
4183 NULL,
4184 &objfile->objfile_obstack,
4185 hashtab_obstack_allocate,
4186 dummy_obstack_deallocate);
4187 }
4188
4189 /* A helper function to add a signatured type CU to a table. */
4190
4191 static int
4192 add_signatured_type_cu_to_table (void **slot, void *datum)
4193 {
4194 struct signatured_type *sigt = *slot;
4195 struct signatured_type ***datap = datum;
4196
4197 **datap = sigt;
4198 ++*datap;
4199
4200 return 1;
4201 }
4202
4203 /* Create the hash table of all entries in the .debug_types
4204 (or .debug_types.dwo) section(s).
4205 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4206 otherwise it is NULL.
4207
4208 The result is a pointer to the hash table or NULL if there are no types.
4209
4210 Note: This function processes DWO files only, not DWP files. */
4211
4212 static htab_t
4213 create_debug_types_hash_table (struct dwo_file *dwo_file,
4214 VEC (dwarf2_section_info_def) *types)
4215 {
4216 struct objfile *objfile = dwarf2_per_objfile->objfile;
4217 htab_t types_htab = NULL;
4218 int ix;
4219 struct dwarf2_section_info *section;
4220 struct dwarf2_section_info *abbrev_section;
4221
4222 if (VEC_empty (dwarf2_section_info_def, types))
4223 return NULL;
4224
4225 abbrev_section = (dwo_file != NULL
4226 ? &dwo_file->sections.abbrev
4227 : &dwarf2_per_objfile->abbrev);
4228
4229 if (dwarf2_read_debug)
4230 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4231 dwo_file ? ".dwo" : "",
4232 bfd_get_filename (abbrev_section->asection->owner));
4233
4234 for (ix = 0;
4235 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4236 ++ix)
4237 {
4238 bfd *abfd;
4239 gdb_byte *info_ptr, *end_ptr;
4240 struct dwarf2_section_info *abbrev_section;
4241
4242 dwarf2_read_section (objfile, section);
4243 info_ptr = section->buffer;
4244
4245 if (info_ptr == NULL)
4246 continue;
4247
4248 /* We can't set abfd until now because the section may be empty or
4249 not present, in which case section->asection will be NULL. */
4250 abfd = section->asection->owner;
4251
4252 if (dwo_file)
4253 abbrev_section = &dwo_file->sections.abbrev;
4254 else
4255 abbrev_section = &dwarf2_per_objfile->abbrev;
4256
4257 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4258 because we don't need to read any dies: the signature is in the
4259 header. */
4260
4261 end_ptr = info_ptr + section->size;
4262 while (info_ptr < end_ptr)
4263 {
4264 sect_offset offset;
4265 cu_offset type_offset_in_tu;
4266 ULONGEST signature;
4267 struct signatured_type *sig_type;
4268 struct dwo_unit *dwo_tu;
4269 void **slot;
4270 gdb_byte *ptr = info_ptr;
4271 struct comp_unit_head header;
4272 unsigned int length;
4273
4274 offset.sect_off = ptr - section->buffer;
4275
4276 /* We need to read the type's signature in order to build the hash
4277 table, but we don't need anything else just yet. */
4278
4279 ptr = read_and_check_type_unit_head (&header, section,
4280 abbrev_section, ptr,
4281 &signature, &type_offset_in_tu);
4282
4283 length = get_cu_length (&header);
4284
4285 /* Skip dummy type units. */
4286 if (ptr >= info_ptr + length
4287 || peek_abbrev_code (abfd, ptr) == 0)
4288 {
4289 info_ptr += length;
4290 continue;
4291 }
4292
4293 if (types_htab == NULL)
4294 {
4295 if (dwo_file)
4296 types_htab = allocate_dwo_unit_table (objfile);
4297 else
4298 types_htab = allocate_signatured_type_table (objfile);
4299 }
4300
4301 if (dwo_file)
4302 {
4303 sig_type = NULL;
4304 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4305 struct dwo_unit);
4306 dwo_tu->dwo_file = dwo_file;
4307 dwo_tu->signature = signature;
4308 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4309 dwo_tu->section = section;
4310 dwo_tu->offset = offset;
4311 dwo_tu->length = length;
4312 }
4313 else
4314 {
4315 /* N.B.: type_offset is not usable if this type uses a DWO file.
4316 The real type_offset is in the DWO file. */
4317 dwo_tu = NULL;
4318 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4319 struct signatured_type);
4320 sig_type->signature = signature;
4321 sig_type->type_offset_in_tu = type_offset_in_tu;
4322 sig_type->per_cu.objfile = objfile;
4323 sig_type->per_cu.is_debug_types = 1;
4324 sig_type->per_cu.section = section;
4325 sig_type->per_cu.offset = offset;
4326 sig_type->per_cu.length = length;
4327 }
4328
4329 slot = htab_find_slot (types_htab,
4330 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4331 INSERT);
4332 gdb_assert (slot != NULL);
4333 if (*slot != NULL)
4334 {
4335 sect_offset dup_offset;
4336
4337 if (dwo_file)
4338 {
4339 const struct dwo_unit *dup_tu = *slot;
4340
4341 dup_offset = dup_tu->offset;
4342 }
4343 else
4344 {
4345 const struct signatured_type *dup_tu = *slot;
4346
4347 dup_offset = dup_tu->per_cu.offset;
4348 }
4349
4350 complaint (&symfile_complaints,
4351 _("debug type entry at offset 0x%x is duplicate to"
4352 " the entry at offset 0x%x, signature 0x%s"),
4353 offset.sect_off, dup_offset.sect_off,
4354 phex (signature, sizeof (signature)));
4355 }
4356 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4357
4358 if (dwarf2_read_debug)
4359 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4360 offset.sect_off,
4361 phex (signature, sizeof (signature)));
4362
4363 info_ptr += length;
4364 }
4365 }
4366
4367 return types_htab;
4368 }
4369
4370 /* Create the hash table of all entries in the .debug_types section,
4371 and initialize all_type_units.
4372 The result is zero if there is an error (e.g. missing .debug_types section),
4373 otherwise non-zero. */
4374
4375 static int
4376 create_all_type_units (struct objfile *objfile)
4377 {
4378 htab_t types_htab;
4379 struct signatured_type **iter;
4380
4381 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4382 if (types_htab == NULL)
4383 {
4384 dwarf2_per_objfile->signatured_types = NULL;
4385 return 0;
4386 }
4387
4388 dwarf2_per_objfile->signatured_types = types_htab;
4389
4390 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4391 dwarf2_per_objfile->all_type_units
4392 = obstack_alloc (&objfile->objfile_obstack,
4393 dwarf2_per_objfile->n_type_units
4394 * sizeof (struct signatured_type *));
4395 iter = &dwarf2_per_objfile->all_type_units[0];
4396 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4397 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4398 == dwarf2_per_objfile->n_type_units);
4399
4400 return 1;
4401 }
4402
4403 /* Lookup a signature based type for DW_FORM_ref_sig8.
4404 Returns NULL if signature SIG is not present in the table.
4405 It is up to the caller to complain about this. */
4406
4407 static struct signatured_type *
4408 lookup_signatured_type (ULONGEST sig)
4409 {
4410 struct signatured_type find_entry, *entry;
4411
4412 if (dwarf2_per_objfile->signatured_types == NULL)
4413 return NULL;
4414 find_entry.signature = sig;
4415 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4416 return entry;
4417 }
4418 \f
4419 /* Low level DIE reading support. */
4420
4421 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4422
4423 static void
4424 init_cu_die_reader (struct die_reader_specs *reader,
4425 struct dwarf2_cu *cu,
4426 struct dwarf2_section_info *section,
4427 struct dwo_file *dwo_file)
4428 {
4429 gdb_assert (section->readin && section->buffer != NULL);
4430 reader->abfd = section->asection->owner;
4431 reader->cu = cu;
4432 reader->dwo_file = dwo_file;
4433 reader->die_section = section;
4434 reader->buffer = section->buffer;
4435 reader->buffer_end = section->buffer + section->size;
4436 }
4437
4438 /* Initialize a CU (or TU) and read its DIEs.
4439 If the CU defers to a DWO file, read the DWO file as well.
4440
4441 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4442 Otherwise the table specified in the comp unit header is read in and used.
4443 This is an optimization for when we already have the abbrev table.
4444
4445 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4446 Otherwise, a new CU is allocated with xmalloc.
4447
4448 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4449 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4450
4451 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4452 linker) then DIE_READER_FUNC will not get called. */
4453
4454 static void
4455 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4456 struct abbrev_table *abbrev_table,
4457 int use_existing_cu, int keep,
4458 die_reader_func_ftype *die_reader_func,
4459 void *data)
4460 {
4461 struct objfile *objfile = dwarf2_per_objfile->objfile;
4462 struct dwarf2_section_info *section = this_cu->section;
4463 bfd *abfd = section->asection->owner;
4464 struct dwarf2_cu *cu;
4465 gdb_byte *begin_info_ptr, *info_ptr;
4466 struct die_reader_specs reader;
4467 struct die_info *comp_unit_die;
4468 int has_children;
4469 struct attribute *attr;
4470 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4471 struct signatured_type *sig_type = NULL;
4472 struct dwarf2_section_info *abbrev_section;
4473 /* Non-zero if CU currently points to a DWO file and we need to
4474 reread it. When this happens we need to reread the skeleton die
4475 before we can reread the DWO file. */
4476 int rereading_dwo_cu = 0;
4477
4478 if (dwarf2_die_debug)
4479 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4480 this_cu->is_debug_types ? "type" : "comp",
4481 this_cu->offset.sect_off);
4482
4483 if (use_existing_cu)
4484 gdb_assert (keep);
4485
4486 cleanups = make_cleanup (null_cleanup, NULL);
4487
4488 /* This is cheap if the section is already read in. */
4489 dwarf2_read_section (objfile, section);
4490
4491 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4492
4493 abbrev_section = get_abbrev_section_for_cu (this_cu);
4494
4495 if (use_existing_cu && this_cu->cu != NULL)
4496 {
4497 cu = this_cu->cu;
4498
4499 /* If this CU is from a DWO file we need to start over, we need to
4500 refetch the attributes from the skeleton CU.
4501 This could be optimized by retrieving those attributes from when we
4502 were here the first time: the previous comp_unit_die was stored in
4503 comp_unit_obstack. But there's no data yet that we need this
4504 optimization. */
4505 if (cu->dwo_unit != NULL)
4506 rereading_dwo_cu = 1;
4507 }
4508 else
4509 {
4510 /* If !use_existing_cu, this_cu->cu must be NULL. */
4511 gdb_assert (this_cu->cu == NULL);
4512
4513 cu = xmalloc (sizeof (*cu));
4514 init_one_comp_unit (cu, this_cu);
4515
4516 /* If an error occurs while loading, release our storage. */
4517 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4518 }
4519
4520 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4521 {
4522 /* We already have the header, there's no need to read it in again. */
4523 info_ptr += cu->header.first_die_offset.cu_off;
4524 }
4525 else
4526 {
4527 if (this_cu->is_debug_types)
4528 {
4529 ULONGEST signature;
4530 cu_offset type_offset_in_tu;
4531
4532 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4533 abbrev_section, info_ptr,
4534 &signature,
4535 &type_offset_in_tu);
4536
4537 /* Since per_cu is the first member of struct signatured_type,
4538 we can go from a pointer to one to a pointer to the other. */
4539 sig_type = (struct signatured_type *) this_cu;
4540 gdb_assert (sig_type->signature == signature);
4541 gdb_assert (sig_type->type_offset_in_tu.cu_off
4542 == type_offset_in_tu.cu_off);
4543 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4544
4545 /* LENGTH has not been set yet for type units if we're
4546 using .gdb_index. */
4547 this_cu->length = get_cu_length (&cu->header);
4548
4549 /* Establish the type offset that can be used to lookup the type. */
4550 sig_type->type_offset_in_section.sect_off =
4551 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4552 }
4553 else
4554 {
4555 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4556 abbrev_section,
4557 info_ptr, 0);
4558
4559 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4560 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4561 }
4562 }
4563
4564 /* Skip dummy compilation units. */
4565 if (info_ptr >= begin_info_ptr + this_cu->length
4566 || peek_abbrev_code (abfd, info_ptr) == 0)
4567 {
4568 do_cleanups (cleanups);
4569 return;
4570 }
4571
4572 /* If we don't have them yet, read the abbrevs for this compilation unit.
4573 And if we need to read them now, make sure they're freed when we're
4574 done. Note that it's important that if the CU had an abbrev table
4575 on entry we don't free it when we're done: Somewhere up the call stack
4576 it may be in use. */
4577 if (abbrev_table != NULL)
4578 {
4579 gdb_assert (cu->abbrev_table == NULL);
4580 gdb_assert (cu->header.abbrev_offset.sect_off
4581 == abbrev_table->offset.sect_off);
4582 cu->abbrev_table = abbrev_table;
4583 }
4584 else if (cu->abbrev_table == NULL)
4585 {
4586 dwarf2_read_abbrevs (cu, abbrev_section);
4587 make_cleanup (dwarf2_free_abbrev_table, cu);
4588 }
4589 else if (rereading_dwo_cu)
4590 {
4591 dwarf2_free_abbrev_table (cu);
4592 dwarf2_read_abbrevs (cu, abbrev_section);
4593 }
4594
4595 /* Read the top level CU/TU die. */
4596 init_cu_die_reader (&reader, cu, section, NULL);
4597 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4598
4599 /* If we have a DWO stub, process it and then read in the DWO file.
4600 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4601 a DWO CU, that this test will fail. */
4602 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4603 if (attr)
4604 {
4605 const char *dwo_name = DW_STRING (attr);
4606 const char *comp_dir_string;
4607 struct dwo_unit *dwo_unit;
4608 ULONGEST signature; /* Or dwo_id. */
4609 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4610 int i,num_extra_attrs;
4611 struct dwarf2_section_info *dwo_abbrev_section;
4612
4613 if (has_children)
4614 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4615 " has children (offset 0x%x) [in module %s]"),
4616 this_cu->offset.sect_off, bfd_get_filename (abfd));
4617
4618 /* These attributes aren't processed until later:
4619 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4620 However, the attribute is found in the stub which we won't have later.
4621 In order to not impose this complication on the rest of the code,
4622 we read them here and copy them to the DWO CU/TU die. */
4623
4624 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4625 DWO file. */
4626 stmt_list = NULL;
4627 if (! this_cu->is_debug_types)
4628 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4629 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4630 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4631 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4632 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4633
4634 /* There should be a DW_AT_addr_base attribute here (if needed).
4635 We need the value before we can process DW_FORM_GNU_addr_index. */
4636 cu->addr_base = 0;
4637 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4638 if (attr)
4639 cu->addr_base = DW_UNSND (attr);
4640
4641 /* There should be a DW_AT_ranges_base attribute here (if needed).
4642 We need the value before we can process DW_AT_ranges. */
4643 cu->ranges_base = 0;
4644 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4645 if (attr)
4646 cu->ranges_base = DW_UNSND (attr);
4647
4648 if (this_cu->is_debug_types)
4649 {
4650 gdb_assert (sig_type != NULL);
4651 signature = sig_type->signature;
4652 }
4653 else
4654 {
4655 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4656 if (! attr)
4657 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4658 dwo_name);
4659 signature = DW_UNSND (attr);
4660 }
4661
4662 /* We may need the comp_dir in order to find the DWO file. */
4663 comp_dir_string = NULL;
4664 if (comp_dir)
4665 comp_dir_string = DW_STRING (comp_dir);
4666
4667 if (this_cu->is_debug_types)
4668 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4669 else
4670 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4671 signature);
4672
4673 if (dwo_unit == NULL)
4674 {
4675 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4676 " with ID %s [in module %s]"),
4677 this_cu->offset.sect_off,
4678 phex (signature, sizeof (signature)),
4679 objfile->name);
4680 }
4681
4682 /* Set up for reading the DWO CU/TU. */
4683 cu->dwo_unit = dwo_unit;
4684 section = dwo_unit->section;
4685 dwarf2_read_section (objfile, section);
4686 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4687 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4688 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4689
4690 if (this_cu->is_debug_types)
4691 {
4692 ULONGEST signature;
4693 cu_offset type_offset_in_tu;
4694
4695 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4696 dwo_abbrev_section,
4697 info_ptr,
4698 &signature,
4699 &type_offset_in_tu);
4700 gdb_assert (sig_type->signature == signature);
4701 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4702 /* For DWOs coming from DWP files, we don't know the CU length
4703 nor the type's offset in the TU until now. */
4704 dwo_unit->length = get_cu_length (&cu->header);
4705 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4706
4707 /* Establish the type offset that can be used to lookup the type.
4708 For DWO files, we don't know it until now. */
4709 sig_type->type_offset_in_section.sect_off =
4710 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4711 }
4712 else
4713 {
4714 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4715 dwo_abbrev_section,
4716 info_ptr, 0);
4717 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4718 /* For DWOs coming from DWP files, we don't know the CU length
4719 until now. */
4720 dwo_unit->length = get_cu_length (&cu->header);
4721 }
4722
4723 /* Discard the original CU's abbrev table, and read the DWO's. */
4724 if (abbrev_table == NULL)
4725 {
4726 dwarf2_free_abbrev_table (cu);
4727 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4728 }
4729 else
4730 {
4731 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4732 make_cleanup (dwarf2_free_abbrev_table, cu);
4733 }
4734
4735 /* Read in the die, but leave space to copy over the attributes
4736 from the stub. This has the benefit of simplifying the rest of
4737 the code - all the real work is done here. */
4738 num_extra_attrs = ((stmt_list != NULL)
4739 + (low_pc != NULL)
4740 + (high_pc != NULL)
4741 + (ranges != NULL)
4742 + (comp_dir != NULL));
4743 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4744 &has_children, num_extra_attrs);
4745
4746 /* Copy over the attributes from the stub to the DWO die. */
4747 i = comp_unit_die->num_attrs;
4748 if (stmt_list != NULL)
4749 comp_unit_die->attrs[i++] = *stmt_list;
4750 if (low_pc != NULL)
4751 comp_unit_die->attrs[i++] = *low_pc;
4752 if (high_pc != NULL)
4753 comp_unit_die->attrs[i++] = *high_pc;
4754 if (ranges != NULL)
4755 comp_unit_die->attrs[i++] = *ranges;
4756 if (comp_dir != NULL)
4757 comp_unit_die->attrs[i++] = *comp_dir;
4758 comp_unit_die->num_attrs += num_extra_attrs;
4759
4760 /* Skip dummy compilation units. */
4761 if (info_ptr >= begin_info_ptr + dwo_unit->length
4762 || peek_abbrev_code (abfd, info_ptr) == 0)
4763 {
4764 do_cleanups (cleanups);
4765 return;
4766 }
4767 }
4768
4769 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4770
4771 if (free_cu_cleanup != NULL)
4772 {
4773 if (keep)
4774 {
4775 /* We've successfully allocated this compilation unit. Let our
4776 caller clean it up when finished with it. */
4777 discard_cleanups (free_cu_cleanup);
4778
4779 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4780 So we have to manually free the abbrev table. */
4781 dwarf2_free_abbrev_table (cu);
4782
4783 /* Link this CU into read_in_chain. */
4784 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4785 dwarf2_per_objfile->read_in_chain = this_cu;
4786 }
4787 else
4788 do_cleanups (free_cu_cleanup);
4789 }
4790
4791 do_cleanups (cleanups);
4792 }
4793
4794 /* Read CU/TU THIS_CU in section SECTION,
4795 but do not follow DW_AT_GNU_dwo_name if present.
4796 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4797 to have already done the lookup to find the DWO/DWP file).
4798
4799 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4800 THIS_CU->is_debug_types, but nothing else.
4801
4802 We fill in THIS_CU->length.
4803
4804 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4805 linker) then DIE_READER_FUNC will not get called.
4806
4807 THIS_CU->cu is always freed when done.
4808 This is done in order to not leave THIS_CU->cu in a state where we have
4809 to care whether it refers to the "main" CU or the DWO CU. */
4810
4811 static void
4812 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4813 struct dwarf2_section_info *abbrev_section,
4814 struct dwo_file *dwo_file,
4815 die_reader_func_ftype *die_reader_func,
4816 void *data)
4817 {
4818 struct objfile *objfile = dwarf2_per_objfile->objfile;
4819 struct dwarf2_section_info *section = this_cu->section;
4820 bfd *abfd = section->asection->owner;
4821 struct dwarf2_cu cu;
4822 gdb_byte *begin_info_ptr, *info_ptr;
4823 struct die_reader_specs reader;
4824 struct cleanup *cleanups;
4825 struct die_info *comp_unit_die;
4826 int has_children;
4827
4828 if (dwarf2_die_debug)
4829 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4830 this_cu->is_debug_types ? "type" : "comp",
4831 this_cu->offset.sect_off);
4832
4833 gdb_assert (this_cu->cu == NULL);
4834
4835 /* This is cheap if the section is already read in. */
4836 dwarf2_read_section (objfile, section);
4837
4838 init_one_comp_unit (&cu, this_cu);
4839
4840 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4841
4842 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4843 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4844 abbrev_section, info_ptr,
4845 this_cu->is_debug_types);
4846
4847 this_cu->length = get_cu_length (&cu.header);
4848
4849 /* Skip dummy compilation units. */
4850 if (info_ptr >= begin_info_ptr + this_cu->length
4851 || peek_abbrev_code (abfd, info_ptr) == 0)
4852 {
4853 do_cleanups (cleanups);
4854 return;
4855 }
4856
4857 dwarf2_read_abbrevs (&cu, abbrev_section);
4858 make_cleanup (dwarf2_free_abbrev_table, &cu);
4859
4860 init_cu_die_reader (&reader, &cu, section, dwo_file);
4861 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4862
4863 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4864
4865 do_cleanups (cleanups);
4866 }
4867
4868 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4869 does not lookup the specified DWO file.
4870 This cannot be used to read DWO files.
4871
4872 THIS_CU->cu is always freed when done.
4873 This is done in order to not leave THIS_CU->cu in a state where we have
4874 to care whether it refers to the "main" CU or the DWO CU.
4875 We can revisit this if the data shows there's a performance issue. */
4876
4877 static void
4878 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4879 die_reader_func_ftype *die_reader_func,
4880 void *data)
4881 {
4882 init_cutu_and_read_dies_no_follow (this_cu,
4883 get_abbrev_section_for_cu (this_cu),
4884 NULL,
4885 die_reader_func, data);
4886 }
4887 \f
4888 /* Type Unit Groups.
4889
4890 Type Unit Groups are a way to collapse the set of all TUs (type units) into
4891 a more manageable set. The grouping is done by DW_AT_stmt_list entry
4892 so that all types coming from the same compilation (.o file) are grouped
4893 together. A future step could be to put the types in the same symtab as
4894 the CU the types ultimately came from. */
4895
4896 static hashval_t
4897 hash_type_unit_group (const void *item)
4898 {
4899 const struct type_unit_group *tu_group = item;
4900
4901 return hash_stmt_list_entry (&tu_group->hash);
4902 }
4903
4904 static int
4905 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4906 {
4907 const struct type_unit_group *lhs = item_lhs;
4908 const struct type_unit_group *rhs = item_rhs;
4909
4910 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4911 }
4912
4913 /* Allocate a hash table for type unit groups. */
4914
4915 static htab_t
4916 allocate_type_unit_groups_table (void)
4917 {
4918 return htab_create_alloc_ex (3,
4919 hash_type_unit_group,
4920 eq_type_unit_group,
4921 NULL,
4922 &dwarf2_per_objfile->objfile->objfile_obstack,
4923 hashtab_obstack_allocate,
4924 dummy_obstack_deallocate);
4925 }
4926
4927 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4928 partial symtabs. We combine several TUs per psymtab to not let the size
4929 of any one psymtab grow too big. */
4930 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
4931 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
4932
4933 /* Helper routine for get_type_unit_group.
4934 Create the type_unit_group object used to hold one or more TUs. */
4935
4936 static struct type_unit_group *
4937 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
4938 {
4939 struct objfile *objfile = dwarf2_per_objfile->objfile;
4940 struct dwarf2_per_cu_data *per_cu;
4941 struct type_unit_group *tu_group;
4942
4943 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4944 struct type_unit_group);
4945 per_cu = &tu_group->per_cu;
4946 per_cu->objfile = objfile;
4947 per_cu->is_debug_types = 1;
4948 per_cu->type_unit_group = tu_group;
4949
4950 if (dwarf2_per_objfile->using_index)
4951 {
4952 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4953 struct dwarf2_per_cu_quick_data);
4954 tu_group->t.first_tu = cu->per_cu;
4955 }
4956 else
4957 {
4958 unsigned int line_offset = line_offset_struct.sect_off;
4959 struct partial_symtab *pst;
4960 char *name;
4961
4962 /* Give the symtab a useful name for debug purposes. */
4963 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
4964 name = xstrprintf ("<type_units_%d>",
4965 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
4966 else
4967 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
4968
4969 pst = create_partial_symtab (per_cu, name);
4970 pst->anonymous = 1;
4971
4972 xfree (name);
4973 }
4974
4975 tu_group->hash.dwo_unit = cu->dwo_unit;
4976 tu_group->hash.line_offset = line_offset_struct;
4977
4978 return tu_group;
4979 }
4980
4981 /* Look up the type_unit_group for type unit CU, and create it if necessary.
4982 STMT_LIST is a DW_AT_stmt_list attribute. */
4983
4984 static struct type_unit_group *
4985 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
4986 {
4987 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
4988 struct type_unit_group *tu_group;
4989 void **slot;
4990 unsigned int line_offset;
4991 struct type_unit_group type_unit_group_for_lookup;
4992
4993 if (dwarf2_per_objfile->type_unit_groups == NULL)
4994 {
4995 dwarf2_per_objfile->type_unit_groups =
4996 allocate_type_unit_groups_table ();
4997 }
4998
4999 /* Do we need to create a new group, or can we use an existing one? */
5000
5001 if (stmt_list)
5002 {
5003 line_offset = DW_UNSND (stmt_list);
5004 ++tu_stats->nr_symtab_sharers;
5005 }
5006 else
5007 {
5008 /* Ugh, no stmt_list. Rare, but we have to handle it.
5009 We can do various things here like create one group per TU or
5010 spread them over multiple groups to split up the expansion work.
5011 To avoid worst case scenarios (too many groups or too large groups)
5012 we, umm, group them in bunches. */
5013 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5014 | (tu_stats->nr_stmt_less_type_units
5015 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5016 ++tu_stats->nr_stmt_less_type_units;
5017 }
5018
5019 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5020 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5021 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5022 &type_unit_group_for_lookup, INSERT);
5023 if (*slot != NULL)
5024 {
5025 tu_group = *slot;
5026 gdb_assert (tu_group != NULL);
5027 }
5028 else
5029 {
5030 sect_offset line_offset_struct;
5031
5032 line_offset_struct.sect_off = line_offset;
5033 tu_group = create_type_unit_group (cu, line_offset_struct);
5034 *slot = tu_group;
5035 ++tu_stats->nr_symtabs;
5036 }
5037
5038 return tu_group;
5039 }
5040
5041 /* Struct used to sort TUs by their abbreviation table offset. */
5042
5043 struct tu_abbrev_offset
5044 {
5045 struct signatured_type *sig_type;
5046 sect_offset abbrev_offset;
5047 };
5048
5049 /* Helper routine for build_type_unit_groups, passed to qsort. */
5050
5051 static int
5052 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5053 {
5054 const struct tu_abbrev_offset * const *a = ap;
5055 const struct tu_abbrev_offset * const *b = bp;
5056 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5057 unsigned int boff = (*b)->abbrev_offset.sect_off;
5058
5059 return (aoff > boff) - (aoff < boff);
5060 }
5061
5062 /* A helper function to add a type_unit_group to a table. */
5063
5064 static int
5065 add_type_unit_group_to_table (void **slot, void *datum)
5066 {
5067 struct type_unit_group *tu_group = *slot;
5068 struct type_unit_group ***datap = datum;
5069
5070 **datap = tu_group;
5071 ++*datap;
5072
5073 return 1;
5074 }
5075
5076 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5077 each one passing FUNC,DATA.
5078
5079 The efficiency is because we sort TUs by the abbrev table they use and
5080 only read each abbrev table once. In one program there are 200K TUs
5081 sharing 8K abbrev tables.
5082
5083 The main purpose of this function is to support building the
5084 dwarf2_per_objfile->type_unit_groups table.
5085 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5086 can collapse the search space by grouping them by stmt_list.
5087 The savings can be significant, in the same program from above the 200K TUs
5088 share 8K stmt_list tables.
5089
5090 FUNC is expected to call get_type_unit_group, which will create the
5091 struct type_unit_group if necessary and add it to
5092 dwarf2_per_objfile->type_unit_groups. */
5093
5094 static void
5095 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5096 {
5097 struct objfile *objfile = dwarf2_per_objfile->objfile;
5098 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5099 struct cleanup *cleanups;
5100 struct abbrev_table *abbrev_table;
5101 sect_offset abbrev_offset;
5102 struct tu_abbrev_offset *sorted_by_abbrev;
5103 struct type_unit_group **iter;
5104 int i;
5105
5106 /* It's up to the caller to not call us multiple times. */
5107 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5108
5109 if (dwarf2_per_objfile->n_type_units == 0)
5110 return;
5111
5112 /* TUs typically share abbrev tables, and there can be way more TUs than
5113 abbrev tables. Sort by abbrev table to reduce the number of times we
5114 read each abbrev table in.
5115 Alternatives are to punt or to maintain a cache of abbrev tables.
5116 This is simpler and efficient enough for now.
5117
5118 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5119 symtab to use). Typically TUs with the same abbrev offset have the same
5120 stmt_list value too so in practice this should work well.
5121
5122 The basic algorithm here is:
5123
5124 sort TUs by abbrev table
5125 for each TU with same abbrev table:
5126 read abbrev table if first user
5127 read TU top level DIE
5128 [IWBN if DWO skeletons had DW_AT_stmt_list]
5129 call FUNC */
5130
5131 if (dwarf2_read_debug)
5132 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5133
5134 /* Sort in a separate table to maintain the order of all_type_units
5135 for .gdb_index: TU indices directly index all_type_units. */
5136 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5137 dwarf2_per_objfile->n_type_units);
5138 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5139 {
5140 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5141
5142 sorted_by_abbrev[i].sig_type = sig_type;
5143 sorted_by_abbrev[i].abbrev_offset =
5144 read_abbrev_offset (sig_type->per_cu.section,
5145 sig_type->per_cu.offset);
5146 }
5147 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5148 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5149 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5150
5151 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5152 called any number of times, so we don't reset tu_stats here. */
5153
5154 abbrev_offset.sect_off = ~(unsigned) 0;
5155 abbrev_table = NULL;
5156 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5157
5158 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5159 {
5160 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5161
5162 /* Switch to the next abbrev table if necessary. */
5163 if (abbrev_table == NULL
5164 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5165 {
5166 if (abbrev_table != NULL)
5167 {
5168 abbrev_table_free (abbrev_table);
5169 /* Reset to NULL in case abbrev_table_read_table throws
5170 an error: abbrev_table_free_cleanup will get called. */
5171 abbrev_table = NULL;
5172 }
5173 abbrev_offset = tu->abbrev_offset;
5174 abbrev_table =
5175 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5176 abbrev_offset);
5177 ++tu_stats->nr_uniq_abbrev_tables;
5178 }
5179
5180 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5181 func, data);
5182 }
5183
5184 /* Create a vector of pointers to primary type units to make it easy to
5185 iterate over them and CUs. See dw2_get_primary_cu. */
5186 dwarf2_per_objfile->n_type_unit_groups =
5187 htab_elements (dwarf2_per_objfile->type_unit_groups);
5188 dwarf2_per_objfile->all_type_unit_groups =
5189 obstack_alloc (&objfile->objfile_obstack,
5190 dwarf2_per_objfile->n_type_unit_groups
5191 * sizeof (struct type_unit_group *));
5192 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5193 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5194 add_type_unit_group_to_table, &iter);
5195 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5196 == dwarf2_per_objfile->n_type_unit_groups);
5197
5198 do_cleanups (cleanups);
5199
5200 if (dwarf2_read_debug)
5201 {
5202 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5203 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5204 dwarf2_per_objfile->n_type_units);
5205 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5206 tu_stats->nr_uniq_abbrev_tables);
5207 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5208 tu_stats->nr_symtabs);
5209 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5210 tu_stats->nr_symtab_sharers);
5211 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5212 tu_stats->nr_stmt_less_type_units);
5213 }
5214 }
5215 \f
5216 /* Partial symbol tables. */
5217
5218 /* Create a psymtab named NAME and assign it to PER_CU.
5219
5220 The caller must fill in the following details:
5221 dirname, textlow, texthigh. */
5222
5223 static struct partial_symtab *
5224 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5225 {
5226 struct objfile *objfile = per_cu->objfile;
5227 struct partial_symtab *pst;
5228
5229 pst = start_psymtab_common (objfile, objfile->section_offsets,
5230 name, 0,
5231 objfile->global_psymbols.next,
5232 objfile->static_psymbols.next);
5233
5234 pst->psymtabs_addrmap_supported = 1;
5235
5236 /* This is the glue that links PST into GDB's symbol API. */
5237 pst->read_symtab_private = per_cu;
5238 pst->read_symtab = dwarf2_read_symtab;
5239 per_cu->v.psymtab = pst;
5240
5241 return pst;
5242 }
5243
5244 /* die_reader_func for process_psymtab_comp_unit. */
5245
5246 static void
5247 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5248 gdb_byte *info_ptr,
5249 struct die_info *comp_unit_die,
5250 int has_children,
5251 void *data)
5252 {
5253 struct dwarf2_cu *cu = reader->cu;
5254 struct objfile *objfile = cu->objfile;
5255 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5256 struct attribute *attr;
5257 CORE_ADDR baseaddr;
5258 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5259 struct partial_symtab *pst;
5260 int has_pc_info;
5261 const char *filename;
5262 int *want_partial_unit_ptr = data;
5263
5264 if (comp_unit_die->tag == DW_TAG_partial_unit
5265 && (want_partial_unit_ptr == NULL
5266 || !*want_partial_unit_ptr))
5267 return;
5268
5269 gdb_assert (! per_cu->is_debug_types);
5270
5271 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5272
5273 cu->list_in_scope = &file_symbols;
5274
5275 /* Allocate a new partial symbol table structure. */
5276 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5277 if (attr == NULL || !DW_STRING (attr))
5278 filename = "";
5279 else
5280 filename = DW_STRING (attr);
5281
5282 pst = create_partial_symtab (per_cu, filename);
5283
5284 /* This must be done before calling dwarf2_build_include_psymtabs. */
5285 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5286 if (attr != NULL)
5287 pst->dirname = DW_STRING (attr);
5288
5289 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5290
5291 dwarf2_find_base_address (comp_unit_die, cu);
5292
5293 /* Possibly set the default values of LOWPC and HIGHPC from
5294 `DW_AT_ranges'. */
5295 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5296 &best_highpc, cu, pst);
5297 if (has_pc_info == 1 && best_lowpc < best_highpc)
5298 /* Store the contiguous range if it is not empty; it can be empty for
5299 CUs with no code. */
5300 addrmap_set_empty (objfile->psymtabs_addrmap,
5301 best_lowpc + baseaddr,
5302 best_highpc + baseaddr - 1, pst);
5303
5304 /* Check if comp unit has_children.
5305 If so, read the rest of the partial symbols from this comp unit.
5306 If not, there's no more debug_info for this comp unit. */
5307 if (has_children)
5308 {
5309 struct partial_die_info *first_die;
5310 CORE_ADDR lowpc, highpc;
5311
5312 lowpc = ((CORE_ADDR) -1);
5313 highpc = ((CORE_ADDR) 0);
5314
5315 first_die = load_partial_dies (reader, info_ptr, 1);
5316
5317 scan_partial_symbols (first_die, &lowpc, &highpc,
5318 ! has_pc_info, cu);
5319
5320 /* If we didn't find a lowpc, set it to highpc to avoid
5321 complaints from `maint check'. */
5322 if (lowpc == ((CORE_ADDR) -1))
5323 lowpc = highpc;
5324
5325 /* If the compilation unit didn't have an explicit address range,
5326 then use the information extracted from its child dies. */
5327 if (! has_pc_info)
5328 {
5329 best_lowpc = lowpc;
5330 best_highpc = highpc;
5331 }
5332 }
5333 pst->textlow = best_lowpc + baseaddr;
5334 pst->texthigh = best_highpc + baseaddr;
5335
5336 pst->n_global_syms = objfile->global_psymbols.next -
5337 (objfile->global_psymbols.list + pst->globals_offset);
5338 pst->n_static_syms = objfile->static_psymbols.next -
5339 (objfile->static_psymbols.list + pst->statics_offset);
5340 sort_pst_symbols (objfile, pst);
5341
5342 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5343 {
5344 int i;
5345 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5346 struct dwarf2_per_cu_data *iter;
5347
5348 /* Fill in 'dependencies' here; we fill in 'users' in a
5349 post-pass. */
5350 pst->number_of_dependencies = len;
5351 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5352 len * sizeof (struct symtab *));
5353 for (i = 0;
5354 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5355 i, iter);
5356 ++i)
5357 pst->dependencies[i] = iter->v.psymtab;
5358
5359 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5360 }
5361
5362 /* Get the list of files included in the current compilation unit,
5363 and build a psymtab for each of them. */
5364 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5365
5366 if (dwarf2_read_debug)
5367 {
5368 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5369
5370 fprintf_unfiltered (gdb_stdlog,
5371 "Psymtab for %s unit @0x%x: %s - %s"
5372 ", %d global, %d static syms\n",
5373 per_cu->is_debug_types ? "type" : "comp",
5374 per_cu->offset.sect_off,
5375 paddress (gdbarch, pst->textlow),
5376 paddress (gdbarch, pst->texthigh),
5377 pst->n_global_syms, pst->n_static_syms);
5378 }
5379 }
5380
5381 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5382 Process compilation unit THIS_CU for a psymtab. */
5383
5384 static void
5385 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5386 int want_partial_unit)
5387 {
5388 /* If this compilation unit was already read in, free the
5389 cached copy in order to read it in again. This is
5390 necessary because we skipped some symbols when we first
5391 read in the compilation unit (see load_partial_dies).
5392 This problem could be avoided, but the benefit is unclear. */
5393 if (this_cu->cu != NULL)
5394 free_one_cached_comp_unit (this_cu);
5395
5396 gdb_assert (! this_cu->is_debug_types);
5397 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5398 process_psymtab_comp_unit_reader,
5399 &want_partial_unit);
5400
5401 /* Age out any secondary CUs. */
5402 age_cached_comp_units ();
5403 }
5404
5405 /* Reader function for build_type_psymtabs. */
5406
5407 static void
5408 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5409 gdb_byte *info_ptr,
5410 struct die_info *type_unit_die,
5411 int has_children,
5412 void *data)
5413 {
5414 struct objfile *objfile = dwarf2_per_objfile->objfile;
5415 struct dwarf2_cu *cu = reader->cu;
5416 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5417 struct type_unit_group *tu_group;
5418 struct attribute *attr;
5419 struct partial_die_info *first_die;
5420 CORE_ADDR lowpc, highpc;
5421 struct partial_symtab *pst;
5422
5423 gdb_assert (data == NULL);
5424
5425 if (! has_children)
5426 return;
5427
5428 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5429 tu_group = get_type_unit_group (cu, attr);
5430
5431 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5432
5433 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5434 cu->list_in_scope = &file_symbols;
5435 pst = create_partial_symtab (per_cu, "");
5436 pst->anonymous = 1;
5437
5438 first_die = load_partial_dies (reader, info_ptr, 1);
5439
5440 lowpc = (CORE_ADDR) -1;
5441 highpc = (CORE_ADDR) 0;
5442 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5443
5444 pst->n_global_syms = objfile->global_psymbols.next -
5445 (objfile->global_psymbols.list + pst->globals_offset);
5446 pst->n_static_syms = objfile->static_psymbols.next -
5447 (objfile->static_psymbols.list + pst->statics_offset);
5448 sort_pst_symbols (objfile, pst);
5449 }
5450
5451 /* Traversal function for build_type_psymtabs. */
5452
5453 static int
5454 build_type_psymtab_dependencies (void **slot, void *info)
5455 {
5456 struct objfile *objfile = dwarf2_per_objfile->objfile;
5457 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5458 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5459 struct partial_symtab *pst = per_cu->v.psymtab;
5460 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5461 struct dwarf2_per_cu_data *iter;
5462 int i;
5463
5464 gdb_assert (len > 0);
5465
5466 pst->number_of_dependencies = len;
5467 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5468 len * sizeof (struct psymtab *));
5469 for (i = 0;
5470 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5471 ++i)
5472 {
5473 pst->dependencies[i] = iter->v.psymtab;
5474 iter->type_unit_group = tu_group;
5475 }
5476
5477 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5478
5479 return 1;
5480 }
5481
5482 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5483 Build partial symbol tables for the .debug_types comp-units. */
5484
5485 static void
5486 build_type_psymtabs (struct objfile *objfile)
5487 {
5488 if (! create_all_type_units (objfile))
5489 return;
5490
5491 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5492
5493 /* Now that all TUs have been processed we can fill in the dependencies. */
5494 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5495 build_type_psymtab_dependencies, NULL);
5496 }
5497
5498 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5499
5500 static void
5501 psymtabs_addrmap_cleanup (void *o)
5502 {
5503 struct objfile *objfile = o;
5504
5505 objfile->psymtabs_addrmap = NULL;
5506 }
5507
5508 /* Compute the 'user' field for each psymtab in OBJFILE. */
5509
5510 static void
5511 set_partial_user (struct objfile *objfile)
5512 {
5513 int i;
5514
5515 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5516 {
5517 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5518 struct partial_symtab *pst = per_cu->v.psymtab;
5519 int j;
5520
5521 if (pst == NULL)
5522 continue;
5523
5524 for (j = 0; j < pst->number_of_dependencies; ++j)
5525 {
5526 /* Set the 'user' field only if it is not already set. */
5527 if (pst->dependencies[j]->user == NULL)
5528 pst->dependencies[j]->user = pst;
5529 }
5530 }
5531 }
5532
5533 /* Build the partial symbol table by doing a quick pass through the
5534 .debug_info and .debug_abbrev sections. */
5535
5536 static void
5537 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5538 {
5539 struct cleanup *back_to, *addrmap_cleanup;
5540 struct obstack temp_obstack;
5541 int i;
5542
5543 if (dwarf2_read_debug)
5544 {
5545 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5546 objfile->name);
5547 }
5548
5549 dwarf2_per_objfile->reading_partial_symbols = 1;
5550
5551 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5552
5553 /* Any cached compilation units will be linked by the per-objfile
5554 read_in_chain. Make sure to free them when we're done. */
5555 back_to = make_cleanup (free_cached_comp_units, NULL);
5556
5557 build_type_psymtabs (objfile);
5558
5559 create_all_comp_units (objfile);
5560
5561 /* Create a temporary address map on a temporary obstack. We later
5562 copy this to the final obstack. */
5563 obstack_init (&temp_obstack);
5564 make_cleanup_obstack_free (&temp_obstack);
5565 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5566 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5567
5568 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5569 {
5570 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5571
5572 process_psymtab_comp_unit (per_cu, 0);
5573 }
5574
5575 set_partial_user (objfile);
5576
5577 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5578 &objfile->objfile_obstack);
5579 discard_cleanups (addrmap_cleanup);
5580
5581 do_cleanups (back_to);
5582
5583 if (dwarf2_read_debug)
5584 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5585 objfile->name);
5586 }
5587
5588 /* die_reader_func for load_partial_comp_unit. */
5589
5590 static void
5591 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5592 gdb_byte *info_ptr,
5593 struct die_info *comp_unit_die,
5594 int has_children,
5595 void *data)
5596 {
5597 struct dwarf2_cu *cu = reader->cu;
5598
5599 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5600
5601 /* Check if comp unit has_children.
5602 If so, read the rest of the partial symbols from this comp unit.
5603 If not, there's no more debug_info for this comp unit. */
5604 if (has_children)
5605 load_partial_dies (reader, info_ptr, 0);
5606 }
5607
5608 /* Load the partial DIEs for a secondary CU into memory.
5609 This is also used when rereading a primary CU with load_all_dies. */
5610
5611 static void
5612 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5613 {
5614 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5615 load_partial_comp_unit_reader, NULL);
5616 }
5617
5618 static void
5619 read_comp_units_from_section (struct objfile *objfile,
5620 struct dwarf2_section_info *section,
5621 unsigned int is_dwz,
5622 int *n_allocated,
5623 int *n_comp_units,
5624 struct dwarf2_per_cu_data ***all_comp_units)
5625 {
5626 gdb_byte *info_ptr;
5627 bfd *abfd = section->asection->owner;
5628
5629 dwarf2_read_section (objfile, section);
5630
5631 info_ptr = section->buffer;
5632
5633 while (info_ptr < section->buffer + section->size)
5634 {
5635 unsigned int length, initial_length_size;
5636 struct dwarf2_per_cu_data *this_cu;
5637 sect_offset offset;
5638
5639 offset.sect_off = info_ptr - section->buffer;
5640
5641 /* Read just enough information to find out where the next
5642 compilation unit is. */
5643 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5644
5645 /* Save the compilation unit for later lookup. */
5646 this_cu = obstack_alloc (&objfile->objfile_obstack,
5647 sizeof (struct dwarf2_per_cu_data));
5648 memset (this_cu, 0, sizeof (*this_cu));
5649 this_cu->offset = offset;
5650 this_cu->length = length + initial_length_size;
5651 this_cu->is_dwz = is_dwz;
5652 this_cu->objfile = objfile;
5653 this_cu->section = section;
5654
5655 if (*n_comp_units == *n_allocated)
5656 {
5657 *n_allocated *= 2;
5658 *all_comp_units = xrealloc (*all_comp_units,
5659 *n_allocated
5660 * sizeof (struct dwarf2_per_cu_data *));
5661 }
5662 (*all_comp_units)[*n_comp_units] = this_cu;
5663 ++*n_comp_units;
5664
5665 info_ptr = info_ptr + this_cu->length;
5666 }
5667 }
5668
5669 /* Create a list of all compilation units in OBJFILE.
5670 This is only done for -readnow and building partial symtabs. */
5671
5672 static void
5673 create_all_comp_units (struct objfile *objfile)
5674 {
5675 int n_allocated;
5676 int n_comp_units;
5677 struct dwarf2_per_cu_data **all_comp_units;
5678
5679 n_comp_units = 0;
5680 n_allocated = 10;
5681 all_comp_units = xmalloc (n_allocated
5682 * sizeof (struct dwarf2_per_cu_data *));
5683
5684 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5685 &n_allocated, &n_comp_units, &all_comp_units);
5686
5687 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5688 {
5689 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5690
5691 read_comp_units_from_section (objfile, &dwz->info, 1,
5692 &n_allocated, &n_comp_units,
5693 &all_comp_units);
5694 }
5695
5696 dwarf2_per_objfile->all_comp_units
5697 = obstack_alloc (&objfile->objfile_obstack,
5698 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5699 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5700 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5701 xfree (all_comp_units);
5702 dwarf2_per_objfile->n_comp_units = n_comp_units;
5703 }
5704
5705 /* Process all loaded DIEs for compilation unit CU, starting at
5706 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5707 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5708 DW_AT_ranges). If NEED_PC is set, then this function will set
5709 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5710 and record the covered ranges in the addrmap. */
5711
5712 static void
5713 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5714 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5715 {
5716 struct partial_die_info *pdi;
5717
5718 /* Now, march along the PDI's, descending into ones which have
5719 interesting children but skipping the children of the other ones,
5720 until we reach the end of the compilation unit. */
5721
5722 pdi = first_die;
5723
5724 while (pdi != NULL)
5725 {
5726 fixup_partial_die (pdi, cu);
5727
5728 /* Anonymous namespaces or modules have no name but have interesting
5729 children, so we need to look at them. Ditto for anonymous
5730 enums. */
5731
5732 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5733 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5734 || pdi->tag == DW_TAG_imported_unit)
5735 {
5736 switch (pdi->tag)
5737 {
5738 case DW_TAG_subprogram:
5739 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5740 break;
5741 case DW_TAG_constant:
5742 case DW_TAG_variable:
5743 case DW_TAG_typedef:
5744 case DW_TAG_union_type:
5745 if (!pdi->is_declaration)
5746 {
5747 add_partial_symbol (pdi, cu);
5748 }
5749 break;
5750 case DW_TAG_class_type:
5751 case DW_TAG_interface_type:
5752 case DW_TAG_structure_type:
5753 if (!pdi->is_declaration)
5754 {
5755 add_partial_symbol (pdi, cu);
5756 }
5757 break;
5758 case DW_TAG_enumeration_type:
5759 if (!pdi->is_declaration)
5760 add_partial_enumeration (pdi, cu);
5761 break;
5762 case DW_TAG_base_type:
5763 case DW_TAG_subrange_type:
5764 /* File scope base type definitions are added to the partial
5765 symbol table. */
5766 add_partial_symbol (pdi, cu);
5767 break;
5768 case DW_TAG_namespace:
5769 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5770 break;
5771 case DW_TAG_module:
5772 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5773 break;
5774 case DW_TAG_imported_unit:
5775 {
5776 struct dwarf2_per_cu_data *per_cu;
5777
5778 /* For now we don't handle imported units in type units. */
5779 if (cu->per_cu->is_debug_types)
5780 {
5781 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5782 " supported in type units [in module %s]"),
5783 cu->objfile->name);
5784 }
5785
5786 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5787 pdi->is_dwz,
5788 cu->objfile);
5789
5790 /* Go read the partial unit, if needed. */
5791 if (per_cu->v.psymtab == NULL)
5792 process_psymtab_comp_unit (per_cu, 1);
5793
5794 VEC_safe_push (dwarf2_per_cu_ptr,
5795 cu->per_cu->imported_symtabs, per_cu);
5796 }
5797 break;
5798 default:
5799 break;
5800 }
5801 }
5802
5803 /* If the die has a sibling, skip to the sibling. */
5804
5805 pdi = pdi->die_sibling;
5806 }
5807 }
5808
5809 /* Functions used to compute the fully scoped name of a partial DIE.
5810
5811 Normally, this is simple. For C++, the parent DIE's fully scoped
5812 name is concatenated with "::" and the partial DIE's name. For
5813 Java, the same thing occurs except that "." is used instead of "::".
5814 Enumerators are an exception; they use the scope of their parent
5815 enumeration type, i.e. the name of the enumeration type is not
5816 prepended to the enumerator.
5817
5818 There are two complexities. One is DW_AT_specification; in this
5819 case "parent" means the parent of the target of the specification,
5820 instead of the direct parent of the DIE. The other is compilers
5821 which do not emit DW_TAG_namespace; in this case we try to guess
5822 the fully qualified name of structure types from their members'
5823 linkage names. This must be done using the DIE's children rather
5824 than the children of any DW_AT_specification target. We only need
5825 to do this for structures at the top level, i.e. if the target of
5826 any DW_AT_specification (if any; otherwise the DIE itself) does not
5827 have a parent. */
5828
5829 /* Compute the scope prefix associated with PDI's parent, in
5830 compilation unit CU. The result will be allocated on CU's
5831 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5832 field. NULL is returned if no prefix is necessary. */
5833 static const char *
5834 partial_die_parent_scope (struct partial_die_info *pdi,
5835 struct dwarf2_cu *cu)
5836 {
5837 const char *grandparent_scope;
5838 struct partial_die_info *parent, *real_pdi;
5839
5840 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5841 then this means the parent of the specification DIE. */
5842
5843 real_pdi = pdi;
5844 while (real_pdi->has_specification)
5845 real_pdi = find_partial_die (real_pdi->spec_offset,
5846 real_pdi->spec_is_dwz, cu);
5847
5848 parent = real_pdi->die_parent;
5849 if (parent == NULL)
5850 return NULL;
5851
5852 if (parent->scope_set)
5853 return parent->scope;
5854
5855 fixup_partial_die (parent, cu);
5856
5857 grandparent_scope = partial_die_parent_scope (parent, cu);
5858
5859 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5860 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5861 Work around this problem here. */
5862 if (cu->language == language_cplus
5863 && parent->tag == DW_TAG_namespace
5864 && strcmp (parent->name, "::") == 0
5865 && grandparent_scope == NULL)
5866 {
5867 parent->scope = NULL;
5868 parent->scope_set = 1;
5869 return NULL;
5870 }
5871
5872 if (pdi->tag == DW_TAG_enumerator)
5873 /* Enumerators should not get the name of the enumeration as a prefix. */
5874 parent->scope = grandparent_scope;
5875 else if (parent->tag == DW_TAG_namespace
5876 || parent->tag == DW_TAG_module
5877 || parent->tag == DW_TAG_structure_type
5878 || parent->tag == DW_TAG_class_type
5879 || parent->tag == DW_TAG_interface_type
5880 || parent->tag == DW_TAG_union_type
5881 || parent->tag == DW_TAG_enumeration_type)
5882 {
5883 if (grandparent_scope == NULL)
5884 parent->scope = parent->name;
5885 else
5886 parent->scope = typename_concat (&cu->comp_unit_obstack,
5887 grandparent_scope,
5888 parent->name, 0, cu);
5889 }
5890 else
5891 {
5892 /* FIXME drow/2004-04-01: What should we be doing with
5893 function-local names? For partial symbols, we should probably be
5894 ignoring them. */
5895 complaint (&symfile_complaints,
5896 _("unhandled containing DIE tag %d for DIE at %d"),
5897 parent->tag, pdi->offset.sect_off);
5898 parent->scope = grandparent_scope;
5899 }
5900
5901 parent->scope_set = 1;
5902 return parent->scope;
5903 }
5904
5905 /* Return the fully scoped name associated with PDI, from compilation unit
5906 CU. The result will be allocated with malloc. */
5907
5908 static char *
5909 partial_die_full_name (struct partial_die_info *pdi,
5910 struct dwarf2_cu *cu)
5911 {
5912 const char *parent_scope;
5913
5914 /* If this is a template instantiation, we can not work out the
5915 template arguments from partial DIEs. So, unfortunately, we have
5916 to go through the full DIEs. At least any work we do building
5917 types here will be reused if full symbols are loaded later. */
5918 if (pdi->has_template_arguments)
5919 {
5920 fixup_partial_die (pdi, cu);
5921
5922 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5923 {
5924 struct die_info *die;
5925 struct attribute attr;
5926 struct dwarf2_cu *ref_cu = cu;
5927
5928 /* DW_FORM_ref_addr is using section offset. */
5929 attr.name = 0;
5930 attr.form = DW_FORM_ref_addr;
5931 attr.u.unsnd = pdi->offset.sect_off;
5932 die = follow_die_ref (NULL, &attr, &ref_cu);
5933
5934 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5935 }
5936 }
5937
5938 parent_scope = partial_die_parent_scope (pdi, cu);
5939 if (parent_scope == NULL)
5940 return NULL;
5941 else
5942 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5943 }
5944
5945 static void
5946 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5947 {
5948 struct objfile *objfile = cu->objfile;
5949 CORE_ADDR addr = 0;
5950 const char *actual_name = NULL;
5951 CORE_ADDR baseaddr;
5952 char *built_actual_name;
5953
5954 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5955
5956 built_actual_name = partial_die_full_name (pdi, cu);
5957 if (built_actual_name != NULL)
5958 actual_name = built_actual_name;
5959
5960 if (actual_name == NULL)
5961 actual_name = pdi->name;
5962
5963 switch (pdi->tag)
5964 {
5965 case DW_TAG_subprogram:
5966 if (pdi->is_external || cu->language == language_ada)
5967 {
5968 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5969 of the global scope. But in Ada, we want to be able to access
5970 nested procedures globally. So all Ada subprograms are stored
5971 in the global scope. */
5972 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5973 mst_text, objfile); */
5974 add_psymbol_to_list (actual_name, strlen (actual_name),
5975 built_actual_name != NULL,
5976 VAR_DOMAIN, LOC_BLOCK,
5977 &objfile->global_psymbols,
5978 0, pdi->lowpc + baseaddr,
5979 cu->language, objfile);
5980 }
5981 else
5982 {
5983 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5984 mst_file_text, objfile); */
5985 add_psymbol_to_list (actual_name, strlen (actual_name),
5986 built_actual_name != NULL,
5987 VAR_DOMAIN, LOC_BLOCK,
5988 &objfile->static_psymbols,
5989 0, pdi->lowpc + baseaddr,
5990 cu->language, objfile);
5991 }
5992 break;
5993 case DW_TAG_constant:
5994 {
5995 struct psymbol_allocation_list *list;
5996
5997 if (pdi->is_external)
5998 list = &objfile->global_psymbols;
5999 else
6000 list = &objfile->static_psymbols;
6001 add_psymbol_to_list (actual_name, strlen (actual_name),
6002 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6003 list, 0, 0, cu->language, objfile);
6004 }
6005 break;
6006 case DW_TAG_variable:
6007 if (pdi->d.locdesc)
6008 addr = decode_locdesc (pdi->d.locdesc, cu);
6009
6010 if (pdi->d.locdesc
6011 && addr == 0
6012 && !dwarf2_per_objfile->has_section_at_zero)
6013 {
6014 /* A global or static variable may also have been stripped
6015 out by the linker if unused, in which case its address
6016 will be nullified; do not add such variables into partial
6017 symbol table then. */
6018 }
6019 else if (pdi->is_external)
6020 {
6021 /* Global Variable.
6022 Don't enter into the minimal symbol tables as there is
6023 a minimal symbol table entry from the ELF symbols already.
6024 Enter into partial symbol table if it has a location
6025 descriptor or a type.
6026 If the location descriptor is missing, new_symbol will create
6027 a LOC_UNRESOLVED symbol, the address of the variable will then
6028 be determined from the minimal symbol table whenever the variable
6029 is referenced.
6030 The address for the partial symbol table entry is not
6031 used by GDB, but it comes in handy for debugging partial symbol
6032 table building. */
6033
6034 if (pdi->d.locdesc || pdi->has_type)
6035 add_psymbol_to_list (actual_name, strlen (actual_name),
6036 built_actual_name != NULL,
6037 VAR_DOMAIN, LOC_STATIC,
6038 &objfile->global_psymbols,
6039 0, addr + baseaddr,
6040 cu->language, objfile);
6041 }
6042 else
6043 {
6044 /* Static Variable. Skip symbols without location descriptors. */
6045 if (pdi->d.locdesc == NULL)
6046 {
6047 xfree (built_actual_name);
6048 return;
6049 }
6050 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6051 mst_file_data, objfile); */
6052 add_psymbol_to_list (actual_name, strlen (actual_name),
6053 built_actual_name != NULL,
6054 VAR_DOMAIN, LOC_STATIC,
6055 &objfile->static_psymbols,
6056 0, addr + baseaddr,
6057 cu->language, objfile);
6058 }
6059 break;
6060 case DW_TAG_typedef:
6061 case DW_TAG_base_type:
6062 case DW_TAG_subrange_type:
6063 add_psymbol_to_list (actual_name, strlen (actual_name),
6064 built_actual_name != NULL,
6065 VAR_DOMAIN, LOC_TYPEDEF,
6066 &objfile->static_psymbols,
6067 0, (CORE_ADDR) 0, cu->language, objfile);
6068 break;
6069 case DW_TAG_namespace:
6070 add_psymbol_to_list (actual_name, strlen (actual_name),
6071 built_actual_name != NULL,
6072 VAR_DOMAIN, LOC_TYPEDEF,
6073 &objfile->global_psymbols,
6074 0, (CORE_ADDR) 0, cu->language, objfile);
6075 break;
6076 case DW_TAG_class_type:
6077 case DW_TAG_interface_type:
6078 case DW_TAG_structure_type:
6079 case DW_TAG_union_type:
6080 case DW_TAG_enumeration_type:
6081 /* Skip external references. The DWARF standard says in the section
6082 about "Structure, Union, and Class Type Entries": "An incomplete
6083 structure, union or class type is represented by a structure,
6084 union or class entry that does not have a byte size attribute
6085 and that has a DW_AT_declaration attribute." */
6086 if (!pdi->has_byte_size && pdi->is_declaration)
6087 {
6088 xfree (built_actual_name);
6089 return;
6090 }
6091
6092 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6093 static vs. global. */
6094 add_psymbol_to_list (actual_name, strlen (actual_name),
6095 built_actual_name != NULL,
6096 STRUCT_DOMAIN, LOC_TYPEDEF,
6097 (cu->language == language_cplus
6098 || cu->language == language_java)
6099 ? &objfile->global_psymbols
6100 : &objfile->static_psymbols,
6101 0, (CORE_ADDR) 0, cu->language, objfile);
6102
6103 break;
6104 case DW_TAG_enumerator:
6105 add_psymbol_to_list (actual_name, strlen (actual_name),
6106 built_actual_name != NULL,
6107 VAR_DOMAIN, LOC_CONST,
6108 (cu->language == language_cplus
6109 || cu->language == language_java)
6110 ? &objfile->global_psymbols
6111 : &objfile->static_psymbols,
6112 0, (CORE_ADDR) 0, cu->language, objfile);
6113 break;
6114 default:
6115 break;
6116 }
6117
6118 xfree (built_actual_name);
6119 }
6120
6121 /* Read a partial die corresponding to a namespace; also, add a symbol
6122 corresponding to that namespace to the symbol table. NAMESPACE is
6123 the name of the enclosing namespace. */
6124
6125 static void
6126 add_partial_namespace (struct partial_die_info *pdi,
6127 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6128 int need_pc, struct dwarf2_cu *cu)
6129 {
6130 /* Add a symbol for the namespace. */
6131
6132 add_partial_symbol (pdi, cu);
6133
6134 /* Now scan partial symbols in that namespace. */
6135
6136 if (pdi->has_children)
6137 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6138 }
6139
6140 /* Read a partial die corresponding to a Fortran module. */
6141
6142 static void
6143 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6144 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6145 {
6146 /* Now scan partial symbols in that module. */
6147
6148 if (pdi->has_children)
6149 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6150 }
6151
6152 /* Read a partial die corresponding to a subprogram and create a partial
6153 symbol for that subprogram. When the CU language allows it, this
6154 routine also defines a partial symbol for each nested subprogram
6155 that this subprogram contains.
6156
6157 DIE my also be a lexical block, in which case we simply search
6158 recursively for suprograms defined inside that lexical block.
6159 Again, this is only performed when the CU language allows this
6160 type of definitions. */
6161
6162 static void
6163 add_partial_subprogram (struct partial_die_info *pdi,
6164 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6165 int need_pc, struct dwarf2_cu *cu)
6166 {
6167 if (pdi->tag == DW_TAG_subprogram)
6168 {
6169 if (pdi->has_pc_info)
6170 {
6171 if (pdi->lowpc < *lowpc)
6172 *lowpc = pdi->lowpc;
6173 if (pdi->highpc > *highpc)
6174 *highpc = pdi->highpc;
6175 if (need_pc)
6176 {
6177 CORE_ADDR baseaddr;
6178 struct objfile *objfile = cu->objfile;
6179
6180 baseaddr = ANOFFSET (objfile->section_offsets,
6181 SECT_OFF_TEXT (objfile));
6182 addrmap_set_empty (objfile->psymtabs_addrmap,
6183 pdi->lowpc + baseaddr,
6184 pdi->highpc - 1 + baseaddr,
6185 cu->per_cu->v.psymtab);
6186 }
6187 }
6188
6189 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6190 {
6191 if (!pdi->is_declaration)
6192 /* Ignore subprogram DIEs that do not have a name, they are
6193 illegal. Do not emit a complaint at this point, we will
6194 do so when we convert this psymtab into a symtab. */
6195 if (pdi->name)
6196 add_partial_symbol (pdi, cu);
6197 }
6198 }
6199
6200 if (! pdi->has_children)
6201 return;
6202
6203 if (cu->language == language_ada)
6204 {
6205 pdi = pdi->die_child;
6206 while (pdi != NULL)
6207 {
6208 fixup_partial_die (pdi, cu);
6209 if (pdi->tag == DW_TAG_subprogram
6210 || pdi->tag == DW_TAG_lexical_block)
6211 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6212 pdi = pdi->die_sibling;
6213 }
6214 }
6215 }
6216
6217 /* Read a partial die corresponding to an enumeration type. */
6218
6219 static void
6220 add_partial_enumeration (struct partial_die_info *enum_pdi,
6221 struct dwarf2_cu *cu)
6222 {
6223 struct partial_die_info *pdi;
6224
6225 if (enum_pdi->name != NULL)
6226 add_partial_symbol (enum_pdi, cu);
6227
6228 pdi = enum_pdi->die_child;
6229 while (pdi)
6230 {
6231 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6232 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6233 else
6234 add_partial_symbol (pdi, cu);
6235 pdi = pdi->die_sibling;
6236 }
6237 }
6238
6239 /* Return the initial uleb128 in the die at INFO_PTR. */
6240
6241 static unsigned int
6242 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6243 {
6244 unsigned int bytes_read;
6245
6246 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6247 }
6248
6249 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6250 Return the corresponding abbrev, or NULL if the number is zero (indicating
6251 an empty DIE). In either case *BYTES_READ will be set to the length of
6252 the initial number. */
6253
6254 static struct abbrev_info *
6255 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6256 struct dwarf2_cu *cu)
6257 {
6258 bfd *abfd = cu->objfile->obfd;
6259 unsigned int abbrev_number;
6260 struct abbrev_info *abbrev;
6261
6262 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6263
6264 if (abbrev_number == 0)
6265 return NULL;
6266
6267 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6268 if (!abbrev)
6269 {
6270 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6271 abbrev_number, bfd_get_filename (abfd));
6272 }
6273
6274 return abbrev;
6275 }
6276
6277 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6278 Returns a pointer to the end of a series of DIEs, terminated by an empty
6279 DIE. Any children of the skipped DIEs will also be skipped. */
6280
6281 static gdb_byte *
6282 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6283 {
6284 struct dwarf2_cu *cu = reader->cu;
6285 struct abbrev_info *abbrev;
6286 unsigned int bytes_read;
6287
6288 while (1)
6289 {
6290 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6291 if (abbrev == NULL)
6292 return info_ptr + bytes_read;
6293 else
6294 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6295 }
6296 }
6297
6298 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6299 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6300 abbrev corresponding to that skipped uleb128 should be passed in
6301 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6302 children. */
6303
6304 static gdb_byte *
6305 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6306 struct abbrev_info *abbrev)
6307 {
6308 unsigned int bytes_read;
6309 struct attribute attr;
6310 bfd *abfd = reader->abfd;
6311 struct dwarf2_cu *cu = reader->cu;
6312 gdb_byte *buffer = reader->buffer;
6313 const gdb_byte *buffer_end = reader->buffer_end;
6314 gdb_byte *start_info_ptr = info_ptr;
6315 unsigned int form, i;
6316
6317 for (i = 0; i < abbrev->num_attrs; i++)
6318 {
6319 /* The only abbrev we care about is DW_AT_sibling. */
6320 if (abbrev->attrs[i].name == DW_AT_sibling)
6321 {
6322 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6323 if (attr.form == DW_FORM_ref_addr)
6324 complaint (&symfile_complaints,
6325 _("ignoring absolute DW_AT_sibling"));
6326 else
6327 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6328 }
6329
6330 /* If it isn't DW_AT_sibling, skip this attribute. */
6331 form = abbrev->attrs[i].form;
6332 skip_attribute:
6333 switch (form)
6334 {
6335 case DW_FORM_ref_addr:
6336 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6337 and later it is offset sized. */
6338 if (cu->header.version == 2)
6339 info_ptr += cu->header.addr_size;
6340 else
6341 info_ptr += cu->header.offset_size;
6342 break;
6343 case DW_FORM_GNU_ref_alt:
6344 info_ptr += cu->header.offset_size;
6345 break;
6346 case DW_FORM_addr:
6347 info_ptr += cu->header.addr_size;
6348 break;
6349 case DW_FORM_data1:
6350 case DW_FORM_ref1:
6351 case DW_FORM_flag:
6352 info_ptr += 1;
6353 break;
6354 case DW_FORM_flag_present:
6355 break;
6356 case DW_FORM_data2:
6357 case DW_FORM_ref2:
6358 info_ptr += 2;
6359 break;
6360 case DW_FORM_data4:
6361 case DW_FORM_ref4:
6362 info_ptr += 4;
6363 break;
6364 case DW_FORM_data8:
6365 case DW_FORM_ref8:
6366 case DW_FORM_ref_sig8:
6367 info_ptr += 8;
6368 break;
6369 case DW_FORM_string:
6370 read_direct_string (abfd, info_ptr, &bytes_read);
6371 info_ptr += bytes_read;
6372 break;
6373 case DW_FORM_sec_offset:
6374 case DW_FORM_strp:
6375 case DW_FORM_GNU_strp_alt:
6376 info_ptr += cu->header.offset_size;
6377 break;
6378 case DW_FORM_exprloc:
6379 case DW_FORM_block:
6380 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6381 info_ptr += bytes_read;
6382 break;
6383 case DW_FORM_block1:
6384 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6385 break;
6386 case DW_FORM_block2:
6387 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6388 break;
6389 case DW_FORM_block4:
6390 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6391 break;
6392 case DW_FORM_sdata:
6393 case DW_FORM_udata:
6394 case DW_FORM_ref_udata:
6395 case DW_FORM_GNU_addr_index:
6396 case DW_FORM_GNU_str_index:
6397 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6398 break;
6399 case DW_FORM_indirect:
6400 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6401 info_ptr += bytes_read;
6402 /* We need to continue parsing from here, so just go back to
6403 the top. */
6404 goto skip_attribute;
6405
6406 default:
6407 error (_("Dwarf Error: Cannot handle %s "
6408 "in DWARF reader [in module %s]"),
6409 dwarf_form_name (form),
6410 bfd_get_filename (abfd));
6411 }
6412 }
6413
6414 if (abbrev->has_children)
6415 return skip_children (reader, info_ptr);
6416 else
6417 return info_ptr;
6418 }
6419
6420 /* Locate ORIG_PDI's sibling.
6421 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6422
6423 static gdb_byte *
6424 locate_pdi_sibling (const struct die_reader_specs *reader,
6425 struct partial_die_info *orig_pdi,
6426 gdb_byte *info_ptr)
6427 {
6428 /* Do we know the sibling already? */
6429
6430 if (orig_pdi->sibling)
6431 return orig_pdi->sibling;
6432
6433 /* Are there any children to deal with? */
6434
6435 if (!orig_pdi->has_children)
6436 return info_ptr;
6437
6438 /* Skip the children the long way. */
6439
6440 return skip_children (reader, info_ptr);
6441 }
6442
6443 /* Expand this partial symbol table into a full symbol table. SELF is
6444 not NULL. */
6445
6446 static void
6447 dwarf2_read_symtab (struct partial_symtab *self,
6448 struct objfile *objfile)
6449 {
6450 if (self->readin)
6451 {
6452 warning (_("bug: psymtab for %s is already read in."),
6453 self->filename);
6454 }
6455 else
6456 {
6457 if (info_verbose)
6458 {
6459 printf_filtered (_("Reading in symbols for %s..."),
6460 self->filename);
6461 gdb_flush (gdb_stdout);
6462 }
6463
6464 /* Restore our global data. */
6465 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6466
6467 /* If this psymtab is constructed from a debug-only objfile, the
6468 has_section_at_zero flag will not necessarily be correct. We
6469 can get the correct value for this flag by looking at the data
6470 associated with the (presumably stripped) associated objfile. */
6471 if (objfile->separate_debug_objfile_backlink)
6472 {
6473 struct dwarf2_per_objfile *dpo_backlink
6474 = objfile_data (objfile->separate_debug_objfile_backlink,
6475 dwarf2_objfile_data_key);
6476
6477 dwarf2_per_objfile->has_section_at_zero
6478 = dpo_backlink->has_section_at_zero;
6479 }
6480
6481 dwarf2_per_objfile->reading_partial_symbols = 0;
6482
6483 psymtab_to_symtab_1 (self);
6484
6485 /* Finish up the debug error message. */
6486 if (info_verbose)
6487 printf_filtered (_("done.\n"));
6488 }
6489
6490 process_cu_includes ();
6491 }
6492 \f
6493 /* Reading in full CUs. */
6494
6495 /* Add PER_CU to the queue. */
6496
6497 static void
6498 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6499 enum language pretend_language)
6500 {
6501 struct dwarf2_queue_item *item;
6502
6503 per_cu->queued = 1;
6504 item = xmalloc (sizeof (*item));
6505 item->per_cu = per_cu;
6506 item->pretend_language = pretend_language;
6507 item->next = NULL;
6508
6509 if (dwarf2_queue == NULL)
6510 dwarf2_queue = item;
6511 else
6512 dwarf2_queue_tail->next = item;
6513
6514 dwarf2_queue_tail = item;
6515 }
6516
6517 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6518 unit and add it to our queue.
6519 The result is non-zero if PER_CU was queued, otherwise the result is zero
6520 meaning either PER_CU is already queued or it is already loaded. */
6521
6522 static int
6523 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6524 struct dwarf2_per_cu_data *per_cu,
6525 enum language pretend_language)
6526 {
6527 /* We may arrive here during partial symbol reading, if we need full
6528 DIEs to process an unusual case (e.g. template arguments). Do
6529 not queue PER_CU, just tell our caller to load its DIEs. */
6530 if (dwarf2_per_objfile->reading_partial_symbols)
6531 {
6532 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6533 return 1;
6534 return 0;
6535 }
6536
6537 /* Mark the dependence relation so that we don't flush PER_CU
6538 too early. */
6539 dwarf2_add_dependence (this_cu, per_cu);
6540
6541 /* If it's already on the queue, we have nothing to do. */
6542 if (per_cu->queued)
6543 return 0;
6544
6545 /* If the compilation unit is already loaded, just mark it as
6546 used. */
6547 if (per_cu->cu != NULL)
6548 {
6549 per_cu->cu->last_used = 0;
6550 return 0;
6551 }
6552
6553 /* Add it to the queue. */
6554 queue_comp_unit (per_cu, pretend_language);
6555
6556 return 1;
6557 }
6558
6559 /* Process the queue. */
6560
6561 static void
6562 process_queue (void)
6563 {
6564 struct dwarf2_queue_item *item, *next_item;
6565
6566 if (dwarf2_read_debug)
6567 {
6568 fprintf_unfiltered (gdb_stdlog,
6569 "Expanding one or more symtabs of objfile %s ...\n",
6570 dwarf2_per_objfile->objfile->name);
6571 }
6572
6573 /* The queue starts out with one item, but following a DIE reference
6574 may load a new CU, adding it to the end of the queue. */
6575 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6576 {
6577 if (dwarf2_per_objfile->using_index
6578 ? !item->per_cu->v.quick->symtab
6579 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6580 {
6581 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6582
6583 if (dwarf2_read_debug)
6584 {
6585 fprintf_unfiltered (gdb_stdlog,
6586 "Expanding symtab of %s at offset 0x%x\n",
6587 per_cu->is_debug_types ? "TU" : "CU",
6588 per_cu->offset.sect_off);
6589 }
6590
6591 if (per_cu->is_debug_types)
6592 process_full_type_unit (per_cu, item->pretend_language);
6593 else
6594 process_full_comp_unit (per_cu, item->pretend_language);
6595
6596 if (dwarf2_read_debug)
6597 {
6598 fprintf_unfiltered (gdb_stdlog,
6599 "Done expanding %s at offset 0x%x\n",
6600 per_cu->is_debug_types ? "TU" : "CU",
6601 per_cu->offset.sect_off);
6602 }
6603 }
6604
6605 item->per_cu->queued = 0;
6606 next_item = item->next;
6607 xfree (item);
6608 }
6609
6610 dwarf2_queue_tail = NULL;
6611
6612 if (dwarf2_read_debug)
6613 {
6614 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6615 dwarf2_per_objfile->objfile->name);
6616 }
6617 }
6618
6619 /* Free all allocated queue entries. This function only releases anything if
6620 an error was thrown; if the queue was processed then it would have been
6621 freed as we went along. */
6622
6623 static void
6624 dwarf2_release_queue (void *dummy)
6625 {
6626 struct dwarf2_queue_item *item, *last;
6627
6628 item = dwarf2_queue;
6629 while (item)
6630 {
6631 /* Anything still marked queued is likely to be in an
6632 inconsistent state, so discard it. */
6633 if (item->per_cu->queued)
6634 {
6635 if (item->per_cu->cu != NULL)
6636 free_one_cached_comp_unit (item->per_cu);
6637 item->per_cu->queued = 0;
6638 }
6639
6640 last = item;
6641 item = item->next;
6642 xfree (last);
6643 }
6644
6645 dwarf2_queue = dwarf2_queue_tail = NULL;
6646 }
6647
6648 /* Read in full symbols for PST, and anything it depends on. */
6649
6650 static void
6651 psymtab_to_symtab_1 (struct partial_symtab *pst)
6652 {
6653 struct dwarf2_per_cu_data *per_cu;
6654 int i;
6655
6656 if (pst->readin)
6657 return;
6658
6659 for (i = 0; i < pst->number_of_dependencies; i++)
6660 if (!pst->dependencies[i]->readin
6661 && pst->dependencies[i]->user == NULL)
6662 {
6663 /* Inform about additional files that need to be read in. */
6664 if (info_verbose)
6665 {
6666 /* FIXME: i18n: Need to make this a single string. */
6667 fputs_filtered (" ", gdb_stdout);
6668 wrap_here ("");
6669 fputs_filtered ("and ", gdb_stdout);
6670 wrap_here ("");
6671 printf_filtered ("%s...", pst->dependencies[i]->filename);
6672 wrap_here (""); /* Flush output. */
6673 gdb_flush (gdb_stdout);
6674 }
6675 psymtab_to_symtab_1 (pst->dependencies[i]);
6676 }
6677
6678 per_cu = pst->read_symtab_private;
6679
6680 if (per_cu == NULL)
6681 {
6682 /* It's an include file, no symbols to read for it.
6683 Everything is in the parent symtab. */
6684 pst->readin = 1;
6685 return;
6686 }
6687
6688 dw2_do_instantiate_symtab (per_cu);
6689 }
6690
6691 /* Trivial hash function for die_info: the hash value of a DIE
6692 is its offset in .debug_info for this objfile. */
6693
6694 static hashval_t
6695 die_hash (const void *item)
6696 {
6697 const struct die_info *die = item;
6698
6699 return die->offset.sect_off;
6700 }
6701
6702 /* Trivial comparison function for die_info structures: two DIEs
6703 are equal if they have the same offset. */
6704
6705 static int
6706 die_eq (const void *item_lhs, const void *item_rhs)
6707 {
6708 const struct die_info *die_lhs = item_lhs;
6709 const struct die_info *die_rhs = item_rhs;
6710
6711 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6712 }
6713
6714 /* die_reader_func for load_full_comp_unit.
6715 This is identical to read_signatured_type_reader,
6716 but is kept separate for now. */
6717
6718 static void
6719 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6720 gdb_byte *info_ptr,
6721 struct die_info *comp_unit_die,
6722 int has_children,
6723 void *data)
6724 {
6725 struct dwarf2_cu *cu = reader->cu;
6726 enum language *language_ptr = data;
6727
6728 gdb_assert (cu->die_hash == NULL);
6729 cu->die_hash =
6730 htab_create_alloc_ex (cu->header.length / 12,
6731 die_hash,
6732 die_eq,
6733 NULL,
6734 &cu->comp_unit_obstack,
6735 hashtab_obstack_allocate,
6736 dummy_obstack_deallocate);
6737
6738 if (has_children)
6739 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6740 &info_ptr, comp_unit_die);
6741 cu->dies = comp_unit_die;
6742 /* comp_unit_die is not stored in die_hash, no need. */
6743
6744 /* We try not to read any attributes in this function, because not
6745 all CUs needed for references have been loaded yet, and symbol
6746 table processing isn't initialized. But we have to set the CU language,
6747 or we won't be able to build types correctly.
6748 Similarly, if we do not read the producer, we can not apply
6749 producer-specific interpretation. */
6750 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6751 }
6752
6753 /* Load the DIEs associated with PER_CU into memory. */
6754
6755 static void
6756 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6757 enum language pretend_language)
6758 {
6759 gdb_assert (! this_cu->is_debug_types);
6760
6761 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6762 load_full_comp_unit_reader, &pretend_language);
6763 }
6764
6765 /* Add a DIE to the delayed physname list. */
6766
6767 static void
6768 add_to_method_list (struct type *type, int fnfield_index, int index,
6769 const char *name, struct die_info *die,
6770 struct dwarf2_cu *cu)
6771 {
6772 struct delayed_method_info mi;
6773 mi.type = type;
6774 mi.fnfield_index = fnfield_index;
6775 mi.index = index;
6776 mi.name = name;
6777 mi.die = die;
6778 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6779 }
6780
6781 /* A cleanup for freeing the delayed method list. */
6782
6783 static void
6784 free_delayed_list (void *ptr)
6785 {
6786 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6787 if (cu->method_list != NULL)
6788 {
6789 VEC_free (delayed_method_info, cu->method_list);
6790 cu->method_list = NULL;
6791 }
6792 }
6793
6794 /* Compute the physnames of any methods on the CU's method list.
6795
6796 The computation of method physnames is delayed in order to avoid the
6797 (bad) condition that one of the method's formal parameters is of an as yet
6798 incomplete type. */
6799
6800 static void
6801 compute_delayed_physnames (struct dwarf2_cu *cu)
6802 {
6803 int i;
6804 struct delayed_method_info *mi;
6805 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6806 {
6807 const char *physname;
6808 struct fn_fieldlist *fn_flp
6809 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6810 physname = dwarf2_physname (mi->name, mi->die, cu);
6811 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6812 }
6813 }
6814
6815 /* Go objects should be embedded in a DW_TAG_module DIE,
6816 and it's not clear if/how imported objects will appear.
6817 To keep Go support simple until that's worked out,
6818 go back through what we've read and create something usable.
6819 We could do this while processing each DIE, and feels kinda cleaner,
6820 but that way is more invasive.
6821 This is to, for example, allow the user to type "p var" or "b main"
6822 without having to specify the package name, and allow lookups
6823 of module.object to work in contexts that use the expression
6824 parser. */
6825
6826 static void
6827 fixup_go_packaging (struct dwarf2_cu *cu)
6828 {
6829 char *package_name = NULL;
6830 struct pending *list;
6831 int i;
6832
6833 for (list = global_symbols; list != NULL; list = list->next)
6834 {
6835 for (i = 0; i < list->nsyms; ++i)
6836 {
6837 struct symbol *sym = list->symbol[i];
6838
6839 if (SYMBOL_LANGUAGE (sym) == language_go
6840 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6841 {
6842 char *this_package_name = go_symbol_package_name (sym);
6843
6844 if (this_package_name == NULL)
6845 continue;
6846 if (package_name == NULL)
6847 package_name = this_package_name;
6848 else
6849 {
6850 if (strcmp (package_name, this_package_name) != 0)
6851 complaint (&symfile_complaints,
6852 _("Symtab %s has objects from two different Go packages: %s and %s"),
6853 (SYMBOL_SYMTAB (sym)
6854 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6855 : cu->objfile->name),
6856 this_package_name, package_name);
6857 xfree (this_package_name);
6858 }
6859 }
6860 }
6861 }
6862
6863 if (package_name != NULL)
6864 {
6865 struct objfile *objfile = cu->objfile;
6866 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6867 package_name,
6868 strlen (package_name));
6869 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6870 saved_package_name, objfile);
6871 struct symbol *sym;
6872
6873 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6874
6875 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6876 SYMBOL_SET_LANGUAGE (sym, language_go);
6877 SYMBOL_SET_NAMES (sym, saved_package_name,
6878 strlen (saved_package_name), 0, objfile);
6879 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6880 e.g., "main" finds the "main" module and not C's main(). */
6881 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6882 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
6883 SYMBOL_TYPE (sym) = type;
6884
6885 add_symbol_to_list (sym, &global_symbols);
6886
6887 xfree (package_name);
6888 }
6889 }
6890
6891 /* Return the symtab for PER_CU. This works properly regardless of
6892 whether we're using the index or psymtabs. */
6893
6894 static struct symtab *
6895 get_symtab (struct dwarf2_per_cu_data *per_cu)
6896 {
6897 return (dwarf2_per_objfile->using_index
6898 ? per_cu->v.quick->symtab
6899 : per_cu->v.psymtab->symtab);
6900 }
6901
6902 /* A helper function for computing the list of all symbol tables
6903 included by PER_CU. */
6904
6905 static void
6906 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6907 htab_t all_children,
6908 struct dwarf2_per_cu_data *per_cu)
6909 {
6910 void **slot;
6911 int ix;
6912 struct dwarf2_per_cu_data *iter;
6913
6914 slot = htab_find_slot (all_children, per_cu, INSERT);
6915 if (*slot != NULL)
6916 {
6917 /* This inclusion and its children have been processed. */
6918 return;
6919 }
6920
6921 *slot = per_cu;
6922 /* Only add a CU if it has a symbol table. */
6923 if (get_symtab (per_cu) != NULL)
6924 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6925
6926 for (ix = 0;
6927 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
6928 ++ix)
6929 recursively_compute_inclusions (result, all_children, iter);
6930 }
6931
6932 /* Compute the symtab 'includes' fields for the symtab related to
6933 PER_CU. */
6934
6935 static void
6936 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6937 {
6938 gdb_assert (! per_cu->is_debug_types);
6939
6940 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
6941 {
6942 int ix, len;
6943 struct dwarf2_per_cu_data *iter;
6944 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6945 htab_t all_children;
6946 struct symtab *symtab = get_symtab (per_cu);
6947
6948 /* If we don't have a symtab, we can just skip this case. */
6949 if (symtab == NULL)
6950 return;
6951
6952 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6953 NULL, xcalloc, xfree);
6954
6955 for (ix = 0;
6956 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
6957 ix, iter);
6958 ++ix)
6959 recursively_compute_inclusions (&result_children, all_children, iter);
6960
6961 /* Now we have a transitive closure of all the included CUs, and
6962 for .gdb_index version 7 the included TUs, so we can convert it
6963 to a list of symtabs. */
6964 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6965 symtab->includes
6966 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6967 (len + 1) * sizeof (struct symtab *));
6968 for (ix = 0;
6969 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6970 ++ix)
6971 symtab->includes[ix] = get_symtab (iter);
6972 symtab->includes[len] = NULL;
6973
6974 VEC_free (dwarf2_per_cu_ptr, result_children);
6975 htab_delete (all_children);
6976 }
6977 }
6978
6979 /* Compute the 'includes' field for the symtabs of all the CUs we just
6980 read. */
6981
6982 static void
6983 process_cu_includes (void)
6984 {
6985 int ix;
6986 struct dwarf2_per_cu_data *iter;
6987
6988 for (ix = 0;
6989 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6990 ix, iter);
6991 ++ix)
6992 {
6993 if (! iter->is_debug_types)
6994 compute_symtab_includes (iter);
6995 }
6996
6997 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6998 }
6999
7000 /* Generate full symbol information for PER_CU, whose DIEs have
7001 already been loaded into memory. */
7002
7003 static void
7004 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7005 enum language pretend_language)
7006 {
7007 struct dwarf2_cu *cu = per_cu->cu;
7008 struct objfile *objfile = per_cu->objfile;
7009 CORE_ADDR lowpc, highpc;
7010 struct symtab *symtab;
7011 struct cleanup *back_to, *delayed_list_cleanup;
7012 CORE_ADDR baseaddr;
7013 struct block *static_block;
7014
7015 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7016
7017 buildsym_init ();
7018 back_to = make_cleanup (really_free_pendings, NULL);
7019 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7020
7021 cu->list_in_scope = &file_symbols;
7022
7023 cu->language = pretend_language;
7024 cu->language_defn = language_def (cu->language);
7025
7026 /* Do line number decoding in read_file_scope () */
7027 process_die (cu->dies, cu);
7028
7029 /* For now fudge the Go package. */
7030 if (cu->language == language_go)
7031 fixup_go_packaging (cu);
7032
7033 /* Now that we have processed all the DIEs in the CU, all the types
7034 should be complete, and it should now be safe to compute all of the
7035 physnames. */
7036 compute_delayed_physnames (cu);
7037 do_cleanups (delayed_list_cleanup);
7038
7039 /* Some compilers don't define a DW_AT_high_pc attribute for the
7040 compilation unit. If the DW_AT_high_pc is missing, synthesize
7041 it, by scanning the DIE's below the compilation unit. */
7042 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7043
7044 static_block
7045 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7046 per_cu->imported_symtabs != NULL);
7047
7048 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7049 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7050 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7051 addrmap to help ensure it has an accurate map of pc values belonging to
7052 this comp unit. */
7053 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7054
7055 symtab = end_symtab_from_static_block (static_block, objfile,
7056 SECT_OFF_TEXT (objfile), 0);
7057
7058 if (symtab != NULL)
7059 {
7060 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7061
7062 /* Set symtab language to language from DW_AT_language. If the
7063 compilation is from a C file generated by language preprocessors, do
7064 not set the language if it was already deduced by start_subfile. */
7065 if (!(cu->language == language_c && symtab->language != language_c))
7066 symtab->language = cu->language;
7067
7068 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7069 produce DW_AT_location with location lists but it can be possibly
7070 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7071 there were bugs in prologue debug info, fixed later in GCC-4.5
7072 by "unwind info for epilogues" patch (which is not directly related).
7073
7074 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7075 needed, it would be wrong due to missing DW_AT_producer there.
7076
7077 Still one can confuse GDB by using non-standard GCC compilation
7078 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7079 */
7080 if (cu->has_loclist && gcc_4_minor >= 5)
7081 symtab->locations_valid = 1;
7082
7083 if (gcc_4_minor >= 5)
7084 symtab->epilogue_unwind_valid = 1;
7085
7086 symtab->call_site_htab = cu->call_site_htab;
7087 }
7088
7089 if (dwarf2_per_objfile->using_index)
7090 per_cu->v.quick->symtab = symtab;
7091 else
7092 {
7093 struct partial_symtab *pst = per_cu->v.psymtab;
7094 pst->symtab = symtab;
7095 pst->readin = 1;
7096 }
7097
7098 /* Push it for inclusion processing later. */
7099 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7100
7101 do_cleanups (back_to);
7102 }
7103
7104 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7105 already been loaded into memory. */
7106
7107 static void
7108 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7109 enum language pretend_language)
7110 {
7111 struct dwarf2_cu *cu = per_cu->cu;
7112 struct objfile *objfile = per_cu->objfile;
7113 struct symtab *symtab;
7114 struct cleanup *back_to, *delayed_list_cleanup;
7115
7116 buildsym_init ();
7117 back_to = make_cleanup (really_free_pendings, NULL);
7118 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7119
7120 cu->list_in_scope = &file_symbols;
7121
7122 cu->language = pretend_language;
7123 cu->language_defn = language_def (cu->language);
7124
7125 /* The symbol tables are set up in read_type_unit_scope. */
7126 process_die (cu->dies, cu);
7127
7128 /* For now fudge the Go package. */
7129 if (cu->language == language_go)
7130 fixup_go_packaging (cu);
7131
7132 /* Now that we have processed all the DIEs in the CU, all the types
7133 should be complete, and it should now be safe to compute all of the
7134 physnames. */
7135 compute_delayed_physnames (cu);
7136 do_cleanups (delayed_list_cleanup);
7137
7138 /* TUs share symbol tables.
7139 If this is the first TU to use this symtab, complete the construction
7140 of it with end_expandable_symtab. Otherwise, complete the addition of
7141 this TU's symbols to the existing symtab. */
7142 if (per_cu->type_unit_group->primary_symtab == NULL)
7143 {
7144 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7145 per_cu->type_unit_group->primary_symtab = symtab;
7146
7147 if (symtab != NULL)
7148 {
7149 /* Set symtab language to language from DW_AT_language. If the
7150 compilation is from a C file generated by language preprocessors,
7151 do not set the language if it was already deduced by
7152 start_subfile. */
7153 if (!(cu->language == language_c && symtab->language != language_c))
7154 symtab->language = cu->language;
7155 }
7156 }
7157 else
7158 {
7159 augment_type_symtab (objfile,
7160 per_cu->type_unit_group->primary_symtab);
7161 symtab = per_cu->type_unit_group->primary_symtab;
7162 }
7163
7164 if (dwarf2_per_objfile->using_index)
7165 per_cu->v.quick->symtab = symtab;
7166 else
7167 {
7168 struct partial_symtab *pst = per_cu->v.psymtab;
7169 pst->symtab = symtab;
7170 pst->readin = 1;
7171 }
7172
7173 do_cleanups (back_to);
7174 }
7175
7176 /* Process an imported unit DIE. */
7177
7178 static void
7179 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7180 {
7181 struct attribute *attr;
7182
7183 /* For now we don't handle imported units in type units. */
7184 if (cu->per_cu->is_debug_types)
7185 {
7186 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7187 " supported in type units [in module %s]"),
7188 cu->objfile->name);
7189 }
7190
7191 attr = dwarf2_attr (die, DW_AT_import, cu);
7192 if (attr != NULL)
7193 {
7194 struct dwarf2_per_cu_data *per_cu;
7195 struct symtab *imported_symtab;
7196 sect_offset offset;
7197 int is_dwz;
7198
7199 offset = dwarf2_get_ref_die_offset (attr);
7200 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7201 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7202
7203 /* Queue the unit, if needed. */
7204 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7205 load_full_comp_unit (per_cu, cu->language);
7206
7207 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7208 per_cu);
7209 }
7210 }
7211
7212 /* Process a die and its children. */
7213
7214 static void
7215 process_die (struct die_info *die, struct dwarf2_cu *cu)
7216 {
7217 switch (die->tag)
7218 {
7219 case DW_TAG_padding:
7220 break;
7221 case DW_TAG_compile_unit:
7222 case DW_TAG_partial_unit:
7223 read_file_scope (die, cu);
7224 break;
7225 case DW_TAG_type_unit:
7226 read_type_unit_scope (die, cu);
7227 break;
7228 case DW_TAG_subprogram:
7229 case DW_TAG_inlined_subroutine:
7230 read_func_scope (die, cu);
7231 break;
7232 case DW_TAG_lexical_block:
7233 case DW_TAG_try_block:
7234 case DW_TAG_catch_block:
7235 read_lexical_block_scope (die, cu);
7236 break;
7237 case DW_TAG_GNU_call_site:
7238 read_call_site_scope (die, cu);
7239 break;
7240 case DW_TAG_class_type:
7241 case DW_TAG_interface_type:
7242 case DW_TAG_structure_type:
7243 case DW_TAG_union_type:
7244 process_structure_scope (die, cu);
7245 break;
7246 case DW_TAG_enumeration_type:
7247 process_enumeration_scope (die, cu);
7248 break;
7249
7250 /* These dies have a type, but processing them does not create
7251 a symbol or recurse to process the children. Therefore we can
7252 read them on-demand through read_type_die. */
7253 case DW_TAG_subroutine_type:
7254 case DW_TAG_set_type:
7255 case DW_TAG_array_type:
7256 case DW_TAG_pointer_type:
7257 case DW_TAG_ptr_to_member_type:
7258 case DW_TAG_reference_type:
7259 case DW_TAG_string_type:
7260 break;
7261
7262 case DW_TAG_base_type:
7263 case DW_TAG_subrange_type:
7264 case DW_TAG_typedef:
7265 /* Add a typedef symbol for the type definition, if it has a
7266 DW_AT_name. */
7267 new_symbol (die, read_type_die (die, cu), cu);
7268 break;
7269 case DW_TAG_common_block:
7270 read_common_block (die, cu);
7271 break;
7272 case DW_TAG_common_inclusion:
7273 break;
7274 case DW_TAG_namespace:
7275 cu->processing_has_namespace_info = 1;
7276 read_namespace (die, cu);
7277 break;
7278 case DW_TAG_module:
7279 cu->processing_has_namespace_info = 1;
7280 read_module (die, cu);
7281 break;
7282 case DW_TAG_imported_declaration:
7283 case DW_TAG_imported_module:
7284 cu->processing_has_namespace_info = 1;
7285 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7286 || cu->language != language_fortran))
7287 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7288 dwarf_tag_name (die->tag));
7289 read_import_statement (die, cu);
7290 break;
7291
7292 case DW_TAG_imported_unit:
7293 process_imported_unit_die (die, cu);
7294 break;
7295
7296 default:
7297 new_symbol (die, NULL, cu);
7298 break;
7299 }
7300 }
7301 \f
7302 /* DWARF name computation. */
7303
7304 /* A helper function for dwarf2_compute_name which determines whether DIE
7305 needs to have the name of the scope prepended to the name listed in the
7306 die. */
7307
7308 static int
7309 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7310 {
7311 struct attribute *attr;
7312
7313 switch (die->tag)
7314 {
7315 case DW_TAG_namespace:
7316 case DW_TAG_typedef:
7317 case DW_TAG_class_type:
7318 case DW_TAG_interface_type:
7319 case DW_TAG_structure_type:
7320 case DW_TAG_union_type:
7321 case DW_TAG_enumeration_type:
7322 case DW_TAG_enumerator:
7323 case DW_TAG_subprogram:
7324 case DW_TAG_member:
7325 return 1;
7326
7327 case DW_TAG_variable:
7328 case DW_TAG_constant:
7329 /* We only need to prefix "globally" visible variables. These include
7330 any variable marked with DW_AT_external or any variable that
7331 lives in a namespace. [Variables in anonymous namespaces
7332 require prefixing, but they are not DW_AT_external.] */
7333
7334 if (dwarf2_attr (die, DW_AT_specification, cu))
7335 {
7336 struct dwarf2_cu *spec_cu = cu;
7337
7338 return die_needs_namespace (die_specification (die, &spec_cu),
7339 spec_cu);
7340 }
7341
7342 attr = dwarf2_attr (die, DW_AT_external, cu);
7343 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7344 && die->parent->tag != DW_TAG_module)
7345 return 0;
7346 /* A variable in a lexical block of some kind does not need a
7347 namespace, even though in C++ such variables may be external
7348 and have a mangled name. */
7349 if (die->parent->tag == DW_TAG_lexical_block
7350 || die->parent->tag == DW_TAG_try_block
7351 || die->parent->tag == DW_TAG_catch_block
7352 || die->parent->tag == DW_TAG_subprogram)
7353 return 0;
7354 return 1;
7355
7356 default:
7357 return 0;
7358 }
7359 }
7360
7361 /* Retrieve the last character from a mem_file. */
7362
7363 static void
7364 do_ui_file_peek_last (void *object, const char *buffer, long length)
7365 {
7366 char *last_char_p = (char *) object;
7367
7368 if (length > 0)
7369 *last_char_p = buffer[length - 1];
7370 }
7371
7372 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7373 compute the physname for the object, which include a method's:
7374 - formal parameters (C++/Java),
7375 - receiver type (Go),
7376 - return type (Java).
7377
7378 The term "physname" is a bit confusing.
7379 For C++, for example, it is the demangled name.
7380 For Go, for example, it's the mangled name.
7381
7382 For Ada, return the DIE's linkage name rather than the fully qualified
7383 name. PHYSNAME is ignored..
7384
7385 The result is allocated on the objfile_obstack and canonicalized. */
7386
7387 static const char *
7388 dwarf2_compute_name (const char *name,
7389 struct die_info *die, struct dwarf2_cu *cu,
7390 int physname)
7391 {
7392 struct objfile *objfile = cu->objfile;
7393
7394 if (name == NULL)
7395 name = dwarf2_name (die, cu);
7396
7397 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7398 compute it by typename_concat inside GDB. */
7399 if (cu->language == language_ada
7400 || (cu->language == language_fortran && physname))
7401 {
7402 /* For Ada unit, we prefer the linkage name over the name, as
7403 the former contains the exported name, which the user expects
7404 to be able to reference. Ideally, we want the user to be able
7405 to reference this entity using either natural or linkage name,
7406 but we haven't started looking at this enhancement yet. */
7407 struct attribute *attr;
7408
7409 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7410 if (attr == NULL)
7411 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7412 if (attr && DW_STRING (attr))
7413 return DW_STRING (attr);
7414 }
7415
7416 /* These are the only languages we know how to qualify names in. */
7417 if (name != NULL
7418 && (cu->language == language_cplus || cu->language == language_java
7419 || cu->language == language_fortran))
7420 {
7421 if (die_needs_namespace (die, cu))
7422 {
7423 long length;
7424 const char *prefix;
7425 struct ui_file *buf;
7426
7427 prefix = determine_prefix (die, cu);
7428 buf = mem_fileopen ();
7429 if (*prefix != '\0')
7430 {
7431 char *prefixed_name = typename_concat (NULL, prefix, name,
7432 physname, cu);
7433
7434 fputs_unfiltered (prefixed_name, buf);
7435 xfree (prefixed_name);
7436 }
7437 else
7438 fputs_unfiltered (name, buf);
7439
7440 /* Template parameters may be specified in the DIE's DW_AT_name, or
7441 as children with DW_TAG_template_type_param or
7442 DW_TAG_value_type_param. If the latter, add them to the name
7443 here. If the name already has template parameters, then
7444 skip this step; some versions of GCC emit both, and
7445 it is more efficient to use the pre-computed name.
7446
7447 Something to keep in mind about this process: it is very
7448 unlikely, or in some cases downright impossible, to produce
7449 something that will match the mangled name of a function.
7450 If the definition of the function has the same debug info,
7451 we should be able to match up with it anyway. But fallbacks
7452 using the minimal symbol, for instance to find a method
7453 implemented in a stripped copy of libstdc++, will not work.
7454 If we do not have debug info for the definition, we will have to
7455 match them up some other way.
7456
7457 When we do name matching there is a related problem with function
7458 templates; two instantiated function templates are allowed to
7459 differ only by their return types, which we do not add here. */
7460
7461 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7462 {
7463 struct attribute *attr;
7464 struct die_info *child;
7465 int first = 1;
7466
7467 die->building_fullname = 1;
7468
7469 for (child = die->child; child != NULL; child = child->sibling)
7470 {
7471 struct type *type;
7472 LONGEST value;
7473 gdb_byte *bytes;
7474 struct dwarf2_locexpr_baton *baton;
7475 struct value *v;
7476
7477 if (child->tag != DW_TAG_template_type_param
7478 && child->tag != DW_TAG_template_value_param)
7479 continue;
7480
7481 if (first)
7482 {
7483 fputs_unfiltered ("<", buf);
7484 first = 0;
7485 }
7486 else
7487 fputs_unfiltered (", ", buf);
7488
7489 attr = dwarf2_attr (child, DW_AT_type, cu);
7490 if (attr == NULL)
7491 {
7492 complaint (&symfile_complaints,
7493 _("template parameter missing DW_AT_type"));
7494 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7495 continue;
7496 }
7497 type = die_type (child, cu);
7498
7499 if (child->tag == DW_TAG_template_type_param)
7500 {
7501 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7502 continue;
7503 }
7504
7505 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7506 if (attr == NULL)
7507 {
7508 complaint (&symfile_complaints,
7509 _("template parameter missing "
7510 "DW_AT_const_value"));
7511 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7512 continue;
7513 }
7514
7515 dwarf2_const_value_attr (attr, type, name,
7516 &cu->comp_unit_obstack, cu,
7517 &value, &bytes, &baton);
7518
7519 if (TYPE_NOSIGN (type))
7520 /* GDB prints characters as NUMBER 'CHAR'. If that's
7521 changed, this can use value_print instead. */
7522 c_printchar (value, type, buf);
7523 else
7524 {
7525 struct value_print_options opts;
7526
7527 if (baton != NULL)
7528 v = dwarf2_evaluate_loc_desc (type, NULL,
7529 baton->data,
7530 baton->size,
7531 baton->per_cu);
7532 else if (bytes != NULL)
7533 {
7534 v = allocate_value (type);
7535 memcpy (value_contents_writeable (v), bytes,
7536 TYPE_LENGTH (type));
7537 }
7538 else
7539 v = value_from_longest (type, value);
7540
7541 /* Specify decimal so that we do not depend on
7542 the radix. */
7543 get_formatted_print_options (&opts, 'd');
7544 opts.raw = 1;
7545 value_print (v, buf, &opts);
7546 release_value (v);
7547 value_free (v);
7548 }
7549 }
7550
7551 die->building_fullname = 0;
7552
7553 if (!first)
7554 {
7555 /* Close the argument list, with a space if necessary
7556 (nested templates). */
7557 char last_char = '\0';
7558 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7559 if (last_char == '>')
7560 fputs_unfiltered (" >", buf);
7561 else
7562 fputs_unfiltered (">", buf);
7563 }
7564 }
7565
7566 /* For Java and C++ methods, append formal parameter type
7567 information, if PHYSNAME. */
7568
7569 if (physname && die->tag == DW_TAG_subprogram
7570 && (cu->language == language_cplus
7571 || cu->language == language_java))
7572 {
7573 struct type *type = read_type_die (die, cu);
7574
7575 c_type_print_args (type, buf, 1, cu->language,
7576 &type_print_raw_options);
7577
7578 if (cu->language == language_java)
7579 {
7580 /* For java, we must append the return type to method
7581 names. */
7582 if (die->tag == DW_TAG_subprogram)
7583 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7584 0, 0, &type_print_raw_options);
7585 }
7586 else if (cu->language == language_cplus)
7587 {
7588 /* Assume that an artificial first parameter is
7589 "this", but do not crash if it is not. RealView
7590 marks unnamed (and thus unused) parameters as
7591 artificial; there is no way to differentiate
7592 the two cases. */
7593 if (TYPE_NFIELDS (type) > 0
7594 && TYPE_FIELD_ARTIFICIAL (type, 0)
7595 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7596 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7597 0))))
7598 fputs_unfiltered (" const", buf);
7599 }
7600 }
7601
7602 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7603 &length);
7604 ui_file_delete (buf);
7605
7606 if (cu->language == language_cplus)
7607 {
7608 const char *cname
7609 = dwarf2_canonicalize_name (name, cu,
7610 &objfile->objfile_obstack);
7611
7612 if (cname != NULL)
7613 name = cname;
7614 }
7615 }
7616 }
7617
7618 return name;
7619 }
7620
7621 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7622 If scope qualifiers are appropriate they will be added. The result
7623 will be allocated on the objfile_obstack, or NULL if the DIE does
7624 not have a name. NAME may either be from a previous call to
7625 dwarf2_name or NULL.
7626
7627 The output string will be canonicalized (if C++/Java). */
7628
7629 static const char *
7630 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7631 {
7632 return dwarf2_compute_name (name, die, cu, 0);
7633 }
7634
7635 /* Construct a physname for the given DIE in CU. NAME may either be
7636 from a previous call to dwarf2_name or NULL. The result will be
7637 allocated on the objfile_objstack or NULL if the DIE does not have a
7638 name.
7639
7640 The output string will be canonicalized (if C++/Java). */
7641
7642 static const char *
7643 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7644 {
7645 struct objfile *objfile = cu->objfile;
7646 struct attribute *attr;
7647 const char *retval, *mangled = NULL, *canon = NULL;
7648 struct cleanup *back_to;
7649 int need_copy = 1;
7650
7651 /* In this case dwarf2_compute_name is just a shortcut not building anything
7652 on its own. */
7653 if (!die_needs_namespace (die, cu))
7654 return dwarf2_compute_name (name, die, cu, 1);
7655
7656 back_to = make_cleanup (null_cleanup, NULL);
7657
7658 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7659 if (!attr)
7660 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7661
7662 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7663 has computed. */
7664 if (attr && DW_STRING (attr))
7665 {
7666 char *demangled;
7667
7668 mangled = DW_STRING (attr);
7669
7670 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7671 type. It is easier for GDB users to search for such functions as
7672 `name(params)' than `long name(params)'. In such case the minimal
7673 symbol names do not match the full symbol names but for template
7674 functions there is never a need to look up their definition from their
7675 declaration so the only disadvantage remains the minimal symbol
7676 variant `long name(params)' does not have the proper inferior type.
7677 */
7678
7679 if (cu->language == language_go)
7680 {
7681 /* This is a lie, but we already lie to the caller new_symbol_full.
7682 new_symbol_full assumes we return the mangled name.
7683 This just undoes that lie until things are cleaned up. */
7684 demangled = NULL;
7685 }
7686 else
7687 {
7688 demangled = cplus_demangle (mangled,
7689 (DMGL_PARAMS | DMGL_ANSI
7690 | (cu->language == language_java
7691 ? DMGL_JAVA | DMGL_RET_POSTFIX
7692 : DMGL_RET_DROP)));
7693 }
7694 if (demangled)
7695 {
7696 make_cleanup (xfree, demangled);
7697 canon = demangled;
7698 }
7699 else
7700 {
7701 canon = mangled;
7702 need_copy = 0;
7703 }
7704 }
7705
7706 if (canon == NULL || check_physname)
7707 {
7708 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7709
7710 if (canon != NULL && strcmp (physname, canon) != 0)
7711 {
7712 /* It may not mean a bug in GDB. The compiler could also
7713 compute DW_AT_linkage_name incorrectly. But in such case
7714 GDB would need to be bug-to-bug compatible. */
7715
7716 complaint (&symfile_complaints,
7717 _("Computed physname <%s> does not match demangled <%s> "
7718 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7719 physname, canon, mangled, die->offset.sect_off, objfile->name);
7720
7721 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7722 is available here - over computed PHYSNAME. It is safer
7723 against both buggy GDB and buggy compilers. */
7724
7725 retval = canon;
7726 }
7727 else
7728 {
7729 retval = physname;
7730 need_copy = 0;
7731 }
7732 }
7733 else
7734 retval = canon;
7735
7736 if (need_copy)
7737 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7738
7739 do_cleanups (back_to);
7740 return retval;
7741 }
7742
7743 /* Read the import statement specified by the given die and record it. */
7744
7745 static void
7746 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7747 {
7748 struct objfile *objfile = cu->objfile;
7749 struct attribute *import_attr;
7750 struct die_info *imported_die, *child_die;
7751 struct dwarf2_cu *imported_cu;
7752 const char *imported_name;
7753 const char *imported_name_prefix;
7754 const char *canonical_name;
7755 const char *import_alias;
7756 const char *imported_declaration = NULL;
7757 const char *import_prefix;
7758 VEC (const_char_ptr) *excludes = NULL;
7759 struct cleanup *cleanups;
7760
7761 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7762 if (import_attr == NULL)
7763 {
7764 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7765 dwarf_tag_name (die->tag));
7766 return;
7767 }
7768
7769 imported_cu = cu;
7770 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7771 imported_name = dwarf2_name (imported_die, imported_cu);
7772 if (imported_name == NULL)
7773 {
7774 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7775
7776 The import in the following code:
7777 namespace A
7778 {
7779 typedef int B;
7780 }
7781
7782 int main ()
7783 {
7784 using A::B;
7785 B b;
7786 return b;
7787 }
7788
7789 ...
7790 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7791 <52> DW_AT_decl_file : 1
7792 <53> DW_AT_decl_line : 6
7793 <54> DW_AT_import : <0x75>
7794 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7795 <59> DW_AT_name : B
7796 <5b> DW_AT_decl_file : 1
7797 <5c> DW_AT_decl_line : 2
7798 <5d> DW_AT_type : <0x6e>
7799 ...
7800 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7801 <76> DW_AT_byte_size : 4
7802 <77> DW_AT_encoding : 5 (signed)
7803
7804 imports the wrong die ( 0x75 instead of 0x58 ).
7805 This case will be ignored until the gcc bug is fixed. */
7806 return;
7807 }
7808
7809 /* Figure out the local name after import. */
7810 import_alias = dwarf2_name (die, cu);
7811
7812 /* Figure out where the statement is being imported to. */
7813 import_prefix = determine_prefix (die, cu);
7814
7815 /* Figure out what the scope of the imported die is and prepend it
7816 to the name of the imported die. */
7817 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7818
7819 if (imported_die->tag != DW_TAG_namespace
7820 && imported_die->tag != DW_TAG_module)
7821 {
7822 imported_declaration = imported_name;
7823 canonical_name = imported_name_prefix;
7824 }
7825 else if (strlen (imported_name_prefix) > 0)
7826 canonical_name = obconcat (&objfile->objfile_obstack,
7827 imported_name_prefix, "::", imported_name,
7828 (char *) NULL);
7829 else
7830 canonical_name = imported_name;
7831
7832 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7833
7834 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7835 for (child_die = die->child; child_die && child_die->tag;
7836 child_die = sibling_die (child_die))
7837 {
7838 /* DWARF-4: A Fortran use statement with a “rename list” may be
7839 represented by an imported module entry with an import attribute
7840 referring to the module and owned entries corresponding to those
7841 entities that are renamed as part of being imported. */
7842
7843 if (child_die->tag != DW_TAG_imported_declaration)
7844 {
7845 complaint (&symfile_complaints,
7846 _("child DW_TAG_imported_declaration expected "
7847 "- DIE at 0x%x [in module %s]"),
7848 child_die->offset.sect_off, objfile->name);
7849 continue;
7850 }
7851
7852 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7853 if (import_attr == NULL)
7854 {
7855 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7856 dwarf_tag_name (child_die->tag));
7857 continue;
7858 }
7859
7860 imported_cu = cu;
7861 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7862 &imported_cu);
7863 imported_name = dwarf2_name (imported_die, imported_cu);
7864 if (imported_name == NULL)
7865 {
7866 complaint (&symfile_complaints,
7867 _("child DW_TAG_imported_declaration has unknown "
7868 "imported name - DIE at 0x%x [in module %s]"),
7869 child_die->offset.sect_off, objfile->name);
7870 continue;
7871 }
7872
7873 VEC_safe_push (const_char_ptr, excludes, imported_name);
7874
7875 process_die (child_die, cu);
7876 }
7877
7878 cp_add_using_directive (import_prefix,
7879 canonical_name,
7880 import_alias,
7881 imported_declaration,
7882 excludes,
7883 0,
7884 &objfile->objfile_obstack);
7885
7886 do_cleanups (cleanups);
7887 }
7888
7889 /* Cleanup function for handle_DW_AT_stmt_list. */
7890
7891 static void
7892 free_cu_line_header (void *arg)
7893 {
7894 struct dwarf2_cu *cu = arg;
7895
7896 free_line_header (cu->line_header);
7897 cu->line_header = NULL;
7898 }
7899
7900 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7901 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7902 this, it was first present in GCC release 4.3.0. */
7903
7904 static int
7905 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7906 {
7907 if (!cu->checked_producer)
7908 check_producer (cu);
7909
7910 return cu->producer_is_gcc_lt_4_3;
7911 }
7912
7913 static void
7914 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7915 const char **name, const char **comp_dir)
7916 {
7917 struct attribute *attr;
7918
7919 *name = NULL;
7920 *comp_dir = NULL;
7921
7922 /* Find the filename. Do not use dwarf2_name here, since the filename
7923 is not a source language identifier. */
7924 attr = dwarf2_attr (die, DW_AT_name, cu);
7925 if (attr)
7926 {
7927 *name = DW_STRING (attr);
7928 }
7929
7930 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7931 if (attr)
7932 *comp_dir = DW_STRING (attr);
7933 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7934 && IS_ABSOLUTE_PATH (*name))
7935 {
7936 char *d = ldirname (*name);
7937
7938 *comp_dir = d;
7939 if (d != NULL)
7940 make_cleanup (xfree, d);
7941 }
7942 if (*comp_dir != NULL)
7943 {
7944 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7945 directory, get rid of it. */
7946 char *cp = strchr (*comp_dir, ':');
7947
7948 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7949 *comp_dir = cp + 1;
7950 }
7951
7952 if (*name == NULL)
7953 *name = "<unknown>";
7954 }
7955
7956 /* Handle DW_AT_stmt_list for a compilation unit.
7957 DIE is the DW_TAG_compile_unit die for CU.
7958 COMP_DIR is the compilation directory.
7959 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7960
7961 static void
7962 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7963 const char *comp_dir)
7964 {
7965 struct attribute *attr;
7966
7967 gdb_assert (! cu->per_cu->is_debug_types);
7968
7969 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7970 if (attr)
7971 {
7972 unsigned int line_offset = DW_UNSND (attr);
7973 struct line_header *line_header
7974 = dwarf_decode_line_header (line_offset, cu);
7975
7976 if (line_header)
7977 {
7978 cu->line_header = line_header;
7979 make_cleanup (free_cu_line_header, cu);
7980 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7981 }
7982 }
7983 }
7984
7985 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7986
7987 static void
7988 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7989 {
7990 struct objfile *objfile = dwarf2_per_objfile->objfile;
7991 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7992 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7993 CORE_ADDR highpc = ((CORE_ADDR) 0);
7994 struct attribute *attr;
7995 const char *name = NULL;
7996 const char *comp_dir = NULL;
7997 struct die_info *child_die;
7998 bfd *abfd = objfile->obfd;
7999 CORE_ADDR baseaddr;
8000
8001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8002
8003 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8004
8005 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8006 from finish_block. */
8007 if (lowpc == ((CORE_ADDR) -1))
8008 lowpc = highpc;
8009 lowpc += baseaddr;
8010 highpc += baseaddr;
8011
8012 find_file_and_directory (die, cu, &name, &comp_dir);
8013
8014 prepare_one_comp_unit (cu, die, cu->language);
8015
8016 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8017 standardised yet. As a workaround for the language detection we fall
8018 back to the DW_AT_producer string. */
8019 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8020 cu->language = language_opencl;
8021
8022 /* Similar hack for Go. */
8023 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8024 set_cu_language (DW_LANG_Go, cu);
8025
8026 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8027
8028 /* Decode line number information if present. We do this before
8029 processing child DIEs, so that the line header table is available
8030 for DW_AT_decl_file. */
8031 handle_DW_AT_stmt_list (die, cu, comp_dir);
8032
8033 /* Process all dies in compilation unit. */
8034 if (die->child != NULL)
8035 {
8036 child_die = die->child;
8037 while (child_die && child_die->tag)
8038 {
8039 process_die (child_die, cu);
8040 child_die = sibling_die (child_die);
8041 }
8042 }
8043
8044 /* Decode macro information, if present. Dwarf 2 macro information
8045 refers to information in the line number info statement program
8046 header, so we can only read it if we've read the header
8047 successfully. */
8048 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8049 if (attr && cu->line_header)
8050 {
8051 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8052 complaint (&symfile_complaints,
8053 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8054
8055 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8056 }
8057 else
8058 {
8059 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8060 if (attr && cu->line_header)
8061 {
8062 unsigned int macro_offset = DW_UNSND (attr);
8063
8064 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8065 }
8066 }
8067
8068 do_cleanups (back_to);
8069 }
8070
8071 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8072 Create the set of symtabs used by this TU, or if this TU is sharing
8073 symtabs with another TU and the symtabs have already been created
8074 then restore those symtabs in the line header.
8075 We don't need the pc/line-number mapping for type units. */
8076
8077 static void
8078 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8079 {
8080 struct objfile *objfile = dwarf2_per_objfile->objfile;
8081 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8082 struct type_unit_group *tu_group;
8083 int first_time;
8084 struct line_header *lh;
8085 struct attribute *attr;
8086 unsigned int i, line_offset;
8087
8088 gdb_assert (per_cu->is_debug_types);
8089
8090 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8091
8092 /* If we're using .gdb_index (includes -readnow) then
8093 per_cu->s.type_unit_group may not have been set up yet. */
8094 if (per_cu->type_unit_group == NULL)
8095 per_cu->type_unit_group = get_type_unit_group (cu, attr);
8096 tu_group = per_cu->type_unit_group;
8097
8098 /* If we've already processed this stmt_list there's no real need to
8099 do it again, we could fake it and just recreate the part we need
8100 (file name,index -> symtab mapping). If data shows this optimization
8101 is useful we can do it then. */
8102 first_time = tu_group->primary_symtab == NULL;
8103
8104 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8105 debug info. */
8106 lh = NULL;
8107 if (attr != NULL)
8108 {
8109 line_offset = DW_UNSND (attr);
8110 lh = dwarf_decode_line_header (line_offset, cu);
8111 }
8112 if (lh == NULL)
8113 {
8114 if (first_time)
8115 dwarf2_start_symtab (cu, "", NULL, 0);
8116 else
8117 {
8118 gdb_assert (tu_group->symtabs == NULL);
8119 restart_symtab (0);
8120 }
8121 /* Note: The primary symtab will get allocated at the end. */
8122 return;
8123 }
8124
8125 cu->line_header = lh;
8126 make_cleanup (free_cu_line_header, cu);
8127
8128 if (first_time)
8129 {
8130 dwarf2_start_symtab (cu, "", NULL, 0);
8131
8132 tu_group->num_symtabs = lh->num_file_names;
8133 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8134
8135 for (i = 0; i < lh->num_file_names; ++i)
8136 {
8137 char *dir = NULL;
8138 struct file_entry *fe = &lh->file_names[i];
8139
8140 if (fe->dir_index)
8141 dir = lh->include_dirs[fe->dir_index - 1];
8142 dwarf2_start_subfile (fe->name, dir, NULL);
8143
8144 /* Note: We don't have to watch for the main subfile here, type units
8145 don't have DW_AT_name. */
8146
8147 if (current_subfile->symtab == NULL)
8148 {
8149 /* NOTE: start_subfile will recognize when it's been passed
8150 a file it has already seen. So we can't assume there's a
8151 simple mapping from lh->file_names to subfiles,
8152 lh->file_names may contain dups. */
8153 current_subfile->symtab = allocate_symtab (current_subfile->name,
8154 objfile);
8155 }
8156
8157 fe->symtab = current_subfile->symtab;
8158 tu_group->symtabs[i] = fe->symtab;
8159 }
8160 }
8161 else
8162 {
8163 restart_symtab (0);
8164
8165 for (i = 0; i < lh->num_file_names; ++i)
8166 {
8167 struct file_entry *fe = &lh->file_names[i];
8168
8169 fe->symtab = tu_group->symtabs[i];
8170 }
8171 }
8172
8173 /* The main symtab is allocated last. Type units don't have DW_AT_name
8174 so they don't have a "real" (so to speak) symtab anyway.
8175 There is later code that will assign the main symtab to all symbols
8176 that don't have one. We need to handle the case of a symbol with a
8177 missing symtab (DW_AT_decl_file) anyway. */
8178 }
8179
8180 /* Process DW_TAG_type_unit.
8181 For TUs we want to skip the first top level sibling if it's not the
8182 actual type being defined by this TU. In this case the first top
8183 level sibling is there to provide context only. */
8184
8185 static void
8186 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8187 {
8188 struct die_info *child_die;
8189
8190 prepare_one_comp_unit (cu, die, language_minimal);
8191
8192 /* Initialize (or reinitialize) the machinery for building symtabs.
8193 We do this before processing child DIEs, so that the line header table
8194 is available for DW_AT_decl_file. */
8195 setup_type_unit_groups (die, cu);
8196
8197 if (die->child != NULL)
8198 {
8199 child_die = die->child;
8200 while (child_die && child_die->tag)
8201 {
8202 process_die (child_die, cu);
8203 child_die = sibling_die (child_die);
8204 }
8205 }
8206 }
8207 \f
8208 /* DWO/DWP files.
8209
8210 http://gcc.gnu.org/wiki/DebugFission
8211 http://gcc.gnu.org/wiki/DebugFissionDWP
8212
8213 To simplify handling of both DWO files ("object" files with the DWARF info)
8214 and DWP files (a file with the DWOs packaged up into one file), we treat
8215 DWP files as having a collection of virtual DWO files. */
8216
8217 static hashval_t
8218 hash_dwo_file (const void *item)
8219 {
8220 const struct dwo_file *dwo_file = item;
8221
8222 return htab_hash_string (dwo_file->name);
8223 }
8224
8225 static int
8226 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8227 {
8228 const struct dwo_file *lhs = item_lhs;
8229 const struct dwo_file *rhs = item_rhs;
8230
8231 return strcmp (lhs->name, rhs->name) == 0;
8232 }
8233
8234 /* Allocate a hash table for DWO files. */
8235
8236 static htab_t
8237 allocate_dwo_file_hash_table (void)
8238 {
8239 struct objfile *objfile = dwarf2_per_objfile->objfile;
8240
8241 return htab_create_alloc_ex (41,
8242 hash_dwo_file,
8243 eq_dwo_file,
8244 NULL,
8245 &objfile->objfile_obstack,
8246 hashtab_obstack_allocate,
8247 dummy_obstack_deallocate);
8248 }
8249
8250 /* Lookup DWO file DWO_NAME. */
8251
8252 static void **
8253 lookup_dwo_file_slot (const char *dwo_name)
8254 {
8255 struct dwo_file find_entry;
8256 void **slot;
8257
8258 if (dwarf2_per_objfile->dwo_files == NULL)
8259 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8260
8261 memset (&find_entry, 0, sizeof (find_entry));
8262 find_entry.name = dwo_name;
8263 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8264
8265 return slot;
8266 }
8267
8268 static hashval_t
8269 hash_dwo_unit (const void *item)
8270 {
8271 const struct dwo_unit *dwo_unit = item;
8272
8273 /* This drops the top 32 bits of the id, but is ok for a hash. */
8274 return dwo_unit->signature;
8275 }
8276
8277 static int
8278 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8279 {
8280 const struct dwo_unit *lhs = item_lhs;
8281 const struct dwo_unit *rhs = item_rhs;
8282
8283 /* The signature is assumed to be unique within the DWO file.
8284 So while object file CU dwo_id's always have the value zero,
8285 that's OK, assuming each object file DWO file has only one CU,
8286 and that's the rule for now. */
8287 return lhs->signature == rhs->signature;
8288 }
8289
8290 /* Allocate a hash table for DWO CUs,TUs.
8291 There is one of these tables for each of CUs,TUs for each DWO file. */
8292
8293 static htab_t
8294 allocate_dwo_unit_table (struct objfile *objfile)
8295 {
8296 /* Start out with a pretty small number.
8297 Generally DWO files contain only one CU and maybe some TUs. */
8298 return htab_create_alloc_ex (3,
8299 hash_dwo_unit,
8300 eq_dwo_unit,
8301 NULL,
8302 &objfile->objfile_obstack,
8303 hashtab_obstack_allocate,
8304 dummy_obstack_deallocate);
8305 }
8306
8307 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8308
8309 struct create_dwo_info_table_data
8310 {
8311 struct dwo_file *dwo_file;
8312 htab_t cu_htab;
8313 };
8314
8315 /* die_reader_func for create_dwo_debug_info_hash_table. */
8316
8317 static void
8318 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8319 gdb_byte *info_ptr,
8320 struct die_info *comp_unit_die,
8321 int has_children,
8322 void *datap)
8323 {
8324 struct dwarf2_cu *cu = reader->cu;
8325 struct objfile *objfile = dwarf2_per_objfile->objfile;
8326 sect_offset offset = cu->per_cu->offset;
8327 struct dwarf2_section_info *section = cu->per_cu->section;
8328 struct create_dwo_info_table_data *data = datap;
8329 struct dwo_file *dwo_file = data->dwo_file;
8330 htab_t cu_htab = data->cu_htab;
8331 void **slot;
8332 struct attribute *attr;
8333 struct dwo_unit *dwo_unit;
8334
8335 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8336 if (attr == NULL)
8337 {
8338 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8339 " its dwo_id [in module %s]"),
8340 offset.sect_off, dwo_file->name);
8341 return;
8342 }
8343
8344 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8345 dwo_unit->dwo_file = dwo_file;
8346 dwo_unit->signature = DW_UNSND (attr);
8347 dwo_unit->section = section;
8348 dwo_unit->offset = offset;
8349 dwo_unit->length = cu->per_cu->length;
8350
8351 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8352 gdb_assert (slot != NULL);
8353 if (*slot != NULL)
8354 {
8355 const struct dwo_unit *dup_dwo_unit = *slot;
8356
8357 complaint (&symfile_complaints,
8358 _("debug entry at offset 0x%x is duplicate to the entry at"
8359 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8360 offset.sect_off, dup_dwo_unit->offset.sect_off,
8361 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8362 dwo_file->name);
8363 }
8364 else
8365 *slot = dwo_unit;
8366
8367 if (dwarf2_read_debug)
8368 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8369 offset.sect_off,
8370 phex (dwo_unit->signature,
8371 sizeof (dwo_unit->signature)));
8372 }
8373
8374 /* Create a hash table to map DWO IDs to their CU entry in
8375 .debug_info.dwo in DWO_FILE.
8376 Note: This function processes DWO files only, not DWP files.
8377 Note: A DWO file generally contains one CU, but we don't assume this. */
8378
8379 static htab_t
8380 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8381 {
8382 struct objfile *objfile = dwarf2_per_objfile->objfile;
8383 struct dwarf2_section_info *section = &dwo_file->sections.info;
8384 bfd *abfd;
8385 htab_t cu_htab;
8386 gdb_byte *info_ptr, *end_ptr;
8387 struct create_dwo_info_table_data create_dwo_info_table_data;
8388
8389 dwarf2_read_section (objfile, section);
8390 info_ptr = section->buffer;
8391
8392 if (info_ptr == NULL)
8393 return NULL;
8394
8395 /* We can't set abfd until now because the section may be empty or
8396 not present, in which case section->asection will be NULL. */
8397 abfd = section->asection->owner;
8398
8399 if (dwarf2_read_debug)
8400 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8401 bfd_get_filename (abfd));
8402
8403 cu_htab = allocate_dwo_unit_table (objfile);
8404
8405 create_dwo_info_table_data.dwo_file = dwo_file;
8406 create_dwo_info_table_data.cu_htab = cu_htab;
8407
8408 end_ptr = info_ptr + section->size;
8409 while (info_ptr < end_ptr)
8410 {
8411 struct dwarf2_per_cu_data per_cu;
8412
8413 memset (&per_cu, 0, sizeof (per_cu));
8414 per_cu.objfile = objfile;
8415 per_cu.is_debug_types = 0;
8416 per_cu.offset.sect_off = info_ptr - section->buffer;
8417 per_cu.section = section;
8418
8419 init_cutu_and_read_dies_no_follow (&per_cu,
8420 &dwo_file->sections.abbrev,
8421 dwo_file,
8422 create_dwo_debug_info_hash_table_reader,
8423 &create_dwo_info_table_data);
8424
8425 info_ptr += per_cu.length;
8426 }
8427
8428 return cu_htab;
8429 }
8430
8431 /* DWP file .debug_{cu,tu}_index section format:
8432 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8433
8434 Both index sections have the same format, and serve to map a 64-bit
8435 signature to a set of section numbers. Each section begins with a header,
8436 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8437 indexes, and a pool of 32-bit section numbers. The index sections will be
8438 aligned at 8-byte boundaries in the file.
8439
8440 The index section header contains two unsigned 32-bit values (using the
8441 byte order of the application binary):
8442
8443 N, the number of compilation units or type units in the index
8444 M, the number of slots in the hash table
8445
8446 (We assume that N and M will not exceed 2^32 - 1.)
8447
8448 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8449
8450 The hash table begins at offset 8 in the section, and consists of an array
8451 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8452 order of the application binary). Unused slots in the hash table are 0.
8453 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8454
8455 The parallel table begins immediately after the hash table
8456 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8457 array of 32-bit indexes (using the byte order of the application binary),
8458 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8459 table contains a 32-bit index into the pool of section numbers. For unused
8460 hash table slots, the corresponding entry in the parallel table will be 0.
8461
8462 Given a 64-bit compilation unit signature or a type signature S, an entry
8463 in the hash table is located as follows:
8464
8465 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8466 the low-order k bits all set to 1.
8467
8468 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8469
8470 3) If the hash table entry at index H matches the signature, use that
8471 entry. If the hash table entry at index H is unused (all zeroes),
8472 terminate the search: the signature is not present in the table.
8473
8474 4) Let H = (H + H') modulo M. Repeat at Step 3.
8475
8476 Because M > N and H' and M are relatively prime, the search is guaranteed
8477 to stop at an unused slot or find the match.
8478
8479 The pool of section numbers begins immediately following the hash table
8480 (at offset 8 + 12 * M from the beginning of the section). The pool of
8481 section numbers consists of an array of 32-bit words (using the byte order
8482 of the application binary). Each item in the array is indexed starting
8483 from 0. The hash table entry provides the index of the first section
8484 number in the set. Additional section numbers in the set follow, and the
8485 set is terminated by a 0 entry (section number 0 is not used in ELF).
8486
8487 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8488 section must be the first entry in the set, and the .debug_abbrev.dwo must
8489 be the second entry. Other members of the set may follow in any order. */
8490
8491 /* Create a hash table to map DWO IDs to their CU/TU entry in
8492 .debug_{info,types}.dwo in DWP_FILE.
8493 Returns NULL if there isn't one.
8494 Note: This function processes DWP files only, not DWO files. */
8495
8496 static struct dwp_hash_table *
8497 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8498 {
8499 struct objfile *objfile = dwarf2_per_objfile->objfile;
8500 bfd *dbfd = dwp_file->dbfd;
8501 char *index_ptr, *index_end;
8502 struct dwarf2_section_info *index;
8503 uint32_t version, nr_units, nr_slots;
8504 struct dwp_hash_table *htab;
8505
8506 if (is_debug_types)
8507 index = &dwp_file->sections.tu_index;
8508 else
8509 index = &dwp_file->sections.cu_index;
8510
8511 if (dwarf2_section_empty_p (index))
8512 return NULL;
8513 dwarf2_read_section (objfile, index);
8514
8515 index_ptr = index->buffer;
8516 index_end = index_ptr + index->size;
8517
8518 version = read_4_bytes (dbfd, index_ptr);
8519 index_ptr += 8; /* Skip the unused word. */
8520 nr_units = read_4_bytes (dbfd, index_ptr);
8521 index_ptr += 4;
8522 nr_slots = read_4_bytes (dbfd, index_ptr);
8523 index_ptr += 4;
8524
8525 if (version != 1)
8526 {
8527 error (_("Dwarf Error: unsupported DWP file version (%u)"
8528 " [in module %s]"),
8529 version, dwp_file->name);
8530 }
8531 if (nr_slots != (nr_slots & -nr_slots))
8532 {
8533 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8534 " is not power of 2 [in module %s]"),
8535 nr_slots, dwp_file->name);
8536 }
8537
8538 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8539 htab->nr_units = nr_units;
8540 htab->nr_slots = nr_slots;
8541 htab->hash_table = index_ptr;
8542 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8543 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8544
8545 return htab;
8546 }
8547
8548 /* Update SECTIONS with the data from SECTP.
8549
8550 This function is like the other "locate" section routines that are
8551 passed to bfd_map_over_sections, but in this context the sections to
8552 read comes from the DWP hash table, not the full ELF section table.
8553
8554 The result is non-zero for success, or zero if an error was found. */
8555
8556 static int
8557 locate_virtual_dwo_sections (asection *sectp,
8558 struct virtual_dwo_sections *sections)
8559 {
8560 const struct dwop_section_names *names = &dwop_section_names;
8561
8562 if (section_is_p (sectp->name, &names->abbrev_dwo))
8563 {
8564 /* There can be only one. */
8565 if (sections->abbrev.asection != NULL)
8566 return 0;
8567 sections->abbrev.asection = sectp;
8568 sections->abbrev.size = bfd_get_section_size (sectp);
8569 }
8570 else if (section_is_p (sectp->name, &names->info_dwo)
8571 || section_is_p (sectp->name, &names->types_dwo))
8572 {
8573 /* There can be only one. */
8574 if (sections->info_or_types.asection != NULL)
8575 return 0;
8576 sections->info_or_types.asection = sectp;
8577 sections->info_or_types.size = bfd_get_section_size (sectp);
8578 }
8579 else if (section_is_p (sectp->name, &names->line_dwo))
8580 {
8581 /* There can be only one. */
8582 if (sections->line.asection != NULL)
8583 return 0;
8584 sections->line.asection = sectp;
8585 sections->line.size = bfd_get_section_size (sectp);
8586 }
8587 else if (section_is_p (sectp->name, &names->loc_dwo))
8588 {
8589 /* There can be only one. */
8590 if (sections->loc.asection != NULL)
8591 return 0;
8592 sections->loc.asection = sectp;
8593 sections->loc.size = bfd_get_section_size (sectp);
8594 }
8595 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8596 {
8597 /* There can be only one. */
8598 if (sections->macinfo.asection != NULL)
8599 return 0;
8600 sections->macinfo.asection = sectp;
8601 sections->macinfo.size = bfd_get_section_size (sectp);
8602 }
8603 else if (section_is_p (sectp->name, &names->macro_dwo))
8604 {
8605 /* There can be only one. */
8606 if (sections->macro.asection != NULL)
8607 return 0;
8608 sections->macro.asection = sectp;
8609 sections->macro.size = bfd_get_section_size (sectp);
8610 }
8611 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8612 {
8613 /* There can be only one. */
8614 if (sections->str_offsets.asection != NULL)
8615 return 0;
8616 sections->str_offsets.asection = sectp;
8617 sections->str_offsets.size = bfd_get_section_size (sectp);
8618 }
8619 else
8620 {
8621 /* No other kind of section is valid. */
8622 return 0;
8623 }
8624
8625 return 1;
8626 }
8627
8628 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8629 HTAB is the hash table from the DWP file.
8630 SECTION_INDEX is the index of the DWO in HTAB. */
8631
8632 static struct dwo_unit *
8633 create_dwo_in_dwp (struct dwp_file *dwp_file,
8634 const struct dwp_hash_table *htab,
8635 uint32_t section_index,
8636 ULONGEST signature, int is_debug_types)
8637 {
8638 struct objfile *objfile = dwarf2_per_objfile->objfile;
8639 bfd *dbfd = dwp_file->dbfd;
8640 const char *kind = is_debug_types ? "TU" : "CU";
8641 struct dwo_file *dwo_file;
8642 struct dwo_unit *dwo_unit;
8643 struct virtual_dwo_sections sections;
8644 void **dwo_file_slot;
8645 char *virtual_dwo_name;
8646 struct dwarf2_section_info *cutu;
8647 struct cleanup *cleanups;
8648 int i;
8649
8650 if (dwarf2_read_debug)
8651 {
8652 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8653 kind,
8654 section_index, phex (signature, sizeof (signature)),
8655 dwp_file->name);
8656 }
8657
8658 /* Fetch the sections of this DWO.
8659 Put a limit on the number of sections we look for so that bad data
8660 doesn't cause us to loop forever. */
8661
8662 #define MAX_NR_DWO_SECTIONS \
8663 (1 /* .debug_info or .debug_types */ \
8664 + 1 /* .debug_abbrev */ \
8665 + 1 /* .debug_line */ \
8666 + 1 /* .debug_loc */ \
8667 + 1 /* .debug_str_offsets */ \
8668 + 1 /* .debug_macro */ \
8669 + 1 /* .debug_macinfo */ \
8670 + 1 /* trailing zero */)
8671
8672 memset (&sections, 0, sizeof (sections));
8673 cleanups = make_cleanup (null_cleanup, 0);
8674
8675 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8676 {
8677 asection *sectp;
8678 uint32_t section_nr =
8679 read_4_bytes (dbfd,
8680 htab->section_pool
8681 + (section_index + i) * sizeof (uint32_t));
8682
8683 if (section_nr == 0)
8684 break;
8685 if (section_nr >= dwp_file->num_sections)
8686 {
8687 error (_("Dwarf Error: bad DWP hash table, section number too large"
8688 " [in module %s]"),
8689 dwp_file->name);
8690 }
8691
8692 sectp = dwp_file->elf_sections[section_nr];
8693 if (! locate_virtual_dwo_sections (sectp, &sections))
8694 {
8695 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8696 " [in module %s]"),
8697 dwp_file->name);
8698 }
8699 }
8700
8701 if (i < 2
8702 || sections.info_or_types.asection == NULL
8703 || sections.abbrev.asection == NULL)
8704 {
8705 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8706 " [in module %s]"),
8707 dwp_file->name);
8708 }
8709 if (i == MAX_NR_DWO_SECTIONS)
8710 {
8711 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8712 " [in module %s]"),
8713 dwp_file->name);
8714 }
8715
8716 /* It's easier for the rest of the code if we fake a struct dwo_file and
8717 have dwo_unit "live" in that. At least for now.
8718
8719 The DWP file can be made up of a random collection of CUs and TUs.
8720 However, for each CU + set of TUs that came from the same original DWO
8721 file, we want to combine them back into a virtual DWO file to save space
8722 (fewer struct dwo_file objects to allocated). Remember that for really
8723 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8724
8725 virtual_dwo_name =
8726 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8727 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8728 sections.line.asection ? sections.line.asection->id : 0,
8729 sections.loc.asection ? sections.loc.asection->id : 0,
8730 (sections.str_offsets.asection
8731 ? sections.str_offsets.asection->id
8732 : 0));
8733 make_cleanup (xfree, virtual_dwo_name);
8734 /* Can we use an existing virtual DWO file? */
8735 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8736 /* Create one if necessary. */
8737 if (*dwo_file_slot == NULL)
8738 {
8739 if (dwarf2_read_debug)
8740 {
8741 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8742 virtual_dwo_name);
8743 }
8744 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8745 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8746 virtual_dwo_name,
8747 strlen (virtual_dwo_name));
8748 dwo_file->sections.abbrev = sections.abbrev;
8749 dwo_file->sections.line = sections.line;
8750 dwo_file->sections.loc = sections.loc;
8751 dwo_file->sections.macinfo = sections.macinfo;
8752 dwo_file->sections.macro = sections.macro;
8753 dwo_file->sections.str_offsets = sections.str_offsets;
8754 /* The "str" section is global to the entire DWP file. */
8755 dwo_file->sections.str = dwp_file->sections.str;
8756 /* The info or types section is assigned later to dwo_unit,
8757 there's no need to record it in dwo_file.
8758 Also, we can't simply record type sections in dwo_file because
8759 we record a pointer into the vector in dwo_unit. As we collect more
8760 types we'll grow the vector and eventually have to reallocate space
8761 for it, invalidating all the pointers into the current copy. */
8762 *dwo_file_slot = dwo_file;
8763 }
8764 else
8765 {
8766 if (dwarf2_read_debug)
8767 {
8768 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8769 virtual_dwo_name);
8770 }
8771 dwo_file = *dwo_file_slot;
8772 }
8773 do_cleanups (cleanups);
8774
8775 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8776 dwo_unit->dwo_file = dwo_file;
8777 dwo_unit->signature = signature;
8778 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
8779 sizeof (struct dwarf2_section_info));
8780 *dwo_unit->section = sections.info_or_types;
8781 /* offset, length, type_offset_in_tu are set later. */
8782
8783 return dwo_unit;
8784 }
8785
8786 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8787
8788 static struct dwo_unit *
8789 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8790 const struct dwp_hash_table *htab,
8791 ULONGEST signature, int is_debug_types)
8792 {
8793 bfd *dbfd = dwp_file->dbfd;
8794 uint32_t mask = htab->nr_slots - 1;
8795 uint32_t hash = signature & mask;
8796 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8797 unsigned int i;
8798 void **slot;
8799 struct dwo_unit find_dwo_cu, *dwo_cu;
8800
8801 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8802 find_dwo_cu.signature = signature;
8803 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8804
8805 if (*slot != NULL)
8806 return *slot;
8807
8808 /* Use a for loop so that we don't loop forever on bad debug info. */
8809 for (i = 0; i < htab->nr_slots; ++i)
8810 {
8811 ULONGEST signature_in_table;
8812
8813 signature_in_table =
8814 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8815 if (signature_in_table == signature)
8816 {
8817 uint32_t section_index =
8818 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8819
8820 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8821 signature, is_debug_types);
8822 return *slot;
8823 }
8824 if (signature_in_table == 0)
8825 return NULL;
8826 hash = (hash + hash2) & mask;
8827 }
8828
8829 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8830 " [in module %s]"),
8831 dwp_file->name);
8832 }
8833
8834 /* Subroutine of open_dwop_file to simplify it.
8835 Open the file specified by FILE_NAME and hand it off to BFD for
8836 preliminary analysis. Return a newly initialized bfd *, which
8837 includes a canonicalized copy of FILE_NAME.
8838 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8839 In case of trouble, return NULL.
8840 NOTE: This function is derived from symfile_bfd_open. */
8841
8842 static bfd *
8843 try_open_dwop_file (const char *file_name, int is_dwp)
8844 {
8845 bfd *sym_bfd;
8846 int desc, flags;
8847 char *absolute_name;
8848
8849 flags = OPF_TRY_CWD_FIRST;
8850 if (is_dwp)
8851 flags |= OPF_SEARCH_IN_PATH;
8852 desc = openp (debug_file_directory, flags, file_name,
8853 O_RDONLY | O_BINARY, &absolute_name);
8854 if (desc < 0)
8855 return NULL;
8856
8857 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8858 if (!sym_bfd)
8859 {
8860 xfree (absolute_name);
8861 return NULL;
8862 }
8863 xfree (absolute_name);
8864 bfd_set_cacheable (sym_bfd, 1);
8865
8866 if (!bfd_check_format (sym_bfd, bfd_object))
8867 {
8868 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8869 return NULL;
8870 }
8871
8872 return sym_bfd;
8873 }
8874
8875 /* Try to open DWO/DWP file FILE_NAME.
8876 COMP_DIR is the DW_AT_comp_dir attribute.
8877 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8878 The result is the bfd handle of the file.
8879 If there is a problem finding or opening the file, return NULL.
8880 Upon success, the canonicalized path of the file is stored in the bfd,
8881 same as symfile_bfd_open. */
8882
8883 static bfd *
8884 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8885 {
8886 bfd *abfd;
8887
8888 if (IS_ABSOLUTE_PATH (file_name))
8889 return try_open_dwop_file (file_name, is_dwp);
8890
8891 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8892
8893 if (comp_dir != NULL)
8894 {
8895 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8896
8897 /* NOTE: If comp_dir is a relative path, this will also try the
8898 search path, which seems useful. */
8899 abfd = try_open_dwop_file (path_to_try, is_dwp);
8900 xfree (path_to_try);
8901 if (abfd != NULL)
8902 return abfd;
8903 }
8904
8905 /* That didn't work, try debug-file-directory, which, despite its name,
8906 is a list of paths. */
8907
8908 if (*debug_file_directory == '\0')
8909 return NULL;
8910
8911 return try_open_dwop_file (file_name, is_dwp);
8912 }
8913
8914 /* This function is mapped across the sections and remembers the offset and
8915 size of each of the DWO debugging sections we are interested in. */
8916
8917 static void
8918 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8919 {
8920 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8921 const struct dwop_section_names *names = &dwop_section_names;
8922
8923 if (section_is_p (sectp->name, &names->abbrev_dwo))
8924 {
8925 dwo_sections->abbrev.asection = sectp;
8926 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8927 }
8928 else if (section_is_p (sectp->name, &names->info_dwo))
8929 {
8930 dwo_sections->info.asection = sectp;
8931 dwo_sections->info.size = bfd_get_section_size (sectp);
8932 }
8933 else if (section_is_p (sectp->name, &names->line_dwo))
8934 {
8935 dwo_sections->line.asection = sectp;
8936 dwo_sections->line.size = bfd_get_section_size (sectp);
8937 }
8938 else if (section_is_p (sectp->name, &names->loc_dwo))
8939 {
8940 dwo_sections->loc.asection = sectp;
8941 dwo_sections->loc.size = bfd_get_section_size (sectp);
8942 }
8943 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8944 {
8945 dwo_sections->macinfo.asection = sectp;
8946 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8947 }
8948 else if (section_is_p (sectp->name, &names->macro_dwo))
8949 {
8950 dwo_sections->macro.asection = sectp;
8951 dwo_sections->macro.size = bfd_get_section_size (sectp);
8952 }
8953 else if (section_is_p (sectp->name, &names->str_dwo))
8954 {
8955 dwo_sections->str.asection = sectp;
8956 dwo_sections->str.size = bfd_get_section_size (sectp);
8957 }
8958 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8959 {
8960 dwo_sections->str_offsets.asection = sectp;
8961 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8962 }
8963 else if (section_is_p (sectp->name, &names->types_dwo))
8964 {
8965 struct dwarf2_section_info type_section;
8966
8967 memset (&type_section, 0, sizeof (type_section));
8968 type_section.asection = sectp;
8969 type_section.size = bfd_get_section_size (sectp);
8970 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8971 &type_section);
8972 }
8973 }
8974
8975 /* Initialize the use of the DWO file specified by DWO_NAME.
8976 The result is NULL if DWO_NAME can't be found. */
8977
8978 static struct dwo_file *
8979 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8980 {
8981 struct objfile *objfile = dwarf2_per_objfile->objfile;
8982 struct dwo_file *dwo_file;
8983 bfd *dbfd;
8984 struct cleanup *cleanups;
8985
8986 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8987 if (dbfd == NULL)
8988 {
8989 if (dwarf2_read_debug)
8990 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8991 return NULL;
8992 }
8993 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8994 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8995 dwo_name, strlen (dwo_name));
8996 dwo_file->dbfd = dbfd;
8997
8998 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8999
9000 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9001
9002 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
9003
9004 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9005 dwo_file->sections.types);
9006
9007 discard_cleanups (cleanups);
9008
9009 if (dwarf2_read_debug)
9010 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9011
9012 return dwo_file;
9013 }
9014
9015 /* This function is mapped across the sections and remembers the offset and
9016 size of each of the DWP debugging sections we are interested in. */
9017
9018 static void
9019 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9020 {
9021 struct dwp_file *dwp_file = dwp_file_ptr;
9022 const struct dwop_section_names *names = &dwop_section_names;
9023 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9024
9025 /* Record the ELF section number for later lookup: this is what the
9026 .debug_cu_index,.debug_tu_index tables use. */
9027 gdb_assert (elf_section_nr < dwp_file->num_sections);
9028 dwp_file->elf_sections[elf_section_nr] = sectp;
9029
9030 /* Look for specific sections that we need. */
9031 if (section_is_p (sectp->name, &names->str_dwo))
9032 {
9033 dwp_file->sections.str.asection = sectp;
9034 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9035 }
9036 else if (section_is_p (sectp->name, &names->cu_index))
9037 {
9038 dwp_file->sections.cu_index.asection = sectp;
9039 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9040 }
9041 else if (section_is_p (sectp->name, &names->tu_index))
9042 {
9043 dwp_file->sections.tu_index.asection = sectp;
9044 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9045 }
9046 }
9047
9048 /* Hash function for dwp_file loaded CUs/TUs. */
9049
9050 static hashval_t
9051 hash_dwp_loaded_cutus (const void *item)
9052 {
9053 const struct dwo_unit *dwo_unit = item;
9054
9055 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9056 return dwo_unit->signature;
9057 }
9058
9059 /* Equality function for dwp_file loaded CUs/TUs. */
9060
9061 static int
9062 eq_dwp_loaded_cutus (const void *a, const void *b)
9063 {
9064 const struct dwo_unit *dua = a;
9065 const struct dwo_unit *dub = b;
9066
9067 return dua->signature == dub->signature;
9068 }
9069
9070 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9071
9072 static htab_t
9073 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9074 {
9075 return htab_create_alloc_ex (3,
9076 hash_dwp_loaded_cutus,
9077 eq_dwp_loaded_cutus,
9078 NULL,
9079 &objfile->objfile_obstack,
9080 hashtab_obstack_allocate,
9081 dummy_obstack_deallocate);
9082 }
9083
9084 /* Initialize the use of the DWP file for the current objfile.
9085 By convention the name of the DWP file is ${objfile}.dwp.
9086 The result is NULL if it can't be found. */
9087
9088 static struct dwp_file *
9089 open_and_init_dwp_file (const char *comp_dir)
9090 {
9091 struct objfile *objfile = dwarf2_per_objfile->objfile;
9092 struct dwp_file *dwp_file;
9093 char *dwp_name;
9094 bfd *dbfd;
9095 struct cleanup *cleanups;
9096
9097 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9098 cleanups = make_cleanup (xfree, dwp_name);
9099
9100 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
9101 if (dbfd == NULL)
9102 {
9103 if (dwarf2_read_debug)
9104 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9105 do_cleanups (cleanups);
9106 return NULL;
9107 }
9108 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9109 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9110 dwp_name, strlen (dwp_name));
9111 dwp_file->dbfd = dbfd;
9112 do_cleanups (cleanups);
9113
9114 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9115
9116 /* +1: section 0 is unused */
9117 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9118 dwp_file->elf_sections =
9119 OBSTACK_CALLOC (&objfile->objfile_obstack,
9120 dwp_file->num_sections, asection *);
9121
9122 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9123
9124 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9125
9126 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9127
9128 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9129
9130 discard_cleanups (cleanups);
9131
9132 if (dwarf2_read_debug)
9133 {
9134 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9135 fprintf_unfiltered (gdb_stdlog,
9136 " %u CUs, %u TUs\n",
9137 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9138 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9139 }
9140
9141 return dwp_file;
9142 }
9143
9144 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9145 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9146 or in the DWP file for the objfile, referenced by THIS_UNIT.
9147 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9148 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9149
9150 This is called, for example, when wanting to read a variable with a
9151 complex location. Therefore we don't want to do file i/o for every call.
9152 Therefore we don't want to look for a DWO file on every call.
9153 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9154 then we check if we've already seen DWO_NAME, and only THEN do we check
9155 for a DWO file.
9156
9157 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9158 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9159
9160 static struct dwo_unit *
9161 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9162 const char *dwo_name, const char *comp_dir,
9163 ULONGEST signature, int is_debug_types)
9164 {
9165 struct objfile *objfile = dwarf2_per_objfile->objfile;
9166 const char *kind = is_debug_types ? "TU" : "CU";
9167 void **dwo_file_slot;
9168 struct dwo_file *dwo_file;
9169 struct dwp_file *dwp_file;
9170
9171 /* Have we already read SIGNATURE from a DWP file? */
9172
9173 if (! dwarf2_per_objfile->dwp_checked)
9174 {
9175 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9176 dwarf2_per_objfile->dwp_checked = 1;
9177 }
9178 dwp_file = dwarf2_per_objfile->dwp_file;
9179
9180 if (dwp_file != NULL)
9181 {
9182 const struct dwp_hash_table *dwp_htab =
9183 is_debug_types ? dwp_file->tus : dwp_file->cus;
9184
9185 if (dwp_htab != NULL)
9186 {
9187 struct dwo_unit *dwo_cutu =
9188 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9189
9190 if (dwo_cutu != NULL)
9191 {
9192 if (dwarf2_read_debug)
9193 {
9194 fprintf_unfiltered (gdb_stdlog,
9195 "Virtual DWO %s %s found: @%s\n",
9196 kind, hex_string (signature),
9197 host_address_to_string (dwo_cutu));
9198 }
9199 return dwo_cutu;
9200 }
9201 }
9202 }
9203
9204 /* Have we already seen DWO_NAME? */
9205
9206 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9207 if (*dwo_file_slot == NULL)
9208 {
9209 /* Read in the file and build a table of the DWOs it contains. */
9210 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9211 }
9212 /* NOTE: This will be NULL if unable to open the file. */
9213 dwo_file = *dwo_file_slot;
9214
9215 if (dwo_file != NULL)
9216 {
9217 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9218
9219 if (htab != NULL)
9220 {
9221 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9222
9223 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9224 find_dwo_cutu.signature = signature;
9225 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9226
9227 if (dwo_cutu != NULL)
9228 {
9229 if (dwarf2_read_debug)
9230 {
9231 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9232 kind, dwo_name, hex_string (signature),
9233 host_address_to_string (dwo_cutu));
9234 }
9235 return dwo_cutu;
9236 }
9237 }
9238 }
9239
9240 /* We didn't find it. This could mean a dwo_id mismatch, or
9241 someone deleted the DWO/DWP file, or the search path isn't set up
9242 correctly to find the file. */
9243
9244 if (dwarf2_read_debug)
9245 {
9246 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9247 kind, dwo_name, hex_string (signature));
9248 }
9249
9250 complaint (&symfile_complaints,
9251 _("Could not find DWO CU referenced by CU at offset 0x%x"
9252 " [in module %s]"),
9253 this_unit->offset.sect_off, objfile->name);
9254 return NULL;
9255 }
9256
9257 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9258 See lookup_dwo_cutu_unit for details. */
9259
9260 static struct dwo_unit *
9261 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9262 const char *dwo_name, const char *comp_dir,
9263 ULONGEST signature)
9264 {
9265 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9266 }
9267
9268 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9269 See lookup_dwo_cutu_unit for details. */
9270
9271 static struct dwo_unit *
9272 lookup_dwo_type_unit (struct signatured_type *this_tu,
9273 const char *dwo_name, const char *comp_dir)
9274 {
9275 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9276 }
9277
9278 /* Free all resources associated with DWO_FILE.
9279 Close the DWO file and munmap the sections.
9280 All memory should be on the objfile obstack. */
9281
9282 static void
9283 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9284 {
9285 int ix;
9286 struct dwarf2_section_info *section;
9287
9288 gdb_bfd_unref (dwo_file->dbfd);
9289
9290 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9291 }
9292
9293 /* Wrapper for free_dwo_file for use in cleanups. */
9294
9295 static void
9296 free_dwo_file_cleanup (void *arg)
9297 {
9298 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9299 struct objfile *objfile = dwarf2_per_objfile->objfile;
9300
9301 free_dwo_file (dwo_file, objfile);
9302 }
9303
9304 /* Traversal function for free_dwo_files. */
9305
9306 static int
9307 free_dwo_file_from_slot (void **slot, void *info)
9308 {
9309 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9310 struct objfile *objfile = (struct objfile *) info;
9311
9312 free_dwo_file (dwo_file, objfile);
9313
9314 return 1;
9315 }
9316
9317 /* Free all resources associated with DWO_FILES. */
9318
9319 static void
9320 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9321 {
9322 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9323 }
9324 \f
9325 /* Read in various DIEs. */
9326
9327 /* qsort helper for inherit_abstract_dies. */
9328
9329 static int
9330 unsigned_int_compar (const void *ap, const void *bp)
9331 {
9332 unsigned int a = *(unsigned int *) ap;
9333 unsigned int b = *(unsigned int *) bp;
9334
9335 return (a > b) - (b > a);
9336 }
9337
9338 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9339 Inherit only the children of the DW_AT_abstract_origin DIE not being
9340 already referenced by DW_AT_abstract_origin from the children of the
9341 current DIE. */
9342
9343 static void
9344 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9345 {
9346 struct die_info *child_die;
9347 unsigned die_children_count;
9348 /* CU offsets which were referenced by children of the current DIE. */
9349 sect_offset *offsets;
9350 sect_offset *offsets_end, *offsetp;
9351 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9352 struct die_info *origin_die;
9353 /* Iterator of the ORIGIN_DIE children. */
9354 struct die_info *origin_child_die;
9355 struct cleanup *cleanups;
9356 struct attribute *attr;
9357 struct dwarf2_cu *origin_cu;
9358 struct pending **origin_previous_list_in_scope;
9359
9360 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9361 if (!attr)
9362 return;
9363
9364 /* Note that following die references may follow to a die in a
9365 different cu. */
9366
9367 origin_cu = cu;
9368 origin_die = follow_die_ref (die, attr, &origin_cu);
9369
9370 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9371 symbols in. */
9372 origin_previous_list_in_scope = origin_cu->list_in_scope;
9373 origin_cu->list_in_scope = cu->list_in_scope;
9374
9375 if (die->tag != origin_die->tag
9376 && !(die->tag == DW_TAG_inlined_subroutine
9377 && origin_die->tag == DW_TAG_subprogram))
9378 complaint (&symfile_complaints,
9379 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9380 die->offset.sect_off, origin_die->offset.sect_off);
9381
9382 child_die = die->child;
9383 die_children_count = 0;
9384 while (child_die && child_die->tag)
9385 {
9386 child_die = sibling_die (child_die);
9387 die_children_count++;
9388 }
9389 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9390 cleanups = make_cleanup (xfree, offsets);
9391
9392 offsets_end = offsets;
9393 child_die = die->child;
9394 while (child_die && child_die->tag)
9395 {
9396 /* For each CHILD_DIE, find the corresponding child of
9397 ORIGIN_DIE. If there is more than one layer of
9398 DW_AT_abstract_origin, follow them all; there shouldn't be,
9399 but GCC versions at least through 4.4 generate this (GCC PR
9400 40573). */
9401 struct die_info *child_origin_die = child_die;
9402 struct dwarf2_cu *child_origin_cu = cu;
9403
9404 while (1)
9405 {
9406 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9407 child_origin_cu);
9408 if (attr == NULL)
9409 break;
9410 child_origin_die = follow_die_ref (child_origin_die, attr,
9411 &child_origin_cu);
9412 }
9413
9414 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9415 counterpart may exist. */
9416 if (child_origin_die != child_die)
9417 {
9418 if (child_die->tag != child_origin_die->tag
9419 && !(child_die->tag == DW_TAG_inlined_subroutine
9420 && child_origin_die->tag == DW_TAG_subprogram))
9421 complaint (&symfile_complaints,
9422 _("Child DIE 0x%x and its abstract origin 0x%x have "
9423 "different tags"), child_die->offset.sect_off,
9424 child_origin_die->offset.sect_off);
9425 if (child_origin_die->parent != origin_die)
9426 complaint (&symfile_complaints,
9427 _("Child DIE 0x%x and its abstract origin 0x%x have "
9428 "different parents"), child_die->offset.sect_off,
9429 child_origin_die->offset.sect_off);
9430 else
9431 *offsets_end++ = child_origin_die->offset;
9432 }
9433 child_die = sibling_die (child_die);
9434 }
9435 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9436 unsigned_int_compar);
9437 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9438 if (offsetp[-1].sect_off == offsetp->sect_off)
9439 complaint (&symfile_complaints,
9440 _("Multiple children of DIE 0x%x refer "
9441 "to DIE 0x%x as their abstract origin"),
9442 die->offset.sect_off, offsetp->sect_off);
9443
9444 offsetp = offsets;
9445 origin_child_die = origin_die->child;
9446 while (origin_child_die && origin_child_die->tag)
9447 {
9448 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9449 while (offsetp < offsets_end
9450 && offsetp->sect_off < origin_child_die->offset.sect_off)
9451 offsetp++;
9452 if (offsetp >= offsets_end
9453 || offsetp->sect_off > origin_child_die->offset.sect_off)
9454 {
9455 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9456 process_die (origin_child_die, origin_cu);
9457 }
9458 origin_child_die = sibling_die (origin_child_die);
9459 }
9460 origin_cu->list_in_scope = origin_previous_list_in_scope;
9461
9462 do_cleanups (cleanups);
9463 }
9464
9465 static void
9466 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9467 {
9468 struct objfile *objfile = cu->objfile;
9469 struct context_stack *new;
9470 CORE_ADDR lowpc;
9471 CORE_ADDR highpc;
9472 struct die_info *child_die;
9473 struct attribute *attr, *call_line, *call_file;
9474 const char *name;
9475 CORE_ADDR baseaddr;
9476 struct block *block;
9477 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9478 VEC (symbolp) *template_args = NULL;
9479 struct template_symbol *templ_func = NULL;
9480
9481 if (inlined_func)
9482 {
9483 /* If we do not have call site information, we can't show the
9484 caller of this inlined function. That's too confusing, so
9485 only use the scope for local variables. */
9486 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9487 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9488 if (call_line == NULL || call_file == NULL)
9489 {
9490 read_lexical_block_scope (die, cu);
9491 return;
9492 }
9493 }
9494
9495 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9496
9497 name = dwarf2_name (die, cu);
9498
9499 /* Ignore functions with missing or empty names. These are actually
9500 illegal according to the DWARF standard. */
9501 if (name == NULL)
9502 {
9503 complaint (&symfile_complaints,
9504 _("missing name for subprogram DIE at %d"),
9505 die->offset.sect_off);
9506 return;
9507 }
9508
9509 /* Ignore functions with missing or invalid low and high pc attributes. */
9510 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9511 {
9512 attr = dwarf2_attr (die, DW_AT_external, cu);
9513 if (!attr || !DW_UNSND (attr))
9514 complaint (&symfile_complaints,
9515 _("cannot get low and high bounds "
9516 "for subprogram DIE at %d"),
9517 die->offset.sect_off);
9518 return;
9519 }
9520
9521 lowpc += baseaddr;
9522 highpc += baseaddr;
9523
9524 /* If we have any template arguments, then we must allocate a
9525 different sort of symbol. */
9526 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9527 {
9528 if (child_die->tag == DW_TAG_template_type_param
9529 || child_die->tag == DW_TAG_template_value_param)
9530 {
9531 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9532 struct template_symbol);
9533 templ_func->base.is_cplus_template_function = 1;
9534 break;
9535 }
9536 }
9537
9538 new = push_context (0, lowpc);
9539 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9540 (struct symbol *) templ_func);
9541
9542 /* If there is a location expression for DW_AT_frame_base, record
9543 it. */
9544 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9545 if (attr)
9546 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
9547
9548 cu->list_in_scope = &local_symbols;
9549
9550 if (die->child != NULL)
9551 {
9552 child_die = die->child;
9553 while (child_die && child_die->tag)
9554 {
9555 if (child_die->tag == DW_TAG_template_type_param
9556 || child_die->tag == DW_TAG_template_value_param)
9557 {
9558 struct symbol *arg = new_symbol (child_die, NULL, cu);
9559
9560 if (arg != NULL)
9561 VEC_safe_push (symbolp, template_args, arg);
9562 }
9563 else
9564 process_die (child_die, cu);
9565 child_die = sibling_die (child_die);
9566 }
9567 }
9568
9569 inherit_abstract_dies (die, cu);
9570
9571 /* If we have a DW_AT_specification, we might need to import using
9572 directives from the context of the specification DIE. See the
9573 comment in determine_prefix. */
9574 if (cu->language == language_cplus
9575 && dwarf2_attr (die, DW_AT_specification, cu))
9576 {
9577 struct dwarf2_cu *spec_cu = cu;
9578 struct die_info *spec_die = die_specification (die, &spec_cu);
9579
9580 while (spec_die)
9581 {
9582 child_die = spec_die->child;
9583 while (child_die && child_die->tag)
9584 {
9585 if (child_die->tag == DW_TAG_imported_module)
9586 process_die (child_die, spec_cu);
9587 child_die = sibling_die (child_die);
9588 }
9589
9590 /* In some cases, GCC generates specification DIEs that
9591 themselves contain DW_AT_specification attributes. */
9592 spec_die = die_specification (spec_die, &spec_cu);
9593 }
9594 }
9595
9596 new = pop_context ();
9597 /* Make a block for the local symbols within. */
9598 block = finish_block (new->name, &local_symbols, new->old_blocks,
9599 lowpc, highpc, objfile);
9600
9601 /* For C++, set the block's scope. */
9602 if ((cu->language == language_cplus || cu->language == language_fortran)
9603 && cu->processing_has_namespace_info)
9604 block_set_scope (block, determine_prefix (die, cu),
9605 &objfile->objfile_obstack);
9606
9607 /* If we have address ranges, record them. */
9608 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9609
9610 /* Attach template arguments to function. */
9611 if (! VEC_empty (symbolp, template_args))
9612 {
9613 gdb_assert (templ_func != NULL);
9614
9615 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9616 templ_func->template_arguments
9617 = obstack_alloc (&objfile->objfile_obstack,
9618 (templ_func->n_template_arguments
9619 * sizeof (struct symbol *)));
9620 memcpy (templ_func->template_arguments,
9621 VEC_address (symbolp, template_args),
9622 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9623 VEC_free (symbolp, template_args);
9624 }
9625
9626 /* In C++, we can have functions nested inside functions (e.g., when
9627 a function declares a class that has methods). This means that
9628 when we finish processing a function scope, we may need to go
9629 back to building a containing block's symbol lists. */
9630 local_symbols = new->locals;
9631 using_directives = new->using_directives;
9632
9633 /* If we've finished processing a top-level function, subsequent
9634 symbols go in the file symbol list. */
9635 if (outermost_context_p ())
9636 cu->list_in_scope = &file_symbols;
9637 }
9638
9639 /* Process all the DIES contained within a lexical block scope. Start
9640 a new scope, process the dies, and then close the scope. */
9641
9642 static void
9643 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9644 {
9645 struct objfile *objfile = cu->objfile;
9646 struct context_stack *new;
9647 CORE_ADDR lowpc, highpc;
9648 struct die_info *child_die;
9649 CORE_ADDR baseaddr;
9650
9651 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9652
9653 /* Ignore blocks with missing or invalid low and high pc attributes. */
9654 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9655 as multiple lexical blocks? Handling children in a sane way would
9656 be nasty. Might be easier to properly extend generic blocks to
9657 describe ranges. */
9658 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9659 return;
9660 lowpc += baseaddr;
9661 highpc += baseaddr;
9662
9663 push_context (0, lowpc);
9664 if (die->child != NULL)
9665 {
9666 child_die = die->child;
9667 while (child_die && child_die->tag)
9668 {
9669 process_die (child_die, cu);
9670 child_die = sibling_die (child_die);
9671 }
9672 }
9673 new = pop_context ();
9674
9675 if (local_symbols != NULL || using_directives != NULL)
9676 {
9677 struct block *block
9678 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9679 highpc, objfile);
9680
9681 /* Note that recording ranges after traversing children, as we
9682 do here, means that recording a parent's ranges entails
9683 walking across all its children's ranges as they appear in
9684 the address map, which is quadratic behavior.
9685
9686 It would be nicer to record the parent's ranges before
9687 traversing its children, simply overriding whatever you find
9688 there. But since we don't even decide whether to create a
9689 block until after we've traversed its children, that's hard
9690 to do. */
9691 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9692 }
9693 local_symbols = new->locals;
9694 using_directives = new->using_directives;
9695 }
9696
9697 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9698
9699 static void
9700 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9701 {
9702 struct objfile *objfile = cu->objfile;
9703 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9704 CORE_ADDR pc, baseaddr;
9705 struct attribute *attr;
9706 struct call_site *call_site, call_site_local;
9707 void **slot;
9708 int nparams;
9709 struct die_info *child_die;
9710
9711 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9712
9713 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9714 if (!attr)
9715 {
9716 complaint (&symfile_complaints,
9717 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9718 "DIE 0x%x [in module %s]"),
9719 die->offset.sect_off, objfile->name);
9720 return;
9721 }
9722 pc = DW_ADDR (attr) + baseaddr;
9723
9724 if (cu->call_site_htab == NULL)
9725 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9726 NULL, &objfile->objfile_obstack,
9727 hashtab_obstack_allocate, NULL);
9728 call_site_local.pc = pc;
9729 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9730 if (*slot != NULL)
9731 {
9732 complaint (&symfile_complaints,
9733 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9734 "DIE 0x%x [in module %s]"),
9735 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9736 return;
9737 }
9738
9739 /* Count parameters at the caller. */
9740
9741 nparams = 0;
9742 for (child_die = die->child; child_die && child_die->tag;
9743 child_die = sibling_die (child_die))
9744 {
9745 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9746 {
9747 complaint (&symfile_complaints,
9748 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9749 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9750 child_die->tag, child_die->offset.sect_off, objfile->name);
9751 continue;
9752 }
9753
9754 nparams++;
9755 }
9756
9757 call_site = obstack_alloc (&objfile->objfile_obstack,
9758 (sizeof (*call_site)
9759 + (sizeof (*call_site->parameter)
9760 * (nparams - 1))));
9761 *slot = call_site;
9762 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9763 call_site->pc = pc;
9764
9765 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9766 {
9767 struct die_info *func_die;
9768
9769 /* Skip also over DW_TAG_inlined_subroutine. */
9770 for (func_die = die->parent;
9771 func_die && func_die->tag != DW_TAG_subprogram
9772 && func_die->tag != DW_TAG_subroutine_type;
9773 func_die = func_die->parent);
9774
9775 /* DW_AT_GNU_all_call_sites is a superset
9776 of DW_AT_GNU_all_tail_call_sites. */
9777 if (func_die
9778 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9779 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9780 {
9781 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9782 not complete. But keep CALL_SITE for look ups via call_site_htab,
9783 both the initial caller containing the real return address PC and
9784 the final callee containing the current PC of a chain of tail
9785 calls do not need to have the tail call list complete. But any
9786 function candidate for a virtual tail call frame searched via
9787 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9788 determined unambiguously. */
9789 }
9790 else
9791 {
9792 struct type *func_type = NULL;
9793
9794 if (func_die)
9795 func_type = get_die_type (func_die, cu);
9796 if (func_type != NULL)
9797 {
9798 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9799
9800 /* Enlist this call site to the function. */
9801 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9802 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9803 }
9804 else
9805 complaint (&symfile_complaints,
9806 _("Cannot find function owning DW_TAG_GNU_call_site "
9807 "DIE 0x%x [in module %s]"),
9808 die->offset.sect_off, objfile->name);
9809 }
9810 }
9811
9812 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9813 if (attr == NULL)
9814 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9815 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9816 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9817 /* Keep NULL DWARF_BLOCK. */;
9818 else if (attr_form_is_block (attr))
9819 {
9820 struct dwarf2_locexpr_baton *dlbaton;
9821
9822 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9823 dlbaton->data = DW_BLOCK (attr)->data;
9824 dlbaton->size = DW_BLOCK (attr)->size;
9825 dlbaton->per_cu = cu->per_cu;
9826
9827 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9828 }
9829 else if (is_ref_attr (attr))
9830 {
9831 struct dwarf2_cu *target_cu = cu;
9832 struct die_info *target_die;
9833
9834 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9835 gdb_assert (target_cu->objfile == objfile);
9836 if (die_is_declaration (target_die, target_cu))
9837 {
9838 const char *target_physname = NULL;
9839 struct attribute *target_attr;
9840
9841 /* Prefer the mangled name; otherwise compute the demangled one. */
9842 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
9843 if (target_attr == NULL)
9844 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
9845 target_cu);
9846 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
9847 target_physname = DW_STRING (target_attr);
9848 else
9849 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9850 if (target_physname == NULL)
9851 complaint (&symfile_complaints,
9852 _("DW_AT_GNU_call_site_target target DIE has invalid "
9853 "physname, for referencing DIE 0x%x [in module %s]"),
9854 die->offset.sect_off, objfile->name);
9855 else
9856 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9857 }
9858 else
9859 {
9860 CORE_ADDR lowpc;
9861
9862 /* DW_AT_entry_pc should be preferred. */
9863 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9864 complaint (&symfile_complaints,
9865 _("DW_AT_GNU_call_site_target target DIE has invalid "
9866 "low pc, for referencing DIE 0x%x [in module %s]"),
9867 die->offset.sect_off, objfile->name);
9868 else
9869 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9870 }
9871 }
9872 else
9873 complaint (&symfile_complaints,
9874 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9875 "block nor reference, for DIE 0x%x [in module %s]"),
9876 die->offset.sect_off, objfile->name);
9877
9878 call_site->per_cu = cu->per_cu;
9879
9880 for (child_die = die->child;
9881 child_die && child_die->tag;
9882 child_die = sibling_die (child_die))
9883 {
9884 struct call_site_parameter *parameter;
9885 struct attribute *loc, *origin;
9886
9887 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9888 {
9889 /* Already printed the complaint above. */
9890 continue;
9891 }
9892
9893 gdb_assert (call_site->parameter_count < nparams);
9894 parameter = &call_site->parameter[call_site->parameter_count];
9895
9896 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9897 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9898 register is contained in DW_AT_GNU_call_site_value. */
9899
9900 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9901 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9902 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9903 {
9904 sect_offset offset;
9905
9906 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9907 offset = dwarf2_get_ref_die_offset (origin);
9908 if (!offset_in_cu_p (&cu->header, offset))
9909 {
9910 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9911 binding can be done only inside one CU. Such referenced DIE
9912 therefore cannot be even moved to DW_TAG_partial_unit. */
9913 complaint (&symfile_complaints,
9914 _("DW_AT_abstract_origin offset is not in CU for "
9915 "DW_TAG_GNU_call_site child DIE 0x%x "
9916 "[in module %s]"),
9917 child_die->offset.sect_off, objfile->name);
9918 continue;
9919 }
9920 parameter->u.param_offset.cu_off = (offset.sect_off
9921 - cu->header.offset.sect_off);
9922 }
9923 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9924 {
9925 complaint (&symfile_complaints,
9926 _("No DW_FORM_block* DW_AT_location for "
9927 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9928 child_die->offset.sect_off, objfile->name);
9929 continue;
9930 }
9931 else
9932 {
9933 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9934 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9935 if (parameter->u.dwarf_reg != -1)
9936 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9937 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9938 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9939 &parameter->u.fb_offset))
9940 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9941 else
9942 {
9943 complaint (&symfile_complaints,
9944 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9945 "for DW_FORM_block* DW_AT_location is supported for "
9946 "DW_TAG_GNU_call_site child DIE 0x%x "
9947 "[in module %s]"),
9948 child_die->offset.sect_off, objfile->name);
9949 continue;
9950 }
9951 }
9952
9953 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9954 if (!attr_form_is_block (attr))
9955 {
9956 complaint (&symfile_complaints,
9957 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9958 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9959 child_die->offset.sect_off, objfile->name);
9960 continue;
9961 }
9962 parameter->value = DW_BLOCK (attr)->data;
9963 parameter->value_size = DW_BLOCK (attr)->size;
9964
9965 /* Parameters are not pre-cleared by memset above. */
9966 parameter->data_value = NULL;
9967 parameter->data_value_size = 0;
9968 call_site->parameter_count++;
9969
9970 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9971 if (attr)
9972 {
9973 if (!attr_form_is_block (attr))
9974 complaint (&symfile_complaints,
9975 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9976 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9977 child_die->offset.sect_off, objfile->name);
9978 else
9979 {
9980 parameter->data_value = DW_BLOCK (attr)->data;
9981 parameter->data_value_size = DW_BLOCK (attr)->size;
9982 }
9983 }
9984 }
9985 }
9986
9987 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9988 Return 1 if the attributes are present and valid, otherwise, return 0.
9989 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9990
9991 static int
9992 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9993 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9994 struct partial_symtab *ranges_pst)
9995 {
9996 struct objfile *objfile = cu->objfile;
9997 struct comp_unit_head *cu_header = &cu->header;
9998 bfd *obfd = objfile->obfd;
9999 unsigned int addr_size = cu_header->addr_size;
10000 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10001 /* Base address selection entry. */
10002 CORE_ADDR base;
10003 int found_base;
10004 unsigned int dummy;
10005 gdb_byte *buffer;
10006 CORE_ADDR marker;
10007 int low_set;
10008 CORE_ADDR low = 0;
10009 CORE_ADDR high = 0;
10010 CORE_ADDR baseaddr;
10011
10012 found_base = cu->base_known;
10013 base = cu->base_address;
10014
10015 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10016 if (offset >= dwarf2_per_objfile->ranges.size)
10017 {
10018 complaint (&symfile_complaints,
10019 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10020 offset);
10021 return 0;
10022 }
10023 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10024
10025 /* Read in the largest possible address. */
10026 marker = read_address (obfd, buffer, cu, &dummy);
10027 if ((marker & mask) == mask)
10028 {
10029 /* If we found the largest possible address, then
10030 read the base address. */
10031 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10032 buffer += 2 * addr_size;
10033 offset += 2 * addr_size;
10034 found_base = 1;
10035 }
10036
10037 low_set = 0;
10038
10039 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10040
10041 while (1)
10042 {
10043 CORE_ADDR range_beginning, range_end;
10044
10045 range_beginning = read_address (obfd, buffer, cu, &dummy);
10046 buffer += addr_size;
10047 range_end = read_address (obfd, buffer, cu, &dummy);
10048 buffer += addr_size;
10049 offset += 2 * addr_size;
10050
10051 /* An end of list marker is a pair of zero addresses. */
10052 if (range_beginning == 0 && range_end == 0)
10053 /* Found the end of list entry. */
10054 break;
10055
10056 /* Each base address selection entry is a pair of 2 values.
10057 The first is the largest possible address, the second is
10058 the base address. Check for a base address here. */
10059 if ((range_beginning & mask) == mask)
10060 {
10061 /* If we found the largest possible address, then
10062 read the base address. */
10063 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10064 found_base = 1;
10065 continue;
10066 }
10067
10068 if (!found_base)
10069 {
10070 /* We have no valid base address for the ranges
10071 data. */
10072 complaint (&symfile_complaints,
10073 _("Invalid .debug_ranges data (no base address)"));
10074 return 0;
10075 }
10076
10077 if (range_beginning > range_end)
10078 {
10079 /* Inverted range entries are invalid. */
10080 complaint (&symfile_complaints,
10081 _("Invalid .debug_ranges data (inverted range)"));
10082 return 0;
10083 }
10084
10085 /* Empty range entries have no effect. */
10086 if (range_beginning == range_end)
10087 continue;
10088
10089 range_beginning += base;
10090 range_end += base;
10091
10092 /* A not-uncommon case of bad debug info.
10093 Don't pollute the addrmap with bad data. */
10094 if (range_beginning + baseaddr == 0
10095 && !dwarf2_per_objfile->has_section_at_zero)
10096 {
10097 complaint (&symfile_complaints,
10098 _(".debug_ranges entry has start address of zero"
10099 " [in module %s]"), objfile->name);
10100 continue;
10101 }
10102
10103 if (ranges_pst != NULL)
10104 addrmap_set_empty (objfile->psymtabs_addrmap,
10105 range_beginning + baseaddr,
10106 range_end - 1 + baseaddr,
10107 ranges_pst);
10108
10109 /* FIXME: This is recording everything as a low-high
10110 segment of consecutive addresses. We should have a
10111 data structure for discontiguous block ranges
10112 instead. */
10113 if (! low_set)
10114 {
10115 low = range_beginning;
10116 high = range_end;
10117 low_set = 1;
10118 }
10119 else
10120 {
10121 if (range_beginning < low)
10122 low = range_beginning;
10123 if (range_end > high)
10124 high = range_end;
10125 }
10126 }
10127
10128 if (! low_set)
10129 /* If the first entry is an end-of-list marker, the range
10130 describes an empty scope, i.e. no instructions. */
10131 return 0;
10132
10133 if (low_return)
10134 *low_return = low;
10135 if (high_return)
10136 *high_return = high;
10137 return 1;
10138 }
10139
10140 /* Get low and high pc attributes from a die. Return 1 if the attributes
10141 are present and valid, otherwise, return 0. Return -1 if the range is
10142 discontinuous, i.e. derived from DW_AT_ranges information. */
10143
10144 static int
10145 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10146 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10147 struct partial_symtab *pst)
10148 {
10149 struct attribute *attr;
10150 struct attribute *attr_high;
10151 CORE_ADDR low = 0;
10152 CORE_ADDR high = 0;
10153 int ret = 0;
10154
10155 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10156 if (attr_high)
10157 {
10158 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10159 if (attr)
10160 {
10161 low = DW_ADDR (attr);
10162 if (attr_high->form == DW_FORM_addr
10163 || attr_high->form == DW_FORM_GNU_addr_index)
10164 high = DW_ADDR (attr_high);
10165 else
10166 high = low + DW_UNSND (attr_high);
10167 }
10168 else
10169 /* Found high w/o low attribute. */
10170 return 0;
10171
10172 /* Found consecutive range of addresses. */
10173 ret = 1;
10174 }
10175 else
10176 {
10177 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10178 if (attr != NULL)
10179 {
10180 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10181 We take advantage of the fact that DW_AT_ranges does not appear
10182 in DW_TAG_compile_unit of DWO files. */
10183 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10184 unsigned int ranges_offset = (DW_UNSND (attr)
10185 + (need_ranges_base
10186 ? cu->ranges_base
10187 : 0));
10188
10189 /* Value of the DW_AT_ranges attribute is the offset in the
10190 .debug_ranges section. */
10191 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10192 return 0;
10193 /* Found discontinuous range of addresses. */
10194 ret = -1;
10195 }
10196 }
10197
10198 /* read_partial_die has also the strict LOW < HIGH requirement. */
10199 if (high <= low)
10200 return 0;
10201
10202 /* When using the GNU linker, .gnu.linkonce. sections are used to
10203 eliminate duplicate copies of functions and vtables and such.
10204 The linker will arbitrarily choose one and discard the others.
10205 The AT_*_pc values for such functions refer to local labels in
10206 these sections. If the section from that file was discarded, the
10207 labels are not in the output, so the relocs get a value of 0.
10208 If this is a discarded function, mark the pc bounds as invalid,
10209 so that GDB will ignore it. */
10210 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10211 return 0;
10212
10213 *lowpc = low;
10214 if (highpc)
10215 *highpc = high;
10216 return ret;
10217 }
10218
10219 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10220 its low and high PC addresses. Do nothing if these addresses could not
10221 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10222 and HIGHPC to the high address if greater than HIGHPC. */
10223
10224 static void
10225 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10226 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10227 struct dwarf2_cu *cu)
10228 {
10229 CORE_ADDR low, high;
10230 struct die_info *child = die->child;
10231
10232 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10233 {
10234 *lowpc = min (*lowpc, low);
10235 *highpc = max (*highpc, high);
10236 }
10237
10238 /* If the language does not allow nested subprograms (either inside
10239 subprograms or lexical blocks), we're done. */
10240 if (cu->language != language_ada)
10241 return;
10242
10243 /* Check all the children of the given DIE. If it contains nested
10244 subprograms, then check their pc bounds. Likewise, we need to
10245 check lexical blocks as well, as they may also contain subprogram
10246 definitions. */
10247 while (child && child->tag)
10248 {
10249 if (child->tag == DW_TAG_subprogram
10250 || child->tag == DW_TAG_lexical_block)
10251 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10252 child = sibling_die (child);
10253 }
10254 }
10255
10256 /* Get the low and high pc's represented by the scope DIE, and store
10257 them in *LOWPC and *HIGHPC. If the correct values can't be
10258 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10259
10260 static void
10261 get_scope_pc_bounds (struct die_info *die,
10262 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10263 struct dwarf2_cu *cu)
10264 {
10265 CORE_ADDR best_low = (CORE_ADDR) -1;
10266 CORE_ADDR best_high = (CORE_ADDR) 0;
10267 CORE_ADDR current_low, current_high;
10268
10269 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10270 {
10271 best_low = current_low;
10272 best_high = current_high;
10273 }
10274 else
10275 {
10276 struct die_info *child = die->child;
10277
10278 while (child && child->tag)
10279 {
10280 switch (child->tag) {
10281 case DW_TAG_subprogram:
10282 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10283 break;
10284 case DW_TAG_namespace:
10285 case DW_TAG_module:
10286 /* FIXME: carlton/2004-01-16: Should we do this for
10287 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10288 that current GCC's always emit the DIEs corresponding
10289 to definitions of methods of classes as children of a
10290 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10291 the DIEs giving the declarations, which could be
10292 anywhere). But I don't see any reason why the
10293 standards says that they have to be there. */
10294 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10295
10296 if (current_low != ((CORE_ADDR) -1))
10297 {
10298 best_low = min (best_low, current_low);
10299 best_high = max (best_high, current_high);
10300 }
10301 break;
10302 default:
10303 /* Ignore. */
10304 break;
10305 }
10306
10307 child = sibling_die (child);
10308 }
10309 }
10310
10311 *lowpc = best_low;
10312 *highpc = best_high;
10313 }
10314
10315 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10316 in DIE. */
10317
10318 static void
10319 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10320 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10321 {
10322 struct objfile *objfile = cu->objfile;
10323 struct attribute *attr;
10324 struct attribute *attr_high;
10325
10326 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10327 if (attr_high)
10328 {
10329 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10330 if (attr)
10331 {
10332 CORE_ADDR low = DW_ADDR (attr);
10333 CORE_ADDR high;
10334 if (attr_high->form == DW_FORM_addr
10335 || attr_high->form == DW_FORM_GNU_addr_index)
10336 high = DW_ADDR (attr_high);
10337 else
10338 high = low + DW_UNSND (attr_high);
10339
10340 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10341 }
10342 }
10343
10344 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10345 if (attr)
10346 {
10347 bfd *obfd = objfile->obfd;
10348 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10349 We take advantage of the fact that DW_AT_ranges does not appear
10350 in DW_TAG_compile_unit of DWO files. */
10351 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10352
10353 /* The value of the DW_AT_ranges attribute is the offset of the
10354 address range list in the .debug_ranges section. */
10355 unsigned long offset = (DW_UNSND (attr)
10356 + (need_ranges_base ? cu->ranges_base : 0));
10357 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10358
10359 /* For some target architectures, but not others, the
10360 read_address function sign-extends the addresses it returns.
10361 To recognize base address selection entries, we need a
10362 mask. */
10363 unsigned int addr_size = cu->header.addr_size;
10364 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10365
10366 /* The base address, to which the next pair is relative. Note
10367 that this 'base' is a DWARF concept: most entries in a range
10368 list are relative, to reduce the number of relocs against the
10369 debugging information. This is separate from this function's
10370 'baseaddr' argument, which GDB uses to relocate debugging
10371 information from a shared library based on the address at
10372 which the library was loaded. */
10373 CORE_ADDR base = cu->base_address;
10374 int base_known = cu->base_known;
10375
10376 gdb_assert (dwarf2_per_objfile->ranges.readin);
10377 if (offset >= dwarf2_per_objfile->ranges.size)
10378 {
10379 complaint (&symfile_complaints,
10380 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10381 offset);
10382 return;
10383 }
10384
10385 for (;;)
10386 {
10387 unsigned int bytes_read;
10388 CORE_ADDR start, end;
10389
10390 start = read_address (obfd, buffer, cu, &bytes_read);
10391 buffer += bytes_read;
10392 end = read_address (obfd, buffer, cu, &bytes_read);
10393 buffer += bytes_read;
10394
10395 /* Did we find the end of the range list? */
10396 if (start == 0 && end == 0)
10397 break;
10398
10399 /* Did we find a base address selection entry? */
10400 else if ((start & base_select_mask) == base_select_mask)
10401 {
10402 base = end;
10403 base_known = 1;
10404 }
10405
10406 /* We found an ordinary address range. */
10407 else
10408 {
10409 if (!base_known)
10410 {
10411 complaint (&symfile_complaints,
10412 _("Invalid .debug_ranges data "
10413 "(no base address)"));
10414 return;
10415 }
10416
10417 if (start > end)
10418 {
10419 /* Inverted range entries are invalid. */
10420 complaint (&symfile_complaints,
10421 _("Invalid .debug_ranges data "
10422 "(inverted range)"));
10423 return;
10424 }
10425
10426 /* Empty range entries have no effect. */
10427 if (start == end)
10428 continue;
10429
10430 start += base + baseaddr;
10431 end += base + baseaddr;
10432
10433 /* A not-uncommon case of bad debug info.
10434 Don't pollute the addrmap with bad data. */
10435 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10436 {
10437 complaint (&symfile_complaints,
10438 _(".debug_ranges entry has start address of zero"
10439 " [in module %s]"), objfile->name);
10440 continue;
10441 }
10442
10443 record_block_range (block, start, end - 1);
10444 }
10445 }
10446 }
10447 }
10448
10449 /* Check whether the producer field indicates either of GCC < 4.6, or the
10450 Intel C/C++ compiler, and cache the result in CU. */
10451
10452 static void
10453 check_producer (struct dwarf2_cu *cu)
10454 {
10455 const char *cs;
10456 int major, minor, release;
10457
10458 if (cu->producer == NULL)
10459 {
10460 /* For unknown compilers expect their behavior is DWARF version
10461 compliant.
10462
10463 GCC started to support .debug_types sections by -gdwarf-4 since
10464 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10465 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10466 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10467 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10468 }
10469 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10470 {
10471 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10472
10473 cs = &cu->producer[strlen ("GNU ")];
10474 while (*cs && !isdigit (*cs))
10475 cs++;
10476 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10477 {
10478 /* Not recognized as GCC. */
10479 }
10480 else
10481 {
10482 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10483 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10484 }
10485 }
10486 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10487 cu->producer_is_icc = 1;
10488 else
10489 {
10490 /* For other non-GCC compilers, expect their behavior is DWARF version
10491 compliant. */
10492 }
10493
10494 cu->checked_producer = 1;
10495 }
10496
10497 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10498 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10499 during 4.6.0 experimental. */
10500
10501 static int
10502 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10503 {
10504 if (!cu->checked_producer)
10505 check_producer (cu);
10506
10507 return cu->producer_is_gxx_lt_4_6;
10508 }
10509
10510 /* Return the default accessibility type if it is not overriden by
10511 DW_AT_accessibility. */
10512
10513 static enum dwarf_access_attribute
10514 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10515 {
10516 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10517 {
10518 /* The default DWARF 2 accessibility for members is public, the default
10519 accessibility for inheritance is private. */
10520
10521 if (die->tag != DW_TAG_inheritance)
10522 return DW_ACCESS_public;
10523 else
10524 return DW_ACCESS_private;
10525 }
10526 else
10527 {
10528 /* DWARF 3+ defines the default accessibility a different way. The same
10529 rules apply now for DW_TAG_inheritance as for the members and it only
10530 depends on the container kind. */
10531
10532 if (die->parent->tag == DW_TAG_class_type)
10533 return DW_ACCESS_private;
10534 else
10535 return DW_ACCESS_public;
10536 }
10537 }
10538
10539 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10540 offset. If the attribute was not found return 0, otherwise return
10541 1. If it was found but could not properly be handled, set *OFFSET
10542 to 0. */
10543
10544 static int
10545 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10546 LONGEST *offset)
10547 {
10548 struct attribute *attr;
10549
10550 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10551 if (attr != NULL)
10552 {
10553 *offset = 0;
10554
10555 /* Note that we do not check for a section offset first here.
10556 This is because DW_AT_data_member_location is new in DWARF 4,
10557 so if we see it, we can assume that a constant form is really
10558 a constant and not a section offset. */
10559 if (attr_form_is_constant (attr))
10560 *offset = dwarf2_get_attr_constant_value (attr, 0);
10561 else if (attr_form_is_section_offset (attr))
10562 dwarf2_complex_location_expr_complaint ();
10563 else if (attr_form_is_block (attr))
10564 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10565 else
10566 dwarf2_complex_location_expr_complaint ();
10567
10568 return 1;
10569 }
10570
10571 return 0;
10572 }
10573
10574 /* Add an aggregate field to the field list. */
10575
10576 static void
10577 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10578 struct dwarf2_cu *cu)
10579 {
10580 struct objfile *objfile = cu->objfile;
10581 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10582 struct nextfield *new_field;
10583 struct attribute *attr;
10584 struct field *fp;
10585 const char *fieldname = "";
10586
10587 /* Allocate a new field list entry and link it in. */
10588 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10589 make_cleanup (xfree, new_field);
10590 memset (new_field, 0, sizeof (struct nextfield));
10591
10592 if (die->tag == DW_TAG_inheritance)
10593 {
10594 new_field->next = fip->baseclasses;
10595 fip->baseclasses = new_field;
10596 }
10597 else
10598 {
10599 new_field->next = fip->fields;
10600 fip->fields = new_field;
10601 }
10602 fip->nfields++;
10603
10604 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10605 if (attr)
10606 new_field->accessibility = DW_UNSND (attr);
10607 else
10608 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10609 if (new_field->accessibility != DW_ACCESS_public)
10610 fip->non_public_fields = 1;
10611
10612 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10613 if (attr)
10614 new_field->virtuality = DW_UNSND (attr);
10615 else
10616 new_field->virtuality = DW_VIRTUALITY_none;
10617
10618 fp = &new_field->field;
10619
10620 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10621 {
10622 LONGEST offset;
10623
10624 /* Data member other than a C++ static data member. */
10625
10626 /* Get type of field. */
10627 fp->type = die_type (die, cu);
10628
10629 SET_FIELD_BITPOS (*fp, 0);
10630
10631 /* Get bit size of field (zero if none). */
10632 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10633 if (attr)
10634 {
10635 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10636 }
10637 else
10638 {
10639 FIELD_BITSIZE (*fp) = 0;
10640 }
10641
10642 /* Get bit offset of field. */
10643 if (handle_data_member_location (die, cu, &offset))
10644 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10645 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10646 if (attr)
10647 {
10648 if (gdbarch_bits_big_endian (gdbarch))
10649 {
10650 /* For big endian bits, the DW_AT_bit_offset gives the
10651 additional bit offset from the MSB of the containing
10652 anonymous object to the MSB of the field. We don't
10653 have to do anything special since we don't need to
10654 know the size of the anonymous object. */
10655 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10656 }
10657 else
10658 {
10659 /* For little endian bits, compute the bit offset to the
10660 MSB of the anonymous object, subtract off the number of
10661 bits from the MSB of the field to the MSB of the
10662 object, and then subtract off the number of bits of
10663 the field itself. The result is the bit offset of
10664 the LSB of the field. */
10665 int anonymous_size;
10666 int bit_offset = DW_UNSND (attr);
10667
10668 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10669 if (attr)
10670 {
10671 /* The size of the anonymous object containing
10672 the bit field is explicit, so use the
10673 indicated size (in bytes). */
10674 anonymous_size = DW_UNSND (attr);
10675 }
10676 else
10677 {
10678 /* The size of the anonymous object containing
10679 the bit field must be inferred from the type
10680 attribute of the data member containing the
10681 bit field. */
10682 anonymous_size = TYPE_LENGTH (fp->type);
10683 }
10684 SET_FIELD_BITPOS (*fp,
10685 (FIELD_BITPOS (*fp)
10686 + anonymous_size * bits_per_byte
10687 - bit_offset - FIELD_BITSIZE (*fp)));
10688 }
10689 }
10690
10691 /* Get name of field. */
10692 fieldname = dwarf2_name (die, cu);
10693 if (fieldname == NULL)
10694 fieldname = "";
10695
10696 /* The name is already allocated along with this objfile, so we don't
10697 need to duplicate it for the type. */
10698 fp->name = fieldname;
10699
10700 /* Change accessibility for artificial fields (e.g. virtual table
10701 pointer or virtual base class pointer) to private. */
10702 if (dwarf2_attr (die, DW_AT_artificial, cu))
10703 {
10704 FIELD_ARTIFICIAL (*fp) = 1;
10705 new_field->accessibility = DW_ACCESS_private;
10706 fip->non_public_fields = 1;
10707 }
10708 }
10709 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10710 {
10711 /* C++ static member. */
10712
10713 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10714 is a declaration, but all versions of G++ as of this writing
10715 (so through at least 3.2.1) incorrectly generate
10716 DW_TAG_variable tags. */
10717
10718 const char *physname;
10719
10720 /* Get name of field. */
10721 fieldname = dwarf2_name (die, cu);
10722 if (fieldname == NULL)
10723 return;
10724
10725 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10726 if (attr
10727 /* Only create a symbol if this is an external value.
10728 new_symbol checks this and puts the value in the global symbol
10729 table, which we want. If it is not external, new_symbol
10730 will try to put the value in cu->list_in_scope which is wrong. */
10731 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10732 {
10733 /* A static const member, not much different than an enum as far as
10734 we're concerned, except that we can support more types. */
10735 new_symbol (die, NULL, cu);
10736 }
10737
10738 /* Get physical name. */
10739 physname = dwarf2_physname (fieldname, die, cu);
10740
10741 /* The name is already allocated along with this objfile, so we don't
10742 need to duplicate it for the type. */
10743 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10744 FIELD_TYPE (*fp) = die_type (die, cu);
10745 FIELD_NAME (*fp) = fieldname;
10746 }
10747 else if (die->tag == DW_TAG_inheritance)
10748 {
10749 LONGEST offset;
10750
10751 /* C++ base class field. */
10752 if (handle_data_member_location (die, cu, &offset))
10753 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10754 FIELD_BITSIZE (*fp) = 0;
10755 FIELD_TYPE (*fp) = die_type (die, cu);
10756 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10757 fip->nbaseclasses++;
10758 }
10759 }
10760
10761 /* Add a typedef defined in the scope of the FIP's class. */
10762
10763 static void
10764 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10765 struct dwarf2_cu *cu)
10766 {
10767 struct objfile *objfile = cu->objfile;
10768 struct typedef_field_list *new_field;
10769 struct attribute *attr;
10770 struct typedef_field *fp;
10771 char *fieldname = "";
10772
10773 /* Allocate a new field list entry and link it in. */
10774 new_field = xzalloc (sizeof (*new_field));
10775 make_cleanup (xfree, new_field);
10776
10777 gdb_assert (die->tag == DW_TAG_typedef);
10778
10779 fp = &new_field->field;
10780
10781 /* Get name of field. */
10782 fp->name = dwarf2_name (die, cu);
10783 if (fp->name == NULL)
10784 return;
10785
10786 fp->type = read_type_die (die, cu);
10787
10788 new_field->next = fip->typedef_field_list;
10789 fip->typedef_field_list = new_field;
10790 fip->typedef_field_list_count++;
10791 }
10792
10793 /* Create the vector of fields, and attach it to the type. */
10794
10795 static void
10796 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10797 struct dwarf2_cu *cu)
10798 {
10799 int nfields = fip->nfields;
10800
10801 /* Record the field count, allocate space for the array of fields,
10802 and create blank accessibility bitfields if necessary. */
10803 TYPE_NFIELDS (type) = nfields;
10804 TYPE_FIELDS (type) = (struct field *)
10805 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10806 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10807
10808 if (fip->non_public_fields && cu->language != language_ada)
10809 {
10810 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10811
10812 TYPE_FIELD_PRIVATE_BITS (type) =
10813 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10814 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10815
10816 TYPE_FIELD_PROTECTED_BITS (type) =
10817 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10818 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10819
10820 TYPE_FIELD_IGNORE_BITS (type) =
10821 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10822 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10823 }
10824
10825 /* If the type has baseclasses, allocate and clear a bit vector for
10826 TYPE_FIELD_VIRTUAL_BITS. */
10827 if (fip->nbaseclasses && cu->language != language_ada)
10828 {
10829 int num_bytes = B_BYTES (fip->nbaseclasses);
10830 unsigned char *pointer;
10831
10832 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10833 pointer = TYPE_ALLOC (type, num_bytes);
10834 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10835 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10836 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10837 }
10838
10839 /* Copy the saved-up fields into the field vector. Start from the head of
10840 the list, adding to the tail of the field array, so that they end up in
10841 the same order in the array in which they were added to the list. */
10842 while (nfields-- > 0)
10843 {
10844 struct nextfield *fieldp;
10845
10846 if (fip->fields)
10847 {
10848 fieldp = fip->fields;
10849 fip->fields = fieldp->next;
10850 }
10851 else
10852 {
10853 fieldp = fip->baseclasses;
10854 fip->baseclasses = fieldp->next;
10855 }
10856
10857 TYPE_FIELD (type, nfields) = fieldp->field;
10858 switch (fieldp->accessibility)
10859 {
10860 case DW_ACCESS_private:
10861 if (cu->language != language_ada)
10862 SET_TYPE_FIELD_PRIVATE (type, nfields);
10863 break;
10864
10865 case DW_ACCESS_protected:
10866 if (cu->language != language_ada)
10867 SET_TYPE_FIELD_PROTECTED (type, nfields);
10868 break;
10869
10870 case DW_ACCESS_public:
10871 break;
10872
10873 default:
10874 /* Unknown accessibility. Complain and treat it as public. */
10875 {
10876 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10877 fieldp->accessibility);
10878 }
10879 break;
10880 }
10881 if (nfields < fip->nbaseclasses)
10882 {
10883 switch (fieldp->virtuality)
10884 {
10885 case DW_VIRTUALITY_virtual:
10886 case DW_VIRTUALITY_pure_virtual:
10887 if (cu->language == language_ada)
10888 error (_("unexpected virtuality in component of Ada type"));
10889 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10890 break;
10891 }
10892 }
10893 }
10894 }
10895
10896 /* Return true if this member function is a constructor, false
10897 otherwise. */
10898
10899 static int
10900 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10901 {
10902 const char *fieldname;
10903 const char *typename;
10904 int len;
10905
10906 if (die->parent == NULL)
10907 return 0;
10908
10909 if (die->parent->tag != DW_TAG_structure_type
10910 && die->parent->tag != DW_TAG_union_type
10911 && die->parent->tag != DW_TAG_class_type)
10912 return 0;
10913
10914 fieldname = dwarf2_name (die, cu);
10915 typename = dwarf2_name (die->parent, cu);
10916 if (fieldname == NULL || typename == NULL)
10917 return 0;
10918
10919 len = strlen (fieldname);
10920 return (strncmp (fieldname, typename, len) == 0
10921 && (typename[len] == '\0' || typename[len] == '<'));
10922 }
10923
10924 /* Add a member function to the proper fieldlist. */
10925
10926 static void
10927 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10928 struct type *type, struct dwarf2_cu *cu)
10929 {
10930 struct objfile *objfile = cu->objfile;
10931 struct attribute *attr;
10932 struct fnfieldlist *flp;
10933 int i;
10934 struct fn_field *fnp;
10935 const char *fieldname;
10936 struct nextfnfield *new_fnfield;
10937 struct type *this_type;
10938 enum dwarf_access_attribute accessibility;
10939
10940 if (cu->language == language_ada)
10941 error (_("unexpected member function in Ada type"));
10942
10943 /* Get name of member function. */
10944 fieldname = dwarf2_name (die, cu);
10945 if (fieldname == NULL)
10946 return;
10947
10948 /* Look up member function name in fieldlist. */
10949 for (i = 0; i < fip->nfnfields; i++)
10950 {
10951 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10952 break;
10953 }
10954
10955 /* Create new list element if necessary. */
10956 if (i < fip->nfnfields)
10957 flp = &fip->fnfieldlists[i];
10958 else
10959 {
10960 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10961 {
10962 fip->fnfieldlists = (struct fnfieldlist *)
10963 xrealloc (fip->fnfieldlists,
10964 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10965 * sizeof (struct fnfieldlist));
10966 if (fip->nfnfields == 0)
10967 make_cleanup (free_current_contents, &fip->fnfieldlists);
10968 }
10969 flp = &fip->fnfieldlists[fip->nfnfields];
10970 flp->name = fieldname;
10971 flp->length = 0;
10972 flp->head = NULL;
10973 i = fip->nfnfields++;
10974 }
10975
10976 /* Create a new member function field and chain it to the field list
10977 entry. */
10978 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10979 make_cleanup (xfree, new_fnfield);
10980 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10981 new_fnfield->next = flp->head;
10982 flp->head = new_fnfield;
10983 flp->length++;
10984
10985 /* Fill in the member function field info. */
10986 fnp = &new_fnfield->fnfield;
10987
10988 /* Delay processing of the physname until later. */
10989 if (cu->language == language_cplus || cu->language == language_java)
10990 {
10991 add_to_method_list (type, i, flp->length - 1, fieldname,
10992 die, cu);
10993 }
10994 else
10995 {
10996 const char *physname = dwarf2_physname (fieldname, die, cu);
10997 fnp->physname = physname ? physname : "";
10998 }
10999
11000 fnp->type = alloc_type (objfile);
11001 this_type = read_type_die (die, cu);
11002 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11003 {
11004 int nparams = TYPE_NFIELDS (this_type);
11005
11006 /* TYPE is the domain of this method, and THIS_TYPE is the type
11007 of the method itself (TYPE_CODE_METHOD). */
11008 smash_to_method_type (fnp->type, type,
11009 TYPE_TARGET_TYPE (this_type),
11010 TYPE_FIELDS (this_type),
11011 TYPE_NFIELDS (this_type),
11012 TYPE_VARARGS (this_type));
11013
11014 /* Handle static member functions.
11015 Dwarf2 has no clean way to discern C++ static and non-static
11016 member functions. G++ helps GDB by marking the first
11017 parameter for non-static member functions (which is the this
11018 pointer) as artificial. We obtain this information from
11019 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11020 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11021 fnp->voffset = VOFFSET_STATIC;
11022 }
11023 else
11024 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11025 dwarf2_full_name (fieldname, die, cu));
11026
11027 /* Get fcontext from DW_AT_containing_type if present. */
11028 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11029 fnp->fcontext = die_containing_type (die, cu);
11030
11031 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11032 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11033
11034 /* Get accessibility. */
11035 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11036 if (attr)
11037 accessibility = DW_UNSND (attr);
11038 else
11039 accessibility = dwarf2_default_access_attribute (die, cu);
11040 switch (accessibility)
11041 {
11042 case DW_ACCESS_private:
11043 fnp->is_private = 1;
11044 break;
11045 case DW_ACCESS_protected:
11046 fnp->is_protected = 1;
11047 break;
11048 }
11049
11050 /* Check for artificial methods. */
11051 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11052 if (attr && DW_UNSND (attr) != 0)
11053 fnp->is_artificial = 1;
11054
11055 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11056
11057 /* Get index in virtual function table if it is a virtual member
11058 function. For older versions of GCC, this is an offset in the
11059 appropriate virtual table, as specified by DW_AT_containing_type.
11060 For everyone else, it is an expression to be evaluated relative
11061 to the object address. */
11062
11063 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11064 if (attr)
11065 {
11066 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11067 {
11068 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11069 {
11070 /* Old-style GCC. */
11071 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11072 }
11073 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11074 || (DW_BLOCK (attr)->size > 1
11075 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11076 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11077 {
11078 struct dwarf_block blk;
11079 int offset;
11080
11081 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11082 ? 1 : 2);
11083 blk.size = DW_BLOCK (attr)->size - offset;
11084 blk.data = DW_BLOCK (attr)->data + offset;
11085 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11086 if ((fnp->voffset % cu->header.addr_size) != 0)
11087 dwarf2_complex_location_expr_complaint ();
11088 else
11089 fnp->voffset /= cu->header.addr_size;
11090 fnp->voffset += 2;
11091 }
11092 else
11093 dwarf2_complex_location_expr_complaint ();
11094
11095 if (!fnp->fcontext)
11096 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11097 }
11098 else if (attr_form_is_section_offset (attr))
11099 {
11100 dwarf2_complex_location_expr_complaint ();
11101 }
11102 else
11103 {
11104 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11105 fieldname);
11106 }
11107 }
11108 else
11109 {
11110 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11111 if (attr && DW_UNSND (attr))
11112 {
11113 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11114 complaint (&symfile_complaints,
11115 _("Member function \"%s\" (offset %d) is virtual "
11116 "but the vtable offset is not specified"),
11117 fieldname, die->offset.sect_off);
11118 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11119 TYPE_CPLUS_DYNAMIC (type) = 1;
11120 }
11121 }
11122 }
11123
11124 /* Create the vector of member function fields, and attach it to the type. */
11125
11126 static void
11127 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11128 struct dwarf2_cu *cu)
11129 {
11130 struct fnfieldlist *flp;
11131 int i;
11132
11133 if (cu->language == language_ada)
11134 error (_("unexpected member functions in Ada type"));
11135
11136 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11137 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11138 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11139
11140 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11141 {
11142 struct nextfnfield *nfp = flp->head;
11143 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11144 int k;
11145
11146 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11147 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11148 fn_flp->fn_fields = (struct fn_field *)
11149 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11150 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11151 fn_flp->fn_fields[k] = nfp->fnfield;
11152 }
11153
11154 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11155 }
11156
11157 /* Returns non-zero if NAME is the name of a vtable member in CU's
11158 language, zero otherwise. */
11159 static int
11160 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11161 {
11162 static const char vptr[] = "_vptr";
11163 static const char vtable[] = "vtable";
11164
11165 /* Look for the C++ and Java forms of the vtable. */
11166 if ((cu->language == language_java
11167 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11168 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11169 && is_cplus_marker (name[sizeof (vptr) - 1])))
11170 return 1;
11171
11172 return 0;
11173 }
11174
11175 /* GCC outputs unnamed structures that are really pointers to member
11176 functions, with the ABI-specified layout. If TYPE describes
11177 such a structure, smash it into a member function type.
11178
11179 GCC shouldn't do this; it should just output pointer to member DIEs.
11180 This is GCC PR debug/28767. */
11181
11182 static void
11183 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11184 {
11185 struct type *pfn_type, *domain_type, *new_type;
11186
11187 /* Check for a structure with no name and two children. */
11188 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11189 return;
11190
11191 /* Check for __pfn and __delta members. */
11192 if (TYPE_FIELD_NAME (type, 0) == NULL
11193 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11194 || TYPE_FIELD_NAME (type, 1) == NULL
11195 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11196 return;
11197
11198 /* Find the type of the method. */
11199 pfn_type = TYPE_FIELD_TYPE (type, 0);
11200 if (pfn_type == NULL
11201 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11202 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11203 return;
11204
11205 /* Look for the "this" argument. */
11206 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11207 if (TYPE_NFIELDS (pfn_type) == 0
11208 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11209 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11210 return;
11211
11212 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11213 new_type = alloc_type (objfile);
11214 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11215 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11216 TYPE_VARARGS (pfn_type));
11217 smash_to_methodptr_type (type, new_type);
11218 }
11219
11220 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11221 (icc). */
11222
11223 static int
11224 producer_is_icc (struct dwarf2_cu *cu)
11225 {
11226 if (!cu->checked_producer)
11227 check_producer (cu);
11228
11229 return cu->producer_is_icc;
11230 }
11231
11232 /* Called when we find the DIE that starts a structure or union scope
11233 (definition) to create a type for the structure or union. Fill in
11234 the type's name and general properties; the members will not be
11235 processed until process_structure_type.
11236
11237 NOTE: we need to call these functions regardless of whether or not the
11238 DIE has a DW_AT_name attribute, since it might be an anonymous
11239 structure or union. This gets the type entered into our set of
11240 user defined types.
11241
11242 However, if the structure is incomplete (an opaque struct/union)
11243 then suppress creating a symbol table entry for it since gdb only
11244 wants to find the one with the complete definition. Note that if
11245 it is complete, we just call new_symbol, which does it's own
11246 checking about whether the struct/union is anonymous or not (and
11247 suppresses creating a symbol table entry itself). */
11248
11249 static struct type *
11250 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11251 {
11252 struct objfile *objfile = cu->objfile;
11253 struct type *type;
11254 struct attribute *attr;
11255 const char *name;
11256
11257 /* If the definition of this type lives in .debug_types, read that type.
11258 Don't follow DW_AT_specification though, that will take us back up
11259 the chain and we want to go down. */
11260 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11261 if (attr)
11262 {
11263 struct dwarf2_cu *type_cu = cu;
11264 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11265
11266 /* We could just recurse on read_structure_type, but we need to call
11267 get_die_type to ensure only one type for this DIE is created.
11268 This is important, for example, because for c++ classes we need
11269 TYPE_NAME set which is only done by new_symbol. Blech. */
11270 type = read_type_die (type_die, type_cu);
11271
11272 /* TYPE_CU may not be the same as CU.
11273 Ensure TYPE is recorded in CU's type_hash table. */
11274 return set_die_type (die, type, cu);
11275 }
11276
11277 type = alloc_type (objfile);
11278 INIT_CPLUS_SPECIFIC (type);
11279
11280 name = dwarf2_name (die, cu);
11281 if (name != NULL)
11282 {
11283 if (cu->language == language_cplus
11284 || cu->language == language_java)
11285 {
11286 const char *full_name = dwarf2_full_name (name, die, cu);
11287
11288 /* dwarf2_full_name might have already finished building the DIE's
11289 type. If so, there is no need to continue. */
11290 if (get_die_type (die, cu) != NULL)
11291 return get_die_type (die, cu);
11292
11293 TYPE_TAG_NAME (type) = full_name;
11294 if (die->tag == DW_TAG_structure_type
11295 || die->tag == DW_TAG_class_type)
11296 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11297 }
11298 else
11299 {
11300 /* The name is already allocated along with this objfile, so
11301 we don't need to duplicate it for the type. */
11302 TYPE_TAG_NAME (type) = name;
11303 if (die->tag == DW_TAG_class_type)
11304 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11305 }
11306 }
11307
11308 if (die->tag == DW_TAG_structure_type)
11309 {
11310 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11311 }
11312 else if (die->tag == DW_TAG_union_type)
11313 {
11314 TYPE_CODE (type) = TYPE_CODE_UNION;
11315 }
11316 else
11317 {
11318 TYPE_CODE (type) = TYPE_CODE_CLASS;
11319 }
11320
11321 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11322 TYPE_DECLARED_CLASS (type) = 1;
11323
11324 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11325 if (attr)
11326 {
11327 TYPE_LENGTH (type) = DW_UNSND (attr);
11328 }
11329 else
11330 {
11331 TYPE_LENGTH (type) = 0;
11332 }
11333
11334 if (producer_is_icc (cu))
11335 {
11336 /* ICC does not output the required DW_AT_declaration
11337 on incomplete types, but gives them a size of zero. */
11338 }
11339 else
11340 TYPE_STUB_SUPPORTED (type) = 1;
11341
11342 if (die_is_declaration (die, cu))
11343 TYPE_STUB (type) = 1;
11344 else if (attr == NULL && die->child == NULL
11345 && producer_is_realview (cu->producer))
11346 /* RealView does not output the required DW_AT_declaration
11347 on incomplete types. */
11348 TYPE_STUB (type) = 1;
11349
11350 /* We need to add the type field to the die immediately so we don't
11351 infinitely recurse when dealing with pointers to the structure
11352 type within the structure itself. */
11353 set_die_type (die, type, cu);
11354
11355 /* set_die_type should be already done. */
11356 set_descriptive_type (type, die, cu);
11357
11358 return type;
11359 }
11360
11361 /* Finish creating a structure or union type, including filling in
11362 its members and creating a symbol for it. */
11363
11364 static void
11365 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11366 {
11367 struct objfile *objfile = cu->objfile;
11368 struct die_info *child_die = die->child;
11369 struct type *type;
11370
11371 type = get_die_type (die, cu);
11372 if (type == NULL)
11373 type = read_structure_type (die, cu);
11374
11375 if (die->child != NULL && ! die_is_declaration (die, cu))
11376 {
11377 struct field_info fi;
11378 struct die_info *child_die;
11379 VEC (symbolp) *template_args = NULL;
11380 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11381
11382 memset (&fi, 0, sizeof (struct field_info));
11383
11384 child_die = die->child;
11385
11386 while (child_die && child_die->tag)
11387 {
11388 if (child_die->tag == DW_TAG_member
11389 || child_die->tag == DW_TAG_variable)
11390 {
11391 /* NOTE: carlton/2002-11-05: A C++ static data member
11392 should be a DW_TAG_member that is a declaration, but
11393 all versions of G++ as of this writing (so through at
11394 least 3.2.1) incorrectly generate DW_TAG_variable
11395 tags for them instead. */
11396 dwarf2_add_field (&fi, child_die, cu);
11397 }
11398 else if (child_die->tag == DW_TAG_subprogram)
11399 {
11400 /* C++ member function. */
11401 dwarf2_add_member_fn (&fi, child_die, type, cu);
11402 }
11403 else if (child_die->tag == DW_TAG_inheritance)
11404 {
11405 /* C++ base class field. */
11406 dwarf2_add_field (&fi, child_die, cu);
11407 }
11408 else if (child_die->tag == DW_TAG_typedef)
11409 dwarf2_add_typedef (&fi, child_die, cu);
11410 else if (child_die->tag == DW_TAG_template_type_param
11411 || child_die->tag == DW_TAG_template_value_param)
11412 {
11413 struct symbol *arg = new_symbol (child_die, NULL, cu);
11414
11415 if (arg != NULL)
11416 VEC_safe_push (symbolp, template_args, arg);
11417 }
11418
11419 child_die = sibling_die (child_die);
11420 }
11421
11422 /* Attach template arguments to type. */
11423 if (! VEC_empty (symbolp, template_args))
11424 {
11425 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11426 TYPE_N_TEMPLATE_ARGUMENTS (type)
11427 = VEC_length (symbolp, template_args);
11428 TYPE_TEMPLATE_ARGUMENTS (type)
11429 = obstack_alloc (&objfile->objfile_obstack,
11430 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11431 * sizeof (struct symbol *)));
11432 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11433 VEC_address (symbolp, template_args),
11434 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11435 * sizeof (struct symbol *)));
11436 VEC_free (symbolp, template_args);
11437 }
11438
11439 /* Attach fields and member functions to the type. */
11440 if (fi.nfields)
11441 dwarf2_attach_fields_to_type (&fi, type, cu);
11442 if (fi.nfnfields)
11443 {
11444 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11445
11446 /* Get the type which refers to the base class (possibly this
11447 class itself) which contains the vtable pointer for the current
11448 class from the DW_AT_containing_type attribute. This use of
11449 DW_AT_containing_type is a GNU extension. */
11450
11451 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11452 {
11453 struct type *t = die_containing_type (die, cu);
11454
11455 TYPE_VPTR_BASETYPE (type) = t;
11456 if (type == t)
11457 {
11458 int i;
11459
11460 /* Our own class provides vtbl ptr. */
11461 for (i = TYPE_NFIELDS (t) - 1;
11462 i >= TYPE_N_BASECLASSES (t);
11463 --i)
11464 {
11465 const char *fieldname = TYPE_FIELD_NAME (t, i);
11466
11467 if (is_vtable_name (fieldname, cu))
11468 {
11469 TYPE_VPTR_FIELDNO (type) = i;
11470 break;
11471 }
11472 }
11473
11474 /* Complain if virtual function table field not found. */
11475 if (i < TYPE_N_BASECLASSES (t))
11476 complaint (&symfile_complaints,
11477 _("virtual function table pointer "
11478 "not found when defining class '%s'"),
11479 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11480 "");
11481 }
11482 else
11483 {
11484 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11485 }
11486 }
11487 else if (cu->producer
11488 && strncmp (cu->producer,
11489 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11490 {
11491 /* The IBM XLC compiler does not provide direct indication
11492 of the containing type, but the vtable pointer is
11493 always named __vfp. */
11494
11495 int i;
11496
11497 for (i = TYPE_NFIELDS (type) - 1;
11498 i >= TYPE_N_BASECLASSES (type);
11499 --i)
11500 {
11501 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11502 {
11503 TYPE_VPTR_FIELDNO (type) = i;
11504 TYPE_VPTR_BASETYPE (type) = type;
11505 break;
11506 }
11507 }
11508 }
11509 }
11510
11511 /* Copy fi.typedef_field_list linked list elements content into the
11512 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11513 if (fi.typedef_field_list)
11514 {
11515 int i = fi.typedef_field_list_count;
11516
11517 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11518 TYPE_TYPEDEF_FIELD_ARRAY (type)
11519 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11520 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11521
11522 /* Reverse the list order to keep the debug info elements order. */
11523 while (--i >= 0)
11524 {
11525 struct typedef_field *dest, *src;
11526
11527 dest = &TYPE_TYPEDEF_FIELD (type, i);
11528 src = &fi.typedef_field_list->field;
11529 fi.typedef_field_list = fi.typedef_field_list->next;
11530 *dest = *src;
11531 }
11532 }
11533
11534 do_cleanups (back_to);
11535
11536 if (HAVE_CPLUS_STRUCT (type))
11537 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11538 }
11539
11540 quirk_gcc_member_function_pointer (type, objfile);
11541
11542 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11543 snapshots) has been known to create a die giving a declaration
11544 for a class that has, as a child, a die giving a definition for a
11545 nested class. So we have to process our children even if the
11546 current die is a declaration. Normally, of course, a declaration
11547 won't have any children at all. */
11548
11549 while (child_die != NULL && child_die->tag)
11550 {
11551 if (child_die->tag == DW_TAG_member
11552 || child_die->tag == DW_TAG_variable
11553 || child_die->tag == DW_TAG_inheritance
11554 || child_die->tag == DW_TAG_template_value_param
11555 || child_die->tag == DW_TAG_template_type_param)
11556 {
11557 /* Do nothing. */
11558 }
11559 else
11560 process_die (child_die, cu);
11561
11562 child_die = sibling_die (child_die);
11563 }
11564
11565 /* Do not consider external references. According to the DWARF standard,
11566 these DIEs are identified by the fact that they have no byte_size
11567 attribute, and a declaration attribute. */
11568 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11569 || !die_is_declaration (die, cu))
11570 new_symbol (die, type, cu);
11571 }
11572
11573 /* Given a DW_AT_enumeration_type die, set its type. We do not
11574 complete the type's fields yet, or create any symbols. */
11575
11576 static struct type *
11577 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11578 {
11579 struct objfile *objfile = cu->objfile;
11580 struct type *type;
11581 struct attribute *attr;
11582 const char *name;
11583
11584 /* If the definition of this type lives in .debug_types, read that type.
11585 Don't follow DW_AT_specification though, that will take us back up
11586 the chain and we want to go down. */
11587 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11588 if (attr)
11589 {
11590 struct dwarf2_cu *type_cu = cu;
11591 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11592
11593 type = read_type_die (type_die, type_cu);
11594
11595 /* TYPE_CU may not be the same as CU.
11596 Ensure TYPE is recorded in CU's type_hash table. */
11597 return set_die_type (die, type, cu);
11598 }
11599
11600 type = alloc_type (objfile);
11601
11602 TYPE_CODE (type) = TYPE_CODE_ENUM;
11603 name = dwarf2_full_name (NULL, die, cu);
11604 if (name != NULL)
11605 TYPE_TAG_NAME (type) = name;
11606
11607 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11608 if (attr)
11609 {
11610 TYPE_LENGTH (type) = DW_UNSND (attr);
11611 }
11612 else
11613 {
11614 TYPE_LENGTH (type) = 0;
11615 }
11616
11617 /* The enumeration DIE can be incomplete. In Ada, any type can be
11618 declared as private in the package spec, and then defined only
11619 inside the package body. Such types are known as Taft Amendment
11620 Types. When another package uses such a type, an incomplete DIE
11621 may be generated by the compiler. */
11622 if (die_is_declaration (die, cu))
11623 TYPE_STUB (type) = 1;
11624
11625 return set_die_type (die, type, cu);
11626 }
11627
11628 /* Given a pointer to a die which begins an enumeration, process all
11629 the dies that define the members of the enumeration, and create the
11630 symbol for the enumeration type.
11631
11632 NOTE: We reverse the order of the element list. */
11633
11634 static void
11635 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11636 {
11637 struct type *this_type;
11638
11639 this_type = get_die_type (die, cu);
11640 if (this_type == NULL)
11641 this_type = read_enumeration_type (die, cu);
11642
11643 if (die->child != NULL)
11644 {
11645 struct die_info *child_die;
11646 struct symbol *sym;
11647 struct field *fields = NULL;
11648 int num_fields = 0;
11649 int unsigned_enum = 1;
11650 const char *name;
11651 int flag_enum = 1;
11652 ULONGEST mask = 0;
11653
11654 child_die = die->child;
11655 while (child_die && child_die->tag)
11656 {
11657 if (child_die->tag != DW_TAG_enumerator)
11658 {
11659 process_die (child_die, cu);
11660 }
11661 else
11662 {
11663 name = dwarf2_name (child_die, cu);
11664 if (name)
11665 {
11666 sym = new_symbol (child_die, this_type, cu);
11667 if (SYMBOL_VALUE (sym) < 0)
11668 {
11669 unsigned_enum = 0;
11670 flag_enum = 0;
11671 }
11672 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11673 flag_enum = 0;
11674 else
11675 mask |= SYMBOL_VALUE (sym);
11676
11677 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11678 {
11679 fields = (struct field *)
11680 xrealloc (fields,
11681 (num_fields + DW_FIELD_ALLOC_CHUNK)
11682 * sizeof (struct field));
11683 }
11684
11685 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11686 FIELD_TYPE (fields[num_fields]) = NULL;
11687 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11688 FIELD_BITSIZE (fields[num_fields]) = 0;
11689
11690 num_fields++;
11691 }
11692 }
11693
11694 child_die = sibling_die (child_die);
11695 }
11696
11697 if (num_fields)
11698 {
11699 TYPE_NFIELDS (this_type) = num_fields;
11700 TYPE_FIELDS (this_type) = (struct field *)
11701 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11702 memcpy (TYPE_FIELDS (this_type), fields,
11703 sizeof (struct field) * num_fields);
11704 xfree (fields);
11705 }
11706 if (unsigned_enum)
11707 TYPE_UNSIGNED (this_type) = 1;
11708 if (flag_enum)
11709 TYPE_FLAG_ENUM (this_type) = 1;
11710 }
11711
11712 /* If we are reading an enum from a .debug_types unit, and the enum
11713 is a declaration, and the enum is not the signatured type in the
11714 unit, then we do not want to add a symbol for it. Adding a
11715 symbol would in some cases obscure the true definition of the
11716 enum, giving users an incomplete type when the definition is
11717 actually available. Note that we do not want to do this for all
11718 enums which are just declarations, because C++0x allows forward
11719 enum declarations. */
11720 if (cu->per_cu->is_debug_types
11721 && die_is_declaration (die, cu))
11722 {
11723 struct signatured_type *sig_type;
11724
11725 sig_type
11726 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11727 cu->per_cu->section,
11728 cu->per_cu->offset);
11729 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11730 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11731 return;
11732 }
11733
11734 new_symbol (die, this_type, cu);
11735 }
11736
11737 /* Extract all information from a DW_TAG_array_type DIE and put it in
11738 the DIE's type field. For now, this only handles one dimensional
11739 arrays. */
11740
11741 static struct type *
11742 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11743 {
11744 struct objfile *objfile = cu->objfile;
11745 struct die_info *child_die;
11746 struct type *type;
11747 struct type *element_type, *range_type, *index_type;
11748 struct type **range_types = NULL;
11749 struct attribute *attr;
11750 int ndim = 0;
11751 struct cleanup *back_to;
11752 const char *name;
11753
11754 element_type = die_type (die, cu);
11755
11756 /* The die_type call above may have already set the type for this DIE. */
11757 type = get_die_type (die, cu);
11758 if (type)
11759 return type;
11760
11761 /* Irix 6.2 native cc creates array types without children for
11762 arrays with unspecified length. */
11763 if (die->child == NULL)
11764 {
11765 index_type = objfile_type (objfile)->builtin_int;
11766 range_type = create_range_type (NULL, index_type, 0, -1);
11767 type = create_array_type (NULL, element_type, range_type);
11768 return set_die_type (die, type, cu);
11769 }
11770
11771 back_to = make_cleanup (null_cleanup, NULL);
11772 child_die = die->child;
11773 while (child_die && child_die->tag)
11774 {
11775 if (child_die->tag == DW_TAG_subrange_type)
11776 {
11777 struct type *child_type = read_type_die (child_die, cu);
11778
11779 if (child_type != NULL)
11780 {
11781 /* The range type was succesfully read. Save it for the
11782 array type creation. */
11783 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11784 {
11785 range_types = (struct type **)
11786 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11787 * sizeof (struct type *));
11788 if (ndim == 0)
11789 make_cleanup (free_current_contents, &range_types);
11790 }
11791 range_types[ndim++] = child_type;
11792 }
11793 }
11794 child_die = sibling_die (child_die);
11795 }
11796
11797 /* Dwarf2 dimensions are output from left to right, create the
11798 necessary array types in backwards order. */
11799
11800 type = element_type;
11801
11802 if (read_array_order (die, cu) == DW_ORD_col_major)
11803 {
11804 int i = 0;
11805
11806 while (i < ndim)
11807 type = create_array_type (NULL, type, range_types[i++]);
11808 }
11809 else
11810 {
11811 while (ndim-- > 0)
11812 type = create_array_type (NULL, type, range_types[ndim]);
11813 }
11814
11815 /* Understand Dwarf2 support for vector types (like they occur on
11816 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11817 array type. This is not part of the Dwarf2/3 standard yet, but a
11818 custom vendor extension. The main difference between a regular
11819 array and the vector variant is that vectors are passed by value
11820 to functions. */
11821 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11822 if (attr)
11823 make_vector_type (type);
11824
11825 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11826 implementation may choose to implement triple vectors using this
11827 attribute. */
11828 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11829 if (attr)
11830 {
11831 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11832 TYPE_LENGTH (type) = DW_UNSND (attr);
11833 else
11834 complaint (&symfile_complaints,
11835 _("DW_AT_byte_size for array type smaller "
11836 "than the total size of elements"));
11837 }
11838
11839 name = dwarf2_name (die, cu);
11840 if (name)
11841 TYPE_NAME (type) = name;
11842
11843 /* Install the type in the die. */
11844 set_die_type (die, type, cu);
11845
11846 /* set_die_type should be already done. */
11847 set_descriptive_type (type, die, cu);
11848
11849 do_cleanups (back_to);
11850
11851 return type;
11852 }
11853
11854 static enum dwarf_array_dim_ordering
11855 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11856 {
11857 struct attribute *attr;
11858
11859 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11860
11861 if (attr) return DW_SND (attr);
11862
11863 /* GNU F77 is a special case, as at 08/2004 array type info is the
11864 opposite order to the dwarf2 specification, but data is still
11865 laid out as per normal fortran.
11866
11867 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11868 version checking. */
11869
11870 if (cu->language == language_fortran
11871 && cu->producer && strstr (cu->producer, "GNU F77"))
11872 {
11873 return DW_ORD_row_major;
11874 }
11875
11876 switch (cu->language_defn->la_array_ordering)
11877 {
11878 case array_column_major:
11879 return DW_ORD_col_major;
11880 case array_row_major:
11881 default:
11882 return DW_ORD_row_major;
11883 };
11884 }
11885
11886 /* Extract all information from a DW_TAG_set_type DIE and put it in
11887 the DIE's type field. */
11888
11889 static struct type *
11890 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11891 {
11892 struct type *domain_type, *set_type;
11893 struct attribute *attr;
11894
11895 domain_type = die_type (die, cu);
11896
11897 /* The die_type call above may have already set the type for this DIE. */
11898 set_type = get_die_type (die, cu);
11899 if (set_type)
11900 return set_type;
11901
11902 set_type = create_set_type (NULL, domain_type);
11903
11904 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11905 if (attr)
11906 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11907
11908 return set_die_type (die, set_type, cu);
11909 }
11910
11911 /* A helper for read_common_block that creates a locexpr baton.
11912 SYM is the symbol which we are marking as computed.
11913 COMMON_DIE is the DIE for the common block.
11914 COMMON_LOC is the location expression attribute for the common
11915 block itself.
11916 MEMBER_LOC is the location expression attribute for the particular
11917 member of the common block that we are processing.
11918 CU is the CU from which the above come. */
11919
11920 static void
11921 mark_common_block_symbol_computed (struct symbol *sym,
11922 struct die_info *common_die,
11923 struct attribute *common_loc,
11924 struct attribute *member_loc,
11925 struct dwarf2_cu *cu)
11926 {
11927 struct objfile *objfile = dwarf2_per_objfile->objfile;
11928 struct dwarf2_locexpr_baton *baton;
11929 gdb_byte *ptr;
11930 unsigned int cu_off;
11931 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11932 LONGEST offset = 0;
11933
11934 gdb_assert (common_loc && member_loc);
11935 gdb_assert (attr_form_is_block (common_loc));
11936 gdb_assert (attr_form_is_block (member_loc)
11937 || attr_form_is_constant (member_loc));
11938
11939 baton = obstack_alloc (&objfile->objfile_obstack,
11940 sizeof (struct dwarf2_locexpr_baton));
11941 baton->per_cu = cu->per_cu;
11942 gdb_assert (baton->per_cu);
11943
11944 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11945
11946 if (attr_form_is_constant (member_loc))
11947 {
11948 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11949 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11950 }
11951 else
11952 baton->size += DW_BLOCK (member_loc)->size;
11953
11954 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11955 baton->data = ptr;
11956
11957 *ptr++ = DW_OP_call4;
11958 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11959 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11960 ptr += 4;
11961
11962 if (attr_form_is_constant (member_loc))
11963 {
11964 *ptr++ = DW_OP_addr;
11965 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11966 ptr += cu->header.addr_size;
11967 }
11968 else
11969 {
11970 /* We have to copy the data here, because DW_OP_call4 will only
11971 use a DW_AT_location attribute. */
11972 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11973 ptr += DW_BLOCK (member_loc)->size;
11974 }
11975
11976 *ptr++ = DW_OP_plus;
11977 gdb_assert (ptr - baton->data == baton->size);
11978
11979 SYMBOL_LOCATION_BATON (sym) = baton;
11980 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
11981 }
11982
11983 /* Create appropriate locally-scoped variables for all the
11984 DW_TAG_common_block entries. Also create a struct common_block
11985 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11986 is used to sepate the common blocks name namespace from regular
11987 variable names. */
11988
11989 static void
11990 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11991 {
11992 struct attribute *attr;
11993
11994 attr = dwarf2_attr (die, DW_AT_location, cu);
11995 if (attr)
11996 {
11997 /* Support the .debug_loc offsets. */
11998 if (attr_form_is_block (attr))
11999 {
12000 /* Ok. */
12001 }
12002 else if (attr_form_is_section_offset (attr))
12003 {
12004 dwarf2_complex_location_expr_complaint ();
12005 attr = NULL;
12006 }
12007 else
12008 {
12009 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12010 "common block member");
12011 attr = NULL;
12012 }
12013 }
12014
12015 if (die->child != NULL)
12016 {
12017 struct objfile *objfile = cu->objfile;
12018 struct die_info *child_die;
12019 size_t n_entries = 0, size;
12020 struct common_block *common_block;
12021 struct symbol *sym;
12022
12023 for (child_die = die->child;
12024 child_die && child_die->tag;
12025 child_die = sibling_die (child_die))
12026 ++n_entries;
12027
12028 size = (sizeof (struct common_block)
12029 + (n_entries - 1) * sizeof (struct symbol *));
12030 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12031 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12032 common_block->n_entries = 0;
12033
12034 for (child_die = die->child;
12035 child_die && child_die->tag;
12036 child_die = sibling_die (child_die))
12037 {
12038 /* Create the symbol in the DW_TAG_common_block block in the current
12039 symbol scope. */
12040 sym = new_symbol (child_die, NULL, cu);
12041 if (sym != NULL)
12042 {
12043 struct attribute *member_loc;
12044
12045 common_block->contents[common_block->n_entries++] = sym;
12046
12047 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12048 cu);
12049 if (member_loc)
12050 {
12051 /* GDB has handled this for a long time, but it is
12052 not specified by DWARF. It seems to have been
12053 emitted by gfortran at least as recently as:
12054 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12055 complaint (&symfile_complaints,
12056 _("Variable in common block has "
12057 "DW_AT_data_member_location "
12058 "- DIE at 0x%x [in module %s]"),
12059 child_die->offset.sect_off, cu->objfile->name);
12060
12061 if (attr_form_is_section_offset (member_loc))
12062 dwarf2_complex_location_expr_complaint ();
12063 else if (attr_form_is_constant (member_loc)
12064 || attr_form_is_block (member_loc))
12065 {
12066 if (attr)
12067 mark_common_block_symbol_computed (sym, die, attr,
12068 member_loc, cu);
12069 }
12070 else
12071 dwarf2_complex_location_expr_complaint ();
12072 }
12073 }
12074 }
12075
12076 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12077 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12078 }
12079 }
12080
12081 /* Create a type for a C++ namespace. */
12082
12083 static struct type *
12084 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12085 {
12086 struct objfile *objfile = cu->objfile;
12087 const char *previous_prefix, *name;
12088 int is_anonymous;
12089 struct type *type;
12090
12091 /* For extensions, reuse the type of the original namespace. */
12092 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12093 {
12094 struct die_info *ext_die;
12095 struct dwarf2_cu *ext_cu = cu;
12096
12097 ext_die = dwarf2_extension (die, &ext_cu);
12098 type = read_type_die (ext_die, ext_cu);
12099
12100 /* EXT_CU may not be the same as CU.
12101 Ensure TYPE is recorded in CU's type_hash table. */
12102 return set_die_type (die, type, cu);
12103 }
12104
12105 name = namespace_name (die, &is_anonymous, cu);
12106
12107 /* Now build the name of the current namespace. */
12108
12109 previous_prefix = determine_prefix (die, cu);
12110 if (previous_prefix[0] != '\0')
12111 name = typename_concat (&objfile->objfile_obstack,
12112 previous_prefix, name, 0, cu);
12113
12114 /* Create the type. */
12115 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12116 objfile);
12117 TYPE_NAME (type) = name;
12118 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12119
12120 return set_die_type (die, type, cu);
12121 }
12122
12123 /* Read a C++ namespace. */
12124
12125 static void
12126 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12127 {
12128 struct objfile *objfile = cu->objfile;
12129 int is_anonymous;
12130
12131 /* Add a symbol associated to this if we haven't seen the namespace
12132 before. Also, add a using directive if it's an anonymous
12133 namespace. */
12134
12135 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12136 {
12137 struct type *type;
12138
12139 type = read_type_die (die, cu);
12140 new_symbol (die, type, cu);
12141
12142 namespace_name (die, &is_anonymous, cu);
12143 if (is_anonymous)
12144 {
12145 const char *previous_prefix = determine_prefix (die, cu);
12146
12147 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12148 NULL, NULL, 0, &objfile->objfile_obstack);
12149 }
12150 }
12151
12152 if (die->child != NULL)
12153 {
12154 struct die_info *child_die = die->child;
12155
12156 while (child_die && child_die->tag)
12157 {
12158 process_die (child_die, cu);
12159 child_die = sibling_die (child_die);
12160 }
12161 }
12162 }
12163
12164 /* Read a Fortran module as type. This DIE can be only a declaration used for
12165 imported module. Still we need that type as local Fortran "use ... only"
12166 declaration imports depend on the created type in determine_prefix. */
12167
12168 static struct type *
12169 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12170 {
12171 struct objfile *objfile = cu->objfile;
12172 const char *module_name;
12173 struct type *type;
12174
12175 module_name = dwarf2_name (die, cu);
12176 if (!module_name)
12177 complaint (&symfile_complaints,
12178 _("DW_TAG_module has no name, offset 0x%x"),
12179 die->offset.sect_off);
12180 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12181
12182 /* determine_prefix uses TYPE_TAG_NAME. */
12183 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12184
12185 return set_die_type (die, type, cu);
12186 }
12187
12188 /* Read a Fortran module. */
12189
12190 static void
12191 read_module (struct die_info *die, struct dwarf2_cu *cu)
12192 {
12193 struct die_info *child_die = die->child;
12194
12195 while (child_die && child_die->tag)
12196 {
12197 process_die (child_die, cu);
12198 child_die = sibling_die (child_die);
12199 }
12200 }
12201
12202 /* Return the name of the namespace represented by DIE. Set
12203 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12204 namespace. */
12205
12206 static const char *
12207 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12208 {
12209 struct die_info *current_die;
12210 const char *name = NULL;
12211
12212 /* Loop through the extensions until we find a name. */
12213
12214 for (current_die = die;
12215 current_die != NULL;
12216 current_die = dwarf2_extension (die, &cu))
12217 {
12218 name = dwarf2_name (current_die, cu);
12219 if (name != NULL)
12220 break;
12221 }
12222
12223 /* Is it an anonymous namespace? */
12224
12225 *is_anonymous = (name == NULL);
12226 if (*is_anonymous)
12227 name = CP_ANONYMOUS_NAMESPACE_STR;
12228
12229 return name;
12230 }
12231
12232 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12233 the user defined type vector. */
12234
12235 static struct type *
12236 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12237 {
12238 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12239 struct comp_unit_head *cu_header = &cu->header;
12240 struct type *type;
12241 struct attribute *attr_byte_size;
12242 struct attribute *attr_address_class;
12243 int byte_size, addr_class;
12244 struct type *target_type;
12245
12246 target_type = die_type (die, cu);
12247
12248 /* The die_type call above may have already set the type for this DIE. */
12249 type = get_die_type (die, cu);
12250 if (type)
12251 return type;
12252
12253 type = lookup_pointer_type (target_type);
12254
12255 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12256 if (attr_byte_size)
12257 byte_size = DW_UNSND (attr_byte_size);
12258 else
12259 byte_size = cu_header->addr_size;
12260
12261 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12262 if (attr_address_class)
12263 addr_class = DW_UNSND (attr_address_class);
12264 else
12265 addr_class = DW_ADDR_none;
12266
12267 /* If the pointer size or address class is different than the
12268 default, create a type variant marked as such and set the
12269 length accordingly. */
12270 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12271 {
12272 if (gdbarch_address_class_type_flags_p (gdbarch))
12273 {
12274 int type_flags;
12275
12276 type_flags = gdbarch_address_class_type_flags
12277 (gdbarch, byte_size, addr_class);
12278 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12279 == 0);
12280 type = make_type_with_address_space (type, type_flags);
12281 }
12282 else if (TYPE_LENGTH (type) != byte_size)
12283 {
12284 complaint (&symfile_complaints,
12285 _("invalid pointer size %d"), byte_size);
12286 }
12287 else
12288 {
12289 /* Should we also complain about unhandled address classes? */
12290 }
12291 }
12292
12293 TYPE_LENGTH (type) = byte_size;
12294 return set_die_type (die, type, cu);
12295 }
12296
12297 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12298 the user defined type vector. */
12299
12300 static struct type *
12301 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12302 {
12303 struct type *type;
12304 struct type *to_type;
12305 struct type *domain;
12306
12307 to_type = die_type (die, cu);
12308 domain = die_containing_type (die, cu);
12309
12310 /* The calls above may have already set the type for this DIE. */
12311 type = get_die_type (die, cu);
12312 if (type)
12313 return type;
12314
12315 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12316 type = lookup_methodptr_type (to_type);
12317 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12318 {
12319 struct type *new_type = alloc_type (cu->objfile);
12320
12321 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12322 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12323 TYPE_VARARGS (to_type));
12324 type = lookup_methodptr_type (new_type);
12325 }
12326 else
12327 type = lookup_memberptr_type (to_type, domain);
12328
12329 return set_die_type (die, type, cu);
12330 }
12331
12332 /* Extract all information from a DW_TAG_reference_type DIE and add to
12333 the user defined type vector. */
12334
12335 static struct type *
12336 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12337 {
12338 struct comp_unit_head *cu_header = &cu->header;
12339 struct type *type, *target_type;
12340 struct attribute *attr;
12341
12342 target_type = die_type (die, cu);
12343
12344 /* The die_type call above may have already set the type for this DIE. */
12345 type = get_die_type (die, cu);
12346 if (type)
12347 return type;
12348
12349 type = lookup_reference_type (target_type);
12350 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12351 if (attr)
12352 {
12353 TYPE_LENGTH (type) = DW_UNSND (attr);
12354 }
12355 else
12356 {
12357 TYPE_LENGTH (type) = cu_header->addr_size;
12358 }
12359 return set_die_type (die, type, cu);
12360 }
12361
12362 static struct type *
12363 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12364 {
12365 struct type *base_type, *cv_type;
12366
12367 base_type = die_type (die, cu);
12368
12369 /* The die_type call above may have already set the type for this DIE. */
12370 cv_type = get_die_type (die, cu);
12371 if (cv_type)
12372 return cv_type;
12373
12374 /* In case the const qualifier is applied to an array type, the element type
12375 is so qualified, not the array type (section 6.7.3 of C99). */
12376 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12377 {
12378 struct type *el_type, *inner_array;
12379
12380 base_type = copy_type (base_type);
12381 inner_array = base_type;
12382
12383 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12384 {
12385 TYPE_TARGET_TYPE (inner_array) =
12386 copy_type (TYPE_TARGET_TYPE (inner_array));
12387 inner_array = TYPE_TARGET_TYPE (inner_array);
12388 }
12389
12390 el_type = TYPE_TARGET_TYPE (inner_array);
12391 TYPE_TARGET_TYPE (inner_array) =
12392 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12393
12394 return set_die_type (die, base_type, cu);
12395 }
12396
12397 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12398 return set_die_type (die, cv_type, cu);
12399 }
12400
12401 static struct type *
12402 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12403 {
12404 struct type *base_type, *cv_type;
12405
12406 base_type = die_type (die, cu);
12407
12408 /* The die_type call above may have already set the type for this DIE. */
12409 cv_type = get_die_type (die, cu);
12410 if (cv_type)
12411 return cv_type;
12412
12413 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12414 return set_die_type (die, cv_type, cu);
12415 }
12416
12417 /* Handle DW_TAG_restrict_type. */
12418
12419 static struct type *
12420 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12421 {
12422 struct type *base_type, *cv_type;
12423
12424 base_type = die_type (die, cu);
12425
12426 /* The die_type call above may have already set the type for this DIE. */
12427 cv_type = get_die_type (die, cu);
12428 if (cv_type)
12429 return cv_type;
12430
12431 cv_type = make_restrict_type (base_type);
12432 return set_die_type (die, cv_type, cu);
12433 }
12434
12435 /* Extract all information from a DW_TAG_string_type DIE and add to
12436 the user defined type vector. It isn't really a user defined type,
12437 but it behaves like one, with other DIE's using an AT_user_def_type
12438 attribute to reference it. */
12439
12440 static struct type *
12441 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12442 {
12443 struct objfile *objfile = cu->objfile;
12444 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12445 struct type *type, *range_type, *index_type, *char_type;
12446 struct attribute *attr;
12447 unsigned int length;
12448
12449 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12450 if (attr)
12451 {
12452 length = DW_UNSND (attr);
12453 }
12454 else
12455 {
12456 /* Check for the DW_AT_byte_size attribute. */
12457 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12458 if (attr)
12459 {
12460 length = DW_UNSND (attr);
12461 }
12462 else
12463 {
12464 length = 1;
12465 }
12466 }
12467
12468 index_type = objfile_type (objfile)->builtin_int;
12469 range_type = create_range_type (NULL, index_type, 1, length);
12470 char_type = language_string_char_type (cu->language_defn, gdbarch);
12471 type = create_string_type (NULL, char_type, range_type);
12472
12473 return set_die_type (die, type, cu);
12474 }
12475
12476 /* Handle DIES due to C code like:
12477
12478 struct foo
12479 {
12480 int (*funcp)(int a, long l);
12481 int b;
12482 };
12483
12484 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12485
12486 static struct type *
12487 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12488 {
12489 struct objfile *objfile = cu->objfile;
12490 struct type *type; /* Type that this function returns. */
12491 struct type *ftype; /* Function that returns above type. */
12492 struct attribute *attr;
12493
12494 type = die_type (die, cu);
12495
12496 /* The die_type call above may have already set the type for this DIE. */
12497 ftype = get_die_type (die, cu);
12498 if (ftype)
12499 return ftype;
12500
12501 ftype = lookup_function_type (type);
12502
12503 /* All functions in C++, Pascal and Java have prototypes. */
12504 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12505 if ((attr && (DW_UNSND (attr) != 0))
12506 || cu->language == language_cplus
12507 || cu->language == language_java
12508 || cu->language == language_pascal)
12509 TYPE_PROTOTYPED (ftype) = 1;
12510 else if (producer_is_realview (cu->producer))
12511 /* RealView does not emit DW_AT_prototyped. We can not
12512 distinguish prototyped and unprototyped functions; default to
12513 prototyped, since that is more common in modern code (and
12514 RealView warns about unprototyped functions). */
12515 TYPE_PROTOTYPED (ftype) = 1;
12516
12517 /* Store the calling convention in the type if it's available in
12518 the subroutine die. Otherwise set the calling convention to
12519 the default value DW_CC_normal. */
12520 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12521 if (attr)
12522 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12523 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12524 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12525 else
12526 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12527
12528 /* We need to add the subroutine type to the die immediately so
12529 we don't infinitely recurse when dealing with parameters
12530 declared as the same subroutine type. */
12531 set_die_type (die, ftype, cu);
12532
12533 if (die->child != NULL)
12534 {
12535 struct type *void_type = objfile_type (objfile)->builtin_void;
12536 struct die_info *child_die;
12537 int nparams, iparams;
12538
12539 /* Count the number of parameters.
12540 FIXME: GDB currently ignores vararg functions, but knows about
12541 vararg member functions. */
12542 nparams = 0;
12543 child_die = die->child;
12544 while (child_die && child_die->tag)
12545 {
12546 if (child_die->tag == DW_TAG_formal_parameter)
12547 nparams++;
12548 else if (child_die->tag == DW_TAG_unspecified_parameters)
12549 TYPE_VARARGS (ftype) = 1;
12550 child_die = sibling_die (child_die);
12551 }
12552
12553 /* Allocate storage for parameters and fill them in. */
12554 TYPE_NFIELDS (ftype) = nparams;
12555 TYPE_FIELDS (ftype) = (struct field *)
12556 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12557
12558 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12559 even if we error out during the parameters reading below. */
12560 for (iparams = 0; iparams < nparams; iparams++)
12561 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12562
12563 iparams = 0;
12564 child_die = die->child;
12565 while (child_die && child_die->tag)
12566 {
12567 if (child_die->tag == DW_TAG_formal_parameter)
12568 {
12569 struct type *arg_type;
12570
12571 /* DWARF version 2 has no clean way to discern C++
12572 static and non-static member functions. G++ helps
12573 GDB by marking the first parameter for non-static
12574 member functions (which is the this pointer) as
12575 artificial. We pass this information to
12576 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12577
12578 DWARF version 3 added DW_AT_object_pointer, which GCC
12579 4.5 does not yet generate. */
12580 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12581 if (attr)
12582 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12583 else
12584 {
12585 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12586
12587 /* GCC/43521: In java, the formal parameter
12588 "this" is sometimes not marked with DW_AT_artificial. */
12589 if (cu->language == language_java)
12590 {
12591 const char *name = dwarf2_name (child_die, cu);
12592
12593 if (name && !strcmp (name, "this"))
12594 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12595 }
12596 }
12597 arg_type = die_type (child_die, cu);
12598
12599 /* RealView does not mark THIS as const, which the testsuite
12600 expects. GCC marks THIS as const in method definitions,
12601 but not in the class specifications (GCC PR 43053). */
12602 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12603 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12604 {
12605 int is_this = 0;
12606 struct dwarf2_cu *arg_cu = cu;
12607 const char *name = dwarf2_name (child_die, cu);
12608
12609 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12610 if (attr)
12611 {
12612 /* If the compiler emits this, use it. */
12613 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12614 is_this = 1;
12615 }
12616 else if (name && strcmp (name, "this") == 0)
12617 /* Function definitions will have the argument names. */
12618 is_this = 1;
12619 else if (name == NULL && iparams == 0)
12620 /* Declarations may not have the names, so like
12621 elsewhere in GDB, assume an artificial first
12622 argument is "this". */
12623 is_this = 1;
12624
12625 if (is_this)
12626 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12627 arg_type, 0);
12628 }
12629
12630 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12631 iparams++;
12632 }
12633 child_die = sibling_die (child_die);
12634 }
12635 }
12636
12637 return ftype;
12638 }
12639
12640 static struct type *
12641 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12642 {
12643 struct objfile *objfile = cu->objfile;
12644 const char *name = NULL;
12645 struct type *this_type, *target_type;
12646
12647 name = dwarf2_full_name (NULL, die, cu);
12648 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12649 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12650 TYPE_NAME (this_type) = name;
12651 set_die_type (die, this_type, cu);
12652 target_type = die_type (die, cu);
12653 if (target_type != this_type)
12654 TYPE_TARGET_TYPE (this_type) = target_type;
12655 else
12656 {
12657 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12658 spec and cause infinite loops in GDB. */
12659 complaint (&symfile_complaints,
12660 _("Self-referential DW_TAG_typedef "
12661 "- DIE at 0x%x [in module %s]"),
12662 die->offset.sect_off, objfile->name);
12663 TYPE_TARGET_TYPE (this_type) = NULL;
12664 }
12665 return this_type;
12666 }
12667
12668 /* Find a representation of a given base type and install
12669 it in the TYPE field of the die. */
12670
12671 static struct type *
12672 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12673 {
12674 struct objfile *objfile = cu->objfile;
12675 struct type *type;
12676 struct attribute *attr;
12677 int encoding = 0, size = 0;
12678 const char *name;
12679 enum type_code code = TYPE_CODE_INT;
12680 int type_flags = 0;
12681 struct type *target_type = NULL;
12682
12683 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12684 if (attr)
12685 {
12686 encoding = DW_UNSND (attr);
12687 }
12688 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12689 if (attr)
12690 {
12691 size = DW_UNSND (attr);
12692 }
12693 name = dwarf2_name (die, cu);
12694 if (!name)
12695 {
12696 complaint (&symfile_complaints,
12697 _("DW_AT_name missing from DW_TAG_base_type"));
12698 }
12699
12700 switch (encoding)
12701 {
12702 case DW_ATE_address:
12703 /* Turn DW_ATE_address into a void * pointer. */
12704 code = TYPE_CODE_PTR;
12705 type_flags |= TYPE_FLAG_UNSIGNED;
12706 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12707 break;
12708 case DW_ATE_boolean:
12709 code = TYPE_CODE_BOOL;
12710 type_flags |= TYPE_FLAG_UNSIGNED;
12711 break;
12712 case DW_ATE_complex_float:
12713 code = TYPE_CODE_COMPLEX;
12714 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12715 break;
12716 case DW_ATE_decimal_float:
12717 code = TYPE_CODE_DECFLOAT;
12718 break;
12719 case DW_ATE_float:
12720 code = TYPE_CODE_FLT;
12721 break;
12722 case DW_ATE_signed:
12723 break;
12724 case DW_ATE_unsigned:
12725 type_flags |= TYPE_FLAG_UNSIGNED;
12726 if (cu->language == language_fortran
12727 && name
12728 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12729 code = TYPE_CODE_CHAR;
12730 break;
12731 case DW_ATE_signed_char:
12732 if (cu->language == language_ada || cu->language == language_m2
12733 || cu->language == language_pascal
12734 || cu->language == language_fortran)
12735 code = TYPE_CODE_CHAR;
12736 break;
12737 case DW_ATE_unsigned_char:
12738 if (cu->language == language_ada || cu->language == language_m2
12739 || cu->language == language_pascal
12740 || cu->language == language_fortran)
12741 code = TYPE_CODE_CHAR;
12742 type_flags |= TYPE_FLAG_UNSIGNED;
12743 break;
12744 case DW_ATE_UTF:
12745 /* We just treat this as an integer and then recognize the
12746 type by name elsewhere. */
12747 break;
12748
12749 default:
12750 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12751 dwarf_type_encoding_name (encoding));
12752 break;
12753 }
12754
12755 type = init_type (code, size, type_flags, NULL, objfile);
12756 TYPE_NAME (type) = name;
12757 TYPE_TARGET_TYPE (type) = target_type;
12758
12759 if (name && strcmp (name, "char") == 0)
12760 TYPE_NOSIGN (type) = 1;
12761
12762 return set_die_type (die, type, cu);
12763 }
12764
12765 /* Read the given DW_AT_subrange DIE. */
12766
12767 static struct type *
12768 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12769 {
12770 struct type *base_type, *orig_base_type;
12771 struct type *range_type;
12772 struct attribute *attr;
12773 LONGEST low, high;
12774 int low_default_is_valid;
12775 const char *name;
12776 LONGEST negative_mask;
12777
12778 orig_base_type = die_type (die, cu);
12779 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12780 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12781 creating the range type, but we use the result of check_typedef
12782 when examining properties of the type. */
12783 base_type = check_typedef (orig_base_type);
12784
12785 /* The die_type call above may have already set the type for this DIE. */
12786 range_type = get_die_type (die, cu);
12787 if (range_type)
12788 return range_type;
12789
12790 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12791 omitting DW_AT_lower_bound. */
12792 switch (cu->language)
12793 {
12794 case language_c:
12795 case language_cplus:
12796 low = 0;
12797 low_default_is_valid = 1;
12798 break;
12799 case language_fortran:
12800 low = 1;
12801 low_default_is_valid = 1;
12802 break;
12803 case language_d:
12804 case language_java:
12805 case language_objc:
12806 low = 0;
12807 low_default_is_valid = (cu->header.version >= 4);
12808 break;
12809 case language_ada:
12810 case language_m2:
12811 case language_pascal:
12812 low = 1;
12813 low_default_is_valid = (cu->header.version >= 4);
12814 break;
12815 default:
12816 low = 0;
12817 low_default_is_valid = 0;
12818 break;
12819 }
12820
12821 /* FIXME: For variable sized arrays either of these could be
12822 a variable rather than a constant value. We'll allow it,
12823 but we don't know how to handle it. */
12824 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12825 if (attr)
12826 low = dwarf2_get_attr_constant_value (attr, low);
12827 else if (!low_default_is_valid)
12828 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12829 "- DIE at 0x%x [in module %s]"),
12830 die->offset.sect_off, cu->objfile->name);
12831
12832 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12833 if (attr)
12834 {
12835 if (attr_form_is_block (attr) || is_ref_attr (attr))
12836 {
12837 /* GCC encodes arrays with unspecified or dynamic length
12838 with a DW_FORM_block1 attribute or a reference attribute.
12839 FIXME: GDB does not yet know how to handle dynamic
12840 arrays properly, treat them as arrays with unspecified
12841 length for now.
12842
12843 FIXME: jimb/2003-09-22: GDB does not really know
12844 how to handle arrays of unspecified length
12845 either; we just represent them as zero-length
12846 arrays. Choose an appropriate upper bound given
12847 the lower bound we've computed above. */
12848 high = low - 1;
12849 }
12850 else
12851 high = dwarf2_get_attr_constant_value (attr, 1);
12852 }
12853 else
12854 {
12855 attr = dwarf2_attr (die, DW_AT_count, cu);
12856 if (attr)
12857 {
12858 int count = dwarf2_get_attr_constant_value (attr, 1);
12859 high = low + count - 1;
12860 }
12861 else
12862 {
12863 /* Unspecified array length. */
12864 high = low - 1;
12865 }
12866 }
12867
12868 /* Dwarf-2 specifications explicitly allows to create subrange types
12869 without specifying a base type.
12870 In that case, the base type must be set to the type of
12871 the lower bound, upper bound or count, in that order, if any of these
12872 three attributes references an object that has a type.
12873 If no base type is found, the Dwarf-2 specifications say that
12874 a signed integer type of size equal to the size of an address should
12875 be used.
12876 For the following C code: `extern char gdb_int [];'
12877 GCC produces an empty range DIE.
12878 FIXME: muller/2010-05-28: Possible references to object for low bound,
12879 high bound or count are not yet handled by this code. */
12880 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12881 {
12882 struct objfile *objfile = cu->objfile;
12883 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12884 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12885 struct type *int_type = objfile_type (objfile)->builtin_int;
12886
12887 /* Test "int", "long int", and "long long int" objfile types,
12888 and select the first one having a size above or equal to the
12889 architecture address size. */
12890 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12891 base_type = int_type;
12892 else
12893 {
12894 int_type = objfile_type (objfile)->builtin_long;
12895 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12896 base_type = int_type;
12897 else
12898 {
12899 int_type = objfile_type (objfile)->builtin_long_long;
12900 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12901 base_type = int_type;
12902 }
12903 }
12904 }
12905
12906 negative_mask =
12907 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12908 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12909 low |= negative_mask;
12910 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12911 high |= negative_mask;
12912
12913 range_type = create_range_type (NULL, orig_base_type, low, high);
12914
12915 /* Mark arrays with dynamic length at least as an array of unspecified
12916 length. GDB could check the boundary but before it gets implemented at
12917 least allow accessing the array elements. */
12918 if (attr && attr_form_is_block (attr))
12919 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12920
12921 /* Ada expects an empty array on no boundary attributes. */
12922 if (attr == NULL && cu->language != language_ada)
12923 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12924
12925 name = dwarf2_name (die, cu);
12926 if (name)
12927 TYPE_NAME (range_type) = name;
12928
12929 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12930 if (attr)
12931 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12932
12933 set_die_type (die, range_type, cu);
12934
12935 /* set_die_type should be already done. */
12936 set_descriptive_type (range_type, die, cu);
12937
12938 return range_type;
12939 }
12940
12941 static struct type *
12942 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12943 {
12944 struct type *type;
12945
12946 /* For now, we only support the C meaning of an unspecified type: void. */
12947
12948 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12949 TYPE_NAME (type) = dwarf2_name (die, cu);
12950
12951 return set_die_type (die, type, cu);
12952 }
12953
12954 /* Read a single die and all its descendents. Set the die's sibling
12955 field to NULL; set other fields in the die correctly, and set all
12956 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12957 location of the info_ptr after reading all of those dies. PARENT
12958 is the parent of the die in question. */
12959
12960 static struct die_info *
12961 read_die_and_children (const struct die_reader_specs *reader,
12962 gdb_byte *info_ptr,
12963 gdb_byte **new_info_ptr,
12964 struct die_info *parent)
12965 {
12966 struct die_info *die;
12967 gdb_byte *cur_ptr;
12968 int has_children;
12969
12970 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12971 if (die == NULL)
12972 {
12973 *new_info_ptr = cur_ptr;
12974 return NULL;
12975 }
12976 store_in_ref_table (die, reader->cu);
12977
12978 if (has_children)
12979 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12980 else
12981 {
12982 die->child = NULL;
12983 *new_info_ptr = cur_ptr;
12984 }
12985
12986 die->sibling = NULL;
12987 die->parent = parent;
12988 return die;
12989 }
12990
12991 /* Read a die, all of its descendents, and all of its siblings; set
12992 all of the fields of all of the dies correctly. Arguments are as
12993 in read_die_and_children. */
12994
12995 static struct die_info *
12996 read_die_and_siblings (const struct die_reader_specs *reader,
12997 gdb_byte *info_ptr,
12998 gdb_byte **new_info_ptr,
12999 struct die_info *parent)
13000 {
13001 struct die_info *first_die, *last_sibling;
13002 gdb_byte *cur_ptr;
13003
13004 cur_ptr = info_ptr;
13005 first_die = last_sibling = NULL;
13006
13007 while (1)
13008 {
13009 struct die_info *die
13010 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13011
13012 if (die == NULL)
13013 {
13014 *new_info_ptr = cur_ptr;
13015 return first_die;
13016 }
13017
13018 if (!first_die)
13019 first_die = die;
13020 else
13021 last_sibling->sibling = die;
13022
13023 last_sibling = die;
13024 }
13025 }
13026
13027 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13028 attributes.
13029 The caller is responsible for filling in the extra attributes
13030 and updating (*DIEP)->num_attrs.
13031 Set DIEP to point to a newly allocated die with its information,
13032 except for its child, sibling, and parent fields.
13033 Set HAS_CHILDREN to tell whether the die has children or not. */
13034
13035 static gdb_byte *
13036 read_full_die_1 (const struct die_reader_specs *reader,
13037 struct die_info **diep, gdb_byte *info_ptr,
13038 int *has_children, int num_extra_attrs)
13039 {
13040 unsigned int abbrev_number, bytes_read, i;
13041 sect_offset offset;
13042 struct abbrev_info *abbrev;
13043 struct die_info *die;
13044 struct dwarf2_cu *cu = reader->cu;
13045 bfd *abfd = reader->abfd;
13046
13047 offset.sect_off = info_ptr - reader->buffer;
13048 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13049 info_ptr += bytes_read;
13050 if (!abbrev_number)
13051 {
13052 *diep = NULL;
13053 *has_children = 0;
13054 return info_ptr;
13055 }
13056
13057 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13058 if (!abbrev)
13059 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13060 abbrev_number,
13061 bfd_get_filename (abfd));
13062
13063 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13064 die->offset = offset;
13065 die->tag = abbrev->tag;
13066 die->abbrev = abbrev_number;
13067
13068 /* Make the result usable.
13069 The caller needs to update num_attrs after adding the extra
13070 attributes. */
13071 die->num_attrs = abbrev->num_attrs;
13072
13073 for (i = 0; i < abbrev->num_attrs; ++i)
13074 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13075 info_ptr);
13076
13077 *diep = die;
13078 *has_children = abbrev->has_children;
13079 return info_ptr;
13080 }
13081
13082 /* Read a die and all its attributes.
13083 Set DIEP to point to a newly allocated die with its information,
13084 except for its child, sibling, and parent fields.
13085 Set HAS_CHILDREN to tell whether the die has children or not. */
13086
13087 static gdb_byte *
13088 read_full_die (const struct die_reader_specs *reader,
13089 struct die_info **diep, gdb_byte *info_ptr,
13090 int *has_children)
13091 {
13092 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13093 }
13094 \f
13095 /* Abbreviation tables.
13096
13097 In DWARF version 2, the description of the debugging information is
13098 stored in a separate .debug_abbrev section. Before we read any
13099 dies from a section we read in all abbreviations and install them
13100 in a hash table. */
13101
13102 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13103
13104 static struct abbrev_info *
13105 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13106 {
13107 struct abbrev_info *abbrev;
13108
13109 abbrev = (struct abbrev_info *)
13110 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13111 memset (abbrev, 0, sizeof (struct abbrev_info));
13112 return abbrev;
13113 }
13114
13115 /* Add an abbreviation to the table. */
13116
13117 static void
13118 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13119 unsigned int abbrev_number,
13120 struct abbrev_info *abbrev)
13121 {
13122 unsigned int hash_number;
13123
13124 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13125 abbrev->next = abbrev_table->abbrevs[hash_number];
13126 abbrev_table->abbrevs[hash_number] = abbrev;
13127 }
13128
13129 /* Look up an abbrev in the table.
13130 Returns NULL if the abbrev is not found. */
13131
13132 static struct abbrev_info *
13133 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13134 unsigned int abbrev_number)
13135 {
13136 unsigned int hash_number;
13137 struct abbrev_info *abbrev;
13138
13139 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13140 abbrev = abbrev_table->abbrevs[hash_number];
13141
13142 while (abbrev)
13143 {
13144 if (abbrev->number == abbrev_number)
13145 return abbrev;
13146 abbrev = abbrev->next;
13147 }
13148 return NULL;
13149 }
13150
13151 /* Read in an abbrev table. */
13152
13153 static struct abbrev_table *
13154 abbrev_table_read_table (struct dwarf2_section_info *section,
13155 sect_offset offset)
13156 {
13157 struct objfile *objfile = dwarf2_per_objfile->objfile;
13158 bfd *abfd = section->asection->owner;
13159 struct abbrev_table *abbrev_table;
13160 gdb_byte *abbrev_ptr;
13161 struct abbrev_info *cur_abbrev;
13162 unsigned int abbrev_number, bytes_read, abbrev_name;
13163 unsigned int abbrev_form;
13164 struct attr_abbrev *cur_attrs;
13165 unsigned int allocated_attrs;
13166
13167 abbrev_table = XMALLOC (struct abbrev_table);
13168 abbrev_table->offset = offset;
13169 obstack_init (&abbrev_table->abbrev_obstack);
13170 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13171 (ABBREV_HASH_SIZE
13172 * sizeof (struct abbrev_info *)));
13173 memset (abbrev_table->abbrevs, 0,
13174 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13175
13176 dwarf2_read_section (objfile, section);
13177 abbrev_ptr = section->buffer + offset.sect_off;
13178 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13179 abbrev_ptr += bytes_read;
13180
13181 allocated_attrs = ATTR_ALLOC_CHUNK;
13182 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13183
13184 /* Loop until we reach an abbrev number of 0. */
13185 while (abbrev_number)
13186 {
13187 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13188
13189 /* read in abbrev header */
13190 cur_abbrev->number = abbrev_number;
13191 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13192 abbrev_ptr += bytes_read;
13193 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13194 abbrev_ptr += 1;
13195
13196 /* now read in declarations */
13197 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13198 abbrev_ptr += bytes_read;
13199 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13200 abbrev_ptr += bytes_read;
13201 while (abbrev_name)
13202 {
13203 if (cur_abbrev->num_attrs == allocated_attrs)
13204 {
13205 allocated_attrs += ATTR_ALLOC_CHUNK;
13206 cur_attrs
13207 = xrealloc (cur_attrs, (allocated_attrs
13208 * sizeof (struct attr_abbrev)));
13209 }
13210
13211 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13212 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13213 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13214 abbrev_ptr += bytes_read;
13215 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13216 abbrev_ptr += bytes_read;
13217 }
13218
13219 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13220 (cur_abbrev->num_attrs
13221 * sizeof (struct attr_abbrev)));
13222 memcpy (cur_abbrev->attrs, cur_attrs,
13223 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13224
13225 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13226
13227 /* Get next abbreviation.
13228 Under Irix6 the abbreviations for a compilation unit are not
13229 always properly terminated with an abbrev number of 0.
13230 Exit loop if we encounter an abbreviation which we have
13231 already read (which means we are about to read the abbreviations
13232 for the next compile unit) or if the end of the abbreviation
13233 table is reached. */
13234 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13235 break;
13236 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13237 abbrev_ptr += bytes_read;
13238 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13239 break;
13240 }
13241
13242 xfree (cur_attrs);
13243 return abbrev_table;
13244 }
13245
13246 /* Free the resources held by ABBREV_TABLE. */
13247
13248 static void
13249 abbrev_table_free (struct abbrev_table *abbrev_table)
13250 {
13251 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13252 xfree (abbrev_table);
13253 }
13254
13255 /* Same as abbrev_table_free but as a cleanup.
13256 We pass in a pointer to the pointer to the table so that we can
13257 set the pointer to NULL when we're done. It also simplifies
13258 build_type_unit_groups. */
13259
13260 static void
13261 abbrev_table_free_cleanup (void *table_ptr)
13262 {
13263 struct abbrev_table **abbrev_table_ptr = table_ptr;
13264
13265 if (*abbrev_table_ptr != NULL)
13266 abbrev_table_free (*abbrev_table_ptr);
13267 *abbrev_table_ptr = NULL;
13268 }
13269
13270 /* Read the abbrev table for CU from ABBREV_SECTION. */
13271
13272 static void
13273 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13274 struct dwarf2_section_info *abbrev_section)
13275 {
13276 cu->abbrev_table =
13277 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13278 }
13279
13280 /* Release the memory used by the abbrev table for a compilation unit. */
13281
13282 static void
13283 dwarf2_free_abbrev_table (void *ptr_to_cu)
13284 {
13285 struct dwarf2_cu *cu = ptr_to_cu;
13286
13287 abbrev_table_free (cu->abbrev_table);
13288 /* Set this to NULL so that we SEGV if we try to read it later,
13289 and also because free_comp_unit verifies this is NULL. */
13290 cu->abbrev_table = NULL;
13291 }
13292 \f
13293 /* Returns nonzero if TAG represents a type that we might generate a partial
13294 symbol for. */
13295
13296 static int
13297 is_type_tag_for_partial (int tag)
13298 {
13299 switch (tag)
13300 {
13301 #if 0
13302 /* Some types that would be reasonable to generate partial symbols for,
13303 that we don't at present. */
13304 case DW_TAG_array_type:
13305 case DW_TAG_file_type:
13306 case DW_TAG_ptr_to_member_type:
13307 case DW_TAG_set_type:
13308 case DW_TAG_string_type:
13309 case DW_TAG_subroutine_type:
13310 #endif
13311 case DW_TAG_base_type:
13312 case DW_TAG_class_type:
13313 case DW_TAG_interface_type:
13314 case DW_TAG_enumeration_type:
13315 case DW_TAG_structure_type:
13316 case DW_TAG_subrange_type:
13317 case DW_TAG_typedef:
13318 case DW_TAG_union_type:
13319 return 1;
13320 default:
13321 return 0;
13322 }
13323 }
13324
13325 /* Load all DIEs that are interesting for partial symbols into memory. */
13326
13327 static struct partial_die_info *
13328 load_partial_dies (const struct die_reader_specs *reader,
13329 gdb_byte *info_ptr, int building_psymtab)
13330 {
13331 struct dwarf2_cu *cu = reader->cu;
13332 struct objfile *objfile = cu->objfile;
13333 struct partial_die_info *part_die;
13334 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13335 struct abbrev_info *abbrev;
13336 unsigned int bytes_read;
13337 unsigned int load_all = 0;
13338 int nesting_level = 1;
13339
13340 parent_die = NULL;
13341 last_die = NULL;
13342
13343 gdb_assert (cu->per_cu != NULL);
13344 if (cu->per_cu->load_all_dies)
13345 load_all = 1;
13346
13347 cu->partial_dies
13348 = htab_create_alloc_ex (cu->header.length / 12,
13349 partial_die_hash,
13350 partial_die_eq,
13351 NULL,
13352 &cu->comp_unit_obstack,
13353 hashtab_obstack_allocate,
13354 dummy_obstack_deallocate);
13355
13356 part_die = obstack_alloc (&cu->comp_unit_obstack,
13357 sizeof (struct partial_die_info));
13358
13359 while (1)
13360 {
13361 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13362
13363 /* A NULL abbrev means the end of a series of children. */
13364 if (abbrev == NULL)
13365 {
13366 if (--nesting_level == 0)
13367 {
13368 /* PART_DIE was probably the last thing allocated on the
13369 comp_unit_obstack, so we could call obstack_free
13370 here. We don't do that because the waste is small,
13371 and will be cleaned up when we're done with this
13372 compilation unit. This way, we're also more robust
13373 against other users of the comp_unit_obstack. */
13374 return first_die;
13375 }
13376 info_ptr += bytes_read;
13377 last_die = parent_die;
13378 parent_die = parent_die->die_parent;
13379 continue;
13380 }
13381
13382 /* Check for template arguments. We never save these; if
13383 they're seen, we just mark the parent, and go on our way. */
13384 if (parent_die != NULL
13385 && cu->language == language_cplus
13386 && (abbrev->tag == DW_TAG_template_type_param
13387 || abbrev->tag == DW_TAG_template_value_param))
13388 {
13389 parent_die->has_template_arguments = 1;
13390
13391 if (!load_all)
13392 {
13393 /* We don't need a partial DIE for the template argument. */
13394 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13395 continue;
13396 }
13397 }
13398
13399 /* We only recurse into c++ subprograms looking for template arguments.
13400 Skip their other children. */
13401 if (!load_all
13402 && cu->language == language_cplus
13403 && parent_die != NULL
13404 && parent_die->tag == DW_TAG_subprogram)
13405 {
13406 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13407 continue;
13408 }
13409
13410 /* Check whether this DIE is interesting enough to save. Normally
13411 we would not be interested in members here, but there may be
13412 later variables referencing them via DW_AT_specification (for
13413 static members). */
13414 if (!load_all
13415 && !is_type_tag_for_partial (abbrev->tag)
13416 && abbrev->tag != DW_TAG_constant
13417 && abbrev->tag != DW_TAG_enumerator
13418 && abbrev->tag != DW_TAG_subprogram
13419 && abbrev->tag != DW_TAG_lexical_block
13420 && abbrev->tag != DW_TAG_variable
13421 && abbrev->tag != DW_TAG_namespace
13422 && abbrev->tag != DW_TAG_module
13423 && abbrev->tag != DW_TAG_member
13424 && abbrev->tag != DW_TAG_imported_unit)
13425 {
13426 /* Otherwise we skip to the next sibling, if any. */
13427 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13428 continue;
13429 }
13430
13431 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13432 info_ptr);
13433
13434 /* This two-pass algorithm for processing partial symbols has a
13435 high cost in cache pressure. Thus, handle some simple cases
13436 here which cover the majority of C partial symbols. DIEs
13437 which neither have specification tags in them, nor could have
13438 specification tags elsewhere pointing at them, can simply be
13439 processed and discarded.
13440
13441 This segment is also optional; scan_partial_symbols and
13442 add_partial_symbol will handle these DIEs if we chain
13443 them in normally. When compilers which do not emit large
13444 quantities of duplicate debug information are more common,
13445 this code can probably be removed. */
13446
13447 /* Any complete simple types at the top level (pretty much all
13448 of them, for a language without namespaces), can be processed
13449 directly. */
13450 if (parent_die == NULL
13451 && part_die->has_specification == 0
13452 && part_die->is_declaration == 0
13453 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13454 || part_die->tag == DW_TAG_base_type
13455 || part_die->tag == DW_TAG_subrange_type))
13456 {
13457 if (building_psymtab && part_die->name != NULL)
13458 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13459 VAR_DOMAIN, LOC_TYPEDEF,
13460 &objfile->static_psymbols,
13461 0, (CORE_ADDR) 0, cu->language, objfile);
13462 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13463 continue;
13464 }
13465
13466 /* The exception for DW_TAG_typedef with has_children above is
13467 a workaround of GCC PR debug/47510. In the case of this complaint
13468 type_name_no_tag_or_error will error on such types later.
13469
13470 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13471 it could not find the child DIEs referenced later, this is checked
13472 above. In correct DWARF DW_TAG_typedef should have no children. */
13473
13474 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13475 complaint (&symfile_complaints,
13476 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13477 "- DIE at 0x%x [in module %s]"),
13478 part_die->offset.sect_off, objfile->name);
13479
13480 /* If we're at the second level, and we're an enumerator, and
13481 our parent has no specification (meaning possibly lives in a
13482 namespace elsewhere), then we can add the partial symbol now
13483 instead of queueing it. */
13484 if (part_die->tag == DW_TAG_enumerator
13485 && parent_die != NULL
13486 && parent_die->die_parent == NULL
13487 && parent_die->tag == DW_TAG_enumeration_type
13488 && parent_die->has_specification == 0)
13489 {
13490 if (part_die->name == NULL)
13491 complaint (&symfile_complaints,
13492 _("malformed enumerator DIE ignored"));
13493 else if (building_psymtab)
13494 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13495 VAR_DOMAIN, LOC_CONST,
13496 (cu->language == language_cplus
13497 || cu->language == language_java)
13498 ? &objfile->global_psymbols
13499 : &objfile->static_psymbols,
13500 0, (CORE_ADDR) 0, cu->language, objfile);
13501
13502 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13503 continue;
13504 }
13505
13506 /* We'll save this DIE so link it in. */
13507 part_die->die_parent = parent_die;
13508 part_die->die_sibling = NULL;
13509 part_die->die_child = NULL;
13510
13511 if (last_die && last_die == parent_die)
13512 last_die->die_child = part_die;
13513 else if (last_die)
13514 last_die->die_sibling = part_die;
13515
13516 last_die = part_die;
13517
13518 if (first_die == NULL)
13519 first_die = part_die;
13520
13521 /* Maybe add the DIE to the hash table. Not all DIEs that we
13522 find interesting need to be in the hash table, because we
13523 also have the parent/sibling/child chains; only those that we
13524 might refer to by offset later during partial symbol reading.
13525
13526 For now this means things that might have be the target of a
13527 DW_AT_specification, DW_AT_abstract_origin, or
13528 DW_AT_extension. DW_AT_extension will refer only to
13529 namespaces; DW_AT_abstract_origin refers to functions (and
13530 many things under the function DIE, but we do not recurse
13531 into function DIEs during partial symbol reading) and
13532 possibly variables as well; DW_AT_specification refers to
13533 declarations. Declarations ought to have the DW_AT_declaration
13534 flag. It happens that GCC forgets to put it in sometimes, but
13535 only for functions, not for types.
13536
13537 Adding more things than necessary to the hash table is harmless
13538 except for the performance cost. Adding too few will result in
13539 wasted time in find_partial_die, when we reread the compilation
13540 unit with load_all_dies set. */
13541
13542 if (load_all
13543 || abbrev->tag == DW_TAG_constant
13544 || abbrev->tag == DW_TAG_subprogram
13545 || abbrev->tag == DW_TAG_variable
13546 || abbrev->tag == DW_TAG_namespace
13547 || part_die->is_declaration)
13548 {
13549 void **slot;
13550
13551 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13552 part_die->offset.sect_off, INSERT);
13553 *slot = part_die;
13554 }
13555
13556 part_die = obstack_alloc (&cu->comp_unit_obstack,
13557 sizeof (struct partial_die_info));
13558
13559 /* For some DIEs we want to follow their children (if any). For C
13560 we have no reason to follow the children of structures; for other
13561 languages we have to, so that we can get at method physnames
13562 to infer fully qualified class names, for DW_AT_specification,
13563 and for C++ template arguments. For C++, we also look one level
13564 inside functions to find template arguments (if the name of the
13565 function does not already contain the template arguments).
13566
13567 For Ada, we need to scan the children of subprograms and lexical
13568 blocks as well because Ada allows the definition of nested
13569 entities that could be interesting for the debugger, such as
13570 nested subprograms for instance. */
13571 if (last_die->has_children
13572 && (load_all
13573 || last_die->tag == DW_TAG_namespace
13574 || last_die->tag == DW_TAG_module
13575 || last_die->tag == DW_TAG_enumeration_type
13576 || (cu->language == language_cplus
13577 && last_die->tag == DW_TAG_subprogram
13578 && (last_die->name == NULL
13579 || strchr (last_die->name, '<') == NULL))
13580 || (cu->language != language_c
13581 && (last_die->tag == DW_TAG_class_type
13582 || last_die->tag == DW_TAG_interface_type
13583 || last_die->tag == DW_TAG_structure_type
13584 || last_die->tag == DW_TAG_union_type))
13585 || (cu->language == language_ada
13586 && (last_die->tag == DW_TAG_subprogram
13587 || last_die->tag == DW_TAG_lexical_block))))
13588 {
13589 nesting_level++;
13590 parent_die = last_die;
13591 continue;
13592 }
13593
13594 /* Otherwise we skip to the next sibling, if any. */
13595 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13596
13597 /* Back to the top, do it again. */
13598 }
13599 }
13600
13601 /* Read a minimal amount of information into the minimal die structure. */
13602
13603 static gdb_byte *
13604 read_partial_die (const struct die_reader_specs *reader,
13605 struct partial_die_info *part_die,
13606 struct abbrev_info *abbrev, unsigned int abbrev_len,
13607 gdb_byte *info_ptr)
13608 {
13609 struct dwarf2_cu *cu = reader->cu;
13610 struct objfile *objfile = cu->objfile;
13611 gdb_byte *buffer = reader->buffer;
13612 unsigned int i;
13613 struct attribute attr;
13614 int has_low_pc_attr = 0;
13615 int has_high_pc_attr = 0;
13616 int high_pc_relative = 0;
13617
13618 memset (part_die, 0, sizeof (struct partial_die_info));
13619
13620 part_die->offset.sect_off = info_ptr - buffer;
13621
13622 info_ptr += abbrev_len;
13623
13624 if (abbrev == NULL)
13625 return info_ptr;
13626
13627 part_die->tag = abbrev->tag;
13628 part_die->has_children = abbrev->has_children;
13629
13630 for (i = 0; i < abbrev->num_attrs; ++i)
13631 {
13632 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13633
13634 /* Store the data if it is of an attribute we want to keep in a
13635 partial symbol table. */
13636 switch (attr.name)
13637 {
13638 case DW_AT_name:
13639 switch (part_die->tag)
13640 {
13641 case DW_TAG_compile_unit:
13642 case DW_TAG_partial_unit:
13643 case DW_TAG_type_unit:
13644 /* Compilation units have a DW_AT_name that is a filename, not
13645 a source language identifier. */
13646 case DW_TAG_enumeration_type:
13647 case DW_TAG_enumerator:
13648 /* These tags always have simple identifiers already; no need
13649 to canonicalize them. */
13650 part_die->name = DW_STRING (&attr);
13651 break;
13652 default:
13653 part_die->name
13654 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13655 &objfile->objfile_obstack);
13656 break;
13657 }
13658 break;
13659 case DW_AT_linkage_name:
13660 case DW_AT_MIPS_linkage_name:
13661 /* Note that both forms of linkage name might appear. We
13662 assume they will be the same, and we only store the last
13663 one we see. */
13664 if (cu->language == language_ada)
13665 part_die->name = DW_STRING (&attr);
13666 part_die->linkage_name = DW_STRING (&attr);
13667 break;
13668 case DW_AT_low_pc:
13669 has_low_pc_attr = 1;
13670 part_die->lowpc = DW_ADDR (&attr);
13671 break;
13672 case DW_AT_high_pc:
13673 has_high_pc_attr = 1;
13674 if (attr.form == DW_FORM_addr
13675 || attr.form == DW_FORM_GNU_addr_index)
13676 part_die->highpc = DW_ADDR (&attr);
13677 else
13678 {
13679 high_pc_relative = 1;
13680 part_die->highpc = DW_UNSND (&attr);
13681 }
13682 break;
13683 case DW_AT_location:
13684 /* Support the .debug_loc offsets. */
13685 if (attr_form_is_block (&attr))
13686 {
13687 part_die->d.locdesc = DW_BLOCK (&attr);
13688 }
13689 else if (attr_form_is_section_offset (&attr))
13690 {
13691 dwarf2_complex_location_expr_complaint ();
13692 }
13693 else
13694 {
13695 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13696 "partial symbol information");
13697 }
13698 break;
13699 case DW_AT_external:
13700 part_die->is_external = DW_UNSND (&attr);
13701 break;
13702 case DW_AT_declaration:
13703 part_die->is_declaration = DW_UNSND (&attr);
13704 break;
13705 case DW_AT_type:
13706 part_die->has_type = 1;
13707 break;
13708 case DW_AT_abstract_origin:
13709 case DW_AT_specification:
13710 case DW_AT_extension:
13711 part_die->has_specification = 1;
13712 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13713 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13714 || cu->per_cu->is_dwz);
13715 break;
13716 case DW_AT_sibling:
13717 /* Ignore absolute siblings, they might point outside of
13718 the current compile unit. */
13719 if (attr.form == DW_FORM_ref_addr)
13720 complaint (&symfile_complaints,
13721 _("ignoring absolute DW_AT_sibling"));
13722 else
13723 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13724 break;
13725 case DW_AT_byte_size:
13726 part_die->has_byte_size = 1;
13727 break;
13728 case DW_AT_calling_convention:
13729 /* DWARF doesn't provide a way to identify a program's source-level
13730 entry point. DW_AT_calling_convention attributes are only meant
13731 to describe functions' calling conventions.
13732
13733 However, because it's a necessary piece of information in
13734 Fortran, and because DW_CC_program is the only piece of debugging
13735 information whose definition refers to a 'main program' at all,
13736 several compilers have begun marking Fortran main programs with
13737 DW_CC_program --- even when those functions use the standard
13738 calling conventions.
13739
13740 So until DWARF specifies a way to provide this information and
13741 compilers pick up the new representation, we'll support this
13742 practice. */
13743 if (DW_UNSND (&attr) == DW_CC_program
13744 && cu->language == language_fortran)
13745 {
13746 set_main_name (part_die->name);
13747
13748 /* As this DIE has a static linkage the name would be difficult
13749 to look up later. */
13750 language_of_main = language_fortran;
13751 }
13752 break;
13753 case DW_AT_inline:
13754 if (DW_UNSND (&attr) == DW_INL_inlined
13755 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13756 part_die->may_be_inlined = 1;
13757 break;
13758
13759 case DW_AT_import:
13760 if (part_die->tag == DW_TAG_imported_unit)
13761 {
13762 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13763 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13764 || cu->per_cu->is_dwz);
13765 }
13766 break;
13767
13768 default:
13769 break;
13770 }
13771 }
13772
13773 if (high_pc_relative)
13774 part_die->highpc += part_die->lowpc;
13775
13776 if (has_low_pc_attr && has_high_pc_attr)
13777 {
13778 /* When using the GNU linker, .gnu.linkonce. sections are used to
13779 eliminate duplicate copies of functions and vtables and such.
13780 The linker will arbitrarily choose one and discard the others.
13781 The AT_*_pc values for such functions refer to local labels in
13782 these sections. If the section from that file was discarded, the
13783 labels are not in the output, so the relocs get a value of 0.
13784 If this is a discarded function, mark the pc bounds as invalid,
13785 so that GDB will ignore it. */
13786 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13787 {
13788 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13789
13790 complaint (&symfile_complaints,
13791 _("DW_AT_low_pc %s is zero "
13792 "for DIE at 0x%x [in module %s]"),
13793 paddress (gdbarch, part_die->lowpc),
13794 part_die->offset.sect_off, objfile->name);
13795 }
13796 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13797 else if (part_die->lowpc >= part_die->highpc)
13798 {
13799 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13800
13801 complaint (&symfile_complaints,
13802 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13803 "for DIE at 0x%x [in module %s]"),
13804 paddress (gdbarch, part_die->lowpc),
13805 paddress (gdbarch, part_die->highpc),
13806 part_die->offset.sect_off, objfile->name);
13807 }
13808 else
13809 part_die->has_pc_info = 1;
13810 }
13811
13812 return info_ptr;
13813 }
13814
13815 /* Find a cached partial DIE at OFFSET in CU. */
13816
13817 static struct partial_die_info *
13818 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13819 {
13820 struct partial_die_info *lookup_die = NULL;
13821 struct partial_die_info part_die;
13822
13823 part_die.offset = offset;
13824 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13825 offset.sect_off);
13826
13827 return lookup_die;
13828 }
13829
13830 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13831 except in the case of .debug_types DIEs which do not reference
13832 outside their CU (they do however referencing other types via
13833 DW_FORM_ref_sig8). */
13834
13835 static struct partial_die_info *
13836 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13837 {
13838 struct objfile *objfile = cu->objfile;
13839 struct dwarf2_per_cu_data *per_cu = NULL;
13840 struct partial_die_info *pd = NULL;
13841
13842 if (offset_in_dwz == cu->per_cu->is_dwz
13843 && offset_in_cu_p (&cu->header, offset))
13844 {
13845 pd = find_partial_die_in_comp_unit (offset, cu);
13846 if (pd != NULL)
13847 return pd;
13848 /* We missed recording what we needed.
13849 Load all dies and try again. */
13850 per_cu = cu->per_cu;
13851 }
13852 else
13853 {
13854 /* TUs don't reference other CUs/TUs (except via type signatures). */
13855 if (cu->per_cu->is_debug_types)
13856 {
13857 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13858 " external reference to offset 0x%lx [in module %s].\n"),
13859 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13860 bfd_get_filename (objfile->obfd));
13861 }
13862 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13863 objfile);
13864
13865 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13866 load_partial_comp_unit (per_cu);
13867
13868 per_cu->cu->last_used = 0;
13869 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13870 }
13871
13872 /* If we didn't find it, and not all dies have been loaded,
13873 load them all and try again. */
13874
13875 if (pd == NULL && per_cu->load_all_dies == 0)
13876 {
13877 per_cu->load_all_dies = 1;
13878
13879 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13880 THIS_CU->cu may already be in use. So we can't just free it and
13881 replace its DIEs with the ones we read in. Instead, we leave those
13882 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13883 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13884 set. */
13885 load_partial_comp_unit (per_cu);
13886
13887 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13888 }
13889
13890 if (pd == NULL)
13891 internal_error (__FILE__, __LINE__,
13892 _("could not find partial DIE 0x%x "
13893 "in cache [from module %s]\n"),
13894 offset.sect_off, bfd_get_filename (objfile->obfd));
13895 return pd;
13896 }
13897
13898 /* See if we can figure out if the class lives in a namespace. We do
13899 this by looking for a member function; its demangled name will
13900 contain namespace info, if there is any. */
13901
13902 static void
13903 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13904 struct dwarf2_cu *cu)
13905 {
13906 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13907 what template types look like, because the demangler
13908 frequently doesn't give the same name as the debug info. We
13909 could fix this by only using the demangled name to get the
13910 prefix (but see comment in read_structure_type). */
13911
13912 struct partial_die_info *real_pdi;
13913 struct partial_die_info *child_pdi;
13914
13915 /* If this DIE (this DIE's specification, if any) has a parent, then
13916 we should not do this. We'll prepend the parent's fully qualified
13917 name when we create the partial symbol. */
13918
13919 real_pdi = struct_pdi;
13920 while (real_pdi->has_specification)
13921 real_pdi = find_partial_die (real_pdi->spec_offset,
13922 real_pdi->spec_is_dwz, cu);
13923
13924 if (real_pdi->die_parent != NULL)
13925 return;
13926
13927 for (child_pdi = struct_pdi->die_child;
13928 child_pdi != NULL;
13929 child_pdi = child_pdi->die_sibling)
13930 {
13931 if (child_pdi->tag == DW_TAG_subprogram
13932 && child_pdi->linkage_name != NULL)
13933 {
13934 char *actual_class_name
13935 = language_class_name_from_physname (cu->language_defn,
13936 child_pdi->linkage_name);
13937 if (actual_class_name != NULL)
13938 {
13939 struct_pdi->name
13940 = obstack_copy0 (&cu->objfile->objfile_obstack,
13941 actual_class_name,
13942 strlen (actual_class_name));
13943 xfree (actual_class_name);
13944 }
13945 break;
13946 }
13947 }
13948 }
13949
13950 /* Adjust PART_DIE before generating a symbol for it. This function
13951 may set the is_external flag or change the DIE's name. */
13952
13953 static void
13954 fixup_partial_die (struct partial_die_info *part_die,
13955 struct dwarf2_cu *cu)
13956 {
13957 /* Once we've fixed up a die, there's no point in doing so again.
13958 This also avoids a memory leak if we were to call
13959 guess_partial_die_structure_name multiple times. */
13960 if (part_die->fixup_called)
13961 return;
13962
13963 /* If we found a reference attribute and the DIE has no name, try
13964 to find a name in the referred to DIE. */
13965
13966 if (part_die->name == NULL && part_die->has_specification)
13967 {
13968 struct partial_die_info *spec_die;
13969
13970 spec_die = find_partial_die (part_die->spec_offset,
13971 part_die->spec_is_dwz, cu);
13972
13973 fixup_partial_die (spec_die, cu);
13974
13975 if (spec_die->name)
13976 {
13977 part_die->name = spec_die->name;
13978
13979 /* Copy DW_AT_external attribute if it is set. */
13980 if (spec_die->is_external)
13981 part_die->is_external = spec_die->is_external;
13982 }
13983 }
13984
13985 /* Set default names for some unnamed DIEs. */
13986
13987 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13988 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13989
13990 /* If there is no parent die to provide a namespace, and there are
13991 children, see if we can determine the namespace from their linkage
13992 name. */
13993 if (cu->language == language_cplus
13994 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13995 && part_die->die_parent == NULL
13996 && part_die->has_children
13997 && (part_die->tag == DW_TAG_class_type
13998 || part_die->tag == DW_TAG_structure_type
13999 || part_die->tag == DW_TAG_union_type))
14000 guess_partial_die_structure_name (part_die, cu);
14001
14002 /* GCC might emit a nameless struct or union that has a linkage
14003 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14004 if (part_die->name == NULL
14005 && (part_die->tag == DW_TAG_class_type
14006 || part_die->tag == DW_TAG_interface_type
14007 || part_die->tag == DW_TAG_structure_type
14008 || part_die->tag == DW_TAG_union_type)
14009 && part_die->linkage_name != NULL)
14010 {
14011 char *demangled;
14012
14013 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
14014 if (demangled)
14015 {
14016 const char *base;
14017
14018 /* Strip any leading namespaces/classes, keep only the base name.
14019 DW_AT_name for named DIEs does not contain the prefixes. */
14020 base = strrchr (demangled, ':');
14021 if (base && base > demangled && base[-1] == ':')
14022 base++;
14023 else
14024 base = demangled;
14025
14026 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14027 base, strlen (base));
14028 xfree (demangled);
14029 }
14030 }
14031
14032 part_die->fixup_called = 1;
14033 }
14034
14035 /* Read an attribute value described by an attribute form. */
14036
14037 static gdb_byte *
14038 read_attribute_value (const struct die_reader_specs *reader,
14039 struct attribute *attr, unsigned form,
14040 gdb_byte *info_ptr)
14041 {
14042 struct dwarf2_cu *cu = reader->cu;
14043 bfd *abfd = reader->abfd;
14044 struct comp_unit_head *cu_header = &cu->header;
14045 unsigned int bytes_read;
14046 struct dwarf_block *blk;
14047
14048 attr->form = form;
14049 switch (form)
14050 {
14051 case DW_FORM_ref_addr:
14052 if (cu->header.version == 2)
14053 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14054 else
14055 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14056 &cu->header, &bytes_read);
14057 info_ptr += bytes_read;
14058 break;
14059 case DW_FORM_GNU_ref_alt:
14060 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14061 info_ptr += bytes_read;
14062 break;
14063 case DW_FORM_addr:
14064 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14065 info_ptr += bytes_read;
14066 break;
14067 case DW_FORM_block2:
14068 blk = dwarf_alloc_block (cu);
14069 blk->size = read_2_bytes (abfd, info_ptr);
14070 info_ptr += 2;
14071 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14072 info_ptr += blk->size;
14073 DW_BLOCK (attr) = blk;
14074 break;
14075 case DW_FORM_block4:
14076 blk = dwarf_alloc_block (cu);
14077 blk->size = read_4_bytes (abfd, info_ptr);
14078 info_ptr += 4;
14079 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14080 info_ptr += blk->size;
14081 DW_BLOCK (attr) = blk;
14082 break;
14083 case DW_FORM_data2:
14084 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14085 info_ptr += 2;
14086 break;
14087 case DW_FORM_data4:
14088 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14089 info_ptr += 4;
14090 break;
14091 case DW_FORM_data8:
14092 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14093 info_ptr += 8;
14094 break;
14095 case DW_FORM_sec_offset:
14096 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14097 info_ptr += bytes_read;
14098 break;
14099 case DW_FORM_string:
14100 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14101 DW_STRING_IS_CANONICAL (attr) = 0;
14102 info_ptr += bytes_read;
14103 break;
14104 case DW_FORM_strp:
14105 if (!cu->per_cu->is_dwz)
14106 {
14107 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14108 &bytes_read);
14109 DW_STRING_IS_CANONICAL (attr) = 0;
14110 info_ptr += bytes_read;
14111 break;
14112 }
14113 /* FALLTHROUGH */
14114 case DW_FORM_GNU_strp_alt:
14115 {
14116 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14117 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14118 &bytes_read);
14119
14120 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14121 DW_STRING_IS_CANONICAL (attr) = 0;
14122 info_ptr += bytes_read;
14123 }
14124 break;
14125 case DW_FORM_exprloc:
14126 case DW_FORM_block:
14127 blk = dwarf_alloc_block (cu);
14128 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14129 info_ptr += bytes_read;
14130 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14131 info_ptr += blk->size;
14132 DW_BLOCK (attr) = blk;
14133 break;
14134 case DW_FORM_block1:
14135 blk = dwarf_alloc_block (cu);
14136 blk->size = read_1_byte (abfd, info_ptr);
14137 info_ptr += 1;
14138 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14139 info_ptr += blk->size;
14140 DW_BLOCK (attr) = blk;
14141 break;
14142 case DW_FORM_data1:
14143 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14144 info_ptr += 1;
14145 break;
14146 case DW_FORM_flag:
14147 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14148 info_ptr += 1;
14149 break;
14150 case DW_FORM_flag_present:
14151 DW_UNSND (attr) = 1;
14152 break;
14153 case DW_FORM_sdata:
14154 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14155 info_ptr += bytes_read;
14156 break;
14157 case DW_FORM_udata:
14158 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14159 info_ptr += bytes_read;
14160 break;
14161 case DW_FORM_ref1:
14162 DW_UNSND (attr) = (cu->header.offset.sect_off
14163 + read_1_byte (abfd, info_ptr));
14164 info_ptr += 1;
14165 break;
14166 case DW_FORM_ref2:
14167 DW_UNSND (attr) = (cu->header.offset.sect_off
14168 + read_2_bytes (abfd, info_ptr));
14169 info_ptr += 2;
14170 break;
14171 case DW_FORM_ref4:
14172 DW_UNSND (attr) = (cu->header.offset.sect_off
14173 + read_4_bytes (abfd, info_ptr));
14174 info_ptr += 4;
14175 break;
14176 case DW_FORM_ref8:
14177 DW_UNSND (attr) = (cu->header.offset.sect_off
14178 + read_8_bytes (abfd, info_ptr));
14179 info_ptr += 8;
14180 break;
14181 case DW_FORM_ref_sig8:
14182 /* Convert the signature to something we can record in DW_UNSND
14183 for later lookup.
14184 NOTE: This is NULL if the type wasn't found. */
14185 DW_SIGNATURED_TYPE (attr) =
14186 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14187 info_ptr += 8;
14188 break;
14189 case DW_FORM_ref_udata:
14190 DW_UNSND (attr) = (cu->header.offset.sect_off
14191 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14192 info_ptr += bytes_read;
14193 break;
14194 case DW_FORM_indirect:
14195 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14196 info_ptr += bytes_read;
14197 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14198 break;
14199 case DW_FORM_GNU_addr_index:
14200 if (reader->dwo_file == NULL)
14201 {
14202 /* For now flag a hard error.
14203 Later we can turn this into a complaint. */
14204 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14205 dwarf_form_name (form),
14206 bfd_get_filename (abfd));
14207 }
14208 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14209 info_ptr += bytes_read;
14210 break;
14211 case DW_FORM_GNU_str_index:
14212 if (reader->dwo_file == NULL)
14213 {
14214 /* For now flag a hard error.
14215 Later we can turn this into a complaint if warranted. */
14216 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14217 dwarf_form_name (form),
14218 bfd_get_filename (abfd));
14219 }
14220 {
14221 ULONGEST str_index =
14222 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14223
14224 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14225 DW_STRING_IS_CANONICAL (attr) = 0;
14226 info_ptr += bytes_read;
14227 }
14228 break;
14229 default:
14230 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14231 dwarf_form_name (form),
14232 bfd_get_filename (abfd));
14233 }
14234
14235 /* Super hack. */
14236 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14237 attr->form = DW_FORM_GNU_ref_alt;
14238
14239 /* We have seen instances where the compiler tried to emit a byte
14240 size attribute of -1 which ended up being encoded as an unsigned
14241 0xffffffff. Although 0xffffffff is technically a valid size value,
14242 an object of this size seems pretty unlikely so we can relatively
14243 safely treat these cases as if the size attribute was invalid and
14244 treat them as zero by default. */
14245 if (attr->name == DW_AT_byte_size
14246 && form == DW_FORM_data4
14247 && DW_UNSND (attr) >= 0xffffffff)
14248 {
14249 complaint
14250 (&symfile_complaints,
14251 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14252 hex_string (DW_UNSND (attr)));
14253 DW_UNSND (attr) = 0;
14254 }
14255
14256 return info_ptr;
14257 }
14258
14259 /* Read an attribute described by an abbreviated attribute. */
14260
14261 static gdb_byte *
14262 read_attribute (const struct die_reader_specs *reader,
14263 struct attribute *attr, struct attr_abbrev *abbrev,
14264 gdb_byte *info_ptr)
14265 {
14266 attr->name = abbrev->name;
14267 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14268 }
14269
14270 /* Read dwarf information from a buffer. */
14271
14272 static unsigned int
14273 read_1_byte (bfd *abfd, const gdb_byte *buf)
14274 {
14275 return bfd_get_8 (abfd, buf);
14276 }
14277
14278 static int
14279 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14280 {
14281 return bfd_get_signed_8 (abfd, buf);
14282 }
14283
14284 static unsigned int
14285 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14286 {
14287 return bfd_get_16 (abfd, buf);
14288 }
14289
14290 static int
14291 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14292 {
14293 return bfd_get_signed_16 (abfd, buf);
14294 }
14295
14296 static unsigned int
14297 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14298 {
14299 return bfd_get_32 (abfd, buf);
14300 }
14301
14302 static int
14303 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14304 {
14305 return bfd_get_signed_32 (abfd, buf);
14306 }
14307
14308 static ULONGEST
14309 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14310 {
14311 return bfd_get_64 (abfd, buf);
14312 }
14313
14314 static CORE_ADDR
14315 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14316 unsigned int *bytes_read)
14317 {
14318 struct comp_unit_head *cu_header = &cu->header;
14319 CORE_ADDR retval = 0;
14320
14321 if (cu_header->signed_addr_p)
14322 {
14323 switch (cu_header->addr_size)
14324 {
14325 case 2:
14326 retval = bfd_get_signed_16 (abfd, buf);
14327 break;
14328 case 4:
14329 retval = bfd_get_signed_32 (abfd, buf);
14330 break;
14331 case 8:
14332 retval = bfd_get_signed_64 (abfd, buf);
14333 break;
14334 default:
14335 internal_error (__FILE__, __LINE__,
14336 _("read_address: bad switch, signed [in module %s]"),
14337 bfd_get_filename (abfd));
14338 }
14339 }
14340 else
14341 {
14342 switch (cu_header->addr_size)
14343 {
14344 case 2:
14345 retval = bfd_get_16 (abfd, buf);
14346 break;
14347 case 4:
14348 retval = bfd_get_32 (abfd, buf);
14349 break;
14350 case 8:
14351 retval = bfd_get_64 (abfd, buf);
14352 break;
14353 default:
14354 internal_error (__FILE__, __LINE__,
14355 _("read_address: bad switch, "
14356 "unsigned [in module %s]"),
14357 bfd_get_filename (abfd));
14358 }
14359 }
14360
14361 *bytes_read = cu_header->addr_size;
14362 return retval;
14363 }
14364
14365 /* Read the initial length from a section. The (draft) DWARF 3
14366 specification allows the initial length to take up either 4 bytes
14367 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14368 bytes describe the length and all offsets will be 8 bytes in length
14369 instead of 4.
14370
14371 An older, non-standard 64-bit format is also handled by this
14372 function. The older format in question stores the initial length
14373 as an 8-byte quantity without an escape value. Lengths greater
14374 than 2^32 aren't very common which means that the initial 4 bytes
14375 is almost always zero. Since a length value of zero doesn't make
14376 sense for the 32-bit format, this initial zero can be considered to
14377 be an escape value which indicates the presence of the older 64-bit
14378 format. As written, the code can't detect (old format) lengths
14379 greater than 4GB. If it becomes necessary to handle lengths
14380 somewhat larger than 4GB, we could allow other small values (such
14381 as the non-sensical values of 1, 2, and 3) to also be used as
14382 escape values indicating the presence of the old format.
14383
14384 The value returned via bytes_read should be used to increment the
14385 relevant pointer after calling read_initial_length().
14386
14387 [ Note: read_initial_length() and read_offset() are based on the
14388 document entitled "DWARF Debugging Information Format", revision
14389 3, draft 8, dated November 19, 2001. This document was obtained
14390 from:
14391
14392 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14393
14394 This document is only a draft and is subject to change. (So beware.)
14395
14396 Details regarding the older, non-standard 64-bit format were
14397 determined empirically by examining 64-bit ELF files produced by
14398 the SGI toolchain on an IRIX 6.5 machine.
14399
14400 - Kevin, July 16, 2002
14401 ] */
14402
14403 static LONGEST
14404 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14405 {
14406 LONGEST length = bfd_get_32 (abfd, buf);
14407
14408 if (length == 0xffffffff)
14409 {
14410 length = bfd_get_64 (abfd, buf + 4);
14411 *bytes_read = 12;
14412 }
14413 else if (length == 0)
14414 {
14415 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14416 length = bfd_get_64 (abfd, buf);
14417 *bytes_read = 8;
14418 }
14419 else
14420 {
14421 *bytes_read = 4;
14422 }
14423
14424 return length;
14425 }
14426
14427 /* Cover function for read_initial_length.
14428 Returns the length of the object at BUF, and stores the size of the
14429 initial length in *BYTES_READ and stores the size that offsets will be in
14430 *OFFSET_SIZE.
14431 If the initial length size is not equivalent to that specified in
14432 CU_HEADER then issue a complaint.
14433 This is useful when reading non-comp-unit headers. */
14434
14435 static LONGEST
14436 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14437 const struct comp_unit_head *cu_header,
14438 unsigned int *bytes_read,
14439 unsigned int *offset_size)
14440 {
14441 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14442
14443 gdb_assert (cu_header->initial_length_size == 4
14444 || cu_header->initial_length_size == 8
14445 || cu_header->initial_length_size == 12);
14446
14447 if (cu_header->initial_length_size != *bytes_read)
14448 complaint (&symfile_complaints,
14449 _("intermixed 32-bit and 64-bit DWARF sections"));
14450
14451 *offset_size = (*bytes_read == 4) ? 4 : 8;
14452 return length;
14453 }
14454
14455 /* Read an offset from the data stream. The size of the offset is
14456 given by cu_header->offset_size. */
14457
14458 static LONGEST
14459 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14460 unsigned int *bytes_read)
14461 {
14462 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14463
14464 *bytes_read = cu_header->offset_size;
14465 return offset;
14466 }
14467
14468 /* Read an offset from the data stream. */
14469
14470 static LONGEST
14471 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14472 {
14473 LONGEST retval = 0;
14474
14475 switch (offset_size)
14476 {
14477 case 4:
14478 retval = bfd_get_32 (abfd, buf);
14479 break;
14480 case 8:
14481 retval = bfd_get_64 (abfd, buf);
14482 break;
14483 default:
14484 internal_error (__FILE__, __LINE__,
14485 _("read_offset_1: bad switch [in module %s]"),
14486 bfd_get_filename (abfd));
14487 }
14488
14489 return retval;
14490 }
14491
14492 static gdb_byte *
14493 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14494 {
14495 /* If the size of a host char is 8 bits, we can return a pointer
14496 to the buffer, otherwise we have to copy the data to a buffer
14497 allocated on the temporary obstack. */
14498 gdb_assert (HOST_CHAR_BIT == 8);
14499 return buf;
14500 }
14501
14502 static char *
14503 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14504 {
14505 /* If the size of a host char is 8 bits, we can return a pointer
14506 to the string, otherwise we have to copy the string to a buffer
14507 allocated on the temporary obstack. */
14508 gdb_assert (HOST_CHAR_BIT == 8);
14509 if (*buf == '\0')
14510 {
14511 *bytes_read_ptr = 1;
14512 return NULL;
14513 }
14514 *bytes_read_ptr = strlen ((char *) buf) + 1;
14515 return (char *) buf;
14516 }
14517
14518 static char *
14519 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14520 {
14521 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14522 if (dwarf2_per_objfile->str.buffer == NULL)
14523 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14524 bfd_get_filename (abfd));
14525 if (str_offset >= dwarf2_per_objfile->str.size)
14526 error (_("DW_FORM_strp pointing outside of "
14527 ".debug_str section [in module %s]"),
14528 bfd_get_filename (abfd));
14529 gdb_assert (HOST_CHAR_BIT == 8);
14530 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14531 return NULL;
14532 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14533 }
14534
14535 /* Read a string at offset STR_OFFSET in the .debug_str section from
14536 the .dwz file DWZ. Throw an error if the offset is too large. If
14537 the string consists of a single NUL byte, return NULL; otherwise
14538 return a pointer to the string. */
14539
14540 static char *
14541 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14542 {
14543 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14544
14545 if (dwz->str.buffer == NULL)
14546 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14547 "section [in module %s]"),
14548 bfd_get_filename (dwz->dwz_bfd));
14549 if (str_offset >= dwz->str.size)
14550 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14551 ".debug_str section [in module %s]"),
14552 bfd_get_filename (dwz->dwz_bfd));
14553 gdb_assert (HOST_CHAR_BIT == 8);
14554 if (dwz->str.buffer[str_offset] == '\0')
14555 return NULL;
14556 return (char *) (dwz->str.buffer + str_offset);
14557 }
14558
14559 static char *
14560 read_indirect_string (bfd *abfd, gdb_byte *buf,
14561 const struct comp_unit_head *cu_header,
14562 unsigned int *bytes_read_ptr)
14563 {
14564 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14565
14566 return read_indirect_string_at_offset (abfd, str_offset);
14567 }
14568
14569 static ULONGEST
14570 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14571 {
14572 ULONGEST result;
14573 unsigned int num_read;
14574 int i, shift;
14575 unsigned char byte;
14576
14577 result = 0;
14578 shift = 0;
14579 num_read = 0;
14580 i = 0;
14581 while (1)
14582 {
14583 byte = bfd_get_8 (abfd, buf);
14584 buf++;
14585 num_read++;
14586 result |= ((ULONGEST) (byte & 127) << shift);
14587 if ((byte & 128) == 0)
14588 {
14589 break;
14590 }
14591 shift += 7;
14592 }
14593 *bytes_read_ptr = num_read;
14594 return result;
14595 }
14596
14597 static LONGEST
14598 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14599 {
14600 LONGEST result;
14601 int i, shift, num_read;
14602 unsigned char byte;
14603
14604 result = 0;
14605 shift = 0;
14606 num_read = 0;
14607 i = 0;
14608 while (1)
14609 {
14610 byte = bfd_get_8 (abfd, buf);
14611 buf++;
14612 num_read++;
14613 result |= ((LONGEST) (byte & 127) << shift);
14614 shift += 7;
14615 if ((byte & 128) == 0)
14616 {
14617 break;
14618 }
14619 }
14620 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14621 result |= -(((LONGEST) 1) << shift);
14622 *bytes_read_ptr = num_read;
14623 return result;
14624 }
14625
14626 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14627 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14628 ADDR_SIZE is the size of addresses from the CU header. */
14629
14630 static CORE_ADDR
14631 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14632 {
14633 struct objfile *objfile = dwarf2_per_objfile->objfile;
14634 bfd *abfd = objfile->obfd;
14635 const gdb_byte *info_ptr;
14636
14637 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14638 if (dwarf2_per_objfile->addr.buffer == NULL)
14639 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14640 objfile->name);
14641 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14642 error (_("DW_FORM_addr_index pointing outside of "
14643 ".debug_addr section [in module %s]"),
14644 objfile->name);
14645 info_ptr = (dwarf2_per_objfile->addr.buffer
14646 + addr_base + addr_index * addr_size);
14647 if (addr_size == 4)
14648 return bfd_get_32 (abfd, info_ptr);
14649 else
14650 return bfd_get_64 (abfd, info_ptr);
14651 }
14652
14653 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14654
14655 static CORE_ADDR
14656 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14657 {
14658 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14659 }
14660
14661 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14662
14663 static CORE_ADDR
14664 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14665 unsigned int *bytes_read)
14666 {
14667 bfd *abfd = cu->objfile->obfd;
14668 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14669
14670 return read_addr_index (cu, addr_index);
14671 }
14672
14673 /* Data structure to pass results from dwarf2_read_addr_index_reader
14674 back to dwarf2_read_addr_index. */
14675
14676 struct dwarf2_read_addr_index_data
14677 {
14678 ULONGEST addr_base;
14679 int addr_size;
14680 };
14681
14682 /* die_reader_func for dwarf2_read_addr_index. */
14683
14684 static void
14685 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14686 gdb_byte *info_ptr,
14687 struct die_info *comp_unit_die,
14688 int has_children,
14689 void *data)
14690 {
14691 struct dwarf2_cu *cu = reader->cu;
14692 struct dwarf2_read_addr_index_data *aidata =
14693 (struct dwarf2_read_addr_index_data *) data;
14694
14695 aidata->addr_base = cu->addr_base;
14696 aidata->addr_size = cu->header.addr_size;
14697 }
14698
14699 /* Given an index in .debug_addr, fetch the value.
14700 NOTE: This can be called during dwarf expression evaluation,
14701 long after the debug information has been read, and thus per_cu->cu
14702 may no longer exist. */
14703
14704 CORE_ADDR
14705 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14706 unsigned int addr_index)
14707 {
14708 struct objfile *objfile = per_cu->objfile;
14709 struct dwarf2_cu *cu = per_cu->cu;
14710 ULONGEST addr_base;
14711 int addr_size;
14712
14713 /* This is intended to be called from outside this file. */
14714 dw2_setup (objfile);
14715
14716 /* We need addr_base and addr_size.
14717 If we don't have PER_CU->cu, we have to get it.
14718 Nasty, but the alternative is storing the needed info in PER_CU,
14719 which at this point doesn't seem justified: it's not clear how frequently
14720 it would get used and it would increase the size of every PER_CU.
14721 Entry points like dwarf2_per_cu_addr_size do a similar thing
14722 so we're not in uncharted territory here.
14723 Alas we need to be a bit more complicated as addr_base is contained
14724 in the DIE.
14725
14726 We don't need to read the entire CU(/TU).
14727 We just need the header and top level die.
14728
14729 IWBN to use the aging mechanism to let us lazily later discard the CU.
14730 For now we skip this optimization. */
14731
14732 if (cu != NULL)
14733 {
14734 addr_base = cu->addr_base;
14735 addr_size = cu->header.addr_size;
14736 }
14737 else
14738 {
14739 struct dwarf2_read_addr_index_data aidata;
14740
14741 /* Note: We can't use init_cutu_and_read_dies_simple here,
14742 we need addr_base. */
14743 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14744 dwarf2_read_addr_index_reader, &aidata);
14745 addr_base = aidata.addr_base;
14746 addr_size = aidata.addr_size;
14747 }
14748
14749 return read_addr_index_1 (addr_index, addr_base, addr_size);
14750 }
14751
14752 /* Given a DW_AT_str_index, fetch the string. */
14753
14754 static char *
14755 read_str_index (const struct die_reader_specs *reader,
14756 struct dwarf2_cu *cu, ULONGEST str_index)
14757 {
14758 struct objfile *objfile = dwarf2_per_objfile->objfile;
14759 const char *dwo_name = objfile->name;
14760 bfd *abfd = objfile->obfd;
14761 struct dwo_sections *sections = &reader->dwo_file->sections;
14762 gdb_byte *info_ptr;
14763 ULONGEST str_offset;
14764
14765 dwarf2_read_section (objfile, &sections->str);
14766 dwarf2_read_section (objfile, &sections->str_offsets);
14767 if (sections->str.buffer == NULL)
14768 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14769 " in CU at offset 0x%lx [in module %s]"),
14770 (long) cu->header.offset.sect_off, dwo_name);
14771 if (sections->str_offsets.buffer == NULL)
14772 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14773 " in CU at offset 0x%lx [in module %s]"),
14774 (long) cu->header.offset.sect_off, dwo_name);
14775 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14776 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14777 " section in CU at offset 0x%lx [in module %s]"),
14778 (long) cu->header.offset.sect_off, dwo_name);
14779 info_ptr = (sections->str_offsets.buffer
14780 + str_index * cu->header.offset_size);
14781 if (cu->header.offset_size == 4)
14782 str_offset = bfd_get_32 (abfd, info_ptr);
14783 else
14784 str_offset = bfd_get_64 (abfd, info_ptr);
14785 if (str_offset >= sections->str.size)
14786 error (_("Offset from DW_FORM_str_index pointing outside of"
14787 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14788 (long) cu->header.offset.sect_off, dwo_name);
14789 return (char *) (sections->str.buffer + str_offset);
14790 }
14791
14792 /* Return the length of an LEB128 number in BUF. */
14793
14794 static int
14795 leb128_size (const gdb_byte *buf)
14796 {
14797 const gdb_byte *begin = buf;
14798 gdb_byte byte;
14799
14800 while (1)
14801 {
14802 byte = *buf++;
14803 if ((byte & 128) == 0)
14804 return buf - begin;
14805 }
14806 }
14807
14808 static void
14809 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14810 {
14811 switch (lang)
14812 {
14813 case DW_LANG_C89:
14814 case DW_LANG_C99:
14815 case DW_LANG_C:
14816 cu->language = language_c;
14817 break;
14818 case DW_LANG_C_plus_plus:
14819 cu->language = language_cplus;
14820 break;
14821 case DW_LANG_D:
14822 cu->language = language_d;
14823 break;
14824 case DW_LANG_Fortran77:
14825 case DW_LANG_Fortran90:
14826 case DW_LANG_Fortran95:
14827 cu->language = language_fortran;
14828 break;
14829 case DW_LANG_Go:
14830 cu->language = language_go;
14831 break;
14832 case DW_LANG_Mips_Assembler:
14833 cu->language = language_asm;
14834 break;
14835 case DW_LANG_Java:
14836 cu->language = language_java;
14837 break;
14838 case DW_LANG_Ada83:
14839 case DW_LANG_Ada95:
14840 cu->language = language_ada;
14841 break;
14842 case DW_LANG_Modula2:
14843 cu->language = language_m2;
14844 break;
14845 case DW_LANG_Pascal83:
14846 cu->language = language_pascal;
14847 break;
14848 case DW_LANG_ObjC:
14849 cu->language = language_objc;
14850 break;
14851 case DW_LANG_Cobol74:
14852 case DW_LANG_Cobol85:
14853 default:
14854 cu->language = language_minimal;
14855 break;
14856 }
14857 cu->language_defn = language_def (cu->language);
14858 }
14859
14860 /* Return the named attribute or NULL if not there. */
14861
14862 static struct attribute *
14863 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14864 {
14865 for (;;)
14866 {
14867 unsigned int i;
14868 struct attribute *spec = NULL;
14869
14870 for (i = 0; i < die->num_attrs; ++i)
14871 {
14872 if (die->attrs[i].name == name)
14873 return &die->attrs[i];
14874 if (die->attrs[i].name == DW_AT_specification
14875 || die->attrs[i].name == DW_AT_abstract_origin)
14876 spec = &die->attrs[i];
14877 }
14878
14879 if (!spec)
14880 break;
14881
14882 die = follow_die_ref (die, spec, &cu);
14883 }
14884
14885 return NULL;
14886 }
14887
14888 /* Return the named attribute or NULL if not there,
14889 but do not follow DW_AT_specification, etc.
14890 This is for use in contexts where we're reading .debug_types dies.
14891 Following DW_AT_specification, DW_AT_abstract_origin will take us
14892 back up the chain, and we want to go down. */
14893
14894 static struct attribute *
14895 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14896 {
14897 unsigned int i;
14898
14899 for (i = 0; i < die->num_attrs; ++i)
14900 if (die->attrs[i].name == name)
14901 return &die->attrs[i];
14902
14903 return NULL;
14904 }
14905
14906 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14907 and holds a non-zero value. This function should only be used for
14908 DW_FORM_flag or DW_FORM_flag_present attributes. */
14909
14910 static int
14911 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14912 {
14913 struct attribute *attr = dwarf2_attr (die, name, cu);
14914
14915 return (attr && DW_UNSND (attr));
14916 }
14917
14918 static int
14919 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14920 {
14921 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14922 which value is non-zero. However, we have to be careful with
14923 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14924 (via dwarf2_flag_true_p) follows this attribute. So we may
14925 end up accidently finding a declaration attribute that belongs
14926 to a different DIE referenced by the specification attribute,
14927 even though the given DIE does not have a declaration attribute. */
14928 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14929 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14930 }
14931
14932 /* Return the die giving the specification for DIE, if there is
14933 one. *SPEC_CU is the CU containing DIE on input, and the CU
14934 containing the return value on output. If there is no
14935 specification, but there is an abstract origin, that is
14936 returned. */
14937
14938 static struct die_info *
14939 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14940 {
14941 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14942 *spec_cu);
14943
14944 if (spec_attr == NULL)
14945 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14946
14947 if (spec_attr == NULL)
14948 return NULL;
14949 else
14950 return follow_die_ref (die, spec_attr, spec_cu);
14951 }
14952
14953 /* Free the line_header structure *LH, and any arrays and strings it
14954 refers to.
14955 NOTE: This is also used as a "cleanup" function. */
14956
14957 static void
14958 free_line_header (struct line_header *lh)
14959 {
14960 if (lh->standard_opcode_lengths)
14961 xfree (lh->standard_opcode_lengths);
14962
14963 /* Remember that all the lh->file_names[i].name pointers are
14964 pointers into debug_line_buffer, and don't need to be freed. */
14965 if (lh->file_names)
14966 xfree (lh->file_names);
14967
14968 /* Similarly for the include directory names. */
14969 if (lh->include_dirs)
14970 xfree (lh->include_dirs);
14971
14972 xfree (lh);
14973 }
14974
14975 /* Add an entry to LH's include directory table. */
14976
14977 static void
14978 add_include_dir (struct line_header *lh, char *include_dir)
14979 {
14980 /* Grow the array if necessary. */
14981 if (lh->include_dirs_size == 0)
14982 {
14983 lh->include_dirs_size = 1; /* for testing */
14984 lh->include_dirs = xmalloc (lh->include_dirs_size
14985 * sizeof (*lh->include_dirs));
14986 }
14987 else if (lh->num_include_dirs >= lh->include_dirs_size)
14988 {
14989 lh->include_dirs_size *= 2;
14990 lh->include_dirs = xrealloc (lh->include_dirs,
14991 (lh->include_dirs_size
14992 * sizeof (*lh->include_dirs)));
14993 }
14994
14995 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14996 }
14997
14998 /* Add an entry to LH's file name table. */
14999
15000 static void
15001 add_file_name (struct line_header *lh,
15002 char *name,
15003 unsigned int dir_index,
15004 unsigned int mod_time,
15005 unsigned int length)
15006 {
15007 struct file_entry *fe;
15008
15009 /* Grow the array if necessary. */
15010 if (lh->file_names_size == 0)
15011 {
15012 lh->file_names_size = 1; /* for testing */
15013 lh->file_names = xmalloc (lh->file_names_size
15014 * sizeof (*lh->file_names));
15015 }
15016 else if (lh->num_file_names >= lh->file_names_size)
15017 {
15018 lh->file_names_size *= 2;
15019 lh->file_names = xrealloc (lh->file_names,
15020 (lh->file_names_size
15021 * sizeof (*lh->file_names)));
15022 }
15023
15024 fe = &lh->file_names[lh->num_file_names++];
15025 fe->name = name;
15026 fe->dir_index = dir_index;
15027 fe->mod_time = mod_time;
15028 fe->length = length;
15029 fe->included_p = 0;
15030 fe->symtab = NULL;
15031 }
15032
15033 /* A convenience function to find the proper .debug_line section for a
15034 CU. */
15035
15036 static struct dwarf2_section_info *
15037 get_debug_line_section (struct dwarf2_cu *cu)
15038 {
15039 struct dwarf2_section_info *section;
15040
15041 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15042 DWO file. */
15043 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15044 section = &cu->dwo_unit->dwo_file->sections.line;
15045 else if (cu->per_cu->is_dwz)
15046 {
15047 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15048
15049 section = &dwz->line;
15050 }
15051 else
15052 section = &dwarf2_per_objfile->line;
15053
15054 return section;
15055 }
15056
15057 /* Read the statement program header starting at OFFSET in
15058 .debug_line, or .debug_line.dwo. Return a pointer
15059 to a struct line_header, allocated using xmalloc.
15060
15061 NOTE: the strings in the include directory and file name tables of
15062 the returned object point into the dwarf line section buffer,
15063 and must not be freed. */
15064
15065 static struct line_header *
15066 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15067 {
15068 struct cleanup *back_to;
15069 struct line_header *lh;
15070 gdb_byte *line_ptr;
15071 unsigned int bytes_read, offset_size;
15072 int i;
15073 char *cur_dir, *cur_file;
15074 struct dwarf2_section_info *section;
15075 bfd *abfd;
15076
15077 section = get_debug_line_section (cu);
15078 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15079 if (section->buffer == NULL)
15080 {
15081 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15082 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15083 else
15084 complaint (&symfile_complaints, _("missing .debug_line section"));
15085 return 0;
15086 }
15087
15088 /* We can't do this until we know the section is non-empty.
15089 Only then do we know we have such a section. */
15090 abfd = section->asection->owner;
15091
15092 /* Make sure that at least there's room for the total_length field.
15093 That could be 12 bytes long, but we're just going to fudge that. */
15094 if (offset + 4 >= section->size)
15095 {
15096 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15097 return 0;
15098 }
15099
15100 lh = xmalloc (sizeof (*lh));
15101 memset (lh, 0, sizeof (*lh));
15102 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15103 (void *) lh);
15104
15105 line_ptr = section->buffer + offset;
15106
15107 /* Read in the header. */
15108 lh->total_length =
15109 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15110 &bytes_read, &offset_size);
15111 line_ptr += bytes_read;
15112 if (line_ptr + lh->total_length > (section->buffer + section->size))
15113 {
15114 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15115 return 0;
15116 }
15117 lh->statement_program_end = line_ptr + lh->total_length;
15118 lh->version = read_2_bytes (abfd, line_ptr);
15119 line_ptr += 2;
15120 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15121 line_ptr += offset_size;
15122 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15123 line_ptr += 1;
15124 if (lh->version >= 4)
15125 {
15126 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15127 line_ptr += 1;
15128 }
15129 else
15130 lh->maximum_ops_per_instruction = 1;
15131
15132 if (lh->maximum_ops_per_instruction == 0)
15133 {
15134 lh->maximum_ops_per_instruction = 1;
15135 complaint (&symfile_complaints,
15136 _("invalid maximum_ops_per_instruction "
15137 "in `.debug_line' section"));
15138 }
15139
15140 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15141 line_ptr += 1;
15142 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15143 line_ptr += 1;
15144 lh->line_range = read_1_byte (abfd, line_ptr);
15145 line_ptr += 1;
15146 lh->opcode_base = read_1_byte (abfd, line_ptr);
15147 line_ptr += 1;
15148 lh->standard_opcode_lengths
15149 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15150
15151 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15152 for (i = 1; i < lh->opcode_base; ++i)
15153 {
15154 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15155 line_ptr += 1;
15156 }
15157
15158 /* Read directory table. */
15159 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15160 {
15161 line_ptr += bytes_read;
15162 add_include_dir (lh, cur_dir);
15163 }
15164 line_ptr += bytes_read;
15165
15166 /* Read file name table. */
15167 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15168 {
15169 unsigned int dir_index, mod_time, length;
15170
15171 line_ptr += bytes_read;
15172 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15173 line_ptr += bytes_read;
15174 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15175 line_ptr += bytes_read;
15176 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15177 line_ptr += bytes_read;
15178
15179 add_file_name (lh, cur_file, dir_index, mod_time, length);
15180 }
15181 line_ptr += bytes_read;
15182 lh->statement_program_start = line_ptr;
15183
15184 if (line_ptr > (section->buffer + section->size))
15185 complaint (&symfile_complaints,
15186 _("line number info header doesn't "
15187 "fit in `.debug_line' section"));
15188
15189 discard_cleanups (back_to);
15190 return lh;
15191 }
15192
15193 /* Subroutine of dwarf_decode_lines to simplify it.
15194 Return the file name of the psymtab for included file FILE_INDEX
15195 in line header LH of PST.
15196 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15197 If space for the result is malloc'd, it will be freed by a cleanup.
15198 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15199
15200 The function creates dangling cleanup registration. */
15201
15202 static char *
15203 psymtab_include_file_name (const struct line_header *lh, int file_index,
15204 const struct partial_symtab *pst,
15205 const char *comp_dir)
15206 {
15207 const struct file_entry fe = lh->file_names [file_index];
15208 char *include_name = fe.name;
15209 char *include_name_to_compare = include_name;
15210 char *dir_name = NULL;
15211 const char *pst_filename;
15212 char *copied_name = NULL;
15213 int file_is_pst;
15214
15215 if (fe.dir_index)
15216 dir_name = lh->include_dirs[fe.dir_index - 1];
15217
15218 if (!IS_ABSOLUTE_PATH (include_name)
15219 && (dir_name != NULL || comp_dir != NULL))
15220 {
15221 /* Avoid creating a duplicate psymtab for PST.
15222 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15223 Before we do the comparison, however, we need to account
15224 for DIR_NAME and COMP_DIR.
15225 First prepend dir_name (if non-NULL). If we still don't
15226 have an absolute path prepend comp_dir (if non-NULL).
15227 However, the directory we record in the include-file's
15228 psymtab does not contain COMP_DIR (to match the
15229 corresponding symtab(s)).
15230
15231 Example:
15232
15233 bash$ cd /tmp
15234 bash$ gcc -g ./hello.c
15235 include_name = "hello.c"
15236 dir_name = "."
15237 DW_AT_comp_dir = comp_dir = "/tmp"
15238 DW_AT_name = "./hello.c" */
15239
15240 if (dir_name != NULL)
15241 {
15242 include_name = concat (dir_name, SLASH_STRING,
15243 include_name, (char *)NULL);
15244 include_name_to_compare = include_name;
15245 make_cleanup (xfree, include_name);
15246 }
15247 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15248 {
15249 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15250 include_name, (char *)NULL);
15251 }
15252 }
15253
15254 pst_filename = pst->filename;
15255 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15256 {
15257 copied_name = concat (pst->dirname, SLASH_STRING,
15258 pst_filename, (char *)NULL);
15259 pst_filename = copied_name;
15260 }
15261
15262 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15263
15264 if (include_name_to_compare != include_name)
15265 xfree (include_name_to_compare);
15266 if (copied_name != NULL)
15267 xfree (copied_name);
15268
15269 if (file_is_pst)
15270 return NULL;
15271 return include_name;
15272 }
15273
15274 /* Ignore this record_line request. */
15275
15276 static void
15277 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15278 {
15279 return;
15280 }
15281
15282 /* Subroutine of dwarf_decode_lines to simplify it.
15283 Process the line number information in LH. */
15284
15285 static void
15286 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15287 struct dwarf2_cu *cu, struct partial_symtab *pst)
15288 {
15289 gdb_byte *line_ptr, *extended_end;
15290 gdb_byte *line_end;
15291 unsigned int bytes_read, extended_len;
15292 unsigned char op_code, extended_op, adj_opcode;
15293 CORE_ADDR baseaddr;
15294 struct objfile *objfile = cu->objfile;
15295 bfd *abfd = objfile->obfd;
15296 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15297 const int decode_for_pst_p = (pst != NULL);
15298 struct subfile *last_subfile = NULL;
15299 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15300 = record_line;
15301
15302 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15303
15304 line_ptr = lh->statement_program_start;
15305 line_end = lh->statement_program_end;
15306
15307 /* Read the statement sequences until there's nothing left. */
15308 while (line_ptr < line_end)
15309 {
15310 /* state machine registers */
15311 CORE_ADDR address = 0;
15312 unsigned int file = 1;
15313 unsigned int line = 1;
15314 unsigned int column = 0;
15315 int is_stmt = lh->default_is_stmt;
15316 int basic_block = 0;
15317 int end_sequence = 0;
15318 CORE_ADDR addr;
15319 unsigned char op_index = 0;
15320
15321 if (!decode_for_pst_p && lh->num_file_names >= file)
15322 {
15323 /* Start a subfile for the current file of the state machine. */
15324 /* lh->include_dirs and lh->file_names are 0-based, but the
15325 directory and file name numbers in the statement program
15326 are 1-based. */
15327 struct file_entry *fe = &lh->file_names[file - 1];
15328 char *dir = NULL;
15329
15330 if (fe->dir_index)
15331 dir = lh->include_dirs[fe->dir_index - 1];
15332
15333 dwarf2_start_subfile (fe->name, dir, comp_dir);
15334 }
15335
15336 /* Decode the table. */
15337 while (!end_sequence)
15338 {
15339 op_code = read_1_byte (abfd, line_ptr);
15340 line_ptr += 1;
15341 if (line_ptr > line_end)
15342 {
15343 dwarf2_debug_line_missing_end_sequence_complaint ();
15344 break;
15345 }
15346
15347 if (op_code >= lh->opcode_base)
15348 {
15349 /* Special operand. */
15350 adj_opcode = op_code - lh->opcode_base;
15351 address += (((op_index + (adj_opcode / lh->line_range))
15352 / lh->maximum_ops_per_instruction)
15353 * lh->minimum_instruction_length);
15354 op_index = ((op_index + (adj_opcode / lh->line_range))
15355 % lh->maximum_ops_per_instruction);
15356 line += lh->line_base + (adj_opcode % lh->line_range);
15357 if (lh->num_file_names < file || file == 0)
15358 dwarf2_debug_line_missing_file_complaint ();
15359 /* For now we ignore lines not starting on an
15360 instruction boundary. */
15361 else if (op_index == 0)
15362 {
15363 lh->file_names[file - 1].included_p = 1;
15364 if (!decode_for_pst_p && is_stmt)
15365 {
15366 if (last_subfile != current_subfile)
15367 {
15368 addr = gdbarch_addr_bits_remove (gdbarch, address);
15369 if (last_subfile)
15370 (*p_record_line) (last_subfile, 0, addr);
15371 last_subfile = current_subfile;
15372 }
15373 /* Append row to matrix using current values. */
15374 addr = gdbarch_addr_bits_remove (gdbarch, address);
15375 (*p_record_line) (current_subfile, line, addr);
15376 }
15377 }
15378 basic_block = 0;
15379 }
15380 else switch (op_code)
15381 {
15382 case DW_LNS_extended_op:
15383 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15384 &bytes_read);
15385 line_ptr += bytes_read;
15386 extended_end = line_ptr + extended_len;
15387 extended_op = read_1_byte (abfd, line_ptr);
15388 line_ptr += 1;
15389 switch (extended_op)
15390 {
15391 case DW_LNE_end_sequence:
15392 p_record_line = record_line;
15393 end_sequence = 1;
15394 break;
15395 case DW_LNE_set_address:
15396 address = read_address (abfd, line_ptr, cu, &bytes_read);
15397
15398 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15399 {
15400 /* This line table is for a function which has been
15401 GCd by the linker. Ignore it. PR gdb/12528 */
15402
15403 long line_offset
15404 = line_ptr - get_debug_line_section (cu)->buffer;
15405
15406 complaint (&symfile_complaints,
15407 _(".debug_line address at offset 0x%lx is 0 "
15408 "[in module %s]"),
15409 line_offset, objfile->name);
15410 p_record_line = noop_record_line;
15411 }
15412
15413 op_index = 0;
15414 line_ptr += bytes_read;
15415 address += baseaddr;
15416 break;
15417 case DW_LNE_define_file:
15418 {
15419 char *cur_file;
15420 unsigned int dir_index, mod_time, length;
15421
15422 cur_file = read_direct_string (abfd, line_ptr,
15423 &bytes_read);
15424 line_ptr += bytes_read;
15425 dir_index =
15426 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15427 line_ptr += bytes_read;
15428 mod_time =
15429 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15430 line_ptr += bytes_read;
15431 length =
15432 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15433 line_ptr += bytes_read;
15434 add_file_name (lh, cur_file, dir_index, mod_time, length);
15435 }
15436 break;
15437 case DW_LNE_set_discriminator:
15438 /* The discriminator is not interesting to the debugger;
15439 just ignore it. */
15440 line_ptr = extended_end;
15441 break;
15442 default:
15443 complaint (&symfile_complaints,
15444 _("mangled .debug_line section"));
15445 return;
15446 }
15447 /* Make sure that we parsed the extended op correctly. If e.g.
15448 we expected a different address size than the producer used,
15449 we may have read the wrong number of bytes. */
15450 if (line_ptr != extended_end)
15451 {
15452 complaint (&symfile_complaints,
15453 _("mangled .debug_line section"));
15454 return;
15455 }
15456 break;
15457 case DW_LNS_copy:
15458 if (lh->num_file_names < file || file == 0)
15459 dwarf2_debug_line_missing_file_complaint ();
15460 else
15461 {
15462 lh->file_names[file - 1].included_p = 1;
15463 if (!decode_for_pst_p && is_stmt)
15464 {
15465 if (last_subfile != current_subfile)
15466 {
15467 addr = gdbarch_addr_bits_remove (gdbarch, address);
15468 if (last_subfile)
15469 (*p_record_line) (last_subfile, 0, addr);
15470 last_subfile = current_subfile;
15471 }
15472 addr = gdbarch_addr_bits_remove (gdbarch, address);
15473 (*p_record_line) (current_subfile, line, addr);
15474 }
15475 }
15476 basic_block = 0;
15477 break;
15478 case DW_LNS_advance_pc:
15479 {
15480 CORE_ADDR adjust
15481 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15482
15483 address += (((op_index + adjust)
15484 / lh->maximum_ops_per_instruction)
15485 * lh->minimum_instruction_length);
15486 op_index = ((op_index + adjust)
15487 % lh->maximum_ops_per_instruction);
15488 line_ptr += bytes_read;
15489 }
15490 break;
15491 case DW_LNS_advance_line:
15492 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15493 line_ptr += bytes_read;
15494 break;
15495 case DW_LNS_set_file:
15496 {
15497 /* The arrays lh->include_dirs and lh->file_names are
15498 0-based, but the directory and file name numbers in
15499 the statement program are 1-based. */
15500 struct file_entry *fe;
15501 char *dir = NULL;
15502
15503 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15504 line_ptr += bytes_read;
15505 if (lh->num_file_names < file || file == 0)
15506 dwarf2_debug_line_missing_file_complaint ();
15507 else
15508 {
15509 fe = &lh->file_names[file - 1];
15510 if (fe->dir_index)
15511 dir = lh->include_dirs[fe->dir_index - 1];
15512 if (!decode_for_pst_p)
15513 {
15514 last_subfile = current_subfile;
15515 dwarf2_start_subfile (fe->name, dir, comp_dir);
15516 }
15517 }
15518 }
15519 break;
15520 case DW_LNS_set_column:
15521 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15522 line_ptr += bytes_read;
15523 break;
15524 case DW_LNS_negate_stmt:
15525 is_stmt = (!is_stmt);
15526 break;
15527 case DW_LNS_set_basic_block:
15528 basic_block = 1;
15529 break;
15530 /* Add to the address register of the state machine the
15531 address increment value corresponding to special opcode
15532 255. I.e., this value is scaled by the minimum
15533 instruction length since special opcode 255 would have
15534 scaled the increment. */
15535 case DW_LNS_const_add_pc:
15536 {
15537 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15538
15539 address += (((op_index + adjust)
15540 / lh->maximum_ops_per_instruction)
15541 * lh->minimum_instruction_length);
15542 op_index = ((op_index + adjust)
15543 % lh->maximum_ops_per_instruction);
15544 }
15545 break;
15546 case DW_LNS_fixed_advance_pc:
15547 address += read_2_bytes (abfd, line_ptr);
15548 op_index = 0;
15549 line_ptr += 2;
15550 break;
15551 default:
15552 {
15553 /* Unknown standard opcode, ignore it. */
15554 int i;
15555
15556 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15557 {
15558 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15559 line_ptr += bytes_read;
15560 }
15561 }
15562 }
15563 }
15564 if (lh->num_file_names < file || file == 0)
15565 dwarf2_debug_line_missing_file_complaint ();
15566 else
15567 {
15568 lh->file_names[file - 1].included_p = 1;
15569 if (!decode_for_pst_p)
15570 {
15571 addr = gdbarch_addr_bits_remove (gdbarch, address);
15572 (*p_record_line) (current_subfile, 0, addr);
15573 }
15574 }
15575 }
15576 }
15577
15578 /* Decode the Line Number Program (LNP) for the given line_header
15579 structure and CU. The actual information extracted and the type
15580 of structures created from the LNP depends on the value of PST.
15581
15582 1. If PST is NULL, then this procedure uses the data from the program
15583 to create all necessary symbol tables, and their linetables.
15584
15585 2. If PST is not NULL, this procedure reads the program to determine
15586 the list of files included by the unit represented by PST, and
15587 builds all the associated partial symbol tables.
15588
15589 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15590 It is used for relative paths in the line table.
15591 NOTE: When processing partial symtabs (pst != NULL),
15592 comp_dir == pst->dirname.
15593
15594 NOTE: It is important that psymtabs have the same file name (via strcmp)
15595 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15596 symtab we don't use it in the name of the psymtabs we create.
15597 E.g. expand_line_sal requires this when finding psymtabs to expand.
15598 A good testcase for this is mb-inline.exp. */
15599
15600 static void
15601 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15602 struct dwarf2_cu *cu, struct partial_symtab *pst,
15603 int want_line_info)
15604 {
15605 struct objfile *objfile = cu->objfile;
15606 const int decode_for_pst_p = (pst != NULL);
15607 struct subfile *first_subfile = current_subfile;
15608
15609 if (want_line_info)
15610 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15611
15612 if (decode_for_pst_p)
15613 {
15614 int file_index;
15615
15616 /* Now that we're done scanning the Line Header Program, we can
15617 create the psymtab of each included file. */
15618 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15619 if (lh->file_names[file_index].included_p == 1)
15620 {
15621 char *include_name =
15622 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15623 if (include_name != NULL)
15624 dwarf2_create_include_psymtab (include_name, pst, objfile);
15625 }
15626 }
15627 else
15628 {
15629 /* Make sure a symtab is created for every file, even files
15630 which contain only variables (i.e. no code with associated
15631 line numbers). */
15632 int i;
15633
15634 for (i = 0; i < lh->num_file_names; i++)
15635 {
15636 char *dir = NULL;
15637 struct file_entry *fe;
15638
15639 fe = &lh->file_names[i];
15640 if (fe->dir_index)
15641 dir = lh->include_dirs[fe->dir_index - 1];
15642 dwarf2_start_subfile (fe->name, dir, comp_dir);
15643
15644 /* Skip the main file; we don't need it, and it must be
15645 allocated last, so that it will show up before the
15646 non-primary symtabs in the objfile's symtab list. */
15647 if (current_subfile == first_subfile)
15648 continue;
15649
15650 if (current_subfile->symtab == NULL)
15651 current_subfile->symtab = allocate_symtab (current_subfile->name,
15652 objfile);
15653 fe->symtab = current_subfile->symtab;
15654 }
15655 }
15656 }
15657
15658 /* Start a subfile for DWARF. FILENAME is the name of the file and
15659 DIRNAME the name of the source directory which contains FILENAME
15660 or NULL if not known. COMP_DIR is the compilation directory for the
15661 linetable's compilation unit or NULL if not known.
15662 This routine tries to keep line numbers from identical absolute and
15663 relative file names in a common subfile.
15664
15665 Using the `list' example from the GDB testsuite, which resides in
15666 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15667 of /srcdir/list0.c yields the following debugging information for list0.c:
15668
15669 DW_AT_name: /srcdir/list0.c
15670 DW_AT_comp_dir: /compdir
15671 files.files[0].name: list0.h
15672 files.files[0].dir: /srcdir
15673 files.files[1].name: list0.c
15674 files.files[1].dir: /srcdir
15675
15676 The line number information for list0.c has to end up in a single
15677 subfile, so that `break /srcdir/list0.c:1' works as expected.
15678 start_subfile will ensure that this happens provided that we pass the
15679 concatenation of files.files[1].dir and files.files[1].name as the
15680 subfile's name. */
15681
15682 static void
15683 dwarf2_start_subfile (char *filename, const char *dirname,
15684 const char *comp_dir)
15685 {
15686 char *fullname;
15687
15688 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15689 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15690 second argument to start_subfile. To be consistent, we do the
15691 same here. In order not to lose the line information directory,
15692 we concatenate it to the filename when it makes sense.
15693 Note that the Dwarf3 standard says (speaking of filenames in line
15694 information): ``The directory index is ignored for file names
15695 that represent full path names''. Thus ignoring dirname in the
15696 `else' branch below isn't an issue. */
15697
15698 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15699 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15700 else
15701 fullname = filename;
15702
15703 start_subfile (fullname, comp_dir);
15704
15705 if (fullname != filename)
15706 xfree (fullname);
15707 }
15708
15709 /* Start a symtab for DWARF.
15710 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15711
15712 static void
15713 dwarf2_start_symtab (struct dwarf2_cu *cu,
15714 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15715 {
15716 start_symtab (name, comp_dir, low_pc);
15717 record_debugformat ("DWARF 2");
15718 record_producer (cu->producer);
15719
15720 /* We assume that we're processing GCC output. */
15721 processing_gcc_compilation = 2;
15722
15723 cu->processing_has_namespace_info = 0;
15724 }
15725
15726 static void
15727 var_decode_location (struct attribute *attr, struct symbol *sym,
15728 struct dwarf2_cu *cu)
15729 {
15730 struct objfile *objfile = cu->objfile;
15731 struct comp_unit_head *cu_header = &cu->header;
15732
15733 /* NOTE drow/2003-01-30: There used to be a comment and some special
15734 code here to turn a symbol with DW_AT_external and a
15735 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15736 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15737 with some versions of binutils) where shared libraries could have
15738 relocations against symbols in their debug information - the
15739 minimal symbol would have the right address, but the debug info
15740 would not. It's no longer necessary, because we will explicitly
15741 apply relocations when we read in the debug information now. */
15742
15743 /* A DW_AT_location attribute with no contents indicates that a
15744 variable has been optimized away. */
15745 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15746 {
15747 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15748 return;
15749 }
15750
15751 /* Handle one degenerate form of location expression specially, to
15752 preserve GDB's previous behavior when section offsets are
15753 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15754 then mark this symbol as LOC_STATIC. */
15755
15756 if (attr_form_is_block (attr)
15757 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15758 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15759 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15760 && (DW_BLOCK (attr)->size
15761 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15762 {
15763 unsigned int dummy;
15764
15765 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15766 SYMBOL_VALUE_ADDRESS (sym) =
15767 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15768 else
15769 SYMBOL_VALUE_ADDRESS (sym) =
15770 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15771 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
15772 fixup_symbol_section (sym, objfile);
15773 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15774 SYMBOL_SECTION (sym));
15775 return;
15776 }
15777
15778 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15779 expression evaluator, and use LOC_COMPUTED only when necessary
15780 (i.e. when the value of a register or memory location is
15781 referenced, or a thread-local block, etc.). Then again, it might
15782 not be worthwhile. I'm assuming that it isn't unless performance
15783 or memory numbers show me otherwise. */
15784
15785 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
15786
15787 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
15788 cu->has_loclist = 1;
15789 }
15790
15791 /* Given a pointer to a DWARF information entry, figure out if we need
15792 to make a symbol table entry for it, and if so, create a new entry
15793 and return a pointer to it.
15794 If TYPE is NULL, determine symbol type from the die, otherwise
15795 used the passed type.
15796 If SPACE is not NULL, use it to hold the new symbol. If it is
15797 NULL, allocate a new symbol on the objfile's obstack. */
15798
15799 static struct symbol *
15800 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15801 struct symbol *space)
15802 {
15803 struct objfile *objfile = cu->objfile;
15804 struct symbol *sym = NULL;
15805 const char *name;
15806 struct attribute *attr = NULL;
15807 struct attribute *attr2 = NULL;
15808 CORE_ADDR baseaddr;
15809 struct pending **list_to_add = NULL;
15810
15811 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15812
15813 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15814
15815 name = dwarf2_name (die, cu);
15816 if (name)
15817 {
15818 const char *linkagename;
15819 int suppress_add = 0;
15820
15821 if (space)
15822 sym = space;
15823 else
15824 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15825 OBJSTAT (objfile, n_syms++);
15826
15827 /* Cache this symbol's name and the name's demangled form (if any). */
15828 SYMBOL_SET_LANGUAGE (sym, cu->language);
15829 linkagename = dwarf2_physname (name, die, cu);
15830 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15831
15832 /* Fortran does not have mangling standard and the mangling does differ
15833 between gfortran, iFort etc. */
15834 if (cu->language == language_fortran
15835 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15836 symbol_set_demangled_name (&(sym->ginfo),
15837 dwarf2_full_name (name, die, cu),
15838 NULL);
15839
15840 /* Default assumptions.
15841 Use the passed type or decode it from the die. */
15842 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15843 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15844 if (type != NULL)
15845 SYMBOL_TYPE (sym) = type;
15846 else
15847 SYMBOL_TYPE (sym) = die_type (die, cu);
15848 attr = dwarf2_attr (die,
15849 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15850 cu);
15851 if (attr)
15852 {
15853 SYMBOL_LINE (sym) = DW_UNSND (attr);
15854 }
15855
15856 attr = dwarf2_attr (die,
15857 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15858 cu);
15859 if (attr)
15860 {
15861 int file_index = DW_UNSND (attr);
15862
15863 if (cu->line_header == NULL
15864 || file_index > cu->line_header->num_file_names)
15865 complaint (&symfile_complaints,
15866 _("file index out of range"));
15867 else if (file_index > 0)
15868 {
15869 struct file_entry *fe;
15870
15871 fe = &cu->line_header->file_names[file_index - 1];
15872 SYMBOL_SYMTAB (sym) = fe->symtab;
15873 }
15874 }
15875
15876 switch (die->tag)
15877 {
15878 case DW_TAG_label:
15879 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15880 if (attr)
15881 {
15882 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15883 }
15884 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15885 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15886 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
15887 add_symbol_to_list (sym, cu->list_in_scope);
15888 break;
15889 case DW_TAG_subprogram:
15890 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15891 finish_block. */
15892 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
15893 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15894 if ((attr2 && (DW_UNSND (attr2) != 0))
15895 || cu->language == language_ada)
15896 {
15897 /* Subprograms marked external are stored as a global symbol.
15898 Ada subprograms, whether marked external or not, are always
15899 stored as a global symbol, because we want to be able to
15900 access them globally. For instance, we want to be able
15901 to break on a nested subprogram without having to
15902 specify the context. */
15903 list_to_add = &global_symbols;
15904 }
15905 else
15906 {
15907 list_to_add = cu->list_in_scope;
15908 }
15909 break;
15910 case DW_TAG_inlined_subroutine:
15911 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15912 finish_block. */
15913 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
15914 SYMBOL_INLINED (sym) = 1;
15915 list_to_add = cu->list_in_scope;
15916 break;
15917 case DW_TAG_template_value_param:
15918 suppress_add = 1;
15919 /* Fall through. */
15920 case DW_TAG_constant:
15921 case DW_TAG_variable:
15922 case DW_TAG_member:
15923 /* Compilation with minimal debug info may result in
15924 variables with missing type entries. Change the
15925 misleading `void' type to something sensible. */
15926 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15927 SYMBOL_TYPE (sym)
15928 = objfile_type (objfile)->nodebug_data_symbol;
15929
15930 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15931 /* In the case of DW_TAG_member, we should only be called for
15932 static const members. */
15933 if (die->tag == DW_TAG_member)
15934 {
15935 /* dwarf2_add_field uses die_is_declaration,
15936 so we do the same. */
15937 gdb_assert (die_is_declaration (die, cu));
15938 gdb_assert (attr);
15939 }
15940 if (attr)
15941 {
15942 dwarf2_const_value (attr, sym, cu);
15943 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15944 if (!suppress_add)
15945 {
15946 if (attr2 && (DW_UNSND (attr2) != 0))
15947 list_to_add = &global_symbols;
15948 else
15949 list_to_add = cu->list_in_scope;
15950 }
15951 break;
15952 }
15953 attr = dwarf2_attr (die, DW_AT_location, cu);
15954 if (attr)
15955 {
15956 var_decode_location (attr, sym, cu);
15957 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15958
15959 /* Fortran explicitly imports any global symbols to the local
15960 scope by DW_TAG_common_block. */
15961 if (cu->language == language_fortran && die->parent
15962 && die->parent->tag == DW_TAG_common_block)
15963 attr2 = NULL;
15964
15965 if (SYMBOL_CLASS (sym) == LOC_STATIC
15966 && SYMBOL_VALUE_ADDRESS (sym) == 0
15967 && !dwarf2_per_objfile->has_section_at_zero)
15968 {
15969 /* When a static variable is eliminated by the linker,
15970 the corresponding debug information is not stripped
15971 out, but the variable address is set to null;
15972 do not add such variables into symbol table. */
15973 }
15974 else if (attr2 && (DW_UNSND (attr2) != 0))
15975 {
15976 /* Workaround gfortran PR debug/40040 - it uses
15977 DW_AT_location for variables in -fPIC libraries which may
15978 get overriden by other libraries/executable and get
15979 a different address. Resolve it by the minimal symbol
15980 which may come from inferior's executable using copy
15981 relocation. Make this workaround only for gfortran as for
15982 other compilers GDB cannot guess the minimal symbol
15983 Fortran mangling kind. */
15984 if (cu->language == language_fortran && die->parent
15985 && die->parent->tag == DW_TAG_module
15986 && cu->producer
15987 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15988 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
15989
15990 /* A variable with DW_AT_external is never static,
15991 but it may be block-scoped. */
15992 list_to_add = (cu->list_in_scope == &file_symbols
15993 ? &global_symbols : cu->list_in_scope);
15994 }
15995 else
15996 list_to_add = cu->list_in_scope;
15997 }
15998 else
15999 {
16000 /* We do not know the address of this symbol.
16001 If it is an external symbol and we have type information
16002 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16003 The address of the variable will then be determined from
16004 the minimal symbol table whenever the variable is
16005 referenced. */
16006 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16007
16008 /* Fortran explicitly imports any global symbols to the local
16009 scope by DW_TAG_common_block. */
16010 if (cu->language == language_fortran && die->parent
16011 && die->parent->tag == DW_TAG_common_block)
16012 {
16013 /* SYMBOL_CLASS doesn't matter here because
16014 read_common_block is going to reset it. */
16015 if (!suppress_add)
16016 list_to_add = cu->list_in_scope;
16017 }
16018 else if (attr2 && (DW_UNSND (attr2) != 0)
16019 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16020 {
16021 /* A variable with DW_AT_external is never static, but it
16022 may be block-scoped. */
16023 list_to_add = (cu->list_in_scope == &file_symbols
16024 ? &global_symbols : cu->list_in_scope);
16025
16026 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16027 }
16028 else if (!die_is_declaration (die, cu))
16029 {
16030 /* Use the default LOC_OPTIMIZED_OUT class. */
16031 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16032 if (!suppress_add)
16033 list_to_add = cu->list_in_scope;
16034 }
16035 }
16036 break;
16037 case DW_TAG_formal_parameter:
16038 /* If we are inside a function, mark this as an argument. If
16039 not, we might be looking at an argument to an inlined function
16040 when we do not have enough information to show inlined frames;
16041 pretend it's a local variable in that case so that the user can
16042 still see it. */
16043 if (context_stack_depth > 0
16044 && context_stack[context_stack_depth - 1].name != NULL)
16045 SYMBOL_IS_ARGUMENT (sym) = 1;
16046 attr = dwarf2_attr (die, DW_AT_location, cu);
16047 if (attr)
16048 {
16049 var_decode_location (attr, sym, cu);
16050 }
16051 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16052 if (attr)
16053 {
16054 dwarf2_const_value (attr, sym, cu);
16055 }
16056
16057 list_to_add = cu->list_in_scope;
16058 break;
16059 case DW_TAG_unspecified_parameters:
16060 /* From varargs functions; gdb doesn't seem to have any
16061 interest in this information, so just ignore it for now.
16062 (FIXME?) */
16063 break;
16064 case DW_TAG_template_type_param:
16065 suppress_add = 1;
16066 /* Fall through. */
16067 case DW_TAG_class_type:
16068 case DW_TAG_interface_type:
16069 case DW_TAG_structure_type:
16070 case DW_TAG_union_type:
16071 case DW_TAG_set_type:
16072 case DW_TAG_enumeration_type:
16073 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16074 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16075
16076 {
16077 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16078 really ever be static objects: otherwise, if you try
16079 to, say, break of a class's method and you're in a file
16080 which doesn't mention that class, it won't work unless
16081 the check for all static symbols in lookup_symbol_aux
16082 saves you. See the OtherFileClass tests in
16083 gdb.c++/namespace.exp. */
16084
16085 if (!suppress_add)
16086 {
16087 list_to_add = (cu->list_in_scope == &file_symbols
16088 && (cu->language == language_cplus
16089 || cu->language == language_java)
16090 ? &global_symbols : cu->list_in_scope);
16091
16092 /* The semantics of C++ state that "struct foo {
16093 ... }" also defines a typedef for "foo". A Java
16094 class declaration also defines a typedef for the
16095 class. */
16096 if (cu->language == language_cplus
16097 || cu->language == language_java
16098 || cu->language == language_ada)
16099 {
16100 /* The symbol's name is already allocated along
16101 with this objfile, so we don't need to
16102 duplicate it for the type. */
16103 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16104 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16105 }
16106 }
16107 }
16108 break;
16109 case DW_TAG_typedef:
16110 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16112 list_to_add = cu->list_in_scope;
16113 break;
16114 case DW_TAG_base_type:
16115 case DW_TAG_subrange_type:
16116 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16117 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16118 list_to_add = cu->list_in_scope;
16119 break;
16120 case DW_TAG_enumerator:
16121 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16122 if (attr)
16123 {
16124 dwarf2_const_value (attr, sym, cu);
16125 }
16126 {
16127 /* NOTE: carlton/2003-11-10: See comment above in the
16128 DW_TAG_class_type, etc. block. */
16129
16130 list_to_add = (cu->list_in_scope == &file_symbols
16131 && (cu->language == language_cplus
16132 || cu->language == language_java)
16133 ? &global_symbols : cu->list_in_scope);
16134 }
16135 break;
16136 case DW_TAG_namespace:
16137 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16138 list_to_add = &global_symbols;
16139 break;
16140 case DW_TAG_common_block:
16141 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16142 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16143 add_symbol_to_list (sym, cu->list_in_scope);
16144 break;
16145 default:
16146 /* Not a tag we recognize. Hopefully we aren't processing
16147 trash data, but since we must specifically ignore things
16148 we don't recognize, there is nothing else we should do at
16149 this point. */
16150 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16151 dwarf_tag_name (die->tag));
16152 break;
16153 }
16154
16155 if (suppress_add)
16156 {
16157 sym->hash_next = objfile->template_symbols;
16158 objfile->template_symbols = sym;
16159 list_to_add = NULL;
16160 }
16161
16162 if (list_to_add != NULL)
16163 add_symbol_to_list (sym, list_to_add);
16164
16165 /* For the benefit of old versions of GCC, check for anonymous
16166 namespaces based on the demangled name. */
16167 if (!cu->processing_has_namespace_info
16168 && cu->language == language_cplus)
16169 cp_scan_for_anonymous_namespaces (sym, objfile);
16170 }
16171 return (sym);
16172 }
16173
16174 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16175
16176 static struct symbol *
16177 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16178 {
16179 return new_symbol_full (die, type, cu, NULL);
16180 }
16181
16182 /* Given an attr with a DW_FORM_dataN value in host byte order,
16183 zero-extend it as appropriate for the symbol's type. The DWARF
16184 standard (v4) is not entirely clear about the meaning of using
16185 DW_FORM_dataN for a constant with a signed type, where the type is
16186 wider than the data. The conclusion of a discussion on the DWARF
16187 list was that this is unspecified. We choose to always zero-extend
16188 because that is the interpretation long in use by GCC. */
16189
16190 static gdb_byte *
16191 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16192 const char *name, struct obstack *obstack,
16193 struct dwarf2_cu *cu, LONGEST *value, int bits)
16194 {
16195 struct objfile *objfile = cu->objfile;
16196 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16197 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16198 LONGEST l = DW_UNSND (attr);
16199
16200 if (bits < sizeof (*value) * 8)
16201 {
16202 l &= ((LONGEST) 1 << bits) - 1;
16203 *value = l;
16204 }
16205 else if (bits == sizeof (*value) * 8)
16206 *value = l;
16207 else
16208 {
16209 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16210 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16211 return bytes;
16212 }
16213
16214 return NULL;
16215 }
16216
16217 /* Read a constant value from an attribute. Either set *VALUE, or if
16218 the value does not fit in *VALUE, set *BYTES - either already
16219 allocated on the objfile obstack, or newly allocated on OBSTACK,
16220 or, set *BATON, if we translated the constant to a location
16221 expression. */
16222
16223 static void
16224 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16225 const char *name, struct obstack *obstack,
16226 struct dwarf2_cu *cu,
16227 LONGEST *value, gdb_byte **bytes,
16228 struct dwarf2_locexpr_baton **baton)
16229 {
16230 struct objfile *objfile = cu->objfile;
16231 struct comp_unit_head *cu_header = &cu->header;
16232 struct dwarf_block *blk;
16233 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16234 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16235
16236 *value = 0;
16237 *bytes = NULL;
16238 *baton = NULL;
16239
16240 switch (attr->form)
16241 {
16242 case DW_FORM_addr:
16243 case DW_FORM_GNU_addr_index:
16244 {
16245 gdb_byte *data;
16246
16247 if (TYPE_LENGTH (type) != cu_header->addr_size)
16248 dwarf2_const_value_length_mismatch_complaint (name,
16249 cu_header->addr_size,
16250 TYPE_LENGTH (type));
16251 /* Symbols of this form are reasonably rare, so we just
16252 piggyback on the existing location code rather than writing
16253 a new implementation of symbol_computed_ops. */
16254 *baton = obstack_alloc (&objfile->objfile_obstack,
16255 sizeof (struct dwarf2_locexpr_baton));
16256 (*baton)->per_cu = cu->per_cu;
16257 gdb_assert ((*baton)->per_cu);
16258
16259 (*baton)->size = 2 + cu_header->addr_size;
16260 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16261 (*baton)->data = data;
16262
16263 data[0] = DW_OP_addr;
16264 store_unsigned_integer (&data[1], cu_header->addr_size,
16265 byte_order, DW_ADDR (attr));
16266 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16267 }
16268 break;
16269 case DW_FORM_string:
16270 case DW_FORM_strp:
16271 case DW_FORM_GNU_str_index:
16272 case DW_FORM_GNU_strp_alt:
16273 /* DW_STRING is already allocated on the objfile obstack, point
16274 directly to it. */
16275 *bytes = (gdb_byte *) DW_STRING (attr);
16276 break;
16277 case DW_FORM_block1:
16278 case DW_FORM_block2:
16279 case DW_FORM_block4:
16280 case DW_FORM_block:
16281 case DW_FORM_exprloc:
16282 blk = DW_BLOCK (attr);
16283 if (TYPE_LENGTH (type) != blk->size)
16284 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16285 TYPE_LENGTH (type));
16286 *bytes = blk->data;
16287 break;
16288
16289 /* The DW_AT_const_value attributes are supposed to carry the
16290 symbol's value "represented as it would be on the target
16291 architecture." By the time we get here, it's already been
16292 converted to host endianness, so we just need to sign- or
16293 zero-extend it as appropriate. */
16294 case DW_FORM_data1:
16295 *bytes = dwarf2_const_value_data (attr, type, name,
16296 obstack, cu, value, 8);
16297 break;
16298 case DW_FORM_data2:
16299 *bytes = dwarf2_const_value_data (attr, type, name,
16300 obstack, cu, value, 16);
16301 break;
16302 case DW_FORM_data4:
16303 *bytes = dwarf2_const_value_data (attr, type, name,
16304 obstack, cu, value, 32);
16305 break;
16306 case DW_FORM_data8:
16307 *bytes = dwarf2_const_value_data (attr, type, name,
16308 obstack, cu, value, 64);
16309 break;
16310
16311 case DW_FORM_sdata:
16312 *value = DW_SND (attr);
16313 break;
16314
16315 case DW_FORM_udata:
16316 *value = DW_UNSND (attr);
16317 break;
16318
16319 default:
16320 complaint (&symfile_complaints,
16321 _("unsupported const value attribute form: '%s'"),
16322 dwarf_form_name (attr->form));
16323 *value = 0;
16324 break;
16325 }
16326 }
16327
16328
16329 /* Copy constant value from an attribute to a symbol. */
16330
16331 static void
16332 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16333 struct dwarf2_cu *cu)
16334 {
16335 struct objfile *objfile = cu->objfile;
16336 struct comp_unit_head *cu_header = &cu->header;
16337 LONGEST value;
16338 gdb_byte *bytes;
16339 struct dwarf2_locexpr_baton *baton;
16340
16341 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16342 SYMBOL_PRINT_NAME (sym),
16343 &objfile->objfile_obstack, cu,
16344 &value, &bytes, &baton);
16345
16346 if (baton != NULL)
16347 {
16348 SYMBOL_LOCATION_BATON (sym) = baton;
16349 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16350 }
16351 else if (bytes != NULL)
16352 {
16353 SYMBOL_VALUE_BYTES (sym) = bytes;
16354 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16355 }
16356 else
16357 {
16358 SYMBOL_VALUE (sym) = value;
16359 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16360 }
16361 }
16362
16363 /* Return the type of the die in question using its DW_AT_type attribute. */
16364
16365 static struct type *
16366 die_type (struct die_info *die, struct dwarf2_cu *cu)
16367 {
16368 struct attribute *type_attr;
16369
16370 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16371 if (!type_attr)
16372 {
16373 /* A missing DW_AT_type represents a void type. */
16374 return objfile_type (cu->objfile)->builtin_void;
16375 }
16376
16377 return lookup_die_type (die, type_attr, cu);
16378 }
16379
16380 /* True iff CU's producer generates GNAT Ada auxiliary information
16381 that allows to find parallel types through that information instead
16382 of having to do expensive parallel lookups by type name. */
16383
16384 static int
16385 need_gnat_info (struct dwarf2_cu *cu)
16386 {
16387 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16388 of GNAT produces this auxiliary information, without any indication
16389 that it is produced. Part of enhancing the FSF version of GNAT
16390 to produce that information will be to put in place an indicator
16391 that we can use in order to determine whether the descriptive type
16392 info is available or not. One suggestion that has been made is
16393 to use a new attribute, attached to the CU die. For now, assume
16394 that the descriptive type info is not available. */
16395 return 0;
16396 }
16397
16398 /* Return the auxiliary type of the die in question using its
16399 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16400 attribute is not present. */
16401
16402 static struct type *
16403 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16404 {
16405 struct attribute *type_attr;
16406
16407 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16408 if (!type_attr)
16409 return NULL;
16410
16411 return lookup_die_type (die, type_attr, cu);
16412 }
16413
16414 /* If DIE has a descriptive_type attribute, then set the TYPE's
16415 descriptive type accordingly. */
16416
16417 static void
16418 set_descriptive_type (struct type *type, struct die_info *die,
16419 struct dwarf2_cu *cu)
16420 {
16421 struct type *descriptive_type = die_descriptive_type (die, cu);
16422
16423 if (descriptive_type)
16424 {
16425 ALLOCATE_GNAT_AUX_TYPE (type);
16426 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16427 }
16428 }
16429
16430 /* Return the containing type of the die in question using its
16431 DW_AT_containing_type attribute. */
16432
16433 static struct type *
16434 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16435 {
16436 struct attribute *type_attr;
16437
16438 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16439 if (!type_attr)
16440 error (_("Dwarf Error: Problem turning containing type into gdb type "
16441 "[in module %s]"), cu->objfile->name);
16442
16443 return lookup_die_type (die, type_attr, cu);
16444 }
16445
16446 /* Look up the type of DIE in CU using its type attribute ATTR.
16447 If there is no type substitute an error marker. */
16448
16449 static struct type *
16450 lookup_die_type (struct die_info *die, struct attribute *attr,
16451 struct dwarf2_cu *cu)
16452 {
16453 struct objfile *objfile = cu->objfile;
16454 struct type *this_type;
16455
16456 /* First see if we have it cached. */
16457
16458 if (attr->form == DW_FORM_GNU_ref_alt)
16459 {
16460 struct dwarf2_per_cu_data *per_cu;
16461 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16462
16463 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16464 this_type = get_die_type_at_offset (offset, per_cu);
16465 }
16466 else if (is_ref_attr (attr))
16467 {
16468 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16469
16470 this_type = get_die_type_at_offset (offset, cu->per_cu);
16471 }
16472 else if (attr->form == DW_FORM_ref_sig8)
16473 {
16474 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16475
16476 /* sig_type will be NULL if the signatured type is missing from
16477 the debug info. */
16478 if (sig_type == NULL)
16479 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16480 "at 0x%x [in module %s]"),
16481 die->offset.sect_off, objfile->name);
16482
16483 gdb_assert (sig_type->per_cu.is_debug_types);
16484 /* If we haven't filled in type_offset_in_section yet, then we
16485 haven't read the type in yet. */
16486 this_type = NULL;
16487 if (sig_type->type_offset_in_section.sect_off != 0)
16488 {
16489 this_type =
16490 get_die_type_at_offset (sig_type->type_offset_in_section,
16491 &sig_type->per_cu);
16492 }
16493 }
16494 else
16495 {
16496 dump_die_for_error (die);
16497 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16498 dwarf_attr_name (attr->name), objfile->name);
16499 }
16500
16501 /* If not cached we need to read it in. */
16502
16503 if (this_type == NULL)
16504 {
16505 struct die_info *type_die;
16506 struct dwarf2_cu *type_cu = cu;
16507
16508 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16509 /* If we found the type now, it's probably because the type came
16510 from an inter-CU reference and the type's CU got expanded before
16511 ours. */
16512 this_type = get_die_type (type_die, type_cu);
16513 if (this_type == NULL)
16514 this_type = read_type_die_1 (type_die, type_cu);
16515 }
16516
16517 /* If we still don't have a type use an error marker. */
16518
16519 if (this_type == NULL)
16520 {
16521 char *message, *saved;
16522
16523 /* read_type_die already issued a complaint. */
16524 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16525 objfile->name,
16526 cu->header.offset.sect_off,
16527 die->offset.sect_off);
16528 saved = obstack_copy0 (&objfile->objfile_obstack,
16529 message, strlen (message));
16530 xfree (message);
16531
16532 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16533 }
16534
16535 return this_type;
16536 }
16537
16538 /* Return the type in DIE, CU.
16539 Returns NULL for invalid types.
16540
16541 This first does a lookup in the appropriate type_hash table,
16542 and only reads the die in if necessary.
16543
16544 NOTE: This can be called when reading in partial or full symbols. */
16545
16546 static struct type *
16547 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16548 {
16549 struct type *this_type;
16550
16551 this_type = get_die_type (die, cu);
16552 if (this_type)
16553 return this_type;
16554
16555 return read_type_die_1 (die, cu);
16556 }
16557
16558 /* Read the type in DIE, CU.
16559 Returns NULL for invalid types. */
16560
16561 static struct type *
16562 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16563 {
16564 struct type *this_type = NULL;
16565
16566 switch (die->tag)
16567 {
16568 case DW_TAG_class_type:
16569 case DW_TAG_interface_type:
16570 case DW_TAG_structure_type:
16571 case DW_TAG_union_type:
16572 this_type = read_structure_type (die, cu);
16573 break;
16574 case DW_TAG_enumeration_type:
16575 this_type = read_enumeration_type (die, cu);
16576 break;
16577 case DW_TAG_subprogram:
16578 case DW_TAG_subroutine_type:
16579 case DW_TAG_inlined_subroutine:
16580 this_type = read_subroutine_type (die, cu);
16581 break;
16582 case DW_TAG_array_type:
16583 this_type = read_array_type (die, cu);
16584 break;
16585 case DW_TAG_set_type:
16586 this_type = read_set_type (die, cu);
16587 break;
16588 case DW_TAG_pointer_type:
16589 this_type = read_tag_pointer_type (die, cu);
16590 break;
16591 case DW_TAG_ptr_to_member_type:
16592 this_type = read_tag_ptr_to_member_type (die, cu);
16593 break;
16594 case DW_TAG_reference_type:
16595 this_type = read_tag_reference_type (die, cu);
16596 break;
16597 case DW_TAG_const_type:
16598 this_type = read_tag_const_type (die, cu);
16599 break;
16600 case DW_TAG_volatile_type:
16601 this_type = read_tag_volatile_type (die, cu);
16602 break;
16603 case DW_TAG_restrict_type:
16604 this_type = read_tag_restrict_type (die, cu);
16605 break;
16606 case DW_TAG_string_type:
16607 this_type = read_tag_string_type (die, cu);
16608 break;
16609 case DW_TAG_typedef:
16610 this_type = read_typedef (die, cu);
16611 break;
16612 case DW_TAG_subrange_type:
16613 this_type = read_subrange_type (die, cu);
16614 break;
16615 case DW_TAG_base_type:
16616 this_type = read_base_type (die, cu);
16617 break;
16618 case DW_TAG_unspecified_type:
16619 this_type = read_unspecified_type (die, cu);
16620 break;
16621 case DW_TAG_namespace:
16622 this_type = read_namespace_type (die, cu);
16623 break;
16624 case DW_TAG_module:
16625 this_type = read_module_type (die, cu);
16626 break;
16627 default:
16628 complaint (&symfile_complaints,
16629 _("unexpected tag in read_type_die: '%s'"),
16630 dwarf_tag_name (die->tag));
16631 break;
16632 }
16633
16634 return this_type;
16635 }
16636
16637 /* See if we can figure out if the class lives in a namespace. We do
16638 this by looking for a member function; its demangled name will
16639 contain namespace info, if there is any.
16640 Return the computed name or NULL.
16641 Space for the result is allocated on the objfile's obstack.
16642 This is the full-die version of guess_partial_die_structure_name.
16643 In this case we know DIE has no useful parent. */
16644
16645 static char *
16646 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16647 {
16648 struct die_info *spec_die;
16649 struct dwarf2_cu *spec_cu;
16650 struct die_info *child;
16651
16652 spec_cu = cu;
16653 spec_die = die_specification (die, &spec_cu);
16654 if (spec_die != NULL)
16655 {
16656 die = spec_die;
16657 cu = spec_cu;
16658 }
16659
16660 for (child = die->child;
16661 child != NULL;
16662 child = child->sibling)
16663 {
16664 if (child->tag == DW_TAG_subprogram)
16665 {
16666 struct attribute *attr;
16667
16668 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16669 if (attr == NULL)
16670 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16671 if (attr != NULL)
16672 {
16673 char *actual_name
16674 = language_class_name_from_physname (cu->language_defn,
16675 DW_STRING (attr));
16676 char *name = NULL;
16677
16678 if (actual_name != NULL)
16679 {
16680 const char *die_name = dwarf2_name (die, cu);
16681
16682 if (die_name != NULL
16683 && strcmp (die_name, actual_name) != 0)
16684 {
16685 /* Strip off the class name from the full name.
16686 We want the prefix. */
16687 int die_name_len = strlen (die_name);
16688 int actual_name_len = strlen (actual_name);
16689
16690 /* Test for '::' as a sanity check. */
16691 if (actual_name_len > die_name_len + 2
16692 && actual_name[actual_name_len
16693 - die_name_len - 1] == ':')
16694 name =
16695 obstack_copy0 (&cu->objfile->objfile_obstack,
16696 actual_name,
16697 actual_name_len - die_name_len - 2);
16698 }
16699 }
16700 xfree (actual_name);
16701 return name;
16702 }
16703 }
16704 }
16705
16706 return NULL;
16707 }
16708
16709 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16710 prefix part in such case. See
16711 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16712
16713 static char *
16714 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16715 {
16716 struct attribute *attr;
16717 char *base;
16718
16719 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16720 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16721 return NULL;
16722
16723 attr = dwarf2_attr (die, DW_AT_name, cu);
16724 if (attr != NULL && DW_STRING (attr) != NULL)
16725 return NULL;
16726
16727 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16728 if (attr == NULL)
16729 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16730 if (attr == NULL || DW_STRING (attr) == NULL)
16731 return NULL;
16732
16733 /* dwarf2_name had to be already called. */
16734 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16735
16736 /* Strip the base name, keep any leading namespaces/classes. */
16737 base = strrchr (DW_STRING (attr), ':');
16738 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16739 return "";
16740
16741 return obstack_copy0 (&cu->objfile->objfile_obstack,
16742 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16743 }
16744
16745 /* Return the name of the namespace/class that DIE is defined within,
16746 or "" if we can't tell. The caller should not xfree the result.
16747
16748 For example, if we're within the method foo() in the following
16749 code:
16750
16751 namespace N {
16752 class C {
16753 void foo () {
16754 }
16755 };
16756 }
16757
16758 then determine_prefix on foo's die will return "N::C". */
16759
16760 static const char *
16761 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16762 {
16763 struct die_info *parent, *spec_die;
16764 struct dwarf2_cu *spec_cu;
16765 struct type *parent_type;
16766 char *retval;
16767
16768 if (cu->language != language_cplus && cu->language != language_java
16769 && cu->language != language_fortran)
16770 return "";
16771
16772 retval = anonymous_struct_prefix (die, cu);
16773 if (retval)
16774 return retval;
16775
16776 /* We have to be careful in the presence of DW_AT_specification.
16777 For example, with GCC 3.4, given the code
16778
16779 namespace N {
16780 void foo() {
16781 // Definition of N::foo.
16782 }
16783 }
16784
16785 then we'll have a tree of DIEs like this:
16786
16787 1: DW_TAG_compile_unit
16788 2: DW_TAG_namespace // N
16789 3: DW_TAG_subprogram // declaration of N::foo
16790 4: DW_TAG_subprogram // definition of N::foo
16791 DW_AT_specification // refers to die #3
16792
16793 Thus, when processing die #4, we have to pretend that we're in
16794 the context of its DW_AT_specification, namely the contex of die
16795 #3. */
16796 spec_cu = cu;
16797 spec_die = die_specification (die, &spec_cu);
16798 if (spec_die == NULL)
16799 parent = die->parent;
16800 else
16801 {
16802 parent = spec_die->parent;
16803 cu = spec_cu;
16804 }
16805
16806 if (parent == NULL)
16807 return "";
16808 else if (parent->building_fullname)
16809 {
16810 const char *name;
16811 const char *parent_name;
16812
16813 /* It has been seen on RealView 2.2 built binaries,
16814 DW_TAG_template_type_param types actually _defined_ as
16815 children of the parent class:
16816
16817 enum E {};
16818 template class <class Enum> Class{};
16819 Class<enum E> class_e;
16820
16821 1: DW_TAG_class_type (Class)
16822 2: DW_TAG_enumeration_type (E)
16823 3: DW_TAG_enumerator (enum1:0)
16824 3: DW_TAG_enumerator (enum2:1)
16825 ...
16826 2: DW_TAG_template_type_param
16827 DW_AT_type DW_FORM_ref_udata (E)
16828
16829 Besides being broken debug info, it can put GDB into an
16830 infinite loop. Consider:
16831
16832 When we're building the full name for Class<E>, we'll start
16833 at Class, and go look over its template type parameters,
16834 finding E. We'll then try to build the full name of E, and
16835 reach here. We're now trying to build the full name of E,
16836 and look over the parent DIE for containing scope. In the
16837 broken case, if we followed the parent DIE of E, we'd again
16838 find Class, and once again go look at its template type
16839 arguments, etc., etc. Simply don't consider such parent die
16840 as source-level parent of this die (it can't be, the language
16841 doesn't allow it), and break the loop here. */
16842 name = dwarf2_name (die, cu);
16843 parent_name = dwarf2_name (parent, cu);
16844 complaint (&symfile_complaints,
16845 _("template param type '%s' defined within parent '%s'"),
16846 name ? name : "<unknown>",
16847 parent_name ? parent_name : "<unknown>");
16848 return "";
16849 }
16850 else
16851 switch (parent->tag)
16852 {
16853 case DW_TAG_namespace:
16854 parent_type = read_type_die (parent, cu);
16855 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16856 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16857 Work around this problem here. */
16858 if (cu->language == language_cplus
16859 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16860 return "";
16861 /* We give a name to even anonymous namespaces. */
16862 return TYPE_TAG_NAME (parent_type);
16863 case DW_TAG_class_type:
16864 case DW_TAG_interface_type:
16865 case DW_TAG_structure_type:
16866 case DW_TAG_union_type:
16867 case DW_TAG_module:
16868 parent_type = read_type_die (parent, cu);
16869 if (TYPE_TAG_NAME (parent_type) != NULL)
16870 return TYPE_TAG_NAME (parent_type);
16871 else
16872 /* An anonymous structure is only allowed non-static data
16873 members; no typedefs, no member functions, et cetera.
16874 So it does not need a prefix. */
16875 return "";
16876 case DW_TAG_compile_unit:
16877 case DW_TAG_partial_unit:
16878 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16879 if (cu->language == language_cplus
16880 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16881 && die->child != NULL
16882 && (die->tag == DW_TAG_class_type
16883 || die->tag == DW_TAG_structure_type
16884 || die->tag == DW_TAG_union_type))
16885 {
16886 char *name = guess_full_die_structure_name (die, cu);
16887 if (name != NULL)
16888 return name;
16889 }
16890 return "";
16891 default:
16892 return determine_prefix (parent, cu);
16893 }
16894 }
16895
16896 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16897 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16898 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16899 an obconcat, otherwise allocate storage for the result. The CU argument is
16900 used to determine the language and hence, the appropriate separator. */
16901
16902 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16903
16904 static char *
16905 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16906 int physname, struct dwarf2_cu *cu)
16907 {
16908 const char *lead = "";
16909 const char *sep;
16910
16911 if (suffix == NULL || suffix[0] == '\0'
16912 || prefix == NULL || prefix[0] == '\0')
16913 sep = "";
16914 else if (cu->language == language_java)
16915 sep = ".";
16916 else if (cu->language == language_fortran && physname)
16917 {
16918 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16919 DW_AT_MIPS_linkage_name is preferred and used instead. */
16920
16921 lead = "__";
16922 sep = "_MOD_";
16923 }
16924 else
16925 sep = "::";
16926
16927 if (prefix == NULL)
16928 prefix = "";
16929 if (suffix == NULL)
16930 suffix = "";
16931
16932 if (obs == NULL)
16933 {
16934 char *retval
16935 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16936
16937 strcpy (retval, lead);
16938 strcat (retval, prefix);
16939 strcat (retval, sep);
16940 strcat (retval, suffix);
16941 return retval;
16942 }
16943 else
16944 {
16945 /* We have an obstack. */
16946 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16947 }
16948 }
16949
16950 /* Return sibling of die, NULL if no sibling. */
16951
16952 static struct die_info *
16953 sibling_die (struct die_info *die)
16954 {
16955 return die->sibling;
16956 }
16957
16958 /* Get name of a die, return NULL if not found. */
16959
16960 static const char *
16961 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
16962 struct obstack *obstack)
16963 {
16964 if (name && cu->language == language_cplus)
16965 {
16966 char *canon_name = cp_canonicalize_string (name);
16967
16968 if (canon_name != NULL)
16969 {
16970 if (strcmp (canon_name, name) != 0)
16971 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
16972 xfree (canon_name);
16973 }
16974 }
16975
16976 return name;
16977 }
16978
16979 /* Get name of a die, return NULL if not found. */
16980
16981 static const char *
16982 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16983 {
16984 struct attribute *attr;
16985
16986 attr = dwarf2_attr (die, DW_AT_name, cu);
16987 if ((!attr || !DW_STRING (attr))
16988 && die->tag != DW_TAG_class_type
16989 && die->tag != DW_TAG_interface_type
16990 && die->tag != DW_TAG_structure_type
16991 && die->tag != DW_TAG_union_type)
16992 return NULL;
16993
16994 switch (die->tag)
16995 {
16996 case DW_TAG_compile_unit:
16997 case DW_TAG_partial_unit:
16998 /* Compilation units have a DW_AT_name that is a filename, not
16999 a source language identifier. */
17000 case DW_TAG_enumeration_type:
17001 case DW_TAG_enumerator:
17002 /* These tags always have simple identifiers already; no need
17003 to canonicalize them. */
17004 return DW_STRING (attr);
17005
17006 case DW_TAG_subprogram:
17007 /* Java constructors will all be named "<init>", so return
17008 the class name when we see this special case. */
17009 if (cu->language == language_java
17010 && DW_STRING (attr) != NULL
17011 && strcmp (DW_STRING (attr), "<init>") == 0)
17012 {
17013 struct dwarf2_cu *spec_cu = cu;
17014 struct die_info *spec_die;
17015
17016 /* GCJ will output '<init>' for Java constructor names.
17017 For this special case, return the name of the parent class. */
17018
17019 /* GCJ may output suprogram DIEs with AT_specification set.
17020 If so, use the name of the specified DIE. */
17021 spec_die = die_specification (die, &spec_cu);
17022 if (spec_die != NULL)
17023 return dwarf2_name (spec_die, spec_cu);
17024
17025 do
17026 {
17027 die = die->parent;
17028 if (die->tag == DW_TAG_class_type)
17029 return dwarf2_name (die, cu);
17030 }
17031 while (die->tag != DW_TAG_compile_unit
17032 && die->tag != DW_TAG_partial_unit);
17033 }
17034 break;
17035
17036 case DW_TAG_class_type:
17037 case DW_TAG_interface_type:
17038 case DW_TAG_structure_type:
17039 case DW_TAG_union_type:
17040 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17041 structures or unions. These were of the form "._%d" in GCC 4.1,
17042 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17043 and GCC 4.4. We work around this problem by ignoring these. */
17044 if (attr && DW_STRING (attr)
17045 && (strncmp (DW_STRING (attr), "._", 2) == 0
17046 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17047 return NULL;
17048
17049 /* GCC might emit a nameless typedef that has a linkage name. See
17050 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17051 if (!attr || DW_STRING (attr) == NULL)
17052 {
17053 char *demangled = NULL;
17054
17055 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17056 if (attr == NULL)
17057 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17058
17059 if (attr == NULL || DW_STRING (attr) == NULL)
17060 return NULL;
17061
17062 /* Avoid demangling DW_STRING (attr) the second time on a second
17063 call for the same DIE. */
17064 if (!DW_STRING_IS_CANONICAL (attr))
17065 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17066
17067 if (demangled)
17068 {
17069 char *base;
17070
17071 /* FIXME: we already did this for the partial symbol... */
17072 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17073 demangled, strlen (demangled));
17074 DW_STRING_IS_CANONICAL (attr) = 1;
17075 xfree (demangled);
17076
17077 /* Strip any leading namespaces/classes, keep only the base name.
17078 DW_AT_name for named DIEs does not contain the prefixes. */
17079 base = strrchr (DW_STRING (attr), ':');
17080 if (base && base > DW_STRING (attr) && base[-1] == ':')
17081 return &base[1];
17082 else
17083 return DW_STRING (attr);
17084 }
17085 }
17086 break;
17087
17088 default:
17089 break;
17090 }
17091
17092 if (!DW_STRING_IS_CANONICAL (attr))
17093 {
17094 DW_STRING (attr)
17095 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17096 &cu->objfile->objfile_obstack);
17097 DW_STRING_IS_CANONICAL (attr) = 1;
17098 }
17099 return DW_STRING (attr);
17100 }
17101
17102 /* Return the die that this die in an extension of, or NULL if there
17103 is none. *EXT_CU is the CU containing DIE on input, and the CU
17104 containing the return value on output. */
17105
17106 static struct die_info *
17107 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17108 {
17109 struct attribute *attr;
17110
17111 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17112 if (attr == NULL)
17113 return NULL;
17114
17115 return follow_die_ref (die, attr, ext_cu);
17116 }
17117
17118 /* Convert a DIE tag into its string name. */
17119
17120 static const char *
17121 dwarf_tag_name (unsigned tag)
17122 {
17123 const char *name = get_DW_TAG_name (tag);
17124
17125 if (name == NULL)
17126 return "DW_TAG_<unknown>";
17127
17128 return name;
17129 }
17130
17131 /* Convert a DWARF attribute code into its string name. */
17132
17133 static const char *
17134 dwarf_attr_name (unsigned attr)
17135 {
17136 const char *name;
17137
17138 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17139 if (attr == DW_AT_MIPS_fde)
17140 return "DW_AT_MIPS_fde";
17141 #else
17142 if (attr == DW_AT_HP_block_index)
17143 return "DW_AT_HP_block_index";
17144 #endif
17145
17146 name = get_DW_AT_name (attr);
17147
17148 if (name == NULL)
17149 return "DW_AT_<unknown>";
17150
17151 return name;
17152 }
17153
17154 /* Convert a DWARF value form code into its string name. */
17155
17156 static const char *
17157 dwarf_form_name (unsigned form)
17158 {
17159 const char *name = get_DW_FORM_name (form);
17160
17161 if (name == NULL)
17162 return "DW_FORM_<unknown>";
17163
17164 return name;
17165 }
17166
17167 static char *
17168 dwarf_bool_name (unsigned mybool)
17169 {
17170 if (mybool)
17171 return "TRUE";
17172 else
17173 return "FALSE";
17174 }
17175
17176 /* Convert a DWARF type code into its string name. */
17177
17178 static const char *
17179 dwarf_type_encoding_name (unsigned enc)
17180 {
17181 const char *name = get_DW_ATE_name (enc);
17182
17183 if (name == NULL)
17184 return "DW_ATE_<unknown>";
17185
17186 return name;
17187 }
17188
17189 static void
17190 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17191 {
17192 unsigned int i;
17193
17194 print_spaces (indent, f);
17195 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17196 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17197
17198 if (die->parent != NULL)
17199 {
17200 print_spaces (indent, f);
17201 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17202 die->parent->offset.sect_off);
17203 }
17204
17205 print_spaces (indent, f);
17206 fprintf_unfiltered (f, " has children: %s\n",
17207 dwarf_bool_name (die->child != NULL));
17208
17209 print_spaces (indent, f);
17210 fprintf_unfiltered (f, " attributes:\n");
17211
17212 for (i = 0; i < die->num_attrs; ++i)
17213 {
17214 print_spaces (indent, f);
17215 fprintf_unfiltered (f, " %s (%s) ",
17216 dwarf_attr_name (die->attrs[i].name),
17217 dwarf_form_name (die->attrs[i].form));
17218
17219 switch (die->attrs[i].form)
17220 {
17221 case DW_FORM_addr:
17222 case DW_FORM_GNU_addr_index:
17223 fprintf_unfiltered (f, "address: ");
17224 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17225 break;
17226 case DW_FORM_block2:
17227 case DW_FORM_block4:
17228 case DW_FORM_block:
17229 case DW_FORM_block1:
17230 fprintf_unfiltered (f, "block: size %s",
17231 pulongest (DW_BLOCK (&die->attrs[i])->size));
17232 break;
17233 case DW_FORM_exprloc:
17234 fprintf_unfiltered (f, "expression: size %s",
17235 pulongest (DW_BLOCK (&die->attrs[i])->size));
17236 break;
17237 case DW_FORM_ref_addr:
17238 fprintf_unfiltered (f, "ref address: ");
17239 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17240 break;
17241 case DW_FORM_GNU_ref_alt:
17242 fprintf_unfiltered (f, "alt ref address: ");
17243 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17244 break;
17245 case DW_FORM_ref1:
17246 case DW_FORM_ref2:
17247 case DW_FORM_ref4:
17248 case DW_FORM_ref8:
17249 case DW_FORM_ref_udata:
17250 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17251 (long) (DW_UNSND (&die->attrs[i])));
17252 break;
17253 case DW_FORM_data1:
17254 case DW_FORM_data2:
17255 case DW_FORM_data4:
17256 case DW_FORM_data8:
17257 case DW_FORM_udata:
17258 case DW_FORM_sdata:
17259 fprintf_unfiltered (f, "constant: %s",
17260 pulongest (DW_UNSND (&die->attrs[i])));
17261 break;
17262 case DW_FORM_sec_offset:
17263 fprintf_unfiltered (f, "section offset: %s",
17264 pulongest (DW_UNSND (&die->attrs[i])));
17265 break;
17266 case DW_FORM_ref_sig8:
17267 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17268 {
17269 struct signatured_type *sig_type =
17270 DW_SIGNATURED_TYPE (&die->attrs[i]);
17271
17272 fprintf_unfiltered (f, "signatured type: 0x%s, offset 0x%x",
17273 hex_string (sig_type->signature),
17274 sig_type->per_cu.offset.sect_off);
17275 }
17276 else
17277 fprintf_unfiltered (f, "signatured type, unknown");
17278 break;
17279 case DW_FORM_string:
17280 case DW_FORM_strp:
17281 case DW_FORM_GNU_str_index:
17282 case DW_FORM_GNU_strp_alt:
17283 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17284 DW_STRING (&die->attrs[i])
17285 ? DW_STRING (&die->attrs[i]) : "",
17286 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17287 break;
17288 case DW_FORM_flag:
17289 if (DW_UNSND (&die->attrs[i]))
17290 fprintf_unfiltered (f, "flag: TRUE");
17291 else
17292 fprintf_unfiltered (f, "flag: FALSE");
17293 break;
17294 case DW_FORM_flag_present:
17295 fprintf_unfiltered (f, "flag: TRUE");
17296 break;
17297 case DW_FORM_indirect:
17298 /* The reader will have reduced the indirect form to
17299 the "base form" so this form should not occur. */
17300 fprintf_unfiltered (f,
17301 "unexpected attribute form: DW_FORM_indirect");
17302 break;
17303 default:
17304 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17305 die->attrs[i].form);
17306 break;
17307 }
17308 fprintf_unfiltered (f, "\n");
17309 }
17310 }
17311
17312 static void
17313 dump_die_for_error (struct die_info *die)
17314 {
17315 dump_die_shallow (gdb_stderr, 0, die);
17316 }
17317
17318 static void
17319 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17320 {
17321 int indent = level * 4;
17322
17323 gdb_assert (die != NULL);
17324
17325 if (level >= max_level)
17326 return;
17327
17328 dump_die_shallow (f, indent, die);
17329
17330 if (die->child != NULL)
17331 {
17332 print_spaces (indent, f);
17333 fprintf_unfiltered (f, " Children:");
17334 if (level + 1 < max_level)
17335 {
17336 fprintf_unfiltered (f, "\n");
17337 dump_die_1 (f, level + 1, max_level, die->child);
17338 }
17339 else
17340 {
17341 fprintf_unfiltered (f,
17342 " [not printed, max nesting level reached]\n");
17343 }
17344 }
17345
17346 if (die->sibling != NULL && level > 0)
17347 {
17348 dump_die_1 (f, level, max_level, die->sibling);
17349 }
17350 }
17351
17352 /* This is called from the pdie macro in gdbinit.in.
17353 It's not static so gcc will keep a copy callable from gdb. */
17354
17355 void
17356 dump_die (struct die_info *die, int max_level)
17357 {
17358 dump_die_1 (gdb_stdlog, 0, max_level, die);
17359 }
17360
17361 static void
17362 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17363 {
17364 void **slot;
17365
17366 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17367 INSERT);
17368
17369 *slot = die;
17370 }
17371
17372 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17373 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17374
17375 static int
17376 is_ref_attr (struct attribute *attr)
17377 {
17378 switch (attr->form)
17379 {
17380 case DW_FORM_ref_addr:
17381 case DW_FORM_ref1:
17382 case DW_FORM_ref2:
17383 case DW_FORM_ref4:
17384 case DW_FORM_ref8:
17385 case DW_FORM_ref_udata:
17386 case DW_FORM_GNU_ref_alt:
17387 return 1;
17388 default:
17389 return 0;
17390 }
17391 }
17392
17393 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17394 required kind. */
17395
17396 static sect_offset
17397 dwarf2_get_ref_die_offset (struct attribute *attr)
17398 {
17399 sect_offset retval = { DW_UNSND (attr) };
17400
17401 if (is_ref_attr (attr))
17402 return retval;
17403
17404 retval.sect_off = 0;
17405 complaint (&symfile_complaints,
17406 _("unsupported die ref attribute form: '%s'"),
17407 dwarf_form_name (attr->form));
17408 return retval;
17409 }
17410
17411 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17412 * the value held by the attribute is not constant. */
17413
17414 static LONGEST
17415 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17416 {
17417 if (attr->form == DW_FORM_sdata)
17418 return DW_SND (attr);
17419 else if (attr->form == DW_FORM_udata
17420 || attr->form == DW_FORM_data1
17421 || attr->form == DW_FORM_data2
17422 || attr->form == DW_FORM_data4
17423 || attr->form == DW_FORM_data8)
17424 return DW_UNSND (attr);
17425 else
17426 {
17427 complaint (&symfile_complaints,
17428 _("Attribute value is not a constant (%s)"),
17429 dwarf_form_name (attr->form));
17430 return default_value;
17431 }
17432 }
17433
17434 /* Follow reference or signature attribute ATTR of SRC_DIE.
17435 On entry *REF_CU is the CU of SRC_DIE.
17436 On exit *REF_CU is the CU of the result. */
17437
17438 static struct die_info *
17439 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17440 struct dwarf2_cu **ref_cu)
17441 {
17442 struct die_info *die;
17443
17444 if (is_ref_attr (attr))
17445 die = follow_die_ref (src_die, attr, ref_cu);
17446 else if (attr->form == DW_FORM_ref_sig8)
17447 die = follow_die_sig (src_die, attr, ref_cu);
17448 else
17449 {
17450 dump_die_for_error (src_die);
17451 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17452 (*ref_cu)->objfile->name);
17453 }
17454
17455 return die;
17456 }
17457
17458 /* Follow reference OFFSET.
17459 On entry *REF_CU is the CU of the source die referencing OFFSET.
17460 On exit *REF_CU is the CU of the result.
17461 Returns NULL if OFFSET is invalid. */
17462
17463 static struct die_info *
17464 follow_die_offset (sect_offset offset, int offset_in_dwz,
17465 struct dwarf2_cu **ref_cu)
17466 {
17467 struct die_info temp_die;
17468 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17469
17470 gdb_assert (cu->per_cu != NULL);
17471
17472 target_cu = cu;
17473
17474 if (cu->per_cu->is_debug_types)
17475 {
17476 /* .debug_types CUs cannot reference anything outside their CU.
17477 If they need to, they have to reference a signatured type via
17478 DW_FORM_ref_sig8. */
17479 if (! offset_in_cu_p (&cu->header, offset))
17480 return NULL;
17481 }
17482 else if (offset_in_dwz != cu->per_cu->is_dwz
17483 || ! offset_in_cu_p (&cu->header, offset))
17484 {
17485 struct dwarf2_per_cu_data *per_cu;
17486
17487 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17488 cu->objfile);
17489
17490 /* If necessary, add it to the queue and load its DIEs. */
17491 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17492 load_full_comp_unit (per_cu, cu->language);
17493
17494 target_cu = per_cu->cu;
17495 }
17496 else if (cu->dies == NULL)
17497 {
17498 /* We're loading full DIEs during partial symbol reading. */
17499 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17500 load_full_comp_unit (cu->per_cu, language_minimal);
17501 }
17502
17503 *ref_cu = target_cu;
17504 temp_die.offset = offset;
17505 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17506 }
17507
17508 /* Follow reference attribute ATTR of SRC_DIE.
17509 On entry *REF_CU is the CU of SRC_DIE.
17510 On exit *REF_CU is the CU of the result. */
17511
17512 static struct die_info *
17513 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17514 struct dwarf2_cu **ref_cu)
17515 {
17516 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17517 struct dwarf2_cu *cu = *ref_cu;
17518 struct die_info *die;
17519
17520 die = follow_die_offset (offset,
17521 (attr->form == DW_FORM_GNU_ref_alt
17522 || cu->per_cu->is_dwz),
17523 ref_cu);
17524 if (!die)
17525 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17526 "at 0x%x [in module %s]"),
17527 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17528
17529 return die;
17530 }
17531
17532 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17533 Returned value is intended for DW_OP_call*. Returned
17534 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17535
17536 struct dwarf2_locexpr_baton
17537 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17538 struct dwarf2_per_cu_data *per_cu,
17539 CORE_ADDR (*get_frame_pc) (void *baton),
17540 void *baton)
17541 {
17542 struct dwarf2_cu *cu;
17543 struct die_info *die;
17544 struct attribute *attr;
17545 struct dwarf2_locexpr_baton retval;
17546
17547 dw2_setup (per_cu->objfile);
17548
17549 if (per_cu->cu == NULL)
17550 load_cu (per_cu);
17551 cu = per_cu->cu;
17552
17553 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17554 if (!die)
17555 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17556 offset.sect_off, per_cu->objfile->name);
17557
17558 attr = dwarf2_attr (die, DW_AT_location, cu);
17559 if (!attr)
17560 {
17561 /* DWARF: "If there is no such attribute, then there is no effect.".
17562 DATA is ignored if SIZE is 0. */
17563
17564 retval.data = NULL;
17565 retval.size = 0;
17566 }
17567 else if (attr_form_is_section_offset (attr))
17568 {
17569 struct dwarf2_loclist_baton loclist_baton;
17570 CORE_ADDR pc = (*get_frame_pc) (baton);
17571 size_t size;
17572
17573 fill_in_loclist_baton (cu, &loclist_baton, attr);
17574
17575 retval.data = dwarf2_find_location_expression (&loclist_baton,
17576 &size, pc);
17577 retval.size = size;
17578 }
17579 else
17580 {
17581 if (!attr_form_is_block (attr))
17582 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17583 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17584 offset.sect_off, per_cu->objfile->name);
17585
17586 retval.data = DW_BLOCK (attr)->data;
17587 retval.size = DW_BLOCK (attr)->size;
17588 }
17589 retval.per_cu = cu->per_cu;
17590
17591 age_cached_comp_units ();
17592
17593 return retval;
17594 }
17595
17596 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17597 offset. */
17598
17599 struct dwarf2_locexpr_baton
17600 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17601 struct dwarf2_per_cu_data *per_cu,
17602 CORE_ADDR (*get_frame_pc) (void *baton),
17603 void *baton)
17604 {
17605 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17606
17607 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17608 }
17609
17610 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17611 PER_CU. */
17612
17613 struct type *
17614 dwarf2_get_die_type (cu_offset die_offset,
17615 struct dwarf2_per_cu_data *per_cu)
17616 {
17617 sect_offset die_offset_sect;
17618
17619 dw2_setup (per_cu->objfile);
17620
17621 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17622 return get_die_type_at_offset (die_offset_sect, per_cu);
17623 }
17624
17625 /* Follow the signature attribute ATTR in SRC_DIE.
17626 On entry *REF_CU is the CU of SRC_DIE.
17627 On exit *REF_CU is the CU of the result. */
17628
17629 static struct die_info *
17630 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17631 struct dwarf2_cu **ref_cu)
17632 {
17633 struct objfile *objfile = (*ref_cu)->objfile;
17634 struct die_info temp_die;
17635 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17636 struct dwarf2_cu *sig_cu;
17637 struct die_info *die;
17638
17639 /* sig_type will be NULL if the signatured type is missing from
17640 the debug info. */
17641 if (sig_type == NULL)
17642 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17643 "at 0x%x [in module %s]"),
17644 src_die->offset.sect_off, objfile->name);
17645
17646 /* If necessary, add it to the queue and load its DIEs. */
17647
17648 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17649 read_signatured_type (sig_type);
17650
17651 gdb_assert (sig_type->per_cu.cu != NULL);
17652
17653 sig_cu = sig_type->per_cu.cu;
17654 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17655 temp_die.offset = sig_type->type_offset_in_section;
17656 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17657 temp_die.offset.sect_off);
17658 if (die)
17659 {
17660 /* For .gdb_index version 7 keep track of included TUs.
17661 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17662 if (dwarf2_per_objfile->index_table != NULL
17663 && dwarf2_per_objfile->index_table->version <= 7)
17664 {
17665 VEC_safe_push (dwarf2_per_cu_ptr,
17666 (*ref_cu)->per_cu->imported_symtabs,
17667 sig_cu->per_cu);
17668 }
17669
17670 *ref_cu = sig_cu;
17671 return die;
17672 }
17673
17674 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17675 "from DIE at 0x%x [in module %s]"),
17676 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17677 }
17678
17679 /* Given an offset of a signatured type, return its signatured_type. */
17680
17681 static struct signatured_type *
17682 lookup_signatured_type_at_offset (struct objfile *objfile,
17683 struct dwarf2_section_info *section,
17684 sect_offset offset)
17685 {
17686 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17687 unsigned int length, initial_length_size;
17688 unsigned int sig_offset;
17689 struct signatured_type find_entry, *sig_type;
17690
17691 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17692 sig_offset = (initial_length_size
17693 + 2 /*version*/
17694 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17695 + 1 /*address_size*/);
17696 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17697 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17698
17699 /* This is only used to lookup previously recorded types.
17700 If we didn't find it, it's our bug. */
17701 gdb_assert (sig_type != NULL);
17702 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17703
17704 return sig_type;
17705 }
17706
17707 /* Load the DIEs associated with type unit PER_CU into memory. */
17708
17709 static void
17710 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17711 {
17712 struct signatured_type *sig_type;
17713
17714 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17715 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17716
17717 /* We have the per_cu, but we need the signatured_type.
17718 Fortunately this is an easy translation. */
17719 gdb_assert (per_cu->is_debug_types);
17720 sig_type = (struct signatured_type *) per_cu;
17721
17722 gdb_assert (per_cu->cu == NULL);
17723
17724 read_signatured_type (sig_type);
17725
17726 gdb_assert (per_cu->cu != NULL);
17727 }
17728
17729 /* die_reader_func for read_signatured_type.
17730 This is identical to load_full_comp_unit_reader,
17731 but is kept separate for now. */
17732
17733 static void
17734 read_signatured_type_reader (const struct die_reader_specs *reader,
17735 gdb_byte *info_ptr,
17736 struct die_info *comp_unit_die,
17737 int has_children,
17738 void *data)
17739 {
17740 struct dwarf2_cu *cu = reader->cu;
17741
17742 gdb_assert (cu->die_hash == NULL);
17743 cu->die_hash =
17744 htab_create_alloc_ex (cu->header.length / 12,
17745 die_hash,
17746 die_eq,
17747 NULL,
17748 &cu->comp_unit_obstack,
17749 hashtab_obstack_allocate,
17750 dummy_obstack_deallocate);
17751
17752 if (has_children)
17753 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17754 &info_ptr, comp_unit_die);
17755 cu->dies = comp_unit_die;
17756 /* comp_unit_die is not stored in die_hash, no need. */
17757
17758 /* We try not to read any attributes in this function, because not
17759 all CUs needed for references have been loaded yet, and symbol
17760 table processing isn't initialized. But we have to set the CU language,
17761 or we won't be able to build types correctly.
17762 Similarly, if we do not read the producer, we can not apply
17763 producer-specific interpretation. */
17764 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17765 }
17766
17767 /* Read in a signatured type and build its CU and DIEs.
17768 If the type is a stub for the real type in a DWO file,
17769 read in the real type from the DWO file as well. */
17770
17771 static void
17772 read_signatured_type (struct signatured_type *sig_type)
17773 {
17774 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17775
17776 gdb_assert (per_cu->is_debug_types);
17777 gdb_assert (per_cu->cu == NULL);
17778
17779 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17780 read_signatured_type_reader, NULL);
17781 }
17782
17783 /* Decode simple location descriptions.
17784 Given a pointer to a dwarf block that defines a location, compute
17785 the location and return the value.
17786
17787 NOTE drow/2003-11-18: This function is called in two situations
17788 now: for the address of static or global variables (partial symbols
17789 only) and for offsets into structures which are expected to be
17790 (more or less) constant. The partial symbol case should go away,
17791 and only the constant case should remain. That will let this
17792 function complain more accurately. A few special modes are allowed
17793 without complaint for global variables (for instance, global
17794 register values and thread-local values).
17795
17796 A location description containing no operations indicates that the
17797 object is optimized out. The return value is 0 for that case.
17798 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17799 callers will only want a very basic result and this can become a
17800 complaint.
17801
17802 Note that stack[0] is unused except as a default error return. */
17803
17804 static CORE_ADDR
17805 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17806 {
17807 struct objfile *objfile = cu->objfile;
17808 size_t i;
17809 size_t size = blk->size;
17810 gdb_byte *data = blk->data;
17811 CORE_ADDR stack[64];
17812 int stacki;
17813 unsigned int bytes_read, unsnd;
17814 gdb_byte op;
17815
17816 i = 0;
17817 stacki = 0;
17818 stack[stacki] = 0;
17819 stack[++stacki] = 0;
17820
17821 while (i < size)
17822 {
17823 op = data[i++];
17824 switch (op)
17825 {
17826 case DW_OP_lit0:
17827 case DW_OP_lit1:
17828 case DW_OP_lit2:
17829 case DW_OP_lit3:
17830 case DW_OP_lit4:
17831 case DW_OP_lit5:
17832 case DW_OP_lit6:
17833 case DW_OP_lit7:
17834 case DW_OP_lit8:
17835 case DW_OP_lit9:
17836 case DW_OP_lit10:
17837 case DW_OP_lit11:
17838 case DW_OP_lit12:
17839 case DW_OP_lit13:
17840 case DW_OP_lit14:
17841 case DW_OP_lit15:
17842 case DW_OP_lit16:
17843 case DW_OP_lit17:
17844 case DW_OP_lit18:
17845 case DW_OP_lit19:
17846 case DW_OP_lit20:
17847 case DW_OP_lit21:
17848 case DW_OP_lit22:
17849 case DW_OP_lit23:
17850 case DW_OP_lit24:
17851 case DW_OP_lit25:
17852 case DW_OP_lit26:
17853 case DW_OP_lit27:
17854 case DW_OP_lit28:
17855 case DW_OP_lit29:
17856 case DW_OP_lit30:
17857 case DW_OP_lit31:
17858 stack[++stacki] = op - DW_OP_lit0;
17859 break;
17860
17861 case DW_OP_reg0:
17862 case DW_OP_reg1:
17863 case DW_OP_reg2:
17864 case DW_OP_reg3:
17865 case DW_OP_reg4:
17866 case DW_OP_reg5:
17867 case DW_OP_reg6:
17868 case DW_OP_reg7:
17869 case DW_OP_reg8:
17870 case DW_OP_reg9:
17871 case DW_OP_reg10:
17872 case DW_OP_reg11:
17873 case DW_OP_reg12:
17874 case DW_OP_reg13:
17875 case DW_OP_reg14:
17876 case DW_OP_reg15:
17877 case DW_OP_reg16:
17878 case DW_OP_reg17:
17879 case DW_OP_reg18:
17880 case DW_OP_reg19:
17881 case DW_OP_reg20:
17882 case DW_OP_reg21:
17883 case DW_OP_reg22:
17884 case DW_OP_reg23:
17885 case DW_OP_reg24:
17886 case DW_OP_reg25:
17887 case DW_OP_reg26:
17888 case DW_OP_reg27:
17889 case DW_OP_reg28:
17890 case DW_OP_reg29:
17891 case DW_OP_reg30:
17892 case DW_OP_reg31:
17893 stack[++stacki] = op - DW_OP_reg0;
17894 if (i < size)
17895 dwarf2_complex_location_expr_complaint ();
17896 break;
17897
17898 case DW_OP_regx:
17899 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17900 i += bytes_read;
17901 stack[++stacki] = unsnd;
17902 if (i < size)
17903 dwarf2_complex_location_expr_complaint ();
17904 break;
17905
17906 case DW_OP_addr:
17907 stack[++stacki] = read_address (objfile->obfd, &data[i],
17908 cu, &bytes_read);
17909 i += bytes_read;
17910 break;
17911
17912 case DW_OP_const1u:
17913 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17914 i += 1;
17915 break;
17916
17917 case DW_OP_const1s:
17918 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17919 i += 1;
17920 break;
17921
17922 case DW_OP_const2u:
17923 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17924 i += 2;
17925 break;
17926
17927 case DW_OP_const2s:
17928 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17929 i += 2;
17930 break;
17931
17932 case DW_OP_const4u:
17933 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17934 i += 4;
17935 break;
17936
17937 case DW_OP_const4s:
17938 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17939 i += 4;
17940 break;
17941
17942 case DW_OP_const8u:
17943 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17944 i += 8;
17945 break;
17946
17947 case DW_OP_constu:
17948 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17949 &bytes_read);
17950 i += bytes_read;
17951 break;
17952
17953 case DW_OP_consts:
17954 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17955 i += bytes_read;
17956 break;
17957
17958 case DW_OP_dup:
17959 stack[stacki + 1] = stack[stacki];
17960 stacki++;
17961 break;
17962
17963 case DW_OP_plus:
17964 stack[stacki - 1] += stack[stacki];
17965 stacki--;
17966 break;
17967
17968 case DW_OP_plus_uconst:
17969 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17970 &bytes_read);
17971 i += bytes_read;
17972 break;
17973
17974 case DW_OP_minus:
17975 stack[stacki - 1] -= stack[stacki];
17976 stacki--;
17977 break;
17978
17979 case DW_OP_deref:
17980 /* If we're not the last op, then we definitely can't encode
17981 this using GDB's address_class enum. This is valid for partial
17982 global symbols, although the variable's address will be bogus
17983 in the psymtab. */
17984 if (i < size)
17985 dwarf2_complex_location_expr_complaint ();
17986 break;
17987
17988 case DW_OP_GNU_push_tls_address:
17989 /* The top of the stack has the offset from the beginning
17990 of the thread control block at which the variable is located. */
17991 /* Nothing should follow this operator, so the top of stack would
17992 be returned. */
17993 /* This is valid for partial global symbols, but the variable's
17994 address will be bogus in the psymtab. Make it always at least
17995 non-zero to not look as a variable garbage collected by linker
17996 which have DW_OP_addr 0. */
17997 if (i < size)
17998 dwarf2_complex_location_expr_complaint ();
17999 stack[stacki]++;
18000 break;
18001
18002 case DW_OP_GNU_uninit:
18003 break;
18004
18005 case DW_OP_GNU_addr_index:
18006 case DW_OP_GNU_const_index:
18007 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18008 &bytes_read);
18009 i += bytes_read;
18010 break;
18011
18012 default:
18013 {
18014 const char *name = get_DW_OP_name (op);
18015
18016 if (name)
18017 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18018 name);
18019 else
18020 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18021 op);
18022 }
18023
18024 return (stack[stacki]);
18025 }
18026
18027 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18028 outside of the allocated space. Also enforce minimum>0. */
18029 if (stacki >= ARRAY_SIZE (stack) - 1)
18030 {
18031 complaint (&symfile_complaints,
18032 _("location description stack overflow"));
18033 return 0;
18034 }
18035
18036 if (stacki <= 0)
18037 {
18038 complaint (&symfile_complaints,
18039 _("location description stack underflow"));
18040 return 0;
18041 }
18042 }
18043 return (stack[stacki]);
18044 }
18045
18046 /* memory allocation interface */
18047
18048 static struct dwarf_block *
18049 dwarf_alloc_block (struct dwarf2_cu *cu)
18050 {
18051 struct dwarf_block *blk;
18052
18053 blk = (struct dwarf_block *)
18054 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18055 return (blk);
18056 }
18057
18058 static struct die_info *
18059 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18060 {
18061 struct die_info *die;
18062 size_t size = sizeof (struct die_info);
18063
18064 if (num_attrs > 1)
18065 size += (num_attrs - 1) * sizeof (struct attribute);
18066
18067 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18068 memset (die, 0, sizeof (struct die_info));
18069 return (die);
18070 }
18071
18072 \f
18073 /* Macro support. */
18074
18075 /* Return file name relative to the compilation directory of file number I in
18076 *LH's file name table. The result is allocated using xmalloc; the caller is
18077 responsible for freeing it. */
18078
18079 static char *
18080 file_file_name (int file, struct line_header *lh)
18081 {
18082 /* Is the file number a valid index into the line header's file name
18083 table? Remember that file numbers start with one, not zero. */
18084 if (1 <= file && file <= lh->num_file_names)
18085 {
18086 struct file_entry *fe = &lh->file_names[file - 1];
18087
18088 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18089 return xstrdup (fe->name);
18090 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18091 fe->name, NULL);
18092 }
18093 else
18094 {
18095 /* The compiler produced a bogus file number. We can at least
18096 record the macro definitions made in the file, even if we
18097 won't be able to find the file by name. */
18098 char fake_name[80];
18099
18100 xsnprintf (fake_name, sizeof (fake_name),
18101 "<bad macro file number %d>", file);
18102
18103 complaint (&symfile_complaints,
18104 _("bad file number in macro information (%d)"),
18105 file);
18106
18107 return xstrdup (fake_name);
18108 }
18109 }
18110
18111 /* Return the full name of file number I in *LH's file name table.
18112 Use COMP_DIR as the name of the current directory of the
18113 compilation. The result is allocated using xmalloc; the caller is
18114 responsible for freeing it. */
18115 static char *
18116 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18117 {
18118 /* Is the file number a valid index into the line header's file name
18119 table? Remember that file numbers start with one, not zero. */
18120 if (1 <= file && file <= lh->num_file_names)
18121 {
18122 char *relative = file_file_name (file, lh);
18123
18124 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18125 return relative;
18126 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18127 }
18128 else
18129 return file_file_name (file, lh);
18130 }
18131
18132
18133 static struct macro_source_file *
18134 macro_start_file (int file, int line,
18135 struct macro_source_file *current_file,
18136 const char *comp_dir,
18137 struct line_header *lh, struct objfile *objfile)
18138 {
18139 /* File name relative to the compilation directory of this source file. */
18140 char *file_name = file_file_name (file, lh);
18141
18142 /* We don't create a macro table for this compilation unit
18143 at all until we actually get a filename. */
18144 if (! pending_macros)
18145 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18146 objfile->per_bfd->macro_cache,
18147 comp_dir);
18148
18149 if (! current_file)
18150 {
18151 /* If we have no current file, then this must be the start_file
18152 directive for the compilation unit's main source file. */
18153 current_file = macro_set_main (pending_macros, file_name);
18154 macro_define_special (pending_macros);
18155 }
18156 else
18157 current_file = macro_include (current_file, line, file_name);
18158
18159 xfree (file_name);
18160
18161 return current_file;
18162 }
18163
18164
18165 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18166 followed by a null byte. */
18167 static char *
18168 copy_string (const char *buf, int len)
18169 {
18170 char *s = xmalloc (len + 1);
18171
18172 memcpy (s, buf, len);
18173 s[len] = '\0';
18174 return s;
18175 }
18176
18177
18178 static const char *
18179 consume_improper_spaces (const char *p, const char *body)
18180 {
18181 if (*p == ' ')
18182 {
18183 complaint (&symfile_complaints,
18184 _("macro definition contains spaces "
18185 "in formal argument list:\n`%s'"),
18186 body);
18187
18188 while (*p == ' ')
18189 p++;
18190 }
18191
18192 return p;
18193 }
18194
18195
18196 static void
18197 parse_macro_definition (struct macro_source_file *file, int line,
18198 const char *body)
18199 {
18200 const char *p;
18201
18202 /* The body string takes one of two forms. For object-like macro
18203 definitions, it should be:
18204
18205 <macro name> " " <definition>
18206
18207 For function-like macro definitions, it should be:
18208
18209 <macro name> "() " <definition>
18210 or
18211 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18212
18213 Spaces may appear only where explicitly indicated, and in the
18214 <definition>.
18215
18216 The Dwarf 2 spec says that an object-like macro's name is always
18217 followed by a space, but versions of GCC around March 2002 omit
18218 the space when the macro's definition is the empty string.
18219
18220 The Dwarf 2 spec says that there should be no spaces between the
18221 formal arguments in a function-like macro's formal argument list,
18222 but versions of GCC around March 2002 include spaces after the
18223 commas. */
18224
18225
18226 /* Find the extent of the macro name. The macro name is terminated
18227 by either a space or null character (for an object-like macro) or
18228 an opening paren (for a function-like macro). */
18229 for (p = body; *p; p++)
18230 if (*p == ' ' || *p == '(')
18231 break;
18232
18233 if (*p == ' ' || *p == '\0')
18234 {
18235 /* It's an object-like macro. */
18236 int name_len = p - body;
18237 char *name = copy_string (body, name_len);
18238 const char *replacement;
18239
18240 if (*p == ' ')
18241 replacement = body + name_len + 1;
18242 else
18243 {
18244 dwarf2_macro_malformed_definition_complaint (body);
18245 replacement = body + name_len;
18246 }
18247
18248 macro_define_object (file, line, name, replacement);
18249
18250 xfree (name);
18251 }
18252 else if (*p == '(')
18253 {
18254 /* It's a function-like macro. */
18255 char *name = copy_string (body, p - body);
18256 int argc = 0;
18257 int argv_size = 1;
18258 char **argv = xmalloc (argv_size * sizeof (*argv));
18259
18260 p++;
18261
18262 p = consume_improper_spaces (p, body);
18263
18264 /* Parse the formal argument list. */
18265 while (*p && *p != ')')
18266 {
18267 /* Find the extent of the current argument name. */
18268 const char *arg_start = p;
18269
18270 while (*p && *p != ',' && *p != ')' && *p != ' ')
18271 p++;
18272
18273 if (! *p || p == arg_start)
18274 dwarf2_macro_malformed_definition_complaint (body);
18275 else
18276 {
18277 /* Make sure argv has room for the new argument. */
18278 if (argc >= argv_size)
18279 {
18280 argv_size *= 2;
18281 argv = xrealloc (argv, argv_size * sizeof (*argv));
18282 }
18283
18284 argv[argc++] = copy_string (arg_start, p - arg_start);
18285 }
18286
18287 p = consume_improper_spaces (p, body);
18288
18289 /* Consume the comma, if present. */
18290 if (*p == ',')
18291 {
18292 p++;
18293
18294 p = consume_improper_spaces (p, body);
18295 }
18296 }
18297
18298 if (*p == ')')
18299 {
18300 p++;
18301
18302 if (*p == ' ')
18303 /* Perfectly formed definition, no complaints. */
18304 macro_define_function (file, line, name,
18305 argc, (const char **) argv,
18306 p + 1);
18307 else if (*p == '\0')
18308 {
18309 /* Complain, but do define it. */
18310 dwarf2_macro_malformed_definition_complaint (body);
18311 macro_define_function (file, line, name,
18312 argc, (const char **) argv,
18313 p);
18314 }
18315 else
18316 /* Just complain. */
18317 dwarf2_macro_malformed_definition_complaint (body);
18318 }
18319 else
18320 /* Just complain. */
18321 dwarf2_macro_malformed_definition_complaint (body);
18322
18323 xfree (name);
18324 {
18325 int i;
18326
18327 for (i = 0; i < argc; i++)
18328 xfree (argv[i]);
18329 }
18330 xfree (argv);
18331 }
18332 else
18333 dwarf2_macro_malformed_definition_complaint (body);
18334 }
18335
18336 /* Skip some bytes from BYTES according to the form given in FORM.
18337 Returns the new pointer. */
18338
18339 static gdb_byte *
18340 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18341 enum dwarf_form form,
18342 unsigned int offset_size,
18343 struct dwarf2_section_info *section)
18344 {
18345 unsigned int bytes_read;
18346
18347 switch (form)
18348 {
18349 case DW_FORM_data1:
18350 case DW_FORM_flag:
18351 ++bytes;
18352 break;
18353
18354 case DW_FORM_data2:
18355 bytes += 2;
18356 break;
18357
18358 case DW_FORM_data4:
18359 bytes += 4;
18360 break;
18361
18362 case DW_FORM_data8:
18363 bytes += 8;
18364 break;
18365
18366 case DW_FORM_string:
18367 read_direct_string (abfd, bytes, &bytes_read);
18368 bytes += bytes_read;
18369 break;
18370
18371 case DW_FORM_sec_offset:
18372 case DW_FORM_strp:
18373 case DW_FORM_GNU_strp_alt:
18374 bytes += offset_size;
18375 break;
18376
18377 case DW_FORM_block:
18378 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18379 bytes += bytes_read;
18380 break;
18381
18382 case DW_FORM_block1:
18383 bytes += 1 + read_1_byte (abfd, bytes);
18384 break;
18385 case DW_FORM_block2:
18386 bytes += 2 + read_2_bytes (abfd, bytes);
18387 break;
18388 case DW_FORM_block4:
18389 bytes += 4 + read_4_bytes (abfd, bytes);
18390 break;
18391
18392 case DW_FORM_sdata:
18393 case DW_FORM_udata:
18394 case DW_FORM_GNU_addr_index:
18395 case DW_FORM_GNU_str_index:
18396 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18397 if (bytes == NULL)
18398 {
18399 dwarf2_section_buffer_overflow_complaint (section);
18400 return NULL;
18401 }
18402 break;
18403
18404 default:
18405 {
18406 complain:
18407 complaint (&symfile_complaints,
18408 _("invalid form 0x%x in `%s'"),
18409 form,
18410 section->asection->name);
18411 return NULL;
18412 }
18413 }
18414
18415 return bytes;
18416 }
18417
18418 /* A helper for dwarf_decode_macros that handles skipping an unknown
18419 opcode. Returns an updated pointer to the macro data buffer; or,
18420 on error, issues a complaint and returns NULL. */
18421
18422 static gdb_byte *
18423 skip_unknown_opcode (unsigned int opcode,
18424 gdb_byte **opcode_definitions,
18425 gdb_byte *mac_ptr, gdb_byte *mac_end,
18426 bfd *abfd,
18427 unsigned int offset_size,
18428 struct dwarf2_section_info *section)
18429 {
18430 unsigned int bytes_read, i;
18431 unsigned long arg;
18432 gdb_byte *defn;
18433
18434 if (opcode_definitions[opcode] == NULL)
18435 {
18436 complaint (&symfile_complaints,
18437 _("unrecognized DW_MACFINO opcode 0x%x"),
18438 opcode);
18439 return NULL;
18440 }
18441
18442 defn = opcode_definitions[opcode];
18443 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18444 defn += bytes_read;
18445
18446 for (i = 0; i < arg; ++i)
18447 {
18448 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18449 section);
18450 if (mac_ptr == NULL)
18451 {
18452 /* skip_form_bytes already issued the complaint. */
18453 return NULL;
18454 }
18455 }
18456
18457 return mac_ptr;
18458 }
18459
18460 /* A helper function which parses the header of a macro section.
18461 If the macro section is the extended (for now called "GNU") type,
18462 then this updates *OFFSET_SIZE. Returns a pointer to just after
18463 the header, or issues a complaint and returns NULL on error. */
18464
18465 static gdb_byte *
18466 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18467 bfd *abfd,
18468 gdb_byte *mac_ptr,
18469 unsigned int *offset_size,
18470 int section_is_gnu)
18471 {
18472 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18473
18474 if (section_is_gnu)
18475 {
18476 unsigned int version, flags;
18477
18478 version = read_2_bytes (abfd, mac_ptr);
18479 if (version != 4)
18480 {
18481 complaint (&symfile_complaints,
18482 _("unrecognized version `%d' in .debug_macro section"),
18483 version);
18484 return NULL;
18485 }
18486 mac_ptr += 2;
18487
18488 flags = read_1_byte (abfd, mac_ptr);
18489 ++mac_ptr;
18490 *offset_size = (flags & 1) ? 8 : 4;
18491
18492 if ((flags & 2) != 0)
18493 /* We don't need the line table offset. */
18494 mac_ptr += *offset_size;
18495
18496 /* Vendor opcode descriptions. */
18497 if ((flags & 4) != 0)
18498 {
18499 unsigned int i, count;
18500
18501 count = read_1_byte (abfd, mac_ptr);
18502 ++mac_ptr;
18503 for (i = 0; i < count; ++i)
18504 {
18505 unsigned int opcode, bytes_read;
18506 unsigned long arg;
18507
18508 opcode = read_1_byte (abfd, mac_ptr);
18509 ++mac_ptr;
18510 opcode_definitions[opcode] = mac_ptr;
18511 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18512 mac_ptr += bytes_read;
18513 mac_ptr += arg;
18514 }
18515 }
18516 }
18517
18518 return mac_ptr;
18519 }
18520
18521 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18522 including DW_MACRO_GNU_transparent_include. */
18523
18524 static void
18525 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18526 struct macro_source_file *current_file,
18527 struct line_header *lh, const char *comp_dir,
18528 struct dwarf2_section_info *section,
18529 int section_is_gnu, int section_is_dwz,
18530 unsigned int offset_size,
18531 struct objfile *objfile,
18532 htab_t include_hash)
18533 {
18534 enum dwarf_macro_record_type macinfo_type;
18535 int at_commandline;
18536 gdb_byte *opcode_definitions[256];
18537
18538 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18539 &offset_size, section_is_gnu);
18540 if (mac_ptr == NULL)
18541 {
18542 /* We already issued a complaint. */
18543 return;
18544 }
18545
18546 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18547 GDB is still reading the definitions from command line. First
18548 DW_MACINFO_start_file will need to be ignored as it was already executed
18549 to create CURRENT_FILE for the main source holding also the command line
18550 definitions. On first met DW_MACINFO_start_file this flag is reset to
18551 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18552
18553 at_commandline = 1;
18554
18555 do
18556 {
18557 /* Do we at least have room for a macinfo type byte? */
18558 if (mac_ptr >= mac_end)
18559 {
18560 dwarf2_section_buffer_overflow_complaint (section);
18561 break;
18562 }
18563
18564 macinfo_type = read_1_byte (abfd, mac_ptr);
18565 mac_ptr++;
18566
18567 /* Note that we rely on the fact that the corresponding GNU and
18568 DWARF constants are the same. */
18569 switch (macinfo_type)
18570 {
18571 /* A zero macinfo type indicates the end of the macro
18572 information. */
18573 case 0:
18574 break;
18575
18576 case DW_MACRO_GNU_define:
18577 case DW_MACRO_GNU_undef:
18578 case DW_MACRO_GNU_define_indirect:
18579 case DW_MACRO_GNU_undef_indirect:
18580 case DW_MACRO_GNU_define_indirect_alt:
18581 case DW_MACRO_GNU_undef_indirect_alt:
18582 {
18583 unsigned int bytes_read;
18584 int line;
18585 char *body;
18586 int is_define;
18587
18588 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18589 mac_ptr += bytes_read;
18590
18591 if (macinfo_type == DW_MACRO_GNU_define
18592 || macinfo_type == DW_MACRO_GNU_undef)
18593 {
18594 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18595 mac_ptr += bytes_read;
18596 }
18597 else
18598 {
18599 LONGEST str_offset;
18600
18601 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18602 mac_ptr += offset_size;
18603
18604 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18605 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18606 || section_is_dwz)
18607 {
18608 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18609
18610 body = read_indirect_string_from_dwz (dwz, str_offset);
18611 }
18612 else
18613 body = read_indirect_string_at_offset (abfd, str_offset);
18614 }
18615
18616 is_define = (macinfo_type == DW_MACRO_GNU_define
18617 || macinfo_type == DW_MACRO_GNU_define_indirect
18618 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18619 if (! current_file)
18620 {
18621 /* DWARF violation as no main source is present. */
18622 complaint (&symfile_complaints,
18623 _("debug info with no main source gives macro %s "
18624 "on line %d: %s"),
18625 is_define ? _("definition") : _("undefinition"),
18626 line, body);
18627 break;
18628 }
18629 if ((line == 0 && !at_commandline)
18630 || (line != 0 && at_commandline))
18631 complaint (&symfile_complaints,
18632 _("debug info gives %s macro %s with %s line %d: %s"),
18633 at_commandline ? _("command-line") : _("in-file"),
18634 is_define ? _("definition") : _("undefinition"),
18635 line == 0 ? _("zero") : _("non-zero"), line, body);
18636
18637 if (is_define)
18638 parse_macro_definition (current_file, line, body);
18639 else
18640 {
18641 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18642 || macinfo_type == DW_MACRO_GNU_undef_indirect
18643 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18644 macro_undef (current_file, line, body);
18645 }
18646 }
18647 break;
18648
18649 case DW_MACRO_GNU_start_file:
18650 {
18651 unsigned int bytes_read;
18652 int line, file;
18653
18654 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18655 mac_ptr += bytes_read;
18656 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18657 mac_ptr += bytes_read;
18658
18659 if ((line == 0 && !at_commandline)
18660 || (line != 0 && at_commandline))
18661 complaint (&symfile_complaints,
18662 _("debug info gives source %d included "
18663 "from %s at %s line %d"),
18664 file, at_commandline ? _("command-line") : _("file"),
18665 line == 0 ? _("zero") : _("non-zero"), line);
18666
18667 if (at_commandline)
18668 {
18669 /* This DW_MACRO_GNU_start_file was executed in the
18670 pass one. */
18671 at_commandline = 0;
18672 }
18673 else
18674 current_file = macro_start_file (file, line,
18675 current_file, comp_dir,
18676 lh, objfile);
18677 }
18678 break;
18679
18680 case DW_MACRO_GNU_end_file:
18681 if (! current_file)
18682 complaint (&symfile_complaints,
18683 _("macro debug info has an unmatched "
18684 "`close_file' directive"));
18685 else
18686 {
18687 current_file = current_file->included_by;
18688 if (! current_file)
18689 {
18690 enum dwarf_macro_record_type next_type;
18691
18692 /* GCC circa March 2002 doesn't produce the zero
18693 type byte marking the end of the compilation
18694 unit. Complain if it's not there, but exit no
18695 matter what. */
18696
18697 /* Do we at least have room for a macinfo type byte? */
18698 if (mac_ptr >= mac_end)
18699 {
18700 dwarf2_section_buffer_overflow_complaint (section);
18701 return;
18702 }
18703
18704 /* We don't increment mac_ptr here, so this is just
18705 a look-ahead. */
18706 next_type = read_1_byte (abfd, mac_ptr);
18707 if (next_type != 0)
18708 complaint (&symfile_complaints,
18709 _("no terminating 0-type entry for "
18710 "macros in `.debug_macinfo' section"));
18711
18712 return;
18713 }
18714 }
18715 break;
18716
18717 case DW_MACRO_GNU_transparent_include:
18718 case DW_MACRO_GNU_transparent_include_alt:
18719 {
18720 LONGEST offset;
18721 void **slot;
18722 bfd *include_bfd = abfd;
18723 struct dwarf2_section_info *include_section = section;
18724 struct dwarf2_section_info alt_section;
18725 gdb_byte *include_mac_end = mac_end;
18726 int is_dwz = section_is_dwz;
18727 gdb_byte *new_mac_ptr;
18728
18729 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18730 mac_ptr += offset_size;
18731
18732 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18733 {
18734 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18735
18736 dwarf2_read_section (dwarf2_per_objfile->objfile,
18737 &dwz->macro);
18738
18739 include_bfd = dwz->macro.asection->owner;
18740 include_section = &dwz->macro;
18741 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18742 is_dwz = 1;
18743 }
18744
18745 new_mac_ptr = include_section->buffer + offset;
18746 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18747
18748 if (*slot != NULL)
18749 {
18750 /* This has actually happened; see
18751 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18752 complaint (&symfile_complaints,
18753 _("recursive DW_MACRO_GNU_transparent_include in "
18754 ".debug_macro section"));
18755 }
18756 else
18757 {
18758 *slot = new_mac_ptr;
18759
18760 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18761 include_mac_end, current_file,
18762 lh, comp_dir,
18763 section, section_is_gnu, is_dwz,
18764 offset_size, objfile, include_hash);
18765
18766 htab_remove_elt (include_hash, new_mac_ptr);
18767 }
18768 }
18769 break;
18770
18771 case DW_MACINFO_vendor_ext:
18772 if (!section_is_gnu)
18773 {
18774 unsigned int bytes_read;
18775 int constant;
18776
18777 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18778 mac_ptr += bytes_read;
18779 read_direct_string (abfd, mac_ptr, &bytes_read);
18780 mac_ptr += bytes_read;
18781
18782 /* We don't recognize any vendor extensions. */
18783 break;
18784 }
18785 /* FALLTHROUGH */
18786
18787 default:
18788 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18789 mac_ptr, mac_end, abfd, offset_size,
18790 section);
18791 if (mac_ptr == NULL)
18792 return;
18793 break;
18794 }
18795 } while (macinfo_type != 0);
18796 }
18797
18798 static void
18799 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18800 const char *comp_dir, int section_is_gnu)
18801 {
18802 struct objfile *objfile = dwarf2_per_objfile->objfile;
18803 struct line_header *lh = cu->line_header;
18804 bfd *abfd;
18805 gdb_byte *mac_ptr, *mac_end;
18806 struct macro_source_file *current_file = 0;
18807 enum dwarf_macro_record_type macinfo_type;
18808 unsigned int offset_size = cu->header.offset_size;
18809 gdb_byte *opcode_definitions[256];
18810 struct cleanup *cleanup;
18811 htab_t include_hash;
18812 void **slot;
18813 struct dwarf2_section_info *section;
18814 const char *section_name;
18815
18816 if (cu->dwo_unit != NULL)
18817 {
18818 if (section_is_gnu)
18819 {
18820 section = &cu->dwo_unit->dwo_file->sections.macro;
18821 section_name = ".debug_macro.dwo";
18822 }
18823 else
18824 {
18825 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18826 section_name = ".debug_macinfo.dwo";
18827 }
18828 }
18829 else
18830 {
18831 if (section_is_gnu)
18832 {
18833 section = &dwarf2_per_objfile->macro;
18834 section_name = ".debug_macro";
18835 }
18836 else
18837 {
18838 section = &dwarf2_per_objfile->macinfo;
18839 section_name = ".debug_macinfo";
18840 }
18841 }
18842
18843 dwarf2_read_section (objfile, section);
18844 if (section->buffer == NULL)
18845 {
18846 complaint (&symfile_complaints, _("missing %s section"), section_name);
18847 return;
18848 }
18849 abfd = section->asection->owner;
18850
18851 /* First pass: Find the name of the base filename.
18852 This filename is needed in order to process all macros whose definition
18853 (or undefinition) comes from the command line. These macros are defined
18854 before the first DW_MACINFO_start_file entry, and yet still need to be
18855 associated to the base file.
18856
18857 To determine the base file name, we scan the macro definitions until we
18858 reach the first DW_MACINFO_start_file entry. We then initialize
18859 CURRENT_FILE accordingly so that any macro definition found before the
18860 first DW_MACINFO_start_file can still be associated to the base file. */
18861
18862 mac_ptr = section->buffer + offset;
18863 mac_end = section->buffer + section->size;
18864
18865 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18866 &offset_size, section_is_gnu);
18867 if (mac_ptr == NULL)
18868 {
18869 /* We already issued a complaint. */
18870 return;
18871 }
18872
18873 do
18874 {
18875 /* Do we at least have room for a macinfo type byte? */
18876 if (mac_ptr >= mac_end)
18877 {
18878 /* Complaint is printed during the second pass as GDB will probably
18879 stop the first pass earlier upon finding
18880 DW_MACINFO_start_file. */
18881 break;
18882 }
18883
18884 macinfo_type = read_1_byte (abfd, mac_ptr);
18885 mac_ptr++;
18886
18887 /* Note that we rely on the fact that the corresponding GNU and
18888 DWARF constants are the same. */
18889 switch (macinfo_type)
18890 {
18891 /* A zero macinfo type indicates the end of the macro
18892 information. */
18893 case 0:
18894 break;
18895
18896 case DW_MACRO_GNU_define:
18897 case DW_MACRO_GNU_undef:
18898 /* Only skip the data by MAC_PTR. */
18899 {
18900 unsigned int bytes_read;
18901
18902 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18903 mac_ptr += bytes_read;
18904 read_direct_string (abfd, mac_ptr, &bytes_read);
18905 mac_ptr += bytes_read;
18906 }
18907 break;
18908
18909 case DW_MACRO_GNU_start_file:
18910 {
18911 unsigned int bytes_read;
18912 int line, file;
18913
18914 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18915 mac_ptr += bytes_read;
18916 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18917 mac_ptr += bytes_read;
18918
18919 current_file = macro_start_file (file, line, current_file,
18920 comp_dir, lh, objfile);
18921 }
18922 break;
18923
18924 case DW_MACRO_GNU_end_file:
18925 /* No data to skip by MAC_PTR. */
18926 break;
18927
18928 case DW_MACRO_GNU_define_indirect:
18929 case DW_MACRO_GNU_undef_indirect:
18930 case DW_MACRO_GNU_define_indirect_alt:
18931 case DW_MACRO_GNU_undef_indirect_alt:
18932 {
18933 unsigned int bytes_read;
18934
18935 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18936 mac_ptr += bytes_read;
18937 mac_ptr += offset_size;
18938 }
18939 break;
18940
18941 case DW_MACRO_GNU_transparent_include:
18942 case DW_MACRO_GNU_transparent_include_alt:
18943 /* Note that, according to the spec, a transparent include
18944 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18945 skip this opcode. */
18946 mac_ptr += offset_size;
18947 break;
18948
18949 case DW_MACINFO_vendor_ext:
18950 /* Only skip the data by MAC_PTR. */
18951 if (!section_is_gnu)
18952 {
18953 unsigned int bytes_read;
18954
18955 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18956 mac_ptr += bytes_read;
18957 read_direct_string (abfd, mac_ptr, &bytes_read);
18958 mac_ptr += bytes_read;
18959 }
18960 /* FALLTHROUGH */
18961
18962 default:
18963 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18964 mac_ptr, mac_end, abfd, offset_size,
18965 section);
18966 if (mac_ptr == NULL)
18967 return;
18968 break;
18969 }
18970 } while (macinfo_type != 0 && current_file == NULL);
18971
18972 /* Second pass: Process all entries.
18973
18974 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18975 command-line macro definitions/undefinitions. This flag is unset when we
18976 reach the first DW_MACINFO_start_file entry. */
18977
18978 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18979 NULL, xcalloc, xfree);
18980 cleanup = make_cleanup_htab_delete (include_hash);
18981 mac_ptr = section->buffer + offset;
18982 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18983 *slot = mac_ptr;
18984 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18985 current_file, lh, comp_dir, section,
18986 section_is_gnu, 0,
18987 offset_size, objfile, include_hash);
18988 do_cleanups (cleanup);
18989 }
18990
18991 /* Check if the attribute's form is a DW_FORM_block*
18992 if so return true else false. */
18993
18994 static int
18995 attr_form_is_block (struct attribute *attr)
18996 {
18997 return (attr == NULL ? 0 :
18998 attr->form == DW_FORM_block1
18999 || attr->form == DW_FORM_block2
19000 || attr->form == DW_FORM_block4
19001 || attr->form == DW_FORM_block
19002 || attr->form == DW_FORM_exprloc);
19003 }
19004
19005 /* Return non-zero if ATTR's value is a section offset --- classes
19006 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19007 You may use DW_UNSND (attr) to retrieve such offsets.
19008
19009 Section 7.5.4, "Attribute Encodings", explains that no attribute
19010 may have a value that belongs to more than one of these classes; it
19011 would be ambiguous if we did, because we use the same forms for all
19012 of them. */
19013
19014 static int
19015 attr_form_is_section_offset (struct attribute *attr)
19016 {
19017 return (attr->form == DW_FORM_data4
19018 || attr->form == DW_FORM_data8
19019 || attr->form == DW_FORM_sec_offset);
19020 }
19021
19022 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19023 zero otherwise. When this function returns true, you can apply
19024 dwarf2_get_attr_constant_value to it.
19025
19026 However, note that for some attributes you must check
19027 attr_form_is_section_offset before using this test. DW_FORM_data4
19028 and DW_FORM_data8 are members of both the constant class, and of
19029 the classes that contain offsets into other debug sections
19030 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19031 that, if an attribute's can be either a constant or one of the
19032 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19033 taken as section offsets, not constants. */
19034
19035 static int
19036 attr_form_is_constant (struct attribute *attr)
19037 {
19038 switch (attr->form)
19039 {
19040 case DW_FORM_sdata:
19041 case DW_FORM_udata:
19042 case DW_FORM_data1:
19043 case DW_FORM_data2:
19044 case DW_FORM_data4:
19045 case DW_FORM_data8:
19046 return 1;
19047 default:
19048 return 0;
19049 }
19050 }
19051
19052 /* Return the .debug_loc section to use for CU.
19053 For DWO files use .debug_loc.dwo. */
19054
19055 static struct dwarf2_section_info *
19056 cu_debug_loc_section (struct dwarf2_cu *cu)
19057 {
19058 if (cu->dwo_unit)
19059 return &cu->dwo_unit->dwo_file->sections.loc;
19060 return &dwarf2_per_objfile->loc;
19061 }
19062
19063 /* A helper function that fills in a dwarf2_loclist_baton. */
19064
19065 static void
19066 fill_in_loclist_baton (struct dwarf2_cu *cu,
19067 struct dwarf2_loclist_baton *baton,
19068 struct attribute *attr)
19069 {
19070 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19071
19072 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19073
19074 baton->per_cu = cu->per_cu;
19075 gdb_assert (baton->per_cu);
19076 /* We don't know how long the location list is, but make sure we
19077 don't run off the edge of the section. */
19078 baton->size = section->size - DW_UNSND (attr);
19079 baton->data = section->buffer + DW_UNSND (attr);
19080 baton->base_address = cu->base_address;
19081 baton->from_dwo = cu->dwo_unit != NULL;
19082 }
19083
19084 static void
19085 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19086 struct dwarf2_cu *cu, int is_block)
19087 {
19088 struct objfile *objfile = dwarf2_per_objfile->objfile;
19089 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19090
19091 if (attr_form_is_section_offset (attr)
19092 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19093 the section. If so, fall through to the complaint in the
19094 other branch. */
19095 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19096 {
19097 struct dwarf2_loclist_baton *baton;
19098
19099 baton = obstack_alloc (&objfile->objfile_obstack,
19100 sizeof (struct dwarf2_loclist_baton));
19101
19102 fill_in_loclist_baton (cu, baton, attr);
19103
19104 if (cu->base_known == 0)
19105 complaint (&symfile_complaints,
19106 _("Location list used without "
19107 "specifying the CU base address."));
19108
19109 SYMBOL_ACLASS_INDEX (sym) = (is_block
19110 ? dwarf2_loclist_block_index
19111 : dwarf2_loclist_index);
19112 SYMBOL_LOCATION_BATON (sym) = baton;
19113 }
19114 else
19115 {
19116 struct dwarf2_locexpr_baton *baton;
19117
19118 baton = obstack_alloc (&objfile->objfile_obstack,
19119 sizeof (struct dwarf2_locexpr_baton));
19120 baton->per_cu = cu->per_cu;
19121 gdb_assert (baton->per_cu);
19122
19123 if (attr_form_is_block (attr))
19124 {
19125 /* Note that we're just copying the block's data pointer
19126 here, not the actual data. We're still pointing into the
19127 info_buffer for SYM's objfile; right now we never release
19128 that buffer, but when we do clean up properly this may
19129 need to change. */
19130 baton->size = DW_BLOCK (attr)->size;
19131 baton->data = DW_BLOCK (attr)->data;
19132 }
19133 else
19134 {
19135 dwarf2_invalid_attrib_class_complaint ("location description",
19136 SYMBOL_NATURAL_NAME (sym));
19137 baton->size = 0;
19138 }
19139
19140 SYMBOL_ACLASS_INDEX (sym) = (is_block
19141 ? dwarf2_locexpr_block_index
19142 : dwarf2_locexpr_index);
19143 SYMBOL_LOCATION_BATON (sym) = baton;
19144 }
19145 }
19146
19147 /* Return the OBJFILE associated with the compilation unit CU. If CU
19148 came from a separate debuginfo file, then the master objfile is
19149 returned. */
19150
19151 struct objfile *
19152 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19153 {
19154 struct objfile *objfile = per_cu->objfile;
19155
19156 /* Return the master objfile, so that we can report and look up the
19157 correct file containing this variable. */
19158 if (objfile->separate_debug_objfile_backlink)
19159 objfile = objfile->separate_debug_objfile_backlink;
19160
19161 return objfile;
19162 }
19163
19164 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19165 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19166 CU_HEADERP first. */
19167
19168 static const struct comp_unit_head *
19169 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19170 struct dwarf2_per_cu_data *per_cu)
19171 {
19172 gdb_byte *info_ptr;
19173
19174 if (per_cu->cu)
19175 return &per_cu->cu->header;
19176
19177 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19178
19179 memset (cu_headerp, 0, sizeof (*cu_headerp));
19180 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19181
19182 return cu_headerp;
19183 }
19184
19185 /* Return the address size given in the compilation unit header for CU. */
19186
19187 int
19188 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19189 {
19190 struct comp_unit_head cu_header_local;
19191 const struct comp_unit_head *cu_headerp;
19192
19193 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19194
19195 return cu_headerp->addr_size;
19196 }
19197
19198 /* Return the offset size given in the compilation unit header for CU. */
19199
19200 int
19201 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19202 {
19203 struct comp_unit_head cu_header_local;
19204 const struct comp_unit_head *cu_headerp;
19205
19206 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19207
19208 return cu_headerp->offset_size;
19209 }
19210
19211 /* See its dwarf2loc.h declaration. */
19212
19213 int
19214 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19215 {
19216 struct comp_unit_head cu_header_local;
19217 const struct comp_unit_head *cu_headerp;
19218
19219 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19220
19221 if (cu_headerp->version == 2)
19222 return cu_headerp->addr_size;
19223 else
19224 return cu_headerp->offset_size;
19225 }
19226
19227 /* Return the text offset of the CU. The returned offset comes from
19228 this CU's objfile. If this objfile came from a separate debuginfo
19229 file, then the offset may be different from the corresponding
19230 offset in the parent objfile. */
19231
19232 CORE_ADDR
19233 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19234 {
19235 struct objfile *objfile = per_cu->objfile;
19236
19237 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19238 }
19239
19240 /* Locate the .debug_info compilation unit from CU's objfile which contains
19241 the DIE at OFFSET. Raises an error on failure. */
19242
19243 static struct dwarf2_per_cu_data *
19244 dwarf2_find_containing_comp_unit (sect_offset offset,
19245 unsigned int offset_in_dwz,
19246 struct objfile *objfile)
19247 {
19248 struct dwarf2_per_cu_data *this_cu;
19249 int low, high;
19250 const sect_offset *cu_off;
19251
19252 low = 0;
19253 high = dwarf2_per_objfile->n_comp_units - 1;
19254 while (high > low)
19255 {
19256 struct dwarf2_per_cu_data *mid_cu;
19257 int mid = low + (high - low) / 2;
19258
19259 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19260 cu_off = &mid_cu->offset;
19261 if (mid_cu->is_dwz > offset_in_dwz
19262 || (mid_cu->is_dwz == offset_in_dwz
19263 && cu_off->sect_off >= offset.sect_off))
19264 high = mid;
19265 else
19266 low = mid + 1;
19267 }
19268 gdb_assert (low == high);
19269 this_cu = dwarf2_per_objfile->all_comp_units[low];
19270 cu_off = &this_cu->offset;
19271 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19272 {
19273 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19274 error (_("Dwarf Error: could not find partial DIE containing "
19275 "offset 0x%lx [in module %s]"),
19276 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19277
19278 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19279 <= offset.sect_off);
19280 return dwarf2_per_objfile->all_comp_units[low-1];
19281 }
19282 else
19283 {
19284 this_cu = dwarf2_per_objfile->all_comp_units[low];
19285 if (low == dwarf2_per_objfile->n_comp_units - 1
19286 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19287 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19288 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19289 return this_cu;
19290 }
19291 }
19292
19293 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19294
19295 static void
19296 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19297 {
19298 memset (cu, 0, sizeof (*cu));
19299 per_cu->cu = cu;
19300 cu->per_cu = per_cu;
19301 cu->objfile = per_cu->objfile;
19302 obstack_init (&cu->comp_unit_obstack);
19303 }
19304
19305 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19306
19307 static void
19308 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19309 enum language pretend_language)
19310 {
19311 struct attribute *attr;
19312
19313 /* Set the language we're debugging. */
19314 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19315 if (attr)
19316 set_cu_language (DW_UNSND (attr), cu);
19317 else
19318 {
19319 cu->language = pretend_language;
19320 cu->language_defn = language_def (cu->language);
19321 }
19322
19323 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19324 if (attr)
19325 cu->producer = DW_STRING (attr);
19326 }
19327
19328 /* Release one cached compilation unit, CU. We unlink it from the tree
19329 of compilation units, but we don't remove it from the read_in_chain;
19330 the caller is responsible for that.
19331 NOTE: DATA is a void * because this function is also used as a
19332 cleanup routine. */
19333
19334 static void
19335 free_heap_comp_unit (void *data)
19336 {
19337 struct dwarf2_cu *cu = data;
19338
19339 gdb_assert (cu->per_cu != NULL);
19340 cu->per_cu->cu = NULL;
19341 cu->per_cu = NULL;
19342
19343 obstack_free (&cu->comp_unit_obstack, NULL);
19344
19345 xfree (cu);
19346 }
19347
19348 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19349 when we're finished with it. We can't free the pointer itself, but be
19350 sure to unlink it from the cache. Also release any associated storage. */
19351
19352 static void
19353 free_stack_comp_unit (void *data)
19354 {
19355 struct dwarf2_cu *cu = data;
19356
19357 gdb_assert (cu->per_cu != NULL);
19358 cu->per_cu->cu = NULL;
19359 cu->per_cu = NULL;
19360
19361 obstack_free (&cu->comp_unit_obstack, NULL);
19362 cu->partial_dies = NULL;
19363 }
19364
19365 /* Free all cached compilation units. */
19366
19367 static void
19368 free_cached_comp_units (void *data)
19369 {
19370 struct dwarf2_per_cu_data *per_cu, **last_chain;
19371
19372 per_cu = dwarf2_per_objfile->read_in_chain;
19373 last_chain = &dwarf2_per_objfile->read_in_chain;
19374 while (per_cu != NULL)
19375 {
19376 struct dwarf2_per_cu_data *next_cu;
19377
19378 next_cu = per_cu->cu->read_in_chain;
19379
19380 free_heap_comp_unit (per_cu->cu);
19381 *last_chain = next_cu;
19382
19383 per_cu = next_cu;
19384 }
19385 }
19386
19387 /* Increase the age counter on each cached compilation unit, and free
19388 any that are too old. */
19389
19390 static void
19391 age_cached_comp_units (void)
19392 {
19393 struct dwarf2_per_cu_data *per_cu, **last_chain;
19394
19395 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19396 per_cu = dwarf2_per_objfile->read_in_chain;
19397 while (per_cu != NULL)
19398 {
19399 per_cu->cu->last_used ++;
19400 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19401 dwarf2_mark (per_cu->cu);
19402 per_cu = per_cu->cu->read_in_chain;
19403 }
19404
19405 per_cu = dwarf2_per_objfile->read_in_chain;
19406 last_chain = &dwarf2_per_objfile->read_in_chain;
19407 while (per_cu != NULL)
19408 {
19409 struct dwarf2_per_cu_data *next_cu;
19410
19411 next_cu = per_cu->cu->read_in_chain;
19412
19413 if (!per_cu->cu->mark)
19414 {
19415 free_heap_comp_unit (per_cu->cu);
19416 *last_chain = next_cu;
19417 }
19418 else
19419 last_chain = &per_cu->cu->read_in_chain;
19420
19421 per_cu = next_cu;
19422 }
19423 }
19424
19425 /* Remove a single compilation unit from the cache. */
19426
19427 static void
19428 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19429 {
19430 struct dwarf2_per_cu_data *per_cu, **last_chain;
19431
19432 per_cu = dwarf2_per_objfile->read_in_chain;
19433 last_chain = &dwarf2_per_objfile->read_in_chain;
19434 while (per_cu != NULL)
19435 {
19436 struct dwarf2_per_cu_data *next_cu;
19437
19438 next_cu = per_cu->cu->read_in_chain;
19439
19440 if (per_cu == target_per_cu)
19441 {
19442 free_heap_comp_unit (per_cu->cu);
19443 per_cu->cu = NULL;
19444 *last_chain = next_cu;
19445 break;
19446 }
19447 else
19448 last_chain = &per_cu->cu->read_in_chain;
19449
19450 per_cu = next_cu;
19451 }
19452 }
19453
19454 /* Release all extra memory associated with OBJFILE. */
19455
19456 void
19457 dwarf2_free_objfile (struct objfile *objfile)
19458 {
19459 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19460
19461 if (dwarf2_per_objfile == NULL)
19462 return;
19463
19464 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19465 free_cached_comp_units (NULL);
19466
19467 if (dwarf2_per_objfile->quick_file_names_table)
19468 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19469
19470 /* Everything else should be on the objfile obstack. */
19471 }
19472
19473 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19474 We store these in a hash table separate from the DIEs, and preserve them
19475 when the DIEs are flushed out of cache.
19476
19477 The CU "per_cu" pointer is needed because offset alone is not enough to
19478 uniquely identify the type. A file may have multiple .debug_types sections,
19479 or the type may come from a DWO file. Furthermore, while it's more logical
19480 to use per_cu->section+offset, with Fission the section with the data is in
19481 the DWO file but we don't know that section at the point we need it.
19482 We have to use something in dwarf2_per_cu_data (or the pointer to it)
19483 because we can enter the lookup routine, get_die_type_at_offset, from
19484 outside this file, and thus won't necessarily have PER_CU->cu.
19485 Fortunately, PER_CU is stable for the life of the objfile. */
19486
19487 struct dwarf2_per_cu_offset_and_type
19488 {
19489 const struct dwarf2_per_cu_data *per_cu;
19490 sect_offset offset;
19491 struct type *type;
19492 };
19493
19494 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19495
19496 static hashval_t
19497 per_cu_offset_and_type_hash (const void *item)
19498 {
19499 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19500
19501 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19502 }
19503
19504 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19505
19506 static int
19507 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19508 {
19509 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19510 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19511
19512 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19513 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19514 }
19515
19516 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19517 table if necessary. For convenience, return TYPE.
19518
19519 The DIEs reading must have careful ordering to:
19520 * Not cause infite loops trying to read in DIEs as a prerequisite for
19521 reading current DIE.
19522 * Not trying to dereference contents of still incompletely read in types
19523 while reading in other DIEs.
19524 * Enable referencing still incompletely read in types just by a pointer to
19525 the type without accessing its fields.
19526
19527 Therefore caller should follow these rules:
19528 * Try to fetch any prerequisite types we may need to build this DIE type
19529 before building the type and calling set_die_type.
19530 * After building type call set_die_type for current DIE as soon as
19531 possible before fetching more types to complete the current type.
19532 * Make the type as complete as possible before fetching more types. */
19533
19534 static struct type *
19535 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19536 {
19537 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19538 struct objfile *objfile = cu->objfile;
19539
19540 /* For Ada types, make sure that the gnat-specific data is always
19541 initialized (if not already set). There are a few types where
19542 we should not be doing so, because the type-specific area is
19543 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19544 where the type-specific area is used to store the floatformat).
19545 But this is not a problem, because the gnat-specific information
19546 is actually not needed for these types. */
19547 if (need_gnat_info (cu)
19548 && TYPE_CODE (type) != TYPE_CODE_FUNC
19549 && TYPE_CODE (type) != TYPE_CODE_FLT
19550 && !HAVE_GNAT_AUX_INFO (type))
19551 INIT_GNAT_SPECIFIC (type);
19552
19553 if (dwarf2_per_objfile->die_type_hash == NULL)
19554 {
19555 dwarf2_per_objfile->die_type_hash =
19556 htab_create_alloc_ex (127,
19557 per_cu_offset_and_type_hash,
19558 per_cu_offset_and_type_eq,
19559 NULL,
19560 &objfile->objfile_obstack,
19561 hashtab_obstack_allocate,
19562 dummy_obstack_deallocate);
19563 }
19564
19565 ofs.per_cu = cu->per_cu;
19566 ofs.offset = die->offset;
19567 ofs.type = type;
19568 slot = (struct dwarf2_per_cu_offset_and_type **)
19569 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19570 if (*slot)
19571 complaint (&symfile_complaints,
19572 _("A problem internal to GDB: DIE 0x%x has type already set"),
19573 die->offset.sect_off);
19574 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19575 **slot = ofs;
19576 return type;
19577 }
19578
19579 /* Look up the type for the die at OFFSET in the appropriate type_hash
19580 table, or return NULL if the die does not have a saved type. */
19581
19582 static struct type *
19583 get_die_type_at_offset (sect_offset offset,
19584 struct dwarf2_per_cu_data *per_cu)
19585 {
19586 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19587
19588 if (dwarf2_per_objfile->die_type_hash == NULL)
19589 return NULL;
19590
19591 ofs.per_cu = per_cu;
19592 ofs.offset = offset;
19593 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19594 if (slot)
19595 return slot->type;
19596 else
19597 return NULL;
19598 }
19599
19600 /* Look up the type for DIE in the appropriate type_hash table,
19601 or return NULL if DIE does not have a saved type. */
19602
19603 static struct type *
19604 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19605 {
19606 return get_die_type_at_offset (die->offset, cu->per_cu);
19607 }
19608
19609 /* Add a dependence relationship from CU to REF_PER_CU. */
19610
19611 static void
19612 dwarf2_add_dependence (struct dwarf2_cu *cu,
19613 struct dwarf2_per_cu_data *ref_per_cu)
19614 {
19615 void **slot;
19616
19617 if (cu->dependencies == NULL)
19618 cu->dependencies
19619 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19620 NULL, &cu->comp_unit_obstack,
19621 hashtab_obstack_allocate,
19622 dummy_obstack_deallocate);
19623
19624 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19625 if (*slot == NULL)
19626 *slot = ref_per_cu;
19627 }
19628
19629 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19630 Set the mark field in every compilation unit in the
19631 cache that we must keep because we are keeping CU. */
19632
19633 static int
19634 dwarf2_mark_helper (void **slot, void *data)
19635 {
19636 struct dwarf2_per_cu_data *per_cu;
19637
19638 per_cu = (struct dwarf2_per_cu_data *) *slot;
19639
19640 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19641 reading of the chain. As such dependencies remain valid it is not much
19642 useful to track and undo them during QUIT cleanups. */
19643 if (per_cu->cu == NULL)
19644 return 1;
19645
19646 if (per_cu->cu->mark)
19647 return 1;
19648 per_cu->cu->mark = 1;
19649
19650 if (per_cu->cu->dependencies != NULL)
19651 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19652
19653 return 1;
19654 }
19655
19656 /* Set the mark field in CU and in every other compilation unit in the
19657 cache that we must keep because we are keeping CU. */
19658
19659 static void
19660 dwarf2_mark (struct dwarf2_cu *cu)
19661 {
19662 if (cu->mark)
19663 return;
19664 cu->mark = 1;
19665 if (cu->dependencies != NULL)
19666 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19667 }
19668
19669 static void
19670 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19671 {
19672 while (per_cu)
19673 {
19674 per_cu->cu->mark = 0;
19675 per_cu = per_cu->cu->read_in_chain;
19676 }
19677 }
19678
19679 /* Trivial hash function for partial_die_info: the hash value of a DIE
19680 is its offset in .debug_info for this objfile. */
19681
19682 static hashval_t
19683 partial_die_hash (const void *item)
19684 {
19685 const struct partial_die_info *part_die = item;
19686
19687 return part_die->offset.sect_off;
19688 }
19689
19690 /* Trivial comparison function for partial_die_info structures: two DIEs
19691 are equal if they have the same offset. */
19692
19693 static int
19694 partial_die_eq (const void *item_lhs, const void *item_rhs)
19695 {
19696 const struct partial_die_info *part_die_lhs = item_lhs;
19697 const struct partial_die_info *part_die_rhs = item_rhs;
19698
19699 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19700 }
19701
19702 static struct cmd_list_element *set_dwarf2_cmdlist;
19703 static struct cmd_list_element *show_dwarf2_cmdlist;
19704
19705 static void
19706 set_dwarf2_cmd (char *args, int from_tty)
19707 {
19708 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19709 }
19710
19711 static void
19712 show_dwarf2_cmd (char *args, int from_tty)
19713 {
19714 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19715 }
19716
19717 /* Free data associated with OBJFILE, if necessary. */
19718
19719 static void
19720 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19721 {
19722 struct dwarf2_per_objfile *data = d;
19723 int ix;
19724
19725 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19726 VEC_free (dwarf2_per_cu_ptr,
19727 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19728
19729 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19730 VEC_free (dwarf2_per_cu_ptr,
19731 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19732
19733 VEC_free (dwarf2_section_info_def, data->types);
19734
19735 if (data->dwo_files)
19736 free_dwo_files (data->dwo_files, objfile);
19737
19738 if (data->dwz_file && data->dwz_file->dwz_bfd)
19739 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19740 }
19741
19742 \f
19743 /* The "save gdb-index" command. */
19744
19745 /* The contents of the hash table we create when building the string
19746 table. */
19747 struct strtab_entry
19748 {
19749 offset_type offset;
19750 const char *str;
19751 };
19752
19753 /* Hash function for a strtab_entry.
19754
19755 Function is used only during write_hash_table so no index format backward
19756 compatibility is needed. */
19757
19758 static hashval_t
19759 hash_strtab_entry (const void *e)
19760 {
19761 const struct strtab_entry *entry = e;
19762 return mapped_index_string_hash (INT_MAX, entry->str);
19763 }
19764
19765 /* Equality function for a strtab_entry. */
19766
19767 static int
19768 eq_strtab_entry (const void *a, const void *b)
19769 {
19770 const struct strtab_entry *ea = a;
19771 const struct strtab_entry *eb = b;
19772 return !strcmp (ea->str, eb->str);
19773 }
19774
19775 /* Create a strtab_entry hash table. */
19776
19777 static htab_t
19778 create_strtab (void)
19779 {
19780 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19781 xfree, xcalloc, xfree);
19782 }
19783
19784 /* Add a string to the constant pool. Return the string's offset in
19785 host order. */
19786
19787 static offset_type
19788 add_string (htab_t table, struct obstack *cpool, const char *str)
19789 {
19790 void **slot;
19791 struct strtab_entry entry;
19792 struct strtab_entry *result;
19793
19794 entry.str = str;
19795 slot = htab_find_slot (table, &entry, INSERT);
19796 if (*slot)
19797 result = *slot;
19798 else
19799 {
19800 result = XNEW (struct strtab_entry);
19801 result->offset = obstack_object_size (cpool);
19802 result->str = str;
19803 obstack_grow_str0 (cpool, str);
19804 *slot = result;
19805 }
19806 return result->offset;
19807 }
19808
19809 /* An entry in the symbol table. */
19810 struct symtab_index_entry
19811 {
19812 /* The name of the symbol. */
19813 const char *name;
19814 /* The offset of the name in the constant pool. */
19815 offset_type index_offset;
19816 /* A sorted vector of the indices of all the CUs that hold an object
19817 of this name. */
19818 VEC (offset_type) *cu_indices;
19819 };
19820
19821 /* The symbol table. This is a power-of-2-sized hash table. */
19822 struct mapped_symtab
19823 {
19824 offset_type n_elements;
19825 offset_type size;
19826 struct symtab_index_entry **data;
19827 };
19828
19829 /* Hash function for a symtab_index_entry. */
19830
19831 static hashval_t
19832 hash_symtab_entry (const void *e)
19833 {
19834 const struct symtab_index_entry *entry = e;
19835 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19836 sizeof (offset_type) * VEC_length (offset_type,
19837 entry->cu_indices),
19838 0);
19839 }
19840
19841 /* Equality function for a symtab_index_entry. */
19842
19843 static int
19844 eq_symtab_entry (const void *a, const void *b)
19845 {
19846 const struct symtab_index_entry *ea = a;
19847 const struct symtab_index_entry *eb = b;
19848 int len = VEC_length (offset_type, ea->cu_indices);
19849 if (len != VEC_length (offset_type, eb->cu_indices))
19850 return 0;
19851 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19852 VEC_address (offset_type, eb->cu_indices),
19853 sizeof (offset_type) * len);
19854 }
19855
19856 /* Destroy a symtab_index_entry. */
19857
19858 static void
19859 delete_symtab_entry (void *p)
19860 {
19861 struct symtab_index_entry *entry = p;
19862 VEC_free (offset_type, entry->cu_indices);
19863 xfree (entry);
19864 }
19865
19866 /* Create a hash table holding symtab_index_entry objects. */
19867
19868 static htab_t
19869 create_symbol_hash_table (void)
19870 {
19871 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19872 delete_symtab_entry, xcalloc, xfree);
19873 }
19874
19875 /* Create a new mapped symtab object. */
19876
19877 static struct mapped_symtab *
19878 create_mapped_symtab (void)
19879 {
19880 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19881 symtab->n_elements = 0;
19882 symtab->size = 1024;
19883 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19884 return symtab;
19885 }
19886
19887 /* Destroy a mapped_symtab. */
19888
19889 static void
19890 cleanup_mapped_symtab (void *p)
19891 {
19892 struct mapped_symtab *symtab = p;
19893 /* The contents of the array are freed when the other hash table is
19894 destroyed. */
19895 xfree (symtab->data);
19896 xfree (symtab);
19897 }
19898
19899 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19900 the slot.
19901
19902 Function is used only during write_hash_table so no index format backward
19903 compatibility is needed. */
19904
19905 static struct symtab_index_entry **
19906 find_slot (struct mapped_symtab *symtab, const char *name)
19907 {
19908 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19909
19910 index = hash & (symtab->size - 1);
19911 step = ((hash * 17) & (symtab->size - 1)) | 1;
19912
19913 for (;;)
19914 {
19915 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19916 return &symtab->data[index];
19917 index = (index + step) & (symtab->size - 1);
19918 }
19919 }
19920
19921 /* Expand SYMTAB's hash table. */
19922
19923 static void
19924 hash_expand (struct mapped_symtab *symtab)
19925 {
19926 offset_type old_size = symtab->size;
19927 offset_type i;
19928 struct symtab_index_entry **old_entries = symtab->data;
19929
19930 symtab->size *= 2;
19931 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19932
19933 for (i = 0; i < old_size; ++i)
19934 {
19935 if (old_entries[i])
19936 {
19937 struct symtab_index_entry **slot = find_slot (symtab,
19938 old_entries[i]->name);
19939 *slot = old_entries[i];
19940 }
19941 }
19942
19943 xfree (old_entries);
19944 }
19945
19946 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19947 CU_INDEX is the index of the CU in which the symbol appears.
19948 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19949
19950 static void
19951 add_index_entry (struct mapped_symtab *symtab, const char *name,
19952 int is_static, gdb_index_symbol_kind kind,
19953 offset_type cu_index)
19954 {
19955 struct symtab_index_entry **slot;
19956 offset_type cu_index_and_attrs;
19957
19958 ++symtab->n_elements;
19959 if (4 * symtab->n_elements / 3 >= symtab->size)
19960 hash_expand (symtab);
19961
19962 slot = find_slot (symtab, name);
19963 if (!*slot)
19964 {
19965 *slot = XNEW (struct symtab_index_entry);
19966 (*slot)->name = name;
19967 /* index_offset is set later. */
19968 (*slot)->cu_indices = NULL;
19969 }
19970
19971 cu_index_and_attrs = 0;
19972 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19973 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19974 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19975
19976 /* We don't want to record an index value twice as we want to avoid the
19977 duplication.
19978 We process all global symbols and then all static symbols
19979 (which would allow us to avoid the duplication by only having to check
19980 the last entry pushed), but a symbol could have multiple kinds in one CU.
19981 To keep things simple we don't worry about the duplication here and
19982 sort and uniqufy the list after we've processed all symbols. */
19983 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19984 }
19985
19986 /* qsort helper routine for uniquify_cu_indices. */
19987
19988 static int
19989 offset_type_compare (const void *ap, const void *bp)
19990 {
19991 offset_type a = *(offset_type *) ap;
19992 offset_type b = *(offset_type *) bp;
19993
19994 return (a > b) - (b > a);
19995 }
19996
19997 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19998
19999 static void
20000 uniquify_cu_indices (struct mapped_symtab *symtab)
20001 {
20002 int i;
20003
20004 for (i = 0; i < symtab->size; ++i)
20005 {
20006 struct symtab_index_entry *entry = symtab->data[i];
20007
20008 if (entry
20009 && entry->cu_indices != NULL)
20010 {
20011 unsigned int next_to_insert, next_to_check;
20012 offset_type last_value;
20013
20014 qsort (VEC_address (offset_type, entry->cu_indices),
20015 VEC_length (offset_type, entry->cu_indices),
20016 sizeof (offset_type), offset_type_compare);
20017
20018 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20019 next_to_insert = 1;
20020 for (next_to_check = 1;
20021 next_to_check < VEC_length (offset_type, entry->cu_indices);
20022 ++next_to_check)
20023 {
20024 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20025 != last_value)
20026 {
20027 last_value = VEC_index (offset_type, entry->cu_indices,
20028 next_to_check);
20029 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20030 last_value);
20031 ++next_to_insert;
20032 }
20033 }
20034 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20035 }
20036 }
20037 }
20038
20039 /* Add a vector of indices to the constant pool. */
20040
20041 static offset_type
20042 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20043 struct symtab_index_entry *entry)
20044 {
20045 void **slot;
20046
20047 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20048 if (!*slot)
20049 {
20050 offset_type len = VEC_length (offset_type, entry->cu_indices);
20051 offset_type val = MAYBE_SWAP (len);
20052 offset_type iter;
20053 int i;
20054
20055 *slot = entry;
20056 entry->index_offset = obstack_object_size (cpool);
20057
20058 obstack_grow (cpool, &val, sizeof (val));
20059 for (i = 0;
20060 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20061 ++i)
20062 {
20063 val = MAYBE_SWAP (iter);
20064 obstack_grow (cpool, &val, sizeof (val));
20065 }
20066 }
20067 else
20068 {
20069 struct symtab_index_entry *old_entry = *slot;
20070 entry->index_offset = old_entry->index_offset;
20071 entry = old_entry;
20072 }
20073 return entry->index_offset;
20074 }
20075
20076 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20077 constant pool entries going into the obstack CPOOL. */
20078
20079 static void
20080 write_hash_table (struct mapped_symtab *symtab,
20081 struct obstack *output, struct obstack *cpool)
20082 {
20083 offset_type i;
20084 htab_t symbol_hash_table;
20085 htab_t str_table;
20086
20087 symbol_hash_table = create_symbol_hash_table ();
20088 str_table = create_strtab ();
20089
20090 /* We add all the index vectors to the constant pool first, to
20091 ensure alignment is ok. */
20092 for (i = 0; i < symtab->size; ++i)
20093 {
20094 if (symtab->data[i])
20095 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20096 }
20097
20098 /* Now write out the hash table. */
20099 for (i = 0; i < symtab->size; ++i)
20100 {
20101 offset_type str_off, vec_off;
20102
20103 if (symtab->data[i])
20104 {
20105 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20106 vec_off = symtab->data[i]->index_offset;
20107 }
20108 else
20109 {
20110 /* While 0 is a valid constant pool index, it is not valid
20111 to have 0 for both offsets. */
20112 str_off = 0;
20113 vec_off = 0;
20114 }
20115
20116 str_off = MAYBE_SWAP (str_off);
20117 vec_off = MAYBE_SWAP (vec_off);
20118
20119 obstack_grow (output, &str_off, sizeof (str_off));
20120 obstack_grow (output, &vec_off, sizeof (vec_off));
20121 }
20122
20123 htab_delete (str_table);
20124 htab_delete (symbol_hash_table);
20125 }
20126
20127 /* Struct to map psymtab to CU index in the index file. */
20128 struct psymtab_cu_index_map
20129 {
20130 struct partial_symtab *psymtab;
20131 unsigned int cu_index;
20132 };
20133
20134 static hashval_t
20135 hash_psymtab_cu_index (const void *item)
20136 {
20137 const struct psymtab_cu_index_map *map = item;
20138
20139 return htab_hash_pointer (map->psymtab);
20140 }
20141
20142 static int
20143 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20144 {
20145 const struct psymtab_cu_index_map *lhs = item_lhs;
20146 const struct psymtab_cu_index_map *rhs = item_rhs;
20147
20148 return lhs->psymtab == rhs->psymtab;
20149 }
20150
20151 /* Helper struct for building the address table. */
20152 struct addrmap_index_data
20153 {
20154 struct objfile *objfile;
20155 struct obstack *addr_obstack;
20156 htab_t cu_index_htab;
20157
20158 /* Non-zero if the previous_* fields are valid.
20159 We can't write an entry until we see the next entry (since it is only then
20160 that we know the end of the entry). */
20161 int previous_valid;
20162 /* Index of the CU in the table of all CUs in the index file. */
20163 unsigned int previous_cu_index;
20164 /* Start address of the CU. */
20165 CORE_ADDR previous_cu_start;
20166 };
20167
20168 /* Write an address entry to OBSTACK. */
20169
20170 static void
20171 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20172 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20173 {
20174 offset_type cu_index_to_write;
20175 char addr[8];
20176 CORE_ADDR baseaddr;
20177
20178 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20179
20180 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20181 obstack_grow (obstack, addr, 8);
20182 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20183 obstack_grow (obstack, addr, 8);
20184 cu_index_to_write = MAYBE_SWAP (cu_index);
20185 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20186 }
20187
20188 /* Worker function for traversing an addrmap to build the address table. */
20189
20190 static int
20191 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20192 {
20193 struct addrmap_index_data *data = datap;
20194 struct partial_symtab *pst = obj;
20195
20196 if (data->previous_valid)
20197 add_address_entry (data->objfile, data->addr_obstack,
20198 data->previous_cu_start, start_addr,
20199 data->previous_cu_index);
20200
20201 data->previous_cu_start = start_addr;
20202 if (pst != NULL)
20203 {
20204 struct psymtab_cu_index_map find_map, *map;
20205 find_map.psymtab = pst;
20206 map = htab_find (data->cu_index_htab, &find_map);
20207 gdb_assert (map != NULL);
20208 data->previous_cu_index = map->cu_index;
20209 data->previous_valid = 1;
20210 }
20211 else
20212 data->previous_valid = 0;
20213
20214 return 0;
20215 }
20216
20217 /* Write OBJFILE's address map to OBSTACK.
20218 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20219 in the index file. */
20220
20221 static void
20222 write_address_map (struct objfile *objfile, struct obstack *obstack,
20223 htab_t cu_index_htab)
20224 {
20225 struct addrmap_index_data addrmap_index_data;
20226
20227 /* When writing the address table, we have to cope with the fact that
20228 the addrmap iterator only provides the start of a region; we have to
20229 wait until the next invocation to get the start of the next region. */
20230
20231 addrmap_index_data.objfile = objfile;
20232 addrmap_index_data.addr_obstack = obstack;
20233 addrmap_index_data.cu_index_htab = cu_index_htab;
20234 addrmap_index_data.previous_valid = 0;
20235
20236 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20237 &addrmap_index_data);
20238
20239 /* It's highly unlikely the last entry (end address = 0xff...ff)
20240 is valid, but we should still handle it.
20241 The end address is recorded as the start of the next region, but that
20242 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20243 anyway. */
20244 if (addrmap_index_data.previous_valid)
20245 add_address_entry (objfile, obstack,
20246 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20247 addrmap_index_data.previous_cu_index);
20248 }
20249
20250 /* Return the symbol kind of PSYM. */
20251
20252 static gdb_index_symbol_kind
20253 symbol_kind (struct partial_symbol *psym)
20254 {
20255 domain_enum domain = PSYMBOL_DOMAIN (psym);
20256 enum address_class aclass = PSYMBOL_CLASS (psym);
20257
20258 switch (domain)
20259 {
20260 case VAR_DOMAIN:
20261 switch (aclass)
20262 {
20263 case LOC_BLOCK:
20264 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20265 case LOC_TYPEDEF:
20266 return GDB_INDEX_SYMBOL_KIND_TYPE;
20267 case LOC_COMPUTED:
20268 case LOC_CONST_BYTES:
20269 case LOC_OPTIMIZED_OUT:
20270 case LOC_STATIC:
20271 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20272 case LOC_CONST:
20273 /* Note: It's currently impossible to recognize psyms as enum values
20274 short of reading the type info. For now punt. */
20275 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20276 default:
20277 /* There are other LOC_FOO values that one might want to classify
20278 as variables, but dwarf2read.c doesn't currently use them. */
20279 return GDB_INDEX_SYMBOL_KIND_OTHER;
20280 }
20281 case STRUCT_DOMAIN:
20282 return GDB_INDEX_SYMBOL_KIND_TYPE;
20283 default:
20284 return GDB_INDEX_SYMBOL_KIND_OTHER;
20285 }
20286 }
20287
20288 /* Add a list of partial symbols to SYMTAB. */
20289
20290 static void
20291 write_psymbols (struct mapped_symtab *symtab,
20292 htab_t psyms_seen,
20293 struct partial_symbol **psymp,
20294 int count,
20295 offset_type cu_index,
20296 int is_static)
20297 {
20298 for (; count-- > 0; ++psymp)
20299 {
20300 struct partial_symbol *psym = *psymp;
20301 void **slot;
20302
20303 if (SYMBOL_LANGUAGE (psym) == language_ada)
20304 error (_("Ada is not currently supported by the index"));
20305
20306 /* Only add a given psymbol once. */
20307 slot = htab_find_slot (psyms_seen, psym, INSERT);
20308 if (!*slot)
20309 {
20310 gdb_index_symbol_kind kind = symbol_kind (psym);
20311
20312 *slot = psym;
20313 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20314 is_static, kind, cu_index);
20315 }
20316 }
20317 }
20318
20319 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20320 exception if there is an error. */
20321
20322 static void
20323 write_obstack (FILE *file, struct obstack *obstack)
20324 {
20325 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20326 file)
20327 != obstack_object_size (obstack))
20328 error (_("couldn't data write to file"));
20329 }
20330
20331 /* Unlink a file if the argument is not NULL. */
20332
20333 static void
20334 unlink_if_set (void *p)
20335 {
20336 char **filename = p;
20337 if (*filename)
20338 unlink (*filename);
20339 }
20340
20341 /* A helper struct used when iterating over debug_types. */
20342 struct signatured_type_index_data
20343 {
20344 struct objfile *objfile;
20345 struct mapped_symtab *symtab;
20346 struct obstack *types_list;
20347 htab_t psyms_seen;
20348 int cu_index;
20349 };
20350
20351 /* A helper function that writes a single signatured_type to an
20352 obstack. */
20353
20354 static int
20355 write_one_signatured_type (void **slot, void *d)
20356 {
20357 struct signatured_type_index_data *info = d;
20358 struct signatured_type *entry = (struct signatured_type *) *slot;
20359 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20360 struct partial_symtab *psymtab = per_cu->v.psymtab;
20361 gdb_byte val[8];
20362
20363 write_psymbols (info->symtab,
20364 info->psyms_seen,
20365 info->objfile->global_psymbols.list
20366 + psymtab->globals_offset,
20367 psymtab->n_global_syms, info->cu_index,
20368 0);
20369 write_psymbols (info->symtab,
20370 info->psyms_seen,
20371 info->objfile->static_psymbols.list
20372 + psymtab->statics_offset,
20373 psymtab->n_static_syms, info->cu_index,
20374 1);
20375
20376 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20377 entry->per_cu.offset.sect_off);
20378 obstack_grow (info->types_list, val, 8);
20379 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20380 entry->type_offset_in_tu.cu_off);
20381 obstack_grow (info->types_list, val, 8);
20382 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20383 obstack_grow (info->types_list, val, 8);
20384
20385 ++info->cu_index;
20386
20387 return 1;
20388 }
20389
20390 /* Recurse into all "included" dependencies and write their symbols as
20391 if they appeared in this psymtab. */
20392
20393 static void
20394 recursively_write_psymbols (struct objfile *objfile,
20395 struct partial_symtab *psymtab,
20396 struct mapped_symtab *symtab,
20397 htab_t psyms_seen,
20398 offset_type cu_index)
20399 {
20400 int i;
20401
20402 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20403 if (psymtab->dependencies[i]->user != NULL)
20404 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20405 symtab, psyms_seen, cu_index);
20406
20407 write_psymbols (symtab,
20408 psyms_seen,
20409 objfile->global_psymbols.list + psymtab->globals_offset,
20410 psymtab->n_global_syms, cu_index,
20411 0);
20412 write_psymbols (symtab,
20413 psyms_seen,
20414 objfile->static_psymbols.list + psymtab->statics_offset,
20415 psymtab->n_static_syms, cu_index,
20416 1);
20417 }
20418
20419 /* Create an index file for OBJFILE in the directory DIR. */
20420
20421 static void
20422 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20423 {
20424 struct cleanup *cleanup;
20425 char *filename, *cleanup_filename;
20426 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20427 struct obstack cu_list, types_cu_list;
20428 int i;
20429 FILE *out_file;
20430 struct mapped_symtab *symtab;
20431 offset_type val, size_of_contents, total_len;
20432 struct stat st;
20433 htab_t psyms_seen;
20434 htab_t cu_index_htab;
20435 struct psymtab_cu_index_map *psymtab_cu_index_map;
20436
20437 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20438 return;
20439
20440 if (dwarf2_per_objfile->using_index)
20441 error (_("Cannot use an index to create the index"));
20442
20443 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20444 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20445
20446 if (stat (objfile->name, &st) < 0)
20447 perror_with_name (objfile->name);
20448
20449 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20450 INDEX_SUFFIX, (char *) NULL);
20451 cleanup = make_cleanup (xfree, filename);
20452
20453 out_file = fopen (filename, "wb");
20454 if (!out_file)
20455 error (_("Can't open `%s' for writing"), filename);
20456
20457 cleanup_filename = filename;
20458 make_cleanup (unlink_if_set, &cleanup_filename);
20459
20460 symtab = create_mapped_symtab ();
20461 make_cleanup (cleanup_mapped_symtab, symtab);
20462
20463 obstack_init (&addr_obstack);
20464 make_cleanup_obstack_free (&addr_obstack);
20465
20466 obstack_init (&cu_list);
20467 make_cleanup_obstack_free (&cu_list);
20468
20469 obstack_init (&types_cu_list);
20470 make_cleanup_obstack_free (&types_cu_list);
20471
20472 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20473 NULL, xcalloc, xfree);
20474 make_cleanup_htab_delete (psyms_seen);
20475
20476 /* While we're scanning CU's create a table that maps a psymtab pointer
20477 (which is what addrmap records) to its index (which is what is recorded
20478 in the index file). This will later be needed to write the address
20479 table. */
20480 cu_index_htab = htab_create_alloc (100,
20481 hash_psymtab_cu_index,
20482 eq_psymtab_cu_index,
20483 NULL, xcalloc, xfree);
20484 make_cleanup_htab_delete (cu_index_htab);
20485 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20486 xmalloc (sizeof (struct psymtab_cu_index_map)
20487 * dwarf2_per_objfile->n_comp_units);
20488 make_cleanup (xfree, psymtab_cu_index_map);
20489
20490 /* The CU list is already sorted, so we don't need to do additional
20491 work here. Also, the debug_types entries do not appear in
20492 all_comp_units, but only in their own hash table. */
20493 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20494 {
20495 struct dwarf2_per_cu_data *per_cu
20496 = dwarf2_per_objfile->all_comp_units[i];
20497 struct partial_symtab *psymtab = per_cu->v.psymtab;
20498 gdb_byte val[8];
20499 struct psymtab_cu_index_map *map;
20500 void **slot;
20501
20502 if (psymtab->user == NULL)
20503 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20504
20505 map = &psymtab_cu_index_map[i];
20506 map->psymtab = psymtab;
20507 map->cu_index = i;
20508 slot = htab_find_slot (cu_index_htab, map, INSERT);
20509 gdb_assert (slot != NULL);
20510 gdb_assert (*slot == NULL);
20511 *slot = map;
20512
20513 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20514 per_cu->offset.sect_off);
20515 obstack_grow (&cu_list, val, 8);
20516 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20517 obstack_grow (&cu_list, val, 8);
20518 }
20519
20520 /* Dump the address map. */
20521 write_address_map (objfile, &addr_obstack, cu_index_htab);
20522
20523 /* Write out the .debug_type entries, if any. */
20524 if (dwarf2_per_objfile->signatured_types)
20525 {
20526 struct signatured_type_index_data sig_data;
20527
20528 sig_data.objfile = objfile;
20529 sig_data.symtab = symtab;
20530 sig_data.types_list = &types_cu_list;
20531 sig_data.psyms_seen = psyms_seen;
20532 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20533 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20534 write_one_signatured_type, &sig_data);
20535 }
20536
20537 /* Now that we've processed all symbols we can shrink their cu_indices
20538 lists. */
20539 uniquify_cu_indices (symtab);
20540
20541 obstack_init (&constant_pool);
20542 make_cleanup_obstack_free (&constant_pool);
20543 obstack_init (&symtab_obstack);
20544 make_cleanup_obstack_free (&symtab_obstack);
20545 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20546
20547 obstack_init (&contents);
20548 make_cleanup_obstack_free (&contents);
20549 size_of_contents = 6 * sizeof (offset_type);
20550 total_len = size_of_contents;
20551
20552 /* The version number. */
20553 val = MAYBE_SWAP (8);
20554 obstack_grow (&contents, &val, sizeof (val));
20555
20556 /* The offset of the CU list from the start of the file. */
20557 val = MAYBE_SWAP (total_len);
20558 obstack_grow (&contents, &val, sizeof (val));
20559 total_len += obstack_object_size (&cu_list);
20560
20561 /* The offset of the types CU list from the start of the file. */
20562 val = MAYBE_SWAP (total_len);
20563 obstack_grow (&contents, &val, sizeof (val));
20564 total_len += obstack_object_size (&types_cu_list);
20565
20566 /* The offset of the address table from the start of the file. */
20567 val = MAYBE_SWAP (total_len);
20568 obstack_grow (&contents, &val, sizeof (val));
20569 total_len += obstack_object_size (&addr_obstack);
20570
20571 /* The offset of the symbol table from the start of the file. */
20572 val = MAYBE_SWAP (total_len);
20573 obstack_grow (&contents, &val, sizeof (val));
20574 total_len += obstack_object_size (&symtab_obstack);
20575
20576 /* The offset of the constant pool from the start of the file. */
20577 val = MAYBE_SWAP (total_len);
20578 obstack_grow (&contents, &val, sizeof (val));
20579 total_len += obstack_object_size (&constant_pool);
20580
20581 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20582
20583 write_obstack (out_file, &contents);
20584 write_obstack (out_file, &cu_list);
20585 write_obstack (out_file, &types_cu_list);
20586 write_obstack (out_file, &addr_obstack);
20587 write_obstack (out_file, &symtab_obstack);
20588 write_obstack (out_file, &constant_pool);
20589
20590 fclose (out_file);
20591
20592 /* We want to keep the file, so we set cleanup_filename to NULL
20593 here. See unlink_if_set. */
20594 cleanup_filename = NULL;
20595
20596 do_cleanups (cleanup);
20597 }
20598
20599 /* Implementation of the `save gdb-index' command.
20600
20601 Note that the file format used by this command is documented in the
20602 GDB manual. Any changes here must be documented there. */
20603
20604 static void
20605 save_gdb_index_command (char *arg, int from_tty)
20606 {
20607 struct objfile *objfile;
20608
20609 if (!arg || !*arg)
20610 error (_("usage: save gdb-index DIRECTORY"));
20611
20612 ALL_OBJFILES (objfile)
20613 {
20614 struct stat st;
20615
20616 /* If the objfile does not correspond to an actual file, skip it. */
20617 if (stat (objfile->name, &st) < 0)
20618 continue;
20619
20620 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20621 if (dwarf2_per_objfile)
20622 {
20623 volatile struct gdb_exception except;
20624
20625 TRY_CATCH (except, RETURN_MASK_ERROR)
20626 {
20627 write_psymtabs_to_index (objfile, arg);
20628 }
20629 if (except.reason < 0)
20630 exception_fprintf (gdb_stderr, except,
20631 _("Error while writing index for `%s': "),
20632 objfile->name);
20633 }
20634 }
20635 }
20636
20637 \f
20638
20639 int dwarf2_always_disassemble;
20640
20641 static void
20642 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20643 struct cmd_list_element *c, const char *value)
20644 {
20645 fprintf_filtered (file,
20646 _("Whether to always disassemble "
20647 "DWARF expressions is %s.\n"),
20648 value);
20649 }
20650
20651 static void
20652 show_check_physname (struct ui_file *file, int from_tty,
20653 struct cmd_list_element *c, const char *value)
20654 {
20655 fprintf_filtered (file,
20656 _("Whether to check \"physname\" is %s.\n"),
20657 value);
20658 }
20659
20660 void _initialize_dwarf2_read (void);
20661
20662 void
20663 _initialize_dwarf2_read (void)
20664 {
20665 struct cmd_list_element *c;
20666
20667 dwarf2_objfile_data_key
20668 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20669
20670 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20671 Set DWARF 2 specific variables.\n\
20672 Configure DWARF 2 variables such as the cache size"),
20673 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20674 0/*allow-unknown*/, &maintenance_set_cmdlist);
20675
20676 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20677 Show DWARF 2 specific variables\n\
20678 Show DWARF 2 variables such as the cache size"),
20679 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20680 0/*allow-unknown*/, &maintenance_show_cmdlist);
20681
20682 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20683 &dwarf2_max_cache_age, _("\
20684 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20685 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20686 A higher limit means that cached compilation units will be stored\n\
20687 in memory longer, and more total memory will be used. Zero disables\n\
20688 caching, which can slow down startup."),
20689 NULL,
20690 show_dwarf2_max_cache_age,
20691 &set_dwarf2_cmdlist,
20692 &show_dwarf2_cmdlist);
20693
20694 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20695 &dwarf2_always_disassemble, _("\
20696 Set whether `info address' always disassembles DWARF expressions."), _("\
20697 Show whether `info address' always disassembles DWARF expressions."), _("\
20698 When enabled, DWARF expressions are always printed in an assembly-like\n\
20699 syntax. When disabled, expressions will be printed in a more\n\
20700 conversational style, when possible."),
20701 NULL,
20702 show_dwarf2_always_disassemble,
20703 &set_dwarf2_cmdlist,
20704 &show_dwarf2_cmdlist);
20705
20706 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20707 Set debugging of the dwarf2 reader."), _("\
20708 Show debugging of the dwarf2 reader."), _("\
20709 When enabled, debugging messages are printed during dwarf2 reading\n\
20710 and symtab expansion."),
20711 NULL,
20712 NULL,
20713 &setdebuglist, &showdebuglist);
20714
20715 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20716 Set debugging of the dwarf2 DIE reader."), _("\
20717 Show debugging of the dwarf2 DIE reader."), _("\
20718 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20719 The value is the maximum depth to print."),
20720 NULL,
20721 NULL,
20722 &setdebuglist, &showdebuglist);
20723
20724 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20725 Set cross-checking of \"physname\" code against demangler."), _("\
20726 Show cross-checking of \"physname\" code against demangler."), _("\
20727 When enabled, GDB's internal \"physname\" code is checked against\n\
20728 the demangler."),
20729 NULL, show_check_physname,
20730 &setdebuglist, &showdebuglist);
20731
20732 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20733 no_class, &use_deprecated_index_sections, _("\
20734 Set whether to use deprecated gdb_index sections."), _("\
20735 Show whether to use deprecated gdb_index sections."), _("\
20736 When enabled, deprecated .gdb_index sections are used anyway.\n\
20737 Normally they are ignored either because of a missing feature or\n\
20738 performance issue.\n\
20739 Warning: This option must be enabled before gdb reads the file."),
20740 NULL,
20741 NULL,
20742 &setlist, &showlist);
20743
20744 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20745 _("\
20746 Save a gdb-index file.\n\
20747 Usage: save gdb-index DIRECTORY"),
20748 &save_cmdlist);
20749 set_cmd_completer (c, filename_completer);
20750
20751 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
20752 &dwarf2_locexpr_funcs);
20753 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
20754 &dwarf2_loclist_funcs);
20755
20756 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
20757 &dwarf2_block_frame_base_locexpr_funcs);
20758 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
20759 &dwarf2_block_frame_base_loclist_funcs);
20760 }
This page took 0.496858 seconds and 4 git commands to generate.